
Synthesis of organic sounds for electroacoustic music:
Cellular models and the TAO computer music program

Author: Mark Pearson

Thesis submission for the degree of DPhil in Music Technology

Department of Electronics, University of York

Supervisor: Dr. David M. Howard

November 29,1996

Abstract

This thesis examines the question of what differentiates naturally occurring sounds
from the majority of digitally synthesised sounds. The discussion centres around the

notion that sounds may be viewed as structured auditory information and examines
both the human auditory system's ability to generate perceptual imagery from this
information, and the underlying principles which govern the creation of complex but

coherent structured information in Nature. A solution to the goal of developing

new sound synthesis techniques capable of generating `organic', `naturalistic' sounds

events for electroacoustic music is proposed. This solution centres around the use

of a particular class of computer models, collectively referred to as cellular models,

which consist of large numbers of simple agents interacting with one another on a
local basis, and give rise to complex global patterns of behaviour. A survey of exist-
ing sound synthesis techniques is given, including descriptions of some contemporary

computer music programs, and a new computer music program called TAO is de-

scribed. TAO forms a substantial part of the research undertaken and is a working

prototype capable of creating a wide variety of organic and naturalistic sound events.
It therefore enables the provision of aural evidence for many of the arguments put
forward. Other specific topics covered include the spectro-morphological and acous-

matic approaches to music, the ecological view of auditory perception, chaos theory,

complexity, the study of dynamical systems and emergent behaviour. The thesis

concludes with a model of organic sounds and comments on the future development

of cellular sound synthesis techniques.

Contents

Acknowledgements 13

Declaration 15

1 Background and thesis structure - 17

1.1 Introduction 17

1.2 Hypothesis 18

1.3 Digital technology and models of sound synthesis 19

1.4 Spectro-morphological and acousmatic music 21

1.5 The ecological view of auditory perception 24

1.6 The musical perception of sound 29

1.6.1 Mimesis in electroacoustic music 30

1.6.2 Sound categories and their perception 31

1.6.3 Perceived energy sources in natural sounds 34

1.6.4 Summary 37

1.7 Thesis structure 38

2 The complexity of natural systems 41

2.1 Introduction 41

2.2 Chaos theory 43

2.3 The phenomenon of bifurcation
..................... 44

2.4 Simplicity and complexity 49

2.5 Complex dynamical systems and emergent behaviour
......... 51

2.6 Phase space and attractors 53

2.6.1 Strange attractors 54

2.6.2 Identity and transient behaviour 56

2.6.3 Appealing characteristics of complex dynamical systems . .. 57

1

2 Contents

2.7 Cellular models: a modelling paradigm 58

2.7.1 Cellular automata 59

2.7.2 Finite difference models 65

2.7.3 Finite element models 65

2.7.4 Particle models 67

2.8 Other universal phenomena occurring in dynamical systems 68

2.8.1 Self organised criticality 68

2.8.2 Coupled oscillators 70

2.9 Current musical applications of cellular models 70

2.10 Summary
71

3A survey of synthesis techniques 73

3.1 The Csound computer music program
74

3.1.1 Unit generators
74

3.1.2 The orchestra
74

3.1.3 The score
75

3.2 Additive synthesis
77

3.3 Subtractive synthesis
78

3.4 Frequency modulation
79

3.5 Amplitude modulation
80

3.5.1 Classical amplitude modulation 80

3.5.2 Ring modulation 81

3.6 Granular synthesis 82

3.7 Digital waveshaping
83

3.8 Vocal synthesis
85

3.9 Synthesis by physical models
85

3.9.1 Modal analysis and synthesis and MOSAIC 85

3.9.2 Digital waveguides 88

3.9.3 CORDIS-ANIMA 91

3.9.4 Other physical models 96

3.10 Criteria for comparing sound synthesis techniques 96

3.11 Summary 98

Contents 3

4 The TAO computer music program and its associated cellular mode1101
4.1 Introduction

................................ 101

4.2 The cellular elastic material at the heart of TAO 102

4.3 Coupling pieces of material together to form instruments 108

4.4 An example of a TAO instrument 108

4.5 Information needed to create a piece of material 110

4.6 Animating the model 112

4.6.1 Calculating all the internal forces within the material 112

4.6.2 Applying any external forces 113

4.6.3 Updating the cell positions 113

4.6.4 The discrete equations used to animate the model 113

4.6.5 Improving the efficiency of the model 114

4.6.6 Altering the cellular update rules to cope with glued cells .. 115

4.6.7 Joining pieces of material by the installation of new springs . 116

5 TAO's user interface 117

5.1 Introduction
................................ 117

5.2 The object oriented nature of TAO 118

5.3 The general form of a TAO script 119

5.4 The orchestra part of the script 121

5.4.1 Instrument declarations
................... .. 121

5.4.2 Microphone declarations
............. 122

5.4.3 Performance parameter declarations 123

5.4.4 Damping parts of an instrument 123

5.4.5 Locking parts of an instrument 125

5.4.6 Stringing instrument messages together 125

5.4.7 Glueing and joining instruments 125

5.4.8 Simulating physical interaction with instruments 127

5.5 The score 130

5.5.1 The score control structures 131

5.5.2 The special variables start and end 132

5.5.3 Mathematical functions provided 134

5.5.4 Generating sound output 134

5.5.5 Generating iterated events 135

4 Contents

5.5.6 The use of C++ code fragments within a script 137

5.6 Summary of script features 138

6 Practical examples of TAO's capabilities 143

6.1 Introduction
................................ 143

6.2 Transient behaviour of a circular sheet 143

6.3 An instrument comprising joined rectangular sheets 145
6.4 An instrument with pitched circular components 146

6.5 Detailed examples of string behaviour 148

6.5.1 The behaviour of an undamped string 148

6.5.2 The effects of damping the ends of the string 149

6.5.3 Obtaining harmonics by damping other points on the string . 151

6.6 Examples of the behaviour of a rectangular sheet 153

6.6.1 The effects of damping the rectangular sheet 154

6.7 Examples of the use of other excitations 155

6.7.1 A bowed string 155

6.7.2 A more complex bowed instrument 159

6.7.3 Restricting the vibration of an instrument with an obstacle . 161

6.8 A comparison between TAO and other physical modelling systems . 163

7 Summary and Conclusions 167

7.1 Summary of the key ideas introduced 167

7.2 Conclusions 171

7.2.1 Sound synthesis as the creation of structured information .. 171

7.2.2 Why the emphasis on chaos? 172

7.2.3 Designing cellular models for the generation of auditory infor-

mation 174

7.2.4 A model of `organic' sounds 176

7.3 Closing comments 177

AA brief user manual 179

A. 1 Installation 179

A. 2 Getting started 181

A. 3 Mouse functions for use in the graphics window 182

A. 4 Some rules of thumb for instrument design 182

Contents 5

B TAO script language reference manual 187

B. 1 Instrument declarations
......................... 187

B. 2 Pitch nomenclature 189

B. 3 Instrument messages 190

B. 3.1 Setting an instrument's decay time 190

B. 3.2 Setting an instrument's damping coefficient 191

B. 3.3 Locking parts of an instrument 192

B. 3.4 Accessing points on an instrument 193

B. 4 Nomenclature for accessing parts of instruments 193

B. 5 Cell attributes of interest to the user 193

B. 6 Cell messages 195

B. 7 Microphone declarations
............ 195

B. 8 Microphone messages 196

B. 9 Glueing and joining
........ 197

B. 10 Time nomenclature 198

B. 11 Performance parameters 199

B. 12 Score control structures 199

B. 13 Mathematical expressions 201

B. 14 Mathematical functions
............ 201

B. 15 Text screen output 203

C Sound examples 205

C. 1 Sounds produced by a single string damped at one end 206

C. 2 String harmonics 206

C. 3 Rectangular sheets joined together 207

C. 4 A prepared string buzzing against an obstacle _ . .. 208

C. 5 A dynamically prepared string buzzing against an obstacle 209

C. 6 The effects of damping on a single rectangular sheet 210

C. 7 An illustration of implied motion, acceleration, impact and decay .. 210
C. 8 A single bowed string 211

C. 9 A stringed instrument with pairs of strings bowed together 211

C. 10 Sounds based on instruments with tuned circular components 213

6 Contents

D Synthesis model implementation 217

D. 1 Introduction
................................ 217

D. 2 Internal representation of cells, instruments and microphones 217

D. 2.1 The Cell object class 217

D. 2.2 Internal representation of the cellular material 218

D. 2.3 The Instrument object class 220

D. 2.4 The Microphone object class 223

D. 2.5 Implementation of the Glue facility 224

D. 2.6 Implementation of the Join facility 224

D. 3 List of functions 230

D. 3.1 Functions and operators for interaction with cells 231

D. 3.2 Functions used in the creation of instruments 232

D. 3.3 Functions and operators for accessing points on an instrument 234

D. 3.4 Functions used in locking and damping parts of an instrument 234

D. 3.5 Functions for glueing and joining pieces of material 237

D. 3.6 Graphics related functions 239

D. 3.7 Functions used in the creation of microphones 242

D. 3.8 Functions used to send sound samples to a microphone 243

D. 3.9 System functions for animating instruments
.......... 244

D. 3.10 System functions for updating microphones 244

D. 3.11 System functions which drive the whole synthesis engine and
the graphics 245

D. 3.12 Other global functions 246

E Script language implementation 249

E. 1 Translating Instrument, Microphone and Parameter declarations . 250

E. 2 Translating instrument messages 250

E. 3 Translating microphone messages 251

E. 4 Translating positional and time nomenclature 251

E. 5 Translating the score 252

E. 5.1 Translating the score control structures 253

E. 5.2 Adding code to update the values of start and end 254

E. 6 An example of a complete script translation 255

Contents 7

F Details of the bowing model used 259

F. 1 Classical description of the behaviour of a bowed string 259

F. 2 Description of an established bowed string model 260

F. 3 Adapting the model to work with TAO 263

G Implementation code 267

G. 1 C++ implementation of the TAO library libtao. a 267

G. 1.1 File Cell. h 267

G. 1.2 File Cell. cc 268

G. 1.3 File Instrument. h 269

G. 1.4 File Instrument. cc 271

G. 1.5 File String. h 292

G. 1.6 File String. cc 292

G. 1.7 File Circle. h 293

G. 1.8 File Circle. cc 293

G. 1.9 File Rectangle. h 294

G. 1.10 File Rectangle. cc 294

G. 1.11 File Triangle. h 295

G. 1.12 File Triangle. cc 295

G. 1.13 File Ellipse. h 296

G. 1.14 File Ellipse. cc 297

G. 1.15 File Microphone. h 297

G. 1.16 File Microphone. cc 299

G. 1.17 File main. cc 301

G. 2 C implementation of the float2aiff program 308

G. 2.1 File float2aiff .c........................ 308

G. 2.2 File Convert. c 310

G. 3 Unix sed scripts used in the translation of a TAO script 312

G. 3.1 File tao. sed.. script 1 312

G. 3.2 File tao.. s ed. s cript2 312

G. 3.3 File tao-sed-script3 312
G. 3.4 File tao-sed-script4 313

G. 3.5 File string-sed-script 316
G. 3.6 File rectangle-sed-script 316

8 Contents

G. 3.7 File circle_sed_script 317

G. 3.8 File triangle-sed_script 317

G. 3.9 File ellipse. sed-script 318

G. 4 The tao shell script 318

Bibliography 321

List of Figures

1.1 Spectral typology of sound (after Smalley 1990) 23

2.1 The phenomenon of period-doubling or bifurcation 45

2.2 Bifurcation diagram with selectively enlarged regions 46

2.3 Islands of order within chaos 47

2.4 An example of a strange attractor (from Gleick, 1991) 55

2.5 CA model of wave optics: refraction through a spherical lens (from

Toffoli and Margolus, 1987) 60

2.6 CA model of dendritic growth (from Toffoli and Margolus, 1987) .. 61

2.7 CA model of fluid flow around an obstacle (from Toffoli and Margolus,

1987) 62

2.8 CA model of annealing (from Toffoli and Margolus, 1987) 62

2.9 CA model of formation of vertebrate skin patterns (from Young, 1984) 63

2.10 Finite element analysis 66

3.1 A simple FM instrument 79

3.2 Classical amplitude modulation 81

3.3 Ring modulation 82

3.4 Waveshaping using a transfer function 84

3.5 Modal decomposition of a conical vibrating structure. 87

3.6 A waveguide filter network 89

3.7 A waveguide filter model of the vocal tract (after Cook, 1993). ... 90

3.8 Atomic building blocks in the CORDIS-ANIMA system. 92

3.9 Representing a string in CORDIS-ANIMA 93

3.10 Representing a rectangular membrane in CORDIS-ANIMA. 93

3.11 An example of a CORDIS-ANIMA topology -a spiral. 95

9

10 List of figures

4.1 A close up view of TAO's cellular material 102

4.2 A single cell with its eight neighbours 103

4.3 Simulating refraction and standing waves 105

4.4 Simulating diffraction 106

4.5 A plain square piece of material
107

4.6 The same piece of material having been torn 107

4.7 Making irregular shapes from the material 108

4.8 Making shapes of material with holes 108

4.9 A stringed instrument with a circular resonator. 109

5.1 A simple instrument created from a TAO script 120

5.2 Damping local regions of instruments
124

5.3 An illustration of the join facility
126

5.4 The instrument coordinate system
128

6.1 Attack transients in a circular sheet
144

6.2 Attack transients in a different circular sheet 144

6.3 An instrument consisting of rectangular sheets joined together ... 145

6.4 Instrument with six tuned circular components and resonators ... 147

6.5 Behaviour of an undamped string with locked ends 148

6.6 Spectral evolution of undamped string 149

6.7 Damping one end of the string 150

6.8 Spectral evolution of string with damping at one end 150

6.9 Damping the string at its midpoint 151

6.10 Spectral evolution of string damped at its midpoint 152

6.11 Damping the string one third of the way along its length 152

6.12 Spectral evolution of string damped 1/3 of the way along its length . 153

6.13 An undamped rectangular sheet 153

6.14 Spectrogram of undamped rectangular instrument 154

6.15 The effects of damping on a rectangular sheet 155

6.16 Helmholtz motion in a TAO bowed string 156

6.17 Phase space portrait of a bowed string 158

6.18 A four-stringed instrument with a rectangular resonator 159

6.19 Phase space portrait of a bowed string connected to a resonator ... 160

6.20 Organic evolution of a bowed sound at all levels of structure 161

List of figures 11

6.21 A prepared string buzzing against an obstacle 163

7.1 Using feedback from the microstructure of a sound event in order to

influence the macrostructure 175

7.2 The relationship between complex dynamic systems, coherent struc-

tured information, and perceptual attributes 176

D. 1 Cell class data structure 218

D. 2 Row data structure 218

D. 3 Internal representation of a piece of material 219

D. 4 Instrument class data structure 220

D. 5 The hierarchy of data structures used to represent an instrument .. 221

D. 6 A cell's pointers to its neighbours 222

D. 7 Microphone class data structure 223

D. 8 Implementation of glueing 225

D. 9 Joining two pieces of material together 226

D. 10 The general case of joining two facing cells anywhere along the seam 227

D. 11 Special case 1- joining cells at the northern boundary 228

D. 12 Special case 2- joining cells at the southern boundary 229

F. 1 Classic Helmholtz motion of a bowed string 260

F. 2 Relationship between frictional bow force and relative velocity be-

tween bow and string 261

12 List of figures

Acknowledgements

I would like to thank my supervisor, Dr David Howard, for allowing me the freedom

to pursue my ideas as I saw fit, for his general efficiency and enthusiasm for my work,

and also for helping to invent the degree ̀DPhil in Music Technology' at the eleventh

hour. I would also like to thank Andy Hunt and Richard Orton for interesting

discussions on a number of occasions, and Prof David Worrall for showing so much

enthusiasm, and potentially providing me with an opportunity for continuing the

work.

There are many individuals who should rightfully be acknowledged in this thesis,

through having provided friendship and moral support. All have, at one time or

another, helped to maintain some level of sanity in the midst of the madness known

as a DPhil. It is difficult to remember to mention everybody, but in particular

I would like to thank Nick Fells, Sharon Lyons, Andy Holbrook, Tony Hood, Ian

Crutchley, Lisa Reim, Paul Yoward, Amina Alyal, Ian Gibson, Giselle Ferreira,

Sotiris Missailidis, and Michelle Evans for the good times.

Special thanks to Nick, Sharon and Andy for lots of nice food and days out, to

Amina for even more nice food, and to Tony for lots of relaxing coffee breaks and

much moral support during the closing stages of the thesis.

Finally, thanks to Maria Holgate and John Munns for many memorable weekends,

to Stephanie Freeman for (long distance) moral support and encouragement, and to

my family.

13

14 Acknowledgements

Declaration

I hereby declare that this thesis contains research which is for the most part my

own. In cases where I have drawn upon the ideas of others I have clearly stated so

and given references.

I also declare that some parts of the research described have been previously pub-
lished, and that some are due for publication. These publications are listed below:

1. Pearson, M. (1995). TAO: a physical modelling system and related issues, Or-

ganised Sound 1(1): 43-50.

2. Pearson, M. and Howard, D. M. (1995). A musician's approach to physical

modelling, Proceedings of international computer music conference, pp. 578-80.

3. Pearson, M. and Howard, D. M. (1996). Recent developments with the TAO

physical modelling system, Proceedings of international computer music conference,

pp. 97-9.

15

16 Declaration

Chapter 1

Background and thesis structure

1.1 Introduction

Since music is a perceptual phenomenon, the goals of what might be termed musical

research, and the ways in which it proceeds, are very different from those of scien-

tific research. One of the goals of musical composition and analysis lies in gaining a

greater understanding of the nature of sound in all its variety, and how we perceive
it. The phenomenon of sound is two-fold though, depending both on the mecha-

nisms responsible for the pressure fluctuations reaching a listener's ears, and on the

perceptual apparatus of the listener. The quest for a greater understanding of the

nature of sound ought then to place equal emphasis on both scientific enquiry into

the mechanisms which are responsible for the multitude of sounds we hear about us,

and on the subjective perceptions of musicians involved in the business of expressing
themselves through sound.

This thesis follows in a fairly well established tradition of querying the musical na-
ture of sound, especially prevalent in the field of electronic and computer music, and
in particular, deals with the question of how we may take inspiration from natu-

ral sounds' in order to develop new sound synthesis techniques which are capable

of producing more `naturalistic' or `organic' sounds. The program of research de-

scribed in this thesis was initially prompted by some perceived deficiencies in existing
approaches to sound synthesis and in the sounds they produce when compared to

'sounds produced by vocal or instrumental means, environmental sounds or any other sound
produced as a side-effect of some physical process or mechanism.

17

18 1. Background and thesis structure

natural sounds. To be more specific, natural sounds often seem to be:

1. more strongly suggestive of physical causality;

2. more subtle and intricate;

3. more coherent, seemingly possessing stronger identities;

4. and more vibrant and organic than synthesised sounds.

These points are based directly upon aural experience and should be taken at face

value as empirical observations rather than concrete facts or fundamental criticisms

of digital technology itself. However, the fact that many electroacoustic compositions

make use of naturally occurring rather than synthesised sounds as source material,
inevitably tells us something about the special resonance which natural sounds hold

for us, and also about the amount of time and energy which must be expended
in order to create synthetic sounds possessing a similar degree of subtlety. The

term natural sound is used here to refer to the physical processes or mechanisms

responsible for a sound, whereas terms such as naturalistic and organic are used to

refer to specific perceptual attributes possessed by a sound, which seem to suggest

that it has been produced by a physical process or mechanism of some description.

One of the goals of this thesis is to identify the factors which contribute to a sound
being classed as organic or naturalistic, and also to attempt to provide explanations
for other adjectives such as vibrant and lively which may be applied to any type of

sound but seem at first to be rather subjective. A central premise of this thesis is

that such terms do have a stronger basis for their use than mere personal taste, and

relate to the structured information inherent in a sound.

1.2 Hypothesis

The hypothesis of this program of research is that:

Cellular computer models, inspired by the behaviour of naturally occur-

ring complex dynamical systems, provide an ideal medium for the devel-

opment of a new generation of sound synthesis techniques, more holistic

in their approach than traditional techniques, and capable of producing

1.3 Digital technology and models of sound synthesis 19

complex organic sounds events, whilst simultaneously being sympathetic

to the needs of electroacoustic music.

This hypothesis is supported in three ways:

1. At a theoretical level, by examining the notion that all sounds may be viewed as

structured auditory information, addressing both the perceptual effects which

this information evokes, and the underlying natural laws which give rise to

particular patterns of information in the first place.

2. At a practical level, by a variety of visual and sonic examples produced by the

TAO computer music program, based entirely upon instruments constructed
from cellular physical models.

3. By a comparison of the strengths and weaknesses of the approach taken by

TAO with existing synthesis techniques.

The rest of this introductory chapter serves to lay out the background for the re-

search. Section 1.3 describes some key points pertaining to digital sound synthesis

for composition. Section 1.4 describes the spectro- morphological and acousmatic

approaches to music, for which TAO has been specifically designed. Section 1.5 de-

scribes the ecological approach to auditory perception, based on the premise that

the environment presents a listener with structured information containing all the

details necessary for the perception of objects and events. Section 1.6 relates the

comments given above about the deficiencies of digitally synthesised sounds to a

wider set of views expressed by those involved in the composition and analysis of

electroacoustic music. Finally, section 1.7 lays out the plan for the rest of the thesis.

1.3 Digital technology and models of sound synthesis

The composer Edgar Varese first coined the phrase organised sound as a general def-

inition of what all music basically is, regardless of genre. Taking this definition as a

starting point, the task of musical sound synthesis is actually one of organising sound

at various structural levels. The strategies available for organising sound should be

as general as possible in order not to interfere with the individual composer's musical

20 1. Background and thesis structure

ideas, and whilst digital technology has made it possible for composers to capture

and manipulate sounds, and place them in contexts other than that in which they

originally occurred, on its own, a digital computer deals with nothing but raw nu-

merical data. Thus in order to create new sounds or manipulate existing ones in ways

which are musically meaningful, we have to first develop synthesis models which en-

capsulate our view of how sound is structured and how it functions. The theoretical

claim made that a digital computer is capable of synthesising any sound because of

its universality and programmability, is meaningless without these synthesis models.

Faced by an infinite palette of potential timbres and infinite gradations

of frequency and time, the question posed seems to be one of finding ap-

propriate ways of structuring such continuous variables (Windsor, 1995,

section 2.1.3).

When digital computer technology first became a viable tool for sound synthesis,

the most obvious model to adopt was based upon the technology used in analogue

voltage controlled synthesisers. This model provided digital versions of components

such as oscillators, filters, mixers etc. originally appropriated from the discipline of

electronic engineering. The majority of sound synthesis techniques has traditionally

relied upon an essentially reductionist, frequency domain view of sound as we shall

see in chapter 3. The computer music program Csound, which relies upon this

approach, is briefly described at the beginning of the same chapter.

Whilst it is not the place of this thesis to prove that one approach to sound synthesis

is better in every respect than another, it is proposed that with the use of cellular

models, it will be possible to develop a whole new generation of techniques which

will be more holistic in their approach to the task of synthesising complex and

organic sound events for electroacoustic music. These techniques will address specific

deficiencies inherent in traditional techniques but will ultimately complement them,

giving the composer a wider range of tools for the task of organising sound. The TAO

computer music program, described in chapters 4,5 and 6 provides some evidence
for this claim in the form of both sonic and visual examples, but this thesis also

addresses the wider implications of the use of cellular models.

1.4 Spectro-morphological and acousmatic music 21

1.4 Spectro-morphological and acousmatic music

The work described in this thesis takes account of both the spectro- morphological
(Smalley, 1990) and acousmatic (Windsor, 1995) approaches to music. In traditional

`note' based music the notes are seen as the `prime carriers of information' whereas

timbre is seen as a secondary attribute which merely provides coloration for the

notes. The spectro-morphological approach to music does not oppose this view

directly but embraces it within a wider context in which all categories of sound

potentially have equal musical value. In this context the pitched sounds of traditional

musical instruments represent just one possible type of spectral structure in which

the partials happen to be arranged with a preference for harmonic relationships.

Smalley describes three main categories of sound, in term of their spectral structures,

note, node and noise. These are elaborated on later in this section.

One of the most important skills the electroacoustic composer must possess is the

ability to listen to sounds acousmatically. An acousmatic approach to listening in-

volves the apprehension of a sound as an object in its own right, without relation

to its source. In everyday circumstances the human auditory system serves its evo-
lutionary purpose of helping us to identify objects and events in our immediate

environment. This mode of listening, or rather hearing since it is essentially pas-

sive and subconscious, reduces sounds to the role of mere triggers for recognition or
identification of objects or events. For example when a car drives past, the normal

subconscious reaction is to conclude that the sound heard is a car rather than to

pay any special attention to its timbral characteristics. Although the sound pos-

sesses characteristics which in everyday life might suggest that it has been produced
by a car, it is possible to suppress the image of the car itself and concentrate on
the evolution of the sound as an object in its own right. The normal mechanism of

source-recognition is so deeply rooted and automatic that, often, practice is required
in order to suppress it in favour of a more active, acousmatic mode of listening.

An analogy may be drawn with visual art, since an artist must learn to see subtle
textures and hues of colour which might not be immediately evident to a non-artist,

more concerned with recognition and categorisation of objects. In the same way
that visual art may be representational or abstract, so then there are two aspects to

sound, the concrete and abstract.

22 1. Background and thesis structure

All sounds possess this dual potential - the abstract and concrete aspects

of sound - and all musical structures are balanced somewhere between

the two, although exactly how they are balanced can vary greatly among
listeners (Smalley, 1990, p. 64).

The use of the word `acousmatic' has led to its being adopted to refer to another

genre of music, acousmatic music, defined by Windsor (1995) as:

a form of music which is presented through loudspeakers to an audience
from an analog or digital tape-recording. This music may contain sounds

that have recognisably musical sources, but may equally present recognis-

able sources that are beyond the bounds of traditional vocal and instru-

mental technology. We are as likely to hear the sounds of a bird, or of a

factory as we are the sounds of a violin. Consider also that the technol-

ogy involved transcends the mere reproduction of sounds. Techniques of

synthesis and sound processing are employed which may present us with

sounds that are unfamiliar and that may defy clear source attribution.

Consider that this form of music may present us with familiar musi-

cal events: chords, melodies and rhythms which are easily reconcilable

with other forms of music, but may equally present us with events which

cannot be classified within such a traditional taxonomy (Windsor, 1995,

section 1.0).

The precise differences between the spectro-morphological and acousmatic approaches

to music are not under discussion here, but what is significant to both is the use

of a much wider, all-encompassing palette of sounds. One of the themes which ap-

pears frequently in the literature concerning both genres of music is the importance

of aural perception in the composition, analysis and interpretation of such pieces.
Conventional musical theories concerned with notes, rhythms, melodies, phrases etc.

are inadequate to explain what a listener makes of such music.

Attention to perception affords us some knowledge of which attributes of

sound may be perceived by the listener; and as an aural practice, acous-

rnatic composition is as much about listening as it is about abstract tech-

nical manipulations of sound. Hence, by studying perception one might

1.4 Spectro-morphological and acousmatic music

arrive at descriptions that correspond to what is heard by the composer,

and hence, provide a method of describing why particular sounds lead to

particular compositional decisions (Windsor, 1995, section 1.1.1).

Spectromorphology reaffirms the primacy of aural perception which has

been so heiniously ignored in the recent past, and warns composers, re-

searchers and technologists that unless aural judgement is permitted to

triumph over technology, electroacoustic music will attract deserved con-

demnation (Smalley, 1990, p. 93).

... we return to aural discrimination and perception as the supreme mu-

sical tools. It is not a scientific knowledge which is required but an expe-

riential knowledge (Smalley, 1990, p. 81).

note proper

note harmonic spectrum

inharmonic
note to
noise node

continuum

noise

Figure 1.1: Spectral typology of sound (after Smalley 1990)

23

We return now to Smalley's sound categories: note, node and noise. The note

category is further subdivided into: note proper, where the absolute pitch of the

sound is used in the traditional context of intervallic relationships with other pitches;
harmonic spectrum, in which the fundamental frequency or perceived pitch is of

secondary importance to the individual partials and their balance within the sound,
i. e. to rephrase in traditional terms, the timbre becomes more important than the

pitch even though there is a clearly perceivable pitch; and inharmonic spectrum,

which includes certain tuned percussion instruments which allude to pitches and yet
have non-harmonicly related partials. A nodal spectrum is one in which the partials

are clustered in such a way that they are perceived as a whole, and yet no pitch

24 1. Background and thesis structure

centres are evident in the sound. An example is the sound produced by a cymbal.
Finally a noise spectrum is one in which it is impossible to perceive any kind of fixed

pitches or clusters of partials and yet which still exhibits some kind of structural

coherence, such as the sound of the sea or wind.

1.5 The ecological view of auditory perception

As described in the introduction to this chapter, one of the goals of this thesis is

to clarify the meanings of words such as organic, naturalistic, vibrant and lively. In

order to attack this question we first need to make explicit some premises on which
the various arguments are based. The first premise is that the qualities described

above are not merely subjective and personal in nature, but relate instead to the

information contained within a sound, and the way in which it is structured. Gib-

son (1979) proposed a theory of perception in his book The ecological approach to

visual perception which supports this notion. The theory is described briefly in this

section and although not based directly upon Gibson, this thesis adopts some of the

terminology introduced.

Gibson's theory contradicts the view that organisms such as ourselves have to main-

tain mental models of our environment in order to make sense of the chaotic mass

of information generated by that environment. Instead it is proposed that the en-

vironment, because of its inherent structure, presents the organism with structured

information which it is able to pick up visually or aurally etc. The perception of

objects and events in the environment depends, then, not on internally structured

mental models, but upon direct perception of structures which are external to the

organism.

Rather than assuming that the sensations passed from the sense organs to

the central nervous system represent a chaotic source of information that

mental processes organise and store in the form of meaningful percepts

and memories, an ecological approach assumes that the `external' world,

the environment, is structured and that organisms are directly sensitive

to such structure (Windsor, 1995, section 2.1).

There are two important aspects about the natural environment which relate to

1.5 The ecological view of auditory perception 25

the nature of the structured information it generates: firstly, it is hierarchical both

spatially and temporally; and secondly, it always contains elements of repetition

and non-repetition, elements which persist and those which do not, once again both

spatially and temporally.

Just as physical reality has structure at all levels of metric size, so it

has structure at all levels of metric duration ... And ... it is important to

realise that smaller units are nested within larger units. There are events

within events, as there are forms within forms ... (Gibson, 1979, p. 12)

The environment normally manifests some things that persist and some

that do not, some features that are invariant and some that are variant.

A wholly invariant environment, unchanging in all parts and motionless,

would be completely rigid and obviously would no longer be an environ-

ment ... At the other extreme, an environment that was changing in all

parts and was wholly variant, consisting only of swirling clouds of matter,

would also not be an environment. In both extreme cases there would be

space, time, matter, and energy, but there would be no habitat (Gibson,

1979, P-14).

UNIVERSITY
OF YORK
LIBRARY

An organism possesses a variety of sense organs and perceptual systems whose pur-

pose, from an evolutionary point of view, is to enable it to make sense of its immedi-

ate environment by perceiving objects and events pertinent to its survival. According

to Gibson, perception of these objects and events is made possible by the structured

information which they generate, and the process of perceiving them relies on the

organism being able to extract the invariant features from this continual flow of

information. Gibson raises some very subtle points about the nature of identity,

emphasising that the recognition of an object or event's persistence is more fun-

damental and direct than the recognition of differences between several objects or

events. The former is seen as occurring in a direct, unmediated manner, whilst the

latter requires abstraction after the event of perception.

In the case of the persisting thing, I suggest, the perceptual system simply

extracts the invariants from the flowing array; it resonates to the invari-

ant structure or is attuned to it. In the case of substantially distinct

26 1. Background and thesis structure

things, I venture, the perceptual system must abstract the invariants.

The former process seems to be simpler than the latter, more nearly au-

tomatic (Gibson, 1979, p. 249).

A practical illustration of these ideas can be found in the perception of a substance

such as water. We are able, instantly, to recognise water, since the visual informa-

tion it generates, via reflected light, tends to exhibit certain spatial and temporal

patterns. Even though the surface of water is in a continual state of flux, it always

behaves in a water-like manner and in this context the adjective water-like refers to

the invariant features in the structured information caused by the water.

Gibson's theory of perception also extends to the meanings which objects and events

have for an organism in terms of its survival. Rather than these events and objects

being detached from the organism perceiving them, they afford certain possibilities.

For example, the sound of a loud explosion, via the particular pattern of struc-

tured information which it causes, affords the possibility of being seriously injured.

Similarly the sound of a sea-shore with gently breaking waves might afford great

relaxation, for a human listener anyway. The crux of the theory lies in the fact that

an organism evolves an innate ability to attune to, and attach certain meanings to,

particular patterns of structured information, in order to enhance its chances of sur-

vival, but that these patterns of information are contained within the environment,

and are not created by the organism itself.

An organism evolves ... to pick-up information that will increase its chances

of survival. It develops perceptual systems that enable it to perceive fea-

tures of the environment that facilitate continued existence, and hence

reproduction. Moreover, the dynamic relationship between a perceiving,

acting organism and its environment is seen to provide the grounds for

the direct perception of meaning. Gibson's term for this is "affordance".

Objects and events are related to a perceiving organism by structured in-

formation, and they "afford" certain possibilities for action relative to an

organism. For example, a cup affords drinking, the ground, walking.

Affordances, "point both ways" (Gibson, 1979, p. 129) in that they can

neither be explained purely in terms of the needs of the organism, nor in

1.5 The ecological view of auditory perception 27

terms of the objective features of the environment. The affordance is a re-
lationship between a particular environmental structure and a particular

organism's needs and capacities (Windsor, 1995, section 2.1.1).

Affordances are not always so clearly and unambiguously defined as in the case of

a loud explosion, since each sound will have its own connotations for each individ-

ual listener based upon their own personal experiences. We are not concerned here

with analysing the affordances of particular sounds but merely with the fact that

such mechanisms operate at a deeply rooted, subconscious level and will therefore

influence the musical effect which a sound has upon a listener, even if this effect
is not intended by the composer. And, more importantly, we are interested in the

fact that such mechanisms need nothing other than appropriately structured infor-

mation for their evocation. There is nothing in principle which prevents a synthetic

sound from possessing utterly convincing natural qualities, and even evoking very

real affordances in the listener, provided the information generated by the synthesis

model captures the essence of the patterns which would be found in an equivalent

natural sound.

Gibson also raises some significant issues relating to the nature of objects and events.

Firstly, natural hierarchies are different from man-made hierarchical structures such

as machines. In an organic hierarchy, or holarchy (Sheldrake, 1988, p. 95), there are

no divisible levels of structure and no divisible components at any particular scale.

Instead there is a smooth continuum of organisation from the smallest scale up to

the largest.

A living organism ... is not assembled from parts, and its members, al-

though they move, constitute a different sort of hierarchy (Gibson, 1979,

p. 96).

Secondly, Gibson's use of the words duration and size rather than time and space,

emphasise the point that the abstract concepts of space and time described by physi-

cists have little to do with everyday perceptual practice. Our senses of space and
time arise from the objects and events we perceive in our environment, and whilst
both occur at all scales from the the atomic to the cosmic, we are only able to

perceive a limited `bandwidth' of the available information.

28 1. Background and thesis structure

It is worth emphasising that the information generated by natural environments

may be extremely complex and yet coherent. If a single point source of sound

or light generates spherically radiating wavefronts, each of which leads to multiple

reflections off of the various surfaces in the immediate vicinity, then each one of

these reflected wavefronts will undergo further reflections. Combined with the fact

that real surfaces are not perfectly flat mathematical planes but have rough, uneven

textures, even a tiny portion of such a surface will lead to wavefronts being scattered
in many directions. If we then consider the subsequent reflections of these scattered

wavefronts, it quickly becomes clear that the information generated will be extremely

complex. An observer placed at a fixed location will only pick up a tiny fraction of
the total information generated by the environment, and yet even this fraction will be

extremely complex. But if the observer moves about the environment, although the

information picked up at each point will be extremely complex, it will bear a coherent

relationship to the information available at every other point in the environment.

An indication of this complexity may be found in the generation of realistic com-

puter graphics images. Computer graphics techniques such as ray-tracing I involve

enormous amounts of computation but often produce very realistic images, whereas

the use of more simple, short cut techniques often lead to images possessing overtly

simplistic and synthetic qualities. Yet somehow, regardless of the complex nature

of the information generated by natural environments, even an untrained listener

is able to recognise the difference between say, the reverberant characteristics of a

church and a small furnished room in a house. Moreover, this occurs in a direct,

subconscious manner. The listener can immediately detect the close proximity of a

wall or an open doorway etc. Structured information may therefore be very com-

plex, and yet through its coherence, may be capable of providing the perceiver with

a clear and consistent `picture' of the surrounding environment.

Traditional techniques of sound spatialisation used in computer music consisting of

systems capable of projecting sounds over multiple loudspeaker arrays, and digi-

'A technique which involves tracing individual virtual rays of light back from the flat projection

plane represented by the computer screen, through a virtual environment, encountering various re-
flective and refractive surfaces along the way, to their original source. The technique copes well with

smooth reflective and refractive surfaces but cannot be applied to accurately modelling rays reflected

off a rough surface, since the associated scattering increases the complexity of the computation to

impractical proportions. See Hearn and Baker (1986).

1.6 The musical perception of sound 29

tal reverberation techniques based upon the use of various combinations of filters,

whilst providing some spatial cues, lack the coherence associated with information

generated by natural spatial environments.

1.6 The musical perception of sound

Our perceptual systems operate at a number of different levels simultaneously with-

out our necessarily being aware of it and, as described in the previous section, they

are attuned to certain patterns of structured information, which are able to trigger

clearly defined affordances, such as in the case of a loud explosion. In a natural

context, if we merely reflected on the quality of timbre inherent in such a sound, the

likelyhood is we would not survive the event.

Another example of a deeply rooted core perceptual mechanism may be found in

our ability to perform auditory streaming (Bregman, 1990), which enables us to

perceptually group together sounds which are similar in timbre, pitch range, loudness

etc. or sounds which occur in close proximity either spatially or temporally. These

perceptual mechanisms are found in all listeners, not just those with musical training,

and are of natural origin. The fact that we humans employ our perceptual systems
in activities such as music, which are non-essential to our immediate survival, does

not automatically imply that we can simply `switch off'these mechanisms at will. In

the previous section, it was stated that natural sounds, through the complexity and

coherence of their information content, are capable of evoking a clear and consistent
`picture' or image of an environment. The term image is interpreted by Emmerson

(1990) as:

lying somewhere between true synaesthesia with visual image and a

more ambiguous complex of auditory, visual and emotional stimuli (Em-

merson, 1990, p. 17).

Another way of looking at the perceptual imagery evoked in a listener is in terms

of landscape defined by Wishart (1990, p. 43) as the source from which we imagine

the sounds to come. We hear examples of natural aural landscapes all around us in

everyday life. For example the aural landscape of a small room in a house is vastly
different to the aural landscape of a cathedral, a busy street or the seaside. More

30 1. Background and thesis structure

importantly, as Wishart points out, with the use of digital technology, it is possible

to create artifical landscapes which may be realistic or surrealistic in nature.

Wishart defines the most important characteristics of landscape as being: I, the

nature of the perceived acoustic space; II, the disposition of sound objects within the

space; and III, the recognition of individual sound objects (Wishart, 1990, p. 45). We

are mostly concerned here with the characteristics of individual sound objects, since

the TAO computer music program is not yet capable of simulating acoustic spaces

or the disposition of sound objects within a space, although the sounds produced

often do possess a strong (but limited) sense of space. However, the wider arguments

addressed in this thesis about structured information and the use of cellular models in

the generation of such information also apply to the problem of simulating acoustic

spaces, since the problem is essentially the same: how to develop models which

are able to generate coherently structured information which the listener's auditory

perceptual system, through its evolved abilities, will resonate with, or attune to,

leading to the evocation of a convincing sense of space.

1.6.1 Mimesis in electroacoustic music

The sounds and structures found in electroacoustic compositions often mimic aspects

of everyday human experience. This is by no means unique to electroacoustic music

since traditional note-based music has always drawn inspiration from aspects of

human experience such as the rhythmic activity of breathing and walking and the

regular beating of the heart. Melodies and phrase structures have their origins in

the natural limits set by the human vocal apparatus. This aspect of electroacoustic

music is termed mimesis and, according to Emmerson (1990), denotes:

the imitation not only of nature but also other aspects of human culture

not usually associated directly with musical material (Emmerson, 1990,

p. 17).

Music is always related in some way to human experience, which means

that mimesis is always at work even in music regarded as abstract, though

such mimesis is notoriously difficult to explain (Smalley, 1990, p. 64).

Emmerson highlights the fact that there are two types of mimesis:

1.6 The musical perception of sound 31

... `timbral' mimesis is a direct imitation of the timbre (`colour) of the

natural sound, while `syntactic' mimesis may imitate the relationships
between natural events ... (Emmerson, 1990, p. 18).

As with the affordances of particular sounds, this thesis does not attempt to anal-

yse the mimetic qualities of specific sound examples, but merely acknowledges that

mimesis has an important part to play in electroacoustic music. It is concerned,

however, with the fact that musical sounds and sound shapes are often mimetic

of natural events. Gibson highlighted the fact that natural events are hierarchical

in nature, and Emmerson's two types of mimesis might be viewed as lying at two

ends of a continuous spectrum, with timbral mimesis referring to the mimicry of a

sound's microstructure, and syntactic mimesis referring to the mimicry of an event's

macrostructure (not necessarily a sonic event). More will be said of the micro- and

macrostructures of natural sound events in the next section.

1.6.2 Sound categories and their perception

Natural sounds are constrained to evolve according to certain patterns due to the un-

derlying physical processes of which they are a side-effect. Maybe the most striking

examples of this are sound categories such as smashing, bubbling, scraping, explod-
ing, colliding, shattering etc. When listened to acousmatically, by suppressing the

normal mechanism of source-recognition, we are still able to infer the kind of mech-

anisms or actions responsible for their production. According to the ecological view

of auditory perception, adjectives such as bubbling, scraping and smashing etc. refer

not only to the perceptual characteristics which we attach to a sound, but also di-

rectly to the patterns of structured information which give rise to these perceptual
images in the first place.

Windsor (1995, section 2.1.2) describes a number of experiments concerned with

relating the macrostructure of a temporal event to its perceived cause. One experi-

ment described involved simulating the sound of breaking glass, through a process of

adjusting the temporal relationships between a number of prerecorded glass impact

samples (Warren and Verbrugge, 1984). As Windsor relates, the experiment showed

that the macrostructure of such events was sufficient for the sound to be perceived

as having been caused by `breaking' . Another experiment described by Windsor

32 1. Background and thesis structure

showed that the elasticity of a bouncing ball may be perceived directly, merely by

listening to one period between two successive bounces (Warren, Kim and Husney,

1987). In both of these examples the temporal macrostructure of a sound event was

shown to be sufficient for a listener to infer a physical cause for the sound, in a
direct, rather than analytical manner.

It is clear from this research that a lawful relationship obtains between the

physical structure of such events and the acoustic or visual information

available to the organism. This relationship is not physical, nor is it

imposed by the organism: rather it is picked up through our contact with

the lawful behaviour of environmental events, and hence can be described

as specifying such events directly (Windsor, 1995, section 2.1.2).

Whilst this may be true, it is probable that the researchers were not concerned with

the vibrancy of the sound events or how suited they would be to a musical context,

and it is likely that the sounds used, containing coherently structured information at

the macroscopic level juxtaposed with predetermined microstructural information,

lacked some element of overall coherence which would determine how convincingly

the image of breaking or bouncing was evoked. A real breaking sound, whilst pro-

viding these temporal cues in its macrostructure, will also inherit microstructural
details which may be attuned to by a listener in order to perceive the spatial prox-
imity of the event, and possibly the kind of material being broken. Also, digitally

sampled sounds possess a disconcerting ability to sound perfectly real the first time

they are heard, and yet increasingly synthetic as they are repeated, whereas natural
breaking events, no matter how close in character they may seem, will never be

repeated exactly.

There is always some degree of recurrence and some degree of nonrecur-

rence in the flow of ecological events. That is, there are cases of pure

repetition, such as the stepping motions of the escapement of a clock and
the rotations of its hands, and cases of nonrepetition or novelty, such as

cloud formations and the shifting sandbars of a river. Each new sunrise
is like the previous one and yet unlike it, and so is each new day. An

organism, similarly, is never quite the same as it was before, although it

1.6 The musical perception of sound 33

has rhythms. This rule for events is consistent with the general formula

of nonchange underlying change (Gibson, 1979, p. 101).

The coherence associated with real shattering and bouncing events, arises from the

fact that the microstructure and macrostructure are causally related by the physical

evolution of the process 3, and this is detectable in the auditory information which

such events generate. This observation supports the notion of objects and events

being holarchies, and once we accept this aspect of natural sound events, the question

arises: is it possible to synthesise sounds with convincing properties which might

merit the use of adjectives such as shattering, bubbling etc., without recourse to

models which explicitly simulate, to some degree, the underlying mechanisms?

Once again it is possible to draw analogies with the visual domain, this time in

the computer generation of convincingly natural or photorealistic images. For ex-

ample, in a wide ranging discussion on the nature of virtual reality, Woolley (1992)

comments that:

Most regard [photorealism] ... as a product of higher resolution and more

colours. However, a grainy, black and white picture can look more `pho-

torealistic' than a TV-quality full-colour computer image. The reason

seems to be that the realism lies in the image's content, not the quality

of its reproduction. A photorealistic image is one that looks as though

whatever it depicts is in some sense real - it concerns, in other words,

the sophistication of the computer models, of the descriptions of the vir-,

tual objects and landscapes, as much as their rendering (Woolley, 1992,

p. 240).

These arguments may be transposed quite easily into the domain of computer gen-

erated sounds. `Higher resolution' and `more colours' could be said to correspond

to greater dynamic range, wider frequency response, and better sampling rate, con-

siderations which although important, are often blown out of proportion by hi-fi

enthusiasts and technophiles in general, who place more emphasis on clarity of re-

production than on the actual information content of the music they are reproducing.
'This process includes acoustic radiation to the air and subsequent reflections and refractions

caused by the acoustic environment.

34 1. Background and thesis structure

The comments pertaining to `the sophistication of the computer models' and of `the

descriptions of the virtual objects and landscapes' apply just as well to the computer

generation of sounds as they do to images.

All of the arguments introduced in this section apply to traditional musical sounds

as well as the noise categories mentioned. For example the sound of a bowed cello

string possesses qualities which point to the fact that it has been generated by some

mechanism involving dragging and friction. The sonic characteristics imparted to

the sound by this physical process become an integral part of its character. Even if

we manage to suppress the mental image of a cellist playing the familiar orchestral

instrument and treat the sound as an object in its own right, it will still contain

coherently structured information which our auditory perception system will inter-

pret, without any conscious effort on our part. Regardless of the particular notes

played by the cellist, an aggressively bowed sound will afford a different meaning, to

a listener, than a gently bowed sound.

It is very difficult to attribute a sound's convincing bowed qualities to either its

micro- or macrostructure in isolation, since they arise out of the coherence and

causal relationship between the micro- and macrostructure. It is equally difficult

to synthesise such sounds without recourse to physical models of the interaction

between a bow and string. We are accustomed to utilising our perceptual systems

in everyday life without thinking about the way in which they function, but it is

remarkable to think that by using appropriate models, it is theoretically possible

to synthesis sound events containing convincing physical and spatial cues, and even

attributes which are suitably described by adjectives such as aggressive. That is, if

the models are capable of generating complex yet coherently structured information.

1.6.3 Perceived energy sources in natural sounds

The ability to surmise the cause of a sound includes surmising the type of energy

source, the amount of energy involved, and how that energy builds up, dissipates

or changes in general. As with all the other perceptual mechanisms described, this

happens in a direct experiential manner, and in this context the word energy has a

different meaning to the scientific usage of the word. In other words we feel sounds

building up, dissipating or moving from one state to another, as well as perceiving

1.6 The musical perception of sound

the other qualities described.

During the execution of a note, energy input is translated into changes

in spectral richness or complexity. When listening to the note we reverse

this cause and effect by deducing energetic phenomena from changes in

spectral richness ... This aural congruence of spectral and dynamic pro-

files, and their association with energetic phenomena, are the substance

of everyday perceptual practice (Smalley, 1990, p. 68).

35

Smalley relates the energetic, perceptual aspects of a sound to its spectro-morphology
in the above quote, but this could be restated in terms of structured information

instead, which is preferable since this thesis attempts to move away from the re-

ductionist, frequency domain view of sound in favour of a more integrated approach

encompassing all aspects of sound.

During the execution of a note, energy input is translated into changes

in the structure of the information generated. When listening to the

note we reverse this cause and effect by deducing energetic phenomena

from changes in the structure of the information
... This coherence of

structured information and its association with energetic phenomena, is

the substance of everyday perceptual practice.

Looking more closely at the musical ramifications of this ability to perceive energetic

cues in a sound, Smalley (1990) describes two aspects of sounds, the gestural and

textural aspects. Gesture is defined as being:

... action directed away from a previous goal or towards a new goal; it

is concerned with the application of energy and its consequences; it is

synonymous with intervention, growth and progress, and is married to

causality. If we do not know what caused the gesture, at least we can

surmise from its energetic profile that it could have been caused, and its

spectro-morphology will provide evidence of the nature of such a cause
(Smalley, 1990, p. 82).

Texture according to Smalley is defined as being:

36 1. Background and thesis structure

... concerned with internal behaviour patterning, energy directed inwards

or reinjected, self-propagating; once instigated it is seemingly left to its

own devices; instead of being provoked to act it merely continues behaving.

Where gesture is interventionist, texture is laissez-faire; where gesture is

occupied with growth and progress, texture is rapt in contemplation; where

gesture is carried by external shape, texture turns to internal activity;

where gesture encourages higher-level focus, texture encourages lower-

level focus (Smalley, 1990, p. 82).

Physical gesture has always had a part to play in music, and although gestures are

not capable of conveying concrete facts or ideas in the same way that a natural
language can, they are capable of conveying musical information. The most obvious

examples include a performer's use of physical gestures when playing an instrument,

the orchestral conductor's ability to convey musical intentions via physical gestures,

and obviously dance. In this context though, the concept of gesture is extended
beyond the limits of human gesture to include energy changes in the external envi-

ronment. The previously used example of an `exploding' sound illustrates this point

quite well. It seems that the gestural qualities of this sound relate to the kind of
human movement which would be induced in the listener by the sound, rather than

to any human gesture responsible for the sound in the first place.

In asking the question: `is there a natural morphology of sound? ', Wishart (1990)

introduces two more terms intrinsic morphology and imposed morphology.

Intrinsic morphology is defined as follows:

Most sound-objects which we encounter in conventional music have a sta-
ble intrinsic morphology. Once the sound is initiated it settles extremely

rapidly on a fixed pitch, a fixed noise band or more generally on a fixed

`mass' as in the case of bell-like or drum-like sounds with inharmonic par-

tials. Furthermore, most physical systems will require a continual (either

continuous or iterative) energy input to continue to produce the sound.
Others (such as bells or metal rods), however, have internal resonating

properties which cause the sound energy to be emitted slowly with ever
decreasing amplitude after an initial brief energy input (Wishart, 1990,

1.6 The musical perception of sound

p. 57).

37

Imposed morphology is defined as that which is imposed by external energy input to

a system. These notions are similar in spirit to Smalley's definitions of gesture and

texture and once again support the idea that the energetic nature of a sound, both

internal and external, and its imagined physical cause are of musical importance.

One way of paraphrasing both sets of definitions is to say that texture and intrinsic

morphology somehow reflect the internal identity of an object or system used to

produce a sound whilst gesture and imposed morphology are indicative of external

energy applied to the system.

Interestingly, Wishart also states that:

Sounds undergoing continuous excitation can carry a great deal of infor-

mation about the exciting source (this is why sounds generated by contin-

uous physiological human action - such as bowing or blowing - are more

`lively' than sounds emanating, unmediated, from electrical circuits in

synthesisers) (Wishart, 1990, p. 58).

Whilst this is partly true, a central idea of this thesis is that liveliness does not

depend on human intervention but is actually a much more fundamental aspect of

the behaviour of naturally occurring dynamical systems. If appropriate synthesis

models are used, the sounds produced will possess this liveliness even though they

may have been produced out of real time and without the use of any direct, human

physical gestures. It is worth adding that the gestural and textural aspects of a

sound are often capable of evoking a sense of motion, even if the sound object itself

does not physically move.

Spectro-morphological design on its own ... in controlling the spectral and
dynamic shaping, creates real and imagined motions without the need for

actual movement in space (Smalley, 1990, p. 73).

1.6.4 Summary

This discussion has covered some of the main perceptual mechanisms which seem to

operate in all listeners, regardless of musical training, including: auditory streaming;

38 1. Background and thesis structure

the ability to surmise the physical origin of a sound; the ability to take spatial and

energetic cues from sounds; and the evocation of the gestural and textural aspects

of sound. It has also touched upon Gibson's notion of affordances. According to the

ecological view of auditory perception, all of these mechanisms are due, partly at

least, to information which is already contained within the sounds, i. e. the subjective

perceptual images evoked by sounds are not purely internal to us but relate directly

to the structure inherent in those sounds. This argument supports the personal

observations given at the beginning of this chapter on the appealing characteristics

of natural sounds, and whilst none of the quotes in this chapter are concerned with

explicitly criticising synthesised sounds, the various arguments put forward support

the idea that natural sounds, because of the central part they play in our perception

of the world around us, have a special resonance with listeners. They are often

capable of evoking stronger images than synthesised sounds, unless the synthesis

models used are sophisticated enough to generate a similar level of complexity as

our auditory perceptual system has come to expect from the natural environment.

1.7 Thesis structure

This introductory chapter has described the background to the thesis and the per-

sonal motivation for pursuing it. It has also placed the program of research in

context with a number of contemporary ideas relating to the musical and everyday

perceptual attributes of sound. The important relationship between natural sounds
(and events) and the sounds and sound shapes found in electroacoustic music has

been highlighted.

Chapter 2 examines the notion of structured information from the point of view of

the underlying laws of Nature which lead to its creation. A survey of contempo-

rary scientific ideas which relate to the behaviour of naturally occurring dynamical

systems is conducted, covering such areas as chaos theory, complexity, complex dy-

namical systems and emergent behaviour. This chapter introduces different types

of cellular models, with some examples of their behaviour, and lists their appealing

characteristics.

Chapter 3 presents a survey of existing synthesis techniques and describes an existing

computer music program, Csound, which is based around the traditional reduction-

1.7 Thesis structure 39

ist, unit generator approach to sound synthesis. A number of physical modelling
techniques such as modal synthesis and the MOSAIC computer music program,
CORDIS-ANIMA, and digital waveguide synthesis are also described. The chapter

concludes with a set of criteria by which digital synthesis techniques may be judged

on an equal footing.

Chapter 4 describes the cellular computer model which forms the basis for the TAO

computer music program. This piece of software was developed as part of the pro-

gram of research described, and examples are given of the kind of wave phenomena

which emerge naturally from the model, and the structural possibilities it affords.

Chapter 5 describes TAO's user interface, a script language, which enables the user to

create and control instruments. This language comprises both an orchestra language,

and score language based upon the idea of sounds as hierarchically nested events.

Chapter 6 gives various practical examples of TAO instruments and their associated
behaviour. Some of the examples illustrate, graphically, general points relating to

the strategies which may be employed when designing instruments, whilst others are

supported by sound examples listed in appendix C.

Chapter 7 presents a summary of the key ideas presented in previous chapters,

assesses how successfully the hypothesis has been supported, and concludes the

thesis.

Appendix A gives a brief user manual, including how to install the TAO system

and get it up and running. This appendix is not intended as a tutorial since many

practical examples are given in chapter 6 and appendix C.

Appendix B contains a complete reference manual for TAO's script language.

Appendix C describes the sound examples which accompany this thesis, and gives
the TAO scripts which were used to produced them.

Appendices D and E describe the implementation of the system in detail, and ap-

pendix F gives details of the mathematical model used to simulate the interaction

of a virtual bow with an instrument.

Finally appendix G gives a complete listing of the implementation code.

40 1. Background and thesis structure

Chapter 2

The complexity of natural

systems

2.1 Introduction

In the previous chapter the notion of structured information was introduced in the

context of auditory perception, and a number of specific perceptual attributes of

sound were highlighted. In this chapter we move away from the perceptual aspect

of sound and turn instead to a completely different set of questions:

1. What are the main factors affecting the generation of patterns of information

in Nature?

2. Is there a way to relate subjective adjectives such as organic, vibrant and lively

to the behaviour of natural systems, and the information they generate?

3. If we wish to synthesise sounds possessing the natural characteristics men-
tioned, what kind of computer models are available?

We will begin to answer these questions with a review of a theory which has had a

massive impact on scientific thinking in the last three decades, Chaos theory. Chaos

theory has a large part to play in the ideas presented in this thesis, although in an
indirect way, and it is suggested that attempts to apply it to the organisation of sound
have often `missed the point' of the theory in the past, applying it in inappropriate

41

42 2. The complexity of natural systems

contexts. This view is supported by the composer Barry Truax who comments on

the popular fractal images which have come to be inextricably associated with chaos

theory:

What seems to have attracted the most public attention is the fact that

[behaviour in non-linear systems] displays fractal properties and self-

similarity across different scales. Various composers have attempted to

find musical analogies to the famous computer graphic fractals, but most

of these attempts have involved a mapping onto macro-level compositional

parameters as in the works of Larry Austin ... Charles Dodge ... Bruno

Degazio (Truax, 1990a, p. 100).

This thesis places chaos theory in the wider context of attempting to explain how it

is that complex dynamical systems such as acoustic musical instruments can exhibit

appealing behaviour which might be called organic. It is proposed that whilst chaos

theory has provided a suitable paradigm shift for the re-appraisal of such questions,
it is only one part of a much larger equation. As Truax states:

Given that acoustical systems are prime examples of dissipative dynami-

cal systems, it is surprising that more work has not been done to investi-

gate fundamental relationships between chaotic behaviour and acoustical

models of sound. The unsolved problems in the field of acoustics seem

ripe for such basic re-examination as those in other fields (e. g turbulence)

which have been completely reformulated in recent years

[Gleick] suggests that scientists have traditionally been trained to think

in terms of linear systems and solvable linear differential equations as

the norm, and to ignore the irregularities of any complex behaviour that

cannot be explained by them. Are not the 'difficult' problems of acoustic

phenomena treated similarly? Here we cite onset transients, departures

from pure harmonicity, and the complex behaviour of certain types of

environmental sounds as examples whose full explanation has eluded re-

searchers (Truax, 1990a, p. 100).

2.2 Chaos theory 43

We begin the discussion then with a brief recap on the main features of chaos theory,
but other topics covered include complex dynamical systems, emergent behaviour,

phase space portraits and attractors, and the central theme of this thesis, cellular

models.

2.2 Chaos theory

It will not be necessary to go into too much detail here about chaos theory since
it is already well documented, the most widely read and accessible account of its

historical development and implications being (Gleick, 1991a). It is, however, useful

to briefly recap on the theory at an intuitive rather than mathematical level, since
it is central to the questions addressed by this thesis such as what makes sounds

vibrant, organic, and coherent and how it is that natural sounds are able to exhibit

endless variations of patterned and yet unpredictable behaviour. Chaos theory is

unlike previous Western scientific theories in that it deals with explaining the be-

haviour of natural systems on all scales from the very smallest to the very largest.

It is concerned with cloud formations, weather systems, turbulent fluid flow, the

formation of mountains etc. It turns out that in all of these systems there are un-
derlying universal laws at work which give rise to similar patterns of behaviour, even
if the patterns seem to be unrelated at first glance.

In the words of Gleick (1991a):

Where chaos begins, classical science stops. For as long as the world has

had physicists inquiring into the laws of nature, it has suffered a special
ignorance about disorder in the atmosphere, in the turbulent sea, in the

fluctuations of wildlife populations, in the oscillations of the heart and
brain. The irregular side of nature, the discontinuous and erratic side

- these have been puzzles to science, or worse, monstrosities (Gleick,

1991a, p. 3).

The simplest systems are now seen to create extraordinarily difficult prob-
lems of predictability. Yet order arises spontaneously in those systems -
chaos and order together. Only a new kind of science could begin to cross
the great gulf between what one thing does - one water molecule, one cell

44 2. The complexity of natural systems

of heart tissue, one neuron - and what millions of them do (Gleick,

1991a, p. 8).

Chaos has been defined as:

The complicated, aperiodic, attracting orbits of certain dynamical sys-

terns. Philip Holmes

A kind of order without periodicity.
A newly recognised and ubiquitous class of natural phenomena. Hao Bai-

Lin

The irregular, unpredictable behaviour of deterministic, nonlinear dy-

namical systems. Roderick V. Jensen

Dynamics freed at last from the shackles of order and predictability ... Systems

liberated to randomly explore their every dynamical possibility ... Exciting

variety, richness of choice, a cornucopia of opportunity. Joseph Ford

2.3 The phenomenon of bifurcation

In order to develop a rigorous mathematical understanding of non-chaotic and chaotic
behaviour and the transition from one to the other we can focus our attention upon

the simplest system which can be made to produce this chaotic behaviour. In math-

ematical terms the simplest and most frequently quoted example of an equation

capable of chaotic behaviour is the logistic difference equation xne=t = Ax(1 - x).
The essential feature of this equation is that it is iterative and involves feedback.

An initial value is chosen for x between zero and one, and a fixed value is chosen
for A. Using these values, a new value is calculated for x which is then fed back

into the equation to calculate the next value, ad infinitum. For certain low values

of A the successive values of x very quickly settle down to a single number. For

slightly larger values of .1 the succession of x values eventually oscillate between two

alternate numbers after settling down. Increasing the value of A further leads to the

values of x oscillating between four values, then eight, then sixteen etc. Suddenly

when a critical value of A is reached the value of x seems to jump about at random,

never settling down to a single value or set of values. This phenomenon is known as

period doubling or bifurcation.

2.3 The phenomenon of bifurcation

STEADY STATE

PERIOD FOUR

PERIOD TWO

CHAOS

Figure 2.1: The phenomenon of period-doubling or bifurcation

45

This process is illustrated in figure 2.1 which shows the successive values of x which

occur for various values of A, but there is a way to combine all of the images in this

figure into a single diagram: a bifurcation diagram. By plotting the final values of x

after a fixed number of iterations against various values of A we obtain the bifurcation

diagram shown in figure 2.2. For values of A up to about 3, the iterations produce one

stable value for x. For values of A between about 3 and 3.45 the value of x alternates
between two numbers and so on. For values of A greater than approximately 3.57

the stream of values produced by the equation never settle down into any kind of

pattern, they behave chaotically. The image (a) at the top of figure 2.2 contains a

small shaded region which is enlarged in (b). Image (b) then has a shaded region

of its own which is further enlarged in (c). This shows the self-similarity of the

diagram. Figure 2.3 starts from the same point but shows a different sequence of

enlargements, highlighting the fact that islands of order exist within the chaos. Some

of these islands possess periods of three, five, seven etc. rather than two, four, eight

etc.

The logistic difference equation is useful for distilling the essence of chaotic behaviour

out from other distracting elements, since it is the simplest possible system involving

feedback. But it must be remembered that chaos theory came about because of the

empirical observation of such period doubling in real systems, and often very complex

46 2. The complexity of natural systems

x a ,. U

STABLE
STATE

0.5

b)

C)

0.0 ---ý
A.

1. S 3.0 3 `. 1u

X

0.8

0.7

0.6

0.5

0.4

0.3 t-

3.40

x

3.45 3.50 3.55 3.60

0.900

' "" 1 "' j

tTk

:;:::

0.870

0.060-

0.850.

0.840

0i. "Rý ý't"..,;

0.10 hý,;:,

`r:
`fý":

B00
3.540 3.550 3.560 3.570 7. '.. 3.590 3.600

^Ä

Figure 2.2: Bifurcation diagram with selectively enlarged regions

2.3 The phenomenon of bifurcation

a) x
,. o

0,5

b)

C)

0.0 t-
z. 5

x
1.0 4

05

0.0

3.00

x
0.55

0.50 -

3.85

4.0

-T 3.90

U. 9J 1

3.840 3.845 3.850 3.855

Figure 2.3: Islands of order within chaos

3.0 3.5

x

4i

48 2. The complexity of natural systems

ones. The main lesson to be learned from this is that whatever system we care to

observe, whether a traditional musical instrument or some physical process such as
bubbling, shattering, scraping etc., it is likely that chaos theory will have a part to

play in explaining the kinds of structured information generated.

Now that science is looking, chaos seems to be everywhere. A rising

column of cigarette smoke breaks into wild swirls. A flag snaps back

and forth in the wind. A dripping faucet goes from a steady pattern to

a random one ... No matter what the medium, the behaviour obeys the

same newly discovered laws (Gleick, 1991a, p. 5).

If we return for a moment to Gibson's observations on the hierarchical organisation

of Nature and its mixture of persistence and non-persistence we see that the points

which are highlighted as being fundamental from a perceptual point of view corre-

spond very closely to those which are dealt with by chaos theory. For example the

hierarchical and sometimes self-similar organisation:

Just as physical reality has structure at all levels of metric size, so it has

structure at all levels of metric duration ... And once more it is important

to realise that smaller units are nested within larger units. There are

events within events, as there are forms within forms ... (Gibson, 1979,

p. 12)

and the ability of all dynamical systems to exhibit both order and chaos, depending

upon the amount of feedback present:

The environment normally manifests some things that persist and some

that do not, some features that are invariant and some that are variant.

A wholly invariant environment, unchanging in all parts and motionless,

would be completely rigid and obviously would no longer be an environ-

ment ... At the other extreme, an environment that was changing in all

parts and was wholly variant, consisting only of swirling clouds of matter,

would also not be an environment. In both extreme cases there would be

space, time, matter, and energy, but there would be no habitat (Gibson,

1979, p. 14).

2.4 Simplicity and complexity 49

Gibson's second comment suggests that there is something fundamental about en-

vironments which are situated at the border between order and chaos, something

which is intimately tied up with life itself. This view is supported by the following

quotes, the first commenting on the behaviour of a water faucet:

If you turn it up a little bit, you can see a regime where the pitter-patter

is irregular. As it turns out, its not a predictable pattern beyond a short

time. So even something as simple as a faucet can generate a pattern

that is eternally creative (Gleick, 1991a, p. 262).

... unpredictability was not the reason physicists and mathematicians be-

gan taking pendulums seriously again in the sixties and seventies. Un-

predictability was only the attention grabber. Those studying chaotic dy-

namics discovered that the disorderly behaviour of simple systems acted

as a creative process. It generated complexity: richly organised patterns,

sometimes stable and sometimes unstable, sometimes finite and some-

times infinite, but always with the fascination of living things (Gleick,

1991a, p. 43).

2.4 Simplicity and complexity

Before proceeding to a discussion on the nature of complex dynamical systems, it is

a worthwhile exercise to examine notions such as information, simplicity and com-

plexity more closely. We often use these words in an everyday context without really
being aware of what they mean. If we perceive a stream of structured information,

whether visual or aural, what is it that makes one stream more information-rich or

complex than another? Gell-Mann (1995) devotes a whole book to such questions,

and defines some useful terminology. Broadly speaking, Gell-Mann provides further

evidence for the notion that a balance between order and chaos is fundamental for

life and complex adaptive systems such as humans to exist at all:

The environment must exhibit sufficient regularity for the systems to ex-

ploit for learning and adapting, but at the same time not so much regular-
ity that nothing happens. For example, if the environment in question is

50 2. The complexity of natural systems

the center of the sun, at a temperature of tens of millions of degrees, there

is almost total randomness ... nothing like life can exist. Nor can there

be such a thing as life if the environment is a perfect crystal at a tem-

perature of absolute zero ... For a complex adaptive system to function,

conditions are required that are intermediate between order and disorder.

Conditions in between order and disorder characterize not only the envi-

ronment in which life can arise, but also life itself, with its high effective

complexity and great depth (Gell-Rlann, 1995, p. 116).

The terms effective complexity and depth are essentially both derived from com-

putational theories of information which relate the useful content in a stream of

information to: (a) the length of the smallest program which would be capable of

reproducing the stream in all its original detail; and (b) the length of time that this

smallest program would have to be left to run in order for it to compute the stream.

In more intuitive terms, effective complexity relates to the task of identifying the

regularities in a stream, and compressing them into some kind of schema about

the stream's behaviour. Such a schema may be used to make predictions about a

system's future behaviour. If a stream exhibits too many regularities, then building

such a schema becomes a trivial task. Conversely, building a schema for a completely

random system is impossible since there are no regularities whatsoever. The impor-

tant point is that a system of the former type is often of little interest since it is, by

definition, completely predictable. Conversely, a system of the latter type is often

uninteresting since it is unpredictable but in an entirely predictable manner. Its

associated schema is therefore also rather trivial. For systems which lie in between

the two classes described above, the effective complexity reaches a maximum, since

there are enough regularities to make the construction of a schema worthwhile, but

there will always be surprises which force the schema to be updated, thus leading to

it becoming more lengthy.

There are classes of systems, however, which although very complex, do not operate

at `the edge of chaos' and therefore do not have a high effective complexity. How

is it then that such systems may also be labelled `complex'? This question leads to

the idea of depth, which is a measure not of how long the schema itself is, but of

how long it would take to proceed from the schema to a full blown description of

2.5 Complex dynamical systems and emergent behaviour 51

the original stream of information. This point is equally important since it tells us
that some streams of information, although the result of processes which are regular

enough for appropriate schemas to be constructed, may rely upon the shear amount

of information processing which has gone into their creation for their associated

complexity. It also warns us that there may be no short-cuts when modelling natural

streams of information, such as those coming from musical instruments, if we wish
the result to be truly complexl.

Gell-Mann introduces both terms not as abstract mathematical concepts, bearing

little relationship to our experience of the world, but in an attempt to elicit the

precise meaning of the word complexity.

2.5 Complex dynamical systems and emergent behaviour

So far we have seen the peculiar structure which lies behind the transition from

ordered to disordered behaviour in a simple dynamical system. We have also seen

some evidence in support of the hypothesis that dynamical systems act as creative

sources of information when operating in a regime balanced at the border between

order and chaos. The universality of chaos theory means that the bifurcation dia-

grams shown earlier in this chapter apply to the behaviour of more complex systems

also. A complex dynamical system may exhibit more intricate spatial and temporal

patterns, and there may not be a single parameter equivalent to A, but essentially

a complex system holds the same potential for ordered and chaotic behaviour and
bifurcation as a simple one.

A complex dynamic system is formally defined by the following characteristics (Beyls,

1989):

" It has a large number of similar simple elements

" All elements evolve in parallel over time

" The same external rule applies to all elements simultaneously

" Any element performs local interactions only
'A point which is particularly salient in the field of sound synthesis, since it is very easy for the

goal of real-time synthesis to override more musical considerations about the quality of the sounds

produced.

52 2. The complexity of natural systems

" The systems exhibits emergent global properties

Complex dynamic systems occur throughout nature in many different forms and at

many different scales. Some immediately observable examples which are caused by

such systems of one kind or another include:

" cloud formations;

" the Earth's climate system;

" the swirling patterns occurring in a rising smoke column;

" wave patterns and turbulence in fluids;

" flocks and herds of animals;

Apart from the category of systems described above, consisting of large numbers

of identical elements interacting on a local basis, we will extend the definition to

include systems such as acoustic musical instruments also, since they are by definition

complex and dynamic. Classical science may tell us that they are not complex, and

that their behaviour is well understood, but in practice it seems that synthetic sounds
based upon classical models rarely possess the same depth as their real counterparts.

In practice, musical instruments produce sounds as an emergent behaviour, although

they are not quite so clear cut and homogeneous in nature as the examples given

above.

Whilst chaos theory makes it clear that even the simplest systems such as the logistic

difference equation described in the last section are capable of extremely complex

behaviour, it also begs the opposite question: how is it that extremely complex sys-

tems are capable of spontaneously organising themselves into highly ordered global

patterns of behaviour? This leads to the concept of emergent behaviour, i. e. the

ability of a system consisting of many agents interacting on a local basis to sponta-

neously organise itself without outside intervention. Such systems are greater than

the sum of their parts from a perceptual point of view, since we are able to perceive

the patterns formed as a whole.

If we take the example of cloud formations, in practice we observe some clouds which

are highly organised, producing wave patterns which stretch from horizon to horizon,

2.6 Phase space and attractors 53

whilst at other times there seems to be no overall coherence, as on a stormy day,

although even in this example, when viewed from a satellite there is still significant

self-organisation on a larger scale in the form of depressions or large swirling vortices

of air. The important point to note is that although complex dynamical systems

and simple dynamical systems both obey the laws of chaos, the simple systems do

not have many degrees of freedom, as in the case of the logistic difference equation,

and are therefore not capable of expressing the laws of chaos in very subtle and
interesting ways. Complex dynamical systems, on the other hand, have a great

many more degrees of freedom and therefore manifest the laws of chaos in more

interesting ways.

2.6 Phase space and attractors

A concept which appears frequently in the study of complex dynamical systems is

that of phase space. A phase space is a multi-dimensional map of a dynamic system's

behaviour. If a system is characterised at any point in time by a set of state variables,

then by plotting the changing values of these state variables over time, with each

variable having its own axis, an abstract picture of the system's evolution may be

produced: a phase space portrait.

Phase space gives a way of turning numbers into pictures, abstracting

every bit of essential information from a system of moving parts, me-

chanical or fluid, and making a flexible road map to all its possibilities

(Gleick, 1991a, p. 134).

A simple, damped harmonic system such as a pendulum will always swing back and
forth until it comes to rest at the same point in its phase space, i. e. the point of

minimum potential energy, and this point is referred to as the point attractor of

the system. Conversely, a system which exhibits a tendency to oscillate regularly

with a fixed period possesses what is known as a periodic attractor, and its phase

space portrait appears as a closed loop, when the system is left to its own devices.

Once again, if such a system is set in motion from a point in its phase space which
doesn't lie on the attractor, the system will eventually settle back into its dynamically

stable mode of oscillation. Phase space portraits are useful for eliciting a system's

54 2. The complexity of natural systems

character, since they provide qualitative, pictorial representations of a system's long

term behaviour, rather than quantitative descriptions at specific moments in time.

2.6.1 Strange attractors

If a dynamical system is operating in a chaotic regime then it exhibits what is known

as a strange attractor (Gleick, 1991a; Hofstadter, 1986). Figure 2.4 gives an example

of a strange attractor, the Lorenz attractor, after Edward Lorenz who was the first

to discover chaotic behaviour in a simple dynamical system. Lorenz was interested

in understanding the behaviour of the weather through simplified and idealised sets

of equations which nevertheless captured some of the essence of the convection flows

responsible for real weather patterns. He discovered, whilst re-running a computer

simulation of one of these mathematical models from half-way through a previous

run, feeding the intermediate starting values for the second simulation in by hand

from a computer printout, that the model quickly diverged from its previous pattern

of behaviour.

According to the classical, deterministic view of the world, this should not have

occurred, since small influences on a system were assumed to average out, not af-
fecting the global behaviour of the system. However, Lorenz' discovery showed that

dynamical systems may be sensitive to initial conditions and that in a chaotic regime

of behaviour, no matter how accurately we capture the initial conditions of a such

a system, it will always be impossible to predict its evolution, since small influences

will grow larger and larger, making the system's behaviour divergent. This effect is

known as the butterfly effect since, in theory, a butterfly flapping its wings on one

side of the planet could be responsible for the development of a hurricane elsewhere.

Lorenz recognised that the chaotic behaviour his model produced was not purely

random but possessed a strange, hidden order. In order to elicit this hidden struc-

ture to chaotic behaviour, Lorenz began to look for simpler and simpler sets of

equations which would produce the desired behaviour. The phase space portrait in

figure 2.4 shows the behaviour of one of these mathematical models, which reduces

the process of convection to a simple, water-wheel like model with a single degree

of rotational freedom and discrete cells or buckets containing fluid which condenses

and evaporates under the influence of a heat source coming from above. The graph

2.6 Phase space and attractors

Traditional time domain graph of the
variation of one of the state variables from
Lorenz' 'water-wheel' convection model.

55

Phase space portrait of
the behaviour of the
convection model
shown over a short
time interval. Each
axis represents a single
state variable, but what
is more important is
the abstract picture
painted of the system's
dynamic behaviour.

When left to evolve
for a longer time
period, Lorenz'
convection model
produces chaotic
behaviour which
never repeats itself,
although the system
follows characteristics
trends dictated by its
strange attractor.

Figure 2.4: An example of a strange attractor (from Gleick, 1991)

56 2. The complexity of natural systems

situated at the top left of the figure represents a traditional time-domain represen-

tation of the behaviour of just one of the variables in Lorenz' model, but it is only

when three variables are plotted in phase space over an extended period of time

that the strangely ordered and yet aperiodic behaviour of the system becomes clear.

The two `wings' of the attractor illustrate the system's ability to continue flowing in

one direction for a period of time and then, without warning, suddenly reverse the

direction of convective flow. More significantly, the system never traces the same

path twice, and is therefore capable of continually surprising.

It is well understood that the sounds produced by pitched musical instruments are

rarely purely periodic in nature, and even if such instruments do not exhibit strange

attractors, this implies that they must operate at a regime situated somewhere in

between periodic and aperiodic behaviour. The sensitivity of a system to initial

conditions and the ability for minute external influences to effect larger changes in

its behaviour do have some relevance to acoustic musical instruments as Woodhouse

(1992) points out:

One is frequently confronted with rather subtle physical effects that result
in sounds which our auditory system is able to process with remarkable

acuity. It is never safe to assume that because a particular effect is small

in terms of physical measurements, it will not be significant to a skilled

performing musician (Woodhouse, 1992, P. M.

2.6.2 Identity and transient behaviour

It has long been understood that the transients found in instrumental sounds con-

tribute a great deal to the overall character and expressiveness of the instruments.

The language of dynamical systems provides us with some useful terminology for

discussing the phenomenon of transient behaviour. Firstly, a system's attractor rep-

resents a tendency towards certain patterns of behaviour, without actually forcing

the system to always operate in that way, and therefore represents, in a very deep

way, the system's identity. Whenever such a system is excited by the application

of external energy, transient behaviour occurs. This transient behaviour is caused

by the system being pushed to a point in its phase space which is away from the

usual path dictated by the system's attractor. Once the excitation has disappeared,

2.6 Phase space and attractors 57

though, the system will return, over a finite time interval, to its usual dynamic equi-

librium (static, in the case of a point attractor). More severe excitations will tend

to push the system to more remote areas of its phase space and therefore lead to

more pronounced transients, but given enough time, these transients will always die

away.

The reader will remember that in the previous chapter, the gestural and textural

aspects of sound were described. These very musical concepts have a close relation-

ship to the ideas described here, since the textural aspect of a sound (that which is

caused by the sound following its own internal behaviour with no external influence)

seems to correspond to the direct perception of a system's identity, through the pat-

terns of structured information it generates. These patterns are, in turn, governed

by the attractor of the system responsible for the sound. The gestural aspect (that

which seems to have been caused by the application of external energy) seems to

correspond to the direct perception of any deviation from the system's attractor, i. e.

the auditory perceptual system recognises an interruption in the invariant features

produced by the system.

One problem associated with the notion of attractors is that for dissipative systems,

i. e. those with point attractors, the attractor only tells us that the system will

eventually come to rest at the same point. It tells us nothing about the actual path

which the system will take to reach that point. However, the phase space portraits

of such systems, e. g. percussive instruments, will still possess a certain character no

matter how they are excited and how pronounced the transient behaviour is. But

in general, regardless of the particular type of attractor possessed by a system, any

deviation from this attractor is perceived by an observer as transient behaviour.

2.6.3 Appealing characteristics of complex dynamical systems

So far we have seen a number of characteristics of complex dynamical systems

which make them suitable sources of inspiration for new sound synthesis techniques.

Firstly, they have strong identities; secondly, they have the potential to act as cre-

ative sources of information, maintaining their identity whilst continually throwing

up surprises; and finally, they are compatible with very musical notions such as the

transient behaviour associated with acoustic instruments, and the gestural and tex-

58 2. The complexity of natural systems

tural aspects of sound. In addition to these points, since the behaviour they exhibit

occurs as an emergent property, they possess a certain robustness due to their holis-

tic nature. A complex dynamical system may be excited at several different locations

simultaneously and may have its characteristics altered on a local basis, and yet it

will always retain a strong identity, or create a new one for itself if the alterations

are drastic enough. This means that the structured information generated by such

systems will always retain a high degree of coherence which, as was proposed in

chapter 1, is essential for the evocation of strongly focussed imagery in a perceiver.

2.7 Cellular models: a modelling paradigm

A cellular model is defined in this thesis as:

A model in which many simple agents interact on a local basis with each

other according to well defined rules. Such models are usually updated

in discrete time steps and the application of a cellular update rule on

a local basis both temporally and spatially leads to global patterns of

behaviour: emergent behaviour.

Cellular models include cellular automata, finite difference models, finite element

models and particle models, all of which are described below.

At the beginning of this chapter Truax (1990a) commented on the fact that scientists

have traditionally been trained to think of solvable linear differential equations as

the `norm'. Toffoli and Margolis (1987) support this view in the introduction to

their book Cellular automata machines -a new environment for modelling:

... the development of mathematics in a certain period of time reflects to

a much greater extent than many would suspect the nature of the com-

putational resources available at that time. In the past three centuries,

enormous emphasis has been given to (1) models that are defined and

well-behaved in a continuum, (2) models that are linear, and (3) models

entailing a small number of lumped variables. This emphasis does not

reflect a preference of nature, but rather the fact that the human brain,

aided only with a pencil and paper, performs best when it handles a small

2.7 Cellular models: a modelling paradigm 59

number of symbolic tokens having substantial conceptual depth ... in this

context, one tends to concentrate effort on problems which are likely to

yield a symbolic, closed form solution (Toffoli and Margolis, 1987, p. 142).

As computer technology has become faster and computer graphics have become more

widely available the classical goal of finding `closed form solutions' by solving equa-

tions has been replaced, to an extent, with the use of digital computers as tools for

direct experimentation, leading to an experimental approach lying halfway between

conventional laboratory work and classical mathematical modelling. A growing num-
ber of researchers in a variety of disciplines have been influenced by the associated

paradigm shift (Waldrop, 1994) and have switched to this approach to understand-

ing the behaviour of complex systems. Since it is more intuitive than analytical,

more qualitative than quantitative, it has been likened to playing a musical instru-

ment (Toffoli and Margolis, 1987), whereby the experimenter `plays' the model and

`listens' to the resulting behaviour, thereby gaining a `feel' for the behaviour of a

system, even if its precise behaviour cannot be predicted.

Cellular models, because of their spatial distribution, are ideally suited to computer

graphics visualisation, and dispense with the analytical approach to understanding

a system in favour of a more direct approach which relies on our ability to perceive

patterns in complex evolving sets of data.

2.7.1 Cellular automata

Cellular automata represent the simplest example of cellular models. A cellular

automaton consists of a regular array of cells, each cell containing a discrete value.

Cell values are updated in discrete time steps according to simple deterministic rules

which take account of each cell's previous value and the values of its neighbouring

cells. A more formal definition of the characteristics of cellular automata is given by

Wolfram (1986):

Discrete in space. They consist of a discrete grid of spatial cells or sites.

Discrete in time. The value of each time cell is updated in a sequence of discrete

time steps.

Discrete states. Each cell has a finite number of possible values.

60 ý'_ I
..,. ..

i

Figure 2.5: CA model of wave optics: refraction through a spherical lens (from

Toffoli and Margolus, 1987)

Homogeneous. All cells are identical, and are arranged in a regular array.

Synchronous updating. All cell values are updated in sy. nchrony., each depending

upon the previous values of neighbouring cells.

Deterministic rule. Each cell value is updated according to a fixed, deterministic,

rule.

Spatially local rule. The rule at each site depends only on the values of a local

neighbourhood of sites around it.

Temporally local rule. The rule for the new value of a site depends only on values

for a fixed number of preceding steps.

Cellular automata have been used to simulate a variety of natural phenomena such

as biological systems (Green, 1990), fluid dynamics (Lakshmi, 1989), crystal growth

(Toffoli and Margolis, 1987). They also have applications in digital image processing

for feature extraction (Lewis, 1990). For a comprehensive survey of the applications

of cellular automata see Toffoli and Margolis (1987) and Wolfram (1986).

Figures 2.5,2.6,2.7 and 2.8 show examples of the flexibility and generality of the

cellular approach to modelling natural phenomena. Figure 2.5 shows a simulation

of wave optics and the refraction of a wavefront by a spherical lens. This model

2.7 Cellular models: a modelling paradigm 61

Figure 2.6: CA model of dendritic growth (from Toffoli and Margolus, 1987)

actually consists of a very fine lattice of cells, each capable of containing a `particle'.

The cellular update rule used represents a idealised version of the way in which

particles collide. A wavefront is created through the introduction of a short `burst' of

particles at one side of the cellular array 2. The wavefront propagates automatically

as an emergent property of the cellular update rule, and the presence of a lens is

simulated by placing obstacles at a random selection of cell sites within the circular

region. This makes it more difficult, statistically speaking, for the particles to travel

through the darker region, and the effect which this has in global terms, is to refract

the wavefront.

Figure 2.6 shows a cellular automata model of dendritic growth, and figure 2.7 shows

another model based upon idealised interactions between particles. This time, the

velocities of particles in local regions, 96 cells by 96 cells in size, are averaged,

and these average velocities are displayed as vectors. Once again a fresh supply of

particles are created at the right hand side of the frame in order to set up a steady

flow of particles from right to left. The vortex patterns emerge naturally from the

local interactions of individual particles.

In figure 2.8 an annealing model is shown. The left hand image shows how by a

process involving surface tension, bays are filled and capes eroded. The right hand

`Although which side is not entirely clear, since the left image of the three seems at first to be

the wrong way round.

62 2.1 %, (' (Vlflpi . ". li1 vl 1A ý(iI1111! :., 1ýtvills

Figure 2.7: CA model of fluid flow around an obstacle (from Toffu, li and Nlargo-

lus, 1987)

Figure 2.8: CA model of annealing (from Toffoli and Margolus, 1987)

2.7 Cellular models: a modelling paradigm

tf we1

IN 0 J*1

liý IIý!
0

63

Figure 2.9: CA model of formation of vertebrate skin patterns (from Young,

1984)

image shows how the boundaries wander over a time interval of 400 steps of the

model. Finally, 2.9 shows a model of vertebrate skin pattern formation. The four

successive images give an elegant example of the robustness of cellular models. By

changing the various low level parameters in the model and thus affecting the precise

relationship between neighbouring cells, a variety of global forms may be produced,

all belonging to a common family. A single model is capable of producing spots and

stripes and all manner of patterns in between.

There are several interesting things to note about these examples: firstly, they show

the diversity of natural phenomena which even the simplest cellular models are

capable of simulating; secondly, each of the examples shows how emergent behaviour

gives rise to form and pattern where it is not programmed explicitly; and thirdly,

the resulting patterns and forms could be said to be convincingly natural or organic

in their appearance. They look as if they could have occurred naturally due to

some physical process. At a deeper level this statement says something about the

structured information which they are capable of generating.

Putting these specific examples to one side for a moment, it is worth saying some-

thing about general classes of cellular automata and the kind of behaviour they

produce. Wolfram (1986), whilst investigating the properties of a family of cellular

automata, found that they could be categorised into four classes (WVolfram, 1984).

64 2. The complexity of natural systems

Class I automata produce relatively uninteresting behaviour and, regardless of the

initial values of the cells, all activity dies out after a small number of iterations.

These automata are analogous to dynamical systems with point attractors since no

matter at which point in the phase space the system begins at, it will always gravi-

tate back to the same rest state. Class II are slightly more interesting and produce

clumps of cells, some of which remain stable and some of which oscillate between

two or more states. Automata of this class are said to have periodic attractors

because of the oscillation. Class III go to other end of the spectrum and produce

completely chaotic behaviour, analogous to systems with strange attractors. The

most significant class of cellular automata, class IV, produce patterns which:

propagate, grow, split apart, and recombine in a wonderfully complex way

(Waldrop, 1994, p. 226).

This result is significant since it shows that even cellular automata, the most machine-

like of cellular models, are paradoxically capable of producing patterns which would

normally only be associated with natural processes. It also provokes the question

of precisely how this behaviour fits in with the bifurcation diagrams of section 2.3,

which the reader will remember were produced by a simple dynamical system, the

logistic difference equation. The transition between order and chaos seems to be

very abrupt in these diagrams, leaving no room for any `in-between' states. How-

ever, if we zoomed in more and more closely on the border-line between the periodic

and chaotic region, we would see that in fact the period-doublings continue at an

ever increasing rate until, eventually, it would be impossible to perceive any periodic

behaviour at all. Combined with this fact, a complex dynamical system poised at

the edge of chaos is capable of exhibiting both ordered and chaotic behaviour on a

local basis, and also at different scales.

The notion that local islands of order and chaos may exist in a complex dynamical

system is supported by the description given in Waldrop (1994, p. 234) of the work of

another researcher, Chris Langton who was interested in finding analogies to support

the hypothesis that life-like behaviour occurs at the boundary between order and

chaos. On learning of Wolfram's work on cellular automata classes, and after much

previous thought on the subject, Langton drew up the following series of analogies:

2.7 Cellular models: a modelling paradigm

Cellular Automata Classes:
I& II -+ "IV" --ý III

Dynamical Systems:
Order -+ "Complexity" --> Chaos

Matter:
Solid -+ "Phase transition" --> Fluid

Life:
Too static --> "Life/intelligence" --ý Too noisy

65

The phase transition analogy is the clearest example of a system possessing islands

of both order and chaos, since at a phase transition some regions will be solid whilst

others will be fluid.

2.7.2 Finite difference models

The finite difference approach to modelling is similar to that of cellular automata,

the main differences being that values at each site may be continuous and updating

may be asynchronous. Finite difference models are often more coarsely grained than

cellular automata, e. g. whereas a cellular automaton model of fluid flow might deal

with individual particles and their idealised collisions, a finite difference model would

deal with averaged quantities such as velocity and pressure, and the model would

be updated according to the differences between the values of these state variables

at each site.

The cellular model on which the TAO computer music program is based comes under

this heading, and apart from using cells with more sophisticated internal states and a

more complicated, two-pass cellular update rule, the updating occurs synchronously

in the same way that a cellular automata is updated. Precise details of this cellular

model are given in chapter 4.

2.7.3 Finite element models

The finite element (Connor and Brebbia, 1978) technique is related to the other

techniques described in this section in that it is based on dividing a complex system

into regions. However, the other methods involve dynamic simulation, while finite

66 2. The complexity of natural systems

a)

Continuum of flow

External
boundary

-ý-ýýi y

T

Figure 2.10: Finite element analysis.

c) Graphical display
Al of nodal values

2.7 Cellular models: a modelling paradigm 67

element analysis is used to produce values for the internal state of the system which

are consistent with external boundary conditions applied at some instant in time.

In a system such as water flowing in and out of a harbour, the flow is spatially

and temporally continuous. To perform a finite element analysis of this system the

harbour is broken down into a number of regions or elements. Figure 2.10 shows

such a system divided up into triangular elements. A local function is chosen for

each element and approximates the behaviour within the element. This function

is expressed in terms of the unknown values at the nodes of the element, and must

satisfy continuity with neighbouring elements and possibly continuity of its derivative

with the derivatives of neighbouring elements.

Once a local function has been chosen, the internal and external boundary conditions
(figure 2.10) are applied, leading to a set of equations in terms of nodal unknowns

to be solved. This set of equations is usually expressed in matrix form and solved by

standard matrix manipulation methods. Effectively, the finite element method tries

to find a set of values for the nodal unknowns in the system, which are consistent

with the local behaviour of the system and the external boundary conditions applied.
As with the other techniques described, one of the advantages is that the numeric

solutions found can be viewed graphically as in figure 2.10 c) to give an overall

picture of the state of the system under given conditions.

2.7.4 Particle models

Particle models are similar to other cellular models except that the particles have

continuously variable positions and velocities, instead of operating with a fixed spa-

tial grid as in cellular automata and finite difference models.

Particle systems have been used to model fire, smoke, clouds, and more

recently, the spray and foam of ocean waves. Particle systems are col-
lections of large numbers of individual particles, each having its own be-

haviour. Particles are created, age, and die off. During their life they

have 'certain behaviours that can alter the particle's own state, which

consists of color, opacity, location and velocity (Reynolds, 1987, p. 26).

68 2. The complexity of natural systems

A cellular model of flocks and herds of animals which falls into this broad cate-

gory is described by Reynolds (1987). The model assumes that a flock is simply

the result of the interactions between individual birds and is capable of producing

convincing flocking behaviour when the individual agents or bolds are merely left to

their own devices. This kind of model is a good example of one which might have

applications in the composition of interesting musical macrostructures, even though

it is not directly applicable to the generation of the microstructures, i. e. the sounds

themselves.

Flocks and related synchronised group behaviours such as schools of fish

or herds of land animals are both beautiful to watch and intriguing to con-
template. A flock exhibits many contrasts. It is made up of discrete birds

yet overall motion seems fluid; it is simple in concept yet is so visually

complex, it seems randomly arrayed and yet is magnificently synchronised
(Reynolds, 1987, p. 25).

2.8 Other universal phenomena occurring in dynamical

systems

2.8.1 Self organised criticality

Another theory which has a direct bearing on the behaviour of complex dynami-

cal systems is that of self-organised criticality (Bak and Kan, 1991). This theory

proposes that certain classes of dynamical systems evolve, by a process of self-

organisation, to a critical state balanced on the edge of order and chaos. In this

state, even small disturbances can cause catastrophic changes in the system's state.
The most commonly quoted example of such a system is a pile of sand. If new sand

grains are allowed to trickle onto the top of the pile at a steady rate, some grains lead

to relatively minor avalanches whilst others cause much larger avalanches. Another

example of a critically balanced dynamical system can be found in the geological

faults which cause earthquakes.

The theory of self-organised criticality states that such systems are continually poised

on the brink of catastrophic events and that there is a close relationship between the

magnitude of such events and their frequency of occurrence, regardless of the specific

2.8 Other universal phenomena occurring in dynamical systems 69

system being observed. Whenever such a catastrophic event occurs, the system slips
just far enough to regain its stability, in which state it is once again poised on

the brink of catastrophe. The precise relationship is governed by a power law, i. e.

the-frequency of occurrence of an event of a chosen magnitude is proportional to

1/(magnitude + c)". If we viewed a seismological graph charting the activity of a

fault, the largest avalanches would occur much less frequently than smaller ones.

The shape of the graph produced by this kind of behaviour is said to be an example

of 1/f noise or flicker noise (Bak and Kan, 1991).

Wishart (1990) has proposed that catastrophe theory, which relates to self-organised

criticality, may have applications in the synthesis of certain sound morphologies.

If ... we take sound-objects whose intrinsic morphology is very complex

or unstable, how can we relate to these? Are they merely formless or

random? I would propose that there are a number of archetypes which

allow us to classify these complex sounds perceptually, such as Turbu-

lence, Wave-break, ..., Creak/Crack, Unstable/Settling, Shatter, Explo-

sion, Bubble.

... I would suggest that it may even be possible to extend this kind of anal-

ysis to phenomena where many individual sound sources are amassed,

for example the Alarum (when a colony of animals or birds is disturbed

the resulting mass of individual sounds has a very characteristic mor-

phology), or Streaming effects (certain changes occurring in continuous

streams of sounds may perhaps be related to models developed in catas-

trophe theory). (Wishart, 1990, p. 60)

The theory of self-organised criticality would seem, therefore, to have a great deal of

relevance to the synthesis of such sound morphologies. Interestingly, Bak and Kan

(1991) propose that the life-like behaviour of a system when poised at the edge of

order and chaos is fundamentally different to truly chaotic behaviour and they refer

to this kind of behaviour as being weakly chaotic.

70

2.8.2 Coupled oscillators

2. The complexity of natural systems

The physicist Christiaan Huygens discovered that when two pendulum-driven clocks

are placed side by side on a common surface, they synchronise and keep perfect time

relative to each other. This is due to the phenomenon of coupled oscillators (Strogatz

and Stewart, 1993): Even though the physical vibrations transmitted from one clock

to the other, and vice versa, are minute, they still lead to the two clocks mutually

influencing each other.

Another manifestation of this phenomenon can be found in the gaits of different

animals. The different, synchronised patterns of legs movements observed in horses,

elephants, giraffes, gazelles etc. are not unique to those species but represent stan-
dard modes of synchronised oscillation which may occur in any system consisting

of four oscillators coupled together. This phenomenon emphasises the point that

many subtle inner rhythms may occur in a dynamical system which is a cohesive

whole, whereas such rhythms will not be observed in a system consisting of sepa-

rate, independent components. It is therefore probable that it has some relevance
in explaining the behaviour of polyphonic musical instruments such as stringed in-

struments and the piano, where many vibrating elements are coupled together via

other parts of the instrument.

2.9 Current musical applications of cellular models

Cellular models and dynamical systems have attracted some interest from the com-

puter music community and listed below are some examples from the literature

of how such techniques have been applied to various aspects of the music making

process.

Beyls (1989) explores the use of cellular automata in the compositional process

citing his interest as a composer in models of evolution and growth rather than

in theories of structural design. Following on from this work Beyls discusses an

approach to composition based on virtual `actors' interacting in a two dimensional

space according to social rules. The rules determine how the actors move and the

attributes of each actor can be mapped to musical parameters (Beyls, 1990; Beyls,

1992)

2.10 Summary 71

di Scipio (1991) explores the use of simple one parameter maps to control sound

synthesis. The equation x�+1 =f (x�) is an example of a one parameter map,

where the function is iterated by feeding its output back into its input repeatedly.

Webb (1993) explores the use of a one dimensional cellular automaton as a self-

modifying waveform table. The table is filled initially with samples representing

a starting waveform. The samples are read out cyclically to produce a continuous

waveform and at each cycle the values of the cells are updated according to simple

rules, leading to a waveform which transforms over time. Some form of simple

gestural control is provided in the form of a computer mouse, the buttons being

used to inject random sample values into certain cells to perturb the waveform.
Spatial movement of the mouse is also used, to control the frequency and amplitude

of the output, leading to a rudimentary musical instrument.

Miranda (1993) discusses the application of cellular automata to pitch based compo-

sition and hints at the possibilities inherent in fluid dynamic models with particular

reference to the fact that fluid movement may contain vortices. Vortices are cyclic

flows usually accelerating or decelerating at a fairly constant rate and produce a con-

stantly evolving source of cyclic material, which Miranda cites as being of musical

interest.

Hunt, Kirk and Orton (1991) describes the musical possibilities of the Cellular Au-

tomata Workstation, developed at the University of York, concentrating mainly on

mapping cell values onto pitch sets and changing the mapping in real time as a

means of interactive control over the musical output. The update rule used while

the cellular automaton is evolving remains fixed.

2.10 Summary

This chapter has introduced a number of contemporary scientific ideas and theories

which relate to the behaviour of naturally occurring complex dynamical systems.
The discussion has covered chaos theory and the interesting behaviour which occurs

when a system operates poised `at the edge of chaos'. It has also covered emergent
behaviour, the ability of complex dynamical systems to exhibit self-organisation,

and a number of other ideas such as self-organised criticality and the phenomenon

of coupled oscillators. What this chapter has attempted to convey to the reader is

72 2. The complexity of natural systems

that Nature exhibits its own subtle `rhythms' which are governed by the principles

described, as well as others which may not have been identified yet, and that complex

dynamical systems provide a means for these 'rhythms' to be expressed in fascinating

ways.

A recurring theme throughout this chapter has been the special regime of behaviour

which leads to vibrant or life-like behaviour. This regime is referred to in many

different ways: as a regime which produces information of maximum effective com-

plexity and depth; as a regime of self-organised criticality, as a regime of weakly

chaotic behaviour; and as the regime in which Class IV cellular automata operate.

The comment was made that many of the ideas addressed by the theories described

in this chapter have a direct relationship to Gibson's observations on the nature of

the physical world, which he proposed as being fundamental to the act of perception.

Cellular models exhibit many of the appealing characteristics of natural complex

dynamical systems, even though they are stylised models, and as such provide a

unique opportunity to explore the generation of naturalistic or organic patterns and

forms. The fact that mimesis is cited as being an important aspect of electroacoustic

music suggests that the temporally evolving structures produced by cellular models,

with their complexity, coherence and organic qualities may possess very real musical

qualities.

Chapter 3

A survey of synthesis techniques

This chapter conducts a survey of the most frequently used traditional synthesis

techniques. No attempt is made to make subjective judgements about which syn-

thesis techniques produce the `best' sounds since such a comparison depends on so

many factors including the level of skill displayed by the individual user. It is possi-

ble, however, to point out practical advantages and disadvantages of each technique

which are independent of the particular user. Before proceeding to specific synthesis

techniques it is as well to say a little about the building blocks which are common

to most of them. This is also necessary in order to understand some of the figures

presented in this chapter. The most common means for synthesising sounds before

the arrival of powerful digital computers was via voltage controlled synthesisers.

These synthesisers provide a number of electronic modules such as oscillators, filters

and amplifiers, whose characteristics may be controlled via external control voltages.

Early synthesisers of this type such as the EMS VCS3 provide a patch bay, enabling

the output of any module to be patched into the input of any other. The provision

of a modular approach to synthesis allows for the development of many different

synthesis strategies.

In the 1960's the first computer music program, `MUSIC 3', was created by Max

Mathews (Dodge and Jerse, 1985). This program and a series of successors including

Csound, which is described below, provide a kind of digital equivalent to the voltage

controlled synthesiser. The analogue oscillators, filters and mixers etc. are replaced
by algorithmic modules with numerical inputs and outputs which are still capable of

73

74 3. A survey of synthesis techniques

being arbitrarily configured. A language is provided for describing new instruments

and a separate score language enables input data to be fed into the appropriate

inputs of an instrument causing it to play notes at the correct times.

3.1 The Csound computer music program

One of the most recent examples of a computer music program, and one that is still

widely in use is Csound (Vercoe, 1992) which is a general purpose language for audio

processing and computer music. What follows is a brief description of the program

together with some simple examples.

3.1.1 Unit generators

The algorithmic modules which simulate oscillators and filters etc. have come to

be known as unit generators. Each unit generator is a single signal generating or

processing algorithm and several unit generators may be combined into signal flow

networks or instruments, to perform particular tasks. Since many such algorithms

need a constant flow of input data to control their behaviour, input signals are often

computed prior to performance and stored in tables. A table reader is another

example of a unit generator, its input is an index into the table and its output is the

signal stored in the table. This signal might be used to control the frequency of an

oscillator or the cut off point of a low pass filter etc.

3.1.2 The orchestra

A Csound program is split into two main parts, the orchestra file and score file. The

orchestra file contains descriptions of the instruments in terms of networks of unit

generators. Each instrument has a discrete number of input parameters which can

affect the pitch, amplitude and timbre of the sound produced when the instrument

is requested to play.

Csound provides three different types of variable, audio rate (a-rate), control rate (k-

rate) and initialisation rate (i-rate). A-rate variables are used to represent audible

signals which must be updated at full audio rate (e. g. 44.1KHz). K-rate variables are

used for signals which can be updated less frequently without introducing distortion

into a sound e. g. the modulation signal used to create a vibrato effect. I-rate

3.1 The Csound computer music program 75

variables are only updated once at the beginning of a new note.

The following example of a Csound orchestra describes an instrument consisting of

two oscillators with their outputs summed and sent to a mono output.

instr

al oscil
a2 oscil
aout =

out
endin

1
10000,440,1
10000,880,1
al+a2
aout

The variables in the left hand column al, a2 and aout represent audio signals. al

and a2 represent the outputs of the two oscillators and aout is simply the result of

evaluating the expression al+a2 at audio rate. The two oscil's and the single out

represent unit generators, and the values situated to the right of these keywords are

interpreted as parameters. For example each oscil has an amplitude input (10000),

a pitch input (440,880), and a table number (1), where the particular waveform

which the oscillator will produce is stored. The out unit generator simply sends

its signal to the default output (audio or file output). The line containing instr

1 labels this as instrument 1. This number is used in a Csound score to specify

which instrument some performance data should be sent to. Note that it is the

user's responsibility to ensure that amplitudes do not go out of range, i. e. <-32767

or >32767.

3.1.3 The score

The score file contains performance data for the instruments, instructing them when

to start and stop playing and specifying the parameter settings to use. In Csound, the

score file consists of numeric data specifying these parameters for each instrument.

The data is specified in columns called p -fields. The first three p-fields p1, p2 and p3

are `hard-wired' to represent the instrument number, the start time and the duration

of each note. For example the following score plays two notes, each 5 seconds long,

using the instrument defined above. The first starts at time 0 and the second starts

at time 1. Time is measured in beats, the default tempo being 60 beats per minute,

although other score statements allow time to be dynamically `warped' throughout

a performance. Note that when two or more notes are to be played using the same
instrument in a score, a new instance of the instrument is created for each note.

76 3. A survey of synthesis techniques

PI p2 p3
instr start durat
11 05
ii 15

The score may contain other user defined p-fields to control specific sonic parameters
in an instrument. For example, supposing, in the orchestra given above, that the

oscil lines were changed to read as follows:

al oscil 10000, p4,1
a2 oscil 10000, p5,1

Rather than having constant pitches, the oscillators now take their pitches from

fields p4 and p5 of the score. The following simple score illustrates how to play

notes on this instrument, and causes six notes to be played with frequencies 100 Hz,

200 Hz ... etc. for the first oscillator and 200 Hz, 300 Hz ... etc. for the second.

p1 p2 p3 p4 p5
instr start durat oscill oscil2

pitch pitch

ii 0 5 100 200 ; measured in Hertz.
ii 1 5 200 300
ii 2 5 300 400
ii 3 5 400 500
ii 4 5 500 600
ii 5 5 600 700

Further score commands allow tables of performance data to be created prior to

commencement of the performance, and it is also possible to split the score into

sections in order to create larger scale musical structures. Another feature is the

ability to automatically interpolate or repeat p-field values with the use of the > and

. characters. The example given above could be rewritten as:

PI p2 p3 p4 p5
instr start durat oscill oscil2

pitch pitch

ii 0 5 100 200 ; measured in Hertz.
ii 1 > >
ii 2 > >
ii 3 > >
ii 4 > >
ii 5 600 700

3.2 Additive synthesis 77

The duration p-field has the same value repeated for each note and the pitches or

rather frequencies of the two oscillators are interpolated linearly between the initial

value and the final value. Further examples of orchestras and scores are given in

(Vercoe, 1992).

Having introduced the notion of unit generators and the modular approach to instru-

ment design, and having described Csound, we now move on to a survey of specific

sound synthesis techniques.

3.2 Additive synthesis

Additive synthesis is based on the premise that any periodic waveform can be rep-

resented as a sum of sinusoidal components. In practice natural sounds continually

evolve and in order to create an evolving frequency domain representation of a sound

both frequency and time have to divided up into discrete intervals. The audible fre-

quency range is divided up into finite width frequency bands or channels and time is

divided up into finite length intervals or windows. Once a sound has been analysed

via a fourier transform, a set of data is produced for each window representing the

frequency and amplitude of each channel at each instant in time.

This data is then available for resynthesis by using it to control the frequencies and

amplitudes of a set of sinusoidal oscillators. The sound may also be transposed or

time stretched before resynthesis. The results of this resynthesis can be indistin-

guishable from the original sound, even to the ears of a trained musician (Dodge

and Jerse, 1985). But of course straight resynthesis does not tap into the potential

of this technique. Another possibility is for hybrid sounds to be synthesised, and

one approach is to analyse two different natural sounds, and interpolate between the

frequency and amplitude envelopes of each sound. In this way, sounds which have

some of the characteristics of both the original sounds can be synthesised. There

are, however, some important factors to take into account when performing this

interpolation.

If sound A has a very short attack and sound B builds up much more slowly, then the

partials for each sound will reach peaks at different points in time. For this reason,
interpolation between the amplitude values of corresponding partials in each sound

is not sufficient. The time axis values have to be interpolated also. The resulting

78 3. A survey of synthesis techniques

sound will not only possess spectral characteristics somewhere between those of A

and B, but also has temporal qualities somewhere between the two. One problem

associated with additive models of musical instruments is that the envelopes for

each partial in a real instrument vary as we move up and down the instrument's

pitch range. For example, analysing a middle `C' note played on a piano produces a

set of partial envelopes which will only be suitable for resynthesising pitches within
few semitones either side of middle `C'. To convincingly build an additive model of

a whole instrument requires envelopes for each partial and register, an enormous

amount of information to cope with.

Once constructed, an additive model can be very rigid in its behaviour, since chang-
ing the characteristics of a sound requires that all of the envelopes be changed in

a coherent manner to produce the desired result. This reductionistic view of an
instrument makes additive synthesis quite cumbersome unless special tools for anal-

ysis and resynthesis are provided. Fortunately, some tools are provided, and the

composer Trevor Wishart has contributed a great deal in terms of both software and

expertise to this area. In particular, he has developed a suite of programs which are

capable of manipulating spectral data produced by the `Phase Vocoder' frequency

analysis program (Composer's Desktop Project manual, 1994) ready for resynthesis
(Wishart, 1994).

3.3 Subtractive synthesis

Fixed periodic waveforms such as the sawtooth, square, and triangle waves have

harmonic spectra with many partials and are very simple to generate electronically.
As they stand, they are not very useful from a musical point of view, since they

sound harsh and too bright and lack any sense of movement or evolution due to
their purely periodic nature. However, with the use of low, high, and bandpass

filters, parts of the spectrum can be filtered out allowing them to be sculpted into a
slightly more musically useful form. A common technique employed in subtractive

synthesis which adds some movement to the sounds, is to mix the output from several

slightly detuned oscillators together, and use the result as the source for filtering. A

sound may theoretically be built up from an unlimited number of mixed and filtered

waveforms, but once again this requires an increasingly large amount of control data.

3.4 Frequency modulation 79

Subtractive synthesis, unlike additive synthesis, allows sweeping changes to be made

to the spectrum of a sound simply by changing one or two parameters. This makes it

more manageable to control, but the sounds produced tend to be more synthetic than

those of additive synthesis, and fine control over individual partials is not catered
for.

3.4 Frequency modulation

d
fw

MODULATING
OSCILLATOR

f,.

+
AMP

CARRIER
v OSCILLATOR

Figure 3.1: A simple FM instrument

A simple frequency modulation (FM) instrument is shown in figure 3.1. If the output

from one oscillator (the modulator) is used to modulate the frequency of a second

oscillator (the carrier), a complex spectrum arises. The simplest form of FM occurs

when both carrier and modulator are sinusoidal. If f, is the carrier frequency and
fm is the modulator frequency then the spectrum of the resulting sound is centred

at f, and contains regularly spaced sidebands at fc±k f,,, where k is an integer. The

distribution of power amongst these sidebands is proportional to the amount of mod-

ulation. The higher the amount of modulation, the more the power is spread over

the sidebands. Even in this simplest case the resulting sounds have quite complex

spectra and since the frequency of the modulator and the amount of modulation can

80 3. A survey of synthesis techniques

be varied dynamically, it is a simple matter to produce rich, dynamically varying

spectra. In practice FM is particularly good at generating metallic, bell like sounds,

especially when the ratio between f, and f�t is non-integer. The most appealing

points about FM are that it is simple to implement, and computationally inexpen-

sive, and it generates complex time varying spectra. One of its shortcomings is that

it is very difficult to correlate and predict the effect that a change in the frequency or

amplitude of the modulator will have on the overall timbre of the sounds produced.
A very slight change in fm can drastically alter the overall sound.

FM was incorporated into Yamaha's DX range of musical keyboards in the 1980's

and although reputedly the most popular electronic keyboards ever sold, one criti-

cism frequently heard at the time was that although good at producing inharmonic,

metallic sounds such as bells and chimes, FM seemed to lack a certain warmth

which was present in the earlier generations of analogue voltage controlled synthe-

sisers based on subtractive synthesis. This was attributed to the `organic' nature of

voltage controlled components. Magazine reviews of commercial synthesisers of the

time often talk about the quality of the filters and oscillators in the same way that a
luthier might talk of the quality of a particular piece of seasoned wood for a guitar.
Another criticism which could be made of the bell and gong-like sounds produced
by FM is that whilst they produce appropriate time-varying spectra, the resulting
information generated lacks many other dimensions of coherence which are partly

responsible for the expressive character of real bell and gong sounds.

3.5 Amplitude modulation

Amplitude modulation is similar in concept to FM in that a carrier and modulating

oscillator are needed. There are two main kinds of amplitude modulation: classical

modulation; and ring modulation.

3.5.1 Classical amplitude modulation

Figure 3.2 gives a flow chart for classic AM. The value AAIPgives a default amplitude
for the carrier when there is no modulation. The modulation index m can take a

value between 0 and 1. When it is equal to 1, the amplitude of the carrier fluctuates

between AMP and zero giving total modulation. Classical amplitude modulation

3.5 Amplitude modulation

Figure 3.2: Classical amplitude modulation.

81

simply produces two new sidebands in the output spectrum, with frequencies fc± f�,.

3.5.2 Ring modulation

Figure 3.3 gives a flow chart for ring modulation. The modulating oscillator is

allowed to modulate the amplitude of the carrier directly. With no modulation

there is no output but as the modulation increases, two sidebands at fcf f,,, begin to

appear. The difference between ring modulation and classical AM is that the carrier

frequency fr does not appear in the spectrum of the modulated sound. The carrier

and modulator signals do not have to be sinusoidal and, in general, multiplying two

signals together gives rise to ring modulation. If two sounds A and B are multiplied in

this way, the resulting spectrum contains frequencies that are the sum and difference

between the frequencies of each partial in sound A and those of each partial in sound

B. This provides a fairly simple way to produce complex, inharmonic spectra, but

once again as with FM, exercising fine control over the resulting spectra for musical

purposes is not a trivial task.

m *AMP
,

AMP

82 3. A survey of synthesis techniques

A

fm

fc

Figure 3.3: Ring modulation.

3.6 Granular synthesis

Granular synthesis (Roads, 1987; Truax, 1986; Truax, 1987; Truax, 1990b) provides

a means for combining the frequency and time domain views of sound. A grain

of sound is a pure tone of fixed frequency which is modulated by a finite (very

short) envelope, and represents a kind of acoustic quanta. Sounds are synthesised

by combining many thousands of such grains. The frequencies, amplitudes and

patterns of temporal spacing between grains all contribute to the overall quality of

the textures produced. The composer lannis Xenakis was one of the first to explore

the compositional possibilities of granular synthesis, and chose a fixed duration of

40ms for the grains (Roads, 1987), concentrating instead on their frequencies and

amplitudes.

Granular synthesis presents a similar problem to that of additive synthesis in that a
large amount of control data is needed in order to realise musical macrostructures.

Xenakis proposed a system of screens and books of screens as a means of controlling

the evolution of the granular texture. Each screen is a two dimensional plane, repre-

senting frequency versus amplitude. Grains of sound are scattered across this plane

and several such `screens' can be combined into a book representing the temporal

evolution of the sound. The screens are separated by At, where lms< At <10ms.

3.7 Digital waveshaping 83

This technique, whilst going some way to providing a higher level control strategy,

still does explicitly deal with the question of how to create books and screens which
lead to perceptually and musically effective sounds and exhibit coherence.

The strengths of granular synthesis lie in its ability to synthesise aperiodic noise

sounds which have traditionally been beyond other frequency domain techniques,

such as splashing, crunching, and shattering sounds etc. It is also effective for the

synthesis of sounds such as those produced by waves crashing. One of the ongoing

concerns of granular synthesis is in developing control strategies capable of mapping

a small number of input parameters to a larger number of output parameters which

actually control the individual grains. Truax (1990a) proposes non-linear chaotic

systems as a potential control source and the cellular models introduced in the

previous chapter seem ideally suited to this task with the advantage of being more

flexible in their patterned behaviour.

3.7 Digital wavesliaping

The principle behind waveshaping synthesis is to pass a waveform through a module

which alters its shape in some way and hence its spectral content. The conventional

way to achieve this is by means of a transfer function, a function which relates the

amplitude of the output signal to that of the input signal.

Figure 3.4 shows the way in which a transfer function is used to alter the wave's

shape. In this example the amount of distortion introduced by the waveshaping

process is linked to the overall amplitude of the input waveform, since the transfer

function only deviates from a straight line near its ends. This means in practice that

with a sinusoidal input waveform, the number of partials introduced into the output

waveform and hence the brightness, increases with amplitude. This corresponds to

what we intuitively expect to happen in an acoustic instrument (e. g. blowing harder,

plucking harder), although, the partials are not necessarily introduced in a smooth
fashion as amplitude increases. Depending on the transfer function they may come

and go as distortion increases. Dynamically varying the amplitude, or distortion

index, produces a dynamically varying spectra. It is desirable to obtain this without

significantly altering the amplitude of the output waveform. For this reason the

output is often multiplied by a scaling factor which restores the amplitude to a

84 3. A survey of synthesis techniques

ro

transfer
functio.

input

input waveform

Figure 3.4: Waveshaping using a transfer function.

time

constant level regardless of the modulation index. The choice of transfer function

has a large effect on the timbre of the output waveform and there are techniques

which allow it to be chosen according to some desired spectral characteristics. These

techniques are described in Dodge and Jerse (1985).

An important point to note is that with a sinusoidal input, the output waveform

only contains harmonically related partials. A standard technique for producing

inharmonic sounds involves amplitude modulating the output with another sinusoid,

to give sidebands which are not necessarily harmonically related (as described in

section 3.5). As with FM and AM, waveshaping synthesis is computationally very

inexpensive to implement since all that is required is one oscillator and a look-up

table containing the transfer function. The most difficult aspect is in calculating an

appropriate transfer function to provide musical control over the partials at different

amplitudes. This technique formed the basis for Casio's CZ range of commercial

synthesisers which appeared in the 1980's as an answer to Yamaha's DX synthesisers.

The sounds produced by digital waveshaping (or phase distortion as it was referred

to by Casio) were often likened to those produced by FM, although they seem not

to be quite as ̀ fluid' in nature.

output

3.8 Vocal synthesis

3.8 Vocal synthesis

85

The human voice uses a form of subtractive synthesis in order make vocal sounds.

Vibrations of the vocal folds produce a pulse-like waveform with a rich harmonic

spectrum. This sound, along with noise generated when air is forced past constric-

tions in the vocal tract is filtered by the shape of the vocal tract, which runs from

the glottis to the lips, and the nasal tract if it is coupled in. The vocal tract exhibits

natural resonant peaks in its frequency response. These resonant peaks, or formants,

may be moved up or down the spectrum by changing the shape of the vocal tract

and mouth, and by moving the tongue. The combined frequency response of the

different parts of the vocal tract (and nasal tract) provides us with the mechanism

used to produce vowel sounds. Using a pulse wave and noise source, sounds with a

vocal quality may be synthesised by constructing filters which mimic the formants

of the human voice. A clear account of the established methods for achieving this

is given in Dodge and Jerse (1985) and will not be repeated here, but in the next

section one of the most recent systems for vocal synthesis, SPASM, is described.

This system is based around a physical model of the vocal tract.

3.9 Synthesis by physical models

The synthesis techniques described so far have all concentrated on the spectral char-

acteristics of sound, treating synthesis as an abstract, frequency domain process, and

ignoring the physical origin of naturally produced sounds. An alternative approach

is to model the behaviour of musical instruments and then generate sound via these

physical models. There are a number of general strategies for achieving this which

are discussed in Borin, De Poli and Sarti (1992). The principle methods for sound

synthesis by physical modelling are described below.

3.9.1 Modal analysis and synthesis and MOSAIC

Physical objects such as a strings, bars, plates, bells etc. exhibit natural modes of

vibration when allowed to vibrate freely. Each mode represents a single standing

wave of fixed frequency. One way of simulating the vibrations of such an object

is to determine, either by experimental or finite element analysis, precisely what

the modes are. Once the modes have been determined, each can be modelled as a

86 3. A survey of synthesis techniques

mass-spring-friction combination, a modal oscillator. The whole vibrating structure

can be represented as a set of modal oscillators coupled together. This is the basic

premise of modal synthesis (Adrien, 1991; Djoharian, 1993).

Once an object has been represented in this way, all interaction with the object
is translated into calculations involving the modal oscillators for the purpose of

synthesis. For example if an external force is applied at a given point, this single
force and coordinate must be translated into a set of modal forces which are applied

to the various modal masses within the model. Similarly the amplitude of a given

point on the surface of the object is determined by looking at the amplitudes of each

modal oscillator and then combining them in the correct proportions, determined

by the geometrical coordinate of the point chosen. To effect this translation from

single geometrical coordinates to sets of modal coordinates a prismatic window is

used. This window mediates between the outside world and the internal structure

of the modal model.

In practice, acoustic instruments consist of many vibrating structures coupled to-

gether, each with their own modes of vibration. Modal synthesis supports the cou-

pling together of separate modal objects to form more complex vibrating structures.
Once again a connection between two points on different vibrating structures must
be translated into a set of connections between the individual modal masses of the

two structures. This process can be quite complicated and is described in detail in

Djoharian (1993).

Figure 3.5 gives an example the modal decomposition of a surface, in this case

a conical surface. This surface is represented as a set of circular sections joined

together (b), where each section is basically a closed line. The overall vibrational

modes of this structure are a combination of the circular section modes and radial

modes. The vibration at a point on the surface can be modelled using the assembly

shown in (c). The smaller masses linked to ground by very stiff springs represent the

higher sections of (b) and the larger masses with less stiff springs represent the lower

sections. MOSAIC 1 (Morrison and Adrien, 1993) is a language for creating and

playing modal synthesis instruments. Standard modal models such as strings, rods,

acoustic tubes (with one or both ends open), rectangular and circular membranes,

'Recently renamed MODALYS although at the time of writing no references could be found.

3.9 Synthesis by physical models

a)

C)

b)

_t-rz Z
7 `T

T
TT T

Figure 3.5: Modal decomposition of a conical vibrating structure.

87

rectangular and circular plates, and violin or cello bridges are available within the

system. Other models can be created by experimental or finite element analysis,

and once the modal data has been stored in standard file format, the new models

can be integrated seemlessly into the system.

MOSAIC provides an interface based on the computer language `Scheme' (Abelson,

Sussman and Sussman, 1985) which is a pure dialect of the functional language

`Lisp'. The language allows instruments to be constructed by combining the modal

models available into more complex structures. The following piece of code gives an

example of how a modal object is created:

(define my-string
(make-object `bi-string

(modes 40)
(length 0.5)
(tension 150)
(density 1000)
(radius 0.001)))

This takes a template for a modal object called bi-string and creates an instance of

it called my-string. The length, tension, density and radius are measured in stan-
dard physical units of measurement, meters, newtons, kilograms, etc. Connections

between resonant structures are made by creating `access points' on the structures

and connecting these access points together. Standard types of connection exist such

88

as: -

Adhere. Glues two access points together.

3. A survey of synthesis techniques

Bow. Simulates alternate frictional sticking and sliding associated with bow/string

mechanism.

Pluck. The plucked point is dragged until some tensional limit is reached, at which

point it is released.

The following example creates access points on two strings, at positions 60% along

the length of the first, and 40% along the length of the second, and glues them

together: -

(define access-points
(make-access strings (coast . 6) 'transO))

(define access-point2
(make-access string2 (coast . 4) 'transO))

(make-connection 'adhere acct acct)

3.9.2 Digital waveguides

A waveguide is any medium in which wave motion can be characterised by the

one dimensional wave equation (Smith, 1987). Examples of naturally occurring

waveguides include the bore of a clarinet, and the vocal tract (see below). One

approach to modelling such a medium is to sample its behaviour both spatially

and temporally, giving a set of waveguide sections. Each waveguide section has

an impedance which can vary with time, but is constant across the section, and

propagates two waves one leftgoing and one rightgoing. The sections may have

different impedances and as a wave propagates across the junction between two

sections this change in impedance causes some of the energy to be transmitted

forward and some to be reflected back. The amount of reflection and transmission

is determined by a coefficient of reflection.

Figure 3.6 shows a digital waveguide (Smith, 1992). The model is divided into

sections and each section consists of a scattering junction with reflection coefficient

k�(t) and two delay lines with delays of T seconds, which represent the section

3.9 Synthesis by physical models

P�i

Pi(t)

Pp(t)

--- T
kp(t)

--- T
PP(t)

Scattering junction Section traversal delay

Figure 3.6: A waveguide filter network.

89

traversal delays for left and right going waves. By calculating the impedances of

various parts of such real waveguides, networks of digital waveguides, such as the

one shown, can be constructed which model the behaviour of the real systems.

Impulse-like excitations are modelled by filling the appropriate delay lines up with
initial values. Once left to its own devices, waves will bounce back and forth in

the model, constantly being modified by the effect of the scattering junctions. Non-

linear excitations such as bowing are modelled with the use of special junctions which

allow energy to be introduced into the model and also allow the waves to be `read'

at the same point. These junctions contain appropriate mathematical models which

simulate the particular excitation mechanism. The Yamaha Corporation bought the

commercial rights for this synthesis technique from Stanford University in America,

labelling it `Virtual Acoustics'. Their first commercial product to use the technique

was a keyboard based synthesiser, the VL-1.

The SPASM2 vocal synthesis system (Cook, 1993), mentioned in the previous sec-

tion, makes use of digital waveguides as illustrated by figure 3.7. The smoothly

changing cross-sectional area of the vocal tract as we travel from the glottis (at

the left of the figure) to the lips is sampled and modelled with a finite number of

acoustic tube sections, each with constant cross-sectional area. The diameters of

these sections may be altered in real time, thus altering the formants produced by

the model. The figure also shows the internal structure of the scattering junctions.

The nasal tract is modelled in a similar fashion and has to be coupled to the vocal

'Singing Physical Articulatory Synthesis Model

PI(t) PP(t)

90

HG(z)

3. A survey of synthesis techniques

J+t

tt
k"

I-t

HL(z)

radius,. radius,

radius, + radius

Figure 3.7: A waveguide filter model of the vocal tract (after Cook, 1993).

tract with the use of a multi-way scattering junction. The details of the model are

described in the above-mentioned reference.

The system also provides a high level script language called `Singer' which enables

the multitude of vocal parameters to be controlled, making it possible to synthesis

spoken or sung words, or any other vocal-like sounds. An example is given below of

a `Singer' script, taken from Cook (1993). This script synthesises the word `Shiela':

// This example sings the word "Shisla"
singer(int fd) {

initialise the singer model
init();
initialise setup for performance
setup("shh", "soft". 400.0,0.0,0.0,0.0);

3.9 Synthesis by physical models

time, shape, glot, freq, gAmp, nAmp, vibr, file

synthesise(0.3, "shh", "soft", 400.0, 0.0, 0.3, 0.00, fd);
synthesise(0.1, "eee", "soft", 430.0, 0.2, 0.3, 0.04, fd);
synthesize(0.7, .. sea", "soft", a4, 0.2, 0.0, 0.07, fd);
synthesise(0.2, "111", "Soft", 440.0, 0.4, 0.0, 0.04, fd);
synthesise(0.2, "ahh", "soft", 400.0, 0.3, 0.0, 0.00, fd);
synthesise(0.2, "ahh", "Soft", 400.0, 0.3, 0.0, 0.00, fd);
synthesise(I. S. "ahh", "soft", 400.0, 1.0, 0.0, 0.08, fd);
synthesise(0.1, "ahh", "soft", 400.0, 0.0, 0.0, 0.08, fd);
silence(0.6, fd); Wr ite some silence
return;

}

3.9.3 CORDIS-ANIMA

91

CORDIS-ANIMA (Florens, Razafindrakoto, Luciani and Cadoz, 1986; Cadoz, Lu-

ciani and Florens, 1993; Incerti and Cadoz, 1995) is a physical modelling system for

the synthesis of sounds and visual images. It has similarities to modal synthesis in

that it makes use of masses and links between them as the basic building blocks of

the system. CORDIS-ANIMA is a formal framework for creating and interacting

with digitally simulated, multi-sensory physical objects, rather than just a software

system or synthesis technique. One of the main aims of the project is to provide total

simulations of physical objects from the real world, including their gestural, tactile,

acoustic, and visual aspects. The project therefore also includes the development

of gestural transducers capable of providing a two-way physical dialogue with the

objects created, i. e. the user is able to `feel' the reactive force of an object via the

transducer, as well as applying external forces to it.

The CORDIS-ANIMA formalism provides two primitive building blocks, M (matter)

points and L (link) points. An M point is basically an algorithm which, given a force

returns a position, and an L point is an algorithm which, given a position returns a
force. M and L points are combined into atomic modules which serve as the basis

for constructing simulated objects. Figure 3.8 shows a single M point and L point in

(a) and (b). It then goes on to show how the schematic representation of a two way

connection between two points (c) is actually implemented by two separate channels

of communication, with each point's output being fed into the other's input (d). In

(e) and (f) we see the simplest atomic unit consisting of a single mass and a channel

of communication with the outside world and in (g) we begin to see how to build

vibrating structures such as a string.

In order to create objects for sound synthesis, more complex structures need to be

created. In practice, vibrating structures are constructed from M points connected

92 3. A survey of synthesis techniques

a)
force

b)
force

M point L point

position position

c) d) force

4C
DD

position
e)

force force
f)

4C
D:

11C

position position

g)

Figure 3.8: Atomic building blocks in the CORDIS-ANIMA system.

3.9 Synthesis by physical models

Figure 3.9: Representing a string in CORDIS-ANIMA.

93

Figure 3.10: Representing a rectangular membrane in CORDIS-ANIMA.

together by visco-elastic link elements, comprising two indivisible L points. Move-

ment can be in one, two or three dimensions although for sound synthesis it is usually
limited to one dimension. Two examples are given in figures 3.9 and 3.10. The link

elements are represented here by spring symbols and the ground symbol represents

a special kind of M point called a ground point. This is an M point which is fixed in

one position. Note that we are effectively looking at these vibrating structures along

the axis of vibration, i. e. in and out of the paper. They do not move left to right

or up and down. Apart from the two basic building blocks just described, two other

modules are provided in the formalism to allow for: (a) dynamic variation of the

structure of an object; and (b) dynamic control of other synthesis parameters such

as the mass of an M point or the stiffness of a link element. Both of these modules
take control data derived either externally from gestural transducers or internally

94 3. A survey of synthesis techniques

from some aspect of the state of an M or L point.

To sum up, the basic modules provided are listed below:

M point An algorithm which takes a force as input and returns a position.

L point An algorithm which takes a position as input and returns a force.

Dynamic structural variation module Basically an if-then module which makes

a link between an M and L point conditional. Used to simulate transitory.

connections in a combined excitor-resonator system such as when a string is

plucked. It takes its input either from an external source driven by the user's
interaction with a gestural transducer, or internally from an M or L point.
This could be used to make a link break when a force became too large etc.,

and allows the instrument to modify itself depending on its own behaviour.

Dynamic parameter variation module Allows arbitrary control over algorith-

mit parameters. Once again takes its input either from an external source, or
internally from an M or L point. Examples of algorithmic parameters are the

stiffness of a spring, the mass of an M point etc.

CORDIS-ANIMA does not provide a script language for describing either instru-

ments or performances in the manner of Csound, MOSAIC and SPASM. Instead,

emphasis seems to have been placed firmly on real time gestural performance with

the instruments, and although it is claimed in the literature that there is no need
for such a language since the building blocks provided constitute the elements of a
language in their own right, it is not always entirely clear from the published liter-

ature precisely how a user moves from the abstract formal framework to concrete,

practical examples. One answer to this criticism has been provided more recently in

the form of a graphical user interface called GENESIS (Cadoz, Florens and Luciani,

1995) which provides standard facilities such as cut, paste, group, ungroup, erase

etc. and a menu of objects including all the module types described above.

Moving away from technical details for a moment and considering strategies for in-

strument design in CORDIS-ANIMA, the main considerations are the topologies in

which the masses and visco-elastic links are arranged, and the ways in which param-

eters such as stiffness, viscosity, and mass are distributed across these topologies.

3.9 Synthesis by physical models 95

Cadoz et al. state that one of their research goals is in understanding the relation-

ship between topology and perceptual qualities, and gaining an understanding of

which attributes of a sound are due to the mode of excitation and which are due to

the topology and physical characteristics of the vibrating structure itself.

Figure 3.11: An example of a CORDIS-ANIMA topology -a spiral.

Figure 3.11 shows a complex topology, once again viewed along the axis of vibration.

By choosing different values for the masses, and the viscosities and stiffness of each

link a variety of sounds ranging from bells to gongs and cymbals can be produced.

Since there are potentially a large number of parameters in such an instrument,

Incerti and Cadoz (1995) discuss specific strategies for simplifying matters, such as

giving all radial links a common stiffness whilst all spiral links are given a different

common stiffness. This leads to certain modes of vibration being preferred over

others and is an effective way of fine tuning the timbre of an instrument without

having to control every individual link separately. Work is also under way to develop

a graphical interface for capturing, manipulating and re-using gestural signals (Cadoz

96 3. A survey of synthesis techniques

et al., 1995). The ideas behind this work are described elsewhere in the literature

(Cadoz, 1988; Cadoz and Ramstein, 1990).

3.9.4 Other physical models

Examples of other physical models of acoustic instruments can be found in the

literature including bowed strings (Woodhouse, 1992), wind instruments (Keefe,

1992), bar percussion instruments (Serra, 1986), strings (Adrien, Causse and Rodet,

1987), and piano sounds (Garnett, 1987).

It is interesting to note that several recent articles begin to acknowledge the relevance

of chaotic behaviour and dynamical systems to the behaviour of natural sounds. Ex-

amples include the use of pitch synchronised noise, generated by a chaotic oscillator,

to simulate the noise produced by vortex shedding when a flute is played (Chafe,

1995). The technique described leads to a simulated instrument which behaves more

naturally in that the periodic and chaotic regions of behaviour in the sound are not

separate components which are superimposed, but form an integrated whole in which

the output waveform has many intricacies.

Another example is in the use of nonlinear dynamics in the analysis and resynthesis

of sounds (Mackenzie, 1995). The phase space portrait of a sound is analysed, and

a simpler nonlinear equation is found, by an automated process, which reproduces a

phase space portrait capturing most of the character of the original. The system has

been tested with sounds as diverse as the rumble of a ventilation fan; a tuba tone;

the sound of the wind; and a gong sound, and produces phase space portraits which

convincingly capture the essence of the originals. It is obviously important to test

the results aurally, but nevertheless the four sounds chosen are radically different in

structure and yet the use of non-linear equations allows the technique to exhibit a
degree of universality.

3.10 Criteria for comparing sound synthesis techniques

With so many sound synthesis techniques it is important to have some general

criteria by which they can be compared. Jaffe (1995) has compiled such a list of

criteria which are summarised here, since they may provide a useful focal point

for all the ideas presented in this thesis and also allow the TAO computer music

3.10 Criteria for comparing sounds synthesis techniques 97

program described in chapters 4,5 and 6 to be compared and contrasted with the

other synthesis techniques described in this chapter.

How intuitive are the parameters? Do they map intuitively to musical param-

eters such as dynamics and articulation or are they abstract mathematical

variables with little correlation to real-world perceptual or musical experience.

How perceptible are parameter changes? When a parameter is changed, how

perceptible is the change in timbre?

How physical are the parameters?

How well behaved are the parameters? A change in a parameter's value should

produce a comparable change in timbre. If a small change produces a large

unpredictable change in timbre then the parameter is not very well behaved.

How robust is the sound's identity? Does it maintain a coherent character re-

gardless of the parameter settings, or does a parameter change lead to the

sound seeming to move into a completely new timbral or perceptual category?

How efficient is the algorithm? Efficiency is obviously an important considera-

tion but it should be remembered that a computationally expensive algorithm

can be implemented efficiently and a computationally inexpensive algorithm

can be implemented inefficiently. Efficiency is not the same as computational

expense, which should be considered in context with the other criteria listed

here.

How sparse is the control stream? How much control data is needed to pro-

duce complex sounds? It may be possible with techniques such as additive

synthesis to produce any sound, but if the amount of control data needed to

control all of the partials is too large, the technique will only be of limited

use in practice. The whole timbral space of an acoustic instrument is made

available through the use of a small number of physical parameters.

What classes of sounds can be represented? Is the technique only good for

percussive sounds, string sounds, bell sounds, etc. or is it general enough to

cope with many categories of sounds.

98 3. A survey of synthesis techniques

What is the smallest possible latency? Does the technique take a certain amount

of time after some input data to synthesis the output. Most techniques are

capable of responding within one sample to input data but some such as those

involving some kind of fourier analysis will take a finite number of samples
before any output can be produced.

Do analysis tools exist?

3.11 Summary

This chapter has attempted to give the reader a feeling for the multitude of tech-

niques which are applicable to sound synthesis. Most of the traditional unit generator

techniques suffer from one basic problem: the essentially reductionist approach taken

makes it difficult to synthesise sound events which are complex and yet coherent,

possessing micro- and macrostructural details which are causally related.

Of the physical modelling techniques digital waveguides are by far the most compu-

tationally efficient, although it would appear to be almost impossible for a lay-person

to create a completely new waveguide based instrument since a working knowledge

and understanding of differential equations and digital filters is required. The main
building blocks of these models, delay lines, do not possess any physical charac-

teristics at all, and all the `interesting' physical behaviour must be built into the

junctions between the delay lines, a non-trivial task.

CORDIS-ANIMA provides atomic building blocks from which an infinite variety

of vibrating structures may be assembled. Whilst being more intuitive than digital

waveguides and also being capable of producing very naturalistic and coherent sound

events, one criticism might be that there are simply too many parameters which

the user must control even in the initial construction of an instrument. The first

decision to make involves choosing an appropriate topology for a new instrument,

although this problem has been partially addressed by the ongoing development of

the GENESIS graphical user interface which provides facilities for the automatic

generation of topologies. Incerti and Cadoz (1995), in discussing this problem, make

the following comments:

... it would be possible to go further and build very sophisticated networks

3.11 Summary

with highly complex topologies designed to describe specific physical prop-

erties. But the numerous experiments that we [have] made tend to prove

that it would be [the] wrong way [to proceed] ... Furthermore, some topo-

logical properties which are of great interest from a mathematical point

of view, or even which may appear in nature (crystal symmetries, growth

processes ...
) may have no meaning from an acoustic point of view.

Here is the difficulty: we have to determine which physical properties are

relevant in a simulation for sound synthesis (Incerti and Cadoz, 1995,

p. 102).

99

MOSAIC provides a framework for instrument design which seems to be more
focussed and pragmatic than either the digital waveguide technique or CORDIS-

ANIMA since equal emphasis seems to have been placed on both the synthesis en-

gine and the use of an existing high level language Scheme for an approachable user

interface. It is more computationally efficient than CORDIS-ANIMA because of the

use of a smaller number of masses and springs but suffers in that it is not capable

of producing informative graphical animations which allow the user to actually see

what is happening to an instrument, aiding the debugging process.

In practice, it seems to be relatively straightforward to specify complex

synthesis scenarios in MOSAIC once the control values are worked out.
However, it remains difficult to choose good control values for some syn-

thesis situations (notably those involving reed and bow connections). De-

bugging a synthesis is also difficult, and though control of the physical

synthesis scenario is often straightforward ... control of the actual sound
(spectral features, etc.) remains very difficult (Morrison and Adrien,

1993, p. 55).

100 3. A survey of synthesis techniques

Chapter 4

The TAO computer music

program and its associated

cellular model

4.1 Introduction

This chapter describes the cellular physical model at the heart of the TAO1 computer

music program (Pearson and Howard, 1995; Pearson, 1995; Pearson and Howard,

1996), which has been developed from first principles in support of this thesis.

TAO has been specifically designed as a compositional tool for music which is

spectro-morphological or acousmatic in nature, and apart from being a useful work-

ing system capable of producing a wide variety of organic sounds, it also serves as a

practical case study for many of the ideas introduced in this thesis. TAO provides a

script language, described in the next chapter, which enables a user to create com-

plex vibrating structures from pieces of cellular elastic material coupled together,

and then enables these instruments to be excited and damped in a variety of ways.

The system also provides a facility for generating graphical animations depicting the

wave-propagation behaviour of instruments.

1 The name 'TAO' is not an acronym but comes from the Chinese word `Tao' which originally

meant the `Way' or process of the universe, the order of nature (Capra, 1992, p. 116), and was

chosen because it reflects the philosophical stance taken in this thesis.

101

102 4. The TAO computer music program and its associated cellular model

The instruments behave according to physical laws operating on a local basis between

neighbouring cells and are played by the application of external energy, whether by

striking, plucking, bowing or some other excitation. The sounds produced often

possess natural transients and physical, energetic and spatial characteristics which

make them strongly suggestive of gesture and texture. The rest of this chapter
describes the cellular model on which TAO is based; its emergent properties; the

structural possibilities it affords; and how sound output is generated via the use of

virtual microphones. Section 4.6 describes the underlying mathematics involved in

the cellular update rules, and, although accessible to the non-mathematical reader,
is not essential reading for those interested only in a user's perspective of TAO.

4.2 The cellular elastic material at the heart of TAO

From a physical perspective the material from which TAO instruments are con-

structed consists of point masses arranged in a regularly spaced two dimensional

grid, connected to their eight immediate neighbours by springs, and constrained to

have one degree of freedom, as if they were mounted on frictionless slides all pointing
in the direction of the z axis. Figure 4.1 shows a close-up of a typical portion of

the material, whilst figure 4.2 shows an individual point mass connected to its eight

neighbours. The masses are referred to as from now on as cells.

Z

r

/
...

........
........ **R..
*.. *, *"

........
x

Figure 4.1: A close up view of TAO's cellular material.

Each cell contains variables representing its position, velocity, force, mass and amount

of damping. They are arranged in the xy plane and are free to move only in z direc-

tion. The position, velocity and force acting upon a cell are always measured in the

4.2 The cellular elastic material at the heart of TAO 103

Z

A
Spring

A.

CCU

J. v
AA

rrr
rir

Frictionless vertical slides

x

Figure 4.2: A single cell with its eight neighbours.

direction of the z axis and a cell's position is measured relative to the z=0 plane.

The springs connecting the cells together are not modelled as separate entities,

instead each cell maintains a set of pointers to its eight immediate neighbours and

whenever two cells point at each other, the presence of an elastic spring between

them is implied. The springs are represented implicitly in the cellular update rules

used. Another feature of the springs is that although they are represented in figure

4.1 by diagonal lines connecting neighbouring cells, they do not actually stretch
diagonally between neighbouring cells. Each spring actually exerts a restoring force

which is proportional to the vertical distance between the two cells, i. e. measured in

the z direction. Two cells connected by a spring may be placed anywhere in the xy

plane without affecting the force exerted on both by the spring connection, which

relates only to their relative positions in the z direction.

By default every cell is free to move in the z direction but individual cells or groups

of cells may be locked in one position. For the purposes of sound synthesis it is

usually necessary to lock at least one cell at the z=0 position in order to force

the rest of the cells to oscillate about this point. All interaction with the material

is via external forces applied to individual cells or groups of cells. Each cell also
has a damping coefficient associated with it, which causes a cell to be subjected to

a frictional force proportional to its velocity, and thus has the effect of continually

slowing the cell down. Since every cell maintains information at all times about
its position, velocity and the forces acting upon it, excitation algorithms can make

104 4. The TAO computer music program and its associated cellular model

use of feedback from the instrument, very easily. For example an object colliding

with an instrument, apart from exerting a force on the instrument, can be made to

feel the force of the impact and react accordingly. This kind of facility provides the

potential for sound events in which the structured information generated, because

of its derivation from physical laws, will be suggestive of realistic physical causes.

Viewed from a distance, the material exhibits wave phenomena such as reflection,

refraction (figure 4.3) and diffraction (figure 4.4). The refraction is achieved by

giving the cells in the central portion of figure 4.3 higher masses than the rest of the

cells, effectively making that region more dense. The diffraction effect is caused by

locking the cells in the heavier black region of figure 4.4, leaving just a few `slits'

where the cells are free to move, thus creating a diffraction grating. One of the

advantages of using a cellular model is that we can alter the shape of the piece of

material or locally alter its properties without losing the coherent, macroscopic wave

behaviour. It will also cope just as easily with the most complicated scenarios as

with simpler ones.

The use of masses and springs in synthesis is by no means new since it forms the

basis for both the CORDIS-ANIMA and MOSAIC systems which were described in

chapter 3, but unlike CORDIS-ANIMA, TAO uses a fixed topology of masses and

springs which has the effect of making the model more consistent, the material more

uniform, and the cellular update rules simpler, without significantly affecting the

creative possibilities offered by the system.

In order to generate sound output from a piece of material, virtual microphones are

provided. In the context of TAO, a microphone is a device which takes arbitrary

numerical values and writes them to a file as sound samples. The numerical val-

ues are usually generated from mathematical expressions involving the positions of
individual cells. The samples in this file are then normalised to fit the maximum

amplitude range provided by the sample format and are written to a soundfile (in

this case an audio interchange file format or aif file). In this way, any vibrations

occurring within an instrument, no matter how large or small their amplitude, may
be used as sources for the generation of soundfiles. The Csound language described

in section 3.1 places the responsibility for keeping sound samples within the range
dictated by sixteen bit integer samples firmly with the user, and in comparison, the

4.2 The cellular elastic material at the heart of TAO 105

a)

b)

Figure 4.3: Simulating refraction and standing waves.

106 4. The TAO computer music program and its associated cellular model

a)

b)

s

ý. r

Figure 4.4: Simulating diffraction

4.2 The cellular elastic material at the heart of TAO 107

approach taken by TAO ensures that a synthesis will never go `out of range'.

Figure 4.5: A plain square piece of material

Figure 4.6: The same piece of material having been torn

Figures 4.5,4.6,4.7 and 4.8 give some examples of the structural possibilities offered

by this cellular model. Figure 4.6 shows how by selectively removing some of the

connections between cells, the material can effectively be torn, leading to new modes

of vibration which a plain square piece of material would not have.

The model supports the creation of arbitrarily shaped pieces of material, as in figure

4.7, and it is feasible to make shapes which contain holes as in figure 4.8. The shape

of a piece of material will have a direct influence on its natural modes of vibration and

is therefore one of the most significant parameters made available to the user. We

will see in chapter 5 that TAO supports the creation of various simple geometrically

shaped pieces of material, although irregular shapes and shapes containing holes are

not supported in the present implementation.

108 4. The TAO computer music program and its associated cellular model

sa

Figure 4.7: Makin; irregular shape., fn>>u t1w material

Figure 4.8: Making shapes of material with holes

4.3 Coupling pieces of material together to form iiistru-

ments

Two methods of coupling separate pieces of material are provided, gluc iny and join-

ing. The former allows individual points on two pieces of material to be glued

together forcing them to move in unison in the z direction, whilst the latter allows

two pieces of material with straight edges to be joined seemlessly, making them act

as if they were one continuous piece.

4.4 An example of a TAO instrument

To put all the ideas introduced thus far into context. figure -1.9 shows an example

instrument consisting of four strings whose left ends are glued to four points a, b, c

4.4 An example of a TAO instrument

a)

b)

C)

L

d string 4

c string 3
c

b string 2

u string 1

ci string 4

c string 3

b string 2

string 1

d string 4

c string 3

b string 2

a string 1

Figure 4.9: A stringed instrument with a circular resonator.

109

and d on a circular sheet. In (a) we see a force being applied to string 1 which leads

to two wavefronts, one left-going and one right-going. In (b) the left-going wave-

front has been partially reflected off the end of the string, but sonne of its energy

has also been transmitted to the circular resonator, causing another propagating

wavefront. In (c) the energy which was initially imparted to stringl increasingly

spreads throughout the whole instrument making the other strings vibrate in sym-

pathy. Note that the strings are constructed from the same virtual elastic material

as two dimensional sheets and simply consist of a long line of cells linked by springs.

Graphical instrument animations form an integral part of TAO's user interface, and

this image serves to introduce the visual format used, since it is actually a screen

snapshot of a typical animation produced. Note that the individual cells are not

110 4. The TAO computer music program and its associated cellular model

visible, and instead we see what appear to be smoothly undulating and continuous

pieces of material. The user's attention is thereby focussed upon the emergent wave

patterns produced, which in turn helps to focus attention on the behaviour of the

instrument as a whole. In the computer animations produced by the system, glued

points are marked in red, and points of excitation or sound output are marked

in blue. The text labels shown in figure 4.9 are not produced automatically by

the system, although script functions are provided enabling the user to label an

animation manually.

4.5 Information needed to create a piece of material

Before moving on to a description of the mathematics involved in animating the

model, we will take a closer look at the information which must be supplied in

order for a new instrument to be created. Obviously, the quality of sounds which a

particular synthesis technique is capable of producing is of paramount importance,

but equally important is the question of how easy or difficult it is for a user to begin

creating and using instruments. A delicate balance must be struck between, on the

one hand, overloading the user with too many parameters in an attempt to cover

every eventuality, and on the other, making the system too limited and inflexible

as a result of trying to reduce the number of parameters which the user has to deal

with.

In order to create a single piece of TAO material, three pieces of information

are required: the shape of the component (currently circular, rectangular, one-

dimensional, triangular, or elliptical); the size of the component; and the amount of

damping initially applied to each cell. When a piece of material is initially created,

all cells are given the same mass, position, velocity, force and damping coefficient.

In this uniform state the instrument exhibits some properties which are predictable,

such as the overall decay time and the fundamental frequency of vibration 2.

Acoustic instruments usually rely upon a variety of acoustic components coupled

together, each one possibly -making use of a different acoustic medium, but with
TAO's cellular material all components initially exhibit a constant wave propagation

'In the case of a two-dimensional, inharmonic instrument such as a rectangular sheet, there may
be no perceivable fundamental frequency

4.5 Information needed to create a piece of material 111

velocity. Therefore, in order to create a string of a given frequency f, for example,

we can calculate its length from the wave propagation velocity v of the material,

and the period of vibration 11f. There is no need to specify other non-musical
information such as the string's mass per unit length, its tension or its length. As

stated above, an instrument with uniform damping applied across all cells exhibits

a predictable decay time depending on the exact damping coefficient used, and this

holds true for an instrument of any size or shape. The initial damping coefficient

chosen for any instrument may therefore be specified as a decay time, measured in

seconds.

For circular sheets the information required also consists of a single frequency, used

to determine the diameter of the sheet, and a decay time. For other two-dimensional

instruments, an x and y frequency are required. The x frequency is used to determine

the width of the instrument (at its widest point) and the y frequency is similarly

used to determine the height. Note that these frequencies are only intended as a

rough guide to the kind of spectrum produced. A rectangular sheet 200 Hz by 300

Hz will not produce clearly perceptible pitches at these frequencies, but we will have

a good idea of the region of the audible spectrum this instrument will occupy as

opposed to a sheet 700 Hz by 2 kHz.

Once we begin to upset the uniformity of the material things are not always as

simple and predictable, but at least we have some simple starting point which allows

instruments to be created with a minimum of information. Altering the masses of

individual cells changes the fundamental frequency and modes of vibration of an

instrument, and altering the damping coefficient changes the decay time and also

the spectral evolution of the sound produced by the instrument. In practice the

damping coefficient is set either as a decay time, or a percentage, where 0% means

that the cell is totally undamped and 100% means that the cell is rigidly fixed in

one position.

At this point the reader not interested in the inner workings of the cellular model

should proceed to chapter 5 where the description of the system continues from a

user's perspective.

112 4. The TAO computer music program and its associated cellular model

4.6 Animating the model

In this section we see how the cellular model actually functions internally. There

are a number of different levels at which we can view the model: as an abstract

physical device; as a cellular model with update rules based on certain mathematical

equations; as a set of data structures and algorithms; and finally, at the lowest

level, as implementation code. We have already seen the physical structure of the

model and now we turn to the cellular update rules and associated mathematics.

Descriptions of the data structures and algorithms used are left to appendix D.

In order to animate the model the following steps are iteratively repeated as many

times as is necessary, depending upon the number of output samples required:

1. The forces acting upon each cell due to the springs connecting it to its neigh-
bours are calculated.

2. Any external forces due to excitations are applied to the appropriate cells.

3. The velocities and positions of each cell are updated according to the forces

acting upon each.

These steps are described in more detail below.

4.6.1 Calculating all the internal forces within the material

At any instant in time each cell has an overall force exerted on it by the springs

attaching it to its eight neighbours. The equation used to calculate the force exerted

by one of the springs on a particular cell is based on Hook's law: -

i
F= -al

j1

where 1 is the equilibrium length of the spring, l' is the actual length at a particular

time and A is the coefficient of elasticity. The negative sign indicates a restoring

force. However since the cells only move up and down relative to each other we can

simply make the spring force a restoring force which is proportional to the difference

between the positions of the two cells.

F=-A(s, -sn)

4.6 Animating the model 113

where s,, is the position of the cell we are calculating the force for and s� is the

position of the neighbouring cell whose spring is exerting the force.

4.6.2 Applying any external forces

External forces are applied in order to simulate plucking, hitting, bowing or any

other physical interaction with the material. At any instant in time any number of

external forces can act upon any number of cells within a piece of material. To apply

a force to a cell all that is needed is to add this external force to the cell's internal

force which has already been calculated.

4.6.3 Updating the cell positions

Once the total force acting upon each cell has been calculated, Newton's second law

of motion can be used in conjunction with the equations relating position, velocity

and acceleration to update their velocities and positions. If F, a, v, s, m, are a cell's
force, acceleration, velocity, position and mass respectively, then: -

F=ma

ds
v= dt

dv
a= dt

4.6.4 The discrete equations used to animate the model

In order to approximate the continuous equations given above for a discrete time

domain simulation, the equations are rewritten: -

at = Ft/m

vt+i = vt + atbt

st+l = St + Vt+l bt

where at and Ft are the acceleration and force at time t respectively, vt and vt+l are
the velocities at times t and t+1, and bt is the length of a discrete time step. The

instantaneous acceleration for a cell is calculated from the force acting upon the cell

114 4. The TAO computer music program and its associated cellular model

and its mass. This acceleration is then used to calculate the new velocity of the cell.
Finally the velocity vt+l is used to calculate the new position.

In practice energy is lost in any vibrating structure due to air resistance, acoustic

radiation, internal friction etc. This is simulated by modifying the equation above
to give: -

ve+i = D(vt + atbt)

where D takes a value between zero and one and represents losses due to damping.

The velocity of each cell is multiplied by D on each time step. This leads to an

overall exponential decay in the amplitude of oscillations. Each cell has its own

value of D independent of other cells.

4.6.5 Improving the efficiency of the model

In order to make the material appear continuous rather than made up of discrete

masses and springs, a large number of cells are required. Instruments may contain

tens of thousands of cells and this makes the efficiency of the calculations very

significant. For this reason some simplifications are made to the equations to reduce

the number of arithmetic operations per cell, per time step.

If it is assumed that all the variables in the model are measured in arbitrary numerical

units, then it is possible to eliminate some constants from the equations. If we assume

that bt =1 then the equations above become: -

at = Ft/m

vt+l = D(vt + at)

$t+l = st + Vt

Also if we assume that the coefficient of elasticity a=1 then the equation for

calculating the force between two cells becomes: -

Fý _- 1(Sý - Sri) = Sn - Sc

4.6 Animating the model 115

Using this equation, the force acting upon cell c due to the spring connecting it to

a neighbouring cell n can be calculated simply by subtracting the position s, of c
from the position s,, of n. If a particular neighbour is absent, no force is exerted on

c from the direction of that (non-existent) neighbour.

As an aside, it may seem at first that by fixing the elasticity of all springs, serious

limitations are placed upon the ability to control the material's physical character-

istics. However, one of the objectives inherent in the design of TAO was to limit the

number of parameters the user would have to deal with, without necessarily limiting

the creative scope of the system. In practice, there are still many ways in which the

characteristics of the material can be altered: by changing the masses and damping

coefficients of each cell; by locking regions of cells; and by creating different shaped

pieces of material, with different natural modes of oscillation. Combined with the

ability to use all manner of different excitation models at arbitrary points on an

instrument; to couple different pieces of material together; and to take sound output

from any position on an instrument, there are still plenty of useful parameters to

explore.

The sound examples described in appendix C also show that in practice losing the

stiffness of each spring as a controllable parameter does not significantly reduce the

range of sounds which TAO is capable of producing.

4.6.6 Altering the cellular update rules to cope with glued cells

In order to glue two cells together one is nominated as a master cell and the other

as a slave cell. The master cell acts as if it were connected to the slave cell's

neighbours as well as its own, giving a total of sixteen spring connections3. The

total force acting on the master cell due to all of these springs is calculated in the

usual way, comparing its position with the positions of the neighbouring cells. Once

the force has been calculated and modified by the application of any external forces,

the master cell's new velocity and position are updated in the usual manner, and

are then simply copied to the slave cell. When the cellular update rules reach the

slave cell no calculations actually take place since all the necessary calculations are

carried out for the master cell. With this strategy, it doesn't matter whether the

3Assuming that neither the master or slave cell be at a boundary in which case the number of

neighbours will be reduced.

116 4. The TAO computer music program and its associated cellular model

master cell or slave cell is updated first. The end result will always be the same.

4.6.7 Joining pieces of material by the installation of new springs

The cells along the boundary of a piece of material indicate the presence of the

boundary with the use of null neighbour pointers. However if we take two such pieces

of material with straight edges, by redirecting the null pointers along the edge of

each piece of material so that they point at the appropriate cells along the edge of

the other piece of material, we can effectively join the two pieces of material together

seemlessly. Waves will now flow across the boundary between the two components

as if the boundary never existed. This is achieved in practice by a process similar

to stitching two pieces of material together. Two points on the respective edges of

the two pieces of material are chosen as reference points to be lined up with each

other. The cells along the two edges are then joined with newly created springs,

gradually migrating along the join until the two edges begin to diverge, at which

point the joining stops. This process is described in detail in section D. 2.6. No

modifications to the cellular update rules are needed since in order to install a new

spring between two previously unconnected cells we simple redirect the appropriate

neighbour pointers (previously null) so that the cells now point to each other.

Chapter 5

TAO's user interface

5.1 Introduction

In this chapter we move away from the underlying synthesis model and instead focus

on how the user actually accesses it in practice. Whilst the synthesis model holds

future potential for direct, real-time gestural control of instruments, the present (non

real-time) implementation makes use of a text based script language. A TAO script

contains all the information required to create and play instruments and generate

soundfiles.

A TAO script is contained within one file but is conceptually split into two parts, the

orchestra and score. The orchestra part of the script contains descriptions of all the

instruments, microphones and performance parameters which are to be used in the

score and the score enables complex events to be scheduled throughout the duration

of the performance. This is similar to the Csound language described in section

3.1 but differs in that a TAO score takes the form of an algorithmic performance
language rather than a set of pre-composed numerical performance data.

This chapter familiarises the reader with the general form of a TAO script and briefly

describes the features available with the aid of examples. A more detailed reference

manual can be found in appendix B. In addition more sophisticated script examples

are given in appendix C and show how the sound examples which accompany this

thesis were created.

117

118 5. TAO'S user interface

5.2 The object oriented nature of TAO

TAO is implemented in the object oriented (00) language C++ and whilst imple-

mentation details are left to appendices D and E there are certain ramifications to

this choice of language, which directly affect the way in which the user approaches

the task of constructing and interacting with instruments.

For readers not familiar with the 00 programming paradigm, it encourages the

design of well structured modular programs. An 00 program defines a set of objects
(data and algorithms grouped together) which map well onto the chosen problem
domain, and then allows a problem to be described in terms of interactions with those

objects. This fits the requirements of a synthesis system quite well since we can view
instruments, microphones and cells etc. as objects with their own internally defined

behaviour. A certain synthesis scenario is then described in terms of a particular

configuration of objects and some sort of score which causes time domain interaction

with those objects.

In 00 terms, an object consists of a set of variables representing its internal state and

a well defined, robust interface to the outside world which allows this internal state

to be altered or interrogated. Objects are divided into classes and each individual

object is referred to as being an instance of a particular class. For each object class

a set of valid messages are defined which constitute the interface to the outside

world. In C++ terminology messages are referred to as member functions but for

the purposes of this thesis we will continue to use the more intuitive term message.

A message is sent to an object in C++ by appending the message with its argu-

ments, if there are any, after the object's name separated by a period, i. e. ob-

ject_name. rnessage_name(argl, arg2, .., argn). TAO inherits this mechanism and

various others from C++ which means that interaction with instruments in a TAO

script is expressed in a syntax which is very close to that of C++. In practice,

instruments are provided with messages for locking and damping parts of the mate-

rial and selecting individual cells for input or output. For the cell object class the

interface includes messages for applying forces or virtual bows to any cell, and for

microphones it includes messages for sending sound samples to an output file.

,!

5.3 The general form of a TAO script 119

5.3 The general form of a TAO script

The following example gives the reader an idea of the general form of a TAO script.
It creates two rectangular instruments recta and rect2 and a stereo microphone m;
locks the left hand side of recta and the right hand side of rect2; joins the right
hand side of recta to the left hand side of rect2; applies an impulse to a point on

recta; and then eight seconds into the performance, damps a region of recti. The

left and right channels of sound output are taken from two points, one on either

rectangle.

Rectangle rectl: 400 Hz, 600 Hz, 10 secs; ...
Rectangle rect2: 600 Hz, 400 Hz, 10 secs; ...

recti. lockleft; rect2. lockright;

Join recti(right, top) to rect2(left, 0.5);

Microphone m: outfile, stereo;

Parameter x=1/2, y=1/3;

Score 10 secs:
At 0 secs for 1 msecs:

recti(x, y). applyforce(10.0);

At 8 secs:
rectl. setdamping(left, 0.1, bottom, top, 5%);

m. leftout: rectl(0.1,0.9);
m. rightout: rect2(0.9,0.1);

Without having introduced any of the language features yet, it should be clear
from- this example that the information contained within a TAO script is quite

straightforward. Every attempt has been made to make the keywords used as clear

and self-explanatory as possible. Note the use of the instrument messages lockleft,

lockright and setdamping; the microphone messages leftout and rightout; and

the cell message applyforce which, as described above, are appended onto the

name of an object of the appropriate class, separated by a period. In the case of the

line: rectI(x, y) . applyforce(10.0), the U. y) operator selects a single cell from

120 5. TAO's user interface

instrument recd at the specified coordinates, and this cell is then sent the message

applyforce(10.0).

a)

b)

C)

rect 2

rect2

-o-a9

Figure 5.1: A simple instrument created from a TAO script

The instrument created by this script is shown in figure 5.1. The positions of the left

and right output sources for the stereo microphone are shown at the points marked

I and r and the heavier black regions of each rectangle represent the locked cells.

Apart from the text captions in this figure, the rest of the graphics are produced

automatically by the system from the information given in the script.

5.4 The orchestra part of the script 121

5.4 The orchestra part of the script

We will now work through the various features of a TAO orchestra one by one with

the aid of examples.

5.4.1 Instrument declarations

The instrument declarations given below illustrate some key language features such

as the use of pitches, frequencies and decay times given in seconds. They also show
how messages can be sent to an instrument as soon as it is created in order to give
it certain characteristics from the beginning of its life in the script.

(1) String strings: 100 Hz, 5.6 secs;
lockends;
setdecay(left, 1/10,0.5 secs);

(2) Rectangle recta: 250 Hz, 760 Hz, 25 secs;
setdamping(left, 1/5, bottom, 1/5,15%);
lockcorners;

(3) Ellipse ellipsel: C#8, Eb7,1 min + 20 secs;
lock(0.3,0.5);

Each declaration is split into a head and body separated by a colon, with the body

terminated by an ellipsis. This kind of syntax is used throughout the script whenever

sets of instructions need to be grouped together into conceptual blocks and is also

used in the score control structures which are introduced in section 5.5.

Declaration (1) creates a string called stringi whose fundamental frequency and
decay time are 100 hertz and 5.6 seconds. The messages lockends and setdecay do

not need to specify the instrument to which they are being sent in this context (i. e.

within an instrument declaration) as it is obvious which instrument is being referred

to. The messages contained within the body of this particular declaration lead to

the cells at the ends of the string to be locked and the decay time being altered for

a region extending from the left hand side of the string to a point one tenth of the

way along its length. The acoustic consequences of such local damping are explored

more fully in chapter 6.

122 5. TAO'S user interface

Declaration (2) creates a rectangular sheet of material 250 hertz by 760 hertz 1 with

a decay time of 25 seconds and sets the damping coefficient to 15% in the bottom

left hand corner, i. e. a rectangular region stretching from the left hand side to a

point one fifth of the way across, and from the bottom to a point one fifth of the

way up, before locking all four corners.

Declaration (3) creates an elliptical sheet of material, but this time instead of speci-

fying the frequencies in hertz, a conventional pitch notation is used where C#8 means

the CO above middle C and Eb7 means the Eb just below middle C. Microtonal pitches

are allowed by adding or subtracting a fraction of a semitone from the pitch given,

e. g. C#8+1/2, Eb7-1/3. The instrument is given a decay time of 1 minute 20 seconds

and a single point three tenths of the way from the left hand side and halfway up is

locked.

Either of the pitch or frequency notations can be used for any of the frequencies

required by instrument declarations.

5.4.2 Microphone declarations

The following microphone declarations show how mono and stereo microphones are

created, and how they can either have fixed sources, where each channel takes its

output from a single cell, or dynamically changing sources in which case the samples

for each channel are calculated from arbitrary mathematical expressions given by

the user in the score.

(1) Microphone micl: narrowsound, mono, stringl(O. 1);

(2) Microphone mic2: widesound, stereo,
rectl(left, 1/2), rectl(right, 1/2);

(3) Microphone mic3: sounds, mono;

(4) Microphone mic4: sound2, stereo;

micl takes its output from instrument strings at a point one tenth of the way

along the string and writes its mono output samples to a file called narrowsound. tao.

mic2 takes its left and right channels of output from halfway up the left and right

1For an explanation of the meaning of the two frequencies see section 4.5

5.4 The orchestra part of the script 123

hand edges of instrument recta respectively and writes its output to the file wides-

ound. tao. The tao files created by microphones contain raw floating point sam-

ples which are normalised and packaged into a standard . aiff soundfile by the

float2aiff program described in appendix A.

Note that in examples (3) and (4) above, all that is given in each microphone dec-

laration is the name of the microphone, the name of the output file and the number

of channels. This indicates that the sources for each output channel will be specified
later in the score. This feature, apart from allowing sound samples to be created

from arbitrary expressions as described above, is also included for future compatibil-

ity with versions of TAO which will allow microphones to move around an instrument

under algorithmic control during a performance.

5.4.3 Performance parameter declarations

Performance parameters are basically floating point variables which allow the user

to store and mathematically manipulate data anywhere within a script. Any number

of parameters may be declared. A parameter declaration consists of the keyword

Parameter followed by a list of parameter identifiers with optional initial values. For

example:

(1) Parameter x;

(2) Parameter x=0;

(3) Parameter bowvelocity, bowforce, a=5, b=10;

5.4.4 Damping parts of an instrument

It is possible to damp individual points or regions of an instrument in a TAO script.
For example if we want to damp an individual point one third of the way along a

string called stringi with a damping coefficient of one percent we can say:

stringl. setdamping(1/3,1%);

The next four examples illustrate how the instruments depicted in figure 5.2 may be

damped as indicated by the shaded regions:

124

a) recta
cý

(right, top)

i right, 1/4)

(Ieft, bottom)

bý circlel (rlgh(, top)

5. "1: 110'. s user interface

ellipsel (rlght, top)

\ (0.2,033)

(Ieft, bottom)

d)

(left) (0.25) stringl

Figure 5.2: Damping local regions of instruments

(1) rectl. setdamping(left, right, bottom, 1/4,17.);

(2) circlel. setdamping(left, 1/3, bottom, 2/3,1'/,);

(3) ellipsel. setdamping(0.2,0.8,0.33,0.66,1'/,);

(4) stringl. setdamping(left, 0.25,1'/,) ;

In the present implementation only rectangular regions can be specified for two-

dimensional instruments. Each rectangular region is specified by two vertices (xj, y1)

and (x,. , y,.) .
The order in which the arguments xi, yj x,., and yr are passed to the

setdamping message is setdamping(xj, x,., yl, y,., ..). Note that strings only

requires a pair of x coordinates specifying the endpoints of the damped region.

Messages like these can be sent to an instrument anywhere in a TAO script. Ob-

serving certain conventions, however, leads to more legible scripts. For example,

messages which deal with the static structural properties of an instrument should

be placed in the orchestra, whilst temporary changes used as part of a performance

should be placed within the score. For more details about the different forms of the

(Ieft, bottom)

5.4 The orchestra part of the script 125

setdamping message and related messages see appendix B.

5.4.5 Locking parts of an instrument

A number of messages are provided for locking single points or regions of an instru-

ment. These include lockleft, lockright, lockbottom, locktop, Lockcorners,

lockends and lockperimeter. These are described in detail in appendix B. most

of these messages are very straightforward in their behaviour with rectangular in-

struments, locking whole sides of the instrument, or, as in the case of lockends, the

left and right sides simultaneously. However, for other shapes of material only the

extremities of the instrument are locked except in the case of lockperimeter which

works for any shape of instrument.

5.4.6 Stringing instrument messages together

It is possible to string messages destined for the same instrument together in the

following manner:

(1) stringl. lockends. setdecay(left, 1/10,0.5 secs);

(2) rectl. setdamping(left, 1/5, bottom, 1/5,15'/.). lockcorners;

(3) ellipsel. lock(0.3,0.5);

5.4.7 Glueing and joining instruments

To recap briefly there are two mechanisms for coupling instruments together. These

are made available through the Glue and Join commands. Glueing forces two single

points to move in unison as if they really were glued together. Any forces experienced
by the first point will be experienced by the second and vice versa. Joining allows
two sheets of material with straight edges to be sewn together by linking the cells

along the two opposing edges with springs.

To illustrate the Glue command, supposing we have two instruments stringi and

ellipsel and we wish to glue the left hand side of stringi to a point halfway across

and one third of the way up ellipses. We can achieve this with the following code:

Glue stringl(left) to ellipsel(0.5,0.333)

126 5. TAO's user interface

Note that the coordinate system used in this example, and in cases where individual

points on an instrument are accessed for input or output, is different to the system

used for setdamping. For setdamping, x=0 and x=1 always indicate the left hand

and right hand extremities of the instrument, respectively, i. e. the coordinates are

measured relative to the bounding box which surrounds the instrument. Conversely,

the coordinate system used for glueing and input/output always returns a point

lying within the perimeter of the instrument for values in the range 0<x<1 and

0<y<1. This coordinate system is described in section 5.4.8.

a) instrl

instr2

-- centre line

ýý
instr3

centre line

instr4

Figure 5.3: An illustration of the join facility

Figure 5.3 shows two examples of the use of the Join facility involving rectangular

instruments. In the first example instrl and instr2 are joined horizontally, and in

the second instr3 and instr4 are joined vertically. These two `joins' are achieved

with the following script code:

5.4 The orchestra part of the script 127

(a) Join instri (right, 1/4) to instr2(left, 3/10) or
Join instrl(1,1/4) to instr2(0,3/10)

(b) Join instr3(1/2, bottom) to instr4(1/6, top) or
Join instr3(1/2, O) to instr4(1/6,1)

In (a) the right hand side of instri is joined to the left hand side of instr2. The

two rectangles are lined up such that the point one quarter of the way up instri

lines up with a point three tenths of the way up instr2.

In (b) the bottom of instrl is joined to the top of instr2 such that a point halfway

across instr3 lines up with a point one sixth of the way across instr4.

It is possible to join the left hand side of one instrument to the left hand side of

another, or the bottom of one instrument to the bottom of another etc. It is also

possible to join two opposing sides of the same instrument together, either with

the same centre line for each side, in which case it is as if the instrument has been

wrapped round to form a cylinder, or with different centre lines in which case the

instrument is slightly twisted as well as being wrapped round. If we take this to its

logical limit, we can join both pairs of opposing sides on a rectangular instrument in

which case we end up with an instrument with the modes of vibration of a toroidal

shaped piece of material.

It is, however, not possible in the present implementation to join the bottom of

one instrument to the left hand side of another, for example, or to join instruments

with curved edges, although with careful thought and some clever algorithms such

variations are possible in principle since all that joining does is to add in new springs
between individual cells.

5.4.8 Simulating physical interaction with instruments

Before describing the structure and function of a TAO score we now move on to

the most important feature of the script language: the ability to simulate physical
interaction with instruments. The general notation used to access a point on an
instrument is shown below:

(1) instrument(x)

(2) instrument (x, y)

128 5. TAO's user interface

Notation (1) is used for strings and notation (2) is used for all the other two-

dimensional instruments. The two coordinates x and y are always normalised such

that x=0 indicates the left hand side of the instrument and x=I indicates the

right hand side. Similarly y=0 always indicates the bottom of the instrument and

y=1 indicates the top. With a rectangular sheet of material the interpretation

of these coordinates is straightforward but things are slightly more complicated for

other shaped pieces of material.

The coordinate system is designed such that, regardless of the shape of an instru-

ment, values of x and y lying between 0 and 1 will always specify a point which

lies somewhere within the perimeter of the instrument. The way in which this is

achieved is shown in figure 5.4. The y coordinate is referred to first to see how far up

the instrument to move. Then the x coordinate system is adjusted to fit the left and

right edges of the instrument at that y position. One of the advantages of taking

this approach is that we can change the shape and size of the instruments defined

in the orchestra without affecting the validity of the score.

y=1

X-1)
/G

(1/6i/4) _.. _ x=I

1/4

Y=I
------------- - -----------------

(right, 0.25)

X-0 ýShý_ý x=1

---- ------ - -----------------

0.? S
y=0

y=u

v=I
X-l

Y=
-- -------------------------------

(0.7,0.5)
x=(1 0.7 x=1

0.5

- y0 --U--------------- y-0
Special keywords available: Ieft=0, right=l, bottom=0, top-1, centre=0.5

Figure 5.4: The instrument coordinate system

Once we have selected a point on an instrument using this notation we can gain

access to the individual variables stored within the cell at that point, in other words

5.4 The orchestra part of the script 129

we can apply forces to it or find out its position or velocity etc. Attributes of a

cell which are of direct interest to the user include position, velocity, force and

mass and they are accessed as in the following examples which assume the existence

of four instruments circlel, recti, ellipsel and trianglel.

circlel(x, y). position;

recti(x, y). velocity;

ellipsel(x, y). force;

trianglel(x, y). mass;

One of the most significant differences between the approach to sound synthesis taken

by TAO and more traditional unit generator based languages such as Csound is that

the variables representing the internal state of a cell can be used either for input or

output. In contrast data always flows in one direction in a network of unit generators.

In some cases cell variables are used both for input and output simultaneously, such

as when a cell is bowed. The bowing model, described in appendix F needs to apply

forces to the cell but at the same time needs to get feedback about the cell's velocity

etc. in order to calculate the force to apply.

Some examples are given below of the kind of expressions, involving cell attributes,

which might be found in a TAO script:

stringl(1/3). position=10.0;

If stringi (0.5). velocity > 10.0: do something ...

stringl(1/10). force += 5.0; add 5 to the cell's force

stringl(left). mass=50.0; sets a single cell's mass to 50

Two messages applpforce(f) and bow(fbo+,,, vbow) are provided for use with cells.
For example, assuming the existence of a string called stringi we can apply a force

f to a point one third of the way along the string with the following script code:

stringl(1/3). applyforce(f);

130 5. TAO'S user interface

Of course this single line on its own does not contain enough information to say

when and for how long the force should be applied. This is where the score language

comes in. For example, to specify that the force should be applied at zero seconds

for one tenth of a second (i. e. at the start of the performance) we can say:

Score 10 secs:
At 0 secs for 1/10 secs:

stringl(1/3). applyforce(f);

The At.. for control structure' has a head and a body separated by a colon, with

the body terminated by an ellipsis. The Score control structure is mandatory and

simply specifies how long the performance is to last.

5.5 The score

So far we have seen how the user creates the objects which serve as the material for

the synthesis and now we turn to how the user actually describes a performance.

TAO's score language enables a performance to be described in terms of hierarchi-

cally nested events. The term event is generic in nature and is used to refer to

both very simple events such as initialising a parameter or sending some text to the

output window, and to complete sound events potentially consisting of hundreds of

nested sub-events.

Events may occur at an instant in time, repeatedly at regular intervals or over some

interval of time. It is also possible for several events to overlap in time. In order

to cope with all this variety a set of control structures is provided, including the

At.. f or structure introduced in the previous section. They may be nested within

one another and in combination make it possible to describe all events from the

simplest to the most complex.

2A term borrowed from conventional programming languages such as C and C++ where control

structures usually include for and while loops and conditional statements such as if and if .. else

5.5 The score

5.5.1 The score control structures

The control structures are listed below:

(1) At start time for duration: body ...

(2) From start time to end time: body ...

(3) Before end time: body ...

(4) After start time: body ...

(5) At time: body ...

(6) Every interval: body ...

(7) ControlRate interval in samples: body ...

(8) If condition: body ...

(9) If condition: body 1 ...
Else: body 2 ...

(10) If cond 1: body 1 ...
ElseIf cond 2: body 2 ...
Eiself cond 3: body 3 ...

Else: body n

131

Each control structure has a head and body. The body contains instructions which

specify what to do and the head specifies when to do it. The syntax is similar to

that used in the instrument declarations already introduced in that the head and
body are separated by a colon and the body is terminated by an ellipsis. On each

time step the whole score is executed from top to bottom and the control structures
have the job of ensuring that certain sets of instructions are executed only at the

times specified.

At. . for, From.. to, Before and After allow the instructions which form the body

to be executed only during a specified time interval. In the case of At. for and
From.. to both the start and end time are explicitly given, but Before and After

only specify one of these times. The unspecified time is implicitly calculated accord-
ing to the position of the Before or After structure within the score.

132 5. TAO'S user interface

At allows the instructions in the body to be executed just once at the specified time.

Every allows a set of instructions to be executed periodically and is most often used
to schedule text output during a performance. This is useful for debugging or simply

producing a profile of a performance, detailing how the various parameters change

and when the various events occur.

ControlRate is similar to Every but allows the interval to be specified in time steps

rather than seconds. This allows signals to be updated less frequently than at full

audio rate and is reminiscent of the k-rate signals provided by Csound (see section
3.1).

In the case of the If and If .. Else control structures, the body is executed at any
time so long as the condition contained in the head evaluates to true.

5.5.2 The special variables start and end

It often occurs that we need to execute some instructions just once at the very
beginning or end of a time interval. This is analogous to Csound's i-rate evaluation

whereby certain parameters are only evaluated once at the beginning of a new note
in the score. In order to achieve this in a TAO score we can use two special variables

start and end whose values change throughout the score depending on their context.
For example we can say:

Score 10 secs:
At 0 secs for 5 secs:

At start: at 0 seconds do X ...
At end: at 5 seconds do Y ...
rest of body

which makes the hierarchical nature of the events explicit unlike the following equiv-

alent example which places all three events at the same level of scope:

Score 10 secs:
At 0 secs for 5 secs: body

...
At 0 secs: at 0 seconds do X ...
At 5 secs: at 5 seconds do Y ...

5.5 The score 133

Another (implicit) use of start and end occurs when the two special time varying
functions linear and expon are accessed within a score. Both functions take two

arguments, an initial value and a final value, and return a value which gradually

changes from the initial value to the final value over a time interval which depends

on where they are accessed within the score. In order to work out the time interval

over which they are supposed to change, both functions access the start and end

variables. In the following example, two parameters x and y are declared. x is made

to change exponentially from 100 to 1 over the first four seconds of the score whilst y
is made to change exponentially from 200 to 5 over the whole duration of the score:

Parameter x, y;

Score 10 secs:
y=expon(200.0,5.0);
Before 4 secs:

x=expon(100,1); ...
Every 1 secs:

Display "At time", Time;
Display " x=", x;
Display " y=", y, newline;

This produces the output shown below. The two invocations of the expon function

in the example above are said to be at different levels of scope within the score

since the first is at the top level of the score, whilst the second is nested within the

Before control structure. At the top level of the score start always takes the value

0 seconds, and end always takes the value specified by the Score control structure.

At time 0.0000 x=100.0000 y=200.0000
At time 1.0000 x=31.6236 y=138.3006
At time 2.0000 x=10.0000 y=95.6352
At time 3.0000 x=3.1622 y=66.1320
At time 4.0000 x=1.0000 y=45.7305
At time 5.0000 x=1.0000 y=31.6228
At time 6.0000 x=1.0000 y=21.8672
At time 7.0000 x=1.0000 y=15.1213
At time 8.0000 x=1.0000 y=10.4564
At time 9.0000 x=1.0000 y=7.2306
At time 10.0000 x=1.0000 y=5.0000

134 5. TAO'S user interface

We can place both expon function calls inside the Every control structure, thus

evaluating x and y only once per second, without affecting the time interval over

which they change:

Parameter x, y;

Score 10 secs:
Every 1 secs:

y=expon(200.0,5.0);
Before 4 secs:

x=expon(100,1); ...
Display "At time", Time;
Display " x=", x;
Display " y=", y, newline;

For more details on the scope facility and start and end see appendix B.

5.5.3 Mathematical functions provided

All the standard mathematical functions such as sin, cos, tan, sqrt etc. are avail-

able for use within a script since they are provided by the underlying implementation

language C++. There are also two functions random and randomi which return a

random number between two specified limits inclusive. random takes two real num-

bers as arguments and returns a real number and randomi is an integer version. The

two special time varying functions expon and linear have already been introduced.

5.5.4 Generating sound output

Once we have created a microphone we can send sound samples to it throughout a

performance. The microphone collects these samples together and writes them to a

file in chunks. If we have declared a mono microphone ml, a stereo microphone m2,

and a two-dimensional instrument instri, we can generate sound samples in the

following way:

(1) mi. output: instrl(x, y);

(2) m2. leftout: - instri(x, y);

(3) m2. rightout: instrl(x, y);

5.5 The score 135

These microphone output messages are subject to the same scope rules as any other
instructions, i. e. if they are placed at the top level of the score, then samples are

generated on every time step throughout the performance, but if they are placed

within the body of a control structure, they can be made to generate samples only at

certain times or when certain conditions arise. All three messages can take arbitrary

mathematical expressions as arguments. For example:

Parameter theta, amplitude, x, y, xi, x2, yi, y2, position

ml. output: sin(theta)*amplitude*rectl(x, y);
m2. leftout: rectl(xl, yl) + string(position);
m2. rightout: rectl(x2, y2) + string(1-position);

5.5.5 Generating iterated events

Many sound events require excitations to be applied to an instrument on an iterative

basis. For example, suppose we wish to describe a sound which simulates the effect of

an object repeatedly bouncing on an instrument and losing energy on each bounce.

How would we describe this scenario? The following example demonstrates one

approach to this problem, showing how iterative events may be generated. Note

that there is no orchestra, and the score merely produces text output rather than

actually playing any instruments.

Parameter which-string, string-position;
Parameter now=0 secs, interval, force;

Score 10 secs:
ControlRate 100:

interval=expon(2 secs, 0.3 secs);

At now for interval -1 cosecs:
At start:

which-string=randomi(1,4);
force=random(1,10);
string position=random(left, right);
Display newline, "At", Time;
Display " strike string", which-string;
Display " at (", string-position;
Display ") with force", force, newline;

136

At end:

5. TAO'S user interface

now += interval;
Display "Next strike to occur at", now, newline;

At the very beginning of the score the only parameter which is initialised is now which

represents the start time of each strike. The parameters which-string, force and

string position are randomly determined once at the beginning of every strike

within the given limits. The parameter interval is used to determine the inter-

val between strikes and is made to change exponentially over the duration of the

performance from a value of 2 seconds to a value of 0.3 seconds.

At the beginning of every (simulated) strike a number of parameter values are dis-

played, including: the time; the string number; the position on the string; and the

force. At the end of every strike, the start time for the next strike is calculated using

the += operator which adds the result of the expression situated to its right to the

parameter specified, in this case now.

This example produces the following output:

At 0.0000 strike string 3.0000 at (0.8916) with force 1.3463
Next strike to occur at 1.5040

At 1.5040 strike string 2.0000 at (0.3571) with force 7.7562
Next strike to occur at 2.7022

At 2.7022 strike string 4.0000 at (0.1037) with force 5.3566
Next strike to occur at 3.6948

At 3.6948 strike string 2.0000 at (0.3987) with force 3.0201
Next strike to occur at 4.5403

At 4.5403 strike string 3.0000 at (0.8630) with force 2.7436
Next strike to occur at 5.2756

At 6.2756 strike string 3.0000 at (0.5316) with force 1.7555
Next strike to occur at 6.9256

At 5.9266 strike string 4.0000 at (0.5754) with force 1.8760
Next strike to occur at 6.5078

At 6.5078 strike string 2.0000 at (0.2082) with force 7.2068
Next strike to occur at 7.0345

At 7.0345 strike string 3.0000 at (0.3587) with force 5.0737
Next strike to occur at 7.6153

At 7.5163 strike string 4.0000 at (0.5864) with force 8.1805
Next strike to occur at 7.9574

At 7.9574 strike string 4.0000 at (0.2555) with force 8.1723
Text strike to occur at 8.3665

At 8.3665 strike string 1.0000 at (0.0074) with force 3.9198
Text strike to occur at 8.7471

At 8.7471 strike string 3.0000 at (0.3450) with force 5.2898
Text strike to occur at 9.1029

5.5 The score

At 9.1029 strike string 4.0000 at (0.3496) with force 2.2259
Next strike to occur at 9.4368

At 9.4368 strike string 4.0000 at (0.2843) with force 3.0886
Text strike to occur at 9.7514

At 9.7514 strike string 2.0000 at (0.9956) with force 8.5943

137

It is important to understand that the structure of a, TAO score is completely in-

dependent of the orchestra and a TAO script need not deal with instruments at

all. This is sometimes useful for developing complex score algorithms without in-

curring the computational overhead associated with the synthesis engine. Another

significant point is that events do not have to be ordered chronologically from top

to bottom in the score but may be placed in any order and may overlap in time.

The ordering of events is usually only significant when one event depends on some

parameter values which are calculated within another event. In this situation, the

event which performs the parameter calculations must be executed before the other

event and should therefore be placed nearer the beginning of the score, text-wise.

5.5.6 The use of C++ code fragments within a script

A TAO script is actually a fragment of C++ code in disguise and is translated

into C++ before being compiled and linked with the library of TAO objects and
functions. It is therefore perfectly acceptable to use standard C++ code within a

script. This includes most usefully for and while loops, declarations of variables

with types such as int and char, and arrays.

Since TAO's script language contains features such as the instrument declarations

and score control structures which involve the grouping together of sets of instruc-

tions, the standard curly bracket syntax of C++ could have been adopted, but a

conscious decision was made to avoid this, in order to emphasise that the semantics

of a TAO script are not those of a conventional algorithmic language. This also has

the advantage of making any C++ code included within a script stand out more

clearly.

This feature need not concern the inexperienced user but gives the advanced user
the opportunity to express more sophisticated concepts in a script. Also, since the

system is under constant development this facility is useful for developing and testing

new TAO features before inclusion in the system.

138 5. TAO'S user interface

An example of the use of C++ code within a TAO script is given below:

Score 0.1 secs:
ControlRate 100:

for (int i=0; i<10; i++) C++ code fragment
If i>5:

Display i, "is greater than 5", newline;

This repeatedly displays the following lines of output on every 100th time step (a

valid but rather trivial script):

6 is greater than 5
7 is greater than 5
8 is greater than 5
9 is greater than 5

A useful side effect of the fact that C++ underlies TAO's script language is that

lines can be commented out in a script by placing a // at the beginning of a line or

by enclosing a group of lines between a /* and */.

5.6 Summary of script features

We will end with a summary of script features. For a more detailed reference manual

see appendix B.

Instrument creators

The keywords String, Rectangle, Circle and Triangle are provided for the cre-

ation of instruments. String and Circle require one frequency to be specified deter-

mining the length of the string or the diameter of the circle respectively. Rectangle

and Triangle require two frequencies to be specified, one for the x direction and

one for the y direction.

Pitch nomenclature

The frequency of an instrument can be specified in Hertz, conventional notation

(including micro-tonal adjustments) or by using a numerical notation of the form

5.6 Summary of script features 139

pitch(octave. semitone). The conventional notation consists of a note name (e. g. C,

C#, Bb, G) followed by an octave number (middle C is in octave 8) and an optional

microtonal adjustment consisting of a+ or - and a fraction representing the fraction

of a semitone that the pitch should be sharpened or flattened by. For example, C#7,

Eb6+1/2, pitch(8.02) and 500 Hz are all valid ways to specify the fundamental

frequency of an instrument.

Instrument modifiers

The keyword lock allows a single point on an instrument to be locked. It appears

in the form instrument. lock(x, y) or just lock(x, y) in the body of an instrument

declaration. The keywords lockleft, lockright, locktop and lockbottom allow

whole sides of an instrument to be locked. lockcorners and lockperimeter are

self-explanatory.

The setdamping and setdecay keywords allow the damping factor to be set at a

single cell or over a region of cells. Damping can be set in terms of a percentage,

where zero per cent means no damping at all and one hundred per cent means

that the cell/cells are fixed rigidly in one position, or in terms of a decay time.

The keywords resetdamping and resetdecay allow the damping to be reset to the

default value defined when the instrument was created.

Accessing points on an instrument

Points may be accessed on an instrument using notation like instr(x, y) for two-

dimensional instruments or instr(x) for strings. Coordinates are normalised to

lie between zero and one and regardless of the shape of the instrument and within

these limits the point specified will always lie inside the perimeter of the instrument.

The keywords left, right, top, bottom and centre are provided and evaluate to

numerical constants, i. e. 0,1 or 0.5.

Physical interaction with instruments

The physical attributes of a cell can be accessed using the keywords force, velocity,

position, mass and damping. In order to access these attributes a cell must first

be selected using the notation introduced above.

140 5. TAO'S user interface

Microphone keywords

The keyword Microphone declares a virtual microphone. It is followed by the name

of the microphone, a colon and then the name of the file to which sound output

is to be written. The output sources for a microphone can be specified within

the microphone declaration by specifying one or two cells (only mono and stereo

microphones are currently supported) after the soundfile name. Alternatively one

of the keywords mono or stereo can follow the soundfile name in which case the

appropriate number of channels worth of output samples are generated via arbitrary

mathematical expressions in the score.

Sound output

The output, leftout and rightout keywords allow sound samples for each micro-

phone channel to be generated within the score via arbitrary mathematical expres-

sions usually involving at least one point on an instrument.

Time nomenclature

The keywords secs, msecs and wins are provided. These are placed after a numerical

value and automatically convert the value to a numerical constant, measured in

seconds, according to the units chosen. The keyword Time can be used anywhere

within the score to refer to the time elapsed since the beginning of a performance
(real-time when the sound is played back but non-real-time during synthesis).

Score control structures

The score is a hierarchical structure comprising nested control structures with the

Score control structure at the top of the hierarchy. Control structures include At,

Before, After, From-to, At.. for, Every and ControlRate. The If, If.. Else

and If.. ElseIf.. Else control structures allow for conditional execution of sets of

instructions.

Mathematical functions

In addition to standard mathematical functions such as sin, cos, sqrt, random etc.,

two special time varying functions linear and expon are provided. When placed in

5.6 Summary of script features 141

the body of a control structure, these functions return a value which automatically

changes linearly or exponentially over the time interval specified in the head of the

control structure. When placed inside an Every or ControlRate structure they are

evaluated less frequently, but the time interval over which they change is determined

by the control structure containing the Every or ControlRate structure.

Performance parameters

The keyword Parameter allows the user to declare any number of performance pa-

rameters with optional initial values.

Screen output

The Display keyword enables text output during a performance and is most useful
for debugging a synthesis since the values of various performance parameters can be

displayed as the performance evolves. It is also useful when developing a complex

score as it allows the macro-structure to be fine tuned before the score is actually

used in conjunction with some TAO instruments.

142 5. TAO'S user interface

Chapter 6

Practical examples of TAO's

capabilities

6.1 Introduction

Having learnt about the abstract structure of the synthesis model and the script

based interface to the system we are now in position to forget such internal de-

tails and instead concentrate on the behaviour of TAO instruments and the various

strategies which may be employed in designing new instruments. This chapter gives

some instrument examples, highlighting particular structural details which have a

significant effect on the acoustic properties of the instruments. It also discusses how

these characteristics may be controlled with the careful use of the damping facility,

and other factors such as the placement of microphones. We begin by looking at

some of the appealing characteristics of the synthesis model.

6.2 Transient behaviour of a circular sheet

It is well understood that the transients inherent in instrumental sounds are ex-

tremely important from a perceptual point of view. If the transient portions of

various recorded instrumental sounds are removed, leaving relatively steady state

portions of sound, it can be difficult to distinguish between different instruments.

Even though a transient may only last for a fraction of a second, the information

it creates is sufficient for us to judge in a very direct way the kind of mechanism

143

144 6. Practical examples of TAO's capabilities

Figure 6.1: Attack transients in a circular sheet

Figure 6.2: Attack transients in a different circular sheet

6.3 An instrument comprising joined rectangular sheets 145

responsible for the sound (see section 1.6.2).

Figures 6.1 and 6.2 show how two slightly differently configured circular sheets

progress from initial transient states caused by a single impact, through various

intermediate vibrational patterns, to more steady patterns of vibration. The shaded

regions in both figures represent regions of local damping. In both cases the instru-

ments find a natural path from their initial excited state to a smoother, lower energy

vibrational pattern which is compatible with the region of damping. We can lock

and damp any part of an instrument, or even change the conditions as the sound

unfolds and yet, because of the inherently holistic nature of the cellular model, and

the physical nature of the underlying cellular update rules, the resulting sounds will

always exhibit a certain `solidity' or coherence.

6.3 An instrument comprising joined rectangular sheets

f i..

al

three

C)

d)
one

two Iloe

s
three

e)

tM

0
four

a
ane

two
flu.

slx

lhre

Figure 6.3: An instrument consisting of rectangular sheets joined together

Figure 6.3 shows an instrument consisting of several rectangular sheets joined to-

gether, and its typical models of vibration. Instruments such as this produce inhar-

monic sounds in general, but the precise nature of their spectral structure can be

controlled by changing the sizes and characteristics of the various components. If the

146 6. Practical examples of TAO'S capabilities

components are given closely related frequencies then the instrument will be prone
to beating effects, as in figure 6.3, where different components alternate between

low and high amplitudes of vibration. If all of the rectangular components are given
the same decay time, then none of them will `stand out' in the resulting sound. If,

on the other hand, one component is made significantly larger or smaller than the

others, or is given a significantly longer or shorter decay time, then that component

will begin to make its mark on the identity of the sounds produced, more than any

other.

In practice, since instruments like the one shown in figure 6.3 are whole entities,
there are no clear dividing lines between what is contributed to a sound by any

one component and what is contributed by another. Having said that, it is some-
times useful to think in terms of primary and secondary components when designing

TAO instruments. In a traditional musical context we might say that the strings

of classical guitar are the primary components whilst the body and air cavity are

secondary components, since the strings carry the primary musical information. In

a spectro-morphological context, there is no need for the primary components to
have harmonic spectra, but it is still useful to consider which components will give

an instrument its most notable features, and which will merely add subtle details to

the sounds produced.

6.4 An instrument with pitched circular components

The instrument shown in figure 6.4 consists of six circular components tuned to

specific tonal pitches. The centres of each circle are glued to the corresponding

points 1,2,3,4,5 and 6. The six short resonators act as waveguides, transmitting

some energy to the long resonator at the top. The left and right channels of a stereo

microphone are then placed at the points marked 1 and r.

Once again, this instrument is a whole entity, i. e. an excitation applied to any

part of the instrument has a very subtle, knock-on effect on the other parts of the

instrument. The one-dimensional resonators behave here as abstract one dimensional

waveguides capable of physically transmitting energy back and forth between other

components. Although they are referred to as `strings' in the script, in practice

they do not have to behave in a string-like manner. In certain situations and with

6.4 An instrument with pitched circular components

common bcdef
resonator---

i
%ýý

-ý

Ii

cf
3

6

b

2 ipll'-ý

(9)

aq dip\
-- 1

Figure 6.4: Instrument with six tuned circular components and resonators

appropriate excitation models a `string' can be made to produce sounds perceptually

more akin to acoustic tubes.

In this example the circular components are very definitely the primary components,

and even though the other components contribute to the overall timbral quality of the

instrument, it is these primary components which give the sound its most recognis-

able features, the six notes with inharmonic spectra. The one-dimensional resonator

at the top of the instrument serves to couple together all the other components and

by taking stereo sound output from the points marked 1 and r, the resulting sounds

possess convincing spatial cues with the sounds of each circular component appear-

ing to originate from a different spatial location, especially when listened to over

head phones.

Instruments similar to this one form the basis for several of the sound examples listed

in section C. 10. The decay times of the various components are altered from example

to example, achieving a wide range of sounds from bright metallic instruments,

through more highly damped almost cow-bell type sounds to almost wooden sounds.

The use of circular components gives the instrument more clearly defined pitches

148 6. Practical cxannl)lrý of I. 0:., capabilities

than would be produced with say rectangular components.

6.5 Detailed examples of string behaviour

In this section we examine more closely how the acoustic behaviour of strings may be

controlled. Although a one-dimensional TAO instrument is referred to as a 'string',

when it is first created all the cells within the instrument are free to move and

damping is uniform across the whole instrument. In this state the instrument is not

really like a string at all. It has no tension and if left un-excited will simply hang

in space and maintain its shape. However by locking the ends of the string and by

damping various regions of cells we can begin to make the instrument behave in a

suitably string-like manner.

6.5.1 The behaviour of an undamped string

aý excitation

output

b)

output

C)

output

Figure 6.5: Behaviour of an undamped string with locked ends

Figure 6.5 shows a single string with locked ends and with a uniform damping

coefficient of 0%. In (a) a constant force is applied to the string for an interval of

half a millisecond. In (b) and (c) the state of the string is shown after fifty cycles

and one hundred cycles of vibration, respectively. Figure 6.6 shows the spectral

evolution of the signal taken from the position marked output. The spectrum is

harmonic and does not change throughout the duration of the sound since there is

nothing to dissipate energy from the system.

This scenario was created with the following script:

6.5 Detailed examples of string behaviour

12

11

10

9

g

7

6

5

a
3

2

1

Figure 6.6: Spectral evolution of undamped string

String s:
220 Hz, 0 secs;
lockends;

setdamping(left, right, 0'/,);

Microphone mica: undamped-string, mono;

Score 10 secs:
At start for 0.5 msecs:

s(0.2). applyforce(10.0);

micl. output: s(0.95);

6.5.2 The effects of damping the ends of the string

149

In figure 6.7 the same string now has some damping applied at one end. In (a) the

string is excited as in the previous example but now in (b) after ten cycles the higher

frequency ripples have been smoothed out, and in (c) and (d), once again after fifty

cycles and one hundred cycles, this trend continues. The damping at the end of the

string affects the evolution of the spectrum as in figure 6.8. In time domain terms,

every time a sharply defined pulse travels through a damped region it becomes a

little more smoothed and spread out. Eventually the pulse becomes so spread out

that its energy is contained within only the lowest partials.

This example was realised with the addition of one line to the orchestra, which has

150

b)

6. Practical examples of T. AO's capabilities

12

11

10

9

8

excitation
a)

denpi output

damping output

C)
denpin output

0-

d)
denpin output

Figure 6.7: Damping one end of the string

Figure 6.8: Spectral evolution of string with damping at one end

the effect of setting the damping coefficient to 2% over a region extending from the

left hand side of the string to a point one twentieth of the way along its length:

s. setdamping(left, 1/20,2'/.);

Damping one end or both ends of a string immediately leads to sounds which have

much more realistic string-like qualities, although a single string still sounds rela-

tively synthetic on its own. The ability to control a string's characteristics in this

way is an integral part of accurately simulating bowed string sounds (see section

6.7.1) since the smoothing effect of the damped regions helps to dissipate some of

the energy imparted to the string by the bow. Too little damping can lead to chaotic

6.5 Detailed examples of string behaviour 151

behaviour in the string whereas too much can lead to sounds which are too periodic

and therefore uninteresting to the ear. Achieving just the right balance is essential

to the fluidity of the resulting sounds.

By varying the size of the damped region and the coefficient of damping we can

obtain a wide variety of characteristics. For example, if we wish to obtain a string

sound where the highest partials die away very rapidly but the low to mid partials

ring on for some time, this is achieved by damping a small region at the end of the

string but with a high coefficient. Conversely in order to obtain a sound in which the

mid to high partials are affected but die away at a more gentle pace, we can damp

a larger region at the end of the string but with a lower coefficient. If we take this

process to its logical limit, damping the whole string, then all partials are equally

affected and only the overall amplitude decays.

6.5.3 Obtaining harmonics by damping other points on the string

It is possible to damp other points on the string in order to obtain harmonics. Figure

6.9 shows the same string with the end-damping removed and with the midpoint

damped instead.

excitation
a)

node output

bý \ode
output

ýý node
output

d) node output

Figure 6.9: Damping the string at its midpoint

The damping forces a node at that point only allowing the second harmonic and
its multiples to continue vibrating. The spectrogram in figure 6.10 illustrates this

clearly. Note that without damping at the end of the string, the modes of vibration

which are unaffected by the newly created node will continue to vibrate ad infinitum.

152 6. Practical examples of T. 4O's capabilities

12

11

10

9

Figure 6.10: Spectral evolution of string damped at its midpoint

If we want a more realistic string-like response we can use a combination of the end-

damping to give the string the desired characteristics and then damp other points

on the string during a performance, as might occur with a real stringed instrument.

The following line of code was added to the script to bring out the second harmonic:

s. setdamping(1/2,0.5'/,);

In figures 6.11 and 6.12 we see the third harmonic and its multiples appearing by

damping the string one third of the way along its length.

excitation
a)

node output

b) ode
output

node
output

ýý node output

Figure 6.11: Damping the string one third of the way along its length

6.4 Examples of the behaviour of a rectangular sheet 153

12

11

10

9

Figure 6.12: Spectral evolution of string damped 1/3 of the way along its length

This example was realised by adding the following line to the script:

s. setdamping(1/3,0.5%);

6.6 Examples of the behaviour of a rectangular sheet

A rectangular sheet has an inharmonic spectrum. Figure 6.13 shows such a sheet

with no locked or damped regions. After a simple impulse excitation has been applied

(a), the resulting wavefronts lead after many reflections to patterns of vibrations such

as those in (b). As with the undamped string, the instrument will continue vibrating

ad infinitum unless some part of it is damped. Figure 6.14 gives a spectrogram of the

output obtained from the marked point at the top right hand side of the instrument.

a) b)

Figure 6.13: An undamped rectangular sheet

154 6. Practical examples of 1: 1O's capabilities

Figure 6.14: Spectrogram of undamped rectangular instrument

This scenario was created with the following script:

Rectangle rect:
470 Hz, 600 Hz, 0 secs;
lock corners;

rect. setdamping(left, right, bottom, top, 0'/,);

Microphone m: undamped_rect, mono;

Score 10 secs:
At start for 0.1 msecs:

rect(0.1,0.1). applyforce(10.0);

m. output: rect(O. 95,0.95);

6.6.1 The effects of damping the rectangular sheet

Damping local regions elsewhere on the rectangle leads to the creation of nodes,

which cause some partials to die away whilst others are left to continue. The modes

of vibration are more complex than a string's but the same principles apply. Figure

6.15 contains three pairs of images showing the effects of various damped regions on

the modes of vibration of the rectangular sheet. The damped regions are shown in

light grey and in each case the final pattern of vibration leaves the damped region

6.7 Examples of the use of other excitations 155

almost standing still. The amplitude of the waves is exaggerated somewhat for

clarity. The elapsed time interval between the first and second images of each pair is

not important since the process can be made to occur over a few tenths of a second

or several minutes, depending on the damping coefficient used.

b)

C)

Figure 6.15: The effects of damping on a rectangular sheet

6.7 Examples of the use of other excitations

So far we have concentrated on the structural and vibrational characteristics of

many different TAO instruments, but until now the only excitation used in the

examples has been a very simple impulse consisting of a fixed force applied over a

finite duration. This section explores some more interesting excitation models.

6.7.1 A bowed string

TAO provides a mathematical model for simulating the interaction of a virtual bow

with an instrument. The model is described in detail in appendix F but we concen-

156

bo

slip
Lr

b)
how r

slip

6. Practical examples of TAO'S capabilities

dý
". bow r"

St ktk

e)
bow

stick

c)
ir-

f. oM
býý 1 stick

stick

Figure 6.16: Helmholtz motion in a TAO bowed string

trate here on some examples of its application. The following script creates a single

string, adjusts the damping at either end to give it roughly similar characteristics

to that we would expect from a stringed instrument. It then bows the string with a

virtual bow whose velocity and downward force vary throughout the performance:

String s: C8,5 secs;

s. lockends;
a. aetdamping(left, 1/20,0.7X);

s. setdamping(19/20, right, 0.7%);

Microphone m: bovedstring, stereo;

Parameter bovforce, bovvelocity;
Parameter vibratodepth;

Score 9 secs:
From 0 secs to 2 secs: vibratodepth-linear(0,1/100); ...
After 2 secs: vibratodepth linear(1/100,0); ...

a. vibrato(b. 5 Hz, vibratodepth);

At 0 secs for 0.2 secs: bovlorce-expon(2.0,1.0); .
At 0 secs for 0.1 secs: bovvelocitymexpon(0.01,1.0); ...
From 0.1 secs to 4 secs: bovvelocity-linear(1.0,4.0); ...
From 4 secs to 8 secs: bovvelocity linear(4.0,0.5); ...

At 0 secs for 8 secs: sl(0.3). bov(bovlorce, bovvelocity); ...

m. leftout: sl(0.05);
m. rightout: 91(0.95);

The bow's velocity starts off almost at 0 and rises to a value of 1 after one tenth

of a second. Then it gradually increases up to a value of 4, after which it decreases

again to a value of 0.5. Meanwhile the downward force exerted by the bow starts off

6.7 Examples of the use of other excitations 157

at a value of 2 and decreases to 1 over the first two tenths of a second, after which it

remains constant. With this score, the string settles down into a steady Helmholtz

motion (see appendix F) after a few tenths of a second and this motion is shown in

figure 6.16.

The concept of a phase space portrait was introduced in section 2.6 and, since the

behaviour of the string continually changes throughout the duration of the perfor-

mance, it is interesting to see what the transients at the start and end of the sound
look like. Figure 6.17 shows two phase space portraits of the string's behaviour as

produced by the above score.

In (a) the first 0.2 seconds of the sound produced by the above script are depicted.

Working along the top row of images from left to right and then along the next row
down, we see the string: being dragged away from its rest position at the centre of

the cube; beginning to make small slips as the frictional force required to maintain

the dragging action becomes too great; falling into a more established pattern of

sticking and slipping; and finally settling down into quite a clearly defined pattern

of vibration.

In (b) the images depict the behaviour of the string from 7.8 seconds to 8.2 seconds,

i. e. just before and after the bowing ceases. At the beginning of this time interval

the string is vibrating with a stable pattern of behaviour as illustrated in figure

6.16. As the bowing suddenly ceases at eight seconds, the images show the attractor

beginning to collapse leading to the cyclic pattern gradually shrinking down to the

original point attractor characterising the natural decay of the string to its rest

position.

These images elegantly convey the idea that TAO instruments are real instruments,

i. e. physical entities with their own time domain behaviour which we interact with

via a (simulated) physical dialogue. Another way to convey this is by imagining

an instrument as possessing a certain character which will always be perceivable in

the sounds it produces, but which we can stretch in different directions by experi-

mentation with different parameters in much the same manner as an instrumentalist

may produce different sounds from the same instrument via the use of extended
techniques.

158

a)

6. Practical examples of TAO'S capabilities

ä

L ///

-ffa

b)

., _ _"_7 J i':

I

Figure 6.17: Phase space portrait of a bowed string

6.7 Examples of the use of other excitations

The sound produced by a similar script is given in section C. 8.

6.7.2 A more complex bowed instrument

resonator
1

string4

string3

string2

r

ý
ýy

_-ý
FIOH

stringl

Figure 6.18: A four-stringed instrument with a rectangular resonator

159

Figure 6.18 shows an instrument with four strings which are glued to a rectangular

resonator. The strings are tuned in fifths, hence their respective lengths. Remem-

ber that since the cellular material has a constant wave propagation velocity, the

frequency of a string is altered by changing its length and not its tension. The com-

ponent stringi is bowed at the point marked. Sound output is taken directly from

the movement of the points marked 1 and r.

An instrument of this family is used for the sound example described in section C. 9.

The most important feature of this instrument, as with any other TAO instruments

comprising several coupled components is that it behaves as a whole entity, i. e. the

strings feed energy into the resonator which in turn feeds energy back to the strings.

It is often assumed that the body of a stringed instrument does not significantly affect

the stable Helmholtz motion of a bowed string and that it is therefore acceptable to

model it as a filter which merely colours the sound produced by the string, after the

motion has been physically simulated.

This thesis refutes that claim and instead acknowledges that even the slightest

changes to a string's motion, due to energy being fed back into it from a resonator,

may affect the precise moment at which the slipping and sticking occurs with the

bow. Taken over a. longer time frame these seemingly tiny physical effects can radi-

cally alter the timbral qualities of the resulting sounds.

160 6. Practical examples of TAO's capabilities

-- N---

E1
_v.

r'ý\

loez

,1ý,

H

Figure 6.19: Phase space portrait of a bowed string connected to a resonator

In order to demonstrate this we can put the instrument of figure 6.18 to one side

for a moment and construct a similar one consisting of a single string, identical to

the one used in section 6.7.1 but glued to the same rectangular resonator. Only one

end of the string is locked now whilst the other is glued to the resonator. Figure

6.19 shows that the shape of the instrument's attractor as it is bowed (once again

depicting the first 0.2 seconds), and hence the character of vibrations in the string,

are different from figure 6.17(a) even though the various score parameters are left

exactly as the were for the single string example.

The addition of a resonator to a stringed instrument adds interest and depth to the

sounds produced especially when microphone output is taken from the resonator

instead of from the strings. The organic nature of the sounds produced can be seen

from figure 6.20 which shows a portion of the output waveform, taken from the

resonator rather than the strings, produced by the sound example given in section

C. 9. In the top left image we see the top two strings being bowed together and then

the middle two. The rest of the images zoom in on the sound at ever smaller scales,

and confirm that at every level of structure the sound does indeed evolve organically,

even from one cycle of the waveform to the next. The effect of this in perceptual

6.7 Examples of the use of other excitations

�PIr 1

161

Figure 6.20: Organic evolution of a bowed sound at all levels of structure

terms is to give a strong sense of movement and continual flux in the sound, and

also to give it a stronger overall identity.

More generally, whenever we couple several components together, we end up with

an instrument which is greater than the sum of its parts through the phenomemon

of emergent behaviour. The complexity inherent in the vibrational modes of such

instruments has a direct effect on the strength of character of the sounds produced.

A direct aural comparison between the bowed string sound examples described in

sections C. 8 and C. 9, or between the other sound examples should convince the

reader of this point.

6.7.3 Restricting the vibration of an instrument with an obstacle

Although not strictly an excitation, since no energy is injected into the instrument,

another technique which produces interesting sounds is to place a virtual obstacle

162 6. Practical examples of TAO'S capabilities

in the way of an instrument, thus upsetting its natural modes of vibration. The

following TAO script shows how this can be achieved:

String s: C7,2 min; ...

s. setdamping(1eft. 1/40,0.02%). lockleft;
s. setdamping(39/40, right, 0.02%). lockright;
s(3/4). mass=50.0;
s(1/4). mass=50.0;

Microphone m: test, stereo;

Parameter obstacle-position s 1.0;

Score 20 secs:
At start for 1 msecs:

s(0.1). applyforce(1.0);

If s(3/10). position > obstacle-position:
s(3/10). position - obstacle-position;
s(3/10). velocity = 0;

This script places an obstacle in the way of a string at a position three tenths of the

way along its length and at a vertical position of 1. Whenever the string's amplitude

at that point becomes greater than 1 it is immediately limited and the cell at that

point is given a velocity of 0, indicating that it has been stopped dead. To make

matters even more interesting, two cells in the string are also given higher masses

than the rest, leading to inharmonic behaviour even without the obstacle. The sound

examples described in sections C. 4 and C. 5 make use of this technique.

Figure 6.21 shows the instrument in motion. In (a) the instrument is excited with a

single impulse. In (b) it comes into contact with the obstacle. In (c) and (d) we can

see that the rest of the time the instrument is free to move as it would normally do,

and in (e) contact is made again. Every time the instrument hits the obstacle, fresh

wavefronts are sent out by the impact. Contact will only be made intermittently

and will eventually cease altogether. This can lead to long, evolving, naturalistic

sound events.

Part of the beauty of this technique is that a whole family of sounds can be produced

by changing the various parameters such as the weight of the masses ̀pegged' onto the

string, the string's basic characteristics and the obstacle's position, which can even

be varied dynamically during a performance. Although cellular models may seem

computationally expensive for simple scenarios such as an isolated plucked string,

6.8 A comparison between TAO and other physical modelling systems 163

$) "MSS
Obstacle

mass
r 11 "

MASS

b)
otýsteile mass `M

r-

obstacle nass

nass

-nass obstacle

d) "f

Mass

Mass

eý
obsia a

nass

obstacle
r nass

mess

Figure 6.21: A prepared string buzzing against an obstacle

they cope just as easily with much more complex scenarios such as the one described

here, at no significant extra computational cost. In addition, such scenarios are often
beyond classical closed-form solutions because of their non-linearity.

6.8 A comparison between TAO and other physical mod-

elling systems

A number of comments were made at the end of chapter 3 relating to the various

physical modelling techniques which are currently available. The point was made
that digital waveguide synthesis, although computationally efficient, is not suitable

164 6. Practical examples of TAO'S capabilities

for composers having little knowledge of differential equations to begin building new
instruments.

TAO takes a fundamentally different approach to physical modelling than taken by

digital waveguides synthesis. According to Smith (1992, p. 74) the approach taken

by TAO falls into the category of "brute force" modelling. However it must be

borne in mind that models are often simplified and idealised in order to make them

suitable for the computational resources available at the time and, as Toffoli and
Margolis (1987) pointed out, the emphasis in such models "does not always reflect

a preference of nature" (see section 2.7). In short, it is often impossible to simplify

a model without losing some aspect of the behaviour of the real system.

Turning to CORDIS-ANIMA, the main problem associated with the technique was
described in section 3.11 as being one of choosing appropriate topologies for the cells

and link elements. This problem does not occur with TAO since the cells and springs

are arranged in a fixed topology. The images of section 4.2 depicting refraction and
diffraction in TAO's cellular material, and the various examples which have been

given in this chapter, show that this limitation placed upon topology does not limit

the creative potential of the system in any way, and if anything makes TAO easier
to get started with.

One of the major problems associated with MOSAIC was stated as being the dif-

ficulty of finding appropriate parameters for certain excitations such as reeds and
bows. A more general problem was in debugging a synthesis scenario. TAO ad-
dresses both of these problems with its informative graphical animations, which

allow the user to see, very directly, the effects of certain excitation parameters, as
the images from this chapter have shown. TAO's script language takes a very dif-

ferent approach from MOSAIC's, although both are based upon an object oriented

view of instruments. MOSAIC provides better abstraction capabilities for build-

ing both instruments and excitation scenarios from re-usable modules which have

been developed previously. TAO could be developed in order to include a facility of
this kind. The addition of a full graphical user interface would also improve TAO's

overall user-friendliness.

The major disadvantage with TAO as it stands is in the amount of computational

power it requires for complex synthesis scenarios. However, since digital technology

6.8 A comparison between TAO and other physical modelling systems 165

continually increases in power, year by year, with improved speed and memory ca-

pabilities, and since the nature of TAO's model makes it suitable for implementation

on parallel processors, this problem will ultimately be solved given enough time.

166 6. Practical examples of TAO's capabilities

Chapter 7

Summary and Conclusions

7.1 Summary of the key ideas introduced

Electroacoustic music and the perception of sound

In chapter 1 the spectro- morphological and acousmatic approaches to music were
described. In both of these musical genres, all sound categories, including those

which have been traditionally regarded as `noises' rather than `musical' sounds,

potentially have equal musical value. Such `noise' sounds included environmental

sounds produced by humans and animals and by physical events or processes. The

central importance of aural perception and judgement for both genres of music was
highlighted, since traditional theories of music are inadequate when applied to the

combination of such a diversity of potential sound sources. The comment was made

that, at its most general level, the process of musical composition is one of organising

sound.

The ecological view of auditory perception was introduced, in which the perceptual

attributes associated with a sound are seen as resulting from a combination of the

structured information contained within the sound, and the listener's perceptual sys-
tem resonating with or attuning to the invariant features in that information. This

was followed by a discussion of the perceptual attributes of sounds which are con-

sidered significant to their use in a musical context, including their spatial, physical

and energetic qualities and their ability to suggest a sense of motion, gesture and
texture, as well as affording certain meanings for individual listeners. We also learnt

167

168 7. Summary and conclusions

that the sounds and sound shapes found in electroacoustic music are often mimetic

of natural sounds and events. Two types of mimesis were described: timbral and

syntactic, although the comment was made that in reality mimemis may occur at

any scale from the micro- to the macrostructural.

The complexity of natural systems

In chapter 2 the notion of structured information was examined from the point of

view of the natural laws which govern its creation. We learnt about the phenomenon

of bifurcation or period-doubling which occurs universally in dynamical systems con-
taining an element of feedback. We also learnt that such systems often exhibit lively

or vibrant behaviour when operating in a regime poised ̀ at the edge of chaos'. Such

behaviour is due to the continual creation of new information. Graphical examples

of bifurcation were given, courtesy of the logistic difference equation: the simplest

equation containing feedback.

The notion of phase space was introduced as a graphical way of capturing the identity

of a system. This led to the notion of an attractor: the general tendency of a
dynamical system to follow certain patterns of behaviour, which only become clear

when the system is observed over a period of time. The transient behaviour exhibited
by a system was related to its attractor. Three different types of attractor were
described: point attractors, associated with dissipative systems; periodic attractors,

associated with periodicly oscillating systems; and strange attractors, associated with

chaotic systems.

Complex dynamical systems, and the notion of emergent behaviour were introduced:

highly structured global behaviour arising in a system consisting of many similar

agents interacting on a local basis. We learnt that such systems, although following

the same universal laws of chaos as simple ones, are able to express those laws in much

more complex and interesting ways, giving rise to intricately evolving spatial and

temporal patterns. The resulting structured information potentially has great depth,

due to the sheer amount of information processing which goes into its production,

and high effective complexity or a balance between variant and invariant features

when a system operates at `the edge of chaos'.

Other phenomena occurring in dynamical systems were described, including: self-

7.1 Summary of the key ideas introduced 169

organised criticality, in which a complex dynamical system evolves to a point where
it is critically poised at the edge of chaos, and even a small event can trigger a

catastrophic change of state; and coupled oscillators, in which a set of oscillators,

coupled together in some manner, lock into each others vibrational patterns giving

rise to to characteristic rhythms, examples of which may be found in the gaits of

various animals.

Cellular models were introduced, and in particular the main existing categories of

cellular model were described: cellular automata, finite difference models, finite

element models and particle models. The chapter finished with the comment that:

taken in combination, the phenomena described point to the fact that Nature has its

own characteristic `rhythms' both spatial and temporal which are often fascinating

sources of pattern and form; and concluded that cellular models provide a unique

opportunity for exploring these ̀ rhythms'.

Existing synthesis techniques and computer music programs

In chapter 3 the most commonly used synthesis techniques were reviewed. The

chapter introduced Csound, a computer music program based around the concept of

unit generators: algorithmic modules which simulate the functionality of analogue

components such as oscillators, filters etc.

We learnt that the majority of traditional synthesis techniques is based upon a re-
ductionist, frequency domain approach to sound, making use of combinations of unit

generators, in order to create interesting sound textures. Instruments constructed
from such components often require macrostructural form to be imposed manually

via the use of envelope generators, function tables and numerical performance data

specified in the score, making the task of creating sounds with convincing gestural

and textural attributes more laborious, although not impossible. The microstruc-

tural details of sounds generated with these techniques are also often precomposed

and stored in wavetables and the sounds produced, whilst having their own charac-
teristic strengths and weaknesses, usually lack the coherence and subtlety associated

with natural sounds.

Of the physical modelling systems introduced, CORDIS-ANIMA could be described

as the most cellular in nature, although more emphasis seems to placed on the

170 7. Summary and conclusions

creation of non-homogeneous structures, and on the individual masses and springs
in an instrument, than on the appealing properties which emerge naturally from a

model consisting of large numbers of identical elements interacting on a local basis.

The technique of `digital waveguide' synthesis was described, in which a waveguide

is modelled as a set of delay lines connected by scattering junctions, which contain

all the `interesting' mathematics. An example was given of a synthesis system which

makes use of digital waveguides: the vocal synthesis program SPASM. The technique

of modal synthesis was also described, in which analysis of vibrating structures for

their natural modes of vibration leads to models in which these modes are represented
by sets of modal oscillators.

Csound, MOSAIC, and SPASM all provide script languages for describing synthesis

scenarios whereas CORDIS-ANIMA does not.

The TAO computer music program

In chapters 4,5 and 6 the TAO computer music program was described. TAO

relies entirely upon the emergent properties of a particular cellular model, consisting

of masses interconnected with springs, for the production of its characteristically

physical and organic sounds. Visual examples were given of the emergent behaviour

of the model, including its ability to simulate wave propagation, reflection, refraction

and diffraction. Other visual examples given included the ability of the model to

produce transient behaviour, and to support the construction of complex vibrating

structures by way of coupling several pieces of the cellular material together.

TAO Instruments are played by exciting and damping individual cells or groups of

cells and because of the holistic and attractor-driven nature of the cellular model,

regardless of how the instruments are excited and damped, the sounds always re-

tain a certain coherence and identity, being bound together by physical causality.

The script language described in chapter 5, although not relating directly to the

hypothesis put forward in this thesis, nevertheless gave an example of how a cellular

model may be controlled in non-real-time. Unlike the precomposed numerical scores

of Csound, TAO's score takes the form of an algorithmic language, with the provi-

sion of specific features aiding the description of hierarchically nested time domain

events.

7.2 Conclusions

7.2 Conclusions

171

This thesis began with a set of criticisms levelled at digitally synthesised sounds and

a hypothesis which proposed that:

Cellular computer models, inspired by the behaviour of naturally occur-

ring complex dynamical systems, provide an ideal medium for the devel-

opment of a new generation of sound synthesis techniques, more holistic

in their approach than traditional techniques, and capable of producing

complex organic sound events, whilst simultaneously being sympathetic

to the needs of electroacoustic music.

7.2.1 Sound synthesis as the creation of structured information

This hypothesis has been supported by an in depth examination of the notion of

structured information. Many examples were given in chapter 1 of specific percep-

tual mechanisms and musical attributes of sound which arise as a direct result of

particular patterns of information, usually generated by physical processes or mech-

anisms. Terms such as complexity, coherence, organicity, vibrancy etc. have been

used throughout this thesis, both in relation to the perceptual effects they are capa-

ble of evoking, and in terms of the information generating properties of dynamical

systems and natural environments.

The process of sound synthesis has been viewed as a process of creating coherently

structured auditory information. This view is radically different from frequency

domain approaches which concentrate on the spectral content of a sound and its

temporal evolution, without providing a consistent framework for the description

of the macrostructure and microstructure of a sound and their mutual relationship.
Whilst it would be unfair to dismiss frequency domain techniques out of hand, which
is not the purpose of this thesis, they are often inappropriate for describing certain

classes of sounds with complex temporal patterns of evolution.

Of the more recent synthesis techniques to appear, granular synthesis seems to be

alone in its ability to cope with all manner of structured noise sounds. The main

problem with the technique is that it does not actually include control strategies
for arranging grains of sound into macrostructures. Since natural events are often

172 7. Summary and conclusions

arranged in a holarchic manner, in order to convincingly mimic sounds such as the

breaking of waves quite sophisticated control strategies are required. Cellular models
have already been applied successfully to simulating this phenomenon in the visual
domain (see section 2.7.4), and it is highly likely that the structured information

generated by such models could be applied to controlling the microscopic grains

of sound, or clusters of grains, leading to sounds possessing qualities convincingly

mimetic of breaking waves.

This thesis argues that both the complexity and coherence of the information con-

tained within a sound are extremely important to the imagery it is capable of evoking

and the sound examples listed in appendix C provide some aural evidence in support

of this argument. The simpler instruments comprising few components often pro-
duce fairly `synthetic' sounds, whilst the more sophisticated instruments suddenly

seem to `spring to life'. In particular the sounds produced by these more sophisti-

cated instruments often seem to originate from tangible physical objects, and even

when the sounds are more abstract in nature, they still retain a coherence which

makes them feel `solid'. The sounds possess spatial, physical and energetic cues due

to the underlying laws governing the cellular update rule.

It is interesting to note that the percussive sounds described in section C. 10, since

they are generated by dissipative dynamical systems which are linear in their be-

haviour, probably do not exhibit truly chaotic behaviour. The phenomenon of chaos

requires some element of non-linearity, such as is provided by the bowing model.
However, the sounds are often still quite vibrant and complex. This is a good ex-

ample of the notion of depth, i. e. complexity arising from the shear amount of
information processing occurring. On the other hand, the bowed sound described

in section C. 9 does rely upon external energy being continually applied to the in-

strument in a non-linear fashion, and whilst also exhibiting depth of information, it

also exhibits a different kind of complexity due to this element of feedback, giving
it subtle inner rhythms.

7.2.2 Why the emphasis on chaos?

A recurring theme throughout this thesis has been the balance between order and

chaos observed in Nature. Much evidence has been presented supporting the notion

7.2 Conclusions 173

that dynamical systems operating in a regime poised at the edge of order and chaos

seem to act as creative sources of information. The amount of emphasis which has

been placed on the significance of chaos theory in this thesis might be criticised

on the grounds that it only relates to the physical world and not to something as

subjective as human perception. There are two answers to this criticism though.

Firstly, the human brain is itself a complex dynamical system, although the fact

that it evolves throughout its lifetime by modifying its own internal configuration

places it into the special category of complex adaptive systems. Because of this, it

is subject to the same laws of chaos as all other complex dynamical systems, a view

supported by the following quote:

A physicist thinking of ideas as regions with fuzzy boundaries, separate yet

overlapping, pulling like magnets and yet letting go, would naturally turn

to the image of a phase space with "basins of attraction". Such models

seemed to have the right features: points of stability mixed with insta-

bility, and regions with changeable boundaries. Their fractal structure

offered the kind of infinitely self-referential quality that seems so central

to the mind's ability to bloom with ideas, decisions, emotions, and all the

other artifacts of consciousness. 11Vith or without chaos, serious cogni-

tive scientists can no longer model the mind as a static structure. They

recognise a hierarchy of scales, from neuron upward, providing an oppor-

tunity for the interplay of microscale and macroscale so characteristic of

fluid turbulence and other complex dynamical processes (Gleick, 1991a,

p. 298).

More direct evidence of the presence of chaotic behaviour in the human brain may

be found in the observation of unusual eye movements in patients suffering from a

variety of neurological disorders 1. Regardless of the various arguments concerning

the nature and origin of consciousness, intelligence, and emotion, it is evident from

the brain's internal structure that chaos, complexity and emergent behaviour must
have some part to play in our perception and awareness of the world around us.

'An observer's eyes are usually capable of tracking a moving object such as a swinging pendulum

with remarkable smoothness of movement, but occasionally the eyes are seen to oscillate with a

variety of periods or even move chaotically. See Gleick (1991a) p. 276-277

174 7. Summary and conclusions

Secondly, according to the ecological view of perception, we humans and other organ-
isms have evolved perceptual systems which are capable of attuning to or resonating

with information already present in our environment. Since this information is gen-

erated according to patterns which are always consistent with the laws of chaos, it is

reasonable to assume that these characteristic patterns are somehow intimately tied

up with our perception of events and objects and to our sense of how naturalistic or

organic they are. It is interesting to note that Gibson's book The ecological approach

to visual perception, in giving examples of the way in which visual information is

structured by various surface textures, reproduces photographic images which are

remarkably similar to those found in another book Nature's Chaos (Gleick, 1991b)

which provides many photographic examples of the occurrence of chaos in Nature.

7.2.3 Designing cellular models for the generation of auditory in-

formation

Auditory information is constrained by a different set of criteria than is visual in-

formation, and cellular automata models such as those represented by the visual

examples given in chapter 2, depicting physical processes such as dendritic growth,

annealing, fluid flow and reaction/diffusion, are not directly applicable to the task

of sound synthesis as they stand. Auditory information must always contain an

elements of oscillation occurring at frequencies lying within the audible spectrum.

The model used by TAO shows one way in which this can be achieved, but the use

of masses interconnected by springs is not the only strategy. If we wish to develop

other cellular models for sound synthesis, we have to decide first upon the level at

which they will operate. It would be perfectly possible to use a cellular model such

as the flocking model described in section 2.7.4 to generate coherent macrostructures

which would then be filled in with microstructures generated by traditional synthesis

techniques. Conversely, it is already possible with TAO to generate microstructures

which are then arranged into arbitrary macrostructures through the use of the score

language. However, it has been claimed throughout this thesis that the strongest

images will only be evoked in a listener when the microstructure and macrostructure

exhibit an overall coherence due to some causal connection between them.

It is possible within TAO to implement this causal connection between microstruc-

ture and macrostructure by designing score algorithms whose behaviours depend

. 7.2 Conclusions 175

in part on the microstructural behaviour of the instruments played by the same

algorithms. This process is depicted in figure 7.1. Since period doubling or bi-

furcation and chaotic behaviour are universal phenomena observed in all systems
involving feedback, the sounds produced by such a technique might begin to take on

some of the `natural rhythms' described in section 7.1, and by a process of experi-

mentation with the nature and amount of feedback, it would be possible to create
information-rich macrostructures, not arbitrary in nature, but intimately linked to

the microstructures produced.

score algorithm

I
macrostructure feedback

I
microstructure

Figure 7.1: Using feedback from the microstructure of a sound event in order
to influence the macrostructure.

For example, a script was given in section 5.5.5 for simulating an obstacle bouncing

on an instrument. This simulation was based on the approach of using an exponential
function in order to calculate the ever decreasing interval between impacts, and the

force exerted on the instrument by each impact. This model does not rely, however,

upon explicit simulation of the physical mechanism of bouncing. Since TAO provides
direct access to parameters such as force, velocity and position, it would be possible
to simulate the bouncing interaction properly, the advantage being that if several

objects were bounced on the same instrument simultaneously, the system would act

as a coherent whole, i. e. each force exerted by one object bouncing on the instrument

would affect the forces exerted on all the other objects, and hence the intervals

between their successive bounces. Since it has been shown, conclusively, that the
human auditory system is capable of inferring the physical cause of a complex sound

event from the temporal relationships between the macrostructural elements (see

section 1.6.2), this technique would improve the perceived coherence of the sounds

produced.

176 7. Summary and conclusions

MECHANISMS complex dynamical systems

I
local Interaction

I
emergent behaviour

due to sheer
amount of
Information
processing

STRUCTURED depth order disorder phase space micro- 10-61 macro- INFORMATION behaviour structure structure
attractors

liveliness transients causal
vibrancy relation-

ship

complexity
holarchic
structure

coherence/identity

physical cues spatial cues energetic cues
PERCEPTUAL
AT

I
ATTRIBUTES IBUTES

gesture, texture, affordance

Figure 7.2: The relationship between complex dynamic systems, coherent struc-
tured information, and perceptual attributes.

7.2.4 A model of `organic' sounds

A variety of terms has been used frequently throughout the thesis, including organic,

vibrant, lively, coherent etc. It has been proposed that these adjectives refer to certain

attributes of structured information, which are due both to the mechanisms used

to generate the information, and to the perceptual abilities of the listener. The

proposed relationship between these adjectives and various other terms introduced

is clarified by figure 7.2. The diagram begins at the top with the mechanisms which

create structured auditory information, complex dynamical systems; lists the various

attributes of this structured information; and finishes at the bottom with the various

perceptual effects which the information is capable of evoking in the listener.

7.3 Closing comments 177

The structured information generated by a complex dynamical system has four at-
tributes: firstly, it has depth, due to the shear amount of information processing

which takes place in a complex dynamical system; secondly, it may exhibit patterns

of behaviour lying anywhere along the spectrum between order and disorder; thirdly

it is governed by the attractor and associated transient behaviour of the system; and
finally, it is holarchical in nature, i. e. the information consists of a nested hierarchy

in which there are no clear dividing lines between different scales or between different

structures at the same scale.

The first two attributes, taken in combination, describe the overall complexity of

a system, and complexity relates directly to how information-rich its behaviour is.

When taken in combination with the other attributes, the structured information

produced may be said to be coherent and possess a strong identity. Moving back

into the sonic domain, this leads to sounds possessing strong physical, energetic and

spatial cues, which suggest a sense of gesture and texture. Coherently structured

sounds are also more likely to evoke a sense of affordance in a listener.

7.3 Closing comments

According to the ecological view of perception, an organism evolves to pick out

features of the environment, both objects and events, which are pertinent to its

survival. Ordinarily we take for granted our ability to recognise a scraping sound or

a shattering sound since the process of recognition is so subconscious and immediate.

If we begin to think about the variety of environmental events which we are able to

recognise in this way, the list begins to expand endlessly. Gibson's explanation for

this is not that we carry mental models around with us, one for each type of event,
but that the events themselves create structured information which we are able to

attune to or resonate with.

An intriguing question to ask then, following on from this observation, is: what
happens when we present the auditory perceptual system with patterns of structured
information which, although complex and coherent, nevertheless do not conform to

any patterns encountered in Nature? If Gibson's view of the process of perception is

indeed correct, then such sounds might still be capable of strongly evoking imagery

in the listeners mind, although the precise mimetic qualities of this imagery would

178

be difficult to predict or explain.

7. Summary and conclusions

The ability of cellular models to create completely artificial but coherently information-

rich environments, offers the exciting possibility of exploring synthetic aural land-

scapes, which nevertheless appear to be completely organic in their structural co-
herence. This process has already begun with the design and exploration of TAO,

but there are a multitude of other ways in which cellular models could be applied

to the sonic domain, potentially providing the electroacoustic composer with many

new approaches to the challenge of organising sound.

Appendix A

A brief user manual

A. 1 Installation

The file Tao1.0. tar contains an archived version of the following directory structure

and may be unpacked by typing:

tar xvf Taol. O

Tao 1.0:

bin/
lib/
src/
translation/
README

Taol. 0/bin/

tao Command for compiling a TAO script into an exe-
cutable.

float2aiff Executable for translating a raw floating point data
file into a. aiff soundfile.

Taol. 0/lib/

libtao. a Compiled library of TAO objects classes and asso-
ciated functions.

Taol. 0/src/

179

180

Cell. h
Cell. cc
Circle. h
Circle. cc
Ellipse. h
Ellipse. cc
Instrument. h
Instrument. cc
Microphone. h
Microphone. cc
Rectangle. h
Rectangle. cc
String. h
String. cc
Triangle. h
Triangle. cc

main. cc

tao-scriptfile

Taoi. O/translation/

circle-sed. script
ellipse-sed-script
rectangle-sed_script
string-sed-script
trianglezed_script
tao.. sed-scriptl
tao. sed. script2
tao-sed_script3
tao_sed_script4
tao-sed_script5

A. A brief user manual

C++ source code for library libtao. a

main and other global functions

Intermediate file used in the translation of a TAO
script into C++ code.

These files all contain Unix sed scripts which are
used in the general translation of a TAO script into
a valid fragment of C++ code. Whilst being com-
mented and fairly bug-free, they were only ever in-
tended as an interim measure and should be re-
placed with a proper parsing and translation pro-
gram.

Having unpacked Tao1.0. tar, the next step is to set up the environment. In order

to do this the full pathname of the file Taot. 0/bin should be added to your path,

and an environment variable TAOPATH should be created with its value set to the full

pathname of the directory Taol. 0/, which will depend on where you have chosen to

install the system. The latter can be achieved by adding the following line to your

. login file:

setenv TAOPATH <full path>/Taol. O/

You are now in a position to start creating and compiling TAO scripts.

A. 2 Getting started

A. 2 Getting started

181

TAO scripts are stored in files with a. script suffix. Once a synthesis scenario has

been described in a script it is ready for compilation. Note that TAO is a compiled
language rather than being interpreted like Csound. This is because (a) a TAO

script is actually a piece of C++ code in disguise; and (b) the synthesis model is

computationally expensive and is therefore made as efficient as possible by relying

on compiled code.

Supposing we have a. script file and we want to compile it, how do we achieve

this? The tao command takes the name of a script (without the . script suffix)

and compiles it, leaving an executable file with a. exe suffix in the current directory.

For example if we have a script called myscript. script, then typing tao myscript

leads to the creation of a file called myscript. exe. This file is an executable program

which will carry out the synthesis scenario described in myscript. script. There

are two ways of invoking a. exe file:

mys cript . exe No graphics, just do the synthesis.
myscript. exe -g N= Open a graphics window and display

animations of the instruments de-
scribed in the script. N is a real num-
ber and specifies the factor by which
the amplitudes of any waves are ex-
aggerated graphically. This has no
effect on the sound output.

All microphones in a TAO script write their output samples to files with a tao

suffix. For example, in the following microphone declaration:

Microphone micl: outfile, stereo;

micl's output will be sent to the floating point soundfile outfile. taol which may
be converted into a . aiff file during or after the file's creation with the use of the

float2aiff program. This program expects three arguments: the full pathname of

the tao file; the full pathname of the aiff file; and the sampling rate required:

44100,32000,22050,16000,11025 or 8000. For example:
'In the current implementation the microphone micl will actually write its output to a file called

/var/tmp/outfile. tao, since raw floating point soundfiles can be very large.

182 A. A brief user manual

float2aiff /var/tmp/outfile. tao outfile. aiff 44100

A. 3 Mouse functions for use in the graphics window

If a. exe file is invoked with the -g option a graphics window appears. There are a

number of mouse functions associated with the graphics window and they are listed

below:

" Holding the left mouse button down whilst the mouse pointer is within the

perimeter of the graphics window allows the whole graphics image to be dragged

about.

" Pressing the middle or right buttons whilst the left button is held down causes
the graphics image to be updated more or less frequently. The default is for

the image to be update on every time step of the synthesis engine but each

press of the middle button causes updating to occur five times less frequently,

i. e. on every 5th step, then every 25th step etc.

" Pressing the right button whilst the left button is depressed reverses this pro-

cess. If the graphics window is being updated on every time step, i. e. as
frequently as possible and the right button is pressed whilst holding the left

button down, the image is frozen until the same buttons are pressed in this

combination again.

A. 4 Some rules of thumb for instrument design

There are several rules of thumb for designing TAO instruments which are discussed

here. When deciding upon the structure of a new instrument, Smalley's spectral

typologies (introduced in section 1.4) offer a useful starting point. To recap briefly,

all sounds fall into one of the following categories: note, node or noise. The first

step in the design of a new instrument then is to answer the following questions:

" Is the instrument to produce specific notes and if so are they to be purely
harmonic or inharmonic? Is the instrument monophonic or polyphonic?

A. 4 Some rules of thumb for instrument design 183

9 If clearly defined pitches are not required then is the instrument to produce

certain clusters of partials or nodes? Once again how many distinct nodes are

required?

" What is the intended texture of the imagined sound? Is it one smooth but

continually evolving sound or a more granular texture involving large numbers

of rapidly decaying sound events? If the texture of the sound is to be a single

continually evolving event, then is it due to some continuous excitation or the

naturally long decay time of the instrument? If it is due to some excitation

then the instrument may not have to possess long decay times itself.

9 What colouration of the whole sound is required and how distant are the

components to seem from the listener?

" Which components are to play the role of primary components? (See section

6.3).

If notes with harmonically related partials are required then string components will

fulfill this need. Depending on the kind of overall string response required the

individual strings can be damped accordingly as described in section 6.5. Circular

components are useful for producing inharmonic pitched sounds whereas rectangular

components are much more suited to non-pitched clusters of partials, or nodes. If

several distinct pitches or clusters are required then each one requires a separate

component with its own characteristics.

Coupling components together

Some decision must be made as to how to couple the various components together if

the sound is to be perceived as a cohesive whole. The instrument in section 6.4 shows

one way of achieving this and uses strings to transmit energy from a set of circular

pitched components to a common one-dimensional resonator and vice-versa, which

then has microphones placed at either end. This leads to quite a pleasing stereo

spatial image and because of the finite amount of time the waves take to propagate
from the circular components to either microphone, the pitched sounds produced
by each of the circular components seem to occupy distinct spatial locations. This

effect is particularly noticeable over headphones. The stringed instrument of section

184 A. A brief user manual

6.7.2 gives another alternative for mixing and colouring the sounds produced by the

primary components in an instrument.

Microphone placement

Both the perceived size of a spatial image and the spectral balance of a sound are

affected by the precise placement of microphones. Microphones placed close together

lead to a very small spatial image, and whilst microphones placed further apart

make the spatial image spread out more, a point is reached at which the signals

on each channel become so different that the auditory perceptual system can no
longer correlate them and create a single coherent spatial image. In spectral terms,

all instruments require that some cells are locked, and the cells in their immediate

vicinity will only be able to move with small amplitudes of vibration. In the same

way that placing a pick-up near to the bridge of an electric guitar produces a brighter

and more nasal sound and placing it nearer the middle of the string produces a more
hollow sound, then placing TAO microphones near to or far away from locked cells
(usually) has a similar effect. By far the best way to see what kind of spectral

response will be obtained at a particular location on an instrument is to look at an

animation of the instrument as the waves actually propagate. Visual feedback is

useful for determining which parts of an instrument should be locked and damped

so as to achieve the desired vibrational patterns.

Other factors to take into consideration

Performers often talk of high quality musical instruments seeming to `sing' well

without much effort being required on the part of the performer. Such subtleties have

traditionally been the concern of acoustic instrument makers but with a system such

as TAO, the same factors apply to the construction of virtual instruments. There

are many factors to consider such as carefully choosing components which give an
instrument the desired formants and which tend to vibrate in sympathy with, rather

than fighting against each other. Once again the graphic animations prove invaluable

in finding the right combinations of components. There is still much work to be done

in understanding the relationship between an excitation model such as the bowing

model provided and the instrument it is applied to. Applying a virtual bow to a

stringed instrument with characteristics similar to those of a traditional stringed

A. 4 Some rules of thumb for instrument design 185

instrument is one thing, but applying it to a completely different instrument will

not always produce sensible results. In particular bowing an inharmonic instrument

causes some difficulty because there can be no near-periodic Helmholtz behaviour as

there is with a string. By far the best approach to take and the one that has been

adopted throughout the development of the system is to `try it and see/hear what

happens'.

It has been found experimentally that there are two main causes of dull and life-

less sounds. For continuously excited sounds such as bowed strings the amount of

damping applied to the ends of a string in particular is critical. Too much damping

and the instrument becomes too stable, too little damping and the instrument be-

comes too unstable. The attractor of a dull sound often remains too static whereas

a lively sound gives rise to an attractor which constantly shifts and changes shape.

The other main factor is that instruments with uniform damping applied to every

point often sound uninteresting. Natural sounds almost always show a correlation

between amplitude and spectral brightness, and spectral evolution is strongly sug-

gestive of energy dissipation. Therefore a sound whose spectral content remains

the same throughout its duration is not usually very interesting. Of course we can

make this spectral and amplitude decay occur over a fraction of a second or several

minutes depending on the damping coefficients or decay times chosen, so we do not

have to stick to realistic decays.

The overall sound texture required in a sound determines the basic decay times

of the various components used and the type of score algorithm. In addition to

the basic decay time of each individual component in an instrument we can alter

each component's spectral evolution characteristics by damping local regions. We

have seen how to simulate iterative events using TAO's score language (see section

5.5.5), and it should be possible to create sound events such as shattering sounds
by simulating the effects of multiple independent bouncing objects, started off in

synchrony but with individual time intervals between bounces etc. In chapter 7a

brief discussion introduced the notion of making the score's behaviour, and hence

the macrostructure of a sound event, dependent upon the moment to moment be-

haviour of the instruments controlled by the score, thereby introducing feedback

and a causal connection between micro- and macrostructure. This technique has

not been explored to any great extent due to lack of time but it will almost certainly

186 A. A brief user manual

lead to the most complex and interesting sound events.

Appendix B

TAO script language reference

manual

This appendix serves as a reference manual for TAO's script language, working

through the various features one by one and describing the syntax of each. Wherever

instrument, microphone or cell messages can take a variety of forms each expecting

a different number of arguments, each version of the message is explained together

with the meanings of the various arguments.

B. 1 Instrument declarations
Valid instrument declarations take one of the following forms:

(1) String name: freq, decay;

messages

(2) Rectangle name: xfreq, yfreq, decay;

messages

(3) Circle name: freq, decay;

messages

(4) Ellipse name: xfreq, yfreq, decay;
messages

187

188 B. TAO script language reference manual

(5) Triangle name: xfreq, yfreq, decay;

messages

Name consists of a string of alphanumeric characters and optionally underscores, as

do all the identifiers used to refer to microphones and parameters within the script.

String and Circle declarations require only a single frequency freq, determining

the length of the string or the diameter of the circle respectively. For all other

instruments two frequencies, xfreq and yfreq, are required, determining the size of

the instrument in the x and y directions (see section 4.5 for an explanation). The

decay argument specifies the overall decay time for the instrument and is converted

into a damping value which is written to all the cells in the instrument. The messages

contained within the body are separated by semicolons and are optional. Messages

may be sent to an instrument from either inside or outside an instrument declaration.

The syntax for each differs though. Within the body of an instrument declaration

a message does not need to specify the name of the instrument it is being sent to.

This is illustrated with the following examples:

(1) Rectangle r:
500 Hz, 75 Hz, 12.5 secs;
lockcorners;
setdecay(left, 1/10, bottom, top, 0.1 secs);

(2) Rectangle r:
500 Hz, 75 Hz, 12.5 secs;

r. lockcorners. setdecay(left, 1/10, bottom, top, 0.1 secs);

(3) r. lockcorners;
r. setdecay(left, 1/10, bottom, top, 0.1 secs);

(1), (2) and (3) are all equivalent. A string of messages can be sent at once by

appending them to the instrument's name separated by periods as in (2) or each can
be sent to the instrument independently as in (3).

B. 2 Pitch nomenclature 189

B. 2 Pitch nomenclature

Pitches or frequencies may be specified in any of the following forms:

(1) <note name><octave number><microtonal modification>

(2) pitch (octave. semitone)

(3) frequency Hz

The triangular brackets in (1) indicate that there are no spaces or any other sep-

arating characters between the note name, octave and microtonal modifier. Note

names are the letters C, D, E, F, G, A, B optionally followed by either a# or b

indicating a sharp or flat. The octave number is an integer, with eight representing

the octave containing middle C. The microtonal adjustment consists of a+ or -

followed by a fraction of the form a/ b which represents the fraction of a semitone to

add or subtract from the pitch specified. For example: -

C8 middle C

C#7 CO below middle C

Ab8 Ab above middle C

F#8+1/2 FO plus a quarter tone above middle C

B7 B below middle C

The second pitch notation shown in (2) consists of the keyword pitch followed by

a decimal number enclosed in brackets. The integer part specifies the octave whilst

the decimal part is interpreted as an integer between zero and eleven and specifies

the semitone within that octave. The examples below illustrate this more clearly.

Note that if the decimal part contains more than two digits then the first two are

interpreted as an integer whilst the remaining digits are interpreted as a fraction of

a semitone.

pitch(8.00) =ý- middle C

pitch(7.01) =C below middle C

pitch(8.08) Ab above middle C

190 B. TAO script language reference manual

pitch(8.065) F0 plus a quarter tone above middle C

pitch(7.11) B below middle C

B. 3 Instrument messages

This section contains detailed descriptions of the various valid messages which can be

passed to any instrument. Some of the messages are overloaded 1 and the appropriate

version of a message is invoked automatically according to the number and type of

the arguments given in the TAO script.

B. 3.1 Setting an instrument's decay time

Setdecay and resetdecay enable an instrument's damping coefficient to be set in

terms of a decay time. There are four overloaded versions of the message and each

one provides a different way of specifying the region of the instrument affected:

(1) setdecay(left, right, bottom, top, decaytime)

(2) setdecay(left, right, decaytime)

(3) setdecay(x, decaytime)

(4) setdecay(decaytime)

(1) is intended for use with two-dimensional instruments and specifies a rectangular

region whose decay time is altered. (2) and (3) are designed for use with strings and

allow the region to be specified either as two x coordinates left and right, representing

the left and right endpoints of the region, or a single point. Finally (4) works for

any instrument and enables the decay time to be changed across the whole surface

of the instrument. All coordinates should lie between zero and one.

Setting the decay time doesn't always have the effect which the user may intend.

The precise effect is dependent on the size of the region chosen in relation to the

size of the instrument. If the whole instrument receives a new decay time then the

decay time specified has the correct effect. If however only a small region of the
lA function is overloaded if there exist several versions with the same name, each expecting

different numbers of arguments and possibly different argument types

B. 3 Instrument messages 191

instrument has its decay time modified, then even if those cells affected would decay

over the correct time interval if vibrating in isolation, when connected to the mass

of cells which have a different decay time the effect of this local damping may be

completely swamped. The decay time given should not be taken too literally.

The next set of messages mirror the ones just described but enable an instrument's

decay time to be reset to the default value specified when it was created. The

arguments expected by each version of the message are the same as for the above

messages except for the omission of the original decay time, which the instrument

itself keeps a record of.

(1) resetdecay(left, right, bottom, top)

(2) resetdecay(left, right)

(3) resetdecay(x)

(4) resetdecay()

B. 3.2 Setting an instrument's damping coefficient

The next four message are identical to the setdecay messages except for the fact

that the damping coefficient is given as a percentage, where 0% means that there

is no frictional force to slow the cells down and 100% means that the cells will not

move if a force is applied:

(1) s etdamping (left, right, bottom, top, coeficient%)

(2) setdamping(left, right, coeficient%)

(3) setdamping(x, coefficient%)

(4) s etdamp ing (coeficient%)

The comment above about the effect of damping various sized regions also applies to

setting the damping as a percentage. If a large region is damped then it will have a
big effect on the instruments vibrational patterns, whereas a small region will have

less effect. The most reliable way of determining the damping coefficient is though

experimentation. As with the setdecay messages there are four equivalent messages

192 B. TAO script language reference manual

to reset the damping coefficient to its original value. These messages have identical

functionality to the four resetdecay messages but are included for purposes of

consistency.

(1) resetdamping(left, right, bottom, top)

(2) resetdamping(left, right)

(3) resetdamping(x)

(4) resetdamping()

B. 3.3 Locking parts of an instrument

The next set of messages enable regions of an instrument to be locked and require

no arguments:

(1) lockleft

(2) lockright

(3) locktop

(4) lockbottom

(5) lockperimeter

(6) lockcorners

(7) lockends

The behaviour of lockleft, lockright, locktop and lockbottom is straightfor-

ward for rectangular instruments, simply locking whole sides of the instrument. For

other instruments only the cells located at the extremities of the instrument are

locked. The lockcorners message is intended for use with rectangular and triangu-

lar instruments and lockends is for use with strings. The lockperimeter message

is only useful for instruments other than strings.

There are three overloaded versions of the lock message which allows the user to

specify the region of an instrument to be locked. (1) allows a rectangular region to

be specified in the same manner as for setdecay and setdamping; (2) allows a single

B. 4 Nomenclature for accessing parts of instruments 193

point to be specified with a pair of x and y coordinates; and (3) expects a single x

coordinate specifying a point on a string.

(1) lock(left, right, bottom, top)

(2) lock(x, y)

(3) lock(x)

B. 3.4 Accessing points on an instrument

The notation for accessing points on an instrument consists of the instrument name

followed by a set of coordinates in brackets. For strings only a single x coordinate is

required. For two dimensional instruments both an x and y coordinate are necessary:

(1) instrl (x)

(2) instrl (x, y)

The coordinates are always normalised to be between zero and one. For x, zero and

one represent the left and right hand sides of the instrument respectively regardless

of the instruments shape. For y, zero and one represent the bottom and top of

the instrument respectively. Selecting a point on an instrument using this notation

returns a reference to an individual cell whose various physical attributes can either

be read or altered.

B. 4 Nomenclature for accessing parts of instruments

The keywords left, right, bottom and top are provided and when used within in-

strument messages, or anywhere else within a script, are replaced by the appropriate

numerical value of either zero or one. They are provided for script legibility.

B. 5 Cell attributes of interest to the user

Each cell has a number of attributes which are of direct relevance in developing

interesting new excitation models and can be accessed by the user. These include:

(1) position

194 B. TAO script language reference manual

(2) velocity

(3) force

(4) mass

All are measured in arbitrary numerical units. The force variable is usually only

altered via the cell messages described in the next section although the user can set

the force acting upon a cell directly within a score if required. The mass of each

cell is set by default to a value of 3.5 which gives the material optimum frequency

response. Under no circumstances should the mass of a cell be set to less than this

value.

The mass can be set to any value greater than 3.5 though and the best way to use

this technique is by experimentation since there is no simple one to one relationship

between the mass of a cell and the sonic effect it will have on an instrument. The

only rule of thumb is that a cell with a high mass will have more inertia and will

therefore move more slowly than a cell with a low mass. In practice this means the

cell with the higher mass will have a preference for lower frequency vibrations. See

sections 6.7.3 and C. 4 for practical examples of the use of this technique.

All of these attributes can be used either as input or output parameters, so for

example we can set the force acting upon a cell or we can simply read it off and use

the value elsewhere in another expression. When assigning new values to these cell

attributes some care has to be taken since if we suddenly move a cell to a completely

new position without updating its velocity and force accordingly we can expect some

strange transient behaviour to appear in the material. Assuming the existence of

two instruments strings and recta then all the following are valid script fragments:

(1) stringi(x). position=0;

(2) If rectl(x, y). velocity > 2.5: body ...

(3) stringl(x). force*=rectl(x, y). velocity/10.0;

B. 6 Cell messages 195

B. 6 Cell messages

Once selected using the notation described in section 5.4.8, a cell can be sent various

messages, which in the current version of TAO include applyforce and bow:

(1) instri (x , y) . applyf orce (force) ;

(2) instrl(x, y) bow (downward force, velocity) ;

The arguments to both of these messages are measured in arbitrary numerical units.
For applyforce the force applied can be of any magnitude and within a single score
it is the relative magnitudes of the forces used which are of greater importance.

Applying a force of one or one million to an instrument only affects the magnitude

and not the character of vibrations. In other words unlike most physical materials

the cellular elastic material does not sound brighter if we hit it harder. It only

sounds brighter if we hit it more sharply i. e. a higher force is applied over a shorter

time interval. For the bow message the parameters are more critical and the user

should refer to sections 6.7.1,6.7.2 and appendix C for examples of sensible values

to use as starting points.

B. 7 Microphone declarations

A microphone declaration takes one of the following forms:

(1) Microphone name: outfilename, mono;

(2) Microphone name: outfilename, stereo;

(3) Microphone name: outfilename, source;

(4) Microphone name: outfilename, leftsource , rightsource;

Name specifies the name of the microphone, i. e. the identifier with which it is

referred to throughout the script and outfilename specifies the name of the output
file to which the sound samples are sent. The sound samples are initially written
to this file in raw floating point format and must be converted to a . aif or similar

soundfile format using a separate post-processing program float2aiff which also

196 B. TAO script language reference manual

normalises the samples to achieve maximum dynamic range and then writes them

to a standard . aifj`'file. This program is described in appendix G.

In the present implementation only mono and stereo microphones are allowed. In

the case of (1) and (2) above, the sources for sound output are left to be determined

within the score. The way in which this is achieved is described in 5.5 and the fea-

ture is included to enable microphones to be moved around during a performance.
In order to achieve continuously variable microphone positions some kind of inter-

polation between cells is required. This feature is not yet implemented but it would

not be a very serious task to do so.

B. 8 Microphone messages

A microphone object's purpose in life is to take floating point samples generated by

arbitrary mathematical expressions, buffer them, and write them to an output file.

In order to do this three messages are provided:

(1) leftout: expression;

(2) rightout: expression;

(3) output : expression;

(3) is used with a mono microphone. These messages will only generate output

samples if placed at a scope within the score where they are active. For example:

Score 10 secs:
Before 5 secs:

micl. leftout: expression;
micl. rightout: expression;

lo,

will cause micl to generate sound samples only from zero to five seconds.

Note that the notation message: expression; is exactly equivalent to message(exp.

ression); and either form can be used. In this case though the expressions used

to generate output samples can often involve many different points on different

B. 9 Glueing and joining 197

components of an instrument and the non-bracketed syntax is more legible. Also in

terms of visual style this syntax is more in keeping with the use of colons elsewhere
in a script.

B. 9 Glueing and joining

There are several different forms of the Glue command to allow for various combi-

nations of one and two-dimensional instruments:

(1) Glue instrl(xi, yi) to instr2(x2, y2);

(2) Glue instrl(xl) to instr2(x2, y2);

(3) Glue instrl(xl, yl) to instr2(x2);

(4) Glue instrl(xi) to instr2(x2);

Join on the other hand only appears in one form with four arguments paired into

coordinates for each instrument. In combination, these coordinates specify where

the join is to occur:

Join instrl(xl, yl) to instr2(x29 y2)

The arguments x1, yl, x2, Y2 are interpreted the following way (remember that the

keywords left, right, bottom and top are provided also):

If x1 =0 and x2 =1 then join left of instrl to right of instr2

If xl =1 and x2 =0 then join right of instrl to left of instr2

If x1 =0 and x2 =0 then join left of instrl to left of instr2

If xl =1 and x2 =1 then join right of instrl to right of instr2

If yl =0 and y2 =1 then join bottom of instrl to top of instr2

If yl =1 and y2 =0 then join top of instrl to bottom of instr2

If yl =0 and y2 =0 then join bottom of instrl to bottom of instr2

If yl =1 and y2 =1 then join top of instrl to top of instr2

198 B. TAO script language reference manual

If xl and x2 are both equal to either zero or one then the join runs vertically and the
left or right sides of the two instruments are joined. In this mode yi and Y2 are used
to specify a horizontal centre line running through both instruments in order to line

them up for the join. If however yl and Y2 are both equal to either zero or one, then

the join runs horizontally and xl and xz are used to specify a vertical centre line in

order to line the instruments up. For a join to take place either xl and xz or yl and

y2 have to be equal to either zero or one simultaneously.

In the following examples only (1), (2) and (3) lead to insirl and instr2 being joined

together. (1) is straightforward and joins the left hand side of instrl to the right
hand side of instr2lining up two points one halfway up insir, the other 0.7 of the way

up instr2. (2) is similarly straightforward but shows that a join may occur between

two left sides or right sides etc. In (3) x1, x2, yl and y2 are all equal to either one or

zero but in this case xl and x2 are tested first and are thus interpreted as specifying

the sides to be joined, leaving yl and y2 to specify the centre line.

(1) Join instrl(left, 0.5) to instr2(right, 0.7)

(2) Join instrl(right, 1/10) to instr2(right, 7/10)

(3) Join instri(right, top) to instr2(left, top)

(4) Join instri(0.2,0.5) to instr2(0.7,0.3)

For further examples and a graphical explanation of the arguments to Join see

section 5.4.7.

B. 10 Time nomenclature

There are three units of time supported by the script language seconds, milliseconds

and minutes:

time secs

time cosecs

time min

The time t can be a constant, a parameter or a whole expression in which case it

is safest to enclose the whole expression in parentheses and then put the units of

B. 11. Performance parameters 199

measurement after the whole parenthesised expression.

The system variable Time keeps a track of real time measured in seconds and can
be used anywhere within the score. Another system variable Sample keeps track of

the number of time steps elapsed since the beginning of the performance, although

the user should never have cause to access this variable and should certainly never

assign it a new value.

B. 11 Performance parameters

Parameters are floating point variables any number of which the user can declare.

A parameter declaration comes in the following form:

Parameter p1=a, p2=b,. -, p�=n;

The initial values a, b .. n may be constants or expressions possibly involving other

parameters already declared and initialised, and are optional.

B. 12 Score control structures

The score represents a hierarchical structure dividing the total time allotted for a

performance into separate time intervals. Each time interval or instant in time spec-

ified represents an event of some kind. Simple events such as setting a parameter's

value or locking a point on an instrument need only occur at an instant in time

whilst others such as excitations occur over intervals of time.

The building blocks from which a score is constructed are referred to as control

structures. A score starts off with the Score control structure which sits at the top

of the hierarchy and specifies the duration of the performance:

Score duration:

Other control structures include:

(1) At start time for duration: body ...

(2) From start time to end time: body
...

200 B. TAO script language reference manual

(3) Before end time: body ...

(4) After start time: body
...

(5) At time: body ...

(6) Every interval: body ...

(7) ControlRate interval in samples: body ...

(8) If condition: body ...

(9) If condition: body 1 ...
Else: body 2 ...

(10) If cond 1: body I ...
ElseIf cond 2: body 2 ...
ElseIf cond 3: body 3 ...

Else: body n

The special variables start and end are used within the score for two purposes,

firstly to allow code within the body of a control structure to refer to the start and

end times specified by the head. This is useful for executing instructions just once

at the beginning or end of a time interval using the forms:

At start: body ...
At end: body ...

The second use is for the special time varying functions linear and expon described

in the next section.

The next example explicitly shows how the values start and end change throughout

a score consisting of nothing but nested control structures:

start end

0 10 Score 10 secs:
02 At 0 secs for 2 secs:
02...
03 Before 3 secs:
03...
27 From 2 secs to 7 secs:
24 Before 4 secs:

B. 13 Mathematical expressions

2 4 ...
5 7 After 5 secs:
5 7 ...
2 7 ...
5 10 After 5 secs:
5 10 ControlRate 100:
5 10 ...
5 10 Every 0.1 secs:
5 10 ...
5 10 ...
0 10 ...

201

When start and end are accessed within the body of an At.. for, From. . to, Before

or After control structure, their values change to reflect the more local start and

end time whereas when they are accessed within a ControlRate or Every structure

their values are left unaltered.

B. 13 Mathematical expressions

All the standard mathematical operators one would expect such as +, -, * and / are

available. In addition to the standard assignment operator = there are four other

assignment operators inherited from C++ +_, -_, *= and /= which are used in the

following way:

(1) parameter += expression

(2) parameter -= expression

(3) parameter *= expression

(4) parameter /= expression

For example += adds the value of expression to the value held in parameter and then

stores the value back in parameter. The other operators work in a similar fashion.

B. 14 Mathematical functions

A variety of standard mathematical functions are available for use within a script.
These are inherited from C++ and include the following, taken straight from the

IRIX 5.3 manual page for the standard maths library:

202 B. TAO script language reference manual

acos(x) inverse trig func
acosh(x) inverse hyperbolic func
asin(x) inverse trig func
asinh(x) inverse hyperbolic func
atan(x) inverse trig func
atanh(x) inverse hyperbolic func
atan2(x, y) inverse trig func

cbrt(x) cube root
cos(x) trig func
cosh(x) hyperbolic func
drem(x) remainder
exp(x) exponential
expml (x) exp(x)-1
fabs(x) absolute value
fceil(x) integer no less than
floor(x) integer no greater than
cos(x) trig func
cosh(x) hyperbolic function

exp(x) exponential
expml(x) exp(x)-1
hypot(x, y) Euclidean distance
log(x) natural logarithm
log10(x) logarithm to base 10
loglp(x) log(1+x)

pow(x) exponential x**y
rint(x) round to nearest integer

sin(x) trig func
sinh(x) hyperbolic func

sqrt(x) square root
trunc(x) truncate to integer
tan(x) trig func
tanh(x) hyperbolic func

Manual pages for each individual function are available with IRIX 5.3.

In addition to the mathematical functions described, two special time varying func-

tions linear and expon are provided. These functions come in the following form:

linear(initial, final) changes linearly from initial to final
expon(initial, final) changes exponentially from initial to final

Ordinarily with such functions we would have to specify the time interval over which

they were supposed to change but in a TAO score these two values are implicitly

specified by the values of start and end described in the previous section. Since

the values of these two variables depend on their context within the score, linear

B. 15 Cell messages 203

and expon return a value which changes from initial value to final value over the

appropriate time interval. See section 5.5.2 for an explanation of how the values of

start and end are affected by their scope within the score.

B. 15 Text screen output

During a performance text can be sent to the output text window (via C++'s stan-

dard output stream) with the use of the Display command which is followed by

a list of items to be displayed, separated by commas. Displayable items include

character string constants such as "a string of characters", parameter values,

mathematical expressions and two special items newline and sameline which cause

a carriage return and linefeed or just a carriage return respectively.

Display iteml, item2, .., itemn;

204 B. TAO script language reference manual

Appendix C

Sound examples

This appendix contains the scripts which were used to generate the TAO sound

examples. The TAO system has been set up such that the cellular material is capable

of producing vibrations covering (almost) the whole audible spectrum. For example,

supposing we want to create a TAO string with a fundamental frequency of 100 Hz.

In order to achieve this frequency we can either use a large number of cells with

small masses or a smaller number of cells with larger masses. The former string will
have the same fundamental frequency as the latter but will exhibit a much better

frequency response, being capable of higher frequency modes of vibration. TAO is

`hard-wired' at the moment to always opt for maximum frequency response. The

disadvantage of this is that in order to create instruments with very low frequency

modes of vibration, we have to use very large numbers of cells, and this means more

computation and thus a longer wait for sounds to be produced.

For this reason, whilst all of the sound examples were produced directly by the

TAO scripts listed, and were recorded without the aid of any external audio effects,

some of them were composed `in miniature' with higher pitches and shorter time

intervals in the score, and were only later transposed down to lower pitches. This

technique has been applied to instruments containing large, two-dimensional pieces

of cellular material, for which the computational problem is more pronounced. These

transposed sounds, whilst illustrating quite nicely the coherence inherent in TAO's

output, do lack some definition in the higher frequencies. This problem will be solved
in the future either through the use of more powerful technology, or by modifying

205

206 C. Sound examples

TAO so that the user can decide upon the audio bandwidth required of the material.

C. 1 Sounds produced by a single string damped at one

end
// 1/ Script name: singleatring. script tracks 1-4

This script explores the effects of damping one end of a single TAO string
to varying degrees. The commented lines show the damping coefficients

// chosen. Note that the overall decay time of the string is infinite so it
does not behave like a real string. This makes the effect of the local
damping more pronounced, allowing us to concentrate on how it affects the

// strip s spectral decay.

String s:
110 Hz, 0 sets;
lockende;
setdamping(lett, right, 0%);

//s. setdamping(left, 1/20,0.01%); long decay track 1
//s. aetdamping(left, 1/20,0.1%); medium decay track 2
//s. setdamping(left, 1/20,1%); short decay track 3
//a. aetdamping(left, 1/20,10%); Y. short decay track 4

Microphone micl: dampedstring, stereo;

Score 20 secs:
At start for 0.6 msecs:

s(0.1). applyforce(10.0); // pluck the string

At 19 secs: s. setdamping(1eft, 1/5, O. 5%); ...
// damp it

micl. leftout: s(0.05);
micl. rightout: x(0.95);

Every 0.01 secs: Display Time, nevline; ...

C. 2 String harmonics
///

Script name: stringharms. script tracks 6-8

// This script simulates string harmonics. The overall decay time of the
string is set to be quite long and then the and of the string is
damped in order to alter the spectral decay response. This gives the

// instrument a more realistic string-like response. Finally, the string is
plucked and then after 2 seconds is damped at one of the modes (one of
the commented lines must be uncommented).

String s:
110 Hz, 0 seca;
lockende;
setdamping(leit, right, 0%);

s. sotdecay(60 sacs); overall amplitude decay of
// string quite long

s. setdamping(left, 1/20,0.05%); // spectral decay quite

Microphone eicl: harm, stereo;

Score 20 secs:
At start for 0.5 msecs:

s(1/17). applyforce(10.0);

At 2 sacs: s. setdamping(1/2,0.5%); ... 2nd harmonic track S
At 2 secs: s. setdamping(1/3,0.5%); ... 3rd harmonic track 6

// At 2 secs: s. sotdamping(1/4,0.5%); ... // 4th harmonic track 7

C. 3 Rectangular sheets joined together

At 2 secs: s. setdamping(1/5.0.5%); ...
// 5th harmonic track 8

At 19 secs: s. aetdamping(1eft, 1/5,0.5%); ...

micl. leltout: x(0.05);
micl. rightout: s(0.95);

Every 0.01 secs: Display Time, n. vlin.; ...

C. 3 Rectangular sheets joined together

207

This sound has been transposed down by a factor of 0.7256, equivalent to playing

the samples back at 32 Khz instead of 44.1 Khz.

///
Script name: joinsound. script track 9

// The instrument used in this sound example comprises six rectangular sheets
// joined together in the same kind of format as the example given in chapter
// six. Each rectangular sheet is given a long decay time but local regions

of three of the rectangles are damped locally to change the overall spectral
content as the sound evolves. The instrument is struck once and is then
left to follow its own behaviour.

//
// Output is taken from four pairs of points on the instrument represented by

the parameters 11. ri, 12, r2,13, r3,14 and r4. The final stereo signal
is generated by a continual process of crossfading between these individual
stereo signals. This is achieved by amplitude modulating the pairs of

// signals with sinusoidal signals of phase 0, pi/2, pi and 3*pi/2. The four
// sinusoidal modulation signals are phase locked and change from 10 Hz
// to 0.6 Hz over the duration of the performance.

Since the local regions of damping affect the spectral content of the
// signals and since the speed of crossfading slows down throughout, an

impression of energy dissipation is created.

LOTE: This sound example has shown up a bug in TAO. The rate at which the
// crossfading occurs should change smoothly throughout the performance but
// it seems to change in discrete steps instead, staying at one rate for
// about 10 or 11 complete crossfade cycles and then changing to a slower rate.
// At the time of writing this bug has not been traced.

Rectangle one: 100 Hz, 4000 Hz, 60 sacs; ... Rectangle two: 4000 Hz, 100 Hz, 60 sacs; ...
Rectangle three: 100 Hz, 4000 Hz, 60 secs; ... Rectangle four: 4000 Hz, 100 Hz, 60 sacs; ... Rectangle five: 4000 Hz, 100 Hz, 60 secs; ... Rectangle six: 100 Hz, 4000 Hz, 60 sacs; ...

Join one(left, top) to tvo(right, top);
Join two(right, bottom) to thres(left, bottom);
Join three(right, bottom) to four(left, bottom);
Join four(left, top) to one(right, top);
Join four(right. 1/3) to six(left, centre);
Join one(4.6/6, top) to five(centre, bottom);

one. lock(4/6,5/6,0,0);
three. lock(2/5,3/5,1,1);

five. setd0cay(left, right, 9/10, top, 1 sacs);
six. setdecay(9/10, right, bottom, top, I sacs);
four. setdecay(1eft, right, 9/10, top, 0.1 sacs);
four. setdecay(1eft, right, bottom, 1/10,0.1 secs);

Microphone in: joinsound, stereo;

Parameter pi2-3.141592653*2.0, crossfaderate;
Parameter pi=3.141592653;
Parameter phase2=pi/2.0, phase3=pi, phase4=pi*3/2;

Parameter angle=0.0;

Parameter 11,12,13,14;
Parameter ri, r2, r3, r4;

Score 20 secs:
At start for 10/44100:

five(1/2,9/10). applyforce(10.0);

208

five. label(1/2,9/10, -20,20, "excitation", BLUE);

crossfad. rat. -. xpon(10.0,1/2) Hz;

Every 0.1 secs:
Display
Display nevlins, "Time=", Time;
Display crossfaderate=", crossfaderate;
Display " 1=", 11;
Display " 2=". 12;
Display " 3=". 13;
Display 11 4=", 14, nevlins;

angle+np12scrossfaderats/audiorate;

11=tvo(1/2,0.7) " sin(angle);
r1=tvo(1/2,0.3) " sin(angle);

12-one(1/4,1/2) " sin(angle + phase2);
r2-three(1/4,1/2) " sin(angle + phase2);

13: three(3/4,1/2) " sin(angl" + phase3);
r3aone(right, 1/2) " sin(angle + phase3);

14=four(1/2,1/2) " sin(angle + phase4);
r4=six(0.8,1/2) " 11 Wangle + phase4);

m. leftout: 11 + 12 + 13 + 14;
m. rightout: ri + r2 + r3 + r4;

// This bit is only for the graphics

one. label(1/4, top, -10,15, "one", BLACK);
three. label (1/4, bottom, -10, -15, "three", BLACK);
tvo. label(1eft, 1/2, -30, -5, "two", BLACK);
four. label(right, 9/10,10, -5. "four", BLACK);
six. label(3/4, bottom, -10, -15, "six", BLACK);
five. label (1eft, 4/5, -40, -5, "five", BLACK);

C. Sound examples

C. 4 A prepared string buzzing against an obstacle
/// Script name: goodbuzz2. script track 10

// This sound uses a single string which is 'prepared' by increasing the masses
// of two of the cells to a value of fifty. The default mass of all cells when
// created is 3.6. This value is not arbitrary but makes the material

propagate waves as quickly as possible so as to achieve a good frequency
// response, Under no circumstances should a cell's mass be made less than 3.6
// or the model becomes unstable.

The string is excited with a simple impulse and then vibrates freely. except
that an obstacle is placed in its way, one third of the way along its

// length. The obstacles vertical position changes exponentially, over the
// twenty second duration of the score. Whenever the string's amplitude becomes
// greater than the obstacle's vertical position it I. limited to this value.
// Changing the obstacle's position exponentially ensures that the string

keeps hitting the obstacle, but only just making contact. Left and right
// channels of output are taken from either end of the stria

Strings: E6-1/2,2 min;

s. setdamping(left, 1/40,0.02%). lockleft;
s. setdamping(39/40, right, 0.02%). lockright;
s(3/4)-mass=60.0;
s(1/4). mass=60.0;

Microphone m: test, stereo;

Parameter obstacle position;

Score 20 secs:
Every 0.1 secs:

Display "Time=", Time, newline;

At start for 1 msecs:
s(0.1). applyforce(1.0);

S

C. 5 A dynamically prepared string buzzing against an obstacle 209

obstacle-position - "xpon(9.0,0.5);

After 1 secs:
If s(3/10). position > obstacle position:

s(3/10). position a obstacle-position;
s(3/10). velocity on -0.5;

If s(7/10). position > obstacle-position:
s(7/10). position - obstacle-position;
s(7/10) . velocity º. -0.6;

m. lsltout:. (0.05);
m. rightout: s(O. 95).

Track 11 provides another sound example which is a slight variation on the above.

C. 5 A dynamically prepared string buzzing against an

obstacle
///

Script name: strangebuzzl. script track 12

This sound is similar to the sound described in the script goodbuzz2. script
in that it uses a 'prepared' string in which the masses of several

// individual cells are altered from the default value. In this sound though
// the masses are altered dynamically throughout the performance. In addition

the string buzzes against an obstacle whose distance from the string
gradually decreases. This is a good example of quite an abstract TAO

// sound still havin ualities suggestive of gesture and texture.

String s: E6-i/2,2 min; ...

s. setdamping(left, 1/40,0.02%). lockleft;
s. setdamping(39/40, right, 0.02%). lockright;

Microphone micl: strangebuzzi, stereo;

Parameter obstacle-position,

Score 20 secs:
Every 0.1 secs:

Display "Time=", Time, nevline;

At start for 1 cosecs:
s(0.1). applyforce(10.0);

s(1/2). mass=linear(60,1600);
s(3/4). mass linear(3,1400);
s(1/4). mass linear(3,1200);

ControlRate 1000:
Display "mis", s(3/4). mass;
Display " m2=11, s(1/4). mass, nesline;

obstacle-position - linear(7.0,0.6);

After 1 secs:
If s(3/10). position > obstacle-position:

s(3/10). position a obstacle_position;
s(3/10). velocity S. -0.6;

If s(7/10). position > obstacle-position:
s(7/10). position - obstacle-position;
s(7/10) . velocity "- -0.5;

micl. leftout: s(O. 05);
miel. rightout: s(0.95);

210 C. Sound examples

C. 6 The effects of damping on a single rectangular sheet

These sounds have all been transposed down by a factor of 0.5, equivalent to playing

the samples back at 22.05 Khz instead of 44.1 Khz.

//
Script name: rectangle. script tracks 13-16

// A number of sound examples were generated with this script by either leaving
the rectangle uniformly damped or damping local regions. lots that because

// of the 60 minute decay time, this instrument does not behave like a normal
// percussion instrument. If struck it will ring on ad infinitum. The sounds

generated by damping local regions force certain partials to die away,
but the ones which are free to continue vibrating will do so indefinitely.

// Sound descriptions:
track 13: undamped rectangular sheet. Sound continues indefinitely with

// unchanging spectrum.
track 14: rectangle with some damping applied in top left corner. Most

of the partials are affected. Only a few of the higher partials
involving modes of vibration which do not touch the damped

// region are allowed to continue.
// track 15: rectangle damped at centre. A different set of partials are

affected this time.
track 16: rectangle damped along left hand edge. Once again affects virtually

/1 all partials, leaving only a few higher ones ringing.

lote: It is necessary in this case to apply two equal and opposite
impulses to the instrument as no points on the instrument are
locked and it would drift away from the zero position otherwise.

Rectangle r:
156 Hz, 200 Hz, 60 min;

track 13
//r. setdamping(left, 1/6,5/6, top, 0.07x); track 14
//r. setdamping(5/12,7/12,5/12,7/12,0.07%); track 15
//r. setdamping(left, 1/6, bottom, top, 0.01%); track 16

Microphone m: undamped_rect, stereo;

Score 15 secs:
At start for 0.1 msecs: r(0.25,0.25). applyforce(5.0);
At 0.2 msecs for 0.1 msecs: r(0.25,0.25). applyforce(-5.0);

Every 0.01 secs:
Display Time, newline;

w. leftout: r(0.05,0.05);
m. rightout: r(0.95,0.95);

C. 7 An illustration of implied motion, acceleration, im-

pact and decay

Track 17 is a composite of two sounds which were created directly from TAO scripts.

The first was produced by the `obstacle' technique described in section 6.7.3 and was

subsequently reversed. Another percussive sound produced with a large rectangular

sheet of material damped in one corner was then appended onto the end of the

first. The sound builds up from nothing, gradually accelerated and becoming more

agitated until a crescendo is reached, at which point the impact of the second sound
is heard followed by a gradual decay. This sound illustrates the ability of TAO to

C. 8 A single bowed string 211

create sounds which strongly suggest motion, acceleration and a physical cause, at
the same time as being abstract in nature.

C. 8 A single bowed string
//

Script name: highbov. script track 18

This sound is fairly synthetic in nature as the instrument only comprises
// a single string but nevertheless illustrates the use of a virtual bow. The
// way in which the bow's velocity and downward force change in the first few

tenths of a second is quite critical for the kind of transients produced.
// Things to experiment with include the maximum velocity of the bow, the

force, and the amounts of damping at the ends of the string. Too little
damping produces very noisy sounds whereas too much produces sounds which

// are too periodic and thus not very interesting. Things to try include
glueing one end of the string to some other instrument and taking output
from this resonator instead of from the string.

//
String sl: C8,5 sacs; ...

sl. lockends;
sl. setdamping(left 4/20,0.7%);
al. setdamping(19/20, right, 0.7%);

Microphone m: highboy, stereo;

Parameter bovforce=1.0, bovvelocity;
Parameter vibratodepth;

Score 9 secs:
From 0 secs to 2 secs: vibratodepth-linear(0,1/100); ... After 2 secs: vibratodepth-linear(1/100,0); ...

si. vibrato(5 Hz, vibratodepth);

At 0 sacs for 0.2 sacs:
bowvelocity-expon(0.01,1.0);

From 0.2 secs to 4 secs:
bovvelocity-linear(1.0,5.0);

From 4 secs to 8 secs:
bowvelocity-linear(5.0,1.0);

At 0 secs for 8 secs:
sl(0.3). bow(bovforce, bovvelocity);

m. leftout: sl(0.05);
m. rightout: sl(0.95);

Every 0.1 secs:
Display "Time-", Time, newline;

C. 9 A stringed instrument with pairs of strings bowed

together

This sound has been transposed down by a factor of 0.7256, equivalent to playing

the samples back at 32 Khz instead of 44.1 Khz.

//
// Script name: bowreson. script track 19
//

This sound uses a stringed instrument with four strings and a rectangular
// resonator to which they are glued. The resonator's dimensions were chosen

212 C. Sound examples

partly through experimentation and partly because a long thin rectangular
// strip of material is not too computationally expensive. The strings are

bowed in pairs with varying bow velocity but fixed bow force. The most
// critical parameters in this script are the amounts of damping applied to

the ends of the strings, the overall decay time of the resonator, the
// maximum bow velocity, and the initial attack of the bow's velocity.

String s1: 100 Hz, 10 secs; lockleft; ... String s2: 150 Hz, 10 secs; lockleft; ... String s3: 225 Hz, 10 secs; lockleft; ... String s4: 337.6 Hz, 10 secs; lockleft; ...

Rectangle resonator: 1800 Hz. 160 Hz, 0.5 secs;

Glue sl(right) to resonator(1/10,1/6);
Glue e2(right) to resonator(1/10,2/6);
Glue s3(right) to resonator(1/10,3/5);
Glue s4(right) to resonator(1/10,4/5);

resonator. locktop. lockbottom;
resonator(1/2,1/2). mass=b0.0;

sl. setdecay(1eft, 1/30,0.03 secs). display_at(0,50);
s2. setdecay(left, 1/30,0.03 secs). display_at(0,100);
s3. setdecay(left, 1/30,0.03 sacs) . display_at(0,150);
s4. setdecay(left, 1/30.0.03 secs). display_at(0,200);
sl. setdecay(29/30, right, 0.03 secs);
s2. setdecay(29/30, right, 0.03 sacs);
s3. setdecay(29/30, right, 0.03 sacs);
s4. setdecay(29/30, right, 0.03 sacs);

resonator. display-at (0,320);
resonator. amplification-50.0;
resonator. setdecay(left, 1/10, bottom, top, 0.03 secs);

Parameter bovforce, bovveloc, maxbovveloc, bovposition;
Parameter p;

Microphone mic: bowtestb, stereo;

Score 15 secs:
Every 0.1 secs:

Display "Time-", Time, nevline;

At start:
bowforce=1;

At 0 secs: maxbovveloc=1; bovpositiono. 1; bovforce 1.0; ...
// bow first pair of strings together

At 0 secs for 3 secs:
At start for 0.1 sacs: bovveloc=expon(0.01, aaxbovveloc); ... After start + 0.1 secs: bovveloc expon(maxbovveloc, 0.1); ...
s3(bovposition). bov(bovforce, bovveloc);
s4(bovposition). bov(bovforce, bovveloc);

// bow second pair of strings together

At 4 seta for 3 sets:
At start for 0.1 secs: bovveloc-expon(0.01, waxbovveloc); ... After start + 0.1 secs: bovveloc=expon(maxbovveloc. 0.1); ...
s2(bovposition). bov(bovforce. bovveloc);
s3(bovposition). bov(bovforce, bovveloc);

// bow second pair of strings together

At 8 secs for 3 secs:
At start for 0.1 secs: bovveloc. expon(0.01, maxbovveloc); ... After start + 0.1 secs: bovveloc=expon(maxbovveloc, 0.1); ...
sl(bovposition). bov(bovtorce, bovveloc);
s2(bovposition). bov(bovtorce, bovveloc);

mic. leftout: resonator(1/3,19/20);
mic. rightout: resonator(1/3,1/20);

C. 10 Sounds based on instruments with tuned circular components 213

C. 10 Sounds based on instruments with tuned circular

components

These sounds have all been transposed down by a factor of 0.3628, equivalent to

playing the samples back at 16 KHz instead of 44.1 KHz.

//
Script name: circles. script tracks 20-25

// This set of sounds were all produced with the same basic instrument
// described in section 6.4 consisting of six tuned circular components

'one', 'two', 'three', 'four', 'five' and 'six', linked together by
// one-dimensional resonators 'links-12' which are in turn glued to two

common one-dimensional resonators called 'resonatorl' and 'resonator2'.
// Components 'linkl-6' each have one end glued to the centre of each circle
// and the other glued to evenly spaced points on 'resonators', whilst
// 'link7-12' each have one end glued near the top of each circle and the

other glued to similarly spaced points on 'resonator2'.

The sounds are created by striking each circular component but the precise
score algorithm used requires some explanation. A continuous stream of

// impacts are generated as if two objects were bouncing with over decreasing
// height on the circular components. As soon as their height drops below a
// certain threshold, they are taken up to a greater height and dropped again,

repeating the whole process. A number of parameters are involved:

x, y: the x and y position at which the impact will occur on the
chosen circular component. These are set at the beginning of
each impact.

// force: the force exerted on the circular component chosen by the
// bouncing object. This is set at the beginning of each stream
// of bounces and is multiplied by 'factor' thereafter until

the bouncing object has run out of energy at which point it
is set to a new larger value again.

// now: the time at which the next impact is due or the current impact
started. Incremented by 'interval' at the end of each impact.

interval: the time interval to the next impact.
// factor: the factor by which both 'force' and 'interval' are multiplied
// after each impact in order to simulate the impacts getting

progressively closer together and weaker.
// which: takes a value 1-6 and specifies which circular component the

impact will occur with.

Each of these parameters is actually an array of size 2 since there are
// two identical objects performing accordin to the same algorithm.

Circle one: C9,0.5 secs; lockperimeter; ... Circle two: DA9,0.6 secs; lockperimeter; ... Circle three: E9,0.5 secs; lockperimeter; ... Circle four: F#9,0.5 secs; lockperimeter; ... Circle five: Ab9,0.5 secs; lockperimeter; ... Circle six: A9,0.6 secs; lockperimeter; ...
String links: 3000 Hz, 0.1 secs; display_at(50,300); ... String link2: 3000 Hz, 0.1 secs; display_at(100,300); ... String link3: 3000 Hz, 0.1 secs; display_at(150,300); ... String link4: 3000 Hz, 0.1 secs; display_at(200,300); ... String links: 3000 Hz, 0.1 secs; dicplay_at(250,300); ... String link6: 3000 Hz, 0.1 secs; display_at(300,300); ...

String link7: 3000 Hz, 0.1 secs; display_at(50,300); ... String link8: 3000 Hz, 0.1 secs; display_at(100,300); ... String link9: 3000 Hz, 0.1 secs; dicplay_at(150,300); ... String linklO: 3000 Hz, 0.1 secs; display_at(200,300); ... String linkil: 3000 Hz, 0.1 secs; dicplay_at(250,300); ... String linkl2: 3000 Hz, 0.1 secs; display_at(300,300); ...
String resonatorl: 200 Hz, 0.5 secs; display_at(50,400); ... String resonator2: 200 Hz, 0.5 secs; dicplay_at(50,400); ...
Glue one(1/2,1/2) to linkl(left);
Glue tvo(1/2,1/2) to link2(left);
Glue three(1/2,1/2) to link3(left);
Glue four(1/2, i/2) to link4(left);
Glue five(1/2,1/2) to link5(left);
Glue six(1/2,1/2) to link6(left);

Glue one(1/2,1/10) to link7(left);
Glue two(1/2,1/10) to link8(left);

214

Glue three(1/2,1/10) to link9(left);
Glue four(1/2,1/10) to linklO(left);
Glue five(1/2,1/10) to linkii(left);
Glue six(1/2,1/10) to linkl2(left);

Glue resonatorl(1/7) to linki(right);
Glue resonatorl(2/7) to link2(right);
Glue resonatorl(3/7) to link3(right);
Glue resonatorl(4/7) to link4(right);
Glue resonatorl(5/7) to link5(right);
Glue resonatorl(6/7) to link6(right);

Glue resonator2(1/7) to link7(right);
Glue resonator2(2/7) to link8(right);
Glue resonator2(3/7) to link9(right);
Glue resonator2(4/7) to linklO(right);
Glue resonator2(5/7) to linkll(right);
Glue resonator2(6/7) to linkl2(right);

resonatorl. setdamping(left, 0.05,5%);
resonatorl. setdamping(0.95, right, 5%);
resonator2. setdamping(1eft, 0.05,5%);
resonator2. setdamping(0.95, right, 5%);

Microphone micl: voodencirclesa, stereo;
Microphone mic2: voodencirclesb, stereo;

Parameter x[2] y[2], force[2], nov[2), interval[2], factor[2];
int i, vhich[2j;

for (i=O; i<2; i++)
{
now[i]=0 Seca;
force[i]=random(50,100);
interval[i]=random(100,300) msecs;
factor[i]=1.0-1.0/random(5,20);
}

Score 20 seta:
ControlRate 100:

Display Time, nevline;

Before 17 secs:

At now[0] for 0.2 msecs:
At start:

x[0]=random(0.1,0.9);
y[0]srandom(0.1,0.9);
which [0]=randomi(1,6);

At end:
now[O] +u interval[O];
interval[0] "s factor[O];
force[0] "- factor[0];
If interval[0] < 10 msecs:

interval [0]-random (100,300) msecs;
factor [0]=1.0-1.0/random(b, 20);
force [0]=random (50,100);

If vhich[0]==1: one(x[0], y[0]). applyforce(force[0]); ... If which[0]==2: tvo(x[0], y[O]). applyforce(force[0]); ... If which[O]==3: three(x[0], Y[O]). applyforce(force[0]); ... If which[0]s-4: four(x[0], y[0]). applyforce(force[0]); ... If which[0]==5: five(x[0], Y[0]). applyforce(force[0]); ... If vhich[O]==6: six(x[0], yL0]). applyforce(force[0]); ...

At now[1] for 0.2 msecs:
At start:

x[1]=random(0.1,0.9);
y11]=random(0.1,0.9);
which[1]=randomi(1,6);

At end:
now[1] += interval[1];
interval[s] += factor[1];
force Ei] += factor[1];
If interval[1] < 10 msecs:

into rval[1]-random (100,300) msecs;
factor [1]1.0-1.0/random(5,20);
force [I]=random (50,100);

C. Sound examples

C. 10 Sounds based on instruments with tuned circular components 215

If which[1]==1: one(x[1], y[1]). applyforce(force[1]); ...
If which[1]==2: tvo(x[l], y[1]). applyforce(force[1]); ...
If which[1]==3: three(x[i], y[I]). applyforce(force[1]); ...
If which[1]==4: four(x[1], yll]). applyforce(force[1]); ...
If which[1]==5: five(x[1]. y[1]). applyforce(force[1]); ...
If which[1]==6: six(x[1], yl1]). applyforce(force[1]); ...

mici. leftout: resonatorl(0.1);
micl. rightout: resonatorl(0.9);
mic2. leftout: resonator2(0.1);
mic2. rightout: resonator2(0.9);

216 C. Sound examples

Appendix D

Synthesis model implementation

D. 1 Introduction

This appendix describes how the synthesis engine is implemented. Instruments,

microphones and cells are all implemented as object classes in C++, and whilst

the implementation code itself can be found in appendix G, we concentrate here on

the data structures used and on the member functions available within each class.

This appendix serves, then, as a specification for the C++ library libtao. a which

supports the TAO program.

Many of the member functions described in the following sections will already be

familiar to the reader since they have a one to one correspondence with TAO script
features, whilst others are hidden from the user and are only used by the system

itself.

D. 2 Internal representation of cells, instruments and

microphones

D. 2.1 The Cell object class

Figure D. 1 shows the data structure used to represent a single cell. The structure

contains the cell's mass, position, velocity, force and damping coefficient and a set

of pointers to its eight neighbours. The companion pointer is used when two cells

are glued together, in which case each cell's companion pointer is used to point to

217

218 D. Synthesis model implementation

position float

velocity float

force float

mass float

damping float

mod. int

companion pointer to Call object

north pointer to Call object

naast pointer to Call object

east pointer to Coll object

saast pointer to Call object

south pointer to Call object

avast pointer to Call object

west pointer to Call object

mast pointer to Coll object

Figure D. 1: Cell class data structure

the other cell. The mode variable holds information about the cell's general status

such as whether it is locked, or glued to another cell. It is also used in the bowing

model described in appendix F to determine whether the cell is currently sticking to

the bow or slipping. Since each cell has its own mode variable, any number of bows

can act simultaneously on different cells.

D. 2.2 Internal representation of the cellular material

3=ax iat

off ist int

cells pointer to Coll object

Figure D. 2: Row data structure

In order to describe the internal representation of a piece of cellular elastic material,

another data structure, the Row structure, is introduced in figure D. 2. This structure

is used to represent a single row of cells within a sheet of material or a string. It is

D. 2 Internal representation of cells, instruments and microphones

not an object class in itself and as such, has no member functions.

a)

C)

b)

ARRAY OF Row
STRUCTURES

xmax offset

row 9

row 8

row 7

row 6

row 5

row 4

row 3

row 2

row 1

row 0

r""-

U1Z34S67;
'0 123456 .7 }

ýD 12
r_

offset

ARRAYS OF Cell
OBJECTS

Figure D. 3: Internal representation of a piece of material

219

Figure D. 3 uses the example of a circular sheet of material to illustrate the internal

representation used. There are various levels of abstraction involved. From the

user's point of view the material is continuous in nature, but the discrete nature of

the model dictates that the circular shape can only be approximated as in (a).

Moving down to the lowest level of abstraction shown in (c), we see that the material
is actually represented as an array of Row structures, each representing an individual

row of cells. Each Row structure contains a pointer to the array of cells and two other

pieces of information, offset and xmax. xmax represents the index of the furthest

cell to the right in any row and offset specifies how many cell positions each row

220 D. Synthesis model implementation

Izfra4uaacy I
float

yfr. gaancy

max

YM=

dafault_d. cay

dafault_damping

rows

grayhx

graphy

worldx

Morldy

n«t

float

int

int

float

float

pointer to stow swcture
int

int

int

int

pointer to instrument object

Figure D. 4: Instrument class data structure

has to be shifted to the right in order to place it in the correct position relative to

all the other rows. (b) serves to clarify the relationship between (a) and (c).

D. 2.3 The Instrument object class

Instruments are represented by the data structure shown in figure D. 4. The Cell

and Row data structures are used to represent the elastic material itself but the

Instrument object contains further information, giving a general description of the
instrument. The purpose of each variable is described below:

xfrequency and yfrequency represent the instrument's x and y frequencies as spec-
ified in the orchestra declaration. They are measured in Hertz and determine the

dimensions of the piece of material created.

=ax and ymax represent the dimensions of the material, measured in cells. For

example, for a piece of material 100 cells wide, and 50 cells high, regardless of shape,
xmax=99 representing the index needed to access the right-most cell in the longest

row, and ymax=49 indicating the index needed to access the top-most row of cells.

default_decay represents the initial decay time given to the instrument, as speci-
fied in the orchestra declaration, and default_damping is the equivalent damping

coefficient given to every cell initially in order to achieve this decay time.

D. 2 Internal representation of cells, instruments and microphones 221

Instrument OBJECT

xfrequency

yfrequency

rows

ARRAY OF Cell OBJECTS

ARRAY OF Row STRUCTURES

3cmax

offset

cells

Row STRUCTURE

Cell OBJECT

position

velocity

force

mass

damping

" ... I------------I

Figure D. 5: The hierarchy of data structures used to represent an instrument

graphx and graphy are used in the present implementation to place the graphical

representation of the instrument at a specified location in the graphics window, if

graphics mode is on.

worldx and worldy have a similar function but allow instruments to be placed graph-

ically relative to one another using cells as the coordinate system. In this coordinate

system the x axis runs horizontally but the y axis is slightly off the vertical, as if it

were running back into the computer screen. This gives a rudimentary sense of depth

to the graphical instrument animations as can be seen from most of the instrument

examples presented in this thesis. The amount of `skewing' is determined by the

variable skewf actor, declared in the file main. cc. Whenever two instruments are

joined together the second instrument has its worldx and worldy variables altered

so as to place it in the correct position relative to the first. This only works for

straightforward joins though e. g. left to right, bottom to top etc. Joining the left

side of one instrument to the left side of another might leave them overlapping in

the graphics window.

The next pointer points at the next instrument in a globally maintained linked list

222 D. Synthesis model implementation

w j+1

)w j

)w j-1

Figure D. 6: A cell's pointers to its neighbours

of, all the instruments created within a script. This linked list is traversed from

head to tail on each time step of the synthesis model, updating each instrument

encountered along the way. Note that the order in which instruments are stored in

this list, and hence updated, does not matter, even when several instruments are

coupled together by glueing and joining.

Figure D. 5 shows how all the objects and structures introduced so far are combined

in practice, following the hierarchy of structures from the Instrument object down

through the array of Row's to a single Row structure, and then via its associated array

of Cell objects down to a single Cell. This internal representation makes random

access to a single cell anywhere within an instrument a simple matter.

In addition to this random access capability, since each cell maintains a set of pointers

to its neighbours it is possible to move about the surface of the material in a relative

cell i-1 cell i cell i+l

D. 2 Internal representation of cells, instruments and microphones 223

fashion. This also works when a join between two instruments is encountered, since

all that the joining algorithm does is to install new springs between the instruments

by redirecting the pointers along the edges of the two pieces of material. Figure D. 6

illustrates the arrangement of pointers for a single cell.

D. 2.4 The Microphone object class

Microphone OBJECT

source enum (from_colls, from_expressions)

index int

num_chaanels int

next pointer to Microphone object

filename pointer to char

outputfils pointer to FILE

leftsource pointer to Cell object

rightsource pointer to Cell object
ARRAY OF N SOUN S

leftsample float
D AMPLES

INTERLEAVED UR IF STEREO
rightsample float

_
buffer

pointer to float

Figure D. 7: Microphone class data structure

Figure D. 7 shows the internal representation of a microphone. In the present im-

plementation only mono and stereo microphones are supported but this situation

could be easily changed to produce soundfiles with arbitrary numbers of channels.

The data structure would have to be modified in order to provide arbitrary storage

space for interleaved sound samples depending on the number of channels.

The Microphone object contains a pointer, filename, to the name of the file to

which the sound samples are to be sent and a pointer, outfile, to the file itself.

Since there are two different types of microphones, those which have their sound

sources specified when the microphone is declared, and those which take their sound

samples from arbitrary mathematical expressions in the score, there are four other

variables leftsource, rightsource, leftsample and rightsample. leftsource

and rightsource are used for microphones with static sound sources and point to the

cells from which the output will be taken. leftsample and rightsample are used to

224 D. Synthesis model implementation

temporarily store samples generated by the leftout and rightout messages, ready
for writing to the microphone's output buffer pointed to by the variable buffer. For

monophonic microphones, only leftsource or lettsample are used. The samples

are written to the output buffer until it fills up, at which point the entire contents

of the buffer are written to the file pointed to by outputfile. Sound samples are

interleaved left, right if output is in stereo. Once the buffer is emptied, index is set

to zero again.

D. 2.5 Implementation of the Glue facility

Figure D. 8 illustrates how Glue facility first described in section 4.3 is implemented.

In (a) the two cells chosen for glueing are highlighted. Each cell has its companion

pointer redirected to point at the other cell. In addition, the first cell's mode variable

is given the #define'd value CELL-MASTER-MODE, to indicate that it is to act as the

master cell whilst the second cell's mode variable is given the value CELL-SLAVE-MODE,

making it the slave cell.

The forces acting upon each cell in an instrument are calculated by the Instrument

member function calculate. my_forcesO. When this function encounters the mas-

ter cell it treats the slave cell's neighbours as if they belonged to the master cell and

calculates the total force acting on the master cell due to both cell's neighbours.

When the Instrument member function update-my. position() subsequently up-

dates all the cell positions and velocities in an instrument and encounters the master

cell, the newly calculated position and velocity are simply copied to the slave cell.

The slave cell has no part to play in the actual cellular update rules and simply
follows the master cell's movements.

D. 2.6 Implementation of the Join facility

Joining causes two nominated sides of two instruments to be `sewn' together with

newly created springs. The information required by the join algorithm is explained

in detail in sections 5.4.7 and B. 9 but to recap briefly, four coordinates x1, x2, yl

and y2 are given. Either the two x coordinates or the two y coordinates are used

to specify the sides of the instruments to be joined in which case the remaining

coordinates are used to specify a centre line which has the effect of lining up two

points on the respective edges of the two instruments.

D. 2 Internal representation of cells, instruments and microphones 225

a)

b)

Figure D. 8: Implementation of glueing

226

a)

b)

NEW
SPRINGS

.................
,:.............

...............

B

A

SPECIAL
CASE 1

D. Synthesis model implementation

ý".

------ý
ý... s SPECIAL

CASE 2

Figure D. 9: Joining two pieces of material together

_centre
line

forjoining

D. 2 Internal representation of cells, instruments and microphones 227

AAB

neast awest

east west

Beast 40- -0 sweat

......

................
Joining of cells proceeding

in an upwardly or downwardly
direction

Figure D. 10: The general case of joining two facing cells anywhere along the

seam

Figure D. 9 illustrates how two instruments, A and B, are joined in practice. In (a)

we see the individual cells and existing springs, and the two cells specified by the

centre line are highlighted. The process of joining starts at these cells and migrates

in one direction first, sewing the cells together until a boundary is reached on one

of the instruments. This process then starts from the centre line again and migrates

in the opposite direction until another boundary is encountered as in (b).

Figure D. 10 shows what happens at the microscopic scale. As the process of joining

migrates up or down the material, each pair of facing cells have their (previously

null) neighbour pointers redirected. This process continues until the migration can

228 D. Synthesis model implementation

Joining of cells proceeding B
in an upwardly direction

ll 3
.................:

s....

O ablest
This pointer must O ist be followed in

-0 sweet order to ensure
jj that cell 3 is

properly linked
" to cell l

north

aeast O awest

east west

Beast sweat

...

""

...... r....

12

................... ý....

Figure D. 11: Special case 1- joining cells at the northern boundary

proceed no further. At either end of the join where a boundary is encountered on one

of the instruments a special case occurs. Returning for a moment to figure D. 9a we

can see why. At either end of the join there is one extra spring which extends slightly
beyond the boundary which caused the joining process to stop. Since a spring is

implemented as two reciprocal pointers between two cells, it is important to ensure
that both pointers are properly redirected. The two special cases, occurring at the

northern boundary of instrument A and at the southern boundary of instrument B

respectively, are described below.

Figure D. 11 shows, in detail, what happens at the top of the join depicted in figure
D. 9. Cell 1 lies at the northern edge of instrument A. Cell 3 lies just beyond this

D. 2 Internal representation of cells, instruments and microphones 229

boundary on instrument B and this cell must have its surest pointer redirected to

cell 1 to match up with the corresponding pointer coming from that cell. This is

achieved indirectly via cell 2's north pointer.

A

avast r
This link must
be followed in esst

order to ensure Beast 0

that cell 2 is south
properly linked
to cell 3

avast ý

east 0

Beast 0
I.

2

A. N

B

............... r....

awsst

ýveýt

imsst

3

Joining of cells proceeding in

a downwardly direction

Figure D. 12: Special case 2- joining cells at the southern boundary

Similarly, for the second special case shown in figure D. 12, cell 2 lies just beyond

the southern boundary of instrument B and this cell must have its neast pointer

redirected to cell 3. Once again this is achieved indirectly via cell 1's south pointer.

It is vital to ensure that every pointer which a cell has to a neighbouring cell is

matched by a reciprocal pointer coming from that neighbouring cell. Failing to do

this leads to a kind of one-way spring which continually introduces energy into the

instrument, leading to exponential growth in the amplitude of vibrations.

230

D. 3 List of functions

D. Synthesis model implementation

We now turn to a comprehensive list of the functions and operators provided by

the library libtao. a which the TAO computer music program is based upon. Each

function synopsis specifies what part the function has to play and the file in which it

can be found. If a more detailed account of any function is required, the reader can

refer to appendix G which contains a complete listing of the implementation code.

It should be possible after reading this appendix to write a C++ program utilising

the various TAO objects and functions by compiling and linking it with the library

libtao. a.

The functions and operators are divided into the following categories:

" Functions and operators for interaction with cells.

" Functions used in the creation of instruments.

" Functions and operators for accessing points on an instrument.

" Functions used in locking and damping parts of an instrument.

" Functions for glueing and joining pieces of material.

" Graphics related functions.

" Functions used in the creation of microphones.

" Functions used to send sound samples to a microphone.

" System functions for animating instruments.

* System functions for updating microphones.

" System functions which drive the whole synthesis engine and the graphics.

" Other global functions.

D. 3 List of functions

D. 3.1 Functions and operators for interaction with cells

231

11 applyforce(float F) 11

Cell. cc
Applies a force F to a cell and also applies smaller sympathetic forces to the cells
immediate neighbours. This prevents an irritating mode of vibration which some-

times occurs when a sharp impulse is applied to a single cell resulting in alternate

cells vibrating up and down 180 degrees out of phase. This can be heard as a
distinctive high pitched whistle in the sounds produced and occurs because the

material has no stiffness.

11 bow(float f -bow, float v -bow)
11

Cell. cc

Simulates the interaction of a virtual bow with a cell, based on frictional sticking

and slipping. The algorithm used is explained in appendix F. f bow is the normal
force exerted by the bow on the instrument and v bow is its velocity.

lock()

Cell. h

Forces a cell to remain fixed in the position it is in when the function is called. It

does so by changing the cell's mode variable.

operator float O)

Cell. h

When an object of class Cell appears in an expression expecting a numerical value,

this operator automatically returns the value of the cell's position variable. This

is most often used in microphone output statements where we can just specify the

points on the various instruments we wish the output samples to be taken from

rather than having to type instrl(x, y) position each time.

232 D. Synthesis model implementation

D. 3.2 Functions used in the creation of instruments

String(float freq, float decay)

Circle(float freq, float decay)

Rectangle(float xfreq, float yfreq, float decay)

Triangle(float xfreq, float gfreq, float decay)

Ellipse(float xfreq, float yfreq, float decay)

String. cc, Circle. cc, Rectangle. cc, Triangle. cc, Ellipse. cc

Classes String, Circle, Rectangle, Triangle and Ellipse are derived classes of

base class Instrument. Each class has its own constructor function which, because

of the inheritance mechanism provided by C++, invokes the Instrument construc-

tor function first. This function creates a basic skeleton of a data structure which

contains information common to all instruments. The more specific constructor

functions provided by each derived class know how to create pieces of material of

the appropriate shapes.

Once the rows of cells have been created they are linked together with springs

by the Instrument member function link-cells(). The cells are all initialised

by the Instrument member function initialise-cells(). Finally each newly

created instrument is placed at the end of a global linked list using the member

function add to-global_listO. These functions are listed below.

11 Instrument(float xfreq, float yfreq, float decay) 11

Instrument. cc
Creates an Instrument object which holds all the information common to all in-

strument shapes. This function has to rely on the String, Circle, Rectangle,

Triangle and Ellipse constructor functions to actually create a piece of material

of the correct shape and size. xfreq, yf req and decay represent the frequency,

in Hertz, of the instrument in the x and y directions and an initial uniform decay

time measured in seconds. For a string yfreq=0.

hertz2cells (float freq)

Instrurnent. h

Static member function used to convert the argument f req measured in hertz into a

numerical value representing the number of cells required to achieve that frequency.

D. 3 List of functions 233

11 decay2damping(float decay), 11

Instrument. h

Static member function used to convert the argument decay measured in seconds
into a numerical value which, when written to a cell's damping variable, causes

the cell's vibrations to die away with the correct decay time. Note that if the

surrounding cells have totally different damping values, then the decay time will

not be as expected.

initialise-cells(

Instrument. cc
Sets the velocities, positions and forces of all cells to zero, sets all neighbour pointers

to NULL and sets the mode of each cell to a default value. Since the frequency of an
instrument is given as a real number measured in Hertz, but the material is discrete

in nature, once the width and height of the instrument, measured in numbers of

cells, have been determined, the masses of all the cells have to be slightly adjusted
from the default mass in order to adjust the frequency to the originally specified

value. The compensation is calculated such that the instrument ends up with the

correct x frequency since a string which is out of tune is more of a problem than

an inharmonic two-dimensional instrument with a slight error in the y frequency.

link_cellsC)

Instrument. cc

Works its way through the rows of cells in a newly created piece of material linking

neighbouring cells together with springs. Works for any shape of material.

add to.. globallist()

Instrument. h

Adds a newly created instrument to the global linked list maintained by TAO.

f-ý

234 D. Synthesis model implementation

D. 3.3 Functions and operators for accessing points on an instru-
ment

11 operator: (float x, float y) 11

Instrument. cc
When placed immediately after an identifier of class Instrument this operator

selects and returns a reference to the cell at position (x, y). For an explanation of

the coordinate system used see section 5.4.8. Also has the side effect of placing a
blue marker on the graphics screen, if the graphics are turned on, to mark the cell

accessed.

11 operator: (float x) 11
11 Instrument. cc

11

Exactly the same as operator (float x, float y) but intended for one dimen-

sional instruments where only the x coordinate need be specified.

11 at(float x, float y) 11
Instrument. cc

Exactly the same as for operator (float x, float y) in that it selects and returns

a reference to the cell specified by the instrument coordinates x and y except it

doesn't affect the graphics display.

D. 3.4 Functions used in locking and damping parts of an instru-
ment

11 setdamping(float x1, float x2, ýfloat yl, float y2, float damping) 11

Instrument. cc
Sets the damping value of each cell to the value damping over the region specified.
See section 5.4.4 for an explanation of the coordinate system used. Returns a

reference to the cell for whom the function was invoked via the C++ special variable

this. This mechanism allows messages to be strung together seperated by periods.

D. 3 List of functions 235

11 setdamping(float left, float right, float damping) 11

Instrument. cc
Version for one dimensional instruments where only the left and right endpoints

of the damped region need be specified. Coordinates are still normalised to be

between zero and one. Returns a reference to the cell for whom the function was
invoked.

11 setdamping(float position, float damping) 11

Instrument. cc
Version for one dimensional instruments which only allows the damping to be set

at a single point, not over a region. Returns a reference to the cell for whom the

function was invoked.

11 setdamping(float damping) 11

Instrument-cc

Sets the damping value of every cell within an instrument to damping Returns a

reference to the cell for whom the function was invoked.

resetdamping(float xi, float x2, float yl, float y2)

resetdamping(float left, float right)

resetdamping(float position)

resetdamping()

Instrument. cc

Equivalent to the setdamping family of functions above, but reset the damping

value back to the value default_damping which was set when the instrument was

created. All four functions return a reference to the cell for whom they were
invoked.

236 D. Synthesis model implementation

setdamping(float xi, float x2, float yl, float y2, float decay)

setdamping(float left, float right, float decay)

setdamping(float decay)

Instrument. cc
Equivalent to the setdamping family of functions above, but set the damping value

in terms of a decay time measured in seconds. The instrument will have the correct

decay time if all cells are damped with these functions, but if a smaller, local region

is damped, the effect is not as predictable. All four functions return a reference to

the cell for whom the function was invoked.

resetdecay(float xi, float x2, float yl, float y2)

resetdecay(float left, float right)

resetdecay()

Instrument. cc

Equivalent to the resetdamping family of functions above, included only for con-

sistency and compatibility. All return a reference to the cell for whom the function

was invoked.

lock(float x, float y)

Instrument. cc

Locks a single cell at location (x, y) on an instrument and returns a reference to

the cell for whom the function was invoked. 11

11 lock(float xi, float x2, float yl, float y2) 11

Instrument. cc
Locks a rectangular region. Similar to setdamping(xl, x2, yl, y2, ...) in the

coordinate system used to specify the region. See section 5.4.4 for an explanation.

D. 3 List of functions 237

lockleft(), lockright(), locktop(), lockbottom()

lockcorners(), lockperimeter(), lockends()

Instrurnent. cc
lockleft, lockright, locktop and lockbottom are all straightforward for a rect-

angular sheet, locking whole sides at a time. For other shapes of material only the

furthest cells west, east, north or south are locked. lockcorners() only makes

sense for rectangular and triangular instruments and lockends() is designed for

use with strings. All return a reference to the cell for whom they were invoked.

D. 3.5 Functions for glueing and joining pieces of material

glue(Instrument &il, float xl, float y1, Instrument &i2, float x2, float y2)

glue(Instrument &ii, float xl, float g1, Instrument &i2, float x2)

glue(Instrument &ii, float xl, Instrument &i2, float x2, float y2)

glue(Instrument &il, float x1, Instrument &i2, float x2)

Instrument. cc
Given two instruments and sets of coordinates specifying two cells, glues those two

cells and their corresponding neighbours together. Glueing single cells together

sometimes leads to unstable properties since the material has no stiffness as such.
All of these functions return a reference to the cell for whom they are invoked.

glue_cells(Cell *cl, Cell *c2)

Instrument. cc

Given pointers to two cells, glues the cells together.

238 D. Synthesis model implementation

11 join(Instrument &il, float xi, float yi,

Instrument &12, float x2, float y2)

11

Instrument. cc

Joins two pieces of material with straight edges by effectively installing a new set

of springs to sew the two instruments together so that they act as one. There are

eight different cases:

if xt=0: if x2=0: join the left of ii to the left of i2

if x2=1: join the left of ii to the right of i2

if x1=1: if x2=0: join the right of ii to the left of i2

if x2=1: join the right of ii to the right of i2

if yl=0: if y2=0: join the bottom of ii to the bottom of i2

if y2=1: join the bottom of ii to the top of i2

if yl=1: if y2=0: join the top of ii to the bottom of i2

if y2=1: join the top of ii to the top of i2

If the join runs north to south then yl and y2 are used to specify two points on the

respective edges to be joined which will be lined up. In effect they define a centre
line which specifies where the joining is to begin. If the join runs east to west then

xi and x2 are used to specify the centre line for joining. x1, x2, yl and y2 are all

specified as instrument coordinates. Fora more detailed explanation of the join

parameters see sections 5.4.7 and B. 9 Note that ii and i2 can refer to the same
instrument making it possible to construct cylindrical and toroidal instruments

from a rectangular sheet. This function relies on the functions described below.

D. 3 List of functions 239

joinleft toseft(Cell &celll, Cell &cell2)

joinleft_tosight(Cell &celll, Cell &cell2)

J oinsight toseft (Cell &cell l, Cell &cell2)

join-right-to-right (Cell &celli, Cell &cell2)

join bottom to bottom(Cell &celll, Cell &ce112)

joinbottom to top(Cell &celll, Cell &cell2)-

join top to bottom(Cell &celll, Cell &cell2)

join_top to_top(Cell &celli, Cell &cell2)

Instrument. cc
All of these functions join two pieces of material with straight edges by installing

a new set of springs, effectively `sewing' them together so that they act as one.
Joining starts at the two cells specified and migrates along the edges of the two

pieces of material in one direction until a boundary is reached. The joining process
then recommences from the starting cells, and migrates in the opposite direction.

For a more detailed explanation of the algorithm used, see section D. 2.6.

D. 3.6 Graphics related functions

display()

Instrument. cc
Displays the instrument in the graphics window at a position determined by the

Instrument member variables worldx, worldy, graphx & graphy, and the global

variables winoriginx & winoriginy. Uses external functions from SGI graphics
library gl-s:

bgnline(), endline(), v2s():

begin line and end line and vertex functions. see <gl. h>

color(): sets graphics colour. BLACK, WHITE, CYAN, MAGENTA, BLUE, GREEN

YELLOW and RED allowed.

240 D. Synthesis model implementation

display-at ()

Instrument. h

Sets the screen x and y coordinates at which the bottom left of an instrument

will be displayed in the graphics window. Note that the exact position of the

instrument is also affected by the global variables winoriginx, winoriginy and

the Instrument member variables worldx and worldy.

place-at ()

Instrument. h

Sets the world x and y coordinates of the instrument. World coordinates are

measured in cells and this function is used by the system when two instruments

are joined in order to place the second in the correct world position relative to the

first. Note that the two instruments joined must have the same values for graphx

and graphy or they won't appear in the correct relative positions in the graphics

window.

I-
screenx(float x, float y)

11

Instrument. cc

Returns the current screen x coordinate of the cell specified by the instrument

coordinates x and y.

11 screeny(float x, float y) 11

Instrument. cc

Returns the current screen y coordinate of the cell specified by the instrument

coordinates x and y.

D. 3 List of functions 241

label(float x, float y, int xoffset, int yoffset,

char *caption, int colour)

Instrument. cc
Displays the text string caption in the graphics window. at a position determined

by the instrument coordinates x and y. If the cell specified is displayed at screen

coordinates (x, y) then the caption will be placed at (x+xoffset, y+yoffset).

The caption is displayed in the specified colour where colour is one of RED, GREEN,

BLUE, YELLOW, MAGENTA, CYAN or BLACK, which are #def ine'd constants from header

file <gl. h>.

label(float x, int xoffset, int yoffset,

char *caption, int colour)

Instrument. cc
11 Version of the label function given above for use with strings. 11

graphics_init U

matn. cc

Initialises graphics system, opens a window entitled `TAO graphical output'. Sets

doublebuffer mode for animation and clears the screen to white.

242 D. Synthesis model implementation

update$raphics 0

ma: n. cc

This function deals with everything associated with the graphics window, save

actually drawing the instruments. There are a number of mouse functions provided.

Holding the left mouse button down and moving the mouse in the graphics window

causes the whole graphics image be dragged about. Holding the left mouse

button down and pressing the middle mouse button causes the global variable

graphics-update-step to be multiplied by a factor of five. The graphics window

is updated on every graphics-update-step'th time step of the synthesis engine.

If graphics-update. step=500 then it becomes 1 again. Holding the left mouse

button down and pressing the right mouse button causes graphics-update-step

to be divided by a factor of 5. If it is already 1 then the animation is frozen until

the left mouse button is held and the right mouse button is pressed again.

Elapsed time in seconds since beginning of performance is displayed at bottom left

of the graphics window. External functions used include getsize(), origin(),

cmov2i(), color(), charstr(), getbutton() all of which are provided in the SGI

graphics library and declared in <gl. h>. For more information see the appropriate

IRIX 5.3 manual pages.

D. 3.7 Functions used in the creation of microphones

11 Microphone(const char *soundfilename, int channels) 11

Microphone. cc
Creates a microphone object whose sound samples will be sent to a file called
/var/tmp/<name>. tao. The microphone writes channels channels of output (1 or
2 in the present implementation). No decision is made at declaration time about
the actual sources for the sound samples. This is left to be determined by the

member functions leftout() & rightout() described in file Microphone. h, and

update(), described below. In practice leftout() and rightout() are usually
invoked within the score part of a TAO script.

D. 3 List of functions 243

11 Microphone(const char *sfname, Cell &l, Cell &r) 11

Microphone. cc
Similar to the above function except that sound sources are given at declaration

time in the form of two references to cells 1 amd r. This automatically determines

that num_channels=2.

Microphone(const char *sfname, Cell &c)

Alicrophone. cc

Mono version of constructor function described above. num_channels=l

11 add_to., globalsist () 11

Microphone. cc
Adds a newly created microphone to the global list maintained by TAO. Note that

microphones and instruments are stored in separate linked lists.

setleft(Cell &1)

setright(Cell &1)

Microphone. h

These functions are used for microphones with static sound sources and set the left

and right sources respectively to the cells referenced by 1 and r.

D. 3.8 Functions used to send sound samples to a microphone

leftout(float value)

rightout(float value)

Alicrophone. h

These functions simply write the numerical values specified into the Microphone

member variables leftsample and rightsample respectively, ready for writing to

the microphone's output buffer.

II output (float value) 11

Alicrophone. h

This function writes the numerical value specified into the Microphone member
variable leftsample, ready for writing to the microphone's output buffer.

244 D. Synthesis model implementation

D. 3.9 System functions for animating instruments

calculate-my-forces ()

Instrument. cc
Starts at the bottom left of an instrument and works its way from left to right

along each row of cells and then up each row until the top right of the instrument is

reached. Calculates the total force acting on each cell due to the springs connecting
it to its neighbours. If the cell is a master cell it treats the slave cell's neighbours

as its own in order to calculate the combined force acting on both cells. If it is a

slave cell then no calculations are made.

II update-ay position() II

Instrument. cc
Starts at the bottom left of an instrument and works its way from left to right

along each row of cells and then up each row until the top right of the instrument

is reached. The force acting upon each cell is used to calculate the cell's accelera-

tion, new velocity and new position. Also multiplies the new velocity by the cell's
damping value (between 0 and 1). This value is converted from the percentage

value given in a TAO script. 100% gives a damping value of zero and 0% gives a

value of one. If the cell is a master cell, then the newly calculated force, velocity

and position are copied to the slave cell.

D. 3.10 - System functions for updating microphones

update()

Microphone. cc
Causes sound samples to be written to the microphone's sample buffer. If the buffer

is full then its entire contents are written to the output file stream outputfile,

and index is reset to zero. Otherwise index is incremented by num_channels. If

the Microphone member variable source has the value from_cells, then the sam-

ples are taken directly from the cells pointed to by leftsource and rightsource

or just leftsource for a mono microphone. However, if source has the value
from_expressions, then the samples are taken from the values of leftsample and

rightsample or just leftsample for a mono microphone.

D. 3 List of functions 245

update all()

Microphone. cc
Starts at, the head of the linked list of microphones and updates each one in turn

by invoking the member function update 0.

D. 3.11 System functions which drive the whole synthesis engine
and the graphics

calculate. Iorces()

update-positions o

display... all()

Instrument. cc
Each one of these functions scans the linked list of instruments and invokes

the appropriate member function for each instrument in the list. For example

calculateiorces causes calculate-my-forces to be invoked for each instrument

etc.

main()

main. cc

The user compiles a TAO script called example. script by typing:

tao example

which causes the script to be translated into an intermediate form stored in the

file tao-scriptfile. This is #include'd into the main function, and once further

processed by the C++ preprocessor, becomes a fragment of compilable C++ code.

The user's instrument, microphone and parameter declarations translate directly

into C++ variable declarations, and other TAO language features such as the

score control structures, screen output, mathematical expressions etc. translate

into equivalent C++ language features. Once the C++ preprocessor has finished

its translation, the file main. cc is compiled, producing an executable with the

same name as the script but with a. exe suffix. Following the example above, the

executable produced would be called example. exe.

246

D. 3.12 Other global functions

D. Synthesis model implementation

randomi(int low, int high)

main. cc

Returns a random integer between low and high inclusive.

random(float low, float high)

main. cc

Returns a random floating point number between low and high inclusive.

pitch(float value)

main. cc

Takes a decimal value of the form <octave>. <semitone> and returns a frequency

in Hertz. For example:

pitch(8.00) = 261.6 Hz or middle C.

pitch(8.01) the frequency of C sharp above middle C.

pitch(8.09) = 440 Hz or A above middle C.

pitch(6.03) = the frequency of Eb in the second octave
below middle C.

pitch(8.06333) = the frequency of FO + 1/3 of a semitone

in middle C octave.

D. 3 List of functions 247

pitch(const char *note)

I main. cc

Takes a string of characters representing a note name and returns a frequency in

Hertz. For example:

pitch("C8") = 261.6 Hz or middle C.

pitch("C#8") the frequency of C sharp above middle C.

pitch("A8") 440 Hz or A above middle C.

pitch("Eb6") = the frequency of Eb in the second octave

below middle C.

pitch("F#8+1/3") = the frequency of FO + 1/3 of a semitone

in middle C octave.

248 D. Synthesis model implementation

Appendix E

Script language implementation

The objects and functions described in appendix D are built into the library libtao. a.

In theory, any synthesis scenario which can be described in a TAO script could also

be described as a C++ program, making use of this library. In fact, compiling a

TAO script leads to the automatic generation of such a program. All the details of

the compilation and linking of this program are hidden from the user.

In order for this process to occur, the script must first be translated into an ap-

propriate fragment of C++ code dealing with Instrument, Microphone and Cell

objects. The details of this translation process are described in this appendix.

In practice, the translation process is carried out partly by the Unix sed command

(stream editor) which matches quite complicated patterns of characters in an input

stream and allows them to be replaced with other patterns of characters. The com-

mand is fairly low level in its nature and would not be used in a proper distribution

version of TAO, but it serves its purpose for the current prototype. The translation

of a TAO script requires several sed scripts which are listed in section G. 3.

The output from these sod scripts only partially translates the TAO script. This par-

tially translated version is stored in a file called tao_scriptfile which is #include'd

into the main function, where it is further processed by the C++ preprocessor via

a set of #def ine'd macros in the file main. cc. Apart from a straight translation of
TAO script features into C++ language features, extra C++ code has to be added
to the automatically generated source code in order to drive the synthesis engine and

249

250 E. Script language implementation

provide some of the more subtle score features such as the start and end variables

and their associated scoping facility, described in section 5.5.2.

E. 1 Translating Instrument, Microphone and Parameter

declarations

The orchestra part of a TAO script bears a simple one to one relationship with
its C++ equivalent. The Instrument, Microphone and Parameter declarations

correspond to declarations of C++ variables of type Instrument, Microphone and
float. The following examples illustrate the precise translation which occurs:

TAO: Circle circlel: f Hz, t secs; ...

4

C++: Circle circlet (f
. t) ;

Similarly:

TAO: Microphone micl: filename, stereo;

4
C++: Microphone micl("filename", 2);

Parameter declarations are even simpler to translate and only involve replacing the

keyword Parameter with the C++ keyword float.

E. 2 Translating instrument messages

Many of the instrument messages are only superficially different in syntax from the

actual C++ member functions used to implement them. Messages such as lockleft,

lockright, lockbottom, locktop, lockperimeter, lockends and lockcorners re-

quire no arguments in a'TAO script but the corresponding C++ member function

do require an empty set of brackets after the function name:

TAO: C++:

lockleft lockleft()

E. 3 Translating microphone messages 251

lockright #1 lockright()
lockbottom lockbottom()
locktop locktop()
etc.

The setdamping family of messages which TAO provides specify the damping coef-
ficient as a percentage. In practice though, the damping value stored in each cell,
D, is related to this percentage, d, by the formula D=1- d/100, leading to the

following translation:

TAO: setdamping(xl, x2, yl, y2, d%)

ü

C++: setdamping(xl, x2, yl, y2,1.0-d/100.0)

E. 3 Translating microphone messages

The microphone messages output, leftout and rightout are translated as follows:

TAO: output : sample;
leftout: lsample;

rightout: rsample;

4
C++: output (sample) ;

leftout (lsample) ;
rightout (rsample) ;

E. 4 Translating positional and time nomenclature

The keywords left, right, bottom and top are simply translated into numerical

constants:

TAO: C++:

left 0.0
right 1.0
bottom 0.0
top 1.0
centre 0.5

252 E. Script language implementation

The keywords secs, msecs and min are translated into multiplications or divisions

by the appropriate factors:

n secs n*1.0
n msecs n/1000.0
n min n*60.0

E. 5 Translating the score

The task of translating the score is slightly more complicated, but at a basic level

consists of translating TAO control structures into appropriate C++ if statements.

The Score control structure itself is translated into a for loop which iteratively

updates the synthesis engine an appropriate number of times in order to generate the

correct number of samples specified by the score duration. The statements contained

in the body of the score are executed from top to bottom on each iteration and the

set of if statements serve to enable the body of each control structure only at the

correct times. A variable called Sample keeps track of the number of time steps

elapsed.

The C++ program generated by the compilation of a TAO script must also include

all the appropriate code to drive the synthesis engine. More specifically this includes

code for:

" traversing the linked list of instruments and calculating the internal forces

acting upon the cells of each;

" traversing the linked list again in order to update the positions and velocities

of all the cells;

" traversing the linked list of microphones and updating each, writing the con-

tents of the microphone's sample buffer to the designated output file if the

buffer is full;

" generating the graphics images;

" detecting mouse movement and button presses and acting accordingly;

" updating the value of the variable Time.

E. 5 Translating the score 253

All of this extra house-keeping code is packed into the for statement itself as we

shall see in the complete script translation example given at the end of this appendix.

E. 5.1 Translating the score control structures

The score control structures are translated in a number of intermediate stages. The

following examples show the first stage of translation for the various control struc-

tures:

TAO: From x secs to y secs:
body

4

C++: If (Sample >= (long)(x * modelrate)
&& Sample <_ (long)(y * modelrate))
{
body
}

This if statement enables the instructions to be executed on every time step from

x seconds up to and including y seconds. Similarly for an At .. for block the

translation is: -

TAO: At x secs for y secs:
body

4
C++: If (Sample >= (long)(x * modelrate)

&& Sample <= (long)((x+y) * modelrate))
{
body
}

For the Every and ControlRate structures the translation proceeds as follows: -

TAO: Every x secs:
body

254

4

E. Script language implementation

C++: If (Sample '/. (x * modelrate)==0)
{

body
}

TAO: ControlRate x:
body

4

C++: If (Sample %x == 0)
{
body
}

E. 5.2 Adding code to update the values of start and end

The special variables start and end described in section 5.5.2 are actually ordinary
C++ floating point variables, but in order that their values are updated throughout

the score, when entering and leaving the scope of control structures, two stacks

startstackQ and endstackp are used. The extra code needed to push and pop

start and end times on and off these two stacks is added by the system at the

beginning and end of every control structure's body.

Since if statements form the basis of all the TAO control structures, there must

also be some mechanism for transmitting the start and end times tested for in the

head of each if statement to the instructions contained in the body. This is achieved

with two further variables START and END. For example:

TAO: At x secs for y secs:
body

translates first to:

C++: if (Sample >_ (long) (x * modelrate)
&& Sample <_ (long)((x+y) * modelrate))
{

E. 6 An example of a complete script translation 255

body
}

and then to the following which includes all the code necessary to keep the values

of start and end up to date as a new level of scope is entered:

C++: if (Sample >= (long)(START=x*modelrate) &&
Sample <_ (long) (END=(x+ y)*modelrate)

{

n++; startstack[n]=start; endstack[n]=end;
start=START; end=END;
{body}

start=startstack[n]; end=endstack[n]; n--;
}

When the if statement compares the value of the variable Sample against the start

and end times given to see if the statements contained in the body should be exe-

cuted, it also stores these times in the variables START and END so that once the old

values of start and end have been pushed onto the stack they can take up their

new values.

E. 6 An example of a complete script translation

To clarify the translation process and put together all the elements described so far,

the following example shows the translation of a whole TAO script into its equivalent
C++ program. This program contains all the code needed to create the instruments

described by the user, and bring them to life, whilst carrying out the user's specified

score algorithm.

String strings:
C07+1/2, IT secs;
lockright;
setdamping(left, 1/20,0.1%);

Rectangle rectl:
100 Hz, 340 Hz, 2S secs;
lock(left, bottom);
lockright;
setdecay(2/5,3/5,2/5,3/5,1 secs);

Glue stringi(left) to recti(right, 1/3);

Parameter damping-coefficient;

Score 30 secs:

256 E. Script language implementation

At 0 secs for 1 msecs:
stringl(0.1). applyforce(10.0);

From 5 secs to 5.001 secs:
stringl(0.9). applyforce(b. 0);

ControlRate 100:
damping_coefficient-expon(1,0.001);

Every 0.1 secs:
Display "Time-", Time, newline;

This script translates into the following purely C++ program which now has all the

extra code required to drive the synthesis engine. It also contains code to keep the

values of start and end up to date. Comments have been added to this code and
the visual layout has been improved by hand for the sake of clarity but essentially
this piece of code when placed inside the main function is ready for compilation and
linking with the TAO library and will carry out the synthesis described in the script

when executed.

///
TAO: String stringl: // C#7+1/2,17 secs;

lockright;
setdamping(left, 1/20,0.1%);

//

String atringi(pitch ("C#7+1/2.0"), 17e1.0);
atringl. lockright O;
atrin1i. aetdampini(0.0,1/20.0,1.0-0.1/100.0);

/// TAO: Rectangle rect1:
100 Hz, 340 Hz, 25 secs;

// lock(left, bottom);
// lockright;

setdecay(2/5,3/5,2/5,3/5,1 secs);

//

Rectangle rectl(100 , 340 , 25*1.0);
rectl. lock(0.0 , 0.0);
recti. lockrightO ;
recti. setdecay(2/5.0,3/5.0,2/5.0,3/5.0,1*1.0);

///
TAO: Glue stringl(left) to rectl(right, 1/3);

Instrument:: lue(strin 1,0.0, recta, 1.0,1/3.0);

///
ýý TAO: Parameter damping-coefficient;

float dampin coefficient;

///
// TAO: Score 30 secs:
//

E. 6 An example of a complete script translation 257

// Start of the score head

IumSamplea=(long)(30s1.0*modalrate);
cout << "Calculating "« IumSamples «" samples\n";

startstack[1]=start=0.0; endstack[1]=end=30*1.0;
startstack[0]=start; endstack[0]=end;
START=atart; END=end;

for(Sample=0, Time=0.0;

graphics_on? (color(7), 1): 0, if in graphics mode set color to WHITE.
graphics_on? (clear (), 1): 0, // and clear the graphics screen.
Instrument:: calculate_forcesO , calculate the forces for each instrument.
update_graphicsO, // mouse functions for graphics window.
Sample<-IumSamples; enough samples generated yet?

(graphics_ontt(Sample%graphics_update_stepa0))? // display instruments.
(Instrument:: display_all(), 1): 0,

(graphics_onkk(Sample%graphics_update_stepn0))? // swap front and back buffers.
(swapbuffers(). 1): 0,

Instrument:: update_positionsO , update the positions of each instrument.
Hicrophone:: update_allO , update all the microphones.
Sample++,
Time=Sample/modelrate) calculate elapsed time since performance

began.

n++; startstack[n]=start; endstack[n]=end;

// End of the score head ///

// Start of the score body

{
TAO: At 0 secs for 1 cosecs: <body> ... //

if(Sample<=(long)MID- (0e1.0+1/1000.0))emodelrate) tt
S{ ple>=(long)((START=(0x1.0))*modelrate))

n++; startstack[n]=start; endstack[n]=end; start=START; end=EID;
{
stringl(0.1). applyforce(10.0);

start=startstack[n]; end=endstack[n]; n--;
}

TAO: From 5 secs to 6.001 secs: <body> ... //

if(Sample<=(long)((EID=(5.001*1.0))*modelrate) tt
S{ ple>=(long)((START=(5.1.0))*modelrate))

n++; etartstack[n]=start; endstack[n]=end; start=START; end=EID;
{
atringi(0.9). applyforce(5.0);
}

start=startatack[n]; end=endstack[n]; n--;
}

// TAO: ControiRate 100: <body> ... //

if(S{ p1e%(1ong)100==0)

n++; startstack[n]-start; endstack[n]=end;
{
damping_coefficients((float)(1)*expf(1.0/(end-start)s

logf((float)(0.001)/(float)(1))s(Time-start)));
}

start=startstack[n]; end=endstack[n]; n--;
}

ýý TAO: Every 0.1 secs: <body> ...

258 E. Script language implementation

if(S{ ple%(long)(0.1º1.0ºmodelrate)ss0)

n++; startatack[n]-start; endstack[n]=and;
{
// Display "Time-", Time, nowline.

cout «""« setv(0) « setprecision(4)
« setiosflags(ios:: fixed) « "Time=" « << Time

<< "" << '\n' << flush;
}

start=startstack[n]; end=endstack[n]; n--;

}

// End of the score body

start-startstack[n]; end=endstack[n]; n--;
}

Appendix F

Details of the bowing model

used

F. 1 Classical description of the behaviour of a bowed

string

This appendix describes the bowing model provided by TAO. Figure F. 1 shows the

idealised motion of a bowed string when a clean note is obtained (Rossing, 1990).

Although the overall amplitude envelope of the string is round, the motion actually

consists of a fairly sharply defined corner dividing the string into two straight line

segments. The corner traverses the string and is negatively reflected each time it

reaches one of the terminated ends. The point at which the string is bowed can

either be sticking or slipping at any instant in time. When it is sticking to the bow

it moves slowly upwards at the same velocity as the bow, as shown in (c) to (h) and
(a). As it does so the corner dividing the string into two travels towards the right
hand end of the string, where it is reflected.

As the corner travels back from the right hand end of the string and finally reaches
the bowed point again, the `kick' caused is enough to make the string slip. This point
in the cycle of motion is depicted in (a). Once slipping, the string rapidly moves
downwards as the corner travels towards the left hand end where it is reflected once

again. As it passes the bowed point, as in (c), the bow picks the string up again

and the whole process is repeated. It should be emphasised that this precise motion

259

260 F. I) i iii. of the hinting 100(101 t1scd

: II::: 0IIIIIIi:
c)

gý

_---E1

d) h) -----

Figure F. 1: Classic Helmholtz motion of a bowed string

dividing the string into two perfectly straight line segments is an idealisation of the

actual shape of a real string. Also the model tells us nothing about the transient

motions which the string must pass through in order to reach this state of dynamic

equilibrium. This mode of motion is referred to as Helmholtz motion, after Hermann

von Helmholtz who first observed it experimentally.

F. 2 Description of an established bowed string model

The bowing model provided by TAO is loosely based on a model described by Wood-

house (1992) which is reproduced here, in brief form, for the purposes of comparison.

Woodhouse's model comprises two elements, a linear element representing the string,

and a non-linear element representing the interaction of the bow with the string. The

behaviour of the non-linear element is derived from the graph shown in figure F. 2,

which represents the relationship between the frictional force exerted by the bow

and velocity of the string at the bowed point. The vertical portion of the slope

represents the sticking state. The velocity of the string is constant in this portion

F. 2 Description of an established bowed string model 261

a)

V V,

Figure F. 2: Relationship between frictional bow force and relative velocity be-

tween bow and string

of the graph because the string travels at the same velocity as the bow, vb. The

frictional force can take on a range of values, however, as the bow drags the string

further and further away from its rest position. The force increases until a threshold

value is reached, at which point the bow can now longer hold the string and it begins

to slip. As this occurs the static frictional force is replaced by a dynamic frictional

force.

The curved portion to the left, of the graph represents the way in which the dynamic

frictional force changes with the string's velocity. As we descend down the slope

the string's velocity decreases and eventually it ends up travelling in the opposite

direction to the bow. The magnitude of the relative velocity between bow and string

therefore increases and the associated dynamic frictional force decreases. Toward the

very left of the graph the frictional force is usually of the order of 0.2 fb, where fb is

the normal force exerted by the bow on the string (Mcintyre, 1983).

In Woodhouse's model only the bowed point of the string is modelled. At a given

instant in time the frictional force, f (t), exerted by the bow and the velocity of the

string at the bowed point are given by the equation:

b)

vet) _ (Y/2)f(t)+v'h(t)

where v(t) is the instantaneous velocity response to the force, vh(t) is the component

262 F. Details of the bowing model used

of the velocity due to the past history of the string, and Y is the wave admittance

of the string, given by Y= (Tm)-1/2, where T is the string tension and m is its

mass per unit length. The factor Y/2 arises from the fact that two impulses of

equal magnitude are generated by the bow, travelling away from the bowed point in

opposite directions. vh(t) represents "all the details of the linear vibration behaviour

of the string and body" to quote Woodhouse. In order to solve for successive values

of f (t) and v(t) some method of calculating vh(t) is required. The method used by

Woodhouse works as follows.

The two outgoing impulses generated by the bow eventually reach the respective

ends of the string and are negatively reflected, but they also change in shape due to

the effects of the bridge and body at one end and the players finger and fingerboard

at the other. This `smearing' is simulated with the use of two `corner rounding

functions'. By convolving the impulse generated by the bow with these functions,

the value of vh(t) can be calculated. Successive reflections of the initial impulse

become increasingly smoothed out and eventually die away due to the repeated

convolution with the corner rounding functions.

Once the value of Vh(t) is known it is possible to calculate new values for f (t) and

v(t) by finding the intersection of the straight line v= (Y12) f+ vh with the curve

given in figure F. 2. By repeating this process iteratively the dynamic behaviour of

the string can be simulated.

Note that outside the shaded portion shown in figure F. 2(b) the straight line inter-

sects the graph unambiguously. To the left of this shaded region the string is slipping

and to the right it is sticking. What happens in the shaded region depends on the

current state of the string. If the string is sticking, then the straight line intersects

the vertical portion of the graph, but as the static frictional force grows, the line

moves into the shaded region from the right. The static frictional force continues

to grow, but at the point where it can no longer be sustained, the frictional forces

jumps suddenly down to the value on the curved portion of the graph, following

arrow (ii), indicating that the string has begun to slip. If the string is slipping, then

the shaded region is entered from the left, and the frictional force jumps suddenly up

to the value on the straight line portion of the graph, following arrow (v), indicating

that the string has begun to stick again. This introduces an element of hysteresis

F. 3 Adapting the model to work with TAO 263

into the model and shows that its state changes in a discontinuous manner.

F. 3 Adapting the model to work with TAO

The bowing model provided with TAO is also based around the graph given in figure

F. 2 but differs from Woodhouse's model in that the resonator or string is explicitly

modelled in its entirety so there is no need for either the history function vh and

its associated corner rounding functions, or the use of the wave admittance Y to

calculate the instantaneous velocity response of the string to the force applied by

the bow. Instead the string may be directly interrogated at any point in time to

find its position, velocity or acceleration, and if we want to find out the effect which

applying a force will have on the position and velocity of the string, we can simply

apply the force at the appropriate point and let the model do the rest.

Before describing in detail the way in which the model works, the reader is reminded

of the steps involved in animating a TAO instrument, first given in section 4.6:

1. the internal forces acting upon each cell are calculated;

2. any external forces are applied;

3. the cell positions are updated.

All interaction with TAO instruments is via the physical parameters of individual

cells or groups of cells and in the case of the bowing model a single cell provides

the interface between the bow and the instrument and acts both as an input and

output. The interaction between the bow and the chosen cell takes place on step 2

above, at which point in time the internal force acting on the cell, due to its spring

connections, has just been calculated, but its position and velocity have not yet been

updated. There are two things we need to do in order to simulate the sticking and

slipping of the bow:

1. If the string is sticking to the bow all we need to do is: calculate the static
frictional force needed to keep the string travelling at the same velocity as the

bow; check that this force does not exceed the maximum threshold force which

can be sustained by the static friction between the bow and the string; and

apply this force to the cell.

264 F. Details of the bowing model used

2. If the string and bow are slipping past each other all we need to do is: calculate
the relative velocity between them, and hence the dynamic frictional force;

check that the condition for the string and bow to start sticking again is not

met; and apply this force to the cell.

This gives us the basis for a discrete time domain simulation with a TAO instrument.

At any instant in time if fb is the downward force exerted by the bow, vc is the

velocity of the cell being bowed, and Vb is the velocity of the bow, then the relative

velocity between the bow and cell v, is given by v,. = vb - vv. Acceleration, in the

context of this discrete time based simulation is given by a=I, but from section

4.6.5, St = 1, so effectively a= by = vb - vc.

Therefore, in order to keep the cell travelling at a constant velocity, we simply

calculate the difference between the current velocity, vv, and the required velocity,

vb, and this value becomes the required acceleration. Since by Newton's 2nd law of

motion f= ma, the total force required in order to cancel out the internal force fc

acting on the cell and ensure that the cell has the correct acceleration to maintain

velocity Vb is given by fatick = m(vb - vc) - fo. This is the case when the string is

sticking to the bow.

When the string is slipping, the dynamic frictional force flip is given by:

fslip =16
(0.2

+ 0.8 *1
1+, IVrIý

Remember that as the relative velocity I V,. between string and bow increases, the
dynamic frictional force flip tends towards 0.2 fb, and that when v,. = 0, according
to the graph in figure F. 2, f, l; p fb (assuming that the coefficient of friction relating
the downward force of the bow to the maximum frictional force possible is unity,

which it almost is for rosined surfaces (Mcintyre, 1983)). For values in between

these two extremes the curve appears to drop off at a rate oz T. Now we know

how to calculate the static and dynamic frictional forces, all we need to decide is

under what conditions the model flips from one state to the other. The change from

stick mode to slip mode occurs when the static frictional force required is greater
than the downward force of the bow can sustain, in other words when fstick ý f6"

The change from slip to stick occurs when the corner traversing the string reaches

I/

F. 3 Adapting the model to work with TAO 265

the bow and the string starts to travel in the same direction as the bow, i. e. when

v. > 0. We can now put all of this information together to form the algorithm given
below. This algorithm is executed on every discrete time step.

1. Calculate the relative velocity between bow and string v,. = Vb - Vc.

2. Calculate the acceleration needed to keep the string moving with the same

velocity as the bow a, = (vb - vc)St = v,. (since St = 1)

3. Decide whether the cell is sticking or slipping and apply the appropriate static

or dynamic frictional force. Also check to see whether the conditions for a

change of state are met:

if in stick mode:
fstick = mac - fc

if fftick > f6:

change to slip mode
else:

applyforce (f, ttck)

else if in slip mode:
0.2+0.8* ' hlip=A(ltyr

ifv, >0:

change to stick mode
else:

applyforce (f u)

By iteratively executing this algorithm we can simulate the continuous interaction of

the bow with the string or indeed with any other instrument. The control parameters

vb and fb may be varied within the score in the same way as any other performance

parameters, and by using the mode field of a cell (see appendix D for an explanation)

to indicate whether the cell is in stick or slip mode, any number of bows with

independent control parameters may be applied to any number of locations on one

or more instruments, simultaneously. Examples of the bowing model in action can

be found in sections 6.7.1 and 6.7.2.

266 F. Details of the bowing model used

Appendix G

Implementation code

G. 1 C++ implementation of the TAO library libtao. a

G. 1.1 File Cell. h
//
// File name: Cell. h (c) 1996 Mark Pearson
//
// Content: Definition of Cell object class.
//

Member variables:
mode: used to hold a variety of information such as whether

// the cell is glued to another and if so, whether it is
the master or slave cell. Also whether the cell is locked,

// and whether it is sticking or slipping when bowed.
north, south, east, vest, neast, seast, nwest, sweat:

pointers to this cell's neighbouring cells.
companion: if this cell is glued to another then the companion

pointer points to the other cell.
mass: the cell's mass measured in arbitrary numerical units.
damping: a value between 0 and 1 which the velocity of the cell

is multiplied by every time step leading to energy
// dissipation.
// position, velocity, force:

once again all measured in arbitrary numerical units.
// Each is a scalar value measuring the magnitude of a

vector in the y direction, i. e. vertical displacement,
vertical velocity and vertical force acting upon the

// cell due to its springs.

Vifndef CELL_H
$define CELL_H

define CELL_LOCK_MODE 0x01
#define CELL_SLAVE_MODE 0x02
#define CELL_MASTER_MODE 0x04
#define CELL_BOW_STICK_MODE 0x08

struct Call
{
int mode;
Cell *north, *south, *east, *west;
Cell "neast, "nvest, eseast, *sweat;
Cell *companion;
float mass, damping;
float position, velocity, force;
void applyforce(float F);
void bow(float f_bov, float v_boa);
void lock() (mode In CELL_LOCK_MODE;)
operator float() {return position;)

Sendif

267

268

G. 1.2 File Cell. cc

G. Implementation code

// File name: Cell. cc (c) 1996 Nark Pearson

Content: Definitions of Cell object class member functions

#include "Cell. h"
$include <math. h>

include <iostream. h>"

#ifndef TRUE
*define TRUE 1
*endi!

Sifndef FALSE
*define FALSE 0
*endif

//
Function name: Cell:: applyforce(float F)

Functionality:
Apart from applying the given force to the cell specified, also
applies smaller sympathetic forces to the neighbouring cells to
ensure that the force is spread over a small region. This is to

/1 compensate for the material's lack of stiffness.

Variables:
All Cell class member variables except the argument F which represents // the force bein applied to the cell.

void
{
Cell:: applyforce(float F)

force+=F;

it (north) north->force+-F/2.0;
if (south) south->force+=F/2.0;
if (east) east->force+-F/2.0;
if (west) vest->force+. F/2.0;
if (neast) neast->force+-F/2.82;
if (seast) seast->force+-F/2.82;
if (nwest) nwest->force+-F/2.82;
if (sweat) sorest->force+-F/2.82;
}

// // Function name: Cell:: bow(float f_bov, v_bov)

Functionality:
Simulates the interaction of a virtual bow with a cell, based on // frictional sticking and slipping. The algorithm is explained in

// section F. 3. The function given below is an exact
// implementation of this algorithm.

Arguments:
// f_bov: downward force of bow.

v_bov: velocity of bow.
//

Local variables:
// f_stick: static frictional force exerted by the bow on the cell.

f_slip: dynamic frictional force exerted by the bow.
// force-exerted:
// whether sticking or slipping one of the above forces is
// applied. This variable stores the chosen frictional force.

v_relative: relative velocity between bow and cell.
a_cell: acceleration needed to keep cell's velocity equal to v_bov.

// Cell class member variables:
velocity, force, mass.

void Cell:: bov(float f_bov, float v_bov)
{
static float f_stick, f_slip, force-exerted;
static float v_relative, a_cell;

v_relative-a_cell-v_bov-velocity; // andv/dt but dt=1 so a-dv.

if (mode t CELL_BOW_STICS_MODE) // if in 'stick' mode.

G. 1 C++ implementation of the TAO library libtao. a

{
f-stick=mass*a_cell-force;
if (f_stick>f_bov) modet=! CELL_BOW_STICS_MODE; if static frictional
else force-exerted f_stick; // force required is too
} // great, change to

slip' mode.

else // if in 'slip' mode. {
f_slip=f_bov/(1. O+fabs(v_relative));
if (velocity>=0.0) model=CELL_BOW_STICB_NODE; if the cell starts
else force_exerted=f_slip; travelling in the same

direction as the bow,
change to 'stick' mode.

applyforce(force_exerted); apply the appropriate
} // frictional force.

G. 1.3 File Instrument. h
//
// File name: Instrument. h (c) 1996 Mark Pearson

// Content: Definition of Instrument object class and Row structure.
//

In a TAO script the user deals with objects of class String,
Rectangle, Circle, Ellipse and Triangle but all of these are
derived classes of base class Instrument. The Instrument object

// class contains the following member variables:

Member variables:
// xfrequency: frequency in hertz in the horizontal direction.
// yfrequency: frequency in hertz in the vertical direction.
// default-decay: decay time given uniformly to the instrument when it

is first created.
// default-damping: the equivalent damping coefficient.

rows: array of Row structures, each representing a
single row of cells.

graphx, graphy: determine where an instrument will be displayed
in the graphics window. Measured in screen

// coordinates.
worldx, worldy: determine where the instrument lies in terms of

the world coordinate system measured in cells.
Joining two pieces of material causes the second
to be placed in the correct position relative to

// the first. This ultimately affects only where they
are displayed graphically relative to each other.

next: pointer to next instrument created. Used to maintain
// a linked list of all instruments created within one

script.
// xmax, ymax: size of the bounding box which just fits around
// the instrument in cells. Xmax is the width -1 of
// the instrument measured in cells and ymax is the

height -1 measured in cells.
// amplification: the factor by which the amplitude of vibrations is

emphasised when displayed graphically. Has no effect
// on sound output.

Static member variables:
list, current: head of linked list of instruments, and current

instrument during updating.
// default-mass: the default mass which all cells are given initially.
// Should not be altered as it has been chosen for
// optimum performance and would upset conversion from

hertz to cells.
global-amplification:

// global amplification factor for all instruments
when displayed graphically. Has no effect on sound
output.

#ifndef IISTRUMEIT_H
#define IISTRUMEIT_H

#include <stdlib. h>
#include <math. h>
*include "Ce11. h"
#include <iostream. h>

define Hz2CellConst 24000.0 Used to convert a frequency in Hz into the
appropriate number of cells needed to achieve
this frequency.

#define Decay2DampingConst 0.000375
// Used to convert a decay time into a damping

269

270 G. Implementation code

value suitable for the 'damping' field of
a cell. When the velocity of a cell is
repeatedly multiplied by this damping value
on every time step of the synthesis engine

// its vibrations will decay over the given
// decay time.

ROTE: Hz2CellConst t Decay2DampingConst and audiorate, aodelrate &
// bandvidthlevel (all from main. cc) are all interrelated and must
// not be changed.

struct Row
{
int xmax;
int offset;
Cell *cells;

class Instrument
{

protected:
float xfrequency, yfrequencyi
float default decay, default-damping;
Row *rows;
int graphx, graphy;
int worldx, worldy;
Instrument *next;

void initialise-cells();
void link-cells();
void calculate_my_forcesO ;
void update_my_positionO ;

static Instrument *list;
static Instrument *current;
static float default-mass;
static void glue_cells(Cell "ci, Call *c2);
static void join_left_to_left(Call lcelll, Call tca112);
static void join_laft_to_right(Cell tcelli, Call &cell2);
static void join_right_to_left(Cell tcelll, Call tcell2);
static void join_right_to_right(Cell tcelll, Call tca112);
static void join_bottom_to_bottom(Cell tcelll, Call tca112);
static void. Ioin_bottom_to_top(Cell tcelll, Call ica1l2);
static void join _top_to_bottom(Cell tcelll, Cell &c. 112);
static void join_top_to_top(Cell tcelll, Call tcell2);

public:
int xmax, ymax;
float amplification;

Instrument(float xfreq, float yfreq, float decay);
Instrument ksetdecay(float x1, float x2, float yi. float I2, float decay);
Instrument tsetdecay(float left, float right, float decay);
Instrument ksetdecay(float decay);
Instrument kresetdecay(float x1, float x2, float yl, float y2);
Instrument tresetdecay(float left, float right);
Instrument Yresetdecay();
Instrument ksetdamping(float xl, float x2, float yi, float y2, float damping);
Instrument tsetdamping(float left, float right, float damping);
Instrument tsetdamping(float position, float damping);
Instrument tsetdamping (float damping);
Instrument kresetdamping(float x1, float x2, float yl, float y2);
Instrument tresetdamping(float left, float right);
Instrument tresetdamping(float position);
Instrument kresetdamping();
Instrument tvibrato(float rate, float depth);
Instrument tlock(float x1, float x2, float yl, float y2);
Instrument klock(float x, float y);
Instrument tlockleftO ;
Instrument klockrightO ;
Instrument klocktop();
Instrument tlockbottomO ;
Instrument tlockperimeterO ;
Instrument tlockcorners();
Instrument tlockends();
Cell tat(float x, float y);
Cell &operator()(float x, float y);
Cell &operator()(float x);

float ecreenx(float x, float y);
float screeny(float x, float y);
void label(float x, float y, int xoffset, int yoffset,

char *caption, int colour);
void label(float x, int xoffset, int yoffset,

char "caption, int colour);
void display();
void display_at(int x, int y) {graphx=x; graphy=y; }

G. 1 C++ implementation of the TAO library libtao. a 271

void place_at(int x, int y) {vorldx=x; vorldy-y; }

void
{

add_to_global_listC)

if (list==PULL) list-this; else current->next-this;
current-this;
}

static float global amplification;
static void calculate-forces();
static void update-positions();
static void display_all0 ;
static float decay2damping(float decay) {return (1.0-(Decay2DampingConst/decay)); }
static int hertz2cells(float freq) {return (int)(Hz2CellConst/freq); }
static void glue(Instrument tii, float x1, float yl,

Instrument ti2, float x2, float y2);
static void glue(Instrument til, float x1, float yl,

Instrument tit, float x2);
static void glue(Instrument tit, float x1,

Instrument tit, float x2, float y2);
static void glue(Instrument til, float x1,

Instrument ti2, float x2);
static void join(Instrument tit, float xi, float y1,

Instrument tit, float x2, float y2);

#endif

G. 1.4 File Instrument. cc
//
// File name: Instrument. cc (c) 1996 Mark Pearson

Content: Definition of Instrument class member functions
//

Votes:
Throughout this file many functions have to access individual cells
within an instrument. Whenever this occurs certain conventions are
observed. The variables x and y are always coordinates in the

// instrument coordinate system, normalised between 0 and 1, where 0
t1 mean left t right respectively for x, and bottom t top for y.

// The local variables i and j are always integer coordinates and refer
to the cell in a row and the row number respectively. Whenever a

// function is called with x and y as arguments, a conversion to i and
j occurs.
There are two coordinate systems used in the graphical animations:

// world and screen. World coordinates are measured in units of cells,
so for example if a cell is at world coordinates (x, y) then its north

// west neighbour is at (x-1, y+1). This coordinate system makes it a
simple matter to place instruments in the correct position,
graphically speaking, relative to each other. Screen coordinates are

// measured in pixels.

*include "Instrument. h"
#include <iostream. h>
*include <math. h>
#include <gl. h>
#include <sys/types. h>
*include <sys/times. h>

Instrument "Instrument:: list=IIULL; // lo instruments to start with.
Instrument "Instrument:: current=LULL;
float Instrument:: default_mass=3.6; // Set to optimum value for

// frequency response of
// material. Leave well alone!!

float Instrument: : global-amplification=0.0;
extern int graphics-on; // main. cc
extern long Sample; // main. cc
extern int graphics-update-step; // main. cc
extern short interframedelay; // main. cc
extern int winoriginx, vinoriginy; // main. cc
extern float skevfactor, xacale, yscale; // main. cc

//
// Constructor name:

Instrument(float xfreq, float yfreq, float decay)

Functionality:
Since classes String, Rectangle, Circle etc. are derived from class
Instrument, when an object of any of these classes is created, an

// instrument object is created first, and serves as the basic skeleton

272 G. Implementation code

for all the specific instrument shapes. This constructor function
// creates that skeleton. The details are filled in by the derived

class' constructor function.
//

Arguments:
// Frequency in hertz of the instrument in the x and y directions and

an initial uniform decay time measured in seconds.
// Instrument class member variables:

xfrequency, yfrequency, default_decay, default_damping,
amplification/ , graphx, graphy, vorldx, vorldy.

Instrument:: instrument (float xfreq, float yfreq, float decay)
{
xfrequencyyxfreq;
yfrequency-yfreq;
default_decaysdecay;
default_damping=decay2damping(decay);
amplificational. 0; // Only for graphics display, not sound synthesis;
graphx-0; ditto
graphy-0; ditto
vorldx-0; ditto
aorldyr0; // ditto
}

Operator name: (float x, float y)

// Functionality:
// When placed immediately after an identifier signifying an object of

class instrument, selects and returns a reference to the cell at
position (x, y). For an explanation of the coordinate system used see // section 5.4.8. Also has the side effect of placing
a blue marker on the graphics screen to mark the cell accessed, if
the graphics are turned on.

Arguments:
// x, y: instrument coordinates.

Instrument class member variables:
rows, graphx, graphy, vorldx, vorldy, amplification,
global amplification.

// Row structure member variable:
/1 cells.

Local variables:
// i, j: cell number and row number coordinates (see note at head
// of this file).
// c: pointer to cell being accessed. // left, bottom: origin of bottom left hand corner of bounding box
// surrounding instrument measured in screen coordinates.

scrnx, scrny: screen coordinate position of blue marker.

External variables: (all from file main. cc) // winoriginx, winoriginy, xscale, yscale, skevfactor, // gra hics_on, graphics_update_step, Sample.

Cell
{

tlnstrument:: operator 0 (float x, float y)

register int j=(int)(ymaxry), i=(int)(rows [j]. xmax*x);
register Call sc=irovs[j]. cells[i];
int left, bottom;

left-winoriginx+graphx;
bottom=winoriginy+graphy;

if(graphics_on tt Sample%graphics_update_step-0)
the graphics are refreshed on every 'graphics_update_step'th time step of // the synthesis engine. int scrnx, scrny;

scrnx-(1eft+(vorldx+i+rovs[j]. offset)sxscalo + (vorldy+j)oskevfactor);
scrny=(bottom+(vorldy+j)*yscale+c->positionsamplificat ions

global-amplification);

color(BLUE);
circf(scrnx, scrny, 3);
}

return Sc;
}

//

G. 1 C++ implementation of the TAO library libtao. a 273

Operator name:
// (float x)

Functionality:
// Exactly the same as operator (float x, float y) but for one

dimensional instruments where only the x coordinate is needed.

Cell
{

llnstrument:: operatorO (float x)

register int i=(int)(rows[0]. xmax*x);
register Cell *c-trows[0]. cells[i];
int left, bottom;

left=vinoriginx+graphx;
bottom= vinoriginy+graphy;

if(graphics_on tt Sample%graphics_update_step=a0)
{
int scrnx, scrny;
scrnx-(1eft+(worldx+i+rows[O]. offset)sxscale + worldysskewfactor);
scrny=(bottom+worldy*yscale+c->position*amplification*

global-amplification);

color(BLUE);
circf(scrnx, scrny, 3);
}

return Sc;
}

//
// Member function name:

at(float x, float y)
//

Functionality:
Exactly the same as for operator '(float x, float y)' in that it
selects and returns a reference to the cell specified by the
instrument coordinates x and y except it doesn't affect the graphics
at all.

Cell tInstrument:: at(float x, float y)
{
register int jn(int)(ymax+y), i-(int)(rows[j]. xmax*x);
register Cell "c=irows[j]. cells[i];
return Sc;
}

//
Member function name:

// screenx(float x, float y)

Functionality:
// Returns the screen x coordinate of the cell specified by the

instrument coordinates x and y.
//
// Local variables:

i, j: cell number and row number coordinates (see note at head
of this file).

// left, bottom: origin of bottom left hand corner of bounding box
// surrounding instrument measured in screen coordinates.
//

Instrument class member variables:
xmax, ymax, rows, graphx, graphy, worldx, worldy.

// External variables: (all from file main. cc)
// winori inx, winoriginy, xscale, scale, skewfactor,

float Instrument:: screenx(float x, float y)
{
int i, j;
int left, bottom;

left=winoriginx+graphx;
bottom=winoriginy+graphy;

j=(int)(ymaxsy);
i=(int)(rows [j]. xmax*x);
return left+(vorldx+i+rovs[j]. offset) *xscale+(vorldy+j)sskevfactor;
}

//
// Member function name:

274 G. Implementation code

screeny(float x, float y)

// Functionality:
// Returns the screen y coordinate of the cell specified by the

instrument coordinates x and y.

Local variables:
// j row number containing the cell specified.
// left, bottom:

origin of bottom left hand corner of bounding box
// surrounding instrument, measured in screen coordinates.

Instrument class member variables:
// xmax, ymax, rows, graphx, graphy, vorldx. "orldy, amplification,

global amplification.
// Instrument class member function:

at(x, y).
//

External variables: (all from file main. cc)
ainoriginx, vinori iny, yscale.

float Instrument:: screeny(float x. float y)

int left, bottom;

left-vinoriginx+graphx;
bottom=vinoriginy+graphy;

int j=(int)(ymax*y);
return bottom+(vorldy+j)syscale+at(x, y). position*amplification"

global-amplification;

//
// Member function name:

label(float x, 'float y, int xoffset, int yoffset, // char "caption, int colour)

Functionality:
Places a text caption on the graphics screen at a position
determined by the instrument coordinates x and y. If the cell
specified is displayed at screen coordinates (scrnx, scrny) then

// the caption will be placed at (scrnx+xoffset, scrny+yoffset). The
// is displayed in the specified colour where 'colour' is one of RED,
// GREEN, BLUE, YELLOW, MAGEITA, CYAI or BLACK, which are idefined
// constants from header file <gl. h>.

// Instrument class member functions:
// screenx(x, I/)/, screeny(x, y).

/ ////////////////// /
void Instrument:: label(float x, float y, int xoffset, Jut yoffset,

char *caption, int colour)

cmov2(screenx(x, y)+xoffset. screeny(x, y)+yoffset);
color(colour);
charstr(caption);
}

//
// Member function name:

label(float x, int xoffset, int yoffset,
char *caption, int colour)

//
Functionality:

Version of label function given above for one dimensional instruments.

void Instrument:: label(float x, int xoffset, int yoffset,
char *caption, int colour)

{
cmov2(screenx(x, 0)+xoffset, screeny(x, 0)+yoffset);
color(colour);
charstr(caption);
}

Member function name:

Functionality:
// when an instrument is first created the data structures representing

G. 1 C++ implementation of the TAO library libtao. a 275

// the cells, rows and the instrument object are set up. The shape of // the instrument and hence the number of rows and number of cells in
// each row are determined by the particular constructor function of // the class derived from the instrument base class. This function

sets up the neighbour pointers of all the cells in the instrument,
regardless of its shape. In other words it installs the springs, // automatically detecting boundaries and making sure that there are no
ragged edges.

// Local variables: // i, j: cell number and row number coordinates (see note at head
// of this file).

thisrow: pointer to the current row.
northoffset: offset in cells of row above relative to 'thisrov'.

// southoffset: offset in cells of row below relative to 'thisrov'.
northi: 'il always specifies the cell number in a particular row.

Since different rows have different offsets, cell 'i' in
thisrov corresponds to cell 'northi' in the row above.

southi: similar to northi.
thisxmax: number of cells -1 in thisrow.

// northxmax: number of cells -1 in row above thisrow.
southxmax: number of cells -1 in row below thisrow.

// c; north, south, east, west:
// pointers to current cell and four of its neighbours.

Instrument class member variables:
rows, ymax.

void Instrument:: link_cells()
{
register i, j;
Cell "thisrov;
int northoffset, southoffset, northi, southi;
int thisxmax, northxmax, southxmax;

for(=o; j<=ymax; j++)

if(j<ymax)
{
northoffset-rows[j]. offset-rovs[j+l]. offset;
northxmax-rows[j+l]. xmax;
}

if(j>O)
{
southoffset-rows[j]. offset-rows[j-1]. offset;
aouthxmax=rovs[j-1]. xmax;
}

thisxmax=rows[j]. xmax;
thierov=rova[j]. cells;

for(i=O; i<-thisxmax; i++)
{
if(i==0) thisrov[i]. vest=IULL;
else thisrov[i]. vest=t(thisrov[i-1]);
if(iuthisxmax) thisrov[i]. east=NLL;
else thisrov[i]. east=t(thisrov[i+l]);

northi-i+northoffset;
southi-i+southoffset;

if(j- O II southi<O II southi>southxmax)
thisrov[i]. south=]rULL;

else
thisrov[i]. south=trovs[j-i]. cells[southi];

if(j--ymax II northi<O II northi>northxmax)
thisrov[i]. north=]FULL;

else
thisrov[i]. north=irovs[j+i]. cells[northi];

Cell cc, *north, *south, *east, *west;

for(O; j<=ymax; j++)
for(i=0, c=roes[j]. cells; i<=rovs[j]. xmax; i++, c++) {

if(north=c->north) c->neast=north->east;
else if(east=c->east) c->neast=east->north;
else c->neast=LULL;

if(north) c->nvest-north->vest;
else if(vest=c->vest) c->nvestwest->north;
else c->nvest=LULL;

276

i? (south-c->south) c->seast=south->east;
else if(eastnc->east) c->seastueast->south;
else c->seast-LULL;

if(south) c->svestssouth->vest;
else if(vest-c->vest) c->svest"vest->south;
else c->svest-LULL;
}

}
}

G. Implementation code

// Member function name:
initialise_cells()

//
Functionality:

// Since the material is discrete in nature but a continuous range
of frequencies is needed, once the width and height of an instrument
in cells have been determined, the masses of the cells have to be
adjusted slightly away from the default mass in order to adjust the
frequency to the originally specified value. This compensation is

// calculated from the given x frequency since the compensation must
work for strings and most 2D instruments are inharmonic in nature, so

// the error in yfrequency will not be noticable. Also sets the
// velocities, positions and forces of all cells to zero, and
// initialises a few other variables.
//

Local variables:
I. J: usual use, j=row number and incell number in chosen row.
intended_freq: xfrequency specified in the instrument declaration.
actual-Iraq: xfrequency which would result if the cells ver" given // the default_mass, having decided how many calls vide // and high the instrument is.

1/ c: pointer to current cell.

// Instrument class member variables:
rows, //max.

void
{

Instrument:: initialise_cells()

Cell cc;
register i, j;
float intended_freq, actual_freq, compensation_factor.

intended_freq=zfrequency;
actual_freq-Hz2Ce11Const/(xmax+l);
compensation_factor-povf(4.0,1og10f(actual_freq/intended_freq)/1og10f(2.0));

for (J=0; j<-ymax; j++)

for (i. 0, c=rows[j]. calls; i<-rovs[j]. xmax; i++. c++) {
c->mode=CELL_BOW_STICK_MODE;
c->companion=NULL;
c->mass=Instrument:: default_mass*compensation_factor;
c->Position-0.0;
c->velocity=0.0;
c->force=0.0;
c->damping-default_damping;
}

// // Member function name:
// calculate_my_forces()

Functionality:
Starts at bottom left of instrument and works its way across each

// row and then up to the next row until it reaches the top right.
// For each cell the total force due to the springs connecting it to

its neighbours is calculated. If the cell is a master cell it
treats the slave cell's neighbours as its own in order to calculate

// the combined force acting on both cells. If it is a slave cell then
// no calculations are made as these will either already have been
// performed for the master cell or will be due to be performed for the

master cell.
//

Local variables:
// i, j: j=row number and i=cell number in chosen row.
// c, north, south, east, west, neast, seast, nwest, sweat:
// pointers to current cell and its neighbouring cells and
// also pointers to slave companion cellos neighbours if this
// cell has one.

G. 1 C++ implementation of the TAO library libtao. a 277

// slave: if this call is glued to another and is acting as the
// master cell then 'slave) points to the companion slave
// cell.
// myposition: position of the current cell.
// dp, count: the force exerted on cell c by a neighbouring cell is

given simply by the neighbouring cell's position minus
// c's position, since the coefficient of elasticity is
// set to unity. Therefore the total force acting on c

due to all the neighbouring cells is given by the
sum of the positions of the neighbouring cells minus
(number of neighbours " c°s position). The variable dp

// keeps track of this sum and count keeps track of the
// number of neighbours.

Instrument class member variables:
rows, ymax.

void
{

Instrument:: calculate_my_forces()

register i, j, count;
register Cell cc, *slave, *north, *south, ºeast, ºvest;
register Cell ºneast. ºnvest. ºseast, ºavest;
static float myposition, dp;

for (J. O; j<-ymax; j++)
for (i=0, c-rows[j]. cells; i<-rovs[j]. xmax; i++, c++)

{
dp=0.0; myposition-c->position; count 0;

it (! (c->mode t CELL_SLAVE_MODE))
{
dp+=

((north=c->north)? (count++, north->position): 0.0)
((south=c->south)?? (count++, south->position): 0.0)
((east=c->east)? (count++, east->position): 0.0) +
((vest=c->vest)? (count++, vest->position): 0.0) +
((neast=c->neast)? (count++, neast->position): 0.0)
((seast=c->seast)? (count++, seast->position): 0.0)
((nveat=c->nvest)? (count++, nvest->position): 0.0)
((svest=c->svest)? (count++, svest->position): 0.0);

if (c->mode & CELL_MASTER_MODE)
{
slave=c->companion;
dp+-
((north=slave->north)? (count++, north->position): 0.0)
((southislave->south)? (count++, south->position): 0.0)
((east=slave->east)? (count++, east->position): 0.0) +
((west=slave->vest)? (count++, vest->position): 0.0) +
((neast=slave->neast)? (count++, neast->position): 0.0)
((seast=slave->seast)? (count++, seast->position): 0.0)
((nvest-slave->nvest)? (count++, nvest->position): 0.0)
((svest=slave->svest)? (count++, svest->position): 0.0);
}

}
c->force-dp - count " myposition;
}

// Member function name:
update_my_position()

// Functionality:
Starts at bottom left of instrument and works its way across each
row and then up to the next row until it reaches the top right.
The force acting upon each cell is used to calculate the cells
acceleration, new velocity and new position. Also multiplies the
new velocity by the damping value (between 0 and 1). This value is

// converted from the percentage value given in a TAO script. 100% -> 0
// and 0% -> 1.
//

Local variables:
i, j: j=row number and i=cell number in chosen row.
c: pointer to current cell.

Instrument class member variable:
rows.

void
{

Instrument:: update_my_position()

static int i, j;
static Cell "c;

278 G. Implementation code

for (j. O; j<max; j++)
for (i=0.

c=rovs[j]. cells; i<=rovs[j].: max; i++. c++)
{
if(! (c->mode t CELL-LOCK-MODE c->mode CELL-SLAVE-BODE))

c->velocity+=c->force/c->mass;
c->velocitys=c->damping;
c->position+=c->velocity;
}

if(c->mode t CELL_MASTER_MODE)
{
c->companion->force=c->force;
c->companion->velocity=c->velocity;
c->companion->position=c->position;
}

// Member function name:
setdamping(float xi, float x2, float yl, float y2, float damping)

Functionality:
// Sets the damping value of each cell to the value 'damping' over the
// region specified. Vote that the coordinate system is relative to a
// bounding box surrounding the instrument and, although x and y are

normalised to be between 0 and 1, this coordinate system differs
from the one used to access a point within an instrument and
is described in section 5.4.4.

//
Returns:

A reference to the cell for whom the function was invoked via the
// C++ special variable `this'.
//
// Local variables:
// i1.12, j1, j2:

ji=bottom row number, j2stop row number, ilsleft cell number
and 12-right cell number.

// imin, imax: column numbers where damped region begins and ends // respectively. If an instrument is some shape other than
rectangular then these are measured, in cells, relative
to a bounding box surrounding the instrument where column

// 0 is the left hand extremity of the instrument and // column xmax is the right hand extremity.

Instrument class member variables:
xmax. ymax, rows.

Instrument tlnstrument:: setdamping(float xl, float x2, float yl, float y2, float damping)

int i1, i2, j1, j2, imin, imax;
register i, j;

i1=(int)(xlsxmax);
i2-(int)(x2*xmax);
j1=(int)(yl*ymax);
j2=(int)(y2*ymax);

for (j=jl; j<'j2; j++)

imin-rovs[j]. offset;
imax=rovs[j]. off set+rovs[j]. xmax;
for (i-i1; i<ai2; i++)

{
if (i>=imin tt i<-imax)

{
rows[j]. cells[i-imin]. damping-damping;
}

}
return *this;
}

// Member function name:
// setdamping(float left, float right, float damping)

// Functionality:
Version for one dimensional instruments where only the left and

// right ends of the damped region need to be specified still in
normalised coordinates between 0 and 1.

Returns:
// A reference to the cell for whom the function was invoked.

G. 1 C++ implementation of the TAO library libtao. a 279

//
// Local variables: // il, i2: i1=left cell number and i2-right cell number.

imin, imax: column numbers where damped region begins and ends
respectively. If an instrument is some shape other than
rectangular then these are measured, in cells, relative // to a bounding box surrounding the instrument where column
0 is the left hand extremity of the instrument and
column xmax is the right hand extremity.

// Instrument class member variables:
xmax, rows.

Instrument tlnstrument:: setdamping(float left, float right, float damping)
{
int il, 12, imin, imax;
register i;

i1m(int)(1eftsxmax);
12n(int)(right*xmax);

imin=rovs[O]. offast;
imax=rovs[O]. offset+rovs[0]. xmax;

for (i-il; i<=i2; i++)
{
if (i>»imin tt i<mimax)

{
rows[0]. cells[i-imin]. damping-damping;
}

}
return *this;
}

//
Member function name:

setdamping(float position, float damping)

Functionality:
// Version for one dimensional instruments which only allows the damping

to be set at a single point, not over a region.

Returns:
A reference to the cell for whom the function was invoked.

//
Local variables:

i: i=cell number affected.

Instrument class member variable:
rows.

Instrument &Instrument:: setdamping(float position, float damping)
{
int i;

i=(int)(position*rovs[0]. xmax);
roes(0]. calls[i]. damping-damping;

return *this;
}

//
Member function name:

aetdamping(float damping)

Functionality:
Sets the damping value of every cell within an instrument to 'damping'

Returns:
A reference to the cell for whom the function was invoked.

Instrument class member function:
// setdampin (float xi, float x2, float yl, float y2, dampin).

Instrument &Instrument:: setdamping(float damping)
{
setdamping(0.0,1.0,0.0,1.0. damping);
return *this;
}

III1111111111111

280 G. Implementation code

Member function names:
resetdamping(float x1, float x2, float yl, float y2)
resetdamping(float left, float right)

// resetdamping(float position)
resetdamping()

// Functionality:
Equivalent to the setdamping family of functions above, but reset the
damping value back to Instrument: : default_damping.

// Returns:
// A reference to the cell for whom the function was invoked.
//

Instrument class member variable:
default-damping.

Instrument class member function:
// setdampinl(float x1. float x2, float y1, float y2, dampin).

Instrument &Instrument:: resetdamping(flost xl, flost x2, flost yl, float y2)
{
setdamping(xl, x2, yl, y2, default_damping);
return *this;
}

Instrument &Instrument:: resetdamping(float left, float right)
{

etdamping(left, right, 0.0,0.0, default-damping);
return *this;
}

Instrument &Instrument:: resetdamping(float position)
{
setdamping(position, position, 0.0,0.0, default-damping);
return *this;
j

Instrument tInstrument:: resetdamping()
{
setdamping(0.0.1.0,0.0,1.0, default damping);
return *this;
3

//
// Member function names:

setdamping(float x1, float x2, float yl, float 2, float decay)
// setdamping(float left, float right, float decay`

setdamping(float decay)
//

Functionality:
Equivalent to the setdampinfamily of functions above, but set the

// damping value in terms of a% ecay time measured in seconds. At the
moment the results of setting a particular decay time for a particular
region are not fully understood and these functions need to be updated

// to provide more predictable results for any shape of size of
instrument and any region of damping.

//
Returns:

// A reference to the cell for whom the function was invoked.

// Instrument class member functions:
setdamping(float xl, float x2, float yl, float y2, damping),
decay2dampin (float decay).

Instrument tlnstrument:: setdecay(float xi, float x2, float yl, float y2, float decay)
{
setdamping(xl, x2, yl, y2, decay2damping(decay));
return *this;
}

Instrument &Instrument:: setdecay(float left, float right, float decay)
{
setdamping(left, right, 0.0,0.0, decay2damping(decay));
return "this.
}

Instrument &Instrument:: setdecay(float decay)

setdamping(0.0,1.0,0.0,1.0, decay2damping(decay));
return *this;
}

III1111111111111

G. 1 C++ implementation of the TAO library libtao. a 281

Member function names:
// resetdecay(float x1, float x2, float yi, float y2) // resetdecay(float left, float right)

resetdecay()

// Functionality:
Equivalent to the resetdamping family of functions above, included
only for consistency and compatibility.

// Returns:
A reference to the cell for whom the function was invoked.

Instrument class member variable:
// default damping.

Instrument class member function:
setdampin (float xi, float x2, float 1, float y2, dam 'n).

/////////////////f//////////////////////////iu ///////////////[i//ß////////////
Instrument &Instrument:: resetdecay(float xl, float x2, float yi, float y2)

{
setdamping(xi, x2, yl, y2, default-damping);
return *this;
}

Instrument tlnstrument:: resetdecay(float left, float right)
{
setdamping(left, right, 0.0,0.0, default-damping);
return *this;
}

Instrument tInstrument:: resetdecay()
{
setdamping(0.0,1.0,0.0,1.0, default-damping);
return ethic;
}

/////////////////! //
// Member function name:

vibrato(float rate, float depth)
//

Functionality:
Applies a sinusoidal vibrato of frequency 'rate' hertz to an

// instrument. The depth is given as a proportion of the fundamental
// frequency of the instrument and the vibrato is achieved by modulating

the masses of all the cells. Only works for slight modulations as
making the masses too small makes the model become unstable.

Returns:
// A reference to the cell for whom the function was invoked.

Local variables:
c: pointer to current cell.
i, j: j=row number, i=cell number in that row.
base_freq: base frequency of instrument.
nev_freq: frequency required due to vibrato modulation.

// compensation-factor:
factor to multiply the cell masses by.

// Instrument class member variables:
rows, ymax, xmax, default-mass

External functions:
sin, powf, loglOf (from <math. h>)

Instrument tInstrument:: vibrato (float rate, float depth)
{
Cell "c;
register i, ;
float base_freq, nev_freq, compensation_factor;
extern float Time; // from main. cc

actual_freq-Hz2Ce11Const/(xmax+l);
nev_freq-actual_freq+(1.0+(depth*sin(rate4Timee6.2831853)));
compensation_factor=povf(4.0, logl0f(actual_freq/nev_freq)/logl0f(2.0));

for (j=O; j<-ymax; j++)

for <i=0, c=rows[j]. calls; i<-rovs[j]. xmax; i++, c++)

c->mass=Instrument:: default_massscompensation_factor;
}

return *this;
}

282 G. Implementation code

// Member function name:
lock(float x, float y)

//
Functionality:

Locks a single point at (x, y) on an instrument.

// Returns:
A reference to the cell for whom the function was invoked.

Local variables:
// i, j: j=row number, i-cell number in that row.
//
// Instrument class member variables:

rows.

Instrument tlnstrument:: lock(float is float y)
{
int i, J.

1=(int)(yeymax);
=(int)(xsrovs[j]. xmax);

rovs[JI. cells[il. mode Is CELL-LOCK-HODE;

return *this;
}

//
// Member function name:

lock(float x1, float x2, float yl, float y2)
// Functionality:
// Locks a rectangular region. Similar to aetdamping(xl.: 2, yl. y2, ...)
// in the coordinate system used to specify the region.

Returns:
/1 A reference to the cell for whom the function was invoked.

// Local variables:
ii, i2, ji, j2: ji=bottom row number. j2=top row number,

i1=left cell number, i2aright cell number.
imin, imax: minimum and maximum values of i respectively

for the instrument in question.
/1 i, j: j rov number, iicell number.

Instrument class member variables:
rows.

Instrument &Instrument: : lock(f lost xl, float x2, float y1, float y2)

int i1,12, jl, j2, imin, imax;
register i, j;
i1°(int) (leftsxmax);

i2: (int)(rightsxmax);
ji(int)(bottomsymax);
j2-(int)(top*ymax);

for (j. j1; j<'j2; j++)

imin=rova[j]. offset;
imaxýrovs[j]. offset+rovs(j]. xmax;

for (i-ii; i<=i2; i++)
{
it (i>=imin tt i<mimax)

{
roes [j]. cells [i-imin]. mods I. CELL-LOCI-MODE;
}

}
return *this;
}

//
// Member function names;

lockleft(): locks the leftmost cells in an instrument
// lockrightO: locks the rightmost cells in an instrument

locktop(): locks the topmost cells in an instrument
// lockbottomO: locks the bottommost cells in an instrument
// lockcorners(): only meaningful for rectangular and triangular
// instruments.
// lockperimeterO : self-explanatory

G. 1 C++ implementation of the TAO library libtao. a 283

// lockende(): designed for ID instruments.
//

Functionality:
Lock various specific regions of an instrument.

Return:
// A reference to the cell for whom the function was invoked.
//

Local variables:
i. J: j=rov number, i=cell number.

// Instrument class member variables:
rows.

Instrument &Instrument:: locklett()
{
register j;

for(j. 0; j<=Ymax; j++)
if(rova[j]. offset0)

rovs[j]. ce11s[0]. mode in CELL_LOCE_MODE;

return *this;
}

Instrument *Instrument:: lockrightO
{
register j;

for(j=O; j<=Ymax; j++)
if(rovs[j]. offset+rovs[j]. xmax==xmax)

rows[j]. cells [rows [j]. xmax]. mods In CELL_LOCK_MODE;

return *this;
}

Instrument tInstrument:: locktop()
{
register i;

for(i=O; i<-rows[ymax]. xmax; i++)
rovs[ymax]. cells[i]. mode I- CELL_LOCK_MODE;

return *this;
}

Instrument tInstrument:: lockbottom()
{
register i;

for(i=0. i<-rovs[0]. xmax; i++)
rovs(0]. cells[i]. mode in CELL_LOCK_MODE;

return *this;
}

Instrument klnstrument:: lockperimeter()
{
register j;

locktop();
lockbottom();

for(j=0; j<=ymax; j++)
rowsj]. cells[0]. mode I- CELL_LOCK_MODE;

for(j=0; j<=ymax; j++)
rovs[j]. cells[rovs[j]. xmax]. mode I- CELL_LOCK_MODE;

return *this;
}

Instrument tlnstrument:: lockcorners()
{
lock(0.0,0.0);
lock(1.0,0.0);
lock(0.0,1.0);
lock(1.0,1.0);
return *this;
}

Instrument &Instrument:: lockends()
{
lockleft();
lockrightO;
return *this;

284 G. Implementation code

//
// Member function names:
// glue(Instrument Ail, float xl, float y1, glue 2D to 2D

Instrument A12, float x2, float 72)
glue(Instrument Ail, float xl, float 11, glue 2D to 1D

Instrument k12, float x2)
// glue(Instrument Ail, float xl, // glue 1D to 2D

Instrument A12, float x2, float y2)
// glue(Instrument Ail, float xl, glue 1D to 1D

Instrument ti2, float x2)
//

Functionality:
// Given two instruments and sets of coordinates for selecting two
// cells, glues them and their corresponding neighbours together.

Return:
// A reference to the cell for whom the function was invoked.
//
// Instrument class member function:

glue_cells(Cell *cl, Cell *c2).

void Instrument: : glue (Instrument til, float x1, float yl,
Instrument t12, float x2, float y2)

1
Instrument:: glve_cells(til(xl, yl), ti2(x2, y2));
Instrument:: glue_cells(il(xl, yi). east, 12(x2, y2). east);
Instrument:: glue_cells(i1(x1, yl). vest, 12(x2. y2). vest);
Instrument:: glue_cells(il(x1, y1) . north, 12(x2, y2). north);
Instrument:: glue_cells(i1(xl, yl). south. 12(x2, y2). south);
Instrument:: glue_cells(il(xl, yl). neast, 12(x2, y2). neast);
Instrument:: glue_cells(il(xl, yl). nvest, 12(x2, y2). nvest);
Instrument:: glue_cells(il(xl, yl). seast, 12(x2, y2). seast);
Instrument:: glue_cells(i1(x1, yl). svest, 12(x2, y2). svest);
}

void Instrument:: glue (Instrument &ii, float x1, float yl.
Instrument tit, float x2)

{
Instrument: : glue_cells(til(xl, yl). ti2(x2));
Instrument: : glue_cells(il(xi, yi). east, 12(x2). *ast);
Instrument: : glue_cells(il(xl, y1). vest, i2(x2). vest);
}

void Instrument:: glue(Instrument til, float xi,
Instrument ti2, float x2, float y2)

{
Instrument:: glue_cells(tii(xi), &12(x2, y2));
Instrument: : glue_cells(il(xl). east , 12(x2, y2). east);
Instrument:: glue_cells(il(xl). vest, 12(x2, y2). vest);

void Instrument: : glue (Instrument tilg float xi,
Instrument *12, float x2)

{
Instrument:: glue-cells (til(x1), ti2(x2));
Instrument:: glue_cells(i1(xi). east, 12(x2). east);
Instrument:: glue-cells (i1(xl). west, 12(x2). west);

// Member function name:
// glue_cells(Cell "ci, Cell "c2)

Functionality:
// Given pointers to two cells. glues the cells together.

void(Instrument: : glue_cells(Coll *cl, Call sc2)

if (! cl 11 ! c2) return;

cl->companion"c2;
c2->companion=cl;
cl->mode I' CELL-MASTER-MODE;
c2->mode CELL_SLAVE_MODE;
}

// // Member function name:
// join(Instrument Ail, float xi, float yl,
// Instrument tit, float x2, float y2)

G. 1 C++ implementation of the TAO library libtao. a 285

// // Functionality:
Joins two pieces of material with straight edges by effectively

// installing a new set of springs to sew the two instruments together
so that they act as one. There are eight different cases: -

(1) if xi=0: if x2=0: join the left of it to the left of i2
if x2=1: join the left of il to the right of i2

(2) if x1=1: if x2=0: join the right of it to the left of i2
if x2=1: join the right of il to the right of i2

(3) if yl=0: if y2=0: join the bottom of il to the bottom of i2
// if y2=1: join the bottom of il to the top of i2

(2) if y1=1: if y2=0: join the top of il to the bottom of i2
// if y2 l: join the top of il to the top of i2

// If we are joining horizontally then yl and y2 serve to specify a
centre line at which the joining should begin and conversely if we
are joining vertically x1 and x2 specify a centre line. Once again
x1, x2, yl and y2 are all specified as instrument coordinates.

// For an explanation of the join parameters see section 5.4.7.
Bote that il and i2 can refer to the same instrument making it

// possible to construct cylindrical and toroidal instruments from a
// rectangular sheet.

Instrument class member function:
join_left_to_left(Cell kcelll, Cell tcell2),
join_left_to_right(Cell kcelll, Cell &ce112),
join_right_to_left(Cell kcelll, Cell &cell2),

// join_right_to_right(Cell &celll, Cell &cell2),
join_bottom_to_bottom(Cell kcelll, Cell 1cell2),
join_bottom_to_top(Cell &cell1, Cell kce112),
join_top_to_bottom(Cell kcelli, Cell &cell2),
join_top_to_top(Cell &celli, Cell kcell2),

void Instrument:: join (Instrument Ail, float x1, float yl,
Instrument &ci2, float x2, float y2)

{
if (x1==0.0)

{
if (x2==0.0)

{
Instrument:: join_left_to_left(ii(xl, yl), 32(x2, y2));
}

else if (x2==1.0)
{
Instrument:: join_left_to_right(il(xl, yl), 12(x2, y2));
i2. vorldx-il. vorldx-(i2. xmax+l);
12. worldy-(int)(il. vorldy+il. ymax*yl-i2. ymax; y2);
}

}
also if (xl==1.0)

{
if (x2==0.0)

Instrument:: join_right_to_left(il(x1, yl), 12(x2, y2));
i2. vorldx=il. vorldx+(il. xmax+l);
12. vorldy-(int)(ii. vorldy+il. ymaxsyl-i2. ymax+y2);
}

else if (x2==1.0)

Instrument: : join_right_to_right(il(xl, yl), 12(x2, y2));
}

else if (yi==0.0)
{
if (y2==0.0)

{
Instrument:: join_bottom_to_bottom(ii(x1, yl), 32(x2, y2));
}

else if (y2=s1.0)
{
Instrument: : join_bottom_to_top(il(xi, yl), 12(x2, y2));
i2. vorldx-(int)(ii. worldx+il. xmax*xl-i2. xmax*x2);
i2. vorldy-ii. worldy-(i2. ymax+l);
}

}
also if (y1==1.0)

{
if (y2==0.0)

{
Instrument:: join_top_to_bottom(i1(x1, yl), 12(x2, y2));
i2. worldx=(int)(ii. vorldx+ii. xmax*xl-i2. xmax*x2);
12. worldy-il. worldy+(il. ymax+l); }

else if (y2==1.0)
{
Instrument:: join_top_to_top(il(xl, yl), 12(x2, y2));

286

}
}

}

G. Implementation code

Member function names:
// join_left_to_left(Cell tcelll, Cell kcell2)

join_left_to_right(Cell kcelll, Cell tcell2)
// join_right_to_left(Cell tcelll. Cell tce112)
// join_right_to_right(Cell kcelll, Cell tce112)
// join_bottom_to_bottom(Cell tcelli. Cell tce112)

join_bottom_to_top(Cell tcelll, Cell tcell2)
join_top_to_bottom(Cell tcelli, Cell tce112)

// join_top_to_top(Coll tcelll, Cell tcell2)

Functionality:
Join two pieces of material with straight edges by effectively installing a new set of springs to sew the two instruments together
so that they act as one. Joining starts at the two cells specified
and migrates along the edges of the two pieces of material in one
direction until a boundary is reached. Then back to the starting // cells to migrate in the opposite direction. For a more detailed

// explanation see section 5.4.7.

void
{

Instrument: : join_left_to_left(Cell tcelll. Cell tce112)

Cell *C1=tce111. "c2stce112;

// migrate northwards until a boundary is reached.

while (cl It c2)
{
cl->vest c2"
cl->nvestmc2->north;
ci->svest=c2->south;
c2->vest=cl;
c2->nvest=cl->north;
c2->svest=cl->south;

cl=c1->north; if (cl"Ice111) break;
c2=c2->north; if (c2-s*ce112) break;
}

if (cl) c1->svest=cl->south->vest;
if (c2) c2->svest=c2->south->west;

c1=tce111; c2=tce112;

// back to starting position and migrate southwards

while (cl It c2)
{
cl->west-c2;
cl->nwest-c2->north;
cl->swest=c2->south;
c2->west-cl;
c2->nwest-cl->north;
c2->ewest=cl->south;

cl. ci->south; it (c1==&celli) break;
c2ac2->south; if (c2==gce112) break;

it (cl) cl->nvest-cl->north->west;
it (c2) c2->nvest-c2->north->west;
}

void
{

Instrument; : join_left_to_right(Cell tcelli, Cell 1ce112)

Cell "cl=tcelli, sc2=2cell2;
// migrate northwards until a boundary is reached.

while (cl A& c2)
{
cl->vest-c2;
cl->nvest=c2->north;
c1->svest=c2->south;
c2->east=cl;
c2->neast-cl->north;
c2->seast-c1->south;

ci=cl->north; if (ci==&celli) break;
c2=c2->north; if (c2==&ce112) break;

G. 1 C++ implementation of the TAO library libtao. a 287

i! (cl) cl->svest=cl->south->west;
if (c2) c2->seast=c2->south->east;

cl=tce111; c2stee112.

// back to starting position and migrate southwards

while (cl tt c2)
{
cl->west=c2;
cl->nwest=c2->north;
c1->swest=c2->south;
c2->east=c1;
c2->neast=cl->north;
c2->seast=ci->south;

cl=cl->south; if (cl==kce111) break;
c2=c2->south; if (c2-: kce112) break;

if (cl) cl->nwest-cl->north->west;
if (c2) c2->neastlc2->north->east;
}

void
{

Instrument:: join_right_to_left(Cell tcelli, Cell tcell2)

Cell "c1=tcelll, *c2=tcell2;

// migrate northwards until a boundary is reached.

while (cl It c2)
{
cl->east=c2;
c1->neast-c2->north;
c1->seast=c2->south;
c2->west-cl;
c2->nwest=cl->north;
c2->swest=c1->south;

cl=cl->north; if (cl==tce111) break;
c2=c2->north; if (c2==tce112) break;
}

if (cl) cl->seast-cl->south->east;
if (c2) c2->saest-c2->south->west;

c1=tce111; c2=tce112;

// back to starting position and migrate southwards

while (cl tt c2)
{
cl->east=c2;
cl->neast=c2->north;
c1->seast=c2->south;
c2->vest=cl;
c2->nvest=cl->north;
c2->evest-c1->south;

cl=cl->south; it (ciutce111) break;
c2=c2->south; if (c2==tce112) break;
}

if (cl) ci->neast-ci->north->east;
if (c2) c2->nvest-c2->north->vest;
}

void
{

Instrument: : join_right_to_right(Cell tcelli. Cell tcell2)

Cell "ci=tcelll, *c2=tcell2;

// migrate northwards until a boundary is reached.

while (cl tt c2)
{
c1->east=c2;
c1->neast=c2->north;
c1->seast=c2->south;
c2->east=cl;
c2->neast-cl->north;
c2->seast=c1->south;

cl=cl->north; if (ci==tce111) break;
c2=c2->north; if (c2==tce112) break;
}

288

if (c1) cl->seast=cl->south->east;
if (c2) c2->seast=c2->south->east;

cl=tcelll; c2=tcell2;
// back to starting position and migrate southwards

while (cl tt c2)
{
cl->east-c2;
cl->neast-c2->north;
cl->seast=c2->south;
c2->east=ci;
c2->neast=cl->north;
c2->seast=cl->south;

cl=cl->south; if (cl=-tcelli) break;
c2=c2->south; if (c2--tce112) break;
}

if (cl) c1->neast. cl->north->east;
if (c2) c2->neast=c2->north->east;
}

void
{
Instrument: : join_bottom_to_bottom(Cell lcelli, Cell tce112)

Cell "c* -celli, "c2=tce112;

migrate eastwards until a boundary is reached

while (cl U c2)
{
c1->south=c2;
cl->seast-c2->east;
cl->swest-c2->west;
c2->south-cl;
c2->seast-cl->east;
c2->swest-cl->west;

c1=ci->east; if (cis-kcelll) break;
c2=c2->east; if (c2a-kcell2) break;
}

if (cl) ci->5west=ci->west->south;
if (c2) c2->swest-c2->vest->south;

back to starting position and migrate westwards

ci=tcelli; c2*kcell2;

while (cl Jtk c2)

cl->south=c2;
c1->seast=c2->east;
cl->svest=c2->vest;
c2->south=cl;
c2->seast=cl ->east;
c2->svest-c1->vest;

cl-cl->vest; if (c1==tce111) break;
c2=c2->vest; if (c2 =tce112) break;
}

if (cl) cl->seast=cl->east->south;
if (c2) c2->seast=c2->east->south;
}

void
{

Instrument:: join_bottom_to_top(Call icelli, Cell tce112)

Cell *citcelll, "c2=icell2;

G. Implementation code

migrate eastwards until a boundary is reached

while (c1 tt c2)
{
cl->south=c2;
cl->seast=c2->east;
cl->svest=c2->vest;
c2->north=cl;
c2->neast-cl->east;
c2->nvest=cl->vest;

cl=c1->east; if (c1==tce111) break;
c2=c2->east; if (c2"=tce112) break;
}

G. 1 C++ implementation of the TAO library libtao. a 289

if (cl) cl->sveat-cl->west->south;
if (c2) c2->nveat=c2->west->north;

cl=tcelli; c2=tce112;

// back to starting position and migrate westvards

while (cl H c2)
{
cl->eouth=c2;
c1->seast-c2->east;
c1->svest-c2->west;
c2->north=cl;
c2->neast=ci->eazt;
c2->nvest=cl->veet;

ci cl->west; if (c1==tce111) break;
c2=c2->vest; if (c2==tce112) break;

if (cl) cl->seast-cl->east->south;
if (c2) c2->neast=c2->east->north;
}

void
{

Instrument:: join_top_to_bottom(Call &celll, Cell tce112)

Cell "cl=tcelli, "c2=icell2;

// migrate eastwards until a boundary is reached

while (cl !t c2)
{
cl->north=c2;
c1->neast=c2->east;
cl->nvest-c2->west;
c2->south=cl;
c2->seast-cl->east;
c2->scest=cl->west;

cl=cl->east; if (cl==tce111) break;
c2=c2->east; if (c2--tce112) break;
}

if (c1) cl->nvest=cl->vest->north;
if (c2) c2->svest=c2->vest->south;

c1 &Celli; c2-kce112;

// back to starting position and migrate westwards

while (cl tt c2)

cl->north=c2;
c1->neast=c2->east;
ci->nwest=c2->west;
c2->south-cl;
c2->seast=c1->east;
c2->swest-cl->vest;

cl=c1->vest; if (cl==tce111) break;
c2=c2->vest; if (c2-=tce112) break;
}

if (cl) cl->neast=cl->east->north;
if (c2) c2->seast=c2->east->south;
}

void
{

Instrument:: join_top_to_top(Cell kcelll, Cell kcell2)

Cell scl=kcelli, +c2-kce112;

// migrate eastwards until a boundary is reached

while (cl tt c2)
{
C1->north=c2;
c1->neast=c2->east;
ci->nvest=c2->west;
c2->north=cl;
c2->neast=cl->east;
c2->nvest-cl->west;

c1=c1->east; i? (c1==tce111) break;
c2=c2->east; if (c2==tce112) break;
}

290

if (cl) ci->nsast-cl->east->north;
i! (c2) c2->n. ast=c2->aast->north;

clukc. 111; c2-tc. 112;

// back to starting position and migrate westwards

while (cl It c2)
{
cl->north=c2;
cl->nsast-c2->sast;
cl->nv. st-c2->v. st;
c2->north=cl;
c2->n. ast-cl->. ast;
c2->nv. st=c1->vest;

clscl->w*st; if (cl--ic. 111) break;
c2=c2->v. st; if (c2nstc. 112) break;
}

if (cl) cl->nv. st-cl->v. st->north;
it (c2) c2->nv. stsc2->v. st->north;
}

G. Implementation code

Member function name:
1/ display()

Functionality:
Displays the instrument in the graphics window at a position
determined by worldx, "oridy, graphx. graphy. "ieorigisx l "Ssoriginy.

Instrument class member variables:
rows, graphx, graphy, worldx, "orldy. amplification.
global-amplification.

External variables: (all from file aain. cc)
Iinoriginx, winoriginy, zscale, yscale, stesfacter.
graphics-on, graphics_update_step, Sample.

External functions:
bgnline(), endline(), v2sO:

begin line and end line and vertex functions. see <6l. h)
color(): sets graphics colour. BLAG. WHITE, CYAN. MAGENTA. BLUE,

// GREET, YELLOW, RED allowed.

void Instrument: : display()
{
register short i, j;
Ce11 "C;
float ss;
short v[2];
int left, bottom;

left=vinoriginx+graphx;
bottom=vinoriginy+graphy;

color(BLACB);
linevidth(1);

for(=ymaz; j>"O; j--) // draw horizontal lines through rove of cells

bgnlineO ;
for(i O, c=rovs[j]. cells; i<. rovs[j]. zsaz; i++. c++)

as=c->position;
if (c->damping < default_da+ping) color(BLQB);
else color(BLACI);
"[O]"(short)(left+(vorldx+i+rosstj]. olfact). zscale+(vorld7+j)sskewfactor);
v[1]a(short)(bottow+(vorldysj)eyscale+ss. auplification. 6lobal_a. plification);
v2s(v);
}

endline();
}

color(BLACK);

If ({max>0) if instrument is 2D. draw line round perimeter
linevidth(1);

bgnline();

ior(i O, cnrovs[0]. cells; i<"rovs[01 xmaz; I+*, c++) // across bottom

G. 1 C++ implementation of the TAO library libtao. a 291

ss=c->position;
v[0]=(short)(left+(vorldx+i+rovs[0]. offset)*xscale+vorldysskevfactor);
vii] -(short) (bottom wor1dy*ysca1e+ss*airp1ificationsg1obaI_mpjjfjcatjon);
v2s(v);
}

for TO ; j<-ymax; j++) // up right

c=trova[j]. cells[rows[j]. xmax];
ss=c->position;
v[0] (short)(left+(vorldx+rovs[j]. xmax+rova[j]. offset)*xscale+(vorldy+j)*skevfactor);
v[1]=(short)(bottom+(vorldy+j)*yscale+sssamplificationsglobal_amplification);
v2s(v);
}

for(i=rovs[ymax]. xmax; i>-O; i--) across top
{
c=trovs[ymax]. cells[i];
as=c->position;
v[0]=(short)(left+(vorldx+i+rovs[ymax]. offset)*xscale+(vorldy+ymax)sakevfactor);
v[1]=(short)(bottom+(vorldy+ymax)*yscale+ss*amplification*global_amplification);
v2s(v);
}

for(j=ymax; j>=O; J--) // down left

ccskrows[j]. cells[0];
mc->Position; _]=(short)(left+(vorldx+rove[j]. offset)*xacale+(vorldy+j)+skevfactor);
v[1]=(short)(bottom+(vorldy+j)*yscale+sssamplification*global_amplification);
v2e(v);
}

endlive();
}

for(IM O; j<=ymax; j++) // scan cells again to mark any
// locked or glued ones

for(i=O, c=rows[j]. cells; i<=rows[j]. xmax; i++, c++)
{

sa=c->position;
v[0]=(short)(left+(vorldx+i+rows[j]. offset)*xscale+(vorldy+j)*akevfactor);
v[i]=(short)(bottom+(vorldy+j)*yscale+sssamplificationsglobal_amplification);

if(c->mode t CELL-LOCK-MODE)
{
color(BLACK); mark locked cells in black
circfs(v[0], v[1], 2);
}

if(c->companion)
{
color(AED); mark glued cells in red
circfs(v[0], v[1], 3);

}
}

}

//
Member function names:

calculate_forces0
// update_positions<).

display_allO.

Functionality:
// Cause all instruments to be updated by scanning the linked list

and calling the appropriate member functions for each instrument.

Local variable:
i: current instrument.

void
{

Instrument:: calculate_forces()

for (Instrument "i-Instrument:: list; i; i=i->next)
i->calculate_my_forces();
}

void
{

Instrument:: update_positions()
for (Instrument si=Instrument:: list; i; i-i->next)
i->update_my_position();
3

292

void
{

Instrument: : display-all()

for (Instrument "i Instrument:: list; i; i-i->n. xt)
i->display();

G. 1.5 File String. h

G. Implementation code

//
// File name: String. h (c) 1996 Mark Pearson

// Content: Definition of String object class.

Member variables:
none.

// Class String is derived from class Instrument. It has no member variables
or member functions, only a constructor which knows how to create a one

// dimensional piece of material.

//////////////fl //
Silnd. f STSIIG_H
*define STRIIG_H

tinclude "Cell. h"

*itndef String
$define String not_gl_String
#endif

class String : public Instrument

public:
String(tloat freq, float decay);

#endif

G. 1.6 File String. cc
//

File name: String. cc (c) 1996 Mark Pearson

Content: Definition of String constructor function.

Constructor name: String(float freq, float decay)

Arguments:
Fundamental frequency of string in hertz which determines the
length, and decay time in seconds.

Local variables:
/1 xsize: size of instrument in x direction, measured in cells.

Instrument class member variables:
xmax, ymax, roes, next.

// Instrument class member functions:
// add_to_global_list()
// initialise_cells()
// link_cells()
// hertz2cells(fre uency)

#include "Instrument. h"
#include "String. h"

This is necessary because there is a 'String' type in the graphics // library.

lifndef String
#define String not_gl_String
iendif

String: : String(f lost freq, float decay)
Instrument (freq, 0.0, decay)

{
int xsize-hertz2cells(freq), ysize=1;
xmax=xsize-1;
ymaxs0;

G. 1 C++ implementation of the TAO library Iibtao. a 293

rows=new Rov[ysize];
next-LULL;

rovs[0]. xmax-xsize-1;
rovs[0]. offset-0;
rovs[0]. ce11s-now Cell[xsize];

add_to_global_list();
initialise cells();
link_cellsO;

G. 1.7 File Circle. h

File name: Circle. h (c) 1996 Mark Pearson

// Content: Definition of Circle object class.

// Member variables:
// none.
//
// Class Circle is derived from class Instrument. It has no member

variables or member functions, only a constructor which knows how to
create a circular sheet of material.

#ifndef CIRCLE_H
#define CIRCLE_H

include "Cell. h"

class Circle : public Instrument
{

public:
Circle(float freq, float decay);

#endif

G. 1.8 File Circle. cc

// File name: Circle. cc (c) 1996 Mark Pearson
//
// Content: Definition of Circle constructor function.

Constructor name: Circle(float diameter_freq, float decay)

Arguments:
frequency of circular sheet in hertz. This determines the diameter.

// Also decay time in seconds.

Local variables:
j: current row number // x, y: j (0.. ymax) is translated into y (-yradius.

. +yradius)
// which is used to calculate x from the circle equation

x'2 + y'2 = r'2.
// radius: measured in cells. // local_xmax: xmax for current row. (see file Instrument. h for xmax)

offset: offset of current row needed to place it in the correct
// position relative to all the other rows.
// xsize: overall size of instrument in x direction, measured in

cells.
// ysize: overall size of instrument in y direction, measured in

rows.
// Instrument class member variables:

xmax, ymax, rows, next.

// Instrument class member functions:
add_to_global_list()

// initialise_cells()
link_cells()

// hertz2cells(fr/e)/u/ency)

*include <math. h>
$include "Instrument. h"
*include "Circle. h"
*include <iostream. h>

Circle:: Circle(float diameter_freq, float decay)

294

Instrument (diameter_freq, diameter_freq, decay)
{
register j;
float x, y, radius;
int local_xmax, offset;

G. Implementation code

int xsize, ysize=hertz2ce11s(diameter_freq); diameter measured in cells

xmax=0;
ymax=ysize-1; // the cirle is 'diameter' cells high.

roes-new Rov[ysize]; create the right number of rows
next=IULL;

radius ysize/2.0;

for (j=O; j<ysize; j++) // create one row at a time starting
// from bottom.

yij-(ysize-1.0)/20; // as j goes from 0 to ymax calculate
x-igrt(radius*radius-y+y); y for circle equation. Then x
xsze-((int)(x+0. b))e2; round x up/down to nearest integer
local_xmaxwxsize-1;
offset. (ysize-xsize)/2; // the row is the correct length but
rows[j]. xmax. local_xmax; most be offset relative to the
rows[j]. offset=offset; bounding box.
if(xmax < local_xmax+offset) xmax local_xsax+offset;

// keep track of longest row
rows[j]. cells new Cell[xsize]; // create 'xsize' new cells
}

add_to_global_listO ;, These functions are from the Instrument
initialise-cells(); // base class.
}ink-cells(); install springs between all the cells.

G. 1.9 File Rectangle. h

// File name: Rectangle. h (c) 1996 Mark Pearson

Content: Definition of Rectangle object class.

// Member variables:
// none.

Class Rectangle is derived from class Instrument. It has no member
variables or member functions, only a constructor which knows how to create
a rectangular sheet of material.

Oifndef RECTAIGLE_H
define RECTAIGLE_H

*include "Cell. h"

class Rectangle : public Instrument
{

public:
Rectangle(float xfreq, float yfreq, float decay);
Cell tat(float x, float y) {

return rows [(int)(ymaxsy)]. cells[(int)(xmaxex)];
}

#endif

G. 1.10 File Rectangle. cc
//

File name: Rectangle. cc (c) 1996 Mark Pearson

// Content: Definition of Rectangle constructor function.

// Constructor name: Rectangle(float xfreq, float yfreq, float decay)

Arguments:
// x and y frequencies of sheet, which determine the width and height
// measured in cells. Also decay time measured in seconds.

Local variables:
j: current row number

// xsize: size of instrument in x direction, measured in cells.
// ysize: size of instrument in y direction, measured in rows.

G. 1 C++ implementation of the TAO library libtao. a 295

// Instrument class member variables:
xmax, ymax, rows, next.

Instrument class member functions:
// add_to_global_list()
// initialise_cells()

link_cells()
// hertz2cells(fre uency)

*include "Instrument. h"
*include "Rectangle. h"

Rectangle:: Rectangle (float xfreq, float yfreq, float decay)
" Instrument(xfreq, yfreq, decay)
{
register j;

int xsize=hertz2cells(xfreq), ysize=hertz2cells(yfreq);
xmax=xsize-i;
ymax=ysize-1;

rows-new Row[ysize];
next=HULL;

for (j=O; j<ysize; j++)

rows xmaLx-xmaLx;
rovs[j]. offset=0;
rovs[j]. cells=new Cell[xsize];
}

add_to_global_list O;
initialise-cells();
link-cells();
}

G. 1.11 File Triangle. h
//

File name: Triangle. h (c) 1996 Mark Pearson

II Content: Definition of Triangle object class.

Member variables:
none.

Class Triangle is derived from class Instrument. It has no member
variables or member functions, only a constructor which knows how to
create a triangular sheet of material which a vertically straight edge

// on the right hand side and a vertex opposite it on the left hand side.

Aifndef TRIAIGLE_H
define TRIAIGLE_H

#include "Cell. h"

class Triangle : public Instrument
{

public:
Triangle(float xfreq, float yfreq, float decay);

"endif

G. 1.12 File Triangle. cc
//

File name: Triangle. cc (c) 1996 Mark Pearson
//

Content: Definition of Triangle constructor function.

Constructor name: Triangle(float xfreq, float yfreq, float decay)

// Arguments:
x and y frequencies of instrument and decay time.

Local variables:
j: current row number
x: used in calculating how long each row should be.

// local_xmax: xmax for current row (length - 1).

296 G. Implementation code

local_xsize: length of current row in cells.
offset: offset of current row needed to place it in the correct

// position relative to all the other rows.
// xsize: overall size of instrument in x direction, measured in
// cells.
// ysize: overall size of instrument in y direction, measured in
// rows.
//

Instrument class member variables:
xmax, ymax, rows, next.

Instrument class member functions:
// add_to_global_list()

initialise cells()
link_cells()
hertz2cells(fr"/uency)

#include "Instrument. h"
(include "Triangle. h"
*include "iostream. h"

Triangle: : Triangle (float xfreq, float yfreq, float decay)
" Instrument (xfreq. yfreq, decay) {

register j;
float x;
int local_xsize, local_xmax, offset;
int xsize=hertz2cells(xfreq), ysize-hertz2cells(yfreq);
xmax. xsize-1;
ymax-ysize-1;

rove-nev Row[ysize];
next-LULL;

for (j=O; j<ysize; j++)

if(j<ysize/2) x=xsizee2.0*(j+1)/ysize;
if(j>-ysize/2) x. xsize. 2.0" ysize/2.0-(j-ysize/2.0))/ysize;
local_xsize=(int)(z+0. b);
local_xmax-local_xsize-1;
offset=xsize-local_xmaz;
rovs[j]. zmax-local_xmax;
rovs[j]. offset-offset;
if(xmax < local_xmax+offset) zmax-local_xmax+offset;
rovs[j]. cells-new Cell[local_xsize];
}

add_to_global_list();
initialise_cellsO ;
link-cells();
}

G. 1.13 File Ellipse. h
//

File name: Ellipse. h (c) 1996 Mark Pearson

Content: Definition of Ellipse object class.
//

Member variables:
// none.
//
// Class Ellipse is derived from class Instrument. It has no member
// variables or member functions, only a constructor which knows how to

create a elliptical sheet of material.

"ifndef ELLIPSE_H
#define ELLIPSE_H

$include "Call. h"

class Ellipse : public Instrument
{

public:
Ellipse(float xfreq, float yfreq, float decay);

Oendif

G. 1 C++ implementation of the TAO library libtao. a 297

G. 1.14 File Ellipse. cc
//

File name: Ellipse. cc (c) 1996 Mark Pearson

// Content: Definition of Ellipse constructor function.

Constructor name: Ellipse(float xfreq, float yfreq, float decay)

Arguments:
// X and y frequencies in hertz, which determine the size of the

sheet and decay time measured in seconds.
//
// Local variables:
// j: current row number

x, y: j (0.. ymax) is translated into y (-yradius. . +yradius)
// which is used to calculate x from the equation of an
// ellipse x'2/a + y'2/b = c'2.
// xradius, yradius.

a, b: a-xradius-2, b-yradius-2.
// local_xmax: xmax for current row. (see file Instrument. h for xmax)
// local_xsize: number of calls in current row.

offset: offset of current row needed to place it in the correct
position relative to all the other rows.

// zsize: overall size of instrument in x direction, measured in
cells.

ysize: overall size of instrument in y direction, measured in
rows.

//
Instrument class member variables:

// xmax, ymax, rows, next.

Instrument class member functions:
// add_to_global_list()
// initialise_cells()

link_cells()

#include <math. h>
include "Instrument. h"
include "Ellipse. h"

#include <iostream. h>

Ellipse:: Ellipse(float xfreq, float yfreq, float decay)
Instrument(xfreq, yfreq, decay)

{
register j;
float x, y, xradius, yradius;
float a, b;
int local_xmax, local_xsize, offset;
int xsize=hertz2cells(xfreq), ysize hertz2cells(yfreq);

xmax=0;
ymax=ysize-1;

rows=new Rov[ysize];
next=LULL;

xradius=xsize/2.0; a=xradius*zradius;
yradius=ysize/2.0; b=yradius*yradius;

for (J 0; j<ysize; j++)

y=j-(ysize-1.0)/2.0;
x=egrt(a*(1.0-y*y/b));
local_xsize=((int)(x+0.5))s2;
local_xmax=local_xsize-1;
if (local_xmax>xmax) xmax=1oca1_xmax;
offset=(xsize-local_xsize)/2;
rovs[j]. xmax=local_xmax;
rovs[j]. offset=offset;
if(xmax < local_xmax+offset) xmax=local_xmax+offset;
rovs[j]. cells-new Cell[xsize];
}

add_to_global_list();
initialise-cells();
link-cells();
}

G. 1.15 File Microphone. h
//
// File name: Microphone. h (c) 1996 Mark Pearson

298 G. Implementation code

Content: Definition of Microphone object class.
//

Member variables:
// source: microphones come in two types, those which have their
// source or sources defined at the time of declaration,
// and those which, given floating point expressions
// in the score, write the results of these expressions

to a file. The variable 'source' determines whether the
// microphone takes its signal from pre-defined cells or

from expressions. It takes one of the two values:
// 'from cells' or 'from_expressions'.

index: index into sample buffer. When sample buffer is fall,
// it is written to 'outputfile'.

num_channels: number of channels. Limited to 1 or 2 in current
// implementation but relatively trivial to change.

buffer: pointer to floating point sample buffer.
filename: pointer to name of file to which raw floating point

sound samples are written.
// outputfile: output file stream to which samples are written.

leftsource: pointer to cell which is source for samples when
microphone is mono, or left samples when microphone
is stereo.

rightsource: pointer to cell which is source for right samples
// when microphone is stereo.
// leftsample: floating point value which is either mono sample or

left sample in a stereo microphone.
rightsample: floating point value which is right sample in a

stereo microphone.
next: pointer to next microphone in linked list.

// Static member variables:
list, current: pointer to head of linked list of microphones, and

pointer to current microphone during updating.

#ifndef MICROPHOIE_H
define MICROPHOIE_H

$include <fstream. h>
#include "Cell. h"

#define stereo 2
#define mono 1

class Microphone
{

public:
static const buffersize; defined in file Microphone. cc
Microphone(const char "soundfilename. int channels);
Microphone(const char *file, Call tl, Call ar);
Microphone(const char *file, Cell ac);
Microphone tsetleft(Cell tl) (loft sourcestl; return *this;)
Microphone tsetright(Cell &r) {rightsource=tr; return *this;)
Microphone tleftout(float value) ileftsample=value; return *this;)
Microphone trightout(float value) {rightsample=value; return *this;)
Microphone toutput(float value) {leftsample=value; return *this;)
void update();
static void update_allO ;

private:
void

{
add_to_global_listC>

if (list==LULL) listathis;
else current->next=this;

current=this;
3

enum
{
from_cells, from_expressions

int source, index, num_channels;
float *buffer;
char *filename;
ofstream outputfile;
Cell "leftsource;
Cell "rightsource;
float leftsample;
float rightsample;
Microphone *next;
static Microphone *list. *current;

#endif

G. 1 C++ implementation of the TAO library libtao. a 299

G. 1.16 File Microphone. cc
//
// File name: Microphone. cc (c) 1996 Mark Pearson

Content: Definition of Microphone class member functions

include <strstream. h>
*include <fstream. h>
linclude <string. h>
$include "Microphone. h"
#include "Instrument. h"

include "Cell. h"

Microphone ºMicrophone:: list=IULL, ºMicrophone:: current=IULL;
const Microphone:: buffersize-5000;

//
Constructor name:

// Microphone(const char "soundfilename, int channels)
//

Functionality:
// Creates a microphone object whose sound samples will be sent to
// a file called '/var/tmp/<name>. tao'. The microphone writes `channels'

channels of output (1 or 2 in the present implementation). lo
decision is made at declaration time about the actual sources for the
sound samples. This is left to be determined by the member functions
leftout() A rightout() described in file Microphone. h, and update()

// described below. In practice leftout() and rightout() are called
within the score.

//
Arguments:

Pointer to a string of characters representing <name> and number of
// channels (only 1 or 2 in present implementation).

Instrument class member variables:
source, index, num_channels, filename, buffer,
next, leftsource, rightsource.

//
Local variables:

// tempname: if filename points to the string 'filel' then
tempname will point to the string '/var/tmp/filel. tao'

///

Microphone: : Microphone (const char "soundfilename, int channels)

aource-from_ezpresaions;
index=0;
num_channalsachannels;
filename-new char[SO];
buffer=new float[buffersize];
next=IULL;
leftsource=IULL;
rightsource=IULL;

ostratream tempname(filename, 60);
tempname « "'/var/tmp/" « soundfilename « ". tao" « ends;

outputfile. open (filename, ios:: trunc);
outputfile. close 0;

}dd_to_global_list0 ;

// // Constructor name:
Microphone(const char "sfname, Cell il, Cell Ar)

// Functionality:
// Similar to above function except that sound sources in the form

of references to two cells are given. This automatically determines
// that num_channels=2.

Arguments:
// Pointer to a string of characters representing <name> and
// references to two cells which will provide samples for the left
// and right channels of output. The cells' positions are used to
// generate the samples.

// Instrument class member variables:
// source, index, num_channels, filename, buffer,

next, leftsource, rightsource.

// Local variables:

300 G. Implementation code

// tempname: '/rar/tmp/<name>. tao,

Microphone:: Nicrophone(const char "sfname, Cell Al, Cell Ar)

source-from-calls;
index=0;
num_channels=2;
filename=new char[b0];
buffer=new float(buffersize];
next=]FULL;
leftsource=tl;
rightsource=tr;

ostretream tempname(filename. 50);
tempname « "/var/tmp/" « sfname << ". tao" « ends;

outputfile. open(filename, ios:: trunc);
outputfile. close 0;

add_to_global_listO ;
}

Constructor name:
Microphone(const char "sfname. Cell tc)

//
// Functionality:
// Mono version of constructor function described above.

Micro phone: : ricrophone(const char "sfname, Cell ic)

sourcesfrom_cells;
index=0;
num_channels=1;
filename=new char[b0];
butter=neu float[buffersize];
next-FULL;
leftsource=ic;
rightsource=IULL;

ostrstream tempname(filename, 50);
tempname « "/var/tmp/" « sfname « ". tao" << ends;

outputfile. open(filename. ios:: trunc);
outputfile. doe. 0;

add-to-global-list();
}

J//J//////
I/ Member function name:

update()
//

Functionality:
// causes sound samples to be written to the sample buffer. If the
// buffer is full then it is written to the output file stream
// outputfile and index is set to 0. Otherwise index is incremented by

num_channels.

Instrument class member variables:
source, buffer, index, num_channels, leftsource, rightsource,
leftsample, rightsample.

External variables:
Sample: counter which keeps track of how many time steps have

// "lapsed since the beginning of a performance.
// bandwidthlevel:

an integer which specifies how often samples are
J/ generated, i. e. on every time step, on every other
// time step, on every third time step etc. The higher

the value the better the frequency response of the
// synthesis model, but the worse the computational

burden. This should not be altered from its default
value

/

void {
Microphone: : updateO

extern long Sample; // from Imain. ccl
extern bandvidthlevel;

if (Sample%bandvidthlevel!. O) return; // Throw away samples

if (index<buffereize)

G. 1 C++ implementation of the TAO library libtao. a 301

{
if (source--from-cells)

{
if (num_channels=a2)

{
buffer[index++]-leftsource->position;
Duffer[index++]=rightsource->position;
}

if (num_channels. 1)
{
buffer[index++]=1eftsource->position;
}

if (source=zfrom_expressions)
{
if (num_channels=-2)

{
buffer[index++]=1efteample;
buffer[index++]=rightsample;

} if (num_channels=sl)
{
buffer[index++]=1eftsample;
}

if (index==buffersize)
{
outputfile. open(filename, io3:: app);
outputfile. write ((unsigned char *)buffer, (int)(buffersize*sizeof(float)));
outputfile. close 0;
index=0;
}

// // Member function name:
// update_all()
//

Functionality:
// starts at the head of the linked list of microphones and updates
// them all, one by one.

void
{

Micro phone:: update_a110

for(Microphone "m-list; m; m=m->next) m->updateO ;
}

G. 1.17 File main. cc
//
// File name: main. cc (c) 1996 Mark Pearson
//
// Content:

Global variables and functions, macros for translating TAO script
into a C++ code fragment and main function.

Purpose:
// A TAO script is actually a fragment of C++ code in clever disguise.

Instrument, microphone and parameter declarations in a TAO script
are translated directly into C++ variable declarations of the
appropriate type. The score control structures are translated into

// C++ control structures and most of the other code such as mathematical
// expressions are left exactly as they appear in the script. Part of

this translation process is carried out by the UIIX sed command which,
given a set of scripts, pattern matches and replaces strings of

// characters in an input stream. The zed scripts are contained // in files c4, c5, c6, Cl, string_sed, rectangle_sed, ellipse_sed
circle-sad, triangle_sed. The file `tao' contains a short UIIX script
which causes the TAO script to be translated, #included into the

// main function defined later in this file, and compiled. For a full
// explanation of the implementation of both the synthesis model and

scriptElanguage
at a less code specific level, see appendices

//
Global variables:

audiorate: sample rate of output, currently fixed at 44.1 KHz.
modelrate, bandwidthlevel:

// if audio samples are generated on every time step of
the synthesis engine, the-material' s frequency response // is not very good. To improve the situation (at the

302 G. Implementation code

// expense of more computational power) we can sample
instruments on every other time step. We have to was
the instruments twice as big though to achieve the same

// fundamental frequency, but in effect the spatial and
temporal resolution of the model is increased leading
to sounds with more high frequency clarity.

// modelrate n audiorate " bandwidthlevel. These variables
should not be changed as other constants are affected
such as Hertz2CellConst and Decay2DampingConst (both from
Instrument. h).

//
Macros used in implementation of score language:

a, b, IITERVAL, TIME all measured in seconds.

FromTo(a, b): intermediate translation of 'From
.. to' and

'At .. forO TAG control structures.
Before(a), After(a): translations of 'Before' and 'ºfterl control

structures.
Every(IITERVAL): translation of 'Every' control structure
ControlRate(DIVIDEBY): translation of 'ControlRate' control structure.
At(TIME)t translation of 'At' control structure
If(COYDITIOH): translation of 'If' control structure
Elseif(COIDITIOI): translation of 'Elseif'
linear(yi, y2): returns a time varying value which changes

// linearly from yi to y2 over the time interval
// specified by the variables 'start' and 'end'.
// expon(yl, y2): returns a time varying value which changes

exponentially from yl to y2 over the time
// interval specified by the variables 'start'
// and 'end'.

Parameter: Parameter x, y simply translates to float :, y

// Score(duration): A much more ugly macro not intended for human
// consumption! Basically sets up a C++ for loop

with the number of iterations determined by
// duration. TAO makes use of the fact that a
// C++ for loop of the form:

1/ for (snit ; cond ; step)

can have multiple items separated by commas
in each part. This is a sneaky way of inserting
all the code to update instruments and ic's,

// update the graphics etc. into the 'head' of the
// for loop leaving the body of the loop free to
// take the body of the TAO score.

#include <iostream. h>
#include <iomanip. h>
#include <fstream. h>
#include <strstream. h>
#include <gl. h>
#include <gl/device. h>
#include <math. h>
#include <string. h>
#include <unistd. h>
#include <sys/types. h>
$include <time. h>

#ifndef String
#define String not_gl_String
#endif

#include "Instrument. h"
*include "String. h"
#include "Rectangle. h"
#include "Circle. h"
#include "Triangle. h"
#include "Ellipse. h"
#include "Microphone. h"

// macros for units of measurement

*define Hz *1.0
*define secs *1.0
#define min *60.0
#define msecs /1000.0
#define samples /44100.0

these variables are described at the head of this file and should be
// left well alone.

float audiorate=44100.0;
int bandaidthlevel=2;
float modelrate=audiorate*bandvidthlevel;

G. 1 C++ implementation of the TAO library libtao. a

//
// Macros used in implementation of score language:
// Once the half-translated TAO script file contained in the file
// 'tao_scriptfile' has been *included into the main function, these
// macros perform any further translation needed to make the script
// into a fully com ilable fra ent of C++ code.

//////////////////////ii//////////ii//
#define FromTo(a, b) if(Sample<=(long)((EID=(b))*modelrate) U\

Sample>. (1ong)((STARTs(a))*modelrate))
Sdefine Before(a) if(Sample<(long)(START=start, (EID=(a))*modelrate))

define After(a) if(Sample>=(long)(EID=end, (START. (a))*modelrate))
*define Every(IITERVAL) if(Samp1. %(long)(IITERVAL*modelrate)=O0)
#define ControlRate(DIVIDEBY) if(Sample%(long)DIVIDEBY==O)

define At(TIME) if(Samp1em=(long)(TIME*modelrate))
#define AtSample(TIME) if(Sample-=TIME)

define If(COIDITIOI) if(COIDITIOI)
#define Elssif(COIDITIOI) else if(COIDITIOI)
#define Else else
"define When(RHYTHM) if(RHYTHM)

*define linear(yl, y2) ((Time-start)/(end-start)+(y2-yl)+yl)
*define expon(yl, y2) ((float)(yl)*fexp(1.0/(end-start)*flog((float)(y2)/ \

(float)(yl))s(Time-start)))

#define Parameter float

#define Display cout «" " <sety(0)<<setprecision(4)«setiosflags(ios:: fixed)«
#define newline '\n'«flush
*define sameline '\r'«flush

define Flag int
define Position Cell t

//
The 'Score' macro is a mess to look at but was only over intended to be

// a temporary measure for the prototype TAO system. The first thing on the
// agenda if any further work is done to the system is to replace the UNIX

sad scripts and all of these macros with a proper TAO language parser.
This would cleanly and robustly translate a TAO script with error checking.

// At the moment error checking is only provided at the level of C++ compiler
errors and thus only detects syntax errors in the translated version of the
TAO acript, which the user should not be concerned with.

*define Score(duration) \
1umSamples=(1ong)(duration*modelrate); \
cout « "Calculating "« IumSamples <(samples\n"; \

\ startstack[1]=start'O. 0; endstack[1]=end=duration;
startstack[0]=start; endstack[O]=end; \
START=start; EID=end; \
for(Sample=0, Time=0.0; \
graphics- on? (color(WHITE), 1): 0, \
graphics_on? (clear(), 1): 0, \
Instrument:: calculate_forcesO ,\
update_graphics0, \
Sample<=lumSamples; \
(graph ics_onkk(Sample%graphica_update. Step==0))? (Instrument:: display_all(), 1): 0, \
(graph ics_ontt(Sample%graphics_updata. step==0))? (suapbuffers(), 1): 0, \
Instrument:: update_positions (), \
Microphone: : update_all0 ,\ Sample++, Time=Sample/modelrate)

//
// Global function names:

randomi(int low, int high)
random(float low, float high)

// pitch(float value)
pitch(const char *note)

//
Described below.

int randomi(int low, int high);
float random(float low, float high);
float pitch(const char *note);
float pitch(float value);

//
Global function name:

// randomi(int lov, int high)

// Functionality:

303

// Returns a random integer between low and high inclusive.
////////////////////////7i///////////////////1////////////////////////////////

304

lot rando. i(int low. it kith)

return (1on+(random ()t(1l6A"1o. +i)))i

C. Implementation code

// Global function name:

randoa(float low, float high)

Functionality:
Returns a random floati gfoint number between low sad high inclusive.

-float rando. (float low. float high)

return (float)randoaiMat) (lo. 'i00000), (tat)(kigWol00o00))/100000.0;

Global function sago:
pitch(float value)

// Functionality:
Takes a decimal value of the form <octav. >. <s.. ltose> and r. tarso

a frequency in hertz. For example pitcº(5.00) "> 261.6 is or . 1441. CO
// itch(6.09) > 440 Is or A above siddlo C. ltck(7.09) "> 220 Is.

float pitch(float value)
float octave. semitone. fr"quency;

octave ftrnnc(valu.);
semitone " value - octave;
value " octave + semitone " 100.0 / 12.0;

frequency " pos(2, value - 8.0) " 261.6;
return frequency;
}

Global function name:
pitch(const char *note)

Functionality:
Takes a string of characters representing a mote save and

returns a frequency in hertz. For example: -

pitch("C8") -> 261.6 äs or middle C.
pitch("Ct8") -> frequency of C sharp above middle C.
pitch("A8") -> 440 As or A above middle C.

// pitch("Eb6") -> frequency of C flat to second octave Wes
middle C.

pitch("F$8+1/3") -> frequency of F sharp " 1/3 of a seniles.
// in middle C octave.

float pitch(const char "note)
{
int 1 strlen(note);
float octave, sewitone, frequency. value;
int charno. 0;

stitch (note[charno++])
{

case 'C' se. itonew0.00; break;
case 'D' sewitone. 0.02; break;
case 'E' : semitons 00.04; break ;
case OF, : se. itone O. 05; break;
case '0' : somiton. 0.07; break;
case 'A' : sewitone. 0.09; break;
case 'B' se. itones0.11; break;
}

ii(note[charno]= 'b')
{
semitone-50.01;
charno++;

else ii(note[charno] . '_')
{
semitone+80.01;
charno++;

G. 1 C++ implementation of the TAO library libtao. a 305

octavo 1.0I(nots(charno++]-10l);
It(note [charno]) '0' lt noto[charno]<. '9')

octavs octav.. 10.0+1.0s(not. [charno++]-101);

iat p1uI"FALSE, "ioussFALSE;

if(noto[charno]e '+º II noto[charao]N'-º) {
float dividondsO. 0;

if(aoto[chario]. '+') plus. TRUE;
1f(aot"[chars o].. '-') inns"TRUE;
charso++;

while (note [charno]>a'0º 11 note Echaroo3 <='9')
{
divid. nds. 10.0;
dividend+"(float)(not. [charno]-'0');
charno++;
}

if(noto(charno++]!. '/')
corr << "Pitch error: / expected" << "ndl;

float divisor=0.0;

while (note [charno]). 'O' t& not. [charno3< '9')
t
dlvisor". 10.0;
divisor+ (float)(not. (charno]-'0');
charno++;
}

if(plus) s. aiton. + divid. nd/(divisor"100.0);
if(minus) s. aiton. -"divid. nd/(divisor"100.0);
}

value " octave + s. aiton. " 100.0 / 12.0;

frequency " pos(2, value - 8.0) " 261.6;
return frequency;
}

// Global variables used by graphics:
// mousex, mousey:

current mouse position is screen coords with origin at bottom left
of graphics window.

// mdev[2]:
// mdev[0] is device MOUSEY, x position of mouse.

wdev[1] is device MOUSEY, y position of mouse.
mval[2]:

// mval[0] is value of device MOUSEX
// mval[1] is value of device MOUSEY

lastval[2]:
// keeps track of previous position of mouse when polled.
// org[2]:
// x and y coordinates of bottom left of graphics window relative to

screen origin.
// size[2]: // x and y dimensions of graphics window in pixels.
// middleflag, rightflag:
// used to keep track of whether middle or right mouse buttons
// were pressed when previously polled, i. e. to see if there has

been any change of state.
// vinoriginx, vinoriginy:
// origin of TAO's window coordinate system relative to the graphics

window origin. For example, increasing vinoriginx by 100 moves the
whole TAO graphical animation 100 pixels to the right.

skewfactor:
instruments are displayed in oblique projection. This variable
determines how skewed the instruments appear. A value of 0

// displays a rectangle as a rectangle etc.
xscale, yscale:

number of pixels between successive cells in the x and y
// directions. Current values of skevfactor, zscale and yscals seem
// to produce a clear visual representation.
// drag:
// flag determining whether the the graphical image was being dragged
// with the left mouse button last time it was polled.

int graphici. on " FALSE;

$defin" X0

306

"dstin* YI
Id. tin* IT 2
short Mons. s. Moo say-,
short . ral(IT] lastval(IT];
Device nd. v(IT];
long os6[IT]. sis. [IT];
litt aiddlsllag FALSL. rightflag ºALEL;
litt Maori6ins 200, Maori iaym200;
float skssfactor O. 6. sscais 4.0, Tscala 3.0;
int drag FALSL.

G. Implementation code

// Global function aaas:
graphics.. init()

Functionality:
Initial is. s 6rapbics syst. m, opens a . iad... stitl. d 4710 graphical

output'. f. to doubl. buff. r nods for aaisati. u aad cl. -ere the screen
to white.

void
{graphics_init()
char "ia_aamoEl "TAO graphical output";
prefsi: s(1000,700);
"inop. n(tii. Aa .);
doubl. buiisrO ;
gcoallg();
color(WHITE);
clear (); svapbuffers();
color(WHITE);
clear();
}

1nt graphict_npdats_st. p. 1;

float Tim. -0.0; time elapsed since beginning of portsr. aac"
is seconds.

ostrstrsas tiasstrsas; need to crsat" a stria` of claractsrs // representing t! " tiaa "lapood.

// Global function name:
update_graphics()

Functionality:
Everything associated with the graphics window save actually drseia`

// the instruments. There are a number of sosse functions provided:

Holding the left mouse button down and moving the mouse is the
graphics window causes the whole graphics image be dragged about. // Useful for instruments which are too big to fit on the screen.

// Holding left mouse button down and pressing middle mouse button
causes 'graph ics_update_stepI to be multiplied by a factor of S. The
graphics window is updated on every Igraph ics_spdate_stop'th time step
of the synthesiengine. If graphics_update_stsp. 640 then it becomes
1 again.

// Holding left mouse button down and pressing right sosse bottom
causes graphics-update-stop to be divided by a factor of S. It it
is already 1 then the animation is frozen until left sosse " right
mouse are pressed again.

// Elapsed time in seconds since beginning of performance Is displayed
// at bottom left of graphics window.

Local variables:
// lastmousex, lastmousey:
// the coordinates of the previous mouse position ekes dragging
// the image with the left mouse button.

External functions:
getsizeO. origin(). cmov2i(), color(), charstrO, getbettea()

// all provided in SCI graphics library and declared Is Cgl. ".
// See IRIX 6.3 man pages for explanations of their fuactiesality.

void updat. _graphic.
C)

static int lastaousez-0, lastmooserO;

if (saphics_on)
{g.

tsiz. (tsiz. (X], tsiz. (Y]);

G. 1 C++ implementation of the TAO library libtao. a 307

Iotori in(&ora[:], sors[Y]);

if (craphics_on)

cmov21(20,20);
color(BLAC[);
tim. strsaw «satt(0)<<sstprscision(4)<<s. tiosflags(ios:: fizod);
timestrsas << "Elapsed time=" « Time << " seconds";
charstr(tim. str. an. str<);
timostraaw. ssakp(0. ostrsaw:: bsg);

if (6raphics_on At g. tbutton(LEFTMOUSE) At g. tbatton(MIDDLEMOUSE))

If (! middleflag)
if (graphics_updats_stap-500)

graphics-update-step-i;
also graphics_updats_stoponS;

11 iddloflag"TRUE;

also if (middl. flag) widdl. flag-FALSE;

if (6raphics_on At gotbutton(LEFTMOUSE) Lt g. tbutton(BICNTMOUSE))

If (! riahtflag)
if (6raphics_updata_st. psi)

"thil. (gotbutton(ßIGHTMOUSE));
while(I(g. tbutton(LEFTMOUSE) tt g. tbutton(RICHTMOUSE)));
"hils(gotbutton(LEFTMOUSE));

also graphics_updat. _st. p/-b;
rightflarTlUE;

also if (rightflag) rlghtflag. FALSE;

if (Iraphica_on It tdrag It gstbutton(LEFTMOUSE))

draa TAUE;
gstdsv(XY. md. v, oval);
wous. x wval[X]-org[X];
wousoy mval[Y]"org[Y];
lastmous. x=mous. x;
lastmoussy mous. y;
3

if (graphics-on tt drag tt getbutton(LEFTNOUSE))

g. td. v(XY, wd. v, wval);
wo us. x-mval[X]-org[X];
mousoywmva1(Y]-org[Y7;
"inoriginx+ mous. x-lastmoussx;
uinoriginy+ mous. y-lastmousuy;
lastmous. xsmous. x;
lastmous. ysmous. y;

if (graphics-on At drag it lg. tbutton(LEFTMOUSE)) drag-FALSE;

Global function name:
main()

//
Functionality:

The user compiles a TAO script 4example. script ' by typing;

'tao example'

which causes the script to be translated into an intermediate form
stored in the file 'tao_scriptfile'.

// This is #included into the main function below and once further
processed by the C++ macros idefined at the beginning of this file,
it is now a fragment of executable C++ code. The user's instrument,
microphone and parameter declarations translate directly into
C++ variable declarations and other TAO language features such as
the score control structures, screen output. mathematical expressions
etc. translate into equivalent C++ language features. Once the C++

// preprocessor has done its stuff this file is compiled leading to
and executable called Oexample. exel following the example given
above.

Local variables:
start, end, start stack Q, endstack[]" // Two special variables 'start' and fiend' are available throughout

308 G. Implementation code

the score. Their values depend on context, specifically the
times specified in the head of the control structure whose
body they appear in. For example 'At 0 secs for b secs' leads to
start-0 and and=b. The way in which the system keeps track of
the different values of start and end is by means of two stacks
startstack[] and endstack[]. Every time control passes into the
body of a nested control structure the current values of start

// and end are pushed onto the stacks and new values are calculated.
On leaving the body, the old values are popped from the stacks.

// START, ETD:
Used to store the times specified in the head of a control

// structure ready to be transferred to start and and once their
values have been pushed onto the stacks.

// n: start and end stack pointer.
//
// Global variables:
// Sample, lumSamples:
// Current sample number (time steps of synthesis engine not

sound samples) and total number of samples to synthesise.
// graphics-on:

flag indicating whether to display instrument animations or
// just proceed with synthesis.

////////////////1 //
long Sample=0, IumSamplee-0;

void
{
main(int argc, char sargv[])

if (argc-=3 At strcmp(argv[1], "-g")==0)
{
graphics_on=TRUE;
Instrument:: global_amplificationnatof(argv[2]);

else graphics-on-FALSE;

if (graphics_on)
{graphics_initO

;
getorigin(torg[X], torg[Y]);
gets ize(&sizeEX], tsize[Y]);
mdev[X]=MOUSEX;
mdev[Y]=MOUSEY;
}

register float start=0.0, end=0.0, START=0.0, EID=0.0;
float startstack[20], endstack[20];
register int n=0;

srandom((int)time(0));

$include "tao_scriptfile"

if (graphics-on) gexit();
}

G. 2 C implementation of the f loat2aiff program

G. 2.1 File float2aiff. c
/ºººsssºººassssrrrrsººrrºsºsrrsrrrsssrrsºººsºsººsssssºººsººººsºrºsrrrrsººººº/
/º File name: float2aiff. c (c) 1996 Mark Pearson º/
/º º/
I. Content: The functions used to convert a raw floating point `tao' s/
/" soundfiles into a '. aiff' file. "/
/rrrrrºrrrºººººººººsººrºrºººººººººrrºrrrººººrºººººrrrºººººººrrrººººrrrººººrººº

"include <math. h>
#include <stdio. h>
$include "audio. h"

*include "Converts"

struct form-chunk
{
char ckID[4];
long ckSize;
char formType[4];

struct comm_chunk

char ckID[4];

G. 2 C implementation of the float2aiff program

long ckDataSize;
short numChannels;
long numSampleFrames;
short sampleSize
char sampleRate[101;

struct Bsnd_chunk
{
char ckID[4];
long ckDataSize;
long offset;
long blockSize;

*define MONO 1
*define STEREO 2

*define FLOAT sizeof(float)
#define LONG sizeof(long)
#define SHORT sizeof(short)
#define CHAR sizeof(char)

/ºrrsssºrrsssºsºsº***+s+sºss+sssssssºssssssºsrrrssºrºrrrssssrºsººº*r***sssssº/
/s Function name: float_to_stereo_aiff(char ºfloatfilename, r/
/s char *AIFFfileneme, float samplerate) "/
/s º/
/* Functionality:

Takes two pointers to char representing the full path names of both
/" the ` tao' raw floating point soundfile and the `. aiff' soundfile */
/s to which the samples will be written, and a numerical value
/" representing the sample rate at which the samples will be played */

back, and performs the conversion.
/rrºrr+++ºººº+sº+º+ººººººººrrrr+*ºrº*rºººººº*r+ºººººººº*ººsrººº+ººº*ººrrrºººº/

float_to_stereo_aiff(char *floatfilename, char *AIFFfilename, float samplerate)
{
FILE *floatfile, *AIFFfile;
float maxsample 0.0;
float scaleby;
long number-of-samples-0;
float floatsample;
short shortsample;
char buffer[101;

struct form-chunk *FORM;
struct comm_chunk *COMM;
struct ssnd_chunk *SSHD;

FORM-(struct form-chunk *)malloc(sizeof (struct form-chunk));
COMM-(struct comm_chunk *)malloc(sizeof (struct comm_chunk));
SSHD-(struct ssnd_chunk *)malloc(sizeof (struct ssnd_chunk));

printf("Converting floatfile %a into AIFFfile %s\n",
floatfilename, AIFFfilename);

floatfile fopen(floatfilename, "r");

printf("Checking for maximum sample value ... \n");

while(1)
{
fread(ifloatsample, FLOAT, 1, floatflie);
if (feof(floatfile)) break;

number_of_samples++;
if (fabsf(floats ample) >maxsample) maxsample fabsf(floataample);
}

printf("Maximum sample value is %f\njumber of samples is %ld\n\n",
maxsample, number_of_samples);

revind(floatfile);

AIFFfi1e-fopen(AIFFfilename, "ab");

/ssrsºººrrrarººrsrsssºººrsrsºrr FORK stuff "rrºººººsººrrrrrºrsrrºrºrrrrºrsºrr/

strncpy(FORM->ckID, "FORM", 4);
FORM->ckSize
sizeof(long) +
sizeof(struct comm_chunk) +
sizeof(struct ssnd_chunk) +
number-of-samples * 2;

309

strncpy(FORK ->formType, "RIFF", 4);

310

fwrite (FOAM->ckID, sizeof(char), 4, AIFFfile);
fwrite (&FOAM->ckSize, sizeof(long), 1. AIFFfile);
fwrite (FORM->formType, sizeof(char), 4, AIFFfile);

G. Implementation code

/sssssssssssssssssssssssssssss" COMM staff "sssssssssssssssssssssssssssssssss/

strncpy(COMM->ckID, "COMM", 4);
COMM->ckDataSize a
sizeof(short) + /" numChannels "/
sizeof(long) + /" numSampleFrames "/
sizeof(short) + /e sampleSize e/
10u " sizeof(char); /" IEEE extended sampletate e/

COMM->numChannels=2;
COMM->numSampleFrames=number_of_samples/COMM->numChannels;
COMM->sampleSize=16;

ConvertToIeeeExtended ((double)samplerate. COMM->sampldAate);

fvrite(COMM->ckID, sizeof(char). 4, AIFFfi1e);
fvrite(&COMM->ckDataSize, sizeof(long). 1. AIFFfile);
fvrite(tCOMM->numChannels, sizsof(short). J. AIFFfile);
fvrite(&COMM->numSampl*Frames . sizeof(long). 1. AIFFfi1e);
fvrite(&COMM->sampleSize, sizeof(short). 1. AIFFfils);
fvrite(COMM->sampleßate, sizeof(char). 10. AIFFfi1e);

/rrrrrrrrrttrrrrttttrrrrrrrrr" SSID stuff "rrrrrrrrrrrrrrrrrtrrrrrrrrrrrrrttt/

strncpy(SSID->ckID, "SSID', 4);
SSID->ckDataSize
sizeof(long) + /" offset "/
sizeof(long) + /" blockSize "/
COMM->numSampleFrames "
COMM->numChannels "
sizeof(short);

SSID->offset. 0;
SSID->D1ockSize-0;

fvrite(SSID, sizeof(struct ssnd-chunk), 1, AIFFfile);

/****** All done, File pointer now points to area for first sample "eeeee/

number-of-samples-0;

printf("Writing samples, please vait\n")

while(l)
{
fread (tfloatsample, FLOAT, 1, floatfile);
if (feof(floatfile)) break;

shortsamplan(short)(f1oatsamp1ee32000.0/massample);
farits(tshortsample, SHORT, 1, AIFFfile);
fread(tfloatsample, FLOAT, 1, floatfile);
shortsample-(short)(floatsamples32000.0/. a: sample);
fwrite(tshortsample, SHORT, 1. AIFFfile);

number_of_samples+=2;
i! (number_of_samples%10000-O)

}
(prints(". "); fflush(stdout); }

printf("\nDone\n");
fclose(floatfile);
fclose(AIFFfi1e);

main(int arge, char "sargv)
{
if (arge-=4)

{
float_to_stereo_aiff(argv(1]. argv(2], atof(argv(3]));
}

also (fprintf(stderr, "Usage: float2aiff <floatfilenase>
<AIFFfilena, e> <saaplerate>\n"));

}

G. 2.2 File Convert. c
t
:

/C
01VERTT0IEEEEXTEIDED

G. 2 C implementation of the float2aiff program 311

Is Copyright (C) 1988-1991 Apple Computer, Inc.
" All rights reserved.
"
+ Warranty Information
+ Even though Apple has reviewed this software, Apple makes no warranty
" or representation, either express or implied, with respect to this
" software, its quality, accuracy, merchantability, or fitness for a " particular purpose. As a result, this software is provided "as is, "
" and you, its user, are assuming the entire risk as to its quality
" and accuracy.
"
" This code may be used and freely distributed as long as it includes
* this copyright notice and the above warranty information.
"
" Machine-independent I/O routines for IEEE floating-point numbers.
"
" gal's and infinities are converted to HUGE-VAL or HUGE, which
" happens to be infinity on IEEE machines. Unfortunately, it is
" impossible to preserve Ial's in a machine-independent way.
" Infinities are, however, preserved on IEEE machines.
+
+ These routines have been tested on the following machines:
" Apple Macintosh, MPW 3.1 C compiler
+ Apple Macintosh, THIIK C compiler
" Silicon Graphics IRIS, MIPS compiler
" Cray X/MP and Y/MP
" Digital Equipment VAX
+
"
" Implemented by Malcolm Slaney and Ken Turkovski.
"
" Malcolm Slaney contributions during 1988-1990 include big- and little-
" endian file I/O, conversion to and from Motorola's extended 80-bit
" floating-point format, and conversions to and from IEEE single-

precision floating-point format.
+

+ In 1991, Ken Turkowski implemented the conversions to and from
" IEEE double-precision format, added more precision to the extended
" conversions, and accommodated conversions involving +/- infinity,
" wail's, and denormalized numbers.
+/

#ifndef HUGE_VAL
A define HUGE_VAL HUGE
#endif /" HUGE_VAL +/

U define F1oatToUnsigned(f) \
((unsigned long)(((long)(f - 2147483648.0)) + 2147483647L + 1))

static void
ConvertToIeeeExtended(double num, char *bytes)
{

int sign;
int expon;
double fMant, fsMant;
unsigned long hiMant, loMant;

if (num < 0) {
sign - 0x8000;
num

} else {
sign 0;

if (num an 0) {

}
expon - 0; hiMant = 0; loMant - 0;

else {
fMant " frexp(num, aexpon);
if ((expon > 16384) II ! (fMant < 1)) { I. Infinity or Nall e/

}
expon - signlOxTFFF; hiMant = 0; loflant s 0; /s infinity e/

else { /" Finite e/
expon +. 16382;
if (expon < 0) { /" denormalized "/

fMant i ldexp(fMant. expon);

} expon - 0;

expon Is sign; fMant " ldexp(fMant, 32);
faMant = floor(fMant);
hiMant " FloatToUnsigned(fsMant);
fMant s ldexp(fMant - fsMant, 32);
fsMant - floor(fMant);
loMant " FloatToUnsigned(faMant);

312

bytes 01 = expon » 8;
bytes[l] = expon;
bytes[2] - hiMant » 24;
bytes 31 0 hiMant » 16;
bytes 41 - hiMant » 8;
bytes[5] - hiMant;
bytes[6] 0 loMant >> 24;
bytes[7] - loMant >> 16;
bytes[8] - loMant » 8;
bytes[9] - loNant;

G. Implementation code

G. 3 Unix sed scripts used in the translation of a TAO

script

G. 3.1 File tao_sed-scripti

File: tao_sed_scriptl (c) 1996 Mark Pearson

Content:
UNIX 4seds script which removes any linebreaks from microphone output
#i statement 'output'.
########i##############i######iii###ii#i#iiiii#i#iiiii#i##iiiiiiiiiiiisuu$$$$$

: start
/output: /, /; / !p
/output: /, /; / !d

/output:. *; / b next
/output: /, /; / I
/output: / s/\n//g
: next
t start

G. 3.2 File tao_sedscript2
#####################################p#######1##################################
File: tao_sed_script2 (c) 1996 Mark Pearson

Content:
UNIX 'sedt script which removes any linebreaks from microphone output
statements 'leftout' and 'rightout'.
###f#s##################

: start
/tout: /, /; / !p
/tout: /. /; / !d

/tout:. s; / b next
/tout: /, /; / I
/tout: / s/\n//g
: next
t start

G. 3.3 File tao_sed.. script3
xx
xx File: tao_sed_script3 (c) 1996 Mark Pearson
xx
xx Content: -
so UNIX 'sed' script which takes any lines contained within the tokens
St 'Display' and '; ' and puts them onto a single line. This is necessary
xx since the other aed scripts which process Display statements further,
so contained in file 'c4' only work on single lines, not across many
SS lines.
xx
xx Display "Times", Time, --> Display "Time=", Time, a, b, nevline; '
St a. b, -
xx nevline;
xx

: start

G. 3 Unix sed scripts used in the translation of a TAO script 313

/Display/, /; / !p
/Display/, /; / Id

/Display. +; / b next
/Display/, /; / I
/Display/ s/\n//g
: next
t start

G. 3.4 File tao_sed.. script4
xxx#xxx#x#xxxxxxxxxxxxxxxxxxxxx#xxxxxxxx#xxxxxxx#xxxxxxxxx####xx#xxxxxxxxxxxxxxx
x# File: tao_sed_script4 (c) 1996 Mark Pearson

Content:
A TAO script is actually a fragment of C++ code in clever disguise.
Instrument, microphone and parameter declarations in a TAO script are
#x translated directly into C++ variable declarations of the appropriate
types. The score control structures are translated into C++ control
structures and most of the other code such as mathematical expressions
xx are already valid C++ code and are left as they are.

x# Part of this translation is performed by the UIIX sed scripts contained
x# in this file and the rest is performed by macros #defined in the file
'meinst'. 'sod' is a standard UNIX command which matches patterns of
characters in a stream and then replaces them with others. The current
translation mechanisms were only intended as a temporary measure to get
a prototype system up and running, and would need to be replaced with
x# a properly designed parser if the system was further developed.
#xxxx#########xxxx################xxxxxxxxx###x######x###x#x#xx#xxx#####xxxx####

Temporarily replace special characters in string literals with substitutes
so that they are not mistakenly translated by the rest of the scripts in this
tile. Once all the translation is done with, replace these tokens with the
original characters.

a/\(\". r\): \(. +\".. \)/\1COLOI\2/g
s/\(\". +\), \(. +\".. \)/\1COMMA\2/g
a/\(\". +\) \(. r\".. \)/\1TAB\2/g
s/\(\". r\)X\(. r\".. \)/\1PERCEIT\2/g

#########ß##
Replace any tab characters with spaces to make pattern matching more simple.

S/ / /g

Take the score control structure parameters and put brackets round them for
C++. Also put {} brackets around the whole block and add the necessary
C++ code to allow each block to access its own start and end times.

a/Score \(. r\): /Score(\1) {/g

Score control structure translations:
A TAO score control structure is actually a C++ if statement in
disguise. The times specified in the head of a From.. to, At.. for,
Before, After, At, Every and ControlRate control structure are compared
against the value of the variable 'Sample' which counts the number of
time steps which have elapsed since the beginning of a performance,
to see if the body of the control structure should be executed or not.

For control structures which specify a time interval over which the
body should be activated the two special variables 'start' and 'end'
allow code within the body to refer to the start and end times
specified in the head. This feature is explained more comprehensively
in sections 5.5.2 and E. 5.2. In order to implement it, it is necessary
to keep track of the values of 'start' and 'end' when nested control
structures are entered and exited. This is achieved with the use of
two stacks 'startstack Q' and 'endstack[]'. The variables 'START' and
'EID' are used in the process of passing the start and end times into
the body. Their values are determined by code which is added in during
the second phase of translation effected by the C++ macros in file
'main . cc,.

From <ti> to <t2>: FromTo(<tl>, <t2>) {
<body> --> n++; startatack[n]-start; endetack[n]. end; ## ... START=start; EID=end; {<body>}
start-startstack[n]; endiendstack[n]; n--.

314 G. Implementation code

U At <t> for <dur>: FromTo(<t>. <t>+<dur>) (
X" <body> --> n++; startstack[n]=start; endstack[n]send;
00 ... START. start; ElD end; (<body>)
$8 start=startstack[n]; snd-endstack[n]; n--;
U }

#0 Before <t>: Before(<t>) {
#1 <body> --> n++; startstack[n] start; endstack[n]uend;

,,,
{<body>}

sg start"startstack[n]; end-endstack[n]; n--;
** }

*# After <t>: After(<t>) {
fit; <body> --> n++; startstack[n] start; endstack[n]"end;
,,,

{<body>}
11 start=startstack[n]; end endstack[n]; n--;
*1 }
U
is Every <t>: Every(<t>) {
gt <body> --> n++; startstack[n] start; endstack[n]=end;
U# ,,,

{(body>}
00 start-startstack[n]; end endstack[n]; n--;
U }

so At <t>: At(<t>) {
ps <body> --> n++; startstack[n] start; endstack[n]. end;

(<body>}
U0 start startstack[n]; end=endstack[n]; n--;
sx }

s/From \(. s\) to \(. º\): /FromTo (\1, \2) {/g
s/At \(. s\) for \(. º\): /FromTo(\1. \1+\2) (/g
s/Before \(. º\): /Before (\1) {/g
s/After \(. º\): /After (\1) (/g
s/Every \(. *\): /Every (\1) {/g
s/At \(. º\): /At (\1) {/g
s/AtSample \(. º\): /AtSample (\1) (/g
s/When \(. º\): /When (\1) {/g
s/E1self \(. º\): /Elseif (\1) (/g
s/If \(. º\): /If (\1) {/g
s/Else: /Else(/g
s/ControlRate \(. º\): /ControlRate (\1) (/
s/\. \. \. /start-startstack[n]; end-endstack[n]; n--; })/g

s/FromTo "(['\{]*)/k{n++; startstack[n]-start; endstack[n]mend; start=START; end=EID; /g
s/After "(['\{]a)/k{n++; start atack [n]=start; endstack[n]-end; start=START; end=EED; /g
s/Before 1-\(3 *)/A {n++; startstack[n]=start; endstack[n]-end; start=START; end=EID; /g
s/At "(['\{]*)/t{n++; startstack[n]=start; endstack[n]=end; /g
s/Every "(['\{]*)/t{n++; startstack[n]=start; endstack[n]mend; /g
s/Score "(['\{]s)/t{n++; start stack [n]=start; endstack[n]mend; /g
s/ControlRate e(['\{]')/t{n++; startstack[n]=start; endstack[n]=end; /g
s/If "([-\{]v)/t{n++; startstack[n]=start. endstack[n]mend; /g
s/Elseif "(['\{]*)/A{n++; startstack[n]=start; endstack[n]mend; /g
s/Else{/t{n++; startstack[n]-start; endstack [n]=end; /g
s/ and / \t\t /g

Put brackets around any list of parameters in the form:

<name> : <pi>, <p2>, <p3> ... ##
to --> <name> (<p1>, <p2>, <p3>)
###i######################

xx#xxxxxxxx####x##xx#xxx###xxx#xxx####xx#x#xxxxxx###x###x##s#xx#x###xu: #xsxx##x
#x Translate:
#x Glue instrl(<positionl>) to instr2(<position2>);
xx into:
xx Instrument:: glue(instrl, <positionl>, instr2, <position2>);
#x and:
xx Join instrl(a, b) to instr2(a, b);
xx into:
xx Instrument:: join(instrl, a, b, instr2, a, b); '
x##x#xxxx####x###x#x##xxxx###xx#xxxxx##xxxxx######xx#####xxx####xx##xxx##x######

s/Glue +\((A-Za-z_0-9]*\)(\(. *\)) "to "\([A-Za-z_0-9]e\)(*\(.
/instrument

---- glue(\1, \Z, \3, \4); /g
s/Join "\([A-Za-z_0-9]*\)(\(. *\)) *to "\([A-Za-z_0-9]s\)(a\(.. \)). s;

/Instrument

join(\1, \2, \3, \4); /g

ax#uua#u*uu#s#uu#*##uu#uu#szý *uunnnsu*ususssussssususssus
00 A 'Display' statement in a TAO script is translated into a set of data items
ip to be sent to the C++ standard output stream 'tout'. In a Display statement
xX items are separated by commas but in a 'cout' statement they are seperated

G. 3 Unix sed scripts used in the translation of a TAO script 315

Of by the token 4<0. Therefore replace commas with « in any Display statements.
Also replace spaces between items with actual spaces.
U
So: Display a, b, c --> tout «a«""«b << c
wheras: Display a, b, c --> tout << a«b«c

/Display[;]*/ \([]s\)/, \"\1\", /g
/Display['; 7s/ /6

Put quotes around the filename in a microphone declaration.
U
Microphone m: filel, stereo --> Microphone m: "filel", stereo

/Microphone/ a/([]s\([A-Za-z_0-9]s\) ". /(\"\1\". /g

$#s/STAAT/START+2.0\/44100/g
##s/EID/EID-2.0\/44100/g

Translate pitches (e. g. C4, EbS, C#6) into C++ form. Function 'pitch()' is
defined in main. cc

C4 --> pitch("C4")
Eby --> pitch("Eb5")
C#6 --> pitch("C#6")

a/\([A-0][\#b]\{0,1\}[0-9]\{1,2\}[+-]\{O, 1\}[0-9]*\/*[0-9]*\)/pitch (\"\1\")/g

Iomenclature for accessing boundaries of instruments.

left --> 0.0
right --> 1.0
bottom --> 0.0
top --> 1.0

s/\(['a-z_A-Z]\)left\(['A-Z_a-z]\)/\1 0.0 \2/g
s/\(['a-z_A-Z]\)right\(['A-Z_a-z]\)/\1 1.0 \2/g
s/\(['a-z_A-Z]\)bottom\([-A-Z_a-z]\)/\1 0.0 \2/g
s/\(['a-z_A-Z]\)top\(['A-Z_a-z]\)/\1 1.0 \2/g
s/\(['a-z_A-Z]\)centre\([-A-Z_a-z)\)/\1 0.5 \2/g

Add brackets to member function calls with no arguments.

s. lockleft. lockright --> s. lockleft(). lockright()

s/lockleft/lockleft()/g
s/lockright/lockri ght()/g
a/locktop/locktop()/g
s/lockbottom/lockbottom()/g
a/lockends/lockends()/g
s/lockperimeter/lockperimeter()/g
s/lockcorners/lockcorners()/g

x###xxx#x#xx##x#x#x#xxxx#xxxx##x#x#xxxxxxxxxx####xxx#x#xxxxx#xx#xx#x#xxxxxx###xx
xx Force floating point arithmetic even if a fraction is expressed as one
xx integer divided by another.
x#
x# <integerl> / <integer2> --> <integeri> / <integer2>. 0
x# 1/2 --> 1/2.0
#########x###############x#x##x##x#######x##xx#x##x##x####x#####xx###x####x###x#

a/\([0-9][0-9]s\) *\/ "\([0-9][0-9]s\)/\1\/\2\. 0/g

xx###x##xx###xxxxxx#xx#x#xxxxxxxxxx#xxxxxxxxxxxxxxxxx#x#xx##x#xx###xxxx##xxx#xx#
x# Replace units of measurement with the appropriate conversion

x# 10 secs --> 10*1.0 xx force conversion to float
x# 5 min --> 5*60.0
x# 25 mascs --> 25/1000.0
x# 300 Hz --> 300
xx#xx##xxxxxx###x###xxx#####x##x####xxxxxx#xxxxx##xx#####xx#xxxxx#xxxx###xxx##xx

s/msecs/\/1000.0/g
s/secs/*1.0/g
s/min/*60.0/g
a/Hz//g

316 G. Implementation code

xxsxxxxxxxxxxxsxxxxxxxxxxxxxxxxxsxssssxsxxxsssxsxssssstooInxsxssxxxsssIsoIsIM
IS Convert percentage damping to a value betveen 0 and 1.

xx
xx setdamping(... <damping>%) --> setdamping(... (1.0-<damping), /100.0))
xxxssxxsxxsxxxsxxixsis#It####soI

/damping/ 1\. 0-\1\/100\. 0/g

#####x#x######xx###xxx###xxi#x#s#sisi##i##ss#sissisis: i::: s: ss: s; s: sia:: s: ssss:
Replace tokens within string constants with the original special characters
which they represent to restore the strings to their original state.
###xxx##x##x#xxx#####xxixxxix#ix#xixxiiiii#iiiiiiiiiiisississsiiisisIJssIs######

s/\(\". º\)COLON\(. º\"\)/\1: \2/g
s/\(\". º\)COMMA\(. º\"\)/\i, \2/g
s/\(\". º\)TAB\(. º\"\)/\1 \2/g
s/\(\". º\)PEECEIT\(. º\"\)/\1X\2/g

s/----/:: /g

G. 3.5 File string-sed-script
$###############iittii##$"i#8$Is"#ttt
#i File: string_sed_script (c) 1996 Mark Pearson

Content:
UIIX sod script which translates a string declaration in a TAO script
in the following ways:

First it puts the whole declaration onto a single line to make searching
and replacing possible. In a TAO script messages can be passed to an
instrument within a declaration without having to explicitly give the
$# name of the instrument. However C++ must always have the name of an
object in order to pass messages to it. This sod script looks for
*# any messages and appends the name of the instrument together with a
period onto the front of each such message found.

#i String 91: String sl: 100 Hz. 10 secs;
lockende; si. lockends;
setdamping(left, 1/10,1X); sl. setdamping(left, 1/10,1X);

##########ßtt8#######i##i######i#iisttii#ititistiiiii: isiit: si::: s: iiti: tisiiri: s

: start
/String/. /\. \. \. / !p
/String/: A: \: \: / !d

/String "[A-Za-zO-9_]\{1, \}. $\. \. \. / b next
/String/, /; / I
/String/ s/\n//g
: next
t start
s/String "\([A-Za-zO-9-]\{1, \}\)\(. e\)lockleft/String \1\2\1\. lockleft/g
s/String +\([A-Za-zO-9_]\{1, \}\)\(. s\)lockright/Stripg \1\2\1\. lockright/g
s/String *\([A-Za-zO-9_]\{1, \}\)\(. e\)locktop/String \1\2\1\. locktop/g
s/String "\([A-Z&-zO-9_]\{i, \}\)\(. s\)lockbottom/String \1\2\1\. lockbottom/g
s/String "\([A-Za-zO-9_]\{1, \}\)\(. s\)lockperimeter/String \1\2\1\. lockperimeter/g
a/String "\([A-Za-zO-9_]\{1, \}\)\(. e\)lockends/String \i\2\1\. lockends/g
s/String *\([A-Za-zO-9_]\{1, \}\)\(. e\)lockcorners/String \1\2\1\. lockcorners/g
a/String "\((A-Za-z0-9_]\{i, \}\)\(. +\)lock "(/String \1\2\1\. lock(/g
s/String *\([A-Za-zO-9_]\{1, \}\)\(. e\)set/String \1\2\1\. set/g
s/String *\([A-Za-zO-9_]\{1, \}\)\(. e\)display/String \1\2\1\. display/g
s/String "\([A-Za-z0-9_]\{1, \}\)\(.. \)amplif/String \1\2\1\. amplif/g
/String/ s/\. \. \. //i

G. 3.6 File rectangle-sed_script
sasssassssnsssssssss
sß File: rectangle_sed_script (c) 1996 Mark Pearson
as
IS Content:
*# UNIX sod script which translates a rectangle declaration in a TAO
#s script in the following ways:
5s
ßR First it puts the whole declaration onto a single line to make searching
S0 and replacing possible. In a TAO script messages can be passed to an
SS instrument within a declaration without having to explicitly give the
XS name of the instrument. However C++ must always have the name of an
gý object in order to pass messages to it. This sod script looks for

any messages and appends the name of the instrument together with a
gg period onto the front of each such message found.
08

G. 3 Unix sed scripts used in the translation of a TAO script 317

#* Rectangle ri: Rectangle ri: 100 Hz, 200 Hz, 10 secs; ## 100 Hz, 200 Hz, 10 secs; _> rl. lockcorners;
lockcorners;

: start
/Rectangle/, /\. \. \. / !p
/Rectangle/, /\. \. \. / !d

/Rectangle "[A-Za-zO-9_]\{1, \}. s\. \. \. / b next
/Rectangle/, /; /][
/Rectangle/ s/\n//g
: next
t start
. /Rectangle "\([A-Za-zO-9_]\{1, \}\)\(. *\)lockleft/Rectangle \1\2\1\. lockleft/g
s/Rectangle "\([A-Za-zO-9_]\{1, \}\)\(. e\)lockright/Rectangle \1\2\1\. lockright/g
s/Rectangle s\([A-Za-zO-9_]\{1, \}\)\(. s\)locktop/Rectangle \1\2\1\. locktop/g
a/Rectangle s\([A-Za-zO-9_]\{1, \}\)\(. *\)lockbottom/Rectangle \1\2\1\. lockbottom/g
s/Rectangle "\([A-Za-zO-9_]\{1, \}\)\(. e\)lockperimeter/Rectangle \1\2\1\. lockperimeter/g
s/Rectangle *\([A-Za-zO-9_]\{1, \}\)\(. *\)lockends/Rectangle \1\2\1\. lockends/g
s/Rectangle "\([A-Za-zO-9_]\{1, \}\)\(. s\)lockcorners/Rectangle \1\2\1\. lockcorners/g
s/Rectangle "\([A-Za-zO-9_]\{1, \}\)\(. +\)lock "(/Rectangle \1\2\1\. lock(/g
s/Rectangle "\([A-Za-zO-9_]\{1, \}\)\(. s\)set/Rectangle \1\2\1\. set/g
a/Rectangle *\([A-Za-z0-9_]\{1, \}\)\(. *\)display/Rectangle \1\2\1\. display/g
a/Rectangle +\([A-Za-zO-9_]\{1, \}\)\(. e\)amplif/Rectangle \1\2\1\. amplif/g
/Rectangle/ s/\. \. \. //1

G. 3.7 File circle-sed-script

File: circle_sed_script (c) 1996 Mark Pearson

Content:
UNIX sod script which translates a circle declaration in a TAO
script in the following ways:

First it puts the whole declaration onto a single line to make searching
and replacing possible. In a TAO script messages can be passed to an
instrument within a declaration without having to explicitly give the
name of the instrument. However C++ must always have the name of an
object in order to pass messages to it. This sed script looks for
any messages and appends the name of the instrument together with a
period onto the front of each such message found. See files 4etring_sed'
and 'rectangle-sod' for examples.

: start
/Circle/, /\. \. \. / !p
/Circle/, /\. \. \. / !d

/Circle s[A-Za-zO-9_]\{1, \}. s\. \. \. / b next
/Circle/, /; / I
/Circle/ 3/\n//g
: next
t start
is/Circle *\([A-Za-zO-9_]\{1, \}\)\(. s\)lockleft/Circle \1\2\1\. lockleft/g
s/Circle *\((A-Za-z0-9_]\{1, \}\)\(. s\)lockright/Circle \1\2\1\. lockright/g
s/Circle s\([A-Za-z0-9_]\{1, \}V \(. s\)locktop/Circle \1\2\1\. locktop/g
s/Circle "\([A-Za-z0-9_]\{1, \}\)\(. s\)lockbottom/Circle \1\2\1\. lockbottom/g
s/Circle *\([A-Za-zO-9_]\{1, \}\)\(. s\)lockperimeter/Circle \1\2\1\. lockperimeter/g
a/Circle "\([A-Za-zO-9_]\{1, \}\)\(. s\)lockends/Circle \1\2\1\. lockends/g
s/Circle *\([A-Za-zO-9_]\{1, \}\)\(. s\)lockcorners/Circle \1\2\1\. lockcorners/g
s/Circle *\([A-Za-zO-9_]\{1, \}\)\(. s\)lock(/Circle \1\2\1\. lock(/1
s/Circle *\([A-Za-zO-9_]\{1, \}\)\(. s\)set/Circle \1\2\1\. set/g
s/Circle s\([A-Za-z0-9_]\{1, \}\)\(. s\)display/Circle \1\2\1\. display/g
s/Circle s\([A-Za-zO-9_]\{1, \}\)\(. s\)amplif/Circle \1\2\1\. amplif/g
/Circle/

G. 3.8 File triangle-sed-script

File: triangle_sed_script (c) 1996 Mark Pearson

IS Content:
UNIX sod script which translates a triangle declaration in a TAO
script in the following ways:

iA First it puts the whole declaration onto a single line to make searching

318 G. Implementation code

to and replacing possible. In a TAO script messages can be passed to an
ii instrument within a declaration without having to explicitly give the
so name of the instrument. However C++ must always have the name of an
ii object in order to pass messages to it. This wed script looks for
ii any messages and appends the name of the instrument together with a
to period onto the front of each such message found. See files 'string_sed'
to and 'rectangle_sed' for examples.

iiiiiiiiiiii

: start
/Triangle/, /\. \. \. / !p
/Triangle/, /\. \. \. / !d

/Triangle "[A-Za-zO-9a \{1, \}. *\. \. \. / b next
/Triangle/, /; / I
/Triangle/ s/\n//g

next
t start
s/Triangle "\([A-Za-ZO-9_]\{1. \}\)\(. *\)lockleft/Triangle \1\2\1\. lockleft/g

s/Triangle "\([A-Za-zO-9_]\{1, \}\)\(. *\)lockright/Triangle \1\2\1\. lockright/g

s/Triangle *\([A-Za-z0-9_]\{i, \}\)\(. *\)locktop/Triasgle \1\2\1\. locktop/g

c/Triangle "\([A-Za-zO-9_]\{1, \}\)\(.. \)lockbotton/Triasgle \1\2\1\. lockbottom/g

s/Triangle "\([A-Za-zO-9_]\{1, \}\)\(. $\)lockperiaeter/Triasgle \1\2\1\. lockperiaeter/g

s/Triangle *\([A-Za-zO-9_]\{1, \}\)\(.. \)lockends/Triasgle \1\2\1\. lockends/g
s/Triangle "\([A-Za-zO-9_]\{1, \}\)\(.. \)lockcorners/Triasgle \1\2\1\. lockcorners/g
s/Triangle "\([A-Za-z0-9_]\{1, \}\)\(. *\)lock "(/Triangle \1\2\1\. lock(/g
s/Triangle "\([A-Za-zO-9_]\{1. \}\)\(. *\)set/Triangle \1\2\1\. set/6
s/Triangle "\([A-Za-zO-9_]\{1, \}\)\(. e\)display/Triangle \i\2\1\. display/g
s/Triangle *\([A-Za-zO-9_3\{1, \}\)\(. *V amplif/Triangle \1\2\1\. aaplif/g
/Triangle/

G. 3.9 File ellipse.. sed-script
UUsSsUU###UU$$US$$ S$
File: ellipse_sed_script (c) 1996 Mark Pearson

Content:
UIIX sod script which translates a ellipse declaration in a TAO
script in the following ways:
First it puts the whole declaration onto a single line to make searching
and replacing possible. In a TAO script messages can be passed to an
instrument within a declaration without having to explicitly give the
name of the instrument. However C++ must always have the name of an
object in order to pass messages to it. This sed script looks for
any messages and appends the name of the instrument together with a
period onto the front of each such message found. See files 'string_sed'
and 'rectangle_seV for examples.
##s###############suss ##s# UtU

: start
/Ellipse/, /\. \. \. / !p
/Ellipse/, /\. \. \. / !d

/Ellipse "[A-Za-zO-9_]\{1. \}.. \. \. \. / b next
/Ellipse/, /; / I
/Ellipse/ s/\n//g
: next
t start
s/Ellipse "\([A-Za-zO-9_]\{i, \}\)\(. e\)lockleft/Ellipse \1\2\1\. lockleft/g
s/Ellipse "\([A-Za-z0-9_]\{1, \}\)\(. e\)lockright/Ellipse \1\2\1\. lockright/g
s/Ellipse "\(LA-Za-zO-9_]\{1, \}\)\(. s\)locktop/Ellipse \1\2\1\. locktop/g
s/Ellipse . \([A-Za-zO-9_]\{1, \}\)\(. e\)lockbottom/Ellipse \1\2\1\. lockbottom/g
s/Ellipse "\([A-Za-zO-9_]\{1, \}\)\(. *\)lockperimeter/Ellipse \1\2\1\. lockperimeter/g
s/Ellipse "\([A-Za-zO-9_]\{1, \}\)\(. S\)lockends/Ellipse \1\2\1\. lockends/g
s/Ellipse "\([A-Za-zO-9_]\{1, \}\)\(. *\)lockcorners/Ellspse \1\2\1\. lockcorners/g
s/Ellipse "\(LA-Za-zO-9_]\{1, \}\)\(. ý\)lock (/Ellipse \1\2\1\. lock(/l

/g s/Ellipse "\(LA-Za-zO-9_1\{i, \}\)\(. e\)set/Ellipse \1\2\1\. Slot
s/Ellipse *\([A-Za-z0-9-]\{1, \}\)\(. e\)display/Ellipse \1\2\1\. display/g
s/Ellipse "\([A-Za-zO-9_]\{1, \}\)\(. "\)amplif/Ellipse \1\2\i\. amplif/g
/Ellipse/ s/\. \. \. //1

G. 4 The tao shell script
xx
SO File: tao (c) 1996 Mark Pearson
xx
xx Content:
xx Shell script which causes a TAO script to be translated into a C++
xx code fragment which is then *included into the main function in
xx file main. ee. This file is then compiled to produce an executable

G. 4 The tao shell script

which implements the synthesis described in the TAO script.

e. g. for a TAO script called 'example. script':

typing 'tao example' produces an executable called 'example. exO

File 'example. scriptI is processed by the various sod scripts, and
redirected into file 'tao_scriptfile'. This is the file which is
#included into the main() function, further processed by C++ macros
*defined in 'main. cc' and then compiled.

echo 'Processing script file: ' $i. script

sod < $1. script -f $TAOPATH/translation/string_sed_script
sod -f $TAOPATH/translation/circle_sed_script I
sod -f $TAOPATH/translation/rectangle_sed_script
sed -f $TAOPATH/translation/triangle_sed_script
sod -f $TADPATH/translation/ellipse_sed_script
sad -f $TAOPATH/translation/tao_sed_scriptl
sed -f $TAOPATH/translation/tao_sed_acript2
sed -f $TAOPATH/translation/tao_sed_script3
sod -f $TAOPATH/translation/tao_sed_script4 > $TAOPATH/src/tao_scriptfile

echo 'Making synthesis program: ' $i. exe

CC -L$TAOPATH/lib/ -o $1. exe STAOPATH/arc/main. cc -lm -lgl -ltao

echo 'type' $i. exe 'for synthesis of sound only, or'
echo Si. exe '-g <amplification> for visualisation, where'
echo '<amplification> determines exaggeration of waves graphically'

319

320 G. Implementation code

Bibliography

Abelson, H., Sussman, G. J. and Sussman, J. (1985). Structure and interpretation

of computer programs, Cambridge, Massachussetts, MIT press.

Adrien, J: M. (1991). The missing link: Modal synthesis, Representations of Musical

Signals, Cambridge, Massachusetts. MIT press.

Adrien, J: M., Causse, R. and Rodet, X. (1987). Sound synthesis by physical models,

application to strings, Proceedings of international computer music conference,

pp. 264-269.

Bak, P. and Kan, C. (1991). Self-organised criticality, Scientific American pp. 26-33.

Belkin, A. (1991). Whos playing? the computers role in musical performance,
Proceedings of international computer music conference, pp. 131-134.

Beyls, P. (1989). The musical universe of cellular automata, Proceedings of interna-

tional computer music conference, pp. 34-41.

Beyls, P. (1990). Subsymbolic approaches to musical composition, a behavioural

model, Proceedings of international computer music conference, pp. 280-283.

Beyls, P. (1992). Dynamic models for musical interaction in virtual reality, Proceed-

ings of international computer music conference, pp. 358-359.

Borin, G., De Poli, G. and Sarti, A. (1992). Algorithms and structure for synthesis

using physical models, Computer Music Journal 16(4): 30-42.

Bregman, A. S. (1990). Auditory scene analysis: the perceptual organisation of

sound, Cambridge, MA. MIT press.

Cadoz, C. (1988). Instrumental gesture and musical composition, Proceedings of
international computer music conference, pp. 1-12.

321

322 Bibliography

Cadoz, C. and Ramstein, C. (1990). Capture, representation and composition of the

instrumental gesture, Proceedings of international computer music conference,

pp. 53-56.

Cadoz, C., Florens, J. -L. and Lucian!, A. (1995). Musical sounds, animated im-

ages with CORDIS-ANIMA and its multimodal interfaces, Demonstration at
international computer music conference.

Cadoz, C., Luciani, A. and Florens, J. L. (1993). CORDIS-ANIMA: A modeling

system for sound and image synthesis, the general formalism, Computer Music

Journal 17(1): 19-29.

Capra, F. (1992). The Tao of physics, London, Flamingo.

Chafe, C. (1995). Adding vortex noise to wind instrument physical models, Proceed-

ings of international computer music conference, pp. 57-60.

Composer's Desktop Project manual (1994).

Connor, J. J. and Brebbia, C. A. (1978). Finite element techniques for fluid flow,

London, Butterworth.

Cook, P. R. (1993). SPASM, a real-time vocal tract physical model controller;

and singer, the companion software synthesis system, Computer Music Journal

17(1): 30-43.

di Scipio, A. (1991). Further experiments with non-linear dynamic systems, compo-

sition and digital synthesis, Proceedings of international computer music con-
ference, pp. 352-355.

Djoharian, P. (1993). Generating models for modal synthesis, Computer Music

Journal 17(1): 57-65.

Dodge, C. and Jerse, T. A. (1985). Computer music, synthesis, composition and

performance, New York, Schirmer books.

Emmerson, S. (1990). The relation of language to materials., in S. Emmerson (ed.),

The language of electroacoustic music, London, Macmillan press, chapter 2.

Bibliography 323

Florens, J: L., Razafindrakoto, A., Luciani, A. and Cadoz, C. (1986). Optimized real

time simulation of objects for musical synthesis and animated image synthesis,
Proceedings of international computer music conference., pp. 65-70.

Garnett, G. E. (1987). Modeling piano sound using waveguide digital filtering tech-

niques, Proceedings of international computer music conference, pp. 89-95.

Gell-Mann, M. (1995). The Quark and the Jaguar, adventures in the simple and

complex, London, Abacus.

Gibson, J. J. (1979). The ecological approach to visual perception, New Jersey,

Lawrence Erlbaum.

Gleick, J. (1991a). Chaos - making a new science, London, Cardinal.

Gleick, J. (1991b). Nature's chaos, London, Cardinal.

Green, D. G. (1990). Cellular automata models in biology, Journal of mathematical

and computer modeling 13(6): 69-74.

Hearn, D. and Baker, M. P. (1986). Computer graphics, London, Prentice-Hall.

Hofstadter, D. R. (1986). Mathematical chaos and strange attractors, Metamagical

Themas, Oxford, Clarendon press.

Hunt, A., Kirk, R. and Orton, R. (1991). Musical applications of the cellular au-

tomata workstation, Proceedings of international computer music conference,

pp. 165-168.

Incerti, E. and Cadoz, C. (1995). Topology, geometry, matter of vibrating struc-

tures simulated with CORDIS-ANIMA. sound synthesis methods, Proceedings

of international computer music conference, pp. 96-103.

Jaffe, D. A. (1995). Ten criteria for evaluating synthesis techniques, Computer Music

Journal 19(l): 76-87.

Keefe, D. H. (1992). Physical modeling of wind instruments, Computer Music Jour-

nal 16(4): 57-73.

Lakshmi, M. R. (1989). Cellular automaton fluids -a rewiew, Sadhana.

Lewis, P. H. (1990). Computer vision, BSc computer science course notes.

324 Bibliography

Mackenzie, J. P. (1995). Chaotic predictive modelling of sound, Proceedings of in-

ternational computer music conference, pp. 49-56.

Mcintyre, M. E. (1983). On the oscillations of musical instruments, Journal of the

Acoustical Society of America 75(5): 1325-45.

Miranda, E. R. (1993). Cellular automata music - an interdisciplinary project, In-

terface 22(1): 3-21.

Morrison, J. D. and Adrien, J: M. (1993). MOSAIC: a framework for modal synthe-

sis, Computer Music Journal 17(1): 45-56.

Pearson, M. (1995). TAO: a physical modelling system and related issues, Organised

Sound 1(1): 43-50.

Pearson, M. and Howard, D. M. (1995). A musician's approach to physical modelling,
Proceedings of international computer music conference, pp. 578-80.

Pearson, M. and Howard, D. M. (1996). Recent developments with the TAO physi-

cal modelling system, Proceedings of international computer music conference,

pp. 97-9.

Reynolds, C. (1987). Flocks, herds and schools -a distributed behavioural model,
ACM Computer Graphics 21(4): 25-34.

Roads, C. (1987). Granular synthesis, Foundations of computer music, Cambridge,

Mass. MIT press, pp. 145-159.

Rossing, T. D. (1990). The science of sound, Reading, Mass. Addison Wesley.

Serra, X. (1986). A computer model for bar percussion instruments, Proceedings of
international computer music conference, pp. 257-262.

Sheldrake, R. P. (1988). The presence of the past, London, Harper Collins.

Smalley, D. (1990). Spectro-morphology and structuring processes, in S. Emmerson

(ed.), The language of electroacoustic music, London, Macmillan press, chap-
ter 4.

Smith, J. 0. (1987). Waveguide filter tutorial, Proceedings of international computer

music conference, pp. 9-16.

Bibliography 325

Smith, J. 0. (1992). Physical modeling using digital waveguides, Computer Music

Journal 16(4): 74-91.

Strogatz, S. H. and Stewart, I. (1993). Coupled oscillators and biological synchroni-

sation, Scientific American pp. 68-75.

Toffoli, T. and Margolis, N. (1987). Cellular automata machines -a new environment

for modeling, MIT press, Cambridge, Massachusetts.

Truax, B. (1986). Real time granular synthesis with the dmx 100, Proceedings of
international computer music conference, pp. 231-235.

Truax, B. (1987). Real-time granulation of sampled sound with the dmx 100, Pro-

ceedings of international computer music conference, pp. 138-145.

Truax, B. (1990a). Chaotic non-linear systems and digital synthesis - an exploratory

study, Proceedings of international computer music conference, pp. 100-103.

Truax, B. (1990b). Time-shifting of sampled sound with a real-time granulation
technique, Proceedings of international computer music conference, pp. 104-

107.

Vercoe, B. (1992). CSO UND: a manual for the audio processing system.

Waldrop, M. M. (1994). Complexity: the emerging science at the edge of order and

chaos, England. Penguin.

Warren, W. and Verbrugge, R. (1984). Auditory perception of breaking and bouncing

events: a cases study in ecological acoustics, Journal of Experimental Psychol-

ogy: Human Perception and Performance 10(5): 704-712.

Warren, W., Kim, E. and Husney, R. (1987). The way the ball bounces: visual and

auditory perception of elasticity and the bounce pass, Perception 16: 309-336.

Webb, P. (1993). Self-modifying waveform synthesis using cellular automata, Mas-

ter's thesis, Dept. of Electronics, University of York, England.

Windsor, W. L. (1995). A perceptual approach to the description and analy-

sis of acousmatic music, PhD thesis, City University, London. also avail-

able at http: //www. shef. ac. uk/uni/academic/I-M/mus/staff'/wlw/wlwthesis/-

wlwthesis_ToC. html.

326 Bibliography

Wishart, T. (1990). Sound symbols and landscapes, in S. Emmerson (ed.), The

language of electroacoustic music, London, Macmillan press, chapter 3.

Wishart, T. (1994). Spectral transformations. in Composer's Desktop Project man-

ual.

Wolfram, S. (1984). Universality and complexity in cellular automata, Physica

1OD: 1-35.

Wolfram, S. (1986). Theory and applications of cellular automata, Singapore, World

Scientific Publishing Co. Pte. Ltd.

Woodhouse, J. (1992). Physical modeling of bowed strings, Computer Music Journal

16(4): 43-56.

Woolley, B. (1992). Virtual worlds, London, Penguin.

