

Real-Time Operating System

Modelling and Simulation

Using SystemC

Ke Yu

Submitted for the degree of Doctor of Philosophy

Department of Computer Science

June 2010

 iii

Abstract

Increasing system complexity and stringent time-to-market pressure bring chal-

lenges to the design productivity of real-time embedded systems. Various System-

Level Design (SLD), System-Level Design Languages (SLDL) and Transaction-

Level Modelling (TLM) approaches have been proposed as enabling tools for

real-time embedded system specification, simulation, implementation and verifi-

cation. SLDL-based Real-Time Operating System (RTOS) modelling and simula-

tion are key methods to understand dynamic scheduling and timing issues in real-

time software behavioural simulation during SLD. However, current SLDL-based

RTOS simulation approaches do not support real-time software simulation ade-

quately in terms of both functionality and accuracy, e.g., simplistic RTOS func-

tionality or annotation-dependent software time advance.

This thesis is concerned with SystemC-based behavioural modelling and simu-

lation of real-time embedded software, focusing upon RTOSs. The RTOS-centric

simulation approach can support flexible, fast and accurate real-time software tim-

ing and functional simulation. They can help software designers to undertake real-

time software prototyping at early design phases.

The contributions in this thesis are fourfold.

Firstly, we propose a mixed timing real-time software modelling and simula-

tion approach with various timing related techniques, which are suitable for early

software modelling and simulation. We show that this approach not only avoids

the accuracy drawback in some existing methods but also maintains a high simu-

lation performance.

Secondly, we propose a Live CPU Model to assist software behavioural timing

modelling and simulation. It supports interruptible and accurate software timing

simulation in SystemC and extends modelling capability of the mixed timing ap-

proach for HW/SW interactions.

 iv

Thirdly, we propose a RTOS-centric real-time embedded software simulation

model. It provides a systematic approach for building modular software (including

both application tasks and RTOS) simulation models in SystemC. It flexibly sup-

ports mixed timing application task models. The functions and timing overheads

of the RTOS model are carefully designed and considered. We show that the

RTOS-centric model is both convenient and accurate for real-time software simu-

lation.

Fourthly, we integrate TLM communication interfaces in the software models,

which extend the proposed RTOS-centric software simulation model for SW/HW

inter-module TLM communication modelling.

As a whole, this thesis focuses on RTOS and real-time software modelling and

simulation in the context of SystemC-based SLD and provides guidance to soft-

ware developers about how to utilise this approach in their real-time software de-

velopment. The various aspects of research work in this thesis constitute an inte-

grated software Processing Element (PE) model, interoperable with existing TLM

hardware and communication modelling.

 v

Table of Contents

Abstract ...iii

Table of Contents .. v

List of Tables .. ix

List of Figures ... xi

List of Acronyms ... xv

Acknowledgements ... xix

Declaration ... xxi

Chapter 1 Introduction ... 1

1.1 General Background ... 1

1.2 Challenges in Embedded System Design .. 5

1.3 System-Level Design Methodologies ... 7

1.3.1 Raising Abstraction Levels ... 7

1.3.2 Orthogonal Concepts in System-Level Design ... 8

1.3.3 System-Level Design Flows ... 9

1.4 System-Level Design Languages .. 12

1.4.1 SystemC .. 12

1.4.2 SpecC .. 14

1.4.3 SystemVerilog .. 14

1.5 Software Simulation in System-Level Design .. 15

1.5.1 Instruction Set Software Simulation ... 15

1.5.2 Behavioural Software Simulation ... 17

1.6 Research Objective and Contribution ... 18

1.6.1 Timed Software Simulation .. 19

1.6.2 RTOS Modelling .. 19

1.6.3 Interrupt Handling .. 20

1.6.4 Research Hypothesis and Objectives .. 21

1.6.5 Research Contributions and Methods ... 23

1.7 Organisation of the Thesis .. 25

 vi

Chapter 2 Literature Review: Transaction-Level Modelling and System-Level RTOS

Simulation .. 27

2.1 Transaction-Level Modelling and Simulation ... 28

2.1.1 Abstraction Levels and Models in TLM ... 30

2.1.2 Communication Modelling in TLM .. 35

2.1.3 Embedded Software Development with TLM .. 39

2.2 The SystemC Language .. 43

2.2.1 SystemC Language Features ... 44

2.2.2 SystemC Discrete Event Simulation Kernel ... 46

2.2.3 A SystemC SW/HW System Example .. 51

2.3 RTOS Modelling and Simulation in System-level Design 54

2.3.1 Coarse-Grained Timed Abstract RTOS Modelling 55

2.3.2 Fine-Grained Timed Native-Code RTOS Simulation 58

2.3.3 ISS-based RTOS Simulation ... 60

2.3.4 The Proposed RTOS Simulation Model ... 61

2.4 Summary ... 62

Chapter 3 Mixed Timing Real-Time Embedded Software Modelling and Simulation 65

3.1 Issues in Software Timing Simulation .. 68

3.1.1 Annotation-Dependent Time Advance.. 68

3.1.2 Fine-Grained Time Annotation ... 70

3.1.3 Multiple-Grained Time Annotation .. 71

3.1.4 Result Oriented Modelling .. 72

3.2 The Mixed Timing Approach .. 75

3.2.1 Separating and Mixing Timing Issues ... 76

3.2.2 TLM Software Computation Modelling ... 77

3.2.3 Defining Software Models .. 80

3.2.4 Techniques for Improving Simulation Performance 87

3.2.5 Application Software Performance Estimation 90

3.2.6 RTOS Performance Estimation ... 93

3.2.7 Timing Issues in Software Simulation .. 95

3.3 The Live CPU Model .. 99

3.3.1 The HW Part of the SW Processing Element Model 99

3.3.2 The Virtual Registers Model ... 101

3.3.3 The Interrupt Controller Model ... 102

3.3.4 The Live CPU Simulation Engine ... 103

3.4 Evaluation Metrics .. 109

3.4.1 Simulation Performance Metric .. 110

3.4.2 Simulation Accuracy Metrics .. 110

 vii

3.5 Experimental Results .. 112

3.5.1 Performance Evaluation .. 113

3.5.2 Accuracy Evaluation ... 119

3.6 Summary ... 121

Chapter 4 A Generic and Accurate RTOS-Centric Software Simulation Model 125

4.1 Motivation and Contribution ... 126

4.2 Research Context and Assumptions .. 127

4.3 The Embedded Software Stack Model .. 129

4.4 Common RTOS Concepts and Features .. 132

4.4.1 “Real-Time” Features of Embedded Applications 132

4.4.2 RTOS Kernel Structures ... 134

4.4.3 RTOS Requirements and Modelling Guidance 136

4.5 The Real-Time Embedded Software Simulation Model 150

4.5.1 Simulation Model Structure .. 150

4.5.2 Application Software Modelling... 155

4.5.3 RTOS Task/Thread and Process Modelling.. 159

4.5.4 Multi-Tasking Management Modelling .. 165

4.5.5 Scheduler Modelling ... 172

4.5.6 Task Synchronisation and Communication Modelling 180

4.5.7 Interrupt Handling Modelling ... 188

4.5.8 HAL Modelling .. 194

4.5.9 General Modelling Methods for RTOS Services 197

4.6 Evaluation Metrics .. 202

4.6.1 Simulation Performance Metrics .. 202

4.6.2 Simulation Accuracy Metrics ... 203

4.7 Experimental Results .. 204

4.7.1 Multi-Tasking Simulation with C/OS-II RTOS.................................. 204

4.7.2 Interrupt Simulation with RTX RTOS .. 207

4.8 Summary ... 210

Chapter 5 Extending the Software PE Model with TLM Communication Interfaces 213

5.1 Integrating OSCI TLM-2.0 Interfaces ... 215

5.1.1 The OSCI TLM-2.0 Standard ... 215

5.1.2 TLM Constructs in the Software PE Model.. 216

5.1.3 The TLM System-on-Chip Model .. 218

5.2 Experiments .. 221

5.2.1 Performance Study of TLM Models ... 221

5.2.2 DMA-Based I/O Simulation ... 223

5.3 Summary ... 226

 viii

Chapter 6 Conclusions and Future Work ... 227

6.1 Summary of Contributions .. 227

6.2 Conclusions ... 229

6.2.1 The Mixed Timing Approach ... 229

6.2.2 The Live CPU Model .. 230

6.2.3 The RTOS-Centric Real-Time Software Simulation Model 230

6.2.4 Extending Software Models for TLM Communication 231

6.3 Future Work .. 232

6.3.1 Improving Timing Modelling Techniques .. 232

6.3.2 Enriching RTOS Model Features .. 232

6.3.3 Multi-Processor RTOS Modelling .. 233

Bibliography .. 235

 ix

List of Tables

Table 2-1. Modelling and simulation speed comparisons [3]... 29

Table 2-2. SystemC code of a HW module ... 51

Table 2-3. SystemC code of a SW PE module .. 52

Table 2-4. SystemC code of the main function ... 53

Table 3-1. Abstract software models and coarse-grained time annotations 83

Table 3-2. Native-code software models and fine-grained time annotations 85

Table 3-3. Reducing number of time annotations ... 88

Table 3-4. Reducing number of time advance points .. 89

Table 3-5. Basic RTOS actions and their relative execution times [2].. 93

Table 3-6. RTX RTOS timing specification [1] .. 94

Table 3-7. µC/OS-II RTOS timing specifications ... 94

Table 3-8. Virtual Registers .. 102

Table 3-9. Sensitivity list of the Live CPU Simulation Engine ... 104

Table 3-10. Descriptions of experimental cases .. 114

Table 3-11. Timing accuracy of native-code models .. 119

Table 3-12. Comparison of theoretical and measured interrupt latencies 121

Table 4-1. Multi-tasking models in some RTOS standards and products 141

Table 4-2. Scheduling policies in some standards and RTOSs ... 144

Table 4-3. Priority levels in some standards and RTOSs .. 145

Table 4-4. Resource access protocols in some standards and RTOSs ... 147

Table 4-5. The abstract periodic task model ... 156

Table 4-6. The native-code task model ... 158

Table 4-7. Two task examples in ThreadX RTOS and μC/OS-II RTOS....................................... 159

Table 4-8. Task (Thread) Control Block ... 161

Table 4-9. Process Control Block.. 164

Table 4-10. Task services in the RTOS model and some RTOSs ... 170

Table 4-11. Implementation of task services ... 171

Table 4-12. Event control block (ECB) and management primiitves.. 181

Table 4-13. Example code of wait and signal primitives .. 182

Table 4-14. Semaphore services in the RTOS model and some RTOSs 183

Table 4-15 POSIX-like semaphore APIs in the RTOS model .. 184

file:///D:/Kernel/Documents/thesis/final/combined%20-%202nd.docx%23_Toc273083834
file:///D:/Kernel/Documents/thesis/final/combined%20-%202nd.docx%23_Toc273083835
file:///D:/Kernel/Documents/thesis/final/combined%20-%202nd.docx%23_Toc273083836
file:///D:/Kernel/Documents/thesis/final/combined%20-%202nd.docx%23_Toc273083837
file:///D:/Kernel/Documents/thesis/final/combined%20-%202nd.docx%23_Toc273083838
file:///D:/Kernel/Documents/thesis/final/combined%20-%202nd.docx%23_Toc273083839
file:///D:/Kernel/Documents/thesis/final/combined%20-%202nd.docx%23_Toc273083840
file:///D:/Kernel/Documents/thesis/final/combined%20-%202nd.docx%23_Toc273083841
file:///D:/Kernel/Documents/thesis/final/combined%20-%202nd.docx%23_Toc273083842
file:///D:/Kernel/Documents/thesis/final/combined%20-%202nd.docx%23_Toc273083843
file:///D:/Kernel/Documents/thesis/final/combined%20-%202nd.docx%23_Toc273083844
file:///D:/Kernel/Documents/thesis/final/combined%20-%202nd.docx%23_Toc273083845
file:///D:/Kernel/Documents/thesis/final/combined%20-%202nd.docx%23_Toc273083846
file:///D:/Kernel/Documents/thesis/final/combined%20-%202nd.docx%23_Toc273083847
file:///D:/Kernel/Documents/thesis/final/combined%20-%202nd.docx%23_Toc273083848
file:///D:/Kernel/Documents/thesis/final/combined%20-%202nd.docx%23_Toc273083849
file:///D:/Kernel/Documents/thesis/final/combined%20-%202nd.docx%23_Toc273083850
file:///D:/Kernel/Documents/thesis/final/combined%20-%202nd.docx%23_Toc273083851
file:///D:/Kernel/Documents/thesis/final/combined%20-%202nd.docx%23_Toc273083852
file:///D:/Kernel/Documents/thesis/final/combined%20-%202nd.docx%23_Toc273083853
file:///D:/Kernel/Documents/thesis/final/combined%20-%202nd.docx%23_Toc273083854
file:///D:/Kernel/Documents/thesis/final/combined%20-%202nd.docx%23_Toc273083855
file:///D:/Kernel/Documents/thesis/final/combined%20-%202nd.docx%23_Toc273083856
file:///D:/Kernel/Documents/thesis/final/combined%20-%202nd.docx%23_Toc273083857
file:///D:/Kernel/Documents/thesis/final/combined%20-%202nd.docx%23_Toc273083858
file:///D:/Kernel/Documents/thesis/final/combined%20-%202nd.docx%23_Toc273083859
file:///D:/Kernel/Documents/thesis/final/combined%20-%202nd.docx%23_Toc273083860
file:///D:/Kernel/Documents/thesis/final/combined%20-%202nd.docx%23_Toc273083861
file:///D:/Kernel/Documents/thesis/final/combined%20-%202nd.docx%23_Toc273083862
file:///D:/Kernel/Documents/thesis/final/combined%20-%202nd.docx%23_Toc273083863
file:///D:/Kernel/Documents/thesis/final/combined%20-%202nd.docx%23_Toc273083864

 x

Table 4-16. SystemC implementation code of the sem_wait() function .. 184

Table 4-17. Mutex services in the RTOS model and some RTOSs ... 186

Table 4-18 POSIX-like mutex APIs in the RTOS model .. 186

Table 4-19. Message queue services in the RTOS model and some RTOSs 188

Table 4-20. POSIX-like message queue APIs in the RTOS model ... 188

Table 4-21. Time advance methods for RTOS services .. 201

Table 4-22. Accuracy loss of the RTOS-centric simulation compared with ISS........................... 207

Table 4-23. Simulation speed comparison... 208

Table 4-24. Interrupt handling in the RTOS-centric simulator.. 209

Table 4-25. Timing accuracy losses .. 210

Table 5-1. TLM implementation in the software PE model .. 217

Table 5-2. LT and AT targets .. 219

Table 5-3. Implementation of the DMA controller.. 220

file:///D:/Kernel/Documents/thesis/final/combined%20-%202nd.docx%23_Toc273083865
file:///D:/Kernel/Documents/thesis/final/combined%20-%202nd.docx%23_Toc273083866
file:///D:/Kernel/Documents/thesis/final/combined%20-%202nd.docx%23_Toc273083867
file:///D:/Kernel/Documents/thesis/final/combined%20-%202nd.docx%23_Toc273083868
file:///D:/Kernel/Documents/thesis/final/combined%20-%202nd.docx%23_Toc273083869
file:///D:/Kernel/Documents/thesis/final/combined%20-%202nd.docx%23_Toc273083870
file:///D:/Kernel/Documents/thesis/final/combined%20-%202nd.docx%23_Toc273083871
file:///D:/Kernel/Documents/thesis/final/combined%20-%202nd.docx%23_Toc273083872
file:///D:/Kernel/Documents/thesis/final/combined%20-%202nd.docx%23_Toc273083873
file:///D:/Kernel/Documents/thesis/final/combined%20-%202nd.docx%23_Toc273083874
file:///D:/Kernel/Documents/thesis/final/combined%20-%202nd.docx%23_Toc273083875
file:///D:/Kernel/Documents/thesis/final/combined%20-%202nd.docx%23_Toc273083876
file:///D:/Kernel/Documents/thesis/final/combined%20-%202nd.docx%23_Toc273083877

 xi

List of Figures

Figure 1-1. Typical layers of an embedded system ... 2

Figure 1-2. Embedded software size increases in industry (reprint [5] [10]) 5

Figure 1-3. The hardware-first design process .. 5

Figure 1-4. Gaps between the design complexity and productivity (reprint [4]) 6

Figure 1-5. A system-level design flow .. 10

Figure 1-6. Interpretive instruction set software simulation .. 16

Figure 1-7. The SLDL-based behavioural software simulation .. 18

Figure 2-1. Various TLM abstraction levels (partially based on [7]) ... 31

Figure 2-2. An AMBA TLM model example ... 36

Figure 2-3. TLM Interface Method Call Communication ... 37

Figure 2-4. TLM technique for modelling SW/HW interfaces ... 40

Figure 2-5. Software generation using TLM models .. 41

Figure 2-6. Software processing element modelling in TLM.. 42

Figure 2-7. SystemC language structure ... 44

Figure 2-8. SystemC kernel working procedure .. 47

Figure 2-9. Block diagram of a SystemC example .. 51

Figure 2-10. Non-pre-emptible execution ... 53

Figure 2-11. Three types of RTOS simulation models .. 55

Figure 3-1. Mixed timing software modelling and simulation .. 67

Figure 3-2. Annotation-dependent time advance method ... 69

Figure 3-3. Fine-grained timing annotation... 71

Figure 3-4. The Result Oriented Modelling approach ... 73

Figure 3-5. Successive corrective wait-for-delay statements .. 75

Figure 3-6. Related SW modelling abstraction level definitions (reprint [6] [9]) 78

Figure 3-7. OSCI TLM-2.0 models and proposed TLM software models 79

Figure 3-8. Execution trace of an abstract task software model .. 84

Figure 3-9. Unmatched real execution and simulation traces.. 86

Figure 3-10. A “while” loop example ... 87

Figure 3-11. µVision software profiler ... 92

Figure 3-12. The variable-step time advance method ... 96

Figure 3-13. The fixed-step time advance method .. 97

file:///D:/Kernel/Documents/thesis/final/combined%20-%202nd.docx%23_Toc273083878
file:///D:/Kernel/Documents/thesis/final/combined%20-%202nd.docx%23_Toc273083879
file:///D:/Kernel/Documents/thesis/final/combined%20-%202nd.docx%23_Toc273083880
file:///D:/Kernel/Documents/thesis/final/combined%20-%202nd.docx%23_Toc273083881
file:///D:/Kernel/Documents/thesis/final/combined%20-%202nd.docx%23_Toc273083882
file:///D:/Kernel/Documents/thesis/final/combined%20-%202nd.docx%23_Toc273083883
file:///D:/Kernel/Documents/thesis/final/combined%20-%202nd.docx%23_Toc273083884
file:///D:/Kernel/Documents/thesis/final/combined%20-%202nd.docx%23_Toc273083885
file:///D:/Kernel/Documents/thesis/final/combined%20-%202nd.docx%23_Toc273083886
file:///D:/Kernel/Documents/thesis/final/combined%20-%202nd.docx%23_Toc273083887
file:///D:/Kernel/Documents/thesis/final/combined%20-%202nd.docx%23_Toc273083888
file:///D:/Kernel/Documents/thesis/final/combined%20-%202nd.docx%23_Toc273083889
file:///D:/Kernel/Documents/thesis/final/combined%20-%202nd.docx%23_Toc273083890
file:///D:/Kernel/Documents/thesis/final/combined%20-%202nd.docx%23_Toc273083891
file:///D:/Kernel/Documents/thesis/final/combined%20-%202nd.docx%23_Toc273083892
file:///D:/Kernel/Documents/thesis/final/combined%20-%202nd.docx%23_Toc273083893
file:///D:/Kernel/Documents/thesis/final/combined%20-%202nd.docx%23_Toc273083894
file:///D:/Kernel/Documents/thesis/final/combined%20-%202nd.docx%23_Toc273083895
file:///D:/Kernel/Documents/thesis/final/combined%20-%202nd.docx%23_Toc273083896
file:///D:/Kernel/Documents/thesis/final/combined%20-%202nd.docx%23_Toc273083897
file:///D:/Kernel/Documents/thesis/final/combined%20-%202nd.docx%23_Toc273083898
file:///D:/Kernel/Documents/thesis/final/combined%20-%202nd.docx%23_Toc273083899
file:///D:/Kernel/Documents/thesis/final/combined%20-%202nd.docx%23_Toc273083900
file:///D:/Kernel/Documents/thesis/final/combined%20-%202nd.docx%23_Toc273083901
file:///D:/Kernel/Documents/thesis/final/combined%20-%202nd.docx%23_Toc273083902
file:///D:/Kernel/Documents/thesis/final/combined%20-%202nd.docx%23_Toc273083903
file:///D:/Kernel/Documents/thesis/final/combined%20-%202nd.docx%23_Toc273083904
file:///D:/Kernel/Documents/thesis/final/combined%20-%202nd.docx%23_Toc273083905
file:///D:/Kernel/Documents/thesis/final/combined%20-%202nd.docx%23_Toc273083906
file:///D:/Kernel/Documents/thesis/final/combined%20-%202nd.docx%23_Toc273083907
file:///D:/Kernel/Documents/thesis/final/combined%20-%202nd.docx%23_Toc273083908

 xii

Figure 3-14. Hardware part of the software PE model .. 100

Figure 3-15. Interrupt Controller Model .. 103

Figure 3-16. Real CPU execution and Live CPU simulation .. 104

Figure 3-17. Operations of the Live CPU Simulation Engine ... 106

Figure 3-18. Simulation time results ... 115

Figure 3-19. Simulation time comparison ... 117

Figure 3-20. Comparison of varying fixed-step lengths .. 118

Figure 3-21. Interrupt handling experiment ... 120

Figure 4-1. Software part of the software PE model ... 127

Figure 4-2. Embedded software stack and its abstract model .. 130

Figure 4-3. Timing parameters of a real-time task .. 133

Figure 4-4. Block diagrams of two RTOS kernel approaches ... 135

Figure 4-5. Two definitions of interrupt latency and task switching latency 138

Figure 4-6. The classical three-state task state machine .. 140

Figure 4-7. Structure of the software PE model .. 150

Figure 4-8. SystemC implementation of the software PE simulation model 154

Figure 4-9. Defining a RTOS task model .. 160

Figure 4-10. Initialising TCBs ... 163

Figure 4-11. Task state machines: reprint A [8] [11], B [12] .. 166

Figure 4-12. The proposed four-state extensible task state machine ... 167

Figure 4-13. A priority-descending doubly linked task queue .. 169

Figure 4-14. Priority setting in the RTOS task model ... 173

Figure 4-15. FPS scheduler working flow ... 175

Figure 4-16. Tick scheduling model .. 177

Figure 4-17 Calculating absolute deadlines of tasks in simulation .. 179

Figure 4-18 Message queue control block ... 187

Figure 4-19 RTOS-assisted (non-vectored) interrupt handling model .. 191

Figure 4-20. Vector-based interrupt handling model... 193

Figure 4-21. TIMA laboratory’s HAL modelling work .. 194

Figure 4-22. Context switch service .. 196

Figure 4-23. Unmatched RTOS service execution and simulation traces 199

Figure 4-24. Evaluating the timing accuracy by comparing traces ... 203

Figure 4-25. Experiment setup .. 204

Figure 4-26. Simulation speed comparison ... 205

Figure 4-27. Simulation output comparison .. 206

Figure 4-28. Simulation timing accuracy comparison ... 206

Figure 4-29. Interrupt handling experiment ... 208

Figure 4-30. RTX interrupt handling in the ISS .. 209

Figure 4-31. Simulation timing accuracy comparison ... 210

file:///D:/Kernel/Documents/thesis/final/combined%20-%202nd.docx%23_Toc273083909
file:///D:/Kernel/Documents/thesis/final/combined%20-%202nd.docx%23_Toc273083910
file:///D:/Kernel/Documents/thesis/final/combined%20-%202nd.docx%23_Toc273083911
file:///D:/Kernel/Documents/thesis/final/combined%20-%202nd.docx%23_Toc273083912
file:///D:/Kernel/Documents/thesis/final/combined%20-%202nd.docx%23_Toc273083913
file:///D:/Kernel/Documents/thesis/final/combined%20-%202nd.docx%23_Toc273083914
file:///D:/Kernel/Documents/thesis/final/combined%20-%202nd.docx%23_Toc273083915
file:///D:/Kernel/Documents/thesis/final/combined%20-%202nd.docx%23_Toc273083916
file:///D:/Kernel/Documents/thesis/final/combined%20-%202nd.docx%23_Toc273083917
file:///D:/Kernel/Documents/thesis/final/combined%20-%202nd.docx%23_Toc273083918
file:///D:/Kernel/Documents/thesis/final/combined%20-%202nd.docx%23_Toc273083919
file:///D:/Kernel/Documents/thesis/final/combined%20-%202nd.docx%23_Toc273083920
file:///D:/Kernel/Documents/thesis/final/combined%20-%202nd.docx%23_Toc273083921
file:///D:/Kernel/Documents/thesis/final/combined%20-%202nd.docx%23_Toc273083922
file:///D:/Kernel/Documents/thesis/final/combined%20-%202nd.docx%23_Toc273083923
file:///D:/Kernel/Documents/thesis/final/combined%20-%202nd.docx%23_Toc273083924
file:///D:/Kernel/Documents/thesis/final/combined%20-%202nd.docx%23_Toc273083925
file:///D:/Kernel/Documents/thesis/final/combined%20-%202nd.docx%23_Toc273083926
file:///D:/Kernel/Documents/thesis/final/combined%20-%202nd.docx%23_Toc273083927
file:///D:/Kernel/Documents/thesis/final/combined%20-%202nd.docx%23_Toc273083928
file:///D:/Kernel/Documents/thesis/final/combined%20-%202nd.docx%23_Toc273083929
file:///D:/Kernel/Documents/thesis/final/combined%20-%202nd.docx%23_Toc273083930
file:///D:/Kernel/Documents/thesis/final/combined%20-%202nd.docx%23_Toc273083931
file:///D:/Kernel/Documents/thesis/final/combined%20-%202nd.docx%23_Toc273083932
file:///D:/Kernel/Documents/thesis/final/combined%20-%202nd.docx%23_Toc273083933
file:///D:/Kernel/Documents/thesis/final/combined%20-%202nd.docx%23_Toc273083934
file:///D:/Kernel/Documents/thesis/final/combined%20-%202nd.docx%23_Toc273083935
file:///D:/Kernel/Documents/thesis/final/combined%20-%202nd.docx%23_Toc273083936
file:///D:/Kernel/Documents/thesis/final/combined%20-%202nd.docx%23_Toc273083937
file:///D:/Kernel/Documents/thesis/final/combined%20-%202nd.docx%23_Toc273083938
file:///D:/Kernel/Documents/thesis/final/combined%20-%202nd.docx%23_Toc273083939
file:///D:/Kernel/Documents/thesis/final/combined%20-%202nd.docx%23_Toc273083940
file:///D:/Kernel/Documents/thesis/final/combined%20-%202nd.docx%23_Toc273083941
file:///D:/Kernel/Documents/thesis/final/combined%20-%202nd.docx%23_Toc273083942
file:///D:/Kernel/Documents/thesis/final/combined%20-%202nd.docx%23_Toc273083943
file:///D:/Kernel/Documents/thesis/final/combined%20-%202nd.docx%23_Toc273083944
file:///D:/Kernel/Documents/thesis/final/combined%20-%202nd.docx%23_Toc273083945
file:///D:/Kernel/Documents/thesis/final/combined%20-%202nd.docx%23_Toc273083946
file:///D:/Kernel/Documents/thesis/final/combined%20-%202nd.docx%23_Toc273083947

 xiii

Figure 5-1. TLM communication interface of the software PE model .. 213

Figure 5-2. OSCI TLM-2.0 essentials ... 216

Figure 5-3. Combining software PE model with TLM interfaces and SoC models 218

Figure 5-4. The DMA controller model .. 220

Figure 5-5. Simulation performance results .. 223

Figure 5-6. The simulation log of the DMA experiment ... 225

Figure 5-7. Simulation timeline .. 226

file:///D:/Kernel/Documents/thesis/final/combined%20-%202nd.docx%23_Toc273083948
file:///D:/Kernel/Documents/thesis/final/combined%20-%202nd.docx%23_Toc273083949
file:///D:/Kernel/Documents/thesis/final/combined%20-%202nd.docx%23_Toc273083950
file:///D:/Kernel/Documents/thesis/final/combined%20-%202nd.docx%23_Toc273083951
file:///D:/Kernel/Documents/thesis/final/combined%20-%202nd.docx%23_Toc273083952
file:///D:/Kernel/Documents/thesis/final/combined%20-%202nd.docx%23_Toc273083953
file:///D:/Kernel/Documents/thesis/final/combined%20-%202nd.docx%23_Toc273083954

 xv

List of Acronyms

AHB Advanced High-performance Bus

AMBA Advanced Microcontroller Bus Architecture

APB Advanced Peripheral Bus

API Application Program Interface

ARM Advanced RISC Machine

ASIC Application-Specific Integrated Circuit

AT Approximately-Timed

BCET Best-Case Execution Time

BIOS Basic I/O System

BSP Board Support Package

CA Cycle-Accurate

CP Communicating Process

CP+T Communicating Process with Time

CPU Central Processing Unit

DMA Direct Memory Access

DPS Dynamic-Priority Scheduling

DSE Design Space Exploration

DSP Digital Signal Processor

ECB Event Control Block

EDA Electronic Design Automation

EDF Earliest Deadline First

ESL Electronic System Level

FIFO First-In-First-Out

FPGA Field-Programmable Gate Array

FPS Fixed-Priority Scheduling

GPP General-purpose Programmable Processor

 xvi

HW Hardware

HAL Hardware Abstraction Layer

HDL Hardware Description Language

HdS Hardware-dependent Software

I/O Input/Output

IC Integrated Circuit

IMC Interface Method Call

IP Intellectual Property

IPC Inter-Process Communication

IPCP Immediate Priority Ceiling Protocol

IRQ Interrupt Request

ISA Instruction Set Architecture

ISCS Instruction Set Compiled Simulation

ISR Interrupt Service Routine

ISS Instruction Set Simulation

ITRS International Technology Roadmap for Semiconductors

LT Loosely-Timed

MMU Memory Management Unit

NRE Non-Recurring Engineering

NRT Non-Real-Time

OCP-IP Open Core Protocol International Partnership

OSCI Open SystemC Initiative

OS Operating System

PCB Printed Circuit Board

PCP Priority Ceiling Protocol

PE Processing Element

PIP Priority Inheritance Protocol

POSIX Portable Operating System Interface

PV Programmers View

PVT Programmers View Timed

RM Rate Monotonic

ROM Read Only Memory

 xvii

ROM Result Oriented Modelling

RR Round-Robin

RT-CORBA Real-Time Common Object Request Broker Architecture

RTES Real-Time Embedded System

RTL Register-Transfer Level

RTOS Real-Time Operating System

RTS Real-Time System

RTSJ Real-Time Specification for Java

RTX Real Time eXecutive

SHaRK Soft Hard Real-time Kernel

SW Software

SLDL System-Level Design Language

SoC Systems-on-Chip

TCB Task Control Block

TLM Transaction-Level Modelling

UML Unified Modelling Language

VHDL Very-high-speed integrated circuit Hardware Description Language

WCET Worst-Case Execution Time

µITRON micro Industrial The Real-time Operating system Nucleus

 xix

Acknowledgements

I am most grateful to my supervisor Dr. Neil Audsley for his constant and

valuable support and guidance during my PhD study in the University of York.

I would also like to thank my assessors Professor Andy Wellings and Dr.

Leandro Soares Indrusiak for their advice and help in my research.

I give all my love to my parents Yu Shiliang and Song Yipu for their endless

love to me. This PhD thesis is also my sincere gift to them.

I am full of gratitude to Ms. Zhang Jing. She gave invaluable spiritual support

to me during the bittersweet PhD years.

I would like to express my thanks to all colleagues and friends in Real-Time

Systems Research Group. In particular, I thank Dr. Chang Yang, Dr. Shi Zheng,

Dr. Gao Rui, Dr. Zhang Fengxiang, Dr. Kim Min Seong, Lin Shiyao, and Mrs Sue

Helliwell for their help to me and experience shared with me. I also thank Qian

Jun, Shen Jie, Yao Yining, Dr. Liu Yang, and Dr. Chen Jingxin for our friendship

and cheerful lives in UK.

 xxi

Declaration

The research work presented in this thesis was independently and originally

undertaken by me between October 2005 and June 2010 with advice from my su-

pervisor Dr. Neil Audsley. Three conference papers have been published:

K. Yu and N. Audsley, "A Mixed Timing System-level Embedded Software

Modelling and Simulation Approach," in 6th International Conference on Embed-

ded Software and Systems 2009, (ICESS '09), 2009. [13] This paper received the

best paper award in the conference.

K. Yu and N. Audsley, "A Generic and Accurate RTOS-centric Embedded

System Modelling and Simulation Framework," in 5th UK Embedded Forum

2009 (UKEF '09), 2009. [14]

K. Yu and N. Audsley, "Combining Behavioural Real-time Software Model-

ling with the OSCI TLM-2.0 Communication Standard," in 7th International Con-

ference on Embedded Software and Systems 2010, (ICESS '10), 2010. [15]

Certain chapters of this thesis are based on above papers as follows:

Chapter 3 is based on [13] and [15].

Chapter 4 is based on [14].

Chapter 5 is based on [15].

 1

Chapter 1

Introduction

1.1 General Background

No matter whether or not you are aware of the networked printer in your office,

the electronic stability program in your car or the portable media player in the

palm of your hand, over the past decades embedded systems have reshaped our

everyday work, life and play. Embedded systems are special-purpose computer-

based information processing systems performing some pre-defined tasks and of-

ten built into enclosing products [16]. They are widely integrated into various

product categories, such as transportation vehicles, telecommunication devices,

industrial equipment, home appliances, etc. It is estimated that embedded systems

consume more than 99% of the manufactured processors in the world [17]. Be-

sides these invisible embedded systems, consumer electronics (e.g., handheld

computers, mobile internet devices, and smart phones) can be also seen as self-

contained embedded systems in terms of their similar hardware (HW) components.

Embedded systems are usually designed with resource-constrained hardware and

low-extensible software (SW), and are optimised to work with specific require-

ments for dedicated applications. These characteristics make embedded systems

distinct from general-purpose computer systems, for instance, personal computers,

work stations and servers.

A special category of embedded systems is classified as the real-time embed-

ded system, which can be distinguished by its requirement to respond to external

environment in real time. The term “real-time” leads our attention to Real-Time

Systems (RTSs), which usually occur in company with embedded systems. There

are various interpretations of what a real-time system is, however “physical inter-

 2

actions with the real world” and “timing requirements of these interactions” are its

two essential characteristics [17]. A RTS receives physical events from the real-

world environment. These events are then processed inside the RTS and appropri-

ate actions finally respond. Timing requirements mean that the corresponding

output must be generated from the input within a finite and specified timing

bound, giving the deterministic timing behaviour. The correctness of a RTS de-

pends not only on the computation result, but also on the time when the result is

produced. “Real-time” does not mean “as fast as possible”, but emphasises “on

time”. Neither a too late output nor a too early output is correct. The vast majority

of embedded systems have real-time requirements, and most real-time systems are

embedded in products. At their intersection are Real-Time Embedded Systems

(RTES). The Operating System (OS) used in a RTES is usually a Real-Time Op-

erating System (RTOS), which supports the construction of RTSs [16]. RTESs

and RTOSs are the general context for this thesis.

From the perspective of system design, an embedded system is constructed

from various hardware and software components. As illustrated in Figure 1-1,

they can be classified into four reference layers [18]. The architecture of an em-

bedded system represents an abstraction model including all embedded compo-

nents. It introduces relationships between abstract hardware and software ele-

ments without implementation details.

All embedded systems have a hardware layer, which contains electronics com-

ponents and circuits located on a Printed Circuit Board (PCB) or on an Integrated

task1 task2 task3

Device Drivers

RTOS

Firmware

GPPI/O

Memory Controllers

ASIC Clock

Application software layer

Middleware layer

System software layer

Hardware layer

Distributed comp. Servers

Figure 1-1. Typical layers of an embedded system

 3

Circuit (IC). Although some time-critical or power-hungry portions of a system

can be implemented with customised application-specific hardware (e.g., Applica-

tion-Specific Integrated Circuits (ASICs), Field-Programmable Gate Arrays

(FPGAs)), most embedded systems mainly function through software running on

embedded General-purpose Programmable Processors (GPPs) (e.g., Central Proc-

essing Units (CPUs) or Digital Signal Processors (DSPs)). With the development

of the microelectronics industry, Systems-on-Chips (SoCs) have emerged as the

state-of-the-art implementation of embedded systems. A SoC is an integrated cir-

cuit combining multiple GPPs, customised cores, memories, peripheral interfaces,

as well as communication fabric, all on a single silicon chip, which provides sub-

stantial computation capability for handling complex concurrent real-world events.

Comparing the different embedded hardware solutions as indicated above, appli-

cation-specific hardware offers high computing performance and low power con-

sumption at the expense of limited programming flexibility, whilst GPPs offer

higher design flexibility and lower Non-Recurring Engineering (NRE) costs, but

with a relatively low computing capability [16].

In general, embedded software can be grouped into three layers: the application

software layer, the middleware layer, and the system software layer. The applica-

tion functions of an embedded system consist of a task or a set of tasks.

Middleware is an optional layer under application software but on top of sys-

tem software. Middleware provides general services for applications, such as

flexible scheduling [19], distributed computing (e.g., Real-Time Common Object

Request Broker Architecture (RT-CORBA) [20]), and Java application environ-

ment (e.g., Real-Time Specification for Java (RTSJ) [21]). Using middleware

technologies has strengths to reduce complexity of applications, simplify migra-

tion of applications, and ensure correct implementation of reusable functions.

The system software layer is sandwiched between upper-level software and

bottom-layer hardware. It usually contains device drivers, boot firmware and

RTOS, which closely interact with the hardware platform. This kind of software is

also called Hardware-dependent Software (HdS) [22]. Device drivers, e.g., a

Board Support Package (BSP) for a given platform, are the interface between any

software and underlying hardware. They are the software libraries that take charge

 4

of initialising hardware and managing direct access to hardware for higher layers

of software [18]. Boot firmware, e.g., the Basic I/O System (BIOS), carries out

the initial self-test process for an embedded system and initiates the RTOS. It is

usually stored in the Read-Only Memory (ROM).

Regarding the RTOS, it is unnecessary and cost-inefficient to introduce a

RTOS in some small embedded devices, where an infinite loop program with the

polling policy for Input/Output (I/O) events may work well [23]. However, in or-

der to satisfy the complex functional requirements and timing constraints for con-

current real-time software execution, the RTOS has become an essential compo-

nent in most embedded systems. Here, concurrent real-time software execution

refers to situations that, under the control of a RTOS, multiple tasks either share a

uniprocessor in interleaving steps or execute on multiple processors in parallel. A

RTOS is needed to provide convenient interfaces and comprehensive control

mechanisms to let applications utilise and share hardware and software resources

effectively and reliably. The kernel is the core element of a RTOS and contains

the most essential functions. In most kernels, there is the notion of task priority,

dynamic pre-emptive scheduling services, synchronisation primitives, timing ser-

vices, and interrupt handling services [24] [25] [26]. Other OS features such as

memory management, file systems, device I/O etc. are often optional in a RTOS

in order to maintain its compactness and scalability. As a central part of the real-

time embedded software stack, a RTOS’s own timing behaviour also needs to be

predictable and computable. Designers must know some important RTOS timing

properties, for example, the context switch time, Worst-Case Execution Times

(WCETs) of system calls, the interrupt handling latency, and the maximum inter-

rupts disabled time, etc. Hence, they can analyse and evaluate the real-time per-

formance of the whole system.

The research in this thesis will investigate how to model RTOS kernel func-

tional and timing behaviours in order to support high-level real-time software

simulation in a uniprocessor system.

 5

1.2 Challenges in Embedded System Design

In recent years, the complexity of embedded software has increased rapidly.

According to the International Technology Roadmap for Semiconductors (ITRS)

2007 Edition (ITRS 2007), embedded software design has emerged as “the most

critical challenge of SoC productivity” [4]. For many products of consumer elec-

tronics, the amount of software per product is thought to be double every two

years [27]. The General Motor Information Systems CTO predicts that the aver-

age car, with one million lines of software codes in 1990, will run on one hundred

million lines by 2010 [28]. Figure 1-2 shows growing trends of embedded soft-

ware complexity in motor and mobile phone industries.

In addition to the overwhelming system complexity, the time-to-market pres-

sure is another overriding priority in contemporary embedded systems develop-

ment [10] [29]. If the projected delivery date is missed, it results not only in an

increase of design costs but also a decrease of market share. This pressure is even

tougher for embedded software design. Since in a traditional hardware-first design

 Automobile software size increase
(Toyota)

Mobile phone software size increase
(Infineon)

Figure 1-2. Embedded software size increases in industry (reprint [5] [10])

System
integration

testing

wait for
the prototype

Software
development

Hardware development

conceptual design

System
specification

Architecture
design

revising

Figure 1-3. The hardware-first design process

 6

flow (see Figure 1-3), the software development cannot go through until the

hardware prototype is available. This means that software designers often face

imminent product delivery deadlines [30].

There is also a big gap between ever-growing semiconductor fabrication capa-

bility and the design productivity of embedded systems (including both HW and

SW aspects) [31]. The ITRS 2007 presents a summary about hardware and soft-

ware design gaps and Figure 1-4 is the pictorial illustration [4]. In Figure 1-4, re-

garding the HW design aspect, the cutting-edge embedded HW advancements and

design methodologies, e.g., multi-core/processor components and Intellectual

Property (IP) reuse, have somewhat narrowed the distance between HW design

productivity and HW technology capabilities. Unfortunately, although enormous

SW complexity has already been exacerbated, these HW advances further increase

demand for HdS development. As what is shown in the figure, SW productivity is

further behind the steeply increasing SW complexity. An industrial report even

indicates that rapidly increasing software design efforts may exceed the cost of

hardware development when IC technologies evolve from deep submicron-scale

to nano-scale [29].

A

B

C

D

Figure 1-4. Gaps between the design complexity and productivity (reprint [4])

 7

1.3 System-Level Design Methodologies

Motivated by the challenges outlined above, since the 1990s, System-Level

Design (SLD), or so-called Electronic System-Level design (ESL), and corre-

sponding System-Level Design Languages (SLDLs) have been developed as ena-

bling tools for embedded system specification, simulation, implementation and

verification [32].

In the view of Electronic Design Automation (EDA) industry, SLD is indicated

at “a new level of abstraction above the familiar register-transfer level” [4]. This

definition reflects a hardware-centric viewpoint. A more complete definition em-

phasises “the concurrent hardware and software design interaction” as a guiding

concept in a SLD process [17], that is, the HW/SW codesign [33] philosophy is

inherent in SLD methodologies.

1.3.1 Raising Abstraction Levels

Raising system abstraction to higher levels is a traditionally intuitive solution

to cope with design complexity. In the area of digital electronic design, abstrac-

tion levels went from the transistor model in the 1970s, to the gate-level model in

the 1980s, to the Register-Transfer Level (RTL) models in the 1990s, and latterly

to the higher system-level models [17]. Higher-level abstractions focus on critical

system-wide behaviour and ignore unnecessary low-level implementation details

at early design times. System behaviours are represented by executable models.

These models are continuously refined and evaluated through simulation and de-

tails are gradually added in the design process, which enables early and fast vali-

dation of the system [34]. The current RTL Hardware Description Languages

(HDLs) (e.g., Verilog [35] and VHDL [36]) are believed too low and time-

consuming to describe hardware at early development stages [37]. Furthermore,

despite expressive features of RTL HDLs for hardware development, they fail to

support description and validation of an entire system, including both hardware

and embedded software, which is a key necessity in system-level design. Conse-

quently, SLDLs (e.g., SystemC [38] and SpecC [39]) have been developed to sup-

port unified high-level HW/SW specification, modelling, simulation, verification

 8

and synthesis in recent years. In this thesis, SystemC is the research tool for soft-

ware modelling and simulation.

1.3.2 Orthogonal Concepts in System-Level Design

SLD aims to separate orthogonal design concerns in order to allow independent

and swift exploration of alternative solutions [40]. At a specific design stage, dif-

ferent design aspects may not require the same level of abstraction. Consequently,

separating design issues and building independent abstract models not only save

design time, but also achieve better simulation performance when various models

are simulated together. The following two classical separation ideas are most of-

ten referred to in SLD:

Functionality versus architecture [41] (also called Application and Platform

Implementation [17]): According to the definitions put forward in [40] [42], the

functionality aspect refers to what basic tasks a system is supposed to do, i.e.,

specification; whereas the architecture aspect refers to how to do these tasks by

configuring resources, i.e., implementation. In SLD, there are often a series of

mapping and refinement steps between a functional specification model and the

final implementation architecture. The motivation of this orthogonal separation is

for design reuse and flexibility. Supposing the functionality is defined in a sepa-

rate specification model, designers can explore many possible architecture imple-

mentations with different performance and cost attributes. As well, if several basic

HW or SW architecture implementations can construct some generic clusters, i.e.,

components and platforms, then they could be reused for a variety of applications

[40].

Computation versus communication [7]: The central idea is to develop compu-

tation and communication independently by hiding their details from each other.

Computation components, either hardware or software, are modelled as modules

(i.e., Processing Elements (PEs)) that contain a set of concurrent processes.

Communication components such as buses or on-chip networks are modelled

based on basic abstract elements, e.g., ports, channels, and interfaces. Computa-

tion modules communicate by transferring data transactions through these com-

munication infrastructures. This separation introduces an important and widely

 9

accepted SLD approach Transaction-Level Modelling (TLM) [3]. TLM methods

often define a number of intermediate computation and communication models

for simulation in a design flow. At each level, models include necessary func-

tional and timing details for a specific design stage. An important TLM research

topic is the trade-off between simulation performance and the accuracy of differ-

ent models. The research in this thesis is also concerned with this trade-off.

1.3.3 System-Level Design Flows

System-level design flow is a process containing multiple design steps, during

which an embedded system is gradually transformed from a conceptual specifica-

tion to a final product. At each design step, designers successively build, simulate

and refine various abstract models in order to validate system properties early be-

fore detailed implementation [43]. There is not a generally accepted “design flow”

template. The starting and ending design points also vary in different SLD theo-

ries and practices. This is because a specific design process is largely dependent

on its applying domains and contexts, e.g., re-using an existing platform may

shorten the design flow. There are probably as many system-level design flows as

there are researchers and projects. Nevertheless, we can observe that many re-

search works [43] [44] [45] [46] [47] generally group design activities into three

top-down phases with corresponding models: the system specification phase

(specification models), the architecture exploration phase (architecture models),

and the architecture implementation phase (implementation models). Figure 1-5

outlines a typical system-level design flow including above three phases. The re-

search in [48] [49] presents a different view of system-level design flow which

excludes the implementation phase. This viewpoint in fact reflects the status of

current system-level design community that existing SLD methodologies are still

not mature enough to effectively cover all phases from system specification to

implementation.

At the system specification phase, the embedded system’s planned functions

and requirements are clarified and written in documents or models. Natural lan-

guages are used in documents, whilst some computer specification languages (e.g.,

Unified Modelling Language (UML) [50], MATLAB [51], SpecC [39], Rosetta

 10

[52]) can be also used to produce formal or executable models. These models can

describe behaviour of a system and may become a vehicle for next-step system

refinement.

The architecture exploration phase, so-called hardware/software partitioning

and mapping phase, is concerned with how to distribute system functions between

hardware and software, i.e., Design Space Exploration (DSE). This phase can be

further divided into the pre-partitioning step, the partitioning step, and the post-

partitioning step, according to a detailed design flow explanation in [32]. Usually,

this design phase starts from a unified abstract TLM model, which comprises a set

of PEs for computation and channels for communication. These PE models are

explored to implement in either HW (i.e., application-specific hardware logics) or

Hardware/software
partitioning, mapping,

scheduling

Refinement

TLM virtual platform in SLDLs (e.g., SystemC, SpecC)

Hardware
func. & beha.

models

Software
func. & beha.

models

Communication
channels

Behavioral
cycle-approximate

simulation

Specification
model

Application
functionality and

requirements Executable
specification

(e.g., untimed)

Hardware
high-level
synthesis

Software
generation

Communication
(Interface)
synthesis

Refinement

link to

A
rc

h
it

e
ct

u
re

 im
p

le
m

e
n

ta
ti

o
n

 p
h

as
e

A
rc

h
it

e
ct

u
re

 e
xp

lo
ra

ti
o

n

p
h

as
e

Sy
st

e
m

 s
p

e
ci

fi
ca

ti
o

n

p
h

as
e

Refinement

Communication
impl. models

Target-
compilable SW
impl. models in

C/C++

HW impl.
model in RTL

HDLs, e.g.,
Verilog, VHDL

HW
topologies

SW
protocols

Cycle-accurate
simulation

(e.g., ISS, RTL)

Logic synthesis,
Integration,

Physical Design...
M

o
d

e
lli

n
g

ab
st

ra
ct

io
n

 le
ve

ls
Lo

w
 r

e
so

lu
ti

o
n

H
ig

h
 r

e
so

lu
ti

o
n

Figure 1-5. A system-level design flow

 11

SW (i.e., programs running on a GPP), and channel models are tried with various

abstract communication topologies and protocols. These TLM models are succes-

sively refined, with timing information and implementation details added. Various

alternatives are simulated in order to evaluate and analyse diverse system charac-

teristics, e.g., functional correctness, scheduling decisions, real-time performance,

power consumption, chip area, and communication bandwidth, etc. Once a sys-

tem’s functions have been partitioned and mapped onto some hardware and soft-

ware elements, a golden architecture model [46] comes into being and the imple-

mentation step is ready to begin. This thesis studies RTOS and real-time software

behavioural modelling and simulation, which can be seen as being after-

partitioned TLM software PE computation research in the architecture exploration

phase. Our research has some relevance to current SLD and TLM research, in

terms of comparable abstract modelling styles, fast simulation performance, rea-

sonable accuracy, and some interoperability with other system-level abstract

hardware and communication models.

In the architecture implementation phase, previous architectural models are

transformed into lower-level models in automated synthesis for final product im-

plementation design and manufacturing. For the hardware aspect, the developing

high-level synthesis (sometimes also referred to as Electronic System-Level syn-

thesis, system synthesis, behavioural synthesis) technologies aim to synthesise

HW models in the form of high-level languages (e.g., C, C++, SpecC, SystemC)

into synthesisable RTL descriptions. RTL descriptions are input of the existing

“RTL to Layout” design flow [32]. This automated high-level synthesis process

connects system-level design with the current design flow in order to produce ac-

tual integrated circuits. Although there is a substantial body of research work in

this domain, automatic high-level synthesis is still thought to be not mature [53]

and has “never gained industrial relevance” [54]. In SLDL-based system-level

design, communication synthesis (also known as interface synthesis) aims to map

TLM channels or similar high-level interfaces to a set of synthesisable cycle-

accurate software protocols and RTL descriptions of target communication to-

pologies [55]. There are several approaches regarding bus-based communication

synthesis [56] [57] and on-chip communication networks synthesis [58] [59].

 12

More complete surveys on this topic can be found in [54] and [17]. In high-level

software synthesis (namely target software generation), embedded software (in-

cluding the applications, RTOS and other HdS) implementation models (i.e.,

C/C++ codes that are ready to be compiled into binaries for a target instruction set)

can be generated from TLM software PE models written in SLDLs [60] [61]. Sev-

eral approaches have investigated embedded software target code generation, in

which SLDL functions or generic RTOS services in TLM models are mapped and

translated to the Application Program Interface (API) of a specific RTOS [43] [62]

[63] [64] [65].

1.4 System-Level Design Languages

The need for efficient and effective specification, modelling, simulation, verifi-

cation and synthesis in SLD has led to many SLDLs. In general, SLDLs provide a

collection of libraries of data types, modular components, and discrete-event ker-

nels to model an entire HW/SW system and simulate dynamic system behaviour

at a higher level of abstraction. Using SLDLs enhances system design productiv-

ity by representing a whole system in expressive programming models and pre-

senting diverse traceable run-time information through simulation.

Inspired by the need to describe both HW and SW parts with a general pro-

gramming language, C/C++ based design and specification languages (e.g., Sys-

temC and SpecC) have been developed and used by the design community. It is

attractive to extend C/C++ for hardware and communication design exploration in

SLD, since they are already familiar to software designers. These C/C++ based

SLDLs are equipped with built-in hardware description constructs such as signals,

ports, clocks, explicit parallelisms and the structural hierarchy for system model-

ling.

1.4.1 SystemC

SystemC is the most commonly used C++ based SLDL. It has been in devel-

opment by the association Open SystemC Initiative (OSCI) since 1999 [38]. In its

early days, the initial SystemC versions 0.9 and 1.0 concentrated on describing

hardware-centric RTL features with the goal to replace Verilog and VHDL as a

 13

new HDL, so as to realise high-level synthesis. From the version 2.0, its focus

changed to high-level computation and communication modelling and became an

effective SLDL. It was approved as an IEEE standard in 2006 [66] and is cur-

rently the de facto industry standard for ESL specification, modelling, simulation,

verification and synthesis.

The syntax of SystemC is based on the standard C++ language. It is not a brand

new language but a set of C++ libraries together with a discrete-event simulation

kernel that is also built with C++. A mixture of software programs written with

SystemC and C++ can be compiled by a standard C++ compiler (e.g., GCC or

Visual C++) and linked with SystemC libraries in order to generate an executable

simulation program.

A module (SC_MODULE), namely a class, is the basic SystemC language con-

struct to describe an independent functional component. It contains a variety of

elements to define behaviour and structure of a model, e.g., data variables, com-

putation processes, communication ports and interfaces, etc. SystemC supports

the hierarchical model structure, which means a parent module can include instan-

tiations of other modules as member data. This characteristic is helpful to break

down a large system into manageable sub-models. The main SystemC mecha-

nisms for inter-module communications are channels (sc_channel), which can

be either a simple signal (sc_signal) or a complex hierarchical structure such

as the Advanced Microcontroller Bus Architecture (AMBA) bus [67]. The com-

munication methods implemented by channels are named interfaces, which are

abstract classes declaring pure virtual methods. A module accesses a channel

through a port by calling interface methods. In this way, computation and com-

munication can be explicitly separated and modelled in SystemC.

SystemC uses a discrete-event simulation kernel, which relies on a co-

operative, so-called co-routine, execution model [68]. It does not support a prior-

ity assignment or pre-emption. Only one SystemC process can execute at a time.

The executing process cannot be pre-empted or interrupted by either the kernel or

another process. A process only yields control to the kernel by calling wait-for-

time and wait-for-event functions at its own will. When two processes are ready at

the same time in simulation, it is non-deterministic which process will be chosen

 14

to run by the simulation kernel. This particular characteristic is suitable for paral-

lel hardware operations and outperforms a pre-emptive simulation kernel in terms

of fast simulation speed because of less context switch overheads [69]. However,

it is not applicable for concurrent real-time software simulation, which requires

pre-emptive and deterministic scheduling services. This deficiency can be prob-

lematic when importing legacy real-time software into SystemC. Some research

pessimistically abandoned real-time software simulation in SystemC [70].

Whereas, many researchers have presented various remedies on this problem to

some extent, e.g., extending the SystemC language with process control constructs

[71], revising the SystemC simulation kernel [69] [68], implementing RTOS func-

tions on top of the SystemC library [72] [73]. This thesis presents a more com-

plete solution in the last direction.

1.4.2 SpecC

SpecC is a system specification and description language that operates as an

extension of standard C language [39]. The SpecC language and associated design

methodologies were originally developed at the University of California Irvine

beginning in the mid-1990s and continuing up to the present day. In contrast to

SystemC, SpecC introduces new keywords to C language, so it needs a special

SpecC Reference Compiler [74]. Many design concepts (e.g., separation of com-

munication and computation) and language constructs (e.g., modular structure de-

scriptions) of SpecC are either possessed or adopted in the development of Sys-

temC. As well, both SpecC and SystemC can fulfil multiple level specification,

verification and synthesis tasks in SLD and TLM. Their similarities and differ-

ences are introduced and compared in [44].

1.4.3 SystemVerilog

Arising from the semiconductor and electronic design industry, SystemVerilog

is a hardware description and verification language based on extensions of Ver-

ilog [75]. In addition to features available in the classical Verilog, SystemVerilog

provides new verification and object-oriented programming facilities, such as as-

sertions, coverage, constrained random generation, build-in synchronisation

 15

primitives and classes. Although SystemVerilog offers both internal object-

oriented software features and a direct programming interface to call external C

functions, its scope is mostly constrained to hardware design, simulation and veri-

fication [76] [32].

1.5 Software Simulation in System-Level Design

In SLD, simulation approaches lie at the heart of many methodologies. Simula-

tion techniques are traditional and useful tools for debugging, validation, and veri-

fication [32] [44] [77]. They are successively applied at each phase in the design

flow. A set of simulation models is built to represent behaviours of various com-

ponents or the whole system. By executing these simulation models, output values

for given input patterns are generated and observed. The correctness and quality

of output values are evaluated in order to ensure that specified requirements have

been fulfilled in the models. These results can also help designers to explore and

trade off different design alternatives through simulation experiments.

Today, most software simulation approaches in SLD can be classified into two

categories: Instruction Set Simulation (ISS) and behavioural simulation. In this

thesis, the real-time software modelling and simulation research falls into the lat-

ter category.

1.5.1 Instruction Set Software Simulation

In ISS, a clock cycle-accurate processor model runs on a host machine, which

mimics the behaviour of a target processor by “executing” its instructions. The

internal architecture of the target processor (e.g., general registers, status registers)

alongside memory space (i.e., storing execution binaries for a target and local

variables) are both modelled at the Instruction Set Architecture (ISA) level. Some-

times, peripheral models such as timers, interrupts, and I/O ports are also inte-

grated into an ISS so that it can provide more complete features for software

simulation.

Most commercial ISSs are based on the interpretation technique [77]. An ISS

reads target instructions from its memory space and executes in an interpretive

“Fetch-Decode-Dispatch-Execute” process in order to simulate behaviour of in-

 16

structions being executed on a target machine, as shown in Figure 1-6. The main

advantages of ISS simulation are fine-grained functional and timing accuracy, so

various ISS simulators are traditionally used by software programmers to debug

cross-compiled target programs instead of using real hardware. And in system-

level design, ISS simulators can be seen as references to evaluate other corre-

sponding cycle-approximate simulators. However, simulation performance is a

drawback of the ISS approach, because its interpretive simulation process incurs a

large overhead. Typically, they run on the order of 100K cycles per second [78],

which is not a satisfactory speed for simulating large amounts of software in sys-

tem-level design [79]. Besides, an ISS simulator needs a detailed ISA-level proc-

essor simulation model, which may not be available at the desired high level of

abstraction in early design stages.

The host compilation based ISS is an improved approach by addressing the

performance disadvantage of traditional interpretive ISS methods [80]. The cen-

tral idea of this technique is to translate target machine’s instructions into host

machine’s at software compile time. This binary-to-binary translation avoids big

run-time overheads of the interpretive process in simulation, hence resulting in a

faster simulation speed. The host compilation ISS research in [80] reports a three

orders of magnitude speedup compared to interpretive ISS. Unfortunately, there

are also some deficiencies to this approach. This technique assumes that software

Input
program

binary

Target
memory

space

 General
Registers

 Special
Registers

Fetch

Decode

Dispatch

Execute

Instruction Set Simulator

Figure 1-6. Interpretive instruction set software simulation

 17

does not change at run time, as a result it is not suited to self-modifying code [80].

Poor portability is another problem, because a compiled ISS is not applicable for

processors with different instruction sets [77] [81]. The Instruction Set Compiled

Simulation (ISCS) [81] technique combines the performance of a compilation-

based approach with the flexibility of an interpretive ISS, by moving the decode

step to compile time and carrying out various compile time optimisations. It

claims a 70% simulation performance improvement compared with the best-

known results in its domain. However, it still faces challenges in terms of both a

long compilation time and a large memory usage [77]. In general, the simulation

performance of ISS approaches is perceived as a bottleneck for a rapid design

space exploration at the system level [79] [82].

1.5.2 Behavioural Software Simulation

In system-level design, there is always a need for fast and flexible software

validation, which can be provided by behavioural software simulation. Its simula-

tion performance is usually several orders of magnitude faster than the ISS ap-

proach, for example, one order speed-up in [83], three orders speed-up in [84],

and three to five orders speed-up in [85]. Its modelling accuracy and speed are

flexible in various approaches, which indeed depend on the specific modelling

abstraction levels and techniques. In behavioural software simulation, high-level

embedded software source code (e.g., in C/C++ or SLDL) is compiled for and

natively executes on a host workstation or a PC. In many cases, behavioural soft-

ware simulation is based on the support of a SLDL simulation framework. The

target CPU hardware architecture model is not directly useful for native software

execution, hence is often not modelled in a software PE model. This method is

unlike the detailed processor model appeared in ISS simulation. Figure 1-7 shows

the simulation mechanism of a typical discrete-event SLDL simulator, which in-

cludes three main steps, i.e., evaluation and schedule of a process, execution in

zero-target time, and target simulation time advance.

From the perspective of abstract embedded processor and TLM communication

modelling, Schirner summarises three major issues related to a fast system-level

software simulation, i.e., timed native software execution, dynamic software

 18

scheduling, and external TLM communication [79]. We will adapt them to reflect

our software/RTOS-centric research perspective in the following section.

1.6 Research Objective and Contribution

This thesis focuses on modelling and simulating functional and timing behav-

iours of real-time embedded software including the RTOS. We conclude the most

important issues as:

 Timed software simulation: this refers to timed modelling and simulating

real-time software in the SLDL environment;

 RTOS modelling: this enlarged topic should not only provide real-time

scheduling services but also support other typical RTOS services necessary

for real-time software simulation;

 Interrupt handling: from a software simulation perspective, the Interrupt

Request (IRQ) based HW/SW synchronisation [86] is the most essential ex-

ternal communication protocol.

Figure 1-7. The SLDL-based behavioural software simulation

wait(2)

wait(7)

process 1

process 2

process 3 wait(4)

SLDL Simulation
Framework

process 4 wait(3)

Evaluate
and

schedule

Progress
time

Native
execution

SLDL Simulation Kernel

SW native
execution

wait(t)
Target-delay
annotation

Pre-defined
synchronisation point

 19

1.6.1 Timed Software Simulation

As shown in Figure 1-7, in SLDL-based timed software simulation, embedded

software (both applications and the RTOS) is organised (wrapped) into several

concurrent processes in a SLDL simulation framework. These processes natively

execute on the host under the supervision of a co-operative SLDL simulation ker-

nel. Since the desired timing behaviour of target software execution cannot be di-

rectly represented in native software execution, estimated software execution

costs (time delays) on the target are manually or automatically annotated to corre-

sponding code segments of simulation processes. These time delays are executed

by SLDL wait(delay) statements in order to suspend the calling process, pass con-

trol to the kernel, and advance the simulator clock. By this way, timing behaviour

of real software execution on the target machine is simulated.

According to the above description, in this co-operative SLDL execution

model, a number of wait(delay) statements are annotated into software processes

when building the model. They in effect predefine synchronisation points between

software processes and the SLDL kernel. Software processes can only yield the

running status at these points at simulation runtime and the simulator time is pro-

gressed according to the annotated delays without an interrupt possibility. This

annotation-dependent software time advance method makes it hard to model a

pre-emptive real-time system. The intuitive but halfway solutions tackle this prob-

lem by using more wait() statements with fine-grained delays to advance SW time

[87], or by inserting some imperative synchronisation points [3]. However, the

timing accuracy is limitedly enhanced at the cost of large modelling (more annota-

tion and synchronisation) and simulation (frequent simulation kernel context

switch) overheads.

1.6.2 RTOS Modelling

A RTOS simulation model is a key point for dynamic scheduling and timing

issues in behavioural real-time software simulation [72] [77]. This is because the

RTOS’s crucial role in embedded real-time software layers, in terms of task man-

agement, pre-emptive scheduling, inter-task communication and synchronisation,

etc. Whereas, current SLDL simulation frameworks and related RTOS simulation

 20

models do not, in general, support RTOS simulation adequately. There exist some

problems in this area, which affect the functional and timing accuracy of models,

as well as their simulation performance.

For example, from the perspective of maximising flexibility of system-level

design, designers may want to simulate multiple types of application models to-

gether. Current RTOS modelling research does not address this issue sufficiently

and is incapable of integrating abstract task models (i.e., void or simple task func-

tions with coarse-grained execution time estimates) and native-code task models

(i.e., fully functional tasks with fine-grained delay annotations) in one simulator.

Besides, from the perspective of practical RTOS simulation, some RTOS mod-

els provide simplistic task management and limited synchronisation services,

which are inadequate to imitate behaviour of a real multitasking RTOS.

Furthermore, the low timing accuracy is a common, yet critical, problem in

some RTOS modelling approaches by lack of RTOS services’ timing overhead

modelling and proper time advance.

1.6.3 Interrupt Handling

As we mentioned before, the target processor, which executes software in the

final implementation, is not usually modelled in SLDL-based behavioural soft-

ware simulation. Because of the high abstraction level and the SLDL software

simulation mechanism, multiple concurrent tasks together with a RTOS model

can constitute a software PE model without the necessity of modelling low-level

processor architecture. However, regarding timed HW/SW co-simulation, a soft-

ware PE model should be able to handle hardware interrupts for HW/SW syn-

chronisation. In terms of a real processor or a low-level processor model, the in-

terrupt handling process is natural to implement because of their cycle-accurate

time resolutions. However, the situation is complex when a “hardware” processor

model is hidden in a high-level software behavioural simulation. From the sequen-

tial real-time software perspective, neither application tasks nor the RTOS can

monitor asynchronous interrupt events (we are not talking about synchronous

mechanisms such as polling) in a timely and real manner. What is more critical, it

is not straightforward to interrupt a SLDL process by current SLDL kernels, since

 21

they do not support run-time process pre-emption or interruption. Consequently, it

is essential to implement a HW/SW synchronisation method for SLDL-based

software simulation, which behaves like an interrupt controller in a real CPU in

order to monitor external events and interrupt the executing SLDL process. Be-

sides, this mechanism should minimise the synchronisation frequency so as to re-

duce simulation time overhead, which is not yet achieved well in current ap-

proaches.

1.6.4 Research Hypothesis and Objectives

This thesis is motivated by current insufficient research regarding above three

key issues in the domain of real-time software behavioural modelling and simula-

tion. The research work in the thesis presents solutions to the three topics. Spe-

cifically, we aim to support SLDL-based interruptible software timing simulation

with high simulation performance; we will propose a flexible and practical RTOS

modelling and simulation approach that also has reasonable timing accuracy; we

will support fully functional interrupt handling in high-level RTOS simulation as

well.

The main goal of the research in this thesis is to support the central proposition

that:

A SystemC mixed timing modelling and simulation approach can enable fast,

flexible and accurate RTOS-based real-time embedded software behavioural

modelling and simulation in system-level design.

To examine this hypothesis, this thesis focuses upon the investigation of timing

issues in behavioural software modelling and simulation, and builds a generic

RTOS model to support real-time embedded software simulation. Specifically,

this thesis aims to:

1) Investigate timing issues in modelling and simulating real-time software

(both applications and the RTOS) in a SystemC environment, which are

closely relevant to a fast simulation performance, a flexible modelling and

simulating capability and reasonable timing accuracy.

a. Fast performance is a necessity of the proposed high-level behavioural

software simulation. Simulation speed should be at the scale of several

 22

orders of magnitude faster than traditional ISS simulations and is also

better than some related behavioural software simulation methods.

b. Flexibility is a desired benefit of software behavioural modelling and

simulation for the sake of trade-off. The proposed approach can utilise

varying modelling levels and degrees in different software models in

terms of the functional accuracy, timing accuracy, observability of exe-

cution traces, and performance of simulation.

c. Regarding timing accuracy of software time advance, the proposed ap-

proach should avoid the conventional “annotation-dependent” uninter-

ruptible time advance, rather it should support interruptible time ad-

vance.

d. Although the timing accuracy of behavioural software simulation is re-

stricted by its high modelling level, it still should be sufficient to gen-

erate a timed software execution trace which is the same as a corre-

sponding ISS simulation.

2) Build an abstract CPU model, which can simulate HW/SW interactions and

support high-level interruptible software timing simulation.

a. The HW/SW timing synchronisation (i.e., interrupt handling) problem

must be solved, since it is related to interruptible software time advance.

b. There is a limited abstract hardware modelling that supports hardware-

dependent software service models, e.g., context switch, interrupts ser-

vice, and real-time clock service.

c. The organisation of software models and hardware models should

mimic the typical structure of an embedded system, and be extensible

for future development.

3) Capture essential and common RTOS features and build a generic RTOS

model, in order to flexibly support early and practical simulation of real-

time software in SystemC-based system-level design.

a. The RTOS model should provide generic and standardised multi-

tasking, scheduling and synchronisation services as well as other nec-

essary OS functions.

 23

b. In order to enhance modelling flexibility on application tasks, the

RTOS simulation model should support both coarse-grain timed ab-

stract task models and fine-grained timed native applications in a hy-

brid simulation.

c. The RTOS model should achieve accurate simulation in terms of both

timing accuracy and functional results.

4) Incorporate limited TLM communication into software models for transac-

tion-based inter-module communication modelling, in order to make soft-

ware models interoperable with existing TLM modelling and simulation

concepts and techniques.

1.6.5 Research Contributions and Methods

Corresponding to above objectives, the research work undertaken in this thesis

is fourfold, with objectives 1-3 being the main focus of this thesis, i.e., software

modelling and simulation.

The first part of research work contributes results related to the Objective 1,

representing guidance of building specific simulation models. A mixed timing

software behavioural modelling and simulation approach is proposed. It separates

conventionally inter-dependent software timing modelling and simulation into two

partially separate phases. It supports mixed software timing information

granularities and annotation methods for performance and accuracy trade-off at

the modelling phase. The mixed timing models can use both coarse-grained task

timing estimates and fine-grained delay annotations in one simulation. Good

software pre-emption modelling capability is achieved by the SLDL wait-for-

event method, with a good simulation performance during the simulation phase.

The proposed variable-step and fixed-step time advance methods supply varying

observability of system simulation traces, and hence enable a trade-off with the

simulation speed.

Regarding the Objective 2, a Live CPU Model is proposed. It represents an es-

sential abstract hardware base in a high-level software PE model and is a proper

container to include hardware related components and functions. The most crucial

function of the Live CPU Model is to support interruptible time advance in mixed

 24

timing software behavioural simulation. Also, the Live CPU Model includes an

interrupt controller and some virtual registers, which are actively involved in

HW/SW synchronisation modelling and hardware-dependent software modelling.

By this means, theoretical interrupt modelling latency and software time advance

stopping latency can reach zero-time in simulation, which means an ideal resolu-

tion.

In terms of the Objective 3, the third part of research focuses on the develop-

ment of a generic and accurate SystemC-based RTOS-centric real-time software

simulation framework. It integrates mixed timing application models, the RTOS,

and the Live CPU Model in a software PE model. The software core is the generic

RTOS simulation model. It supplies a set of fundamental and practical services

including multi-tasking management, scheduling services, synchronisation and

inter-task communication mechanisms, clock services, context switch and soft-

ware interrupt handling services, etc. These functions are summarised and ab-

stracted from a survey on some popular RTOS standards and products. To build a

predictable RTOS timing model, the timing overheads of various RTOS services

are considered in models, which is an advantage over some other similar works.

The dynamic execution scenarios of real-time embedded software can be exposed

by tracing diverse system events and values in simulation, e.g., RTOS kernel calls,

RTOS runtime overheads, task execution times, dynamic scheduling decisions,

task synchronisation and communication activities, interrupt handling latencies,

context switch times, and other user-concerned properties. With this RTOS-

centric simulation framework, real-time embedded software designers can quickly

and accurately simulate and evaluate the behaviour of both abstract and native

real-time applications and the RTOS during the early design phases.

Objective 4 is fulfilled by combining the de facto OSCI TLM-2.0 [88] commu-

nication interfaces into the real-time software PE simulation model generated in

the above second and third parts of research. This work also defines a SoC TLM

model, which not only integrates the software PE model but also includes other

typical TLM initiator, target, and interconnection models. This part of work ex-

tends the software simulation models to the TLM modelling community.

 25

1.7 Organisation of the Thesis

The remainder of this thesis is organised as follows:

Chapter 2 Literature Review: Transaction-Level Modelling and System-

Level RTOS Simulation

This chapter will introduce current TLM research, describe the SystemC SLDL,

and survey RTOS modelling and simulation research in the context of system-

level design.

This chapter will start with an overview of important concepts and techniques

in TLM design, including various topics such as abstraction levels, accu-

racy/performance trade-off, and typical simulation frameworks. After that, some

important SystemC language constructs and the OSCI reference simulator will be

introduced along with their relevance to real-time software simulation that is con-

cerned by us. Finally, this chapter will survey related system-level RTOS model-

ling and simulation research. The existing approaches will be classified and dis-

cussed based on their modelling granularities, functional features, and application

areas in system-level design flows.

Chapter 3 Mixed Timing Real-Time Embedded Software Modelling and

Simulation

This chapter will propose a SLDL-based mixed timing software behavioural

modelling and simulation approach and an associated Live CPU Model for fast,

flexible and accurate real-time software behavioural modelling and simulation.

At first, this chapter will introduce the problematic annotation-dependent time

advance method in SLDL-based software simulation and survey some remedy ap-

proaches. It will then describe the mixed timing approach, by defining two types

of software models for TLM software computation modelling and discussing

various issues in timing modelling and timing simulation. Afterwards, the compo-

nents and operations of the Live CPU Model will be introduced in detail. Finally,

evaluation metrics and experiments will also be presented in order to evaluate the

research in this chapter.

Chapter 4 A Generic and Accurate RTOS-centric Software Simulation

Model

 26

This chapter will introduce a SystemC-based generic and accurate RTOS-

centric real-time software simulation model. It can support flexible and practical

real-time software simulation in early design phases.

Firstly, this chapter will present the research context and assumptions. An ab-

stract embedded software stack will be defined as the research target. It will then

survey common RTOS concepts and requirements as guidance of following re-

search. Afterwards, details of the RTOS-centric real-time software simulation

model will be described. This research will include three main parts, i.e., the over-

all structure of all simulation models, application software modelling, and RTOS

modelling. RTOS modelling is the core part and will be introduced from both the

functional modelling aspect and the timing modelling aspect. The chapter will af-

terwards explain evaluation metrics regarding simulation performance, functional

accuracy and timing accuracy of the proposed RTOS-centric simulator. Accord-

ingly, experiments will be carried out in order to demonstrate these aspects.

Chapter 5: Extending the Software PE model with TLM Communication

Interfaces

This chapter will extend software simulation models with TLM communication

interfaces by utilising the OSCI TLM-2.0 library. This aims to popularise our

software modelling and simulation research into the promising TLM modelling

domain.

It will firstly introduce related concepts of the OSCI TLM-2.0 library in brief.

Then it will describe how to integrate TLM communication constructs into the

Live CPU Model. Afterwards, a simple SoC TLM model will be presented in or-

der to integrate the Live CPU Model and reveal how various typical system com-

ponents are defined for co-simulation with behavioural RTOS-centric software

models. Finally, an experiment will study the simulation performance of the SoC

simulation model, whilst another DMA I/O experiment will demonstrate the in-

teroperable simulation capability of the combined software and TLM models.

Chapter 6: Conclusions and Future Work

The last chapter will summarise contributions, conclude chapters, and suggest

future research directions.

27

Chapter 2

Literature Review: Transaction-Level Model-

ling and System-Level RTOS Simulation

In order to help developers deal with the increasing design cost and short time-

to-market of today’s embedded systems industry, there is a pressing need for new

design methodologies to ameliorate these problems. System-level design tech-

niques have been proposed, that use high-level abstraction methods to design

hardware and software concurrently in a unified environment. In this research

domain, system-level modelling and simulation are key techniques to describe,

validate, analyse and verify complex systems. In various system-level modelling

and simulation approaches, the SystemC-based Transaction-Level Modelling

(SystemC-TLM) has become a de facto standard. Based on the essential TLM

principle “separating computation from communication”, developers can divide

system modelling and simulation into two main aspects, i.e., the computation as-

pect and the communication aspect.

In the general context of embedded systems modelling, the computation can be

further divided into the software aspect (i.e., software running on a CPU) and the

hardware aspect (i.e., application-specific hardware logics). In this thesis, we spe-

cifically concentrate on modelling and simulating real-time software at a high

level, namely the software PE model. The HW/SW timing synchronisation in the

unified event-driven SystemC simulation environment is addressed, which is cru-

cial for modelling interrupts and greatly affects both simulation timing accuracy

and performance. Because of benefits of dynamic scheduling and multi-tasking

execution of concurrent real-time applications, RTOS behavioural modelling has

increasing relevance for both fast simulation and validation of different software

implementation alternatives in the early stages of design. Various RTOS design

28

space exploration activities (e.g., assigning task priorities, deciding scheduling

strategies and designing application-specific OS services) also require an early

and efficient test bed in order to be carried out. Consequently, the RTOS model is

regarded as the heart of behavioural real-time software modelling and simulation

research in this thesis.

This chapter starts with some basics of current TLM research and work exam-

ples in Section 2.1. As the programming language and research environment of

this thesis, SystemC language constructs and the OSCI reference event-driven

simulator kernel are introduced in Section 2.2, along with their relevance and in-

adequate ability for modelling and simulation of real-time software. In Section 2.3,

an overview is presented on related RTOS modelling and simulation research in

the context of system-level and TLM design. These works motivate our study in

this thesis. The HW/SW timing synchronisation approaches and problems in Sys-

temC simulation are also introduced in several paragraphs within this chapter.

Section 2.4 will summarise this chapter.

2.1 Transaction-Level Modelling and Simulation

Transaction-level modelling has generally been considered as the emerging

system-level modelling style for improving productivity in the design of highly

integrated embedded systems which may integrate heterogeneous processors, IP

cores, peripherals, memory components, and on-chip communication infrastruc-

tures. TLM models are expected to serve as interoperable references across differ-

ent design teams for fast embedded systems architecture exploration, early em-

bedded software development and functional verification [3].

From the hardware developer’s point of view, TLM captures embedded sys-

tems at a range of abstraction levels higher than the traditional RTL [89]. Com-

pared to conventional RTL modelling and simulation, TLM not only reduces the

model building cost, but also speeds up the simulation performance by orders of

magnitude. The literature [3] provides an example project in which the modelling

effort and simulation efficiency of three different TLM, cycle-accurate and RTL

models are compared. Table 2-1 shows the distinct speed-up of the TLM approach.

Another benefit of the TLM approach, more interesting to software developers, is

29

that it can support early development and validation of hardware dependent soft-

ware. Developers can co-simulate software with hardware models in a single-

source SLDL-based simulation framework, almost as soon as the initial architec-

ture specification is determined [90]. In this thesis, from a software research’s

perspective, TLM refers to high-level interaction between different software and

hardware modules. It includes behavioural software modelling/simulation, high-

level hardware modelling/simulation, and transaction-based communication be-

tween them.

However, the higher abstraction levels of TLM models also indicate less mod-

elling detail and some loss of accuracy. The accuracy of TLM simulation, in terms

of both data accuracy and timing accuracy, is necessarily sacrificed to some extent

due to coarse-grained data transfers and larger time-advancing steps. Of course,

with the goal of rapidly describing the system architecture and validating applica-

tions, requirements are relaxed in terms of accuracy of bit-level data or cycle-

accurate timing. Usually, coarse-grained and reasonably accurate assumptions are

made, e.g., packet-level transmission and cycle-approximate timing. Trading ac-

curacy issues against simulation speed [91], or preserving accuracy whilst gaining

in simulation performance [92], are popular TLM research topics in terms of effi-

ciency and flexibility. We are also concerned with them in this thesis and will pre-

sent some studies in the next chapter. At this point, the term “cycle-approximate

timing” (or the similar term “approximate-timed” [7]) indicates that a procedure

0

500

1000

1500

0

2

4

6

8

10

12

Modelling speed-up vs

RTL

1 100 1000

Simulation speed-up vs

RTL

1 3 10

RTL Cycle-accurate TLM

Table 2-1. Modelling and simulation speed comparisons [3]

30

(either a computation action or a communication transaction) in a model is as-

signed with timing information that spans multiple clock cycles, and that the

simulation clock can be progressed with multiple clock cycles in each step. De-

spite the fact that this term is broadly used as a temporal resolution in the TLM

taxonomy, its exact timing granularity is vague. A variety of interpretations from

diverse researchers often reveal their own interest in modelling and intention of

optimisation, which may make it difficult to compare the performance and accu-

racy of different TLM works quantitatively and horizontally.

In order to present a general idea of the existing research on TLM, three main

topics will be hereby introduced:

 Abstraction levels of TLM: A fundamental essence of transaction-level

modelling is to raise the level of abstraction by hiding low-level implemen-

tation detail. Some important concepts and popular definitions on TLM ab-

straction levels will be addressed.

 Communication exploration: A variety of transaction-based communication

modelling approaches have been developed in both academia and industry

to define how system components communicate. The research on communi-

cation modelling and simulation is a contributor factor to most of current

TLM achievements. Here, a brief introduction on related work is presented

in order to reveal this essential TLM aspect.

 Embedded software development in TLM: If TLM comprehends two por-

tions “communication” and “computation”, then modelling software is

surely a paramount topic of the TLM computation portion.

2.1.1 Abstraction Levels and Models in TLM

A central issue in various system-level design methodologies is concerned with

appropriate abstraction levels and coding styles for modelling various computa-

tion and communication activities in TLM. By a general consensus, TLM does not

specifically or explicitly indicate a single abstraction level. In fact, a series of ab-

straction levels are classified in the general category of TLM in different TLM

taxonomies. It is not practical to precisely enumerate all abstraction levels for

TLM, because there are many different interpretations. However, it is still possi-

31

ble to indicate the range of TLM levels. Without much dispute, most researchers

agree that TLM abstraction levels are relatively “higher” than the RTL used in

traditional design. Also, TLM abstraction levels are considered to be “lower” than

functional (algorithmic) models. Functional models are not defined as TLM mod-

els, although the abstraction level of them is sufficiently high [88]. This is because

a functional model usually includes a single software thread only, e.g., in the form

of a C function or a SLDL process. It does not bear two essential features of a

TLM model: concurrent multitasking computation and inter-process communica-

tion [88].

Conventionally, TLM abstract models are organised with respect to some crite-

ria, including:

 Timing accuracy: This is a first-class characteristic regarding the accuracy

of a model. It refers to how a model is assigned with timing information,

e.g., a line of code, a code block, or a task, and cares about the resolution of

timing information, e.g., untimed, cycle-approximate, or cycle-by-cycle.

 Functional accuracy: This refers to how a model captures the function of a

Communication
timing degree

Computation
timing degree

Untimed

Component-
assembly

model

Bus-
arbitration

model

Bus-functional
model

Cycle-accurate
computation

model

Implementation
modelCycle-

accurate

Cycle-
approxim

ate

Loosely-
timed

Loosely-
timed

Cycle-
approximate

Cycle-
accurate

Specification
model

Cycle Accurate
Models

Programmers
View Timed

Models

Programmers
View Models

CP+T
Models

CP
Models

Figure 2-1. Various TLM abstraction levels (partially based on [7])

32

target system. For instance, some high-level simulators only abstract timing

properties (e.g., execution time, period, and deadline) of a software model in

order to enhance simulation speed, but without modelling its functional be-

haviour. The functional accuracy can be evaluated by comparing the outputs

of the model with a reliable reference by giving them the same inputs.

 Communication data granularity: This criterion regards what data structures

are transmitted through communication channels, for example, an applica-

tion packet, a bus packet, or a word.

There are an number of literatures [3] [88] [7] [93] that feature definitions of

TLM abstraction levels. In the following, Sections 2.1.1.1 to 2.1.1.4 will present

some examples. Figure 2-1 provides a conjunctional view of these TLM abstrac-

tion taxonomies by comparing the timing accuracy of their computation aspects

and communication aspects.

2.1.1.1 OSCI TLM Abstraction Levels

The most acknowledged TLM abstraction level taxonomy was proposed by the

OSCI TLM working group [3] [88]. The OSCI TLM specification defines two

general levels for TLM modelling: the Programmers View (PV) level and the

Programmers View Timed (PVT) level (see Figure 2-1). The PV models are char-

acterised by the Loosely-Timed (LT) coding style and the blocking transport inter-

face, in which each transaction is associated with two timing points, correspond-

ing to the start and the end of a blocking transport. It is appropriate for software

programmers who require a functional virtual hardware platform with sufficient

timing information in order to run an operating system and application software.

A PVT model is identical to the PV level model in terms of functionality, but each

PVT transaction is annotated with multiple timing points and uses the non-

blocking transport interface, namely the Approximately-timed (AT) coding style.

It enables architecture exploration and also performance analysis of the applica-

tion system. This OSCI TLM abstraction level view reflects a communication-

centric hardware design perspective, although some software designers, with the

aim of promoting interoperable TLM modelling, are seeking its application for

computation modelling [6].

33

2.1.1.2 Donlin’s Extended TLM Abstraction Levels

In [93], Donlin introduces three TLM levels in addition to OSCI’s definition

above, i.e., the Communicating Process (CP) level, the Communicating Process

with Time (CP+T) level, and the Cycle-Accurate (CA) TLM level. Referring to

Figure 2-1, CP and CP+T abstraction levels are even higher than OSCI-TLM lev-

els, where “T” means coarse timing information. CP and CP+T models are more

architecture-independent and implementation-independent than PV and PVT

models. System models at the two levels consist of parallel processes that ex-

change high-level data structures by point-to-point connections, rather than arbi-

trated buses. In contrast, the Cycle-Accurate (CA) abstraction level is lower than

OSCI levels. It captures micro-architectural details and is time-accurate to the

level of each clock cycle. In some TLM literatures [3] [94], CA models are some-

times not referred to as a part of the TLM space because of their limited speed-up

compared to a RTL model (Table 2-1 hints at this). However, in [93], Donlin’s

focus is to investigate the use of CA TLM models for detailed performance analy-

sis and verification of hard real-time software in the final design stages; conse-

quently the drawback regarding performance is considered to be worthy of tolera-

tion.

2.1.1.3 Cai and Gajski’s Orthogonal TLM Modelling Graph

Another early and classical TLM taxonomy is introduced by Cai and Gajski in

[7], which concludes that communication and computation are equally important

yet orthogonal aspects of TLM research. Referring to Figure 2-1, these two as-

pects are illustrated as two axes according to degrees of timing accuracy in a sys-

tem modelling graph. They identify three timing degrees, i.e., untimed, approxi-

mate-timed (so-called cycle-approximate), and cycle-timed (so-called cycle-

accurate). Moreover, the authors define six abstraction models in the graph and

explore their usage in embedded system design flows, starting from the specifica-

tion stage and ending at the implementation stage. Among the six models, four

(the shaded circles in the figure) are classified as TLM models, i.e., the compo-

nent-assembly model, the bus-arbitration model, the bus-functional model, and the

cycle-accurate computation model. The solid arrows in the figure represent a typi-

34

cal TLM system design flow, whilst the other dotted arrows stand for some possi-

ble design routes depending on different design intentions, e.g., communication-

focused or computation-focused.

2.1.1.4 Mixed-Level and Multiple-Level TLM Modelling Research

Various TLM models at different degrees of accuracy bring a potential for mul-

tiple-level or mixed-level modelling in which designers can trade off modelling

accuracy and simulation performance according to different strategies.

In Chapter 2 of [3], the researchers propose a general idea for TLM mixed-

level modelling by combining untimed TLM models and standalone timed TLM

models. This allows for concurrently developing pure functional models (by ar-

chitecture teams) and timing models (by micro-architecture teams) with dissimilar

modelling purposes. Multiple timing scenarios with different resolutions can co-

exist in a unified simulation model, and simulation speed can be optimised by dy-

namically switching untimed and timed models at runtime.

For bus communication modelling, Schirner and Dömer quantitatively analyse

simulation speed and timing accuracy of three abstract communication models,

e.g., the conventional TLM model, the arbitrated TLM model, and the cycle-

accurate and pin-accurate bus functional model [92]. They configure them with

varying data granularities and arbitration handling methods in order to trade off

simulation accuracy and performance. Focusing on software computation model-

ling, they define five abstraction levels for processor modelling (e.g., the applica-

tion level, the task scheduling level, the firmware level, the processor TLM level,

the processor functional model) and quantify accuracy loss and simulation speed-

up of each model [79].

For processor and communication design co-exploration, an integrated design

methodology is presented in [95]. It combines multi-level processor hardware

models (e.g., instruction-accurate and cycle-accurate) and communication models

(TLM buses and RTL buses), by which the processor design team can co-operate

with the communication team early in the design flow.

35

2.1.1.5 Summary

The different views of TLM abstraction levels and related models have com-

mon notions of hardware and communication modelling. Each TLM abstraction

level can be seen as a limited design space for exploring and validating some

functional and timing issues with corresponding models. Multiple TLM abstrac-

tion levels thus constitute a wide design space, namely a design flow, for succes-

sive model refinement through the addition of design detail.

The OSCI TLM standard is gaining a high level of popularity and sustainable

development in both industry and academia. It provides two distinguishing levels

(i.e., LT or AT) for communication models depending on their timing degrees and

synchronisation methods. The relevance of this modelling idea will be examined

to the proposed software modelling approach in Section 3.2.2. The mixed model-

ling idea is widely advocated for accuracy and speed trade-off in both the OSCI

TLM standard and the research surveyed in Section 2.1.1.4. Specifically, it is also

a guiding concept of the mixed timing software modelling approach that is to be

presented in Section 3.2. The recent OSCI TLM standard Version 2.0 provides

standard interfaces for creating bus communication models. Chapter 5 will inves-

tigate combining these API interfaces with the proposed software models in order

to advance interoperability between TLM communication and our native-code

software simulation models.

2.1.2 Communication Modelling in TLM

If we interpret the term “transaction” as an “abstract communication operation”

[47] or as a “high-level form of a communication protocol” [96], then the name

“transaction-level modelling” is likely to imply that communication is a main re-

search topic. From a narrow viewpoint, TLM is understood as a communication-

centric embedded systems modelling paradigm [97]. Early in 2002, Grötker et al.

introduced the basic TLM interface-based communication style with a high simu-

lation performance [98]. This work forwards SystemC as the most established de-

sign language vehicle for TLM approaches today. In this section, we will make a

brief introduction mainly, but not limited to, SystemC based TLM communication

and architecture exploration studies.

36

In TLM, in order to build a virtual prototype that represents abstract models of

an embedded system, a system is broken down to a set of computation compo-

nents comprising concurrent processes to implement application functions. Com-

putation components communicate with each other through ports and channels by

sending and receiving transaction requests. Figure 2-2 shows a block diagram of

an example SoC TLM model, e.g., the AMBA bus. In this model, the architecture

is composed of two main computation components, i.e., an ARM microprocessor

and an application-specific processor (e.g., DSP or custom logics) as initiator

components in the system. Some other components including fast and slow

memories, peripherals, and devices are connected to processors by direct port-to-

port connections and buses, e.g., the Advanced High-performance Bus (AHB) and

the Advanced Peripheral Bus (APB). From the TLM perspective, the buses are

complex channels accessed by multiple modules through respective ports.

Figure 2-3 depicts the basic method of TLM communication modelling. In this

example, two modules communicate through a channel. The Process A1 in Mod-

ule A can write a value to the channel by calling the method write() through

its parent module’s port pA, whilst the Process B1 retrieves a value from the

channel by the method read() via port pB. This Interface Method Call (IMC)

scheme achieves high modularity in inter-module communication modelling, and

essentially separates communication and computation details.

ROM/Flash

Dual Port
RAM

Bus
Arbiter

AHB

ARM7 CPU Model
(ISS or high-level model)

task DSP/
Custom

hardware

task task

AHB to APB
Bridge

APB

Interrupt
controller

GPIO

UART Timers

InterfacePort

Figure 2-2. An AMBA TLM model example

37

As the key element of the TLM IMC communication, a channel can have vary-

ing complexity across different designs. In a SystemC-TLM specification, a chan-

nel can be implemented in two styles, i.e., the primitive channel and the hierarchi-

cal channel. A primitive channel contains processes and ports and aims to provide

simple and fast communication. The SystemC language reference manual [66]

defines several built-in primitive channels (all derived from a base class

sc_prim_channel), e.g., sc_signal (to model a simple wire carrying a

digital electronic signal), sc_fifo (to model a first-in-first-out buffer),

sc_mutex (to model a mutual exclusion lock) and sc_semaphore (to model a

software semaphore), etc. Hierarchical channels are indeed hybrid modules and

can contain other instances of modules, processes, ports and nested channels.

They are used to model complex customised communications, such as buses or

networks.

In order to advocate model interoperability between different communication

modelling and architecture design communities, some standards are proposed to

promote the SystemC TLM communication paradigm. The following are two pre-

dominant standards.

The OSCI TLM Working Group, which was founded in 2003, has published a

series of OSCI TLM standards. The up-to-date OSCI-TLM library version 2.0 [88]

[99] introduces a set of well-defined core APIs, data structures, initiators, targets,

the generic payload, and the base protocol for transaction-based communications.

The core interfaces support two types of transport, i.e., the blocking transport (a

transaction can suspend its parent process) and the non-blocking transport (a

transaction is atomic and does not suspend its parent process). The generic pay-

load is primarily intended for modelling a typical memory-mapped bus, which is

Figure 2-3. TLM Interface Method Call Communication

Module A
Channel

pAProcess A1
pA->write()

write() read()

Module B

pB

Process B1
pB->read()

InterfacePort

Process A2

Process B2

38

abstracted away from the details of any specific bus protocols. An extension

mechanism is also offered to model specific bus protocols or non-bus protocols by

users. The Open Core Protocol International Partnership (OCP-IP) consortium is

another active TLM standardisation organisation. It has proposed and maintained

a SystemC TLM modelling kit since 2002 [100] [101], defining a stack of com-

munication layers including four abstraction levels, i.e., Message Layer (L-3),

Cycle-approximate Transaction Layer (L-2), Cycle-accurate Transfer Layer (L-1),

and the RTL Layer (L-0). Its latest version, which is built on top of OSCI-TLM

v2.0, provides an interoperable standard for SystemC component models with

OCP protocol features.

A number of TLM modelling and simulation approaches have been proposed

for the design of complex communication systems. The following are some repre-

sentative works.

Gajski’s group presents examples of TLM communication research mainly

based on the SpecC language. The literature [102] describes a general TLM com-

munication modelling style for SoC design. For Network-on-Chip synthesis, they

define some successive system communication abstraction layers and correspond-

ing design models to refine abstract message-passing down to a cycle-accurate,

bus-functional implementation [58]. For AMBA AHB bus modelling, they pro-

pose a Result Oriented Modelling (ROM) technique that improves accuracy

drawback of conventional TLM models and gains high speed by omitting internal

states and making end result correction [103].

In 2002, Pasricha pointed out the direction for using the SystemC TLM model-

ling approach in early architecture exploration and developed communication

channels for fast simulation for embedded software development [90]. In order to

bridge the gap between high-level TLM models and bus cycle-accurate models,

Pasricha et al. present an intermediate TLM abstraction level “Cycle Count Accu-

rate at Transaction Boundaries” (CCATB) for communication exploration, which

improves simulation speed by keeping cycle-level timing accuracy only at trans-

action boundaries [104].

Kogel et al. propose a series of multiple-level SystemC-TLM co-simulation

and virtual architecture mapping methodologies for architectural exploration of

39

NoC, SoC, and MPSoC [105] [106] [95]. Klingauf et al. describe the TRAnsac-

tion INterchange (TRAIN) architecture for mapping abstract transaction-level

communication channels onto a synthesisable MPSoC implementation by virtual

transaction layers [55]. They also propose a generic interconnect fabric for TLM

communication modelling that aims to support flexible buses, multiple TLM ab-

straction levels, and various TLM standard APIs [107].

2.1.3 Embedded Software Development with TLM

Embedded software development with TLM models is not a new topic and

many studies have been conducted in this area. In this section, we introduce them

depending on relationships between software modelling and TLM techniques:

 Conventional ISS software simulators utilise TLM communication for mod-

elling SW/HW interfaces only (Section 2.1.3.1);

 System-level software modelling and simulation comply with general TLM

concepts and techniques (Sections 2.1.3.2 and 2.1.3.3).

2.1.3.1 ISS SW Simulation with TLM SW/HW Interfaces

In an early TLM literature [90], Pasricha indicated the concept of developing

embedded software with SystemC TLM models. This is mainly motivated by two

encouraging TLM modelling results: the early availability of TLM architectural

models in the SoC design lifecycle and the much higher simulation speed com-

pared to detailed RTL models. The goal is to design and simulate embedded soft-

ware on top of a virtual prototype of the target architecture instead of using tradi-

tional RTL models or the final implementation. This research uses a

HW/communication-centric TLM and conventional software simulation approach.

Several efforts have been made to combine conventional cycle-accurate soft-

ware simulation (e.g., an ISS) with SystemC-based abstract TLM hardware and

communication models [108] [109] [95]. As shown in Figure 2-4, TLM tech-

niques are used to model SW/HW communication interface and hardware compo-

nents, which are outside the scope of software modelling. The SPACE methodol-

ogy [108] encapsulates an ISS in a SystemC wrapper and connects it with rest

modules of the modelling platform through TLM channels. Two types of TLM

40

communication channels (untimed and timed) are provided to support two TLM

abstraction levels: untimed channels are for a faster verification of applications

before partitioning, while timed channels are used for cycle-accurate modelling.

Cross-compiled binary code of software application, the OS, and drivers executes

in the ISS. For MPSoC design space exploration, the MPARM approach inte-

grates multiple SystemC-based ARM processor models (ISS simulators in Sys-

temC wrappers), the AMBA bus model, and memory models [109]. The TLM

channels implement the bus communication architecture in a master-slave style.

2.1.3.2 Embedded Software Generation Using TLM Models

Recalling the fundamental TLM principle of separating the concerns of compu-

tation and communication, these two design aspects should be paid equal attention

in TLM contexts. Some researchers are also concerned about applying TLM con-

cepts and techniques to design and validation of the computation portion [9] [6].

Software is the integral and main part of many embedded systems and hence has

become a major area of interest in transaction-level computation modelling.

Motivated by the goal to co-design an entire electronic system from the speci-

fication phase down to the implementation phase by using a single SLDL, some

system-level design flows have been proposed to support embedded software gen-

eration and synthesis. In these studies, a series of SLDL-based specification and

TLM models are simulated, refined and transformed, in order to automatically

generate target embedded software C/C++ code [62] [63] [110], or to further gen-

erate final binary files, i.e., system-level software synthesis [59] [61].

Figure 2-5 shows a typical embedded software generation flow. Firstly, un-

timed and before-partitioned system functions are described by a set of hierarchi-

 SLDL Wrapper

Instruction Set Simulator

RTOS port binary

Drivers binary

TLM
channels

TLM HW
module

TLM HW
module

SW application binary

INT

Figure 2-4. TLM technique for modelling SW/HW interfaces

41

cal SLDL elements such as modules, processes, interfaces, channels, and ports.

These processes run in parallel and communicate with each other by means of

transaction style channels. Through iterative simulation and partition, untimed

specification models are transformed into PV or PVT TLM models. At the TLM

architecture exploration stage, a simple scheduler or a RTOS model may be inte-

grated to assist sequential software simulation. In order to generate software im-

plementation code towards a specific operating system, a RTOS-specific library

(e.g., RTEMS [59], QNX [63]) is introduced to replace the RTOS model with be-

haviourally equivalent RTOS functions, and SLDL processes are mapped to real

RTOS tasks. Finally, SLDL-based software code is cross-compiled into executa-

ble binary code for a target processor.

These approaches reveal a system-level design point of view and make a valu-

able contribution to co-design and co-synthesis flows. However, such a design

flow is still not straightforward. The first obstacle resides in transforming specifi-

cation models described in a SLDL into RTOS based TLM software execution

models. The hardware-style channel communication mechanism used in specifica-

tions is not suitable for real-time software design, which may sacrifice the con-

ventional software implementation productivity and legacy. Besides, it is known

that the SystemC library bears the weakness of not supporting priority assignment

and pre-emptive scheduling, so the built-in SystemC kernel scheduler and syn-

chronisation primitive channels are not applicable for real-time software model-

ling. Consequently, the idea in [62] that simply replaces SystemC library elements

with target RTOS functions may not be appropriate. A usual solution is to inte-

grate a RTOS model on top of the SLDL in order to supply necessary dynamic

Module 1

Process 1

Process 2

Module 2

Process 3

SW module HW Module

Process 3task task

Scheduler or
RTOS model

Before-partition:
functional, untimed,
unscheduled, parallel

Specification model TLM models

After-partition:
functional, timed,

scheduled, sequential

RTOS
library

Cross-
compiled for

target

Target
C/C++ code

Target
binary

Code generation

Figure 2-5. Software generation using TLM models

42

real-time software services, which is also the method used in the thesis. Another

problem is the increasing size of binary code, because the generated software code

includes overhead from some SLDL language constructs [62] [59]. For resource-

limited embedded systems, some efficient optimisation techniques may be re-

quired to reduce the interference from the SLDL library in target code.

2.1.3.3 TLM Modelling of Software Processing Element

While some research activities have been devised for software development in

the overall system-level design flow, recently some methodologies and techniques

have emerged that specifically focus on the need of abstract modelling a software

PE (i.e., software running on a CPU) in the context of TLM [79] [111]. This topic

can be seen as a mixture of two aspects: abstract processor modelling (the hard-

ware aspect) and behavioural software simulation (the software aspect). Figure

2-6 depicts features of a TLM software PE model and some possible modelling

options.

From the hardware designers’ angle, the motivation is to abstract physical

processor features into functional elements in order to simulate high-level soft-

ware models in the execution environment and connect software models with the

rest of the system. In [111], Bouchhima et al. present an abstract CPU model aim-

ing for timed MPSoC HW/SW co-simulation. It provides a set of Hardware Ab-

straction Layer (HAL) APIs for upper-layer software models and an interface for

connecting other system components. This CPU model captures an architectural

view of a processor, which includes subsystems like an execution unit for HW

Software Processing
Element (CPU)

task
model

task
model

RTOS model

Timing granularity ?
Functions ?

Hardware abstraction

Generic or specific ?
Timing granularity ?
Functions ?

Implicit or explicit ?
Interrupt ?

Interrupt I/O port

Execution Unit

Data Unit

Sync Unit

Software abstraction
model

Hardware aspect

Software aspect

Figure 2-6. Software processing element modelling in TLM

43

multiprocessing, a data unit wrapping any devices and memory elements, an ac-

cess unit containing address space, and a synchronisation unit behaving as an in-

terrupt controller. In a subsequent work [6], they introduce a SW TLM communi-

cation refinement approach named “SW bus” to enable SW tasks to access logical

resources of HW TLM models. In [79], Schirner et al. develop a high-level proc-

essor model to support software simulation. The abstract processor model is mod-

elled in a layered approach including five increasing feature levels, i.e., the appli-

cation layer, the OS layer, the HAL layer, the TLM hardware layer, and the bus

functional hardware layer. This model enables incremental and flexible descrip-

tion of the software subsystem at different design stages.

If we turn to a software developers’ perspective, a software processing element

model should consist of various software models at appropriate levels of abstrac-

tion for behavioural software simulation. Timed software simulation, RTOS

scheduling, and interrupt handling are three key aspects to evaluate research in

this area. In a large number of embedded systems, a RTOS provides a useful ab-

straction interface between real-time applications and processor hardware abstrac-

tion. Consequently, most software processing element modelling approaches inte-

grate a RTOS model in order to supervise native execution of application, which

is known as RTOS modelling [12, 43, 73, 87, 112, 113, 114, 115]. In respect of

the research in this thesis concentrating on the RTOS modelling, a more complete

survey will be given in Section 2.3. In Figure 2-6, timing granularity and func-

tional accuracy are used as dimensions to guide and compare software models,

which offer choices on abstraction levels of task models and RTOS model. Still in

the figure, the hardware abstraction model is illustrated by a dotted frame, this re-

flects the current situation whereby some software modelling approaches do not

include interrupt handling, nor consider the interoperability with hardware models,

i.e., hardware abstraction is implicit in the high-level PE model.

2.2 The SystemC Language

SystemC is an open-source C++ based system-level design language that is of-

ten used for high-level system modelling and simulation. Unlike the conventional

heterogeneous HDL-ISS HW/SW co-simulation, the SystemC modelling frame-

44

work can provide a homogeneous programming and co-simulation environment,

by which users can write both software and hardware models in a unified common

language and natively compile them as a single process on the host computer. The

SystemC execution model uses a discrete-event simulation kernel to schedule

model processes (a set of C++ macros) so as to mimic functional behaviour and

time progress of a target system.

In this section, we will start with a brief introduction to SystemC language fea-

tures with regard to concerned support for software modelling. We will then take

a look at the SystemC co-operative execution model which closely affects real-

time software simulation. Finally, an example of a simple SW/HW system model

is presented in order to illustrate the structure of a SystemC model.

2.2.1 SystemC Language Features

The SystemC class library is implemented by a set of C++ library routines,

macros, type definitions, templates, and overloaded operators. Figure 2-7 shows

the simplified layered structure of a SystemC application. Users can develop

simulation models based on SystemC and C++ languages, and they can addition-

ally use some SystemC libraries depending on specific design necessity, e.g., the

OSCI TLM library [88].

Referring to Figure 2-7, the components of the SystemC library are briefly

classified and introduced as follows. More comprehensive description can be

found in the language reference manual [66].

C++ language

User application

Libraries:
TLM library, verification library, mixed-signal library, other IP libraries

 Core language

Sy
st

e
m

C
 li

b
ra

ry

Modules: SC_MODULE

Processes:
SC_METHOD,
SC_THREAD,

SC_CTHREAD.

Interface-comm:
ports, exports,

interfaces,
channels.

Event-sync:
notify(event),
cancel(event).

Data types:
logic,

integers,
fixed-point

Predefined channels:
signal, clock, FIFO,

mutex, semaphore, etc.

Utilities:
Report handling,

tracingSimulation
kernel

wait(time),
wait(event).

Figure 2-7. SystemC language structure

45

The Simulation Kernel

It schedules SystemC processes in response to an event or a time delay. The

exact execution mechanism will be described in the next Section 2.2.2.

Language Utilities

These utility classes provide some assisted services in terms of tracing value

changes, reporting exceptions, and mathematical functions.

Data Types

In addition to supporting native C++ types, SystemC defines some data types

for hardware modelling, for instance, integer types within and beyond 64-bit

width (e.g., sc_int<WIDTH>, sc_bigint<WIDTH>), fixed point data types

(e.g., sc_fixed, sc_ufixed, etc.) and four-valued logic types (e.g.,

sc_logic, sc_lv<WIDTH>, etc.). Because SystemC data types are defined in

classes with inevitable overheads, it is recommended to use C++ native types or

simple SystemC integer types for best performance if possible [116].

The Core Language

This category of classes provides main modelling functions regarding model

hierarchy, execution units, concurrency, synchronisation and communication, etc.

 A module (SC_MODULE) is the basic SystemC building block, namely an

object of a C++ class. The model of a computing system is composed of

several interconnected hierarchical modules. A module is the container of a

variety of modelling elements such as processes, events, ports, channels,

member module instances and data members.

 A process is the basic SystemC execution unit (a macro) that is encapsu-

lated in a SC_MODULE instance in order to perform computation of a sys-

tem. There are three types of process to wrap a function: the method process

(SC_METHOD), the thread process (SC_THREAD) and the clocked thread

process (SC_CTHREAD). The main difference between them is that the

method process atomically runs from beginning to end once triggered, but

the thread and clocked thread processes can be suspended and resumed by

directly or indirectly calling wait() functions that can be used to simulate

time cost of a real activity. The SC_CTHREAD process, a variation of

46

SC_THREAD, is only statically sensitive to a single clock and mainly used

in high-level synthesis [116].

 Ports (class sc_port), exports (class sc_export), interfaces (abstract

base class sc_interface) and channels (a type definition of

SC_MODULE and implementing one or more interfaces) are main language

constructs to model inter-module communication of a system by means of

the aforementioned interface method call approach.

 An event (class sc_event) is used to synchronise processes. The immedi-

ate or pending notification of an event (event.notify()) can trigger

(resume) the process that is waiting on it immediately or at a future time

point. An event can also be cancelled (event.cancel()) when it is at a

pending notification status. Compared to the interface method call method,

using an event is a lightweight synchronisation and communication method

to ease modelling costs. By flexibly changing the opportunity to notify or

cancel an event during simulation, users can change a process’s suspending

time at run-time.

Predefined channels

SystemC contains a number of predefined channels with affiliated methods and

ports, which implement some straightforward communication schemes (intro-

duced in Section 2.1.2). Note that although the mutual exclusion and the sema-

phore synchronisation methods are provided as predefined channels in SystemC,

their characteristics differ from what they usually are in the real-time software

context. We will address this issue later in Section 2.2.2.2.

2.2.2 SystemC Discrete Event Simulation Kernel

Apart from a few attempts that develop their own proprietary simulation ker-

nels such as the synchronous data flow execution model in [68] and the POSIX

thread implementation model in [69], most current SystemC simulations are

driven by the built-in OSCI discrete event kernel. We now summarise some dis-

tinctive characteristics of the simulation kernel and discuss its advantages and dis-

advantages regarding real-time software simulation in particular.

47

2.2.2.1 The Co-operative Simulation Engine

The current SystemC execution model (after Version 2.1) can be implemented

(compiled) using three thread libraries on different host OS platforms, i.e., the

QuickThread package for UNIX-like OSs, the Fiber thread package for Windows

OS and the more portable POSIX pthread library [117]. But no matter what the

implementation is, the co-operative multitasking policy remains the same. Simply

speaking, only one process will be dispatched by the scheduler to run at a time

point. The running process cannot be pre-empted by another. In case the running

process is a thread type, it transfers the control to the scheduler by calling

wait() functions or exits; a method process only yields control when its func-

tion body finishes.

Figure 2-8 illustrates the operating cycle of the kernel. Notably, due to irrele-

vance to the simulation cycle, the initial elaboration phase (i.e., before the start of

simulation), at which SystemC modules are constructed, is not included in the fig-

ure.

Initialisation: This is the first phase after a SystemC simulation starts, i.e., af-

ter calling the function sc_start() in the main model program. All modelling

processes without a special declaration of dont_initialize() are put into a

Initialisation

Evaluation
Execute a ready

process

Ready
Process?

Make all eligible
processes ready

to run

Update

No

Yes

Ready
process?Yes

Time advance

No

delta cycle

No ready process,
simulation ends.

Figure 2-8. SystemC kernel working procedure

48

ready pool.

Evaluation: At the evaluation stage, ready processes execute sequentially, oth-

erwise the simulation ends if there are no runnable processes. The execution order

of them is unspecified in the SystemC specification. In the co-operative execution,

a process quits the running state either by initiatively calling a wait() statement

or simply finishing its function body. There are two kinds of wait() statements:

 The wait(time) function makes a process blocked for an un-interruptible

time duration and will resume the process after that specified time. This will

be also referred to as the wait-for-delay method hereafter.

 The wait(event) function makes a process blocked until the specified

event occurs. This will be also referred to as the wait-for-event method

hereafter.

Because processes may also notify some events immediately in execution and

thus cause other processes to be ready to run at once, the evaluation stage will it-

erate until no process is runnable. Besides, executing a process may access primi-

tive channels and change the signal value, which will consequently result in the

updating of data at the next update phase.

Update: In order to model the phenomenon that combinational electronic sig-

nals change values instantaneously in parallel within the sequential SystemC

simulation, SystemC uses an evaluation-update method to guarantee all signals

are synchronised. At the update phase, the update() method of each channel

that previously had requested an update before is called by the kernel to renew the

signal with a new value. If this action notifies an event to wake up a process, or

the kernel finds that some events are to notify blocked processes, then the kernel

will enter the evaluation phase again in order for repetition to occur. This proce-

dure, from evaluation to update and iteration, is known as a delta cycle, which

does not advance the simulation clock because everything happens at the same

time point in actual life.

Time advance: When there is no runnable process, the kernel will progress the

simulation clock to the earliest time point specified by a time delay or the nearest

pending event it is scheduled to notify. Some processes may thus become run-

nable and it is thus necessary to begin a new evaluate phase.

49

2.2.2.2 Advantages and Disadvantages for Real-time Software Modelling

Regarding fast TLM HW simulation and behaviour software simulation, the

SystemC SLDL can supply a homogeneous environment to model SW/HW by the

same C++ language description and drive their co-simulation by the same engine.

The global SystemC clock can be used for both the HW part and the software part,

which avoids the overhead of exchanging local clock information in a heteroge-

neous co-simulation environment [118] [86]. However, the HW/SW timing syn-

chronisation problem still exists within the SystemC simulation. The uninterrupti-

ble SystemC wait(time) clock advance method leads to a problem whereby a

process using wait(time) is not pre-emptible during its delay duration. The

timeliness to respond to an asynchronous event depends on the length of the cur-

rent time delay slice.

In the SystemC discrete event simulation, if events occur at different time

points and make corresponding processes ready, the scheduler is deterministic and

schedules process execution sequentially. However, if multiple processes get

ready at the same time point (i.e., during the same evaluation phase or in a delta-

cycle), the SystemC standard does not specify their running order [66]. This par-

tial ordering concurrency has disadvantages for real-time software modelling

which requires predictability and determinism. For example, multiple processes

are blocked waiting to execute a SystemC mutex.lock() operation, then

which process will get a chance to run is non-deterministic, depending on the or-

der of process execution during the evaluation phase. This behaviour also happens

on the SystemC semaphore synchronisation mechanism.

The SystemC co-operative execution model has a native side-effect of keeping

the integrity of shared data in atomic process execution. Because a process cannot

be pre-empted involuntarily, it can access shared variables exclusively in zero

time. However, this feature cannot replace common software synchronisation

methods for protecting shared resources, since it is necessary to guarantee the ex-

clusive access in a period of time by using a wait() function in a timed software

simulation. It is possible that another process may rewrite shared data in the same

delta cycle before the wait() delay of the last accessing operation has been pro-

gressed, which is not desired simulation behaviour.

50

Consequently, in order to model and simulate real-time software in the Sys-

temC environment, people should try to avoid or otherwise carefully use the

aforementioned error-prone features.

2.2.2.3 Discussions on Simulation Time

SystemC uses an integer-valued absolute time model. A time object (class

sc_time) is represented by two parts: a numeric value and a time unit. The time

value is a 64-bit unsigned integer, whilst the time unit can have six granularities

from the most fine-grained femtosecond (SC_FS) level to the most coarse-grained

second (SC_SEC) level. The time resolution is the smallest time that can be pre-

sented in a simulation and is defined before starting simulation.

When people talk about time in SystemC modelling and simulation, there are

often two terms involved:

 Target Time (also called simulated time, target simulation time): People

build models in SystemC and simulate them on the host computer in order

to mimic the behaviour of a target system. If models are timed, then people

need to assign time delays for various operations in models, which represent

the corresponding execution time on a target system. This kind of "execu-

tion time" can be called the "target time”, which relates to the virtual clock

(also known as virtual time, target clock). In SystemC simulation, its elapse

can be observed by inserting the SystemC sc_time_stamp() function in

model code.

 Host time (also called simulation time): As a native simulation approach,

SystemC models are compiled for and run on a host computer. Running a

SystemC program necessarily consumes some host CPU time, just like all

other software programs. People call this "host CPU time" as the "host time”

or the “simulation time", and regard it as the simulation performance (speed)

that indicates how fast a simulation is in the real world.

It is worth noting that there is not a simple linear relation between the simu-

lated time and the simulation time regarding different SystemC simulations. Be-

cause of the discrete-event nature of the simulation engine, in general, the simula-

51

tion speed mainly depends on how many events are involved in simulation, i.e.,

the more events, the lower the speed.

2.2.3 A SystemC SW/HW System Example

This section gives a simple SystemC example consisting of a software process-

ing element and a hardware component. Figure 2-9 depicts the architecture of this

example. The hardware model transmits integer data to a software process via a

signal channel, and another software process is in charge of outputting the re-

ceived data.

This example covers several basic SystemC modelling issues, e.g., concurrent

processes, software sequential execution, co-operative scheduling, event-based

synchronisation method, interface method call communication, static sensitivity,

and dynamic sensitivity, etc. The SystemC code of this example includes three

parts: the hardware module in Table 2-2, the software module in Table 2-3, and

the main function in Table 2-4.

SW PE Module

signal<int>
in_portSC_THREAD

sw_isr
read() write()

HW Module

out_port
SC_METHOD
hw_gen

SC_THREAD
sw_output

sc_event

Figure 2-9. Block diagram of a SystemC example

SC_MODULE(HW) //Hardware component module

{

 int TXD;

 sc_out<int> out_port; //Data transmission port

 SC_CTOR(HW)

 {

SC_METHOD(hw_gen); //Process declaration

 }

 void hw_gen()

 {

TXD = rand()%10;

out_port->write(TXD);

cout<<sc_time_stamp()<<" HW:"<<TXD<<endl;

next_trigger(1+rand()%5, SC_US); //Next run

 }

};

#001

#002

#003

#004

#005

#006

#007

#008

#009

#010

#011

#012

#013

#014

#015

#016

Table 2-2. SystemC code of a HW module

52

Referring to Table 2-2, the function of the hardware module is simply embod-

ied in a SC_METHOD (hw_gen), which executes repeatedly after a randomised

interval (see line 14). In each execution, it writes a random integer TXD to the

output port by calling the method on the port.

Referring to Table 2-3, there are two SC_THREAD type processes in the soft-

ware processing element module. At line 12, the sw_isr process is sensitive to

the value change of the in_port and then receives data from it. Once sw_isr

SC_MODULE(SW)//Software PE module

{

 sc_in<int> in_port; //Data receiving port

 sc_event evt_sw;

 int RXD;

 boolean cpu_busy; //CPU is occupied

 SC_HAS_PROCESS(SW);

 SW(sc_module_name name):sc_module(name),cpu_busy(false)

 {

SC_THREAD(sw_isr);

 dont_initialize();

 sensitive<<in_port; //Static sensitivity

 SC_THREAD(sw_output);

 dont_initialize();

 sensitive<<evt_sw;

 }

 void sw_isr()

 {

 for (;;)

 {

 if (!cpu_busy)

 {

 cpu_busy = true;

 cout<<sc_time_stamp()<<" sw_isr runs"<<endl;

 RXD = in_port->read();

 wait(1, SC_US); //wait for delay

 cpu_busy = false;

 evt_sw.notify(); //Trigger sw_func()

 }

 wait(); //Revive static sensitivity

 }

 }

 void sw_output()

 {

 for (;;)

 {

 if (!cpu_busy)

 {

 cpu_busy = true;

 cout<<sc_time_stamp()<<" sw_output data:"<<RXD<<endl;

 wait(2,SC_US);

 cpu_busy = false;

 }

 wait();

 }

 }

 };

#001

#002

#003

#004

#005

#006

#007

#008

#009

#010

#011

#012

#013

#014

#015

#016

#017

#018

#019

#020

#021

#022

#023

#024

#025

#026

#027

#028

#029

#030

#031

#032

#033

#034

#035

#036

#037

#038

#039

#040

#041

#042

#043

#044

#045

#046

#047

Table 2-3. SystemC code of a SW PE module

53

finishes execution, it notifies the event evt_sw in order to make the other proc-

ess sw_output ready (see line 28). The two processes use wait(time)

statements to simulate their execution time cost (lines 26 and 41). Since it is as-

sumed that there is only one conceptual SW PE, the two processes need to execute

sequentially. A flag variable is used to guarantee that only one software process

can be at the running state (i.e., during a delay interval) at a time.

Referring to the main function in Table 2-4, modules and channels are created

and instantiated (lines 3-6). Corresponding ports on both HW and SW modules

are connected by the channel object sig (lines 6, 7) in the elaboration phase. A

call to the function sc_start() begins the simulation, which will continue for

100 microseconds target time in our simulation (line 8).

It should be noted that, in this example, two software processes execute accord-

ing to the SystemC native co-operative scheduling policy and use the uninterrup-

tible wait(time) function to advance the target clock. That is, one software

process executes up to completion and one process cannot pre-empt the other. As

a result, if a hardware signal arrives when a software process is executing, the

int sc_main(int argc, char **argv) //Main function

{

 sc_signal<int> sig;

 HW hw_i("HW_moduel");

 SW sw_i("SW_module");

 hw_i.out_port(sig);

 sw_i.in_port(sig);

 sc_start(100, SC_US);

 return(0);

}

#001

#002

#003

#004

#005

#006

#007

#008

#009

#010

Table 2-4. SystemC code of the main function

10 2 3 4 5 6 7 8

value: 1 value: 7

value:
1

value:
8

value:
7

value:
1

9 10 11

value:
9

value: 9

Missed Missed

sw_isr

sw_output

hw_gen

time (us)

Figure 2-10. Non-pre-emptible execution

54

software Interrupt Service Routine (ISR) cannot serve the hardware interrupt.

Figure 2-10 shows this phenomenon, in which interrupts are missed at time points

3 µs and 6 µs. In Chapter 3, we will present the solution to this problem.

2.3 RTOS Modelling and Simulation in System-level

Design

In recent years, RTOS modelling and simulation have been proposed as impor-

tant embedded software validation techniques in the context of embedded systems

system-level design. This section surveys related SLDL-based RTOS modelling

and simulation research. There are several criteria by which to classify and com-

pare different approaches, for instance:

 By application scope: Various RTOS models have been developed for high-

level abstract software simulation [112] [72] [113], native-code software

simulation [119] [87], HW/SW co-simulation [120] [121] and system-level

design flow refinement research [43].

 By software simulation methods: As already introduced in Section 1.5, there

are two main software simulation approaches being used in system-level de-

sign: Instruction Set Simulation and behavioural simulation. Accordingly,

researchers develop ISS-based RTOS models for complete and accurate

validation of final software implementation [108] [109], whilst behavioural

RTOS simulation models are more widely used for fast and flexible software

early exploration.

 By functional accuracy: According to the functional accuracy of the RTOS

model, RTOS simulation models are summarised into three categories in

[77]: abstract OS models that rely on communication primitives and sched-

uling service by the underlying SLDL kernel, virtual OS models that mimic

the functionalities of the final OS but with independent implementation

code, and final implementation OS models which can be used in ISS simula-

tion. It should be noted that the definition of abstract OS models seems to

overlook the fact that SLDLs fail to supply enough RTOS capability

natively.

55

We categorise and analyse RTOS modelling and simulation research based on

their timing and functional accuracy levels, as well as their applicability stage in

an embedded system design flow. Referring to Figure 2-11, most existing meth-

ods fall into three main categories: coarse-grained timed abstract RTOS modelling,

fine-grained timed native-code RTOS modelling and ISS based RTOS simulation.

The “coarse-grained” and “fine-grained” criteria refer to the timing accuracy level

of software models (including both the RTOS aspect and SW applications), and

they both belong to the domain of behavioural software simulation.

2.3.1 Coarse-Grained Timed Abstract RTOS Modelling

Abstract RTOS modelling and simulation focus on early design phases, such as

system specification, system analysis and SW/HW pre-partitioning stages. At this

time, the target platform is undetermined and software code has not been imple-

mented. Also, it is not possible to presume specific RTOS API services in the sys-

tem-level simulation framework before enough decisions have been made regard

the system architecture. However, general structures and execution mechanisms of

the RTOS model should still be not far from real RTOSs, in order to make sure

that the RTOS model has a practical usability for real-time software design. Ab-

stract RTOS modelling is supposed to provide extensible real-time system model-

ling capabilities and be fast to be changed in evolving simulation loops.

In this approach, software applications are normally organised as a collection

of abstract tasks associated with coarse-grained temporal properties, e.g., period,

Coarse-grained timed
abstract RTOS Modelling

Processing Element

Abstract RTOS
model

Abstract task
 model

Processing Element

Generic or real RTOS model

Native application code

Target ISS

Compiled
application binary

for target

Cycle-accurate ISS based
RTOS simulation

τ1 τ2 τ3

start()

terminate()

sleep() kill()

Fine-grained time native-
application RTOS Modelling

 Real RTOS

Port
Model

by SLDL

RTOS API

Task Man. Sche.

ISR

Sync.

Real-time Clock

System analysis phase System exploration phase Implementation phase Design Flow

Untimed Approximate-timed Cycle-accurate

thread1() thread2()

Figure 2-11. Three types of RTOS simulation models

56

deadline, offset, and execution times [112] [72]. Periodic, aperiodic, and sporadic

tasks are typically explicitly defined by different timing characteristics, which in-

clude the main information obtained by the RTOS in order to handle a task. A

qualified abstract RTOS model needs to at least provide priority-based pre-

emptive scheduling services and basic primitives to control the “start” and “termi-

nation” of a task. This feature is essential for a practically usable RTOS model in

order to overcome the previously-mentioned limitations of underlying SLDL

bases. A task’s execution cost is usually modelled by the wait-for-delay statement.

The delay interval of every task instance (i.e., a job) is either statically annotated

by estimation or dynamically randomised by some statistical theories, e.g. uni-

form distribution [8]. The “delay-measurement and back-annotation” timing

method is also proposed in [113] [43], but it is applied at a coarse-grained timing

granularity (i.e., task-level). Inter-task synchronisation for resource sharing,

communication services and interrupt handling are usually not adequately consid-

ered in this kind of model. The advantage of this method is the fast simulation

speed, since applications and RTOS are highly abstract models. The main draw-

backs of this method are low timing accuracy (coarse time annotations for appli-

cations and inadequate modelling of RTOS timing overhead) and incomplete

modelling capability of RTOS functionalities. Besides, in most existing research,

there is a lack of SW/HW interaction modelling, and hardware parts of a CPU

subsystem are not explicitly modelled either. This means that software application

tasks and the abstract RTOS model form the software PE model by themselves.

Gerstlauer et al. present an early SpecC-based abstract RTOS model in order to

integrate software scheduling support in the TLM model refinement flow [43]

[122]. This RTOS model provides 16 basic primitives to support task management

and scheduling. RTOS timing overheads are not mentioned sufficiently. Besides,

it uses the imperfect wait-for-delay time advance method, so interrupt handling

cannot be accurately modelled and the timing accuracy is limited by the minimal

resolution of time annotations. A subsequent work [123] resolves this initial

HW/SW synchronisation problem by using an improved wait-for-delay method

named “Result Oriented Modelling”. In recent, Zabel et al. [124] use the SystemC

SLDL to implement an abstract RTOS model where most parts are based on the

57

work of [43]. They solve the HW/SW timing synchronisation problem by using

the SystemC wait-for-event method, which is also utilised in our research in this

thesis.

Early work by Madsen et al. presents a SystemC-based abstract RTOS model

[112], which is further extended for MPSoC simulation [8] and NoC simulation

[125]. The basic idea is to decompose an embedded system model into three com-

pact sub-models: the task graph model, the scheduler model, and the link commu-

nication model. The scheduler model provides both fixed-priority scheduling (e.g.,

rate-monotonic priority assignment) and dynamic-priority scheduling (e.g., EDF)

services by using three primitives (i.e., run, pre-empt, and resume) to manage

tasks. The task model is characterised by coarse-grained temporal information or

estimates, e.g., WCET, BCET, period, deadline and offset, but without any func-

tionality code. This RTOS model is a good basis for high-level system exploration,

but it also has some limitations. Firstly, RTOS service overheads are not included

in the model. Furthermore, its task state machine model is different from that usu-

ally found in a typical real-time kernel, and the task model is also too simple to

mimic a real system. Finally, its link communication model heavily relies on the

SystemC Master-Slave message-based communication library for both software

internal and inter-module communications, whose behaviours are different from

common RTOS synchronisation and communication mechanisms.

Hessel et al. describe an abstract RTOS model in SystemC SLDL for use in the

embedded systems refinement flow [113]. Both the structure and implementation

of this RTOS model is similar to Madsen’s model; hence, it is also weak due to

simplistic task modelling and incomplete RTOS service modelling.

Moigne et al. propose a generic RTOS model for real-time systems simulation

[114]. This work has the advantage of considering timing overheads of three

RTOS services, i.e. context-load time, context-save time and scheduling algorithm

duration. Nevertheless, this work does not address task functionality modelling,

interrupt handling and synchronisation modelling.

Hastono et al. use an abstract RTOS model for real-time scheduling assess-

ments [126] and embedded software simulation [72]. The RTOS model provides

basic task management services similar to the models of Gerstlauer and Madsen.

58

Various static and dynamic scheduling policies, e.g., event-driven, time-triggered,

fixed-priority RMS, dynamic-priority EDF, etc. are integrated in order to evaluate

and compare different task scheduling decisions. The functionality of a task is de-

composed into non-pre-emptive atomic actions and pre-emption is assumed to

happen only at boundaries of atomic actions. Consequently, this pre-emption

model cannot simulate interrupts realistically.

Hartmann et al. present an abstract RTOS simulation model as a part of their

SystemC-based system synthesis design flow [127]. They model software on a

generic run-time system rather than directly modelling existing RTOS services,

i.e., all conventional software synchronisation and inter-task communication

mechanisms are modelled by the shared objects method. The intention is to inherit

their previous hardware modelling work and thus allow a seamless high-level

SW/HW specification environment.

2.3.2 Fine-Grained Timed Native-Code RTOS Simulation

Native-code RTOS models are used to support simulation of high-level soft-

ware functional code at the system exploration phase, when the target platform

and the RTOS are in the process of being selected, and application software is un-

der development.

Its timing accuracy has been improved compared to abstract RTOS models.

Software execution delays are measured and annotated in models at some finer

granularities (e.g., function level, block level, and source code line level), so tim-

ing accuracy becomes a major focus in this approach. This kind of RTOS simula-

tion model often supplies comprehensive and specific services, and contains some

timing overhead information. In some research, a real RTOS is modelled [128]

[87] [129] [130], whilst some other works attempt to build a generic RTOS model

[131] [12] [130]. Because of its much faster simulation speed (two or three orders

of magnitude faster than ISS simulation [128]) and acceptable loss of modelling

accuracy, fine-grained timed native-code RTOS and software simulation is pro-

posed as the counterpart of TLM HW and communication modelling.

Jerraya’s group performs a series of studies addressing native software simula-

tion in SoC HW/SW co-simulation, and presents two different typical software

59

simulation methods in [121] [128] [130], respectively. In [121] [128], they build a

software simulation model (including OS, application software, and a bus func-

tional model) annotated with timing delays and run it as a host Unix process,

whilst, the hardware part is modelled in SystemC SLDL. The communication be-

tween software and hardware is implemented with Unix IPC methods, such as

shared memory and signal. In order to solve the HW/SW synchronisation problem,

they propose a “variable timing granularity” method to simulate interrupts by

trading off the simulation performance with the timing accuracy. In [130], they

use a different way to model the software part, where application tasks are sched-

uled by an OS model by using the multi-threading functionality of the host OS,

and then the whole software part is integrated into a SystemC HW/SW co-

simulation framework. Both a pre-emptive FIFO based scheduler and a real eCOS

RTOS are implemented in the OS model library. With the same RTL model on

the HW side, compared to the cycle-accurate ISS software simulation, the co-

simulation performance with native RTOS simulation is reported as three orders

of magnitude faster, and the simulation accuracy achieves 86% of the ISS. In gen-

eral, from the RTOS modelling aspect, this research has the advantage of consid-

ering various detailed RTOS service overheads and accurately modelling HW/SW

interactions (e.g., interrupt handling and memory access). However, their models

sometimes utilise the underlying host OS services, which may deteriorate the

portability and negate SLDL’s intent as a homogeneous modelling framework.

A SystemC-based native simulation model for a commercial Texas Instrument

RTOS is presented by He et al. in [87]. It models common RTOS services such as

task management, priority-base scheduling, task synchronisation, I/O, and inter-

process communication with timing overheads estimated from the target proces-

sor’s benchmark sheet. This simulator uses an event time-stamp prediction

method for interrupt modelling, which is based on an assumption that application

tasks can report happening times of their future synchronisation events to the ker-

nel. This tight requirement requires pre-requisite analysis of the whole system and

may hence restrict its usability.

A HW/SW co-simulator that includes a special-purpose μITRON 4.0 RTOS

model is introduced in [129]. It natively simulates a complete μITRON RTOS

60

model with application software on the host computer. For the HW aspect, C/C++

or HDL HW models can be included in the simulator and can communicate with

the software simulator by using Windows IPC methods. This work has a draw-

back in that its simulated clock relies on the host OS clock, i.e., it is untimed from

the perspective of target software simulation. Furthermore, host IPC methods may

bring an extra and unexpected simulation overhead.

Chung et al. describe a generic SystemC-based RTOS model which is oriented

for MPSoC simulation in [131]. Its generic RTOS and POSIX like API models

support native application code to execute with RTL/TLM HW models. However,

its RTOS task machine model is lacking in modelling real-time synchronisation

mechanisms. And it also uses a polling method to check interrupt events in every

clock-cycle, which may result in undesired consequences that interrupt latency

depending on the length of a simulation clock cycle, i.e., it is an “annotation-

dependent” HW/SW timing synchronisation approach.

Posadas et al. develop a comprehensive POSIX compliant RTOS simulation

model on top of SystemC in [12] and apply a dynamic delay annotation method

by assigning each C++ operator with a corresponding target-platform execution

cost. In [132], they address the global variable accessing problem and propose

three joint solutions. Their first method is a fine-grained annotation technique (see

Section 3.1.2); the second method can guarantee a correct functional simulation

result but still has the delayed interrupt handling deficiency due to its wait-for-

delay method (see Section 3.1.1); the third method is satisfactory and similar to a

method used in this thesis (see Section 3.2.3.2), but it focuses on abstract software

programming models by providing a special primitive channel to protect global

variables.

2.3.3 ISS-based RTOS Simulation

ISS-based RTOS simulation can be used in a HW/SW co-simulation frame-

work when embedded software has been fully implemented. The high accuracy,

low simulation performance speed and late availability are its contradictory char-

acteristics, and therefore make it applicable for the late development phases where

high reliability and high accuracy are the main focuses of simulation. Finished

61

software source code is cross-compiled and simulated in a cycle-accurate instruc-

tion set simulator that represents the target processor’s behaviour. The ISS is usu-

ally wrapped in a SLDL module. A real RTOS is often ported in the ISS to super-

vise software application. Other SLDL-based HW component models are con-

nected with the ISS-wrapper model by the SLDL communication backplane to

achieve a co-simulation. This co-simulation approach is similar to the traditional

cycle-accurate embedded system co-simulation approach, which uses HDLs to

model hardware components at RTL level and uses the ISS to execute software.

Compared with the conventional approach, this unified system-level HW/SW co-

simulation approach can enhance design productivity by raising the abstraction

level of HW models and then gain simulation speedup to some extent. However,

this may somewhat contradict the system-level design concept of raising abstrac-

tion level for more efficient design space exploration, because it does not change

the software simulation method.

Chevalier et al. integrate a C/OS-II RTOS on an ARM ISS which is wrapped

by a SystemC model [108]. Their modelling framework constructs a conversion

interface between SystemC API and the C/OS-II API in order to let the RTOS

schedule SystemC-based application software processes. Benini et al. build a Sys-

temC-based multi-processor co-simulation platform [109] that uses SystemC to

wrap several cycle-accurate ARM ISS simulators to run multiple cross-compiled

Clinux kernels and software applications.

To trade-off simulation speed with accuracy, the approaches in [120] and [133]

take a different approach by running software application on the ISS whilst build-

ing a RTOS model on top of the SLDLs. However, [120] only supplies task pre-

emption services and considers limited RTOS timing overheads.

2.3.4 The Proposed RTOS Simulation Model

In this thesis, a SystemC-based generic RTOS modelling and simulation ap-

proach will be presented. Essentially, it falls into the native-code RTOS simula-

tion category, but also integrates some abstract RTOS modelling features in terms

of supporting abstract task models.

62

Compared with existing research, the proposed RTOS simulation model em-

bodies the mixed timing software modelling idea (in Section 3.2) by supporting

hybrid abstract task models and native-code task models in a single simulator, in

order to enhance modelling flexibility and expand application domain.

Furthermore, the generic RTOS model’s functionality is determined by survey-

ing some popular RTOS products and standards. It aims to support more realistic

software simulation than other simplistic RTOS models. Most importantly, the

high simulation performance and good timing accuracy are preserved at the same

time in the RTOS simulation model because of the underlying Live CPU Model.

The details of this model will be described in Chapter 4.

2.4 Summary

In this chapter, some basic concepts in transaction-level modelling research

have been introduced. The focus is to survey current abstraction levels, timing de-

grees, and communication modelling in the TLM research context, in order to in-

spire our research on real-time software behavioural modelling and simulation

that can be seen as the TLM software computation aspect. However, we noticed

that existing TLM abstraction levels and models are not appropriate and are insuf-

ficient for real-time software modelling. Thus, in the next chapter, we will define

some real-time embedded software simulation models in the context of SystemC

based TLM research.

Subsequently, SystemC language constructs and the co-operative simulation

kernel were introduced. A SystemC-based HW/SW system example model was

presented. This demonstrates how the use of uninterruptible wait-for-delay state-

ments may lead to missing external interrupts in simulation, which highlights a

problem to be solved.

Some state-of-the-art RTOS modelling approaches and simulation models for

SLDL-based system-level design were surveyed also. They are classified into

three categories depending on timing and functional accuracy levels. Among them,

the abstract RTOS modelling approach and the native-code RTOS modelling ap-

proach are of concern to this thesis. We aim to propose a generic mixed timing

63

RTOS simulation model with improved features in terms of timing accuracy,

functionality, and modelling flexibility.

65

Chapter 3

Mixed Timing Real-Time Embedded Software

Modelling and Simulation

In previous chapters, SLDL-based software behavioural modelling and simula-

tion have been introduced for validation of real-time embedded software (applica-

tions and RTOS) in the context of system-level and TLM design. Three objectives

can be been identified as key requirements:

1) Fast simulation performance compared to ISS simulation.

2) Flexibly modelling software functions and their timing delays.

3) Accurate simulation results in terms of both functional and timing aspects

if they are both modelled.

This chapter presents a SystemC-based mixed timing software behavioural

modelling and simulation approach (referred to as the mixed timing approach

hereafter) and the associated Live CPU Model. A basic assumption of this ap-

proach is that the proposed simulation models are applicable after HW/SW parti-

tioning and applications can be divided into tasks. If multiple tasks need to exe-

cute concurrently and pre-emptively, then a behavioural OS model should be in-

cluded in simulation.

Referring to Figure 1-7 (Page 18), a SLDL-based behavioural simulation ap-

proach includes three main steps, i.e., schedule of processes, native execution of a

process in zero target time, and target delay time advance according to annotation.

The first and second steps are the functional aspect of behavioural modelling and

simulation, whereas the third step refers to the timing aspect. According to the

OS-based task simulation model assumption, in this thesis, the functional aspect

of modelling and simulation is relatively fixed as software functions are wrapped

in OS tasks and the OS model controls their execution order.

66

In this chapter, the mixed timing approach mainly seeks answers to the above

three key requirements from the timing perspective of modelling and simulation,

but also considers software functional modelling. Separating timing issues in

modelling and preserving high timing accuracy in simulation are two characteris-

tics of this approach. The conventionally annotation-dependent SLDL-based

software modelling and simulation is treated as two partially separated stages
1
:

1) The timing modelling step mainly refers to annotating target platform exe-

cution costs (time delays) and defining time advance points in software task

code, when SLDL-based software task models are being built.

2) The timing simulation step mainly refers to advancing the target simulated

clock according to those annotated time delays, when these SLDL-based

software task models are dynamically simulated upon a SLDL simulation

engine.

This approach allows flexibility in software timing modelling, achieves good

timing accuracy in software timing simulation, and maintains a high simulation

speed. It has following basic features:

 It utilises multiple-grained software timing information and variable annota-

tion methods for software models at the modelling stage (in Section 3.2). It

facilitates model builders and simulation users for using a variety of avail-

able means of timing estimation sources, and allows building mixed timing

simulation models with varying timing precision for workload and accuracy

trade-off.

 It preserves high hardware interrupt handling and software pre-emption tim-

ing accuracy within a certain bound at the timing simulation stage. The Live

CPU Model (in Section 3.3) is introduced to supervise software timing

simulation and monitor external interrupts in simulation. By excluding pos-

sible interrupt disabled cases (e.g., critical section code), the Live CPU

Model can interrupt current software simulation (i.e., stop its delay time ad-

1
 It is necessary to point out that the separation of timing issues in modelling and in simulation is

“partial”, because these two aspects cannot be totally decoupled in back-annotated timed software

simulation.

67

vance) as soon as an IRQ is caught, and resume remaining time advance for

the pre-empted task at the correct time point, just like real CPU execution.

Compared to some conventional pre-emption simulation approaches that

trade off simulation speed for accuracy, the simulation performance of the

proposed approach is not sacrificed whilst timing accuracy is sustained.

 It offers varying system simulation similarity and run-time information ob-

servability. By configuring the Live CPU Simulation Engine with the vari-

able-step and the fixed-step time advance methods, the users can make

trade-offs between simulation similarity, information observability and

simulation performance (in Section 3.3.4).

Figure 3-1 illustrates the mixed timing software modelling and simulation ap-

proach. In the figure, various grained delay time slices, e.g., task-level, function-

level, and source code line-level, can be annotated to the same software model at

the timing modelling stage. The Live CPU Model uses these different sizes of

time annotation statements to progress the target simulated clock. In this mixed

timing approach, the granularity of a time annotation does not interfere with the

dynamic timing accuracy of HW/SW synchronisation (i.e., interrupt handling) in

timing simulation. Interrupt handling does not need to wait until a delay slice has

totally elapsed, i.e., reaching a delay boundary. On the contrary, an ISR can pre-

empt current running software task as soon as an external interrupt happens, just

like the situation at the time point t1. After an ISR finishes execution at time t2, the

pre-empted software task is resumed and the remaining value of the previously-

interrupted delay annotation slice is also continued.

1.5ms 5ms 2ms1ms 4ms 10ms

250ms 200ms 100ms

10ms

time

Timing
Simulation

app. SW execution

An IRQ
arriving

Case 1:Task-level annotation

Case 2: Function-level annotation

Case 3: Source code line-level
 annotation

Timing
Modelling

app. SW execution

Executing
the ISR

time advance start

time advance stop

t1 t2

Figure 3-1. Mixed timing software modelling and simulation

68

In the reminder of this chapter, some problems and approaches regarding tim-

ing issues in existing SLDL-based software modelling and simulation will be sur-

veyed (Section 3.1). Section 3.2 describes the mixed timing approach in detail, in

terms of various timing techniques for software modelling and simulation. The

Live CPU Model is introduced in Section 3.3, which is not only important for tim-

ing accurate pre-emptive software simulation but also meaningful for extending

the software processing element model to the TLM modelling context. Finally,

evaluation metrics and experiments are presented in Section 3.4 and Section 3.5

respectively, in order to demonstrate benefits of the proposed approach. Section

3.6 will summarise this chapter.

3.1 Issues in Software Timing Simulation

This section briefly surveys some timing issues in related SLDL-based behav-

ioural software timing simulation approaches. Concerning two important simula-

tion timing characteristics - timing accuracy and simulation performance, we will

introduce their capabilities and also their deficiencies.

3.1.1 Annotation-Dependent Time Advance

In SLDL-based real-time software behavioural simulation, a software model

executes its function code on the host CPU architecture, which does not have any

timing correlation to its execution cost on the target CPU. Accordingly, the SLDL

wait-for-delay function (e.g., wait(time) in SystemC) is used to model soft-

ware timing behaviour on the target [72] [43]. On the one hand, it adds target-

platform delay annotations in software models; on the other, it also progresses the

simulated clock. Hence, software timing modelling (adding delays) and timing

simulation (using delays) are not separated in this kind of time advance approach.

However, the uninterruptible characteristic of the wait-for-delay statement is

problematic, with the “annotation-dependent” software time advance method be-

coming an issue in software simulation. Figure 3-2 shows examples regarding

wait-for-delay statements in software simulation. There are two application tasks

(i.e., task1 and task2) and an ISR that serves an external hardware interrupt. The

69

interrupt event should be processed as soon as possible once it occurs, just like the

normal situation of a real-time system.

In simulation, once a wait-for-delay statement is invoked, the value of software

delay time will be totally consumed without a possibility of interruption. Conse-

quently, task2 can only execute after the wait-for-delay statement of task1 is fin-

ished. In such cases, once an interrupt event is raised by a hardware module dur-

ing this delay duration, e.g., at time t0 in the example, it may lead to two problem-

atic simulation phenomena depending on modelling methods.

Figure 3-2 (A) shows the first possible problem: “delayed interrupt handling”.

Because the wait-for-delay statement of the running task2 cannot be interrupted,

the ISR can only start when the current delay time slice finishes at time t1. It can

be observed that the ISR is wrongly postponed rather than serving the interrupt

request at the expected time point. Under such circumstances, both software tick

scheduling and the HW/SW synchronisation (i.e., interrupt handling) can only oc-

cur at the boundaries of delay annotations. Simulation time advance is dependent

on the granularity of annotation. In simulation, both the pre-emption latency and

the interrupt latency til are unrealistically restricted by length of delays that are

 t0 t1 time
HW IRQ
happens

wait(2)

wait(8)

task1

task2

ISR ISRtil

(A) Delayed interrupt handling

Synchronisation
point

 t0 time
HW IRQ
happens

wait(2)

wait(8)

task1

task2

ISR ISR

ISR and task2 execute in parallel.

(B) Wrong concurrency in a uniprocessor system

Zero-target-time
SW execution

low

high

Priority

low

high

Priority

wait(t)
wait-for-delay

function

ISR is delayed wrongly.

Figure 3-2. Annotation-dependent time advance method

70

defined at the modelling stage. Under the worst circumstances, the latency equals

the largest time delay value. This time advance method makes it hard to model a

pre-emptive real-time system or a real interrupt handling procedure.

Considering the second case in Figure 3-2 (B), the model programmer may

choose to start the ISR as soon as it is raised. However, this brings a critical prob-

lem in that the ISR and the existing task execute in parallel in simulation, i.e., they

are both at the RUNNING state from the perspective of CPU scheduling. Obvi-

ously, in a uniprocessor system, this situation cannot occur. For this simulation

problem, programmers therefore need to correct the affected time delay in order to

serialise software execution with right timing behaviour. This problem resembles

the conventional optimistic co-simulation that may require time rollback and re-

execution.

In the following Sections 3.1.2 - 3.1.4, three existing techniques will be intro-

duced, which aim to remedy this annotation-dependent time advance problem.

More importantly, we will present our complete solutions the “mixed timing ap-

proach” and the “Live CPU Model” in the rest of this chapter.

3.1.2 Fine-Grained Time Annotation

An intuitive means of solving the above-mentioned “delayed interrupt handling”

problem is to use more wait-for-delay statements with finer grained delay time

slices [132]. In the context of mixing untimed and timed TLM models, Ghenassia

et al. propose a similar idea to define some pseudo synchronisation points in un-

timed TLM models where other timed TLM threads can detect interrupt more fre-

quently but without advancing the simulated clock [3].

Figure 3-3 illustrates this fine-grained time advance approach. The software

model code is divided into small segments. The granularity of wait-for-delay time

annotations is limited to an acceptable extent at the model building stage. This

means that there are more time advance points in the models. As a consequence,

interrupt events can be frequently checked in order to more realistically represent

the interrupt latency in the simulation. Unfortunately, the HW/SW timing syn-

chronisation accuracy is enhanced at a cost of:

71

 A large quantity of time profiling work and annotation statements when

building simulation models

 More wait-for-delay statements mean frequent SLDL simulation engine

context switches and thus large overhead.

 Interrupt handling may still be delayed, although the delay time is minor be-

cause of fine-grained annotation slices.

Compared to this approach, fine-grained time annotation is also supported in

the proposed mixed timing approach. However, this is not a necessary condition

to ensure high timing accuracy of HW/SW synchronisation. The HW/SW syn-

chronisation problem is tackled by the Live CPU Model in this thesis, which fully

relaxes the limitation of the annotation-dependent problem. The Live CPU time

advance approach can maintain the same and high timing accuracy for software

pre-emption and hardware interrupt handling at simulation runtime, no matter

what the time annotation granularity is. Hence, less overhead can be expected than

in the fine-grained annotation approach.

3.1.3 Multiple-Grained Time Annotation

For UNIX process-based native-code software and SystemC-based hardware

co-simulation, Bacivarov et al. discuss trade-offs between simulation performance

and timing accuracy by adopting multiple-grain HW/SW timing synchronisation

[121]. The basic idea is to reduce or increase the granularity of time annotations

depending on the desired timing accuracy of interrupt handling.

The approach in [121] uses asynchronous co-simulation, in which software and

hardware simulators are two separate UNIX processes. The software and hard-

 t0 t1 time
HW IRQ
happens

task1

task2

ISR

ISR is still delayed.

w(t) w(t)

w(t) w(t) w(t)

wait(t)

ISR
til

low

high

Priority

ISR

Figure 3-3. Fine-grained timing annotation

72

ware simulators manage their local clocks separately and exchange timing infor-

mation via inter-process communication. It is known that IPC overheads may con-

tribute a large portion of simulation time and affect the simulation performance.

The HW/SW timing synchronisation in [121] can be seen as a compromise of the

classic conservative algorithm [134]. Therefore, HW/SW timing synchronisation

accuracy may not be guaranteed when using coarse-grained granularity of timing

annotations.

3.1.4 Result Oriented Modelling

To solve the problem in Figure 3-2 (B), Schirner et al. introduce their time cor-

rection method Result Oriented Modelling for SLDL-based pre-emptive software

simulation [123]. It still uses the uninterruptible wait-for-delay statement for time

annotation and clock progress, but it can virtually interrupt a wait-for-delay state-

ment in order to enable pre-emption at any time point. In the case of an interrupt

event, the ROM-based RTOS model first records pre-emption timing information.

Then, after the finish of both the existing wait-for-delay statement and interrupt

disturbance, it will finally make a new corrective wait-for-delay statement for the

affected time advance step.

Figure 3-4 illustrates two possible interrupt handling scenarios in the ROM ap-

proach. In case (A), the application task2 begins to run at t0 and then calls a wait-

for-delay statement ranging 8 time units from t0 to t3, so as to mimic its execution

timing cost. This step is called an “initial prediction” in ROM, because it simply

assumes that the task2 can solely occupy the CPU during this wait-for-delay time

interval. However, at t1, a hardware interrupt request is detected. Thus, the RTOS

scheduler dispatches a corresponding ISR as the new RUNNING task to pre-empt

the lower-priority task2. Herein, the RTOS model changes OS status of task2 from

RUNNING to READY, and records the pre-emption time stamp in the Task Con-

trol Block (TCB) of task2. Afterwards, the ISR executes some functions and be-

gins its wait-for-delay statement. During the time duration from t1 to t2, although

both the ISR and task2 are suspended by wait-for-delay statements, their task

states are distinct in the sense of RTOS task management. When the ISR finishes

at t2, RTOS changes OS status of task2 to RUNNING again. More importantly,

73

RTOS calculates how long task2 is pre-empted as its new delay time interval,

namely t2-t1. The initial prediction of task2 ends at t3 and the new corrective wait-

for-delay statement is then issued immediately.

The scenario of Figure 3-4 (B) is slightly more complex than the previous case.

In this example, the initial prediction of the pre-empted task2 finishes at t2 that is

earlier than the ISR’s wait-for-delay finishing time t3. This means that task2 will

wake up and needs to be processed immediately so as not to execute its subse-

quent model code. The RTOS model firstly calculates the pre-emption interval of

task2 as t2-t1 and then indefinitely suspends task2. The ISR finishes at t3 while

task2 is scheduled by the RTOS to resume again. A new wait-for-delay statement

that uses the before-calculated pre-emption interval as the delay parameter is re-

leased in order to revise time advance for task2.

In summary, a ROM simulation procedure contains three steps: 1) Execution of

an initial wait-for-delay statement; 2) Collection of any disturbing events and up-

date of delay information; 3) Making a corrective wait-for-delay statement. By

this approach, the sequential software concurrency can be realised for a uniproc-

 t0 t1 t2 t3 t4 time
HW IRQ
happens

task1

task2

ISR

wait(3)

 ∆t=4

ISR (∆t=3)

low

high

Priority
Initial prediction:

wait(8)

∆t=3

Correction:
wait(3)

 t0 t1 t2 t3 t4 time
HW IRQ
happens

task1

task2

ISR

wait(3)

∆t=6

ISR (∆t=3)

low

high

Priority
Initial prediction:

wait(8)

∆t=2

Correction:
wait(2)

(A) Pre-empted task wakes up later than the finish of ISR

(B) Pre-empted task wakes up earlier than the finish of ISR

Calculate
pre-emption

amount:
 t2-t1 =2

Calculate pre-
emption amount:

t2 - t1 =3

Figure 3-4. The Result Oriented Modelling approach

74

essor system model. The good timing accuracy of HW/SW synchronisation and

software pre-emption is successfully achieved from the perspective of virtually

pre-empting wait-for-delay statements in SLDL-based simulation.

The “black box” simulation concept is another worthy point emphasized by

ROM [135]. It prefers to only present adjust end results (e.g., termination time

and final state) of a simulation process rather than model and reveal any internal

state changes to users. For example, during a wait-for-delay interval of a software

task, if multiple interrupts happen, the ROM will collect the disturbances together

and only issue one corrective wait-for-delay statement. This “black box” concept

has positive and negative aspects:

1) It brings the advantages of speeding up simulation performance by hiding

intermediate states and maintaining timing advance accuracy by consider-

ing interference from hardware interrupts.

2) In ROM, it is difficult to maintain the similarity of middle state changes to

a real execution at certain circumstances. This is an inevitable compromise.

Because ROM uses the inherently uninterruptible wait-for-delay functions,

there is no way to cancel or postpone a wait-for-delay statement once it be-

gins. Hence, the timing point when a model process wakes up from a wait-

for-delay duration is also unchangeable either. This feature may bring a de-

fect in simulation traces, incurring an amount of simulation overheads. In

ROM, the pre-empted task may wake up at unexpected time points as long

as its wait-for-delay time period is finished. Referring to Figure 3-4 (B) for

instance, task2 wakes up at t2 and calls for processing from the RTOS

model. However, from the perspective of OS multitasking management,

task2 should not initiatively trigger the OS to process it at this time point

because it has been pre-empted. This phenomenon will result in an unnec-

essary RTOS processing procedure, a SLDL simulation kernel context

switch, and a consequential simulation overhead.

3) The ROM approach aims to collect all interrupts that happen during a wait-

for-delay time advance interval and launches a new wait-for-delay state-

ment for the affected task to correct its delay time. In the best case, only

one new corrective wait-for-delay statement is needed to revise an affected

75

time advance step. Whereas, the possibility should be taken into account

that another pre-emption event may happen during a corrective wait-for-

delay interval. This means that one more successive corrective wait-for-

delay statement is required. Figure 3-5 shows such an example. In fact, the

exact number of wait-for-delay statement may vary depending on the num-

ber of pre-emption events and where they happen, which are dynamically

determined in simulation. It may be very costly to correct successively in-

terrupted time advance steps in some conditions.

3.2 The Mixed Timing Approach

In this section, a mixed timing approach is proposed. It achieves a similar tim-

ing accuracy level to the ROM approach. However, the two approaches are con-

ceptually different because of their underlying time advance methods and in addi-

tion the proposed approach can generate a better simulation trace without the

above “inappropriate wake up” problem.

Concerning the fundamental problem of handling interrupts during an ongoing

time advance step, mixed timing approach uses the wait-for-event mechanism to

ensure that a pre-empted task only wakes up upon receiving an event issued at the

correct time point. Only one wait-for-event statement is called by a software task

in a time advance step. We do not need to call a new wait-for-event statement for

the pre-empted task. Hence, the SLDL processes (wrappers of software tasks) do

not frequently change between “suspending” status and “wake-up” status. Conse-

 t0 t1 t2 t3 t4 t5 t6 time
HW IRQ
happens

task

ISR

wait(4)

Initial
prediction:

wait(8)

HW IRQ
happens

wait(2)

w(1)

Corrective
prediction:

wait(4)

Corrective
prediction:

wait(2)

Corrective
prediction:

wait(1)

HW IRQ
happens

low

high

Priority

Figure 3-5. Successive corrective wait-for-delay statements

76

quently, a simulation speedup can be expected due to a fewer number of costly

simulation kernel context switches.

The mixed timing approach is a general approach oriented to SLDL-based real-

time software (including tasks and the RTOS) behavioural modelling and simula-

tion. According to the aforementioned taxonomy of system-level software and

RTOS simulation research in Section 2.3, it can be applied to both coarse-grained

timed abstract software modelling and fine-grained timed native software model-

ling. In this section, this modelling and simulation approach is implemented by

typical SystemC language constructs, mainly the wait-for-event method (see Sec-

tion 2.2). Because of the similarity between SystemC and SpecC SLDL, it is

promising to be generalised to the SpecC context.

3.2.1 Separating and Mixing Timing Issues

In SLDL-based behavioural software simulation, multiple-facet/level timing

models can be written and simulated in the same discrete-event software simula-

tion environment, e.g., the SystemC framework. These kinds of approaches can be

divided into two parts, i.e., modelling and simulation.

 In modelling, functional and timing characteristics (time delays) of target

software computation components are described by SystemC language. In

this research, specifically, software applications are divided to tasks and

each task is then mapped to a SystemC process. The results of this model-

ling process are SystemC process models for executable simulation pur-

poses.

 In simulation, these models are compiled together with the SystemC simula-

tion kernel and natively executed on a host computer in order to help soft-

ware designers to observe behaviour of the target software system, validate

different design strategies, and measure the mean or extreme simulation data

for analysis.

In real-time embedded software design, timeliness is a first-class factor to de-

termine the accuracy of modelling and simulation. The mixed timing approach

puts focus on timing issues of above two aspects:

77

1) Timing issues in modelling: This aspect is concerned about timing issues

that are statically determined at the model building stage. It relates to vari-

ous jobs that add time delays for software computation models, e.g., define

timing styles of models, choose sources of timing information, apply vari-

able annotation granularities, annotate timing information into model code,

and insert time advance points in models.

2) Timing issues in simulation: This refers to timing issues that are dynami-

cally behaved at simulation runtime. It relates to jobs that use time delays

for simulation time advance, e.g., simulate target timing behaviour for

software models, progress the simulation clock, and process interrupts.

In the following, this mixed timing approach is explained with regard to vari-

ous issues in relation to aspects of timing modelling (Sections 3.2.2 - 3.2.6) and

timing simulation (Section 3.2.7). Besides, the Live CPU Model is an essential

basis of this approach (Section 3.3).

3.2.2 TLM Software Computation Modelling

Before presenting any detailed timing modelling and simulation methods, we

clarify general guidance for defining software timing simulation models and the

relevance to existing TLM research.

In Section 2.1.1, abstraction levels in SystemC TLM modelling are reviewed,

with this thesis concerned with software computation modelling in the general

context of SystemC TLM research. Consequently, it is natural to explore the pos-

sibility of inheriting some common concepts from existing TLM proposals. For

example, the OSCI TLM standard defines the PV and PVT abstraction levels

based on criteria such as the transmission method and the timing granularity of a

communication transaction. Baklouti et al. propose the application of the PV and

PVT concepts to refine software communication [6]. As shown in Figure 3-6 (A),

its horizon focuses on using TLM synchronous and asynchronous interfaces for

abstract software inter-module (between initiators and targets) communication. In

[9], Dömer proposes to define TLM computation abstraction levels based on the

concept of separating functionality and timing. Referring to Figure 3-6 (B), four

levels are identified in a modelling flow for software that runs on programmable

78

processors. However, this work does not specifically distinguish various TLM ab-

straction levels. In general, bearing the current status of TLM research in mind,

most TLM abstraction level definitions have focused on modelling abstractions

for communication and hardware design, and may not be appropriate for software

modelling.

According to the basic assumption of OS-based task modelling and simulation

in this thesis, it is not recommended to use TLM communication techniques in

software modelling, since they are not common methods in conventional real-time

software development. This idea is contrary to [6] that uses OSCI TLM commu-

nication services for joint HW and SW communication exploration.

Note that it is not nontrivial to utilise existing TLM concepts directly. Here we

need to define appropriate behavioural software abstraction levels/models and in-

troduce their relationships with existing TLM modelling communication concepts.

3.2.2.1 Comparison with the OSCI TLM-2.0 Standard

Regarding the TLM communication modelling abstraction level definition, the

latest OSCI TLM-2.0 modelling standard is selected as the reference [88]. It de-

fines two coding styles for bus-based communication modelling, i.e., the LT style

for PV models and the AT style for PVT models. Regarding the software model-

PVT
Specific arbitration

PV
Generic arbitration

Service Layer
Sync./asyn.

RPC

TLM OSCI Transport Layer:
blocking, non-blocking, unidirectional,

bidirectional, single, burst transfers

PVT
Specific bus model

PV
Generic bus model

HW TLM SW TLM

A
cc

u
ra

cy

- Untimed Specification

- Computation TLM

- Host Compiled ISS

- Instruction Set
Simulator

Sp
ee

d

(A) SW TLM layers (defined by Baklouti et al.)
(B) Abstraction levels of computation using

programmable processors (by Dömer)

Figure 3-6. Related SW modelling abstraction level definitions (reprint [6] [9])

79

ling part, in Section 2.3, system-level software (RTOS) behavioural modelling

and research is classified into two general categories depending on their timing

accuracy: coarse-grained timed abstract models and fine-grained timed native-

code models.

This section compares characteristics of the mixed timing software models and

the OSCI communication modelling standard (see Figure 3-7):

 Both modelling approaches decompose a model’s functionality into several

basic entities, i.e., tasks (or finer-grained functions) for software modelling

in our approach, and transactions with corresponding transport functions for

TLM communication modelling. If there is a further necessity for more ac-

curate modelling, then a basic entity can be divided into some finer-grained

entities, i.e., multiple functions inside a task or multiple basic blocks inside

a function, as well as corresponding multiple phases that task place during a

transaction’s transmission life.

 We define two comparable timing abstraction levels for models. The coarse-

grained timed level and the fine-grained timed level for software modelling

are comparable to the LT coding style and the AT coding style for TLM

communication. We propose that the coarse-grained timed level uses two

time points to represent the execution cost of a task or a function, i.e., the

beginning and the end of execution. The LT coding style also defines two

time points for each transaction to denote calling to and returning from the

OSCI TLM-2.0 Communication Modelling TLM Software Modelling

A
cc

u
ra

cy

P
erfo

rm
an

ce

Programmers View
(PV)

model

Programmers view
timed (PVT)

model

Transactions

Multiple
phases

Models

Loosely-timed
(two timing

points)

Approximately-
timed (multiple
timing points)

Functional
Granularity

Timing
Granularity

Tasks/
Functions

Statement
segments/

basic blocks

Functional
Granularity

Abstract
model

Native-code
model

Models

Coarse-grained
timed (two

timing points)

Fine-grained
timed (multiple
timing points)

Timing
Granularity

Figure 3-7. OSCI TLM-2.0 models and proposed TLM software models

80

transmission respectively. Accordingly, the concept of the fine-grained

timed level is also parallel to the OSCI AT communication coding style.

This is because they both use multiple timing points inside a basic func-

tional unit, namely, multiple annotations and timing synchronisation points.

 Besides, both the untimed timed level and the cycle-accurate timed level are

not recommended in either our software modelling or the OSCI TLM stan-

dard. This is because modelling real-time software and contemporary bus

communication systems apparently need a timing concept.

Based on the above comparison, our software modelling proposal has some

similarity to the OSCI TLM-2.0 communication modelling standard, that is, in

terms of modelling concepts about timing granularity and functional granularity.

Since they are both implemented in the SystemC simulation environment, they

also include similar changing trends in terms of modelling accuracy and simula-

tion performance. This means that models at a corresponding level are “harmoni-

ous” to each other without resulting in undesired extreme behaviour in the context

of TLM co-simulation. We will explain software model definitions in detail in

Section 3.2.3.

In addition, each hardware computation model (e.g., a hardware peripheral de-

vice) needs to be annotated with delays to accompany with software timing mod-

els. Each TLM inter-module communication action is also to be assigned with

corresponding communication delays. However, these two parts are not the focus

of this thesis.

3.2.3 Defining Software Models

Let us consider two possible situations in an embedded software development

flow:

1) At an early design phase, the application software, RTOS, and hardware

devices may have different levels of development progress. This means that

the components of a system may have incomplete source code. The preci-

sion of corresponding timing information also varies. Therefore, in many

cases, it is difficult to build models at the same abstraction level.

81

2) Different system design teams may focus on modelling different system as-

pects according to their respective design circumstances. For example,

modelling computation and modelling communication are two distinct

working directions in the context of embedded systems modelling and

simulation. As well, RTOS designers and application software program-

mers also pay different attention to SW modelling. It is not only infeasible

but also costly to build all sub-models with the same timing accuracy level.

Therefore, in order to increase flexibility of software validation, a mixed tim-

ing approach is an efficient and practical solution. At some certain early and mid-

dle design stages, with the advance of the development and change of validating

intention, software designers can build and simulate behavioural software models

at various functional and timing levels in a unified SystemC framework.

There are two difficult issues in system-level software modelling and simula-

tion: timing accuracy and simulation performance. It is well known that the

granularity of annotation is a dominant factor of timing accuracy, in terms of

mostly determining whether or not the execution cost of a code segment is “accu-

rately” reflected in the model. For example, given a code segment including dy-

namic data-dependent loops, a single coarse-grained time annotation for the whole

code segment is very likely to be less accurate than several fine-grained time an-

notations for each loop. On the other hand, simulation performance is also a major

issue concerning simulation users in the early design phases. Simulation models

need to process many annotation statements intervening between functional codes,

which necessarily result in simulation overheads. Moreover, a delay annotation

statement is always implemented as a wait-for-delay statement or associated by a

wait-for-event statement in order to progress the simulated target clock. Such

statements result in context switches between the SystemC simulation kernel and

software model processes. Consequently, fine-grained time annotations may lead

to more simulation overheads as a side-effect. The mixed timing approach pro-

poses using different annotation granularities in software models, and thus enables

model programmers to switch timing accuracy for simulation performance in

simulations.

82

There are already some typical annotation granularities mentioned in existing

annotation-based software simulation research, e.g., the assembly instruction level,

the source line level, the basic block level, the function level, and the task level

[121]. This thesis uses some of them in research and presents guidelines for using

some appropriate timing annotation granularities in the two types of software be-

havioural models, i.e., abstract software models and native-code software models.

Currently, time annotations are manually inserted into software models and auto-

matic annotation is beyond the focus of this thesis. Research examples in this area

can be found in [136] [137].

3.2.3.1 Abstract Software Models

The underlying assumption of the abstract software model is that it is usually

applied at the early design phases for fast real-time software prototyping simula-

tion and validation. At the time, the target hardware platform is undetermined and

most software code has not yet been implemented. Consequently, abstract soft-

ware models do not contain much implementation code or only contain limited

functional specification code. Corresponding timing information of running code

on a target platform cannot be obtained with high precision for these kinds of

models. Rather, timing estimates and execution budgets are used for timing anno-

tations. This kind of modelling and simulation is similar to the reservation-based

timing analysis approach in real-time system timing analysis research, which ad-

vocates using timing predictions to incrementally validate timing properties of a

system from its early development stages [138].

Software applications are organised as a set of SLDL process based independ-

ent tasks with coarse-grained temporal properties, e.g., period, deadline, offset,

and execution times. Periodic execution should be explicitly supported by a ge-

neric RTOS model that supplies basic periodic execution services, meaning that

the RTOS can schedule periodic tasks according to explicitly-defined period

properties. Timing overheads of RTOS functions can be considered as rough es-

timates and annotated in models.

An abstract software task model contains one conceptual functional unit (i.e., a

task) or several subunits (i.e., several functions). Correspondingly, task-level

83

Table 3-1. Abstract software models and coarse-grained time annotations

void task1(){

 while(1){

 //No code or

 functional_code;

 DELAY(fixed_value);

 //or

 DELAY(random_value);

 wait-for-event;

 }

}

#001

#002

#003

#004

#005

#006

#007

#008

#009

#010

(A) Pseudo code of task-level time
annotation

void func1()

{

 ...

 ...

 DELAY(t1);

 wait-for-event;

}

#001

#002

#003

#004

#005

#006

#007

(B) Pseudo code of function-level time
annotation

(Table 3-1 (A)) and function-level (Table 3-1 (B)) time annotation levels are pro-

posed for abstract software models. Each annotation statement corresponds to an

execution unit, i.e., a task or a function. The delay time information can either be

given as a fixed value representing the WCET at the model building stage, or be

randomised between a lower bound (i.e., the BCET) and an upper bound (i.e., the

WCET) for each job of a task in simulation time.

An annotation value is inserted by the DELAY() function (e.g., line 5 in Table

3-1 (A)), which passes the delay value to the Live CPU Model and triggers it for

an interruptible time advance. A wait-for-event statement is inserted after a delay

statement (e.g., line 8 in Table 3-1 (A)), in order to yield control of the SystemC

simulation kernel and let the task wait for resuming after the delay. It defines a

time advance point (also referred to as a timing synchronisation point). From the

multitasking OS point of view, calling the wait-for-event statement and returning

from it mark the beginning and the end of “execution duration” of a software

model along the target simulation timeline. From the perspective of SystemC

simulation, a piece of “execution duration” is in fact a piece of “waiting duration”

of a SystemC process.

As shown in Figure 3-8, because an abstract software model is assumed to be

independent and does not access shared variables, it execution duration can be

freely interrupted by higher-priority IRQs, i.e., any asynchronous interrupt events

can stop its time advance step. Although a delay value is only annotated once, it

can be divided into many slices due to ISRs. This models a correct timing order of

execution.

84

The details of the wait-for-event method, the interruptible time advance method,

and the DELAY() function will be introduced in Sections 3.2.7, 3.3.4 and 4.5.8.1.

3.2.3.2 Native-Code Software Models

When a large quantity of software application code has been developed and a

RTOS has been either supplied as an off-the-shelf product or developed in-house,

native-code software models can be built. The available software code is wrapped

in some software task models that are also implemented as SLDL processes.

These task models can be further divided into statement segments or atomic basic

blocks whose performance is measurable or estimable with relatively high accu-

racy. These native-code application software tasks can utilise the APIs of a RTOS

model, which may model specific services of a real RTOS and is annotated with

corresponding timing delay information.

Timing accuracy becomes a major concern in native-code software simulation.

The desired target timing behaviour cannot be directly represented in native-code

software execution. Hence, software execution costs (time delays) on the target

platform need to be either analysed by a static analysis method or dynamically

evaluated in a measurement-based method, and then be manually or automatically

annotated to corresponding code statements in task models. Fine-grained state-

ment segment level annotations and basic block level annotations are advocated to

be applied in this type of software models.

 time
IRQ

ttask

ISR

low

high

Priority

Independent
execution

Execution
cost of the
task model

t

t

t

t

t

IRQ IRQ

Zero-target-time SW execution t Time advance of a delay (cost)

Figure 3-8. Execution trace of an abstract task software model

85

In the example code sown in Table 3-2 (A), a statement segment is either a

compound statement or several sequential statements. A compound statement is

defined as a sequence of source statements enclosed by a pair of curly braces

[139]. In modelling, several sequential assignment or number operation state-

ments are also treated as a statement segment for convenience of annotation.

However, a statement segment should not include access to an OS service, which

should be treated as another segment.

A basic block is a sequence of code that has only one entry point and only one

exit point [140]. In Table 3-2 (B) the annotation statement of a basic block may

have two possible places, i.e., before the basic block or after the basic block. In

modelling, where to place the annotation statement depends on how to “glue” the

time annotation near its code block, in order to make native-code execution syn-

chronise with corresponding target-time advance steps as much as possible.

Multiple DELAY() functions and wait-for-event time advance points are in-

serted in native-code software models. Their respective behaviour is the same as

the before-mentioned abstract software models.

In native-code models, software code segments may access global shared vari-

ables that may be affected by external interrupts. If a code segment and its annota-

tion are defined improperly, a wrong simulation trace and a result may be gener-

ated. As shown in Figure 3-9 (A), in real software execution, a task independently

executes code segment 1 from time t0. At time t1, an IRQ happens and pre-empts

the task. An ISR writes a value to a global variable. Afterwards, the task resumes

and its code segment 2 reads the global variable to obtain an updated value.

Table 3-2. Native-code software models and fine-grained time annotations

(B) Pseudo code of basic block level time
annotation

Basic block 1

Basic block 2

annotation before code

annotation
after code

(A) Pseudo code of statement segment level
time annotation

void func1(){
 if(condition)
 {
 ...
 }

 DELAY(t1);
 wait-for-event;

 int temp;
 temp = 100;
 temp++;

 DELAY(t2);
 wait-for-event;
}

void func1()

{

 DELAY(t1);

 wait-for-event;

 int temp = 0;

 if(condition)

 {

 temp++;

 DELAY(t2);

 wait-for-event;

 }

}

#001

#002

#003

#004

#005

#006

#007

#008

#009

#010

#011

#012

#001
#002
#003
#004
#005
#006
#007
#008
#009
#010
#011
#012
#013
#014

A compound
statement

Several statements

86

Figure 3-9 (B) shows a possible corresponding simulation trace, in which the

task code segment (with its corresponding annotation) includes both code segment

1 and 2. This means that the task not only executes some independent functions

but also reads the global variable at t0, and its total delay begins accordingly. The

IRQ still happens at t1, then pre-empts the task, and writes the global variable. Al-

though the time advance of the task can be interruptible and maintained correctly

in terms of the simulation time order, the functional simulation result is possibly

wrong because the software task gets an outdated value of the global variable.

The solutions to this problem are straightforward:

1) In software models, global variables should be protected by mutual exclu-

sions in order to avoid race conditions. This is effectively a common con-

 time
IRQ
happens

task

ISR

low

high

Priority

Segment 1 and 2 Execution cost

ISR writes a new
value to the

shared variable.

delay1 delay2

t

 time
IRQ
happens

task

ISR

low

high

Priority

Independent
function
segment1

ISR writes a value
to the shared

variable.

code1 code2

Function segment2:
read the shared
variable.

(A) Real software execution

(A) Native-code software simulation

t0 t1 t2

t0 t1

Zero-target-time SW execution delay Time advance of a delay (cost)

Figure 3-9. Unmatched real execution and simulation traces

87

vention in software programming.

2) In terms of native-code simulation, a code segment should not include both

independent functions and an access to a global variable. In another words,

an access to a global variable should be placed in a separate segment that is

as short as possible. Based on the first solution, this requirement is not dif-

ficult to implement in modelling, because a global variable segment is al-

ways marked by calling to OS mutually exclusive services.

3.2.4 Techniques for Improving Simulation Performance

Fine-grained time annotations can improve timing accuracy in case there are

data-dependent conditional or looping statements in code, but too many intrusive

annotations not only require more modelling work but also decrease simulation

speed. Similarly, defining many time advance points (so-called timing synchroni-

sation points) can make the simulated clock be progressed smoothly. However, it

also decreases simulation performance. Consequently, two techniques regarding

timing annotations and time advance points are utilised in order to improve simu-

lation performance.

3.2.4.1 Reducing the Number of Time Annotations

This first technique is to reduce the number of annotation statements by merg-

ing several sequential time annotations into one longer annotation.

Given a simple “while” loop program in Figure 3-10 (A) as an example, the In-

tel VTune Performance Tuning Utility [141] is used to carry out basic block

(A) Source code of a “while” loop

(B) Assembly code of a “while” loop

(C) Control graph of a “while” loop

Figure 3-10. A “while” loop example

88

analysis for application software. This tool can organise assembly code in basic

blocks (see Figure 3-10 (B)) and generate a control flow graph (see Figure 3-10

(C)). Referring to the figure, there are two basic blocks in the program, i.e., the

“Block 10” of the “while” statement and the “Block 11” of the looping body.

If this program is annotated with basic block level timing delays, then three an-

notation statements are needed, as shown in Table 3-3(A). Because the two basic

blocks “Block 10” and “Block 11” (line 1 and line 5 of Table 3-3 (A)) execute

sequentially at most times except for jumping out of the while loop, their time an-

notations tbb10 and tbb11 can be merged into one annotation as showed on line 4 of

Table 3-3 (B).

This technique advances the annotation level from the basic block level to the

statement segment level, which is a mixed timing annotation technique and widely

used in our research. Normally, merging multiple annotation statements should

sacrifice timing accuracy of annotations as little as possible. For instance, the DE-

LAY(tbb10) statement (line 9 of Table 3-3 (A)) corresponds to the “compare and

jump out” execution of the while statement and is improper to be combined into

the annotation statement inside the loop body. Otherwise, target time advance

steps cannot match the native-code execution flow. However, if model builders

intentionally make tradeoffs between accuracy and performance, it is also accept-

able that some tiny one-shot annotations can be omitted.

3.2.4.2 Reducing the Number of Time Advance Points

The second technique to increase the simulation speed is to reduce the number

of wait-for-event statements in models, i.e., reducing the number of time advance

Table 3-3. Reducing number of time annotations

while (a < 10000)

{

 DELAY(tbb10);

 wait-for-event;

 a++;

 DELAY(tbb11);

 wait-for-event;

}

DELAY(tbb10);

wait-for-event;

#001

#002

#003

#004

#005

#006

#007

#008

#009

#010

(A) Precise basic block level time
annotations

while (a < 10000)

{

 a++;

 DELAY(tbb10+tbb11);

 wait-for-event;

}

DELAY(tbb10);

wait-for-event;

#001

#002

#003

#004

#005

#006

#007

#008

#009

#010

(B) Merging time annotation statements

89

points. The basic idea is inspired by the “lazy synchronisation” method introduced

by Hartmann et al. [127], in which this method is used in proprietary abstract

software modelling. Here, we refine it for native-code software simulation models.

As introduced before, a time advance point refers to a timing synchronisation

point where a software model process yields control to the SLDL simulation ker-

nel in order to let it advance the simulated clock.

In discussions and figures in Section 3.2.3, the annotation statement DELAY()

and the wait-for-event method are used together. A DELAY() function finishes

two jobs, i.e., injecting an annotation value into the Live CPU Model and invok-

ing it to advance the timing delay value at once. In fact, in the proposed mixed

timing approach, a delay annotation function does not need to implement the two

jobs conjunctively. And, a wait-for-event method does not necessarily follow each

time annotation statement either.

As shown on line 5 and line 9 in Table 3-4, the lightweight DELAY_WR()

function only processes an annotation value in terms of storing and accumulating

it in a variable (see Virtual Registers in Section 3.3.2) in the Live CPU Model, but

it does not invoke the Live CPU Model to progress the simulated clock immedi-

ately. It is especially appropriate for use in data-dependent loops in order to re-

duce time advance overheads.

The dual-function DELAY() and the wait-for-event statements are also impor-

tant at specific points in model code (e.g., lines 12 and 13 in Table 3-4). Some

rules are defined to indicate where time advance points are essential. In modelling,

these situations include:

void func1(){
 if(condition){
 ...
 }

 DELAY_WR(t1);

 int temp=0;
 temp++;

 DELAY_WR(t2);

 ...

 DELAY(tN);
 wait-for-event;
}

#001
#002
#003
#004
#005
#006
#007
#008
#009
#010
#011
#012
#013
#014

Input
annotations

Annotation
and time
advance

Table 3-4. Reducing number of time advance points

90

1) In application tasks, time advance points are necessary before calling and

returning from RTOS system functions. These points define the boundary

of a task and a RTOS function, and allow switches to be made between

them.

2) If the current running application task will terminate execution, then a time

advance point is necessary. This point defines the boundary between differ-

ent tasks.

3) In any critical sections (no matter in tasks or in RTOS functions) where in-

terrupts are disabled, time advance points are necessary in order to progress

the target clock.

This technique essentially separates annotation points from time advance

points. This is a native capability of the mixed timing approach because of the un-

derlying annotation-independent time advance method. The reduced running

chances of the Live CPU Model and fewer context switches of the SystemC ker-

nel can speed up simulation speed. At the same time, fine-grained timing annota-

tions can still be used in order to accurately reflect the timing cost of software

models’ execution traces.

3.2.5 Application Software Performance Estimation

Previously, it has been noted that behavioural software modelling and simula-

tion need timing information of software execution on the target platform. Soft-

ware instrumentation and performance estimation are pre-requisites of all back

annotation based behavioural simulation. This is a quite broad and non-trivial re-

search domain, which is far beyond the focus of this thesis. Example research in

this domain can be found in [84] and [142]. In Sections 3.2.5 and 3.2.6, some re-

lated performance estimation methods are introduced in brief rather than present-

ing in-depth research. The final modelling builders and simulation users can de-

termine and apply appropriate time estimation methods in practice.

91

3.2.5.1 Static Timing Analysis Method

A typical static analysis method is the WCET analysis
2
 [143]. It aims to com-

pute an upper bound for the execution time of a piece of program by analysing the

code but without actually running it. A WCET analysis includes three steps:

 The program flow analysis extracts possible executing sequences of a pro-

gram at the basic block level. This study should try to cover all possible

paths in order to generate a safe coverage.

 The low-level analysis calculates execution time of each basic block on a

given target hardware architecture. The complexity of this study is to con-

sider various performance-enhancing features of modern processors, such as

caches, pipelines, etc.

 The calculation step combines paths information and low-level execution

times in order to derive a WCET.

WCET results might be used as source of time annotations in our mixed timing

software modelling.

For abstract software models, the assumption is that much software code has

not been available; hence, specific WCET analysis cannot be implemented. For

native-code models, model programmers can use conventional WCET analysis to

obtain software timing information. In our consideration, now that the source code

is available for simulation, we prefer to annotate statements at a fine granularity,

which means that the basic-block WCET information are more useful than func-

tion-level or task-level WCET results that may be over-pessimistic. Colin et al.

specifically take WCET analysis on the RTEMS RTOS with the intention to study

the predictability of RTOS timing behavioural [144]. This research reveals the

possibility of obtaining timing information of RTOS services by the static analysis

approach.

3.2.5.2 Statistical Methods

We can use time estimates of tasks and functions to build simulation models in

order to capture initial approximate timing behavioural of a system. These time

2
 The BCET analysis is a related problem to find the lower execution bound of a program.

92

estimates can be generated either from functional specifications or a random func-

tion. Regarding the latter technique, for simple cases that do not have a strict re-

quirement on the approximation of generated numbers, the rand() pseudo-

random function in the C Standard General Utilities Library (with the head file

stdlib.h) is used. If there are some definitions on the probability densities of

periods and computation times of tasks, the well-acknowledged UUNIFAST algo-

rithm can be used to generate task sets with uniform distribution in a given space

[145].

3.2.5.3 Dynamic Simulation-Based Method

In simulation-based software performance estimation methods, software source

code is compiled for a given processor architecture, and is then executed on the

actual target CPU or on an accurate model of the target CPU, e.g., an instruction-

set simulator. Accurate performance information can be profiled after executing

real software. In this thesis, the ISS-based profiling technique is used to acquire

accurate timing information of both application software and the selected RTOS.

For ARM-based embedded systems, the KEIL µVision ARM development kit

[146] is recommended to use, which provides various cycle-accurate instruction-

set models of ARM processor and complete execution profiling functions. As

shown in Figure 3-11, the µVision execution profiler can display and record exe-

cution times and calling times of each function or statement through ISS execu-

tion.

Function-level profiling information Statement-level profiling information

Figure 3-11. µVision software profiler

93

3.2.6 RTOS Performance Estimation

3.2.6.1 The Scaling Parameter Method

For early and abstract modelling research in which both RTOS and the target

platform are not fixed, simulation users may be interested in the relative magni-

tude of RTOS timing cost and compare simulation results of several different de-

sign alternatives. It is not necessary to assign precise timing estimates for every

RTOS activity. RTOS system services can be annotated by a scaling parameter

method in [2]. This relates execution cost for each RTOS action to a scaling pa-

rameter (S), which reflects relative timing magnitudes of different RTOS services

depending on their typical computational complexities. Table 3-5 shows execution

times of some typical RTOS services in terms of the scaling parameter S. Note

that in an individual modelling case, the programmer can correct the scaling factor

of a specific RTOS function depending on available timing information.

3.2.6.2 The Benchmark Method

If the software model programmer intends to model a well-documented com-

mercial RTOS case, then RTOS benchmark results from production vendors can

be used as the timing annotation source for the RTOS simulation model, which is

similar to the approach in [87]. A benchmark document supplies timing costs of

various RTOS services, for example: kernel entry, context entry, message passing,

synchronization, timers, signals, task management, and message queues.

Action

Context switch

Task initiate

Task create and run

Task delete

S

2

12

28

10

Action

Task suspend

Task resume

Semaphore/mutex post

Semaphore/mutex wait

S

1

1

1

1

Action

Semaphore/mutex create/delete

Message queue create/delete

Message queue available

Message queue not available

S

6

10

2

1

Table 3-5. Basic RTOS actions and their relative execution times [2].

94

For instance, the QNX Neutrino RTOS [147] is provided with average kernel

benchmark results based on different hardware platforms such as Intel Pentium4

processors, XScale processors, and TI OMAP processors. And, referring to Table

3-6, the RTX RTOS is also provided timing specifications on a specific ARM

platform [1]. If benchmark documents are not available for some specific plat-

forms and RTOS versions, development kits or benchmark suites are sometimes

supplied by their vendors, in order to let users measure timing costs by themselves.

3.2.6.3 The ISS-based Measurement Method

The ISS-based simulation method is utilised to measure RTOS timing over-

heads. Table 3-7 shows some timing information of the µC/OS-II RTOS measured

on the 48 MHz ARM KEIL ISS simulator. It is worth noting that, although an ISS

simulator can produce fine-granularity timing information of real RTOS source

code, only the function-level timing cost of each RTOS service is concerned. This

is because this thesis proposes to build a generic RTOS model that can provide

comparable functionality to a real RTOS. The implementation code of the RTOS

model may not have one-to-one correspondence to actual RTOS source code. It is

Action

Initialize system

Create defined task, no task switch

Create defined task, switch task

Delete task

Time

34.9

14.3

16.7

9.6

Action

Task switch

Send semaphore (no task switch)

Send message (no task switch)

Interrupt response for IRQ ISR

Time

7.1 – 10.5

2.7

5.3

0.8

RTX-RTOS on LPC2138 ARM7 CPU @ 60MHz (Unit : µs)
code executed from internal flash with Memory Accelerator Module

Table 3-6. RTX RTOS timing specification [1]

Action

Enter the main RTOS function

RTOS initialisation

RTOS starts multi-tasking

Create a task

Time

1366310

51750

2770

22500

Action

Task switch

Initialise a semaphore

Wait a semaphore

Received a message

Time

2660

3170

3930

3160

µc/OS-II RTOS on Keil LPC2378 ARM7 ISS @ 48MHz (Unit : ns)
code executed from internal flash

Table 3-7. µC/OS-II RTOS timing specifications

95

not feasible to annotate the RTOS model at the basic block level or at the state-

ment level.

3.2.7 Timing Issues in Software Simulation

3.2.7.1 The Variable-Step Time Advance Method

In the mixed timing approach, at simulation runtime, a software model firstly

executes its functional code in zero-time and then passes its corresponding delay

information to the Live CPU Model. Afterwards, the Live CPU Model advances

the simulated clock in order to mimic the software execution timing cost on the

target platform. The specific progress step of the clock not only depends on input-

ted delay information, but is also affected by whether an interrupt event happens

during this delay duration, which may disturb delays of low-priority tasks. It is

named the “variable-step” time advance method, since the actual length of a time

delay step at simulation runtime is variable rather than being restricted by the time

annotation defined at the modelling stage. Figure 3-12 shows this time advance

idea in two simulation cases. Note that no matter which simulation case, when an

event is planned to be released (an arc in the figure) at a future time point, it is ac-

tually unknown when this event will be finally released because of possible inter-

rupts and pre-emptions.

In Figure 3-12 (A), since there is no interrupt interference, an event is thus suc-

cessfully released according to the input delay information td in order to resume

the waiting software task. The simulation clock is also progressed with a step of td.

However, in Figure 3-12 (B), an external interrupt is raised at the time point t1

that is earlier than (0 + td). Consequently, the planned event is cancelled and the

initial ending time point (0 + td) is no longer validated for time advance of the

waiting software task. The software task is pre-empted and its remaining delay

value is calculated as td2. After a time interval, i.e., following the execution of the

ISR in this case, the pre-empted task resumes and the rest of its delay time is ad-

vanced again until completion at t3. This example shows the “variable-step” char-

acteristic of the time advance method.

96

3.2.7.2 The Fixed-Step Time Advance Method

Schirner et al. propose that it is unnecessary to mimic intermediate states in

simulation, and it is only essential to generate correct results at state-changing

boundaries [123]. High performance is thus the primary goal of simulation. In-

deed, with the consideration for simulation performance and efficiency, all ab-

stract and behavioural simulation bears this underlying assumption to hide inter-

mediate simulation runtime details and only maintain similarity between the simu-

lation trace and the real execution trace to a certain extent. The variable-step time

advance method also generally accords to this point of view. It consumes software

execution delays in coarse-grained steps, and aims to minimise the number of

“steps” for a better simulation speed. From the perspective of maintaining simula-

tion correctness at specified event-changing points, e.g., interrupt points or task

switching points, this time advance method is satisfactory.

From the perspective of debugging real-time embedded software execution

traces and observing status of system-wide variables, simulation users may not be

satisfied by observing limited information only at event-changing points. Thus,

the fixed-step time advance method is proposed as a complementary time advance

method. Referring to Figure 3-13, this advances the simulated target clock over

more steps, according to pre-defined periods. In the fixed-step mode, the Live

simulation time line

1) Delay time = td

2) wait-for-event
3) Release event_1 after td

(A) Progress the clock and consume the delay time as planned

consume td totally

t1

event_1

0
td

simulation time line

(B) Progress the clock and consume the delay time with interrupt disturbance

t1

event_1

0
td1

cancel it

Consume td1

Remain td2

ISR

td2

Release event_1
after td2

1) Delay time = td

2) wait-for-event
3) Release event_1 after td consume td2

t3 t2

Figure 3-12. The variable-step time advance method

97

CPU Simulation Engine can run periodically to update run-time changing vari-

ables, such as value of timers, software delay slices, execution budgets, etc. The

increasing number of time advance steps may also increase simulation times.

Hence, the Live CPU Simulation Engine can blend variable-step and fixed-step

time advance methods in simulation if simulation users want to trade off simula-

tion performance with intermediate observability.

3.2.7.3 Timing Accuracy of Simulation

In the mixed timing simulation approach, the theoretical timing accuracy of

software simulation can be evaluated through three aspects, i.e., the timing of the

simulated target clock, the timing of software delay advance, and the timing of

software/hardware interactions:

1) Resolutions (the minimum interval of time) of progressing the simulation

clock, which are dependent on timing resolutions of two basic actions:

a. The resolution of advancing software delay duration:

i. General requirement: This resolution refers to the minimum step

to progress the target simulation clock. It should be as fine-grained

as possible in order to be able to represent tiny delays accurately.

ii. Features of the proposed approach: Since models are simulated

in the SystemC environment, they are restricted by the SystemC

simulation kernel’s timing resolution - the default value is 1 pico-

second. It is enough to represent software execution costs accu-

rately. In fact, for high-level behavioural software simulation, the

common timing resolution is at the microsecond (µs) level or the

millisecond (ms) level in practice.

simulation time linet1

event_1

0

td

Update td frequently

A fixed period for
time advance

Figure 3-13. The fixed-step time advance method

98

b. The resolution of stopping software delay duration:

i. General requirement: It refers to the latency to stop the current

target simulation clock advance step, in the case that an interrupt

happens. It should be as small as possible, i.e., zero-time in theory,

in order to mimic the real situation.

ii. Features of the proposed approach: Because the proposed inter-

ruptible time advance method relies on the Live CPU Simulation

Engine, when an interrupt happens, the simulated clock is pro-

gressed to this time point. At the same time, the consumed part of a

software delay is immediately calculated and the remaining delay

part is saved. Consequently, this means that the resolution of stop-

ping software delay duration is zero-time, i.e., without incorrect la-

tency.

2) Maintaining execution delay information of software models:

a. General requirement: Every software model has some delay informa-

tion representing its running cost on the target architecture. These de-

lays must be accurately consumed in terms of the quantity and order.

b. Features of the proposed approach: According to the time advance

methods introduced earlier, a software model’s timing delay informa-

tion is securely kept on a per-task basis and correctly consumed in its

time advance in simulation. In case of a pre-emption, the delay infor-

mation of a task is updated, and its remaining part is able to resume in

future time advance.

3) Timing accuracy of handling interrupts:

a. General requirement: This is mainly revealed by the interrupt latency,

which is the time from the raising of an external interrupt signal till the

beginning of a software interrupt handler. The simulated interrupt la-

tency should be similar to the real situation in terms of predictability

and functionality.

b. Features of the approach: The interrupt handling approach is based

on a combination of the timely hardware interrupt catching model and

the zero-latency software delay stopping method. The Live CPU Model

99

can sense external interrupt requests when it consumes software delays

at the same time. Since both hardware models and software models

execute in the discrete-event SystemC simulation framework with a

unified global clock, there is no additional HW/SW synchronisation la-

tency that may appear in asynchronous co-simulation. Hardware-

initiated interrupt handling can begin immediately and can be propa-

gated to a software handler without delay. The theoretical minimum in-

terrupt latency is zero-time in simulation, and the worst-case interrupt

latency is bounded by the longest interrupt disabled time which is fully

configured by model builders. This timing behaviour is the same as a

real-time system that runs on a real CPU.

3.3 The Live CPU Model

3.3.1 The HW Part of the SW Processing Element Model

To undertake accurate system-level embedded software modelling and simula-

tion, it is necessary to consider and model the underlying hardware architecture at

an appropriate abstract level. Because many RTOS services, e.g., context switch,

interrupt service, and clock service, are hardware-dependent, it could be difficult

to model HW/SW interactions accurately without support from a hardware model

on which software models are assumed to run. Moreover, one-sided software

modelling is against the system-level HW/SW co-design principle for embedded

systems. The existence of hardware models makes the simulation more likely to

resemble a full embedded system. Many studies have suggested using transaction

level models for high-level system modelling and simulation. In Section 2.1.3.3,

the concept of the software processing element model has been introduced, which

consists of two research aspects of this thesis, i.e., software modelling and hard-

ware modelling. As shown in Figure 3-14, this software PE model can be seen as

a mixture of two parts: behavioural software simulation (from the software model-

ling aspect) and the hardware abstraction model (from the abstract hardware mod-

elling aspect).

100

In a real embedded system, software runs on top of a CPU subsystem. In our

software processing element modelling approach, the CPU subsystem is ab-

stracted and encapsulated into the hardware abstraction model, namely the Live

CPU Model. It provides abstract yet essential hardware controlling functionality

and architecture (e.g., interrupt controller, real-time clock, and virtual registers)

for modelling upper-level software systems. More importantly, it supports inter-

ruptible and pre-emptive SystemC-based behavioural software simulation by the

Live CPU Simulation Engine. It plays a live role in managing software time ad-

vance in order to mimic the timing behaviour of executing software on a target

platform, just like a real CPU executing software instructions.

Because of the high abstraction level and the underlying native simulation con-

cept, our mixed timing software simulation does not need a low-level instruction-

set architecture processor model with complete internal components, such as logic

units, control units, memory subsystems, general-purpose registers and special-

purpose registers. The Live CPU Model is composed of three essential compo-

nents for software simulation:

1) The Virtual Registers are used for storing delay information and setting

flag bits (in Section 3.3.2). They are internal model constructs in the pro-

posed simulation approach.

2) The Interrupt Controller Model monitors interrupt-request lines and acti-

vates software handlers (in Section 3.3.3).

Software Processing
Element (CPU)

Hardware abstraction

Behavioural software
simulation model

Hardware aspect

Software aspect

Live CPU Model

CPU Sim. Engine Interrupt ControllerVirtual Registers

Figure 3-14. Hardware part of the software PE model

101

3) The Live CPU Simulation Engine takes charge of advancing software

simulation time (in Section 3.3.4).

Based on these components, this abstract Live CPU Model is actively involved

in high-level software simulation. In the following, they will be introduced in de-

tail.

3.3.2 The Virtual Registers Model

In a typical real-world processor system, computer programs are stored in a

three-level memory hierarchy, e.g., main memory, cache, and hardware register.

The CPU directly accesses these memory components to load and store instruc-

tions and data. Memory protection, cache management, coherency and consis-

tency are important research issues in this area. However, for concerned SLDL-

based behavioural software simulation, this thesis does not model this memory

subsystem, because it is not necessary to model the instruction-execution mecha-

nism of the target processor. Instead, software natively executes on the host plat-

form, which maintains its own memory system as a black-box for our simulation.

However, in order to support hardware-dependent software simulation, a Vir-

tual Registers model is built inside the Live CPU Model. These Virtual Registers

do not correspond to registers of a real CPU, but rather hide inside the abstract

Live CPU Model and take effect in a black-box way. Model builders can tailor

this virtual register set in our software simulation context. Referring to Table 3-8,

Virtual Registers are divided into two categories depending on their use:

 Some Virtual Registers are related to software time advance. The prime

concern of these virtual registers is to assist the Live CPU Simulation En-

gine to progress software simulation time. Six virtual registers store 64-bit

software timing information such as delay value, deadline, start time stamp,

etc. The CPU_REG[0] “Delay Register” and the CPU_REG[4] “Start-time

Stamp Register” are two particularly important registers for software time

advance and will be frequently referred to in description of the Live CPU

Simulation Engine later. When a software task context switch is invoked,

current contents of these registers are saved in the pre-empted task’s TCB,

102

and the newly dispatched task’s timing information in its TCB is loaded into

these registers.

 As illustrated in the right part of Table 3-8, some 8-bit Virtual Registers

hold system runtime status and help the Interrupt Controller Model to han-

dle interrupts. For example, the Current Program Status Register (CPSR) is

mainly used to distinguish the execution mode of the Live CPU Model, i.e.,

the normal software simulation mode or the interrupt request mode. The In-

terrupt Controller Raw Status (ICRS), the Interrupt Controller Status Regis-

ter (ICSR), and the Interrupt Controller Mask Register (ICMR) contain

original interrupt request information, interrupt service information, and in-

terrupt masking configuration, respectively.

3.3.3 The Interrupt Controller Model

It is acknowledged that the interrupt latency, interrupt response time, and in-

terrupt recovery time are some concerned timing properties of a real-time embed-

ded system. The Interrupt Controller Model provides a hardware-level foundation

to model a usual HW/SW cooperative interrupt handling mechanism, which usu-

ally has three bottom-up layers: the HW interrupt controller, the RTOS interrupt

handler, and application ISRs. As illustrated in Figure 3-15, the main function of

the Interrupt Controller Model is encapsulated in the cpu_ic() SC_METHOD

process. It monitors a set of sc_ports, which are further connected to various

interrupt sources (e.g., peripheral devices) by IRQ lines.

CPSR

SPSR

ICRR

ICSR

ICMR

Delay Register: delay value of current code block

Total delay of current task job

Absolute deadline of current task job

Consumed delay time

Start-time Stamp: start time of current delay

slice … ...Task suspension time

Descriptions

CPU_REG[0]

CPU_REG[1]

CPU_REG[2]

CPU_REG[3]

CPU_REG[4]

CPU_REG[5]

Register
Name

For SW simulation time advance For system status and flags setting

DescriptionsRegister Name

Current Program Status Register

Saved Program Status Register

Interrupt Controller Raw Status

Interrupt Controller Status Register

Interrupt Controller Mask Register

… ...

Virtual Registers

Table 3-8. Virtual Registers

103

In order to deal with multiple simultaneous interrupts from various devices and

bound the interrupt latency, the Interrupt Controller Model can prioritise, mask or

disable interrupt sources by setting corresponding register bits in ICRR, ICSR and

ICMR. When a hardware device raises an IRQ by asserting a signal through its

interrupt request line, the Interrupt Controller Model can catch the signal immedi-

ately and call a software interrupt handler, which could be either a RTOS kernel

interrupt handler function or a vectored ISR depending on a specific interrupt

handling scheme. This software handler will subsequently invoke the Live CPU

Simulation Engine to stop the current delay process. Depending on specific im-

plementation, a software handler can be pre-emptible or non-pre-emptible.

3.3.4 The Live CPU Simulation Engine

In the mixed-timing software modelling and simulation approach, SystemC-

based software models are compiled for the host platform and then executed on it.

It is necessary to model the target simulated clock in order to mimic the timing

behaviour of real-time software in the target environment. As introduced before,

current SLDL-based real-time software simulation approaches have some defi-

ciencies on interrupt and pre-emption modelling. The Live CPU Simulation En-

gine relaxes the existing problems by controlling time advance for software mod-

els, and cooperates with the Interrupt Controller Model to handle external hard-

ware interrupts in a timely manner. Excluding possible interrupt-disabled situa-

tions, e.g., executing a critical section, the Live CPU Simulation Engine can inter-

rupt current software execution (stopping its delay period in practice) as soon as

an interrupt event is caught by the Interrupt Controller, just like software execu-

tion on a real CPU.

Figure 3-15. Interrupt Controller Model

irq_line3

irq_line2

irq_line1

irq_line0

Live CPU Model

Interrupt Controller Model

irq_port[n]

ICRR
ICSR
ICMR

Virtual
Registers

cpu_ic()
{...}

irq_line i

IRQ_source_0 Module

IRQ_source_2 Module

IRQ_source_3 Module

IRQ_source_i Module

IRQ_source_1 Module

104

The basic modelling idea of the Live CPU Simulation Engine is to use the

SLDL wait-for-event mechanism instead of the uninterruptible wait-for-delay

mechanism. The Live CPU Simulation Engine is implemented as a SC_METHOD

process. It coordinates its execution and controls time advance of various software

tasks by corresponding events (i.e., objects of the SystemC sc_event class).

Table 3-9 shows the static sensitivity list of the Live CPU Simulation Engine. The

events on lines 3-7 are externally called by software models to trigger execution

of the Live CPU Simulation Engine, the event on line 8 is internally used by the

Live CPU Simulation Engine to trigger itself for time advance, and lines 9-11

configure the running mode of the Live CPU Simulation Engine if it needs to run

periodically, i.e., the fixed-step time advance method.

Referring to Figure 3-16 (A), most real CPUs execute software cycle-by-cycle

SC_METHOD(cpu_sim_engine);

dont_initialize();

sensitive << evt_rtos_start_call_cpu_sim_engine

 << evt_apps_call_cpu_sim_engine

 << evt_rtos_service_call_cpu_sim_engine

 << evt_tick_isr_2_cpu

 << evt_interrupt_handler_enter_2_cpu

 << evt_cpu_advance_total

#ifdef _CPU_DYNAMIC_FIXED

 << m_cpu_clk.posedge_event()

#endif

#001

#002

#003

#004

#005

#006

#007

#008

#009

#010

#011

Table 3-9. Sensitivity list of the Live CPU Simulation Engine

Fetch Instructions
from program memory

Decode Instructions
to determine purpose

and get operands

Execute Instructions
to perform the desired

operation

Write back
the result of the

operation to
register or memory

Fetch delay time
of a software code block

Decode delay time
into standard format for

time advance

Advance simulation time
according to the delay

value

Update status
of delay time and

resume (begin) a SW task

(A) Instruction execution cycle of a real CPU
(B) Delay time advance cycle of the

Live CPU Simulation Engine

Figure 3-16. Real CPU execution and Live CPU simulation

105

according to an execution mechanism that includes four fundamental stages: fetch

instructions, decode instructions, execute instructions, and store (write back) re-

sults. Inspired by this classical mechanism, the Live CPU Simulation Engine in-

stead executes software models’ delay times over four comparable conceptual

stages: fetch delay time, decode delay time, advance simulation (delay) time, and

update status (see Figure 3-16 (B)).

3.3.4.1 Software Prerequisites of the Live CPU Simulation Engine

Before describing the Live CPU simulation cycle, it is necessary to indicate

some assumptions and pre-requisite background knowledge of the Live CPU

based software simulation approach:

1) Application software has been organised into tasks. Each task is wrapped in

a SystemC SC_THREAD process and has a TCB storing some individual

information. Each task is registered to an exclusive event, whose notifica-

tion can make the task resume from a wait-for-event statement.

2) If there are multiple concurrent tasks in the system, basic OS software

functions are needed. They include: OS scheduling functions to select a

new task to run and mark it with the RUNNING state; OS interrupt han-

dling functions to select an appropriate ISR for a relevant IRQ; and OS

context switch functions to save and load task’s context information be-

tween its TCB and Virtual Registers. The “context” mainly refers to timing

information of a task such as, for example, the execution cost, the used

execution time, the deadline and the start time.

3) The Live CPU Simulation Engine is only responsible for maintaining delay

value stored in Virtual Registers and advancing the simulated target clock

for the RUNNING task. It is independent from any above software OS

functions. This reflects the SW/HW orthogonal and modular modelling

principle.

3.3.4.2 Operation of the Live CPU Simulation Engine

Referring to Figure 3-17, the Live CPU based software time advance process

can be described over five steps along the target simulation timeline. There are

two possible software time advance cases, i.e., without interrupt interference (see

106

Figure 3-17 (A)), or with interrupt interference (see Figure 3-17 (B)). In following

descriptions, Steps (A), (B), (C), and (D) of the two cases are the same, their dif-

ference residing in Step (E).

1) Step (A): Preliminary to advancing software simulation time by the Live

CPU Simulation Engine, a software task is firstly loaded into the Live CPU

Virtual Registers

Delay
Register

Time
stamp

Register

Other
Registers

Live CPU Simulation Engine

Fetch
delay time

Decode
delay time

Advance
delay time

 t0 t0+t

… …

Simulation time line

SW task delay duration

 The CPU Engine plans
to trigger itself after t ns
and then returns.

Update
status

 A SW code block
executes in zero-time.

A

Plan to release the event after t

Virtual Registers

Delay
Register

Time
stamp

Register

Other
Registers

Live CPU Simulation Engine

Fetch
delay time

Decode
delay time

Advance
delay time

 t0 t1

ISR delay… … … ...

Simulation time line

SW task delay duration

 The CPU Engine plans
to trigger itself after t ns
and then returns.

IRQ

Update
status

 A SW code block
executes in zero-time.

A

(1) OS saves task’s
context and loads an
ISR.
(2) OS calls the CPU
Engine and cancels
the old event.
(3) CPU Engine starts
immediately and
begins the new ISR.

E

D

(1) Store t ns in DR.
(2) Maintain registers.

C

(1) Store t ns in DR.
(2) Maintain registers.

C

(1) Delay annotation is
injected into Live CPU.
(2) The SW code block

waits for an event.

B

(1) Delay annotation is
injected into Live CPU.
(2) The SW code block

waits for an event.

B

D

(1) CPU Engine
executes again when
the t ns delay expires.
(2) It consumes the
value in DR.
(3) It resumes the SW
task.

E

SW task

Plan to release the event after t
ca

nce
l t

he

old
 e

ve
nt

(A) No interrupts during a time advance

(B) The time advance is interrupted

SW execution in
zero-target-time

SW delay
duration

time advance start time advance stop

Figure 3-17. Operations of the Live CPU Simulation Engine

107

Model by an OS context switch operation. Then a software code block,

which could either be a whole task, a function, a statement segment, or a

basic block, executes in zero-target-time at time t0.

2) Step (B): After the software code block finishes execution, an explicit time

advance point can be reached. Here, there is a delay annotation function

and a SystemC wait(event) statement, just as what is introduced in

Section 3.2.3.

a. The delay annotation function generates a delay value which may have

different timing units (e.g., second, millisecond, microsecond, etc.) and

meanings (e.g., task level delay or basic block level delay) for model-

ling convenience. The value is written into a temporary variable in the

Live CPU Model, i.e., delay information is fetched, and the Live CPU

Simulation Engine is triggered to be ready-to-run.

b. The software code block then keeps waiting for its exclusive SystemC

sc_event object that will be released by the Live CPU Simulation

Engine at a future time point. This sc_event object represents the

“address of code block to run” in our simulation. Its importance is simi-

lar to the program counter in a real CPU.

c. From the perspective of the internal SystemC scheduler, the SystemC

process, which the software code unit belongs to, yields control to the

SystemC simulation kernel and the Live CPU Simulation Engine proc-

ess will be selected to run in next. However, from the perspective of

OS scheduling, this software task is still at the RUNNING state.

d. Note that, when using the simple single-purpose annotation function

DELAY_WR() in Section 3.2.4.2, only the delay value is stored for

prospective time advance, but the Live CPU Simulation Engine is not

triggered and there is no wait(event) statement. Hence, the soft-

ware model will continue executing until a time advance point is

reached.

3) Step (C): Because inputted delay information may have specific formats, it

is necessary to transform them into standard-form data for use with time

advance. The Live CPU Simulation Engine then decodes delay informa-

108

tion into a double float number with the nanosecond timing scale. The de-

coded result “t ns” is stored in the Delay Register (DR) that belongs to the

virtual register set of the Live CPU Model. At the same time, the current

time stamp t0, which can be obtained by the SystemC function

sc_time_stamp(), is also recorded in another virtual register.

4) Step (D): Subsequently, the Live CPU Simulation Engine starts the “simu-

lation (delay) time advance” step at t0. This stage consists of two opera-

tions: the Live CPU Simulation Engine plans to wake up itself at a future

time point and then returns. The CPU Engine’s sleeping duration represents

execution cost of a software model. Depending on the execution mode of

the Live CPU Simulation Engine, there are three possible cases:

a. If the Live CPU Simulation Engine works in a pure variable-step time

advance mode, it plans to progress the delay time t in the DR in a sin-

gle step. It sets the internal event to trigger itself at the coming time

point t0+t. Then it returns control back to the simulation kernel in order

to advance the simulation time by the duration of t.

b. If the Live CPU Simulation Engine is set with a fixed-step time ad-

vance mode, it runs periodically in order to decrement and update the

delay value in DR until the delay value is totally exhausted, whilst, the

simulation clock is progressed period-by-period.

c. If the Live CPU Simulation Engine is configured with both the vari-

able-step and the fixed-step modes, it not only plans to wake up at the

final time point, but also periodically decrements the delay value.

5) Step (E): In this stage, the Live CPU Simulation Engine updates the simu-

lation status by maintaining delay time and resuming or beginning a soft-

ware task. There are two possible situations depending on whether an inter-

rupt happens:

a. Assuming a simple case where there is no interruption or pre-emption

during the t time duration as illustrated in Figure 3-17 (A), thus the

Live CPU Simulation Engine wakes up at time t0+t. It consumes the

value in DR and then issues the event related to the current RUNNING

109

task so as to make it continue executing. Upon that, the above execu-

tion cycle is repeated.

b. A main target of the mixed timing approach is to solve the non-

interruptible problem of SystemC software simulation. It is important

to consider the interference from an unexpected interrupt event during

ongoing software delay duration. As shown in Figure 3-17 (B), before

the time advance duration t expires, an IRQ happens at t1 that is earlier

than the time point t0+t projected in Step (D). Given that the interrupt

handling mechanism of the system is not intentionally disabled, the In-

terrupt Controller Model thus catches the IRQ immediately and then

invokes the software OS interrupt handling function to serve this IRQ,

i.e., the current RUNNING task will be pre-empted by a higher-priority

ISR. The OS interrupt handling function saves the remaining portion of

the delay time slice and other timing information in Virtual Registers to

the pre-empted task’s TCB for future use. The remaining portion of the

delay time is calculated as: tremain = t-(t1-t0), where t is the initial value

of the DR and t1 is the current time stamp. The OS interrupt handling

function then dispatches (i.e., loads its context to Virtual Registers) an

appropriate ISR as the next-to-run software task and calls the Live CPU

Simulation Engine by notifying an event to replace the previously-

planned wake-up event. The Live CPU Simulation Engine faces fresh

values in the Virtual Registers and sends an event to allow the ISR to

run immediately. Consequently, the software ISR executes its func-

tional code and repeats the above time advance process. In this way,

both software time advance and hardware interrupt handling are simu-

lated accurately.

3.4 Evaluation Metrics

Recalling the three requirements on SLDL-based software behavioural model-

ling and simulation mentioned at the beginning of this chapter, the flexible model-

ling aspect is mainly addressed in Section 3.2.3 by supporting different software

110

functional and timing models. The simulation performance and simulation accu-

racy aspects are addressed in this section in order to evaluate experiments in Sec-

tion 3.5.

3.4.1 Simulation Performance Metric

In this section, the metric of simulation performance is defined as how much

simulation time (i.e., host time) is used to execute a specific simulation in the host

computer. A specific simulation refers to executing a software test program,

which is modelled in the mixed timing approach and simulated by the Live CPU

Model for a set of repeated iterations. As the referenced cycle-accurate simulator,

the KEIL ARM ISS [146] executes the same test program for a same number of

loops. Simulation speeds of the mixed timing simulation approach and the ISS

approach are compared in order to calculate a simulation speedup, which is:

 Note that although the ISS simulator is also a software-based simulation ap-

proach, it executes cross-complied software binaries for a target hardware plat-

form. In the context of high-level software simulation, functional and timing be-

haviours of an ISS are commonly deemed the same as real software execution on

a corresponding processor.

3.4.2 Simulation Accuracy Metrics

Simulation accuracy metrics of the mixed timing approach relate to two aspects,

i.e., functional accuracy and timing accuracy. In Section 3.3.4, some simple OS

functions are introduced as the basis for mixed timing software simulation. How-

ever, the focus of this section is not to present a detailed OS simulation model

with complete multi-tasking and concurrent execution services. Rather, this sec-

tion concentrates on relationships between software models and their timing char-

acteristics, i.e., time annotation and advance. Hence, a test program does not util-

ise many OS functions but needs to include data-dependent loops that require

dense time annotations.

111

3.4.2.1 Functional Accuracy

Functional accuracy refers that, in terms of a given test program, whether be-

havioural simulation models can represent similar functions and generate correct

results compared to real software execution. Based on the definition in Section

3.2.3.1, abstract software models do not sufficiently reflect this property if they do

not aim to include enough functional code. Regarding native-code software simu-

lation models, this property can be evaluated by compared its simulation results to

those of an ISS simulation.

However, evaluating functional accuracy is not an emphasis in this chapter, be-

cause it is not difficult to guarantee that a single task model can execute correct

modelling functions. Especially, a native-code task model may have the same

code as a real task. Functional accuracy of concurrent multi-tasking software

models will be addressed in Chapter 4, when a complete RTOS model is intro-

duced.

3.4.2.2 Timing Accuracy

By simulating a software model in the proposed mixed timing approach, it is

known how much simulated time (i.e., the target time in SystemC) is used to exe-

cute a set of repeated iterations of a given test program, which is referred to as

tmixed. It can also find the simulated time of the same test program and iterations in

an ISS simulator, which is referred to as tISS.

Timing accuracy can be reflected by comparing tmixed and tISS. If they are close,

then the timing accuracy of the mixed timing approach is deemed good enough. A

timing accuracy loss is computed as:

Inaccuracy of timing is contributed by three parts, i.e., software performance

estimation, delay annotation, and time advance.

The first part is not within research focus of this thesis, so ISS-based measure-

ment method is used (See Section 3.2.5.3). It can provide highly accurate software

performance information.

112

The second part is addressed in definitions of software models in Section 3.2.3.

It should be noticed that inaccurate annotations may be intentional choices of

simulation users for the sake of fast simulation performance and ease of modelling.

The third part is a notable advantage of the mixed timing approach in terms of

supporting interruptible software time advance by the Live CPU Simulation En-

gine. However, in this chapter, without involving many task switches and RTOS

services in simulation, this aspect cannot be evaluated thoroughly.

Still, referring to Section 3.2.7.3, there are three basic features related simula-

tion timing accuracy can be evaluated:

1) The resolution of stopping a software time advance step

2) Timing accuracy of handling interrupts

3) Maintaining execution delay information of software models

The first point can be evaluated by measuring how fast a time advance step can

be stopped in the proposed simulation approach. The second point can be simpli-

fied as the interrupt latency at the moment. In fact, it refers to the same feature as

the first point. The third point can be evaluated by observing whether a task’s time

advance can be resumed properly after it is pre-empted.

3.5 Experimental Results

All simulation tests in this section are performed with SystemC v2.2 on three

x86 PCs (frequencies ranging from 1.86GHz to 2.2GHz) running Windows OSs.

Tests of a single topic are always carried on the same PC in order to be compara-

ble. Host simulation times are measured by Windows Win32 function Query-

PerformanceCounter(), which can retrieve the value of the high-resolution

hardware performance counter and provide microsecond level host execution time

[148]. Target simulated times are obtained by using SystemC function

sc_time_stamp().

113

3.5.1 Performance Evaluation

3.5.1.1 Simulation Performance of Different Timing Models

In Section 3.2.3, the abstract software model and native-code software models

are introduced. Because they have distinct functional and time annotation charac-

teristics, their simulation performance necessarily differs. Furthermore, in Section

3.2.4, two techniques are introduced to improve simulation performance by ad-

justing time annotation and advance statements in code. This section presents

some tests to evaluate simulation performance of these different models and mod-

elling techniques. In order to concentrate on the above-mentioned aspects and

eliminate the possibility that software functional complexity may dominate simu-

lation performance, the test program includes a single task implementing a selec-

tion sort algorithm. This algorithm involves typical data-dependent if conditional

operations and for loop operations, which require fine-grained time annotations if

the timing accuracy is a concern. Although RTOS services are not called by the

task, limited RTOS services (without delay annotations) are still executed in order

to initialise the software simulation system.

As shown in Table 3-10, the same program is simulated in six cases:

 Two abstract software models: The first abstract software model does not

implement the actual function of the sort algorithm, whilst the second ab-

stract model does. They are both annotated one time annotation statement

and one time advance point at the task level.

 Three native-code models: They all implement the sort function and have

four fine-grained segment level annotation statements, which are approxi-

mately timing accurate regarding data-dependent loops.

 The native-code 1 and 2 are both implemented by the proposed mixed

timing method and the interruptible Live CPU based time advance

method. Their difference is: two time advance points are defined in na-

tive-code model 1, which utilises the reduced time advanced technique

in Section 3.2.4.2; whereas, four time advance points are defined in na-

tive-code model 2 and inside data-dependent loops.

114

 The native-code model 3 utilises the uninterruptible wait-for-delay time

advance method. It is a conventional annotation-dependent software

simulation model.

 The test program is also run on the KEIL ARM ISS without cache and OS

support and its execution time costs are used to annotate above behavioural

models.

Simulation results are shown in Figure 3-18. Some phenomena and conclusions

can be inferred:

 The abstract model 1 is faster (over 400x speedup compared to ISS) than

other models because that it does not model functionality and has the fewest

execution counts of annotation and time advance in simulation. The abstract

model 2 is slower than abstract model 1 due to its functional complexity.

They both can be used for abstract software modelling in this thesis.

 The proposed native-code model 1 has fast simulation speed, i.e., over 200x

speedup compared to ISS. It is functional accurate, i.e., with the native-code

function. Its timing accuracy is also promising because of sufficient execu-

tion counts of annotation statements in simulation (see the quantification re-

Table 3-10. Descriptions of experimental cases

Proposed

abstract

model 1

Proposed

abstract

model 2

Proposed

native-

code

model 1

Interuptbi

ble native-

code

model 2

Uninterruptibl

e native-code

model 3

 ISS

Functions
Without

functions

With

functions

With

functions

With

functions
With functions Final code

Time annotation

granularity

Coarse-

grained

function-

level

Coarse-

grained

function-

level

Fine-

grained

segment-

level

Fine-

grained

segment-

level

Fine-grained

segment-level

Number of time

anno. statements
1 1 4 4 4

Time advance

granularity

Coarse-

grained

function-

level

Coarse-

grained

function-

level

Reduced

advance

Fine-

grained

segment-

level

Fine-grained

segment-level

Number of time

adva. statements
1 1 2 4 4

Cycle-

accurate

ARM7TDM

I-S

LPC2124

@60MHz

115

sult in Section 3.5.2.1). It is recommended to be used in native-code soft-

ware modelling in this thesis.

 The interruptible native-code model 2 also has similar functional and timing

accuracy behaviours compared to the native-code model 1. However, its

slowest simulation speed is not satisfactory. Certainly, it may represent

some special software simulation situations, where many time advance

points are necessary (see Section 3.2.4.2). If these “uncommon” situations

indeed happen frequently, the simulation speed of the proposed mixed tim-

ing simulation approach will necessarily decrease.

 The uninterruptible native-code 3 is weak in terms of its uninterruptible time

advance method and slow simulation speed, i.e., using over 200x simulation

time more than the proposed native-code model 1.

In addition, Figure 3-18 shows some statistics on execution counts of time an-

notation statements and time advance steps in simulation. Regarding the proposed

mixed timing simulation approach in this thesis, two characteristics can be in-

ferred from the perspective of this experiment and give guidance to some extent:

Figure 3-18. Simulation time results

1882.75 3237.126 3527.092

1845550
802926.05 815000

1

10

100

1000

10000

100000

1000000

10000000

H
o

st
 s

im
u

la
ti

o
n

 t
im

e

(u
s)

Simulation time comparison

Abstract

model 1

Abstract

model 2

Native-

code

model 1

Native-

code

model 2

Native-

code

model 3

ISS

Host simulation

time (us)
1882.75 3237.126 3527.092 1845550 802926.1 815000

Total execution

counts of

annotation

1 1 125749 125749 125749

Total time

advance steps
1 1 2 125749 125749

116

1) More annotation statements do not contribute too much simulation time.

Comparing the native-code model 1 and the abstract model 2, 125749 times

more annotation statements result in less than 10% simulation overheads.

2) Time advance steps (i.e., execution of the Live CPU Model) affect simula-

tion performance greatly. Comparing the native-code model 2 and the na-

tive-code model 1, 62875 times more time advance steps incur 500 times

more simulation time.

3.5.1.2 Simulation Performance of Varying Time Advance Methods

In the previous section, simulation performance was evaluated by varying tim-

ing modelling related aspects. This section inspects simulation performance of

models by changing time advance method of the Live CPU Simulation Engine.

In Section 3.2.7, the variable-step and fixed-step time advance methods are in-

troduced as execution mechanisms of the Live CPU Simulation Engine. By setting

the two time advance methods for the Live CPU Simulation Engine, trade-offs

can be made on simulation speed, observability, and time advance accuracy.

The software test program consists of eight abstract tasks (i.e., four equal-

priority periodic tasks and four higher-priority ISR tasks) with randomly-

generated task-level delays. A very simple OS model provides pre-emptive multi-

tasking services. The OS scheduler implements fixed-priority and round-robin

scheduling algorithms and is triggered by a combined time-driven and event-

driven mechanism. Four interrupt sources are included in simulation and raised

randomly in order to trigger ISRs. The test program runs for 1000 ms target time

that allows a task to repeat at least 20 times.

The Live CPU Simulation Engine is configured in following models:

1) Model A: uses a fixed-step time advance method, which runs every 1 s

and advances the target clock by a step of 1 s. It is similar to the fine-

grained time period synchronization approach in Section 3.1.2. This

achieves 1 s time advance resolution.

2) Model B: uses a dual-grained fixed-step time advance method. It is similar

to the multiple-grained time annotation method introduced in Section 3.1.3.

When a software delay value is greater than 1 ms, the engine runs every

117

1ms to progress the target clock by a step of 1 ms. Once the delay value

falls below 1 ms, then the engine runs every 1 s to advance the target

clock by a step of 1 s. This achieves 1 s time advance resolution.

3) Model C: uses a mixed fixed-step and variable-step time advance method.

It progresses a delay slice in an interruptible variable-length step and also

runs every 1 ms to advance the target clock by a step of 1 ms. The time ad-

vance resolution is only restricted by the timing resolution of SystemC

simulation engine.

4) Model D: uses a variable-step time advance method. It progresses a delay

slice in an interruptible variable-length step. The time advance resolution is

only restricted by the timing resolution of SystemC simulation engine.

The same test program is run on KEIL ARM ISS for a same duration of 1000

ms. The target processor is a NXP LPC2378 running at 40MHZ. A µC/OS-II

RTOS [149] is ported on this ISS to manage tasks.

Obtained simulation speed results are shown in Figure 3-19. Compared to ISS

simulation, mixed timing models obtain drastic performance improvement in

terms of the biggest speedup over 3000 times. Unsurprisingly, the variable-step

approach is also faster than the fixed-step time advance approach. Model D

Figure 3-19. Simulation time comparison

118

achieves a considerable speedup (over 600 times) compared to model A. This is

because the fixed-step approach progresses the target clock much more frequently

than the variable-step approach, which is reflected by higher running counts of the

Live CPU Simulation Engine.

The models B and C use combined time advance methods. From their simula-

tion results, it can be inferred that finer periodic time advance steps result in more

simulation overheads. In order to reveal relations between step lengths and simu-

lation speeds of fixed-step time advance method, three additional tests are carried

out with periodic steps of 2 ms, 5 ms and 10 ms, which mean the Live CPU Simu-

lation Engine is activated to advance the target clock in every 2 ms, 5 ms, and 10

ms respectively.

Figure 3-20 shows that simulation times and Live CPU running counts steadily

decrease whilst the fixed-step period is growing larger. This characteristic can be

used to tune the Live CPU Simulation Engine and optimise the simulation per-

formance and simulation observability in different situations. Besides, the peri-

odic fixed-step time advance method can represent the behaviour of handling the

periodic real-time clock interrupt of a RTOS, in which the Live CUP Simulation

Engine is triggered periodically. According to simulation results, finer real-time

clock interrupt periods incur extra but not excessive overheads, which can be used

Figure 3-20. Comparison of varying fixed-step lengths

119

as a reference to determine the period of the clock interrupt in a RTOS model.

3.5.2 Accuracy Evaluation

3.5.2.1 Experimental Timing Accuracy

Experimental tests in Section 3.5.1.1 are also studied here. According to the

analysis in Section 3.4.2.2, regarding a simple software model, its timing accuracy

depends on its performance estimation and delay annotation granularity. Perform-

ance is measured in ISS and used for native-code software models. Timing delays

are annotated at the segment level. Consequently, a good timing accuracy should

be expected. As shown in Table 3-11, in terms of the same test program, native-

code models consume very similar target time to the ISS simulator. This table also

demonstrates that reducing time advance points does not affect timing accuracy of

independent software models.

3.5.2.2 Timing Accuracy of Basic Operations

Referring to the three basic features related simulation timing accuracy in Sec-

tion 3.4.2.2, an interrupt experiment is executed in order to evaluate them in simu-

lation.

This experiment includes five IRQs (IRQ1-5) and five associated ISRs (ISR1-

5), which are assigned ascending priorities. Each IRQ randomly happens 500

times in 10 seconds simulated time. A normal task runs in the background and can

be interrupted by any IRQs and pre-empted by their ISRs. The software system is

configured so that interrupts are always enabled and the Live CPU Simulation

Engine can stop current time advance as soon as a higher-priority interrupt hap-

pens. Therefore, at any simulation time point, interrupt latency of the highest-

Native-code

model 1

Native-code

model 2
ISS

Simulated times (µs) 6986.115 6986.115 6977.51

Accuracy loss 0.12% 0.12%

Table 3-11. Timing accuracy of native-code models

120

priority IRQ should always be zero, and all other IRQs are only able to be post-

poned by higher-priority ISRs.

Figure 3-21 shows a part of the timeline of this experiment, which is drawn ac-

cording to the actual simulation log. It illustrates three concerned basic timing re-

lated features, i.e., immediate stop of time advance, resumable time advance, and

zero-time interrupt latency. As well, it demonstrates some functions of the Inter-

rupt Handler Model.

Referring to this simulation trace, at t=7011 µs, IRQ2 and IRQ3 happen simul-

taneously. Since the Live CPU model controls software time advance and moni-

tors IRQ lines, the current software time advance step is stopped immediately and

an IRQ is handled immediately. This interrupt latency is zero-time. Because the

priority of IRQ3 is higher than IRQ2, the Interrupt Controller Model ignores

IRQ2 and begins to service IRQ3. Afterwards, RTOS interrupt services and ISR3

execute sequentially. At t=7022 µs, a higher-priority IRQ4 happens and invokes

nested interrupt service by pre-empting ISR3. Note that IRQ1 is raised during

ISR4 execution; however, it is ignored by the Interrupt Controller Model due to its

lower-priority priority. After the completion of ISR4, lower-priority ISRs are han-

dled successively according to their priorities. Among them, ISR3 is released

firstly to continue its remaining delay and finishes at t=7041 µs.

In order to quantify the interrupt latency in simulation, we measure interrupt la-

tencies of these five IRQs in this experiment. The theoretical maximum interrupt

latency of an IRQ can be computed as the sum of all higher-priority ISR time

costs:

SW task

7011 7016 7022 7027

IRQ2

ISR3

SW task

IRQ1

7041 7053 t (μs)
til

C

tiresp
tireco

til : interrupt latency time

tiresp : interrupt response time

tireco : interrupt recovery time

 interrupt_handler_enter

interrupt_handler_exit

C context_switch

IRQ3

C
IRQ4

ISR4 C

ISR3 C

ISR2 C

ISR1 C

Figure 3-21. Interrupt handling experiment

121

Table 3-12 compares measured maximum interrupt latencies with calculated

theoretical values. As expected, the highest-priority IRQ5 is always serviced

without any delay. And other IRQs are also serviced with zero-time latency if

there is no other higher-priority ISR in the system. In case that an IRQ is delayed

by some other higher-priority ISRs, its maximum interrupt latency does not ex-

ceed the theoretical worst-case value either.

3.6 Summary

In this chapter, a SystemC-based mixed timing software behavioural modelling

and simulation approach and the Live CPU Model have been introduced.

In the context of TLM software computation modelling, two types of software

timing models were proposed for use in different software modelling stages. Also,

they can be mixed in simulation for modelling flexibility. By isolating the timing

modelling aspect from the timing simulation aspect, various timing annotation

granularities (i.e., task-level, function-level, segment-level, and basic block-level),

functional accuracy levels (i.e., abstract and native-code), and time advance meth-

ods (i.e., variable-step and fixed-step) can be utilised on mixed timing software

models for various sakes of fast simulation performance, modelling flexibility,

simulation observability, and reasonable accuracy.

Counts of

zero-time

interrupt

latency

Counts of

delayed

Interrupt

latency

ISR time

cost (µs)

Theoratical

maximum

latency (µs)

Measured

maximum

latency (µs)

IRQ5 500 0 500 0 0

IRQ4 441 59 10 500 494

IRQ3 440 60 10 510 488

IRQ2 448 52 10 520 502

IRQ1 444 56 10 530 488

Table 3-12. Comparison of theoretical and measured interrupt latencies

122

The proposed SystemC-based Live CPU Model can achieve interruptible soft-

ware time advance and zero-time delayed interrupt handling latency in software

simulation. The HW/SW synchronisation problem is solved without the need of

fine-grained time annotation and advance. This approach avoids the annotation-

dependent software time advance approach that may result in uninterruptible

software timing simulation. The Live CPU model supports multiple execution

modes, which could trade off simulation speed with simulation observability. The

Live CPU Model also provides an essential Interrupt Controller Model, a real-

time clock and some Virtual Registers to assist software simulation. In the context

of a software PE model, the Live CPU Model behaves as the conceptual hardware

part and is promising to be extended with SW/HW interfaces for inter-module

communication.

Regarding the requirement of fast performance, a representative test program

shows that the proposed mixed timing software models achieve about 200 to 3000

times speedup
3
 to an ARM ISS simulator and the conventional fine-grained unin-

terruptible behavioural software model. The proposed abstract and native-code

software models also show distinct simulation performance as expected. Various

execution models of Live CPU Simulation Engine are tested in order to present

their effects on simulation performance. In general, more time advance points in

models inevitably incur more simulation overheads.

In this chapter, twofold timing accuracy of the simulation approach was meas-

ured in experiments. Firstly, focusing on timing accuracy of single task execution,

with fine-grained segment-level annotations, the proposed native-codes only incur

a 0.12% timing accuracy loss. Secondly, the basic time advance stopping latency

and interrupt latency is evaluated by measuring interrupt latencies in simulation

3
 The variation in simulation speedup are mainly because of two reasons: firstly, different experi-

ments and test settings affect the simulation speed of a specific experiment; secondly, experiments

were carried out at different times when the overall functionality and complexity of the proposed

software simulator were evolving, which affected simulation speeds. In general, compared to the

KEIL ARM ISS, the proposed simulation approach has two or three orders of magnitude speedups

in this thesis.

123

tests. The result accords with the theoretical value, i.e., zero-time latency. The re-

sumable time advance method is demonstrated in a simulation case.

 125

Chapter 4

A Generic and Accurate RTOS-Centric

Software Simulation Model

In recent years, with embedded systems moving towards System-on-Chip plat-

forms, the complexity of the hosted embedded software is increasing. The RTOS

has become an essential software component in many real-time embedded sys-

tems, providing efficient resource sharing and controlling facilities as well as

guaranteed services between upper-layer application software and underlying

hardware resources. The traditional software simulation approach, which executes

a real RTOS and fully developed applications in an instruction set simulator, ap-

pears to be time consuming. In order to speed up simulation performance and

validate real-time embedded software early in the system-level design flow, re-

searchers have proposed system-level SLDL-based behavioural software simula-

tion as a new design paradigm.

RTOS behavioural modelling and simulation have been proposed as enabling

techniques that simulate and evaluate different real-time embedded software de-

sign alternatives in the early design phases. They can be used to evaluate system-

wide, dynamic, run-time properties of real-time software, such as scheduling poli-

cies, application execution times, and interrupt handling, etc. These methods usu-

ally build generic RTOS models that can provide various typical RTOS services

or can be adapted to mimic behaviour or specific RTOSs. The RTOS model and

abstract software models or native-code application software models are dynami-

cally executed together in an SLDL environment on a host machine, in order to

mimic timing and functional behaviour of a software system on a target platform.

 126

4.1 Motivation and Contribution

Within the system-level RTOS modelling and simulation research area, there

still exist some unaddressed aspects and issues for improvement. These relate to

the functionality, timing accuracy, and simulation performance of simulation

models. For example, from the perspective of maximising flexibility of system-

level software modelling, designers may want to simulate multiple abstraction-

level software models in one simulation framework. Current RTOS modelling re-

search does not address integrating coarse-grained timed abstract task models (i.e.,

associated with best-case and worst-case execution times) and fine-grained timed

native-code application software (i.e., associated with multiple delay annotations)

in one simulator. Besides, from the perspective of practical RTOS engineering,

some RTOS models provide simplistic task management and limited synchronisa-

tion services, which are inadequate to imitate the behaviour of a real multi-tasking

RTOS. Furthermore, the low timing accuracy is a common, yet critical, problem

borne by many RTOS modelling approaches. On the one hand, this is due to the

lack of inclusion of RTOS services’ timing overheads in modelling. On the other

hand, some SLDL-based modelling methods rely excessively on the uninterrupti-

ble SLDL wait-for-delay time advance mechanism (see Section 3.1.1); conse-

quently, task switches and HW/SW synchronisation can only happen at limited

pre-defined time advance points.

In this chapter, a SystemC-based system-level RTOS-centric real-time embed-

ded software simulation model is presented. Its objectives are fast simulation and

behavioural evaluation of real-time embedded software with good flexibility and

reasonable accuracy in early design phases. Dynamic execution scenarios of a

modelled target system can be exposed by tracing diverse system events and val-

ues in simulation, e.g., RTOS kernel calls, RTOS runtime overheads, task execu-

tion times, dynamic scheduling decisions, task synchronisation and communica-

tion activities, interrupt handling latencies, context switch overheads, and other

properties. The whole simulation framework integrates multi-tasking applications,

RTOS, Live CPU and other hardware component models in a unified SystemC

prototyping environment. The core is a generic RTOS simulation model, which

supplies a set of fundamental and typical services including task management,

 127

scheduling services, synchronisation, inter-task communication, clock services,

context switch and interrupt handling services, etc. These services refer to several

commercial RTOS products and specifications in order to supply general and

standard functions. With the aim of building a timing RTOS simulation model,

timing overheads of various RTOS services and application tasks are also consid-

ered in the models.

All models in the simulation framework are implemented on top of the Sys-

temC library. The basic SystemC core language and the OSCI referenced simula-

tion kernel are used without modification.

In the remainder of this chapter, Section 4.3 introduces a typical embedded

software stack and considers its inclusion within our simulation model. Section

4.4 presents background knowledge of real-time applications and the RTOS. Sec-

tion 4.5 describes the RTOS-centric software modelling approach in detail. Sec-

tions 4.6 and 4.7 introduce evaluation metrics and experiments to demonstrate the

simulation performance, function, and accuracy of RTOS-centric real-time soft-

ware models. Finally, the chapter is summarised in Section 4.8.

4.2 Research Context and Assumptions

Referring to Figure 4-1, we have introduced software PE modelling in Section

2.1.3.3. The Live CPU Model, as described in Section 3.3, represents the hard-

ware aspect of the software PE model. This chapter will introduce the behavioural

RTOS-centric software simulation model, namely the software aspect of this

software PE. The software simulation model runs on top of the Live CPU Model,

Figure 4-1. Software part of the software PE model

Software Processing
Element (CPU)

SystemC Enviroment

Hardware
abstraction:

Live CPU Model

Behavioural software
simulation model

Software aspect

Hardware aspect

 128

so software simulation is guaranteed with reasonable timing accuracy and good

HW/SW synchronisation (i.e., interrupt handling) timing accuracy. The whole

software PE model is the research context, i.e., multi-tasking real-time applica-

tions and a RTOS run in a uniprocessor embedded system model.

Due to the high abstraction level of the software simulation approach in this

thesis, advanced CPU architectures such as multiple-level caches and pipelines

are not considered, i.e., their effects on software execution times are not explicitly

modelled. However, according to the software performance estimation methods

discussed in Sections 3.2.5 and 3.2.6, a KEIL ARM ISS without cache is used to

measure software performance for back annotations of our software models in this

thesis. In terms of other specific ISSes, caches may or may not be supported when

the ISS executes software instructions, which means that caches can still affect

timing accuracy of software time annotations. Hence, timing accuracy losses of

software execution times - between the proposed behavioural software simulation,

the referenced ISS, and the real hardware platform - are inevitable. Recalling the

research intention of this thesis for fast and accurate software simulation, it is as-

sumed that the referenced ISS is accurate enough to support and evaluate our be-

havioural software simulation.

As introduced in Section 3.3.1, the memory subsystem for actual software exe-

cution (e.g., RAM) is not included in the Live CPU Model because that it is not

necessary for behavioural (i.e., abstract or native-code) software simulation.

Hence, target software memory environments such as stack, heap, and memory

protection, and RTOS memory management services such as swapping, paging,

allocation, segmentation, and virtual memory, are also out of the modelling focus.

Nowadays, there are many general RTOS concepts, popular RTOS standards,

and specific RTOS products. This thesis aims to present a generic RTOS model

for behavioural real-time software simulation. It should be representative yet

without a loss of generality. The selection and determination of functions and re-

quirements of the RTOS model are made with reference to both some classical

RTOS literature [25] [26], and some current RTOS specifications and products,

including:

 129

 The Didactical C Kernel (DICK) [25]: this is a small real-time kernel that

introduces basic and important issues for designing a hard real-time kernel

and hence informs our simulation model from the theoretical aspect.

 Real-Time extensions of the POSIX (Portable Operating System Interface)

standard 1003.1 (referred to as RT-POSIX hereafter) [150]: this is a very

broad and successful API standard particularly facilitating handling multi-

threading and multiprocessing real-time applications. RT-POSIX is scalable

with four subsets (namely Real-Time Profile PSE51 (minimal), PSE52 (con-

troller), PSE53 (dedicated), and PSE54 (multi-purpose)) for different-scale

systems. The RTOS model in this thesis refers to the PSE51 profile for

small embedded systems.

 μITRON (micro Industrial The Real-Time Operating system Nucleus) 4.0

standard [151]: this standard is oriented to small/medium-size embedded

systems. Over 40% of RTOSs used in Japan are based on this standard [129].

It inspires the task state machine in the proposed RTOS model.

 μC/OS-II [149], ThreadX [152], and Keil RTX (Real Time eXecutive) [1]:

they are representative popular small-size RTOSs. Their functions and ker-

nel structures mostly influence the proposed RTOS model from a practical

engineering aspect.

 QNX Neutrino [147]: this is a RT-POSIX compliant multiprocessor-enabled

high-end RTOS. Its implements basic thread and real-time services in the

microkernel and can be extended to support multiple processes by adding

optional components.

4.3 The Embedded Software Stack Model

The left part of Figure 4-2 depicts a typical embedded software stack. It in-

cludes three layers, i.e., the application software layer, the middleware layer, and

the system software layer. According to the research context and intention of this

chapter, the software stack needs to be abstracted into a model in order to accom-

modate software components for high-level modelling and simulation.

The right part of Figure 4-2 illustrates the abstract model of the embedded

software stack. The application layer is obviously essential to be included, be-

 130

cause it represents some actual functions of the embedded software. It is necessar-

ily one of the main targets of the modelling research. However, the middleware

layer is not considered. This is because it is oriented to complex and distributed

applications, so it is not fundamental for early-phase real-time software simulation

and is beyond this research.

The system software layer of an embedded software stack always includes

various HdS components such as device drivers, boot firmware, and RTOS.

Device drivers are essential in real computer software systems to provide spe-

cific services for software to accesses hardware resources, namely I/O services

[153]. However, for the proposed system-level software modelling and simulation

approach, these are largely outside the scope of the research. We note that devel-

opment and evaluation of device drivers is usually carried out with ISS simulators

or fully functional hardware prototypes at a relatively later design phase, which

differs to the research assumption of this thesis. Consequently, device drivers are

not addressed in the real-time software modelling and simulation approach. The

same consideration applies to boot firmware as well.

In some embedded system contexts, HAL is a meaningful and abstract concept

referring to the lowest system software components, which directly access hard-

ware resources and totally depend on the target architecture [22] [154]. Figure 4-2

shows the conceptual location of the HAL inside the system software layer. The

HAL components define platform-specific data types, cover hardware-dependent

parts of device drivers, and especially include processor-specific software code

Processor

task1 task2 task3

Device Drivers

RTOS

Firmware

Application software
 layer

Middleware
layer

System software
layer

(Hardware-dependent
Software)

Distributed comp. Servers

HAL API
Hardware Abstraction Layer

Applications model

task
model

task
model

Generic RTOS model

Live CPU Model

HAL

Figure 4-2. Embedded software stack and its abstract model

 131

(e.g., boot firmware, context switches, processor mode change, and interrupt con-

figuration functions) [153]. The intention of HAL is to ease HdS porting on dif-

ferent hardware architectures by separating HdS into the hardware-independent

part (e.g., most RTOS services) and the hardware-dependent part (e.g., HAL).

Hence, in software development, the hardware-independent part can possess reus-

ability over different architectures to some extent. Only the hardware-dependent

part needs hardware-specific development. Furthermore, by means of using HAL

APIs, upper-level application software can utilise abstract hardware resources

early in the design flow before the hardware architecture is fixed and finished,

which embodies a reuse concept.

One issue is where the HAL should appear in the embedded software stack

model. Firstly, consider the hardware and processor resources available. In Sec-

tion 3.3, the Live CPU Model has been introduced as the underlying hardware

model for software simulation. It can provide essential hardware resource for

modelling interrupt-based HW/SW interaction and clock services. In addition, in

the forthcoming Chapter 5, the Live CPU Model will be extended with TLM in-

terfaces for inter-module communication modelling. Based on these foundations,

there is a necessity to provide a HAL model in the software modelling stack

which can offer a set of low-level hardware-related functions. By this means, ap-

plication software and RTOS models can utilise and configure the Live CPU

Model for timing simulation, and can access other hardware resources. These

HAL functions include context switches, interrupt handling, critical section con-

trol, and TLM transfers etc. For the purpose of simplifying model structures, the

HAL model is implemented as a number of member functions inside the SystemC

module of the RTOS model. The external behaviour and interface of the generic

HAL model is similar to what is used in a typical embedded software stack. How-

ever, the exact functionality of some parts of the HAL model is only applicable

for simulation purpose in this thesis, which means it is different to the HAL code

that is finally implemented.

 132

4.4 Common RTOS Concepts and Features

4.4.1 “Real-Time” Features of Embedded Applications

Concurrent real-time application software is divided into several tasks that are

organised (scheduled) by the RTOS. In the general context of real-time systems,

there are different kinds of embedded applications depending on timing stringency

of tasks, which mean whether an application task must finish its execution within

a time interval - the deadline. We can categorise real-time embedded applications

into two classes:

 Non-Real-Time (NRT) applications: where tasks do not have deadlines;

 Real-Time applications: where tasks have deadlines. Moreover, this class of

applications can be further distinguished as hard, firm or soft. Hard real-

time applications are imperative for finishing execution within the required

deadline; otherwise, catastrophic consequences may be the result. Examples

can be found in sensor data acquisition and low-level control components in

avionics and automotive electronics. In soft real-time applications, meeting

deadlines is still of importance in terms of concern regarding performance.

But if deadlines are occasionally missed, applications can still function cor-

rectly and do not result in serious failure. Handling input from the keyboard

and displaying information on the screen are examples of soft real-time ap-

plications [25]. As a variation of soft real-time applications, firm real-time

applications result in neither functional benefits nor a total failure from

missing deadlines.

In a real-time system, the RTOS must be able to handle hard real-time applica-

tions to fulfil strict requirement of deadlines. In addition, because there are differ-

ent types of applications in the real world, a RTOS may need to support a hybrid

NRT, hard and soft real-time application set. In real-time systems research, some

approaches have been proposed to not only guarantee timing constraints of hard

real-time tasks, but also optimise the average performance of NRT and software

real-time tasks. For example, the hierarchical scheduling schemes use global (so-

called kernel-level or system-level) and local (so-called user-level or subsystem-

 133

level) schedulers to schedule various applications and their inclusive tasks by dif-

ferent scheduling algorithms [26] [155]. There have been some attempts to con-

sider this hybrid application problem both on top of existing RTOSs and in the

design of new RTOS research kernels, e.g., hierarchical scheduling extension on

top of VxWorks [156] and Soft Hard Real-time Kernel (SHaRK) [157]. However,

as indicated in [26] “most OSs schedule all applications according to the same

scheduling algorithm at any given time” – currently, most popular commercial

and open source RTOSs do not have explicit special mechanisms to effectively

support NRT, soft, and hard real-time applications running in the same environ-

ment.

A real-time task has some timing properties that need to be aware or consid-

ered in RTOS management and scheduling. Referring to Figure 4-3, typical tim-

ing parameters of a real-time task usually consist of [21] [25]:

 Arrival time (a): also called release time, which means the time point when

a task is ready to execute.

 Offset (O): the time length between the arrival time and time point 0. In

RTOS execution, it refers to the possibility that different tasks may not si-

multaneously become ready to run after the system is started up.

 Worst-Case Execution Time (WCET): the longest possible execution time

of a task.

 Best-Case Execution Time (BCET): the shortest possible execution time of

a task.

 Execution time (E): the actual execution time of a task, which is the time

length between the start time (s) and the finish time (f). It should reside in

task execution

timea0 s f d

O (offset) BCET

WCET

Possible execution time

D (relative deadline)

Figure 4-3. Timing parameters of a real-time task

 134

the range of the BCET and the WCET. Note that s could be later than a, be-

cause a ready task may need to wait for other higher-priority tasks to finish.

 Absolute deadline (d): a time point before which a real-time task must com-

plete its execution, otherwise undesired consequences will happen.

 Relative deadline (D): the time length between the arrival time and the abso-

lute deadline, i.e., d = a + D.

It is very common that a real-time task will need to regularly or irregularly re-

peat its execution. Based on the periodic characteristic, tasks can be classified into

three types:

 Periodic: a task executes once in every regular time interval, i.e., a period

(T). Each execution is called an instance or a job. In RTOS execution, a pe-

riodic task can be triggered either by an external periodic event or by the

clock tick timer.

 Aperiodic: a task may execute once or many times, but its activation rate is

not constant. In RTOS execution, an aperiodic task is usually used to han-

dling interrupt events.

 Sporadic: is an aperiodic task but includes a minimum time interval between

its two executing jobs.

4.4.2 RTOS Kernel Structures

While different operating systems vary in terms of what components they con-

tain, the kernel is the core part of a RTOS. A RTOS kernel must at least provide

basic functions with respect to task management, interrupt handling, intertask

synchronisation and communication [25]. Some large kernels may also wrap addi-

tional system software modules such as drivers and file systems, but this is not

common in RTOSs. In fact, many RTOSs can actually be seen as kernels because

of their limited functionality and the small size. Application tasks can access ker-

nel functions and data through a series of source-level API functions. In some

embedded systems, the kernel and application software may have their own mem-

ory address spaces for the purpose of memory protection. In real execution, a call

to an API function is known as a system call (see Figure 4-4), which is effectively

 135

a software interrupt executed by a trap instruction. When receiving a system call,

the kernel firstly saves the calling task’s context, and switches the system status

from the user (also known as application) mode to the kernel (also known as su-

pervisor) mode by changing a bit of the processor status register, then finally exe-

cuting the requested OS function on behalf of the calling task. After the kernel

finishes a system call, an opposite mode transition occurs. Note that some embed-

ded processors are lacking of a Memory Management Unit (MMU) which sup-

ports virtual memory and some RTOSs do not provide memory protection mecha-

nisms; hence the kernel and the applications exist in the same memory space and a

system call is similar to a function call inside the application task [26].

As shown in Figure 4-4, depending on the internal structure, there are two tra-

ditional kernel design approaches that exist within operating system research: the

monolithic kernel approach and the microkernel approach. In addition, the

nanokernel, the hybrid kernel, and the exokernel are other common RTOS kernel

architectures, but are far from the focus of this research. More complete surveys

on RTOS kernel design can be found in [17] (Chapter 11), [18] (Chapter 9), and

[158]. It is noticed that, in the context of discussing the small size characteristic of

a RTOS core, some literature may interchangeably use “microkernel” and “kernel”

[26]. Additionally, some literature explains the “microkernel” as a “slim kernel”

that only supplies scheduling service [159]. However, when discussing how a

kernel is realised, researchers should use “microkernel” to refer to a specific kind

of kernel structure.

Scheduler

Virtual memory

Device drivers

File system

Hardware

Network

IPC

Applications

System calls

kernel
space

user
space

Scheduler

Virtual
memory

Device
drivers

File
system

Hardware

Network

Basic Sync./IPC

Applications

kernel
space

user
space

Message server

(A) Monolithic kernel OS block diagram (B) Microkernel OS block diagram

Figure 4-4. Block diagrams of two RTOS kernel approaches

 136

The monolithic kernel is a conventional RTOS design approach and is popular

for small or deeply embedded applications [17]. Referring to Figure 4-4 (A), it

implements all OS services (e.g., scheduler, task management, synchronisation,

inter-process communication (IPC), memory management, interrupt handlers) and

some system software modules (device drivers, file systems and network stacks)

in the kernel space. That is to say, the monolithic kernel itself equals the entire

RTOS subsystem. RTOS service functions directly call each other as they need.

The main advantage of the monolithic kernel approach is straightforward usage

and fast performance due to simple function calls [158]. However, the tight inte-

gration of many components in the kernel is error-prone, so that a bug in one

module can bring down the whole system [160]. VxWorks [161] and μC/OS-II are

often cited as monolithic kernel RTOS examples.

As shown in Figure 4-4 (B), the microkernel approach only provides a few es-

sential OS services in the kernel space such as task management, scheduler, basic

synchronisation/IPC, and a message manager [158] [162]. Other services are usu-

ally provided as normal server processes running in the user mode. A message

passing system is introduced to support communication between these server

processes [163] [164]. Applications request services from these servers via system

calls through a client-server method. The loose-coupling modularity and clear

separation between kernel services and user-level services make a microkernel

RTOS more reliable and compact. However, when processing a system call, the

client-server service model may bring more run-time context switches from an

application’s memory space to the server’s memory space, resulting in intense

message communication overheads. For these reasons, the microkernel approach

is seen as a promising method suitable for complex and scalable RTOSs such as

the QNX Neutrino RTOS.

4.4.3 RTOS Requirements and Modelling Guidance

Although diverse RTOSs vary in terms of size, functionality and application

domain, they do have some common requirements and characteristics that differ-

entiate them from general-purpose OSs. In behavioural software modelling and

simulation research, we need to consider which features are necessary and how

 137

they can be embodied in the RTOS simulation model. The following subsections

contain key aspects related to this problem.

4.4.3.1 Predictable and Responsive Timing Behaviour

A good RTOS should not only provide efficient OS services, but also keep its

own time consumptions and response times predictable and accountable [26]. Ide-

ally, a RTOS needs to guarantee execution time of each service as a fixed value,

or at least indicate a trend with an upper bound under all system load circum-

stances. Given the scheduler function as an example, the μC/OS-II RTOS looks

up a table to find the highest priority task and the task scheduling time is constant

in spite of the number of tasks created [149]. In contrast, the Olympus real-time

kernel moves tasks between two queues when it makes a scheduling decision;

hence the overhead of the scheduler varies depending on the number of queue op-

erations. Its worst-case execution time can be computed according to the number

of tasks in the system [165].

In addition to predictability, “fast real-time performance”, or analogous “rapid

real-time response”, is the top RTOS feature concerned by many real-time em-

bedded software developers [166]. This issue reflects the real-world requirements

of a real-time system in terms of promptly processing interrupt events within a

bounded amount of time. Failure to respond may result in a failure of the real-time

embedded system.

Two foremost timing properties (latencies) are usually used to evaluate the re-

sponse capability of a RTOS, namely interrupt latency and task switching latency

[167] [168]. Typically, they are in order of a few or a few tens of microseconds

[26]. Figure 4-5 shows two different interrupt handling schemes (i.e., the RTOS-

assisted scheme and the vector-based scheme) used by two RTOS products [149]

[166]. They are good examples in terms of diverse views on interrupt latency and

task switching latency:

 Interrupt latency is usually defined as the elapsed time between the occur-

rence of an interrupt to the entry (first instruction) of the corresponding

software interrupt handler. In the RTOS-assisted interrupt handling scheme

in Figure 4-5 (A), the interrupt handler includes two parts, i.e., the kernel

 138

handler and user ISR handler. The interrupt latency refers to the elapsed

time between the interrupt event and the beginning of the kernel handler. It

uses the term interrupt response time to define a longer elapsed time be-

tween the interrupt event and the beginning of the user ISR. In contrast, in

the vector-based interrupt handling scheme in Figure 4-5 (B), the user ISR is

the only interrupt handler in charge and it can be activated directly. There-

fore, the interrupt latency is the same as the interrupt response time and their

definition are shown in the figure.

 Task switching latency is sometimes interchangeably used with the term

context switching latency [168] [149] [167]. In Figure 4-5 (A), task switch-

ing latency refers to the time of two portions, i.e., the time to save the cur-

rently executing task’s context and the time to load another task’s context. It

is shorter than the interrupt time. However, in Figure 4-5 (B), task switching

latency refers to the time elapsed from the interrupt event to the beginning

of a task that is activated because of the interrupt. It is greater than the inter-

rupt latency (response). When comparing the two definitions of task (con-

text) switching latency, we can see that the first definition reflects a point of

view of the processor context switch, since it effectively refers to the time

consumed by the processor to save and load the context of registers.

Whereas, the second definition reflects an OS context switch viewpoint, be-

cause it counts for the total switching time used by the RTOS to save and

load tasks. To eliminate the ambiguity, this thesis uses the first definition.

kernel
handler

 time
HW IRQ
happens

user
task

task
execution

ISR execution

interrupt
latency

task switching
latency

context
save

interrupt response

RTOS

user
ISR

HW IRQ
happens

user
task

task
execution

ISR execution

interrupt latency
(interrupt response)

task switching latency

RTOS

user
ISR

 time

(A) Interrupt and task switching latency
definition 1

(B) Interrupt and task switching latency
definition 2

context
load

new task
execution

Figure 4-5. Two definitions of interrupt latency and task switching latency

 139

4.4.3.2 Multi-Tasking Management

To support complex real-time applications in the real world, a RTOS should

provide multi-tasking services [168]. For the majority of embedded software sys-

tems, applications are usually subdivided into a set of concurrent units. These

concurrent units are usually described via three terms: task, thread and process.

So far in this thesis, the term task is mostly used to refer to an execution unit of a

software application. Before capturing the behaviour of application software enti-

ties in some different RTOSs and standards, the three terms are firstly clarified

and differentiated. Notwithstanding all of them are widely used, they come from

various contexts and are sometimes obscurely defined. The problem can be dis-

cussed in two contexts.

Firstly, in some complex RTOS environments, e.g., RT-POSIX compliant or

UNIX/Linux-originated RTOSs, the operating system can support separate mem-

ory spaces for different execution entities. In this case, the term process refers to

an executable program with its own protected memory environment that includes

processor registers, I/O addresses, and memory-management information [21]. It

is noticed that switching from one process to another involves much sav-

ing/loading work for heavy context information, which is time-consuming in exe-

cution. In order to reduce context switch overheads and avoid the expense of

memory protection, most RTOSs support the thread concept as a smaller, semi-

independent, execution unit compared to a process. Multiple threads can be cre-

ated within the memory space of a process/program. Threads within a process can

unrestrictedly share everything of their parent process, whilst they only keep lim-

ited private information. A thread is also named as a lightweight process, and a

process can be seen as a thread container. In terms of the meaning of a task, it is

described as interchangeable with either a process or a thread in different contexts.

For example, a task is defined as equal to a process and can contain lower-level

threads in [169]; whilst, [21] specifies that a task is interchangeable to a thread

and executes within the memory context of a process. To remove ambiguity, this

thesis complies with the latter definition regarding the three terms.

Secondly, for some simple RTOSs, where software execution units do not have

independently protected memory spaces (i.e., they share the same memory ad-

 140

dress), then there is only one kind of concurrent entity in the system. Hence, peo-

ple can interchangeably use the term task or thread to refer to a basic concurrent

activity, but the term process is not appropriate to use in this context.

After applications are divided into multiple tasks, the RTOS enables them to

execute (namely occupy the processor resource) interchangeably in order to finish

their jobs and meet their respective deadlines. Task management services are im-

plemented inside or utilised by various higher-level scheduling, synchronisation,

and RTOS initialisation services. Typical multi-tasking primitive functions in-

clude creating tasks, suspending tasks, resuming tasks, and terminating tasks, etc.

These functions control state transitions of tasks during their execution. Figure 4-6

shows a classical minimal RTOS task state machine that has three basic states:

RUNNING, READY, and WAITING [25]. In a RTOS execution, a task must stay

at one of them:

 RUNNING: in a uniprocessor system, only one task can enter this state and

execute at a time. If the RUNNING task is pre-empted, then it enters the

READY state.

 READY: Tasks at this state are eligible for execution, but cannot execute

immediately as another task is currently at the RUNNING state. All

READY tasks are organised in a queue by the RTOS kernel. This is named

the ready queue [25]. The scheduler regularly checks the ready queue and

the RUNNING task (if there is one) according to various scheduling policies,

in order to dispatch a new task to run when the scheduling policy permits.

WAITING

READY RUNNING

waitsignal

dispatch

preempt

terminateactivate

Figure 4-6. The classical three-state task state machine

 141

 WAITING: Tasks enter this state (also known as a SUSPENDED or

BLOCKED state in some contexts) when they are blocked. Reasons may in-

clude waiting for a synchronisation primitive or sleeping for some time. All

WAITING tasks are organised in the waiting queue. When the unblocking

condition of a WAITING task is satisfied, the task enters the READY state.

Additional states or sub-states are always introduced to extend task state ma-

chines in different RTOSs, in order to support more task state transitions and

RTOS services. Table 4-1 surveys multi-tasking/threading/processing models and

task state machines in some RTOS standards and products.

4.4.3.3 Pre-Emptive and Priority-Based Scheduling

Scheduling can be triggered by other RTOS services or an interrupt. It decides

which task to dispatch next according to a real-time scheduling policy. Most

RTOSs support multiple scheduling policies and users can specify one or several

policies for their application software. In general, pre-emptive and priority-based

scheduling policies are commonly required by most RTOSs [170].

Pre-emptive scheduling policies are in contrast to non-pre-emptive policies. In

pre-emptive scheduling, a READY task can pre-empt the RUNNING task, whilst,

in non-pre-emptive scheduling, the RUNNING task executes until it finishes or

calls the kernel to relinquish the CPU. The First-In-First-Out (FIFO) algorithm

behaves as a non-pre-emptive policy if it is applied as the only scheduling policy

in a system without prioritisation. According to this, tasks execute in the order

Task/Thread

Multi-tasking models in some standards and RTOSs

Process Task state machine

N/A

N/A

N/A

N/A

Optional

µITRON 4.0

µC/OS-II

ThreadX

Keil RTX

QNX Neutrino

task

task

thread

task

pthread

RT-POSIX pthread Optional implementation-dependent

RUNNING, READY, 3 WAITING
states, DORMANT, NON-EXISTENT

3 basic states and 2 additional
states

3 basic states and 2 additional
states

RUNNING, READY, 7 WAITING
states, INACTIVE

3 basic states and up to 18
additional states

Table 4-1. Multi-tasking models in some RTOS standards and products

 142

that they become READY. Certainly, pre-emptive scheduling policies are prefer-

able in RTOSs, because they can respond to external events in a timely manner.

In priority-based scheduling, all tasks are assigned priorities according to crite-

ria such as the period (so-called rate) or the deadline. Priority-based scheduling is

natively pre-emptive as long as a higher-priority task is allowed to pre-empt a

lower-priority task. Depending on whether the priorities of tasks are assigned be-

fore execution or are dynamically assigned in execution, there are two types of

priority-based scheduling policies, i.e., Fixed-Priority Scheduling (FPS) and Dy-

namic-Priority Scheduling (DPS). The FPS scheme is easy to implement in RTOS

design because the RTOS kernel needs only to maintain a priority queue or a pri-

ority table in execution.

In FPS research, a priority assignment is an important problem and can be seen

as a prerequisite of FPS. However, it is not directly related to RTOS design and

implementation, because users mostly specify priorities of their application tasks.

Rate Monotonic (RM) priority ordering is the most common priority assignment

algorithm for periodic FPS systems. In RM, tasks are assigned fixed priority lev-

els that are inversely proportional to their rates, i.e., the shortest period task is as-

signed the highest priority. The simple periodic task model assumption has been

shown to be optimal in all FPS policies, which means that if it cannot schedule a

task set, then no other FPS algorithms can do so either [171]. There also exist

some other priority assignment policies, such as Deadline Monotonic [172] prior-

ity ordering and the Optimal Priority Assignment [173], which have been proven

to be optimal with their specific assumptions. A review on this topic can be found

in [174].

In the context of FPS, considering the situation whereby multiple tasks may

share the same priority level in a RTOS, a FIFO algorithm can be used as an assis-

tant policy in this case. However, this is not ideal, because a task may monopolise

the CPU for a very long time while other equal-priority tasks are starving. A

Round-Robin (RR) scheduling policy is proposed to tackle this problem. It allo-

cates each task a maximum amount of executing time, so-called a time slice or a

quantum. Once a RUNNING task has exhausted its quantum, then it is moved to

 143

the tail of its priority queue by the scheduler and the head task of the priority

queue will be dispatched.

The Sporadic Server scheduling algorithm is introduced to improve the average

response time of aperiodic tasks in fixed-priority systems [175]. It creates a high-

priority server (a task) for serving aperiodic tasks. The server is allocated an

amount of processor time, i.e., execution capacity. Aperiodic tasks execute at the

priority level of the server and consume execution capacity. If substantial aperi-

odic task execution totally consumes execution capacity, then the server priority is

decreased to a low priority level, which means aperiodic tasks then execute at a

low priority without the possibility of frequently pre-empting other periodic tasks.

The execution capacity can be replenished periodically according to the replen-

ishment period.

In terms of DPS policies, the Earliest Deadline First (EDF) scheduling policy is

probably the most notable one. In EDF, priorities are inversely proportional to

absolute deadlines of tasks and are dynamically assigned to them. It has been

demonstrated that EDF is optimal for uniprocessor system in terms of fully utilis-

ing the processor bandwidth [171]. EDF also has some other theoretical advan-

tages compared to FPS in terms of less schedulability analysis complexity and

lower context switch overheads [25]. However, a major disadvantage prevents

EDF from implementation in common commercial RTOSs: EDF requires the

RTOS kernel to track and update absolute deadlines and priorities of tasks at each

job activation, which increases the complexity of the kernel and brings run-time

overheads [176]. Consequently, nowadays the EDF scheduler is mostly provided

in some research RTOS kernels such as SHaRK [157] and MaRTE OS [177].

SHaRK implements the EDF scheduler as an external scheduling module, which

is used by its core generic kernel to schedule tasks. In order to popularise applica-

tion-defined scheduling and standardisation, MaRTE OS uses RT-POSIX inter-

faces to introduce a user-thread level EDF scheduler. However, the literature [26]

has argued that the later method may incur expensive overheads from excessive

system calls of tracking system time and setting tasks’ priorities.

Although there is a fair amount of research on real-time scheduling strategies

today ([25] surveys many details), FPS is the most common priority-based and

 144

pre-emptive scheduling policy implemented in most commercial RTOSs and

standards due to its simplicity in engineering and low execution overheads. Table

4-2 surveys the scheduling policies defined and implemented in some standards

and RTOSs.

4.4.3.4 Sufficient Priority Levels

In order to apply priority-based scheduling policies, a RTOS must have a suffi-

cient number of priority levels [178]. Exactly, there are some points that should be

considered when implementing prioritisation in a RTOS simulation model.

In order to support complex user applications that each may contain multiple

tasks, sufficient priority levels should be provided to differentiate relative impor-

tance or timing requirements of tasks. In addition, a range of priority levels should

be reserved for user-level interrupt handlers that usually require higher priorities

than normal tasks. Additionally, NRT or soft real-time tasks need to be allocated a

range of priorities that are lower than normal hard real-time tasks.

From the perspective of priority assignment theory, the most-mentioned RM

priority ordering algorithm requires that tasks have distinct priorities and that

there are unlimited priority levels. However, the number of priority levels cannot

be infinite in practical RTOS design. Utilising limited priorities in FPS systems is

a traditional topic in real-time systems research. Literature [26] has addressed this

issue by answering two questions from a theoretical aspect: 1) How long is a task

delayed by equal-priority tasks when using FIFO or RR scheduling policies? 2)

How does the processor utilisation deteriorate when using limited priority levels

in the RM algorithm? In [26], these two questions are concluded with favourable

Scheduling policies in some standards and RTOSs

RT-POSIX

μITRON 4.0

μC/OS-II

ThreadX

Keil RTX

QNX Neutrino

Pre-emptive FPS FIFO Round Robin Sporadic Server

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

N/A

Yes

Yes

Yes

Yes

Yes

N/A

Yes

Yes

Yes

Yes

N/A

N/A

N/A

N/A

Yes

Table 4-2. Scheduling policies in some standards and RTOSs

 145

assurance
4
. The author deems that 256 priority levels can perform very well even,

for the most complex FPS systems.

According to the survey in Table 4-3, priority levels range from 16 to 256

across different RTOS specifications and products, and there are no special re-

strictions on what priority levels are available to user tasks and which priority

represents the lowest level.

4.4.3.5 Resource Access Control Protocols

Tasks may contend for shared resources (e.g., registers, variables, data struc-

tures, memory areas) in order to communicate or process data in execution. It is

necessary to guarantee that operations on a shared resource are carried out in a

consistent and protected manner, which means that a shared resource can only be

used by one task at a time, i.e., achieving mutually exclusive access. The code

segment modifying the mutual exclusive resource is called a critical section, and

its instructions need to execute sequentially without interruption. Like general-

purpose OSs, almost all RTOSs provide some conventional lock-based synchroni-

sation mechanisms (e.g., mutexes and semaphores)
5
 to implement mutually exclu-

4
 It is reported that, compared to a RM system with 100,000 priority levels, the relative schedula-

bility of the system with 256 levels is merely reduced to 0.9986 [26].

5
 Semaphores can be divided into two classes depending on their value, i.e., the general-form

counting semaphore with a non-negative integer value, and the simple-form binary semaphore

with values of zero or one. The later one can be used for mutual exclusion. Mutexes can be seen as

a specialized binary semaphore used for mutual exclusion only [17].

1

59

31

1

1

Priority levels in some standards and RTOSs

User-defined

4-59

0-31

1-254

1-63

µITRON 4.0

µC/OS-II

ThreadX

Keil RTX

QNX Neutrino

At least 16 levels

64

32

255

256

Yes

N/A

Yes

Yes

Yes

RT-POSIX
Each scheduling

policy has at
least 32 levels

User-defined User-defined Yes

Priority levels
Priority range
of user tasks

Lowest priority
of user tasks

Sharable
priority

Table 4-3. Priority levels in some standards and RTOSs

 146

sive access to shared resource through atomic primitives wait and signal (also

called P/V or lock/unlock operations).

When a mutually exclusive resource is held by a task using a lock-based syn-

chronisation method, then other competing tasks that want to acquire the resource

cannot get the resource immediately and are said to be blocked. The notable prior-

ity inversion phenomenon refers to the situation where a high-priority task is

blocked on a resource that is already locked by a low-priority task. The problem

becomes more severe considering the low-priority task may in turn be pre-empted

by one or more intermediate-priority tasks, which is referred to as transitive

blocking. In these cases, the high-priority task cannot enter its critical section and

needs to wait for the finish of both the low-priority task and some (the number

may be uncertain) intermediate-priority tasks. This means that the duration of pri-

ority inversion is unbounded; hence, the finish time of the high-priority task is un-

predictable.

In order to solve the unbounded priority inversion problem, real-time systems

research has proposed some resource access control protocols. The Priority Inheri-

tance Protocol (PIP) [179], the derived Priority Ceiling Protocol (PCP), and the

further-improved Immediate Priority Ceiling Protocol (IPCP) [180] are three of

the most well-known protocols applied to FPS systems. They can be bracketed

into the same PIP protocol family because of their close relevance. The basic idea

behind them is similar: the priority of the task that incurs a blocking is temporarily

changed to a higher priority that is inherited according to some algorithms; then

the task can execute through its critical section without being pre-empted by a

medium-priority task; and finally the task’s priority is restored after it exits the

critical section. However, due to their difference in protocol definitions, these

three protocols possess variant features. In general, PIP suffers from a potential

long blocking duration, chained blocking and deadlock, but it does not require

prior knowledge about the resources shared by tasks and hence is easy to imple-

ment at the user level on top of an existing RTOS. Compared to PIP, PCP can

prevent deadlock and chained blocking. However, it needs the software program-

mer to define a ceiling priority for each shared resource and the OS kernel needs

to keep tracking ceiling values and task priorities, which means both implementa-

 147

tion complexity and run-time overheads [17]. Furthermore, IPCP improves the

PCP in terms of being easier to implement and with low overheads. Exact defini-

tions, analysis and comparisons of these protocols can be found in [25] and [181].

Some RTOS standards and commercial products have implemented one or

some of above protocols. Because the above-mentioned classical PIP family pro-

tocols assume that there is only one unit of each shared resource, they are natu-

rally employed on the mutex synchronisation mechanism that provides mutual

exclusion to a single-unit resource. Table 4-4 summarises the resource access con-

trol protocols utilised in some standards and RTOSs, where PIP is the most com-

mon protocol and IPCP is also provided in RT-POSIX and µITRON specifica-

tions, although the PCP does not appear in the survey.

Although binary semaphores can also be used for mutual exclusion, access

control protocols are not applied to them in most OS specifications
6
 [150] [152]

[1]. Instead, semaphores are mainly used for event notification and thread syn-

chronisation through an embedded counter, i.e., in the form of a counting sema-

phore. In addition, it is noticed that some access control protocols (derivatives of

PIP and PCP [26]) can support safe access to multiple-unit resources, which

means usability for counting semaphores. However, they have not attracted much

interest from RTOS designers.

6
 The RTEMS RTOS [182] is an exception that it supports PIP and PCP on binary semaphores.

Actually, RTEMS provides functions of the mutex mechanism through its binary semaphores.

Table 4-4. Resource access protocols in some standards and RTOSs

Yes

N/A

N/A

N/A

N/A

Priority Inheritance Protocol

Resource access protocols in some standards and RTOSs

Immediate Priority Ceiling
Protocol

µITRON 4.0

µC/OS-II

ThreadX

Keil RTX

QNX Neutrino

Yes

Yes

Yes

Yes

Yes

RT-POSIX Yes Yes

 148

4.4.3.6 Summary of RTOS Features in the Model

In this thesis, features of the proposed RTOS simulation model are mainly de-

termined based on surveys in above Sections 4.4.3.1 to 4.4.3.5. In order to be

practically useful for current system-level embedded software development, this

research prefers to model some common characteristics and services of the sur-

veyed RTOS standards and products, rather than invent and integrate too many

proprietary features and theories. However, the two surveyed RTOS standards

(i.e., RT-POSIX and μITRON) and four RTOS products (i.e., μC/OS-II, ThreadX,

RTX, and QNX Neutrino) combine a wide range of RTOS services and features,

which are too broad to be included in the generic RTOS simulation model. Instead,

the three small-size RTOSs (i.e., μC/OS-II, ThreadX, RTX) are used a focus for

RTOS modelling.

Regarding the predictable and responsive timing behaviour of a RTOS (Section

4.4.3.1), the RTOS modelling approach attempts to model common RTOS situa-

tions from two aspects.

1) Firstly, this thesis considers the timing latencies introduced in Section

4.4.3.1, providing annotations for all related RTOS services’ timing over-

heads in simulation models. Normally, the timing overhead of a RTOS ser-

vice is annotated at the service/function level or statement segment level if

possible. Usually, timing accuracy of the RTOS model is sufficient if the

execution time of each service can be obtained before starting simulation,

namely its value is fixed and obtainable. However, if a service’s timing

overhead is dynamically determined in execution, then a simple calculation

function could be inserted in the model to sum the aggregated timing over-

head. Otherwise, a degradation of timing accuracy occurs, which may not

be appropriate for the real-time systems being modelling (i.e., if there are

hard deadlines). Section 4.5.9.2 will describe the general method of how a

RTOS service is modelled with timing information.

2) Secondly, the thesis aims to simulate the common interrupt handling proc-

esses and other services of real RTOSs, in order to represent timing behav-

iour of a system in simulation accurately. In this thesis, the modelling and

simulation approach supports the above-mentioned two interrupt handling

 149

schemes (Figure 4-5). Section 4.5.7 will introduce them in detail. Note that

some over-complex or proprietary RTOS functions are not implemented in

the models. Consequently, their timing behaviour cannot be represented in

simulation.

In terms of multi-tasking management (Section 4.4.3.2), essential multi-tasking

services are implemented in the RTOS simulation model. Especially, in order to

model the possible states of concurrent task execution across various RTOSs

without loss of generality (see the survey in Table 4-1), a generic extensible task

state machine is used. Section 4.5.4 will introduce this multi-tasking model and

associated services in detail.

The state of the art analysis on RTOS scheduling in Section 4.4.3.3 gives direc-

tion for the RTOS scheduler model. The basic RTOS scheduler model is fixed-

priority and pre-emptive, and FIFO and RR algorithms are supported to handle

equal-priority tasks. The sporadic server algorithm is not currently considered,

because it is not normally implemented in small-size RTOSs, but it could be

added into the RTOS model in future development. Shi introduced a detailed im-

plementation of adding a RT-POSIX sporadic server scheduler in a Linux-based

RTOS [183], which is a good reference on this issue. Besides, although the EDF

policy is rare in practical RTOSs, the RTOS model does have included some

mechanisms to natively support a kernel-level EDF scheduler as an add-on feature.

Section 4.5.5 will detail scheduler modelling work.

Referring to the survey in Section 4.4.3.4, the priority system of the RTOS

model is flexibly defined and can be adapted to different configurations depend-

ing on the modelling target. This part of work will be presented in Section 4.5.5.1.

Regarding the resource access control protocols in Section 4.4.3.5, PIP is im-

plemented on the mutex synchronisation service in the RTOS model. Section

4.5.6 will address this issue.

 150

4.5 The Real-Time Embedded Software Simulation

Model

4.5.1 Simulation Model Structure

Figure 4-2 illustrates the real-time embedded software stack model in a simple

block diagram. Now, Figure 4-7 shows a more detailed view of the architecture of

the layered real-time embedded software PE model. This software PE model is

composed of three layers: the application software layer, the RTOS layer and the

hardware layer. Various sub models are contained in the whole simulation model

in order to embody the three layers’ functional and timing behaviour. This section

will generally introduce their interrelationship and corresponding SystemC-based

models. Detailed modelling methods and implementations are presented later in

Sections 4.5.2-4.5.9.

Live CPU Model

Interrupt
Controller

CPU Sim.
Engine

tid: 1 tid: 2

Configurable API

Multi-tasking
Management

Scheduling Services

RTOS
layer

Application
SW layer

Time
Services

Synchronisation/
communication

services

Hardware
layer

tid: i tid: j

IRQ
handler

Other HW
modules

Virtual
Registers

C++ language and libraries

SystemC language and libraries

Native-code
SW models

code{ }

period,
wcet,
… ...

period,
wcet,
… ... code{ }

Abstract SW
models

Optional
process model

Generic/
specific API

Task/thread
model

RTOS Kernel
Model

time advance

pid: iSystem calls

HAL primitives:
context switch,

IRQ disable/enable,
time delay advance..

interrupts

Figure 4-7. Structure of the software PE model

 151

4.5.1.1 Software Layers

In the whole software PE simulation model, two software layers (i.e., the appli-

cation software layer and the RTOS layer) constitute the software part, namely a

software stack model.

From the top down, the application software is divided into several execution

entities (i.e., tasks) and each entity can be modelled as an abstract software model

or a native-code software model. The former focuses on quickly simulating timing

properties of applications. The model is characterised by a set of timing parameter

as introduced in Section 4.4.1. Whereas the latter aims to simulate functions of

applications by using functional code close to actual implementation at the ex-

pense of simulation speed reduction.

No matter which way application software is modelled, each application task

model is projected onto a RTOS-level task/thread model, which is runnable in the

SystemC simulation environment. The task/thread abstraction is handled as the

software scheduling entity in RTOS kernel multi-tasking management, which is

true for most RTOSs in the research context. Process models can be optionally

created in modelling, but they do not play effective roles to compete for resources.

System calls are implemented mainly by function calls to APIs of the RTOS

model, i.e., application tasks call member methods of the RTOS kernel module

(an object of a C++ class). This function-call feature is similar to the real situation

in a RTOS. This modelling method also has a good “side effect” of protecting

RTOS kernel data structures because data access is protected by the C++ object-

oriented program language. It represents the native distinction between the user

space and the kernel space in the real-time embedded software stack. Based on the

essential services provided in the RTOS kernel model, their APIs can be partially

configured to mimic different RTOS standards and products. For the reason that

APIs of various proprietary RTOSs may be quite different from each other in

terms of functionality and function parameters, exact compatibility to a specific

RTOS is not the goal of research in this thesis. Rather, generality, ease of use and

reasonable accuracy is desired for system-level behavioural software simulation.

As introduced in Section 4.4.2, the kernel structure is the first-class concept for

designing and modelling a RTOS. The RTOS kernel model encapsulates all its

 152

data and functions in a single class and this model structure is akin to the mono-

lithic approach. However, since modelling extended OS components such as de-

vice drivers, file systems, and network stacks is outside the scope of this thesis,

the presented RTOS model contains fundamental services (e.g., multi-tasking

management, scheduling, inter-task synchronisation, and interrupt handling) that

are commonly provided by a microkernel. From this lightweight (i.e., limited and

essential) service modelling perspective, the RTOS model is also similar to a “mi-

cro” kernel.

Given the high abstraction level of software and hardware simulation models,

modelling real memory space management and the processor MMU is not ad-

dressed. Hence, potential advantages and disadvantages of monolithic and mi-

crokernel structures are not revealed and evaluated in behavioural RTOS model-

ling. This feature brings benefits in terms of modelling simplicity and fast simula-

tion speed, but is also a defect in terms of functionality and remains for future re-

search.

In the RTOS kernel, some HAL primitives directly interact with the Live CPU

Model for advancing software simulation time and setting system states. System

clock interrupts and other external hardware interrupts can invoke associated in-

terrupt handlers in the RTOS kernel module.

4.5.1.2 Hardware Layer

In Figure 4-7, the hardware layer is represented by the Live CPU Model that

was introduced in Section 3.3. It is the hardware part of the software PE model

and the basis of the upper software layers. In general, its main purpose is to sup-

port and assist behavioural software simulation from two perspectives: supporting

pre-emptible time advance and modelling hardware I/O. In some conventional

system-level real-time software and RTOS simulation (e.g., [113] [114] [126]),

the application software model and the RTOS model construct a PE, and in fact,

there is not any hardware model in the PE. Unlike them, the Live CPU Model

executes software delay annotations in a way that is conceptually comparable to

the way a real CPU executes instructions. The Live CPU Model also monitors

 153

real-time clock and external interrupts and can start, stop, and resume a software

delay time advance without any undesired latency.

If some other SystemC-based hardware modules need to be combined with the

software PE model for further HW/SW co-simulation, they can be connected to

the Live CPU Model by either SystemC interface method call channels or specific

TLM interfaces (see Chapter 5).

4.5.1.3 Structure of SystemC Models

As indicated by the lowest layer of Figure 4-7, all models in the SystemC-

based real-time software simulation framework are implemented in SystemC and

C++. Figure 4-8 illustrates how various components of the software PE simulation

model are implemented and relate to each other in SystemC. Depending on their

functionality and creator, they can be divided into two classes:

 Software PE related models (See upper half of Figure 4-8): There are inher-

ent hardware and system software components in the software PE model,

which provide standard services for simulating user applications. Simulation

users can directly use these default services in their software simulation

models. Additionally, users can modify them or add new models (services)

depending on the necessity. In implementation, each model in this category

is implemented as a SystemC SC_MODULE in a separate header file. There

are three types of SC_MODULEs: the Live_CPU module, the RTOS mod-

ule, and the task module, which represent the Live CPU Model, the RTOS

kernel model, and RTOS task models.

 User application models and simulation related programs (See lower half

of Figure 4-8): This part contains models and programs that are defined by

simulation users in order to simulate specific software applications in the

software PE environment. Referring to apps_main.cpp in Figure 4-8,

an application task model is given as a segment of C/C++ code, which in-

cludes an application task body function, global variables to be shared by

multiple tasks, and possible timing parameters of this application task. Re-

ferring to simulation_main.cpp in Figure 4-8, objects of various

hardware and software models are created and connected with each other in

 154

the sc_main() function so as to constitute a whole SystemC simulation

program. Specifically, in the research context of “a uniprocessor system”,

there should be a single Live_CPU object, a single RTOS object, several

RTOS task objects, and several user application functions.

Models and objects are organised and invoked in a straightforward hierarchy,

according to their logical relationship - namely, the RTOS runs on top of the CPU

and software tasks run on top of both the RTOS and the CPU. Referring to Figure

4-8, the dotted lines, and pseudo code in simulation_main.cpp and

apps_main.cpp demonstrate their interrelationship. An object of the

Live_CPU model is created and then used as an argument to create a RTOS ob-

ject (See the dotted line (A)). By this means, various RTOS functions can make

use of CPU resources. Similarly, as illustrated by dotted lines (B) and (C), both

the Live_CPU object and the RTOS object are passed to application task body

apps_main.cpp

live_cpu.h

SC_MODULE(Live_CPU)
{
 SC_HAS_PROCESS(Live_CPU);
 Live_CPU(name … …);

};

SC_METHOD(cpu_ic)

// Virtual registers
 … …
// Port connections
 … ...

SC_METHOD(cpu_sim_engine)

rtos_main.h

SC_MODULE(RTOS)
{
 SC_HAS_PROCESS(RTOS);
 RTOS(… ...,
 CPU *cpu_i[CPU_NUM]);

};

SC_THREAD(… ...)

// Service Functions
 … ...
// Variables
 … ...

SC_THREAD(rtos_init)

task.h

SC_MODULE(task)
{
 SC_HAS_PROCESS(task);
 task(… …,
 void (*func)(RTOS *, CPU *), … ...);

};

SC_THREAD(create_task_routine)

SC_THREAD(run_task_routine)

User-defined Applications
Task parameters:
task1_struct{type, state, wcet, ...}
task2_struct{type, state, wcet, ...}
task3_struct{type, state, wcet, ...}

Task body functions:
void func1(RTOS *p, CPU *p){...}
void func2(RTOS *p, CPU *p){...}
void func3(RTOS *p, CPU *p){...}

Shared variables:
rtos_sem sem0;
rtos_msg mes0;
int array[];

simulation_main.cpp

int sc_main(int argc, char* argv[])
{
 Live_CPU CPU0("CPU0"); // Create a CPU object
 Live_CPU *cpu_i[CPU_NUM] = {&CPU0};

 RTOS RTOS_i("RTOS_i", cpu_i); // Create an RTOS object
 … ...
 task task1(… … , func1, task1_struct, … …); // Create task objects
 task task2(… … , func2, task2_struct, … …);
 task task3(… … , func3, task3_struct, … …);
 … ...
 sc_start(t, SC_SEC); // Start SystemC simulation
}

M
o

d
e

ls p
ro

vid
e

d
 b

y th
e

 so
ftw

are

P
E sim

u
latio

n
 m

o
d

e
l

A
p

p
licatio

n
s an

d
 m

o
d

e
l-o

b
je

cts
cre

ate
d

 b
y sim

u
altio

n
 u

se
rs

A

B

C
D

Figure 4-8. SystemC implementation of the software PE simulation model

 155

functions as arguments. The meaning of this is twofold: firstly, a task body func-

tion executes on the CPU; secondly, it can call services provided by the RTOS.

Then, an object of the RTOS task module is created, because it is the schedul-

ing entity of both the RTOS kernel and the underlying SystemC simulation kernel.

Referring to the dotted line (D), a user-application task body is wrapped to a

RTOS task object with a one-to-one correlation, in order to be involved in a

RTOS-based software simulation.

The above-introduced modular structure makes the software PE simulation

model simple, reusable, and extensible. The simple structure of the whole simula-

tion model is representative yet abstract enough to represent a real-time embedded

software system. The interdependency between different sub models and sub

modules are reduced as low as possible through carefully and explicitly defined

interfaces. The inherent software scheduling (i.e., the RTOS) and executing (i.e.,

the Live CPU Model) models are distinguished and independent from user-

developed application task models; hence the reusability of the RTOS model and

the Live CPU model is preserved to some extent. Referring to the code line

*cpu_i[CPU_NUM] in the constructor of the RTOS module in Figure 4-8, the

RTOS module can accept several CPU objects, which means that the RTOS model

reserves the potential to be extended as a multi-processor RTOS model in future

development.

4.5.2 Application Software Modelling

According to the mixed timing software modelling approach in Section 3.2, a

simulation user can model application software as both abstract task models and

native-code task models. The two types of task models can co-exist in simulation

so as to increase simulation flexibility.

4.5.2.1 Abstract Task Model

The abstract task model applies to situations where application software code

has not been fully finished for modelling, or where the simulation user does not

have much interest in functional simulations. Such task models are primarily in-

 156

tended simply to simulate the timing behaviour of real-time software with the as-

sistance of a RTOS model.

Table 4-5 shows an abstract periodic task model. Referring to lines 1-10, some

user-defined task identity information (e.g., task type, initial state, etc) and timing

properties of the model are stored in a data structure variable that will be used to

create a RTOS TCB later during the task creation process. Note that Table 4-5

does not show all necessary user-defined items. They are shown as bold in Table

4-8. The timing behaviour of a task is characterised by a set of parameters, e.g.,

BCET, WCET, relative deadline, period, and offset. In simulation, BCET and

WCET are used to generate an intermediate random value that serves as the exe-

cution time of a specific task instance. Otherwise, the WCET is used as the execu-

tion time of every task instance, because the worst-case behaviour is usually more

concerned with real-time system simulation. The relative deadline is converted

into an absolute deadline in execution, in order to facilitate deadline-driven

scheduling or is used to monitor a task’s status in terms of whether it misses a

deadline. The period explicitly specifies how often a task should be regularly acti-

vated. The offset indicates means the initial waiting time of the first task job in

execution. In simulation, the RTOS kernel model can track the period, the offset,

and instance numbers of an abstract periodic task in order to support periodic task

Table 4-5. The abstract periodic task model

// Defining parameters of a task in a struct

{

 THREAD_TYPE task_type;

 THREAD_STATE task_state;

 unsigned __int64 bcet;

 unsigned __int64 wcet;

 unsigned __int64 relative_deadline;

 unsigned __int64 period;

 unsigned __int64 offset;

 … … }

// Task body function

void task(RTOS *rtos_i_ptr, CPU *cpu_i)

{

 while(1){

 t = random_function(); // Generate random execution time of a job

 DELAY(t); // Pass t to Live CPU

 wait(event); // Wait for time advance

 (*rtos_i_ptr).task_wait_cycle(); //Yield CPU, wait for next cycle

 wait(event); // Wait for next execution

 }

}

#001

#002

#003

#004

#005

#006

#007

#008

#009

#010

#011

#012

#013

#014

#015

#016

#017

#018

#019

#020

#021

 157

execution (see Section 4.5.4). Note that not all of the above four parameters are

required for an abstract task model. For example, an aperiodic task that services

an interrupt does not have a period parameter.

Lines 11-21 of Table 4-5 show the body function of an abstract periodic task

model. A RTOS model object and a Live CPU Model object are passed to the

function body, in order to let the task use RTOS functions and CPU resources,

although the task model usually contains little or none functional code. Optionally,

the simulation user can appoint a probabilistic function in order to generate a ran-

dom execution time for each task job. This method is also used in similar-purpose

research [8] [72]. The time advance method (i.e., lines 16 and 17) was introduced

in Chapter 3 and note that the event object at line 17 is exclusive to this task

model. Recalling it again, this time advance process is interruptible and the task

model is pre-emptible.

At lines 18 and 19 of Table 4-5, a RTOS function task_wait_cycle() is

called to notify the RTOS kernel that this periodic task reaches its end and waits

for next execution cycle (period). Accordingly, the RTOS kernel will take some

actions to process this request, which will be introduced later in Section 4.5.4.3.

In case of an abstract aperiodic task model, it shall call another RTOS function

task_wait_suspend(), which will suspend the task indefinitely until the

task is invoked by an interrupt again.

Note that, if a task is not independent, namely it cooperates or competes for

some shared resources with other tasks, then specific RTOS synchronisation or

communication services must be called in the body function. In this case, the na-

tive-code task model is more applicable.

4.5.2.2 Native-Code Task Model

If applications come with functional code and corresponding fine-grained delay

annotations, then a native-code task model can be built. Table 4-6 shows its pa-

rameter definition (lines 1-7) and body function (lines 9-21). At lines 1-7, the data

structure variable is still necessary to define identity information of a task, but it

no longer contains timing properties about coarse grain computation time and an

explicitly defined period.

 158

Referring to Table 4-6, this wait-for-event time advance method is briefly re-

peated here. Timing delay annotation (line 14) interleaves with a code block (line

13) in the function body. The DELAY() function at line 14 injects a delay value

B1_DELAY into the Live CPU Model. The granularity of a delay annotation de-

pends on the choice of the simulation user, for example, the basic block level or

statement segment level. Unlike [72] [43], delay annotation statements in the na-

tive-code task model do not define fixed pre-emption points for HW/SW synchro-

nisation. Their main purpose is to notify the Live CPU Model how long computa-

tion time a code block needs, and then let the task wait for an event that will be

released when the delay time is consumed. The event object at line 15 is exclu-

sively used in this task model. Interruption and pre-emption can happen at any

necessary (i.e., there is an interrupt event) and possible (i.e., system-wide inter-

rupts are enabled) time points during a delay duration.

Compared to two task examples provided by ThreadX RTOS [152] and

μC/OS-II RTOS [149] in Table 4-7, the body function of a native-code task model

does not differ too much from the entry function of a real RTOS task in terms of

the code structure. That is, a loop contains the C/C++ main functional code and a

RTOS system function is called at the end of the loop body in order to suspend the

task. The periodic execution of a task can be achieved by calling the RTOS time

delay function, e.g., line 18 in Table 4-6 and lines 8 and 19 in Table 4-7. This co-

Table 4-6. The native-code task model

// Defining parameters of a task in a struct

{

 THREAD_TYPE task_type;

 THREAD_STATE task_state;

 unsigned __int64 relative_deadline;

 unsigned __int64 delay_time;

 … … }

// Task body function

void task(RTOS *rtos_i_ptr, CPU *cpu_i)

{

 while(1){

 func_block1(); // The 1st block does some functions

 DELAY(B1_DELAY); // Pass B1_DELAY to Live CPU

 wait(event); // Wait for time advance

 … … // The 2nd block does some functions

 … … // The 3rd block dose some functions

 rtos_i_ptr->sleep(500); // Call RTOS API: sleep()

 wait(event); // Wait for next execution

 }

}

#001

#002

#003

#004

#005

#006

#007

#008

#009

#010

#011

#012

#013

#014

#015

#016

#017

#018

#019

#020

#021

 159

herence facilitates using the simulation model with conventional RTOS applica-

tions. The difference mainly resides within two points in the native-code model:

firstly, time annotations and synchronisation points are inserted for time advances;

secondly, a RTOS service should be invoked through a pointer to a RTOS model

object.

4.5.3 RTOS Task/Thread and Process Modelling

4.5.3.1 Task/Thread Model

Given that application software has been divided into task body functions and

that their timing parameters are provided, it is necessary to create RTOS-level

task models in order to let the RTOS kernel organise these execution entities. As

mentioned before, the task/thread concept is chosen as a RTOS scheduling unit.

Based on the survey in Section 4.4.3.2, such a multi-tasking model is common

and powerful enough to organise real-time embedded applications in various

RTOS products. In the modelling approach, a RTOS task/thread model is imple-

mented as an object of the SystemC task module. Figure 4-9 shows the defini-

tion of a RTOS task and its relationship to an application task model.

Note that there is a clear separation between a user task model and a RTOS

task model, in terms of both the modelling concept and the SystemC implementa-

// An example body function of a ThreadX thread

void data_capture_process(ULONG thread_input)

{

 while(1){

 temp_memory[frame_index][0] = tx_time_get();

 temp_memory[frame_index][1] = 0x1234;

 frame_index = (frame_index +1) % MAX_TEMP_MEMORY;

 tx_thread_sleep(1);

 }

}

// An example body function of a μc/OS-II task

void TaskClk(void *pdata)

{

 char s[40];

 data = data;

 for(;;){

PC_GetDateTime(s);

PC_DispStr(60,23,s,DISP_FGND_BLUE+DISP_BGND_CYAN);

OSTimeDly(OS_TICKS_PER_SEC);

 }

}

#001

#002

#003

#004

#005

#006

#007

#008

#009

#010

#011

#012

#013

#014

#015

#016

#017

#018

#019

#020

#021

Table 4-7. Two task examples in ThreadX RTOS and μC/OS-II RTOS

 160

tion in the modelling approach. The creation of a unified RTOS task object only

utilises task information and the function body defined by a user in one applica-

tion task model (see Section 4.5.2), which means it is not necessary to define a

variety of RTOS task modules in order to accommodate different applications.

In the modelling approach, the implementation of a RTOS task involves two

data structures and two operations, which are referred to as the Task Control

Block, the Task Service Block (TSB), initialising a TCB, and wrapping a function

body, respectively.

Definition of the Task Control Block

Every RTOS needs a TCB structure for each task in order to store task-specific

properties and manage the task through the TCB during run-time. Table 4-8 de-

scribes the TCB fields within the RTOS model. Among them, the bold fields can

be provided in user-defined application models (see Section 4.5.2). All TCB fields

can generally be classified within three categories:

 The task ID and status section: Fields in this section are related to statically-

assigned identifiers and dynamically-changed states;

 The task timing information section: This section stores some timing pa-

rameters of a real-time task as well as time advance information;

 The pointers section: Some pointers are provided in order to correlate mes-

sage and synchronisation event control blocks to a task, and they are also

used to maintain task scheduling queues.

Although the contents of the TCB are internal affairs in the design of a RTOS

simulation model, a certain degree of similarity between the model’s TCB and a

real RTOS’s TCB is still helpful in allowing for simulation users to inspect and

SC_MODULE(task)
{
 SC_HAS_PROCESS(task);
 task(sc_module_name name, *tcb,
 void (*func)(RTOS *, CPU *), … ...);

};

SC_THREAD(create_task_routine);
dont_initialize();
sensitive << rtos_i_ptr->event_0;

SC_THREAD(run_task_routine);
dont_initialize();
sensitive << TSB[tid].event[0];

// Task parameter structure

tcb = {… … tid, type, state, … …}

tsb = {… … , event[], … … }

// Task body function

void entry_function(RTOS *rtos_i_ptr, CPU *cpu_i)

{

 while(1)

 {

 … …

 }

}

Application task model definitionRTOS task model definition

Figure 4-9. Defining a RTOS task model

 161

understand the state of tasks in simulation. Comparing the RTOS model’s TCB to

those of μC/OS-II and ThreadX, the task ID/status section and the pointers section

of them are mostly alike. The significant differences include:

1) The RTOS model’s TCB omits memory stack setting fields, which how-

ever do exist in the TCB of a real RTOS. This is because the RTOS model

does not aim to model software execution memory space.

2) Regarding the timing information section, the RTOS model’s TCB has

some real-time task-related timing fields; whereas, a real RTOS’s TCB

does not normally contain them. The proposed TCB is based on the consid-

eration that these real-time parameters are necessary for abstract task mod-

elling and real-time system simulation.

3) The context[CONTEXT_LENGTH] field is essential for software time

advance in our timed software simulation method. Its six sub-fields are

namely the “processor-related context” of a task model. Their value needs

to be written to and read from the virtual CPU_REGs of the Live CPU

Model in each context switch. The context-switch process will be intro-

duced in Section 4.5.8.2. Note that a real RTOS TCB does not need these

fields, but contains the real program counter, stack point, and other data

registers as substitutes.

Definition of the Task Service Block

The TSB is a user-defined data structure associated with each RTOS task

model. Its main purpose is to store simulation-related configuration parameters

Table 4-8. Task (Thread) Control Block

rtos_tcb_cpu_id
rtos_tcb_pid
rtos_tcb_tid
rtos_tcb_thread_type
rtos_tcb_thread_state
rtos_tcb_wait_flag
rtos_tcb_base_prio
rtos_tcb_cur_prio

The CPU which a task belongs to
Process identifier
Task identifier
Task type
Task state
Sub-state of WAITING state
Initial (base) priority
Current (effective) priorityID

 &
 s

ta
tu

s
se

ct
io

n

Field Description

rtos_tcb_relative_deadline
rtos_tcb_period
rtos_tcb_thread_bcet
rtos_tcb_thread_wcet
rtos_tcb_slice
rtos_tcb_new_slice
context[CONTEXT_LENGTH]

Relative deadline of a task
Period of a task
BCET of a task
WCET of a task
Current time slice
New time-slice
Timing context for time advanceTi

m
e

 in
fo

. s
e

ct
io

n

*rtos_tcb_ecb_ptr

*rtos_tcb_msg

*rtos_tcb_back

*rtos_tcb_next

Pointer to an event
control block
Pointer to a message

Pointer to the previous
TCB in a sche. queue
Pointer to the next TCB
in a scheduling queue

P
o

in
te

rs
 s

e
ct

io
n

Field Description

block_exec_time

thread_exec_time

thread_abs_dln

thread_used_time

thread_cur_sta_time

thread_sleep_length

delay slice of a code block

total delay of the task job

absolute deadline of the task job

consumed delay time

start time of current delay slice

sleeping time of the task job

Field Description

 162

and statistical information of a task that are not normally contained in a real TCB,

in order to simplify the TCB structure. The most useful field of a TSB is a

sc_event object array. Each sc_event object is exclusive to a task function

body (as shown in Table 4-5 and Table 4-6). The Live CPU Model controls time

advances of each task model via the wait-for-event method and these sc_event

objects. The sequence number of task jobs and initial offset are another two nota-

ble TSB fields. They record how many instances a task has executed and the

task’s initial offset, which are used to calculate activation time of an abstract peri-

odic task.

Initialising a TCB

In model implementation, a vacant TCB array (rtos_tcb_array[]) was

defined before the TCB initialisation process. Referring to Figure 4-9, the

SC_THREAD(create_task_routine) takes charge of initialising a TCB

item in the array. A sole task ID offers a connection between the existing TCB

item and this initialisation process. This create_task_routine uses task

properties provided in the user-defined data structure (see Table 4-5 and Table 4-6)

and initialises all necessary fields of a corresponding task’s TCB. Note that both

the offset in Table 4-5 and the delay_time in Table 4-6 correspond to the

thread_sleep_length subfield in Table 4-8, which represent a task possi-

bly being delayed for some time after its creation, i.e., with an offset. The

thread_abs_dln subfield in Table 4-8 refers to the absolute deadline of a task.

If necessary, it can be computed as the sum of the task creation time and its rela-

tive deadline.

Figure 4-10 illustrates the timeline of the TCB initialisation process in a real

RTOS executing situation. Normally, the task creation happens just after the

RTOS kernel has been initialised. The RTOS kernel initialisation necessarily con-

sumes some simulated time and so consequently, there is a time offset from the

zero time of the simulated clock to the initialisation of the first TCB. Furthermore,

every task creation activity sequentially progresses the target clock. In our ap-

proach, the practical timing behaviour of this execution order is modelled by two

techniques:

 163

 This SC_THREAD is activated to run by a sc_event that is released by

the RTOS kernel initialization function (see Figure 4-9). This guarantees

that every TCB is initialised after the initialisation of the RTOS kernel.

 All TCBs are initialised in the same SystemC delta cycle, which is not same

as the real execution. In order to serialise them with delay intervals along

the timeline, a global counter function and a wait-for-delay function are in-

serted at the beginning of the SC_THREAD function body. The counter

function makes a statistic on how many task objects are in the system and

how many of them need to be created with time advance at this early RTOS

executing time point. Note that this RTOS modelling research requires that

all task module objects are created at the SystemC elaboration stage, but a

RTOS task can be “dynamically” created at simulation runtime (see Section

4.5.4.3 for further discussion). Hence, not all task creation timing overheads

may need to be released in order to progress the simulated clock now. De-

pending on the calculation result of the counter function, the wait-for-delay
7

function temporarily suspends appropriate SC_THREADs for a time delay

before it executes.

Wrapping a function body

As simple timing parameters of a task or a pure C/C++ based task entry func-

tion are not directly supported by the SystemC simulation kernel for timed execu-

tion, it is necessary to attach the user-defined application task model to a SystemC

executable process in order to run it in the SystemC environment. Regarding the

7
 We assume that all tasks are created just after the RTOS kernel initialisation but before the start

of the OS multi-tasking service. Interrupts are disabled at the time. Hence, the use of wait-for-

delay is allowed here.

 time

user
code

Initialisation

TCB1 is
initialised

RTOS

0

task1 creation task2 creation task3 creation

TCB2 is
initialised

TCB3 is
initialised

Figure 4-10. Initialising TCBs

 164

two kinds of SystemC processes, SC_METHOD and SC_THREAD, the latter is se-

lected as the wrapper. Because it can be suspended and resumed in execution, this

behaviour is essential for modelling task pre-emption and simulation time advance.

In Figure 4-9, the SC_THREAD(run_task_routine) behaves as such a

wrapper to encapsulate a task entry function. It is sensitive to a sc_event stored

in its TSB.

4.5.3.2 Optional Process Model

In some complex RTOSs (e.g., QNX and other RT-POSIX compliant ones),

applications are managed in both the process model and the task/thread model,

where a process contains at least one thread and provides a memory space for all

its containing threads. This two-level structure brings some advantages such as

better modularity because of distinct process containers, less interdependency

since each process has its particular definition, and more reliability because

threads are protected in different memory spaces [184].

It is important to reiterate that, in this thesis the multi-tasking model is based

on a single-level task/thread abstraction model and without modelling memory

management functions. Modelling process is out of the research scope. However,

for a consideration of preserving the extendibility of the software PE simulation

model, a simple Process Control Block model is defined as well (See Table 4-9).

In the modelling approach, a process can be created by modelling the RT-POSIX

spawn() function. This creates a child process by directly specifying an execu-

table to load and its implementation is very similar to the previously mentioned

task/thread creation method. A process and its inclusive threads are related to each

other according to the pcb_child_tcb_array[] field in the PCB and the

Table 4-9. Process Control Block

pcb_pid
pcb_uid
pcb_gid
pcb_child_tcb_arrary[NUM]
pcb_process_base_priority
pcb_process_current_priority
start_address
end_address

Process identifier
User identifier
Group identifier
Child-task/thread tids’ array
Initial (base) priority
Current (effective) priority
Starting address of the process’s memory space
Ending address of the process’s memory space

Field Description

*pcb_back
*pcb_next

Pointer to the previous PCB in a sche. queue
Pointer to the next PCB in a scheduling queue

 165

pid field in the TCB.

4.5.4 Multi-Tasking Management Modelling

4.5.4.1 Task State Machine

The task state machine is the basis of both multi-tasking management and

scheduling services in our RTOS kernel model. The task state machines imple-

mented in some real RTOS products were surveyed in Section 4.4.3.2.

Note that the task state machines implemented in some existing RTOS model-

ling research used some terms and structures that are confusing or not common in

practical RTOSs. For example, as shown in Figure 4-11 (A), [8] and [11] imple-

ment a similar task state machine including four states
8
: Idle, Ready, Executing,

and Pre-empted. Two points of this model are worth discussing:

1) In a normal RTOS kernel, if a task is pre-empted, then it usually enters the

“READY” state. However, in Figure 4-11 (A), a special Pre-empted state is

defined as different from its Ready state, which may be unnecessary.

2) In a normal RTOS kernel, if a task is blocked due to waiting on a synchro-

nisation method (namely a resource) or explicit self-suspension, then it

usually goes to the “WAITING” state. In Figure 4-11 (A), a task enters the

Pre-empted state when it is waiting on data, whereas it enters the Idle state

for self-suspension. The two different states cannot simply be interpreted as

synonyms of the classical “WAITING” state, because of the confusing

meaning of the Pre-empted state. In the model, it reflects the function of

both the “READY” state and the “WAITING” state, which are diverse in

relation to classical RTOS concepts.

Figure 4-11 (B) shows a seven-state RTOS task state model presented in [12].

Just as its authors indicated, it is similar to the task state machine commonly used

in UNIX systems. Hence, although it is complete and expressive enough, it may

not be applicable for small-size compact RTOSs. It is noticed that:

8
 Hereafter, the first letters of the states in the referenced RTOS task state models are capitalised.

Distinctively, the states in the surveyed RTOS products in Section 4.4.3.2 and in our RTOS model

are spelled using capitals letters.

 166

 The task state machine divides the classical “RUNNING” state into the User

mode and Super User mode, which is not common in RTOSs.

 Based on the above feature, the task state machine has divided the classical

“READY” states into two states, i.e., Ready and Waiting. This makes the

RTOS state machine redundant.

Research in [114] implements the three-state (i.e., READY, RUNNING,

WAITING) task state model depicted in Figure 4-6. This canonical structure is

also the basis for research in this thesis. Furthermore, based on the survey in Table

4-1, a four-state extensible task state machine is proposed to contain more states

in order to be more representative and correspond to specific kernel services of

some RTOSs. Figure 4-12 shows its structure and task state transitions. The main

modelling idea behind this is as follows:

1) Add a TERMINATED state, because it appears to be useful in many RTOS

products. For example, it is referred to as, or similar to, the INACTIVE

state in RTX [1], the DORMANT state in μITRON [151] and μC/OS-II

[149], the COMPLETED and TERMINATED state in ThreadX [152]. The

TERMINATED state is the exit of a task in the system, that is, where the

task has already finished and cannot execute again.

2) Subdivide the WAITING state into seven sub-states, i.e., WAITING_SUS,

WAITING_SEM, WAITING_MUT, WAITING_QUE, WAITING_EVT,

WAITING_DLY, and WAITING_CYC. As shown in Figure 4-12, each

Figure 4-11. Task state machines: reprint A [8] [11], B [12]

 167

sub WAITING state corresponds to a specific blocking condition. Note that

the WAITING_CYC state has been specially designed so that idle periodic

tasks can wait for their next execution cycle. This sub-state modelling con-

cept is similar to the task state machine of μITRON [151]. The proposed

task state machine is said to be extensible because the important and vari-

able WAITING state can be specified into different sub-states and mod-

elled by easily setting the rtos_tcb_wait_flag field (listed in Table

4-8) in the task TCB. When a simulation user wants to model a new block-

ing situation, it is not necessary to insert a new state in the task state ma-

chine and create an additional waiting queue. Just adding a sub WAITING

state and redefining the flag is enough. By shrinking and extending sub

WAITING states, the RTOS model can mimic behaviours of different

RTOSs.

4.5.4.2 Task Queues

The RTOS normally manages tasks by organising their TCBs in several queues

[25] [26]. Usually, there are two pointers in a TCB by which multiple TCBs link

to each other (See *rtos_tcb_back and *rtos_tcb_next in Table 4-8).

As mentioned in Section 4.4.3.2, a ready queue and a waiting queue are necessary

for maintaining tasks at the READY state and WAITING state, respectively. In

addition, the TERMINATED state needs a separate queue. Because there is only

one RUNNING task in the uniprocessor system at any time, the RUNNING state

Figure 4-12. The proposed four-state extensible task state machine

Terminated by other task

READY RUNNING

WAITING

TERMINATED

dispatch

preempt

wait, ...signal, ...

Self-terminate or
finish execution

task create

Terminated by
other task

Delete

MutexSemaphore Message
Queue

Event FlagExplicit
suspension

Sleep Cycle

Sub states of WAITING

 168

does not need a queue and a RTOS_RUNNING_TCB pointer indicates the TCB of

the current RUNNING task. If this RTOS model is possibly extended to a multi-

processor platform in future research, then the RUNNING state can have multiple

RTOS_RUNNING_TCB pointers.

The exact implementation method of a queue varies in different RTOSs. In

μC/OS-II, the ready queue is effectively implemented as a table with two vari-

ables: an integer and an integer array [149]. Their bits represent states of tasks and

task IDs, respectively. The RTOS kernel looks up the table to find the highest pri-

ority READY task and removes a task from the ready list by clearing a bit of the

integer variable. Considerations of such an implementation are to save limited

memory space, improve lookup speed, and keep the lookup execution time con-

stant. However, it is not very user-friendly or well visualised. In QNX, the ready

queue is implemented as 256 separated queues – each priority level having a

linked list [162]. This structure is quite organised with an inserting time complex-

ity of O(1), but its implementation complexity is relatively high for modelling.

In this thesis, in order to keep a balance between implementation complexity in

modelling and operating time complexity in simulation, a basic task queue is im-

plemented as a single priority-descending
9
 doubly linked list (See Figure 4-13).

All tasks at the same state are inserted into the queue according to their priorities,

with a time complexity of O(n). Same-priority tasks are adjacent. This is similar

to the ready thread list of ThreadX [152]. Basic primitives are provided to ma-

nipulate and debug a queue, for example, inserting a TCB, deleting a TCB, return-

ing the head of the queue, reporting the number of TCBs in the queue, and print-

ing one or all TCBs in the queue. The ready queue, waiting queue, and terminated

queue all inherit this base task queue class but may derive different functions from

it. For example, a simulation user can implement a specified policy regarding how

same-priority TCBs are ordered in a queue, e.g., FIFO or LIFO, by overloading

the inserting primitive. These derived task queues and their member functions are

9
 In order to support EDF scheduling, in modelling, a task queue can also be ascendingly ordered

by tasks’ absolute deadlines. Corresponding primitives have been implemented in the model.

 169

involved in various services of RTOS task management, scheduling, synchronisa-

tion and interrupt handling in the proposed RTOS model.

4.5.4.3 Task Services

A RTOS usually supplies a variety of multi-tasking services for application

tasks concerning their state transitions around the state machine and TCB con-

figurations
10

. The basic modelling consideration is to comply with common ser-

vices available in small-size RTOS products. ThreadX, μC/OS-II, and RTX are

still used as referenced samples. Table 4-10 enumerates task management services

implemented in the proposed RTOS model and corresponding functions found in

three RTOS products. Comparing these task services, the RTOS model can be

seen to have approximately covered 12 out of 13 services of ThreadX, 8 out of 11

services of μC/OS-II, and 10 out of 13 services of RTX. In general, the RTOS

model is capable of supplying main and typical task services of a RTOS. However,

memory-related services (e.g., stack check) are not included in modelling, and

some proprietary or small variant services are not implemented neither. In differ-

ent RTOSs, the arguments return values, and detailed internal functions of a simi-

lar-purpose service are necessarily different to some extent. Hence, in order to

10
 These two sets of services mean a narrow definition of “multi-tasking services”. Other specific

task services such as scheduling and synchronisation will be introduced in the following related

sections.

list.first

TCB a

*tcb_next

*tcb_back

TCB b

*tcb_next

*tcb_back

TCB m

*tcb_next

*tcb_back

TCB n

*tcb_next

*tcb_back

TCB p

*tcb_next

*tcb_back

TCB x

*tcb_next

*tcb_back

Priority
high

low

Level i

Level j

Level k

NULL

NULL

Figure 4-13. A priority-descending doubly linked task queue

 170

model a specific RTOS product, services of the RTOS model may also need to be

adapted. The careful definitions of the task state machine and the TCB structure

make a sound base from which to revise existing services or add new services into

the RTOS model without many obstacles.

Supporting periodic execution of abstract tasks is a notable task service of the

RTOS model. It is shown as the service “Transfer from RUNNING to WAIT-

ING_CYC” in Table 4-10 and is implemented as the function

task_wait_cycle() in Table 4-11. Upon being called by a task model (see

the example in Section 4.5.2.1), this function firstly calculates the task’s next acti-

vation time according to its first release time and number of instances that are

stored in its TSB. The next activation time is then converted to a sleep value rela-

tive to the current time stamp and is set in the thread_sleep_length sub-

field of the task’s TCB. Finally, the task_wait_cycle() function moves the

task to the WAITING_CYC state to let it wait for its next activation. Afterwards,

clock interrupts check whether the task should be awakened (see Section 4.5.5.3).

In terms of SystemC implementation, according to the specification in Table

4-10, task services are implemented in the RTOS module as normal member func-

tions rather than separate SystemC processes (See Table 4-11). They are invoked

by tasks through a pointer to the RTOS object. In order to be general, they require

minimal input parameters. Depending on needs, a task service can output status

values indicating a success or a failure, as well as other specified information.

Note that, task state transition services usually result in a rescheduling action by

the RTOS scheduler.

Table 4-10. Task services in the RTOS model and some RTOSs

tx_thread_create
tx_thread_terminate
tx_thread_delete
tx_thread_relinquish
tx_thread_resume
tx_thread_wait_abort
tx_thread_sleep
tx_thread_suspend Ta

sk
 s

ta
te

 t
ra

n
si

ti
o

n

re
la

te
d

 s
e

rv
ic

e
s

ThreadX

Return a pointer to RUNNING task’s TCB
Output information of a TCB

TC
B

 r
e

la
te

d

se
rv

ic
e

s
OSTaskCreate
OSTaskDel

OSTaskResume
OSTimeDlyResume
OSTimeDly
OSTaskSuspend

Create a task
Terminate a task (to TERMINATED state)
Delete a task from the system
Transfer from RUNNING to READY
Transfer from WAITING_SUS to READY
Transfer from WAITING_DLY to READY
Transfer from RUNNING to WAITING_DLY
Transfer from RUNNING to WAITING_SUS
Transfer from RUNNING to WAITING_CYC

μc/OS-II
os_tsk_create
os_tsk_delete/self

os_tsk_pass
os_evt_set

os_dly_wait

os_itv_wait

RTX

tx_thread_identify
tx_thread_info_get

Change priority of a task

Change time-slice of a task

tx_thread_priority_ch
ange
tx_thread_time_slice
_change

OSTaskQuery
OSTaskChangePrio

os_tsk_self

os_tsk_prio
os_tsk_prio_self

Services implemented in RTOS model

 171

Among the listed services in Table 4-11, the task_create() function is

another interesting point worthy of discussion. Normally, as a RTOS task service

function, task_create() could be called either from the main function of a

program before the RTOS multi-tasking service starts (i.e., known as static task

creation), or from a task body function, after the RTOS multi-tasking service

starts (i.e., known as dynamic task creation). The former is preferable for predict-

ability, whilst the latter bears the hallmarks of flexibility. Many RTOSs support a

mixture of these, as does the RTOS model in this thesis. Note that no matter

which method is used, execution of the task_create() function necessarily

consumes some CPU time and should advance the target clock.

Recalling Section 4.5.1.3, we have introduced how Live_CPU, RTOS, and

task model objects are created and connected in order to generate a SystemC

simulation program in the sc_main() function. Further, in Section 4.5.3.1, the

detailed creation process of a task model object is described. The two sections

explicitly explain the modelling method whereby all tasks in the RTOS simulation

environment are effectively created by static creation of objects of the task

SC_MODULE during the SystemC elaboration phase before the start of SystemC

simulation. But, does this method contradict or restrict the use of the

task_create() function?

Table 4-11. Implementation of task services

SC_MODULE(RTOS)

{

 SC_HAS_PROCESS(RTOS);

 RTOS(sc_module_name name, CPU *cpu_i[CPU_NUM]);

 … …

 /*Task state transition-related services*/

 unsigned int task_create(void);

 unsigned int task_terminate(unsigned int tid);

 unsigned int task_delete(unsigned int tid);

 unsigned int task_give_up_CPU(void);

 unsigned int task_resume_sus(unsigned int tid);

 unsigned int task_resume_dly(unsigned int tid);

 unsigned int task_sleep(unsigned __int64 t);

 unsigned int task_wait_suspend(void);

 unsigned int task_wait_cycle(void);

 /*TCB-related services*/

 rtos_tcb* task_tcb_get_pointer(void);

 unsigned int task_tcb_get_info(rtos_tcb *source, rtos_tcb *dest);

 unsigned int task_change_prio(unsigned int tid);

 unsigned int task_change_time_slice(rtos_tcb *tcb,

unsigned __int64 new_slice);

};

#001

#002

#003

#004

#005

#006

#007

#008

#009

#010

#011

#012

#013

#014

#015

#016

#017

#018

#019

#020

#021

#022

 172

Explicitly, the creation of a task module object in the sc_main() function

does not contradict using the task_create() function in task body functions.

The former plays the functional role to create a task in SystemC simulation, but it

cannot be used in an application task, nor can it reflect the timing overhead of a

dynamic task creation at simulation runtime. The latter is a dummy in terms of its

void function. However, it complies with the traditional RTOS programming

method by modelling the task creation API of a specific RTOS. This is undertaken

in order to support conventional real-time software simulation. In addition, in case

of a dynamic creation in simulation, it can be annotated with timing consumption

of a task creation service, and hence can represent its timing behaviour at a correct

timing point when it is called. This dual task creation technique utilises SystemC

modular modelling approach and supports native-code real-time software models.

In this thesis, the task_create() function can model both the static task

creation and dynamic task creation, provided that all related task module ob-

jects have been statically created. This “pseudo” dynamic task creation could be

seen as a limitation of the modelling method. The reason for this is that a task is

created by creating a SystemC SC_MODULE, but the SystemC standard does not

natively support “dynamic creation or modification of the module hierarchy dur-

ing simulation” [66].

4.5.5 Scheduler Modelling

According to the survey in Section 4.4.3.3, like situations in most practical

RTOSs, the RTOS model includes a priority-based pre-emptive scheduler. In

terms of scheduling policies, FPS is the basic scheduler model, while FIFO and

RR deal with equal-priority tasks. Furthermore, EDF scheduling is regarded as an

experimental add-on algorithm. In execution, the scheduler is invoked in a combi-

national way by two common modes found in RTOSs, i.e., time-driven and event-

driven [26].

4.5.5.1 The Priority Assignment and the FPS Scheduling Model

The Priority Assignment is the basis of scheduling in the RTOS model for FPS

scheduling. Figure 4-14 depicts the priority setting of the RTOS model. This pri-

 173

oritisation system is fully configurable by defining some constants, as shown in

the figure. In general, at least 256 levels should be available with the exact num-

ber depending on a specific configuration.

The lowest priority level 0 (i.e., the smallest number) is always assigned to the

special IDLE task
11

 . Some of the highest priority levels (i.e., the largest numbers)

are currently reserved without use. In the whole priority range, all ISR priorities

are higher than normal task priorities. In the RTOS model, these ISRs represent

special kinds of aperiodic tasks that can be defined by users, but are not equal to

user-defined normal aperiodic tasks that belong to normal real-time tasks in this

model. The specific priority ordering algorithm for normal real-time tasks is de-

pendent on the simulation user’s choice and is unimportant to RTOS modelling

research here (See Section 4.4.3.3 for an introduction to some classical priority

ordering algorithms). If there are non-real-time tasks in the system, then they

should be allocated priorities lower than all other real-time tasks.

Note that in the TCB depicted in Table 4-8, there are two priority fields, i.e.,

11
 The IDLE task is always ready to run. It is dispatched when there are not any other runnable

tasks in the system, which actually means that the CPU is idle.

Figure 4-14. Priority setting in the RTOS task model

1

0

TASK_HIGHEST_PRIORITY

ISR_HIGHEST_PRIORITY

ISR_LOWEST_PRIORITY

>= 255RTOS_HIGHEST_PRIORITY

Normal RT
tasks’ priority

range

IDLE task

ISRs’ priority
range

Reserved
range

NRT tasks’
priority rangeTASK_LOWEST_PRIORITY

RTOS_LOWEST_PRIORITY

 174

rtos_tcb_base_prio and rtos_tcb_cur_prio, which represent the ba-

sic (initial) priority of a task and the current (effective) priority of a task, respec-

tively. In RTOS execution, a task’s current (effective) priority is used by the

scheduler because it is updated in case of a priority change operation.

The basic algorithm of FPS is to compare the current priority of the RUNNING

task and the current priority of the first task in the ready queue. The result of the

comparison is the basis on which to make a scheduling decision. Regarding FIFO

and RR algorithms in the scheduler model, their theories and usages were intro-

duced in Section 4.4.3.3. The RTOS model follows the classical concepts and can

choose one of the two algorithms for all tasks in the system.

4.5.5.2 Implementation of the FPS Scheduler in the SystemC Model

In SystemC implementation of the RTOS model, the scheduler is implemented

as a function (i.e., scheduler()) in the RTOS module and is called by other

RTOS services. It is conceptually different from methods in [72] [113] [185] that

model the scheduler as a continuously-running SystemC process to schedule mul-

tiple tasks and activate a task to run. Literature [114] has compared the two

scheduler modelling techniques and proposed that the function-call modelling

technique is preferable mainly because it does not incur SystemC kernel context

switches between the scheduler SystemC process and task SystemC processes,

namely less simulation overhead. In contrast, a dedicated SystemC process-based

RTOS scheduler has the advantage of easy implementation. In addition, in this

thesis, there appear another three benefits to implement a function-call-based

RTOS scheduler:

1) Support of traditional usage as it complies with a normal situation of the

scheduler in a RTOS kernel. Also, invoking the scheduler function in tradi-

tional real-time software code is straightforward.

2) Support of a timing model. It is also easy to model the timing behaviour of

a scheduler function in software simulation because it behaves in a similar

way to real execution.

3) Better modularity because it simplifies the function of the RTOS scheduler

and decouples it from a combination of a RTOS scheduler, an interrupt

 175

monitor, and a conceptual software executing engine in [72] [113] [185]. In

the RTOS model in this thesis, the scheduler just finishes a reasonable

software function to choose the next-to-run task and then calls the task

switch service. The low-level task switch service and the Live CPU Model

collectively finish the remaining work to activate the next-to-run task.

Referring to Figure 4-15, the working flow of the FPS scheduler model can be

described as follows:

1) Once the scheduler is triggered, it compares the current priority of the

RUNNING task and the current priority of the first task in the ready queue.

There may be three results:

2) If the current RUNNING task’s priority is higher, then the scheduler needs

to check whether the RUNNING task is blocked by a condition. If it is

blocked, then the RUNNING task is moved to the waiting queue, and the

first READY task is chosen as the new next-to-run task. Otherwise, the

scheduler just exits. No task switch is necessary, and the RUNNING task

Is the
RUNNING task

blocked?

Priorun > Prioready Priorun = Prioready Priorun < Prioready

The RUNNING task
continues execution.

No

Move the RUNNING task
to waiting queue; dispatch

the first READY task.

Yes

Move the RUNNING task
to ready queue; dispatch

the first READY task.

FIFO or RR?

FIFO

RR

Does
the RUNNING task
consume its time

slice? Yes

No

Invoke the task switch
service

Compare
the priority of the RUNNING

task (Priorun) and the priority of the first
task in the ready queue

(Prioready)

scheduler() is invoked in
time-driven or event-

driven mode

Figure 4-15. FPS scheduler working flow

 176

continues execution.

3) If the first READY task’s priority is higher, then it is removed from the

ready queue and chosen as the new next-to-run task. The old RUNNING

task is inserted into the ready queue, which means it is pre-empted. Then

the scheduler calls the task switch service and finishes.

4) When their priorities are equal and if the FIFO algorithm is set up, then the

RUNNING task continues executing and the scheduler just exits. If the RR

algorithm is chosen, the scheduler checks whether the RUNNING task’s

time slice is exhausted. If it is, then the first READY task is dispatched as

the new RUNNING task and the old RUNNING task is inserted into the

ready queue. If the RUNNING task’s time slice still exists, then the sched-

uler just exits.

4.5.5.3 Time-Driven and Event-Driven Scheduling

Time-driven scheduling is also called tick scheduling or time-based scheduling

[26]. In this mode, the scheduler is periodically triggered by clock interrupts to

make scheduling decisions. The time interval between two clock interrupts is de-

fined as the time resolution of the system, also known as a system tick. Some

RTOSs use the system tick mechanism to delay task executions [149] [152].

However, the actual delay time may not be exactly the same as the appointed ticks,

but have possible sleeping jitters due to clock interrupt handling and scheduling

time. The author in [149] discussed this problem and concluded that increasing

the frequency of clock interrupts may be a solution. Indeed, the length of the sys-

tem tick greatly affects the responsiveness and run-time overhead of a RTOS sys-

tem. A minor value of the tick could improve system responsiveness in terms of

the ability to handle periodic tasks with high activation rates [25]. However, a too

small tick size also means that the tick scheduling service is activated very fre-

quently, resulting in a higher runtime overhead. The tick size used by most operat-

ing systems is 1-50 milliseconds [25] and is fully configurable in this RTOS

model.

In implementation, the clock interrupt and its associated ISR are modelled by

the standard interrupt handling method of the proposed modelling approach,

 177

which will be addressed in Section 4.5.7. Referring to Figure 4-16, a configurable

clock interrupt tick_timer_clk (a sc_clock object) periodically triggers

the tick timer ISR tick_isr. The ISR then calls a RTOS kernel function

rtos_time_tick() to carry out the following actions:

 It checks and updates the status of sleeping tasks in the waiting queue (i.e.,

at WAITING_DLY and WAITING_CYC states). If a sleeping task expires,

the task is moved to the ready queue at the time.

 It updates the execution budget of the RUNNING task if it is scheduled by

the RR policy.

 It monitors the absolute deadline of the RUNNING task (if this property is

available) and notifies the kernel in case it is missed.

 It finally calls the scheduler() function to make a scheduling decision.

In the event-driven mode, the RTOS scheduler is invoked by various events

and should act immediately upon their occurrences. These scheduling events can

be hardware-sourced external interrupts or internal to the software system, for ex-

ample, a task is created or unblocked by RTOS services.

4.5.5.4 Supporting the Dynamic-Priority EDF Algorithm

Although not common in practical RTOSs, various theoretical issues in EDF

scheduling have been thoroughly studied in real-time systems research [176].

Some abstract RTOS models have also simply mentioned an EDF scheduler [72]

[11] [8]. However, according to the survey on RTOSs scheduling algorithms in

Section 4.4.3.3, an EDF scheduler may not be a necessity or a desired function of

a RTOS model that aims to model practical and general scheduling behaviours of

Figure 4-16. Tick scheduling model

 time

user
task

rtos_tim
e_tick()

RTOS

0

task execution

tick_timer_clk tick_timer_clk

tick_isr ISR

scheduler()

task execution

rtos_tim
e_tick()

ISR

scheduler()

a system tick

 178

some common RTOS products. In [176] [26], two implementation methods of an

EDF scheduler in OSs are discussed:

1) Implementing an EDF scheduler on top of usual RTOS kernel with a lim-

ited number of priority levels: The kernel maps absolute deadlines to pri-

orities and allows changing priority at runtime. However, this method is

“not easy nor efficient” [176]. [176] shows an example situation: at exe-

cution runtime, if two task jobs have been allocated two adjacent priority

levels according to their absolute deadlines, then it is not easy to allocate

a priority to the third task job that has an intermediate absolute deadline.

The only solution deemed in [176] is to remap the two existing jobs to

new nonadjacent priority levels. Possibly, in the worst case, all jobs in

the ready queue may need priority remapping and the incurred overhead

could be excessive.

2) Implementing an EDF scheduler on top of a deadline-based RTOS kernel:

The ready queue of the RTOS kernel orders tasks according to increasing

absolute deadlines. This method is believed to be a “better alternative”

[26] because it needs a relatively small modification of the kernel struc-

ture and its services. Basic queue operations such as insertion, deletion,

and returning the queue head all behave similarly to those priority-based

queue operations. The absolute deadline of a task actually plays as the

“priority” of a task in this model. This implementation method requires

that the absolute deadline of a task is calculated at each release time and

recorded in its TCB.

It is noticed that the EDF scheduler in [72] is implemented in the first priority

reassignment method. However, in this thesis, the EDF model follows the second

method. In fact, various implementation elements of this model have already been

referred to in the above paragraphs of this section.

In the TCB definition in Table 4-8, the task relative deadline should be speci-

fied by the user and stored in the rtos_tcb_relative_deadline field, and

the task absolute deadline task is stored in the thread_abs_dln sub field. In

Section 4.5.4.2, the priority-based task queue class is introduced and it has the

possibility of becoming an absolute deadline-based queue.

 179

It is well known that: task absolute deadline (d) = task release time (a) + task

relative deadline (D). The task relative deadlines are defined by users, i.e., they

are known. The difficulty of modelling an EDF scheduler in the RTOS model is

mainly dependent on how to determine task release times, by which task absolute

deadlines can be calculated. Referring to Figure 4-17, the proposed implementa-

tion method is described as follows:

For periodic tasks, it is required that each of them should enter the WAIT-

ING_CYC state to wait for next activation when it finishes its current execution

cycle. The method is carried out by two RTOS services:

 The task creation service (in Section 4.5.3.1) uses the task creation time (or

adding an offset) as a of the first job of a task. Hence, d of the first job is ob-

tained.

 The RTOS time tick service (in Section 4.5.5.3) takes charge of calculating

d for subsequent jobs of a task. If the tick service moves a task from the

WAITING_CYC state to the READY state, then it means that a task has en-

tered its new cycle. This time point is deemed as the approximate a with a

possible but acceptable sleeping time jitter.

There are two kinds of aperiodic tasks in the model, namely ISRs and normal

aperiodic tasks. ISRs provide first level (i.e., early) simple software interrupt ser-

vices, while normal aperiodic tasks provide second level (i.e., later) software in-

task absolute deadline (d)
task release/arrival time (a)

task relative deadline (D)
=

Specified by
users

TCB
rtos_tcb_relative_deadline

TCB
thread_abs_dln

+

Periodic
tasks

d of the first task job is calculated by: task creation service
a is: task creation time D: predefined

d of subsequent jobs is calculated by: time tick service
a is: the time when a task moves from WAITING_CYC to READY D: predefined

Aperiodic
tasks

d of an ISR is calcualted by: RTOS kernel interrupt handle or the ISR itself
a is: ISR calling time D: predefined

d of an normal aperiodic task is calcualted by: its associated ISR
a is: ISR calling time D: predefined

Figure 4-17 Calculating absolute deadlines of tasks in simulation

 180

terrupt services. The calculation of d is twofold:

1) ISRs are either directly invoked by the hardware interrupt controller or by a

RTOS kernel interrupt handler. In the case of the former mode, an ISR uses

its beginning time as a in order to calculate its d; in the case of the latter

mode, a RTOS kernel interrupt handler will use its calling time as a of the

ISR and calculate its d.

2) Normal aperiodic tasks are initiated by an associated ISR through synchro-

nisation methods. Hence, a precedent ISR can use this calling time as the a

of a subsequent normal aperiodic task, with d calculated from it.

Except for the above points, other implementation details of the EDF scheduler

are similar to the FPS scheduler. Bear in mind the EDF scheduler is implemented

in the RTOS kernel with some restrictive conditions on both application models

and the RTOS model. Consequently, it is unable to refer to a practical RTOS. The

research in this thesis does not aim to implement many RTOS functions in this

EDF model.

4.5.6 Task Synchronisation and Communication Modelling

According to the survey in Section 4.4.3.5, in a multi-tasking RTOS environ-

ment, application tasks need to synchronise and share data, in order to cooperate

with each other properly. Some synchronisation (e.g., semaphores, mutexes, and

event flags) and communication methods (e.g., mailboxes and message queues)

are used in various RTOSs as lightweight mechanisms to ensure inter-task/thread

synchronisation, mutual exclusion, and communication. A general difference be-

tween a synchronisation method and a communication method is that the former is

used mainly to coordinate the execution orders of involved tasks, while the latter

can explicitly exchange data between tasks.

In Section 2.2.2.2, SystemC built-in synchronisation primitive channels (e.g.,

sc_semaphore, sc_mutex, and sc_fifo) were discussed, with the conclu-

sion that they are not suitable for direct use in a RTOS model, due to their non-

deterministic characteristics. Hence, the proposed RTOS model natively imple-

ments four three real-time synchronisation and communication methods, i.e.,

semaphores, mutexes, and message queues, with the PIP protocol being applied

 181

for mutexes in order to avoid the priority inversion problem. Their usage, for in-

stance whether a specific synchronisation or communication function is allowed

to be used in ISRs, is consistent with referenced RTOSs [149] [152] .

4.5.6.1 The Event Control Block

Referring to Table 4-12, the RTOS model uses a universal Event Control Block

(ECB), in common with μC/OS-II RTOS [149], to control different synchronisa-

tion and communication entities (referred to as event objects hereafter) at the ker-

nel level. These different types of event objects share some fields and primitives

of the ECB method. This implementation technique brings reusability to RTOS

modelling. In addition, they contain respective fields and application interface

functions.

An ECB represents the various characteristics of an event object. As shown in

Table 4-12, all types of event objects own an ECB ID, an ECB type property, a

pointer to its respective resource, and a suspension task list. Besides this, a mutex

or a semaphore event object also needs a counter field. More particularly, a mutex

ECB records the original priority of its owning task for the PIP protocol, and a

Table 4-12. Event control block (ECB) and management primiitves

rtos_ecb_id

rtos_ecb_event_type

rtos_ecb_counter

rtos_ecb_original_priority

rtos_ecb_ceiling_priority

*rtos_ecb_ptr

rtos_ecb_task_list

Field Description

ID of this ECB

Type of this event object, e.g., mutex, semaphore, ...

Value of a semaphore / a mutex

Original priority of a mutex owner

Ceiling priority of a resource (Reserved for PIP in mutex)

Pointer to a possible 2nd-level control block/resource

Suspension task list (based on the STL list class)

Task ID

Task current priority

Suspension task list
(struct tid_priority_block)

sync_create()

sync_signal()

sync_wait()

sync_timeout()

sync_del()

ECB management primitives

Event Control Block (struct rtos_ecb)

 182

ceiling priority field is reserved for the PCP protocol. The suspension task list is

based on the STL list template class [139]. An element (i.e., struct

tid_priority_block) of the list includes two essential properties of a task,

i.e., a task ID and the current priority. The task suspension list can be ordered by

either FIFO or priority, which is able to model optional features provided by some

RTOSs, e.g., ThreadX. By default, the highest-priority task is placed at the head

of the suspension list in the RTOS model.

In Table 4-12, five basic primitive functions are implemented to manage an

ECB, i.e., creating an ECB, deleting an ECB, waiting for an event object (namely

a P operation), waiting for an event object with a timeout, and signalling an event

object (namely a V operation). These kernel functions are called by different syn-

chronisation and communication application functions accordingly.

In order to explain these primitives, Table 4-13 shows an example code of the

“waiting for an event object” function (sync_wait()) and the “signalling an

event object” function (sync_signal()). The processing sequences of the two

functions are similar in terms of including three sequential steps, i.e., operating

the ECB task suspension list, operating the task’s TCB, and operating the RTOS

void RTOS::sync_wait(rtos_tcb *ptcb, rtos_ecb *pecb)

{

 tid_priority_block tmp_tpb = {ptcb->rtos_tcb_tid,

 ptcb->rtos_tcb_thread_cur_prio};

 pecb->rtos_ecb_thread_list.push_back(tmp_tpb);

 pecb->rtos_ecb_thread_list.sort(greater<tid_priority_block>());

 ptcb->rtos_tcb_ecb_ptr = pecb;

 RTOS_TCB_WAITING_QUEUE_0.insert_node_priority(ptcb);

}

void RTOS::sync_signal(rtos_tcb *ptcb, rtos_ecb *pecb, void *msg)

{

 rtos_tcb *ptcb_rdy;

 ptcb_rdy = &rtos_tcb_array[(pecb->

rtos_ecb_task_list.front()).tid];

 pecb->rtos_ecb_thread_list.pop_front();

 ptcb_rdy->rtos_tcb_wait_flag &= ~pecb->rtos_ecb_event_type;

 ptcb_rdy->rtos_tcb_ecb_ptr = NULL;

 if (ptcb_rdy->rtos_tcb_wait_flag == WAITING_NUL) //Check again

 {

RTOS_TCB_WAITING_QUEUE_0.delete_node(ptcb_rdy);

RTOS_TCB_READY_QUEUE_0.insert_node_priority(ptcb_rdy);

 }

}

#001

#002

#003

#004

#005

#006

#007

#008

#009

#010

#011

#012

#013

#014

#015

#016

#017

#018

#019

#020

#021

#022

#023

#024

#025

#026

Table 4-13. Example code of wait and signal primitives

 183

task queues. However, their exact functions differ. The sync_wait() function

firstly inserts a blocked task in the ECB task suspension list (lines 5, 6), then re-

cords the ECB in this task’s TCB (line 7), and finally puts this task in the RTOS

waiting queue (line 8). In contrast, the sync_signal() function firstly re-

moves the unblocked task from the ECB task suspension list (line 16), then clears

blocking information from this task’s TCB (lines 18, 19), and finally moves the

task from the RTOS waiting queue to the ready queue (lines 23, 24).

4.5.6.2 Modelling Semaphores

In the RTOS model, a counting semaphore includes a 32-bit counter (i.e., the

rtos_ecb_counter field in an ECB). Its value represents how many tasks are

allowed to access the protected resource. Its usage complies with normal situa-

tions in RTOSs:

 A semaphore does not have a notion of ownership, and any tasks can wait

(i.e., P) or post (i.e., V) a semaphore.

 A positive counter value means resources are available, while a zero value

means the resource is unavailable.

 The wait operation will decrement the counter value by one. If a counter

value reaches zero, then a wait operation will block the calling task (i.e., at

the WAITING_SEM state) and put into the suspension task list.

 A post operation will increment the counter by one or unblock the highest-

priority task in the suspension task list.

Table 4-14 enumerates seven semaphore services supported in the RTOS

model and corresponding services provided by three referenced RTOS products,

which shows that the proposed RTOS model has a good coverage of typical

Table 4-14. Semaphore services in the RTOS model and some RTOSs

Initialise a semaphore
Destroy a semaphore
Wait (P) for a semaphore
Wait for a sem. with a timeout
Wait for a sem without blocking
Post (V) a semaphore
Get semaphore counter value

ThreadX

OSSemCreate
OSSemDel

OSSemAccept
OSSemPost
OSSemQuery

μc/OS-II

os_sem_init

os/isr_sem_send

RTX

Semaphore services in
the RTOS model

Semaphore services in some RTOSs

tx_semaphore_create
tx_semaphore_delete

tx_semaphore_put
tx_semaphore_info_get

OSSemPend
os_sem_waittx_semaphore_get

 184

semaphore functions. In fact, because of similarities on common semaphore func-

tions across different RTOSs, the proposed RTOS model’s semaphore services

can be adapted to various APIs. As shown in Table 4-15, default semaphore inter-

faces in the proposed RTOS partially refer to the RT-POSIX standard, in terms of

similar functions, arguments, and return values.

In terms of implementation, it is not only necessary to model typical sema-

phore services, but also needs to be aware of the RTOS model’s particular charac-

teristic, i.e., semaphore services run in the software PE simulation model in the

SystemC environment.

Table 4-16 gives the example implementation code of the sem_wait() func-

SC_MODULE(RTOS)

{

 int sem_init(rtos_ecb *psem, int pshared, int c_value);

 int sem_destroy(rtos_ecb *psem);

 int sem_wait(rtos_ecb *psem);

 int sem_timedwait(rtos_ecb *psem, unsigned __int64 nanoseconds);

 int sem_post(rtos_ecb *psem);

 int sem_trywait(rtos_ecb *psem);

 int sem_getvalue(rtos_ecb *psem, int *value);

};

#001

#002

#003

#004

#005

#006

#007

#008

#009

#010

#011

#012

Table 4-15 POSIX-like semaphore APIs in the RTOS model

int RTOS::sem_wait(rtos_ecb *psem)

{

 rtos_tcb *ptcb;

 ptcb = RTOS_RUNNING_TCB;

 if (psem->rtos_ecb_counter > 0) // Semaphore is available

 {

 psem->rtos_ecb_counter--;

 }

 else // Semaphore is unavailable

 {

/* Set WAITING flag */

 RTOS_RUNNING_TCB->rtos_tcb_wait_flag |= WAITING_SEM;

sync_wait(RTOS_RUNNING_TCB, psem); // Call sync_wait primitive

 scheduler(); // Call scheduler function

 /* Call Live CPU Model to run a READY task */

m_CPU_ptr[0]->scevt_rtos_call_cpu.notify(SC_ZERO_TIME);

 /* The calling task is blocked here */

 wait(rtos_tcb_service_array[ptcb->rtos_tcb_tid].rtos_tcb_evt[0]);

 /* After waiting, the calling task is unblocked */

 }

}

#001

#002

#003

#004

#005

#006

#007

#008

#009

#010

#011

#012

#013

#014

#015

#016

#017

#018

#019

#020

#021

#022

#023

Table 4-16. SystemC implementation code of the sem_wait() function

 185

tion. Note that only part of the original code is displayed in the figure due to a

page limit. The sem_wait() function is used inside a task body function when

the task wants to acquire a semaphore count. In case of a positive semaphore

value, the semaphore counter is simply decreased by one (line 6); in case of a zero

semaphore value, the before-mentioned sync_wait() primitive is called (line

14) to block the calling task. Afterwards, the scheduler() function (intro-

duced in Section 4.5.5.2) is invoked to make a rescheduling decision (line 15). On

line 17, because the scheduler() function should have already selected

(namely dispatched) a new task as the next-to-run task, the Live CPU Model is

thus triggered by notifying a sc_event in order to execute the new task. Then,

on line 19, the calling task is blocked by a wait-for-event statement. This

sc_event will be released at a future time point when the task is unblocked.

4.5.6.3 Modelling Mutexes

In the RTOS model, a mutex is used to provide mutually exclusive access to a

critical section. Its counter has a binary value stored in the ECB

rtos_ecb_counter field. Its usage complies with normal situations in RTOSs:

 A mutex is a public object but can be owned by one task at any time and

whose ownership is indicated by the ECB *rtos_ecb_ptr pointer.

 The lock (i.e., P) operation tries to acquire the mutex and decrements mutex

value from one to zero if it succeeds. If a task attempts to lock a mutex, but

the mutex has been already locked by another task previously, then the call-

ing task will be blocked (i.e., at the WAITING_MUT state) and put in the

suspension task list. With the PIP protocol, if a high priority taskb is blocked

by a mutex that is owned by a low priority taska, then taska temporarily in-

herits the high priority of taskb and the original priority of taska is stored in

the ECB.

 The unlock (i.e., V) operation releases mutex ownership. It increments

mutex value from zero to one or unblocks the highest priority blocked task

in the suspension task list. With PIP, the task that calls the unlock function

will revert its original priority.

 186

Table 4-17 enumerates six mutex services supported in the RTOS model,

which also have an approximate equivalence to corresponding services provided

by the three referenced RTOS products. Table 4-18 shows default mutex inter-

faces implemented in the proposed RTOS, which partially refer to the RT-POSIX

standard. The modelling method of a specific mutex service is similar to the

semaphore modelling technique in last section. Hence, it is not repeated again.

4.5.6.4 Modelling Message Queues

Currently, message queues are the main inter-task communication method in

the RTOS model. A message queue is a public resource and can be connected to

various sender tasks and receiver tasks (using the receive operation). In the model,

by default, multiple messages are stored in a FIFO order queue and each message

is actually a pointer to a variable (e.g., character type, unsigned integer type, inte-

ger type, float type, and double float type) that is to be communicated. The LIFO

order queue and the transfer-by-copy function are not currently implemented. The

usage of a message queue is as follows:

Initialise a mutex
Destroy a mutex
Lock (P) a mutex
Lock (P) a mutex with a timeout
Lock a mutex without blocking
Unlock (V) a mutex

ThreadX

OSMutexCreate
OSMutexDel

OSMutexAccept
OSMutexPost
OSMutexQuery

μc/OS-II

os_mut_init

os_mut_release

RTX

Mutex services in
the RTOS model

Mutex services in some RTOSs

tx_mutex_create
tx_mutex_delete

tx_mutex_put
tx_mutex_info_get

OSMutexPend
os_mut_waittx_mutex_get

Table 4-17. Mutex services in the RTOS model and some RTOSs

SC_MODULE(RTOS)

{

 int pthread_mutex_init(rtos_ecb *pmutex, int *attr);

 int pthread_mutex_destroy(rtos_ecb *pmutex);

 int pthread_mutex_lock(rtos_ecb *pmutex);

 int pthread_mutex_timedlock(rtos_ecb *p, unsigned __int64 timeout);

 int pthread_mutex_unlock(rtos_ecb* pmutex);

 int pthread_mutex_trylock(rtos_ecb *pmutex);

};

#001

#002

#003

#004

#005

#006

#007

#008

#009

#010

#011

Table 4-18 POSIX-like mutex APIs in the RTOS model

 187

 The send operation inserts a message pointer into the message queue. If the

queue is full, the calling task will be blocked (i.e., at the WAITING_QUE

state) and put into the ECB suspension task list.

 The receive operation retrieves and removes a message pointer from the

message queue. If the message queue is empty, the calling task will be

blocked and put into the ECB suspension task list.

 The unblocking conditions of send and receive operations are similar to pre-

viously mentioned semaphore and mutex behaviours and hence are abbrevi-

ated here.

In implementation, a message queue needs a special second-level control block

(i.e., rtos_mqcb) in addition to its ECB. Its structure partially refers to μC/OS-

II RTOS [149]. As shown in Figure 4-18, a message queue control block stores

various control information regarding a message queue and is involved in send

and receive operations. The read and write pointers move in the same direction

from the start address to the end address of the pointer array, i.e., messages are

First-In-First-Out.

Figure 4-18 Message queue control block

*mq_ptr

mq_size

mq_cnt

**mq_start

**mq_end

**mq_rd

**mq_wr

Field Description

Reserved

Size of the message queue

Number of existing messages in the queue

Pointer to the start address of the queue area

Pointer to the end address of the queue area

Read pointer used by receive requests

Write pointer used by send requests

Message Queue Control Block (struct rtos_mqcb)

A pointer array

receive()
send()movement

 188

Table 4-19 lists message queue services in the RTOS model and referenced

RTOSs. Currently, six basic functions have been included in the model and other

additional RTOS-specific functions can be implemented in future work. In Table

4-20, RT-POSIX-like interfaces are utilised again as the wrapper of message

queue functions in the RTOS model. Note that a standard RT-POSIX message has

a priority property, whereas the proposed RTOS model does not support this fea-

ture. Hence, the priority argument in these APIs is meaningless at the time.

4.5.7 Interrupt Handling Modelling

4.5.7.1 Basic Concepts of Interrupt Handling

As mentioned in Section 4.4.3.1, interrupt handling is a crucial mission of the

RTOS for servicing IRQs that are generated by external devices. In different

RTOSs, there are various interrupt handling mechanisms. Focusing on handling

interrupts on the ARM processor, Sloss et al. survey eight interrupt handling

SC_MODULE(RTOS)

{

 int mq_open(void **start, int size,

rtos_ecb *pecb, rtos_mqcb *pmqcb);

 int mq_close(rtos_ecb *pecb);

 int mq_receive(rtos_ecb *pecb, void* msg_ptr,

MQ_SIZE_T msg_len, unsigned int* msg_prio);

 int mq_timedreceive(rtos_ecb *pecb, void *msg_ptr,

unsigned __int64 nanoseconds);

 int mq_send(rtos_ecb *pecb, void *msg_ptr);

 int mq_timedsend(rtos_ecb *pecb, void *msg_ptr, MQ_SIZE_T msg_len,

unsigned int msg_prio, unsigned __int64 nanoseconds);

};

#001

#002

#003

#004

#005

#006

#007

#008

#009

#010

#011

#012

#013

#014

#015

Table 4-20. POSIX-like message queue APIs in the RTOS model

Initialise a message queue
Destroy a message queue
Receive a message
Receive a msg. with a timeout
Send a message
Send a message with a timeout

ThreadX

OSQCreate
OSQDel

OSQFlush
OSQPostFront
OSQQuery
OSQAccept

μc/OS-II

os_mbx_init

os/isr_mbx_check
isr_mbx_receive

RTX

Message queue services
in the RTOS model

Message queue services in some RTOSs

tx_queue_create
tx_queue_delete

tx_queue_flush
tx_queue_front_post
tx_queue_info_get

tx_queue_receive
OSQPend os_mbx_waittx_queue_receive

tx_queue_send OSQPost os/isr_mbx_send

Table 4-19. Message queue services in the RTOS model and some RTOSs

 189

schemes including the simple non-nested method; complex grouped and priori-

tised methods; and the vector interrupt controller method [67]. Based on this sur-

vey, three notable common characteristics are extracted and should be considered

in modelling:

1) Nested: A non-nested scheme handles individual interrupts sequentially.

When an interrupt is being serviced, other interrupts are disabled; hence in-

terrupt latency is substantially high. In contrast, a nested scheme allows the

handling of another interrupt during the current interrupt handler. In a sim-

ple nested scheme, interrupts may not be prioritised, which means the new-

est interrupt can block an existing one.

2) Prioritised: Interrupts are assigned priorities that indicate their stringency.

A higher-priority interrupt is serviced in precedence to a lower-priority in-

terrupt, which also means a lower-priority interrupt is ignored if it happens

during a higher-priority interrupt handling process. Depending on specific

implementation, either a hardware interrupt controller or a low-level soft-

ware handler (i.e., in RTOS or drivers) can achieve interrupt prioritisation.

3) Vectored: In a non-vectored interrupt handling scheme, the entry point of

all software ISRs remains the same, i.e., either a RTOS kernel interrupt

handling function or a similar low-level software handler, which takes

charge of determining which ISR should serve the raised IRQ and then load

the ISR into the program counter of the CPU for execution. In a vector-

based scheme, the hardware vector interrupt controller has an array (i.e., a

vector) of ISR addresses. Hence, a specific software ISR can be invoked by

the hardware directly, which means a smaller interrupt latency. These two

schemes are illustrated in Figure 4-5 and referred to as the RTOS-assisted

scheme and the vector-based scheme, respectively.

4.5.7.2 The RTOS Interrupt Handling Model

In order to model typical interrupt schemes in this research, the RTOS model

provides a modular interrupt handling model. It splits interrupt handling functions

in the software PE model into several cooperative HW and SW components.

Through configuration of these components, the interrupt handling model can

 190

flexibly support the above-mentioned nest, prioritisation, non-vector, and vector

features.

In the software PE model, one hardware component is related to interrupt han-

dling, i.e., the Interrupt Controller Model in the Live CPU Model (see Section

3.3.3). It is the lowest-level component in the interrupt handling stack and con-

nected to various hardware sources by IRQ lines. Its function and structure has

already been introduced in detail, so they are not repeated here. Just remember, an

essential function of the Interrupt Controller Model is to invoke upper-level soft-

ware interrupt handlers.

Regarding software parts in the interrupt handling stack, there contains the fol-

lowing components:

 RTOS kernel-level interrupt handler functions (i.e., inter-

rupt_handler_enter() and interrupt_handler_exit()):

Depending on a specific interrupt scheme, they are invoked by either the

hardware Interrupt Controller Model or user-level ISRs, and their functions

also may vary but in general can prioritise and mask interrupts and call ISRs

if necessary.

 User-defined ISRs (also known as immediate interrupt services [26]): they

are attached to corresponding interrupts and programmed by users to pro-

vide simple and non-blocking functions (e.g., post a semaphore) in order to

serve an IRQ promptly. They are assigned higher priorities than are normal

user tasks, as shown in Figure 4-14, among which the tick timer ISR

tick_isr (introduced in Section 4.5.5.3) has the highest priority in the

default setting. Note that a lower-priority ISR can be pre-empted by a

higher-priority ISR. Depending on the configuration of the interrupt model,

a user-defined ISR can be invoked by the RTOS kernel interrupt handler in-

directly or the hardware Interrupt Controller Model directly.

 User-level aperiodic tasks (also known as scheduled interrupt services

[26]): they are normal real-time tasks in the RTOS model. Because user-

defined ISRs are typically too simple to include all necessary interrupt han-

dling functions, subsequent aperiodic tasks are always necessary so as to

complete interrupt handling [26]. Their priorities reside in the range of nor-

 191

mal real-time tasks, and are usually set to be higher than periodic tasks.

These aperiodic task stay at the WAITING state in normal times and are

triggered by synchronisation functions that are operated by user-defined

ISRs.

The RTOS model can currently support two typical interrupt handling schemes

as shown in Figure 4-5, i.e., the RTOS-assisted (non-vectored) scheme and the

vector-based scheme. No matter in which scheme, nested, prioritised, and

maskable handling functions can all be supported.

Figure 4-19 depicts the process of the RTOS-assisted (non-vectored) interrupt

handling scheme. In this scheme, the RTOS kernel-level interrupt handler in-

terrupt_handler_enter() is the entry point for all ISRs. It is imple-

mented as a SystemC SC_THREAD, which is sensitive to a related sc_event in

the Live CPU Model. The handling process includes the following functions and

transition steps:

1) In Step 1, the Interrupt Controller Model releases the sc_event when it

finds an IRQ.

2) Upon being triggered, the RTOS interrupt entry handler firstly identifies

the external IRQ source and masks other lower-priority IRQs (i.e., ignores

their occurrence during this handling process) by setting interrupt-related

virtual registers in the Live CPU Model. The entry handler then pre-empts

Figure 4-19 RTOS-assisted (non-vectored) interrupt handling model

RTOS module

ISR

Live CPU Model

CPU Sim. Engine Interrupt
Controller

IRQ_line1

IRQ_line2

IRQ_line3

ISR

SC_THREAD:
interrupt_handler_enter

SC_THREAD:
interrupt_handler_exit

Step 1

Step2

Step3

aperiodic
task

Step4

aperiodic
task

User-defined
ISRs and tasks

RTOS
kernel

HW Virtual
Registers

 192

the RUNNING task and inserts it into the RTOS ready queue. Possibly, the

pre-empted “task” may be another lower-priority ISR, and thus the entry

handler will operate an IRQ_NEST_LIST and a

RTOS_IRQ_NEST_COUNT counter in order to record this nested situation

for later recovery. The entry handler also notifies the Live CPU Simulation

Engine in order to stop a time advance of the pre-empted task (details are

introduced in Section 3.3.4.2). Finally, in Step 2, the entry handler sets the

corresponding ISR as the next-to-run task, invokes a context switch, and

triggers the Live CPU Simulation Engine to start. Note that this prioritised

and masked interrupt handling process guarantees that the priority of new

ISR is higher than both the pre-empted task and all other READY tasks in

the system, consequently it is not necessary to invoke the RTOS sched-

uler() function here.

3) Then, an ISR is driven by the Live CPU Simulation Engine to execute its

function. This may unblock a WAITING aperiodic task and make it

READY. When the ISR finishes, it triggers another kernel handler in-

terrupt_handler_exit() in Step 3.

4) This exit handler checks whether there are any nested IRQs. If there are,

their execution will be resumed sequentially according to their priorities.

5) Finally, in the last Step 4, the exit handler sets the highest-priority READY

task to run next, calls a context switch, and activates the Live CPU Simula-

tion Engine.

Figure 4-20 illustrates the vector-based interrupt handling model. Regarding

the hardware part of this model, the Interrupt Controller Model is able to obtain

both the IRQ source and determine the relevant ISR from a vector table. The vec-

tor table is defined as constants in the model, indicating the mapping between IRQ

numbers and ISR’s task IDs. The Interrupt Controller Model also takes charge of

masking lower-priority IRQs when it identifies an IRQ.

In the software part, the interrupt_handler_enter() function is im-

plemented as a normal RTOS function rather than a SystemC process, because it

is no longer the interrupt service entry point and so does not need to be triggered

 193

by an external sc_event. The handling process includes following the functions

and transition steps:

1) According to the vector table, a corresponding ISR is driven by the Live

CPU Simulation Engine to execute directly (Step 1).

2) Referring to Step 2, before the ISR can carry out its main service function,

it firstly calls the RTOS interrupt_handler_enter() function in

order to pre-empt the RUNNING task. This pre-emption process is similar

to that of the non-vectored model.

3) Then the ISR executes its service function and may unblock a WAITING

aperiodic task. Before the ISR finishes, it calls the RTOS inter-

rupt_handler_exit() function in Step 3.

4) In Step 4, the interrupt_handler_exit() function remains similar

to that in the non-vectored model. After it checks possible and processes

possible nested ISRs, it schedules the highest-priority READY task to exe-

cute next, calls a context switch, and activates the Live CPU Simulation

Engine.

Figure 4-20. Vector-based interrupt handling model

RTOS module

ISR

Live CPU Model

CPU Sim. Engine Interrupt
Controller

IRQ_line1

IRQ_line2

IRQ_line3

ISR

interrupt_handler_enter()

interrupt_handler_exit()

aperiodic
task

aperiodic
task

User-defined
ISRs and tasks

RTOS
kernel

HW

Step 1

Step2

Step3
Step4

Virtual
Registers

 194

4.5.8 HAL Modelling

In Section 4.3, the concepts and functions of HAL were briefly outlined. Giv-

ing an example, researchers from the TIMA laboratory present some work on

HAL modelling for native-code software simulation in SoC and MPSoC designs

[153] [186] [154]. Referring to Figure 4-21, their research includes low-level im-

plementation details of both software subsystems (e.g., assembly HAL code) and

hardware subsystems (bus functional and RTL hardware models). Their simula-

tion models apply to the later implementation phases, where HAL API functions

need to be implemented for specific processors.

Compared to the detailed HAL modelling method, most conventional abstract

RTOS modelling work is oriented to early system exploration phases and includes

neither hardware models nor the HAL model, i.e., so-called implicit software PE

modelling and inadequate interrupt handling.

Differing from the implementation-oriented HAL model and the abstract

RTOS model, this thesis proposes a lightweight conceptual HAL model inside the

RTOS module, which supplies some essential hardware-related functions and data

structures for upper-level RTOS and application task models. These functions in-

clude both proprietary services supporting the proposed software PE simulation

Hardware (RTL)

Processor

Application SW + delay

OS + delay

Simulation model of HAL + delay

Extended BFM model

Call wait()
Memory access

via BFM

(A) Timed software models and the
HAL model

__ctx_switch

STMIA r0!, {r0-r14} ;save current task

LDMIA r1!, {r0-r14} ;restore new task

SUB pc, lr, #0 ;return

END

#001

#002

#003

#004

#005

(B) HAL implementation for the context switch on
the ARM7 processor

Figure 4-21. TIMA laboratory’s HAL modelling work

 195

model and conventional low-level system software primitives. This section intro-

duces three of them, i.e., the delay information injecting service, the context

switch service and the interrupt-related service. Note that transaction-based I/O

communication services will be addressed in Chapter 5.

4.5.8.1 Delay Information Injecting Services

In above chapters, the DELAY() functions is used to make a delay annotation

statement and define a time advance point. Its actual function is to inject a delay

value into the Live CPU Model for a time advance. According to above defini-

tions on annotation granularities, two main granularities of delay information are

used in injecting services, namely the task level and the subtask level (including

the function level, the statement segment, and the basic block level). Accordingly,

two delay primitives are implemented, i.e., write_task_delay_time ()

and write_subtask_delay_time(). They write different grained delay

values into different Virtual Registers of Live CPU Model and activate the Live

CPU Simulation Engine by releasing a sc_event.

Certainly, recalling the idea of separating annotations from time advance points

in Section 3.2.4.2, the DELAY_WR() function is also implemented as two inject-

ing primitives, i.e., write_task_delay_time_wr () and

write_subtask_delay_time_wr(). The two primitives only inject delay

values but do not trigger the Live CPU Simulation Engine for a time advance. In

modelling, the DELAY_WR() service is used more frequently than the DELAY()

service in fact, because it can increase simulation speed by decreasing Live CPU

running counts.

4.5.8.2 Context Switch Services

The context switch is an essential hardware-dependent service in an embedded

software stack. In RTOS modelling, it is also valuable for modelling task switches

and corresponding timing behaviour. Because of its processor-specific nature,

unlike the example context-switch code of saving and restoring ARM7 processor

registers in Figure 4-21, the context-switch service in this thesis maintains task

time advance information (in Section 4.5.3.1) with Virtual Registers of the Live

 196

CPU Model (in Section 3.3.2). As shown in Figure 4-22, the service is imple-

mented as two functions, i.e., ctx_save() and ctx_load():

 Upon being called, the ctx_save() uses the values of the virtual regis-

ters to calculate how long time has elapsed since the saved task began its

time advance and record the current time stamp. The updated results are

utilised in a later execution of the Live CPU Simulation Engine, which has

been introduced in Section 3.3.4.2. Afterwards, the ctx_save() saves the

updated software timing context to its TCB.

 The ctx_load() function loads a task’s timing context from its TCB

into the virtual registers of the Live CPU Model.

To complete a context-switch process, the RTOS model needs to provide a

method to activate the Live CPU Simulation Engine in order to let it execute

software time delays. This function is implemented by releasing some appropriate

sc_events that are included in the Live CPU module and listened to by the

Live CPU Simulation Engine (in Section 3.3.4).

4.5.8.3 Interrupt Related Services

The two most important interrupt-related kernel functions (i.e., the entry han-

dler and the exit handler) were described in Section 4.5.7.2. Also, some assistant

functions are provided and detailed below:

RTOS module

Task timing context
block_exec_time

thread_abs_dln

thread_exec_time

thread_used_time

thread_sleep_length

thread_cur_sta_time

Live CPU Model

CPU Sim. Engine Interrupt
Controller

Virtual
Registers

ctx_load()

ctx_save()

Figure 4-22. Context switch service

 197

Disabling interrupt: is an essential service in various RTOSs that protects short

critical sections in kernel functions. It is implemented as a pair of functions, i.e.,

enter_critical() and exit_critical(). After executing the former

function, all system interrupts are disabled and can be re-enabled by invoking the

latter function.

Clearing an interrupt source: the interrupt_clear() function can be

called by ISRs to clear a specific IRQ source (according to its IRQ ID number) by

resetting corresponding bits of the Interrupt Controller Raw Status and Status reg-

isters in the Live CPU Model (in Section 3.3.2).

Unmasking interrupts: occurs during an ISR’s execution when its equal- and

lower-priority interrupts are automatically masked by the entry handler in a priori-

tised interrupt handling scheme. After the ISR finishes its function, it needs to call

the interrupt_unmask_equal_lower_irq() function to unmask these

affected interrupts.

4.5.9 General Modelling Methods for RTOS Services

In the above Sections 4.5.3 to 4.5.8, various functional components of the

RTOS model have been described. This section concludes some general RTOS

modelling ideas in the context of SystemC simulation, and addresses an un-

touched but important issue – modelling timing behaviour of RTOS services.

4.5.9.1 Modelling Functionality of RTOS Services

As indicated before, the presented RTOS model aims to provide services simi-

lar to those in real RTOSs, in terms of both their formation (normal C++ functions)

and usage (function calls). Most services are implemented as RTOS class member

methods and are called by applications task models through a pointer to their par-

ent RTOS object. The main benefits of modelling RTOS services as normal func-

tions are:

 It is more straightforward to input arguments and return values in a normal

function, whereas a SystemC process does not easily support them.

 198

 It is similar to real-time programming conventions and interfaces, as far as a

RTOS service model can be adapted to a specific RTOS API by changing its

input, output, and function if necessary.

 A normal C++ function executes much faster than a SystemC process, be-

cause it does not incur a context switch in the SystemC simulation kernel.

Regarding this point, SystemC language constructs are used as C++ constructs

in modelling, and the RTOS model seems to be implemented by the C++ language

in a normal OS design way. Note that normal C++ RTOS functions can execute in

a SystemC simulation, but cannot represent the timing overheads of the target

RTOS. This problem will be addressed in Section 4.5.9.2.

Certainly, some services and functions in the RTOS model are also imple-

mented as SystemC processes to take advantages of the SystemC language. The

selection of these is based on the following considerations:

 Some RTOS services only execute once in a predetermined cooperative or-

der in simulation, thus it is convenient to implement them as SystemC proc-

esses and use simple wait-for-delay statements to advance the simulated

clock. For example, the RTOS initialisation service (i.e.,

SC_THREAD(rtos_init) in model implementation) and the RTOS

multi-tasking start function (i.e., SC_THREAD(rtos_start) in model

implementation) only need to execute at RTOS startup before the beginning

of pre-emptive multi-tasking execution.

 Some RTOS services are activated by other SC_MODULEs through static

sensitivity sc_events; consequently they are preferred to be implemented

as SystemC processes. The examples are RTOS kernel interrupt entry and

exit handlers in Section 4.5.7.2.

To conclude, the internal communication methods in the RTOS model are con-

ventional and simple in terms of real-time software programming, i.e., by function

calls. The SystemC sc_event mechanism is mainly used for inter-module and

limited SystemC process-related notifications. The Interface Method Call approach

does appear inside the RTOS model, however it is used in other parts of this re-

search: in hardware modelling (i.e., the Live CPU Model) and in inter-module

communication modelling (i.e., the TLM communication model in Chapter 5).

 199

4.5.9.2 Modelling RTOS Timing Overheads

An advantage of the proposed RTOS model, compared to some other research

in the domain of abstract and generic RTOS modelling and simulation, is to con-

sider timing overheads of various RTOS services. Building a timed simulation

model for a RTOS service includes three jobs:

1) Collecting delay information;

2) Annotating this into the RTOS model;

3) Advancing the simulated target clock according to annotations.

The RTOS performance estimation methods in Section 3.2.6 have addressed

the first job. Timing overheads of a RTOS product on a specific processor can be

measured and collected in a corresponding ISS simulator, or can be obtained from

published benchmark documents.

The second and third jobs are now considered. Because this thesis focuses on

behavioural and generic RTOS modelling rather than implementation-ready ISS

simulation, we observe that the implementation of a RTOS service model will not

be completely functionally identical to a specific RTOS. As shown in Figure 4-23

(A), a RTOS service may invoke other RTOS internal functions and primitives.

Figure 4-23. Unmatched RTOS service execution and simulation traces

delay value

time

time

a

b

c

API
service

Internal
function

API
service

Internal
function

(A) Real execution of a RTOS service

(B) Simulation of a RTOS service model

interruptible part
uninterruptible part

(critical section)

IRQ

IRQ

 200

Both RTOS services and internal functions may be fully interruptible (there is no

critical section in code), fully uninterruptible (code is a critical section), or par-

tially interruptible (with part code in one or several critical sections). Although a

service in the RTOS model can generate similar results to a corresponding service

in a real RTOS, the simulation trace may be quite different from the real execu-

tion trace in terms of exact included function blocks (see Figure 4-23). Hence,

service-level timing annotations are sufficiently accurate for modelling RTOS

service timing behaviours in this thesis. In fact, unless there is a deep enough un-

derstanding of the target RTOS code and the RTOS model is thoroughly adapted

for the target RTOS, there is not an easy solution for enhancing the timing accu-

racy of RTOS services to a finer level.

Thus, is it possible to use the same time advance method of application tasks

for RTOS services? This is not straightforward for several reasons:

1) RTOS services do not have native control blocks that can store their delay

information.

2) In this thesis, RTOS services are modelled as functions rather than inde-

pendent executable entities. They do not have separate SystemC process

wrappers to support their execution on top of the SystemC simulation ker-

nel.

3) Many RTOS services are re-entrant, for example, a wait-semaphore func-

tion may be invoked in several concurrent tasks and can be blocked in the

middle. If a single sc_event object is used in a RTOS service for the

wait-for-event time advance method, once the Live CPU Model releases

this sc_event, then multiple execution instances of a RTOS service may

be triggered at the same time. This may result in race conditions.

Within this thesis, the RTOS service time annotation and advance problems are

solved by a lightweight approach after investigating common characteristics of

RTOS service time annotations in the model. The service-level RTOS service an-

notation assumption actually means that it is difficult to implement partially inter-

ruptible time advance for a service. The RTOS model does not necessarily have

target-like function blocks inside a service, nor does it support the insertion of

several very accurate interruptible and un-interruptible annotations for these

 201

blocks. Thus, the RTOS service timing modelling problem is simplified, with the

time advance method for RTOS services needing to cover two simulation situa-

tions:

1) Time advance in a single step, i.e., uninterruptible;

2) Time advance divided into several steps in case of interruptions, i.e., inter-

ruptible.

The approach is therefore divided into two methods, i.e., the interruptible

method and the un-interruptible method.

The interruptible RTOS time advance method means that the time advance du-

ration of a service can be interrupted and resumed later. This requires users to an-

notate RTOS services when they build application task models. Rather than main-

taining delay information by a RTOS service itself, the delay value of a RTOS

service is annotated in the calling application task. The calling task acts as an

agent to progress the simulated clock for its invoking RTOS service. See Table

4-21 (A) for an example, a semaphore initialisation function executing at line 4.

Subsequently, its interruptible timing overhead

SEM_INIT_FUNC_DELAY_TIME is injected into the Live CPU Model on line 5

and then a wait-for-event statement is inserted on line 6 as normal.

(A) Interruptible RTOS service time advance

void task(RTOS *rtos_i_ptr, CPU *cpu_i)

{

 rtos_i_ptr->sem_init(pecb0, 0, 0);

 write_subtask_delay_time(SEM_INIT_FUNC_DELAY_TIME);

 wait(event);

}

#001

#002

#003

#004

#005

#006

#007

#008

(B) Uninterruptible RTOS service time advance

unsigned RTOS::ctx_save()

{

 enter_critical();

 wait(CTX_SAVE_DELAY_TIME, SC_NS);

 exit_critical();

 ...

}

#001

#002

#003

#004

#005

#006

#007

#008

#009

Table 4-21. Time advance methods for RTOS services

 202

The un-interruptible RTOS service advance method relates to RTOS critical-

section services and functions during which system-wide interrupts are totally dis-

abled. Usually, these services are internal RTOS functions, e.g., the context

switch service and the scheduler service, neither of which is directly visible to

user task models. Hence, their annotations need to be inserted inside the RTOS

module. Since it is not necessary to worry about interruptions during the delay

duration, a simple wait-for-delay statement is used to annotate and advance the

simulated time (see Table 4-21 (B)). This method also avoids invoking the Live

CPU Simulation Engine and decreases SystemC kernel engine switches. Hence, it

can improve simulation speed.

We note that above methods may bring unmatched time advances for critical

sections inside a RTOS service. For example, referring to Figure 4-23, a real

RTOS service may include critical sections that are different from those in a

RTOS service model, and these critical sections may execute at different times

along the timeline. In a real execution, an IRQ happens during a critical section

and may hence be ignored or delayed due to temporarily disabled system inter-

rupts. However, in simulation, an IRQ happens at the same absolute time point,

but it may be processed immediately by the system because there is not a critical

section currently available. Given the previously mentioned assumption on RTOS

timing overhead modelling, this limitation should be acceptable.

4.6 Evaluation Metrics

4.6.1 Simulation Performance Metrics

The simulation performance metric utilised in this chapter is similar to Section

3.4.1. A concurrent multi-tasking test program is run in both the proposed RTOS-

centric software simulation models (referred to as the RTOS-centric simulator

hereafter) and an ISS simulator with a comparable real RTOS product. Their host

simulation times are compared to calculate a speedup.

 203

4.6.2 Simulation Accuracy Metrics

4.6.2.1 Functional Accuracy

Since the proposed RTOS model provides a set of practical functions to sup-

port native-code real-time tasks, functional accuracy of some typical RTOS ser-

vices can be represented in simulation. Both simulation traces and results can be

compared to the ISS counterpart.

4.6.2.2 Timing Accuracy

Conventionally, researchers examine the timing accuracy of a behavioural

simulator by running a test program and comparing with the same program exe-

cuted by a more accurate standard simulator. If both simulators consume similar

simulated target time (or numbers of cycles) to finish the same test program, then

the timing accuracy of the behavioural simulator is believed to be enough (see

Section 3.4.2.2).

In this chapter, we use a series of comparison points to evaluate the timing ac-

curacy of the RTOS-centric simulator compared to the ISS simulator. As shown in

Figure 4-24, the method used is to record values of the simulated target clock at

more observation points along the simulation timeline, instead of only measuring

the final accumulative number. These same observation points are also used in the

Simulated timeline

Simulated timeline

RTOS

Tasks

RTOS

Tasks

(A) ISS Simulator

(B) RTOS-centric simulator

point 1
@ tISS1

point 2
@ tISS2

point 3
@ tISS3

point 4
@ tISS4

point 1
@ tRTOS1

point 2
@ tRTOS2

point 3
@ tRTOS3

point 4
@ tRTOS4

Figure 4-24. Evaluating the timing accuracy by comparing traces

 204

ISS simulator. These observation points are chosen as important state transition

points in concurrent multi-tasking execution, e.g., task switching points, RTOS

service invoking points, task completion points, etc.

4.7 Experimental Results

4.7.1 Multi-Tasking Simulation with C/OS-II RTOS

In order to demonstrate simulation performance, functional and timing accu-

racy of the RTOS-centric simulator, a multi-tasking A/D (Analogue-to-Digital)

data collection program and the C/OS-II RTOS are used as the modelling and

simulation target. As shown in Figure 4-25, three tasks take charge of watching

the keyboard (i.e., polling the I/O port), collecting A/D data (i.e., reading the A/D

converter) and sending out results via the serial port. Tasks have periods of 90 ms,

100 ms and 510 ms. According to the RM algorithm, they are allocated descend-

ing priorities. The RTOS model implements fixed-priority pre-emptive scheduling

and is time driven. A tick timer ISR is associated with a real-time clock IRQ to

drive tick scheduling with a 5 ms tick length. A semaphore and a message queue

provide synchronisation and communication services between tasks. The RTOS

sleeping service is also used by tasks.

The same program and the C/OS-II RTOS are executed in the KEIL ARM

ISS, which is used as the cycle-accurate reference model in the experiment. The

target processor is configured as a 48MHz NXP LPC2378 processor without us-

ing cache. Timing overheads of the RTOS model and application tasks are meas-

ured based on the C/OS-II RTOS in this ISS and annotated at the function level

Keyboard
task

Sampling
task

Display
task

post
semaphore

wait

send

message
queue

receive

GPIO0 AD0
converter

UART0

Figure 4-25. Experiment setup

 205

and segment level respectively. All tests are executed on an x86 PC at 1.86GHz.

In order to compare the speed of RTOS-centric simulator with the standard ISS

simulation, we let each simulator simulate for 500 ms, 1000 ms, 2000 ms, 5000

ms and 10000 ms target time. During the longest 10000 ms simulation, the three

tasks can repeat about 110, 100, and 19 iterations respectively.

Not surprisingly, as a behavioural software simulator, the RTOS-centric simu-

lator is much faster speed than the ISS simulation. Figure 4-26 reveals the simula-

tion performance of RTOS-centric simulation: it is nearly 500 times faster than

the ISS simulator.

Regarding functional accuracy, the RTOS-centric simulator generates simula-

tion sequences and results at the right time compared with real execution. In the

experiment, we input same stimuli, i.e., keyboard signals and voltages (dummy

values), into both Vision ARM ISS and the RTOS-centric simulator. We observe

A/D converting results, which are generated after various multi-tasking interac-

tions between application tasks and the RTOS. Figure 4-27 (A) shows the func-

tional results generated at two time points in the ISS simulator. Note that the time

is displayed with the unit of second. Figure 4-27 (B) shows part of the trace file of

the RTOS-centric simulator. It can be observed that the RTOS-centric simulator

produces similar functional results at very close time points to the ISS simulator,

which demonstrates its functional correctness.

Simulation speed comparison

1

10

100

1000

10000

100000

1000000

Target simulated time (ms)
S

im
u

la
ti
o

n
 t
im

e
 (

m
s
)

ISS simulation time (ms) 11500 22960 47130 116130 225020

RTOS-centric simulation
time(ms) 24 47 94 233 458

500 1000 2000 5000 10000

Figure 4-26. Simulation speed comparison

 206

According to the method introduced in Section 4.6.2.2, Figure 4-28 shows tim-

ing accuracy comparison between the ISS simulator and the RTOS-centric simula-

tor. The X-axis is 22 observation points (e.g., task switching points or RTOS ser-

vice entry points) in simulation flows and the Y-axis is the simulated target time

of each observation point, which ranges from 0 to 600 ms, i.e., including a full

operation cycle of the system. In the figure, two simulator flows’ curves are in

close accordance, which reveals the good accuracy intuitively.

Table 4-22 shows the timing accuracy losses of the RTOS-centric simulation

compared with the ISS simulation at these 22 comparison points. Results in the

table show that accuracy losses of the RTOS-centric simulator are marginal in this

experiment, i.e., 14 out of 22 points are less than 0.7% and all are less than 4.5%.

Referring to Table 4-22, note that there are some sudden changes of the timing

accuracy in the RTOS-centric simulation timeline, where the accuracy loss

AT 501934350 ns:
 In 500ms, samples: 5
AT 503937510 ns:
|Sample NO.1: 2200mv
…… ……
AT 511950150 ns:
|Sample NO.5: 2200mv
…… ……
AT 1016351670 ns:
 |In 500ms, samples:5
…… ……
AT 1026367470 ns:
 |Sample NO.5: 2200mv

(A) KEIL ISS simulator output (B) RTOS-centric simulator output

Figure 4-27. Simulation output comparison

Simulation timing accuracy comparison

0

100000

200000

300000

400000

500000

600000

0 2 4 6 8 10 12 14 16 18 20 22 24

Observation points

T
a

rg
e

t
s
im

u
la

ti
o

n
 t
im

e
 (

u
s
)

RTOS-centric
ISS

Figure 4-28. Simulation timing accuracy comparison

 207

abruptly spikes or decreases within a certain degree. This phenomenon can be dis-

cussed twofold. Firstly, the generic RTOS model is not implemented the same as

the real C/OS-II RTOS in terms of its internal functions and associated timing

overheads. Hence, there are differences regarding timing behaviours of various

RTOS services in our simulation to ISS simulation. This inevitable inaccuracy can

both contribute the timing accuracy loss and unintentionally remedy the accumu-

lated loss. Secondly, application tasks are annotated with segment level timing

costs, which also have inherent inaccuracy compared to ISS simulation. The con-

sequence is similar to the RTOS aspect as well.

4.7.2 Interrupt Simulation with RTX RTOS

In order to demonstrate the interrupt modelling and simulation capability of the

RTOS-centric simulator, we carry out an interrupt handling example with the

RTX RTOS on the KEIL ARM ISS, and use the RTOS-centric simulator to simu-

late the same program.

As shown in Figure 4-29, this experiment includes an ISR ext0_int(), an

aperiodic task isr_task(), and a periodic task counter_task(). The

counter_task() increments an internal counter by 1 in every 1 ms. The ISR

is associated to the ARM external interrupt 0 and can trigger isr_task() by a

semaphore, which can then pre-empt counter_task() because of its higher

priority. In this experiment, it is expected to observe that: firstly, the ARM EINT0

Comparison point #1 #2 #3 #4 #5 #6

Accuracy loss 0.34% 0.34% 0.34% 0.68% 0.64% 0.61%

Comparison point #7 #8 #9 #10 #11 #12

Accuracy loss 0.59% 0.57% 0.56% 4.44% 3.76% 3.76%

Comparison point #13 #14 #15 #16 #17 #18

Accuracy loss 3.50% 3.51% 0.13% 0.03% 2.20% 1.49%

Comparison point #19 #20 #21 #22

Accuracy loss 2.52% 0.08% 0.09% 0.22%

Table 4-22. Accuracy loss of the RTOS-centric simulation compared with ISS

 208

IRQ can be handled immediately once happening; secondly, the three involved

ISR and tasks can coordinate correctly in terms of both functionality and timing.

The KEIL ARM ISS simulates a 60MHz LPC2129 processor with the vectored

interrupt controller. The RTOS-centric simulator is also configured with this vec-

tor-based interrupt handling mode. The task models and RTOS model are anno-

tated with timing costs that are measured from the ISS simulator at the segment

level and function level respectively.

Firstly, we run ISS and RTOS-centric simulators for 100 ms target time and re-

peat 10 times in order to compare their simulation performance. The results are

shown in Table 4-23. Not surprisingly, the RTOS-centric simulator achieves a

considerable speedup compared to the ISS simulator.

Secondly, we compare interrupt handling processes in the ISS simulator and

the RTOS-centric simulator. We raise the ARM external interrupt at (almost)

same target time points in both simulators (i.e., at 0.01003332 s in ISS and

0.10033290 s in RTOS-centric simulator), when the task counter_task() is

currently executing. ISS and RTOS-centric simulation outputs are shown in Fig-

ure 4-30 and Table 4-24, respectively. The two figures show that a series of events,

RTX RTOS

IRQ
handler:
ext0_int

Aperiodic
task:

isr_task

Periodic
task:

counter_t
askpost

semaphore
wait

ARM
EINT0

Pre-emption

Highest
priority

Middle
priority

Lowest
priority

Figure 4-29. Interrupt handling experiment

Average simulation

time (μs)
Speedup

ISS 14174000

RTOS-centric simulator 16425.88 862.9066

Table 4-23. Simulation speed comparison

 209

i.e., interrupt raise, CPU catch, task pre-emption, and ISR entry. They are exe-

cuted and simulated in the same order in both simulators. This means that our

RTOS-centric simulator can model the realistic interrupt handling method in RTX

RTOS.

Thirdly, in order to evaluate the timing accuracy of our RTOS-centric simula-

tion in this experiment, we still use the “observation points” method introduced in

Section 4.6.2.2. The result is shown in Figure 4-31. The X-axis is 18 observation

points in simulation flows, which represent entries of RTOS services and task job

completions. The Y-axis is the simulated target clock time of each observation

point. It ranges from 0 to 14 ms that includes a full interrupt cycle of the system.

(A) Before the IRQ event, counter_task() is executing

(B) After the IRQ event, ISR ext0_int() is entered

Figure 4-30. RTX interrupt handling in the ISS

AT 10023122 ns: CPU: tid=2
PC=1000us
CPU_REG[0]=1000000

 used_time=10000us
thread_execution_time=0us

 tid=2 is executing.
CPU advances totally.

AT 10033290 ns: <IRQ_SOURCE: irq= irq6
 Interrupt happens.
AT 10033290 ns: CPU IC::IRQ 6 is raised.
AT 10033290 ns: CPU::IC: ICSR != 0.

Call IRQ Handler.
AT 10035960 ns: ISR::ext0_int() begins.
 ISR time cost=40

Before the IRQ event,
counter_task() (tid=2) is

executing

IRQ is raised and caught
by the Live CPU model

ISR ext0_int() is entered

Table 4-24. Interrupt handling in the RTOS-centric simulator

 210

In the figure, two simulation curves are coincident, showing the good timing accu-

racy of our simulator. As shown in Table 4-25, the calculated timing accuracy

losses are marginal regarding these 18 observation points in this experiment. This

is mainly due to our carefully fine tuning of the RTOS simulator and relatively

simple functions of the test program.

4.8 Summary

This chapter has presented a generic RTOS-centric real-time embedded soft-

ware simulation model. It allows modelling and simulating application tasks, the

RTOS, and the CPU processing element in a unified SystemC-based framework.

It can help designers to evaluate both functional and timing effects of the pro-

jected real-time embedded software design fast and early.

0

2000000

4000000

6000000

8000000

10000000

12000000

14000000

1 2 3 4 5 6 7 8 9 101112131415161718

Target clock in ISS (ns)

Target clock in RTOS-centric simulation (ns)

Observation
points

Ta
rg

e
t

cl
o

ck
 (

n
s)

Figure 4-31. Simulation timing accuracy comparison

Comparison point #1 #2 #3 #4 #5 #6

Accuracy loss 0.00% 0.00% 4.28% 3.96% 0.59% 0.02%

Comparison point #7 #8 #9 #10 #11 #12

Accuracy loss 0.10% 0.09% 0.09% 0.09% 0.10% 0.00%

Comparison point #13 #14 #15 #16 #17 #18

Accuracy loss 0.03% 0.03% 0.03% 0.03% 0.04% 0.06%

Table 4-25. Timing accuracy losses

 211

It can flexibly model application tasks by supporting hybrid abstract software

models and delay-annotated native-code application task models. It improves the

functionality of the RTOS model by providing various generic and practical ser-

vices selected from common RTOS standards and products. It achieves reasona-

bly accurate simulation, in terms of both functional and timing accuracy, by mod-

elling RTOS services as their normal structures and formations and considering

timing overheads of various RTOS services. The underlying Live CPU Model

also enables RTOS-centric software models with interruptible time advance.

Experiments show the fast performance, sufficient function, and marginal tim-

ing accuracy loss of the RTOS-centric simulation approach compared to cycle-

accurate ISS simulation of two real RTOS products. The reasons are mainly three-

fold: firstly, as introduced in the chapter, the RTOS simulation model’s structure

is elaborate and its functional and timing behaviours are carefully modelled; sec-

ondly, the RTOS simulation model is adapted to model the two RTOSs; thirdly,

delay information of both applications and RTOS services is measured on the ISS

before being used in RTOS-centric simulation.

 213

Chapter 5

Extending the Software PE Model with TLM

Communication Interfaces

In a real embedded system, the software subsystem runs on top of a CPU sub-

system. These software and hardware subsystems collectively constitute a soft-

ware PE model. Previous chapters have investigated behavioural modelling and

simulating real-time software and RTOS in the context of a software PE model, as

shown in Figure 5-1.

In the SystemC-based high-level software modelling and simulation approach,

the hardware aspect of the software PE model is abstracted and encapsulated into

a Live CPU Model (in Section 3.3). It provides abstract yet essential hardware

control functions (e.g., interrupt controller, virtual register, and real-time clock,

Software Processing
Element (CPU)

Live CPU Model

RTOS-centric software
simulation model

Hardware aspect

TLM interfaces

Inter-module TLM
communication aspect

Software aspect

Figure 5-1. TLM communication interface of the software PE model

 214

etc.) to upper level software. Especially, it supports interruptible SystemC-based

software timed simulation through the Live CPU Simulation Engine. In Chapter 4,

the RTOS-centric real-time software simulation model is described as the soft-

ware aspect of the software PE model. It can supply various practical and flexible

RTOS services in order to support abstract and native-code real-time application

task models.

Within software modelling and simulation research, transaction-level model-

ling has frequently been considered. TLM is a promising system-level modelling

paradigm to improve productivity in the design of integrated embedded systems,

e.g., SoC. TLM models are expected to serve as interoperable references across

different design teams with different aims such as fast embedded systems archi-

tecture exploration, functional verification, and as well as the interest of this thesis

- early embedded software modelling and simulation. SystemC is the research tool

of this thesis and also the most popular SLDL in TLM design area today [3].

Based on the essential TLM principle “separating computation from communica-

tion”, TLM research can be divided into two aspects: the computation aspect and

the communication aspect [7]. In this thesis, the proposed software models reside

in the domain of TLM software computation aspect. In Section 3.2.2, some soft-

ware TLM software computation models have been defined with inspiration from

the OSCI TLM-2.0 standard [88], which is the official SystemC TLM communi-

cation modelling standard.

For the aim of extending software simulation models to the wider and encour-

aging TLM communication modelling world, this chapter considers the integra-

tion of existing TLM communication interfaces in the software PE model. These

added interfaces and structures support SW-to-HW and HW-to-HW inter-module

communication modelling with existing software models. OSCI TLM-2.0 stan-

dard interfaces are selected due to their popularity. As depicted in Figure 5-1, this

TLM interface modelling work can be seen as an add-on module in terms of the

whole software PE model. By this means, the software PE model can be inte-

grated in an abstract TLM embedded system model that includes the CPU, mem-

ory, bus, and peripheral devices, which will improve functionality and extend this

research. Note that this chapter does not aim to propose any new or complex TLM

 215

communication modelling methods, because the scope of this thesis is on software

modelling and simulation.

5.1 Integrating OSCI TLM-2.0 Interfaces

5.1.1 The OSCI TLM-2.0 Standard

The OSCI TLM-2.0 standard consists of two aspects: coding styles defining

abstract communication models and standard interfaces implementing these mod-

els. The former concepts mainly refer to LT and AT abstract models (see Sections

2.1.1.1 and 3.2.2), and the latter are to be introduced and used in next sections.

The TLM-2.0 standard defines various aspects about transaction-based com-

munication modelling, e.g., transport interfaces, sockets, temporal decoupling

methods, communication protocols, utilities, etc. However, currently, only parts

of them are related to our research as follow (refer to Figure 5-2):

 Transactions: include information to be exchanged between modules and are

passed by references.

 Transport interfaces: two main interfaces are utilised in research, i.e., the

blocking transport interface and the non-blocking transport interface (in

Sections 2.1.1.1 and 2.1.2). In the standards, they are affiliated to sockets

and called by software tasks in order to transfer transactions between com-

municator modules.

 Sockets: there are two types of sockets, i.e., initiator sockets and target

sockets. An initiator socket contains a SystemC sc_port for sending out

transactions (so-called the forward path) by its associated interface method

calls and a SystemC sc_export for receiving returned transactions (so-

called the backward path). A target socket is oppositely defined, in which

the sc_port is used in the backward path and the sc_export is used

for the forward path.

 Communicator modules: are classified into three basic types, i.e., initiator

modules, target modules, and interconnect modules. An initiator module

(e.g., a processor) can create new transaction objects and initiate communi-

cation by calling an interface method of its included initiator socket(s). A

 216

target module (e.g., a memory) is the final destination of transactions and

includes at least one target sockets. Note that a module can act as both an

initiator module and a target module by including both sockets. An inter-

connect module (e.g., a router) transmits transactions but it does not initiate

a transaction or become the final destination.

 TLM communication protocols: the generic payload is recommended by the

OSCI TLM library to achieve the interoperability of memory-mapped bus

models. It provides typical characteristics of memory-mapped bus protocols,

for instance command, address, data, single word transfer, and burst transfer,

etc.

5.1.2 TLM Constructs in the Software PE Model

According to above definitions, the software PE model naturally is an initiator

module. An important problem is: where are initiator functions and sockets placed

in the model?

As explained in Section 4.5.1, the concise and extensible software PE model is

constituted by three types of modules, i.e., application tasks modules, the RTOS

module, and the Live CPU Model module. Software modules run on top of the

Live CPU Model and utilise its conceptual computing resources. Consequently, as

the root model, the Live CPU Model is the most suitable module to implement

initiator’s TLM communication sockets and interfaces. This is also a straightfor-

ward choice, since the CPU controls software communications with other hard-

Initiator
module Forward

path
Interconnect

module
Target

module

Initiator/
target

module

Backward path

Forward path

Forward
path

Backward path

back. path back. path

Initiator
socket

Target
socket

Target
socket

Initiator
socket

Target
socket

Initiator
socket

Transaction objects

Transaction
objects

Figure 5-2. OSCI TLM-2.0 essentials

 217

ware components in a real design. Besides, because HAL services are included in

the RTOS module (see Section 4.5.8), the RTOS model needs to provide TLM

APIs for application tasks.

In order to support both LT-style blocking and AT-style non-blocking commu-

nication, two initiator classes are derived from the simple socket interfaces of the

OSCI TLM-2.0 library. Referring to Table 5-1 (A), they both supply simple write

and read functions. In the current model, a write function needs two arguments

for a transport, i.e., a target ID indicating the destination module and a datum to

be transferred; whereas a read function only needs a target ID argument and the

Table 5-1. TLM implementation in the software PE model

(A) LT and AT TLM communication components

class TLM_LT_COMPONENT : public SimpleLTInitiator1

{

 int LT_write(unsigned uiId, unsigned uiData);

 int LT_read(unsigned uiId);

};

class TLM_AT_COMPONENT : public SimpleATInitiator1

{

 int AT_write(unsigned int uiId, unsigned int uiData);

 int AT_read(unsigned int uiId);

};

#001

#002

#003

#004

#005

#006

#007

#008

#009

#010

#011

#012

(B) TLM components in the Live CPU Model

SC_MODULE(CPU)

{

 TLM_LT_COMPONENT::initiator_socket_type PE_LT_socket1;

 TLM_LT_COMPONENT *LT_initiator1;

 tlm::tlm_initiator_socket<32> PE_AT_socket1;

 TLM_AT_COMPONENT *AT_initiator1;

};

#001

#002

#003

#004

#005

#006

#007

#008

#009

(C) TLM communication primitives in the RTOS HAL Model

SC_MODULE(RTOS)

{

 int rtos_LT_write(unsigned targetID, unsigned data);

 int rtos_AT_write(unsigned targetID, unsigned data);

};

#001

#002

#003

#004

#005

#006

(D) An application task uses TLM functions

void task_write(RTOS *rtos_i_ptr, CPU *cpu_i)

{

 rtos_i_ptr->rtos_LT_write(0, array[i]);

 rtos_i_ptr->rtos_AT_write(0, array[i]);

 ...

}

#001

#002

#003

#004

#005

#006

 218

obtained datum is returned by the function. Exact addresses of transports are

maintained by these interfaces internally. The model also can support user-defined

addresses in future refinement.

Based on above interface classes, an LT initiator component is instantiated and

bound to a LT socket inside the Live CPU Model, and so is an AT initiator com-

ponent and an AT socket (see Figure 5-3 and Table 5-1 (B)). Afterwards, in Table

5-1 (C), some RTOS HAL services wrap the TLM interfaces provided by the Live

CPU Model. Finally, as shown in Table 5-1 (D), an application task can invoke

RTOS communication services so as to transfer some data to a target.

5.1.3 The TLM System-on-Chip Model

Low-level hardware architecture modelling and complex communication ex-

ploration are out of the scope of this thesis. Consequently, for simplicity and gen-

Software Processing Element Model

simple bus

Live CPU Model (initiator)

cpu_sim_engine irq_ctrl

AT
socket

LT
socket

LT
component

AT
component

IRQs

TLM target socketTLM initiator socket

Optional HW
IP Initiator IRQ

LT/AT Target
Peripheral Device IRQ

LT/AT Target
Memory

DMA controller
(Initiator/Target)

IRQ

SC_MODULE(RTOS)
{
 … …
};

RTOS moduleSC_MODULE(task)
{
 … …
};

Task modules

Figure 5-3. Combining software PE model with TLM interfaces and SoC models

 219

erality, as shown in Figure 5-3 , a simple SoC topology is presented as the refer-

enced model to extend the software PE for TLM modelling. It includes following

modules.

5.1.3.1 Initiator Modules

The Live CPU Model is the main software PE initiator. In addition, an optional

hardware IP module can be integrated as another initiator for customised hardware

computation. It supports both LT and AT interfaces like the software PE model

(See Table 5-1 (A)). This HW IP module can also be connected to the Interrupt

Controller Model in the Live CPU Model by a standard SystemC primitive chan-

nel, in order to trigger a software interrupt hander in case of an interrupt event.

5.1.3.2 Target Modules

Target modules could be memory components or peripheral devices. In case

there is more than one memory component, this topology can represent an em-

bedded system with application data partitioning. The small-size memory module

has a fast access speed whilst the big-size memory module is slow. Both LT and

AT styles can be applied to their target interfaces and sockets, which are imple-

mented by inheriting SimpleLTTarget1 and SimpleATTarget1 classes in

the OSCI TLM-2.0 library (see Table 5-2). Their class member methods can re-

ceive, store, and process transactions depending on modelling configuration.

class SimpleLTTarget1 : public sc_core::sc_module,

 public virtual tlm::tlm_fw_transport_if<>

{

 target_socket_type socket;

 void b_transport(transaction_type& trans, sc_core::sc_time &t);

};

class SimpleATTarget1 : public sc_core::sc_module

{

 target_socket_type socket;

 void endRequest();

 void beginResponse();

 void endResponse();

};

#001

#002

#003

#004

#005

#006

#007

#008

#009

#010

#011

#012

#013

#014

#015

Table 5-2. LT and AT targets

 220

5.1.3.3 Combined Initiator/Target Module

The Direct Memory Access (DMA) controller is an example combined initia-

tor/target module in the proposed SoC model. It allows directly moving data be-

tween memory locations and devices without intensive handling from the Live

CPU Model. It plays roles as both an initiator (for reading and writing data) and a

target (being programmed by a DMA requester). The structure of the DMA con-

troller is illustrated in Figure 5-4.

Referring to Table 5-3, two sockets, three main methods, and four virtual regis-

ters implement a model of a typical DMA mechanism. The b_transport()

method, which is inherited from the standard TLM LT target interface, listens to

DMA Controller Module

IRQ

src_addr
dst_addr

length
control

DMA
Registers

Initiator
 socket

Target
 socket

b_transport()
{...}

SC_THREAD
(DMA_transfer)
{...}

rd()

wr()

SC_METHOD
(DMA_irq)
{...}

Figure 5-4. The DMA controller model

class DMA: public sc_core::sc_module,

 public virtual tlm::tlm_fw_transport_if<>, //From target

public virtual tlm::tlm_bw_transport_if<> //From initiator

{

 initiator_socket_type DMA_initiator_socket;

 target_socket_type DMA_target_socket;

 // DMA blocking transport interface

 void b_transport(transaction_type& trans, sc_core::sc_time &t);

 void DMA_transfer(); // DMA transfer management process

 void DMA_irq(); // DMA transfer IRQ management process

 // DMA registers

 unsigned int m_dma_src_addr; // Source address register

 unsigned int m_dma_dst_addr; // Destination address register

 unsigned int m_dma_length; // Length register

 unsigned int m_dma_control; // Control register

};

#001

#002

#003

#004

#005

#006

#007

#008

#009

#010

#011

#012

#013

#014

#015

#016

#017

#018

#019

Table 5-3. Implementation of the DMA controller

 221

the target socket and waits for configuration information from requestors. Upon

receipt, the configuration information (i.e., source address, destination address,

size of transfer, and control bits) is saved in virtual registers of the DMA control-

ler. Then the DMA_transfer() function begins to read data from source loca-

tions and then writes them to destinations. When an entire DMA transfer is fin-

ished, the DMA_irq() method will interrupt the Live CPU Model.

5.1.3.4 Interconnection

The OSCI TLM-2.0 simple_bus router model is selected as the memory-

mapped interconnection bus. It is implemented in the AT coding style but sup-

ports a combination of LT and AT initiators and targets. A number of target and

initiator sockets can be defined by the user to connect initiators and targets. It

provides a FIFO bus arbitration scheme. This bus model can be used in architec-

tural exploration and early software development.

5.1.3.5 Communication Protocol

The aforementioned OSCI TLM-2.0 generic payload is directly utilised to sup-

port these memory-mapped bus models.

5.2 Experiments

In this section, some case studies are presented in order to demonstrate the per-

formance and capability of the integrated software PE model and TLM communi-

cation models. They are based on the above introduced TLM SoC model. All ex-

periments run on a 1.86GHz x86 PC.

5.2.1 Performance Study of TLM Models

This experiment investigates simulation performance of combined software

and TLM models. The basic benchmark model consists of the software PE model

as an initiator (including two software tasks and an optional RTOS model), two

optional memory modules as targets (one is LT and the other is AT), and the sim-

ple_bus model as the interconnection. One software task implements an insert-

sort algorithm to process an array and then writes the result to a memory module

 222

through the TLM bus, whilst another software task reads data from that memory

module. The RTOS model mimics the C/OS-II RTOS and is annotated with

relevant executing overheads on a 48MHz ARM7 processor.

The benchmark model is configured and run in six scenarios as follows:

1) Scenario 1 (Pure SystemC + LT TLM): This is an original SystemC TLM

model without the RTOS model. The SystemC native kernel scheduler pro-

vides co-operative scheduling without prioritisation and pre-emption. Soft-

ware tasks are implemented as SystemC SC_THREADs. Coarse-grained

time annotation and the LT style are used for software and TLM communi-

cation models, respectively. This case can represent behaviour of an origi-

nal SystemC TLM simulation.

2) Scenario 2 (Pure SystemC + AT TLM): The only difference from Scenario

1 is that AT TLM communication is used in this case. It supports more tim-

ing phases in a transaction than the LT TLM model.

3) Scenario 3 (Abstract SW + LT TLM): The software PE model (including

the Live CPU Model, RTOS model, and task models) and the LT style

TLM model are integrated in this case. Two coarse-grained timed abstract

software tasks are controlled by the RTOS model and utilise RTOS syn-

chronisation and timing services.

4) Scenario 4 (Abstract SW + AT TLM): Being different from Scenario 3, the

AT TLM communication method is used in this case.

5) Scenario 5 (Native-code SW + LT TLM): In this case, software tasks are

annotated with fine-grained time delays, whose number is about 1000 times

more than the abstract model. Other properties are the same as Scenario 2.

6) Scenario 6 (Native-code SW + AT TLM): This case includes both fine-

grained timed software model and the AT TLM communication model.

The model of each scenario is executed ten times so as to obtain an average re-

sult. In each run, a thread repeats about ten jobs, with two thousand transactions

being transferred on the bus.

The simulation results are shown in Figure 5-5. Not surprisingly, pure func-

tional SystemC models achieve the fastest simulation speed due to simplicity. As

expected, native-code software models and AT TLM models always give a worse

 223

performance than corresponding abstract and LT TLM models. However, when

different levels of software models and TLM models are mixed, it is not a

straightforward process to predict the behaviour of their simulation speed. This is

because either annotation statements in software models or TLM transaction

phases may become the dominant factor in the simulation performance.

Besides, it is more interesting to us that the proposed RTOS-included software

PE model incurs about 10% timing overheads more than native SystemC models

(compare simulation times of the comparable scenario pair 1, 3 and pair 2, 4, be-

cause they all have coarse-grained timing annotations), given that it provides basic

real-time software services and interruptible software timed simulation in this ex-

periment. It is noticed that, in a similar-purpose study [130], introducing an OS

simulation model to functional level SystemC models incurs about a 15% speed

overhead, which is at the same order of magnitude as this research.

5.2.2 DMA-Based I/O Simulation

DMA is an essential component to reduce CPU Input/Output (I/O) workload in

modern computers. It can especially improve CPU performance in some System-

on-Chips applications where I/O functions have a high data bandwidth. In a typi-

cal ARM-based SoC, I/O functions are implemented by a combination of mem-

ory-mapped addressable peripheral registers and interrupt inputs [187]. The pro-

Figure 5-5. Simulation performance results

 224

posed models in this thesis have good enough capability (i.e., DMA enabled

memory transfer and full-functional interrupt handling) to model the two mecha-

nisms.

This experiment implements the RSA cryptography algorithm in the software

initiator and uses DMA to transfer encrypted and decrypted messages across a

memory target module and a peripheral target device. Specifically, this experi-

ment includes following modules and components:

 The software PE initiator module includes two software tasks and the RTOS

model. Hereinto, the task_encypt() task encrypts randomly-generated

messages and saves them in a memory module; the other

task_dma_transfer() task invokes the DMA controller to transfer

ciphered messages and secret keys from memory locations to a hardware

decipherer device. The two tasks are synchronised by a semaphore.

 A memory model serves as a target module and is accesses by software PE

and the DMA module.

 A hardware peripheral device RSA_IP is a target module and acts as a de-

cipherer.

 The DMA model is a combined initiator/target. It raises an interrupt to the

Live CPU Model when it finishes transport.

 The simple_bus interconnection.

Various modelling characteristics of the software PE model and the simple

SoC model such as software processing, DMA transfers, and CPU interruption are

included in this experiment. It is expected to observe successfully recovered mes-

sages after several transfers across the TLM simple bus and low frequency of I/O

related interrupts by using the DMA method.

Figure 5-6 shows some parts of the SystemC simulation trace of this experi-

ment. They are organised in five sequential blocks in order to illustrate a working

cycle of this experiment. In the 1
st
 block, the task task_encypt() encrypts

original messages, saves them in a target memory module, and then unblocks the

task task_dma_transfer(). As shown in the 2
nd

 block, the second task then

uses TLM primitives (i.e., the CPU TLM interfaces) to program the DMA module

to initiate transfers. After transactions are transferred, the hardware peripheral de-

 225

vice model decrypts these messages correctly (in the 3
rd

 block). Afterwards, the

device initiates a DMA transfer to write decrypted data back to the memory mod-

ule (in the 4
th

 block). Finally, in the last block, the DMA controller interrupts the

CPU to notify the finish of transfer, and the Interrupt Controller in the Live CPU

Model recognises its IRQ number and notifies the RTOS model for software inter-

rupt handling.

Figure 5-7 shows the simulation timeline. DMA transfers relax the software

system from frequent and time-consuming context switches, where the interrupt

//SW task: task_encrypt_data() encrypts:
AT 1472170 ns: |Message to be ciphered: 9614

|Ciphered message: 3307
AT 2272170 ns: |Message to be ciphered: 1454

|Ciphered message: 35894
AT 3072170 ns: |Message to be ciphered: 5878

|Ciphered message: 2726

//SW task: task_dma_transfer() uses DMA to
//transfer encryption from memory to HW device
AT 3887545 ns:CPU::CPU0.LT_initiator2:

 Send write request
 A = 0x20000000, D = 0x1

AT 3887595 ns:DMA::DMAC:
 DMA is programmed:
 A = 0x0 D = 0x1
 Receive DMA control request.

//HW peripheral device RSA_IP decrypts:
AT 3990020 ns: RSA_IP::RSA1:

Deciphered message =9614
AT 4090020 ns: RSA_IP::RSA1:

Deciphered message =1454
AT 4190020 ns: RSA_IP::RSA1:

Deciphered message =5878

//HW peripheral device uses DMA to transfer
//decrypted data to memory
AT 4190070 ns:DMA::DMAC

 DMA is called by a device.
AT 4190070 ns:DMA::DMAC: reads:

 A = 0x10000008
AT 4190255 ns:DMA::DMAC

 Receives OK response.
 D = 0x258e

AT 4190255 ns:DMA::DMAC: writes:
 A = 0x0 D = 0x258e

//DMA controller interrupts the CPU after it
//finishes transferring
AT 4191180 ns:DMA::DMAC

 DMA transfer finishes.
AT 4191180 ns:<IRQ_SOURCE: irq= DMAC
 Interrupt happens.
//CPU IRQ_controller acknowledges and processes
//it
AT 4191180 ns:CPU IC::IRQ 6 is raised.
AT 4191180 ns:CPU::IC: ICSR != 0.

 Call IRQ Handler.

Figure 5-6. The simulation log of the DMA experiment

 226

source only triggers once in each system working cycle. This not only means that

the running speed (total cycles to finish a specific job) of a I/O intensive model

can be improved by utilising DMA, but also infers the possibility to unitise the

CPU more efficiently by implementing some more software functions during

DMA transfer duration.

5.3 Summary

The software PE model has been extended with TLM communication inter-

faces by utilising the OSCI TLM-2.0 library and integrated in a simple SoC dem-

onstration model including common TLM initiator and target modules. The fa-

vourable expandability of the Live CPU Model and the software PE modelling

approach is also reflected in this work. One experiment shows the co-simulation

performance of combined software PE and TLM models and indicates the mar-

ginal overheads of the software PE model in simple TLM simulation. Another ex-

periment simulates a DMA I/O experiment by the proposed SoC TLM models.

This demonstrates the TLM HW/SW co-simulation capability of the extended

software PE model.

Because of highly abstract features and functions of the conceptual TLM mod-

els in this chapter, the timing accuracy and complete functionality of these inte-

grated software PE and TLM communication models cannot be easily judged.

Nevertheless, some academic research [6] as well as some industrial tools [188]

[189] have successfully used OSCI TLM as a sound base for in-depth communi-

cation modelling, which inspire us to improve the software PE model for TLM-

based HW/SW co-simulation in future research.

task1

task2

ISR

RTOS

DMA

RSA_IP

software

hardware

time (µs)
1000 2000 3000 4000 5000

0

Figure 5-7. Simulation timeline

 227

Chapter 6

Conclusions and Future Work

6.1 Summary of Contributions

This thesis has addressed the problem of defining and implementing real-time

software simulation models in the SystemC language for software behavioural

modelling and simulation in system-level design. The hypothesis was stated in

Section 1.6.4 as follows:

A SystemC mixed timing modelling and simulation approach can enable fast,

flexible and accurate RTOS-based real-time embedded software behavioural

modelling and simulation in system-level design.

Regarding the fast characteristic, experiments show that the proposed approach

can achieve two or three orders of magnitude speedups compared to the KEIL

ARM ISS simulator and the uninterruptible fine-grained behavioural timing simu-

lation approach in representative tests.

The flexible characteristic is mainly embodied by proposing multiple software

models, time annotation granularities, and time advance techniques. The RTOS

model and the whole simulator’s modular structure also possess expandability to a

certain degree.

The accuracy characteristic means twofold: functional accuracy and timing ac-

curacy. The former is actualised by native-code simulation of the practical RTOS

model. The latter is realised by both careful annotations in modelling and inter-

ruptible time advance in simulation. Experiments have demonstrated the two as-

pects.

 228

This hypothesis was refined into four objectives in Section 1.6.4. Correspond-

ingly, this thesis has contributed in four aspects:

1) The mixed timing real-time software modelling and simulation approach:

a. It identifies the key aspects for real-time software timing modelling and

simulation in the SystemC simulation environment.

b. It defines two types of software models for early real-time software

simulation, according to the granularity of function and timing, and de-

scribes their relevance to existing TLM abstract models.

c. It proposes to use various modelling and simulation techniques for fast,

flexible and reasonably accurate behavioural simulation.

2) The Live CPU Model:

a. It proposes an abstract hardware CPU model inside a modular high-

level software PE model, which ideally supports interruptible software

time advance in SystemC simulation.

b. It extends modelling capability of the mixed timing software modelling

approach for HW/SW interactions.

3) The RTOS-centric Real-time software simulation model

a. It provides a systematic approach for building and simulating real-time

software (including both application tasks and RTOS) modular simula-

tion models in SystemC, which represent the software aspect of the

modular high-level software PE model.

b. It identifies essential RTOS features that are necessary for practical

RTOS modelling and implements them in a SystemC based RTOS

model.

c. This RTOS-centric approach can simulate mixed timing application

task models in fast and accurate behavioural simulation, which rea-

sonably approximate the functional and timing behaviours of a target

software system.

4) Extending Software Models for TLM Communication

a. It integrates standard TLM communication interfaces into the modular

high-level software PE model.

 229

b. This work also proposes a SoC TLM model, which not only integrates

the software PE model but also defines other typical TLM initiator, tar-

get, and interconnection models.

6.2 Conclusions

6.2.1 The Mixed Timing Approach

In Chapter 3, a new SLDL-based software behavioural timing modelling and

simulation method was proposed: the mixed timing approach. In this approach, in

the context of TLM software computation modelling, two types of software tim-

ing models, i.e., abstract and native-code, are defined for different software mod-

elling stages and can be mixed in simulation for modelling flexibility. Being inde-

pendent from their timing annotation granularities, i.e., without the need of fine-

grained time annotations, these software models are simulated by the wait-for-

event time advance method, which can guarantee interruptible time advance and

accurate software pre-emption. Various timing annotation granularities (i.e., task-

level, function-level, segment-level, and basic block-level), functional accuracy

levels (i.e., abstract and native-code), and time advance methods (i.e., variable-

step and fixed-step) can be utilised in mixed timing software models for trade-offs

between fast simulation performance, modelling flexibility, simulation observabil-

ity, and accuracy.

Experiments demonstrate the fast performance of the mixed timing models,

which are two or three orders of magnitude faster than ISS simulation and the

conventional fine-grained uninterruptible behavioural software simulation. Tim-

ing accuracy of models is reflected from two aspects. Firstly, the basic time ad-

vance stopping latency and interrupt latency is zero-time, which means the mixed

timing approach is capable to model and simulate real executions. Secondly, re-

garding timing accuracy of single task simulation, the proposed native-codes with

fine-grained segment-level annotations incur a 0.12% marginal timing accuracy

loss.

 230

6.2.2 The Live CPU Model

In Chapter 3, we present the SystemC-based Live CPU Model as the concep-

tual hardware part of the modular software PE simulation model. The Live CPU

Model consists of three components, i.e., the Live CPU Simulation Engine, the

Interrupt Controller Model, and the Virtual Registers. It could also be extended

with SW/HW interfaces for inter-module communication.

The Live CPU Simulation Engine is the basis of the wait-for-event time ad-

vance method for upper-level mixed timing software models. It consumes delay

annotations and software models in an interruptible and resumable way, by which

the target simulated clock is accurately progressed. It also supports mixed vari-

able-step and fixed-step execution modes, which enable trade-offs between simu-

lation speed and simulation observability.

The Interrupt Controller Model monitors external HW interrupts that are con-

nected to the Live CPU module. It is the first-level component in the software PE

model to handle interrupts and supports prioritised and maskable handling func-

tions. Once it finds an interrupt, it can immediately notify the Live CPU Simula-

tion Engine to stop current software time advance in order to handler the interrupt,

i.e., with a zero-time interrupt latency.

Some Virtual Registers are modelled to assist software simulation in terms of

task timing information context switch and flag setting.

In general, this Live CPU Model is a novel idea to introduce the conceptual

hardware CPU model into generic high-level software simulation. It separates

functions between software modules and hardware modules and makes whole the

simulation framework more structured and extensible.

6.2.3 The RTOS-Centric Real-Time Software Simulation

Model

In Chapter 4 a SystemC-based generic RTOS-centric real-time embedded

software simulation model was presented. It is a native-code RTOS simulation

approach, but can also flexibly support abstract task models. We describe the gen-

eral embedded software stack model where our RTOS and application task mod-

els reside, together with common RTOS requirements.

 231

This generic RTOS-centric real-time embedded software simulation model has

a modular structure. It clearly separates application tasks, the RTOS, and the Live

CPU Model into different modules and integrates them for simulation. The under-

lying Live CPU Model enables accurate time advance for RTOS-centric software

models. Application tasks are modelled according to the mixed timing approach,

which means that hybrid abstract task models and delay-annotated native-code

task models can co-exist in one simulator, in order to enhance modelling flexibil-

ity. The RTOS model provides essential and generic services including

task/process modelling, multi-tasking management, scheduling services, task syn-

chronisation and communication, interrupt handling, and HAL services. This rich

set of services can be invoked by tasks through normal function calls, which en-

able convenient and practical real-time software simulation at early design phases.

In addition to these ample functional features, timing overheads of various RTOS

services are also considered and added into simulation models.

Experimental results have shown fast performance, high functional accuracy,

and small timing accuracy losses of RTOS-centric simulation, compared to cycle-

accurate ISS simulation.

6.2.4 Extending Software Models for TLM Communication

In Chapter 5, OSCI TLM-2.0 communication interfaces are integrated into the

software PE model. This extends the proposed RTOS-centric software simulation

models for SW/HW inter-module TLM communication modelling. We describe

how a software task can utilise TLM interfaces by presenting a set of refined func-

tions in each level of software and hardware models. Furthermore, a SoC TLM

model is introduced. It integrate the software PE model as the main software ini-

tiator and other common TLM modelling components such as target modules,

combined initiator/target modules, and the interconnection module. This SoC

model can be used for abstract HW/SW TLM co-simulation studies. In one ex-

periment, the co-simulation performance of combined software PE and TLM

models is investigated, which reveals that adding the software PE model in TLM

simulation does not contribute much overheads. In another experiment, a DMA

I/O simulation is carried out through the proposed SoC TLM models, which dem-

 232

onstrates the TLM HW/SW co-simulation capability of the extended software PE

model.

6.3 Future Work

Based on research in this thesis, we realise that some topics and directions

could be addressed in future work.

6.3.1 Improving Timing Modelling Techniques

In SLDL-based software behavioural timing modelling, timing estimation and

annotation are two important aspects. They are the basis of software time advance

in timing simulation. In current research, we mainly use the ISS simulator for ac-

curate software performance estimation. This method consumes much execution

time due to its slow speed. ISS estimation results are not directly connected with

SystemC models and annotation statements are manually inserted into software

models.

We consider the possibility to utilise some other software performance estima-

tion methods for the proposed software simulation models. The static WCET tim-

ing analysis is a practical choice. Using low-level faithful static timing analysis

results in high-level flexible dynamic simulation can maximise their respective

advantages. It is also beneficial to develop an automatic annotation tool. This tool

should help to insert annotation statements into models and support the timing

techniques proposed in Section 3.2.4 in order to improve simulation performance.

6.3.2 Enriching RTOS Model Features

Comparing the RTOS model in this thesis to real RTOS products, e.g.,

ThreadX and μC/OS-II, memory management is not modelled or simulated in our

research. As mentioned before, this is because that all our simulation models are

natively executed by the SystemC simulator in the host machine and rely on

memory management services provided by the C++ language and the host OS.

However, even though it is not necessary to model stacks and heaps for task mod-

els, some RTOS services may also require dynamic allocation of memory spaces,

e.g., message queues. We consider that lightweight memory management services

 233

could be integrated in the RTOS model. Their functions can be implemented by

wrapping corresponding C++ dynamic memory operators and building memory

control blocks. Their timing overheads can be annotated with the costs of memory

management services in the target RTOS.

6.3.3 Multi-Processor RTOS Modelling

Given the fast development of MPSoC, multi-processor and multi-core RTOS

modelling is certainly a promising research direction. In this thesis, the modular

software-hardware system structure and the Live CPU Model idea have possessed

some facilities to support multi-processor/core platforms in future research. How-

ever, in order to support Symmetric Multi-Processing (SMP) and Bound Multi-

Processing (BMP), various system blocks and services of the current RTOS simu-

lation model need to be revised. For example, the scheduling policies should ex-

plicitly support bounded and migrated tasks in multiprocessors, and resource shar-

ing protocols should support sharing resources in multiprocessors. Besides, multi-

ple cores may communicate with each other through the on-chip bus, and our ap-

proach can enable this TLM modelling capability. However, regarding high-level

behavioural RTOS and software simulation, it is necessary to distinguish the rela-

tionship between RTOS/software internal communication and hardware inter-core

communication. This requires a definition of software and hardware modelling

abstraction levels.

 235

Bibliography

[1] "RTX Real-Time Kernel," KEIL, http://www.keil.com/rl-arm/kernel.asp,

2009.

[2] R. Kamal, Embedded Systems: Architecture, Programming and Design:

McGraw-Hill, 2008.

[3] F. Ghenassia, Transaction Level Modeling with SystemC: TLM Concepts

and Application for Embedded Systems: Springer, 2005.

[4] "International Technology Roadmap for Semiconductors 2007 Edition

Design," ITRS, http://public.itrs.net/, 2007.

[5] E. Frank, "VSPs Spur On-Time Delivery of Embedded Automotive

Systems Software: Part 1 " VaST Systems Technology Corp.,

http://www.automotivedesignline.com/193400687%3Bjsessionid=4JEMQ

XURBKMNMQSNDLQCKH0CJUNN2JVN?printableArticle=true, 2006.

[6] M. Baklouti, A. Benzina, A. Bouchhima, and F. Petrot, "Extending

Transaction Level Modeling for Embedded Software Design and

Validation," in International Conference on Design & Technology of

Integrated Systems in Nanoscale Era, (DTIS 2007), 2007, pp. 64-69.

[7] L. Cai and D. Gajski, "Transaction level modeling: An Overview," in

Proceedings of the 1st IEEE/ACM/IFIP international conference on

Hardware/software codesign and system synthesis Newport Beach, CA,

USA: ACM Press, 2003.

[8] J. Madsen, K. Virk, and M. J. Gonzalez, "A SystemC-based Abstract Real-

Time Operating System for Multiprocessor Systems-on-Chips," in

Multiprocessor Systems-on-Chips, A. A. Jerraya and W. Wolf, Eds. San

Francisco, CA: Morgan Kaufmann, 2005, pp. 284-311.

[9] R. Dömer, "Transaction Level Modeling of Computation," Technical

Report, Center for Embedded Computer Systems, University of California,

Irvine., 2006.

[10] F. J. Winters, C. Mielenz, and G. Hellestrand, "Design Process Changes

Enabling Rapid Development," Convergence Transportation Electronics

Association,

http://www.vastsystems.com/notes/convergence20041018.pdf, 2004.

http://www.keil.com/rl-arm/kernel.asp
http://public.itrs.net/
http://www.automotivedesignline.com/193400687%3Bjsessionid=4JEMQXURBKMNMQSNDLQCKH0CJUNN2JVN?printableArticle=true
http://www.automotivedesignline.com/193400687%3Bjsessionid=4JEMQXURBKMNMQSNDLQCKH0CJUNN2JVN?printableArticle=true
http://www.vastsystems.com/notes/convergence20041018.pdf

 236

[11] F. Hessel, V. M. D. Rosa, C. E. Reif, C. Marcon, and T. G. S. d. Santos,

"Scheduling Refinement in Abstract RTOS Models," ACM Transactions

on Embedded Computing Systems (TECS), vol. 5, pp.342-354, 2006.

[12] H. Posadas, J. A. Adamez, E. Villar, F. Blasco, and F. Escuder, "RTOS

Modeling in SystemC for Real-Time Embedded SW Simulation: A POSIX

Model," Design Automation for Embedded Systems, vol. 10, pp.209-227,

2005.

[13] K. Yu and N. Audsley, "A Mixed Timing System-level Embedded

Software Modelling and Simulation Approach," in 6th International

Conference on Embedded Software and Systems, (ICESS '09), 2009.

[14] K. Yu and N. Audsley, "A Generic and Accurate RTOS-centric Embedded

System Modelling and Simulation Framework," in 5th UK Embedded

Forum (UKEF '09), Leicester, UK, 2009.

[15] K. Yu and N. Audsley, "Combining Behavioural Real-time Software

Modelling with the OSCI TLM-2.0 Communication Standard," in 7th

International Conference on Embedded Software and Systems, (ICESS '10),

2010.

[16] P. Marwedel, Embedded System Design, 1st ed.: Springer, 2003.

[17] R. Zurawski, Embedded Systems Handbook: CRC Press, 2006.

[18] T. Noergaard, Embedded Systems Architecture: A Comprehensive Guide

for Engineers and Programmers: Newnes, 2005.

[19] A. Zerzelidis, A Framework for Flexible Scheduling In Real-Time

Middleware, PhD Thesis, Dept. of Computer Science, University of York,

2007

[20] D. Schmidt and F. Kuhns, "An Overview of the Real-Time CORBA

Specification," Computer, vol. 33, pp.56-63, 2000.

[21] A. Burns and A. Wellings, Real-time Systems and Programming

Languages: Ada 95, Real-time Java, and Real-time POSIX, 3rd ed.:

Addison Wesley, 2001.

[22] R. Domer, A. Gerstlauer, and W. Muller, "Introduction to Hardware-

Dependent Software Design Hardware-Dependent Software for Multi- and

Many-Core Embedded Systems," in Proceedings of the 2009 Conference

on Asia and South Pacific Design Automation Yokohama, Japan: IEEE

Press, 2009, pp. 290-292.

[23] S. Ball, Embedded Microprocessor Systems: Real World Design: Newnes,

2002.

[24] Q. Li and C. Yao, Real-Time Concepts for Embedded Systems: CMP, 2003.

 237

[25] G. Buttazzo, Hard Real-Time Computing Systems: Predictable Scheduling

Algorithms and Applications, 2nd ed.: Springer-Verlag New York Inc,

2004.

[26] J. W. S. Liu, Real-Time Systems: Prentice Hall, 2000.

[27] R. H. Bourgonjon, "Embedded systems in consumer products," in Lecture

Notes in Computer Science: Lectures on Embedded Systems: European

Educational Forum School on Embedded Systems. vol. 1494, 1998, p. 396.

[28] R. McMillan, "GM CTO predicts cars will run on 100 million lines of

code," in IDG News Service, 21 October 2004.

[29] "Analysis of The Relationship Between EDA Expenditures and

Competitive Positioning of IC Vendors for 2003," International Business

Strategies, Inc., 2003.

[30] P. Dreike and J. McCoy, "Co-Simulating Software and Hardware in

Embedded Systems," Sandia National Laboratories in Albuquerque,

http://www.embedded.com/97/feat9706.htm, 1997.

[31] W. Wolf, High-Performance Embedded Computing: Architectures,

Applications, and Methodologies: Morgan Kaufmann, 2006.

[32] B. Bailey, G. Martin, and A. Piziali, ESL Design and Verification: a

Prescription for Electronic System-Level Methodology: Morgan Kaufmann

Publisher, 2007.

[33] G. De Michell and R. Gupta, "Hardware/Software Co-Design,"

Proceedings of the IEEE, vol. 85, pp.349-365, 1997.

[34] A. Gerstlauer and D. D. Gajski, "System-Level Abstraction Semantics," in

Proceedings of the 15th International Symposium on Systems Synthesis

(ISSS '02), Kyoto, Japan, 2002, pp. 231-236.

[35] D. Thomas and P. Moorby, The Verilog Hardware Description Language,

5th ed.: Springer, 2008.

[36] P. J. Ashenden, The Designer's Guide to VHDL, 3rd ed.: Morgan

Kaufmann, 2008.

[37] A. Habibi and S. Tahar, "A Survey on System-on-a-Chip Design

Languages," in 3rd IEEE International Workshop on System-on-Chip for

Real-Time Applications, 2003.

[38] OSCI, "SystemC," http://www.systemc.org/.

[39] D. D. Gajski, J. Zhu, R. Domer, A. Gerstlauer, and S. Zhao, SpecC:

Specification Language and Methodology, 1st ed.: Kluwer Academic Pub,

2000.

http://www.embedded.com/97/feat9706.htm
http://www.systemc.org/

 238

[40] K. Keutzer, A. R. Newton, J. M. Rabaey, and A. Sangiovanni-Vincentelli,

"System-Level Design: Orthogonalization of Concerns and Platform-

Based Design," Computer-Aided Design of Integrated Circuits and

Systems, IEEE Transactions on, vol. 19, pp.1523-1543, 2000.

[41] J. Plantin and E. Stoy, "Aspects of System-Level Design," in Proceedings

of the seventh international workshop on Hardware/software codesign:

ACM New York, NY, USA, 1999, pp. 209-210.

[42] G. Yang, A. Sangiovanni-Vincentelli, Y. Watanabe, and F. Balarin,

"Separation of Concerns: Overhead in Modeling and Efficient Simulation

Techniques," in Proceedings of the 4th ACM international conference on

Embedded software: ACM New York, NY, USA, 2004, pp. 44-53.

[43] A. Gerstlauer, H. Yu, and D. D. Gajski, "RTOS Modeling for System

Level Design," in Conference on Design, Automation and Test in Europe -

Volume 1: IEEE Computer Society, 2003.

[44] M. Fujita, I. Ghosh, and M. Prasad, Verification Techniques for System-

Level Design: Morgan Kaufmann Publishers, 2008.

[45] B. Bhattacharya, L. Lavagno, and L. Vanzago, "Design Space Exploration

of On-Chip Networks: A Case Study," in Multiprocessor Systems-on-

Chips, A. A. Jerraya and W. Wolf, Eds. San Francisco, CA: Morgan

Kaufmann, 2005, pp. 223-248.

[46] W. O. Cesário and A. A. Jerraya, "Component-Based Design for

Multiprocessor Systems-on-Chips," in Multiprocessor Systems-on-Chips,

A. A. Jerraya and W. Wolf, Eds. San Francisco, CA: Morgan Kaufmann,

2005, pp. 357-393.

[47] W. Klingauf, Systematic Transaction Level Communication Modeling with

SystemC, Doktor-Ingenieur Thesis, Technische Universität Braunschweig,

2008

[48] P. Rashinkar, P. Paterson, and L. Singh, System-on-a-chip Verification

Methodology and Techniques: Kluwer Academic Publishers, 2002.

[49] K. MASSELOS and N. S. VOROS, "Design Flow for Reconfigurable

Systems-on-Chip," in System level design of reconfigurable systems-on-

chip, N. S. VOROS and K. MASSELOS, Eds.: Springer Verlag, 2005, pp.

87-105.

[50] "UML Superstructure Specification version 2.2," Object Management

Group, http://www.omg.org/spec/UML/2.2/, 2009.

[51] MATLAB, MathWorks, http://www.mathworks.com, 2009.

[52] P. Alexander, System-level Design with Rosetta: Morgan Kaufmann

Publishers, 2007.

http://www.omg.org/spec/UML/2.2/
http://www.mathworks.com/

 239

[53] T. Mark, N. Hristo, S. Todor, D. P. Andy, E. Cagkan, P. Simon, and F. D.

Ed, "A Framework for Rapid System-Level Exploration, Synthesis, and

Programming of Multimedia MP-SoCs," in 5th IEEE/ACM international

conference on Hardware/software codesign and system synthesis Salzburg,

Austria: ACM, 2007.

[54] T. Kogel, R. Leupers, and H. Meyr, Integrated System-Level Modeling of

Network-on-Chip enabled Multi-Processor Platforms: Springer, 2006.

[55] W. Klingauf, H. Gädke, and R. Günzel, "TRAIN: a Virtual Transaction

Layer Architecture for TLM-based HW/SW Codesign of Synthesizable

MPSoC," in Proceedings of the conference on Design, automation and test

in Europe Munich, Germany: European Design and Automation

Association, 2006.

[56] F. R. Wagner, W. Cesário, and A. A. Jerraya, "Hardware/Software IP

Integration Using the ROSES Design Environment," Trans. on Embedded

Computing Sys., vol. 6, pp.17, 2007.

[57] N.-E. Zergainoh, A. Baghdadi, and A. Jerraya, "Hardware/Software

Codesign of On-Chip Communication Architecture for Application-

Specific Multiprocessor System-On-Chip," International Journal of

Embedded Systems, vol. 1, pp.112-124, 2005.

[58] A. Gerstlauer, D. Shin, R. Dömer, and D. D. Gajski, "System-Level

Communication Modeling for Network-on-Chip Synthesis," in

Proceedings of the 2005 conference on Asia South Pacific design

automation Shanghai, China: ACM Press, 2005.

[59] S. Ouadjaout and D. Houzet, "Generation of Embedded

Hardware/Software from SystemC," EURASIP Journal on Embedded

Systems, vol. 2006, pp.1-11, 2006.

[60] G. Schirner, G. Sachdeva, A. Gerstlauer, and R. Dömer, "Embedded

Software Development in a System-Level Design Flow," in Embedded

System Design: Topics, Techniques and Trends: Springer Boston, 2007, pp.

289-298.

[61] H. Yu, R. Dömer, and D. Gajski, "Embedded software generation from

system level design languages," in Proceedings of the 2004 conference on

Asia South Pacific design automation: electronic design and solution fair,

2004, pp. 463-468.

[62] F. Herrera, H. Posadas, P. Sanchez, and E. Villar, "Systematic Embedded

Software Generation from SystemC," in Proceedings of the conference on

Design, Automation and Test in Europe - Volume 1: IEEE Computer

Society, 2003.

 240

[63] M. Krause, O. Bringmann, and W. Rosenstiel, "Target software generation:

an approach for automatic mapping of SystemC specifications onto real-

time operating systems," Design Automation for Embedded Systems, vol.

10, pp.229-251, 2005.

[64] L. Guthier, S. Yoo, and A. Jerraya, "Automatic Generation and Targeting

of Application Specific Operating Systems and Embedded Systems

Software," in Proceedings of the conference on Design, Automation, and

Test in Europe (DATE 2001), 2001, pp. 679-685.

[65] G. Schirner, A. Gerstlauer, and R. Domer, "Automatic Generation of

Hardware Dependent Software for MPSoCs from Abstract System

Specifications," in Proceedings of the 2008 conference on Asia and South

Pacific design automation Seoul, Korea: IEEE Computer Society Press,

2008.

[66] "IEEE Std 1666™-2005, IEEE Standard SystemC
®
 Language Reference

Manual," IEEE Computer Society, 2006.

[67] A. N. Sloss, D. Symes, and C. Wright, ARM System Developer's Guide:

Designing and Optimizing System Software: Morgan Kaufmann, 2004.

[68] H. D. Patel and S. K. Shukla, SystemC Kernel Extensions for

Heterogeneous System Modeling: KLUWER ACADEMIC PUBLISHERS,

2005.

[69] N. Savoiu, S. K. Shukla, and R. K. Gupta, "Automated Concurrency Re-

assignment in High Level System Models for Efficient System-Level

Simulation," in Proceedings of Design, Automation and Test in Europe

Conference and Exhibition (DATE '02), Paris, France, 2002.

[70] P. Destro, F. Fummi, and G. Pravadelli, "A Smooth Refinement Flow for

Co-Designing HW and SW Threads," in Proceedings of the conference on

Design, automation and test in Europe: EDA Consortium San Jose, CA,

USA, 2007, pp. 105-110.

[71] B. Bhattacharya, J. Rose, and S. Swan, "Language Extensions to SystemC:

Process Control Constructs," in Proceedings of the 44th annual conference

on Design automation San Diego, California: ACM, 2007.

[72] P. Hastono, S. Klaus, and S. A. Huss, "Real-Time Operating System

Services for Realistic SystemC Simulation Models of Embedded

Systems," in The International Forum on Specification & Design

Languages (FDL'04) Lille, France, 2004, pp. 380-391.

[73] M. A. El-Salam, A. Salem, and G. Aly, "RTOS Modeling Using

SystemC," in System-on-Chip For Real-Time Applications, W. Badawy

and G. Jullien, Eds.: Kluwer Academic Publishers, 2003.

 241

[74] "The SpecC Reference Compiler," Center for Embedded Computer

Systems UC Irvine, 2006.

[75] Wikipedia, "SystemVerilog," http://en.wikipedia.org/wiki/Systemverilog.

[76] W. Rosenstiel, S. Swan, F. Ghenassia, P. Flake, and J. Srouji, "SystemC

and SystemVerilog: Where do they fit? Where are they going?," in

Proceedings of Design, Automation and Test in Europe Conference and

Exhibition. vol. 1, 2004.

[77] G. Nicolescu and A. A. Jerraya, Global Specification and Validation of

Embedded Systems: Springer Netherlands, 2007.

[78] J. Jung, S. Yoo, and K. Choi, "Fast Cycle-Approximate MPSoC

Simulation Based on Synchronization Time-Point Prediction," Design

Automation for Embedded Systems, vol. 11, pp.223-247, 2007.

[79] G. Schirner, A. Gerstlauer, and R. Domer, "Abstract, Multifaceted

Modeling of Embedded Processors for System Level Design,"

Proceedings of the 2007 conference on Asia South Pacific design

automation, 384-389, 2007.

[80] V. Zivojnovic and H. Meyr, "Compiled HW/SW Co-Simulation," Design

Automation Conference Proceedings 1996, 33rd, 690-695, 1996.

[81] M. Reshadi, P. Mishra, and N. Dutt, "Hybrid-Compiled Simulation: An

Efficient Technique for Instruction-Set Architecture Simulation," ACM

Transactions on Embedded Computing Systems (TECS), vol. 8, pp.1-27,

2009.

[82] E. Cheung, H. Hsieh, and F. Balarin, "Fast and Accurate Performance

Simulation of Embedded Software for MPSoC," in Proceedings of the

2009 Conference on Asia and South Pacific Design Automation

Yokohama, Japan: IEEE Press, 2009, pp. 552-557.

[83] T. Kempf, K. Karuri, S. Wallentowitz, G. Ascheid, R. Leupers, and H.

Meyr, "A SW Performance Estimation Framework for Early System-

Level-Design Using Fine-Grained Instrumentation," in Proceedings of the

conference on Design, automation and test in Europe: Proceedings, 2006,

pp. 468-473.

[84] A. Bouchhima, P. Gerin, and F. Petrot, "Automatic Instrumentation of

Embedded Software for High Level Hardware/Software Co-Simulation,"

in Proceedings of the 2009 Conference on Asia and South Pacific Design

Automation Yokohama, Japan: IEEE Press, 2009.

[85] L. Gao, K. Karuri, S. Kraemer, R. Leupers, G. Ascheid, and H. Meyr,

"Multiprocessor Performance Estimation Using Hybrid Simulation," in

45th ACM/IEEE Design Automation Conference (DAC 2008), 2008, pp.

325-330.

http://en.wikipedia.org/wiki/Systemverilog

 242

[86] S. Yoo and K. Choi, "Synchronization Overhead Reduction in Timed

Cosimulation," in Proc. of Int. High Level Design Validation. 6th

International Workshop on Hardware/Software Co-Design,

CODES/CASHE98, 1997, pp. 157-164.

[87] Z. He, A. Mok, and C. Peng, "Timed RTOS Modeling for Embedded

System Design," in 11th IEEE Real Time and Embedded Technology and

Applications Symposium (RTAS'05), 2005, p. 448.

[88] OSCI TLM Work Group, "OSCI TLM-2.0 Language Reference Manual

(Software Version: TLM 2.0.1)," http://www.systemc.org/, 2009.

[89] A. Wieferink, M. Doerper, T. Kogel, R. Leupers, G. Ascheid, and H. Meyr,

"Early ISS Integration into Network-on-Chip Designs," in Lecture Notes

in Computer Science 3133, Proceedings of Third and Fourth International

Workshops, SAMOS 2004, Samos, Greece, 2004, pp. 443-452.

[90] S. Pasricha, "Transaction Level Modeling of SoC with SystemC 2.0," in

Synopsys User Group Conference (SNUG), 2002.

[91] J. Cornet, F. Maraninchi, and L. Maillet-Contoz, "A Method for the

Efficient Development of Timed and Untimed Transaction-Level Models

of Systems-on-Chip," in Proceedings of the conference on Design,

automation and test in Europe Munich, Germany: ACM, 2008.

[92] G. Schirner and R. Dömer, "Quantitative Analysis of the Speed/Accuracy

Trade-Off in Transaction Level Modeling," Trans. on Embedded

Computing Sys., vol. 8, pp.1-29, 2008.

[93] A. Donlin, "Transaction Level Modeling: Flows and Use Models," in

Proceedings of the 2nd IEEE/ACM/IFIP international conference on

Hardware/software codesign and system synthesis, 2004, pp. 75-80.

[94] J. Cornet, Separation of Functional and Non-Functional Aspects in

Transactional Level Models of Systems-on-Chip, PhD Thesis,

Mathématiques, Sciences et Technologies de l'Information, Informatique,

Institut Polytechnique de Grenoble, 2008

[95] A. Wieferink, T. Kogel, R. Leupers, G. Ascheid, H. Meyr, G. Braun, and

A. Nohl, "A System Level Processor/Communication Co-Exploration

Methodology for Multi-Processor System-on-Chip Platforms," in

Proceedings of the conference on Design, automation and test in Europe -

Volume 2: IEEE Computer Society, 2004.

[96] W. Ecker, V. Esen, T. Steininger, and M. Velten, "HW/SW Interface --

Implementation and Modeling," in Hardware Dependent Software --

Principles and Practice, W. Ecker, W. Müller, and R. Dömer, Eds.:

Springer Science + Business Media B.V., 2009, pp. 95-150.

http://www.systemc.org/

 243

[97] F. Doucet, R. K. Shyamasundar, I. H. Krüger, S. Joshi, and R. K. Gupta,

"Reactivity in SystemC Transaction-Level Models," in Lecture Notes in

Computer Science 4899, Proceedings of Third International Haifa

Verification Conference (HVC 2007), Haifa, Israel, 2008, pp. 34-50.

[98] T. Grötker, S. Liao, G. Martin, and S. Swan, System Design with SystemC:

Kluwer Academic Publishers Norwell, MA, USA, 2002.

[99] OSCI TLM Work Group, "Requirements specification for TLM 2.0,"

http://www.systemc.org/, 2007.

[100] A. Haverinen, M. Leclercq, N. Weyrich, and D. Wingard, "SystemC based

SoC Communication Modeling for the OCP Protocol," Open Core

Protocol International Partnership, 2002.

[101] T. Kogel, A. Haverinen, and J. Aldis, "OCP TLM for Architectural

Modeling," Open Core Protocol International Partnership (OCP-IP),

www.ocpip.org, 2005.

[102] D. Shin, L. Cai, A. Gerstlauer, R. Domer, and D. D. Gajski, "System-on-

Chip Transaction-Level Modeling Style Guide," Technical Report CECS-

TR-04-24, Center for Embedded Computer Systems, University of

California, Irvine, 2004.

[103] G. Schirner and R. Dömer, "Fast and Accurate Transaction Level Models

Using Result Oriented Modeling," in Proceedings of the 2006 IEEE/ACM

international conference on Computer-aided design, 2006, p. 368.

[104] S. Pasricha, N. Dutt, and M. Ben-Romdhane, "Extending the Transaction

Level Modeling Approach for Fast Communication Architecture

Exploration," in Proceedings of the 41st annual Design Automation

Conference San Diego, CA, USA: ACM, 2004.

[105] T. Kogel, M. Doerper, A. Wieferink, R. Leupers, G. Ascheid, H. Meyr,

and S. Goossens, "A Modular Simulation Framework for Architectural

Exploration of On-Chip Interconnection Networks," in Proceedings of the

1st IEEE/ACM/IFIP international conference on Hardware/software

codesign and system synthesis (CODES+ISSS '03) Newport Beach, CA,

USA: ACM, 2003, pp. 7-12.

[106] T. Kogel, M. Doerper, T. Kempf, A. Wieferink, R. Leupers, G. Ascheid,

and H. Meyr, "Virtual Architecture Mapping: A SystemC Based

Methodology for Architectural Exploration of System-on-Chip Designs,"

in Lecture Notes in Computer Science 3133, Proceedings of Third and

Fourth International Workshops, SAMOS 2004, Samos, Greece, 2004, pp.

138-148.

[107] W. Klingauf, R. Günzel, O. Bringmann, P. Parfuntseu, and M. Burton,

"GreenBus: a Generic Interconnect Fabric for Transaction Level

http://www.systemc.org/
http://www.ocpip.org/

 244

Modelling," in Proceedings of the 43rd annual Design Automation

Conference San Francisco, CA, USA: ACM, 2006.

[108] J. Chevalier, O. Benny, M. Rondonneau, G. Bois, E. M. Aboulhamid, and

F.-R. Boyer, "Space: A Hardware/Software SystemC Modeling Platform

Including an RTOS," in Languages for System Specification: Selected

Contributions on UML, SystemC, System Verilog, Mixed-Signal Systems,

and Property Specification from FDL'03: Kluwer Academic Publishers,

2004, pp. 91-104.

[109] L. Benini, D. Bertozzi, A. Bogliolo, F. Menichelli, and M. Olivieri,

"MPARM: Exploring the Multi-Processor SoC Design Space with

SystemC," The Journal of VLSI Signal Processing, vol. 41, pp.169-182,

2005.

[110] A. C. Nacul, M. Lajolo, and T. Givargis, "Interface-Centric Abstraction

Level for Rapid Hardware/Software Integration " in FDL'05 - Forum on

Specification and Design Languages Lausanne, Switzerland, 2005, pp.

329-340.

[111] A. Bouchhima, I. Bacivarov, W. Youssef, M. Bonaciu, and A. A. Jerraya,

"Using Abstract CPU Subsystem Simulation Model for High Level

HW/SW Architecture Exploration," in Proceedings of the 2005 conference

on Asia South Pacific design automation, 2005, pp. 969-972.

[112] J. Madsen and M. Gonzalez, "Abstract RTOS Modelling in SystemC," in

20th IEEE NORCHIP Conference, 2002, pp. 43-49.

[113] F. Hessel, V. M. d. Rosa, I. M. Reis, R. Planner, C. A. M. Marcon, and A.

A. Susin, "Abstract RTOS Modeling for Embedded Systems," in 15th

IEEE International Workshop on Rapid System Prototyping (RSP'04),

2004, pp. 210-216.

[114] R. L. Moigne, O. Pasquier, and J. P. Calvez, "A Generic RTOS Model for

Real-time Systems Simulation with SystemC," in Conference on Design,

automation and test in Europe - Volume 3: IEEE Computer Society, 2004.

[115] W.-T. Sun and Z. Salcic, "Modeling RTOS for Reactive Embedded

Systems," in 20th International Conference on VLSI Design held jointly

with 6th International Conference on Embedded Systems (VLSID'07),

2007, pp. 534-539.

[116] D. C. Black and J. Donovan, Systemc: From the Ground Up: Springer,

2005.

[117] J. Vennin, S. Meftali, and J.-L. Dekeyser, "Understanding and Extending

SystemC UserThread Package to IA64 Platform " http://www.design-

reuse.com/articles/9402/understanding-and-extending-systemc-userthread-

package-to-ia64-platform.html.

http://www.design-reuse.com/articles/9402/understanding-and-extending-systemc-userthread-package-to-ia64-platform.html
http://www.design-reuse.com/articles/9402/understanding-and-extending-systemc-userthread-package-to-ia64-platform.html
http://www.design-reuse.com/articles/9402/understanding-and-extending-systemc-userthread-package-to-ia64-platform.html

 245

[118] F. Fummi, M. Loghi, G. Perbellini, and M. Poncino, "SystemC Co-

Simulation for Core-Based Embedded Systems," Design Automation for

Embedded Systems, vol. 11, pp.141-166, 2007.

[119] H. Posadas, J. Ádamez, P. Sánchez, E. Villar, and F. Blasco, "POSIX

Modeling in SystemC," in 2006 conference on Asia South Pacific design

automation Yokohama, Japan: ACM Press, 2006.

[120] Y. Yi, D. Kim, and S. Ha, "Fast and Time-Accurate Cosimulation with OS

Scheduler Modeling," Design Automation for Embedded Systems, vol. 8,

pp.211-228, June, 2003.

[121] I. Bacivarov, S. Yoo, and A. A. Jerraya, "Timed HW-SW Cosimulation

Using Native Execution of OS and Application SW," in 7th IEEE

International High-Level Design Validation and Test Workshop, 2002, pp.

51-56.

[122] H. Yu, A. Gerstlauer, and D. Gajski, "RTOS Scheduling in Transaction

Level Models," in 1st IEEE/ACM/IFIP international conference on

Hardware/software codesign and system synthesis Newport Beach, CA,

USA: ACM Press, 2003.

[123] G. Schirner and R. Domer, "Introducing Preemptive Scheduling in

Abstract RTOS Models using Result Oriented Modeling," Design,

Automation and Test in Europe, 2008. DATE'08, 122-127, 2008.

[124] H. Zabel, W. Müller, and A. Gerstlauer, "Accurate RTOS Modeling and

Analysis with SystemC," in Hardware Dependent Software -- Principles

and Practice, W. Ecker, W. Müller, and R. Dömer, Eds.: Springer Science

+ Business Media B.V., 2009, pp. 233-260.

[125] J. Madsen, S. Mahadevan, K. Virk, and M. Gonzalez, "Network-on-Chip

Modeling for System-Level Multiprocessor Simulation," in Proceedings of

the 24th IEEE International Real-Time Systems Symposium: IEEE

Computer Society, 2003.

[126] P. Hastono, S. Klaus, and S. A. Huss, "An Integrated SystemC Framework

for Real-Time Scheduling Assessments On System Level," in Proceedings

of The 25th IEEE International Real-Time Systems Symposium (RTSS),

WIP Session, Lisbon, Portugal, 2004.

[127] P. A. Hartmann, H. Kleen, P. Reinkemeier, and W. Nebel, "Efficient

Modelling and Simulation of Embedded Software Multi-Tasking Using

SystemC and OSSS," in Specification, Verification and Design Languages,

2008. FDL 2008. Forum on, 2008, pp. 19-24.

[128] I. Bacivarov, A. Bouchhima, S. Yoo, and A. A. Jerraya, "ChronoSym: a

New Approach for Fast and Accurate SoC Cosimulation," International

Journal of Embedded Systems vol. 1, pp.103 - 111 2005.

 246

[129] S. Honda, T. Wakabayashi, H. Tomiyama, and H. Takada, "RTOS-Centric

Hardware/Software Cosimulator for Embedded System Design," in 2nd

IEEE/ACM/IFIP international conference on Hardware/software codesign

and system synthesis, Stockholm, Sweden, 2004.

[130] A. Bouchhima, S. Yoo, and A. Jerraya, "Fast and Accurate Timed

Execution of High Level Embedded Software using HW/SW Interface

Simulation Model," in Asia and South Pacific Design Automation

Conference 2004 (ASP-DAC'04), 2004, pp. 469-474.

[131] M.-K. Chung, S. Yang, S.-H. Lee, and C.-M. Kyung, "System-Level

HW/SW Co-Simulation Framework for Multiprocessor and Multithread

SoC," in VLSI Design, Automation and Test, 2005. (VLSI-TSA-DAT). 2005

IEEE VLSI-TSA International Symposium on, 2005, pp. 177-179.

[132] H. Posadas, E. Villar, F. Blasco, R. D. Ds, P. Tecnológico, and S. Paterna,

"Real-Time Operating System Modeling in SystemC for HW/SW co-

simulation," in Proceedings of Conference on Design of Circuits and

Integrated Systems, IST Lisbon, 2005.

[133] M. Krause and O. Bringmann, "Combination of Instruction Set Simulation

and Abstract RTOS Model Execution for Fast and Accurate Target

Software Evaluation," in 6th IEEE/ACM/IFIP International Conference on

Hardware/Software Codesign and System Synthesis: ACM New York, NY,

USA, 2008, pp. 143-148.

[134] R. Righter and J. C. Walrand, "Distributed Simulation of Discrete Event

Systems," Proceedings of the IEEE, vol. 77, pp.99-113, 1989.

[135] G. Schirner, Analysis and Optimization of Transaction Level Models for

Multi-Processor System-on-Chip Design, PhD Thesis, Electrical and

Computer Engineering, University Of California, Irvine, 2008

[136] H. Zabel and W. Müller, "An Efficient Time Annotation Technique in

Abstract RTOS Simulations for Multiprocessor Task Migration," in

Distributed Embedded Systems: Design, Middleware and Resources. vol.

271, IFIP International Federation for Information Processing, 2008, pp.

181-190.

[137] T. Meyerowitz, A. Sangiovanni-Vincentelli, M. Sauermann, and D.

Langen, "Source-Level Timing Annotation and Simulation for a

Heterogeneous Multiprocessor," in Conference on Design, Automation

and Test in Europe, 2008, pp. 276-279.

[138] A. Grigg and N. Audsley, "Reservation-Based Timing Analysis - a

Practical Engineering Approach for Distributed Real-Time Systems," in

Eighth Annual IEEE International Conference and Workshop on the

Engineering of Computer Based Systems (ECBS 2001), 2001, pp. 103-110.

 247

[139] S. Lippman and J. Lajoie, C++ Primer: Addison Wesley Longman

Publishing Co., Inc. Redwood City, CA, USA, 1998.

[140] Wikipedia, "Basic block," http://en.wikipedia.org/wiki/Basic_block.

[141] "Intel
®
 Performance Tuning Utility," Intel Corporation,

http://software.intel.com/en-us/articles/intel-performance-tuning-utility/.

[142] L. Cai, A. Gerstlauer, and D. Gajski, "Retargetable Profiling for Rapid,

Early System-Level Design Space Exploration," in Proceedings of the 41st

Design Automation Conference (DAC’04), 2004.

[143] J. Engblom, A. Ermedahl, M. Sjödin, J. Gustafsson, and H. Hansson,

"Worst-Case Execution-Time Analysis for Embedded Real-Time

Systems," International Journal on Software Tools for Technology

Transfer (STTT), vol. 4, pp.437-455, 2003.

[144] A. Colin and I. Puaut, "Worst-Case Execution Time Analysis of the

RTEMS Real-Time Operating System," 13th Euromicro Conference on

Real-Time Systems, 191–198, 2001.

[145] E. Bini and G. Buttazzo, "Measuring the Performance of Schedulability

Tests," Real-Time Systems, vol. 30, pp.129-154, 2005.

[146] "µVision IDE," KEIL, http://www.keil.com/uvision/.

[147] "QNX
®
 Neutrino

®
 RTOS," QNX Software Systems, http://www.qnx.com.

[148] Microsoft, "How To Use QueryPerformanceCounter to Time Code,"

http://support.microsoft.com/?scid=kb%3Ben-

us%3B172338&x=12&y=14.

[149] J. J. Labrosse, Microc/OS-II: The Real-Time Kernel: Cmp, 2002.

[150] "IEEE Std 1003.13-2003, IEEE Standard for Information Technology-

Standardized Application Environment Profile (AEP)-POSIX Realtime

and Embedded Application Support," The Institute of Electrical and

Electronics Engineers., 2004.

[151] "uITRON4.0 Specification," ITRON Committee, TRON Association,

http://www.assoc.tron.org/spec/itron/itron403e/mitron-403e.pdf, 2002.

[152] E. Lamie, Real-time embedded multithreading: using ThreadX and ARM:

Cmp Books, 2005.

[153] S. Yoo and A. A. Jerraya, "Introduction to Hardware Abstraction Layers

for SoC," in Embedded Software for SoC, A. A. Jerraya, S. Yoo, D.

Verkest, and N. Wehn, Eds.: Kluwer Academic Publishers, 2003, pp. 179-

186.

http://en.wikipedia.org/wiki/Basic_block
http://software.intel.com/en-us/articles/intel-performance-tuning-utility/
http://www.keil.com/uvision/
http://www.qnx.com/
http://support.microsoft.com/?scid=kb%3Ben-us%3B172338&x=12&y=14
http://support.microsoft.com/?scid=kb%3Ben-us%3B172338&x=12&y=14
http://www.assoc.tron.org/spec/itron/itron403e/mitron-403e.pdf

 248

[154] K. Popovici and A. Jerraya, "Hardware Abstraction Layer Introduction and

Overview," in Hardware Dependent Software -- Principles and Practice,

W. Ecker, W. Müller, and R. Dömer, Eds.: Springer Science + Business

Media B.V., 2009, pp. 67-94.

[155] R. Davis and A. Burns, "Hierarchical Fixed Priority Pre-Emptive

Scheduling," in 26th IEEE International Real-Time Systems Symposium

(RTSS 2005), 2005, p. 10.

[156] M. Behnam, T. Nolte, I. Shin, M. Asberg, and R. Bril, "Towards

hierarchical scheduling on top of VxWorks," in Proceedings of the Fourth

International Workshop on Operating Systems Platforms for Embedded

Real-Time Applications (OSPERT 2008), 2008, p. 63.

[157] "S.Ha.R.K.: Soft Hard Real-Time Kernel," http://shark.sssup.it/.

[158] F. Rammig, M. Ditze, P. Janacik, T. Heimfarth, T. Kerstan, S. Oberthuer,

and K. Stahl, "Basic Concepts of Real Time Operating Systems," in

Hardware Dependent Software -- Principles and Practice, W. Ecker, W.

Müller, and R. Dömer, Eds.: Springer Science + Business Media B.V.,

2009, pp. 14-45.

[159] P. A. Laplante, Real-Time Systems Design and Analysis, 3rd ed.: Wiley-

IEEE Press, 2004.

[160] Wikipedia, "Monolithic kernel,"

http://en.wikipedia.org/wiki/Monolithic_kernel.

[161] "VxWorks RTOS," Wind River, www.windriver.com.

[162] QNX Software Systems, "QNX Neutrino RTOS System Architecture,"

2007.

[163] Wikipedia, "Microkernel," http://en.wikipedia.org/wiki/Microkernel.

[164] A. Silberschatz, G. Gagne, and P. B. Galvin, Operating System Concepts,

6th ed.: Wiley, 2002.

[165] A. Burns, K. Tindell, and A. Wellings, "Effective Analysis for

Engineering Real-Time Fixed Priority Schedulers," IEEE Transactions on

Software Engineering, vol. 21, pp.475-480, 1995.

[166] J. A. Carbone, "RTOS Real-Time Performance vs. Ease Of Use: Assessing

performance needs of an application vs. other considerations," Express

Logic, Inc., http://www.rtos.com/page/imgpage.php?id=208.

[167] B. Doherty, "Determining Worst-Case RTOS Response Time," Green

Hills Software, http://www.rtcmagazine.com/articles/print_article/100152.

http://shark.sssup.it/
http://en.wikipedia.org/wiki/Monolithic_kernel
http://www.windriver.com/
http://en.wikipedia.org/wiki/Microkernel
http://www.rtos.com/page/imgpage.php?id=208
http://www.rtcmagazine.com/articles/print_article/100152

 249

[168] S. Baskiyar and N. Meghanathan, "A Survey of Contemporary Real-time

Operating Systems," Informatica vol. 29, pp.233-240, 2005.

[169] S. Heath, Embedded Systems Design, 2nd ed.: Newnes, 2003.

[170] D. Stepner, N. Rajan, and D. Hui, "Embedded application design using a

real-time OS," in Proceedings of the 36th ACM/IEEE conference on

Design automation New Orleans, Louisiana, United States: ACM Press,

1999.

[171] C. Liu and J. Layland, "Scheduling Algorithms for Multiprogramming in a

Hard-Real-Time Environment," Journal of the ACM (JACM), vol. 20,

pp.46-61, 1973.

[172] J. Leung and J. Whitehead, "On the Complexity of Fixed-Priority

Scheduling of Periodic Real-Time Tasks," Performance Evaluation, vol. 2,

pp.237-250, 1982.

[173] N. Audsley, "Optimal Priority Assignment and Feasibility of Static

Priority Tasks with Arbitrary Start Times," Technical Report YCS 164,

Department of Computer Science, Univerisity of York, 1991.

[174] N. Audsley, A. Burns, R. Davis, K. Tindell, and A. Wellings, "Fixed

Priority Pre-emptive Scheduling: An Historical Perspective," Real-Time

Systems, vol. 8, pp.173-198, 1995.

[175] B. Sprunt, L. Sha, and J. Lehoczky, "Aperiodic Task Scheduling for Hard-

Real-Time Systems," Real-Time Systems, vol. 1, pp.27-60, 1989.

[176] G. C. Buttazzo, "Rate Monotonic vs. EDF: Judgment Day," Real-Time

Systems, vol. 29, pp.5-26, 2005.

[177] "MaRTE OS (Minimal Real-Time Operating System for Embedded

Applications)," http://marte.unican.es/.

[178] "What Makes a Good RTOS," Dedicated Systems,

http://www.es2.be/encyc/BuyersGuide/RTOS/Evaluations/docspreview.as

p, 2001.

[179] L. Sha, R. Rajkumar, and J. P. Lehoczky, "Priority Inheritance Protocols:

an Approach to Real-Time Synchronization," IEEE Transactions on

Computers, vol. 39, pp.1175-1185, 1990.

[180] M. H. Klein and T. Ralya, "An Analysis of Input/Output Paradigms for

Real-Time Systems," Software Engineering Institute, Carnegie Mellon

University, 1990.

[181] J. Chen, On Synchronization Issues in Multiprocessor Real-Time Systems,

PhD Thesis, Department of Computer Science, University of York, York,

UK, 1998

http://marte.unican.es/
http://www.es2.be/encyc/BuyersGuide/RTOS/Evaluations/docspreview.asp
http://www.es2.be/encyc/BuyersGuide/RTOS/Evaluations/docspreview.asp

 250

[182] "Real-Time Executive for Multiprocessor Systems (RTEMS)," OAR

Corporation, http://www.rtems.com/.

[183] W. Shi, Implementation and Performance of POSIX Sporadic Server

Scheduling In RTLinux, Master of Science Thesis, Department of

Computer Science, THE FLORIDA STATE UNIVERSITY, 2001

[184] "QNX Neutrino RTOS System Architecture," QNX Software Systems,

http://www.qnx.com/download/feature.html?programid=9342.

[185] S. Mahadevan, K. Virk, and J. Madsen, "ARTS: A SystemC-Based

Framework for Multiprocessor Systems-on-Chip Modelling," Design

Automation for Embedded Systems, vol. 11, pp.285-311, December, 2007.

[186] S. Yoo, I. Bacivarov, A. Bouchhima, Y. Paviot, and A. A. Jerraya,

"Building Fast and Accurate SW Simulation Models Based on Hardware

Abstraction Layer and Simulation Environment abstraction layer," Design,

Automation and Test in Europe Conference and Exhibition, 2003, 550-555,

2003.

[187] S. Furber, ARM System-on-Chip Architecture: Addison-Wesley

Professional, 2000.

[188] "CoWare Commits Support for SystemC TLM-2.0 Standard," CoWare,

http://www.coware.com/news/press664.htm.

[189] "ARM's IP and OSCI TLM 2.0," ARM,

http://www.nascug.org/events/8th/nascug_8_paper_5.pdf.

http://www.rtems.com/
http://www.qnx.com/download/feature.html?programid=9342
http://www.coware.com/news/press664.htm
http://www.nascug.org/events/8th/nascug_8_paper_5.pdf

	Abstract
	Table of Contents
	List of Tables
	List of Figures
	List of Acronyms
	Acknowledgements
	Declaration
	Chapter 1 Introduction
	1.1 General Background
	1.2 Challenges in Embedded System Design
	1.3 System-Level Design Methodologies
	1.3.1 Raising Abstraction Levels
	1.3.2 Orthogonal Concepts in System-Level Design
	1.3.3 System-Level Design Flows

	1.4 System-Level Design Languages
	1.4.1 SystemC
	1.4.2 SpecC
	1.4.3 SystemVerilog

	1.5 Software Simulation in System-Level Design
	1.5.1 Instruction Set Software Simulation
	1.5.2 Behavioural Software Simulation

	1.6 Research Objective and Contribution
	1.6.1 Timed Software Simulation
	1.6.2 RTOS Modelling
	1.6.3 Interrupt Handling
	1.6.4 Research Hypothesis and Objectives
	1.6.5 Research Contributions and Methods

	1.7 Organisation of the Thesis

	Chapter 2 Literature Review: Transaction-Level Modelling and System-Level RTOS Simulation
	2.1 Transaction-Level Modelling and Simulation
	2.1.1 Abstraction Levels and Models in TLM
	2.1.1.1 OSCI TLM Abstraction Levels
	2.1.1.2 Donlin’s Extended TLM Abstraction Levels
	2.1.1.3 Cai and Gajski’s Orthogonal TLM Modelling Graph
	2.1.1.4 Mixed-Level and Multiple-Level TLM Modelling Research
	2.1.1.5 Summary

	2.1.2 Communication Modelling in TLM
	2.1.3 Embedded Software Development with TLM
	2.1.3.1 ISS SW Simulation with TLM SW/HW Interfaces
	2.1.3.2 Embedded Software Generation Using TLM Models
	2.1.3.3 TLM Modelling of Software Processing Element

	2.2 The SystemC Language
	2.2.1 SystemC Language Features
	2.2.2 SystemC Discrete Event Simulation Kernel
	2.2.2.1 The Co-operative Simulation Engine
	2.2.2.2 Advantages and Disadvantages for Real-time Software Modelling
	2.2.2.3 Discussions on Simulation Time

	2.2.3 A SystemC SW/HW System Example

	2.3 RTOS Modelling and Simulation in System-level Design
	2.3.1 Coarse-Grained Timed Abstract RTOS Modelling
	2.3.2 Fine-Grained Timed Native-Code RTOS Simulation
	2.3.3 ISS-based RTOS Simulation
	2.3.4 The Proposed RTOS Simulation Model

	2.4 Summary

	Chapter 3 Mixed Timing Real-Time Embedded Software Modelling and Simulation
	3.1 Issues in Software Timing Simulation
	3.1.1 Annotation-Dependent Time Advance
	3.1.2 Fine-Grained Time Annotation
	3.1.3 Multiple-Grained Time Annotation
	3.1.4 Result Oriented Modelling

	3.2 The Mixed Timing Approach
	3.2.1 Separating and Mixing Timing Issues
	3.2.2 TLM Software Computation Modelling
	3.2.2.1 Comparison with the OSCI TLM-2.0 Standard

	3.2.3 Defining Software Models
	3.2.3.1 Abstract Software Models
	3.2.3.2 Native-Code Software Models

	3.2.4 Techniques for Improving Simulation Performance
	3.2.4.1 Reducing the Number of Time Annotations
	3.2.4.2 Reducing the Number of Time Advance Points

	3.2.5 Application Software Performance Estimation
	3.2.5.1 Static Timing Analysis Method
	3.2.5.2 Statistical Methods
	3.2.5.3 Dynamic Simulation-Based Method

	3.2.6 RTOS Performance Estimation
	3.2.6.1 The Scaling Parameter Method
	3.2.6.2 The Benchmark Method
	3.2.6.3 The ISS-based Measurement Method

	3.2.7 Timing Issues in Software Simulation
	3.2.7.1 The Variable-Step Time Advance Method
	3.2.7.2 The Fixed-Step Time Advance Method
	3.2.7.3 Timing Accuracy of Simulation

	3.3 The Live CPU Model
	3.3.1 The HW Part of the SW Processing Element Model
	3.3.2 The Virtual Registers Model
	3.3.3 The Interrupt Controller Model
	3.3.4 The Live CPU Simulation Engine
	3.3.4.1 Software Prerequisites of the Live CPU Simulation Engine
	3.3.4.2 Operation of the Live CPU Simulation Engine

	3.4 Evaluation Metrics
	3.4.1 Simulation Performance Metric
	3.4.2 Simulation Accuracy Metrics
	3.4.2.1 Functional Accuracy
	3.4.2.2 Timing Accuracy

	3.5 Experimental Results
	3.5.1 Performance Evaluation
	3.5.1.1 Simulation Performance of Different Timing Models
	3.5.1.2 Simulation Performance of Varying Time Advance Methods

	3.5.2 Accuracy Evaluation
	3.5.2.1 Experimental Timing Accuracy
	3.5.2.2 Timing Accuracy of Basic Operations

	3.6 Summary

	Chapter 4 A Generic and Accurate RTOS-Centric Software Simulation Model
	4.1 Motivation and Contribution
	4.2 Research Context and Assumptions
	4.3 The Embedded Software Stack Model
	4.4 Common RTOS Concepts and Features
	4.4.1 “Real-Time” Features of Embedded Applications
	4.4.2 RTOS Kernel Structures
	4.4.3 RTOS Requirements and Modelling Guidance
	4.4.3.1 Predictable and Responsive Timing Behaviour
	4.4.3.2 Multi-Tasking Management
	4.4.3.3 Pre-Emptive and Priority-Based Scheduling
	4.4.3.4 Sufficient Priority Levels
	4.4.3.5 Resource Access Control Protocols
	4.4.3.6 Summary of RTOS Features in the Model

	4.5 The Real-Time Embedded Software Simulation Model
	4.5.1 Simulation Model Structure
	4.5.1.1 Software Layers
	4.5.1.2 Hardware Layer
	4.5.1.3 Structure of SystemC Models

	4.5.2 Application Software Modelling
	4.5.2.1 Abstract Task Model
	4.5.2.2 Native-Code Task Model

	4.5.3 RTOS Task/Thread and Process Modelling
	4.5.3.1 Task/Thread Model
	4.5.3.2 Optional Process Model

	4.5.4 Multi-Tasking Management Modelling
	4.5.4.1 Task State Machine
	4.5.4.2 Task Queues
	4.5.4.3 Task Services

	4.5.5 Scheduler Modelling
	4.5.5.1 The Priority Assignment and the FPS Scheduling Model
	4.5.5.2 Implementation of the FPS Scheduler in the SystemC Model
	4.5.5.3 Time-Driven and Event-Driven Scheduling
	4.5.5.4 Supporting the Dynamic-Priority EDF Algorithm

	4.5.6 Task Synchronisation and Communication Modelling
	4.5.6.1 The Event Control Block
	4.5.6.2 Modelling Semaphores
	4.5.6.3 Modelling Mutexes
	4.5.6.4 Modelling Message Queues

	4.5.7 Interrupt Handling Modelling
	4.5.7.1 Basic Concepts of Interrupt Handling
	4.5.7.2 The RTOS Interrupt Handling Model

	4.5.8 HAL Modelling
	4.5.8.1 Delay Information Injecting Services
	4.5.8.2 Context Switch Services
	4.5.8.3 Interrupt Related Services

	4.5.9 General Modelling Methods for RTOS Services
	4.5.9.1 Modelling Functionality of RTOS Services
	4.5.9.2 Modelling RTOS Timing Overheads

	4.6 Evaluation Metrics
	4.6.1 Simulation Performance Metrics
	4.6.2 Simulation Accuracy Metrics
	4.6.2.1 Functional Accuracy
	4.6.2.2 Timing Accuracy

	4.7 Experimental Results
	4.7.1 Multi-Tasking Simulation with (C/OS-II RTOS
	4.7.2 Interrupt Simulation with RTX RTOS

	4.8 Summary

	Chapter 5 Extending the Software PE Model with TLM Communication Interfaces
	5.1 Integrating OSCI TLM-2.0 Interfaces
	5.1.1 The OSCI TLM-2.0 Standard
	5.1.2 TLM Constructs in the Software PE Model
	5.1.3 The TLM System-on-Chip Model
	5.1.3.1 Initiator Modules
	5.1.3.2 Target Modules
	5.1.3.3 Combined Initiator/Target Module
	5.1.3.4 Interconnection
	5.1.3.5 Communication Protocol

	5.2 Experiments
	5.2.1 Performance Study of TLM Models
	5.2.2 DMA-Based I/O Simulation

	5.3 Summary

	Chapter 6 Conclusions and Future Work
	6.1 Summary of Contributions
	6.2 Conclusions
	6.2.1 The Mixed Timing Approach
	6.2.2 The Live CPU Model
	6.2.3 The RTOS-Centric Real-Time Software Simulation Model
	6.2.4 Extending Software Models for TLM Communication

	6.3 Future Work
	6.3.1 Improving Timing Modelling Techniques
	6.3.2 Enriching RTOS Model Features
	6.3.3 Multi-Processor RTOS Modelling

	Bibliography

