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Abstract

This thesis examines the question of what differentiates naturally occurring sounds
from the majority of digitally synthesised sounds. The discussion centres around the
notion that sounds may be viewed as structured auditory information and examines
both the human auditory system’s ability to generate perceptual imagery from this
information, and the underlying principles which govern the creation of compler but

coherent structured information in Nature. A solution to the goal of developing
new sound synthesis techniques capable of generating ‘organic’, ‘naturalistic’ sounds
events for electroacoustic music is proposed. This solution centres around the use
of a particular class of computer models, collectively referred to as cellular models,
which consist of large numbers of simple agents interacting with one another on a
local basis, and give rise to complex global patterns of behaviour. A survey of exist-
ing sound synthesis techniques is given, including descriptions of some contemporary
computer music programs, and a new computer music program called TAO is de-
scribed. TAO forms a substantial part of the research undertaken and is a working
prototype capable of creating a wide variety of organic and naturalistic sound events.
It therefore enables the provision of aural evidence for many of the arguments put
forward. Other specific topics covered include the spectro-morphological and acous-
matic approaches to music, the ecological view of auditory perception, chaos theory,
complexity, the study of dynamical systems and emergent behaviour. The thesis

concludes with a model of organic sounds and comments on the future development

of cellular sound synthesis techniques.
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Chapter 1

Background and thesis structure

1.1 Introduction

Since music is a perceptual phenomenon, the goals of what might be termed musical
research, and the ways in which it proceeds, are very different from those of scien-
tific research. One of the goals of musical composition and analysis lies in gaining a
greater understanding of the nature of sound in all its variety, and how we perceive
it. The phenomenon of sound is two-fold though, depending both on the mecha-
nisms responsible for the pressure fluctuations reaching a listener’s ears, and on the
perceptual apparatus of the listener. The quest for a greater understanding of the
nature of sound ought then to place equal emphasis on both scientific enquiry into
the mechanisms which are responsible for the multitude of sounds we hear about us,

and on the subjective perceptions of musicians involved in the business of expressing

themselves through sound.

This thesis follows in a fairly well established tradition of querying the musical na-
ture of sound, especially prevalent in the field of electronic and computer music, and

in particular, deals with the question of how we may take inspiration from natu-

ral sounds! in order to develop new sound synthesis techniques which are capable
of producing more ‘naturalistic’ or ‘organic’ sounds. The program of research de-
scribed in this thesis was initially prompted by some perceived deficiencies in existing

approaches to sound synthesis and in the sounds they produce when compared to

|

sounds produced by vocal or instrumental means, environmental sounds or any other sound

produced as a side-effect of some physical process or mechanism.

17



18 1. Background and thesis structure

natural sounds. To be more specific, natural sounds often seem to be:

1. more strongly suggestive of physical causality;
2. more subtle and intricate;
3. more coherent, seemingly possessing stronger identities;

4. and more vibrant and organic than synthesised sounds.

These points are based directly upon aural experience and should be taken at face
value as empirical observations rather than concrete facts or fundamental criticisms
of digital technology itself. However, the fact that many electroacoustic compositions
make use of naturally occurring rather than synthesised sounds as source material,

inevitably tells us something about the special resonance which natural sounds hold

for us, and also about the amount of time and energy which must be expended
in order to create synthetic sounds possessing a similar degree of subtlety., The
term natural sound is used here to refer to the physical processes or mechanisms
responsible for a sound, whereas terms such as naturalistic and organic are used to
refer to specific perceptual attributes possessed by a sound, which seem to suggest

that it has been produced by a physical process or mechanism of some description.
One of the goals of this thesis is to identify the factors which contribute to a sound
being classed as organic or naturalistic, and also to attempt to provide explanations
for other adjectives such as vibrant and lively which may be applied to any type of
sound but seem at first to be rather subjective. A central premise of this thesis is
that such terms do have a stronger basis for their use than mere personal taste, and

relate to the structured information inherent in a sound.

1.2 Hypothesis

The hypothesis of this program of research is that:

Cellular computer models, inspired by the behaviour of naturally occur-
ring complex dynamical systems, provide an ideal medium for the devel-
opment of a new generation of sound synthesis techniques, more holistic

in their approach than traditional techniques, and capable of producing
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complex organic sounds events, whilst simultaneously being sympathetic

to the needs of electroacoustic music.

This hypothesis is supported in three ways:

1. At a theoretical level, by examining the notion that all sounds may be viewed as
structured auditory information, addressing both the perceptual effects which
this information evokes, and the underlying natural laws which give rise to

particular patterns of information in the first place.

2. At a practical level, by a variety of visual and sonic examples produced by the

TAO computer music program, based entirely upon instruments constructed

from cellular physical models.

3. By a comparison of the strengths and weaknesses of the approach taken by

TAQO with existing synthesis techniques.

The rest of this introductory chapter serves to lay out the background for the re-
search. Section 1.3 describes some key points pertaining to digital sound synthesis
for composition. Section 1.4 describes the spectro-morphological and acousmatic
approaches to music, for which TAO has been specifically designed. Section 1.5 de-
scribes the ecological approach to auditory perception, based on the premise that
the environment presents a listener with structured information containing all the
details necessary for the perception of objects and events. Section 1.6 relates the
comments given above about the deficiencies of digitally synthesised sounds to a
wider set of views expressed by those involved in the composition and analysis of

electroacoustic music. Finally, section 1.7 lays out the plan for the rest of the thesis.

1.3 Digital technology and models of sound synthesis

The composer Edgar Varése first coined the phrase organised sound as a general def-
inition of what all music basically is, regardless of genre. Taking this definition as a
starting point, the task of musical sound synthesis is actually one of organising sound
at various structural levels. The strategies available for organising sound should be

as general as possible in order not to interfere with the individual composer’s musical
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ideas, and whilst digital technology has made it possible for composers to capture
and manipulate sounds, and place them in contexts other than that in which they
originally occurred, on its own, a digital computer deals with nothing but raw nu-
merical data. Thus in order to create new sounds or manipulate existing ones in ways
which are musically meaningful, we have to first develop synthesis models which en-
capsulate our view of how sound is structured and how it functions. The theoretical
claim made that a digital computer is capable of synthesising any sound because of

its universality and programmability, is meaningless without these synthesis models.

Faced by an infinite palette of potential timbres and infinite gradations
of frequency and time, the question posed seems to be one of finding ap-
propriate ways of structuring such continuous variables (Windsor, 1995,

section 2.1.3).

When digital computer technology first became a viable tool for sound synthesis,
the most obvious model to adopt was based upon the technology used in analogue
voltage controlled synthesisers. This model provided digital versions of components
such as oscillators, filters, mixers etc. originally appropriated from the discipline of
electronic engineering. The majority of sound synthesis techniques has traditionally
relied upon an essentially reductionist, frequency domain view of sound as we shall
see in chapter 3. The computer music program Csound, which relies upon this

approach, is briefly described at the beginning of the same chapter.

Whilst it is not the place of this thesis to prove that one approach to sound synthesis
is better in every respect than another, it is proposed that with the use of cellular
models, it will be possible to develop a whole new generation of techniques which
will be more holistic in their approach to the task of synthesising complex and
organic sound events for electroacoustic music. These techniques will address specific
deficiencies inherent in traditional techniques but will ultimately complement them,
giving the composer a wider range of tools for the task of organising sound. The TAO
computer music program, described in chapters 4, 5 and 6 provides some evidence
for this claim in the form of both sonic and visual examples, but this thesis also

addresses the wider implications of the use of cellular models.
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1.4 Spectro-morphological and acousmatic music

The work described in this thesis takes account of both the spectro-morphological
(Smalley, 1990) and acousmatic (Windsor, 1995) approaches to music. In traditional
‘note’ based music the notes are seen as the ‘prime carriers of information’ whereas
timbre is seen as a secondary attribute which merely provides coloration for the
notes. The spectro-morphological approach to music does not oppose this view
directly but embraces it within a wider context in which all categories of sound
potentially have equal musical value. In this context the pitched sounds of traditional
musical instruments represent just one possible type of spectral structure in which
the partials happen to be arranged with a preference for harmonic relationships.
Smalley describes three main categories of sound, in term of their spectral structures,

note, node and noise. These are elaborated on later in this section.

One of the most important skills the electroacoustic composer must possess is the
ability to listen to sounds acousmatically. An acousmatic approach to listening in-
volves the apprehension of a sound as an object in its own right, without relation
to its source. In everyday circumstances the human auditory system serves its evo-
lutionary purpose of helping us to identify objects and events in our immediate
environment. This mode of listening, or rather hearing since it is essentially pas-
sive and subconscious, reduces sounds to the role of mere triggers for recognition or
identification of objects or events. For example when a car drives past, the normal
subconscious reaction is to conclude that the sound heard is a car rath<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>