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Abstract 

This thesis examines the question of what differentiates naturally occurring sounds 
from the majority of digitally synthesised sounds. The discussion centres around the 

notion that sounds may be viewed as structured auditory information and examines 
both the human auditory system's ability to generate perceptual imagery from this 
information, and the underlying principles which govern the creation of complex but 

coherent structured information in Nature. A solution to the goal of developing 

new sound synthesis techniques capable of generating `organic', `naturalistic' sounds 

events for electroacoustic music is proposed. This solution centres around the use 

of a particular class of computer models, collectively referred to as cellular models, 

which consist of large numbers of simple agents interacting with one another on a 
local basis, and give rise to complex global patterns of behaviour. A survey of exist- 
ing sound synthesis techniques is given, including descriptions of some contemporary 

computer music programs, and a new computer music program called TAO is de- 

scribed. TAO forms a substantial part of the research undertaken and is a working 

prototype capable of creating a wide variety of organic and naturalistic sound events. 
It therefore enables the provision of aural evidence for many of the arguments put 
forward. Other specific topics covered include the spectro-morphological and acous- 

matic approaches to music, the ecological view of auditory perception, chaos theory, 

complexity, the study of dynamical systems and emergent behaviour. The thesis 

concludes with a model of organic sounds and comments on the future development 

of cellular sound synthesis techniques. 
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Chapter 1 

Background and thesis structure 

1.1 Introduction 

Since music is a perceptual phenomenon, the goals of what might be termed musical 

research, and the ways in which it proceeds, are very different from those of scien- 

tific research. One of the goals of musical composition and analysis lies in gaining a 

greater understanding of the nature of sound in all its variety, and how we perceive 
it. The phenomenon of sound is two-fold though, depending both on the mecha- 

nisms responsible for the pressure fluctuations reaching a listener's ears, and on the 

perceptual apparatus of the listener. The quest for a greater understanding of the 

nature of sound ought then to place equal emphasis on both scientific enquiry into 

the mechanisms which are responsible for the multitude of sounds we hear about us, 

and on the subjective perceptions of musicians involved in the business of expressing 
themselves through sound. 

This thesis follows in a fairly well established tradition of querying the musical na- 
ture of sound, especially prevalent in the field of electronic and computer music, and 
in particular, deals with the question of how we may take inspiration from natu- 

ral sounds' in order to develop new sound synthesis techniques which are capable 

of producing more `naturalistic' or `organic' sounds. The program of research de- 

scribed in this thesis was initially prompted by some perceived deficiencies in existing 
approaches to sound synthesis and in the sounds they produce when compared to 

'sounds produced by vocal or instrumental means, environmental sounds or any other sound 
produced as a side-effect of some physical process or mechanism. 

17 



18 1. Background and thesis structure 

natural sounds. To be more specific, natural sounds often seem to be: 

1. more strongly suggestive of physical causality; 

2. more subtle and intricate; 

3. more coherent, seemingly possessing stronger identities; 

4. and more vibrant and organic than synthesised sounds. 

These points are based directly upon aural experience and should be taken at face 

value as empirical observations rather than concrete facts or fundamental criticisms 

of digital technology itself. However, the fact that many electroacoustic compositions 

make use of naturally occurring rather than synthesised sounds as source material, 
inevitably tells us something about the special resonance which natural sounds hold 

for us, and also about the amount of time and energy which must be expended 
in order to create synthetic sounds possessing a similar degree of subtlety. The 

term natural sound is used here to refer to the physical processes or mechanisms 

responsible for a sound, whereas terms such as naturalistic and organic are used to 

refer to specific perceptual attributes possessed by a sound, which seem to suggest 

that it has been produced by a physical process or mechanism of some description. 

One of the goals of this thesis is to identify the factors which contribute to a sound 
being classed as organic or naturalistic, and also to attempt to provide explanations 
for other adjectives such as vibrant and lively which may be applied to any type of 

sound but seem at first to be rather subjective. A central premise of this thesis is 

that such terms do have a stronger basis for their use than mere personal taste, and 

relate to the structured information inherent in a sound. 

1.2 Hypothesis 

The hypothesis of this program of research is that: 

Cellular computer models, inspired by the behaviour of naturally occur- 

ring complex dynamical systems, provide an ideal medium for the devel- 

opment of a new generation of sound synthesis techniques, more holistic 

in their approach than traditional techniques, and capable of producing 
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complex organic sounds events, whilst simultaneously being sympathetic 

to the needs of electroacoustic music. 

This hypothesis is supported in three ways: 

1. At a theoretical level, by examining the notion that all sounds may be viewed as 

structured auditory information, addressing both the perceptual effects which 

this information evokes, and the underlying natural laws which give rise to 

particular patterns of information in the first place. 

2. At a practical level, by a variety of visual and sonic examples produced by the 

TAO computer music program, based entirely upon instruments constructed 
from cellular physical models. 

3. By a comparison of the strengths and weaknesses of the approach taken by 

TAO with existing synthesis techniques. 

The rest of this introductory chapter serves to lay out the background for the re- 

search. Section 1.3 describes some key points pertaining to digital sound synthesis 

for composition. Section 1.4 describes the spectro- morphological and acousmatic 

approaches to music, for which TAO has been specifically designed. Section 1.5 de- 

scribes the ecological approach to auditory perception, based on the premise that 

the environment presents a listener with structured information containing all the 

details necessary for the perception of objects and events. Section 1.6 relates the 

comments given above about the deficiencies of digitally synthesised sounds to a 

wider set of views expressed by those involved in the composition and analysis of 

electroacoustic music. Finally, section 1.7 lays out the plan for the rest of the thesis. 

1.3 Digital technology and models of sound synthesis 

The composer Edgar Varese first coined the phrase organised sound as a general def- 

inition of what all music basically is, regardless of genre. Taking this definition as a 

starting point, the task of musical sound synthesis is actually one of organising sound 

at various structural levels. The strategies available for organising sound should be 

as general as possible in order not to interfere with the individual composer's musical 
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ideas, and whilst digital technology has made it possible for composers to capture 

and manipulate sounds, and place them in contexts other than that in which they 

originally occurred, on its own, a digital computer deals with nothing but raw nu- 

merical data. Thus in order to create new sounds or manipulate existing ones in ways 

which are musically meaningful, we have to first develop synthesis models which en- 

capsulate our view of how sound is structured and how it functions. The theoretical 

claim made that a digital computer is capable of synthesising any sound because of 

its universality and programmability, is meaningless without these synthesis models. 

Faced by an infinite palette of potential timbres and infinite gradations 

of frequency and time, the question posed seems to be one of finding ap- 

propriate ways of structuring such continuous variables (Windsor, 1995, 

section 2.1.3). 

When digital computer technology first became a viable tool for sound synthesis, 

the most obvious model to adopt was based upon the technology used in analogue 

voltage controlled synthesisers. This model provided digital versions of components 

such as oscillators, filters, mixers etc. originally appropriated from the discipline of 

electronic engineering. The majority of sound synthesis techniques has traditionally 

relied upon an essentially reductionist, frequency domain view of sound as we shall 

see in chapter 3. The computer music program Csound, which relies upon this 

approach, is briefly described at the beginning of the same chapter. 

Whilst it is not the place of this thesis to prove that one approach to sound synthesis 

is better in every respect than another, it is proposed that with the use of cellular 

models, it will be possible to develop a whole new generation of techniques which 

will be more holistic in their approach to the task of synthesising complex and 

organic sound events for electroacoustic music. These techniques will address specific 

deficiencies inherent in traditional techniques but will ultimately complement them, 

giving the composer a wider range of tools for the task of organising sound. The TAO 

computer music program, described in chapters 4,5 and 6 provides some evidence 
for this claim in the form of both sonic and visual examples, but this thesis also 

addresses the wider implications of the use of cellular models. 
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1.4 Spectro-morphological and acousmatic music 

The work described in this thesis takes account of both the spectro- morphological 
(Smalley, 1990) and acousmatic (Windsor, 1995) approaches to music. In traditional 

`note' based music the notes are seen as the `prime carriers of information' whereas 

timbre is seen as a secondary attribute which merely provides coloration for the 

notes. The spectro-morphological approach to music does not oppose this view 

directly but embraces it within a wider context in which all categories of sound 

potentially have equal musical value. In this context the pitched sounds of traditional 

musical instruments represent just one possible type of spectral structure in which 

the partials happen to be arranged with a preference for harmonic relationships. 

Smalley describes three main categories of sound, in term of their spectral structures, 

note, node and noise. These are elaborated on later in this section. 

One of the most important skills the electroacoustic composer must possess is the 

ability to listen to sounds acousmatically. An acousmatic approach to listening in- 

volves the apprehension of a sound as an object in its own right, without relation 

to its source. In everyday circumstances the human auditory system serves its evo- 
lutionary purpose of helping us to identify objects and events in our immediate 

environment. This mode of listening, or rather hearing since it is essentially pas- 

sive and subconscious, reduces sounds to the role of mere triggers for recognition or 
identification of objects or events. For example when a car drives past, the normal 

subconscious reaction is to conclude that the sound heard is a car rather than to 

pay any special attention to its timbral characteristics. Although the sound pos- 

sesses characteristics which in everyday life might suggest that it has been produced 
by a car, it is possible to suppress the image of the car itself and concentrate on 
the evolution of the sound as an object in its own right. The normal mechanism of 

source-recognition is so deeply rooted and automatic that, often, practice is required 
in order to suppress it in favour of a more active, acousmatic mode of listening. 

An analogy may be drawn with visual art, since an artist must learn to see subtle 
textures and hues of colour which might not be immediately evident to a non-artist, 

more concerned with recognition and categorisation of objects. In the same way 
that visual art may be representational or abstract, so then there are two aspects to 

sound, the concrete and abstract. 
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All sounds possess this dual potential - the abstract and concrete aspects 

of sound - and all musical structures are balanced somewhere between 

the two, although exactly how they are balanced can vary greatly among 
listeners (Smalley, 1990, p. 64). 

The use of the word `acousmatic' has led to its being adopted to refer to another 

genre of music, acousmatic music, defined by Windsor (1995) as: 

a form of music which is presented through loudspeakers to an audience 
from an analog or digital tape-recording. This music may contain sounds 

that have recognisably musical sources, but may equally present recognis- 

able sources that are beyond the bounds of traditional vocal and instru- 

mental technology. We are as likely to hear the sounds of a bird, or of a 

factory as we are the sounds of a violin. Consider also that the technol- 

ogy involved transcends the mere reproduction of sounds. Techniques of 

synthesis and sound processing are employed which may present us with 

sounds that are unfamiliar and that may defy clear source attribution. 

Consider that this form of music may present us with familiar musi- 

cal events: chords, melodies and rhythms which are easily reconcilable 

with other forms of music, but may equally present us with events which 

cannot be classified within such a traditional taxonomy (Windsor, 1995, 

section 1.0). 

The precise differences between the spectro-morphological and acousmatic approaches 

to music are not under discussion here, but what is significant to both is the use 

of a much wider, all-encompassing palette of sounds. One of the themes which ap- 

pears frequently in the literature concerning both genres of music is the importance 

of aural perception in the composition, analysis and interpretation of such pieces. 
Conventional musical theories concerned with notes, rhythms, melodies, phrases etc. 

are inadequate to explain what a listener makes of such music. 

Attention to perception affords us some knowledge of which attributes of 

sound may be perceived by the listener; and as an aural practice, acous- 

rnatic composition is as much about listening as it is about abstract tech- 

nical manipulations of sound. Hence, by studying perception one might 
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arrive at descriptions that correspond to what is heard by the composer, 

and hence, provide a method of describing why particular sounds lead to 

particular compositional decisions (Windsor, 1995, section 1.1.1). 

Spectromorphology reaffirms the primacy of aural perception which has 

been so heiniously ignored in the recent past, and warns composers, re- 

searchers and technologists that unless aural judgement is permitted to 

triumph over technology, electroacoustic music will attract deserved con- 

demnation (Smalley, 1990, p. 93). 

... we return to aural discrimination and perception as the supreme mu- 

sical tools. It is not a scientific knowledge which is required but an expe- 

riential knowledge (Smalley, 1990, p. 81). 

note proper 

note harmonic spectrum 

inharmonic 
note to 
noise node 

continuum 

noise 

Figure 1.1: Spectral typology of sound (after Smalley 1990) 
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We return now to Smalley's sound categories: note, node and noise. The note 

category is further subdivided into: note proper, where the absolute pitch of the 

sound is used in the traditional context of intervallic relationships with other pitches; 
harmonic spectrum, in which the fundamental frequency or perceived pitch is of 

secondary importance to the individual partials and their balance within the sound, 
i. e. to rephrase in traditional terms, the timbre becomes more important than the 

pitch even though there is a clearly perceivable pitch; and inharmonic spectrum, 

which includes certain tuned percussion instruments which allude to pitches and yet 
have non-harmonicly related partials. A nodal spectrum is one in which the partials 

are clustered in such a way that they are perceived as a whole, and yet no pitch 
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centres are evident in the sound. An example is the sound produced by a cymbal. 
Finally a noise spectrum is one in which it is impossible to perceive any kind of fixed 

pitches or clusters of partials and yet which still exhibits some kind of structural 

coherence, such as the sound of the sea or wind. 

1.5 The ecological view of auditory perception 

As described in the introduction to this chapter, one of the goals of this thesis is 

to clarify the meanings of words such as organic, naturalistic, vibrant and lively. In 

order to attack this question we first need to make explicit some premises on which 
the various arguments are based. The first premise is that the qualities described 

above are not merely subjective and personal in nature, but relate instead to the 

information contained within a sound, and the way in which it is structured. Gib- 

son (1979) proposed a theory of perception in his book The ecological approach to 

visual perception which supports this notion. The theory is described briefly in this 

section and although not based directly upon Gibson, this thesis adopts some of the 

terminology introduced. 

Gibson's theory contradicts the view that organisms such as ourselves have to main- 

tain mental models of our environment in order to make sense of the chaotic mass 

of information generated by that environment. Instead it is proposed that the en- 

vironment, because of its inherent structure, presents the organism with structured 

information which it is able to pick up visually or aurally etc. The perception of 

objects and events in the environment depends, then, not on internally structured 

mental models, but upon direct perception of structures which are external to the 

organism. 

Rather than assuming that the sensations passed from the sense organs to 

the central nervous system represent a chaotic source of information that 

mental processes organise and store in the form of meaningful percepts 

and memories, an ecological approach assumes that the `external' world, 

the environment, is structured and that organisms are directly sensitive 

to such structure (Windsor, 1995, section 2.1). 

There are two important aspects about the natural environment which relate to 
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the nature of the structured information it generates: firstly, it is hierarchical both 

spatially and temporally; and secondly, it always contains elements of repetition 

and non-repetition, elements which persist and those which do not, once again both 

spatially and temporally. 

Just as physical reality has structure at all levels of metric size, so it 

has structure at all levels of metric duration ... And ... it is important to 

realise that smaller units are nested within larger units. There are events 

within events, as there are forms within forms ... (Gibson, 1979, p. 12) 

The environment normally manifests some things that persist and some 

that do not, some features that are invariant and some that are variant. 

A wholly invariant environment, unchanging in all parts and motionless, 

would be completely rigid and obviously would no longer be an environ- 

ment ... At the other extreme, an environment that was changing in all 

parts and was wholly variant, consisting only of swirling clouds of matter, 

would also not be an environment. In both extreme cases there would be 

space, time, matter, and energy, but there would be no habitat (Gibson, 

1979, P-14). 

UNIVERSITY 
OF YORK 
LIBRARY 

An organism possesses a variety of sense organs and perceptual systems whose pur- 

pose, from an evolutionary point of view, is to enable it to make sense of its immedi- 

ate environment by perceiving objects and events pertinent to its survival. According 

to Gibson, perception of these objects and events is made possible by the structured 

information which they generate, and the process of perceiving them relies on the 

organism being able to extract the invariant features from this continual flow of 

information. Gibson raises some very subtle points about the nature of identity, 

emphasising that the recognition of an object or event's persistence is more fun- 

damental and direct than the recognition of differences between several objects or 

events. The former is seen as occurring in a direct, unmediated manner, whilst the 

latter requires abstraction after the event of perception. 

In the case of the persisting thing, I suggest, the perceptual system simply 

extracts the invariants from the flowing array; it resonates to the invari- 

ant structure or is attuned to it. In the case of substantially distinct 
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things, I venture, the perceptual system must abstract the invariants. 

The former process seems to be simpler than the latter, more nearly au- 

tomatic (Gibson, 1979, p. 249). 

A practical illustration of these ideas can be found in the perception of a substance 

such as water. We are able, instantly, to recognise water, since the visual informa- 

tion it generates, via reflected light, tends to exhibit certain spatial and temporal 

patterns. Even though the surface of water is in a continual state of flux, it always 

behaves in a water-like manner and in this context the adjective water-like refers to 

the invariant features in the structured information caused by the water. 

Gibson's theory of perception also extends to the meanings which objects and events 

have for an organism in terms of its survival. Rather than these events and objects 

being detached from the organism perceiving them, they afford certain possibilities. 

For example, the sound of a loud explosion, via the particular pattern of struc- 

tured information which it causes, affords the possibility of being seriously injured. 

Similarly the sound of a sea-shore with gently breaking waves might afford great 

relaxation, for a human listener anyway. The crux of the theory lies in the fact that 

an organism evolves an innate ability to attune to, and attach certain meanings to, 

particular patterns of structured information, in order to enhance its chances of sur- 

vival, but that these patterns of information are contained within the environment, 

and are not created by the organism itself. 

An organism evolves ... to pick-up information that will increase its chances 

of survival. It develops perceptual systems that enable it to perceive fea- 

tures of the environment that facilitate continued existence, and hence 

reproduction. Moreover, the dynamic relationship between a perceiving, 

acting organism and its environment is seen to provide the grounds for 

the direct perception of meaning. Gibson's term for this is "affordance". 

Objects and events are related to a perceiving organism by structured in- 

formation, and they "afford" certain possibilities for action relative to an 

organism. For example, a cup affords drinking, the ground, walking. 

Affordances, "point both ways" (Gibson, 1979, p. 129) in that they can 

neither be explained purely in terms of the needs of the organism, nor in 
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terms of the objective features of the environment. The affordance is a re- 
lationship between a particular environmental structure and a particular 

organism's needs and capacities (Windsor, 1995, section 2.1.1). 

Affordances are not always so clearly and unambiguously defined as in the case of 

a loud explosion, since each sound will have its own connotations for each individ- 

ual listener based upon their own personal experiences. We are not concerned here 

with analysing the affordances of particular sounds but merely with the fact that 

such mechanisms operate at a deeply rooted, subconscious level and will therefore 

influence the musical effect which a sound has upon a listener, even if this effect 
is not intended by the composer. And, more importantly, we are interested in the 

fact that such mechanisms need nothing other than appropriately structured infor- 

mation for their evocation. There is nothing in principle which prevents a synthetic 

sound from possessing utterly convincing natural qualities, and even evoking very 

real affordances in the listener, provided the information generated by the synthesis 

model captures the essence of the patterns which would be found in an equivalent 

natural sound. 

Gibson also raises some significant issues relating to the nature of objects and events. 

Firstly, natural hierarchies are different from man-made hierarchical structures such 

as machines. In an organic hierarchy, or holarchy (Sheldrake, 1988, p. 95), there are 

no divisible levels of structure and no divisible components at any particular scale. 

Instead there is a smooth continuum of organisation from the smallest scale up to 

the largest. 

A living organism ... is not assembled from parts, and its members, al- 

though they move, constitute a different sort of hierarchy (Gibson, 1979, 

p. 96). 

Secondly, Gibson's use of the words duration and size rather than time and space, 

emphasise the point that the abstract concepts of space and time described by physi- 

cists have little to do with everyday perceptual practice. Our senses of space and 
time arise from the objects and events we perceive in our environment, and whilst 
both occur at all scales from the the atomic to the cosmic, we are only able to 

perceive a limited `bandwidth' of the available information. 
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It is worth emphasising that the information generated by natural environments 

may be extremely complex and yet coherent. If a single point source of sound 

or light generates spherically radiating wavefronts, each of which leads to multiple 

reflections off of the various surfaces in the immediate vicinity, then each one of 

these reflected wavefronts will undergo further reflections. Combined with the fact 

that real surfaces are not perfectly flat mathematical planes but have rough, uneven 

textures, even a tiny portion of such a surface will lead to wavefronts being scattered 
in many directions. If we then consider the subsequent reflections of these scattered 

wavefronts, it quickly becomes clear that the information generated will be extremely 

complex. An observer placed at a fixed location will only pick up a tiny fraction of 
the total information generated by the environment, and yet even this fraction will be 

extremely complex. But if the observer moves about the environment, although the 

information picked up at each point will be extremely complex, it will bear a coherent 

relationship to the information available at every other point in the environment. 

An indication of this complexity may be found in the generation of realistic com- 

puter graphics images. Computer graphics techniques such as ray-tracing I involve 

enormous amounts of computation but often produce very realistic images, whereas 

the use of more simple, short cut techniques often lead to images possessing overtly 

simplistic and synthetic qualities. Yet somehow, regardless of the complex nature 

of the information generated by natural environments, even an untrained listener 

is able to recognise the difference between say, the reverberant characteristics of a 

church and a small furnished room in a house. Moreover, this occurs in a direct, 

subconscious manner. The listener can immediately detect the close proximity of a 

wall or an open doorway etc. Structured information may therefore be very com- 

plex, and yet through its coherence, may be capable of providing the perceiver with 

a clear and consistent `picture' of the surrounding environment. 

Traditional techniques of sound spatialisation used in computer music consisting of 

systems capable of projecting sounds over multiple loudspeaker arrays, and digi- 

'A technique which involves tracing individual virtual rays of light back from the flat projection 

plane represented by the computer screen, through a virtual environment, encountering various re- 
flective and refractive surfaces along the way, to their original source. The technique copes well with 

smooth reflective and refractive surfaces but cannot be applied to accurately modelling rays reflected 

off a rough surface, since the associated scattering increases the complexity of the computation to 

impractical proportions. See Hearn and Baker (1986). 
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tal reverberation techniques based upon the use of various combinations of filters, 

whilst providing some spatial cues, lack the coherence associated with information 

generated by natural spatial environments. 

1.6 The musical perception of sound 

Our perceptual systems operate at a number of different levels simultaneously with- 

out our necessarily being aware of it and, as described in the previous section, they 

are attuned to certain patterns of structured information, which are able to trigger 

clearly defined affordances, such as in the case of a loud explosion. In a natural 

context, if we merely reflected on the quality of timbre inherent in such a sound, the 

likelyhood is we would not survive the event. 

Another example of a deeply rooted core perceptual mechanism may be found in 

our ability to perform auditory streaming (Bregman, 1990), which enables us to 

perceptually group together sounds which are similar in timbre, pitch range, loudness 

etc. or sounds which occur in close proximity either spatially or temporally. These 

perceptual mechanisms are found in all listeners, not just those with musical training, 

and are of natural origin. The fact that we humans employ our perceptual systems 
in activities such as music, which are non-essential to our immediate survival, does 

not automatically imply that we can simply `switch off'these mechanisms at will. In 

the previous section, it was stated that natural sounds, through the complexity and 

coherence of their information content, are capable of evoking a clear and consistent 
`picture' or image of an environment. The term image is interpreted by Emmerson 

(1990) as: 

lying somewhere between true synaesthesia with visual image and a 

more ambiguous complex of auditory, visual and emotional stimuli (Em- 

merson, 1990, p. 17). 

Another way of looking at the perceptual imagery evoked in a listener is in terms 

of landscape defined by Wishart (1990, p. 43) as the source from which we imagine 

the sounds to come. We hear examples of natural aural landscapes all around us in 

everyday life. For example the aural landscape of a small room in a house is vastly 
different to the aural landscape of a cathedral, a busy street or the seaside. More 
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importantly, as Wishart points out, with the use of digital technology, it is possible 

to create artifical landscapes which may be realistic or surrealistic in nature. 

Wishart defines the most important characteristics of landscape as being: I, the 

nature of the perceived acoustic space; II, the disposition of sound objects within the 

space; and III, the recognition of individual sound objects (Wishart, 1990, p. 45). We 

are mostly concerned here with the characteristics of individual sound objects, since 

the TAO computer music program is not yet capable of simulating acoustic spaces 

or the disposition of sound objects within a space, although the sounds produced 

often do possess a strong (but limited) sense of space. However, the wider arguments 

addressed in this thesis about structured information and the use of cellular models in 

the generation of such information also apply to the problem of simulating acoustic 

spaces, since the problem is essentially the same: how to develop models which 

are able to generate coherently structured information which the listener's auditory 

perceptual system, through its evolved abilities, will resonate with, or attune to, 

leading to the evocation of a convincing sense of space. 

1.6.1 Mimesis in electroacoustic music 

The sounds and structures found in electroacoustic compositions often mimic aspects 

of everyday human experience. This is by no means unique to electroacoustic music 

since traditional note-based music has always drawn inspiration from aspects of 

human experience such as the rhythmic activity of breathing and walking and the 

regular beating of the heart. Melodies and phrase structures have their origins in 

the natural limits set by the human vocal apparatus. This aspect of electroacoustic 

music is termed mimesis and, according to Emmerson (1990), denotes: 

the imitation not only of nature but also other aspects of human culture 

not usually associated directly with musical material (Emmerson, 1990, 

p. 17). 

Music is always related in some way to human experience, which means 

that mimesis is always at work even in music regarded as abstract, though 

such mimesis is notoriously difficult to explain (Smalley, 1990, p. 64). 

Emmerson highlights the fact that there are two types of mimesis: 
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... `timbral' mimesis is a direct imitation of the timbre (`colour) of the 

natural sound, while `syntactic' mimesis may imitate the relationships 
between natural events ... (Emmerson, 1990, p. 18). 

As with the affordances of particular sounds, this thesis does not attempt to anal- 

yse the mimetic qualities of specific sound examples, but merely acknowledges that 

mimesis has an important part to play in electroacoustic music. It is concerned, 

however, with the fact that musical sounds and sound shapes are often mimetic 

of natural events. Gibson highlighted the fact that natural events are hierarchical 

in nature, and Emmerson's two types of mimesis might be viewed as lying at two 

ends of a continuous spectrum, with timbral mimesis referring to the mimicry of a 

sound's microstructure, and syntactic mimesis referring to the mimicry of an event's 

macrostructure (not necessarily a sonic event). More will be said of the micro- and 

macrostructures of natural sound events in the next section. 

1.6.2 Sound categories and their perception 

Natural sounds are constrained to evolve according to certain patterns due to the un- 

derlying physical processes of which they are a side-effect. Maybe the most striking 

examples of this are sound categories such as smashing, bubbling, scraping, explod- 
ing, colliding, shattering etc. When listened to acousmatically, by suppressing the 

normal mechanism of source-recognition, we are still able to infer the kind of mech- 

anisms or actions responsible for their production. According to the ecological view 

of auditory perception, adjectives such as bubbling, scraping and smashing etc. refer 

not only to the perceptual characteristics which we attach to a sound, but also di- 

rectly to the patterns of structured information which give rise to these perceptual 
images in the first place. 

Windsor (1995, section 2.1.2) describes a number of experiments concerned with 

relating the macrostructure of a temporal event to its perceived cause. One experi- 

ment described involved simulating the sound of breaking glass, through a process of 

adjusting the temporal relationships between a number of prerecorded glass impact 

samples (Warren and Verbrugge, 1984). As Windsor relates, the experiment showed 

that the macrostructure of such events was sufficient for the sound to be perceived 

as having been caused by `breaking' . Another experiment described by Windsor 
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showed that the elasticity of a bouncing ball may be perceived directly, merely by 

listening to one period between two successive bounces (Warren, Kim and Husney, 

1987). In both of these examples the temporal macrostructure of a sound event was 

shown to be sufficient for a listener to infer a physical cause for the sound, in a 
direct, rather than analytical manner. 

It is clear from this research that a lawful relationship obtains between the 

physical structure of such events and the acoustic or visual information 

available to the organism. This relationship is not physical, nor is it 

imposed by the organism: rather it is picked up through our contact with 

the lawful behaviour of environmental events, and hence can be described 

as specifying such events directly (Windsor, 1995, section 2.1.2). 

Whilst this may be true, it is probable that the researchers were not concerned with 

the vibrancy of the sound events or how suited they would be to a musical context, 

and it is likely that the sounds used, containing coherently structured information at 

the macroscopic level juxtaposed with predetermined microstructural information, 

lacked some element of overall coherence which would determine how convincingly 

the image of breaking or bouncing was evoked. A real breaking sound, whilst pro- 

viding these temporal cues in its macrostructure, will also inherit microstructural 
details which may be attuned to by a listener in order to perceive the spatial prox- 
imity of the event, and possibly the kind of material being broken. Also, digitally 

sampled sounds possess a disconcerting ability to sound perfectly real the first time 

they are heard, and yet increasingly synthetic as they are repeated, whereas natural 
breaking events, no matter how close in character they may seem, will never be 

repeated exactly. 

There is always some degree of recurrence and some degree of nonrecur- 

rence in the flow of ecological events. That is, there are cases of pure 

repetition, such as the stepping motions of the escapement of a clock and 
the rotations of its hands, and cases of nonrepetition or novelty, such as 

cloud formations and the shifting sandbars of a river. Each new sunrise 
is like the previous one and yet unlike it, and so is each new day. An 

organism, similarly, is never quite the same as it was before, although it 
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has rhythms. This rule for events is consistent with the general formula 

of nonchange underlying change (Gibson, 1979, p. 101). 

The coherence associated with real shattering and bouncing events, arises from the 

fact that the microstructure and macrostructure are causally related by the physical 

evolution of the process 3, and this is detectable in the auditory information which 

such events generate. This observation supports the notion of objects and events 

being holarchies, and once we accept this aspect of natural sound events, the question 

arises: is it possible to synthesise sounds with convincing properties which might 

merit the use of adjectives such as shattering, bubbling etc., without recourse to 

models which explicitly simulate, to some degree, the underlying mechanisms? 

Once again it is possible to draw analogies with the visual domain, this time in 

the computer generation of convincingly natural or photorealistic images. For ex- 

ample, in a wide ranging discussion on the nature of virtual reality, Woolley (1992) 

comments that: 

Most regard [photorealism] ... as a product of higher resolution and more 

colours. However, a grainy, black and white picture can look more `pho- 

torealistic' than a TV-quality full-colour computer image. The reason 

seems to be that the realism lies in the image's content, not the quality 

of its reproduction. A photorealistic image is one that looks as though 

whatever it depicts is in some sense real - it concerns, in other words, 

the sophistication of the computer models, of the descriptions of the vir-, 

tual objects and landscapes, as much as their rendering (Woolley, 1992, 

p. 240). 

These arguments may be transposed quite easily into the domain of computer gen- 

erated sounds. `Higher resolution' and `more colours' could be said to correspond 

to greater dynamic range, wider frequency response, and better sampling rate, con- 

siderations which although important, are often blown out of proportion by hi-fi 

enthusiasts and technophiles in general, who place more emphasis on clarity of re- 

production than on the actual information content of the music they are reproducing. 
'This process includes acoustic radiation to the air and subsequent reflections and refractions 

caused by the acoustic environment. 
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The comments pertaining to `the sophistication of the computer models' and of `the 

descriptions of the virtual objects and landscapes' apply just as well to the computer 

generation of sounds as they do to images. 

All of the arguments introduced in this section apply to traditional musical sounds 

as well as the noise categories mentioned. For example the sound of a bowed cello 

string possesses qualities which point to the fact that it has been generated by some 

mechanism involving dragging and friction. The sonic characteristics imparted to 

the sound by this physical process become an integral part of its character. Even if 

we manage to suppress the mental image of a cellist playing the familiar orchestral 

instrument and treat the sound as an object in its own right, it will still contain 

coherently structured information which our auditory perception system will inter- 

pret, without any conscious effort on our part. Regardless of the particular notes 

played by the cellist, an aggressively bowed sound will afford a different meaning, to 

a listener, than a gently bowed sound. 

It is very difficult to attribute a sound's convincing bowed qualities to either its 

micro- or macrostructure in isolation, since they arise out of the coherence and 

causal relationship between the micro- and macrostructure. It is equally difficult 

to synthesise such sounds without recourse to physical models of the interaction 

between a bow and string. We are accustomed to utilising our perceptual systems 

in everyday life without thinking about the way in which they function, but it is 

remarkable to think that by using appropriate models, it is theoretically possible 

to synthesis sound events containing convincing physical and spatial cues, and even 

attributes which are suitably described by adjectives such as aggressive. That is, if 

the models are capable of generating complex yet coherently structured information. 

1.6.3 Perceived energy sources in natural sounds 

The ability to surmise the cause of a sound includes surmising the type of energy 

source, the amount of energy involved, and how that energy builds up, dissipates 

or changes in general. As with all the other perceptual mechanisms described, this 

happens in a direct experiential manner, and in this context the word energy has a 

different meaning to the scientific usage of the word. In other words we feel sounds 

building up, dissipating or moving from one state to another, as well as perceiving 
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the other qualities described. 

During the execution of a note, energy input is translated into changes 

in spectral richness or complexity. When listening to the note we reverse 

this cause and effect by deducing energetic phenomena from changes in 

spectral richness ... This aural congruence of spectral and dynamic pro- 

files, and their association with energetic phenomena, are the substance 

of everyday perceptual practice (Smalley, 1990, p. 68). 

35 

Smalley relates the energetic, perceptual aspects of a sound to its spectro-morphology 
in the above quote, but this could be restated in terms of structured information 

instead, which is preferable since this thesis attempts to move away from the re- 

ductionist, frequency domain view of sound in favour of a more integrated approach 

encompassing all aspects of sound. 

During the execution of a note, energy input is translated into changes 

in the structure of the information generated. When listening to the 

note we reverse this cause and effect by deducing energetic phenomena 

from changes in the structure of the information 
... This coherence of 

structured information and its association with energetic phenomena, is 

the substance of everyday perceptual practice. 

Looking more closely at the musical ramifications of this ability to perceive energetic 

cues in a sound, Smalley (1990) describes two aspects of sounds, the gestural and 

textural aspects. Gesture is defined as being: 

... action directed away from a previous goal or towards a new goal; it 

is concerned with the application of energy and its consequences; it is 

synonymous with intervention, growth and progress, and is married to 

causality. If we do not know what caused the gesture, at least we can 

surmise from its energetic profile that it could have been caused, and its 

spectro-morphology will provide evidence of the nature of such a cause 
(Smalley, 1990, p. 82). 

Texture according to Smalley is defined as being: 
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... concerned with internal behaviour patterning, energy directed inwards 

or reinjected, self-propagating; once instigated it is seemingly left to its 

own devices; instead of being provoked to act it merely continues behaving. 

Where gesture is interventionist, texture is laissez-faire; where gesture is 

occupied with growth and progress, texture is rapt in contemplation; where 

gesture is carried by external shape, texture turns to internal activity; 

where gesture encourages higher-level focus, texture encourages lower- 

level focus (Smalley, 1990, p. 82). 

Physical gesture has always had a part to play in music, and although gestures are 

not capable of conveying concrete facts or ideas in the same way that a natural 
language can, they are capable of conveying musical information. The most obvious 

examples include a performer's use of physical gestures when playing an instrument, 

the orchestral conductor's ability to convey musical intentions via physical gestures, 

and obviously dance. In this context though, the concept of gesture is extended 
beyond the limits of human gesture to include energy changes in the external envi- 

ronment. The previously used example of an `exploding' sound illustrates this point 

quite well. It seems that the gestural qualities of this sound relate to the kind of 
human movement which would be induced in the listener by the sound, rather than 

to any human gesture responsible for the sound in the first place. 

In asking the question: `is there a natural morphology of sound? ', Wishart (1990) 

introduces two more terms intrinsic morphology and imposed morphology. 

Intrinsic morphology is defined as follows: 

Most sound-objects which we encounter in conventional music have a sta- 
ble intrinsic morphology. Once the sound is initiated it settles extremely 

rapidly on a fixed pitch, a fixed noise band or more generally on a fixed 

`mass' as in the case of bell-like or drum-like sounds with inharmonic par- 

tials. Furthermore, most physical systems will require a continual (either 

continuous or iterative) energy input to continue to produce the sound. 
Others (such as bells or metal rods), however, have internal resonating 

properties which cause the sound energy to be emitted slowly with ever 
decreasing amplitude after an initial brief energy input (Wishart, 1990, 
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p. 57). 
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Imposed morphology is defined as that which is imposed by external energy input to 

a system. These notions are similar in spirit to Smalley's definitions of gesture and 

texture and once again support the idea that the energetic nature of a sound, both 

internal and external, and its imagined physical cause are of musical importance. 

One way of paraphrasing both sets of definitions is to say that texture and intrinsic 

morphology somehow reflect the internal identity of an object or system used to 

produce a sound whilst gesture and imposed morphology are indicative of external 

energy applied to the system. 

Interestingly, Wishart also states that: 

Sounds undergoing continuous excitation can carry a great deal of infor- 

mation about the exciting source (this is why sounds generated by contin- 

uous physiological human action - such as bowing or blowing - are more 

`lively' than sounds emanating, unmediated, from electrical circuits in 

synthesisers) (Wishart, 1990, p. 58). 

Whilst this is partly true, a central idea of this thesis is that liveliness does not 

depend on human intervention but is actually a much more fundamental aspect of 

the behaviour of naturally occurring dynamical systems. If appropriate synthesis 

models are used, the sounds produced will possess this liveliness even though they 

may have been produced out of real time and without the use of any direct, human 

physical gestures. It is worth adding that the gestural and textural aspects of a 

sound are often capable of evoking a sense of motion, even if the sound object itself 

does not physically move. 

Spectro-morphological design on its own ... in controlling the spectral and 
dynamic shaping, creates real and imagined motions without the need for 

actual movement in space (Smalley, 1990, p. 73). 

1.6.4 Summary 

This discussion has covered some of the main perceptual mechanisms which seem to 

operate in all listeners, regardless of musical training, including: auditory streaming; 
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the ability to surmise the physical origin of a sound; the ability to take spatial and 

energetic cues from sounds; and the evocation of the gestural and textural aspects 

of sound. It has also touched upon Gibson's notion of affordances. According to the 

ecological view of auditory perception, all of these mechanisms are due, partly at 

least, to information which is already contained within the sounds, i. e. the subjective 

perceptual images evoked by sounds are not purely internal to us but relate directly 

to the structure inherent in those sounds. This argument supports the personal 

observations given at the beginning of this chapter on the appealing characteristics 

of natural sounds, and whilst none of the quotes in this chapter are concerned with 

explicitly criticising synthesised sounds, the various arguments put forward support 

the idea that natural sounds, because of the central part they play in our perception 

of the world around us, have a special resonance with listeners. They are often 

capable of evoking stronger images than synthesised sounds, unless the synthesis 

models used are sophisticated enough to generate a similar level of complexity as 

our auditory perceptual system has come to expect from the natural environment. 

1.7 Thesis structure 

This introductory chapter has described the background to the thesis and the per- 

sonal motivation for pursuing it. It has also placed the program of research in 

context with a number of contemporary ideas relating to the musical and everyday 

perceptual attributes of sound. The important relationship between natural sounds 
(and events) and the sounds and sound shapes found in electroacoustic music has 

been highlighted. 

Chapter 2 examines the notion of structured information from the point of view of 

the underlying laws of Nature which lead to its creation. A survey of contempo- 

rary scientific ideas which relate to the behaviour of naturally occurring dynamical 

systems is conducted, covering such areas as chaos theory, complexity, complex dy- 

namical systems and emergent behaviour. This chapter introduces different types 

of cellular models, with some examples of their behaviour, and lists their appealing 

characteristics. 

Chapter 3 presents a survey of existing synthesis techniques and describes an existing 

computer music program, Csound, which is based around the traditional reduction- 
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ist, unit generator approach to sound synthesis. A number of physical modelling 
techniques such as modal synthesis and the MOSAIC computer music program, 
CORDIS-ANIMA, and digital waveguide synthesis are also described. The chapter 

concludes with a set of criteria by which digital synthesis techniques may be judged 

on an equal footing. 

Chapter 4 describes the cellular computer model which forms the basis for the TAO 

computer music program. This piece of software was developed as part of the pro- 

gram of research described, and examples are given of the kind of wave phenomena 

which emerge naturally from the model, and the structural possibilities it affords. 

Chapter 5 describes TAO's user interface, a script language, which enables the user to 

create and control instruments. This language comprises both an orchestra language, 

and score language based upon the idea of sounds as hierarchically nested events. 

Chapter 6 gives various practical examples of TAO instruments and their associated 
behaviour. Some of the examples illustrate, graphically, general points relating to 

the strategies which may be employed when designing instruments, whilst others are 

supported by sound examples listed in appendix C. 

Chapter 7 presents a summary of the key ideas presented in previous chapters, 

assesses how successfully the hypothesis has been supported, and concludes the 

thesis. 

Appendix A gives a brief user manual, including how to install the TAO system 

and get it up and running. This appendix is not intended as a tutorial since many 

practical examples are given in chapter 6 and appendix C. 

Appendix B contains a complete reference manual for TAO's script language. 

Appendix C describes the sound examples which accompany this thesis, and gives 
the TAO scripts which were used to produced them. 

Appendices D and E describe the implementation of the system in detail, and ap- 

pendix F gives details of the mathematical model used to simulate the interaction 

of a virtual bow with an instrument. 

Finally appendix G gives a complete listing of the implementation code. 
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Chapter 2 

The complexity of natural 

systems 

2.1 Introduction 

In the previous chapter the notion of structured information was introduced in the 

context of auditory perception, and a number of specific perceptual attributes of 

sound were highlighted. In this chapter we move away from the perceptual aspect 

of sound and turn instead to a completely different set of questions: 

1. What are the main factors affecting the generation of patterns of information 

in Nature? 

2. Is there a way to relate subjective adjectives such as organic, vibrant and lively 

to the behaviour of natural systems, and the information they generate? 

3. If we wish to synthesise sounds possessing the natural characteristics men- 
tioned, what kind of computer models are available? 

We will begin to answer these questions with a review of a theory which has had a 

massive impact on scientific thinking in the last three decades, Chaos theory. Chaos 

theory has a large part to play in the ideas presented in this thesis, although in an 
indirect way, and it is suggested that attempts to apply it to the organisation of sound 
have often `missed the point' of the theory in the past, applying it in inappropriate 

41 
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contexts. This view is supported by the composer Barry Truax who comments on 

the popular fractal images which have come to be inextricably associated with chaos 

theory: 

What seems to have attracted the most public attention is the fact that 

[behaviour in non-linear systems] displays fractal properties and self- 

similarity across different scales. Various composers have attempted to 

find musical analogies to the famous computer graphic fractals, but most 

of these attempts have involved a mapping onto macro-level compositional 

parameters as in the works of Larry Austin ... Charles Dodge ... Bruno 

Degazio (Truax, 1990a, p. 100). 

This thesis places chaos theory in the wider context of attempting to explain how it 

is that complex dynamical systems such as acoustic musical instruments can exhibit 

appealing behaviour which might be called organic. It is proposed that whilst chaos 

theory has provided a suitable paradigm shift for the re-appraisal of such questions, 
it is only one part of a much larger equation. As Truax states: 

Given that acoustical systems are prime examples of dissipative dynami- 

cal systems, it is surprising that more work has not been done to investi- 

gate fundamental relationships between chaotic behaviour and acoustical 

models of sound. The unsolved problems in the field of acoustics seem 

ripe for such basic re-examination as those in other fields (e. g turbulence) 

which have been completely reformulated in recent years 

[Gleick] suggests that scientists have traditionally been trained to think 

in terms of linear systems and solvable linear differential equations as 

the norm, and to ignore the irregularities of any complex behaviour that 

cannot be explained by them. Are not the 'difficult' problems of acoustic 

phenomena treated similarly? Here we cite onset transients, departures 

from pure harmonicity, and the complex behaviour of certain types of 

environmental sounds as examples whose full explanation has eluded re- 

searchers (Truax, 1990a, p. 100). 
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We begin the discussion then with a brief recap on the main features of chaos theory, 
but other topics covered include complex dynamical systems, emergent behaviour, 

phase space portraits and attractors, and the central theme of this thesis, cellular 

models. 

2.2 Chaos theory 

It will not be necessary to go into too much detail here about chaos theory since 
it is already well documented, the most widely read and accessible account of its 

historical development and implications being (Gleick, 1991a). It is, however, useful 

to briefly recap on the theory at an intuitive rather than mathematical level, since 
it is central to the questions addressed by this thesis such as what makes sounds 

vibrant, organic, and coherent and how it is that natural sounds are able to exhibit 

endless variations of patterned and yet unpredictable behaviour. Chaos theory is 

unlike previous Western scientific theories in that it deals with explaining the be- 

haviour of natural systems on all scales from the very smallest to the very largest. 

It is concerned with cloud formations, weather systems, turbulent fluid flow, the 

formation of mountains etc. It turns out that in all of these systems there are un- 
derlying universal laws at work which give rise to similar patterns of behaviour, even 
if the patterns seem to be unrelated at first glance. 

In the words of Gleick (1991a): 

Where chaos begins, classical science stops. For as long as the world has 

had physicists inquiring into the laws of nature, it has suffered a special 
ignorance about disorder in the atmosphere, in the turbulent sea, in the 

fluctuations of wildlife populations, in the oscillations of the heart and 
brain. The irregular side of nature, the discontinuous and erratic side 

- these have been puzzles to science, or worse, monstrosities (Gleick, 

1991a, p. 3). 

The simplest systems are now seen to create extraordinarily difficult prob- 
lems of predictability. Yet order arises spontaneously in those systems - 
chaos and order together. Only a new kind of science could begin to cross 
the great gulf between what one thing does - one water molecule, one cell 
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of heart tissue, one neuron - and what millions of them do (Gleick, 

1991a, p. 8). 

Chaos has been defined as: 

The complicated, aperiodic, attracting orbits of certain dynamical sys- 

terns. Philip Holmes 

A kind of order without periodicity. 
A newly recognised and ubiquitous class of natural phenomena. Hao Bai- 

Lin 

The irregular, unpredictable behaviour of deterministic, nonlinear dy- 

namical systems. Roderick V. Jensen 

Dynamics freed at last from the shackles of order and predictability ... Systems 

liberated to randomly explore their every dynamical possibility ... Exciting 

variety, richness of choice, a cornucopia of opportunity. Joseph Ford 

2.3 The phenomenon of bifurcation 

In order to develop a rigorous mathematical understanding of non-chaotic and chaotic 
behaviour and the transition from one to the other we can focus our attention upon 

the simplest system which can be made to produce this chaotic behaviour. In math- 

ematical terms the simplest and most frequently quoted example of an equation 

capable of chaotic behaviour is the logistic difference equation xne=t = Ax(1 - x). 
The essential feature of this equation is that it is iterative and involves feedback. 

An initial value is chosen for x between zero and one, and a fixed value is chosen 
for A. Using these values, a new value is calculated for x which is then fed back 

into the equation to calculate the next value, ad infinitum. For certain low values 

of A the successive values of x very quickly settle down to a single number. For 

slightly larger values of .1 the succession of x values eventually oscillate between two 

alternate numbers after settling down. Increasing the value of A further leads to the 

values of x oscillating between four values, then eight, then sixteen etc. Suddenly 

when a critical value of A is reached the value of x seems to jump about at random, 

never settling down to a single value or set of values. This phenomenon is known as 

period doubling or bifurcation. 
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Figure 2.1: The phenomenon of period-doubling or bifurcation 
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This process is illustrated in figure 2.1 which shows the successive values of x which 

occur for various values of A, but there is a way to combine all of the images in this 

figure into a single diagram: a bifurcation diagram. By plotting the final values of x 

after a fixed number of iterations against various values of A we obtain the bifurcation 

diagram shown in figure 2.2. For values of A up to about 3, the iterations produce one 

stable value for x. For values of A between about 3 and 3.45 the value of x alternates 
between two numbers and so on. For values of A greater than approximately 3.57 

the stream of values produced by the equation never settle down into any kind of 

pattern, they behave chaotically. The image (a) at the top of figure 2.2 contains a 

small shaded region which is enlarged in (b). Image (b) then has a shaded region 

of its own which is further enlarged in (c). This shows the self-similarity of the 

diagram. Figure 2.3 starts from the same point but shows a different sequence of 

enlargements, highlighting the fact that islands of order exist within the chaos. Some 

of these islands possess periods of three, five, seven etc. rather than two, four, eight 

etc. 

The logistic difference equation is useful for distilling the essence of chaotic behaviour 

out from other distracting elements, since it is the simplest possible system involving 

feedback. But it must be remembered that chaos theory came about because of the 

empirical observation of such period doubling in real systems, and often very complex 



46 2. The complexity of natural systems 

x a ,. U 

STABLE 
STATE 

0.5 

b) 

C) 

0.0 ---ý 
A. 

1. S 3.0 3 `. 1u 

X 

0.8 

0.7 

0.6 

0.5 

0.4 

0.3 t- 

3.40 

x 

3.45 3.50 3.55 3.60 

0.900 

' "" 1 "' j 

tTk 

:;::: 

0.870 

0.060- 

0.850. 

0.840 

0i. "Rý ý't"..,; 

0.10 hý,;:, 

`r: 
`fý": 

B00 
3.540 3.550 3.560 3.570 7. '.. 3.590 3.600 

^Ä 

Figure 2.2: Bifurcation diagram with selectively enlarged regions 



2.3 The phenomenon of bifurcation 

a) x 
,. o 

0,5 

b) 

C) 

0.0 t- 
z. 5 

x 
1.0 4 

05 

0.0 

3.00 

x 
0.55 

0.50 - 

3.85 

4.0 

-T 3.90 

U. 9J 1 

3.840 3.845 3.850 3.855 

Figure 2.3: Islands of order within chaos 

3.0 3.5 

x 

4i 



48 2. The complexity of natural systems 

ones. The main lesson to be learned from this is that whatever system we care to 

observe, whether a traditional musical instrument or some physical process such as 
bubbling, shattering, scraping etc., it is likely that chaos theory will have a part to 

play in explaining the kinds of structured information generated. 

Now that science is looking, chaos seems to be everywhere. A rising 

column of cigarette smoke breaks into wild swirls. A flag snaps back 

and forth in the wind. A dripping faucet goes from a steady pattern to 

a random one ... No matter what the medium, the behaviour obeys the 

same newly discovered laws (Gleick, 1991a, p. 5). 

If we return for a moment to Gibson's observations on the hierarchical organisation 

of Nature and its mixture of persistence and non-persistence we see that the points 

which are highlighted as being fundamental from a perceptual point of view corre- 

spond very closely to those which are dealt with by chaos theory. For example the 

hierarchical and sometimes self-similar organisation: 

Just as physical reality has structure at all levels of metric size, so it has 

structure at all levels of metric duration ... And once more it is important 

to realise that smaller units are nested within larger units. There are 

events within events, as there are forms within forms ... (Gibson, 1979, 

p. 12) 

and the ability of all dynamical systems to exhibit both order and chaos, depending 

upon the amount of feedback present: 

The environment normally manifests some things that persist and some 

that do not, some features that are invariant and some that are variant. 

A wholly invariant environment, unchanging in all parts and motionless, 

would be completely rigid and obviously would no longer be an environ- 

ment ... At the other extreme, an environment that was changing in all 

parts and was wholly variant, consisting only of swirling clouds of matter, 

would also not be an environment. In both extreme cases there would be 

space, time, matter, and energy, but there would be no habitat (Gibson, 

1979, p. 14). 



2.4 Simplicity and complexity 49 

Gibson's second comment suggests that there is something fundamental about en- 

vironments which are situated at the border between order and chaos, something 

which is intimately tied up with life itself. This view is supported by the following 

quotes, the first commenting on the behaviour of a water faucet: 

If you turn it up a little bit, you can see a regime where the pitter-patter 

is irregular. As it turns out, its not a predictable pattern beyond a short 

time. So even something as simple as a faucet can generate a pattern 

that is eternally creative (Gleick, 1991a, p. 262). 

... unpredictability was not the reason physicists and mathematicians be- 

gan taking pendulums seriously again in the sixties and seventies. Un- 

predictability was only the attention grabber. Those studying chaotic dy- 

namics discovered that the disorderly behaviour of simple systems acted 

as a creative process. It generated complexity: richly organised patterns, 

sometimes stable and sometimes unstable, sometimes finite and some- 

times infinite, but always with the fascination of living things (Gleick, 

1991a, p. 43). 

2.4 Simplicity and complexity 

Before proceeding to a discussion on the nature of complex dynamical systems, it is 

a worthwhile exercise to examine notions such as information, simplicity and com- 

plexity more closely. We often use these words in an everyday context without really 
being aware of what they mean. If we perceive a stream of structured information, 

whether visual or aural, what is it that makes one stream more information-rich or 

complex than another? Gell-Mann (1995) devotes a whole book to such questions, 

and defines some useful terminology. Broadly speaking, Gell-Mann provides further 

evidence for the notion that a balance between order and chaos is fundamental for 

life and complex adaptive systems such as humans to exist at all: 

The environment must exhibit sufficient regularity for the systems to ex- 

ploit for learning and adapting, but at the same time not so much regular- 
ity that nothing happens. For example, if the environment in question is 
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the center of the sun, at a temperature of tens of millions of degrees, there 

is almost total randomness ... nothing like life can exist. Nor can there 

be such a thing as life if the environment is a perfect crystal at a tem- 

perature of absolute zero ... For a complex adaptive system to function, 

conditions are required that are intermediate between order and disorder. 

Conditions in between order and disorder characterize not only the envi- 

ronment in which life can arise, but also life itself, with its high effective 

complexity and great depth (Gell-Rlann, 1995, p. 116). 

The terms effective complexity and depth are essentially both derived from com- 

putational theories of information which relate the useful content in a stream of 

information to: (a) the length of the smallest program which would be capable of 

reproducing the stream in all its original detail; and (b) the length of time that this 

smallest program would have to be left to run in order for it to compute the stream. 

In more intuitive terms, effective complexity relates to the task of identifying the 

regularities in a stream, and compressing them into some kind of schema about 

the stream's behaviour. Such a schema may be used to make predictions about a 

system's future behaviour. If a stream exhibits too many regularities, then building 

such a schema becomes a trivial task. Conversely, building a schema for a completely 

random system is impossible since there are no regularities whatsoever. The impor- 

tant point is that a system of the former type is often of little interest since it is, by 

definition, completely predictable. Conversely, a system of the latter type is often 

uninteresting since it is unpredictable but in an entirely predictable manner. Its 

associated schema is therefore also rather trivial. For systems which lie in between 

the two classes described above, the effective complexity reaches a maximum, since 

there are enough regularities to make the construction of a schema worthwhile, but 

there will always be surprises which force the schema to be updated, thus leading to 

it becoming more lengthy. 

There are classes of systems, however, which although very complex, do not operate 

at `the edge of chaos' and therefore do not have a high effective complexity. How 

is it then that such systems may also be labelled `complex'? This question leads to 

the idea of depth, which is a measure not of how long the schema itself is, but of 

how long it would take to proceed from the schema to a full blown description of 
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the original stream of information. This point is equally important since it tells us 
that some streams of information, although the result of processes which are regular 

enough for appropriate schemas to be constructed, may rely upon the shear amount 

of information processing which has gone into their creation for their associated 

complexity. It also warns us that there may be no short-cuts when modelling natural 

streams of information, such as those coming from musical instruments, if we wish 
the result to be truly complexl. 

Gell-Mann introduces both terms not as abstract mathematical concepts, bearing 

little relationship to our experience of the world, but in an attempt to elicit the 

precise meaning of the word complexity. 

2.5 Complex dynamical systems and emergent behaviour 

So far we have seen the peculiar structure which lies behind the transition from 

ordered to disordered behaviour in a simple dynamical system. We have also seen 

some evidence in support of the hypothesis that dynamical systems act as creative 

sources of information when operating in a regime balanced at the border between 

order and chaos. The universality of chaos theory means that the bifurcation dia- 

grams shown earlier in this chapter apply to the behaviour of more complex systems 

also. A complex dynamical system may exhibit more intricate spatial and temporal 

patterns, and there may not be a single parameter equivalent to A, but essentially 

a complex system holds the same potential for ordered and chaotic behaviour and 
bifurcation as a simple one. 

A complex dynamic system is formally defined by the following characteristics (Beyls, 

1989): 

" It has a large number of similar simple elements 

" All elements evolve in parallel over time 

" The same external rule applies to all elements simultaneously 

" Any element performs local interactions only 
'A point which is particularly salient in the field of sound synthesis, since it is very easy for the 

goal of real-time synthesis to override more musical considerations about the quality of the sounds 

produced. 
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" The systems exhibits emergent global properties 

Complex dynamic systems occur throughout nature in many different forms and at 

many different scales. Some immediately observable examples which are caused by 

such systems of one kind or another include: 

" cloud formations; 

" the Earth's climate system; 

" the swirling patterns occurring in a rising smoke column; 

" wave patterns and turbulence in fluids; 

" flocks and herds of animals; 

Apart from the category of systems described above, consisting of large numbers 

of identical elements interacting on a local basis, we will extend the definition to 

include systems such as acoustic musical instruments also, since they are by definition 

complex and dynamic. Classical science may tell us that they are not complex, and 

that their behaviour is well understood, but in practice it seems that synthetic sounds 
based upon classical models rarely possess the same depth as their real counterparts. 

In practice, musical instruments produce sounds as an emergent behaviour, although 

they are not quite so clear cut and homogeneous in nature as the examples given 

above. 

Whilst chaos theory makes it clear that even the simplest systems such as the logistic 

difference equation described in the last section are capable of extremely complex 

behaviour, it also begs the opposite question: how is it that extremely complex sys- 

tems are capable of spontaneously organising themselves into highly ordered global 

patterns of behaviour? This leads to the concept of emergent behaviour, i. e. the 

ability of a system consisting of many agents interacting on a local basis to sponta- 

neously organise itself without outside intervention. Such systems are greater than 

the sum of their parts from a perceptual point of view, since we are able to perceive 

the patterns formed as a whole. 

If we take the example of cloud formations, in practice we observe some clouds which 

are highly organised, producing wave patterns which stretch from horizon to horizon, 
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whilst at other times there seems to be no overall coherence, as on a stormy day, 

although even in this example, when viewed from a satellite there is still significant 

self-organisation on a larger scale in the form of depressions or large swirling vortices 

of air. The important point to note is that although complex dynamical systems 

and simple dynamical systems both obey the laws of chaos, the simple systems do 

not have many degrees of freedom, as in the case of the logistic difference equation, 

and are therefore not capable of expressing the laws of chaos in very subtle and 
interesting ways. Complex dynamical systems, on the other hand, have a great 

many more degrees of freedom and therefore manifest the laws of chaos in more 

interesting ways. 

2.6 Phase space and attractors 

A concept which appears frequently in the study of complex dynamical systems is 

that of phase space. A phase space is a multi-dimensional map of a dynamic system's 

behaviour. If a system is characterised at any point in time by a set of state variables, 

then by plotting the changing values of these state variables over time, with each 

variable having its own axis, an abstract picture of the system's evolution may be 

produced: a phase space portrait. 

Phase space gives a way of turning numbers into pictures, abstracting 

every bit of essential information from a system of moving parts, me- 

chanical or fluid, and making a flexible road map to all its possibilities 

(Gleick, 1991a, p. 134). 

A simple, damped harmonic system such as a pendulum will always swing back and 
forth until it comes to rest at the same point in its phase space, i. e. the point of 

minimum potential energy, and this point is referred to as the point attractor of 

the system. Conversely, a system which exhibits a tendency to oscillate regularly 

with a fixed period possesses what is known as a periodic attractor, and its phase 

space portrait appears as a closed loop, when the system is left to its own devices. 

Once again, if such a system is set in motion from a point in its phase space which 
doesn't lie on the attractor, the system will eventually settle back into its dynamically 

stable mode of oscillation. Phase space portraits are useful for eliciting a system's 
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character, since they provide qualitative, pictorial representations of a system's long 

term behaviour, rather than quantitative descriptions at specific moments in time. 

2.6.1 Strange attractors 

If a dynamical system is operating in a chaotic regime then it exhibits what is known 

as a strange attractor (Gleick, 1991a; Hofstadter, 1986). Figure 2.4 gives an example 

of a strange attractor, the Lorenz attractor, after Edward Lorenz who was the first 

to discover chaotic behaviour in a simple dynamical system. Lorenz was interested 

in understanding the behaviour of the weather through simplified and idealised sets 

of equations which nevertheless captured some of the essence of the convection flows 

responsible for real weather patterns. He discovered, whilst re-running a computer 

simulation of one of these mathematical models from half-way through a previous 

run, feeding the intermediate starting values for the second simulation in by hand 

from a computer printout, that the model quickly diverged from its previous pattern 

of behaviour. 

According to the classical, deterministic view of the world, this should not have 

occurred, since small influences on a system were assumed to average out, not af- 
fecting the global behaviour of the system. However, Lorenz' discovery showed that 

dynamical systems may be sensitive to initial conditions and that in a chaotic regime 

of behaviour, no matter how accurately we capture the initial conditions of a such 

a system, it will always be impossible to predict its evolution, since small influences 

will grow larger and larger, making the system's behaviour divergent. This effect is 

known as the butterfly effect since, in theory, a butterfly flapping its wings on one 

side of the planet could be responsible for the development of a hurricane elsewhere. 

Lorenz recognised that the chaotic behaviour his model produced was not purely 

random but possessed a strange, hidden order. In order to elicit this hidden struc- 

ture to chaotic behaviour, Lorenz began to look for simpler and simpler sets of 

equations which would produce the desired behaviour. The phase space portrait in 

figure 2.4 shows the behaviour of one of these mathematical models, which reduces 

the process of convection to a simple, water-wheel like model with a single degree 

of rotational freedom and discrete cells or buckets containing fluid which condenses 

and evaporates under the influence of a heat source coming from above. The graph 
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Traditional time domain graph of the 
variation of one of the state variables from 
Lorenz' 'water-wheel' convection model. 
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Phase space portrait of 
the behaviour of the 
convection model 
shown over a short 
time interval. Each 
axis represents a single 
state variable, but what 
is more important is 
the abstract picture 
painted of the system's 
dynamic behaviour. 

When left to evolve 
for a longer time 
period, Lorenz' 
convection model 
produces chaotic 
behaviour which 
never repeats itself, 
although the system 
follows characteristics 
trends dictated by its 
strange attractor. 

Figure 2.4: An example of a strange attractor (from Gleick, 1991) 
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situated at the top left of the figure represents a traditional time-domain represen- 

tation of the behaviour of just one of the variables in Lorenz' model, but it is only 

when three variables are plotted in phase space over an extended period of time 

that the strangely ordered and yet aperiodic behaviour of the system becomes clear. 

The two `wings' of the attractor illustrate the system's ability to continue flowing in 

one direction for a period of time and then, without warning, suddenly reverse the 

direction of convective flow. More significantly, the system never traces the same 

path twice, and is therefore capable of continually surprising. 

It is well understood that the sounds produced by pitched musical instruments are 

rarely purely periodic in nature, and even if such instruments do not exhibit strange 

attractors, this implies that they must operate at a regime situated somewhere in 

between periodic and aperiodic behaviour. The sensitivity of a system to initial 

conditions and the ability for minute external influences to effect larger changes in 

its behaviour do have some relevance to acoustic musical instruments as Woodhouse 

(1992) points out: 

One is frequently confronted with rather subtle physical effects that result 
in sounds which our auditory system is able to process with remarkable 

acuity. It is never safe to assume that because a particular effect is small 

in terms of physical measurements, it will not be significant to a skilled 

performing musician (Woodhouse, 1992, P. M. 

2.6.2 Identity and transient behaviour 

It has long been understood that the transients found in instrumental sounds con- 

tribute a great deal to the overall character and expressiveness of the instruments. 

The language of dynamical systems provides us with some useful terminology for 

discussing the phenomenon of transient behaviour. Firstly, a system's attractor rep- 

resents a tendency towards certain patterns of behaviour, without actually forcing 

the system to always operate in that way, and therefore represents, in a very deep 

way, the system's identity. Whenever such a system is excited by the application 

of external energy, transient behaviour occurs. This transient behaviour is caused 

by the system being pushed to a point in its phase space which is away from the 

usual path dictated by the system's attractor. Once the excitation has disappeared, 
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though, the system will return, over a finite time interval, to its usual dynamic equi- 

librium (static, in the case of a point attractor). More severe excitations will tend 

to push the system to more remote areas of its phase space and therefore lead to 

more pronounced transients, but given enough time, these transients will always die 

away. 

The reader will remember that in the previous chapter, the gestural and textural 

aspects of sound were described. These very musical concepts have a close relation- 

ship to the ideas described here, since the textural aspect of a sound (that which is 

caused by the sound following its own internal behaviour with no external influence) 

seems to correspond to the direct perception of a system's identity, through the pat- 

terns of structured information it generates. These patterns are, in turn, governed 

by the attractor of the system responsible for the sound. The gestural aspect (that 

which seems to have been caused by the application of external energy) seems to 

correspond to the direct perception of any deviation from the system's attractor, i. e. 

the auditory perceptual system recognises an interruption in the invariant features 

produced by the system. 

One problem associated with the notion of attractors is that for dissipative systems, 

i. e. those with point attractors, the attractor only tells us that the system will 

eventually come to rest at the same point. It tells us nothing about the actual path 

which the system will take to reach that point. However, the phase space portraits 

of such systems, e. g. percussive instruments, will still possess a certain character no 

matter how they are excited and how pronounced the transient behaviour is. But 

in general, regardless of the particular type of attractor possessed by a system, any 

deviation from this attractor is perceived by an observer as transient behaviour. 

2.6.3 Appealing characteristics of complex dynamical systems 

So far we have seen a number of characteristics of complex dynamical systems 

which make them suitable sources of inspiration for new sound synthesis techniques. 

Firstly, they have strong identities; secondly, they have the potential to act as cre- 

ative sources of information, maintaining their identity whilst continually throwing 

up surprises; and finally, they are compatible with very musical notions such as the 

transient behaviour associated with acoustic instruments, and the gestural and tex- 
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tural aspects of sound. In addition to these points, since the behaviour they exhibit 

occurs as an emergent property, they possess a certain robustness due to their holis- 

tic nature. A complex dynamical system may be excited at several different locations 

simultaneously and may have its characteristics altered on a local basis, and yet it 

will always retain a strong identity, or create a new one for itself if the alterations 

are drastic enough. This means that the structured information generated by such 

systems will always retain a high degree of coherence which, as was proposed in 

chapter 1, is essential for the evocation of strongly focussed imagery in a perceiver. 

2.7 Cellular models: a modelling paradigm 

A cellular model is defined in this thesis as: 

A model in which many simple agents interact on a local basis with each 

other according to well defined rules. Such models are usually updated 

in discrete time steps and the application of a cellular update rule on 

a local basis both temporally and spatially leads to global patterns of 

behaviour: emergent behaviour. 

Cellular models include cellular automata, finite difference models, finite element 

models and particle models, all of which are described below. 

At the beginning of this chapter Truax (1990a) commented on the fact that scientists 

have traditionally been trained to think of solvable linear differential equations as 

the `norm'. Toffoli and Margolis (1987) support this view in the introduction to 

their book Cellular automata machines -a new environment for modelling: 

... the development of mathematics in a certain period of time reflects to 

a much greater extent than many would suspect the nature of the com- 

putational resources available at that time. In the past three centuries, 

enormous emphasis has been given to (1) models that are defined and 

well-behaved in a continuum, (2) models that are linear, and (3) models 

entailing a small number of lumped variables. This emphasis does not 

reflect a preference of nature, but rather the fact that the human brain, 

aided only with a pencil and paper, performs best when it handles a small 
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number of symbolic tokens having substantial conceptual depth ... in this 

context, one tends to concentrate effort on problems which are likely to 

yield a symbolic, closed form solution (Toffoli and Margolis, 1987, p. 142). 

As computer technology has become faster and computer graphics have become more 

widely available the classical goal of finding `closed form solutions' by solving equa- 

tions has been replaced, to an extent, with the use of digital computers as tools for 

direct experimentation, leading to an experimental approach lying halfway between 

conventional laboratory work and classical mathematical modelling. A growing num- 
ber of researchers in a variety of disciplines have been influenced by the associated 

paradigm shift (Waldrop, 1994) and have switched to this approach to understand- 

ing the behaviour of complex systems. Since it is more intuitive than analytical, 

more qualitative than quantitative, it has been likened to playing a musical instru- 

ment (Toffoli and Margolis, 1987), whereby the experimenter `plays' the model and 

`listens' to the resulting behaviour, thereby gaining a `feel' for the behaviour of a 

system, even if its precise behaviour cannot be predicted. 

Cellular models, because of their spatial distribution, are ideally suited to computer 

graphics visualisation, and dispense with the analytical approach to understanding 

a system in favour of a more direct approach which relies on our ability to perceive 

patterns in complex evolving sets of data. 

2.7.1 Cellular automata 

Cellular automata represent the simplest example of cellular models. A cellular 

automaton consists of a regular array of cells, each cell containing a discrete value. 

Cell values are updated in discrete time steps according to simple deterministic rules 

which take account of each cell's previous value and the values of its neighbouring 

cells. A more formal definition of the characteristics of cellular automata is given by 

Wolfram (1986): 

Discrete in space. They consist of a discrete grid of spatial cells or sites. 

Discrete in time. The value of each time cell is updated in a sequence of discrete 

time steps. 

Discrete states. Each cell has a finite number of possible values. 
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Figure 2.5: CA model of wave optics: refraction through a spherical lens (from 

Toffoli and Margolus, 1987) 

Homogeneous. All cells are identical, and are arranged in a regular array. 

Synchronous updating. All cell values are updated in sy. nchrony., each depending 

upon the previous values of neighbouring cells. 

Deterministic rule. Each cell value is updated according to a fixed, deterministic, 

rule. 

Spatially local rule. The rule at each site depends only on the values of a local 

neighbourhood of sites around it. 

Temporally local rule. The rule for the new value of a site depends only on values 

for a fixed number of preceding steps. 

Cellular automata have been used to simulate a variety of natural phenomena such 

as biological systems (Green, 1990), fluid dynamics (Lakshmi, 1989), crystal growth 

(Toffoli and Margolis, 1987). They also have applications in digital image processing 

for feature extraction (Lewis, 1990). For a comprehensive survey of the applications 

of cellular automata see Toffoli and Margolis (1987) and Wolfram (1986). 

Figures 2.5,2.6,2.7 and 2.8 show examples of the flexibility and generality of the 

cellular approach to modelling natural phenomena. Figure 2.5 shows a simulation 

of wave optics and the refraction of a wavefront by a spherical lens. This model 
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Figure 2.6: CA model of dendritic growth (from Toffoli and Margolus, 1987) 

actually consists of a very fine lattice of cells, each capable of containing a `particle'. 

The cellular update rule used represents a idealised version of the way in which 

particles collide. A wavefront is created through the introduction of a short `burst' of 

particles at one side of the cellular array 2. The wavefront propagates automatically 

as an emergent property of the cellular update rule, and the presence of a lens is 

simulated by placing obstacles at a random selection of cell sites within the circular 

region. This makes it more difficult, statistically speaking, for the particles to travel 

through the darker region, and the effect which this has in global terms, is to refract 

the wavefront. 

Figure 2.6 shows a cellular automata model of dendritic growth, and figure 2.7 shows 

another model based upon idealised interactions between particles. This time, the 

velocities of particles in local regions, 96 cells by 96 cells in size, are averaged, 

and these average velocities are displayed as vectors. Once again a fresh supply of 

particles are created at the right hand side of the frame in order to set up a steady 

flow of particles from right to left. The vortex patterns emerge naturally from the 

local interactions of individual particles. 

In figure 2.8 an annealing model is shown. The left hand image shows how by a 

process involving surface tension, bays are filled and capes eroded. The right hand 

`Although which side is not entirely clear, since the left image of the three seems at first to be 

the wrong way round. 
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Figure 2.7: CA model of fluid flow around an obstacle (from Toffu, li and Nlargo- 

lus, 1987) 

Figure 2.8: CA model of annealing (from Toffoli and Margolus, 1987) 
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Figure 2.9: CA model of formation of vertebrate skin patterns (from Young, 

1984) 

image shows how the boundaries wander over a time interval of 400 steps of the 

model. Finally, 2.9 shows a model of vertebrate skin pattern formation. The four 

successive images give an elegant example of the robustness of cellular models. By 

changing the various low level parameters in the model and thus affecting the precise 

relationship between neighbouring cells, a variety of global forms may be produced, 

all belonging to a common family. A single model is capable of producing spots and 

stripes and all manner of patterns in between. 

There are several interesting things to note about these examples: firstly, they show 

the diversity of natural phenomena which even the simplest cellular models are 

capable of simulating; secondly, each of the examples shows how emergent behaviour 

gives rise to form and pattern where it is not programmed explicitly; and thirdly, 

the resulting patterns and forms could be said to be convincingly natural or organic 

in their appearance. They look as if they could have occurred naturally due to 

some physical process. At a deeper level this statement says something about the 

structured information which they are capable of generating. 

Putting these specific examples to one side for a moment, it is worth saying some- 

thing about general classes of cellular automata and the kind of behaviour they 

produce. Wolfram (1986), whilst investigating the properties of a family of cellular 

automata, found that they could be categorised into four classes (WVolfram, 1984). 
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Class I automata produce relatively uninteresting behaviour and, regardless of the 

initial values of the cells, all activity dies out after a small number of iterations. 

These automata are analogous to dynamical systems with point attractors since no 

matter at which point in the phase space the system begins at, it will always gravi- 

tate back to the same rest state. Class II are slightly more interesting and produce 

clumps of cells, some of which remain stable and some of which oscillate between 

two or more states. Automata of this class are said to have periodic attractors 

because of the oscillation. Class III go to other end of the spectrum and produce 

completely chaotic behaviour, analogous to systems with strange attractors. The 

most significant class of cellular automata, class IV, produce patterns which: 

propagate, grow, split apart, and recombine in a wonderfully complex way 

(Waldrop, 1994, p. 226). 

This result is significant since it shows that even cellular automata, the most machine- 

like of cellular models, are paradoxically capable of producing patterns which would 

normally only be associated with natural processes. It also provokes the question 

of precisely how this behaviour fits in with the bifurcation diagrams of section 2.3, 

which the reader will remember were produced by a simple dynamical system, the 

logistic difference equation. The transition between order and chaos seems to be 

very abrupt in these diagrams, leaving no room for any `in-between' states. How- 

ever, if we zoomed in more and more closely on the border-line between the periodic 

and chaotic region, we would see that in fact the period-doublings continue at an 

ever increasing rate until, eventually, it would be impossible to perceive any periodic 

behaviour at all. Combined with this fact, a complex dynamical system poised at 

the edge of chaos is capable of exhibiting both ordered and chaotic behaviour on a 

local basis, and also at different scales. 

The notion that local islands of order and chaos may exist in a complex dynamical 

system is supported by the description given in Waldrop (1994, p. 234) of the work of 

another researcher, Chris Langton who was interested in finding analogies to support 

the hypothesis that life-like behaviour occurs at the boundary between order and 

chaos. On learning of Wolfram's work on cellular automata classes, and after much 

previous thought on the subject, Langton drew up the following series of analogies: 
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Cellular Automata Classes: 
I& II -+ "IV" --ý III 

Dynamical Systems: 
Order -+ "Complexity" --> Chaos 

Matter: 
Solid -+ "Phase transition" --> Fluid 

Life: 
Too static --> "Life/intelligence" --ý Too noisy 
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The phase transition analogy is the clearest example of a system possessing islands 

of both order and chaos, since at a phase transition some regions will be solid whilst 

others will be fluid. 

2.7.2 Finite difference models 

The finite difference approach to modelling is similar to that of cellular automata, 

the main differences being that values at each site may be continuous and updating 

may be asynchronous. Finite difference models are often more coarsely grained than 

cellular automata, e. g. whereas a cellular automaton model of fluid flow might deal 

with individual particles and their idealised collisions, a finite difference model would 

deal with averaged quantities such as velocity and pressure, and the model would 

be updated according to the differences between the values of these state variables 

at each site. 

The cellular model on which the TAO computer music program is based comes under 

this heading, and apart from using cells with more sophisticated internal states and a 

more complicated, two-pass cellular update rule, the updating occurs synchronously 

in the same way that a cellular automata is updated. Precise details of this cellular 

model are given in chapter 4. 

2.7.3 Finite element models 

The finite element (Connor and Brebbia, 1978) technique is related to the other 

techniques described in this section in that it is based on dividing a complex system 

into regions. However, the other methods involve dynamic simulation, while finite 
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Figure 2.10: Finite element analysis. 
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element analysis is used to produce values for the internal state of the system which 

are consistent with external boundary conditions applied at some instant in time. 

In a system such as water flowing in and out of a harbour, the flow is spatially 

and temporally continuous. To perform a finite element analysis of this system the 

harbour is broken down into a number of regions or elements. Figure 2.10 shows 

such a system divided up into triangular elements. A local function is chosen for 

each element and approximates the behaviour within the element. This function 

is expressed in terms of the unknown values at the nodes of the element, and must 

satisfy continuity with neighbouring elements and possibly continuity of its derivative 

with the derivatives of neighbouring elements. 

Once a local function has been chosen, the internal and external boundary conditions 
(figure 2.10) are applied, leading to a set of equations in terms of nodal unknowns 

to be solved. This set of equations is usually expressed in matrix form and solved by 

standard matrix manipulation methods. Effectively, the finite element method tries 

to find a set of values for the nodal unknowns in the system, which are consistent 

with the local behaviour of the system and the external boundary conditions applied. 
As with the other techniques described, one of the advantages is that the numeric 

solutions found can be viewed graphically as in figure 2.10 c) to give an overall 

picture of the state of the system under given conditions. 

2.7.4 Particle models 

Particle models are similar to other cellular models except that the particles have 

continuously variable positions and velocities, instead of operating with a fixed spa- 

tial grid as in cellular automata and finite difference models. 

Particle systems have been used to model fire, smoke, clouds, and more 

recently, the spray and foam of ocean waves. Particle systems are col- 
lections of large numbers of individual particles, each having its own be- 

haviour. Particles are created, age, and die off. During their life they 

have 'certain behaviours that can alter the particle's own state, which 

consists of color, opacity, location and velocity (Reynolds, 1987, p. 26). 
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A cellular model of flocks and herds of animals which falls into this broad cate- 

gory is described by Reynolds (1987). The model assumes that a flock is simply 

the result of the interactions between individual birds and is capable of producing 

convincing flocking behaviour when the individual agents or bolds are merely left to 

their own devices. This kind of model is a good example of one which might have 

applications in the composition of interesting musical macrostructures, even though 

it is not directly applicable to the generation of the microstructures, i. e. the sounds 

themselves. 

Flocks and related synchronised group behaviours such as schools of fish 

or herds of land animals are both beautiful to watch and intriguing to con- 
template. A flock exhibits many contrasts. It is made up of discrete birds 

yet overall motion seems fluid; it is simple in concept yet is so visually 

complex, it seems randomly arrayed and yet is magnificently synchronised 
(Reynolds, 1987, p. 25). 

2.8 Other universal phenomena occurring in dynamical 

systems 

2.8.1 Self organised criticality 

Another theory which has a direct bearing on the behaviour of complex dynami- 

cal systems is that of self-organised criticality (Bak and Kan, 1991). This theory 

proposes that certain classes of dynamical systems evolve, by a process of self- 

organisation, to a critical state balanced on the edge of order and chaos. In this 

state, even small disturbances can cause catastrophic changes in the system's state. 
The most commonly quoted example of such a system is a pile of sand. If new sand 

grains are allowed to trickle onto the top of the pile at a steady rate, some grains lead 

to relatively minor avalanches whilst others cause much larger avalanches. Another 

example of a critically balanced dynamical system can be found in the geological 

faults which cause earthquakes. 

The theory of self-organised criticality states that such systems are continually poised 

on the brink of catastrophic events and that there is a close relationship between the 

magnitude of such events and their frequency of occurrence, regardless of the specific 
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system being observed. Whenever such a catastrophic event occurs, the system slips 
just far enough to regain its stability, in which state it is once again poised on 

the brink of catastrophe. The precise relationship is governed by a power law, i. e. 

the-frequency of occurrence of an event of a chosen magnitude is proportional to 

1/(magnitude + c)". If we viewed a seismological graph charting the activity of a 

fault, the largest avalanches would occur much less frequently than smaller ones. 

The shape of the graph produced by this kind of behaviour is said to be an example 

of 1/f noise or flicker noise (Bak and Kan, 1991). 

Wishart (1990) has proposed that catastrophe theory, which relates to self-organised 

criticality, may have applications in the synthesis of certain sound morphologies. 

If ... we take sound-objects whose intrinsic morphology is very complex 

or unstable, how can we relate to these? Are they merely formless or 

random? I would propose that there are a number of archetypes which 

allow us to classify these complex sounds perceptually, such as Turbu- 

lence, Wave-break, ..., Creak/Crack, Unstable/Settling, Shatter, Explo- 

sion, Bubble. 

... I would suggest that it may even be possible to extend this kind of anal- 

ysis to phenomena where many individual sound sources are amassed, 

for example the Alarum (when a colony of animals or birds is disturbed 

the resulting mass of individual sounds has a very characteristic mor- 

phology), or Streaming effects (certain changes occurring in continuous 

streams of sounds may perhaps be related to models developed in catas- 

trophe theory). (Wishart, 1990, p. 60) 

The theory of self-organised criticality would seem, therefore, to have a great deal of 

relevance to the synthesis of such sound morphologies. Interestingly, Bak and Kan 

(1991) propose that the life-like behaviour of a system when poised at the edge of 

order and chaos is fundamentally different to truly chaotic behaviour and they refer 

to this kind of behaviour as being weakly chaotic. 
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2.8.2 Coupled oscillators 

2. The complexity of natural systems 

The physicist Christiaan Huygens discovered that when two pendulum-driven clocks 

are placed side by side on a common surface, they synchronise and keep perfect time 

relative to each other. This is due to the phenomenon of coupled oscillators (Strogatz 

and Stewart, 1993): Even though the physical vibrations transmitted from one clock 

to the other, and vice versa, are minute, they still lead to the two clocks mutually 

influencing each other. 

Another manifestation of this phenomenon can be found in the gaits of different 

animals. The different, synchronised patterns of legs movements observed in horses, 

elephants, giraffes, gazelles etc. are not unique to those species but represent stan- 
dard modes of synchronised oscillation which may occur in any system consisting 

of four oscillators coupled together. This phenomenon emphasises the point that 

many subtle inner rhythms may occur in a dynamical system which is a cohesive 

whole, whereas such rhythms will not be observed in a system consisting of sepa- 

rate, independent components. It is therefore probable that it has some relevance 
in explaining the behaviour of polyphonic musical instruments such as stringed in- 

struments and the piano, where many vibrating elements are coupled together via 

other parts of the instrument. 

2.9 Current musical applications of cellular models 

Cellular models and dynamical systems have attracted some interest from the com- 

puter music community and listed below are some examples from the literature 

of how such techniques have been applied to various aspects of the music making 

process. 

Beyls (1989) explores the use of cellular automata in the compositional process 

citing his interest as a composer in models of evolution and growth rather than 

in theories of structural design. Following on from this work Beyls discusses an 

approach to composition based on virtual `actors' interacting in a two dimensional 

space according to social rules. The rules determine how the actors move and the 

attributes of each actor can be mapped to musical parameters (Beyls, 1990; Beyls, 

1992) 
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di Scipio (1991) explores the use of simple one parameter maps to control sound 

synthesis. The equation x�+1 =f (x�) is an example of a one parameter map, 

where the function is iterated by feeding its output back into its input repeatedly. 

Webb (1993) explores the use of a one dimensional cellular automaton as a self- 

modifying waveform table. The table is filled initially with samples representing 

a starting waveform. The samples are read out cyclically to produce a continuous 

waveform and at each cycle the values of the cells are updated according to simple 

rules, leading to a waveform which transforms over time. Some form of simple 

gestural control is provided in the form of a computer mouse, the buttons being 

used to inject random sample values into certain cells to perturb the waveform. 
Spatial movement of the mouse is also used, to control the frequency and amplitude 

of the output, leading to a rudimentary musical instrument. 

Miranda (1993) discusses the application of cellular automata to pitch based compo- 

sition and hints at the possibilities inherent in fluid dynamic models with particular 

reference to the fact that fluid movement may contain vortices. Vortices are cyclic 

flows usually accelerating or decelerating at a fairly constant rate and produce a con- 

stantly evolving source of cyclic material, which Miranda cites as being of musical 

interest. 

Hunt, Kirk and Orton (1991) describes the musical possibilities of the Cellular Au- 

tomata Workstation, developed at the University of York, concentrating mainly on 

mapping cell values onto pitch sets and changing the mapping in real time as a 

means of interactive control over the musical output. The update rule used while 

the cellular automaton is evolving remains fixed. 

2.10 Summary 

This chapter has introduced a number of contemporary scientific ideas and theories 

which relate to the behaviour of naturally occurring complex dynamical systems. 
The discussion has covered chaos theory and the interesting behaviour which occurs 

when a system operates poised `at the edge of chaos'. It has also covered emergent 
behaviour, the ability of complex dynamical systems to exhibit self-organisation, 

and a number of other ideas such as self-organised criticality and the phenomenon 

of coupled oscillators. What this chapter has attempted to convey to the reader is 
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that Nature exhibits its own subtle `rhythms' which are governed by the principles 

described, as well as others which may not have been identified yet, and that complex 

dynamical systems provide a means for these 'rhythms' to be expressed in fascinating 

ways. 

A recurring theme throughout this chapter has been the special regime of behaviour 

which leads to vibrant or life-like behaviour. This regime is referred to in many 

different ways: as a regime which produces information of maximum effective com- 

plexity and depth; as a regime of self-organised criticality, as a regime of weakly 

chaotic behaviour; and as the regime in which Class IV cellular automata operate. 

The comment was made that many of the ideas addressed by the theories described 

in this chapter have a direct relationship to Gibson's observations on the nature of 

the physical world, which he proposed as being fundamental to the act of perception. 

Cellular models exhibit many of the appealing characteristics of natural complex 

dynamical systems, even though they are stylised models, and as such provide a 

unique opportunity to explore the generation of naturalistic or organic patterns and 

forms. The fact that mimesis is cited as being an important aspect of electroacoustic 

music suggests that the temporally evolving structures produced by cellular models, 

with their complexity, coherence and organic qualities may possess very real musical 

qualities. 



Chapter 3 

A survey of synthesis techniques 

This chapter conducts a survey of the most frequently used traditional synthesis 

techniques. No attempt is made to make subjective judgements about which syn- 

thesis techniques produce the `best' sounds since such a comparison depends on so 

many factors including the level of skill displayed by the individual user. It is possi- 

ble, however, to point out practical advantages and disadvantages of each technique 

which are independent of the particular user. Before proceeding to specific synthesis 

techniques it is as well to say a little about the building blocks which are common 

to most of them. This is also necessary in order to understand some of the figures 

presented in this chapter. The most common means for synthesising sounds before 

the arrival of powerful digital computers was via voltage controlled synthesisers. 

These synthesisers provide a number of electronic modules such as oscillators, filters 

and amplifiers, whose characteristics may be controlled via external control voltages. 

Early synthesisers of this type such as the EMS VCS3 provide a patch bay, enabling 

the output of any module to be patched into the input of any other. The provision 

of a modular approach to synthesis allows for the development of many different 

synthesis strategies. 

In the 1960's the first computer music program, `MUSIC 3', was created by Max 

Mathews (Dodge and Jerse, 1985). This program and a series of successors including 

Csound, which is described below, provide a kind of digital equivalent to the voltage 

controlled synthesiser. The analogue oscillators, filters and mixers etc. are replaced 
by algorithmic modules with numerical inputs and outputs which are still capable of 
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being arbitrarily configured. A language is provided for describing new instruments 

and a separate score language enables input data to be fed into the appropriate 

inputs of an instrument causing it to play notes at the correct times. 

3.1 The Csound computer music program 

One of the most recent examples of a computer music program, and one that is still 

widely in use is Csound (Vercoe, 1992) which is a general purpose language for audio 

processing and computer music. What follows is a brief description of the program 

together with some simple examples. 

3.1.1 Unit generators 

The algorithmic modules which simulate oscillators and filters etc. have come to 

be known as unit generators. Each unit generator is a single signal generating or 

processing algorithm and several unit generators may be combined into signal flow 

networks or instruments, to perform particular tasks. Since many such algorithms 

need a constant flow of input data to control their behaviour, input signals are often 

computed prior to performance and stored in tables. A table reader is another 

example of a unit generator, its input is an index into the table and its output is the 

signal stored in the table. This signal might be used to control the frequency of an 

oscillator or the cut off point of a low pass filter etc. 

3.1.2 The orchestra 

A Csound program is split into two main parts, the orchestra file and score file. The 

orchestra file contains descriptions of the instruments in terms of networks of unit 

generators. Each instrument has a discrete number of input parameters which can 

affect the pitch, amplitude and timbre of the sound produced when the instrument 

is requested to play. 

Csound provides three different types of variable, audio rate (a-rate), control rate (k- 

rate) and initialisation rate (i-rate). A-rate variables are used to represent audible 

signals which must be updated at full audio rate (e. g. 44.1KHz). K-rate variables are 

used for signals which can be updated less frequently without introducing distortion 

into a sound e. g. the modulation signal used to create a vibrato effect. I-rate 



3.1 The Csound computer music program 75 

variables are only updated once at the beginning of a new note. 

The following example of a Csound orchestra describes an instrument consisting of 

two oscillators with their outputs summed and sent to a mono output. 

instr 

al oscil 
a2 oscil 
aout = 

out 
endin 

1 
10000,440,1 
10000,880,1 
al+a2 
aout 

The variables in the left hand column al, a2 and aout represent audio signals. al 

and a2 represent the outputs of the two oscillators and aout is simply the result of 

evaluating the expression al+a2 at audio rate. The two oscil's and the single out 

represent unit generators, and the values situated to the right of these keywords are 

interpreted as parameters. For example each oscil has an amplitude input (10000), 

a pitch input (440,880), and a table number (1), where the particular waveform 

which the oscillator will produce is stored. The out unit generator simply sends 

its signal to the default output (audio or file output). The line containing instr 

1 labels this as instrument 1. This number is used in a Csound score to specify 

which instrument some performance data should be sent to. Note that it is the 

user's responsibility to ensure that amplitudes do not go out of range, i. e. <-32767 

or >32767. 

3.1.3 The score 

The score file contains performance data for the instruments, instructing them when 

to start and stop playing and specifying the parameter settings to use. In Csound, the 

score file consists of numeric data specifying these parameters for each instrument. 

The data is specified in columns called p -fields. The first three p-fields p1, p2 and p3 

are `hard-wired' to represent the instrument number, the start time and the duration 

of each note. For example the following score plays two notes, each 5 seconds long, 

using the instrument defined above. The first starts at time 0 and the second starts 

at time 1. Time is measured in beats, the default tempo being 60 beats per minute, 

although other score statements allow time to be dynamically `warped' throughout 

a performance. Note that when two or more notes are to be played using the same 
instrument in a score, a new instance of the instrument is created for each note. 
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PI p2 p3 
instr start durat 
11 05 
ii 15 

The score may contain other user defined p-fields to control specific sonic parameters 
in an instrument. For example, supposing, in the orchestra given above, that the 

oscil lines were changed to read as follows: 

al oscil 10000, p4,1 
a2 oscil 10000, p5,1 

Rather than having constant pitches, the oscillators now take their pitches from 

fields p4 and p5 of the score. The following simple score illustrates how to play 

notes on this instrument, and causes six notes to be played with frequencies 100 Hz, 

200 Hz ... etc. for the first oscillator and 200 Hz, 300 Hz ... etc. for the second. 

p1 p2 p3 p4 p5 
instr start durat oscill oscil2 

pitch pitch 

ii 0 5 100 200 ; measured in Hertz. 
ii 1 5 200 300 
ii 2 5 300 400 
ii 3 5 400 500 
ii 4 5 500 600 
ii 5 5 600 700 

Further score commands allow tables of performance data to be created prior to 

commencement of the performance, and it is also possible to split the score into 

sections in order to create larger scale musical structures. Another feature is the 

ability to automatically interpolate or repeat p-field values with the use of the > and 

. characters. The example given above could be rewritten as: 

PI p2 p3 p4 p5 
instr start durat oscill oscil2 

pitch pitch 

ii 0 5 100 200 ; measured in Hertz. 
ii 1 > > 
ii 2 > > 
ii 3 > > 
ii 4 > > 
ii 5 600 700 
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The duration p-field has the same value repeated for each note and the pitches or 

rather frequencies of the two oscillators are interpolated linearly between the initial 

value and the final value. Further examples of orchestras and scores are given in 

(Vercoe, 1992). 

Having introduced the notion of unit generators and the modular approach to instru- 

ment design, and having described Csound, we now move on to a survey of specific 

sound synthesis techniques. 

3.2 Additive synthesis 

Additive synthesis is based on the premise that any periodic waveform can be rep- 

resented as a sum of sinusoidal components. In practice natural sounds continually 

evolve and in order to create an evolving frequency domain representation of a sound 

both frequency and time have to divided up into discrete intervals. The audible fre- 

quency range is divided up into finite width frequency bands or channels and time is 

divided up into finite length intervals or windows. Once a sound has been analysed 

via a fourier transform, a set of data is produced for each window representing the 

frequency and amplitude of each channel at each instant in time. 

This data is then available for resynthesis by using it to control the frequencies and 

amplitudes of a set of sinusoidal oscillators. The sound may also be transposed or 

time stretched before resynthesis. The results of this resynthesis can be indistin- 

guishable from the original sound, even to the ears of a trained musician (Dodge 

and Jerse, 1985). But of course straight resynthesis does not tap into the potential 

of this technique. Another possibility is for hybrid sounds to be synthesised, and 

one approach is to analyse two different natural sounds, and interpolate between the 

frequency and amplitude envelopes of each sound. In this way, sounds which have 

some of the characteristics of both the original sounds can be synthesised. There 

are, however, some important factors to take into account when performing this 

interpolation. 

If sound A has a very short attack and sound B builds up much more slowly, then the 

partials for each sound will reach peaks at different points in time. For this reason, 
interpolation between the amplitude values of corresponding partials in each sound 

is not sufficient. The time axis values have to be interpolated also. The resulting 
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sound will not only possess spectral characteristics somewhere between those of A 

and B, but also has temporal qualities somewhere between the two. One problem 

associated with additive models of musical instruments is that the envelopes for 

each partial in a real instrument vary as we move up and down the instrument's 

pitch range. For example, analysing a middle `C' note played on a piano produces a 

set of partial envelopes which will only be suitable for resynthesising pitches within 
few semitones either side of middle `C'. To convincingly build an additive model of 

a whole instrument requires envelopes for each partial and register, an enormous 

amount of information to cope with. 

Once constructed, an additive model can be very rigid in its behaviour, since chang- 
ing the characteristics of a sound requires that all of the envelopes be changed in 

a coherent manner to produce the desired result. This reductionistic view of an 
instrument makes additive synthesis quite cumbersome unless special tools for anal- 

ysis and resynthesis are provided. Fortunately, some tools are provided, and the 

composer Trevor Wishart has contributed a great deal in terms of both software and 

expertise to this area. In particular, he has developed a suite of programs which are 

capable of manipulating spectral data produced by the `Phase Vocoder' frequency 

analysis program (Composer's Desktop Project manual, 1994) ready for resynthesis 
(Wishart, 1994). 

3.3 Subtractive synthesis 

Fixed periodic waveforms such as the sawtooth, square, and triangle waves have 

harmonic spectra with many partials and are very simple to generate electronically. 
As they stand, they are not very useful from a musical point of view, since they 

sound harsh and too bright and lack any sense of movement or evolution due to 
their purely periodic nature. However, with the use of low, high, and bandpass 

filters, parts of the spectrum can be filtered out allowing them to be sculpted into a 
slightly more musically useful form. A common technique employed in subtractive 

synthesis which adds some movement to the sounds, is to mix the output from several 

slightly detuned oscillators together, and use the result as the source for filtering. A 

sound may theoretically be built up from an unlimited number of mixed and filtered 

waveforms, but once again this requires an increasingly large amount of control data. 
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Subtractive synthesis, unlike additive synthesis, allows sweeping changes to be made 

to the spectrum of a sound simply by changing one or two parameters. This makes it 

more manageable to control, but the sounds produced tend to be more synthetic than 

those of additive synthesis, and fine control over individual partials is not catered 
for. 

3.4 Frequency modulation 

d 
fw 

MODULATING 
OSCILLATOR 

f,. 

+ 
AMP 

CARRIER 
v OSCILLATOR 

Figure 3.1: A simple FM instrument 

A simple frequency modulation (FM) instrument is shown in figure 3.1. If the output 

from one oscillator (the modulator) is used to modulate the frequency of a second 

oscillator (the carrier), a complex spectrum arises. The simplest form of FM occurs 

when both carrier and modulator are sinusoidal. If f, is the carrier frequency and 
fm is the modulator frequency then the spectrum of the resulting sound is centred 

at f, and contains regularly spaced sidebands at fc±k f,,, where k is an integer. The 

distribution of power amongst these sidebands is proportional to the amount of mod- 

ulation. The higher the amount of modulation, the more the power is spread over 

the sidebands. Even in this simplest case the resulting sounds have quite complex 

spectra and since the frequency of the modulator and the amount of modulation can 
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be varied dynamically, it is a simple matter to produce rich, dynamically varying 

spectra. In practice FM is particularly good at generating metallic, bell like sounds, 

especially when the ratio between f, and f�t is non-integer. The most appealing 

points about FM are that it is simple to implement, and computationally inexpen- 

sive, and it generates complex time varying spectra. One of its shortcomings is that 

it is very difficult to correlate and predict the effect that a change in the frequency or 

amplitude of the modulator will have on the overall timbre of the sounds produced. 
A very slight change in fm can drastically alter the overall sound. 

FM was incorporated into Yamaha's DX range of musical keyboards in the 1980's 

and although reputedly the most popular electronic keyboards ever sold, one criti- 

cism frequently heard at the time was that although good at producing inharmonic, 

metallic sounds such as bells and chimes, FM seemed to lack a certain warmth 

which was present in the earlier generations of analogue voltage controlled synthe- 

sisers based on subtractive synthesis. This was attributed to the `organic' nature of 

voltage controlled components. Magazine reviews of commercial synthesisers of the 

time often talk about the quality of the filters and oscillators in the same way that a 
luthier might talk of the quality of a particular piece of seasoned wood for a guitar. 
Another criticism which could be made of the bell and gong-like sounds produced 
by FM is that whilst they produce appropriate time-varying spectra, the resulting 
information generated lacks many other dimensions of coherence which are partly 

responsible for the expressive character of real bell and gong sounds. 

3.5 Amplitude modulation 

Amplitude modulation is similar in concept to FM in that a carrier and modulating 

oscillator are needed. There are two main kinds of amplitude modulation: classical 

modulation; and ring modulation. 

3.5.1 Classical amplitude modulation 

Figure 3.2 gives a flow chart for classic AM. The value AAIPgives a default amplitude 
for the carrier when there is no modulation. The modulation index m can take a 

value between 0 and 1. When it is equal to 1, the amplitude of the carrier fluctuates 

between AMP and zero giving total modulation. Classical amplitude modulation 
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Figure 3.2: Classical amplitude modulation. 
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simply produces two new sidebands in the output spectrum, with frequencies fc± f�,. 

3.5.2 Ring modulation 

Figure 3.3 gives a flow chart for ring modulation. The modulating oscillator is 

allowed to modulate the amplitude of the carrier directly. With no modulation 

there is no output but as the modulation increases, two sidebands at fcf f,,, begin to 

appear. The difference between ring modulation and classical AM is that the carrier 

frequency fr does not appear in the spectrum of the modulated sound. The carrier 

and modulator signals do not have to be sinusoidal and, in general, multiplying two 

signals together gives rise to ring modulation. If two sounds A and B are multiplied in 

this way, the resulting spectrum contains frequencies that are the sum and difference 

between the frequencies of each partial in sound A and those of each partial in sound 

B. This provides a fairly simple way to produce complex, inharmonic spectra, but 

once again as with FM, exercising fine control over the resulting spectra for musical 

purposes is not a trivial task. 

m *AMP 
, 

AMP 
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Figure 3.3: Ring modulation. 

3.6 Granular synthesis 

Granular synthesis (Roads, 1987; Truax, 1986; Truax, 1987; Truax, 1990b) provides 

a means for combining the frequency and time domain views of sound. A grain 

of sound is a pure tone of fixed frequency which is modulated by a finite (very 

short) envelope, and represents a kind of acoustic quanta. Sounds are synthesised 

by combining many thousands of such grains. The frequencies, amplitudes and 

patterns of temporal spacing between grains all contribute to the overall quality of 

the textures produced. The composer lannis Xenakis was one of the first to explore 

the compositional possibilities of granular synthesis, and chose a fixed duration of 

40ms for the grains (Roads, 1987), concentrating instead on their frequencies and 

amplitudes. 

Granular synthesis presents a similar problem to that of additive synthesis in that a 
large amount of control data is needed in order to realise musical macrostructures. 

Xenakis proposed a system of screens and books of screens as a means of controlling 

the evolution of the granular texture. Each screen is a two dimensional plane, repre- 

senting frequency versus amplitude. Grains of sound are scattered across this plane 

and several such `screens' can be combined into a book representing the temporal 

evolution of the sound. The screens are separated by At, where lms< At <10ms. 
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This technique, whilst going some way to providing a higher level control strategy, 

still does explicitly deal with the question of how to create books and screens which 
lead to perceptually and musically effective sounds and exhibit coherence. 

The strengths of granular synthesis lie in its ability to synthesise aperiodic noise 

sounds which have traditionally been beyond other frequency domain techniques, 

such as splashing, crunching, and shattering sounds etc. It is also effective for the 

synthesis of sounds such as those produced by waves crashing. One of the ongoing 

concerns of granular synthesis is in developing control strategies capable of mapping 

a small number of input parameters to a larger number of output parameters which 

actually control the individual grains. Truax (1990a) proposes non-linear chaotic 

systems as a potential control source and the cellular models introduced in the 

previous chapter seem ideally suited to this task with the advantage of being more 

flexible in their patterned behaviour. 

3.7 Digital wavesliaping 

The principle behind waveshaping synthesis is to pass a waveform through a module 

which alters its shape in some way and hence its spectral content. The conventional 

way to achieve this is by means of a transfer function, a function which relates the 

amplitude of the output signal to that of the input signal. 

Figure 3.4 shows the way in which a transfer function is used to alter the wave's 

shape. In this example the amount of distortion introduced by the waveshaping 

process is linked to the overall amplitude of the input waveform, since the transfer 

function only deviates from a straight line near its ends. This means in practice that 

with a sinusoidal input waveform, the number of partials introduced into the output 

waveform and hence the brightness, increases with amplitude. This corresponds to 

what we intuitively expect to happen in an acoustic instrument (e. g. blowing harder, 

plucking harder), although, the partials are not necessarily introduced in a smooth 
fashion as amplitude increases. Depending on the transfer function they may come 

and go as distortion increases. Dynamically varying the amplitude, or distortion 

index, produces a dynamically varying spectra. It is desirable to obtain this without 

significantly altering the amplitude of the output waveform. For this reason the 

output is often multiplied by a scaling factor which restores the amplitude to a 
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Figure 3.4: Waveshaping using a transfer function. 

time 

constant level regardless of the modulation index. The choice of transfer function 

has a large effect on the timbre of the output waveform and there are techniques 

which allow it to be chosen according to some desired spectral characteristics. These 

techniques are described in Dodge and Jerse (1985). 

An important point to note is that with a sinusoidal input, the output waveform 

only contains harmonically related partials. A standard technique for producing 

inharmonic sounds involves amplitude modulating the output with another sinusoid, 

to give sidebands which are not necessarily harmonically related (as described in 

section 3.5). As with FM and AM, waveshaping synthesis is computationally very 

inexpensive to implement since all that is required is one oscillator and a look-up 

table containing the transfer function. The most difficult aspect is in calculating an 

appropriate transfer function to provide musical control over the partials at different 

amplitudes. This technique formed the basis for Casio's CZ range of commercial 

synthesisers which appeared in the 1980's as an answer to Yamaha's DX synthesisers. 

The sounds produced by digital waveshaping (or phase distortion as it was referred 

to by Casio) were often likened to those produced by FM, although they seem not 

to be quite as ̀ fluid' in nature. 

output 
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The human voice uses a form of subtractive synthesis in order make vocal sounds. 

Vibrations of the vocal folds produce a pulse-like waveform with a rich harmonic 

spectrum. This sound, along with noise generated when air is forced past constric- 

tions in the vocal tract is filtered by the shape of the vocal tract, which runs from 

the glottis to the lips, and the nasal tract if it is coupled in. The vocal tract exhibits 

natural resonant peaks in its frequency response. These resonant peaks, or formants, 

may be moved up or down the spectrum by changing the shape of the vocal tract 

and mouth, and by moving the tongue. The combined frequency response of the 

different parts of the vocal tract (and nasal tract) provides us with the mechanism 

used to produce vowel sounds. Using a pulse wave and noise source, sounds with a 

vocal quality may be synthesised by constructing filters which mimic the formants 

of the human voice. A clear account of the established methods for achieving this 

is given in Dodge and Jerse (1985) and will not be repeated here, but in the next 

section one of the most recent systems for vocal synthesis, SPASM, is described. 

This system is based around a physical model of the vocal tract. 

3.9 Synthesis by physical models 

The synthesis techniques described so far have all concentrated on the spectral char- 

acteristics of sound, treating synthesis as an abstract, frequency domain process, and 

ignoring the physical origin of naturally produced sounds. An alternative approach 

is to model the behaviour of musical instruments and then generate sound via these 

physical models. There are a number of general strategies for achieving this which 

are discussed in Borin, De Poli and Sarti (1992). The principle methods for sound 

synthesis by physical modelling are described below. 

3.9.1 Modal analysis and synthesis and MOSAIC 

Physical objects such as a strings, bars, plates, bells etc. exhibit natural modes of 

vibration when allowed to vibrate freely. Each mode represents a single standing 

wave of fixed frequency. One way of simulating the vibrations of such an object 

is to determine, either by experimental or finite element analysis, precisely what 

the modes are. Once the modes have been determined, each can be modelled as a 
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mass-spring-friction combination, a modal oscillator. The whole vibrating structure 

can be represented as a set of modal oscillators coupled together. This is the basic 

premise of modal synthesis (Adrien, 1991; Djoharian, 1993). 

Once an object has been represented in this way, all interaction with the object 
is translated into calculations involving the modal oscillators for the purpose of 

synthesis. For example if an external force is applied at a given point, this single 
force and coordinate must be translated into a set of modal forces which are applied 

to the various modal masses within the model. Similarly the amplitude of a given 

point on the surface of the object is determined by looking at the amplitudes of each 

modal oscillator and then combining them in the correct proportions, determined 

by the geometrical coordinate of the point chosen. To effect this translation from 

single geometrical coordinates to sets of modal coordinates a prismatic window is 

used. This window mediates between the outside world and the internal structure 

of the modal model. 

In practice, acoustic instruments consist of many vibrating structures coupled to- 

gether, each with their own modes of vibration. Modal synthesis supports the cou- 

pling together of separate modal objects to form more complex vibrating structures. 
Once again a connection between two points on different vibrating structures must 
be translated into a set of connections between the individual modal masses of the 

two structures. This process can be quite complicated and is described in detail in 

Djoharian (1993). 

Figure 3.5 gives an example the modal decomposition of a surface, in this case 

a conical surface. This surface is represented as a set of circular sections joined 

together (b), where each section is basically a closed line. The overall vibrational 

modes of this structure are a combination of the circular section modes and radial 

modes. The vibration at a point on the surface can be modelled using the assembly 

shown in (c). The smaller masses linked to ground by very stiff springs represent the 

higher sections of (b) and the larger masses with less stiff springs represent the lower 

sections. MOSAIC 1 (Morrison and Adrien, 1993) is a language for creating and 

playing modal synthesis instruments. Standard modal models such as strings, rods, 

acoustic tubes (with one or both ends open), rectangular and circular membranes, 

'Recently renamed MODALYS although at the time of writing no references could be found. 
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Figure 3.5: Modal decomposition of a conical vibrating structure. 
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rectangular and circular plates, and violin or cello bridges are available within the 

system. Other models can be created by experimental or finite element analysis, 

and once the modal data has been stored in standard file format, the new models 

can be integrated seemlessly into the system. 

MOSAIC provides an interface based on the computer language `Scheme' (Abelson, 

Sussman and Sussman, 1985) which is a pure dialect of the functional language 

`Lisp'. The language allows instruments to be constructed by combining the modal 

models available into more complex structures. The following piece of code gives an 

example of how a modal object is created: 

(define my-string 
(make-object `bi-string 

(modes 40) 
(length 0.5) 
(tension 150) 
(density 1000) 
(radius 0.001))) 

This takes a template for a modal object called bi-string and creates an instance of 

it called my-string. The length, tension, density and radius are measured in stan- 
dard physical units of measurement, meters, newtons, kilograms, etc. Connections 

between resonant structures are made by creating `access points' on the structures 

and connecting these access points together. Standard types of connection exist such 
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as: - 

Adhere. Glues two access points together. 
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Bow. Simulates alternate frictional sticking and sliding associated with bow/string 

mechanism. 

Pluck. The plucked point is dragged until some tensional limit is reached, at which 

point it is released. 

The following example creates access points on two strings, at positions 60% along 

the length of the first, and 40% along the length of the second, and glues them 

together: - 

(define access-points 
(make-access strings (coast . 6) 'transO)) 

(define access-point2 
(make-access string2 (coast . 4) 'transO)) 

(make-connection 'adhere acct acct) 

3.9.2 Digital waveguides 

A waveguide is any medium in which wave motion can be characterised by the 

one dimensional wave equation (Smith, 1987). Examples of naturally occurring 

waveguides include the bore of a clarinet, and the vocal tract (see below). One 

approach to modelling such a medium is to sample its behaviour both spatially 

and temporally, giving a set of waveguide sections. Each waveguide section has 

an impedance which can vary with time, but is constant across the section, and 

propagates two waves one leftgoing and one rightgoing. The sections may have 

different impedances and as a wave propagates across the junction between two 

sections this change in impedance causes some of the energy to be transmitted 

forward and some to be reflected back. The amount of reflection and transmission 

is determined by a coefficient of reflection. 

Figure 3.6 shows a digital waveguide (Smith, 1992). The model is divided into 

sections and each section consists of a scattering junction with reflection coefficient 

k�(t) and two delay lines with delays of T seconds, which represent the section 
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Figure 3.6: A waveguide filter network. 
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traversal delays for left and right going waves. By calculating the impedances of 

various parts of such real waveguides, networks of digital waveguides, such as the 

one shown, can be constructed which model the behaviour of the real systems. 

Impulse-like excitations are modelled by filling the appropriate delay lines up with 
initial values. Once left to its own devices, waves will bounce back and forth in 

the model, constantly being modified by the effect of the scattering junctions. Non- 

linear excitations such as bowing are modelled with the use of special junctions which 

allow energy to be introduced into the model and also allow the waves to be `read' 

at the same point. These junctions contain appropriate mathematical models which 

simulate the particular excitation mechanism. The Yamaha Corporation bought the 

commercial rights for this synthesis technique from Stanford University in America, 

labelling it `Virtual Acoustics'. Their first commercial product to use the technique 

was a keyboard based synthesiser, the VL-1. 

The SPASM2 vocal synthesis system (Cook, 1993), mentioned in the previous sec- 

tion, makes use of digital waveguides as illustrated by figure 3.7. The smoothly 

changing cross-sectional area of the vocal tract as we travel from the glottis (at 

the left of the figure) to the lips is sampled and modelled with a finite number of 

acoustic tube sections, each with constant cross-sectional area. The diameters of 

these sections may be altered in real time, thus altering the formants produced by 

the model. The figure also shows the internal structure of the scattering junctions. 

The nasal tract is modelled in a similar fashion and has to be coupled to the vocal 

'Singing Physical Articulatory Synthesis Model 

PI(t) PP(t) 
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Figure 3.7: A waveguide filter model of the vocal tract (after Cook, 1993). 

tract with the use of a multi-way scattering junction. The details of the model are 

described in the above-mentioned reference. 

The system also provides a high level script language called `Singer' which enables 

the multitude of vocal parameters to be controlled, making it possible to synthesis 

spoken or sung words, or any other vocal-like sounds. An example is given below of 

a `Singer' script, taken from Cook (1993). This script synthesises the word `Shiela': 

// This example sings the word "Shisla" 
singer(int fd) { 

initialise the singer model 
init(); 
initialise setup for performance 
setup("shh", "soft". 400.0,0.0,0.0,0.0); 
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time, shape, glot, freq, gAmp, nAmp, vibr, file 

synthesise( 0.3, "shh", "soft", 400.0, 0.0, 0.3, 0.00, fd); 
synthesise( 0.1, "eee", "soft", 430.0, 0.2, 0.3, 0.04, fd); 
synthesize( 0.7, .. sea", "soft", a4, 0.2, 0.0, 0.07, fd); 
synthesise( 0.2, "111", "Soft", 440.0, 0.4, 0.0, 0.04, fd); 
synthesise( 0.2, "ahh", "soft", 400.0, 0.3, 0.0, 0.00, fd); 
synthesise( 0.2, "ahh", "Soft", 400.0, 0.3, 0.0, 0.00, fd); 
synthesise( I. S. "ahh", "soft", 400.0, 1.0, 0.0, 0.08, fd); 
synthesise( 0.1, "ahh", "soft", 400.0, 0.0, 0.0, 0.08, fd); 
silence(0.6, fd); Wr ite some silence 
return; 

} 

3.9.3 CORDIS-ANIMA 
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CORDIS-ANIMA (Florens, Razafindrakoto, Luciani and Cadoz, 1986; Cadoz, Lu- 

ciani and Florens, 1993; Incerti and Cadoz, 1995) is a physical modelling system for 

the synthesis of sounds and visual images. It has similarities to modal synthesis in 

that it makes use of masses and links between them as the basic building blocks of 

the system. CORDIS-ANIMA is a formal framework for creating and interacting 

with digitally simulated, multi-sensory physical objects, rather than just a software 

system or synthesis technique. One of the main aims of the project is to provide total 

simulations of physical objects from the real world, including their gestural, tactile, 

acoustic, and visual aspects. The project therefore also includes the development 

of gestural transducers capable of providing a two-way physical dialogue with the 

objects created, i. e. the user is able to `feel' the reactive force of an object via the 

transducer, as well as applying external forces to it. 

The CORDIS-ANIMA formalism provides two primitive building blocks, M (matter) 

points and L (link) points. An M point is basically an algorithm which, given a force 

returns a position, and an L point is an algorithm which, given a position returns a 
force. M and L points are combined into atomic modules which serve as the basis 

for constructing simulated objects. Figure 3.8 shows a single M point and L point in 

(a) and (b). It then goes on to show how the schematic representation of a two way 

connection between two points (c) is actually implemented by two separate channels 

of communication, with each point's output being fed into the other's input (d). In 

(e) and (f) we see the simplest atomic unit consisting of a single mass and a channel 

of communication with the outside world and in (g) we begin to see how to build 

vibrating structures such as a string. 

In order to create objects for sound synthesis, more complex structures need to be 

created. In practice, vibrating structures are constructed from M points connected 
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Figure 3.8: Atomic building blocks in the CORDIS-ANIMA system. 
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Figure 3.9: Representing a string in CORDIS-ANIMA. 
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Figure 3.10: Representing a rectangular membrane in CORDIS-ANIMA. 

together by visco-elastic link elements, comprising two indivisible L points. Move- 

ment can be in one, two or three dimensions although for sound synthesis it is usually 
limited to one dimension. Two examples are given in figures 3.9 and 3.10. The link 

elements are represented here by spring symbols and the ground symbol represents 

a special kind of M point called a ground point. This is an M point which is fixed in 

one position. Note that we are effectively looking at these vibrating structures along 

the axis of vibration, i. e. in and out of the paper. They do not move left to right 

or up and down. Apart from the two basic building blocks just described, two other 

modules are provided in the formalism to allow for: (a) dynamic variation of the 

structure of an object; and (b) dynamic control of other synthesis parameters such 

as the mass of an M point or the stiffness of a link element. Both of these modules 
take control data derived either externally from gestural transducers or internally 
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from some aspect of the state of an M or L point. 

To sum up, the basic modules provided are listed below: 

M point An algorithm which takes a force as input and returns a position. 

L point An algorithm which takes a position as input and returns a force. 

Dynamic structural variation module Basically an if-then module which makes 

a link between an M and L point conditional. Used to simulate transitory. 

connections in a combined excitor-resonator system such as when a string is 

plucked. It takes its input either from an external source driven by the user's 
interaction with a gestural transducer, or internally from an M or L point. 
This could be used to make a link break when a force became too large etc., 

and allows the instrument to modify itself depending on its own behaviour. 

Dynamic parameter variation module Allows arbitrary control over algorith- 

mit parameters. Once again takes its input either from an external source, or 
internally from an M or L point. Examples of algorithmic parameters are the 

stiffness of a spring, the mass of an M point etc. 

CORDIS-ANIMA does not provide a script language for describing either instru- 

ments or performances in the manner of Csound, MOSAIC and SPASM. Instead, 

emphasis seems to have been placed firmly on real time gestural performance with 

the instruments, and although it is claimed in the literature that there is no need 
for such a language since the building blocks provided constitute the elements of a 
language in their own right, it is not always entirely clear from the published liter- 

ature precisely how a user moves from the abstract formal framework to concrete, 

practical examples. One answer to this criticism has been provided more recently in 

the form of a graphical user interface called GENESIS (Cadoz, Florens and Luciani, 

1995) which provides standard facilities such as cut, paste, group, ungroup, erase 

etc. and a menu of objects including all the module types described above. 

Moving away from technical details for a moment and considering strategies for in- 

strument design in CORDIS-ANIMA, the main considerations are the topologies in 

which the masses and visco-elastic links are arranged, and the ways in which param- 

eters such as stiffness, viscosity, and mass are distributed across these topologies. 
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Cadoz et al. state that one of their research goals is in understanding the relation- 

ship between topology and perceptual qualities, and gaining an understanding of 

which attributes of a sound are due to the mode of excitation and which are due to 

the topology and physical characteristics of the vibrating structure itself. 

Figure 3.11: An example of a CORDIS-ANIMA topology -a spiral. 

Figure 3.11 shows a complex topology, once again viewed along the axis of vibration. 

By choosing different values for the masses, and the viscosities and stiffness of each 

link a variety of sounds ranging from bells to gongs and cymbals can be produced. 

Since there are potentially a large number of parameters in such an instrument, 

Incerti and Cadoz (1995) discuss specific strategies for simplifying matters, such as 

giving all radial links a common stiffness whilst all spiral links are given a different 

common stiffness. This leads to certain modes of vibration being preferred over 

others and is an effective way of fine tuning the timbre of an instrument without 

having to control every individual link separately. Work is also under way to develop 

a graphical interface for capturing, manipulating and re-using gestural signals (Cadoz 
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et al., 1995). The ideas behind this work are described elsewhere in the literature 

(Cadoz, 1988; Cadoz and Ramstein, 1990). 

3.9.4 Other physical models 

Examples of other physical models of acoustic instruments can be found in the 

literature including bowed strings (Woodhouse, 1992), wind instruments (Keefe, 

1992), bar percussion instruments (Serra, 1986), strings (Adrien, Causse and Rodet, 

1987), and piano sounds (Garnett, 1987). 

It is interesting to note that several recent articles begin to acknowledge the relevance 

of chaotic behaviour and dynamical systems to the behaviour of natural sounds. Ex- 

amples include the use of pitch synchronised noise, generated by a chaotic oscillator, 

to simulate the noise produced by vortex shedding when a flute is played (Chafe, 

1995). The technique described leads to a simulated instrument which behaves more 

naturally in that the periodic and chaotic regions of behaviour in the sound are not 

separate components which are superimposed, but form an integrated whole in which 

the output waveform has many intricacies. 

Another example is in the use of nonlinear dynamics in the analysis and resynthesis 

of sounds (Mackenzie, 1995). The phase space portrait of a sound is analysed, and 

a simpler nonlinear equation is found, by an automated process, which reproduces a 

phase space portrait capturing most of the character of the original. The system has 

been tested with sounds as diverse as the rumble of a ventilation fan; a tuba tone; 

the sound of the wind; and a gong sound, and produces phase space portraits which 

convincingly capture the essence of the originals. It is obviously important to test 

the results aurally, but nevertheless the four sounds chosen are radically different in 

structure and yet the use of non-linear equations allows the technique to exhibit a 
degree of universality. 

3.10 Criteria for comparing sound synthesis techniques 

With so many sound synthesis techniques it is important to have some general 

criteria by which they can be compared. Jaffe (1995) has compiled such a list of 

criteria which are summarised here, since they may provide a useful focal point 

for all the ideas presented in this thesis and also allow the TAO computer music 
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program described in chapters 4,5 and 6 to be compared and contrasted with the 

other synthesis techniques described in this chapter. 

How intuitive are the parameters? Do they map intuitively to musical param- 

eters such as dynamics and articulation or are they abstract mathematical 

variables with little correlation to real-world perceptual or musical experience. 

How perceptible are parameter changes? When a parameter is changed, how 

perceptible is the change in timbre? 

How physical are the parameters? 

How well behaved are the parameters? A change in a parameter's value should 

produce a comparable change in timbre. If a small change produces a large 

unpredictable change in timbre then the parameter is not very well behaved. 

How robust is the sound's identity? Does it maintain a coherent character re- 

gardless of the parameter settings, or does a parameter change lead to the 

sound seeming to move into a completely new timbral or perceptual category? 

How efficient is the algorithm? Efficiency is obviously an important considera- 

tion but it should be remembered that a computationally expensive algorithm 

can be implemented efficiently and a computationally inexpensive algorithm 

can be implemented inefficiently. Efficiency is not the same as computational 

expense, which should be considered in context with the other criteria listed 

here. 

How sparse is the control stream? How much control data is needed to pro- 

duce complex sounds? It may be possible with techniques such as additive 

synthesis to produce any sound, but if the amount of control data needed to 

control all of the partials is too large, the technique will only be of limited 

use in practice. The whole timbral space of an acoustic instrument is made 

available through the use of a small number of physical parameters. 

What classes of sounds can be represented? Is the technique only good for 

percussive sounds, string sounds, bell sounds, etc. or is it general enough to 

cope with many categories of sounds. 
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What is the smallest possible latency? Does the technique take a certain amount 

of time after some input data to synthesis the output. Most techniques are 

capable of responding within one sample to input data but some such as those 

involving some kind of fourier analysis will take a finite number of samples 
before any output can be produced. 

Do analysis tools exist? 

3.11 Summary 

This chapter has attempted to give the reader a feeling for the multitude of tech- 

niques which are applicable to sound synthesis. Most of the traditional unit generator 

techniques suffer from one basic problem: the essentially reductionist approach taken 

makes it difficult to synthesise sound events which are complex and yet coherent, 

possessing micro- and macrostructural details which are causally related. 

Of the physical modelling techniques digital waveguides are by far the most compu- 

tationally efficient, although it would appear to be almost impossible for a lay-person 

to create a completely new waveguide based instrument since a working knowledge 

and understanding of differential equations and digital filters is required. The main 
building blocks of these models, delay lines, do not possess any physical charac- 

teristics at all, and all the `interesting' physical behaviour must be built into the 

junctions between the delay lines, a non-trivial task. 

CORDIS-ANIMA provides atomic building blocks from which an infinite variety 

of vibrating structures may be assembled. Whilst being more intuitive than digital 

waveguides and also being capable of producing very naturalistic and coherent sound 

events, one criticism might be that there are simply too many parameters which 

the user must control even in the initial construction of an instrument. The first 

decision to make involves choosing an appropriate topology for a new instrument, 

although this problem has been partially addressed by the ongoing development of 

the GENESIS graphical user interface which provides facilities for the automatic 

generation of topologies. Incerti and Cadoz (1995), in discussing this problem, make 

the following comments: 

... it would be possible to go further and build very sophisticated networks 
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with highly complex topologies designed to describe specific physical prop- 

erties. But the numerous experiments that we [have] made tend to prove 

that it would be [the] wrong way [to proceed] ... Furthermore, some topo- 

logical properties which are of great interest from a mathematical point 

of view, or even which may appear in nature (crystal symmetries, growth 

processes ... 
) may have no meaning from an acoustic point of view. 

Here is the difficulty: we have to determine which physical properties are 

relevant in a simulation for sound synthesis (Incerti and Cadoz, 1995, 

p. 102). 
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MOSAIC provides a framework for instrument design which seems to be more 
focussed and pragmatic than either the digital waveguide technique or CORDIS- 

ANIMA since equal emphasis seems to have been placed on both the synthesis en- 

gine and the use of an existing high level language Scheme for an approachable user 

interface. It is more computationally efficient than CORDIS-ANIMA because of the 

use of a smaller number of masses and springs but suffers in that it is not capable 

of producing informative graphical animations which allow the user to actually see 

what is happening to an instrument, aiding the debugging process. 

In practice, it seems to be relatively straightforward to specify complex 

synthesis scenarios in MOSAIC once the control values are worked out. 
However, it remains difficult to choose good control values for some syn- 

thesis situations (notably those involving reed and bow connections). De- 

bugging a synthesis is also difficult, and though control of the physical 

synthesis scenario is often straightforward ... control of the actual sound 
(spectral features, etc. ) remains very difficult (Morrison and Adrien, 

1993, p. 55). 
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Chapter 4 

The TAO computer music 

program and its associated 

cellular model 

4.1 Introduction 

This chapter describes the cellular physical model at the heart of the TAO1 computer 

music program (Pearson and Howard, 1995; Pearson, 1995; Pearson and Howard, 

1996), which has been developed from first principles in support of this thesis. 

TAO has been specifically designed as a compositional tool for music which is 

spectro-morphological or acousmatic in nature, and apart from being a useful work- 

ing system capable of producing a wide variety of organic sounds, it also serves as a 

practical case study for many of the ideas introduced in this thesis. TAO provides a 

script language, described in the next chapter, which enables a user to create com- 

plex vibrating structures from pieces of cellular elastic material coupled together, 

and then enables these instruments to be excited and damped in a variety of ways. 

The system also provides a facility for generating graphical animations depicting the 

wave-propagation behaviour of instruments. 

1 The name 'TAO' is not an acronym but comes from the Chinese word `Tao' which originally 

meant the `Way' or process of the universe, the order of nature (Capra, 1992, p. 116), and was 

chosen because it reflects the philosophical stance taken in this thesis. 
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The instruments behave according to physical laws operating on a local basis between 

neighbouring cells and are played by the application of external energy, whether by 

striking, plucking, bowing or some other excitation. The sounds produced often 

possess natural transients and physical, energetic and spatial characteristics which 

make them strongly suggestive of gesture and texture. The rest of this chapter 
describes the cellular model on which TAO is based; its emergent properties; the 

structural possibilities it affords; and how sound output is generated via the use of 

virtual microphones. Section 4.6 describes the underlying mathematics involved in 

the cellular update rules, and, although accessible to the non-mathematical reader, 
is not essential reading for those interested only in a user's perspective of TAO. 

4.2 The cellular elastic material at the heart of TAO 

From a physical perspective the material from which TAO instruments are con- 

structed consists of point masses arranged in a regularly spaced two dimensional 

grid, connected to their eight immediate neighbours by springs, and constrained to 

have one degree of freedom, as if they were mounted on frictionless slides all pointing 
in the direction of the z axis. Figure 4.1 shows a close-up of a typical portion of 

the material, whilst figure 4.2 shows an individual point mass connected to its eight 

neighbours. The masses are referred to as from now on as cells. 
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Figure 4.1: A close up view of TAO's cellular material. 

Each cell contains variables representing its position, velocity, force, mass and amount 

of damping. They are arranged in the xy plane and are free to move only in z direc- 

tion. The position, velocity and force acting upon a cell are always measured in the 
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Figure 4.2: A single cell with its eight neighbours. 

direction of the z axis and a cell's position is measured relative to the z=0 plane. 

The springs connecting the cells together are not modelled as separate entities, 

instead each cell maintains a set of pointers to its eight immediate neighbours and 

whenever two cells point at each other, the presence of an elastic spring between 

them is implied. The springs are represented implicitly in the cellular update rules 

used. Another feature of the springs is that although they are represented in figure 

4.1 by diagonal lines connecting neighbouring cells, they do not actually stretch 
diagonally between neighbouring cells. Each spring actually exerts a restoring force 

which is proportional to the vertical distance between the two cells, i. e. measured in 

the z direction. Two cells connected by a spring may be placed anywhere in the xy 

plane without affecting the force exerted on both by the spring connection, which 

relates only to their relative positions in the z direction. 

By default every cell is free to move in the z direction but individual cells or groups 

of cells may be locked in one position. For the purposes of sound synthesis it is 

usually necessary to lock at least one cell at the z=0 position in order to force 

the rest of the cells to oscillate about this point. All interaction with the material 

is via external forces applied to individual cells or groups of cells. Each cell also 
has a damping coefficient associated with it, which causes a cell to be subjected to 

a frictional force proportional to its velocity, and thus has the effect of continually 

slowing the cell down. Since every cell maintains information at all times about 
its position, velocity and the forces acting upon it, excitation algorithms can make 
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use of feedback from the instrument, very easily. For example an object colliding 

with an instrument, apart from exerting a force on the instrument, can be made to 

feel the force of the impact and react accordingly. This kind of facility provides the 

potential for sound events in which the structured information generated, because 

of its derivation from physical laws, will be suggestive of realistic physical causes. 

Viewed from a distance, the material exhibits wave phenomena such as reflection, 

refraction (figure 4.3) and diffraction (figure 4.4). The refraction is achieved by 

giving the cells in the central portion of figure 4.3 higher masses than the rest of the 

cells, effectively making that region more dense. The diffraction effect is caused by 

locking the cells in the heavier black region of figure 4.4, leaving just a few `slits' 

where the cells are free to move, thus creating a diffraction grating. One of the 

advantages of using a cellular model is that we can alter the shape of the piece of 

material or locally alter its properties without losing the coherent, macroscopic wave 

behaviour. It will also cope just as easily with the most complicated scenarios as 

with simpler ones. 

The use of masses and springs in synthesis is by no means new since it forms the 

basis for both the CORDIS-ANIMA and MOSAIC systems which were described in 

chapter 3, but unlike CORDIS-ANIMA, TAO uses a fixed topology of masses and 

springs which has the effect of making the model more consistent, the material more 

uniform, and the cellular update rules simpler, without significantly affecting the 

creative possibilities offered by the system. 

In order to generate sound output from a piece of material, virtual microphones are 

provided. In the context of TAO, a microphone is a device which takes arbitrary 

numerical values and writes them to a file as sound samples. The numerical val- 

ues are usually generated from mathematical expressions involving the positions of 
individual cells. The samples in this file are then normalised to fit the maximum 

amplitude range provided by the sample format and are written to a soundfile (in 

this case an audio interchange file format or aif file). In this way, any vibrations 

occurring within an instrument, no matter how large or small their amplitude, may 
be used as sources for the generation of soundfiles. The Csound language described 

in section 3.1 places the responsibility for keeping sound samples within the range 
dictated by sixteen bit integer samples firmly with the user, and in comparison, the 
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a) 

b) 

Figure 4.3: Simulating refraction and standing waves. 
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Figure 4.4: Simulating diffraction 
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approach taken by TAO ensures that a synthesis will never go `out of range'. 

Figure 4.5: A plain square piece of material 

Figure 4.6: The same piece of material having been torn 

Figures 4.5,4.6,4.7 and 4.8 give some examples of the structural possibilities offered 

by this cellular model. Figure 4.6 shows how by selectively removing some of the 

connections between cells, the material can effectively be torn, leading to new modes 

of vibration which a plain square piece of material would not have. 

The model supports the creation of arbitrarily shaped pieces of material, as in figure 

4.7, and it is feasible to make shapes which contain holes as in figure 4.8. The shape 

of a piece of material will have a direct influence on its natural modes of vibration and 

is therefore one of the most significant parameters made available to the user. We 

will see in chapter 5 that TAO supports the creation of various simple geometrically 

shaped pieces of material, although irregular shapes and shapes containing holes are 

not supported in the present implementation. 
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Figure 4.7: Makin; irregular shape., fn>>u t1w material 

Figure 4.8: Making shapes of material with holes 

4.3 Coupling pieces of material together to form iiistru- 

ments 

Two methods of coupling separate pieces of material are provided, gluc iny and join- 

ing. The former allows individual points on two pieces of material to be glued 

together forcing them to move in unison in the z direction, whilst the latter allows 

two pieces of material with straight edges to be joined seemlessly, making them act 

as if they were one continuous piece. 

4.4 An example of a TAO instrument 

To put all the ideas introduced thus far into context. figure -1.9 shows an example 

instrument consisting of four strings whose left ends are glued to four points a, b, c 
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Figure 4.9: A stringed instrument with a circular resonator. 
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and d on a circular sheet. In (a) we see a force being applied to string 1 which leads 

to two wavefronts, one left-going and one right-going. In (b) the left-going wave- 

front has been partially reflected off the end of the string, but sonne of its energy 

has also been transmitted to the circular resonator, causing another propagating 

wavefront. In (c) the energy which was initially imparted to stringl increasingly 

spreads throughout the whole instrument making the other strings vibrate in sym- 

pathy. Note that the strings are constructed from the same virtual elastic material 

as two dimensional sheets and simply consist of a long line of cells linked by springs. 

Graphical instrument animations form an integral part of TAO's user interface, and 

this image serves to introduce the visual format used, since it is actually a screen 

snapshot of a typical animation produced. Note that the individual cells are not 
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visible, and instead we see what appear to be smoothly undulating and continuous 

pieces of material. The user's attention is thereby focussed upon the emergent wave 

patterns produced, which in turn helps to focus attention on the behaviour of the 

instrument as a whole. In the computer animations produced by the system, glued 

points are marked in red, and points of excitation or sound output are marked 

in blue. The text labels shown in figure 4.9 are not produced automatically by 

the system, although script functions are provided enabling the user to label an 

animation manually. 

4.5 Information needed to create a piece of material 

Before moving on to a description of the mathematics involved in animating the 

model, we will take a closer look at the information which must be supplied in 

order for a new instrument to be created. Obviously, the quality of sounds which a 

particular synthesis technique is capable of producing is of paramount importance, 

but equally important is the question of how easy or difficult it is for a user to begin 

creating and using instruments. A delicate balance must be struck between, on the 

one hand, overloading the user with too many parameters in an attempt to cover 

every eventuality, and on the other, making the system too limited and inflexible 

as a result of trying to reduce the number of parameters which the user has to deal 

with. 

In order to create a single piece of TAO material, three pieces of information 

are required: the shape of the component (currently circular, rectangular, one- 

dimensional, triangular, or elliptical); the size of the component; and the amount of 

damping initially applied to each cell. When a piece of material is initially created, 

all cells are given the same mass, position, velocity, force and damping coefficient. 

In this uniform state the instrument exhibits some properties which are predictable, 

such as the overall decay time and the fundamental frequency of vibration 2. 

Acoustic instruments usually rely upon a variety of acoustic components coupled 

together, each one possibly -making use of a different acoustic medium, but with 
TAO's cellular material all components initially exhibit a constant wave propagation 

'In the case of a two-dimensional, inharmonic instrument such as a rectangular sheet, there may 
be no perceivable fundamental frequency 
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velocity. Therefore, in order to create a string of a given frequency f, for example, 

we can calculate its length from the wave propagation velocity v of the material, 

and the period of vibration 11f. There is no need to specify other non-musical 
information such as the string's mass per unit length, its tension or its length. As 

stated above, an instrument with uniform damping applied across all cells exhibits 

a predictable decay time depending on the exact damping coefficient used, and this 

holds true for an instrument of any size or shape. The initial damping coefficient 

chosen for any instrument may therefore be specified as a decay time, measured in 

seconds. 

For circular sheets the information required also consists of a single frequency, used 

to determine the diameter of the sheet, and a decay time. For other two-dimensional 

instruments, an x and y frequency are required. The x frequency is used to determine 

the width of the instrument (at its widest point) and the y frequency is similarly 

used to determine the height. Note that these frequencies are only intended as a 

rough guide to the kind of spectrum produced. A rectangular sheet 200 Hz by 300 

Hz will not produce clearly perceptible pitches at these frequencies, but we will have 

a good idea of the region of the audible spectrum this instrument will occupy as 

opposed to a sheet 700 Hz by 2 kHz. 

Once we begin to upset the uniformity of the material things are not always as 

simple and predictable, but at least we have some simple starting point which allows 

instruments to be created with a minimum of information. Altering the masses of 

individual cells changes the fundamental frequency and modes of vibration of an 

instrument, and altering the damping coefficient changes the decay time and also 

the spectral evolution of the sound produced by the instrument. In practice the 

damping coefficient is set either as a decay time, or a percentage, where 0% means 

that the cell is totally undamped and 100% means that the cell is rigidly fixed in 

one position. 

At this point the reader not interested in the inner workings of the cellular model 

should proceed to chapter 5 where the description of the system continues from a 

user's perspective. 
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4.6 Animating the model 

In this section we see how the cellular model actually functions internally. There 

are a number of different levels at which we can view the model: as an abstract 

physical device; as a cellular model with update rules based on certain mathematical 

equations; as a set of data structures and algorithms; and finally, at the lowest 

level, as implementation code. We have already seen the physical structure of the 

model and now we turn to the cellular update rules and associated mathematics. 

Descriptions of the data structures and algorithms used are left to appendix D. 

In order to animate the model the following steps are iteratively repeated as many 

times as is necessary, depending upon the number of output samples required: 

1. The forces acting upon each cell due to the springs connecting it to its neigh- 
bours are calculated. 

2. Any external forces due to excitations are applied to the appropriate cells. 

3. The velocities and positions of each cell are updated according to the forces 

acting upon each. 

These steps are described in more detail below. 

4.6.1 Calculating all the internal forces within the material 

At any instant in time each cell has an overall force exerted on it by the springs 

attaching it to its eight neighbours. The equation used to calculate the force exerted 

by one of the springs on a particular cell is based on Hook's law: - 

i 
F= -al 

j1 

where 1 is the equilibrium length of the spring, l' is the actual length at a particular 

time and A is the coefficient of elasticity. The negative sign indicates a restoring 

force. However since the cells only move up and down relative to each other we can 

simply make the spring force a restoring force which is proportional to the difference 

between the positions of the two cells. 

F=-A(s, -sn) 
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where s,, is the position of the cell we are calculating the force for and s� is the 

position of the neighbouring cell whose spring is exerting the force. 

4.6.2 Applying any external forces 

External forces are applied in order to simulate plucking, hitting, bowing or any 

other physical interaction with the material. At any instant in time any number of 

external forces can act upon any number of cells within a piece of material. To apply 

a force to a cell all that is needed is to add this external force to the cell's internal 

force which has already been calculated. 

4.6.3 Updating the cell positions 

Once the total force acting upon each cell has been calculated, Newton's second law 

of motion can be used in conjunction with the equations relating position, velocity 

and acceleration to update their velocities and positions. If F, a, v, s, m, are a cell's 
force, acceleration, velocity, position and mass respectively, then: - 

F=ma 

ds 
v= dt 

dv 
a= dt 

4.6.4 The discrete equations used to animate the model 

In order to approximate the continuous equations given above for a discrete time 

domain simulation, the equations are rewritten: - 

at = Ft/m 

vt+i = vt + atbt 

st+l = St + Vt+l bt 

where at and Ft are the acceleration and force at time t respectively, vt and vt+l are 
the velocities at times t and t+1, and bt is the length of a discrete time step. The 

instantaneous acceleration for a cell is calculated from the force acting upon the cell 
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and its mass. This acceleration is then used to calculate the new velocity of the cell. 
Finally the velocity vt+l is used to calculate the new position. 

In practice energy is lost in any vibrating structure due to air resistance, acoustic 

radiation, internal friction etc. This is simulated by modifying the equation above 
to give: - 

ve+i = D(vt + atbt) 

where D takes a value between zero and one and represents losses due to damping. 

The velocity of each cell is multiplied by D on each time step. This leads to an 

overall exponential decay in the amplitude of oscillations. Each cell has its own 

value of D independent of other cells. 

4.6.5 Improving the efficiency of the model 

In order to make the material appear continuous rather than made up of discrete 

masses and springs, a large number of cells are required. Instruments may contain 

tens of thousands of cells and this makes the efficiency of the calculations very 

significant. For this reason some simplifications are made to the equations to reduce 

the number of arithmetic operations per cell, per time step. 

If it is assumed that all the variables in the model are measured in arbitrary numerical 

units, then it is possible to eliminate some constants from the equations. If we assume 

that bt =1 then the equations above become: - 

at = Ft/m 

vt+l = D(vt + at) 

$t+l = st + Vt 

Also if we assume that the coefficient of elasticity a=1 then the equation for 

calculating the force between two cells becomes: - 

Fý _- 1(Sý - Sri) = Sn - Sc 
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Using this equation, the force acting upon cell c due to the spring connecting it to 

a neighbouring cell n can be calculated simply by subtracting the position s, of c 
from the position s,, of n. If a particular neighbour is absent, no force is exerted on 

c from the direction of that (non-existent) neighbour. 

As an aside, it may seem at first that by fixing the elasticity of all springs, serious 

limitations are placed upon the ability to control the material's physical character- 

istics. However, one of the objectives inherent in the design of TAO was to limit the 

number of parameters the user would have to deal with, without necessarily limiting 

the creative scope of the system. In practice, there are still many ways in which the 

characteristics of the material can be altered: by changing the masses and damping 

coefficients of each cell; by locking regions of cells; and by creating different shaped 

pieces of material, with different natural modes of oscillation. Combined with the 

ability to use all manner of different excitation models at arbitrary points on an 

instrument; to couple different pieces of material together; and to take sound output 

from any position on an instrument, there are still plenty of useful parameters to 

explore. 

The sound examples described in appendix C also show that in practice losing the 

stiffness of each spring as a controllable parameter does not significantly reduce the 

range of sounds which TAO is capable of producing. 

4.6.6 Altering the cellular update rules to cope with glued cells 

In order to glue two cells together one is nominated as a master cell and the other 

as a slave cell. The master cell acts as if it were connected to the slave cell's 

neighbours as well as its own, giving a total of sixteen spring connections3. The 

total force acting on the master cell due to all of these springs is calculated in the 

usual way, comparing its position with the positions of the neighbouring cells. Once 

the force has been calculated and modified by the application of any external forces, 

the master cell's new velocity and position are updated in the usual manner, and 

are then simply copied to the slave cell. When the cellular update rules reach the 

slave cell no calculations actually take place since all the necessary calculations are 

carried out for the master cell. With this strategy, it doesn't matter whether the 

3Assuming that neither the master or slave cell be at a boundary in which case the number of 

neighbours will be reduced. 
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master cell or slave cell is updated first. The end result will always be the same. 

4.6.7 Joining pieces of material by the installation of new springs 

The cells along the boundary of a piece of material indicate the presence of the 

boundary with the use of null neighbour pointers. However if we take two such pieces 

of material with straight edges, by redirecting the null pointers along the edge of 

each piece of material so that they point at the appropriate cells along the edge of 

the other piece of material, we can effectively join the two pieces of material together 

seemlessly. Waves will now flow across the boundary between the two components 

as if the boundary never existed. This is achieved in practice by a process similar 

to stitching two pieces of material together. Two points on the respective edges of 

the two pieces of material are chosen as reference points to be lined up with each 

other. The cells along the two edges are then joined with newly created springs, 

gradually migrating along the join until the two edges begin to diverge, at which 

point the joining stops. This process is described in detail in section D. 2.6. No 

modifications to the cellular update rules are needed since in order to install a new 

spring between two previously unconnected cells we simple redirect the appropriate 

neighbour pointers (previously null) so that the cells now point to each other. 



Chapter 5 

TAO's user interface 

5.1 Introduction 

In this chapter we move away from the underlying synthesis model and instead focus 

on how the user actually accesses it in practice. Whilst the synthesis model holds 

future potential for direct, real-time gestural control of instruments, the present (non 

real-time) implementation makes use of a text based script language. A TAO script 

contains all the information required to create and play instruments and generate 

soundfiles. 

A TAO script is contained within one file but is conceptually split into two parts, the 

orchestra and score. The orchestra part of the script contains descriptions of all the 

instruments, microphones and performance parameters which are to be used in the 

score and the score enables complex events to be scheduled throughout the duration 

of the performance. This is similar to the Csound language described in section 

3.1 but differs in that a TAO score takes the form of an algorithmic performance 
language rather than a set of pre-composed numerical performance data. 

This chapter familiarises the reader with the general form of a TAO script and briefly 

describes the features available with the aid of examples. A more detailed reference 

manual can be found in appendix B. In addition more sophisticated script examples 

are given in appendix C and show how the sound examples which accompany this 

thesis were created. 
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5.2 The object oriented nature of TAO 

TAO is implemented in the object oriented (00) language C++ and whilst imple- 

mentation details are left to appendices D and E there are certain ramifications to 

this choice of language, which directly affect the way in which the user approaches 

the task of constructing and interacting with instruments. 

For readers not familiar with the 00 programming paradigm, it encourages the 

design of well structured modular programs. An 00 program defines a set of objects 
(data and algorithms grouped together) which map well onto the chosen problem 
domain, and then allows a problem to be described in terms of interactions with those 

objects. This fits the requirements of a synthesis system quite well since we can view 
instruments, microphones and cells etc. as objects with their own internally defined 

behaviour. A certain synthesis scenario is then described in terms of a particular 

configuration of objects and some sort of score which causes time domain interaction 

with those objects. 

In 00 terms, an object consists of a set of variables representing its internal state and 

a well defined, robust interface to the outside world which allows this internal state 

to be altered or interrogated. Objects are divided into classes and each individual 

object is referred to as being an instance of a particular class. For each object class 

a set of valid messages are defined which constitute the interface to the outside 

world. In C++ terminology messages are referred to as member functions but for 

the purposes of this thesis we will continue to use the more intuitive term message. 

A message is sent to an object in C++ by appending the message with its argu- 

ments, if there are any, after the object's name separated by a period, i. e. ob- 

ject_name. rnessage_name(argl, arg2, .., argn). TAO inherits this mechanism and 

various others from C++ which means that interaction with instruments in a TAO 

script is expressed in a syntax which is very close to that of C++. In practice, 

instruments are provided with messages for locking and damping parts of the mate- 

rial and selecting individual cells for input or output. For the cell object class the 

interface includes messages for applying forces or virtual bows to any cell, and for 

microphones it includes messages for sending sound samples to an output file. 

,! 
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5.3 The general form of a TAO script 

The following example gives the reader an idea of the general form of a TAO script. 
It creates two rectangular instruments recta and rect2 and a stereo microphone m; 
locks the left hand side of recta and the right hand side of rect2; joins the right 
hand side of recta to the left hand side of rect2; applies an impulse to a point on 

recta; and then eight seconds into the performance, damps a region of recti. The 

left and right channels of sound output are taken from two points, one on either 

rectangle. 

Rectangle rectl: 400 Hz, 600 Hz, 10 secs; ... 
Rectangle rect2: 600 Hz, 400 Hz, 10 secs; ... 

recti. lockleft; rect2. lockright; 

Join recti(right, top) to rect2(left, 0.5); 

Microphone m: outfile, stereo; 

Parameter x=1/2, y=1/3; 

Score 10 secs: 
At 0 secs for 1 msecs: 

recti(x, y). applyforce(10.0); 

At 8 secs: 
rectl. setdamping(left, 0.1, bottom, top, 5%); 

m. leftout: rectl(0.1,0.9); 
m. rightout: rect2(0.9,0.1); 

Without having introduced any of the language features yet, it should be clear 
from- this example that the information contained within a TAO script is quite 

straightforward. Every attempt has been made to make the keywords used as clear 

and self-explanatory as possible. Note the use of the instrument messages lockleft, 

lockright and setdamping; the microphone messages leftout and rightout; and 

the cell message applyforce which, as described above, are appended onto the 

name of an object of the appropriate class, separated by a period. In the case of the 

line: rectI(x, y) . applyforce(10.0), the U. y) operator selects a single cell from 
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instrument recd at the specified coordinates, and this cell is then sent the message 

applyforce(10.0). 

a) 

b) 

C) 

rect 2 

rect2 

-o-a9 

Figure 5.1: A simple instrument created from a TAO script 

The instrument created by this script is shown in figure 5.1. The positions of the left 

and right output sources for the stereo microphone are shown at the points marked 

I and r and the heavier black regions of each rectangle represent the locked cells. 

Apart from the text captions in this figure, the rest of the graphics are produced 

automatically by the system from the information given in the script. 



5.4 The orchestra part of the script 121 

5.4 The orchestra part of the script 

We will now work through the various features of a TAO orchestra one by one with 

the aid of examples. 

5.4.1 Instrument declarations 

The instrument declarations given below illustrate some key language features such 

as the use of pitches, frequencies and decay times given in seconds. They also show 
how messages can be sent to an instrument as soon as it is created in order to give 
it certain characteristics from the beginning of its life in the script. 

(1) String strings: 100 Hz, 5.6 secs; 
lockends; 
setdecay(left, 1/10,0.5 secs); 

(2) Rectangle recta: 250 Hz, 760 Hz, 25 secs; 
setdamping(left, 1/5, bottom, 1/5,15%); 
lockcorners; 

(3) Ellipse ellipsel: C#8, Eb7,1 min + 20 secs; 
lock(0.3,0.5); 

Each declaration is split into a head and body separated by a colon, with the body 

terminated by an ellipsis. This kind of syntax is used throughout the script whenever 

sets of instructions need to be grouped together into conceptual blocks and is also 

used in the score control structures which are introduced in section 5.5. 

Declaration (1) creates a string called stringi whose fundamental frequency and 
decay time are 100 hertz and 5.6 seconds. The messages lockends and setdecay do 

not need to specify the instrument to which they are being sent in this context (i. e. 

within an instrument declaration) as it is obvious which instrument is being referred 

to. The messages contained within the body of this particular declaration lead to 

the cells at the ends of the string to be locked and the decay time being altered for 

a region extending from the left hand side of the string to a point one tenth of the 

way along its length. The acoustic consequences of such local damping are explored 

more fully in chapter 6. 
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Declaration (2) creates a rectangular sheet of material 250 hertz by 760 hertz 1 with 

a decay time of 25 seconds and sets the damping coefficient to 15% in the bottom 

left hand corner, i. e. a rectangular region stretching from the left hand side to a 

point one fifth of the way across, and from the bottom to a point one fifth of the 

way up, before locking all four corners. 

Declaration (3) creates an elliptical sheet of material, but this time instead of speci- 

fying the frequencies in hertz, a conventional pitch notation is used where C#8 means 

the CO above middle C and Eb7 means the Eb just below middle C. Microtonal pitches 

are allowed by adding or subtracting a fraction of a semitone from the pitch given, 

e. g. C#8+1/2, Eb7-1/3. The instrument is given a decay time of 1 minute 20 seconds 

and a single point three tenths of the way from the left hand side and halfway up is 

locked. 

Either of the pitch or frequency notations can be used for any of the frequencies 

required by instrument declarations. 

5.4.2 Microphone declarations 

The following microphone declarations show how mono and stereo microphones are 

created, and how they can either have fixed sources, where each channel takes its 

output from a single cell, or dynamically changing sources in which case the samples 

for each channel are calculated from arbitrary mathematical expressions given by 

the user in the score. 

(1) Microphone micl: narrowsound, mono, stringl(O. 1); 

(2) Microphone mic2: widesound, stereo, 
rectl(left, 1/2), rectl(right, 1/2); 

(3) Microphone mic3: sounds, mono; 

(4) Microphone mic4: sound2, stereo; 

micl takes its output from instrument strings at a point one tenth of the way 

along the string and writes its mono output samples to a file called narrowsound. tao. 

mic2 takes its left and right channels of output from halfway up the left and right 

1For an explanation of the meaning of the two frequencies see section 4.5 
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hand edges of instrument recta respectively and writes its output to the file wides- 

ound. tao. The tao files created by microphones contain raw floating point sam- 

ples which are normalised and packaged into a standard . aiff soundfile by the 

float2aiff program described in appendix A. 

Note that in examples (3) and (4) above, all that is given in each microphone dec- 

laration is the name of the microphone, the name of the output file and the number 

of channels. This indicates that the sources for each output channel will be specified 
later in the score. This feature, apart from allowing sound samples to be created 

from arbitrary expressions as described above, is also included for future compatibil- 

ity with versions of TAO which will allow microphones to move around an instrument 

under algorithmic control during a performance. 

5.4.3 Performance parameter declarations 

Performance parameters are basically floating point variables which allow the user 

to store and mathematically manipulate data anywhere within a script. Any number 

of parameters may be declared. A parameter declaration consists of the keyword 

Parameter followed by a list of parameter identifiers with optional initial values. For 

example: 

(1) Parameter x; 

(2) Parameter x=0; 

(3) Parameter bowvelocity, bowforce, a=5, b=10; 

5.4.4 Damping parts of an instrument 

It is possible to damp individual points or regions of an instrument in a TAO script. 
For example if we want to damp an individual point one third of the way along a 

string called stringi with a damping coefficient of one percent we can say: 

stringl. setdamping(1/3,1%); 

The next four examples illustrate how the instruments depicted in figure 5.2 may be 

damped as indicated by the shaded regions: 
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a) recta 
cý 

(right, top) 

i right, 1/4) 

(Ieft, bottom) 

bý circlel (rlgh(, top) 

5. "1: 110'. s user interface 

ellipsel (rlght, top) 

\ (0.2,033) 

(Ieft, bottom) 

d) 

(left) (0.25) stringl 

Figure 5.2: Damping local regions of instruments 

(1) rectl. setdamping(left, right, bottom, 1/4,17. ); 

(2) circlel. setdamping(left, 1/3, bottom, 2/3,1'/, ); 

(3) ellipsel. setdamping(0.2,0.8,0.33,0.66,1'/, ); 

(4) stringl. setdamping(left, 0.25,1'/, ) ; 

In the present implementation only rectangular regions can be specified for two- 

dimensional instruments. Each rectangular region is specified by two vertices (xj, y1) 

and (x,. , y,. ) . 
The order in which the arguments xi, yj x,., and yr are passed to the 

setdamping message is setdamping(xj, x,., yl, y,., .. ). Note that strings only 

requires a pair of x coordinates specifying the endpoints of the damped region. 

Messages like these can be sent to an instrument anywhere in a TAO script. Ob- 

serving certain conventions, however, leads to more legible scripts. For example, 

messages which deal with the static structural properties of an instrument should 

be placed in the orchestra, whilst temporary changes used as part of a performance 

should be placed within the score. For more details about the different forms of the 

(Ieft, bottom) 
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setdamping message and related messages see appendix B. 

5.4.5 Locking parts of an instrument 

A number of messages are provided for locking single points or regions of an instru- 

ment. These include lockleft, lockright, lockbottom, locktop, Lockcorners, 

lockends and lockperimeter. These are described in detail in appendix B. most 

of these messages are very straightforward in their behaviour with rectangular in- 

struments, locking whole sides of the instrument, or, as in the case of lockends, the 

left and right sides simultaneously. However, for other shapes of material only the 

extremities of the instrument are locked except in the case of lockperimeter which 

works for any shape of instrument. 

5.4.6 Stringing instrument messages together 

It is possible to string messages destined for the same instrument together in the 

following manner: 

(1) stringl. lockends. setdecay(left, 1/10,0.5 secs); 

(2) rectl. setdamping(left, 1/5, bottom, 1/5,15'/. ). lockcorners; 

(3) ellipsel. lock(0.3,0.5); 

5.4.7 Glueing and joining instruments 

To recap briefly there are two mechanisms for coupling instruments together. These 

are made available through the Glue and Join commands. Glueing forces two single 

points to move in unison as if they really were glued together. Any forces experienced 
by the first point will be experienced by the second and vice versa. Joining allows 
two sheets of material with straight edges to be sewn together by linking the cells 

along the two opposing edges with springs. 

To illustrate the Glue command, supposing we have two instruments stringi and 

ellipsel and we wish to glue the left hand side of stringi to a point halfway across 

and one third of the way up ellipses. We can achieve this with the following code: 

Glue stringl(left) to ellipsel(0.5,0.333) 
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Note that the coordinate system used in this example, and in cases where individual 

points on an instrument are accessed for input or output, is different to the system 

used for setdamping. For setdamping, x=0 and x=1 always indicate the left hand 

and right hand extremities of the instrument, respectively, i. e. the coordinates are 

measured relative to the bounding box which surrounds the instrument. Conversely, 

the coordinate system used for glueing and input/output always returns a point 

lying within the perimeter of the instrument for values in the range 0<x<1 and 

0<y<1. This coordinate system is described in section 5.4.8. 

a) instrl 

instr2 

-- centre line 

ýý 
instr3 

centre line 

instr4 

Figure 5.3: An illustration of the join facility 

Figure 5.3 shows two examples of the use of the Join facility involving rectangular 

instruments. In the first example instrl and instr2 are joined horizontally, and in 

the second instr3 and instr4 are joined vertically. These two `joins' are achieved 

with the following script code: 
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(a) Join instri (right, 1/4) to instr2(left, 3/10) or 
Join instrl(1,1/4) to instr2(0,3/10) 

(b) Join instr3(1/2, bottom) to instr4(1/6, top) or 
Join instr3(1/2, O) to instr4(1/6,1) 

In (a) the right hand side of instri is joined to the left hand side of instr2. The 

two rectangles are lined up such that the point one quarter of the way up instri 

lines up with a point three tenths of the way up instr2. 

In (b) the bottom of instrl is joined to the top of instr2 such that a point halfway 

across instr3 lines up with a point one sixth of the way across instr4. 

It is possible to join the left hand side of one instrument to the left hand side of 

another, or the bottom of one instrument to the bottom of another etc. It is also 

possible to join two opposing sides of the same instrument together, either with 

the same centre line for each side, in which case it is as if the instrument has been 

wrapped round to form a cylinder, or with different centre lines in which case the 

instrument is slightly twisted as well as being wrapped round. If we take this to its 

logical limit, we can join both pairs of opposing sides on a rectangular instrument in 

which case we end up with an instrument with the modes of vibration of a toroidal 

shaped piece of material. 

It is, however, not possible in the present implementation to join the bottom of 

one instrument to the left hand side of another, for example, or to join instruments 

with curved edges, although with careful thought and some clever algorithms such 

variations are possible in principle since all that joining does is to add in new springs 
between individual cells. 

5.4.8 Simulating physical interaction with instruments 

Before describing the structure and function of a TAO score we now move on to 

the most important feature of the script language: the ability to simulate physical 
interaction with instruments. The general notation used to access a point on an 
instrument is shown below: 

(1) instrument(x) 

(2) instrument (x, y) 



128 5. TAO's user interface 

Notation (1) is used for strings and notation (2) is used for all the other two- 

dimensional instruments. The two coordinates x and y are always normalised such 

that x=0 indicates the left hand side of the instrument and x=I indicates the 

right hand side. Similarly y=0 always indicates the bottom of the instrument and 

y=1 indicates the top. With a rectangular sheet of material the interpretation 

of these coordinates is straightforward but things are slightly more complicated for 

other shaped pieces of material. 

The coordinate system is designed such that, regardless of the shape of an instru- 

ment, values of x and y lying between 0 and 1 will always specify a point which 

lies somewhere within the perimeter of the instrument. The way in which this is 

achieved is shown in figure 5.4. The y coordinate is referred to first to see how far up 

the instrument to move. Then the x coordinate system is adjusted to fit the left and 

right edges of the instrument at that y position. One of the advantages of taking 

this approach is that we can change the shape and size of the instruments defined 

in the orchestra without affecting the validity of the score. 

y=1 

X-1) 
/G 

(1/6i/4) .... _.. _ .................. x=I 

1/4 

Y=I 
------------- - ----------------- 

(right, 0.25) 

X-0 ýShý_ý x=1 

---- ------ - ----------------- 

0.? S 
y=0 

y=u 

v=I 
X-l 

Y= 
-- ------------------------------- 

(0.7,0.5) 
x=(1 0.7 ............. x=1 

0.5 

- y0 --U--------------- y-0 
Special keywords available: Ieft=0, right=l, bottom=0, top-1, centre=0.5 

Figure 5.4: The instrument coordinate system 

Once we have selected a point on an instrument using this notation we can gain 

access to the individual variables stored within the cell at that point, in other words 
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we can apply forces to it or find out its position or velocity etc. Attributes of a 

cell which are of direct interest to the user include position, velocity, force and 

mass and they are accessed as in the following examples which assume the existence 

of four instruments circlel, recti, ellipsel and trianglel. 

circlel(x, y). position; 

recti(x, y). velocity; 

ellipsel(x, y). force; 

trianglel(x, y). mass; 

One of the most significant differences between the approach to sound synthesis taken 

by TAO and more traditional unit generator based languages such as Csound is that 

the variables representing the internal state of a cell can be used either for input or 

output. In contrast data always flows in one direction in a network of unit generators. 

In some cases cell variables are used both for input and output simultaneously, such 

as when a cell is bowed. The bowing model, described in appendix F needs to apply 

forces to the cell but at the same time needs to get feedback about the cell's velocity 

etc. in order to calculate the force to apply. 

Some examples are given below of the kind of expressions, involving cell attributes, 

which might be found in a TAO script: 

stringl(1/3). position=10.0; 

If stringi (0.5). velocity > 10.0: do something ... 

stringl(1/10). force += 5.0; add 5 to the cell's force 

stringl(left). mass=50.0; sets a single cell's mass to 50 

Two messages applpforce(f) and bow(fbo+,,, vbow) are provided for use with cells. 
For example, assuming the existence of a string called stringi we can apply a force 

f to a point one third of the way along the string with the following script code: 

stringl(1/3). applyforce(f); 
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Of course this single line on its own does not contain enough information to say 

when and for how long the force should be applied. This is where the score language 

comes in. For example, to specify that the force should be applied at zero seconds 

for one tenth of a second (i. e. at the start of the performance) we can say: 

Score 10 secs: 
At 0 secs for 1/10 secs: 

stringl(1/3). applyforce(f); 

The At.. for control structure' has a head and a body separated by a colon, with 

the body terminated by an ellipsis. The Score control structure is mandatory and 

simply specifies how long the performance is to last. 

5.5 The score 

So far we have seen how the user creates the objects which serve as the material for 

the synthesis and now we turn to how the user actually describes a performance. 

TAO's score language enables a performance to be described in terms of hierarchi- 

cally nested events. The term event is generic in nature and is used to refer to 

both very simple events such as initialising a parameter or sending some text to the 

output window, and to complete sound events potentially consisting of hundreds of 

nested sub-events. 

Events may occur at an instant in time, repeatedly at regular intervals or over some 

interval of time. It is also possible for several events to overlap in time. In order 

to cope with all this variety a set of control structures is provided, including the 

At.. f or structure introduced in the previous section. They may be nested within 

one another and in combination make it possible to describe all events from the 

simplest to the most complex. 

2A term borrowed from conventional programming languages such as C and C++ where control 

structures usually include for and while loops and conditional statements such as if and if .. else 



5.5 The score 

5.5.1 The score control structures 

The control structures are listed below: 

(1) At start time for duration: body ... 

(2) From start time to end time: body ... 

(3) Before end time: body ... 

(4) After start time: body ... 

(5) At time: body ... 

(6) Every interval: body ... 

(7) ControlRate interval in samples: body ... 

(8) If condition: body ... 

(9) If condition: body 1 ... 
Else: body 2 ... 

(10) If cond 1: body 1 ... 
ElseIf cond 2: body 2 ... 
Eiself cond 3: body 3 ... 

Else: body n 
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Each control structure has a head and body. The body contains instructions which 

specify what to do and the head specifies when to do it. The syntax is similar to 

that used in the instrument declarations already introduced in that the head and 
body are separated by a colon and the body is terminated by an ellipsis. On each 

time step the whole score is executed from top to bottom and the control structures 
have the job of ensuring that certain sets of instructions are executed only at the 

times specified. 

At. . for, From.. to, Before and After allow the instructions which form the body 

to be executed only during a specified time interval. In the case of At. for and 
From.. to both the start and end time are explicitly given, but Before and After 

only specify one of these times. The unspecified time is implicitly calculated accord- 
ing to the position of the Before or After structure within the score. 
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At allows the instructions in the body to be executed just once at the specified time. 

Every allows a set of instructions to be executed periodically and is most often used 
to schedule text output during a performance. This is useful for debugging or simply 

producing a profile of a performance, detailing how the various parameters change 

and when the various events occur. 

ControlRate is similar to Every but allows the interval to be specified in time steps 

rather than seconds. This allows signals to be updated less frequently than at full 

audio rate and is reminiscent of the k-rate signals provided by Csound (see section 
3.1). 

In the case of the If and If .. Else control structures, the body is executed at any 
time so long as the condition contained in the head evaluates to true. 

5.5.2 The special variables start and end 

It often occurs that we need to execute some instructions just once at the very 
beginning or end of a time interval. This is analogous to Csound's i-rate evaluation 

whereby certain parameters are only evaluated once at the beginning of a new note 
in the score. In order to achieve this in a TAO score we can use two special variables 

start and end whose values change throughout the score depending on their context. 
For example we can say: 

Score 10 secs: 
At 0 secs for 5 secs: 

At start: at 0 seconds do X ... 
At end: at 5 seconds do Y ... 
rest of body 

which makes the hierarchical nature of the events explicit unlike the following equiv- 

alent example which places all three events at the same level of scope: 

Score 10 secs: 
At 0 secs for 5 secs: body 

... 
At 0 secs: at 0 seconds do X ... 
At 5 secs: at 5 seconds do Y ... 
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Another (implicit) use of start and end occurs when the two special time varying 
functions linear and expon are accessed within a score. Both functions take two 

arguments, an initial value and a final value, and return a value which gradually 

changes from the initial value to the final value over a time interval which depends 

on where they are accessed within the score. In order to work out the time interval 

over which they are supposed to change, both functions access the start and end 

variables. In the following example, two parameters x and y are declared. x is made 

to change exponentially from 100 to 1 over the first four seconds of the score whilst y 
is made to change exponentially from 200 to 5 over the whole duration of the score: 

Parameter x, y; 

Score 10 secs: 
y=expon(200.0,5.0); 
Before 4 secs: 

x=expon(100,1); ... 
Every 1 secs: 

Display "At time", Time; 
Display " x=", x; 
Display " y=", y, newline; 

This produces the output shown below. The two invocations of the expon function 

in the example above are said to be at different levels of scope within the score 

since the first is at the top level of the score, whilst the second is nested within the 

Before control structure. At the top level of the score start always takes the value 

0 seconds, and end always takes the value specified by the Score control structure. 

At time 0.0000 x=100.0000 y=200.0000 
At time 1.0000 x=31.6236 y=138.3006 
At time 2.0000 x=10.0000 y=95.6352 
At time 3.0000 x=3.1622 y=66.1320 
At time 4.0000 x=1.0000 y=45.7305 
At time 5.0000 x=1.0000 y=31.6228 
At time 6.0000 x=1.0000 y=21.8672 
At time 7.0000 x=1.0000 y=15.1213 
At time 8.0000 x=1.0000 y=10.4564 
At time 9.0000 x=1.0000 y=7.2306 
At time 10.0000 x=1.0000 y=5.0000 
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We can place both expon function calls inside the Every control structure, thus 

evaluating x and y only once per second, without affecting the time interval over 

which they change: 

Parameter x, y; 

Score 10 secs: 
Every 1 secs: 

y=expon(200.0,5.0); 
Before 4 secs: 

x=expon(100,1); ... 
Display "At time", Time; 
Display " x=", x; 
Display " y=", y, newline; 

For more details on the scope facility and start and end see appendix B. 

5.5.3 Mathematical functions provided 

All the standard mathematical functions such as sin, cos, tan, sqrt etc. are avail- 

able for use within a script since they are provided by the underlying implementation 

language C++. There are also two functions random and randomi which return a 

random number between two specified limits inclusive. random takes two real num- 

bers as arguments and returns a real number and randomi is an integer version. The 

two special time varying functions expon and linear have already been introduced. 

5.5.4 Generating sound output 

Once we have created a microphone we can send sound samples to it throughout a 

performance. The microphone collects these samples together and writes them to a 

file in chunks. If we have declared a mono microphone ml, a stereo microphone m2, 

and a two-dimensional instrument instri, we can generate sound samples in the 

following way: 

(1) mi. output: instrl(x, y); 

(2) m2. leftout: - instri(x, y); 

(3) m2. rightout: instrl(x, y); 
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These microphone output messages are subject to the same scope rules as any other 
instructions, i. e. if they are placed at the top level of the score, then samples are 

generated on every time step throughout the performance, but if they are placed 

within the body of a control structure, they can be made to generate samples only at 

certain times or when certain conditions arise. All three messages can take arbitrary 

mathematical expressions as arguments. For example: 

Parameter theta, amplitude, x, y, xi, x2, yi, y2, position 

ml. output: sin(theta)*amplitude*rectl(x, y); 
m2. leftout: rectl(xl, yl) + string(position); 
m2. rightout: rectl(x2, y2) + string(1-position); 

5.5.5 Generating iterated events 

Many sound events require excitations to be applied to an instrument on an iterative 

basis. For example, suppose we wish to describe a sound which simulates the effect of 

an object repeatedly bouncing on an instrument and losing energy on each bounce. 

How would we describe this scenario? The following example demonstrates one 

approach to this problem, showing how iterative events may be generated. Note 

that there is no orchestra, and the score merely produces text output rather than 

actually playing any instruments. 

Parameter which-string, string-position; 
Parameter now=0 secs, interval, force; 

Score 10 secs: 
ControlRate 100: 

interval=expon(2 secs, 0.3 secs); 

At now for interval -1 cosecs: 
At start: 

which-string=randomi(1,4); 
force=random(1,10); 
string position=random(left, right); 
Display newline, "At", Time; 
Display " strike string", which-string; 
Display " at (", string-position; 
Display ") with force", force, newline; 
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At end: 
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now += interval; 
Display "Next strike to occur at", now, newline; 

At the very beginning of the score the only parameter which is initialised is now which 

represents the start time of each strike. The parameters which-string, force and 

string position are randomly determined once at the beginning of every strike 

within the given limits. The parameter interval is used to determine the inter- 

val between strikes and is made to change exponentially over the duration of the 

performance from a value of 2 seconds to a value of 0.3 seconds. 

At the beginning of every (simulated) strike a number of parameter values are dis- 

played, including: the time; the string number; the position on the string; and the 

force. At the end of every strike, the start time for the next strike is calculated using 

the += operator which adds the result of the expression situated to its right to the 

parameter specified, in this case now. 

This example produces the following output: 

At 0.0000 strike string 3.0000 at (0.8916) with force 1.3463 
Next strike to occur at 1.5040 

At 1.5040 strike string 2.0000 at (0.3571) with force 7.7562 
Next strike to occur at 2.7022 

At 2.7022 strike string 4.0000 at (0.1037) with force 5.3566 
Next strike to occur at 3.6948 

At 3.6948 strike string 2.0000 at (0.3987) with force 3.0201 
Next strike to occur at 4.5403 

At 4.5403 strike string 3.0000 at (0.8630) with force 2.7436 
Next strike to occur at 5.2756 

At 6.2756 strike string 3.0000 at (0.5316) with force 1.7555 
Next strike to occur at 6.9256 

At 5.9266 strike string 4.0000 at (0.5754) with force 1.8760 
Next strike to occur at 6.5078 

At 6.5078 strike string 2.0000 at (0.2082) with force 7.2068 
Next strike to occur at 7.0345 

At 7.0345 strike string 3.0000 at (0.3587) with force 5.0737 
Next strike to occur at 7.6153 

At 7.5163 strike string 4.0000 at (0.5864) with force 8.1805 
Next strike to occur at 7.9574 

At 7.9574 strike string 4.0000 at (0.2555) with force 8.1723 
Text strike to occur at 8.3665 

At 8.3665 strike string 1.0000 at (0.0074) with force 3.9198 
Text strike to occur at 8.7471 

At 8.7471 strike string 3.0000 at (0.3450) with force 5.2898 
Text strike to occur at 9.1029 
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At 9.1029 strike string 4.0000 at (0.3496) with force 2.2259 
Next strike to occur at 9.4368 

At 9.4368 strike string 4.0000 at (0.2843) with force 3.0886 
Text strike to occur at 9.7514 

At 9.7514 strike string 2.0000 at (0.9956) with force 8.5943 
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It is important to understand that the structure of a, TAO score is completely in- 

dependent of the orchestra and a TAO script need not deal with instruments at 

all. This is sometimes useful for developing complex score algorithms without in- 

curring the computational overhead associated with the synthesis engine. Another 

significant point is that events do not have to be ordered chronologically from top 

to bottom in the score but may be placed in any order and may overlap in time. 

The ordering of events is usually only significant when one event depends on some 

parameter values which are calculated within another event. In this situation, the 

event which performs the parameter calculations must be executed before the other 

event and should therefore be placed nearer the beginning of the score, text-wise. 

5.5.6 The use of C++ code fragments within a script 

A TAO script is actually a fragment of C++ code in disguise and is translated 

into C++ before being compiled and linked with the library of TAO objects and 
functions. It is therefore perfectly acceptable to use standard C++ code within a 

script. This includes most usefully for and while loops, declarations of variables 

with types such as int and char, and arrays. 

Since TAO's script language contains features such as the instrument declarations 

and score control structures which involve the grouping together of sets of instruc- 

tions, the standard curly bracket syntax of C++ could have been adopted, but a 

conscious decision was made to avoid this, in order to emphasise that the semantics 

of a TAO script are not those of a conventional algorithmic language. This also has 

the advantage of making any C++ code included within a script stand out more 

clearly. 

This feature need not concern the inexperienced user but gives the advanced user 
the opportunity to express more sophisticated concepts in a script. Also, since the 

system is under constant development this facility is useful for developing and testing 

new TAO features before inclusion in the system. 
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An example of the use of C++ code within a TAO script is given below: 

Score 0.1 secs: 
ControlRate 100: 

for (int i=0; i<10; i++) C++ code fragment 
If i>5: 

Display i, "is greater than 5", newline; 

This repeatedly displays the following lines of output on every 100th time step (a 

valid but rather trivial script): 

6 is greater than 5 
7 is greater than 5 
8 is greater than 5 
9 is greater than 5 

A useful side effect of the fact that C++ underlies TAO's script language is that 

lines can be commented out in a script by placing a // at the beginning of a line or 

by enclosing a group of lines between a /* and */. 

5.6 Summary of script features 

We will end with a summary of script features. For a more detailed reference manual 

see appendix B. 

Instrument creators 

The keywords String, Rectangle, Circle and Triangle are provided for the cre- 

ation of instruments. String and Circle require one frequency to be specified deter- 

mining the length of the string or the diameter of the circle respectively. Rectangle 

and Triangle require two frequencies to be specified, one for the x direction and 

one for the y direction. 

Pitch nomenclature 

The frequency of an instrument can be specified in Hertz, conventional notation 

(including micro-tonal adjustments) or by using a numerical notation of the form 
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pitch(octave. semitone). The conventional notation consists of a note name (e. g. C, 

C#, Bb, G) followed by an octave number (middle C is in octave 8) and an optional 

microtonal adjustment consisting of a+ or - and a fraction representing the fraction 

of a semitone that the pitch should be sharpened or flattened by. For example, C#7, 

Eb6+1/2, pitch(8.02) and 500 Hz are all valid ways to specify the fundamental 

frequency of an instrument. 

Instrument modifiers 

The keyword lock allows a single point on an instrument to be locked. It appears 

in the form instrument. lock(x, y) or just lock(x, y) in the body of an instrument 

declaration. The keywords lockleft, lockright, locktop and lockbottom allow 

whole sides of an instrument to be locked. lockcorners and lockperimeter are 

self-explanatory. 

The setdamping and setdecay keywords allow the damping factor to be set at a 

single cell or over a region of cells. Damping can be set in terms of a percentage, 

where zero per cent means no damping at all and one hundred per cent means 

that the cell/cells are fixed rigidly in one position, or in terms of a decay time. 

The keywords resetdamping and resetdecay allow the damping to be reset to the 

default value defined when the instrument was created. 

Accessing points on an instrument 

Points may be accessed on an instrument using notation like instr(x, y) for two- 

dimensional instruments or instr(x) for strings. Coordinates are normalised to 

lie between zero and one and regardless of the shape of the instrument and within 

these limits the point specified will always lie inside the perimeter of the instrument. 

The keywords left, right, top, bottom and centre are provided and evaluate to 

numerical constants, i. e. 0,1 or 0.5. 

Physical interaction with instruments 

The physical attributes of a cell can be accessed using the keywords force, velocity, 

position, mass and damping. In order to access these attributes a cell must first 

be selected using the notation introduced above. 
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Microphone keywords 

The keyword Microphone declares a virtual microphone. It is followed by the name 

of the microphone, a colon and then the name of the file to which sound output 

is to be written. The output sources for a microphone can be specified within 

the microphone declaration by specifying one or two cells (only mono and stereo 

microphones are currently supported) after the soundfile name. Alternatively one 

of the keywords mono or stereo can follow the soundfile name in which case the 

appropriate number of channels worth of output samples are generated via arbitrary 

mathematical expressions in the score. 

Sound output 

The output, leftout and rightout keywords allow sound samples for each micro- 

phone channel to be generated within the score via arbitrary mathematical expres- 

sions usually involving at least one point on an instrument. 

Time nomenclature 

The keywords secs, msecs and wins are provided. These are placed after a numerical 

value and automatically convert the value to a numerical constant, measured in 

seconds, according to the units chosen. The keyword Time can be used anywhere 

within the score to refer to the time elapsed since the beginning of a performance 
(real-time when the sound is played back but non-real-time during synthesis). 

Score control structures 

The score is a hierarchical structure comprising nested control structures with the 

Score control structure at the top of the hierarchy. Control structures include At, 

Before, After, From-to, At.. for, Every and ControlRate. The If, If.. Else 

and If.. ElseIf.. Else control structures allow for conditional execution of sets of 

instructions. 

Mathematical functions 

In addition to standard mathematical functions such as sin, cos, sqrt, random etc., 

two special time varying functions linear and expon are provided. When placed in 



5.6 Summary of script features 141 

the body of a control structure, these functions return a value which automatically 

changes linearly or exponentially over the time interval specified in the head of the 

control structure. When placed inside an Every or ControlRate structure they are 

evaluated less frequently, but the time interval over which they change is determined 

by the control structure containing the Every or ControlRate structure. 

Performance parameters 

The keyword Parameter allows the user to declare any number of performance pa- 

rameters with optional initial values. 

Screen output 

The Display keyword enables text output during a performance and is most useful 
for debugging a synthesis since the values of various performance parameters can be 

displayed as the performance evolves. It is also useful when developing a complex 

score as it allows the macro-structure to be fine tuned before the score is actually 

used in conjunction with some TAO instruments. 
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Chapter 6 

Practical examples of TAO's 

capabilities 

6.1 Introduction 

Having learnt about the abstract structure of the synthesis model and the script 

based interface to the system we are now in position to forget such internal de- 

tails and instead concentrate on the behaviour of TAO instruments and the various 

strategies which may be employed in designing new instruments. This chapter gives 

some instrument examples, highlighting particular structural details which have a 

significant effect on the acoustic properties of the instruments. It also discusses how 

these characteristics may be controlled with the careful use of the damping facility, 

and other factors such as the placement of microphones. We begin by looking at 

some of the appealing characteristics of the synthesis model. 

6.2 Transient behaviour of a circular sheet 

It is well understood that the transients inherent in instrumental sounds are ex- 

tremely important from a perceptual point of view. If the transient portions of 

various recorded instrumental sounds are removed, leaving relatively steady state 

portions of sound, it can be difficult to distinguish between different instruments. 

Even though a transient may only last for a fraction of a second, the information 

it creates is sufficient for us to judge in a very direct way the kind of mechanism 
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Figure 6.1: Attack transients in a circular sheet 

Figure 6.2: Attack transients in a different circular sheet 
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responsible for the sound (see section 1.6.2). 

Figures 6.1 and 6.2 show how two slightly differently configured circular sheets 

progress from initial transient states caused by a single impact, through various 

intermediate vibrational patterns, to more steady patterns of vibration. The shaded 

regions in both figures represent regions of local damping. In both cases the instru- 

ments find a natural path from their initial excited state to a smoother, lower energy 

vibrational pattern which is compatible with the region of damping. We can lock 

and damp any part of an instrument, or even change the conditions as the sound 

unfolds and yet, because of the inherently holistic nature of the cellular model, and 

the physical nature of the underlying cellular update rules, the resulting sounds will 

always exhibit a certain `solidity' or coherence. 

6.3 An instrument comprising joined rectangular sheets 
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Figure 6.3: An instrument consisting of rectangular sheets joined together 

Figure 6.3 shows an instrument consisting of several rectangular sheets joined to- 

gether, and its typical models of vibration. Instruments such as this produce inhar- 

monic sounds in general, but the precise nature of their spectral structure can be 

controlled by changing the sizes and characteristics of the various components. If the 
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components are given closely related frequencies then the instrument will be prone 
to beating effects, as in figure 6.3, where different components alternate between 

low and high amplitudes of vibration. If all of the rectangular components are given 
the same decay time, then none of them will `stand out' in the resulting sound. If, 

on the other hand, one component is made significantly larger or smaller than the 

others, or is given a significantly longer or shorter decay time, then that component 

will begin to make its mark on the identity of the sounds produced, more than any 

other. 

In practice, since instruments like the one shown in figure 6.3 are whole entities, 
there are no clear dividing lines between what is contributed to a sound by any 

one component and what is contributed by another. Having said that, it is some- 
times useful to think in terms of primary and secondary components when designing 

TAO instruments. In a traditional musical context we might say that the strings 

of classical guitar are the primary components whilst the body and air cavity are 

secondary components, since the strings carry the primary musical information. In 

a spectro-morphological context, there is no need for the primary components to 
have harmonic spectra, but it is still useful to consider which components will give 

an instrument its most notable features, and which will merely add subtle details to 

the sounds produced. 

6.4 An instrument with pitched circular components 

The instrument shown in figure 6.4 consists of six circular components tuned to 

specific tonal pitches. The centres of each circle are glued to the corresponding 

points 1,2,3,4,5 and 6. The six short resonators act as waveguides, transmitting 

some energy to the long resonator at the top. The left and right channels of a stereo 

microphone are then placed at the points marked 1 and r. 

Once again, this instrument is a whole entity, i. e. an excitation applied to any 

part of the instrument has a very subtle, knock-on effect on the other parts of the 

instrument. The one-dimensional resonators behave here as abstract one dimensional 

waveguides capable of physically transmitting energy back and forth between other 

components. Although they are referred to as `strings' in the script, in practice 

they do not have to behave in a string-like manner. In certain situations and with 
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Figure 6.4: Instrument with six tuned circular components and resonators 

appropriate excitation models a `string' can be made to produce sounds perceptually 

more akin to acoustic tubes. 

In this example the circular components are very definitely the primary components, 

and even though the other components contribute to the overall timbral quality of the 

instrument, it is these primary components which give the sound its most recognis- 

able features, the six notes with inharmonic spectra. The one-dimensional resonator 

at the top of the instrument serves to couple together all the other components and 

by taking stereo sound output from the points marked 1 and r, the resulting sounds 

possess convincing spatial cues with the sounds of each circular component appear- 

ing to originate from a different spatial location, especially when listened to over 

head phones. 

Instruments similar to this one form the basis for several of the sound examples listed 

in section C. 10. The decay times of the various components are altered from example 

to example, achieving a wide range of sounds from bright metallic instruments, 

through more highly damped almost cow-bell type sounds to almost wooden sounds. 

The use of circular components gives the instrument more clearly defined pitches 
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than would be produced with say rectangular components. 

6.5 Detailed examples of string behaviour 

In this section we examine more closely how the acoustic behaviour of strings may be 

controlled. Although a one-dimensional TAO instrument is referred to as a 'string', 

when it is first created all the cells within the instrument are free to move and 

damping is uniform across the whole instrument. In this state the instrument is not 

really like a string at all. It has no tension and if left un-excited will simply hang 

in space and maintain its shape. However by locking the ends of the string and by 

damping various regions of cells we can begin to make the instrument behave in a 

suitably string-like manner. 

6.5.1 The behaviour of an undamped string 

aý excitation 

output 

b) 

output 

C) 

output 

Figure 6.5: Behaviour of an undamped string with locked ends 

Figure 6.5 shows a single string with locked ends and with a uniform damping 

coefficient of 0%. In (a) a constant force is applied to the string for an interval of 

half a millisecond. In (b) and (c) the state of the string is shown after fifty cycles 

and one hundred cycles of vibration, respectively. Figure 6.6 shows the spectral 

evolution of the signal taken from the position marked output. The spectrum is 

harmonic and does not change throughout the duration of the sound since there is 

nothing to dissipate energy from the system. 

This scenario was created with the following script: 
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Figure 6.6: Spectral evolution of undamped string 

String s: 
220 Hz, 0 secs; 
lockends; 

setdamping(left, right, 0'/, ); 

Microphone mica: undamped-string, mono; 

Score 10 secs: 
At start for 0.5 msecs: 

s(0.2). applyforce(10.0); 

micl. output: s(0.95); 

6.5.2 The effects of damping the ends of the string 
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In figure 6.7 the same string now has some damping applied at one end. In (a) the 

string is excited as in the previous example but now in (b) after ten cycles the higher 

frequency ripples have been smoothed out, and in (c) and (d), once again after fifty 

cycles and one hundred cycles, this trend continues. The damping at the end of the 

string affects the evolution of the spectrum as in figure 6.8. In time domain terms, 

every time a sharply defined pulse travels through a damped region it becomes a 

little more smoothed and spread out. Eventually the pulse becomes so spread out 

that its energy is contained within only the lowest partials. 

This example was realised with the addition of one line to the orchestra, which has 
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Figure 6.7: Damping one end of the string 

Figure 6.8: Spectral evolution of string with damping at one end 

the effect of setting the damping coefficient to 2% over a region extending from the 

left hand side of the string to a point one twentieth of the way along its length: 

s. setdamping(left, 1/20,2'/. ); 

Damping one end or both ends of a string immediately leads to sounds which have 

much more realistic string-like qualities, although a single string still sounds rela- 

tively synthetic on its own. The ability to control a string's characteristics in this 

way is an integral part of accurately simulating bowed string sounds (see section 

6.7.1) since the smoothing effect of the damped regions helps to dissipate some of 

the energy imparted to the string by the bow. Too little damping can lead to chaotic 
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behaviour in the string whereas too much can lead to sounds which are too periodic 

and therefore uninteresting to the ear. Achieving just the right balance is essential 

to the fluidity of the resulting sounds. 

By varying the size of the damped region and the coefficient of damping we can 

obtain a wide variety of characteristics. For example, if we wish to obtain a string 

sound where the highest partials die away very rapidly but the low to mid partials 

ring on for some time, this is achieved by damping a small region at the end of the 

string but with a high coefficient. Conversely in order to obtain a sound in which the 

mid to high partials are affected but die away at a more gentle pace, we can damp 

a larger region at the end of the string but with a lower coefficient. If we take this 

process to its logical limit, damping the whole string, then all partials are equally 

affected and only the overall amplitude decays. 

6.5.3 Obtaining harmonics by damping other points on the string 

It is possible to damp other points on the string in order to obtain harmonics. Figure 

6.9 shows the same string with the end-damping removed and with the midpoint 

damped instead. 
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Figure 6.9: Damping the string at its midpoint 

The damping forces a node at that point only allowing the second harmonic and 
its multiples to continue vibrating. The spectrogram in figure 6.10 illustrates this 

clearly. Note that without damping at the end of the string, the modes of vibration 

which are unaffected by the newly created node will continue to vibrate ad infinitum. 
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Figure 6.10: Spectral evolution of string damped at its midpoint 

If we want a more realistic string-like response we can use a combination of the end- 

damping to give the string the desired characteristics and then damp other points 

on the string during a performance, as might occur with a real stringed instrument. 

The following line of code was added to the script to bring out the second harmonic: 

s. setdamping(1/2,0.5'/, ); 

In figures 6.11 and 6.12 we see the third harmonic and its multiples appearing by 

damping the string one third of the way along its length. 
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Figure 6.11: Damping the string one third of the way along its length 
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Figure 6.12: Spectral evolution of string damped 1/3 of the way along its length 

This example was realised by adding the following line to the script: 

s. setdamping(1/3,0.5%); 

6.6 Examples of the behaviour of a rectangular sheet 

A rectangular sheet has an inharmonic spectrum. Figure 6.13 shows such a sheet 

with no locked or damped regions. After a simple impulse excitation has been applied 

(a), the resulting wavefronts lead after many reflections to patterns of vibrations such 

as those in (b). As with the undamped string, the instrument will continue vibrating 

ad infinitum unless some part of it is damped. Figure 6.14 gives a spectrogram of the 

output obtained from the marked point at the top right hand side of the instrument. 

a) b) 

Figure 6.13: An undamped rectangular sheet 
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Figure 6.14: Spectrogram of undamped rectangular instrument 

This scenario was created with the following script: 

Rectangle rect: 
470 Hz, 600 Hz, 0 secs; 
lock corners; 

rect. setdamping(left, right, bottom, top, 0'/, ); 

Microphone m: undamped_rect, mono; 

Score 10 secs: 
At start for 0.1 msecs: 

rect(0.1,0.1). applyforce(10.0); 

m. output: rect(O. 95,0.95); 

6.6.1 The effects of damping the rectangular sheet 

Damping local regions elsewhere on the rectangle leads to the creation of nodes, 

which cause some partials to die away whilst others are left to continue. The modes 

of vibration are more complex than a string's but the same principles apply. Figure 

6.15 contains three pairs of images showing the effects of various damped regions on 

the modes of vibration of the rectangular sheet. The damped regions are shown in 

light grey and in each case the final pattern of vibration leaves the damped region 
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almost standing still. The amplitude of the waves is exaggerated somewhat for 

clarity. The elapsed time interval between the first and second images of each pair is 

not important since the process can be made to occur over a few tenths of a second 

or several minutes, depending on the damping coefficient used. 

b) 

C) 

Figure 6.15: The effects of damping on a rectangular sheet 

6.7 Examples of the use of other excitations 

So far we have concentrated on the structural and vibrational characteristics of 

many different TAO instruments, but until now the only excitation used in the 

examples has been a very simple impulse consisting of a fixed force applied over a 

finite duration. This section explores some more interesting excitation models. 

6.7.1 A bowed string 

TAO provides a mathematical model for simulating the interaction of a virtual bow 

with an instrument. The model is described in detail in appendix F but we concen- 
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Figure 6.16: Helmholtz motion in a TAO bowed string 

trate here on some examples of its application. The following script creates a single 

string, adjusts the damping at either end to give it roughly similar characteristics 

to that we would expect from a stringed instrument. It then bows the string with a 

virtual bow whose velocity and downward force vary throughout the performance: 

String s: C8,5 secs; 

s. lockends; 
a. aetdamping(left, 1/20,0.7X); 

s. setdamping(19/20, right, 0.7%); 

Microphone m: bovedstring, stereo; 

Parameter bovforce, bovvelocity; 
Parameter vibratodepth; 

Score 9 secs: 
From 0 secs to 2 secs: vibratodepth-linear(0,1/100); ... 
After 2 secs: vibratodepth linear(1/100,0); ... 

a. vibrato(b. 5 Hz, vibratodepth); 

At 0 secs for 0.2 secs: bovlorce-expon(2.0,1.0); . 
At 0 secs for 0.1 secs: bovvelocitymexpon(0.01,1.0); ... 
From 0.1 secs to 4 secs: bovvelocity-linear(1.0,4.0); ... 
From 4 secs to 8 secs: bovvelocity linear(4.0,0.5); ... 

At 0 secs for 8 secs: sl(0.3). bov(bovlorce, bovvelocity); ... 

m. leftout: sl(0.05); 
m. rightout: 91(0.95); 

The bow's velocity starts off almost at 0 and rises to a value of 1 after one tenth 

of a second. Then it gradually increases up to a value of 4, after which it decreases 

again to a value of 0.5. Meanwhile the downward force exerted by the bow starts off 



6.7 Examples of the use of other excitations 157 

at a value of 2 and decreases to 1 over the first two tenths of a second, after which it 

remains constant. With this score, the string settles down into a steady Helmholtz 

motion (see appendix F) after a few tenths of a second and this motion is shown in 

figure 6.16. 

The concept of a phase space portrait was introduced in section 2.6 and, since the 

behaviour of the string continually changes throughout the duration of the perfor- 

mance, it is interesting to see what the transients at the start and end of the sound 
look like. Figure 6.17 shows two phase space portraits of the string's behaviour as 

produced by the above score. 

In (a) the first 0.2 seconds of the sound produced by the above script are depicted. 

Working along the top row of images from left to right and then along the next row 
down, we see the string: being dragged away from its rest position at the centre of 

the cube; beginning to make small slips as the frictional force required to maintain 

the dragging action becomes too great; falling into a more established pattern of 

sticking and slipping; and finally settling down into quite a clearly defined pattern 

of vibration. 

In (b) the images depict the behaviour of the string from 7.8 seconds to 8.2 seconds, 

i. e. just before and after the bowing ceases. At the beginning of this time interval 

the string is vibrating with a stable pattern of behaviour as illustrated in figure 

6.16. As the bowing suddenly ceases at eight seconds, the images show the attractor 

beginning to collapse leading to the cyclic pattern gradually shrinking down to the 

original point attractor characterising the natural decay of the string to its rest 

position. 

These images elegantly convey the idea that TAO instruments are real instruments, 

i. e. physical entities with their own time domain behaviour which we interact with 

via a (simulated) physical dialogue. Another way to convey this is by imagining 

an instrument as possessing a certain character which will always be perceivable in 

the sounds it produces, but which we can stretch in different directions by experi- 

mentation with different parameters in much the same manner as an instrumentalist 

may produce different sounds from the same instrument via the use of extended 
techniques. 
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Figure 6.17: Phase space portrait of a bowed string 



6.7 Examples of the use of other excitations 

The sound produced by a similar script is given in section C. 8. 

6.7.2 A more complex bowed instrument 
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Figure 6.18: A four-stringed instrument with a rectangular resonator 
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Figure 6.18 shows an instrument with four strings which are glued to a rectangular 

resonator. The strings are tuned in fifths, hence their respective lengths. Remem- 

ber that since the cellular material has a constant wave propagation velocity, the 

frequency of a string is altered by changing its length and not its tension. The com- 

ponent stringi is bowed at the point marked. Sound output is taken directly from 

the movement of the points marked 1 and r. 

An instrument of this family is used for the sound example described in section C. 9. 

The most important feature of this instrument, as with any other TAO instruments 

comprising several coupled components is that it behaves as a whole entity, i. e. the 

strings feed energy into the resonator which in turn feeds energy back to the strings. 

It is often assumed that the body of a stringed instrument does not significantly affect 

the stable Helmholtz motion of a bowed string and that it is therefore acceptable to 

model it as a filter which merely colours the sound produced by the string, after the 

motion has been physically simulated. 

This thesis refutes that claim and instead acknowledges that even the slightest 

changes to a string's motion, due to energy being fed back into it from a resonator, 

may affect the precise moment at which the slipping and sticking occurs with the 

bow. Taken over a. longer time frame these seemingly tiny physical effects can radi- 

cally alter the timbral qualities of the resulting sounds. 
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Figure 6.19: Phase space portrait of a bowed string connected to a resonator 

In order to demonstrate this we can put the instrument of figure 6.18 to one side 

for a moment and construct a similar one consisting of a single string, identical to 

the one used in section 6.7.1 but glued to the same rectangular resonator. Only one 

end of the string is locked now whilst the other is glued to the resonator. Figure 

6.19 shows that the shape of the instrument's attractor as it is bowed (once again 

depicting the first 0.2 seconds), and hence the character of vibrations in the string, 

are different from figure 6.17(a) even though the various score parameters are left 

exactly as the were for the single string example. 

The addition of a resonator to a stringed instrument adds interest and depth to the 

sounds produced especially when microphone output is taken from the resonator 

instead of from the strings. The organic nature of the sounds produced can be seen 

from figure 6.20 which shows a portion of the output waveform, taken from the 

resonator rather than the strings, produced by the sound example given in section 

C. 9. In the top left image we see the top two strings being bowed together and then 

the middle two. The rest of the images zoom in on the sound at ever smaller scales, 

and confirm that at every level of structure the sound does indeed evolve organically, 

even from one cycle of the waveform to the next. The effect of this in perceptual 
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Figure 6.20: Organic evolution of a bowed sound at all levels of structure 

terms is to give a strong sense of movement and continual flux in the sound, and 

also to give it a stronger overall identity. 

More generally, whenever we couple several components together, we end up with 

an instrument which is greater than the sum of its parts through the phenomemon 

of emergent behaviour. The complexity inherent in the vibrational modes of such 

instruments has a direct effect on the strength of character of the sounds produced. 

A direct aural comparison between the bowed string sound examples described in 

sections C. 8 and C. 9, or between the other sound examples should convince the 

reader of this point. 

6.7.3 Restricting the vibration of an instrument with an obstacle 

Although not strictly an excitation, since no energy is injected into the instrument, 

another technique which produces interesting sounds is to place a virtual obstacle 
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in the way of an instrument, thus upsetting its natural modes of vibration. The 

following TAO script shows how this can be achieved: 

String s: C7,2 min; ... 

s. setdamping(1eft. 1/40,0.02%). lockleft; 
s. setdamping(39/40, right, 0.02%). lockright; 
s(3/4). mass=50.0; 
s(1/4). mass=50.0; 

Microphone m: test, stereo; 

Parameter obstacle-position s 1.0; 

Score 20 secs: 
At start for 1 msecs: 

s(0.1). applyforce(1.0); 

If s(3/10). position > obstacle-position: 
s(3/10). position - obstacle-position; 
s(3/10). velocity = 0; 

This script places an obstacle in the way of a string at a position three tenths of the 

way along its length and at a vertical position of 1. Whenever the string's amplitude 

at that point becomes greater than 1 it is immediately limited and the cell at that 

point is given a velocity of 0, indicating that it has been stopped dead. To make 

matters even more interesting, two cells in the string are also given higher masses 

than the rest, leading to inharmonic behaviour even without the obstacle. The sound 

examples described in sections C. 4 and C. 5 make use of this technique. 

Figure 6.21 shows the instrument in motion. In (a) the instrument is excited with a 

single impulse. In (b) it comes into contact with the obstacle. In (c) and (d) we can 

see that the rest of the time the instrument is free to move as it would normally do, 

and in (e) contact is made again. Every time the instrument hits the obstacle, fresh 

wavefronts are sent out by the impact. Contact will only be made intermittently 

and will eventually cease altogether. This can lead to long, evolving, naturalistic 

sound events. 

Part of the beauty of this technique is that a whole family of sounds can be produced 

by changing the various parameters such as the weight of the masses ̀pegged' onto the 

string, the string's basic characteristics and the obstacle's position, which can even 

be varied dynamically during a performance. Although cellular models may seem 

computationally expensive for simple scenarios such as an isolated plucked string, 
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Figure 6.21: A prepared string buzzing against an obstacle 

they cope just as easily with much more complex scenarios such as the one described 

here, at no significant extra computational cost. In addition, such scenarios are often 
beyond classical closed-form solutions because of their non-linearity. 

6.8 A comparison between TAO and other physical mod- 

elling systems 

A number of comments were made at the end of chapter 3 relating to the various 

physical modelling techniques which are currently available. The point was made 
that digital waveguide synthesis, although computationally efficient, is not suitable 
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for composers having little knowledge of differential equations to begin building new 
instruments. 

TAO takes a fundamentally different approach to physical modelling than taken by 

digital waveguides synthesis. According to Smith (1992, p. 74) the approach taken 

by TAO falls into the category of "brute force" modelling. However it must be 

borne in mind that models are often simplified and idealised in order to make them 

suitable for the computational resources available at the time and, as Toffoli and 
Margolis (1987) pointed out, the emphasis in such models "does not always reflect 

a preference of nature" (see section 2.7). In short, it is often impossible to simplify 

a model without losing some aspect of the behaviour of the real system. 

Turning to CORDIS-ANIMA, the main problem associated with the technique was 
described in section 3.11 as being one of choosing appropriate topologies for the cells 

and link elements. This problem does not occur with TAO since the cells and springs 

are arranged in a fixed topology. The images of section 4.2 depicting refraction and 
diffraction in TAO's cellular material, and the various examples which have been 

given in this chapter, show that this limitation placed upon topology does not limit 

the creative potential of the system in any way, and if anything makes TAO easier 
to get started with. 

One of the major problems associated with MOSAIC was stated as being the dif- 

ficulty of finding appropriate parameters for certain excitations such as reeds and 
bows. A more general problem was in debugging a synthesis scenario. TAO ad- 
dresses both of these problems with its informative graphical animations, which 

allow the user to see, very directly, the effects of certain excitation parameters, as 
the images from this chapter have shown. TAO's script language takes a very dif- 

ferent approach from MOSAIC's, although both are based upon an object oriented 

view of instruments. MOSAIC provides better abstraction capabilities for build- 

ing both instruments and excitation scenarios from re-usable modules which have 

been developed previously. TAO could be developed in order to include a facility of 
this kind. The addition of a full graphical user interface would also improve TAO's 

overall user-friendliness. 

The major disadvantage with TAO as it stands is in the amount of computational 

power it requires for complex synthesis scenarios. However, since digital technology 
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continually increases in power, year by year, with improved speed and memory ca- 

pabilities, and since the nature of TAO's model makes it suitable for implementation 

on parallel processors, this problem will ultimately be solved given enough time. 
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Chapter 7 

Summary and Conclusions 

7.1 Summary of the key ideas introduced 

Electroacoustic music and the perception of sound 

In chapter 1 the spectro- morphological and acousmatic approaches to music were 
described. In both of these musical genres, all sound categories, including those 

which have been traditionally regarded as `noises' rather than `musical' sounds, 

potentially have equal musical value. Such `noise' sounds included environmental 

sounds produced by humans and animals and by physical events or processes. The 

central importance of aural perception and judgement for both genres of music was 
highlighted, since traditional theories of music are inadequate when applied to the 

combination of such a diversity of potential sound sources. The comment was made 

that, at its most general level, the process of musical composition is one of organising 

sound. 

The ecological view of auditory perception was introduced, in which the perceptual 

attributes associated with a sound are seen as resulting from a combination of the 

structured information contained within the sound, and the listener's perceptual sys- 
tem resonating with or attuning to the invariant features in that information. This 

was followed by a discussion of the perceptual attributes of sounds which are con- 

sidered significant to their use in a musical context, including their spatial, physical 

and energetic qualities and their ability to suggest a sense of motion, gesture and 
texture, as well as affording certain meanings for individual listeners. We also learnt 

167 
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that the sounds and sound shapes found in electroacoustic music are often mimetic 

of natural sounds and events. Two types of mimesis were described: timbral and 

syntactic, although the comment was made that in reality mimemis may occur at 

any scale from the micro- to the macrostructural. 

The complexity of natural systems 

In chapter 2 the notion of structured information was examined from the point of 

view of the natural laws which govern its creation. We learnt about the phenomenon 

of bifurcation or period-doubling which occurs universally in dynamical systems con- 
taining an element of feedback. We also learnt that such systems often exhibit lively 

or vibrant behaviour when operating in a regime poised ̀ at the edge of chaos'. Such 

behaviour is due to the continual creation of new information. Graphical examples 

of bifurcation were given, courtesy of the logistic difference equation: the simplest 

equation containing feedback. 

The notion of phase space was introduced as a graphical way of capturing the identity 

of a system. This led to the notion of an attractor: the general tendency of a 
dynamical system to follow certain patterns of behaviour, which only become clear 

when the system is observed over a period of time. The transient behaviour exhibited 
by a system was related to its attractor. Three different types of attractor were 
described: point attractors, associated with dissipative systems; periodic attractors, 

associated with periodicly oscillating systems; and strange attractors, associated with 

chaotic systems. 

Complex dynamical systems, and the notion of emergent behaviour were introduced: 

highly structured global behaviour arising in a system consisting of many similar 

agents interacting on a local basis. We learnt that such systems, although following 

the same universal laws of chaos as simple ones, are able to express those laws in much 

more complex and interesting ways, giving rise to intricately evolving spatial and 

temporal patterns. The resulting structured information potentially has great depth, 

due to the sheer amount of information processing which goes into its production, 

and high effective complexity or a balance between variant and invariant features 

when a system operates at `the edge of chaos'. 

Other phenomena occurring in dynamical systems were described, including: self- 
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organised criticality, in which a complex dynamical system evolves to a point where 
it is critically poised at the edge of chaos, and even a small event can trigger a 

catastrophic change of state; and coupled oscillators, in which a set of oscillators, 

coupled together in some manner, lock into each others vibrational patterns giving 

rise to to characteristic rhythms, examples of which may be found in the gaits of 

various animals. 

Cellular models were introduced, and in particular the main existing categories of 

cellular model were described: cellular automata, finite difference models, finite 

element models and particle models. The chapter finished with the comment that: 

taken in combination, the phenomena described point to the fact that Nature has its 

own characteristic `rhythms' both spatial and temporal which are often fascinating 

sources of pattern and form; and concluded that cellular models provide a unique 

opportunity for exploring these ̀ rhythms'. 

Existing synthesis techniques and computer music programs 

In chapter 3 the most commonly used synthesis techniques were reviewed. The 

chapter introduced Csound, a computer music program based around the concept of 

unit generators: algorithmic modules which simulate the functionality of analogue 

components such as oscillators, filters etc. 

We learnt that the majority of traditional synthesis techniques is based upon a re- 
ductionist, frequency domain approach to sound, making use of combinations of unit 

generators, in order to create interesting sound textures. Instruments constructed 
from such components often require macrostructural form to be imposed manually 

via the use of envelope generators, function tables and numerical performance data 

specified in the score, making the task of creating sounds with convincing gestural 

and textural attributes more laborious, although not impossible. The microstruc- 

tural details of sounds generated with these techniques are also often precomposed 

and stored in wavetables and the sounds produced, whilst having their own charac- 
teristic strengths and weaknesses, usually lack the coherence and subtlety associated 

with natural sounds. 

Of the physical modelling systems introduced, CORDIS-ANIMA could be described 

as the most cellular in nature, although more emphasis seems to placed on the 



170 7. Summary and conclusions 

creation of non-homogeneous structures, and on the individual masses and springs 
in an instrument, than on the appealing properties which emerge naturally from a 

model consisting of large numbers of identical elements interacting on a local basis. 

The technique of `digital waveguide' synthesis was described, in which a waveguide 

is modelled as a set of delay lines connected by scattering junctions, which contain 

all the `interesting' mathematics. An example was given of a synthesis system which 

makes use of digital waveguides: the vocal synthesis program SPASM. The technique 

of modal synthesis was also described, in which analysis of vibrating structures for 

their natural modes of vibration leads to models in which these modes are represented 
by sets of modal oscillators. 

Csound, MOSAIC, and SPASM all provide script languages for describing synthesis 

scenarios whereas CORDIS-ANIMA does not. 

The TAO computer music program 

In chapters 4,5 and 6 the TAO computer music program was described. TAO 

relies entirely upon the emergent properties of a particular cellular model, consisting 

of masses interconnected with springs, for the production of its characteristically 

physical and organic sounds. Visual examples were given of the emergent behaviour 

of the model, including its ability to simulate wave propagation, reflection, refraction 

and diffraction. Other visual examples given included the ability of the model to 

produce transient behaviour, and to support the construction of complex vibrating 

structures by way of coupling several pieces of the cellular material together. 

TAO Instruments are played by exciting and damping individual cells or groups of 

cells and because of the holistic and attractor-driven nature of the cellular model, 

regardless of how the instruments are excited and damped, the sounds always re- 

tain a certain coherence and identity, being bound together by physical causality. 

The script language described in chapter 5, although not relating directly to the 

hypothesis put forward in this thesis, nevertheless gave an example of how a cellular 

model may be controlled in non-real-time. Unlike the precomposed numerical scores 

of Csound, TAO's score takes the form of an algorithmic language, with the provi- 

sion of specific features aiding the description of hierarchically nested time domain 

events. 
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This thesis began with a set of criticisms levelled at digitally synthesised sounds and 

a hypothesis which proposed that: 

Cellular computer models, inspired by the behaviour of naturally occur- 

ring complex dynamical systems, provide an ideal medium for the devel- 

opment of a new generation of sound synthesis techniques, more holistic 

in their approach than traditional techniques, and capable of producing 

complex organic sound events, whilst simultaneously being sympathetic 

to the needs of electroacoustic music. 

7.2.1 Sound synthesis as the creation of structured information 

This hypothesis has been supported by an in depth examination of the notion of 

structured information. Many examples were given in chapter 1 of specific percep- 

tual mechanisms and musical attributes of sound which arise as a direct result of 

particular patterns of information, usually generated by physical processes or mech- 

anisms. Terms such as complexity, coherence, organicity, vibrancy etc. have been 

used throughout this thesis, both in relation to the perceptual effects they are capa- 

ble of evoking, and in terms of the information generating properties of dynamical 

systems and natural environments. 

The process of sound synthesis has been viewed as a process of creating coherently 

structured auditory information. This view is radically different from frequency 

domain approaches which concentrate on the spectral content of a sound and its 

temporal evolution, without providing a consistent framework for the description 

of the macrostructure and microstructure of a sound and their mutual relationship. 
Whilst it would be unfair to dismiss frequency domain techniques out of hand, which 
is not the purpose of this thesis, they are often inappropriate for describing certain 

classes of sounds with complex temporal patterns of evolution. 

Of the more recent synthesis techniques to appear, granular synthesis seems to be 

alone in its ability to cope with all manner of structured noise sounds. The main 

problem with the technique is that it does not actually include control strategies 
for arranging grains of sound into macrostructures. Since natural events are often 
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arranged in a holarchic manner, in order to convincingly mimic sounds such as the 

breaking of waves quite sophisticated control strategies are required. Cellular models 
have already been applied successfully to simulating this phenomenon in the visual 
domain (see section 2.7.4), and it is highly likely that the structured information 

generated by such models could be applied to controlling the microscopic grains 

of sound, or clusters of grains, leading to sounds possessing qualities convincingly 

mimetic of breaking waves. 

This thesis argues that both the complexity and coherence of the information con- 

tained within a sound are extremely important to the imagery it is capable of evoking 

and the sound examples listed in appendix C provide some aural evidence in support 

of this argument. The simpler instruments comprising few components often pro- 
duce fairly `synthetic' sounds, whilst the more sophisticated instruments suddenly 

seem to `spring to life'. In particular the sounds produced by these more sophisti- 

cated instruments often seem to originate from tangible physical objects, and even 

when the sounds are more abstract in nature, they still retain a coherence which 

makes them feel `solid'. The sounds possess spatial, physical and energetic cues due 

to the underlying laws governing the cellular update rule. 

It is interesting to note that the percussive sounds described in section C. 10, since 

they are generated by dissipative dynamical systems which are linear in their be- 

haviour, probably do not exhibit truly chaotic behaviour. The phenomenon of chaos 

requires some element of non-linearity, such as is provided by the bowing model. 
However, the sounds are often still quite vibrant and complex. This is a good ex- 

ample of the notion of depth, i. e. complexity arising from the shear amount of 
information processing occurring. On the other hand, the bowed sound described 

in section C. 9 does rely upon external energy being continually applied to the in- 

strument in a non-linear fashion, and whilst also exhibiting depth of information, it 

also exhibits a different kind of complexity due to this element of feedback, giving 
it subtle inner rhythms. 

7.2.2 Why the emphasis on chaos? 

A recurring theme throughout this thesis has been the balance between order and 

chaos observed in Nature. Much evidence has been presented supporting the notion 
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that dynamical systems operating in a regime poised at the edge of order and chaos 

seem to act as creative sources of information. The amount of emphasis which has 

been placed on the significance of chaos theory in this thesis might be criticised 

on the grounds that it only relates to the physical world and not to something as 

subjective as human perception. There are two answers to this criticism though. 

Firstly, the human brain is itself a complex dynamical system, although the fact 

that it evolves throughout its lifetime by modifying its own internal configuration 

places it into the special category of complex adaptive systems. Because of this, it 

is subject to the same laws of chaos as all other complex dynamical systems, a view 

supported by the following quote: 

A physicist thinking of ideas as regions with fuzzy boundaries, separate yet 

overlapping, pulling like magnets and yet letting go, would naturally turn 

to the image of a phase space with "basins of attraction". Such models 

seemed to have the right features: points of stability mixed with insta- 

bility, and regions with changeable boundaries. Their fractal structure 

offered the kind of infinitely self-referential quality that seems so central 

to the mind's ability to bloom with ideas, decisions, emotions, and all the 

other artifacts of consciousness. 11Vith or without chaos, serious cogni- 

tive scientists can no longer model the mind as a static structure. They 

recognise a hierarchy of scales, from neuron upward, providing an oppor- 

tunity for the interplay of microscale and macroscale so characteristic of 

fluid turbulence and other complex dynamical processes (Gleick, 1991a, 

p. 298). 

More direct evidence of the presence of chaotic behaviour in the human brain may 

be found in the observation of unusual eye movements in patients suffering from a 

variety of neurological disorders 1. Regardless of the various arguments concerning 

the nature and origin of consciousness, intelligence, and emotion, it is evident from 

the brain's internal structure that chaos, complexity and emergent behaviour must 
have some part to play in our perception and awareness of the world around us. 

'An observer's eyes are usually capable of tracking a moving object such as a swinging pendulum 

with remarkable smoothness of movement, but occasionally the eyes are seen to oscillate with a 

variety of periods or even move chaotically. See Gleick (1991a) p. 276-277 
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Secondly, according to the ecological view of perception, we humans and other organ- 
isms have evolved perceptual systems which are capable of attuning to or resonating 

with information already present in our environment. Since this information is gen- 

erated according to patterns which are always consistent with the laws of chaos, it is 

reasonable to assume that these characteristic patterns are somehow intimately tied 

up with our perception of events and objects and to our sense of how naturalistic or 

organic they are. It is interesting to note that Gibson's book The ecological approach 

to visual perception, in giving examples of the way in which visual information is 

structured by various surface textures, reproduces photographic images which are 

remarkably similar to those found in another book Nature's Chaos (Gleick, 1991b) 

which provides many photographic examples of the occurrence of chaos in Nature. 

7.2.3 Designing cellular models for the generation of auditory in- 

formation 

Auditory information is constrained by a different set of criteria than is visual in- 

formation, and cellular automata models such as those represented by the visual 

examples given in chapter 2, depicting physical processes such as dendritic growth, 

annealing, fluid flow and reaction/diffusion, are not directly applicable to the task 

of sound synthesis as they stand. Auditory information must always contain an 

elements of oscillation occurring at frequencies lying within the audible spectrum. 

The model used by TAO shows one way in which this can be achieved, but the use 

of masses interconnected by springs is not the only strategy. If we wish to develop 

other cellular models for sound synthesis, we have to decide first upon the level at 

which they will operate. It would be perfectly possible to use a cellular model such 

as the flocking model described in section 2.7.4 to generate coherent macrostructures 

which would then be filled in with microstructures generated by traditional synthesis 

techniques. Conversely, it is already possible with TAO to generate microstructures 

which are then arranged into arbitrary macrostructures through the use of the score 

language. However, it has been claimed throughout this thesis that the strongest 

images will only be evoked in a listener when the microstructure and macrostructure 

exhibit an overall coherence due to some causal connection between them. 

It is possible within TAO to implement this causal connection between microstruc- 

ture and macrostructure by designing score algorithms whose behaviours depend 
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in part on the microstructural behaviour of the instruments played by the same 

algorithms. This process is depicted in figure 7.1. Since period doubling or bi- 

furcation and chaotic behaviour are universal phenomena observed in all systems 
involving feedback, the sounds produced by such a technique might begin to take on 

some of the `natural rhythms' described in section 7.1, and by a process of experi- 

mentation with the nature and amount of feedback, it would be possible to create 
information-rich macrostructures, not arbitrary in nature, but intimately linked to 

the microstructures produced. 

score algorithm 

I 
macrostructure feedback 

I 
microstructure 

Figure 7.1: Using feedback from the microstructure of a sound event in order 
to influence the macrostructure. 

For example, a script was given in section 5.5.5 for simulating an obstacle bouncing 

on an instrument. This simulation was based on the approach of using an exponential 
function in order to calculate the ever decreasing interval between impacts, and the 

force exerted on the instrument by each impact. This model does not rely, however, 

upon explicit simulation of the physical mechanism of bouncing. Since TAO provides 
direct access to parameters such as force, velocity and position, it would be possible 
to simulate the bouncing interaction properly, the advantage being that if several 

objects were bounced on the same instrument simultaneously, the system would act 

as a coherent whole, i. e. each force exerted by one object bouncing on the instrument 

would affect the forces exerted on all the other objects, and hence the intervals 

between their successive bounces. Since it has been shown, conclusively, that the 
human auditory system is capable of inferring the physical cause of a complex sound 

event from the temporal relationships between the macrostructural elements (see 

section 1.6.2), this technique would improve the perceived coherence of the sounds 

produced. 
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MECHANISMS complex dynamical systems 

I 
local Interaction 

I 
emergent behaviour 

due to sheer 
amount of 
Information 
processing 

STRUCTURED depth order disorder phase space micro- 10-61 macro- INFORMATION behaviour structure structure 
attractors 

liveliness transients causal 
vibrancy relation- 

ship 

complexity 
holarchic 
structure 

coherence/identity 

physical cues spatial cues energetic cues 
PERCEPTUAL 
AT 

I 
ATTRIBUTES IBUTES 

gesture, texture, affordance 

Figure 7.2: The relationship between complex dynamic systems, coherent struc- 
tured information, and perceptual attributes. 

7.2.4 A model of `organic' sounds 

A variety of terms has been used frequently throughout the thesis, including organic, 

vibrant, lively, coherent etc. It has been proposed that these adjectives refer to certain 

attributes of structured information, which are due both to the mechanisms used 

to generate the information, and to the perceptual abilities of the listener. The 

proposed relationship between these adjectives and various other terms introduced 

is clarified by figure 7.2. The diagram begins at the top with the mechanisms which 

create structured auditory information, complex dynamical systems; lists the various 

attributes of this structured information; and finishes at the bottom with the various 

perceptual effects which the information is capable of evoking in the listener. 
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The structured information generated by a complex dynamical system has four at- 
tributes: firstly, it has depth, due to the shear amount of information processing 

which takes place in a complex dynamical system; secondly, it may exhibit patterns 

of behaviour lying anywhere along the spectrum between order and disorder; thirdly 

it is governed by the attractor and associated transient behaviour of the system; and 
finally, it is holarchical in nature, i. e. the information consists of a nested hierarchy 

in which there are no clear dividing lines between different scales or between different 

structures at the same scale. 

The first two attributes, taken in combination, describe the overall complexity of 

a system, and complexity relates directly to how information-rich its behaviour is. 

When taken in combination with the other attributes, the structured information 

produced may be said to be coherent and possess a strong identity. Moving back 

into the sonic domain, this leads to sounds possessing strong physical, energetic and 

spatial cues, which suggest a sense of gesture and texture. Coherently structured 

sounds are also more likely to evoke a sense of affordance in a listener. 

7.3 Closing comments 

According to the ecological view of perception, an organism evolves to pick out 

features of the environment, both objects and events, which are pertinent to its 

survival. Ordinarily we take for granted our ability to recognise a scraping sound or 

a shattering sound since the process of recognition is so subconscious and immediate. 

If we begin to think about the variety of environmental events which we are able to 

recognise in this way, the list begins to expand endlessly. Gibson's explanation for 

this is not that we carry mental models around with us, one for each type of event, 
but that the events themselves create structured information which we are able to 

attune to or resonate with. 

An intriguing question to ask then, following on from this observation, is: what 
happens when we present the auditory perceptual system with patterns of structured 
information which, although complex and coherent, nevertheless do not conform to 

any patterns encountered in Nature? If Gibson's view of the process of perception is 

indeed correct, then such sounds might still be capable of strongly evoking imagery 

in the listeners mind, although the precise mimetic qualities of this imagery would 
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be difficult to predict or explain. 

7. Summary and conclusions 

The ability of cellular models to create completely artificial but coherently information- 

rich environments, offers the exciting possibility of exploring synthetic aural land- 

scapes, which nevertheless appear to be completely organic in their structural co- 
herence. This process has already begun with the design and exploration of TAO, 

but there are a multitude of other ways in which cellular models could be applied 

to the sonic domain, potentially providing the electroacoustic composer with many 

new approaches to the challenge of organising sound. 



Appendix A 

A brief user manual 

A. 1 Installation 

The file Tao1.0. tar contains an archived version of the following directory structure 

and may be unpacked by typing: 

tar xvf Taol. O 

Tao 1.0: 

bin/ 
lib/ 
src/ 
translation/ 
README 

Taol. 0/bin/ 

tao Command for compiling a TAO script into an exe- 
cutable. 

float2aiff Executable for translating a raw floating point data 
file into a. aiff soundfile. 

Taol. 0/lib/ 

libtao. a Compiled library of TAO objects classes and asso- 
ciated functions. 

Taol. 0/src/ 
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Cell. h 
Cell. cc 
Circle. h 
Circle. cc 
Ellipse. h 
Ellipse. cc 
Instrument. h 
Instrument. cc 
Microphone. h 
Microphone. cc 
Rectangle. h 
Rectangle. cc 
String. h 
String. cc 
Triangle. h 
Triangle. cc 

main. cc 

tao-scriptfile 

Taoi. O/translation/ 

circle-sed. script 
ellipse-sed-script 
rectangle-sed_script 
string-sed-script 
trianglezed_script 
tao.. sed-scriptl 
tao. sed. script2 
tao-sed_script3 
tao_sed_script4 
tao-sed_script5 
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C++ source code for library libtao. a 

main and other global functions 

Intermediate file used in the translation of a TAO 
script into C++ code. 

These files all contain Unix sed scripts which are 
used in the general translation of a TAO script into 
a valid fragment of C++ code. Whilst being com- 
mented and fairly bug-free, they were only ever in- 
tended as an interim measure and should be re- 
placed with a proper parsing and translation pro- 
gram. 

Having unpacked Tao1.0. tar, the next step is to set up the environment. In order 

to do this the full pathname of the file Taot. 0/bin should be added to your path, 

and an environment variable TAOPATH should be created with its value set to the full 

pathname of the directory Taol. 0/, which will depend on where you have chosen to 

install the system. The latter can be achieved by adding the following line to your 

. login file: 

setenv TAOPATH <full path>/Taol. O/ 

You are now in a position to start creating and compiling TAO scripts. 
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TAO scripts are stored in files with a. script suffix. Once a synthesis scenario has 

been described in a script it is ready for compilation. Note that TAO is a compiled 
language rather than being interpreted like Csound. This is because (a) a TAO 

script is actually a piece of C++ code in disguise; and (b) the synthesis model is 

computationally expensive and is therefore made as efficient as possible by relying 

on compiled code. 

Supposing we have a. script file and we want to compile it, how do we achieve 

this? The tao command takes the name of a script (without the . script suffix) 

and compiles it, leaving an executable file with a. exe suffix in the current directory. 

For example if we have a script called myscript. script, then typing tao myscript 

leads to the creation of a file called myscript. exe. This file is an executable program 

which will carry out the synthesis scenario described in myscript. script. There 

are two ways of invoking a. exe file: 

mys cript . exe No graphics, just do the synthesis. 
myscript. exe -g N= Open a graphics window and display 

animations of the instruments de- 
scribed in the script. N is a real num- 
ber and specifies the factor by which 
the amplitudes of any waves are ex- 
aggerated graphically. This has no 
effect on the sound output. 

All microphones in a TAO script write their output samples to files with a tao 

suffix. For example, in the following microphone declaration: 

Microphone micl: outfile, stereo; 

micl's output will be sent to the floating point soundfile outfile. taol which may 
be converted into a . aiff file during or after the file's creation with the use of the 

float2aiff program. This program expects three arguments: the full pathname of 

the tao file; the full pathname of the aiff file; and the sampling rate required: 

44100,32000,22050,16000,11025 or 8000. For example: 
'In the current implementation the microphone micl will actually write its output to a file called 

/var/tmp/outfile. tao, since raw floating point soundfiles can be very large. 
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float2aiff /var/tmp/outfile. tao outfile. aiff 44100 

A. 3 Mouse functions for use in the graphics window 

If a. exe file is invoked with the -g option a graphics window appears. There are a 

number of mouse functions associated with the graphics window and they are listed 

below: 

" Holding the left mouse button down whilst the mouse pointer is within the 

perimeter of the graphics window allows the whole graphics image to be dragged 

about. 

" Pressing the middle or right buttons whilst the left button is held down causes 
the graphics image to be updated more or less frequently. The default is for 

the image to be update on every time step of the synthesis engine but each 

press of the middle button causes updating to occur five times less frequently, 

i. e. on every 5th step, then every 25th step etc. 

" Pressing the right button whilst the left button is depressed reverses this pro- 

cess. If the graphics window is being updated on every time step, i. e. as 
frequently as possible and the right button is pressed whilst holding the left 

button down, the image is frozen until the same buttons are pressed in this 

combination again. 

A. 4 Some rules of thumb for instrument design 

There are several rules of thumb for designing TAO instruments which are discussed 

here. When deciding upon the structure of a new instrument, Smalley's spectral 

typologies (introduced in section 1.4) offer a useful starting point. To recap briefly, 

all sounds fall into one of the following categories: note, node or noise. The first 

step in the design of a new instrument then is to answer the following questions: 

" Is the instrument to produce specific notes and if so are they to be purely 
harmonic or inharmonic? Is the instrument monophonic or polyphonic? 
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9 If clearly defined pitches are not required then is the instrument to produce 

certain clusters of partials or nodes? Once again how many distinct nodes are 

required? 

" What is the intended texture of the imagined sound? Is it one smooth but 

continually evolving sound or a more granular texture involving large numbers 

of rapidly decaying sound events? If the texture of the sound is to be a single 

continually evolving event, then is it due to some continuous excitation or the 

naturally long decay time of the instrument? If it is due to some excitation 

then the instrument may not have to possess long decay times itself. 

9 What colouration of the whole sound is required and how distant are the 

components to seem from the listener? 

" Which components are to play the role of primary components? (See section 

6.3). 

If notes with harmonically related partials are required then string components will 

fulfill this need. Depending on the kind of overall string response required the 

individual strings can be damped accordingly as described in section 6.5. Circular 

components are useful for producing inharmonic pitched sounds whereas rectangular 

components are much more suited to non-pitched clusters of partials, or nodes. If 

several distinct pitches or clusters are required then each one requires a separate 

component with its own characteristics. 

Coupling components together 

Some decision must be made as to how to couple the various components together if 

the sound is to be perceived as a cohesive whole. The instrument in section 6.4 shows 

one way of achieving this and uses strings to transmit energy from a set of circular 

pitched components to a common one-dimensional resonator and vice-versa, which 

then has microphones placed at either end. This leads to quite a pleasing stereo 

spatial image and because of the finite amount of time the waves take to propagate 
from the circular components to either microphone, the pitched sounds produced 
by each of the circular components seem to occupy distinct spatial locations. This 

effect is particularly noticeable over headphones. The stringed instrument of section 
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6.7.2 gives another alternative for mixing and colouring the sounds produced by the 

primary components in an instrument. 

Microphone placement 

Both the perceived size of a spatial image and the spectral balance of a sound are 

affected by the precise placement of microphones. Microphones placed close together 

lead to a very small spatial image, and whilst microphones placed further apart 

make the spatial image spread out more, a point is reached at which the signals 

on each channel become so different that the auditory perceptual system can no 
longer correlate them and create a single coherent spatial image. In spectral terms, 

all instruments require that some cells are locked, and the cells in their immediate 

vicinity will only be able to move with small amplitudes of vibration. In the same 

way that placing a pick-up near to the bridge of an electric guitar produces a brighter 

and more nasal sound and placing it nearer the middle of the string produces a more 
hollow sound, then placing TAO microphones near to or far away from locked cells 
(usually) has a similar effect. By far the best way to see what kind of spectral 

response will be obtained at a particular location on an instrument is to look at an 

animation of the instrument as the waves actually propagate. Visual feedback is 

useful for determining which parts of an instrument should be locked and damped 

so as to achieve the desired vibrational patterns. 

Other factors to take into consideration 

Performers often talk of high quality musical instruments seeming to `sing' well 

without much effort being required on the part of the performer. Such subtleties have 

traditionally been the concern of acoustic instrument makers but with a system such 

as TAO, the same factors apply to the construction of virtual instruments. There 

are many factors to consider such as carefully choosing components which give an 
instrument the desired formants and which tend to vibrate in sympathy with, rather 

than fighting against each other. Once again the graphic animations prove invaluable 

in finding the right combinations of components. There is still much work to be done 

in understanding the relationship between an excitation model such as the bowing 

model provided and the instrument it is applied to. Applying a virtual bow to a 

stringed instrument with characteristics similar to those of a traditional stringed 
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instrument is one thing, but applying it to a completely different instrument will 

not always produce sensible results. In particular bowing an inharmonic instrument 

causes some difficulty because there can be no near-periodic Helmholtz behaviour as 

there is with a string. By far the best approach to take and the one that has been 

adopted throughout the development of the system is to `try it and see/hear what 

happens'. 

It has been found experimentally that there are two main causes of dull and life- 

less sounds. For continuously excited sounds such as bowed strings the amount of 

damping applied to the ends of a string in particular is critical. Too much damping 

and the instrument becomes too stable, too little damping and the instrument be- 

comes too unstable. The attractor of a dull sound often remains too static whereas 

a lively sound gives rise to an attractor which constantly shifts and changes shape. 

The other main factor is that instruments with uniform damping applied to every 

point often sound uninteresting. Natural sounds almost always show a correlation 

between amplitude and spectral brightness, and spectral evolution is strongly sug- 

gestive of energy dissipation. Therefore a sound whose spectral content remains 

the same throughout its duration is not usually very interesting. Of course we can 

make this spectral and amplitude decay occur over a fraction of a second or several 

minutes depending on the damping coefficients or decay times chosen, so we do not 

have to stick to realistic decays. 

The overall sound texture required in a sound determines the basic decay times 

of the various components used and the type of score algorithm. In addition to 

the basic decay time of each individual component in an instrument we can alter 

each component's spectral evolution characteristics by damping local regions. We 

have seen how to simulate iterative events using TAO's score language (see section 

5.5.5), and it should be possible to create sound events such as shattering sounds 
by simulating the effects of multiple independent bouncing objects, started off in 

synchrony but with individual time intervals between bounces etc. In chapter 7a 

brief discussion introduced the notion of making the score's behaviour, and hence 

the macrostructure of a sound event, dependent upon the moment to moment be- 

haviour of the instruments controlled by the score, thereby introducing feedback 

and a causal connection between micro- and macrostructure. This technique has 

not been explored to any great extent due to lack of time but it will almost certainly 



186 A. A brief user manual 

lead to the most complex and interesting sound events. 



Appendix B 

TAO script language reference 

manual 

This appendix serves as a reference manual for TAO's script language, working 

through the various features one by one and describing the syntax of each. Wherever 

instrument, microphone or cell messages can take a variety of forms each expecting 

a different number of arguments, each version of the message is explained together 

with the meanings of the various arguments. 

B. 1 Instrument declarations 
Valid instrument declarations take one of the following forms: 

(1) String name: freq, decay; 

messages 

(2) Rectangle name: xfreq, yfreq, decay; 

messages 

(3) Circle name: freq, decay; 

messages 

(4) Ellipse name: xfreq, yfreq, decay; 
messages 

187 
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(5) Triangle name: xfreq, yfreq, decay; 

messages 

Name consists of a string of alphanumeric characters and optionally underscores, as 

do all the identifiers used to refer to microphones and parameters within the script. 

String and Circle declarations require only a single frequency freq, determining 

the length of the string or the diameter of the circle respectively. For all other 

instruments two frequencies, xfreq and yfreq, are required, determining the size of 

the instrument in the x and y directions (see section 4.5 for an explanation). The 

decay argument specifies the overall decay time for the instrument and is converted 

into a damping value which is written to all the cells in the instrument. The messages 

contained within the body are separated by semicolons and are optional. Messages 

may be sent to an instrument from either inside or outside an instrument declaration. 

The syntax for each differs though. Within the body of an instrument declaration 

a message does not need to specify the name of the instrument it is being sent to. 

This is illustrated with the following examples: 

(1) Rectangle r: 
500 Hz, 75 Hz, 12.5 secs; 
lockcorners; 
setdecay(left, 1/10, bottom, top, 0.1 secs); 

(2) Rectangle r: 
500 Hz, 75 Hz, 12.5 secs; 

r. lockcorners. setdecay(left, 1/10, bottom, top, 0.1 secs); 

(3) r. lockcorners; 
r. setdecay(left, 1/10, bottom, top, 0.1 secs); 

(1), (2) and (3) are all equivalent. A string of messages can be sent at once by 

appending them to the instrument's name separated by periods as in (2) or each can 
be sent to the instrument independently as in (3). 
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B. 2 Pitch nomenclature 

Pitches or frequencies may be specified in any of the following forms: 

(1) <note name><octave number><microtonal modification> 

(2) pitch (octave. semitone) 

(3) frequency Hz 

The triangular brackets in (1) indicate that there are no spaces or any other sep- 

arating characters between the note name, octave and microtonal modifier. Note 

names are the letters C, D, E, F, G, A, B optionally followed by either a# or b 

indicating a sharp or flat. The octave number is an integer, with eight representing 

the octave containing middle C. The microtonal adjustment consists of a+ or - 

followed by a fraction of the form a/ b which represents the fraction of a semitone to 

add or subtract from the pitch specified. For example: - 

C8 middle C 

C#7 CO below middle C 

Ab8 Ab above middle C 

F#8+1/2 FO plus a quarter tone above middle C 

B7 B below middle C 

The second pitch notation shown in (2) consists of the keyword pitch followed by 

a decimal number enclosed in brackets. The integer part specifies the octave whilst 

the decimal part is interpreted as an integer between zero and eleven and specifies 

the semitone within that octave. The examples below illustrate this more clearly. 

Note that if the decimal part contains more than two digits then the first two are 

interpreted as an integer whilst the remaining digits are interpreted as a fraction of 

a semitone. 

pitch(8.00) =ý- middle C 

pitch(7.01) =C below middle C 

pitch(8.08) Ab above middle C 
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pitch(8.065) F0 plus a quarter tone above middle C 

pitch(7.11) B below middle C 

B. 3 Instrument messages 

This section contains detailed descriptions of the various valid messages which can be 

passed to any instrument. Some of the messages are overloaded 1 and the appropriate 

version of a message is invoked automatically according to the number and type of 

the arguments given in the TAO script. 

B. 3.1 Setting an instrument's decay time 

Setdecay and resetdecay enable an instrument's damping coefficient to be set in 

terms of a decay time. There are four overloaded versions of the message and each 

one provides a different way of specifying the region of the instrument affected: 

(1) setdecay(left, right, bottom, top, decaytime) 

(2) setdecay(left, right, decaytime) 

(3) setdecay(x, decaytime) 

(4) setdecay(decaytime) 

(1) is intended for use with two-dimensional instruments and specifies a rectangular 

region whose decay time is altered. (2) and (3) are designed for use with strings and 

allow the region to be specified either as two x coordinates left and right, representing 

the left and right endpoints of the region, or a single point. Finally (4) works for 

any instrument and enables the decay time to be changed across the whole surface 

of the instrument. All coordinates should lie between zero and one. 

Setting the decay time doesn't always have the effect which the user may intend. 

The precise effect is dependent on the size of the region chosen in relation to the 

size of the instrument. If the whole instrument receives a new decay time then the 

decay time specified has the correct effect. If however only a small region of the 
lA function is overloaded if there exist several versions with the same name, each expecting 

different numbers of arguments and possibly different argument types 
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instrument has its decay time modified, then even if those cells affected would decay 

over the correct time interval if vibrating in isolation, when connected to the mass 

of cells which have a different decay time the effect of this local damping may be 

completely swamped. The decay time given should not be taken too literally. 

The next set of messages mirror the ones just described but enable an instrument's 

decay time to be reset to the default value specified when it was created. The 

arguments expected by each version of the message are the same as for the above 

messages except for the omission of the original decay time, which the instrument 

itself keeps a record of. 

(1) resetdecay(left, right, bottom, top) 

(2) resetdecay(left, right) 

(3) resetdecay(x) 

(4) resetdecay() 

B. 3.2 Setting an instrument's damping coefficient 

The next four message are identical to the setdecay messages except for the fact 

that the damping coefficient is given as a percentage, where 0% means that there 

is no frictional force to slow the cells down and 100% means that the cells will not 

move if a force is applied: 

(1) s etdamping (left, right, bottom, top, coeficient%) 

(2) setdamping(left, right, coeficient%) 

(3) setdamping(x, coefficient%) 

(4) s etdamp ing (coeficient%) 

The comment above about the effect of damping various sized regions also applies to 

setting the damping as a percentage. If a large region is damped then it will have a 
big effect on the instruments vibrational patterns, whereas a small region will have 

less effect. The most reliable way of determining the damping coefficient is though 

experimentation. As with the setdecay messages there are four equivalent messages 
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to reset the damping coefficient to its original value. These messages have identical 

functionality to the four resetdecay messages but are included for purposes of 

consistency. 

(1) resetdamping(left, right, bottom, top) 

(2) resetdamping(left, right) 

(3) resetdamping(x) 

(4) resetdamping() 

B. 3.3 Locking parts of an instrument 

The next set of messages enable regions of an instrument to be locked and require 

no arguments: 

(1) lockleft 

(2) lockright 

(3) locktop 

(4) lockbottom 

(5) lockperimeter 

(6) lockcorners 

(7) lockends 

The behaviour of lockleft, lockright, locktop and lockbottom is straightfor- 

ward for rectangular instruments, simply locking whole sides of the instrument. For 

other instruments only the cells located at the extremities of the instrument are 

locked. The lockcorners message is intended for use with rectangular and triangu- 

lar instruments and lockends is for use with strings. The lockperimeter message 

is only useful for instruments other than strings. 

There are three overloaded versions of the lock message which allows the user to 

specify the region of an instrument to be locked. (1) allows a rectangular region to 

be specified in the same manner as for setdecay and setdamping; (2) allows a single 
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point to be specified with a pair of x and y coordinates; and (3) expects a single x 

coordinate specifying a point on a string. 

(1) lock(left, right, bottom, top) 

(2) lock(x, y) 

(3) lock(x) 

B. 3.4 Accessing points on an instrument 

The notation for accessing points on an instrument consists of the instrument name 

followed by a set of coordinates in brackets. For strings only a single x coordinate is 

required. For two dimensional instruments both an x and y coordinate are necessary: 

(1) instrl (x) 

(2) instrl (x, y) 

The coordinates are always normalised to be between zero and one. For x, zero and 

one represent the left and right hand sides of the instrument respectively regardless 

of the instruments shape. For y, zero and one represent the bottom and top of 

the instrument respectively. Selecting a point on an instrument using this notation 

returns a reference to an individual cell whose various physical attributes can either 

be read or altered. 

B. 4 Nomenclature for accessing parts of instruments 

The keywords left, right, bottom and top are provided and when used within in- 

strument messages, or anywhere else within a script, are replaced by the appropriate 

numerical value of either zero or one. They are provided for script legibility. 

B. 5 Cell attributes of interest to the user 

Each cell has a number of attributes which are of direct relevance in developing 

interesting new excitation models and can be accessed by the user. These include: 

(1) position 
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(2) velocity 

(3) force 

(4) mass 

All are measured in arbitrary numerical units. The force variable is usually only 

altered via the cell messages described in the next section although the user can set 

the force acting upon a cell directly within a score if required. The mass of each 

cell is set by default to a value of 3.5 which gives the material optimum frequency 

response. Under no circumstances should the mass of a cell be set to less than this 

value. 

The mass can be set to any value greater than 3.5 though and the best way to use 

this technique is by experimentation since there is no simple one to one relationship 

between the mass of a cell and the sonic effect it will have on an instrument. The 

only rule of thumb is that a cell with a high mass will have more inertia and will 

therefore move more slowly than a cell with a low mass. In practice this means the 

cell with the higher mass will have a preference for lower frequency vibrations. See 

sections 6.7.3 and C. 4 for practical examples of the use of this technique. 

All of these attributes can be used either as input or output parameters, so for 

example we can set the force acting upon a cell or we can simply read it off and use 

the value elsewhere in another expression. When assigning new values to these cell 

attributes some care has to be taken since if we suddenly move a cell to a completely 

new position without updating its velocity and force accordingly we can expect some 

strange transient behaviour to appear in the material. Assuming the existence of 

two instruments strings and recta then all the following are valid script fragments: 

(1) stringi(x). position=0; 

(2) If rectl(x, y). velocity > 2.5: body ... 

(3) stringl(x). force*=rectl(x, y). velocity/10.0; 
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B. 6 Cell messages 

Once selected using the notation described in section 5.4.8, a cell can be sent various 

messages, which in the current version of TAO include applyforce and bow: 

(1) instri (x , y) . applyf orce (force) ; 

(2) instrl(x, y) bow (downward force, velocity) ; 

The arguments to both of these messages are measured in arbitrary numerical units. 
For applyforce the force applied can be of any magnitude and within a single score 
it is the relative magnitudes of the forces used which are of greater importance. 

Applying a force of one or one million to an instrument only affects the magnitude 

and not the character of vibrations. In other words unlike most physical materials 

the cellular elastic material does not sound brighter if we hit it harder. It only 

sounds brighter if we hit it more sharply i. e. a higher force is applied over a shorter 

time interval. For the bow message the parameters are more critical and the user 

should refer to sections 6.7.1,6.7.2 and appendix C for examples of sensible values 

to use as starting points. 

B. 7 Microphone declarations 

A microphone declaration takes one of the following forms: 

(1) Microphone name: outfilename, mono; 

(2) Microphone name: outfilename, stereo; 

(3) Microphone name: outfilename, source; 

(4) Microphone name: outfilename, leftsource , rightsource; 

Name specifies the name of the microphone, i. e. the identifier with which it is 

referred to throughout the script and outfilename specifies the name of the output 
file to which the sound samples are sent. The sound samples are initially written 
to this file in raw floating point format and must be converted to a . aif or similar 

soundfile format using a separate post-processing program float2aiff which also 
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normalises the samples to achieve maximum dynamic range and then writes them 

to a standard . aifj`'file. This program is described in appendix G. 

In the present implementation only mono and stereo microphones are allowed. In 

the case of (1) and (2) above, the sources for sound output are left to be determined 

within the score. The way in which this is achieved is described in 5.5 and the fea- 

ture is included to enable microphones to be moved around during a performance. 
In order to achieve continuously variable microphone positions some kind of inter- 

polation between cells is required. This feature is not yet implemented but it would 

not be a very serious task to do so. 

B. 8 Microphone messages 

A microphone object's purpose in life is to take floating point samples generated by 

arbitrary mathematical expressions, buffer them, and write them to an output file. 

In order to do this three messages are provided: 

(1) leftout: expression; 

(2) rightout: expression; 

(3) output : expression; 

(3) is used with a mono microphone. These messages will only generate output 

samples if placed at a scope within the score where they are active. For example: 

Score 10 secs: 
Before 5 secs: 

micl. leftout: expression; 
micl. rightout: expression; 

lo, 

will cause micl to generate sound samples only from zero to five seconds. 

Note that the notation message: expression; is exactly equivalent to message(exp. 

ression); and either form can be used. In this case though the expressions used 

to generate output samples can often involve many different points on different 
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components of an instrument and the non-bracketed syntax is more legible. Also in 

terms of visual style this syntax is more in keeping with the use of colons elsewhere 
in a script. 

B. 9 Glueing and joining 

There are several different forms of the Glue command to allow for various combi- 

nations of one and two-dimensional instruments: 

(1) Glue instrl(xi, yi) to instr2(x2, y2); 

(2) Glue instrl(xl) to instr2(x2, y2); 

(3) Glue instrl(xl, yl) to instr2(x2); 

(4) Glue instrl(xi) to instr2(x2); 

Join on the other hand only appears in one form with four arguments paired into 

coordinates for each instrument. In combination, these coordinates specify where 

the join is to occur: 

Join instrl(xl, yl) to instr2(x29 y2) 

The arguments x1, yl, x2, Y2 are interpreted the following way (remember that the 

keywords left, right, bottom and top are provided also): 

If x1 =0 and x2 =1 then join left of instrl to right of instr2 

If xl =1 and x2 =0 then join right of instrl to left of instr2 

If x1 =0 and x2 =0 then join left of instrl to left of instr2 

If xl =1 and x2 =1 then join right of instrl to right of instr2 

If yl =0 and y2 =1 then join bottom of instrl to top of instr2 

If yl =1 and y2 =0 then join top of instrl to bottom of instr2 

If yl =0 and y2 =0 then join bottom of instrl to bottom of instr2 

If yl =1 and y2 =1 then join top of instrl to top of instr2 
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If xl and x2 are both equal to either zero or one then the join runs vertically and the 
left or right sides of the two instruments are joined. In this mode yi and Y2 are used 
to specify a horizontal centre line running through both instruments in order to line 

them up for the join. If however yl and Y2 are both equal to either zero or one, then 

the join runs horizontally and xl and xz are used to specify a vertical centre line in 

order to line the instruments up. For a join to take place either xl and xz or yl and 

y2 have to be equal to either zero or one simultaneously. 

In the following examples only (1), (2) and (3) lead to insirl and instr2 being joined 

together. (1) is straightforward and joins the left hand side of instrl to the right 
hand side of instr2lining up two points one halfway up insir, the other 0.7 of the way 

up instr2. (2) is similarly straightforward but shows that a join may occur between 

two left sides or right sides etc. In (3) x1, x2, yl and y2 are all equal to either one or 

zero but in this case xl and x2 are tested first and are thus interpreted as specifying 

the sides to be joined, leaving yl and y2 to specify the centre line. 

(1) Join instrl(left, 0.5) to instr2(right, 0.7) 

(2) Join instrl(right, 1/10) to instr2(right, 7/10) 

(3) Join instri(right, top) to instr2(left, top) 

(4) Join instri(0.2,0.5) to instr2(0.7,0.3) 

For further examples and a graphical explanation of the arguments to Join see 

section 5.4.7. 

B. 10 Time nomenclature 

There are three units of time supported by the script language seconds, milliseconds 

and minutes: 

time secs 

time cosecs 

time min 

The time t can be a constant, a parameter or a whole expression in which case it 

is safest to enclose the whole expression in parentheses and then put the units of 
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measurement after the whole parenthesised expression. 

The system variable Time keeps a track of real time measured in seconds and can 
be used anywhere within the score. Another system variable Sample keeps track of 

the number of time steps elapsed since the beginning of the performance, although 

the user should never have cause to access this variable and should certainly never 

assign it a new value. 

B. 11 Performance parameters 

Parameters are floating point variables any number of which the user can declare. 

A parameter declaration comes in the following form: 

Parameter p1=a, p2=b,. -, p�=n; 

The initial values a, b .. n may be constants or expressions possibly involving other 

parameters already declared and initialised, and are optional. 

B. 12 Score control structures 

The score represents a hierarchical structure dividing the total time allotted for a 

performance into separate time intervals. Each time interval or instant in time spec- 

ified represents an event of some kind. Simple events such as setting a parameter's 

value or locking a point on an instrument need only occur at an instant in time 

whilst others such as excitations occur over intervals of time. 

The building blocks from which a score is constructed are referred to as control 

structures. A score starts off with the Score control structure which sits at the top 

of the hierarchy and specifies the duration of the performance: 

Score duration: 

Other control structures include: 

(1) At start time for duration: body ... 

(2) From start time to end time: body 
... 
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(3) Before end time: body ... 

(4) After start time: body 
... 

(5) At time: body ... 

(6) Every interval: body ... 

(7) ControlRate interval in samples: body ... 

(8) If condition: body ... 

(9) If condition: body 1 ... 
Else: body 2 ... 

(10) If cond 1: body I ... 
ElseIf cond 2: body 2 ... 
ElseIf cond 3: body 3 ... 

Else: body n 

The special variables start and end are used within the score for two purposes, 

firstly to allow code within the body of a control structure to refer to the start and 

end times specified by the head. This is useful for executing instructions just once 

at the beginning or end of a time interval using the forms: 

At start: body ... 
At end: body ... 

The second use is for the special time varying functions linear and expon described 

in the next section. 

The next example explicitly shows how the values start and end change throughout 

a score consisting of nothing but nested control structures: 

start end 

0 10 Score 10 secs: 
02 At 0 secs for 2 secs: 
02... 
03 Before 3 secs: 
03... 
27 From 2 secs to 7 secs: 
24 Before 4 secs: 
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2 4 ... 
5 7 After 5 secs: 
5 7 ... 
2 7 ... 
5 10 After 5 secs: 
5 10 ControlRate 100: 
5 10 ... 
5 10 Every 0.1 secs: 
5 10 ... 
5 10 ... 
0 10 ... 
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When start and end are accessed within the body of an At.. for, From. . to, Before 

or After control structure, their values change to reflect the more local start and 

end time whereas when they are accessed within a ControlRate or Every structure 

their values are left unaltered. 

B. 13 Mathematical expressions 

All the standard mathematical operators one would expect such as +, -, * and / are 

available. In addition to the standard assignment operator = there are four other 

assignment operators inherited from C++ +_, -_, *= and /= which are used in the 

following way: 

(1) parameter += expression 

(2) parameter -= expression 

(3) parameter *= expression 

(4) parameter /= expression 

For example += adds the value of expression to the value held in parameter and then 

stores the value back in parameter. The other operators work in a similar fashion. 

B. 14 Mathematical functions 

A variety of standard mathematical functions are available for use within a script. 
These are inherited from C++ and include the following, taken straight from the 

IRIX 5.3 manual page for the standard maths library: 
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acos(x) inverse trig func 
acosh(x) inverse hyperbolic func 
asin(x) inverse trig func 
asinh(x) inverse hyperbolic func 
atan(x) inverse trig func 
atanh(x) inverse hyperbolic func 
atan2(x, y) inverse trig func 

cbrt(x) cube root 
cos(x) trig func 
cosh(x) hyperbolic func 
drem(x) remainder 
exp(x) exponential 
expml (x) exp(x)-1 
fabs(x) absolute value 
fceil(x) integer no less than 
floor(x) integer no greater than 
cos(x) trig func 
cosh(x) hyperbolic function 

exp(x) exponential 
expml(x) exp(x)-1 
hypot(x, y) Euclidean distance 
log(x) natural logarithm 
log10(x) logarithm to base 10 
loglp(x) log(1+x) 

pow(x) exponential x**y 
rint(x) round to nearest integer 

sin(x) trig func 
sinh(x) hyperbolic func 

sqrt(x) square root 
trunc(x) truncate to integer 
tan(x) trig func 
tanh(x) hyperbolic func 

Manual pages for each individual function are available with IRIX 5.3. 

In addition to the mathematical functions described, two special time varying func- 

tions linear and expon are provided. These functions come in the following form: 

linear(initial, final) changes linearly from initial to final 
expon(initial, final) changes exponentially from initial to final 

Ordinarily with such functions we would have to specify the time interval over which 

they were supposed to change but in a TAO score these two values are implicitly 

specified by the values of start and end described in the previous section. Since 

the values of these two variables depend on their context within the score, linear 
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and expon return a value which changes from initial value to final value over the 

appropriate time interval. See section 5.5.2 for an explanation of how the values of 

start and end are affected by their scope within the score. 

B. 15 Text screen output 

During a performance text can be sent to the output text window (via C++'s stan- 

dard output stream) with the use of the Display command which is followed by 

a list of items to be displayed, separated by commas. Displayable items include 

character string constants such as "a string of characters", parameter values, 

mathematical expressions and two special items newline and sameline which cause 

a carriage return and linefeed or just a carriage return respectively. 

Display iteml, item2, .., itemn; 



204 B. TAO script language reference manual 



Appendix C 

Sound examples 

This appendix contains the scripts which were used to generate the TAO sound 

examples. The TAO system has been set up such that the cellular material is capable 

of producing vibrations covering (almost) the whole audible spectrum. For example, 

supposing we want to create a TAO string with a fundamental frequency of 100 Hz. 

In order to achieve this frequency we can either use a large number of cells with 

small masses or a smaller number of cells with larger masses. The former string will 
have the same fundamental frequency as the latter but will exhibit a much better 

frequency response, being capable of higher frequency modes of vibration. TAO is 

`hard-wired' at the moment to always opt for maximum frequency response. The 

disadvantage of this is that in order to create instruments with very low frequency 

modes of vibration, we have to use very large numbers of cells, and this means more 

computation and thus a longer wait for sounds to be produced. 

For this reason, whilst all of the sound examples were produced directly by the 

TAO scripts listed, and were recorded without the aid of any external audio effects, 

some of them were composed `in miniature' with higher pitches and shorter time 

intervals in the score, and were only later transposed down to lower pitches. This 

technique has been applied to instruments containing large, two-dimensional pieces 

of cellular material, for which the computational problem is more pronounced. These 

transposed sounds, whilst illustrating quite nicely the coherence inherent in TAO's 

output, do lack some definition in the higher frequencies. This problem will be solved 
in the future either through the use of more powerful technology, or by modifying 
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TAO so that the user can decide upon the audio bandwidth required of the material. 

C. 1 Sounds produced by a single string damped at one 

end 
////////////////////////////////////////////////////////////////////////////// 1/ Script name: singleatring. script tracks 1-4 

This script explores the effects of damping one end of a single TAO string 
to varying degrees. The commented lines show the damping coefficients 

// chosen. Note that the overall decay time of the string is infinite so it 
does not behave like a real string. This makes the effect of the local 
damping more pronounced, allowing us to concentrate on how it affects the 

// strip s spectral decay. 

String s: 
110 Hz, 0 sets; 
lockende; 
setdamping(lett, right, 0%); 

//s. setdamping(left, 1/20,0.01%); long decay track 1 
//s. aetdamping(left, 1/20,0.1%); medium decay track 2 
//s. setdamping(left, 1/20,1%); short decay track 3 
//a. aetdamping(left, 1/20,10%); Y. short decay track 4 

Microphone micl: dampedstring, stereo; 

Score 20 secs: 
At start for 0.6 msecs: 

s(0.1). applyforce(10.0); // pluck the string 

At 19 secs: s. setdamping(1eft, 1/5, O. 5%); ... 
// damp it 

micl. leftout: s(0.05); 
micl. rightout: x(0.95); 

Every 0.01 secs: Display Time, nevline; ... 

C. 2 String harmonics 
/////////////////////////////////////////////////////////////////////////////// 

Script name: stringharms. script tracks 6-8 

// This script simulates string harmonics. The overall decay time of the 
string is set to be quite long and then the and of the string is 
damped in order to alter the spectral decay response. This gives the 

// instrument a more realistic string-like response. Finally, the string is 
plucked and then after 2 seconds is damped at one of the modes (one of 
the commented lines must be uncommented). 

String s: 
110 Hz, 0 seca; 
lockende; 
setdamping(leit, right, 0%); 

s. sotdecay(60 sacs); overall amplitude decay of 
// string quite long 

s. setdamping(left, 1/20,0.05%); // spectral decay quite 

Microphone eicl: harm, stereo; 

Score 20 secs: 
At start for 0.5 msecs: 

s(1/17). applyforce(10.0); 

At 2 sacs: s. setdamping(1/2,0.5%); ... 2nd harmonic track S 
At 2 secs: s. setdamping(1/3,0.5%); ... 3rd harmonic track 6 

// At 2 secs: s. sotdamping(1/4,0.5%); ... // 4th harmonic track 7 
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At 2 secs: s. setdamping(1/5.0.5%); ... 
// 5th harmonic track 8 

At 19 secs: s. aetdamping(1eft, 1/5,0.5%); ... 

micl. leltout: x(0.05); 
micl. rightout: s(0.95); 

Every 0.01 secs: Display Time, n. vlin.; ... 

C. 3 Rectangular sheets joined together 

207 

This sound has been transposed down by a factor of 0.7256, equivalent to playing 

the samples back at 32 Khz instead of 44.1 Khz. 

/////////////////////////////////////////////////////////////////////////////// 
Script name: joinsound. script track 9 

// The instrument used in this sound example comprises six rectangular sheets 
// joined together in the same kind of format as the example given in chapter 
// six. Each rectangular sheet is given a long decay time but local regions 

of three of the rectangles are damped locally to change the overall spectral 
content as the sound evolves. The instrument is struck once and is then 
left to follow its own behaviour. 

// 
// Output is taken from four pairs of points on the instrument represented by 

the parameters 11. ri, 12, r2,13, r3,14 and r4. The final stereo signal 
is generated by a continual process of crossfading between these individual 
stereo signals. This is achieved by amplitude modulating the pairs of 

// signals with sinusoidal signals of phase 0, pi/2, pi and 3*pi/2. The four 
// sinusoidal modulation signals are phase locked and change from 10 Hz 
// to 0.6 Hz over the duration of the performance. 

Since the local regions of damping affect the spectral content of the 
// signals and since the speed of crossfading slows down throughout, an 

impression of energy dissipation is created. 

LOTE: This sound example has shown up a bug in TAO. The rate at which the 
// crossfading occurs should change smoothly throughout the performance but 
// it seems to change in discrete steps instead, staying at one rate for 
// about 10 or 11 complete crossfade cycles and then changing to a slower rate. 
// At the time of writing this bug has not been traced. 

Rectangle one: 100 Hz, 4000 Hz, 60 sacs; ... Rectangle two: 4000 Hz, 100 Hz, 60 sacs; ... 
Rectangle three: 100 Hz, 4000 Hz, 60 secs; ... Rectangle four: 4000 Hz, 100 Hz, 60 sacs; ... Rectangle five: 4000 Hz, 100 Hz, 60 secs; ... Rectangle six: 100 Hz, 4000 Hz, 60 sacs; ... 

Join one(left, top) to tvo(right, top); 
Join two(right, bottom) to thres(left, bottom); 
Join three(right, bottom) to four(left, bottom); 
Join four(left, top) to one(right, top); 
Join four(right. 1/3) to six(left, centre); 
Join one(4.6/6, top) to five(centre, bottom); 

one. lock(4/6,5/6,0,0); 
three. lock(2/5,3/5,1,1); 

five. setd0cay(left, right, 9/10, top, 1 sacs); 
six. setdecay(9/10, right, bottom, top, I sacs); 
four. setdecay(1eft, right, 9/10, top, 0.1 sacs); 
four. setdecay(1eft, right, bottom, 1/10,0.1 secs); 

Microphone in: joinsound, stereo; 

Parameter pi2-3.141592653*2.0, crossfaderate; 
Parameter pi=3.141592653; 
Parameter phase2=pi/2.0, phase3=pi, phase4=pi*3/2; 

Parameter angle=0.0; 

Parameter 11,12,13,14; 
Parameter ri, r2, r3, r4; 

Score 20 secs: 
At start for 10/44100: 

five(1/2,9/10). applyforce(10.0); 
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five. label(1/2,9/10, -20,20, "excitation", BLUE); 

crossfad. rat. -. xpon(10.0,1/2) Hz; 

Every 0.1 secs: 
Display 
Display nevlins, "Time=", Time; 
Display crossfaderate=", crossfaderate; 
Display " 1=", 11; 
Display " 2=". 12; 
Display " 3=". 13; 
Display 11 4=", 14, nevlins; 

angle+np12scrossfaderats/audiorate; 

11=tvo(1/2,0.7) " sin(angle); 
r1=tvo(1/2,0.3) " sin(angle); 

12-one(1/4,1/2) " sin(angle + phase2); 
r2-three(1/4,1/2) " sin(angle + phase2); 

13: three(3/4,1/2) " sin(angl" + phase3); 
r3aone(right, 1/2) " sin(angle + phase3); 

14=four(1/2,1/2) " sin(angle + phase4); 
r4=six(0.8,1/2) " 11 Wangle + phase4); 

m. leftout: 11 + 12 + 13 + 14; 
m. rightout: ri + r2 + r3 + r4; 

// This bit is only for the graphics 

one. label(1/4, top, -10,15, "one", BLACK); 
three. label (1/4, bottom, -10, -15, "three", BLACK); 
tvo. label(1eft, 1/2, -30, -5, "two", BLACK); 
four. label(right, 9/10,10, -5. "four", BLACK); 
six. label(3/4, bottom, -10, -15, "six", BLACK); 
five. label (1eft, 4/5, -40, -5, "five", BLACK); 

C. Sound examples 

C. 4 A prepared string buzzing against an obstacle 
/////////////////////////////////////////////////////////////////////////////// Script name: goodbuzz2. script track 10 

// This sound uses a single string which is 'prepared' by increasing the masses 
// of two of the cells to a value of fifty. The default mass of all cells when 
// created is 3.6. This value is not arbitrary but makes the material 

propagate waves as quickly as possible so as to achieve a good frequency 
// response, Under no circumstances should a cell's mass be made less than 3.6 
// or the model becomes unstable. 

The string is excited with a simple impulse and then vibrates freely. except 
that an obstacle is placed in its way, one third of the way along its 

// length. The obstacles vertical position changes exponentially, over the 
// twenty second duration of the score. Whenever the string's amplitude becomes 
// greater than the obstacle's vertical position it I. limited to this value. 
// Changing the obstacle's position exponentially ensures that the string 

keeps hitting the obstacle, but only just making contact. Left and right 
// channels of output are taken from either end of the stria 

Strings: E6-1/2,2 min; 

s. setdamping(left, 1/40,0.02%). lockleft; 
s. setdamping(39/40, right, 0.02%). lockright; 
s(3/4)-mass=60.0; 
s(1/4). mass=60.0; 

Microphone m: test, stereo; 

Parameter obstacle position; 

Score 20 secs: 
Every 0.1 secs: 

Display "Time=", Time, newline; 

At start for 1 msecs: 
s(0.1). applyforce(1.0); 
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obstacle-position - "xpon(9.0,0.5); 

After 1 secs: 
If s(3/10). position > obstacle position: 

s(3/10). position a obstacle-position; 
s(3/10). velocity on -0.5; 

If s(7/10). position > obstacle-position: 
s(7/10). position - obstacle-position; 
s(7/10) . velocity º. -0.6; 

m. lsltout:. (0.05); 
m. rightout: s(O. 95). 

Track 11 provides another sound example which is a slight variation on the above. 

C. 5 A dynamically prepared string buzzing against an 

obstacle 
/////////////////////////////////////////////////////////////////////////////// 

Script name: strangebuzzl. script track 12 

This sound is similar to the sound described in the script goodbuzz2. script 
in that it uses a 'prepared' string in which the masses of several 

// individual cells are altered from the default value. In this sound though 
// the masses are altered dynamically throughout the performance. In addition 

the string buzzes against an obstacle whose distance from the string 
gradually decreases. This is a good example of quite an abstract TAO 

// sound still havin ualities suggestive of gesture and texture. 

String s: E6-i/2,2 min; ... 

s. setdamping(left, 1/40,0.02%). lockleft; 
s. setdamping(39/40, right, 0.02%). lockright; 

Microphone micl: strangebuzzi, stereo; 

Parameter obstacle-position, 

Score 20 secs: 
Every 0.1 secs: 

Display "Time=", Time, nevline; 

At start for 1 cosecs: 
s(0.1). applyforce(10.0); 

s(1/2). mass=linear(60,1600); 
s(3/4). mass linear(3,1400); 
s(1/4). mass linear(3,1200); 

ControlRate 1000: 
Display "mis", s(3/4). mass; 
Display " m2=11, s(1/4). mass, nesline; 

obstacle-position - linear(7.0,0.6); 

After 1 secs: 
If s(3/10). position > obstacle-position: 

s(3/10). position a obstacle_position; 
s(3/10). velocity S. -0.6; 

If s(7/10). position > obstacle-position: 
s(7/10). position - obstacle-position; 
s(7/10) . velocity "- -0.5; 

micl. leftout: s(O. 05); 
miel. rightout: s(0.95); 
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C. 6 The effects of damping on a single rectangular sheet 

These sounds have all been transposed down by a factor of 0.5, equivalent to playing 

the samples back at 22.05 Khz instead of 44.1 Khz. 

//////////////////////////////////////////////////////////////////////////////// 
Script name: rectangle. script tracks 13-16 

// A number of sound examples were generated with this script by either leaving 
the rectangle uniformly damped or damping local regions. lots that because 

// of the 60 minute decay time, this instrument does not behave like a normal 
// percussion instrument. If struck it will ring on ad infinitum. The sounds 

generated by damping local regions force certain partials to die away, 
but the ones which are free to continue vibrating will do so indefinitely. 

// Sound descriptions: 
track 13: undamped rectangular sheet. Sound continues indefinitely with 

// unchanging spectrum. 
track 14: rectangle with some damping applied in top left corner. Most 

of the partials are affected. Only a few of the higher partials 
involving modes of vibration which do not touch the damped 

// region are allowed to continue. 
// track 15: rectangle damped at centre. A different set of partials are 

affected this time. 
track 16: rectangle damped along left hand edge. Once again affects virtually 

/1 all partials, leaving only a few higher ones ringing. 

lote: It is necessary in this case to apply two equal and opposite 
impulses to the instrument as no points on the instrument are 
locked and it would drift away from the zero position otherwise. 

Rectangle r: 
156 Hz, 200 Hz, 60 min; 

track 13 
//r. setdamping(left, 1/6,5/6, top, 0.07x); track 14 
//r. setdamping(5/12,7/12,5/12,7/12,0.07%); track 15 
//r. setdamping(left, 1/6, bottom, top, 0.01%); track 16 

Microphone m: undamped_rect, stereo; 

Score 15 secs: 
At start for 0.1 msecs: r(0.25,0.25). applyforce(5.0); 
At 0.2 msecs for 0.1 msecs: r(0.25,0.25). applyforce(-5.0); 

Every 0.01 secs: 
Display Time, newline; 

w. leftout: r(0.05,0.05); 
m. rightout: r(0.95,0.95); 

C. 7 An illustration of implied motion, acceleration, im- 

pact and decay 

Track 17 is a composite of two sounds which were created directly from TAO scripts. 

The first was produced by the `obstacle' technique described in section 6.7.3 and was 

subsequently reversed. Another percussive sound produced with a large rectangular 

sheet of material damped in one corner was then appended onto the end of the 

first. The sound builds up from nothing, gradually accelerated and becoming more 

agitated until a crescendo is reached, at which point the impact of the second sound 
is heard followed by a gradual decay. This sound illustrates the ability of TAO to 
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create sounds which strongly suggest motion, acceleration and a physical cause, at 
the same time as being abstract in nature. 

C. 8 A single bowed string 
//////////////////////////////////////////////////////////////////////////////// 

Script name: highbov. script track 18 

This sound is fairly synthetic in nature as the instrument only comprises 
// a single string but nevertheless illustrates the use of a virtual bow. The 
// way in which the bow's velocity and downward force change in the first few 

tenths of a second is quite critical for the kind of transients produced. 
// Things to experiment with include the maximum velocity of the bow, the 

force, and the amounts of damping at the ends of the string. Too little 
damping produces very noisy sounds whereas too much produces sounds which 

// are too periodic and thus not very interesting. Things to try include 
glueing one end of the string to some other instrument and taking output 
from this resonator instead of from the string. 

////////////////////////////////////////////////////////////////////////////// 
String sl: C8,5 sacs; ... 

sl. lockends; 
sl. setdamping(left 4/20,0.7%); 
al. setdamping(19/20, right, 0.7%); 

Microphone m: highboy, stereo; 

Parameter bovforce=1.0, bovvelocity; 
Parameter vibratodepth; 

Score 9 secs: 
From 0 secs to 2 secs: vibratodepth-linear(0,1/100); ... After 2 secs: vibratodepth-linear(1/100,0); ... 

si. vibrato(5 Hz, vibratodepth); 

At 0 sacs for 0.2 sacs: 
bowvelocity-expon(0.01,1.0); 

From 0.2 secs to 4 secs: 
bovvelocity-linear(1.0,5.0); 

From 4 secs to 8 secs: 
bowvelocity-linear(5.0,1.0); 

At 0 secs for 8 secs: 
sl(0.3). bow(bovforce, bovvelocity); 

m. leftout: sl(0.05); 
m. rightout: sl(0.95); 

Every 0.1 secs: 
Display "Time-", Time, newline; 

C. 9 A stringed instrument with pairs of strings bowed 

together 

This sound has been transposed down by a factor of 0.7256, equivalent to playing 

the samples back at 32 Khz instead of 44.1 Khz. 

//////////////////////////////////////////////////////////////////////////////// 
// Script name: bowreson. script track 19 
// 

This sound uses a stringed instrument with four strings and a rectangular 
// resonator to which they are glued. The resonator's dimensions were chosen 
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partly through experimentation and partly because a long thin rectangular 
// strip of material is not too computationally expensive. The strings are 

bowed in pairs with varying bow velocity but fixed bow force. The most 
// critical parameters in this script are the amounts of damping applied to 

the ends of the strings, the overall decay time of the resonator, the 
// maximum bow velocity, and the initial attack of the bow's velocity. 

String s1: 100 Hz, 10 secs; lockleft; ... String s2: 150 Hz, 10 secs; lockleft; ... String s3: 225 Hz, 10 secs; lockleft; ... String s4: 337.6 Hz, 10 secs; lockleft; ... 

Rectangle resonator: 1800 Hz. 160 Hz, 0.5 secs; 

Glue sl(right) to resonator(1/10,1/6); 
Glue e2(right) to resonator(1/10,2/6); 
Glue s3(right) to resonator(1/10,3/5); 
Glue s4(right) to resonator(1/10,4/5); 

resonator. locktop. lockbottom; 
resonator(1/2,1/2). mass=b0.0; 

sl. setdecay(1eft, 1/30,0.03 secs). display_at(0,50); 
s2. setdecay(left, 1/30,0.03 secs). display_at(0,100); 
s3. setdecay(left, 1/30,0.03 sacs) . display_at(0,150); 
s4. setdecay(left, 1/30.0.03 secs). display_at(0,200); 
sl. setdecay(29/30, right, 0.03 secs); 
s2. setdecay(29/30, right, 0.03 sacs); 
s3. setdecay(29/30, right, 0.03 sacs); 
s4. setdecay(29/30, right, 0.03 sacs); 

resonator. display-at (0,320); 
resonator. amplification-50.0; 
resonator. setdecay(left, 1/10, bottom, top, 0.03 secs); 

Parameter bovforce, bovveloc, maxbovveloc, bovposition; 
Parameter p; 

Microphone mic: bowtestb, stereo; 

Score 15 secs: 
Every 0.1 secs: 

Display "Time-", Time, nevline; 

At start: 
bowforce=1; 

At 0 secs: maxbovveloc=1; bovpositiono. 1; bovforce 1.0; ... 
// bow first pair of strings together 

At 0 secs for 3 secs: 
At start for 0.1 sacs: bovveloc=expon(0.01, aaxbovveloc); ... After start + 0.1 secs: bovveloc expon(maxbovveloc, 0.1); ... 
s3(bovposition). bov(bovforce, bovveloc); 
s4(bovposition). bov(bovforce, bovveloc); 

// bow second pair of strings together 

At 4 seta for 3 sets: 
At start for 0.1 secs: bovveloc-expon(0.01, waxbovveloc); ... After start + 0.1 secs: bovveloc=expon(maxbovveloc. 0.1); ... 
s2(bovposition). bov(bovforce. bovveloc); 
s3(bovposition). bov(bovforce, bovveloc); 

// bow second pair of strings together 

At 8 secs for 3 secs: 
At start for 0.1 secs: bovveloc. expon(0.01, maxbovveloc); ... After start + 0.1 secs: bovveloc=expon(maxbovveloc, 0.1); ... 
sl(bovposition). bov(bovtorce, bovveloc); 
s2(bovposition). bov(bovtorce, bovveloc); 

mic. leftout: resonator(1/3,19/20); 
mic. rightout: resonator(1/3,1/20); 
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C. 10 Sounds based on instruments with tuned circular 

components 

These sounds have all been transposed down by a factor of 0.3628, equivalent to 

playing the samples back at 16 KHz instead of 44.1 KHz. 

//////////////////////////////////////////////////////////////////////////////// 
Script name: circles. script tracks 20-25 

// This set of sounds were all produced with the same basic instrument 
// described in section 6.4 consisting of six tuned circular components 

'one', 'two', 'three', 'four', 'five' and 'six', linked together by 
// one-dimensional resonators 'links-12' which are in turn glued to two 

common one-dimensional resonators called 'resonatorl' and 'resonator2'. 
// Components 'linkl-6' each have one end glued to the centre of each circle 
// and the other glued to evenly spaced points on 'resonators', whilst 
// 'link7-12' each have one end glued near the top of each circle and the 

other glued to similarly spaced points on 'resonator2'. 

The sounds are created by striking each circular component but the precise 
score algorithm used requires some explanation. A continuous stream of 

// impacts are generated as if two objects were bouncing with over decreasing 
// height on the circular components. As soon as their height drops below a 
// certain threshold, they are taken up to a greater height and dropped again, 

repeating the whole process. A number of parameters are involved: 

x, y: the x and y position at which the impact will occur on the 
chosen circular component. These are set at the beginning of 
each impact. 

// force: the force exerted on the circular component chosen by the 
// bouncing object. This is set at the beginning of each stream 
// of bounces and is multiplied by 'factor' thereafter until 

the bouncing object has run out of energy at which point it 
is set to a new larger value again. 

// now: the time at which the next impact is due or the current impact 
started. Incremented by 'interval' at the end of each impact. 

interval: the time interval to the next impact. 
// factor: the factor by which both 'force' and 'interval' are multiplied 
// after each impact in order to simulate the impacts getting 

progressively closer together and weaker. 
// which: takes a value 1-6 and specifies which circular component the 

impact will occur with. 

Each of these parameters is actually an array of size 2 since there are 
// two identical objects performing accordin to the same algorithm. 

Circle one: C9,0.5 secs; lockperimeter; ... Circle two: DA9,0.6 secs; lockperimeter; ... Circle three: E9,0.5 secs; lockperimeter; ... Circle four: F#9,0.5 secs; lockperimeter; ... Circle five: Ab9,0.5 secs; lockperimeter; ... Circle six: A9,0.6 secs; lockperimeter; ... 
String links: 3000 Hz, 0.1 secs; display_at(50,300); ... String link2: 3000 Hz, 0.1 secs; display_at(100,300); ... String link3: 3000 Hz, 0.1 secs; display_at(150,300); ... String link4: 3000 Hz, 0.1 secs; display_at(200,300); ... String links: 3000 Hz, 0.1 secs; dicplay_at(250,300); ... String link6: 3000 Hz, 0.1 secs; display_at(300,300); ... 

String link7: 3000 Hz, 0.1 secs; display_at(50,300); ... String link8: 3000 Hz, 0.1 secs; display_at(100,300); ... String link9: 3000 Hz, 0.1 secs; dicplay_at(150,300); ... String linklO: 3000 Hz, 0.1 secs; display_at(200,300); ... String linkil: 3000 Hz, 0.1 secs; dicplay_at(250,300); ... String linkl2: 3000 Hz, 0.1 secs; display_at(300,300); ... 
String resonatorl: 200 Hz, 0.5 secs; display_at(50,400); ... String resonator2: 200 Hz, 0.5 secs; dicplay_at(50,400); ... 
Glue one(1/2,1/2) to linkl(left); 
Glue tvo(1/2,1/2) to link2(left); 
Glue three(1/2,1/2) to link3(left); 
Glue four(1/2, i/2) to link4(left); 
Glue five(1/2,1/2) to link5(left); 
Glue six(1/2,1/2) to link6(left); 

Glue one(1/2,1/10) to link7(left); 
Glue two(1/2,1/10) to link8(left); 
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Glue three(1/2,1/10) to link9(left); 
Glue four(1/2,1/10) to linklO(left); 
Glue five(1/2,1/10) to linkii(left); 
Glue six(1/2,1/10) to linkl2(left); 

Glue resonatorl(1/7) to linki(right); 
Glue resonatorl(2/7) to link2(right); 
Glue resonatorl(3/7) to link3(right); 
Glue resonatorl(4/7) to link4(right); 
Glue resonatorl(5/7) to link5(right); 
Glue resonatorl(6/7) to link6(right); 

Glue resonator2(1/7) to link7(right); 
Glue resonator2(2/7) to link8(right); 
Glue resonator2(3/7) to link9(right); 
Glue resonator2(4/7) to linklO(right); 
Glue resonator2(5/7) to linkll(right); 
Glue resonator2(6/7) to linkl2(right); 

resonatorl. setdamping(left, 0.05,5%); 
resonatorl. setdamping(0.95, right, 5%); 
resonator2. setdamping(1eft, 0.05,5%); 
resonator2. setdamping(0.95, right, 5%); 

Microphone micl: voodencirclesa, stereo; 
Microphone mic2: voodencirclesb, stereo; 

Parameter x[2] y[2], force[2], nov[2), interval[2], factor[2]; 
int i, vhich[2j; 

for (i=O; i<2; i++) 
{ 
now[i]=0 Seca; 
force[i]=random(50,100); 
interval[i]=random(100,300) msecs; 
factor[i]=1.0-1.0/random(5,20); 
} 

Score 20 seta: 
ControlRate 100: 

Display Time, nevline; 

Before 17 secs: 

At now[0] for 0.2 msecs: 
At start: 

x[0]=random(0.1,0.9); 
y[0]srandom(0.1,0.9); 
which [0]=randomi(1,6); 

At end: 
now[O] +u interval[O]; 
interval[0] "s factor[O]; 
force[0] "- factor[0]; 
If interval[0] < 10 msecs: 

interval [0]-random (100,300) msecs; 
factor [0]=1.0-1.0/random(b, 20); 
force [0]=random (50,100); 

If vhich[0]==1: one(x[0], y[0]). applyforce(force[0]); ... If which[0]==2: tvo(x[0], y[O]). applyforce(force[0]); ... If which[O]==3: three(x[0], Y[O]). applyforce(force[0]); ... If which[0]s-4: four(x[0], y[ 0]). applyforce(force[0]); ... If which[0]==5: five(x[0], Y[0]). applyforce(force[0]); ... If vhich[O]==6: six(x[0], yL0]). applyforce(force[0]); ... 

At now[1] for 0.2 msecs: 
At start: 

x[1]=random(0.1,0.9); 
y11]=random(0.1,0.9); 
which[1]=randomi(1,6); 

At end: 
now[1] += interval[1]; 
interval[s] += factor[1]; 
force Ei] += factor[1]; 
If interval[1] < 10 msecs: 

into rval[1]-random (100,300) msecs; 
factor [1]1.0-1.0/random(5,20); 
force [I]=random (50,100); 

C. Sound examples 
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If which[1]==1: one(x[1], y[1]). applyforce(force[1]); ... 
If which[1]==2: tvo(x[l], y[1]). applyforce(force[1]); ... 
If which[1]==3: three(x[i], y[I]). applyforce(force[1]); ... 
If which[1]==4: four(x[1], yll]). applyforce(force[1]); ... 
If which[1]==5: five(x[1]. y[1]). applyforce(force[1]); ... 
If which[1]==6: six(x[1], yl1]). applyforce(force[1]); ... 

mici. leftout: resonatorl(0.1); 
micl. rightout: resonatorl(0.9); 
mic2. leftout: resonator2(0.1); 
mic2. rightout: resonator2(0.9); 
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Appendix D 

Synthesis model implementation 

D. 1 Introduction 

This appendix describes how the synthesis engine is implemented. Instruments, 

microphones and cells are all implemented as object classes in C++, and whilst 

the implementation code itself can be found in appendix G, we concentrate here on 

the data structures used and on the member functions available within each class. 

This appendix serves, then, as a specification for the C++ library libtao. a which 

supports the TAO program. 

Many of the member functions described in the following sections will already be 

familiar to the reader since they have a one to one correspondence with TAO script 
features, whilst others are hidden from the user and are only used by the system 

itself. 

D. 2 Internal representation of cells, instruments and 

microphones 

D. 2.1 The Cell object class 

Figure D. 1 shows the data structure used to represent a single cell. The structure 

contains the cell's mass, position, velocity, force and damping coefficient and a set 

of pointers to its eight neighbours. The companion pointer is used when two cells 

are glued together, in which case each cell's companion pointer is used to point to 
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218 D. Synthesis model implementation 

position float 

velocity float 

force float 

mass float 

damping float 

mod. int 

companion pointer to Call object 

north pointer to Call object 

naast pointer to Call object 

east pointer to Coll object 

saast pointer to Call object 

south pointer to Call object 

avast pointer to Call object 

west pointer to Call object 

mast pointer to Coll object 

Figure D. 1: Cell class data structure 

the other cell. The mode variable holds information about the cell's general status 

such as whether it is locked, or glued to another cell. It is also used in the bowing 

model described in appendix F to determine whether the cell is currently sticking to 

the bow or slipping. Since each cell has its own mode variable, any number of bows 

can act simultaneously on different cells. 

D. 2.2 Internal representation of the cellular material 

3=ax iat 

off ist int 

cells pointer to Coll object 

Figure D. 2: Row data structure 

In order to describe the internal representation of a piece of cellular elastic material, 

another data structure, the Row structure, is introduced in figure D. 2. This structure 

is used to represent a single row of cells within a sheet of material or a string. It is 



D. 2 Internal representation of cells, instruments and microphones 

not an object class in itself and as such, has no member functions. 

a) 

C) 

---- 
b) 

ARRAY OF Row 
STRUCTURES 

xmax offset 

row 9 

row 8 

row 7 

row 6 

row 5 

row 4 

row 3 

row 2 

row 1 

row 0 

r""- 

U1Z34S67; 
'0 123456 .7 } 

ýD 12 
r_ ....... 

offset 

ARRAYS OF Cell 
OBJECTS 

Figure D. 3: Internal representation of a piece of material 
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Figure D. 3 uses the example of a circular sheet of material to illustrate the internal 

representation used. There are various levels of abstraction involved. From the 

user's point of view the material is continuous in nature, but the discrete nature of 

the model dictates that the circular shape can only be approximated as in (a). 

Moving down to the lowest level of abstraction shown in (c), we see that the material 
is actually represented as an array of Row structures, each representing an individual 

row of cells. Each Row structure contains a pointer to the array of cells and two other 

pieces of information, offset and xmax. xmax represents the index of the furthest 

cell to the right in any row and offset specifies how many cell positions each row 
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Izfra4uaacy I 
float 

yfr. gaancy 

max 

YM= 

dafault_d. cay 

dafault_damping 

rows 

grayhx 

graphy 

worldx 

Morldy 

n«t 

float 

int 

int 

float 

float 

pointer to stow swcture 
int 

int 

int 

int 

pointer to instrument object 

Figure D. 4: Instrument class data structure 

has to be shifted to the right in order to place it in the correct position relative to 

all the other rows. (b) serves to clarify the relationship between (a) and (c). 

D. 2.3 The Instrument object class 

Instruments are represented by the data structure shown in figure D. 4. The Cell 

and Row data structures are used to represent the elastic material itself but the 

Instrument object contains further information, giving a general description of the 
instrument. The purpose of each variable is described below: 

xfrequency and yfrequency represent the instrument's x and y frequencies as spec- 
ified in the orchestra declaration. They are measured in Hertz and determine the 

dimensions of the piece of material created. 

=ax and ymax represent the dimensions of the material, measured in cells. For 

example, for a piece of material 100 cells wide, and 50 cells high, regardless of shape, 
xmax=99 representing the index needed to access the right-most cell in the longest 

row, and ymax=49 indicating the index needed to access the top-most row of cells. 

default_decay represents the initial decay time given to the instrument, as speci- 
fied in the orchestra declaration, and default_damping is the equivalent damping 

coefficient given to every cell initially in order to achieve this decay time. 
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Instrument OBJECT 

xfrequency 

yfrequency 

rows 

-------------- 

ARRAY OF Cell OBJECTS 

ARRAY OF Row STRUCTURES 

3cmax 

offset 

cells 

Row STRUCTURE 

Cell OBJECT 

position 

velocity 

force 

mass 

damping 

" ... I------------I 

Figure D. 5: The hierarchy of data structures used to represent an instrument 

graphx and graphy are used in the present implementation to place the graphical 

representation of the instrument at a specified location in the graphics window, if 

graphics mode is on. 

worldx and worldy have a similar function but allow instruments to be placed graph- 

ically relative to one another using cells as the coordinate system. In this coordinate 

system the x axis runs horizontally but the y axis is slightly off the vertical, as if it 

were running back into the computer screen. This gives a rudimentary sense of depth 

to the graphical instrument animations as can be seen from most of the instrument 

examples presented in this thesis. The amount of `skewing' is determined by the 

variable skewf actor, declared in the file main. cc. Whenever two instruments are 

joined together the second instrument has its worldx and worldy variables altered 

so as to place it in the correct position relative to the first. This only works for 

straightforward joins though e. g. left to right, bottom to top etc. Joining the left 

side of one instrument to the left side of another might leave them overlapping in 

the graphics window. 

The next pointer points at the next instrument in a globally maintained linked list 



222 D. Synthesis model implementation 

w j+1 

)w j 

)w j-1 

Figure D. 6: A cell's pointers to its neighbours 

of, all the instruments created within a script. This linked list is traversed from 

head to tail on each time step of the synthesis model, updating each instrument 

encountered along the way. Note that the order in which instruments are stored in 

this list, and hence updated, does not matter, even when several instruments are 

coupled together by glueing and joining. 

Figure D. 5 shows how all the objects and structures introduced so far are combined 

in practice, following the hierarchy of structures from the Instrument object down 

through the array of Row's to a single Row structure, and then via its associated array 

of Cell objects down to a single Cell. This internal representation makes random 

access to a single cell anywhere within an instrument a simple matter. 

In addition to this random access capability, since each cell maintains a set of pointers 

to its neighbours it is possible to move about the surface of the material in a relative 

cell i-1 cell i cell i+l 
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fashion. This also works when a join between two instruments is encountered, since 

all that the joining algorithm does is to install new springs between the instruments 

by redirecting the pointers along the edges of the two pieces of material. Figure D. 6 

illustrates the arrangement of pointers for a single cell. 

D. 2.4 The Microphone object class 

Microphone OBJECT 

source enum (from_colls, from_expressions) 

index int 

num_chaanels int 

next pointer to Microphone object 

filename pointer to char 

outputfils pointer to FILE 

leftsource pointer to Cell object 

rightsource pointer to Cell object 
ARRAY OF N SOUN S 

leftsample float 
D AMPLES 

INTERLEAVED UR IF STEREO 
rightsample float 

_ 
buffer 

pointer to float ......... 

Figure D. 7: Microphone class data structure 

Figure D. 7 shows the internal representation of a microphone. In the present im- 

plementation only mono and stereo microphones are supported but this situation 

could be easily changed to produce soundfiles with arbitrary numbers of channels. 

The data structure would have to be modified in order to provide arbitrary storage 

space for interleaved sound samples depending on the number of channels. 

The Microphone object contains a pointer, filename, to the name of the file to 

which the sound samples are to be sent and a pointer, outfile, to the file itself. 

Since there are two different types of microphones, those which have their sound 

sources specified when the microphone is declared, and those which take their sound 

samples from arbitrary mathematical expressions in the score, there are four other 

variables leftsource, rightsource, leftsample and rightsample. leftsource 

and rightsource are used for microphones with static sound sources and point to the 

cells from which the output will be taken. leftsample and rightsample are used to 
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temporarily store samples generated by the leftout and rightout messages, ready 
for writing to the microphone's output buffer pointed to by the variable buffer. For 

monophonic microphones, only leftsource or lettsample are used. The samples 

are written to the output buffer until it fills up, at which point the entire contents 

of the buffer are written to the file pointed to by outputfile. Sound samples are 

interleaved left, right if output is in stereo. Once the buffer is emptied, index is set 

to zero again. 

D. 2.5 Implementation of the Glue facility 

Figure D. 8 illustrates how Glue facility first described in section 4.3 is implemented. 

In (a) the two cells chosen for glueing are highlighted. Each cell has its companion 

pointer redirected to point at the other cell. In addition, the first cell's mode variable 

is given the #define'd value CELL-MASTER-MODE, to indicate that it is to act as the 

master cell whilst the second cell's mode variable is given the value CELL-SLAVE-MODE, 

making it the slave cell. 

The forces acting upon each cell in an instrument are calculated by the Instrument 

member function calculate. my_forcesO. When this function encounters the mas- 

ter cell it treats the slave cell's neighbours as if they belonged to the master cell and 

calculates the total force acting on the master cell due to both cell's neighbours. 

When the Instrument member function update-my. position() subsequently up- 

dates all the cell positions and velocities in an instrument and encounters the master 

cell, the newly calculated position and velocity are simply copied to the slave cell. 

The slave cell has no part to play in the actual cellular update rules and simply 
follows the master cell's movements. 

D. 2.6 Implementation of the Join facility 

Joining causes two nominated sides of two instruments to be `sewn' together with 

newly created springs. The information required by the join algorithm is explained 

in detail in sections 5.4.7 and B. 9 but to recap briefly, four coordinates x1, x2, yl 

and y2 are given. Either the two x coordinates or the two y coordinates are used 

to specify the sides of the instruments to be joined in which case the remaining 

coordinates are used to specify a centre line which has the effect of lining up two 

points on the respective edges of the two instruments. 
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a) 

b) 

Figure D. 8: Implementation of glueing 
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a) 

b) 
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D. Synthesis model implementation 
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Figure D. 9: Joining two pieces of material together 
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AAB 

neast awest 

east west 

Beast 40- -0 sweat 

...... .... ... 

................ 
Joining of cells proceeding 

in an upwardly or downwardly 
direction 

Figure D. 10: The general case of joining two facing cells anywhere along the 

seam 

Figure D. 9 illustrates how two instruments, A and B, are joined in practice. In (a) 

we see the individual cells and existing springs, and the two cells specified by the 

centre line are highlighted. The process of joining starts at these cells and migrates 

in one direction first, sewing the cells together until a boundary is reached on one 

of the instruments. This process then starts from the centre line again and migrates 

in the opposite direction until another boundary is encountered as in (b). 

Figure D. 10 shows what happens at the microscopic scale. As the process of joining 

migrates up or down the material, each pair of facing cells have their (previously 

null) neighbour pointers redirected. This process continues until the migration can 
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Joining of cells proceeding B 
in an upwardly direction 
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Figure D. 11: Special case 1- joining cells at the northern boundary 

proceed no further. At either end of the join where a boundary is encountered on one 

of the instruments a special case occurs. Returning for a moment to figure D. 9a we 

can see why. At either end of the join there is one extra spring which extends slightly 
beyond the boundary which caused the joining process to stop. Since a spring is 

implemented as two reciprocal pointers between two cells, it is important to ensure 
that both pointers are properly redirected. The two special cases, occurring at the 

northern boundary of instrument A and at the southern boundary of instrument B 

respectively, are described below. 

Figure D. 11 shows, in detail, what happens at the top of the join depicted in figure 
D. 9. Cell 1 lies at the northern edge of instrument A. Cell 3 lies just beyond this 
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boundary on instrument B and this cell must have its surest pointer redirected to 

cell 1 to match up with the corresponding pointer coming from that cell. This is 

achieved indirectly via cell 2's north pointer. 

A 

avast r 
This link must 
be followed in esst 

order to ensure Beast 0 

that cell 2 is south 
properly linked 
to cell 3 

avast ý 

east 0 

Beast 0 
I. 

2 

A. N 

B 

............... r.... 

awsst 

ýveýt 

imsst 

3 

Joining of cells proceeding in 

a downwardly direction 

Figure D. 12: Special case 2- joining cells at the southern boundary 

Similarly, for the second special case shown in figure D. 12, cell 2 lies just beyond 

the southern boundary of instrument B and this cell must have its neast pointer 

redirected to cell 3. Once again this is achieved indirectly via cell 1's south pointer. 

It is vital to ensure that every pointer which a cell has to a neighbouring cell is 

matched by a reciprocal pointer coming from that neighbouring cell. Failing to do 

this leads to a kind of one-way spring which continually introduces energy into the 

instrument, leading to exponential growth in the amplitude of vibrations. 
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D. 3 List of functions 

D. Synthesis model implementation 

We now turn to a comprehensive list of the functions and operators provided by 

the library libtao. a which the TAO computer music program is based upon. Each 

function synopsis specifies what part the function has to play and the file in which it 

can be found. If a more detailed account of any function is required, the reader can 

refer to appendix G which contains a complete listing of the implementation code. 

It should be possible after reading this appendix to write a C++ program utilising 

the various TAO objects and functions by compiling and linking it with the library 

libtao. a. 

The functions and operators are divided into the following categories: 

" Functions and operators for interaction with cells. 

" Functions used in the creation of instruments. 

" Functions and operators for accessing points on an instrument. 

" Functions used in locking and damping parts of an instrument. 

" Functions for glueing and joining pieces of material. 

" Graphics related functions. 

" Functions used in the creation of microphones. 

" Functions used to send sound samples to a microphone. 

" System functions for animating instruments. 

* System functions for updating microphones. 

" System functions which drive the whole synthesis engine and the graphics. 

" Other global functions. 
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11 applyforce(float F) 11 

Cell. cc 
Applies a force F to a cell and also applies smaller sympathetic forces to the cells 
immediate neighbours. This prevents an irritating mode of vibration which some- 

times occurs when a sharp impulse is applied to a single cell resulting in alternate 

cells vibrating up and down 180 degrees out of phase. This can be heard as a 
distinctive high pitched whistle in the sounds produced and occurs because the 

material has no stiffness. 

11 bow(float f -bow, float v -bow) 
11 

Cell. cc 

Simulates the interaction of a virtual bow with a cell, based on frictional sticking 

and slipping. The algorithm used is explained in appendix F. f bow is the normal 
force exerted by the bow on the instrument and v bow is its velocity. 

lock() 

Cell. h 

Forces a cell to remain fixed in the position it is in when the function is called. It 

does so by changing the cell's mode variable. 

operator float O ) 

Cell. h 

When an object of class Cell appears in an expression expecting a numerical value, 

this operator automatically returns the value of the cell's position variable. This 

is most often used in microphone output statements where we can just specify the 

points on the various instruments we wish the output samples to be taken from 

rather than having to type instrl(x, y) position each time. 
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D. 3.2 Functions used in the creation of instruments 

String(float freq, float decay) 

Circle(float freq, float decay) 

Rectangle(float xfreq, float yfreq, float decay) 

Triangle(float xfreq, float gfreq, float decay) 

Ellipse(float xfreq, float yfreq, float decay) 

String. cc, Circle. cc, Rectangle. cc, Triangle. cc, Ellipse. cc 

Classes String, Circle, Rectangle, Triangle and Ellipse are derived classes of 

base class Instrument. Each class has its own constructor function which, because 

of the inheritance mechanism provided by C++, invokes the Instrument construc- 

tor function first. This function creates a basic skeleton of a data structure which 

contains information common to all instruments. The more specific constructor 

functions provided by each derived class know how to create pieces of material of 

the appropriate shapes. 

Once the rows of cells have been created they are linked together with springs 

by the Instrument member function link-cells(). The cells are all initialised 

by the Instrument member function initialise-cells(). Finally each newly 

created instrument is placed at the end of a global linked list using the member 

function add to-global_listO. These functions are listed below. 

11 Instrument(float xfreq, float yfreq, float decay) 11 

Instrument. cc 
Creates an Instrument object which holds all the information common to all in- 

strument shapes. This function has to rely on the String, Circle, Rectangle, 

Triangle and Ellipse constructor functions to actually create a piece of material 

of the correct shape and size. xfreq, yf req and decay represent the frequency, 

in Hertz, of the instrument in the x and y directions and an initial uniform decay 

time measured in seconds. For a string yfreq=0. 

hertz2cells (float freq) 

Instrurnent. h 

Static member function used to convert the argument f req measured in hertz into a 

numerical value representing the number of cells required to achieve that frequency. 
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11 decay2damping(float decay), 11 

Instrument. h 

Static member function used to convert the argument decay measured in seconds 
into a numerical value which, when written to a cell's damping variable, causes 

the cell's vibrations to die away with the correct decay time. Note that if the 

surrounding cells have totally different damping values, then the decay time will 

not be as expected. 

initialise-cells( 

Instrument. cc 
Sets the velocities, positions and forces of all cells to zero, sets all neighbour pointers 

to NULL and sets the mode of each cell to a default value. Since the frequency of an 
instrument is given as a real number measured in Hertz, but the material is discrete 

in nature, once the width and height of the instrument, measured in numbers of 

cells, have been determined, the masses of all the cells have to be slightly adjusted 
from the default mass in order to adjust the frequency to the originally specified 

value. The compensation is calculated such that the instrument ends up with the 

correct x frequency since a string which is out of tune is more of a problem than 

an inharmonic two-dimensional instrument with a slight error in the y frequency. 

link_cellsC) 

Instrument. cc 

Works its way through the rows of cells in a newly created piece of material linking 

neighbouring cells together with springs. Works for any shape of material. 

add to.. globallist() 

Instrument. h 

Adds a newly created instrument to the global linked list maintained by TAO. 

f-ý 
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D. 3.3 Functions and operators for accessing points on an instru- 
ment 

11 operator: (float x, float y) 11 

Instrument. cc 
When placed immediately after an identifier of class Instrument this operator 

selects and returns a reference to the cell at position (x, y). For an explanation of 

the coordinate system used see section 5.4.8. Also has the side effect of placing a 
blue marker on the graphics screen, if the graphics are turned on, to mark the cell 

accessed. 

11 operator: (float x) 11 
11 Instrument. cc 

11 

Exactly the same as operator (float x, float y) but intended for one dimen- 

sional instruments where only the x coordinate need be specified. 

11 at(float x, float y) 11 
Instrument. cc 

Exactly the same as for operator (float x, float y) in that it selects and returns 

a reference to the cell specified by the instrument coordinates x and y except it 

doesn't affect the graphics display. 

D. 3.4 Functions used in locking and damping parts of an instru- 
ment 

11 setdamping(float x1, float x2, ýfloat yl, float y2, float damping) 11 

Instrument. cc 
Sets the damping value of each cell to the value damping over the region specified. 
See section 5.4.4 for an explanation of the coordinate system used. Returns a 

reference to the cell for whom the function was invoked via the C++ special variable 

this. This mechanism allows messages to be strung together seperated by periods. 
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11 setdamping(float left, float right, float damping) 11 

Instrument. cc 
Version for one dimensional instruments where only the left and right endpoints 

of the damped region need be specified. Coordinates are still normalised to be 

between zero and one. Returns a reference to the cell for whom the function was 
invoked. 

11 setdamping(float position, float damping) 11 

Instrument. cc 
Version for one dimensional instruments which only allows the damping to be set 

at a single point, not over a region. Returns a reference to the cell for whom the 

function was invoked. 

11 setdamping(float damping) 11 

Instrument-cc 

Sets the damping value of every cell within an instrument to damping Returns a 

reference to the cell for whom the function was invoked. 

resetdamping(float xi, float x2, float yl, float y2) 

resetdamping(float left, float right) 

resetdamping(float position) 

resetdamping() 

Instrument. cc 

Equivalent to the setdamping family of functions above, but reset the damping 

value back to the value default_damping which was set when the instrument was 

created. All four functions return a reference to the cell for whom they were 
invoked. 
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setdamping(float xi, float x2, float yl, float y2, float decay) 

setdamping(float left, float right, float decay) 

setdamping(float decay) 

Instrument. cc 
Equivalent to the setdamping family of functions above, but set the damping value 

in terms of a decay time measured in seconds. The instrument will have the correct 

decay time if all cells are damped with these functions, but if a smaller, local region 

is damped, the effect is not as predictable. All four functions return a reference to 

the cell for whom the function was invoked. 

resetdecay(float xi, float x2, float yl, float y2) 

resetdecay(float left, float right) 

resetdecay() 

Instrument. cc 

Equivalent to the resetdamping family of functions above, included only for con- 

sistency and compatibility. All return a reference to the cell for whom the function 

was invoked. 

lock(float x, float y) 

Instrument. cc 

Locks a single cell at location (x, y) on an instrument and returns a reference to 

the cell for whom the function was invoked. 11 

11 lock(float xi, float x2, float yl, float y2) 11 

Instrument. cc 
Locks a rectangular region. Similar to setdamping(xl, x2, yl, y2, ... ) in the 

coordinate system used to specify the region. See section 5.4.4 for an explanation. 
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lockleft(), lockright(), locktop(), lockbottom() 

lockcorners(), lockperimeter(), lockends() 

Instrurnent. cc 
lockleft, lockright, locktop and lockbottom are all straightforward for a rect- 

angular sheet, locking whole sides at a time. For other shapes of material only the 

furthest cells west, east, north or south are locked. lockcorners() only makes 

sense for rectangular and triangular instruments and lockends() is designed for 

use with strings. All return a reference to the cell for whom they were invoked. 

D. 3.5 Functions for glueing and joining pieces of material 

glue(Instrument &il, float xl, float y1, Instrument &i2, float x2, float y2) 

glue(Instrument &ii, float xl, float g1, Instrument &i2, float x2) 

glue(Instrument &ii, float xl, Instrument &i2, float x2, float y2) 

glue(Instrument &il, float x1, Instrument &i2, float x2) 

Instrument. cc 
Given two instruments and sets of coordinates specifying two cells, glues those two 

cells and their corresponding neighbours together. Glueing single cells together 

sometimes leads to unstable properties since the material has no stiffness as such. 
All of these functions return a reference to the cell for whom they are invoked. 

glue_cells(Cell *cl, Cell *c2) 

Instrument. cc 

Given pointers to two cells, glues the cells together. 
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11 join(Instrument &il, float xi, float yi, 

Instrument &12, float x2, float y2) 

11 

Instrument. cc 

Joins two pieces of material with straight edges by effectively installing a new set 

of springs to sew the two instruments together so that they act as one. There are 

eight different cases: 

if xt=0: if x2=0: join the left of ii to the left of i2 

if x2=1: join the left of ii to the right of i2 

if x1=1: if x2=0: join the right of ii to the left of i2 

if x2=1: join the right of ii to the right of i2 

if yl=0: if y2=0: join the bottom of ii to the bottom of i2 

if y2=1: join the bottom of ii to the top of i2 

if yl=1: if y2=0: join the top of ii to the bottom of i2 

if y2=1: join the top of ii to the top of i2 

If the join runs north to south then yl and y2 are used to specify two points on the 

respective edges to be joined which will be lined up. In effect they define a centre 
line which specifies where the joining is to begin. If the join runs east to west then 

xi and x2 are used to specify the centre line for joining. x1, x2, yl and y2 are all 

specified as instrument coordinates. Fora more detailed explanation of the join 

parameters see sections 5.4.7 and B. 9 Note that ii and i2 can refer to the same 
instrument making it possible to construct cylindrical and toroidal instruments 

from a rectangular sheet. This function relies on the functions described below. 
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joinleft toseft(Cell &celll, Cell &cell2) 

joinleft_tosight(Cell &celll, Cell &cell2) 

J oinsight toseft (Cell &cell l, Cell &cell2) 

join-right-to-right (Cell &celli, Cell &cell2) 

join bottom to bottom(Cell &celll, Cell &ce112) 

joinbottom to top(Cell &celll, Cell &cell2)- 

join top to bottom(Cell &celll, Cell &cell2) 

join_top to_top(Cell &celli, Cell &cell2) 

Instrument. cc 
All of these functions join two pieces of material with straight edges by installing 

a new set of springs, effectively `sewing' them together so that they act as one. 
Joining starts at the two cells specified and migrates along the edges of the two 

pieces of material in one direction until a boundary is reached. The joining process 
then recommences from the starting cells, and migrates in the opposite direction. 

For a more detailed explanation of the algorithm used, see section D. 2.6. 

D. 3.6 Graphics related functions 

display() 

Instrument. cc 
Displays the instrument in the graphics window at a position determined by the 

Instrument member variables worldx, worldy, graphx & graphy, and the global 

variables winoriginx & winoriginy. Uses external functions from SGI graphics 
library gl-s: 

bgnline(), endline(), v2s(): 

begin line and end line and vertex functions. see <gl. h> 

color(): sets graphics colour. BLACK, WHITE, CYAN, MAGENTA, BLUE, GREEN 

YELLOW and RED allowed. 
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display-at () 

Instrument. h 

Sets the screen x and y coordinates at which the bottom left of an instrument 

will be displayed in the graphics window. Note that the exact position of the 

instrument is also affected by the global variables winoriginx, winoriginy and 

the Instrument member variables worldx and worldy. 

place-at () 

Instrument. h 

Sets the world x and y coordinates of the instrument. World coordinates are 

measured in cells and this function is used by the system when two instruments 

are joined in order to place the second in the correct world position relative to the 

first. Note that the two instruments joined must have the same values for graphx 

and graphy or they won't appear in the correct relative positions in the graphics 

window. 

I- 
screenx(float x, float y) 

11 

Instrument. cc 

Returns the current screen x coordinate of the cell specified by the instrument 

coordinates x and y. 

11 screeny(float x, float y) 11 

Instrument. cc 

Returns the current screen y coordinate of the cell specified by the instrument 

coordinates x and y. 
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label(float x, float y, int xoffset, int yoffset, 

char *caption, int colour) 

Instrument. cc 
Displays the text string caption in the graphics window. at a position determined 

by the instrument coordinates x and y. If the cell specified is displayed at screen 

coordinates (x, y) then the caption will be placed at (x+xoffset, y+yoffset). 

The caption is displayed in the specified colour where colour is one of RED, GREEN, 

BLUE, YELLOW, MAGENTA, CYAN or BLACK, which are #def ine'd constants from header 

file <gl. h>. 

label(float x, int xoffset, int yoffset, 

char *caption, int colour) 

Instrument. cc 
11 Version of the label function given above for use with strings. 11 

graphics_init U 

matn. cc 

Initialises graphics system, opens a window entitled `TAO graphical output'. Sets 

doublebuffer mode for animation and clears the screen to white. 
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update$raphics 0 

ma: n. cc 

This function deals with everything associated with the graphics window, save 

actually drawing the instruments. There are a number of mouse functions provided. 

Holding the left mouse button down and moving the mouse in the graphics window 

causes the whole graphics image be dragged about. Holding the left mouse 

button down and pressing the middle mouse button causes the global variable 

graphics-update-step to be multiplied by a factor of five. The graphics window 

is updated on every graphics-update-step'th time step of the synthesis engine. 

If graphics-update. step=500 then it becomes 1 again. Holding the left mouse 

button down and pressing the right mouse button causes graphics-update-step 

to be divided by a factor of 5. If it is already 1 then the animation is frozen until 

the left mouse button is held and the right mouse button is pressed again. 

Elapsed time in seconds since beginning of performance is displayed at bottom left 

of the graphics window. External functions used include getsize(), origin(), 

cmov2i(), color(), charstr(), getbutton() all of which are provided in the SGI 

graphics library and declared in <gl. h>. For more information see the appropriate 

IRIX 5.3 manual pages. 

D. 3.7 Functions used in the creation of microphones 

11 Microphone(const char *soundfilename, int channels) 11 

Microphone. cc 
Creates a microphone object whose sound samples will be sent to a file called 
/var/tmp/<name>. tao. The microphone writes channels channels of output (1 or 
2 in the present implementation). No decision is made at declaration time about 
the actual sources for the sound samples. This is left to be determined by the 

member functions leftout() & rightout() described in file Microphone. h, and 

update(), described below. In practice leftout() and rightout() are usually 
invoked within the score part of a TAO script. 
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11 Microphone(const char *sfname, Cell &l, Cell &r) 11 

Microphone. cc 
Similar to the above function except that sound sources are given at declaration 

time in the form of two references to cells 1 amd r. This automatically determines 

that num_channels=2. 

Microphone(const char *sfname, Cell &c) 

Alicrophone. cc 

Mono version of constructor function described above. num_channels=l 

11 add_to., globalsist () 11 

Microphone. cc 
Adds a newly created microphone to the global list maintained by TAO. Note that 

microphones and instruments are stored in separate linked lists. 

setleft(Cell &1) 

setright(Cell &1) 

Microphone. h 

These functions are used for microphones with static sound sources and set the left 

and right sources respectively to the cells referenced by 1 and r. 

D. 3.8 Functions used to send sound samples to a microphone 

leftout(float value) 

rightout(float value) 

Alicrophone. h 

These functions simply write the numerical values specified into the Microphone 

member variables leftsample and rightsample respectively, ready for writing to 

the microphone's output buffer. 

II output (float value) 11 

Alicrophone. h 

This function writes the numerical value specified into the Microphone member 
variable leftsample, ready for writing to the microphone's output buffer. 
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D. 3.9 System functions for animating instruments 

calculate-my-forces () 

Instrument. cc 
Starts at the bottom left of an instrument and works its way from left to right 

along each row of cells and then up each row until the top right of the instrument is 

reached. Calculates the total force acting on each cell due to the springs connecting 
it to its neighbours. If the cell is a master cell it treats the slave cell's neighbours 

as its own in order to calculate the combined force acting on both cells. If it is a 

slave cell then no calculations are made. 

II update-ay position() II 

Instrument. cc 
Starts at the bottom left of an instrument and works its way from left to right 

along each row of cells and then up each row until the top right of the instrument 

is reached. The force acting upon each cell is used to calculate the cell's accelera- 

tion, new velocity and new position. Also multiplies the new velocity by the cell's 
damping value (between 0 and 1). This value is converted from the percentage 

value given in a TAO script. 100% gives a damping value of zero and 0% gives a 

value of one. If the cell is a master cell, then the newly calculated force, velocity 

and position are copied to the slave cell. 

D. 3.10 - System functions for updating microphones 

update() 

Microphone. cc 
Causes sound samples to be written to the microphone's sample buffer. If the buffer 

is full then its entire contents are written to the output file stream outputfile, 

and index is reset to zero. Otherwise index is incremented by num_channels. If 

the Microphone member variable source has the value from_cells, then the sam- 

ples are taken directly from the cells pointed to by leftsource and rightsource 

or just leftsource for a mono microphone. However, if source has the value 
from_expressions, then the samples are taken from the values of leftsample and 

rightsample or just leftsample for a mono microphone. 



D. 3 List of functions 245 

update all() 

Microphone. cc 
Starts at, the head of the linked list of microphones and updates each one in turn 

by invoking the member function update 0. 

D. 3.11 System functions which drive the whole synthesis engine 
and the graphics 

calculate. Iorces() 

update-positions o 

display... all() 

Instrument. cc 
Each one of these functions scans the linked list of instruments and invokes 

the appropriate member function for each instrument in the list. For example 

calculateiorces causes calculate-my-forces to be invoked for each instrument 

etc. 

main() 

main. cc 

The user compiles a TAO script called example. script by typing: 

tao example 

which causes the script to be translated into an intermediate form stored in the 

file tao-scriptfile. This is #include'd into the main function, and once further 

processed by the C++ preprocessor, becomes a fragment of compilable C++ code. 

The user's instrument, microphone and parameter declarations translate directly 

into C++ variable declarations, and other TAO language features such as the 

score control structures, screen output, mathematical expressions etc. translate 

into equivalent C++ language features. Once the C++ preprocessor has finished 

its translation, the file main. cc is compiled, producing an executable with the 

same name as the script but with a. exe suffix. Following the example above, the 

executable produced would be called example. exe. 
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D. Synthesis model implementation 

randomi(int low, int high) 

main. cc 

Returns a random integer between low and high inclusive. 

random(float low, float high) 

main. cc 

Returns a random floating point number between low and high inclusive. 

pitch(float value) 

main. cc 

Takes a decimal value of the form <octave>. <semitone> and returns a frequency 

in Hertz. For example: 

pitch(8.00) = 261.6 Hz or middle C. 

pitch(8.01) the frequency of C sharp above middle C. 

pitch(8.09) = 440 Hz or A above middle C. 

pitch(6.03) = the frequency of Eb in the second octave 
below middle C. 

pitch(8.06333) = the frequency of FO + 1/3 of a semitone 

in middle C octave. 
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pitch(const char *note) 

I main. cc 

Takes a string of characters representing a note name and returns a frequency in 

Hertz. For example: 

pitch("C8") = 261.6 Hz or middle C. 

pitch("C#8") the frequency of C sharp above middle C. 

pitch("A8") 440 Hz or A above middle C. 

pitch("Eb6") = the frequency of Eb in the second octave 

below middle C. 

pitch("F#8+1/3") = the frequency of FO + 1/3 of a semitone 

in middle C octave. 
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Appendix E 

Script language implementation 

The objects and functions described in appendix D are built into the library libtao. a. 

In theory, any synthesis scenario which can be described in a TAO script could also 

be described as a C++ program, making use of this library. In fact, compiling a 

TAO script leads to the automatic generation of such a program. All the details of 

the compilation and linking of this program are hidden from the user. 

In order for this process to occur, the script must first be translated into an ap- 

propriate fragment of C++ code dealing with Instrument, Microphone and Cell 

objects. The details of this translation process are described in this appendix. 

In practice, the translation process is carried out partly by the Unix sed command 

(stream editor) which matches quite complicated patterns of characters in an input 

stream and allows them to be replaced with other patterns of characters. The com- 

mand is fairly low level in its nature and would not be used in a proper distribution 

version of TAO, but it serves its purpose for the current prototype. The translation 

of a TAO script requires several sed scripts which are listed in section G. 3. 

The output from these sod scripts only partially translates the TAO script. This par- 

tially translated version is stored in a file called tao_scriptfile which is #include'd 

into the main function, where it is further processed by the C++ preprocessor via 

a set of #def ine'd macros in the file main. cc. Apart from a straight translation of 
TAO script features into C++ language features, extra C++ code has to be added 
to the automatically generated source code in order to drive the synthesis engine and 

249 
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provide some of the more subtle score features such as the start and end variables 

and their associated scoping facility, described in section 5.5.2. 

E. 1 Translating Instrument, Microphone and Parameter 

declarations 

The orchestra part of a TAO script bears a simple one to one relationship with 
its C++ equivalent. The Instrument, Microphone and Parameter declarations 

correspond to declarations of C++ variables of type Instrument, Microphone and 
float. The following examples illustrate the precise translation which occurs: 

TAO: Circle circlel: f Hz, t secs; ... 

4 

C++: Circle circlet (f 
. t) ; 

Similarly: 

TAO: Microphone micl: filename, stereo; 

4 
C++: Microphone micl("filename", 2); 

Parameter declarations are even simpler to translate and only involve replacing the 

keyword Parameter with the C++ keyword float. 

E. 2 Translating instrument messages 

Many of the instrument messages are only superficially different in syntax from the 

actual C++ member functions used to implement them. Messages such as lockleft, 

lockright, lockbottom, locktop, lockperimeter, lockends and lockcorners re- 

quire no arguments in a'TAO script but the corresponding C++ member function 

do require an empty set of brackets after the function name: 

TAO: C++: 

lockleft lockleft() 
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lockright #1 lockright() 
lockbottom lockbottom() 
locktop locktop() 
etc. 

The setdamping family of messages which TAO provides specify the damping coef- 
ficient as a percentage. In practice though, the damping value stored in each cell, 
D, is related to this percentage, d, by the formula D=1- d/100, leading to the 

following translation: 

TAO: setdamping(xl, x2, yl, y2, d%) 

ü 

C++: setdamping(xl, x2, yl, y2,1.0-d/100.0) 

E. 3 Translating microphone messages 

The microphone messages output, leftout and rightout are translated as follows: 

TAO: output : sample; 
leftout: lsample; 

rightout: rsample; 

4 
C++: output (sample) ; 

leftout (lsample) ; 
rightout (rsample) ; 

E. 4 Translating positional and time nomenclature 

The keywords left, right, bottom and top are simply translated into numerical 

constants: 

TAO: C++: 

left 0.0 
right 1.0 
bottom 0.0 
top 1.0 
centre 0.5 
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The keywords secs, msecs and min are translated into multiplications or divisions 

by the appropriate factors: 

n secs n*1.0 
n msecs n/1000.0 
n min n*60.0 

E. 5 Translating the score 

The task of translating the score is slightly more complicated, but at a basic level 

consists of translating TAO control structures into appropriate C++ if statements. 

The Score control structure itself is translated into a for loop which iteratively 

updates the synthesis engine an appropriate number of times in order to generate the 

correct number of samples specified by the score duration. The statements contained 

in the body of the score are executed from top to bottom on each iteration and the 

set of if statements serve to enable the body of each control structure only at the 

correct times. A variable called Sample keeps track of the number of time steps 

elapsed. 

The C++ program generated by the compilation of a TAO script must also include 

all the appropriate code to drive the synthesis engine. More specifically this includes 

code for: 

" traversing the linked list of instruments and calculating the internal forces 

acting upon the cells of each; 

" traversing the linked list again in order to update the positions and velocities 

of all the cells; 

" traversing the linked list of microphones and updating each, writing the con- 

tents of the microphone's sample buffer to the designated output file if the 

buffer is full; 

" generating the graphics images; 

" detecting mouse movement and button presses and acting accordingly; 

" updating the value of the variable Time. 
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All of this extra house-keeping code is packed into the for statement itself as we 

shall see in the complete script translation example given at the end of this appendix. 

E. 5.1 Translating the score control structures 

The score control structures are translated in a number of intermediate stages. The 

following examples show the first stage of translation for the various control struc- 

tures: 

TAO: From x secs to y secs: 
body 

4 

C++: If (Sample >= (long)(x * modelrate) 
&& Sample <_ (long)(y * modelrate)) 
{ 
body 
} 

This if statement enables the instructions to be executed on every time step from 

x seconds up to and including y seconds. Similarly for an At .. for block the 

translation is: - 

TAO: At x secs for y secs: 
body 

4 
C++: If (Sample >= (long)(x * modelrate) 

&& Sample <= (long)((x+y) * modelrate)) 
{ 
body 
} 

For the Every and ControlRate structures the translation proceeds as follows: - 

TAO: Every x secs: 
body 
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C++: If (Sample '/. (x * modelrate)==0) 
{ 

body 
} 

TAO: ControlRate x: 
body 

4 

C++: If (Sample %x == 0) 
{ 
body 
} 

E. 5.2 Adding code to update the values of start and end 

The special variables start and end described in section 5.5.2 are actually ordinary 
C++ floating point variables, but in order that their values are updated throughout 

the score, when entering and leaving the scope of control structures, two stacks 

startstackQ and endstackp are used. The extra code needed to push and pop 

start and end times on and off these two stacks is added by the system at the 

beginning and end of every control structure's body. 

Since if statements form the basis of all the TAO control structures, there must 

also be some mechanism for transmitting the start and end times tested for in the 

head of each if statement to the instructions contained in the body. This is achieved 

with two further variables START and END. For example: 

TAO: At x secs for y secs: 
body 

translates first to: 

C++: if (Sample >_ (long) (x * modelrate) 
&& Sample <_ (long)((x+y) * modelrate)) 
{ 
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body 
} 

and then to the following which includes all the code necessary to keep the values 

of start and end up to date as a new level of scope is entered: 

C++: if (Sample >= (long)(START=x*modelrate) && 
Sample <_ (long) (END=(x+ y)*modelrate) 

{ 

n++; startstack[n]=start; endstack[n]=end; 
start=START; end=END; 
{body} 

start=startstack[n]; end=endstack[n]; n--; 
} 

When the if statement compares the value of the variable Sample against the start 

and end times given to see if the statements contained in the body should be exe- 

cuted, it also stores these times in the variables START and END so that once the old 

values of start and end have been pushed onto the stack they can take up their 

new values. 

E. 6 An example of a complete script translation 

To clarify the translation process and put together all the elements described so far, 

the following example shows the translation of a whole TAO script into its equivalent 
C++ program. This program contains all the code needed to create the instruments 

described by the user, and bring them to life, whilst carrying out the user's specified 

score algorithm. 

String strings: 
C07+1/2, IT secs; 
lockright; 
setdamping(left, 1/20,0.1%); 

Rectangle rectl: 
100 Hz, 340 Hz, 2S secs; 
lock(left, bottom); 
lockright; 
setdecay(2/5,3/5,2/5,3/5,1 secs); 

Glue stringi(left) to recti(right, 1/3); 

Parameter damping-coefficient; 

Score 30 secs: 
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At 0 secs for 1 msecs: 
stringl(0.1). applyforce(10.0); 

From 5 secs to 5.001 secs: 
stringl(0.9). applyforce(b. 0); 

ControlRate 100: 
damping_coefficient-expon(1,0.001); 

Every 0.1 secs: 
Display "Time-", Time, newline; 

This script translates into the following purely C++ program which now has all the 

extra code required to drive the synthesis engine. It also contains code to keep the 

values of start and end up to date. Comments have been added to this code and 
the visual layout has been improved by hand for the sake of clarity but essentially 
this piece of code when placed inside the main function is ready for compilation and 
linking with the TAO library and will carry out the synthesis described in the script 

when executed. 

/////////////////////////////////////////////////////////////////////////////////////// 
TAO: String stringl: // C#7+1/2,17 secs; 

lockright; 
setdamping(left, 1/20,0.1%); 

// 

String atringi(pitch ("C#7+1/2.0"), 17e1.0); 
atringl. lockright O; 
atrin1i. aetdampini(0.0,1/20.0,1.0-0.1/100.0); 

/////////////////////////////////////////////////////////////////////////////////////// TAO: Rectangle rect1: 
100 Hz, 340 Hz, 25 secs; 

// lock(left, bottom); 
// lockright; 

setdecay(2/5,3/5,2/5,3/5,1 secs); 

// 

Rectangle rectl(100 , 340 , 25*1.0); 
rectl. lock( 0.0 , 0.0 ); 
recti. lockrightO ; 
recti. setdecay(2/5.0,3/5.0,2/5.0,3/5.0,1*1.0); 

/////////////////////////////////////////////////////////////////////////////////////// 
TAO: Glue stringl(left) to rectl(right, 1/3); 

Instrument:: lue(strin 1,0.0, recta, 1.0,1/3.0); 

/////////////////////////////////////////////////////////////////////////////////////// 
ýý TAO: Parameter damping-coefficient; 

float dampin coefficient; 

/////////////////////////////////////////////////////////////////////////////////////// 
// TAO: Score 30 secs: 
// 
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// Start of the score head 

IumSamplea=(long)(30s1.0*modalrate); 
cout << "Calculating "« IumSamples «" samples\n"; 

startstack[1]=start=0.0; endstack[1]=end=30*1.0; 
startstack[0]=start; endstack[0]=end; 
START=atart; END=end; 

for(Sample=0, Time=0.0; 

graphics_on? (color(7), 1): 0, if in graphics mode set color to WHITE. 
graphics_on? (clear (), 1): 0, // and clear the graphics screen. 
Instrument:: calculate_forcesO , calculate the forces for each instrument. 
update_graphicsO, // mouse functions for graphics window. 
Sample<-IumSamples; enough samples generated yet? 

(graphics_ontt(Sample%graphics_update_stepa0))? // display instruments. 
(Instrument:: display_all(), 1): 0, 

(graphics_onkk(Sample%graphics_update_stepn0))? // swap front and back buffers. 
(swapbuffers(). 1): 0, 

Instrument:: update_positionsO , update the positions of each instrument. 
Hicrophone:: update_allO , update all the microphones. 
Sample++, 
Time=Sample/modelrate) calculate elapsed time since performance 

began. 

n++; startstack[n]=start; endstack[n]=end; 

// End of the score head ///////////////////////////////////////////////////////////////// 

// Start of the score body 

{ 
TAO: At 0 secs for 1 cosecs: <body> ... // 

if(Sample<=(long)MID- (0e1.0+1/1000.0))emodelrate) tt 
S{ ple>=(long)((START=(0x1.0))*modelrate)) 

n++; startstack[n]=start; endstack[n]=end; start=START; end=EID; 
{ 
stringl(0.1). applyforce(10.0); 

start=startstack[n]; end=endstack[n]; n--; 
} 

TAO: From 5 secs to 6.001 secs: <body> ... // 

if(Sample<=(long)((EID=(5.001*1.0))*modelrate) tt 
S{ ple>=(long)((START=(5.1.0))*modelrate)) 

n++; etartstack[n]=start; endstack[n]=end; start=START; end=EID; 
{ 
atringi(0.9). applyforce(5.0); 
} 

start=startatack[n]; end=endstack[n]; n--; 
} 

// TAO: ControiRate 100: <body> ... // 

if(S{ p1e%(1ong)100==0) 

n++; startstack[n]-start; endstack[n]=end; 
{ 
damping_coefficients((float)(1)*expf(1.0/(end-start)s 

logf((float)(0.001)/(float)(1))s(Time-start))); 
} 

start=startstack[n]; end=endstack[n]; n--; 
} 

ýý TAO: Every 0.1 secs: <body> ... 
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if(S{ ple%(long)(0.1º1.0ºmodelrate)ss0) 

n++; startatack[n]-start; endstack[n]=and; 
{ 
// Display "Time-", Time, nowline. 

cout «""« setv(0) « setprecision(4) 
« setiosflags(ios:: fixed) « "Time=" « << Time 

<< "" << '\n' << flush; 
} 

start=startstack[n]; end=endstack[n]; n--; 

} 

// End of the score body 

start-startstack[n]; end=endstack[n]; n--; 
} 



Appendix F 

Details of the bowing model 

used 

F. 1 Classical description of the behaviour of a bowed 

string 

This appendix describes the bowing model provided by TAO. Figure F. 1 shows the 

idealised motion of a bowed string when a clean note is obtained (Rossing, 1990). 

Although the overall amplitude envelope of the string is round, the motion actually 

consists of a fairly sharply defined corner dividing the string into two straight line 

segments. The corner traverses the string and is negatively reflected each time it 

reaches one of the terminated ends. The point at which the string is bowed can 

either be sticking or slipping at any instant in time. When it is sticking to the bow 

it moves slowly upwards at the same velocity as the bow, as shown in (c) to (h) and 
(a). As it does so the corner dividing the string into two travels towards the right 
hand end of the string, where it is reflected. 

As the corner travels back from the right hand end of the string and finally reaches 
the bowed point again, the `kick' caused is enough to make the string slip. This point 
in the cycle of motion is depicted in (a). Once slipping, the string rapidly moves 
downwards as the corner travels towards the left hand end where it is reflected once 

again. As it passes the bowed point, as in (c), the bow picks the string up again 

and the whole process is repeated. It should be emphasised that this precise motion 
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Figure F. 1: Classic Helmholtz motion of a bowed string 

dividing the string into two perfectly straight line segments is an idealisation of the 

actual shape of a real string. Also the model tells us nothing about the transient 

motions which the string must pass through in order to reach this state of dynamic 

equilibrium. This mode of motion is referred to as Helmholtz motion, after Hermann 

von Helmholtz who first observed it experimentally. 

F. 2 Description of an established bowed string model 

The bowing model provided by TAO is loosely based on a model described by Wood- 

house (1992) which is reproduced here, in brief form, for the purposes of comparison. 

Woodhouse's model comprises two elements, a linear element representing the string, 

and a non-linear element representing the interaction of the bow with the string. The 

behaviour of the non-linear element is derived from the graph shown in figure F. 2, 

which represents the relationship between the frictional force exerted by the bow 

and velocity of the string at the bowed point. The vertical portion of the slope 

represents the sticking state. The velocity of the string is constant in this portion 
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a) 

V V, 

Figure F. 2: Relationship between frictional bow force and relative velocity be- 

tween bow and string 

of the graph because the string travels at the same velocity as the bow, vb. The 

frictional force can take on a range of values, however, as the bow drags the string 

further and further away from its rest position. The force increases until a threshold 

value is reached, at which point the bow can now longer hold the string and it begins 

to slip. As this occurs the static frictional force is replaced by a dynamic frictional 

force. 

The curved portion to the left, of the graph represents the way in which the dynamic 

frictional force changes with the string's velocity. As we descend down the slope 

the string's velocity decreases and eventually it ends up travelling in the opposite 

direction to the bow. The magnitude of the relative velocity between bow and string 

therefore increases and the associated dynamic frictional force decreases. Toward the 

very left of the graph the frictional force is usually of the order of 0.2 fb, where fb is 

the normal force exerted by the bow on the string (Mcintyre, 1983). 

In Woodhouse's model only the bowed point of the string is modelled. At a given 

instant in time the frictional force, f (t), exerted by the bow and the velocity of the 

string at the bowed point are given by the equation: 

b) 

vet) _ (Y/2)f(t)+v'h(t) 

where v(t) is the instantaneous velocity response to the force, vh(t) is the component 
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of the velocity due to the past history of the string, and Y is the wave admittance 

of the string, given by Y= (Tm)-1/2, where T is the string tension and m is its 

mass per unit length. The factor Y/2 arises from the fact that two impulses of 

equal magnitude are generated by the bow, travelling away from the bowed point in 

opposite directions. vh(t) represents "all the details of the linear vibration behaviour 

of the string and body" to quote Woodhouse. In order to solve for successive values 

of f (t) and v(t) some method of calculating vh(t) is required. The method used by 

Woodhouse works as follows. 

The two outgoing impulses generated by the bow eventually reach the respective 

ends of the string and are negatively reflected, but they also change in shape due to 

the effects of the bridge and body at one end and the players finger and fingerboard 

at the other. This `smearing' is simulated with the use of two `corner rounding 

functions'. By convolving the impulse generated by the bow with these functions, 

the value of vh(t) can be calculated. Successive reflections of the initial impulse 

become increasingly smoothed out and eventually die away due to the repeated 

convolution with the corner rounding functions. 

Once the value of Vh(t) is known it is possible to calculate new values for f (t) and 

v(t) by finding the intersection of the straight line v= (Y12) f+ vh with the curve 

given in figure F. 2. By repeating this process iteratively the dynamic behaviour of 

the string can be simulated. 

Note that outside the shaded portion shown in figure F. 2(b) the straight line inter- 

sects the graph unambiguously. To the left of this shaded region the string is slipping 

and to the right it is sticking. What happens in the shaded region depends on the 

current state of the string. If the string is sticking, then the straight line intersects 

the vertical portion of the graph, but as the static frictional force grows, the line 

moves into the shaded region from the right. The static frictional force continues 

to grow, but at the point where it can no longer be sustained, the frictional forces 

jumps suddenly down to the value on the curved portion of the graph, following 

arrow (ii), indicating that the string has begun to slip. If the string is slipping, then 

the shaded region is entered from the left, and the frictional force jumps suddenly up 

to the value on the straight line portion of the graph, following arrow (v), indicating 

that the string has begun to stick again. This introduces an element of hysteresis 
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into the model and shows that its state changes in a discontinuous manner. 

F. 3 Adapting the model to work with TAO 

The bowing model provided with TAO is also based around the graph given in figure 

F. 2 but differs from Woodhouse's model in that the resonator or string is explicitly 

modelled in its entirety so there is no need for either the history function vh and 

its associated corner rounding functions, or the use of the wave admittance Y to 

calculate the instantaneous velocity response of the string to the force applied by 

the bow. Instead the string may be directly interrogated at any point in time to 

find its position, velocity or acceleration, and if we want to find out the effect which 

applying a force will have on the position and velocity of the string, we can simply 

apply the force at the appropriate point and let the model do the rest. 

Before describing in detail the way in which the model works, the reader is reminded 

of the steps involved in animating a TAO instrument, first given in section 4.6: 

1. the internal forces acting upon each cell are calculated; 

2. any external forces are applied; 

3. the cell positions are updated. 

All interaction with TAO instruments is via the physical parameters of individual 

cells or groups of cells and in the case of the bowing model a single cell provides 

the interface between the bow and the instrument and acts both as an input and 

output. The interaction between the bow and the chosen cell takes place on step 2 

above, at which point in time the internal force acting on the cell, due to its spring 

connections, has just been calculated, but its position and velocity have not yet been 

updated. There are two things we need to do in order to simulate the sticking and 

slipping of the bow: 

1. If the string is sticking to the bow all we need to do is: calculate the static 
frictional force needed to keep the string travelling at the same velocity as the 

bow; check that this force does not exceed the maximum threshold force which 

can be sustained by the static friction between the bow and the string; and 

apply this force to the cell. 
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2. If the string and bow are slipping past each other all we need to do is: calculate 
the relative velocity between them, and hence the dynamic frictional force; 

check that the condition for the string and bow to start sticking again is not 

met; and apply this force to the cell. 

This gives us the basis for a discrete time domain simulation with a TAO instrument. 

At any instant in time if fb is the downward force exerted by the bow, vc is the 

velocity of the cell being bowed, and Vb is the velocity of the bow, then the relative 

velocity between the bow and cell v, is given by v,. = vb - vv. Acceleration, in the 

context of this discrete time based simulation is given by a=I, but from section 

4.6.5, St = 1, so effectively a= by = vb - vc. 

Therefore, in order to keep the cell travelling at a constant velocity, we simply 

calculate the difference between the current velocity, vv, and the required velocity, 

vb, and this value becomes the required acceleration. Since by Newton's 2nd law of 

motion f= ma, the total force required in order to cancel out the internal force fc 

acting on the cell and ensure that the cell has the correct acceleration to maintain 

velocity Vb is given by fatick = m(vb - vc) - fo. This is the case when the string is 

sticking to the bow. 

When the string is slipping, the dynamic frictional force flip is given by: 

fslip =16 
(0.2 

+ 0.8 *1 
1+, IVrIý 

Remember that as the relative velocity I V,. between string and bow increases, the 
dynamic frictional force flip tends towards 0.2 fb, and that when v,. = 0, according 
to the graph in figure F. 2, f, l; p fb (assuming that the coefficient of friction relating 
the downward force of the bow to the maximum frictional force possible is unity, 

which it almost is for rosined surfaces (Mcintyre, 1983)). For values in between 

these two extremes the curve appears to drop off at a rate oz T. Now we know 

how to calculate the static and dynamic frictional forces, all we need to decide is 

under what conditions the model flips from one state to the other. The change from 

stick mode to slip mode occurs when the static frictional force required is greater 
than the downward force of the bow can sustain, in other words when fstick ý f6" 

The change from slip to stick occurs when the corner traversing the string reaches 

I/ 
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the bow and the string starts to travel in the same direction as the bow, i. e. when 

v. > 0. We can now put all of this information together to form the algorithm given 
below. This algorithm is executed on every discrete time step. 

1. Calculate the relative velocity between bow and string v,. = Vb - Vc. 

2. Calculate the acceleration needed to keep the string moving with the same 

velocity as the bow a, = (vb - vc)St = v,. (since St = 1) 

3. Decide whether the cell is sticking or slipping and apply the appropriate static 

or dynamic frictional force. Also check to see whether the conditions for a 

change of state are met: 

if in stick mode: 
fstick = mac - fc 

if fftick > f6: 

change to slip mode 
else: 

applyforce (f, ttck) 

else if in slip mode: 
0.2+0.8* ' hlip=A( ltyr 

ifv, >0: 

change to stick mode 
else: 

applyforce (f u) 

By iteratively executing this algorithm we can simulate the continuous interaction of 

the bow with the string or indeed with any other instrument. The control parameters 

vb and fb may be varied within the score in the same way as any other performance 

parameters, and by using the mode field of a cell (see appendix D for an explanation) 

to indicate whether the cell is in stick or slip mode, any number of bows with 

independent control parameters may be applied to any number of locations on one 

or more instruments, simultaneously. Examples of the bowing model in action can 

be found in sections 6.7.1 and 6.7.2. 
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Appendix G 

Implementation code 

G. 1 C++ implementation of the TAO library libtao. a 

G. 1.1 File Cell. h 
////////////////////////////////////////////////////////////////////////////// 
// File name: Cell. h (c) 1996 Mark Pearson 
// 
// Content: Definition of Cell object class. 
// 

Member variables: 
mode: used to hold a variety of information such as whether 

// the cell is glued to another and if so, whether it is 
the master or slave cell. Also whether the cell is locked, 

// and whether it is sticking or slipping when bowed. 
north, south, east, vest, neast, seast, nwest, sweat: 

pointers to this cell's neighbouring cells. 
companion: if this cell is glued to another then the companion 

pointer points to the other cell. 
mass: the cell's mass measured in arbitrary numerical units. 
damping: a value between 0 and 1 which the velocity of the cell 

is multiplied by every time step leading to energy 
// dissipation. 
// position, velocity, force: 

once again all measured in arbitrary numerical units. 
// Each is a scalar value measuring the magnitude of a 

vector in the y direction, i. e. vertical displacement, 
vertical velocity and vertical force acting upon the 

// cell due to its springs. 

Vifndef CELL_H 
$define CELL_H 

define CELL_LOCK_MODE 0x01 
#define CELL_SLAVE_MODE 0x02 
#define CELL_MASTER_MODE 0x04 
#define CELL_BOW_STICK_MODE 0x08 

struct Call 
{ 
int mode; 
Cell *north, *south, *east, *west; 
Cell "neast, "nvest, eseast, *sweat; 
Cell *companion; 
float mass, damping; 
float position, velocity, force; 
void applyforce(float F); 
void bow(float f_bov, float v_boa); 
void lock() (mode In CELL_LOCK_MODE; ) 
operator float() {return position; ) 

Sendif 
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G. 1.2 File Cell. cc 

G. Implementation code 

////////////////////////////////////////////////////////////////////////////// File name: Cell. cc (c) 1996 Nark Pearson 

Content: Definitions of Cell object class member functions 

#include "Cell. h" 
$include <math. h> 

include <iostream. h>" 

#ifndef TRUE 
*define TRUE 1 
*endi! 

Sifndef FALSE 
*define FALSE 0 
*endif 

////////////////////////////////////////////////////////////////////////////// 
Function name: Cell:: applyforce(float F) 

Functionality: 
Apart from applying the given force to the cell specified, also 
applies smaller sympathetic forces to the neighbouring cells to 
ensure that the force is spread over a small region. This is to 

/1 compensate for the material's lack of stiffness. 

Variables: 
All Cell class member variables except the argument F which represents // the force bein applied to the cell. 

void 
{ 
Cell:: applyforce(float F) 

force+=F; 

it (north) north->force+-F/2.0; 
if (south) south->force+=F/2.0; 
if (east) east->force+-F/2.0; 
if (west) vest->force+. F/2.0; 
if (neast) neast->force+-F/2.82; 
if (seast) seast->force+-F/2.82; 
if (nwest) nwest->force+-F/2.82; 
if (sweat) sorest->force+-F/2.82; 
} 

////////////////////////////////////////////////////////////////////////////// // Function name: Cell:: bow(float f_bov, v_bov) 

Functionality: 
Simulates the interaction of a virtual bow with a cell, based on // frictional sticking and slipping. The algorithm is explained in 

// section F. 3. The function given below is an exact 
// implementation of this algorithm. 

Arguments: 
// f_bov: downward force of bow. 

v_bov: velocity of bow. 
// 

Local variables: 
// f_stick: static frictional force exerted by the bow on the cell. 

f_slip: dynamic frictional force exerted by the bow. 
// force-exerted: 
// whether sticking or slipping one of the above forces is 
// applied. This variable stores the chosen frictional force. 

v_relative: relative velocity between bow and cell. 
a_cell: acceleration needed to keep cell's velocity equal to v_bov. 

// Cell class member variables: 
velocity, force, mass. 

void Cell:: bov(float f_bov, float v_bov) 
{ 
static float f_stick, f_slip, force-exerted; 
static float v_relative, a_cell; 

v_relative-a_cell-v_bov-velocity; // andv/dt but dt=1 so a-dv. 

if (mode t CELL_BOW_STICS_MODE) // if in 'stick' mode. 
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{ 
f-stick=mass*a_cell-force; 
if (f_stick>f_bov) modet=! CELL_BOW_STICS_MODE; if static frictional 
else force-exerted f_stick; // force required is too 
} // great, change to 

slip' mode. 

else // if in 'slip' mode. { 
f_slip=f_bov/(1. O+fabs(v_relative)); 
if (velocity>=0.0) model=CELL_BOW_STICB_NODE; if the cell starts 
else force_exerted=f_slip; travelling in the same 

direction as the bow, 
change to 'stick' mode. 

applyforce(force_exerted); apply the appropriate 
} // frictional force. 

G. 1.3 File Instrument. h 
////////////////////////////////////////////////////////////////////////////// 
// File name: Instrument. h (c) 1996 Mark Pearson 

// Content: Definition of Instrument object class and Row structure. 
// 

In a TAO script the user deals with objects of class String, 
Rectangle, Circle, Ellipse and Triangle but all of these are 
derived classes of base class Instrument. The Instrument object 

// class contains the following member variables: 

Member variables: 
// xfrequency: frequency in hertz in the horizontal direction. 
// yfrequency: frequency in hertz in the vertical direction. 
// default-decay: decay time given uniformly to the instrument when it 

is first created. 
// default-damping: the equivalent damping coefficient. 

rows: array of Row structures, each representing a 
single row of cells. 

graphx, graphy: determine where an instrument will be displayed 
in the graphics window. Measured in screen 

// coordinates. 
worldx, worldy: determine where the instrument lies in terms of 

the world coordinate system measured in cells. 
Joining two pieces of material causes the second 
to be placed in the correct position relative to 

// the first. This ultimately affects only where they 
are displayed graphically relative to each other. 

next: pointer to next instrument created. Used to maintain 
// a linked list of all instruments created within one 

script. 
// xmax, ymax: size of the bounding box which just fits around 
// the instrument in cells. Xmax is the width -1 of 
// the instrument measured in cells and ymax is the 

height -1 measured in cells. 
// amplification: the factor by which the amplitude of vibrations is 

emphasised when displayed graphically. Has no effect 
// on sound output. 

Static member variables: 
list, current: head of linked list of instruments, and current 

instrument during updating. 
// default-mass: the default mass which all cells are given initially. 
// Should not be altered as it has been chosen for 
// optimum performance and would upset conversion from 

hertz to cells. 
global-amplification: 

// global amplification factor for all instruments 
when displayed graphically. Has no effect on sound 
output. 

#ifndef IISTRUMEIT_H 
#define IISTRUMEIT_H 

#include <stdlib. h> 
#include <math. h> 
*include "Ce11. h" 
#include <iostream. h> 

define Hz2CellConst 24000.0 Used to convert a frequency in Hz into the 
appropriate number of cells needed to achieve 
this frequency. 

#define Decay2DampingConst 0.000375 
// Used to convert a decay time into a damping 

269 
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value suitable for the 'damping' field of 
a cell. When the velocity of a cell is 
repeatedly multiplied by this damping value 
on every time step of the synthesis engine 

// its vibrations will decay over the given 
// decay time. 

ROTE: Hz2CellConst t Decay2DampingConst and audiorate, aodelrate & 
// bandvidthlevel (all from main. cc) are all interrelated and must 
// not be changed. 

struct Row 
{ 
int xmax; 
int offset; 
Cell *cells; 

class Instrument 
{ 

protected: 
float xfrequency, yfrequencyi 
float default decay, default-damping; 
Row *rows; 
int graphx, graphy; 
int worldx, worldy; 
Instrument *next; 

void initialise-cells(); 
void link-cells(); 
void calculate_my_forcesO ; 
void update_my_positionO ; 

static Instrument *list; 
static Instrument *current; 
static float default-mass; 
static void glue_cells(Cell "ci, Call *c2); 
static void join_left_to_left(Call lcelll, Call tca112); 
static void join_laft_to_right(Cell tcelli, Call &cell2); 
static void join_right_to_left(Cell tcelll, Call tcell2); 
static void join_right_to_right(Cell tcelll, Call tca112); 
static void join_bottom_to_bottom(Cell tcelll, Call tca112); 
static void. Ioin_bottom_to_top(Cell tcelll, Call ica1l2); 
static void join _top_to_bottom(Cell tcelll, Cell &c. 112); 
static void join_top_to_top(Cell tcelll, Call tcell2); 

public: 
int xmax, ymax; 
float amplification; 

Instrument(float xfreq, float yfreq, float decay); 
Instrument ksetdecay(float x1, float x2, float yi. float I2, float decay); 
Instrument tsetdecay(float left, float right, float decay); 
Instrument ksetdecay(float decay); 
Instrument kresetdecay(float x1, float x2, float yl, float y2); 
Instrument tresetdecay(float left, float right); 
Instrument Yresetdecay(); 
Instrument ksetdamping(float xl, float x2, float yi, float y2, float damping); 
Instrument tsetdamping(float left, float right, float damping); 
Instrument tsetdamping(float position, float damping); 
Instrument tsetdamping (float damping); 
Instrument kresetdamping(float x1, float x2, float yl, float y2); 
Instrument tresetdamping(float left, float right); 
Instrument tresetdamping(float position); 
Instrument kresetdamping(); 
Instrument tvibrato(float rate, float depth); 
Instrument tlock(float x1, float x2, float yl, float y2); 
Instrument klock(float x, float y); 
Instrument tlockleftO ; 
Instrument klockrightO ; 
Instrument klocktop(); 
Instrument tlockbottomO ; 
Instrument tlockperimeterO ; 
Instrument tlockcorners(); 
Instrument tlockends(); 
Cell tat(float x, float y); 
Cell &operator()(float x, float y); 
Cell &operator()(float x); 

float ecreenx(float x, float y); 
float screeny(float x, float y); 
void label(float x, float y, int xoffset, int yoffset, 

char *caption, int colour); 
void label(float x, int xoffset, int yoffset, 

char "caption, int colour); 
void display(); 
void display_at(int x, int y) {graphx=x; graphy=y; } 
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void place_at(int x, int y) {vorldx=x; vorldy-y; } 

void 
{ 

add_to_global_listC) 

if (list==PULL) list-this; else current->next-this; 
current-this; 
} 

static float global amplification; 
static void calculate-forces(); 
static void update-positions(); 
static void display_all0 ; 
static float decay2damping(float decay) {return (1.0-(Decay2DampingConst/decay)); } 
static int hertz2cells(float freq) {return (int)(Hz2CellConst/freq); } 
static void glue(Instrument tii, float x1, float yl, 

Instrument ti2, float x2, float y2); 
static void glue(Instrument til, float x1, float yl, 

Instrument tit, float x2); 
static void glue(Instrument tit, float x1, 

Instrument tit, float x2, float y2); 
static void glue(Instrument til, float x1, 

Instrument ti2, float x2); 
static void join(Instrument tit, float xi, float y1, 

Instrument tit, float x2, float y2); 

#endif 

G. 1.4 File Instrument. cc 
////////////////////////////////////////////////////////////////////////////// 
// File name: Instrument. cc (c) 1996 Mark Pearson 

Content: Definition of Instrument class member functions 
// 

Votes: 
Throughout this file many functions have to access individual cells 
within an instrument. Whenever this occurs certain conventions are 
observed. The variables x and y are always coordinates in the 

// instrument coordinate system, normalised between 0 and 1, where 0 
t1 mean left t right respectively for x, and bottom t top for y. 

// The local variables i and j are always integer coordinates and refer 
to the cell in a row and the row number respectively. Whenever a 

// function is called with x and y as arguments, a conversion to i and 
j occurs. 
There are two coordinate systems used in the graphical animations: 

// world and screen. World coordinates are measured in units of cells, 
so for example if a cell is at world coordinates (x, y) then its north 

// west neighbour is at (x-1, y+1). This coordinate system makes it a 
simple matter to place instruments in the correct position, 
graphically speaking, relative to each other. Screen coordinates are 

// measured in pixels. 

*include "Instrument. h" 
#include <iostream. h> 
*include <math. h> 
#include <gl. h> 
#include <sys/types. h> 
*include <sys/times. h> 

Instrument "Instrument:: list=IIULL; // lo instruments to start with. 
Instrument "Instrument:: current=LULL; 
float Instrument:: default_mass=3.6; // Set to optimum value for 

// frequency response of 
// material. Leave well alone!! 

float Instrument: : global-amplification=0.0; 
extern int graphics-on; // main. cc 
extern long Sample; // main. cc 
extern int graphics-update-step; // main. cc 
extern short interframedelay; // main. cc 
extern int winoriginx, vinoriginy; // main. cc 
extern float skevfactor, xacale, yscale; // main. cc 

////////////////////////////////////////////////////////////////////////////// 
// Constructor name: 

Instrument(float xfreq, float yfreq, float decay) 

Functionality: 
Since classes String, Rectangle, Circle etc. are derived from class 
Instrument, when an object of any of these classes is created, an 

// instrument object is created first, and serves as the basic skeleton 
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for all the specific instrument shapes. This constructor function 
// creates that skeleton. The details are filled in by the derived 

class' constructor function. 
// 

Arguments: 
// Frequency in hertz of the instrument in the x and y directions and 

an initial uniform decay time measured in seconds. 
// Instrument class member variables: 

xfrequency, yfrequency, default_decay, default_damping, 
amplification/ , graphx, graphy, vorldx, vorldy. 

Instrument:: instrument (float xfreq, float yfreq, float decay) 
{ 
xfrequencyyxfreq; 
yfrequency-yfreq; 
default_decaysdecay; 
default_damping=decay2damping(decay); 
amplificational. 0; // Only for graphics display, not sound synthesis; 
graphx-0; ditto 
graphy-0; ditto 
vorldx-0; ditto 
aorldyr0; // ditto 
} 

Operator name: (float x, float y) 

// Functionality: 
// When placed immediately after an identifier signifying an object of 

class instrument, selects and returns a reference to the cell at 
position (x, y). For an explanation of the coordinate system used see // section 5.4.8. Also has the side effect of placing 
a blue marker on the graphics screen to mark the cell accessed, if 
the graphics are turned on. 

Arguments: 
// x, y: instrument coordinates. 

Instrument class member variables: 
rows, graphx, graphy, vorldx, vorldy, amplification, 
global amplification. 

// Row structure member variable: 
/1 cells. 

Local variables: 
// i, j: cell number and row number coordinates (see note at head 
// of this file). 
// c: pointer to cell being accessed. // left, bottom: origin of bottom left hand corner of bounding box 
// surrounding instrument measured in screen coordinates. 

scrnx, scrny: screen coordinate position of blue marker. 

External variables: (all from file main. cc) // winoriginx, winoriginy, xscale, yscale, skevfactor, // gra hics_on, graphics_update_step, Sample. 

Cell 
{ 

tlnstrument:: operator 0 (float x, float y) 

register int j=(int)(ymaxry), i=(int)(rows [j]. xmax*x); 
register Call sc=irovs[j]. cells[i]; 
int left, bottom; 

left-winoriginx+graphx; 
bottom=winoriginy+graphy; 

if(graphics_on tt Sample%graphics_update_step-0) 
the graphics are refreshed on every 'graphics_update_step'th time step of // the synthesis engine. int scrnx, scrny; 

scrnx-(1eft+(vorldx+i+rovs[j]. offset)sxscalo + (vorldy+j)oskevfactor); 
scrny=(bottom+(vorldy+j)*yscale+c->positionsamplificat ions 

global-amplification); 

color(BLUE); 
circf(scrnx, scrny, 3); 
} 

return Sc; 
} 

////////////////////////////////////////////////////////////////////////////// 
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Operator name: 
// (float x) 

Functionality: 
// Exactly the same as operator (float x, float y) but for one 

dimensional instruments where only the x coordinate is needed. 

Cell 
{ 

llnstrument:: operatorO (float x) 

register int i=(int)(rows[0]. xmax*x); 
register Cell *c-trows[0]. cells[i]; 
int left, bottom; 

left=vinoriginx+graphx; 
bottom= vinoriginy+graphy; 

if(graphics_on tt Sample%graphics_update_step=a0) 
{ 
int scrnx, scrny; 
scrnx-(1eft+(worldx+i+rows[O]. offset)sxscale + worldysskewfactor); 
scrny=(bottom+worldy*yscale+c->position*amplification* 

global-amplification); 

color(BLUE); 
circf(scrnx, scrny, 3); 
} 

return Sc; 
} 

////////////////////////////////////////////////////////////////////////////// 
// Member function name: 

at(float x, float y) 
// 

Functionality: 
Exactly the same as for operator '(float x, float y)' in that it 
selects and returns a reference to the cell specified by the 
instrument coordinates x and y except it doesn't affect the graphics 
at all. 

Cell tInstrument:: at(float x, float y) 
{ 
register int jn(int)(ymax+y), i-(int)(rows[j]. xmax*x); 
register Cell "c=irows[j]. cells[i]; 
return Sc; 
} 

////////////////////////////////////////////////////////////////////////////// 
Member function name: 

// screenx(float x, float y) 

Functionality: 
// Returns the screen x coordinate of the cell specified by the 

instrument coordinates x and y. 
// 
// Local variables: 

i, j: cell number and row number coordinates (see note at head 
of this file). 

// left, bottom: origin of bottom left hand corner of bounding box 
// surrounding instrument measured in screen coordinates. 
// 

Instrument class member variables: 
xmax, ymax, rows, graphx, graphy, worldx, worldy. 

// External variables: (all from file main. cc) 
// winori inx, winoriginy, xscale, scale, skewfactor, 

float Instrument:: screenx(float x, float y) 
{ 
int i, j; 
int left, bottom; 

left=winoriginx+graphx; 
bottom=winoriginy+graphy; 

j=(int)(ymaxsy); 
i=(int)(rows [j]. xmax*x); 
return left+(vorldx+i+rovs[j]. offset) *xscale+(vorldy+j)sskevfactor; 
} 

////////////////////////////////////////////////////////////////////////////// 
// Member function name: 



274 G. Implementation code 

screeny(float x, float y) 

// Functionality: 
// Returns the screen y coordinate of the cell specified by the 

instrument coordinates x and y. 

Local variables: 
// j row number containing the cell specified. 
// left, bottom: 

origin of bottom left hand corner of bounding box 
// surrounding instrument, measured in screen coordinates. 

Instrument class member variables: 
// xmax, ymax, rows, graphx, graphy, vorldx. "orldy, amplification, 

global amplification. 
// Instrument class member function: 

at(x, y). 
// 

External variables: (all from file main. cc) 
ainoriginx, vinori iny, yscale. 

float Instrument:: screeny(float x. float y) 

int left, bottom; 

left-vinoriginx+graphx; 
bottom=vinoriginy+graphy; 

int j=(int)(ymax*y); 
return bottom+(vorldy+j)syscale+at(x, y). position*amplification" 

global-amplification; 

////////////////////////////////////////////////////////////////////////////// 
// Member function name: 

label(float x, 'float y, int xoffset, int yoffset, // char "caption, int colour) 

Functionality: 
Places a text caption on the graphics screen at a position 
determined by the instrument coordinates x and y. If the cell 
specified is displayed at screen coordinates (scrnx, scrny) then 

// the caption will be placed at (scrnx+xoffset, scrny+yoffset). The 
// is displayed in the specified colour where 'colour' is one of RED, 
// GREEN, BLUE, YELLOW, MAGEITA, CYAI or BLACK, which are idefined 
// constants from header file <gl. h>. 

// Instrument class member functions: 
// screenx(x, I/)/, screeny(x, y). 

/ ////////////////// / 
void Instrument:: label(float x, float y, int xoffset, Jut yoffset, 

char *caption, int colour) 

cmov2(screenx(x, y)+xoffset. screeny(x, y)+yoffset); 
color(colour); 
charstr(caption); 
} 

////////////////////////////////////////////////////////////////////////////// 
// Member function name: 

label(float x, int xoffset, int yoffset, 
char *caption, int colour) 

// 
Functionality: 

Version of label function given above for one dimensional instruments. 

void Instrument:: label(float x, int xoffset, int yoffset, 
char *caption, int colour) 

{ 
cmov2(screenx(x, 0)+xoffset, screeny(x, 0)+yoffset); 
color(colour); 
charstr(caption); 
} 

Member function name: 

Functionality: 
// when an instrument is first created the data structures representing 



G. 1 C++ implementation of the TAO library libtao. a 275 

// the cells, rows and the instrument object are set up. The shape of // the instrument and hence the number of rows and number of cells in 
// each row are determined by the particular constructor function of // the class derived from the instrument base class. This function 

sets up the neighbour pointers of all the cells in the instrument, 
regardless of its shape. In other words it installs the springs, // automatically detecting boundaries and making sure that there are no 
ragged edges. 

// Local variables: // i, j: cell number and row number coordinates (see note at head 
// of this file). 

thisrow: pointer to the current row. 
northoffset: offset in cells of row above relative to 'thisrov'. 

// southoffset: offset in cells of row below relative to 'thisrov'. 
northi: 'il always specifies the cell number in a particular row. 

Since different rows have different offsets, cell 'i' in 
thisrov corresponds to cell 'northi' in the row above. 

southi: similar to northi. 
thisxmax: number of cells -1 in thisrow. 

// northxmax: number of cells -1 in row above thisrow. 
southxmax: number of cells -1 in row below thisrow. 

// c; north, south, east, west: 
// pointers to current cell and four of its neighbours. 

Instrument class member variables: 
rows, ymax. 

void Instrument:: link_cells() 
{ 
register i, j; 
Cell "thisrov; 
int northoffset, southoffset, northi, southi; 
int thisxmax, northxmax, southxmax; 

for(=o; j<=ymax; j++) 

if(j<ymax) 
{ 
northoffset-rows[j]. offset-rovs[j+l]. offset; 
northxmax-rows[j+l]. xmax; 
} 

if(j>O) 
{ 
southoffset-rows[j]. offset-rows[j-1]. offset; 
aouthxmax=rovs[j-1]. xmax; 
} 

thisxmax=rows[j]. xmax; 
thierov=rova[j]. cells; 

for(i=O; i<-thisxmax; i++) 
{ 
if(i==0) thisrov[i]. vest=IULL; 
else thisrov[i]. vest=t(thisrov[i-1]); 
if(iuthisxmax) thisrov[i]. east=NLL; 
else thisrov[i]. east=t(thisrov[i+l]); 

northi-i+northoffset; 
southi-i+southoffset; 

if(j- O II southi<O II southi>southxmax) 
thisrov[i]. south=]rULL; 

else 
thisrov[i]. south=trovs[j-i]. cells[southi]; 

if(j--ymax II northi<O II northi>northxmax) 
thisrov[i]. north=]FULL; 

else 
thisrov[i]. north=irovs[j+i]. cells[northi]; 

Cell cc, *north, *south, *east, *west; 

for( O; j<=ymax; j++) 
for(i=0, c=roes[j]. cells; i<=rovs[j]. xmax; i++, c++) { 

if(north=c->north) c->neast=north->east; 
else if(east=c->east) c->neast=east->north; 
else c->neast=LULL; 

if(north) c->nvest-north->vest; 
else if(vest=c->vest) c->nvestwest->north; 
else c->nvest=LULL; 
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i? (south-c->south) c->seast=south->east; 
else if(eastnc->east) c->seastueast->south; 
else c->seast-LULL; 

if(south) c->svestssouth->vest; 
else if(vest-c->vest) c->svest"vest->south; 
else c->svest-LULL; 
} 

} 
} 

G. Implementation code 

// Member function name: 
initialise_cells() 

// 
Functionality: 

// Since the material is discrete in nature but a continuous range 
of frequencies is needed, once the width and height of an instrument 
in cells have been determined, the masses of the cells have to be 
adjusted slightly away from the default mass in order to adjust the 
frequency to the originally specified value. This compensation is 

// calculated from the given x frequency since the compensation must 
work for strings and most 2D instruments are inharmonic in nature, so 

// the error in yfrequency will not be noticable. Also sets the 
// velocities, positions and forces of all cells to zero, and 
// initialises a few other variables. 
// 

Local variables: 
I. J: usual use, j=row number and incell number in chosen row. 
intended_freq: xfrequency specified in the instrument declaration. 
actual-Iraq: xfrequency which would result if the cells ver" given // the default_mass, having decided how many calls vide // and high the instrument is. 

1/ c: pointer to current cell. 

// Instrument class member variables: 
rows, //max. 

void 
{ 

Instrument:: initialise_cells() 

Cell cc; 
register i, j; 
float intended_freq, actual_freq, compensation_factor. 

intended_freq=zfrequency; 
actual_freq-Hz2Ce11Const/(xmax+l); 
compensation_factor-povf(4.0,1og10f(actual_freq/intended_freq)/1og10f(2.0)); 

for (J=0; j<-ymax; j++) 

for (i. 0, c=rows[j]. calls; i<-rovs[j]. xmax; i++. c++) { 
c->mode=CELL_BOW_STICK_MODE; 
c->companion=NULL; 
c->mass=Instrument:: default_mass*compensation_factor; 
c->Position-0.0; 
c->velocity=0.0; 
c->force=0.0; 
c->damping-default_damping; 
} 

////////////////////////////////////////////////////////////////////////////// // Member function name: 
// calculate_my_forces() 

Functionality: 
Starts at bottom left of instrument and works its way across each 

// row and then up to the next row until it reaches the top right. 
// For each cell the total force due to the springs connecting it to 

its neighbours is calculated. If the cell is a master cell it 
treats the slave cell's neighbours as its own in order to calculate 

// the combined force acting on both cells. If it is a slave cell then 
// no calculations are made as these will either already have been 
// performed for the master cell or will be due to be performed for the 

master cell. 
// 

Local variables: 
// i, j: j=row number and i=cell number in chosen row. 
// c, north, south, east, west, neast, seast, nwest, sweat: 
// pointers to current cell and its neighbouring cells and 
// also pointers to slave companion cellos neighbours if this 
// cell has one. 
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// slave: if this call is glued to another and is acting as the 
// master cell then 'slave) points to the companion slave 
// cell. 
// myposition: position of the current cell. 
// dp, count: the force exerted on cell c by a neighbouring cell is 

given simply by the neighbouring cell's position minus 
// c's position, since the coefficient of elasticity is 
// set to unity. Therefore the total force acting on c 

due to all the neighbouring cells is given by the 
sum of the positions of the neighbouring cells minus 
(number of neighbours " c°s position). The variable dp 

// keeps track of this sum and count keeps track of the 
// number of neighbours. 

Instrument class member variables: 
rows, ymax. 

void 
{ 

Instrument:: calculate_my_forces() 

register i, j, count; 
register Cell cc, *slave, *north, *south, ºeast, ºvest; 
register Cell ºneast. ºnvest. ºseast, ºavest; 
static float myposition, dp; 

for (J. O; j<-ymax; j++) 
for (i=0, c-rows[j]. cells; i<-rovs[j]. xmax; i++, c++) 

{ 
dp=0.0; myposition-c->position; count 0; 

it (! (c->mode t CELL_SLAVE_MODE)) 
{ 
dp+= 

((north=c->north)? (count++, north->position): 0.0) 
((south=c->south)?? (count++, south->position): 0.0) 
((east=c->east)? (count++, east->position): 0.0) + 
((vest=c->vest)? (count++, vest->position): 0.0) + 
((neast=c->neast)? (count++, neast->position): 0.0) 
((seast=c->seast)? (count++, seast->position): 0.0) 
((nveat=c->nvest)? (count++, nvest->position): 0.0) 
((svest=c->svest)? (count++, svest->position): 0.0); 

if (c->mode & CELL_MASTER_MODE) 
{ 
slave=c->companion; 
dp+- 
((north=slave->north)? (count++, north->position): 0.0) 
((southislave->south)? (count++, south->position): 0.0) 
((east=slave->east)? (count++, east->position): 0.0) + 
((west=slave->vest)? (count++, vest->position): 0.0) + 
((neast=slave->neast)? (count++, neast->position): 0.0) 
((seast=slave->seast)? (count++, seast->position): 0.0) 
((nvest-slave->nvest)? (count++, nvest->position): 0.0) 
((svest=slave->svest)? (count++, svest->position): 0.0); 
} 

} 
c->force-dp - count " myposition; 
} 

////////////////////////////////////////////////////////////////////////////// Member function name: 
update_my_position() 

// Functionality: 
Starts at bottom left of instrument and works its way across each 
row and then up to the next row until it reaches the top right. 
The force acting upon each cell is used to calculate the cells 
acceleration, new velocity and new position. Also multiplies the 
new velocity by the damping value (between 0 and 1). This value is 

// converted from the percentage value given in a TAO script. 100% -> 0 
// and 0% -> 1. 
// 

Local variables: 
i, j: j=row number and i=cell number in chosen row. 
c: pointer to current cell. 

Instrument class member variable: 
rows. 

void 
{ 

Instrument:: update_my_position() 

static int i, j; 
static Cell "c; 
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for (j. O; j<max; j++) 
for (i=0. 

c=rovs[j]. cells; i<=rovs[j].: max; i++. c++) 
{ 
if(! (c->mode t CELL-LOCK-MODE c->mode CELL-SLAVE-BODE)) 

c->velocity+=c->force/c->mass; 
c->velocitys=c->damping; 
c->position+=c->velocity; 
} 

if(c->mode t CELL_MASTER_MODE) 
{ 
c->companion->force=c->force; 
c->companion->velocity=c->velocity; 
c->companion->position=c->position; 
} 

// Member function name: 
setdamping(float xi, float x2, float yl, float y2, float damping) 

Functionality: 
// Sets the damping value of each cell to the value 'damping' over the 
// region specified. Vote that the coordinate system is relative to a 
// bounding box surrounding the instrument and, although x and y are 

normalised to be between 0 and 1, this coordinate system differs 
from the one used to access a point within an instrument and 
is described in section 5.4.4. 

// 
Returns: 

A reference to the cell for whom the function was invoked via the 
// C++ special variable `this'. 
// 
// Local variables: 
// i1.12, j1, j2: 

ji=bottom row number, j2stop row number, ilsleft cell number 
and 12-right cell number. 

// imin, imax: column numbers where damped region begins and ends // respectively. If an instrument is some shape other than 
rectangular then these are measured, in cells, relative 
to a bounding box surrounding the instrument where column 

// 0 is the left hand extremity of the instrument and // column xmax is the right hand extremity. 

Instrument class member variables: 
xmax. ymax, rows. 

Instrument tlnstrument:: setdamping(float xl, float x2, float yl, float y2, float damping) 

int i1, i2, j1, j2, imin, imax; 
register i, j; 

i1=(int)(xlsxmax); 
i2-(int)(x2*xmax); 
j1=(int)(yl*ymax); 
j2=(int)(y2*ymax); 

for (j=jl; j<'j2; j++) 

imin-rovs[j]. offset; 
imax=rovs[j]. off set+rovs[j]. xmax; 
for (i-i1; i<ai2; i++) 

{ 
if (i>=imin tt i<-imax) 

{ 
rows[j]. cells[i-imin]. damping-damping; 
} 

} 
return *this; 
} 

////////////////////////////////////////////////////////////////////////////// Member function name: 
// setdamping(float left, float right, float damping) 

// Functionality: 
Version for one dimensional instruments where only the left and 

// right ends of the damped region need to be specified still in 
normalised coordinates between 0 and 1. 

Returns: 
// A reference to the cell for whom the function was invoked. 
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// 
// Local variables: // il, i2: i1=left cell number and i2-right cell number. 

imin, imax: column numbers where damped region begins and ends 
respectively. If an instrument is some shape other than 
rectangular then these are measured, in cells, relative // to a bounding box surrounding the instrument where column 
0 is the left hand extremity of the instrument and 
column xmax is the right hand extremity. 

// Instrument class member variables: 
xmax, rows. 

Instrument tlnstrument:: setdamping(float left, float right, float damping) 
{ 
int il, 12, imin, imax; 
register i; 

i1m(int)(1eftsxmax); 
12n(int)(right*xmax); 

imin=rovs[O]. offast; 
imax=rovs[O]. offset+rovs[0]. xmax; 

for (i-il; i<=i2; i++) 
{ 
if (i>»imin tt i<mimax) 

{ 
rows[0]. cells[i-imin]. damping-damping; 
} 

} 
return *this; 
} 

////////////////////////////////////////////////////////////////////////////// 
Member function name: 

setdamping(float position, float damping) 

Functionality: 
// Version for one dimensional instruments which only allows the damping 

to be set at a single point, not over a region. 

Returns: 
A reference to the cell for whom the function was invoked. 

// 
Local variables: 

i: i=cell number affected. 

Instrument class member variable: 
rows. 

Instrument &Instrument:: setdamping(float position, float damping) 
{ 
int i; 

i=(int)(position*rovs[0]. xmax); 
roes(0]. calls[i]. damping-damping; 

return *this; 
} 

////////////////////////////////////////////////////////////////////////////// 
Member function name: 

aetdamping(float damping) 

Functionality: 
Sets the damping value of every cell within an instrument to 'damping' 

Returns: 
A reference to the cell for whom the function was invoked. 

Instrument class member function: 
// setdampin (float xi, float x2, float yl, float y2, dampin ). 

Instrument &Instrument:: setdamping(float damping) 
{ 
setdamping(0.0,1.0,0.0,1.0. damping); 
return *this; 
} 
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Member function names: 
resetdamping(float x1, float x2, float yl, float y2) 
resetdamping(float left, float right) 

// resetdamping(float position) 
resetdamping() 

// Functionality: 
Equivalent to the setdamping family of functions above, but reset the 
damping value back to Instrument: : default_damping. 

// Returns: 
// A reference to the cell for whom the function was invoked. 
// 

Instrument class member variable: 
default-damping. 

Instrument class member function: 
// setdampinl(float x1. float x2, float y1, float y2, dampin ). 

Instrument &Instrument:: resetdamping(flost xl, flost x2, flost yl, float y2) 
{ 
setdamping(xl, x2, yl, y2, default_damping); 
return *this; 
} 

Instrument &Instrument:: resetdamping(float left, float right) 
{ 

etdamping(left, right, 0.0,0.0, default-damping); 
return *this; 
} 

Instrument &Instrument:: resetdamping(float position) 
{ 
setdamping(position, position, 0.0,0.0, default-damping); 
return *this; 
j 

Instrument tInstrument:: resetdamping() 
{ 
setdamping(0.0.1.0,0.0,1.0, default damping); 
return *this; 
3 

////////////////////////////////////////////////////////////////////////////// 
// Member function names: 

setdamping(float x1, float x2, float yl, float 2, float decay) 
// setdamping(float left, float right, float decay` 

setdamping(float decay) 
// 

Functionality: 
Equivalent to the setdampinfamily of functions above, but set the 

// damping value in terms of a% ecay time measured in seconds. At the 
moment the results of setting a particular decay time for a particular 
region are not fully understood and these functions need to be updated 

// to provide more predictable results for any shape of size of 
instrument and any region of damping. 

// 
Returns: 

// A reference to the cell for whom the function was invoked. 

// Instrument class member functions: 
setdamping(float xl, float x2, float yl, float y2, damping), 
decay2dampin (float decay). 

Instrument tlnstrument:: setdecay(float xi, float x2, float yl, float y2, float decay) 
{ 
setdamping(xl, x2, yl, y2, decay2damping(decay)); 
return *this; 
} 

Instrument &Instrument:: setdecay(float left, float right, float decay) 
{ 
setdamping(left, right, 0.0,0.0, decay2damping(decay)); 
return "this. 
} 

Instrument &Instrument:: setdecay(float decay) 

setdamping(0.0,1.0,0.0,1.0, decay2damping(decay)); 
return *this; 
} 

IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII1111111111111 
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Member function names: 
// resetdecay(float x1, float x2, float yi, float y2) // resetdecay(float left, float right) 

resetdecay() 

// Functionality: 
Equivalent to the resetdamping family of functions above, included 
only for consistency and compatibility. 

// Returns: 
A reference to the cell for whom the function was invoked. 

Instrument class member variable: 
// default damping. 

Instrument class member function: 
setdampin (float xi, float x2, float 1, float y2, dam 'n ). 

/////////////////f//////////////////////////iu ///////////////[i//ß//////////// 
Instrument &Instrument:: resetdecay(float xl, float x2, float yi, float y2) 

{ 
setdamping(xi, x2, yl, y2, default-damping); 
return *this; 
} 

Instrument tlnstrument:: resetdecay(float left, float right) 
{ 
setdamping(left, right, 0.0,0.0, default-damping); 
return *this; 
} 

Instrument tInstrument:: resetdecay() 
{ 
setdamping(0.0,1.0,0.0,1.0, default-damping); 
return ethic; 
} 

/////////////////! //////////////////////////////////////////////////////////// 
// Member function name: 

vibrato(float rate, float depth) 
// 

Functionality: 
Applies a sinusoidal vibrato of frequency 'rate' hertz to an 

// instrument. The depth is given as a proportion of the fundamental 
// frequency of the instrument and the vibrato is achieved by modulating 

the masses of all the cells. Only works for slight modulations as 
making the masses too small makes the model become unstable. 

Returns: 
// A reference to the cell for whom the function was invoked. 

Local variables: 
c: pointer to current cell. 
i, j: j=row number, i=cell number in that row. 
base_freq: base frequency of instrument. 
nev_freq: frequency required due to vibrato modulation. 

// compensation-factor: 
factor to multiply the cell masses by. 

// Instrument class member variables: 
rows, ymax, xmax, default-mass 

External functions: 
sin, powf, loglOf (from <math. h>) 

Instrument tInstrument:: vibrato (float rate, float depth) 
{ 
Cell "c; 
register i, ; 
float base_freq, nev_freq, compensation_factor; 
extern float Time; // from main. cc 

actual_freq-Hz2Ce11Const/(xmax+l); 
nev_freq-actual_freq+(1.0+(depth*sin(rate4Timee6.2831853))); 
compensation_factor=povf(4.0, logl0f(actual_freq/nev_freq)/logl0f(2.0)); 

for (j=O; j<-ymax; j++) 

for <i=0, c=rows[j]. calls; i<-rovs[j]. xmax; i++, c++) 

c->mass=Instrument:: default_massscompensation_factor; 
} 

return *this; 
} 
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// Member function name: 
lock(float x, float y) 

// 
Functionality: 

Locks a single point at (x, y) on an instrument. 

// Returns: 
A reference to the cell for whom the function was invoked. 

Local variables: 
// i, j: j=row number, i-cell number in that row. 
// 
// Instrument class member variables: 

rows. 

Instrument tlnstrument:: lock(float is float y) 
{ 
int i, J. 

1=(int)(yeymax); 
=(int)(xsrovs[j]. xmax); 

rovs[JI. cells[il. mode Is CELL-LOCK-HODE; 

return *this; 
} 

////////////////////////////////////////////////////////////////////////////// 
// Member function name: 

lock(float x1, float x2, float yl, float y2) 
// Functionality: 
// Locks a rectangular region. Similar to aetdamping(xl.: 2, yl. y2, ... ) 
// in the coordinate system used to specify the region. 

Returns: 
/1 A reference to the cell for whom the function was invoked. 

// Local variables: 
ii, i2, ji, j2: ji=bottom row number. j2=top row number, 

i1=left cell number, i2aright cell number. 
imin, imax: minimum and maximum values of i respectively 

for the instrument in question. 
/1 i, j: j rov number, iicell number. 

Instrument class member variables: 
rows. 

Instrument &Instrument: : lock(f lost xl, float x2, float y1, float y2) 

int i1,12, jl, j2, imin, imax; 
register i, j; 
i1°(int) (leftsxmax); 

i2: (int)(rightsxmax); 
ji(int)(bottomsymax); 
j2-(int)(top*ymax); 

for (j. j1; j<'j2; j++) 

imin=rova[j]. offset; 
imaxýrovs[j]. offset+rovs(j]. xmax; 

for (i-ii; i<=i2; i++) 
{ 
it (i>=imin tt i<mimax) 

{ 
roes [j]. cells [i-imin]. mods I. CELL-LOCI-MODE; 
} 

} 
return *this; 
} 

////////////////////////////////////////////////////////////////////////////// 
// Member function names; 

lockleft(): locks the leftmost cells in an instrument 
// lockrightO: locks the rightmost cells in an instrument 

locktop(): locks the topmost cells in an instrument 
// lockbottomO: locks the bottommost cells in an instrument 
// lockcorners(): only meaningful for rectangular and triangular 
// instruments. 
// lockperimeterO : self-explanatory 
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// lockende(): designed for ID instruments. 
// 

Functionality: 
Lock various specific regions of an instrument. 

Return: 
// A reference to the cell for whom the function was invoked. 
// 

Local variables: 
i. J: j=rov number, i=cell number. 

// Instrument class member variables: 
rows. 

Instrument &Instrument:: locklett() 
{ 
register j; 

for(j. 0; j<=Ymax; j++) 
if(rova[j]. offset0) 

rovs[j]. ce11s[0]. mode in CELL_LOCE_MODE; 

return *this; 
} 

Instrument *Instrument:: lockrightO 
{ 
register j; 

for(j=O; j<=Ymax; j++) 
if(rovs[j]. offset+rovs[j]. xmax==xmax) 

rows[j]. cells [rows [j]. xmax]. mods In CELL_LOCK_MODE; 

return *this; 
} 

Instrument tInstrument:: locktop() 
{ 
register i; 

for(i=O; i<-rows[ymax]. xmax; i++) 
rovs[ymax]. cells[i]. mode I- CELL_LOCK_MODE; 

return *this; 
} 

Instrument tInstrument:: lockbottom() 
{ 
register i; 

for(i=0. i<-rovs[0]. xmax; i++) 
rovs(0]. cells[i]. mode in CELL_LOCK_MODE; 

return *this; 
} 

Instrument klnstrument:: lockperimeter() 
{ 
register j; 

locktop(); 
lockbottom(); 

for(j=0; j<=ymax; j++) 
rowsj]. cells[0]. mode I- CELL_LOCK_MODE; 

for(j=0; j<=ymax; j++) 
rovs[j]. cells[rovs[j]. xmax]. mode I- CELL_LOCK_MODE; 

return *this; 
} 

Instrument tlnstrument:: lockcorners() 
{ 
lock(0.0,0.0); 
lock(1.0,0.0); 
lock(0.0,1.0); 
lock(1.0,1.0); 
return *this; 
} 

Instrument &Instrument:: lockends() 
{ 
lockleft(); 
lockrightO; 
return *this; 
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////////////////////////////////////////////////////////////////////////////// 
// Member function names: 
// glue(Instrument Ail, float xl, float y1, glue 2D to 2D 

Instrument A12, float x2, float 72) 
glue(Instrument Ail, float xl, float 11, glue 2D to 1D 

Instrument k12, float x2) 
// glue(Instrument Ail, float xl, // glue 1D to 2D 

Instrument A12, float x2, float y2) 
// glue(Instrument Ail, float xl, glue 1D to 1D 

Instrument ti2, float x2) 
// 

Functionality: 
// Given two instruments and sets of coordinates for selecting two 
// cells, glues them and their corresponding neighbours together. 

Return: 
// A reference to the cell for whom the function was invoked. 
// 
// Instrument class member function: 

glue_cells(Cell *cl, Cell *c2). 

void Instrument: : glue (Instrument til, float x1, float yl, 
Instrument t12, float x2, float y2) 

1 
Instrument:: glve_cells(til(xl, yl), ti2(x2, y2)); 
Instrument:: glue_cells(il(xl, yi). east, 12(x2, y2). east); 
Instrument:: glue_cells(i1(x1, yl). vest, 12(x2. y2). vest); 
Instrument:: glue_cells(il(x1, y1) . north, 12(x2, y2). north); 
Instrument:: glue_cells(i1(xl, yl). south. 12(x2, y2). south); 
Instrument:: glue_cells(il(xl, yl). neast, 12(x2, y2). neast); 
Instrument:: glue_cells(il(xl, yl). nvest, 12(x2, y2). nvest); 
Instrument:: glue_cells(il(xl, yl). seast, 12(x2, y2). seast); 
Instrument:: glue_cells(i1(x1, yl). svest, 12(x2, y2). svest); 
} 

void Instrument:: glue (Instrument &ii, float x1, float yl. 
Instrument tit, float x2) 

{ 
Instrument: : glue_cells(til(xl, yl). ti2(x2)); 
Instrument: : glue_cells(il(xi, yi). east, 12(x2). *ast); 
Instrument: : glue_cells(il(xl, y1). vest, i2(x2). vest); 
} 

void Instrument:: glue(Instrument til, float xi, 
Instrument ti2, float x2, float y2) 

{ 
Instrument:: glue_cells(tii(xi), &12(x2, y2)); 
Instrument: : glue_cells(il(xl). east , 12(x2, y2). east); 
Instrument:: glue_cells(il(xl). vest, 12(x2, y2). vest); 

void Instrument: : glue (Instrument tilg float xi, 
Instrument *12, float x2) 

{ 
Instrument:: glue-cells (til(x1), ti2(x2 )); 
Instrument:: glue_cells(i1(xi). east, 12(x2). east); 
Instrument:: glue-cells (i1(xl). west, 12(x2). west); 

////////////////////////////////////////////////////////////////////////////// Member function name: 
// glue_cells(Cell "ci, Cell "c2) 

Functionality: 
// Given pointers to two cells. glues the cells together. 

void( Instrument: : glue_cells(Coll *cl, Call sc2) 

if (! cl 11 ! c2) return; 

cl->companion"c2; 
c2->companion=cl; 
cl->mode I' CELL-MASTER-MODE; 
c2->mode CELL_SLAVE_MODE; 
} 

////////////////////////////////////////////////////////////////////////////// // Member function name: 
// join(Instrument Ail, float xi, float yl, 
// Instrument tit, float x2, float y2) 
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// // Functionality: 
Joins two pieces of material with straight edges by effectively 

// installing a new set of springs to sew the two instruments together 
so that they act as one. There are eight different cases: - 

(1) if xi=0: if x2=0: join the left of it to the left of i2 
if x2=1: join the left of il to the right of i2 

(2) if x1=1: if x2=0: join the right of it to the left of i2 
if x2=1: join the right of il to the right of i2 

(3) if yl=0: if y2=0: join the bottom of il to the bottom of i2 
// if y2=1: join the bottom of il to the top of i2 

(2) if y1=1: if y2=0: join the top of il to the bottom of i2 
// if y2 l: join the top of il to the top of i2 

// If we are joining horizontally then yl and y2 serve to specify a 
centre line at which the joining should begin and conversely if we 
are joining vertically x1 and x2 specify a centre line. Once again 
x1, x2, yl and y2 are all specified as instrument coordinates. 

// For an explanation of the join parameters see section 5.4.7. 
Bote that il and i2 can refer to the same instrument making it 

// possible to construct cylindrical and toroidal instruments from a 
// rectangular sheet. 

Instrument class member function: 
join_left_to_left(Cell kcelll, Cell tcell2), 
join_left_to_right(Cell kcelll, Cell &ce112), 
join_right_to_left(Cell kcelll, Cell &cell2), 

// join_right_to_right(Cell &celll, Cell &cell2), 
join_bottom_to_bottom(Cell kcelll, Cell 1cell2), 
join_bottom_to_top(Cell &cell1, Cell kce112), 
join_top_to_bottom(Cell kcelli, Cell &cell2), 
join_top_to_top(Cell &celli, Cell kcell2), 

void Instrument:: join (Instrument Ail, float x1, float yl, 
Instrument &ci2, float x2, float y2) 

{ 
if (x1==0.0) 

{ 
if (x2==0.0) 

{ 
Instrument:: join_left_to_left(ii(xl, yl), 32(x2, y2)); 
} 

else if (x2==1.0) 
{ 
Instrument:: join_left_to_right(il(xl, yl), 12(x2, y2)); 
i2. vorldx-il. vorldx-(i2. xmax+l); 
12. worldy-(int)(il. vorldy+il. ymax*yl-i2. ymax; y2); 
} 

} 
also if (xl==1.0) 

{ 
if (x2==0.0) 

Instrument:: join_right_to_left(il(x1, yl), 12(x2, y2)); 
i2. vorldx=il. vorldx+(il. xmax+l); 
12. vorldy-(int)(ii. vorldy+il. ymaxsyl-i2. ymax+y2); 
} 

else if (x2==1.0) 

Instrument: : join_right_to_right(il(xl, yl), 12(x2, y2)); 
} 

else if (yi==0.0) 
{ 
if (y2==0.0) 

{ 
Instrument:: join_bottom_to_bottom(ii(x1, yl), 32(x2, y2)); 
} 

else if (y2=s1.0) 
{ 
Instrument: : join_bottom_to_top(il(xi, yl), 12(x2, y2)); 
i2. vorldx-(int)(ii. worldx+il. xmax*xl-i2. xmax*x2); 
i2. vorldy-ii. worldy-(i2. ymax+l); 
} 

} 
also if (y1==1.0) 

{ 
if (y2==0.0) 

{ 
Instrument:: join_top_to_bottom(i1(x1, yl), 12(x2, y2)); 
i2. worldx=(int)(ii. vorldx+ii. xmax*xl-i2. xmax*x2); 
12. worldy-il. worldy+(il. ymax+l); } 

else if (y2==1.0) 
{ 
Instrument:: join_top_to_top(il(xl, yl), 12(x2, y2)); 
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} 
} 

} 

G. Implementation code 

Member function names: 
// join_left_to_left(Cell tcelll, Cell kcell2) 

join_left_to_right(Cell kcelll, Cell tcell2) 
// join_right_to_left(Cell tcelll. Cell tce112) 
// join_right_to_right(Cell kcelll, Cell tce112) 
// join_bottom_to_bottom(Cell tcelli. Cell tce112) 

join_bottom_to_top(Cell tcelll, Cell tcell2) 
join_top_to_bottom(Cell tcelli, Cell tce112) 

// join_top_to_top(Coll tcelll, Cell tcell2) 

Functionality: 
Join two pieces of material with straight edges by effectively installing a new set of springs to sew the two instruments together 
so that they act as one. Joining starts at the two cells specified 
and migrates along the edges of the two pieces of material in one 
direction until a boundary is reached. Then back to the starting // cells to migrate in the opposite direction. For a more detailed 

// explanation see section 5.4.7. 

void 
{ 

Instrument: : join_left_to_left(Cell tcelll. Cell tce112) 

Cell *C1=tce111. "c2stce112; 

// migrate northwards until a boundary is reached. 

while (cl It c2) 
{ 
cl->vest c2" 
cl->nvestmc2->north; 
ci->svest=c2->south; 
c2->vest=cl; 
c2->nvest=cl->north; 
c2->svest=cl->south; 

cl=c1->north; if (cl"Ice111) break; 
c2=c2->north; if (c2-s*ce112) break; 
} 

if (cl) c1->svest=cl->south->vest; 
if (c2) c2->svest=c2->south->west; 

c1=tce111; c2=tce112; 

// back to starting position and migrate southwards 

while (cl It c2) 
{ 
cl->west-c2; 
cl->nwest-c2->north; 
cl->swest=c2->south; 
c2->west-cl; 
c2->nwest-cl->north; 
c2->ewest=cl->south; 

cl. ci->south; it (c1==&celli) break; 
c2ac2->south; if (c2==gce112) break; 

it (cl) cl->nvest-cl->north->west; 
it (c2) c2->nvest-c2->north->west; 
} 

void 
{ 

Instrument; : join_left_to_right(Cell tcelli, Cell 1ce112) 

Cell "cl=tcelli, sc2=2cell2; 
// migrate northwards until a boundary is reached. 

while (cl A& c2) 
{ 
cl->vest-c2; 
cl->nvest=c2->north; 
c1->svest=c2->south; 
c2->east=cl; 
c2->neast-cl->north; 
c2->seast-c1->south; 

ci=cl->north; if (ci==&celli) break; 
c2=c2->north; if (c2==&ce112) break; 
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i! (cl) cl->svest=cl->south->west; 
if (c2) c2->seast=c2->south->east; 

cl=tce111; c2stee112. 

// back to starting position and migrate southwards 

while (cl tt c2) 
{ 
cl->west=c2; 
cl->nwest=c2->north; 
c1->swest=c2->south; 
c2->east=c1; 
c2->neast=cl->north; 
c2->seast=ci->south; 

cl=cl->south; if (cl==kce111) break; 
c2=c2->south; if (c2-: kce112) break; 

if (cl) cl->nwest-cl->north->west; 
if (c2) c2->neastlc2->north->east; 
} 

void 
{ 

Instrument:: join_right_to_left(Cell tcelli, Cell tcell2) 

Cell "c1=tcelll, *c2=tcell2; 

// migrate northwards until a boundary is reached. 

while (cl It c2) 
{ 
cl->east=c2; 
c1->neast-c2->north; 
c1->seast=c2->south; 
c2->west-cl; 
c2->nwest=cl->north; 
c2->swest=c1->south; 

cl=cl->north; if (cl==tce111) break; 
c2=c2->north; if (c2==tce112) break; 
} 

if (cl) cl->seast-cl->south->east; 
if (c2) c2->saest-c2->south->west; 

c1=tce111; c2=tce112; 

// back to starting position and migrate southwards 

while (cl tt c2) 
{ 
cl->east=c2; 
cl->neast=c2->north; 
c1->seast=c2->south; 
c2->vest=cl; 
c2->nvest=cl->north; 
c2->evest-c1->south; 

cl=cl->south; it (ciutce111) break; 
c2=c2->south; if (c2==tce112) break; 
} 

if (cl) ci->neast-ci->north->east; 
if (c2) c2->nvest-c2->north->vest; 
} 

void 
{ 

Instrument: : join_right_to_right(Cell tcelli. Cell tcell2) 

Cell "ci=tcelll, *c2=tcell2; 

// migrate northwards until a boundary is reached. 

while (cl tt c2) 
{ 
c1->east=c2; 
c1->neast=c2->north; 
c1->seast=c2->south; 
c2->east=cl; 
c2->neast-cl->north; 
c2->seast=c1->south; 

cl=cl->north; if (ci==tce111) break; 
c2=c2->north; if (c2==tce112) break; 
} 
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if (c1) cl->seast=cl->south->east; 
if (c2) c2->seast=c2->south->east; 

cl=tcelll; c2=tcell2; 
// back to starting position and migrate southwards 

while (cl tt c2) 
{ 
cl->east-c2; 
cl->neast-c2->north; 
cl->seast=c2->south; 
c2->east=ci; 
c2->neast=cl->north; 
c2->seast=cl->south; 

cl=cl->south; if (cl=-tcelli) break; 
c2=c2->south; if (c2--tce112) break; 
} 

if (cl) c1->neast. cl->north->east; 
if (c2) c2->neast=c2->north->east; 
} 

void 
{ 
Instrument: : join_bottom_to_bottom(Cell lcelli, Cell tce112) 

Cell "c* -celli, "c2=tce112; 

migrate eastwards until a boundary is reached 

while (cl U c2) 
{ 
c1->south=c2; 
cl->seast-c2->east; 
cl->swest-c2->west; 
c2->south-cl; 
c2->seast-cl->east; 
c2->swest-cl->west; 

c1=ci->east; if (cis-kcelll) break; 
c2=c2->east; if (c2a-kcell2) break; 
} 

if (cl) ci->5west=ci->west->south; 
if (c2) c2->swest-c2->vest->south; 

back to starting position and migrate westwards 

ci=tcelli; c2*kcell2; 

while (cl Jtk c2) 

cl->south=c2; 
c1->seast=c2->east; 
cl->svest=c2->vest; 
c2->south=cl; 
c2->seast=cl ->east; 
c2->svest-c1->vest; 

cl-cl->vest; if (c1==tce111) break; 
c2=c2->vest; if (c2 =tce112) break; 
} 

if (cl) cl->seast=cl->east->south; 
if (c2) c2->seast=c2->east->south; 
} 

void 
{ 

Instrument:: join_bottom_to_top(Call icelli, Cell tce112) 

Cell *citcelll, "c2=icell2; 

G. Implementation code 

migrate eastwards until a boundary is reached 

while (c1 tt c2) 
{ 
cl->south=c2; 
cl->seast=c2->east; 
cl->svest=c2->vest; 
c2->north=cl; 
c2->neast-cl->east; 
c2->nvest=cl->vest; 

cl=c1->east; if (c1==tce111) break; 
c2=c2->east; if (c2"=tce112) break; 
} 
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if (cl) cl->sveat-cl->west->south; 
if (c2) c2->nveat=c2->west->north; 

cl=tcelli; c2=tce112; 

// back to starting position and migrate westvards 

while (cl H c2) 
{ 
cl->eouth=c2; 
c1->seast-c2->east; 
c1->svest-c2->west; 
c2->north=cl; 
c2->neast=ci->eazt; 
c2->nvest=cl->veet; 

ci cl->west; if (c1==tce111) break; 
c2=c2->vest; if (c2==tce112) break; 

if (cl) cl->seast-cl->east->south; 
if (c2) c2->neast=c2->east->north; 
} 

void 
{ 

Instrument:: join_top_to_bottom(Call &celll, Cell tce112) 

Cell "cl=tcelli, "c2=icell2; 

// migrate eastwards until a boundary is reached 

while (cl !t c2) 
{ 
cl->north=c2; 
c1->neast=c2->east; 
cl->nvest-c2->west; 
c2->south=cl; 
c2->seast-cl->east; 
c2->scest=cl->west; 

cl=cl->east; if (cl==tce111) break; 
c2=c2->east; if (c2--tce112) break; 
} 

if (c1) cl->nvest=cl->vest->north; 
if (c2) c2->svest=c2->vest->south; 

c1 &Celli; c2-kce112; 

// back to starting position and migrate westwards 

while (cl tt c2) 

cl->north=c2; 
c1->neast=c2->east; 
ci->nwest=c2->west; 
c2->south-cl; 
c2->seast=c1->east; 
c2->swest-cl->vest; 

cl=c1->vest; if (cl==tce111) break; 
c2=c2->vest; if (c2-=tce112) break; 
} 

if (cl) cl->neast=cl->east->north; 
if (c2) c2->seast=c2->east->south; 
} 

void 
{ 

Instrument:: join_top_to_top(Cell kcelll, Cell kcell2) 

Cell scl=kcelli, +c2-kce112; 

// migrate eastwards until a boundary is reached 

while (cl tt c2) 
{ 
C1->north=c2; 
c1->neast=c2->east; 
ci->nvest=c2->west; 
c2->north=cl; 
c2->neast=cl->east; 
c2->nvest-cl->west; 

c1=c1->east; i? (c1==tce111) break; 
c2=c2->east; if (c2==tce112) break; 
} 
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if (cl) ci->nsast-cl->east->north; 
i! (c2) c2->n. ast=c2->aast->north; 

clukc. 111; c2-tc. 112; 

// back to starting position and migrate westwards 

while (cl It c2) 
{ 
cl->north=c2; 
cl->nsast-c2->sast; 
cl->nv. st-c2->v. st; 
c2->north=cl; 
c2->n. ast-cl->. ast; 
c2->nv. st=c1->vest; 

clscl->w*st; if (cl--ic. 111) break; 
c2=c2->v. st; if (c2nstc. 112) break; 
} 

if (cl) cl->nv. st-cl->v. st->north; 
it (c2) c2->nv. stsc2->v. st->north; 
} 

G. Implementation code 

Member function name: 
1/ display() 

Functionality: 
Displays the instrument in the graphics window at a position 
determined by worldx, "oridy, graphx. graphy. "ieorigisx l "Ssoriginy. 

Instrument class member variables: 
rows, graphx, graphy, worldx, "orldy. amplification. 
global-amplification. 

External variables: (all from file aain. cc) 
Iinoriginx, winoriginy, zscale, yscale, stesfacter. 
graphics-on, graphics_update_step, Sample. 

External functions: 
bgnline(), endline(), v2sO: 

begin line and end line and vertex functions. see <6l. h) 
color(): sets graphics colour. BLAG. WHITE, CYAN. MAGENTA. BLUE, 

// GREET, YELLOW, RED allowed. 

void Instrument: : display() 
{ 
register short i, j; 
Ce11 "C; 
float ss; 
short v[2]; 
int left, bottom; 

left=vinoriginx+graphx; 
bottom=vinoriginy+graphy; 

color(BLACB); 
linevidth(1); 

for(=ymaz; j>"O; j--) // draw horizontal lines through rove of cells 

bgnlineO ; 
for(i O, c=rovs[j]. cells; i<. rovs[j]. zsaz; i++. c++) 

as=c->position; 
if (c->damping < default_da+ping) color(BLQB); 
else color(BLACI); 
"[O]"(short)(left+(vorldx+i+rosstj]. olfact). zscale+(vorld7+j)sskewfactor); 
v[1]a(short)(bottow+(vorldysj)eyscale+ss. auplification. 6lobal_a. plification); 
v2s(v); 
} 

endline(); 
} 

color(BLACK); 

If ({max>0) if instrument is 2D. draw line round perimeter 
linevidth(1); 

bgnline(); 

ior(i O, cnrovs[0]. cells; i<"rovs[01 xmaz; I+*, c++) // across bottom 



G. 1 C++ implementation of the TAO library libtao. a 291 

ss=c->position; 
v[0]=(short)(left+(vorldx+i+rovs[0]. offset)*xscale+vorldysskevfactor); 
vii] -(short) (bottom wor1dy*ysca1e+ss*airp1ificationsg1obaI_mpjjfjcatjon); 
v2s(v); 
} 

for TO ; j<-ymax; j++) // up right 

c=trova[j]. cells[rows[j]. xmax]; 
ss=c->position; 
v[0] (short)(left+(vorldx+rovs[j]. xmax+rova[j]. offset)*xscale+(vorldy+j)*skevfactor); 
v[1]=(short)(bottom+(vorldy+j)*yscale+sssamplificationsglobal_amplification); 
v2s(v); 
} 

for(i=rovs[ymax]. xmax; i>-O; i--) across top 
{ 
c=trovs[ymax]. cells[i]; 
as=c->position; 
v[0]=(short)(left+(vorldx+i+rovs[ymax]. offset)*xscale+(vorldy+ymax)sakevfactor); 
v[1]=(short)(bottom+(vorldy+ymax)*yscale+ss*amplification*global_amplification); 
v2s(v); 
} 

for(j=ymax; j>=O; J--) // down left 

ccskrows[j]. cells[0]; 
mc->Position; _ ]=(short)(left+(vorldx+rove[j]. offset)*xacale+(vorldy+j)+skevfactor); 
v[1]=(short)(bottom+(vorldy+j)*yscale+sssamplification*global_amplification); 
v2e(v); 
} 

endlive(); 
} 

for( IM O; j<=ymax; j++) // scan cells again to mark any 
// locked or glued ones 

for(i=O, c=rows[j]. cells; i<=rows[j]. xmax; i++, c++) 
{ 

sa=c->position; 
v[0]=(short)(left+(vorldx+i+rows[j]. offset)*xscale+(vorldy+j)*akevfactor); 
v[i]=(short)(bottom+(vorldy+j)*yscale+sssamplificationsglobal_amplification); 

if(c->mode t CELL-LOCK-MODE) 
{ 
color(BLACK); mark locked cells in black 
circfs(v[0], v[1], 2); 
} 

if(c->companion) 
{ 
color(AED); mark glued cells in red 
circfs(v[0], v[1], 3); 

} 
} 

} 

////////////////////////////////////////////////////////////////////////////// 
Member function names: 

calculate_forces0 
// update_positions<). 

display_allO. 

Functionality: 
// Cause all instruments to be updated by scanning the linked list 

and calling the appropriate member functions for each instrument. 

Local variable: 
i: current instrument. 

void 
{ 

Instrument:: calculate_forces() 

for (Instrument "i-Instrument:: list; i; i=i->next) 
i->calculate_my_forces(); 
} 

void 
{ 

Instrument:: update_positions() 
for (Instrument si=Instrument:: list; i; i-i->next) 
i->update_my_position(); 
3 
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void 
{ 

Instrument: : display-all() 

for (Instrument "i Instrument:: list; i; i-i->n. xt) 
i->display(); 

G. 1.5 File String. h 

G. Implementation code 

////////////////////////////////////////////////////////////////////////////// 
// File name: String. h (c) 1996 Mark Pearson 

// Content: Definition of String object class. 

Member variables: 
none. 

// Class String is derived from class Instrument. It has no member variables 
or member functions, only a constructor which knows how to create a one 

// dimensional piece of material. 

//////////////fl ////////////////////////////////////////////////////////////// 
Silnd. f STSIIG_H 
*define STRIIG_H 

tinclude "Cell. h" 

*itndef String 
$define String not_gl_String 
#endif 

class String : public Instrument 

public: 
String(tloat freq, float decay); 

#endif 

G. 1.6 File String. cc 
////////////////////////////////////////////////////////////////////////////// 

File name: String. cc (c) 1996 Mark Pearson 

Content: Definition of String constructor function. 

Constructor name: String(float freq, float decay) 

Arguments: 
Fundamental frequency of string in hertz which determines the 
length, and decay time in seconds. 

Local variables: 
/1 xsize: size of instrument in x direction, measured in cells. 

Instrument class member variables: 
xmax, ymax, roes, next. 

// Instrument class member functions: 
// add_to_global_list() 
// initialise_cells() 
// link_cells() 
// hertz2cells(fre uency) 

#include "Instrument. h" 
#include "String. h" 

This is necessary because there is a 'String' type in the graphics // library. 

lifndef String 
#define String not_gl_String 
iendif 

String: : String(f lost freq, float decay) 
Instrument (freq, 0.0, decay) 

{ 
int xsize-hertz2cells(freq), ysize=1; 
xmax=xsize-1; 
ymaxs0; 
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rows=new Rov[ysize]; 
next-LULL; 

rovs[0]. xmax-xsize-1; 
rovs[0]. offset-0; 
rovs[0]. ce11s-now Cell[xsize]; 

add_to_global_list(); 
initialise cells(); 
link_cellsO; 

G. 1.7 File Circle. h 

File name: Circle. h (c) 1996 Mark Pearson 

// Content: Definition of Circle object class. 

// Member variables: 
// none. 
// 
// Class Circle is derived from class Instrument. It has no member 

variables or member functions, only a constructor which knows how to 
create a circular sheet of material. 

#ifndef CIRCLE_H 
#define CIRCLE_H 

include "Cell. h" 

class Circle : public Instrument 
{ 

public: 
Circle(float freq, float decay); 

#endif 

G. 1.8 File Circle. cc 

// File name: Circle. cc (c) 1996 Mark Pearson 
// 
// Content: Definition of Circle constructor function. 

Constructor name: Circle(float diameter_freq, float decay) 

Arguments: 
frequency of circular sheet in hertz. This determines the diameter. 

// Also decay time in seconds. 

Local variables: 
j: current row number // x, y: j (0.. ymax) is translated into y (-yradius. 

. +yradius) 
// which is used to calculate x from the circle equation 

x'2 + y'2 = r'2. 
// radius: measured in cells. // local_xmax: xmax for current row. (see file Instrument. h for xmax) 

offset: offset of current row needed to place it in the correct 
// position relative to all the other rows. 
// xsize: overall size of instrument in x direction, measured in 

cells. 
// ysize: overall size of instrument in y direction, measured in 

rows. 
// Instrument class member variables: 

xmax, ymax, rows, next. 

// Instrument class member functions: 
add_to_global_list() 

// initialise_cells() 
link_cells() 

// hertz2cells(fr/e)/u/ency) 

*include <math. h> 
$include "Instrument. h" 
*include "Circle. h" 
*include <iostream. h> 

Circle:: Circle(float diameter_freq, float decay) 
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Instrument (diameter_freq, diameter_freq, decay) 
{ 
register j; 
float x, y, radius; 
int local_xmax, offset; 

G. Implementation code 

int xsize, ysize=hertz2ce11s(diameter_freq); diameter measured in cells 

xmax=0; 
ymax=ysize-1; // the cirle is 'diameter' cells high. 

roes-new Rov[ysize]; create the right number of rows 
next=IULL; 

radius ysize/2.0; 

for (j=O; j<ysize; j++) // create one row at a time starting 
// from bottom. 

yij-(ysize-1.0)/20; // as j goes from 0 to ymax calculate 
x-igrt(radius*radius-y+y); y for circle equation. Then x 
xsze-((int)(x+0. b))e2; round x up/down to nearest integer 
local_xmaxwxsize-1; 
offset. (ysize-xsize)/2; // the row is the correct length but 
rows[j]. xmax. local_xmax; most be offset relative to the 
rows[j]. offset=offset; bounding box. 
if(xmax < local_xmax+offset) xmax local_xsax+offset; 

// keep track of longest row 
rows[j]. cells new Cell[xsize]; // create 'xsize' new cells 
} 

add_to_global_listO ;, These functions are from the Instrument 
initialise-cells(); // base class. 
}ink-cells(); install springs between all the cells. 

G. 1.9 File Rectangle. h 

////////////////////////////////////////////////////////////////////////////// File name: Rectangle. h (c) 1996 Mark Pearson 

Content: Definition of Rectangle object class. 

// Member variables: 
// none. 

Class Rectangle is derived from class Instrument. It has no member 
variables or member functions, only a constructor which knows how to create 
a rectangular sheet of material. 

Oifndef RECTAIGLE_H 
define RECTAIGLE_H 

*include "Cell. h" 

class Rectangle : public Instrument 
{ 

public: 
Rectangle(float xfreq, float yfreq, float decay); 
Cell tat(float x, float y) { 

return rows [(int)(ymaxsy)]. cells[(int)(xmaxex)]; 
} 

#endif 

G. 1.10 File Rectangle. cc 
////////////////////////////////////////////////////////////////////////////// 

File name: Rectangle. cc (c) 1996 Mark Pearson 

// Content: Definition of Rectangle constructor function. 

// Constructor name: Rectangle(float xfreq, float yfreq, float decay) 

Arguments: 
// x and y frequencies of sheet, which determine the width and height 
// measured in cells. Also decay time measured in seconds. 

Local variables: 
j: current row number 

// xsize: size of instrument in x direction, measured in cells. 
// ysize: size of instrument in y direction, measured in rows. 
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// Instrument class member variables: 
xmax, ymax, rows, next. 

Instrument class member functions: 
// add_to_global_list() 
// initialise_cells() 

link_cells() 
// hertz2cells(fre uency) 

*include "Instrument. h" 
*include "Rectangle. h" 

Rectangle:: Rectangle (float xfreq, float yfreq, float decay) 
" Instrument(xfreq, yfreq, decay) 
{ 
register j; 

int xsize=hertz2cells(xfreq), ysize=hertz2cells(yfreq); 
xmax=xsize-i; 
ymax=ysize-1; 

rows-new Row[ysize]; 
next=HULL; 

for (j=O; j<ysize; j++) 

rows xmaLx-xmaLx; 
rovs[j]. offset=0; 
rovs[j]. cells=new Cell[xsize]; 
} 

add_to_global_list O; 
initialise-cells(); 
link-cells(); 
} 

G. 1.11 File Triangle. h 
////////////////////////////////////////////////////////////////////////////// 

File name: Triangle. h (c) 1996 Mark Pearson 

II Content: Definition of Triangle object class. 

Member variables: 
none. 

Class Triangle is derived from class Instrument. It has no member 
variables or member functions, only a constructor which knows how to 
create a triangular sheet of material which a vertically straight edge 

// on the right hand side and a vertex opposite it on the left hand side. 

Aifndef TRIAIGLE_H 
define TRIAIGLE_H 

#include "Cell. h" 

class Triangle : public Instrument 
{ 

public: 
Triangle(float xfreq, float yfreq, float decay); 

"endif 

G. 1.12 File Triangle. cc 
////////////////////////////////////////////////////////////////////////////// 

File name: Triangle. cc (c) 1996 Mark Pearson 
// 

Content: Definition of Triangle constructor function. 

Constructor name: Triangle(float xfreq, float yfreq, float decay) 

// Arguments: 
x and y frequencies of instrument and decay time. 

Local variables: 
j: current row number 
x: used in calculating how long each row should be. 

// local_xmax: xmax for current row (length - 1). 
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local_xsize: length of current row in cells. 
offset: offset of current row needed to place it in the correct 

// position relative to all the other rows. 
// xsize: overall size of instrument in x direction, measured in 
// cells. 
// ysize: overall size of instrument in y direction, measured in 
// rows. 
// 

Instrument class member variables: 
xmax, ymax, rows, next. 

Instrument class member functions: 
// add_to_global_list() 

initialise cells() 
link_cells() 
hertz2cells(fr"/uency) 

#include "Instrument. h" 
(include "Triangle. h" 
*include "iostream. h" 

Triangle: : Triangle (float xfreq, float yfreq, float decay) 
" Instrument (xfreq. yfreq, decay) { 

register j; 
float x; 
int local_xsize, local_xmax, offset; 
int xsize=hertz2cells(xfreq), ysize-hertz2cells(yfreq); 
xmax. xsize-1; 
ymax-ysize-1; 

rove-nev Row[ysize]; 
next-LULL; 

for (j=O; j<ysize; j++) 

if(j<ysize/2) x=xsizee2.0*(j+1)/ysize; 
if(j>-ysize/2) x. xsize. 2.0" ysize/2.0-(j-ysize/2.0))/ysize; 
local_xsize=(int)(z+0. b); 
local_xmax-local_xsize-1; 
offset=xsize-local_xmaz; 
rovs[j]. zmax-local_xmax; 
rovs[j]. offset-offset; 
if(xmax < local_xmax+offset) zmax-local_xmax+offset; 
rovs[j]. cells-new Cell[local_xsize]; 
} 

add_to_global_list(); 
initialise_cellsO ; 
link-cells(); 
} 

G. 1.13 File Ellipse. h 
////////////////////////////////////////////////////////////////////////////// 

File name: Ellipse. h (c) 1996 Mark Pearson 

Content: Definition of Ellipse object class. 
// 

Member variables: 
// none. 
// 
// Class Ellipse is derived from class Instrument. It has no member 
// variables or member functions, only a constructor which knows how to 

create a elliptical sheet of material. 

"ifndef ELLIPSE_H 
#define ELLIPSE_H 

$include "Call. h" 

class Ellipse : public Instrument 
{ 

public: 
Ellipse(float xfreq, float yfreq, float decay); 

Oendif 
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G. 1.14 File Ellipse. cc 
////////////////////////////////////////////////////////////////////////////// 

File name: Ellipse. cc (c) 1996 Mark Pearson 

// Content: Definition of Ellipse constructor function. 

Constructor name: Ellipse(float xfreq, float yfreq, float decay) 

Arguments: 
// X and y frequencies in hertz, which determine the size of the 

sheet and decay time measured in seconds. 
// 
// Local variables: 
// j: current row number 

x, y: j (0.. ymax) is translated into y (-yradius. . +yradius) 
// which is used to calculate x from the equation of an 
// ellipse x'2/a + y'2/b = c'2. 
// xradius, yradius. 

a, b: a-xradius-2, b-yradius-2. 
// local_xmax: xmax for current row. (see file Instrument. h for xmax) 
// local_xsize: number of calls in current row. 

offset: offset of current row needed to place it in the correct 
position relative to all the other rows. 

// zsize: overall size of instrument in x direction, measured in 
cells. 

ysize: overall size of instrument in y direction, measured in 
rows. 

// 
Instrument class member variables: 

// xmax, ymax, rows, next. 

Instrument class member functions: 
// add_to_global_list() 
// initialise_cells() 

link_cells() 

#include <math. h> 
include "Instrument. h" 
include "Ellipse. h" 

#include <iostream. h> 

Ellipse:: Ellipse(float xfreq, float yfreq, float decay) 
Instrument(xfreq, yfreq, decay) 

{ 
register j; 
float x, y, xradius, yradius; 
float a, b; 
int local_xmax, local_xsize, offset; 
int xsize=hertz2cells(xfreq), ysize hertz2cells(yfreq); 

xmax=0; 
ymax=ysize-1; 

rows=new Rov[ysize]; 
next=LULL; 

xradius=xsize/2.0; a=xradius*zradius; 
yradius=ysize/2.0; b=yradius*yradius; 

for (J 0; j<ysize; j++) 

y=j-(ysize-1.0)/2.0; 
x=egrt(a*(1.0-y*y/b)); 
local_xsize=((int)(x+0.5))s2; 
local_xmax=local_xsize-1; 
if (local_xmax>xmax) xmax=1oca1_xmax; 
offset=(xsize-local_xsize)/2; 
rovs[j]. xmax=local_xmax; 
rovs[j]. offset=offset; 
if(xmax < local_xmax+offset) xmax=local_xmax+offset; 
rovs[j]. cells-new Cell[xsize]; 
} 

add_to_global_list(); 
initialise-cells(); 
link-cells(); 
} 

G. 1.15 File Microphone. h 
////////////////////////////////////////////////////////////////////////////// 
// File name: Microphone. h (c) 1996 Mark Pearson 
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Content: Definition of Microphone object class. 
// 

Member variables: 
// source: microphones come in two types, those which have their 
// source or sources defined at the time of declaration, 
// and those which, given floating point expressions 
// in the score, write the results of these expressions 

to a file. The variable 'source' determines whether the 
// microphone takes its signal from pre-defined cells or 

from expressions. It takes one of the two values: 
// 'from cells' or 'from_expressions'. 

index: index into sample buffer. When sample buffer is fall, 
// it is written to 'outputfile'. 

num_channels: number of channels. Limited to 1 or 2 in current 
// implementation but relatively trivial to change. 

buffer: pointer to floating point sample buffer. 
filename: pointer to name of file to which raw floating point 

sound samples are written. 
// outputfile: output file stream to which samples are written. 

leftsource: pointer to cell which is source for samples when 
microphone is mono, or left samples when microphone 
is stereo. 

rightsource: pointer to cell which is source for right samples 
// when microphone is stereo. 
// leftsample: floating point value which is either mono sample or 

left sample in a stereo microphone. 
rightsample: floating point value which is right sample in a 

stereo microphone. 
next: pointer to next microphone in linked list. 

// Static member variables: 
list, current: pointer to head of linked list of microphones, and 

pointer to current microphone during updating. 

#ifndef MICROPHOIE_H 
define MICROPHOIE_H 

$include <fstream. h> 
#include "Cell. h" 

#define stereo 2 
#define mono 1 

class Microphone 
{ 

public: 
static const buffersize; defined in file Microphone. cc 
Microphone(const char "soundfilename. int channels); 
Microphone(const char *file, Call tl, Call ar); 
Microphone(const char *file, Cell ac); 
Microphone tsetleft(Cell tl) (loft sourcestl; return *this; ) 
Microphone tsetright(Cell &r) {rightsource=tr; return *this; ) 
Microphone tleftout(float value) ileftsample=value; return *this; ) 
Microphone trightout(float value) {rightsample=value; return *this; ) 
Microphone toutput(float value) {leftsample=value; return *this; ) 
void update(); 
static void update_allO ; 

private: 
void 

{ 
add_to_global_listC> 

if (list==LULL) listathis; 
else current->next=this; 

current=this; 
3 

enum 
{ 
from_cells, from_expressions 

int source, index, num_channels; 
float *buffer; 
char *filename; 
ofstream outputfile; 
Cell "leftsource; 
Cell "rightsource; 
float leftsample; 
float rightsample; 
Microphone *next; 
static Microphone *list. *current; 

#endif 
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G. 1.16 File Microphone. cc 
////////////////////////////////////////////////////////////////////////////// 
// File name: Microphone. cc (c) 1996 Mark Pearson 

Content: Definition of Microphone class member functions 

include <strstream. h> 
*include <fstream. h> 
linclude <string. h> 
$include "Microphone. h" 
#include "Instrument. h" 

include "Cell. h" 

Microphone ºMicrophone:: list=IULL, ºMicrophone:: current=IULL; 
const Microphone:: buffersize-5000; 

////////////////////////////////////////////////////////////////////////////// 
Constructor name: 

// Microphone(const char "soundfilename, int channels) 
// 

Functionality: 
// Creates a microphone object whose sound samples will be sent to 
// a file called '/var/tmp/<name>. tao'. The microphone writes `channels' 

channels of output (1 or 2 in the present implementation). lo 
decision is made at declaration time about the actual sources for the 
sound samples. This is left to be determined by the member functions 
leftout() A rightout() described in file Microphone. h, and update() 

// described below. In practice leftout() and rightout() are called 
within the score. 

// 
Arguments: 

Pointer to a string of characters representing <name> and number of 
// channels (only 1 or 2 in present implementation). 

Instrument class member variables: 
source, index, num_channels, filename, buffer, 
next, leftsource, rightsource. 

// 
Local variables: 

// tempname: if filename points to the string 'filel' then 
tempname will point to the string '/var/tmp/filel. tao' 

///////////////////////////////////////////////////// 

Microphone: : Microphone (const char "soundfilename, int channels) 

aource-from_ezpresaions; 
index=0; 
num_channalsachannels; 
filename-new char[SO]; 
buffer=new float[buffersize]; 
next=IULL; 
leftsource=IULL; 
rightsource=IULL; 

ostratream tempname(filename, 60); 
tempname « "'/var/tmp/" « soundfilename « ". tao" « ends; 

outputfile. open (filename, ios:: trunc); 
outputfile. close 0; 

}dd_to_global_list0 ; 

////////////////////////////////////////////////////////////////////////////// // Constructor name: 
Microphone(const char "sfname, Cell il, Cell Ar) 

// Functionality: 
// Similar to above function except that sound sources in the form 

of references to two cells are given. This automatically determines 
// that num_channels=2. 

Arguments: 
// Pointer to a string of characters representing <name> and 
// references to two cells which will provide samples for the left 
// and right channels of output. The cells' positions are used to 
// generate the samples. 

// Instrument class member variables: 
// source, index, num_channels, filename, buffer, 

next, leftsource, rightsource. 

// Local variables: 
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// tempname: '/rar/tmp/<name>. tao, 

Microphone:: Nicrophone(const char "sfname, Cell Al, Cell Ar) 

source-from-calls; 
index=0; 
num_channels=2; 
filename=new char[b0]; 
buffer=new float(buffersize]; 
next=]FULL; 
leftsource=tl; 
rightsource=tr; 

ostretream tempname(filename. 50); 
tempname « "/var/tmp/" « sfname << ". tao" « ends; 

outputfile. open(filename, ios:: trunc); 
outputfile. close 0; 

add_to_global_listO ; 
} 

Constructor name: 
Microphone(const char "sfname. Cell tc) 

// 
// Functionality: 
// Mono version of constructor function described above. 

Micro phone: : ricrophone(const char "sfname, Cell ic) 

sourcesfrom_cells; 
index=0; 
num_channels=1; 
filename=new char[b0]; 
butter=neu float[buffersize]; 
next-FULL; 
leftsource=ic; 
rightsource=IULL; 

ostrstream tempname(filename, 50); 
tempname « "/var/tmp/" « sfname « ". tao" << ends; 

outputfile. open(filename. ios:: trunc); 
outputfile. doe. 0; 

add-to-global-list(); 
} 

J//////////////////////////////////////////////////////////////////////J////// 
I/ Member function name: 

update() 
// 

Functionality: 
// causes sound samples to be written to the sample buffer. If the 
// buffer is full then it is written to the output file stream 
// outputfile and index is set to 0. Otherwise index is incremented by 

num_channels. 

Instrument class member variables: 
source, buffer, index, num_channels, leftsource, rightsource, 
leftsample, rightsample. 

External variables: 
Sample: counter which keeps track of how many time steps have 

// "lapsed since the beginning of a performance. 
// bandwidthlevel: 

an integer which specifies how often samples are 
J/ generated, i. e. on every time step, on every other 
// time step, on every third time step etc. The higher 

the value the better the frequency response of the 
// synthesis model, but the worse the computational 

burden. This should not be altered from its default 
value 

/ 

void { 
Microphone: : updateO 

extern long Sample; // from Imain. ccl 
extern bandvidthlevel; 

if (Sample%bandvidthlevel!. O) return; // Throw away samples 

if (index<buffereize) 
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{ 
if (source--from-cells) 

{ 
if (num_channels=a2) 

{ 
buffer[index++]-leftsource->position; 
Duffer[index++]=rightsource->position; 
} 

if (num_channels.  1) 
{ 
buffer[index++]=1eftsource->position; 
} 

if (source=zfrom_expressions) 
{ 
if (num_channels=-2) 

{ 
buffer[index++]=1efteample; 
buffer[index++]=rightsample; 

} if (num_channels=sl) 
{ 
buffer[index++]=1eftsample; 
} 

if (index==buffersize) 
{ 
outputfile. open(filename, io3:: app); 
outputfile. write ((unsigned char *)buffer, (int)(buffersize*sizeof(float))); 
outputfile. close 0; 
index=0; 
} 

////////////////////////////////////////////////////////////////////////////// // Member function name: 
// update_all() 
// 

Functionality: 
// starts at the head of the linked list of microphones and updates 
// them all, one by one. 

void 
{ 

Micro phone:: update_a110 

for(Microphone "m-list; m; m=m->next) m->updateO ; 
} 

G. 1.17 File main. cc 
////////////////////////////////////////////////////////////////////////////// 
// File name: main. cc (c) 1996 Mark Pearson 
// 
// Content: 

Global variables and functions, macros for translating TAO script 
into a C++ code fragment and main function. 

Purpose: 
// A TAO script is actually a fragment of C++ code in clever disguise. 

Instrument, microphone and parameter declarations in a TAO script 
are translated directly into C++ variable declarations of the 
appropriate type. The score control structures are translated into 

// C++ control structures and most of the other code such as mathematical 
// expressions are left exactly as they appear in the script. Part of 

this translation process is carried out by the UIIX sed command which, 
given a set of scripts, pattern matches and replaces strings of 

// characters in an input stream. The zed scripts are contained // in files c4, c5, c6, Cl, string_sed, rectangle_sed, ellipse_sed 
circle-sad, triangle_sed. The file `tao' contains a short UIIX script 
which causes the TAO script to be translated, #included into the 

// main function defined later in this file, and compiled. For a full 
// explanation of the implementation of both the synthesis model and 

scriptElanguage 
at a less code specific level, see appendices 

// 
Global variables: 

audiorate: sample rate of output, currently fixed at 44.1 KHz. 
modelrate, bandwidthlevel: 

// if audio samples are generated on every time step of 
the synthesis engine, the-material' s frequency response // is not very good. To improve the situation (at the 
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// expense of more computational power) we can sample 
instruments on every other time step. We have to was 
the instruments twice as big though to achieve the same 

// fundamental frequency, but in effect the spatial and 
temporal resolution of the model is increased leading 
to sounds with more high frequency clarity. 

// modelrate n audiorate " bandwidthlevel. These variables 
should not be changed as other constants are affected 
such as Hertz2CellConst and Decay2DampingConst (both from 
Instrument. h). 

// 
Macros used in implementation of score language: 

a, b, IITERVAL, TIME all measured in seconds. 

FromTo(a, b): intermediate translation of 'From 
.. to' and 

'At .. forO TAG control structures. 
Before(a), After(a): translations of 'Before' and 'ºfterl control 

structures. 
Every(IITERVAL): translation of 'Every' control structure 
ControlRate(DIVIDEBY): translation of 'ControlRate' control structure. 
At(TIME)t translation of 'At' control structure 
If(COYDITIOH): translation of 'If' control structure 
Elseif(COIDITIOI): translation of 'Elseif' 
linear(yi, y2): returns a time varying value which changes 

// linearly from yi to y2 over the time interval 
// specified by the variables 'start' and 'end'. 
// expon(yl, y2): returns a time varying value which changes 

exponentially from yl to y2 over the time 
// interval specified by the variables 'start' 
// and 'end'. 

Parameter: Parameter x, y simply translates to float :, y 

// Score(duration): A much more ugly macro not intended for human 
// consumption! Basically sets up a C++ for loop 

with the number of iterations determined by 
// duration. TAO makes use of the fact that a 
// C++ for loop of the form: 

1/ for ( snit ; cond ; step ) 

can have multiple items separated by commas 
in each part. This is a sneaky way of inserting 
all the code to update instruments and  ic's, 

// update the graphics etc. into the 'head' of the 
// for loop leaving the body of the loop free to 
// take the body of the TAO score. 

#include <iostream. h> 
#include <iomanip. h> 
#include <fstream. h> 
#include <strstream. h> 
#include <gl. h> 
#include <gl/device. h> 
#include <math. h> 
#include <string. h> 
#include <unistd. h> 
#include <sys/types. h> 
$include <time. h> 

#ifndef String 
#define String not_gl_String 
#endif 

#include "Instrument. h" 
*include "String. h" 
#include "Rectangle. h" 
#include "Circle. h" 
#include "Triangle. h" 
#include "Ellipse. h" 
#include "Microphone. h" 

// macros for units of measurement 

*define Hz *1.0 
*define secs *1.0 
#define min *60.0 
#define msecs /1000.0 
#define samples /44100.0 

these variables are described at the head of this file and should be 
// left well alone. 

float audiorate=44100.0; 
int bandaidthlevel=2; 
float modelrate=audiorate*bandvidthlevel; 
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////////////////////////////////////////////////////////////////////////////// 
// Macros used in implementation of score language: 
// Once the half-translated TAO script file contained in the file 
// 'tao_scriptfile' has been *included into the main function, these 
// macros perform any further translation needed to make the script 
// into a fully com ilable fra ent of C++ code. 

//////////////////////ii//////////ii////////////////////////////////////////// 
#define FromTo(a, b) if(Sample<=(long)((EID=(b))*modelrate) U\ 

Sample>. (1ong)((STARTs(a))*modelrate)) 
Sdefine Before(a) if(Sample<(long)(START=start, (EID=(a))*modelrate)) 

define After(a) if(Sample>=(long)(EID=end, (START. (a))*modelrate)) 
*define Every(IITERVAL) if(Samp1. %(long)(IITERVAL*modelrate)=O0) 
#define ControlRate(DIVIDEBY) if(Sample%(long)DIVIDEBY==O) 

define At(TIME) if(Samp1em=(long)(TIME*modelrate)) 
#define AtSample(TIME) if(Sample-=TIME) 

define If(COIDITIOI) if(COIDITIOI) 
#define Elssif(COIDITIOI) else if(COIDITIOI) 
#define Else else 
"define When(RHYTHM) if(RHYTHM) 

*define linear(yl, y2) ((Time-start)/(end-start)+(y2-yl)+yl) 
*define expon(yl, y2) ((float)(yl)*fexp(1.0/(end-start)*flog((float)(y2)/ \ 

(float)(yl))s(Time-start))) 

#define Parameter float 

#define Display cout «" " <sety(0)<<setprecision(4)«setiosflags(ios:: fixed)« 
#define newline '\n'«flush 
*define sameline '\r'«flush 

define Flag int 
define Position Cell t 

////////////////////////////////////////////////////////////////////////////// 
The 'Score' macro is a mess to look at but was only over intended to be 

// a temporary measure for the prototype TAO system. The first thing on the 
// agenda if any further work is done to the system is to replace the UNIX 

sad scripts and all of these macros with a proper TAO language parser. 
This would cleanly and robustly translate a TAO script with error checking. 

// At the moment error checking is only provided at the level of C++ compiler 
errors and thus only detects syntax errors in the translated version of the 
TAO acript, which the user should not be concerned with. 

*define Score(duration) \ 
1umSamples=(1ong)(duration*modelrate); \ 
cout « "Calculating "« IumSamples <( samples\n"; \ 

\ startstack[1]=start'O. 0; endstack[1]=end=duration; 
startstack[0]=start; endstack[O]=end; \ 
START=start; EID=end; \ 
for(Sample=0, Time=0.0; \ 
graphics- on? (color(WHITE), 1): 0, \ 
graphics_on? (clear(), 1): 0, \ 
Instrument:: calculate_forcesO ,\ 
update_graphics0, \ 
Sample<=lumSamples; \ 
(graph ics_onkk(Sample%graphica_update. Step==0))? (Instrument:: display_all(), 1): 0, \ 
(graph ics_ontt(Sample%graphics_updata. step==0))? (suapbuffers(), 1): 0, \ 
Instrument:: update_positions (), \ 
Microphone: : update_all0 ,\ Sample++, Time=Sample/modelrate) 

////////////////////////////////////////////////////////////////////////////// 
// Global function names: 

randomi(int low, int high) 
random(float low, float high) 

// pitch(float value) 
pitch(const char *note) 

// 
Described below. 

int randomi(int low, int high); 
float random(float low, float high); 
float pitch(const char *note); 
float pitch(float value); 

////////////////////////////////////////////////////////////////////////////// 
Global function name: 

// randomi(int lov, int high) 

// Functionality: 

303 

// Returns a random integer between low and high inclusive. 
////////////////////////7i///////////////////1//////////////////////////////// 
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lot rando. i(int low. it kith) 

return (1on+(random ()t(1l6A"1o. +i)))i 

C. Implementation code 

// Global function name: 

randoa(float low, float high) 

Functionality: 
Returns a random floati gfoint number between low sad high inclusive. 

-float rando. (float low. float high) 

return (float)randoaiMat) (lo. 'i00000), (tat)(kigWol00o00))/100000.0; 

Global function sago: 
pitch(float value) 

// Functionality: 
Takes a decimal value of the form <octav. >. <s.. ltose> and r. tarso 

a frequency in hertz. For example pitcº(5.00) "> 261.6 is or . 1441. CO 
// itch(6.09) > 440 Is or A above siddlo C. ltck(7.09) "> 220 Is. 

float pitch(float value) 
float octave. semitone. fr"quency; 

octave   ftrnnc(valu. ); 
semitone " value - octave; 
value " octave + semitone " 100.0 / 12.0; 

frequency " pos(2, value - 8.0) " 261.6; 
return frequency; 
} 

Global function name: 
pitch(const char *note) 

Functionality: 
Takes a string of characters representing a mote save and 

returns a frequency in hertz. For example: - 

pitch("C8") -> 261.6 äs or middle C. 
pitch("Ct8") -> frequency of C sharp above middle C. 
pitch("A8") -> 440 As or A above middle C. 

// pitch("Eb6") -> frequency of C flat to second octave Wes 
middle C. 

pitch("F$8+1/3") -> frequency of F sharp " 1/3 of a seniles. 
// in middle C octave. 

float pitch(const char "note) 
{ 
int 1 strlen(note); 
float octave, sewitone, frequency. value; 
int charno. 0; 

stitch (note[charno++]) 
{ 

case 'C' se. itonew0.00; break; 
case 'D' sewitone. 0.02; break; 
case 'E' : semitons 00.04; break ; 
case OF, : se. itone O. 05; break; 
case '0' : somiton. 0.07; break; 
case 'A' : sewitone. 0.09; break; 
case 'B' se. itones0.11; break; 
} 

ii(note[charno]= 'b') 
{ 
semitone-50.01; 
charno++; 

else ii(note[charno] . '_') 
{ 
semitone+80.01; 
charno++; 
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octavo 1.0I(nots(charno++]-10l); 
It(note [charno]) '0' lt noto[charno]<. '9') 

octavs octav.. 10.0+1.0s(not. [charno++]-101); 

iat p1uI"FALSE, "ioussFALSE; 

if(noto[charno]e '+º II noto[charao]N'-º) { 
float dividondsO. 0; 

if(aoto[chario]. '+') plus. TRUE; 
1f(aot"[chars o].. '-')  inns"TRUE; 
charso++; 

while (note [charno]>a'0º 11 note Echaroo3 <='9') 
{ 
divid. nds. 10.0; 
dividend+"(float)(not. [charno]-'0'); 
charno++; 
} 

if(noto(charno++]!. '/') 
corr << "Pitch error: / expected" << "ndl; 

float divisor=0.0; 

while (note [charno]). 'O' t& not. [charno3< '9') 
t 
dlvisor". 10.0; 
divisor+ (float)(not. (charno]-'0'); 
charno++; 
} 

if(plus) s. aiton. + divid. nd/(divisor"100.0); 
if(minus) s. aiton. -"divid. nd/(divisor"100.0); 
} 

value " octave + s. aiton. " 100.0 / 12.0; 

frequency " pos(2, value - 8.0) " 261.6; 
return frequency; 
} 

// Global variables used by graphics: 
// mousex, mousey: 

current mouse position is screen coords with origin at bottom left 
of graphics window. 

// mdev[2]: 
// mdev[0] is device MOUSEY, x position of mouse. 

wdev[1] is device MOUSEY, y position of mouse. 
mval[2]: 

// mval[0] is value of device MOUSEX 
// mval[1] is value of device MOUSEY 

lastval[2]: 
// keeps track of previous position of mouse when polled. 
// org[2]: 
// x and y coordinates of bottom left of graphics window relative to 

screen origin. 
// size[2]: // x and y dimensions of graphics window in pixels. 
// middleflag, rightflag: 
// used to keep track of whether middle or right mouse buttons 
// were pressed when previously polled, i. e. to see if there has 

been any change of state. 
// vinoriginx, vinoriginy: 
// origin of TAO's window coordinate system relative to the graphics 

window origin. For example, increasing vinoriginx by 100 moves the 
whole TAO graphical animation 100 pixels to the right. 

skewfactor: 
instruments are displayed in oblique projection. This variable 
determines how skewed the instruments appear. A value of 0 

// displays a rectangle as a rectangle etc. 
xscale, yscale: 

number of pixels between successive cells in the x and y 
// directions. Current values of skevfactor, zscale and yscals seem 
// to produce a clear visual representation. 
// drag: 
// flag determining whether the the graphical image was being dragged 
// with the left mouse button last time it was polled. 

int graphici. on " FALSE; 

$defin" X0 
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"dstin* YI 
Id. tin* IT 2 
short Mons. s. Moo say-, 
short . ral(IT] lastval(IT]; 
Device nd. v(IT]; 
long os6[IT]. sis. [IT]; 
litt aiddlsllag FALSL. rightflag ºALEL; 
litt Maori6ins 200, Maori iaym200; 
float skssfactor O. 6. sscais 4.0, Tscala 3.0; 
int drag FALSL. 

G. Implementation code 

// Global function aaas: 
graphics.. init() 

Functionality: 
Initial is. s 6rapbics syst. m, opens a . iad... stitl. d 4710 graphical 

output'. f. to doubl. buff. r nods for aaisati. u aad cl. -ere the screen 
to white. 

void 
{graphics_init() 
char "ia_aamoEl "TAO graphical output"; 
prefsi: s(1000,700); 
"inop. n(tii. Aa . ); 
doubl. buiisrO ; 
gcoallg(); 
color(WHITE); 
clear (); svapbuffers(); 
color(WHITE); 
clear(); 
} 

1nt graphict_npdats_st. p. 1; 

float Tim. -0.0; time elapsed since beginning of portsr. aac" 
is seconds. 

ostrstrsas tiasstrsas; need to crsat" a stria` of claractsrs // representing t! " tiaa "lapood. 

// Global function name: 
update_graphics() 

Functionality: 
Everything associated with the graphics window save actually drseia` 

// the instruments. There are a number of sosse functions provided: 

Holding the left mouse button down and moving the mouse is the 
graphics window causes the whole graphics image be dragged about. // Useful for instruments which are too big to fit on the screen. 

// Holding left mouse button down and pressing middle mouse button 
causes 'graph ics_update_stepI to be multiplied by a factor of S. The 
graphics window is updated on every Igraph ics_spdate_stop'th time step 
of the synthesiengine. If graphics_update_stsp. 640 then it becomes 
1 again. 

// Holding left mouse button down and pressing right sosse bottom 
causes graphics-update-stop to be divided by a factor of S. It it 
is already 1 then the animation is frozen until left sosse " right 
mouse are pressed again. 

// Elapsed time in seconds since beginning of performance Is displayed 
// at bottom left of graphics window. 

Local variables: 
// lastmousex, lastmousey: 
// the coordinates of the previous mouse position ekes dragging 
// the image with the left mouse button. 

External functions: 
getsizeO. origin(). cmov2i(), color(), charstrO, getbettea() 

// all provided in SCI graphics library and declared Is Cgl. ". 
// See IRIX 6.3 man pages for explanations of their fuactiesality. 

void updat. _graphic. 
C) 

static int lastaousez-0, lastmooserO; 

if (saphics_on) 
{g. 

tsiz. (tsiz. (X], tsiz. (Y]); 
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Iotori in(&ora[: ], sors[Y]); 

if (craphics_on) 

cmov21(20,20); 
color(BLAC[); 
tim. strsaw «satt(0)<<sstprscision(4)<<s. tiosflags(ios:: fizod); 
timestrsas << "Elapsed time=" « Time << " seconds"; 
charstr(tim. str. an. str< ); 
timostraaw. ssakp(0. ostrsaw:: bsg); 

if (6raphics_on At g. tbutton(LEFTMOUSE) At g. tbatton(MIDDLEMOUSE)) 

If (! middleflag) 
if (graphics_updats_stap-500) 

graphics-update-step-i; 
also graphics_updats_stoponS; 

11 iddloflag"TRUE; 

also if (middl. flag) widdl. flag-FALSE; 

if (6raphics_on At gotbutton(LEFTMOUSE) Lt g. tbutton(BICNTMOUSE)) 

If (! riahtflag) 
if (6raphics_updata_st. psi) 

"thil. (gotbutton(ßIGHTMOUSE)); 
while( I(g. tbutton(LEFTMOUSE) tt g. tbutton(RICHTMOUSE))); 
"hils(gotbutton(LEFTMOUSE)); 

also graphics_updat. _st. p/-b; 
rightflarTlUE; 

also if (rightflag) rlghtflag. FALSE; 

if (Iraphica_on It tdrag It gstbutton(LEFTMOUSE)) 

draa TAUE; 
gstdsv(XY. md. v, oval); 
wous. x wval[X]-org[X]; 
wousoy mval[Y]"org[Y]; 
lastmous. x=mous. x; 
lastmoussy mous. y; 
3 

if (graphics-on tt drag tt getbutton(LEFTNOUSE)) 

g. td. v(XY, wd. v, wval); 
wo us. x-mval[X]-org[X]; 
mousoywmva1(Y]-org[Y7; 
"inoriginx+ mous. x-lastmoussx; 
uinoriginy+ mous. y-lastmousuy; 
lastmous. xsmous. x; 
lastmous. ysmous. y; 

if (graphics-on At drag it lg. tbutton(LEFTMOUSE)) drag-FALSE; 

Global function name: 
main() 

// 
Functionality: 

The user compiles a TAO script 4example. script ' by typing; 

'tao example' 

which causes the script to be translated into an intermediate form 
stored in the file 'tao_scriptfile'. 

// This is #included into the main function below and once further 
processed by the C++ macros idefined at the beginning of this file, 
it is now a fragment of executable C++ code. The user's instrument, 
microphone and parameter declarations translate directly into 
C++ variable declarations and other TAO language features such as 
the score control structures, screen output. mathematical expressions 
etc. translate into equivalent C++ language features. Once the C++ 

// preprocessor has done its stuff this file is compiled leading to 
and executable called Oexample. exel following the example given 
above. 

Local variables: 
start, end, start stack Q, endstack[]" // Two special variables 'start' and fiend' are available throughout 
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the score. Their values depend on context, specifically the 
times specified in the head of the control structure whose 
body they appear in. For example 'At 0 secs for b secs' leads to 
start-0 and and=b. The way in which the system keeps track of 
the different values of start and end is by means of two stacks 
startstack[] and endstack[]. Every time control passes into the 
body of a nested control structure the current values of start 

// and end are pushed onto the stacks and new values are calculated. 
On leaving the body, the old values are popped from the stacks. 

// START, ETD: 
Used to store the times specified in the head of a control 

// structure ready to be transferred to start and and once their 
values have been pushed onto the stacks. 

// n: start and end stack pointer. 
// 
// Global variables: 
// Sample, lumSamples: 
// Current sample number (time steps of synthesis engine not 

sound samples) and total number of samples to synthesise. 
// graphics-on: 

flag indicating whether to display instrument animations or 
// just proceed with synthesis. 

////////////////1 //////////////////////////////////////////////////////////// 
long Sample=0, IumSamplee-0; 

void 
{ 
main(int argc, char sargv[]) 

if (argc-=3 At strcmp(argv[1], "-g")==0) 
{ 
graphics_on=TRUE; 
Instrument:: global_amplificationnatof(argv[2]); 

else graphics-on-FALSE; 

if (graphics_on) 
{graphics_initO 

; 
getorigin(torg[X], torg[Y]); 
gets ize(&sizeEX], tsize[Y]); 
mdev[X]=MOUSEX; 
mdev[Y]=MOUSEY; 
} 

register float start=0.0, end=0.0, START=0.0, EID=0.0; 
float startstack[20], endstack[20]; 
register int n=0; 

srandom((int)time(0)); 

$include "tao_scriptfile" 

if (graphics-on) gexit(); 
} 

G. 2 C implementation of the f loat2aiff program 

G. 2.1 File float2aiff. c 
/ºººsssºººassssrrrrsººrrºsºsrrsrrrsssrrsºººsºsººsssssºººsººººsºrºsrrrrsººººº/ 
/º File name: float2aiff. c (c) 1996 Mark Pearson º/ 
/º º/ 
I. Content: The functions used to convert a raw floating point `tao' s/ 
/" soundfiles into a '. aiff' file. "/ 
/rrrrrºrrrºººººººººsººrºrºººººººººrrºrrrººººrºººººrrrºººººººrrrººººrrrººººrººº 

"include <math. h> 
#include <stdio. h> 
$include "audio. h" 

*include "Converts" 

struct form-chunk 
{ 
char ckID[4]; 
long ckSize; 
char formType[4]; 

struct comm_chunk 

char ckID[4]; 
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long ckDataSize; 
short numChannels; 
long numSampleFrames; 
short sampleSize 
char sampleRate[101; 

struct Bsnd_chunk 
{ 
char ckID[4]; 
long ckDataSize; 
long offset; 
long blockSize; 

*define MONO 1 
*define STEREO 2 

*define FLOAT sizeof(float) 
#define LONG sizeof(long) 
#define SHORT sizeof(short) 
#define CHAR sizeof(char) 

/ºrrsssºrrsssºsºsº***+s+sºss+sssssssºssssssºsrrrssºrºrrrssssrºsººº*r***sssssº/ 
/s Function name: float_to_stereo_aiff(char ºfloatfilename, r/ 
/s char *AIFFfileneme, float samplerate) "/ 
/s º/ 
/* Functionality: 

Takes two pointers to char representing the full path names of both 
/" the ` tao' raw floating point soundfile and the `. aiff' soundfile */ 
/s to which the samples will be written, and a numerical value 
/" representing the sample rate at which the samples will be played */ 

back, and performs the conversion. 
/rrºrr+++ºººº+sº+º+ººººººººrrrr+*ºrº*rºººººº*r+ºººººººº*ººsrººº+ººº*ººrrrºººº/ 

float_to_stereo_aiff(char *floatfilename, char *AIFFfilename, float samplerate) 
{ 
FILE *floatfile, *AIFFfile; 
float maxsample 0.0; 
float scaleby; 
long number-of-samples-0; 
float floatsample; 
short shortsample; 
char buffer[101; 

struct form-chunk *FORM; 
struct comm_chunk *COMM; 
struct ssnd_chunk *SSHD; 

FORM-(struct form-chunk *)malloc(sizeof (struct form-chunk)); 
COMM-(struct comm_chunk *)malloc(sizeof (struct comm_chunk)); 
SSHD-(struct ssnd_chunk *)malloc(sizeof (struct ssnd_chunk)); 

printf("Converting floatfile %a into AIFFfile %s\n", 
floatfilename, AIFFfilename); 

floatfile fopen(floatfilename, "r"); 

printf("Checking for maximum sample value ... \n"); 

while(1) 
{ 
fread(ifloatsample, FLOAT, 1, floatflie); 
if (feof(floatfile)) break; 

number_of_samples++; 
if (fabsf(floats ample) >maxsample) maxsample fabsf(floataample); 
} 

printf("Maximum sample value is %f\njumber of samples is %ld\n\n", 
maxsample, number_of_samples); 

revind(floatfile); 

AIFFfi1e-fopen(AIFFfilename, "ab"); 

/ssrsºººrrrarººrsrsssºººrsrsºrr FORK stuff "rrºººººsººrrrrrºrsrrºrºrrrrºrsºrr/ 

strncpy(FORM->ckID, "FORM", 4); 
FORM->ckSize 
sizeof(long) + 
sizeof(struct comm_chunk) + 
sizeof(struct ssnd_chunk) + 
number-of-samples * 2; 

309 

strncpy(FORK ->formType, "RIFF", 4); 
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fwrite (FOAM->ckID, sizeof(char), 4, AIFFfile); 
fwrite (&FOAM->ckSize, sizeof(long), 1. AIFFfile); 
fwrite (FORM->formType, sizeof(char), 4, AIFFfile); 

G. Implementation code 

/sssssssssssssssssssssssssssss" COMM staff "sssssssssssssssssssssssssssssssss/ 

strncpy(COMM->ckID, "COMM", 4); 
COMM->ckDataSize a 
sizeof(short) + /" numChannels "/ 
sizeof(long) + /" numSampleFrames "/ 
sizeof(short) + /e sampleSize e/ 
10u " sizeof(char); /" IEEE extended sampletate e/ 

COMM->numChannels=2; 
COMM->numSampleFrames=number_of_samples/COMM->numChannels; 
COMM->sampleSize=16; 

ConvertToIeeeExtended ( (double)samplerate. COMM->sampldAate ); 

fvrite(COMM->ckID, sizeof(char). 4, AIFFfi1e); 
fvrite(&COMM->ckDataSize, sizeof(long). 1. AIFFfile); 
fvrite(tCOMM->numChannels, sizsof(short ). J. AIFFfile); 
fvrite(&COMM->numSampl*Frames . sizeof(long). 1. AIFFfi1e); 
fvrite(&COMM->sampleSize, sizeof(short). 1. AIFFfils); 
fvrite(COMM->sampleßate, sizeof(char). 10. AIFFfi1e); 

/rrrrrrrrrttrrrrttttrrrrrrrrr" SSID stuff "rrrrrrrrrrrrrrrrrtrrrrrrrrrrrrrttt/ 

strncpy(SSID->ckID, "SSID', 4); 
SSID->ckDataSize 
sizeof(long) + /" offset "/ 
sizeof(long) + /" blockSize "/ 
COMM->numSampleFrames " 
COMM->numChannels " 
sizeof(short); 

SSID->offset. 0; 
SSID->D1ockSize-0; 

fvrite(SSID, sizeof(struct ssnd-chunk), 1, AIFFfile); 

/****** All done, File pointer now points to area for first sample "eeeee/ 

number-of-samples-0; 

printf("Writing samples, please vait\n") 

while(l) 
{ 
fread (tfloatsample, FLOAT, 1, floatfile); 
if (feof(floatfile)) break; 

shortsamplan(short)(f1oatsamp1ee32000.0/massample); 
farits(tshortsample, SHORT, 1, AIFFfile); 
fread(tfloatsample, FLOAT, 1, floatfile); 
shortsample-(short)(floatsamples32000.0/. a: sample); 
fwrite(tshortsample, SHORT, 1. AIFFfile); 

number_of_samples+=2; 
i! (number_of_samples%10000-O) 

} 
(prints(". "); fflush(stdout); } 

printf("\nDone\n"); 
fclose(floatfile); 
fclose(AIFFfi1e); 

main(int arge, char "sargv) 
{ 
if (arge-=4) 

{ 
float_to_stereo_aiff(argv(1]. argv(2], atof(argv(3])); 
} 

also (fprintf(stderr, "Usage: float2aiff <floatfilenase> 
<AIFFfilena, e> <saaplerate>\n")); 

} 

G. 2.2 File Convert. c 
t 
: 

/C 
01VERTT0IEEEEXTEIDED 
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Is Copyright (C) 1988-1991 Apple Computer, Inc. 
" All rights reserved. 
" 
+ Warranty Information 
+ Even though Apple has reviewed this software, Apple makes no warranty 
" or representation, either express or implied, with respect to this 
" software, its quality, accuracy, merchantability, or fitness for a " particular purpose. As a result, this software is provided "as is, " 
" and you, its user, are assuming the entire risk as to its quality 
" and accuracy. 
" 
" This code may be used and freely distributed as long as it includes 
* this copyright notice and the above warranty information. 
" 
" Machine-independent I/O routines for IEEE floating-point numbers. 
" 
" gal's and infinities are converted to HUGE-VAL or HUGE, which 
" happens to be infinity on IEEE machines. Unfortunately, it is 
" impossible to preserve Ial's in a machine-independent way. 
" Infinities are, however, preserved on IEEE machines. 
+ 
+ These routines have been tested on the following machines: 
" Apple Macintosh, MPW 3.1 C compiler 
+ Apple Macintosh, THIIK C compiler 
" Silicon Graphics IRIS, MIPS compiler 
" Cray X/MP and Y/MP 
" Digital Equipment VAX 
+ 
" 
" Implemented by Malcolm Slaney and Ken Turkovski. 
" 
" Malcolm Slaney contributions during 1988-1990 include big- and little- 
" endian file I/O, conversion to and from Motorola's extended 80-bit 
" floating-point format, and conversions to and from IEEE single- 

precision floating-point format. 
+ 

+ In 1991, Ken Turkowski implemented the conversions to and from 
" IEEE double-precision format, added more precision to the extended 
" conversions, and accommodated conversions involving +/- infinity, 
" wail's, and denormalized numbers. 
+/ 

#ifndef HUGE_VAL 
A define HUGE_VAL HUGE 
#endif /" HUGE_VAL +/ 

U define F1oatToUnsigned(f) \ 
((unsigned long)(((long)(f - 2147483648.0)) + 2147483647L + 1)) 

static void 
ConvertToIeeeExtended(double num, char *bytes) 
{ 

int sign; 
int expon; 
double fMant, fsMant; 
unsigned long hiMant, loMant; 

if (num < 0) { 
sign - 0x8000; 
num 

} else { 
sign 0; 

if (num an 0) { 

} 
expon - 0; hiMant = 0; loMant - 0; 

else { 
fMant " frexp(num, aexpon); 
if ((expon > 16384) II ! (fMant < 1)) { I. Infinity or Nall e/ 

} 
expon - signlOxTFFF; hiMant = 0; loflant s 0; /s infinity e/ 

else { /" Finite e/ 
expon +. 16382; 
if (expon < 0) { /" denormalized "/ 

fMant i ldexp(fMant. expon); 

} expon - 0; 

expon Is sign; fMant " ldexp(fMant, 32); 
faMant = floor(fMant); 
hiMant " FloatToUnsigned(fsMant); 
fMant s ldexp(fMant - fsMant, 32); 
fsMant - floor(fMant); 
loMant " FloatToUnsigned(faMant); 



312 

bytes 01 = expon » 8; 
bytes[l] = expon; 
bytes[2] - hiMant » 24; 
bytes 31 0 hiMant » 16; 
bytes 41 - hiMant » 8; 
bytes[5] - hiMant; 
bytes[6] 0 loMant >> 24; 
bytes[7] - loMant >> 16; 
bytes[8] - loMant » 8; 
bytes[9] - loNant; 

G. Implementation code 

G. 3 Unix sed scripts used in the translation of a TAO 

script 

G. 3.1 File tao_sed-scripti 

## File: tao_sed_scriptl (c) 1996 Mark Pearson 

## Content: 
## UNIX 4seds script which removes any linebreaks from microphone output 
#i statement 'output'. 
########i##############i######iii###ii#i#iiiii#i#iiiii#i##iiiiiiiiiiiisuu$$$$$ 

: start 
/output: /, /; / !p 
/output: /, /; / !d 

/output:. *; / b next 
/output: /, /; / I 
/output: / s/\n//g 
: next 
t start 

G. 3.2 File tao_sedscript2 
#####################################p#######1################################## 
## File: tao_sed_script2 (c) 1996 Mark Pearson 
## 
## Content: 
## UNIX 'sedt script which removes any linebreaks from microphone output 
## statements 'leftout' and 'rightout'. 
###########################################################f#s################## 

: start 
/tout: /, /; / !p 
/tout: /. /; / !d 

/tout:. s; / b next 
/tout: /, /; / I 
/tout: / s/\n//g 
: next 
t start 

G. 3.3 File tao_sed.. script3 
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx 
xx File: tao_sed_script3 (c) 1996 Mark Pearson 
xx 
xx Content: - 
so UNIX 'sed' script which takes any lines contained within the tokens 
St 'Display' and '; ' and puts them onto a single line. This is necessary 
xx since the other aed scripts which process Display statements further, 
so contained in file 'c4' only work on single lines, not across many 
SS lines. 
xx 
xx Display "Times", Time, --> Display "Time=", Time, a, b, nevline; ' 
St a. b, - 
xx nevline; 
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx 

: start 
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/Display/, /; / !p 
/Display/, /; / Id 

/Display. +; / b next 
/Display/, /; / I 
/Display/ s/\n//g 
: next 
t start 

G. 3.4 File tao_sed.. script4 
xxx#xxx#x#xxxxxxxxxxxxxxxxxxxxx#xxxxxxxx#xxxxxxx#xxxxxxxxx####xx#xxxxxxxxxxxxxxx 
x# File: tao_sed_script4 (c) 1996 Mark Pearson 

## Content: 
## A TAO script is actually a fragment of C++ code in clever disguise. 
## Instrument, microphone and parameter declarations in a TAO script are 
#x translated directly into C++ variable declarations of the appropriate 
## types. The score control structures are translated into C++ control 
## structures and most of the other code such as mathematical expressions 
xx are already valid C++ code and are left as they are. 
## 
x# Part of this translation is performed by the UIIX sed scripts contained 
x# in this file and the rest is performed by macros #defined in the file 
## 'meinst'. 'sod' is a standard UNIX command which matches patterns of 
## characters in a stream and then replaces them with others. The current 
## translation mechanisms were only intended as a temporary measure to get 
## a prototype system up and running, and would need to be replaced with 
x# a properly designed parser if the system was further developed. 
#xxxx#########xxxx################xxxxxxxxx###x######x###x#x#xx#xxx#####xxxx#### 

################################################################################ 
## Temporarily replace special characters in string literals with substitutes 
## so that they are not mistakenly translated by the rest of the scripts in this 
## tile. Once all the translation is done with, replace these tokens with the 
## original characters. 
################################################################################ 

a/\(\". r\): \(. +\".. \)/\1COLOI\2/g 
s/\(\". +\), \(. +\".. \)/\1COMMA\2/g 
a/\(\". +\) \(. r\".. \)/\1TAB\2/g 
s/\(\". r\)X\(. r\".. \)/\1PERCEIT\2/g 

#########ß###################################################################### 
## Replace any tab characters with spaces to make pattern matching more simple. 
################################################################################ 

S/ / /g 

################################################################################ 
## Take the score control structure parameters and put brackets round them for 
## C++. Also put {} brackets around the whole block and add the necessary 
## C++ code to allow each block to access its own start and end times. 
################################################################################ 

a/Score \(. r\): /Score(\1) {/g 

################################################################################ 
## Score control structure translations: 
## A TAO score control structure is actually a C++ if statement in 
## disguise. The times specified in the head of a From.. to, At.. for, 
## Before, After, At, Every and ControlRate control structure are compared 
## against the value of the variable 'Sample' which counts the number of 
## time steps which have elapsed since the beginning of a performance, 
## to see if the body of the control structure should be executed or not. 
## 
## For control structures which specify a time interval over which the 
## body should be activated the two special variables 'start' and 'end' 
## allow code within the body to refer to the start and end times 
## specified in the head. This feature is explained more comprehensively 
## in sections 5.5.2 and E. 5.2. In order to implement it, it is necessary 
## to keep track of the values of 'start' and 'end' when nested control 
## structures are entered and exited. This is achieved with the use of 
## two stacks 'startstack Q' and 'endstack[]'. The variables 'START' and 
## 'EID' are used in the process of passing the start and end times into 
## the body. Their values are determined by code which is added in during 
## the second phase of translation effected by the C++ macros in file 
## 'main . cc,. 
## 
## From <ti> to <t2>: FromTo(<tl>, <t2>) { 
## <body> --> n++; startatack[n]-start; endetack[n]. end; ## ... START=start; EID=end; {<body>} 
## start-startstack[n]; endiendstack[n]; n--. 
## 
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U At <t> for <dur>: FromTo(<t>. <t>+<dur>) ( 
X" <body> --> n++; startstack[n]=start; endstack[n]send; 
00 ... START. start; ElD end; ( <body>) 
$8 start=startstack[n]; snd-endstack[n]; n--; 
U } 

#0 Before <t>: Before(<t>) { 
#1 <body> --> n++; startstack[n] start; endstack[n]uend; 

,,, 
{<body>} 

sg start"startstack[n]; end-endstack[n]; n--; 
** } 

*# After <t>: After(<t>) { 
fit; <body> --> n++; startstack[n] start; endstack[n]"end; 
## ,,, 

{<body>} 
11 start=startstack[n]; end endstack[n]; n--; 
*1 } 
U 
is Every <t>: Every(<t>) { 
gt <body> --> n++; startstack[n] start; endstack[n]=end; 
U# ,,, 

{(body>} 
00 start-startstack[n]; end endstack[n]; n--; 
U } 

so At <t>: At(<t>) { 
ps <body> --> n++; startstack[n] start; endstack[n]. end; 

(<body>} 
U0 start startstack[n]; end=endstack[n]; n--; 
sx } 

s/From \(. s\) to \(. º\): /FromTo (\1, \2) {/g 
s/At \(. s\) for \(. º\): /FromTo(\1. \1+\2) (/g 
s/Before \(. º\): /Before (\1) {/g 
s/After \(. º\): /After (\1) (/g 
s/Every \(. *\): /Every (\1) {/g 
s/At \(. º\): /At (\1) {/g 
s/AtSample \(. º\): /AtSample (\1) (/g 
s/When \(. º\): /When (\1) {/g 
s/E1self \(. º\): /Elseif (\1) (/g 
s/If \(. º\): /If (\1) {/g 
s/Else: /Else(/g 
s/ControlRate \(. º\): /ControlRate (\1) (/ 
s/\. \. \. /start-startstack[n]; end-endstack[n]; n--; })/g 

s/FromTo "(['\{]*)/k{n++; startstack[n]-start; endstack[n]mend; start=START; end=EID; /g 
s/After "(['\{]a)/k{n++; start atack [n]=start; endstack[n]-end; start=START; end=EED; /g 
s/Before 1-\(3 *)/A {n++; startstack[n]=start; endstack[n]-end; start=START; end=EID; /g 
s/At "(['\{]*)/t{n++; startstack[n]=start; endstack[n]=end; /g 
s/Every "(['\{]*)/t{n++; startstack[n]=start; endstack[n]mend; /g 
s/Score "(['\{]s)/t{n++; start stack [n]=start; endstack[n]mend; /g 
s/ControlRate e(['\{]')/t{n++; startstack[n]=start; endstack[n]=end; /g 
s/If "([-\{]v)/t{n++; startstack[n]=start. endstack[n]mend; /g 
s/Elseif "(['\{]*)/A{n++; startstack[n]=start; endstack[n]mend; /g 
s/Else{/t{n++; startstack[n]-start; endstack [n]=end; /g 
s/ and / \t\t /g 

################################################################################ 
## Put brackets around any list of parameters in the form: 

<name> : <pi>, <p2>, <p3> ... ## 
to --> <name> (<p1>, <p2>, <p3>) 
#########################################################i###################### 

xx#xxxxxxxx####x##xx#xxx###xxx#xxx####xx#x#xxxxxx###x###x##s#xx#x###xu: #xsxx##x 
#x Translate: 
#x Glue instrl(<positionl>) to instr2(<position2>); 
xx into: 
xx Instrument:: glue(instrl, <positionl>, instr2, <position2>); 
#x and: 
xx Join instrl(a, b) to instr2(a, b); 
xx into: 
xx Instrument:: join(instrl, a, b, instr2, a, b); ' 
x##x#xxxx####x###x#x##xxxx###xx#xxxxx##xxxxx######xx#####xxx####xx##xxx##x###### 

s/Glue +\((A-Za-z_0-9]*\)(\(. *\)) "to "\([A-Za-z_0-9]e\)(*\(. 
/instrument 

---- glue(\1, \Z, \3, \4); /g 
s/Join "\([A-Za-z_0-9]*\)(\(. *\)) *to "\([A-Za-z_0-9]s\)(a\(.. \)). s; 

/Instrument 
---- 

join(\1, \2, \3, \4); /g 

ax#uua#u*uu#s#uu#*##uu#uu#szý *uunnnsu*ususssussssususssus 
00 A 'Display' statement in a TAO script is translated into a set of data items 
ip to be sent to the C++ standard output stream 'tout'. In a Display statement 
xX items are separated by commas but in a 'cout' statement they are seperated 
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Of by the token 4<0. Therefore replace commas with « in any Display statements. 
## Also replace spaces between items with actual spaces. 
U 
## So: Display a, b, c --> tout «a«""«b << c 
## wheras: Display a, b, c --> tout << a«b«c 
################################################################################ 

/Display[; ]*/ \([ ]s\)/, \"\1\", /g 
/Display[ '; 7s/ /6 

################################################################################ 
## Put quotes around the filename in a microphone declaration. 
U 
## Microphone m: filel, stereo --> Microphone m: "filel", stereo 

/Microphone/ a/([ ]s\([A-Za-z_0-9]s\) ". /(\"\1\". /g 

$#s/STAAT/START+2.0\/44100/g 
##s/EID/EID-2.0\/44100/g 

################################################################################ 
## Translate pitches (e. g. C4, EbS, C#6) into C++ form. Function 'pitch()' is 
## defined in main. cc 
## 
## C4 --> pitch("C4") 
## Eby --> pitch("Eb5") 
## C#6 --> pitch("C#6") 
################################################################################ 

a/\([A-0][\#b]\{0,1\}[0-9]\{1,2\}[+-]\{O, 1\}[0-9]*\/*[0-9]*\)/pitch (\"\1\")/g 

################################################################################ 
## Iomenclature for accessing boundaries of instruments. 
## 
## left --> 0.0 
## right --> 1.0 
## bottom --> 0.0 
## top --> 1.0 
################################################################################ 

s/\(['a-z_A-Z]\)left\(['A-Z_a-z]\)/\1 0.0 \2/g 
s/\(['a-z_A-Z]\)right\(['A-Z_a-z]\)/\1 1.0 \2/g 
s/\(['a-z_A-Z]\)bottom\([-A-Z_a-z]\)/\1 0.0 \2/g 
s/\(['a-z_A-Z]\)top\(['A-Z_a-z]\)/\1 1.0 \2/g 
s/\(['a-z_A-Z]\)centre\([-A-Z_a-z)\)/\1 0.5 \2/g 

################################################################################ 
## Add brackets to member function calls with no arguments. 
## 
## s. lockleft. lockright --> s. lockleft(). lockright() 
################################################################################ 

s/lockleft/lockleft()/g 
s/lockright/lockri ght()/g 
a/locktop/locktop()/g 
s/lockbottom/lockbottom()/g 
a/lockends/lockends()/g 
s/lockperimeter/lockperimeter()/g 
s/lockcorners/lockcorners()/g 

x###xxx#x#xx##x#x#x#xxxx#xxxx##x#x#xxxxxxxxxx####xxx#x#xxxxx#xx#xx#x#xxxxxx###xx 
xx Force floating point arithmetic even if a fraction is expressed as one 
xx integer divided by another. 
x# 
x# <integerl> / <integer2> --> <integeri> / <integer2>. 0 
x# 1/2 --> 1/2.0 
#########x###############x#x##x##x#######x##xx#x##x##x####x#####xx###x####x###x# 

a/\([0-9][0-9]s\) *\/ "\([0-9][0-9]s\)/\1\/\2\. 0/g 

xx###x##xx###xxxxxx#xx#x#xxxxxxxxxx#xxxxxxxxxxxxxxxxx#x#xx##x#xx###xxxx##xxx#xx# 
x# Replace units of measurement with the appropriate conversion 

x# 10 secs --> 10*1.0 xx force conversion to float 
x# 5 min --> 5*60.0 
x# 25 mascs --> 25/1000.0 
x# 300 Hz --> 300 
xx#xx##xxxxxx###x###xxx#####x##x####xxxxxx#xxxxx##xx#####xx#xxxxx#xxxx###xxx##xx 

s/msecs/\/1000.0/g 
s/secs/*1.0/g 
s/min/*60.0/g 
a/Hz//g 
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xxsxxxxxxxxxxxsxxxxxxxxxxxxxxxxxsxssssxsxxxsssxsxssssstooInxsxssxxxsssIsoIsIM 
IS Convert percentage damping to a value betveen 0 and 1. 

xx 
xx setdamping( ... <damping>%) --> setdamping( ... (1.0-<damping), /100.0)) 
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxssxxsxxsxxxsxxixsis#It####soI 

/damping/ 1\. 0-\1\/100\. 0/g 

#####x#x######xx###xxx###xxi#x#s#sisi##i##ss#sissisis: i::: s: ss: s; s: sia:: s: ssss: 
## Replace tokens within string constants with the original special characters 
## which they represent to restore the strings to their original state. 
###xxx##x##x#xxx#####xxixxxix#ix#xixxiiiii#iiiiiiiiiiisississsiiisisIJssIs###### 

s/\(\". º\)COLON\(. º\"\)/\1: \2/g 
s/\(\". º\)COMMA\(. º\"\)/\i, \2/g 
s/\(\". º\)TAB\(. º\"\)/\1 \2/g 
s/\(\". º\)PEECEIT\(. º\"\)/\1X\2/g 

s/----/:: /g 

G. 3.5 File string-sed-script 
$###############iittii##$"i#8$Is"#ttt 
#i File: string_sed_script (c) 1996 Mark Pearson 

## Content: 
## UIIX sod script which translates a string declaration in a TAO script 
## in the following ways: 
## 
## First it puts the whole declaration onto a single line to make searching 
## and replacing possible. In a TAO script messages can be passed to an 
## instrument within a declaration without having to explicitly give the 
$# name of the instrument. However C++ must always have the name of an 
## object in order to pass messages to it. This sod script looks for 
*# any messages and appends the name of the instrument together with a 
## period onto the front of each such message found. 
## 
#i String 91: String sl: 100 Hz. 10 secs; 
## lockende; si. lockends; 
## setdamping(left, 1/10,1X); sl. setdamping(left, 1/10,1X); 
## 
##########ßtt8#######i##i######i#iisttii#ititistiiiii: isiit: si::: s: iiti: tisiiri: s 

: start 
/String/. /\. \. \. / !p 
/String/: A: \: \: / !d 

/String "[A-Za-zO-9_]\{1, \}. $\. \. \. / b next 
/String/, /; / I 
/String/ s/\n//g 
: next 
t start 
s/String "\([A-Za-zO-9-]\{1, \}\)\(. e\)lockleft/String \1\2\1\. lockleft/g 
s/String +\([A-Za-zO-9_]\{1, \}\)\(. s\)lockright/Stripg \1\2\1\. lockright/g 
s/String *\([A-Za-zO-9_]\{1, \}\)\(. e\)locktop/String \1\2\1\. locktop/g 
s/String "\([A-Z&-zO-9_]\{i, \}\)\(. s\)lockbottom/String \1\2\1\. lockbottom/g 
s/String "\([A-Za-zO-9_]\{1, \}\)\(. s\)lockperimeter/String \1\2\1\. lockperimeter/g 
a/String "\([A-Za-zO-9_]\{1, \}\)\(. e\)lockends/String \i\2\1\. lockends/g 
s/String *\([A-Za-zO-9_]\{1, \}\)\(. e\)lockcorners/String \1\2\1\. lockcorners/g 
a/String "\((A-Za-z0-9_]\{i, \}\)\(. +\)lock "(/String \1\2\1\. lock(/g 
s/String *\([A-Za-zO-9_]\{1, \}\)\(. e\)set/String \1\2\1\. set/g 
s/String *\([A-Za-zO-9_]\{1, \}\)\(. e\)display/String \1\2\1\. display/g 
s/String "\([A-Za-z0-9_]\{1, \}\)\(.. \)amplif/String \1\2\1\. amplif/g 
/String/ s/\. \. \. //i 

G. 3.6 File rectangle-sed_script 
sasssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssassssnsssssssss 
sß File: rectangle_sed_script (c) 1996 Mark Pearson 
as 
IS Content: 
*# UNIX sod script which translates a rectangle declaration in a TAO 
#s script in the following ways: 
5s 
ßR First it puts the whole declaration onto a single line to make searching 
S0 and replacing possible. In a TAO script messages can be passed to an 
SS instrument within a declaration without having to explicitly give the 
XS name of the instrument. However C++ must always have the name of an 
gý object in order to pass messages to it. This sod script looks for 

any messages and appends the name of the instrument together with a 
gg period onto the front of each such message found. 
08 
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#* Rectangle ri: Rectangle ri: 100 Hz, 200 Hz, 10 secs; ## 100 Hz, 200 Hz, 10 secs; _> rl. lockcorners; 
## lockcorners; 
## 
################################################################################ 

: start 
/Rectangle/, /\. \. \. / !p 
/Rectangle/, /\. \. \. / !d 

/Rectangle "[A-Za-zO-9_]\{1, \}. s\. \. \. / b next 
/Rectangle/, /; / ][ 
/Rectangle/ s/\n//g 
: next 
t start 
. /Rectangle "\([A-Za-zO-9_]\{1, \}\)\(. *\)lockleft/Rectangle \1\2\1\. lockleft/g 
s/Rectangle "\([A-Za-zO-9_]\{1, \}\)\(. e\)lockright/Rectangle \1\2\1\. lockright/g 
s/Rectangle s\([A-Za-zO-9_]\{1, \}\)\(. s\)locktop/Rectangle \1\2\1\. locktop/g 
a/Rectangle s\([A-Za-zO-9_]\{1, \}\)\(. *\)lockbottom/Rectangle \1\2\1\. lockbottom/g 
s/Rectangle "\([A-Za-zO-9_]\{1, \}\)\(. e\)lockperimeter/Rectangle \1\2\1\. lockperimeter/g 
s/Rectangle *\([A-Za-zO-9_]\{1, \}\)\(. *\)lockends/Rectangle \1\2\1\. lockends/g 
s/Rectangle "\([A-Za-zO-9_]\{1, \}\)\(. s\)lockcorners/Rectangle \1\2\1\. lockcorners/g 
s/Rectangle "\([A-Za-zO-9_]\{1, \}\)\(. +\)lock "(/Rectangle \1\2\1\. lock(/g 
s/Rectangle "\([A-Za-zO-9_]\{1, \}\)\(. s\)set/Rectangle \1\2\1\. set/g 
a/Rectangle *\([A-Za-z0-9_]\{1, \}\)\(. *\)display/Rectangle \1\2\1\. display/g 
a/Rectangle +\([A-Za-zO-9_]\{1, \}\)\(. e\)amplif/Rectangle \1\2\1\. amplif/g 
/Rectangle/ s/\. \. \. //1 

G. 3.7 File circle-sed-script 

## File: circle_sed_script (c) 1996 Mark Pearson 

## Content: 
## UNIX sod script which translates a circle declaration in a TAO 
## script in the following ways: 

## First it puts the whole declaration onto a single line to make searching 
## and replacing possible. In a TAO script messages can be passed to an 
## instrument within a declaration without having to explicitly give the 
## name of the instrument. However C++ must always have the name of an 
## object in order to pass messages to it. This sed script looks for 
## any messages and appends the name of the instrument together with a 
## period onto the front of each such message found. See files 4etring_sed' 
## and 'rectangle-sod' for examples. 

: start 
/Circle/, /\. \. \. / !p 
/Circle/, /\. \. \. / !d 

/Circle s[A-Za-zO-9_]\{1, \}. s\. \. \. / b next 
/Circle/, /; / I 
/Circle/ 3/\n//g 
: next 
t start 
is/Circle *\([A-Za-zO-9_]\{1, \}\)\(. s\)lockleft/Circle \1\2\1\. lockleft/g 
s/Circle *\((A-Za-z0-9_]\{1, \}\)\(. s\)lockright/Circle \1\2\1\. lockright/g 
s/Circle s\([A-Za-z0-9_]\{1, \}V \(. s\)locktop/Circle \1\2\1\. locktop/g 
s/Circle "\([A-Za-z0-9_]\{1, \}\)\(. s\)lockbottom/Circle \1\2\1\. lockbottom/g 
s/Circle *\([A-Za-zO-9_]\{1, \}\)\(. s\)lockperimeter/Circle \1\2\1\. lockperimeter/g 
a/Circle "\([A-Za-zO-9_]\{1, \}\)\(. s\)lockends/Circle \1\2\1\. lockends/g 
s/Circle *\([A-Za-zO-9_]\{1, \}\)\(. s\)lockcorners/Circle \1\2\1\. lockcorners/g 
s/Circle *\([A-Za-zO-9_]\{1, \}\)\(. s\)lock(/Circle \1\2\1\. lock(/1 
s/Circle *\([A-Za-zO-9_]\{1, \}\)\(. s\)set/Circle \1\2\1\. set/g 
s/Circle s\([A-Za-z0-9_]\{1, \}\)\(. s\)display/Circle \1\2\1\. display/g 
s/Circle s\([A-Za-zO-9_]\{1, \}\)\(. s\)amplif/Circle \1\2\1\. amplif/g 
/Circle/ 

G. 3.8 File triangle-sed-script 
################################################################################ 
## File: triangle_sed_script (c) 1996 Mark Pearson 
## 
IS Content: 
## UNIX sod script which translates a triangle declaration in a TAO 
## script in the following ways: 
## 
iA First it puts the whole declaration onto a single line to make searching 
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to and replacing possible. In a TAO script messages can be passed to an 
ii instrument within a declaration without having to explicitly give the 
so name of the instrument. However C++ must always have the name of an 
ii object in order to pass messages to it. This wed script looks for 
ii any messages and appends the name of the instrument together with a 
to period onto the front of each such message found. See files 'string_sed' 
to and 'rectangle_sed' for examples. 

iiiiiiiiiiii 

: start 
/Triangle/, /\. \. \. / !p 
/Triangle/, /\. \. \. / !d 

/Triangle "[A-Za-zO-9a \{1, \}. *\. \. \. / b next 
/Triangle/, /; / I 
/Triangle/ s/\n//g 

next 
t start 
s/Triangle "\([A-Za-ZO-9_]\{1. \}\)\(. *\)lockleft/Triangle \1\2\1\. lockleft/g 

s/Triangle "\([A-Za-zO-9_]\{1, \}\)\(. *\)lockright/Triangle \1\2\1\. lockright/g 

s/Triangle *\([A-Za-z0-9_]\{i, \}\)\(. *\)locktop/Triasgle \1\2\1\. locktop/g 

c/Triangle "\([A-Za-zO-9_]\{1, \}\)\(.. \)lockbotton/Triasgle \1\2\1\. lockbottom/g 

s/Triangle "\([A-Za-zO-9_]\{1, \}\)\(. $\)lockperiaeter/Triasgle \1\2\1\. lockperiaeter/g 

s/Triangle *\([A-Za-zO-9_]\{1, \}\)\(.. \)lockends/Triasgle \1\2\1\. lockends/g 
s/Triangle "\([A-Za-zO-9_]\{1, \}\)\(.. \)lockcorners/Triasgle \1\2\1\. lockcorners/g 
s/Triangle "\([A-Za-z0-9_]\{1, \}\)\(. *\)lock "(/Triangle \1\2\1\. lock(/g 
s/Triangle "\([A-Za-zO-9_]\{1. \}\)\(. *\)set/Triangle \1\2\1\. set/6 
s/Triangle "\([A-Za-zO-9_]\{1, \}\)\(. e\)display/Triangle \i\2\1\. display/g 
s/Triangle *\([A-Za-zO-9_3\{1, \}\)\(. *V amplif/Triangle \1\2\1\. aaplif/g 
/Triangle/ 

G. 3.9 File ellipse.. sed-script 
################################################## UUsSsUU###UU$$US$$ S$ 
## File: ellipse_sed_script (c) 1996 Mark Pearson 
## 
## Content: 
## UIIX sod script which translates a ellipse declaration in a TAO 
## script in the following ways: 
## First it puts the whole declaration onto a single line to make searching 
## and replacing possible. In a TAO script messages can be passed to an 
## instrument within a declaration without having to explicitly give the 
## name of the instrument. However C++ must always have the name of an 
## object in order to pass messages to it. This sed script looks for 
## any messages and appends the name of the instrument together with a 
## period onto the front of each such message found. See files 'string_sed' 
## and 'rectangle_seV for examples. 
################################################s###############suss ##s# UtU 

: start 
/Ellipse/, /\. \. \. / !p 
/Ellipse/, /\. \. \. / !d 

/Ellipse "[A-Za-zO-9_]\{1. \}.. \. \. \. / b next 
/Ellipse/, /; / I 
/Ellipse/ s/\n//g 
: next 
t start 
s/Ellipse "\([A-Za-zO-9_]\{i, \}\)\(. e\)lockleft/Ellipse \1\2\1\. lockleft/g 
s/Ellipse "\([A-Za-z0-9_]\{1, \}\)\(. e\)lockright/Ellipse \1\2\1\. lockright/g 
s/Ellipse "\(LA-Za-zO-9_]\{1, \}\)\(. s\)locktop/Ellipse \1\2\1\. locktop/g 
s/Ellipse . \([A-Za-zO-9_]\{1, \}\)\(. e\)lockbottom/Ellipse \1\2\1\. lockbottom/g 
s/Ellipse "\([A-Za-zO-9_]\{1, \}\)\(. *\)lockperimeter/Ellipse \1\2\1\. lockperimeter/g 
s/Ellipse "\([A-Za-zO-9_]\{1, \}\)\(. S\)lockends/Ellipse \1\2\1\. lockends/g 
s/Ellipse "\([A-Za-zO-9_]\{1, \}\)\(. *\)lockcorners/Ellspse \1\2\1\. lockcorners/g 
s/Ellipse "\(LA-Za-zO-9_]\{1, \}\)\(. ý\)lock (/Ellipse \1\2\1\. lock(/l 

/g s/Ellipse "\(LA-Za-zO-9_1\{i, \}\)\(. e\)set/Ellipse \1\2\1\. Slot 
s/Ellipse *\([A-Za-z0-9-]\{1, \}\)\(. e\)display/Ellipse \1\2\1\. display/g 
s/Ellipse "\([A-Za-zO-9_]\{1, \}\)\(. "\)amplif/Ellipse \1\2\i\. amplif/g 
/Ellipse/ s/\. \. \. //1 

G. 4 The tao shell script 
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx 
SO File: tao (c) 1996 Mark Pearson 
xx 
xx Content: 
xx Shell script which causes a TAO script to be translated into a C++ 
xx code fragment which is then *included into the main function in 
xx file main. ee. This file is then compiled to produce an executable 



G. 4 The tao shell script 

## which implements the synthesis described in the TAO script. 
## 
## e. g. for a TAO script called 'example. script': 
## 
## typing 'tao example' produces an executable called 'example. exO 
## 
## File 'example. scriptI is processed by the various sod scripts, and 
## redirected into file 'tao_scriptfile'. This is the file which is 
## #included into the main() function, further processed by C++ macros 
## *defined in 'main. cc' and then compiled. 
################################################################################ 

echo 'Processing script file: ' $i. script 

sod < $1. script -f $TAOPATH/translation/string_sed_script 
sod -f $TAOPATH/translation/circle_sed_script I 
sod -f $TAOPATH/translation/rectangle_sed_script 
sed -f $TAOPATH/translation/triangle_sed_script 
sod -f $TADPATH/translation/ellipse_sed_script 
sad -f $TAOPATH/translation/tao_sed_scriptl 
sed -f $TAOPATH/translation/tao_sed_acript2 
sed -f $TAOPATH/translation/tao_sed_script3 
sod -f $TAOPATH/translation/tao_sed_script4 > $TAOPATH/src/tao_scriptfile 

echo 'Making synthesis program: ' $i. exe 

CC -L$TAOPATH/lib/ -o $1. exe STAOPATH/arc/main. cc -lm -lgl -ltao 

echo 'type' $i. exe 'for synthesis of sound only, or' 
echo Si. exe '-g <amplification> for visualisation, where' 
echo '<amplification> determines exaggeration of waves graphically' 

319 
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