

Real-Time Operating System

Modelling and Simulation

Using SystemC

Ke Yu

Submitted for the degree of Doctor of Philosophy

Department of Computer Science

June 2010

 iii

Abstract

Increasing system complexity and stringent time-to-market pressure bring chal-

lenges to the design productivity of real-time embedded systems. Various System-

Level Design (SLD), System-Level Design Languages (SLDL) and Transaction-

Level Modelling (TLM) approaches have been proposed as enabling tools for

real-time embedded system specification, simulation, implementation and verifi-

cation. SLDL-based Real-Time Operating System (RTOS) modelling and simula-

tion are key methods to understand dynamic scheduling and timing issues in real-

time software behavioural simulation during SLD. However, current SLDL-based

RTOS simulation approaches do not support real-time software simulation ade-

quately in terms of both functionality and accuracy, e.g., simplistic RTOS func-

tionality or annotation-dependent software time advance.

This thesis is concerned with SystemC-based behavioural modelling and simu-

lation of real-time embedded software, focusing upon RTOSs. The RTOS-centric

simulation approach can support flexible, fast and accurate real-time software tim-

ing and functional simulation. They can help software designers to undertake real-

time software prototyping at early design phases.

The contributions in this thesis are fourfold.

Firstly, we propose a mixed timing real-time software modelling and simula-

tion approach with various timing related techniques, which are suitable for early

software modelling and simulation. We show that this approach not only avoids

the accuracy drawback in some existing methods but also maintains a high simu-

lation performance.

Secondly, we propose a Live CPU Model to assist software behavioural timing

modelling and simulation. It supports interruptible and accurate software timing

simulation in SystemC and extends modelling capability of the mixed timing ap-

proach for HW/SW interactions.

 iv

Thirdly, we propose a RTOS-centric real-time embedded software simulation

model. It provides a systematic approach for building modular software (including

both application tasks and RTOS) simulation models in SystemC. It flexibly sup-

ports mixed timing application task models. The functions and timing overheads

of the RTOS model are carefully designed and considered. We show that the

RTOS-centric model is both convenient and accurate for real-time software simu-

lation.

Fourthly, we integrate TLM communication interfaces in the software models,

which extend the proposed RTOS-centric software simulation model for SW/HW

inter-module TLM communication modelling.

As a whole, this thesis focuses on RTOS and real-time software modelling and

simulation in the context of SystemC-based SLD and provides guidance to soft-

ware developers about how to utilise this approach in their real-time software de-

velopment. The various aspects of research work in this thesis constitute an inte-

grated software Processing Element (PE) model, interoperable with existing TLM

hardware and communication modelling.

 v

Table of Contents

Abstract ...iii

Table of Contents .. v

List of Tables .. ix

List of Figures ... xi

List of Acronyms ... xv

Acknowledgements ... xix

Declaration ... xxi

Chapter 1 Introduction ... 1

1.1 General Background ... 1

1.2 Challenges in Embedded System Design .. 5

1.3 System-Level Design Methodologies ... 7

1.3.1 Raising Abstraction Levels ... 7

1.3.2 Orthogonal Concepts in System-Level Design ... 8

1.3.3 System-Level Design Flows ... 9

1.4 System-Level Design Languages .. 12

1.4.1 SystemC .. 12

1.4.2 SpecC .. 14

1.4.3 SystemVerilog .. 14

1.5 Software Simulation in System-Level Design .. 15

1.5.1 Instruction Set Software Simulation ... 15

1.5.2 Behavioural Software Simulation ... 17

1.6 Research Objective and Contribution ... 18

1.6.1 Timed Software Simulation .. 19

1.6.2 RTOS Modelling .. 19

1.6.3 Interrupt Handling .. 20

1.6.4 Research Hypothesis and Objectives .. 21

1.6.5 Research Contributions and Methods ... 23

1.7 Organisation of the Thesis .. 25

 vi

Chapter 2 Literature Review: Transaction-Level Modelling and System-Level RTOS

Simulation .. 27

2.1 Transaction-Level Modelling and Simulation ... 28

2.1.1 Abstraction Levels and Models in TLM ... 30

2.1.2 Communication Modelling in TLM .. 35

2.1.3 Embedded Software Development with TLM .. 39

2.2 The SystemC Language .. 43

2.2.1 SystemC Language Features ... 44

2.2.2 SystemC Discrete Event Simulation Kernel ... 46

2.2.3 A SystemC SW/HW System Example .. 51

2.3 RTOS Modelling and Simulation in System-level Design 54

2.3.1 Coarse-Grained Timed Abstract RTOS Modelling 55

2.3.2 Fine-Grained Timed Native-Code RTOS Simulation 58

2.3.3 ISS-based RTOS Simulation ... 60

2.3.4 The Proposed RTOS Simulation Model ... 61

2.4 Summary ... 62

Chapter 3 Mixed Timing Real-Time Embedded Software Modelling and Simulation 65

3.1 Issues in Software Timing Simulation .. 68

3.1.1 Annotation-Dependent Time Advance.. 68

3.1.2 Fine-Grained Time Annotation ... 70

3.1.3 Multiple-Grained Time Annotation .. 71

3.1.4 Result Oriented Modelling .. 72

3.2 The Mixed Timing Approach .. 75

3.2.1 Separating and Mixing Timing Issues ... 76

3.2.2 TLM Software Computation Modelling ... 77

3.2.3 Defining Software Models .. 80

3.2.4 Techniques for Improving Simulation Performance 87

3.2.5 Application Software Performance Estimation 90

3.2.6 RTOS Performance Estimation ... 93

3.2.7 Timing Issues in Software Simulation .. 95

3.3 The Live CPU Model .. 99

3.3.1 The HW Part of the SW Processing Element Model 99

3.3.2 The Virtual Registers Model ... 101

3.3.3 The Interrupt Controller Model ... 102

3.3.4 The Live CPU Simulation Engine ... 103

3.4 Evaluation Metrics .. 109

3.4.1 Simulation Performance Metric .. 110

3.4.2 Simulation Accuracy Metrics .. 110

 vii

3.5 Experimental Results .. 112

3.5.1 Performance Evaluation .. 113

3.5.2 Accuracy Evaluation ... 119

3.6 Summary ... 121

Chapter 4 A Generic and Accurate RTOS-Centric Software Simulation Model 125

4.1 Motivation and Contribution ... 126

4.2 Research Context and Assumptions .. 127

4.3 The Embedded Software Stack Model .. 129

4.4 Common RTOS Concepts and Features .. 132

4.4.1 ñReal-Timeò Features of Embedded Applications 132

4.4.2 RTOS Kernel Structures ... 134

4.4.3 RTOS Requirements and Modelling Guidance 136

4.5 The Real-Time Embedded Software Simulation Model 150

4.5.1 Simulation Model Structure .. 150

4.5.2 Application Software Modelling... 155

4.5.3 RTOS Task/Thread and Process Modelling.. 159

4.5.4 Multi -Tasking Management Modelling .. 165

4.5.5 Scheduler Modelling ... 172

4.5.6 Task Synchronisation and Communication Modelling 180

4.5.7 Interrupt Handling Modelling ... 188

4.5.8 HAL Modelling .. 194

4.5.9 General Modelling Methods for RTOS Services 197

4.6 Evaluation Metrics .. 202

4.6.1 Simulation Performance Metrics .. 202

4.6.2 Simulation Accuracy Metrics ... 203

4.7 Experimental Results .. 204

4.7.1 Multi -Tasking Simulation with mC/OS-II RTOS.................................. 204

4.7.2 Interrupt Simulation with RTX RTOS .. 207

4.8 Summary ... 210

Chapter 5 Extending the Software PE Model with TLM Communication Interfaces 213

5.1 Integrating OSCI TLM-2.0 Interfaces ... 215

5.1.1 The OSCI TLM-2.0 Standard ... 215

5.1.2 TLM Constructs in the Software PE Model.. 216

5.1.3 The TLM System-on-Chip Model .. 218

5.2 Experiments .. 221

5.2.1 Performance Study of TLM Models ... 221

5.2.2 DMA-Based I/O Simulation ... 223

5.3 Summary ... 226

 viii

Chapter 6 Conclusions and Future Work ... 227

6.1 Summary of Contributions .. 227

6.2 Conclusions ... 229

6.2.1 The Mixed Timing Approach ... 229

6.2.2 The Live CPU Model .. 230

6.2.3 The RTOS-Centric Real-Time Software Simulation Model 230

6.2.4 Extending Software Models for TLM Communication 231

6.3 Future Work .. 232

6.3.1 Improving Timing Modelling Techniques .. 232

6.3.2 Enriching RTOS Model Features .. 232

6.3.3 Multi -Processor RTOS Modelling .. 233

Bibliography .. 235

 ix

List of Tables

Table 2-1. Modelling and simulation speed comparisons [3]... 29

Table 2-2. SystemC code of a HW module ... 51

Table 2-3. SystemC code of a SW PE module .. 52

Table 2-4. SystemC code of the main function ... 53

Table 3-1. Abstract software models and coarse-grained time annotations 83

Table 3-2. Native-code software models and fine-grained time annotations 85

Table 3-3. Reducing number of time annotations ... 88

Table 3-4. Reducing number of time advance points .. 89

Table 3-5. Basic RTOS actions and their relative execution times [2].. 93

Table 3-6. RTX RTOS timing specification [1] .. 94

Table 3-7. µC/OS-II RTOS timing specifications ... 94

Table 3-8. Virtual Registers .. 102

Table 3-9. Sensitivity list of the Live CPU Simulation Engine ... 104

Table 3-10. Descriptions of experimental cases .. 114

Table 3-11. Timing accuracy of native-code models .. 119

Table 3-12. Comparison of theoretical and measured interrupt latencies 121

Table 4-1. Multi-tasking models in some RTOS standards and products 141

Table 4-2. Scheduling policies in some standards and RTOSs ... 144

Table 4-3. Priority levels in some standards and RTOSs .. 145

Table 4-4. Resource access protocols in some standards and RTOSs ... 147

Table 4-5. The abstract periodic task model ... 156

Table 4-6. The native-code task model ... 158

Table 4-7. Two task examples in ThreadX RTOS and ɛC/OS-II RTOS....................................... 159

Table 4-8. Task (Thread) Control Block ... 161

Table 4-9. Process Control Block.. 164

Table 4-10. Task services in the RTOS model and some RTOSs ... 170

Table 4-11. Implementation of task services ... 171

Table 4-12. Event control block (ECB) and management primiitves.. 181

Table 4-13. Example code of wait and signal primitives .. 182

Table 4-14. Semaphore services in the RTOS model and some RTOSs 183

Table 4-15 POSIX-like semaphore APIs in the RTOS model .. 184

file:///D:/Kernel/Documents/thesis/final/combined%20-%202nd.docx%23_Toc273083834
file:///D:/Kernel/Documents/thesis/final/combined%20-%202nd.docx%23_Toc273083835
file:///D:/Kernel/Documents/thesis/final/combined%20-%202nd.docx%23_Toc273083836
file:///D:/Kernel/Documents/thesis/final/combined%20-%202nd.docx%23_Toc273083837
file:///D:/Kernel/Documents/thesis/final/combined%20-%202nd.docx%23_Toc273083838
file:///D:/Kernel/Documents/thesis/final/combined%20-%202nd.docx%23_Toc273083839
file:///D:/Kernel/Documents/thesis/final/combined%20-%202nd.docx%23_Toc273083840
file:///D:/Kernel/Documents/thesis/final/combined%20-%202nd.docx%23_Toc273083841
file:///D:/Kernel/Documents/thesis/final/combined%20-%202nd.docx%23_Toc273083842
file:///D:/Kernel/Documents/thesis/final/combined%20-%202nd.docx%23_Toc273083843
file:///D:/Kernel/Documents/thesis/final/combined%20-%202nd.docx%23_Toc273083844
file:///D:/Kernel/Documents/thesis/final/combined%20-%202nd.docx%23_Toc273083845
file:///D:/Kernel/Documents/thesis/final/combined%20-%202nd.docx%23_Toc273083846
file:///D:/Kernel/Documents/thesis/final/combined%20-%202nd.docx%23_Toc273083847
file:///D:/Kernel/Documents/thesis/final/combined%20-%202nd.docx%23_Toc273083848
file:///D:/Kernel/Documents/thesis/final/combined%20-%202nd.docx%23_Toc273083849
file:///D:/Kernel/Documents/thesis/final/combined%20-%202nd.docx%23_Toc273083850
file:///D:/Kernel/Documents/thesis/final/combined%20-%202nd.docx%23_Toc273083851
file:///D:/Kernel/Documents/thesis/final/combined%20-%202nd.docx%23_Toc273083852
file:///D:/Kernel/Documents/thesis/final/combined%20-%202nd.docx%23_Toc273083853
file:///D:/Kernel/Documents/thesis/final/combined%20-%202nd.docx%23_Toc273083854
file:///D:/Kernel/Documents/thesis/final/combined%20-%202nd.docx%23_Toc273083855
file:///D:/Kernel/Documents/thesis/final/combined%20-%202nd.docx%23_Toc273083856
file:///D:/Kernel/Documents/thesis/final/combined%20-%202nd.docx%23_Toc273083857
file:///D:/Kernel/Documents/thesis/final/combined%20-%202nd.docx%23_Toc273083858
file:///D:/Kernel/Documents/thesis/final/combined%20-%202nd.docx%23_Toc273083859
file:///D:/Kernel/Documents/thesis/final/combined%20-%202nd.docx%23_Toc273083860
file:///D:/Kernel/Documents/thesis/final/combined%20-%202nd.docx%23_Toc273083861
file:///D:/Kernel/Documents/thesis/final/combined%20-%202nd.docx%23_Toc273083862
file:///D:/Kernel/Documents/thesis/final/combined%20-%202nd.docx%23_Toc273083863
file:///D:/Kernel/Documents/thesis/final/combined%20-%202nd.docx%23_Toc273083864

 x

Table 4-16. SystemC implementation code of the sem_wait() function .. 184

Table 4-17. Mutex services in the RTOS model and some RTOSs ... 186

Table 4-18 POSIX-like mutex APIs in the RTOS model .. 186

Table 4-19. Message queue services in the RTOS model and some RTOSs 188

Table 4-20. POSIX-like message queue APIs in the RTOS model ... 188

Table 4-21. Time advance methods for RTOS services .. 201

Table 4-22. Accuracy loss of the RTOS-centric simulation compared with ISS........................... 207

Table 4-23. Simulation speed comparison... 208

Table 4-24. Interrupt handling in the RTOS-centric simulator.. 209

Table 4-25. Timing accuracy losses .. 210

Table 5-1. TLM implementation in the software PE model .. 217

Table 5-2. LT and AT targets .. 219

Table 5-3. Implementation of the DMA controller.. 220

file:///D:/Kernel/Documents/thesis/final/combined%20-%202nd.docx%23_Toc273083865
file:///D:/Kernel/Documents/thesis/final/combined%20-%202nd.docx%23_Toc273083866
file:///D:/Kernel/Documents/thesis/final/combined%20-%202nd.docx%23_Toc273083867
file:///D:/Kernel/Documents/thesis/final/combined%20-%202nd.docx%23_Toc273083868
file:///D:/Kernel/Documents/thesis/final/combined%20-%202nd.docx%23_Toc273083869
file:///D:/Kernel/Documents/thesis/final/combined%20-%202nd.docx%23_Toc273083870
file:///D:/Kernel/Documents/thesis/final/combined%20-%202nd.docx%23_Toc273083871
file:///D:/Kernel/Documents/thesis/final/combined%20-%202nd.docx%23_Toc273083872
file:///D:/Kernel/Documents/thesis/final/combined%20-%202nd.docx%23_Toc273083873
file:///D:/Kernel/Documents/thesis/final/combined%20-%202nd.docx%23_Toc273083874
file:///D:/Kernel/Documents/thesis/final/combined%20-%202nd.docx%23_Toc273083875
file:///D:/Kernel/Documents/thesis/final/combined%20-%202nd.docx%23_Toc273083876
file:///D:/Kernel/Documents/thesis/final/combined%20-%202nd.docx%23_Toc273083877

 xi

List of Figures

Figure 1-1. Typical layers of an embedded system ... 2

Figure 1-2. Embedded software size increases in industry (reprint [5] [10]) 5

Figure 1-3. The hardware-first design process .. 5

Figure 1-4. Gaps between the design complexity and productivity (reprint [4]) 6

Figure 1-5. A system-level design flow .. 10

Figure 1-6. Interpretive instruction set software simulation .. 16

Figure 1-7. The SLDL-based behavioural software simulation .. 18

Figure 2-1. Various TLM abstraction levels (partially based on [7]) ... 31

Figure 2-2. An AMBA TLM model example ... 36

Figure 2-3. TLM Interface Method Call Communication ... 37

Figure 2-4. TLM technique for modelling SW/HW interfaces ... 40

Figure 2-5. Software generation using TLM models .. 41

Figure 2-6. Software processing element modelling in TLM.. 42

Figure 2-7. SystemC language structure ... 44

Figure 2-8. SystemC kernel working procedure .. 47

Figure 2-9. Block diagram of a SystemC example .. 51

Figure 2-10. Non-pre-emptible execution ... 53

Figure 2-11. Three types of RTOS simulation models .. 55

Figure 3-1. Mixed timing software modelling and simulation .. 67

Figure 3-2. Annotation-dependent time advance method ... 69

Figure 3-3. Fine-grained timing annotation... 71

Figure 3-4. The Result Oriented Modelling approach ... 73

Figure 3-5. Successive corrective wait-for-delay statements .. 75

Figure 3-6. Related SW modelling abstraction level definitions (reprint [6] [9]) 78

Figure 3-7. OSCI TLM-2.0 models and proposed TLM software models 79

Figure 3-8. Execution trace of an abstract task software model .. 84

Figure 3-9. Unmatched real execution and simulation traces.. 86

Figure 3-10. A ñwhileò loop example ... 87

Figure 3-11. µVision software profiler ... 92

Figure 3-12. The variable-step time advance method ... 96

Figure 3-13. The fixed-step time advance method .. 97

file:///D:/Kernel/Documents/thesis/final/combined%20-%202nd.docx%23_Toc273083878
file:///D:/Kernel/Documents/thesis/final/combined%20-%202nd.docx%23_Toc273083879
file:///D:/Kernel/Documents/thesis/final/combined%20-%202nd.docx%23_Toc273083880
file:///D:/Kernel/Documents/thesis/final/combined%20-%202nd.docx%23_Toc273083881
file:///D:/Kernel/Documents/thesis/final/combined%20-%202nd.docx%23_Toc273083882
file:///D:/Kernel/Documents/thesis/final/combined%20-%202nd.docx%23_Toc273083883
file:///D:/Kernel/Documents/thesis/final/combined%20-%202nd.docx%23_Toc273083884
file:///D:/Kernel/Documents/thesis/final/combined%20-%202nd.docx%23_Toc273083885
file:///D:/Kernel/Documents/thesis/final/combined%20-%202nd.docx%23_Toc273083886
file:///D:/Kernel/Documents/thesis/final/combined%20-%202nd.docx%23_Toc273083887
file:///D:/Kernel/Documents/thesis/final/combined%20-%202nd.docx%23_Toc273083888
file:///D:/Kernel/Documents/thesis/final/combined%20-%202nd.docx%23_Toc273083889
file:///D:/Kernel/Documents/thesis/final/combined%20-%202nd.docx%23_Toc273083890
file:///D:/Kernel/Documents/thesis/final/combined%20-%202nd.docx%23_Toc273083891
file:///D:/Kernel/Documents/thesis/final/combined%20-%202nd.docx%23_Toc273083892
file:///D:/Kernel/Documents/thesis/final/combined%20-%202nd.docx%23_Toc273083893
file:///D:/Kernel/Documents/thesis/final/combined%20-%202nd.docx%23_Toc273083894
file:///D:/Kernel/Documents/thesis/final/combined%20-%202nd.docx%23_Toc273083895
file:///D:/Kernel/Documents/thesis/final/combined%20-%202nd.docx%23_Toc273083896
file:///D:/Kernel/Documents/thesis/final/combined%20-%202nd.docx%23_Toc273083897
file:///D:/Kernel/Documents/thesis/final/combined%20-%202nd.docx%23_Toc273083898
file:///D:/Kernel/Documents/thesis/final/combined%20-%202nd.docx%23_Toc273083899
file:///D:/Kernel/Documents/thesis/final/combined%20-%202nd.docx%23_Toc273083900
file:///D:/Kernel/Documents/thesis/final/combined%20-%202nd.docx%23_Toc273083901
file:///D:/Kernel/Documents/thesis/final/combined%20-%202nd.docx%23_Toc273083902
file:///D:/Kernel/Documents/thesis/final/combined%20-%202nd.docx%23_Toc273083903
file:///D:/Kernel/Documents/thesis/final/combined%20-%202nd.docx%23_Toc273083904
file:///D:/Kernel/Documents/thesis/final/combined%20-%202nd.docx%23_Toc273083905
file:///D:/Kernel/Documents/thesis/final/combined%20-%202nd.docx%23_Toc273083906
file:///D:/Kernel/Documents/thesis/final/combined%20-%202nd.docx%23_Toc273083907
file:///D:/Kernel/Documents/thesis/final/combined%20-%202nd.docx%23_Toc273083908

 xii

Figure 3-14. Hardware part of the software PE model .. 100

Figure 3-15. Interrupt Controller Model .. 103

Figure 3-16. Real CPU execution and Live CPU simulation .. 104

Figure 3-17. Operations of the Live CPU Simulation Engine ... 106

Figure 3-18. Simulation time results ... 115

Figure 3-19. Simulation time comparison ... 117

Figure 3-20. Comparison of varying fixed-step lengths .. 118

Figure 3-21. Interrupt handling experiment ... 120

Figure 4-1. Software part of the software PE model ... 127

Figure 4-2. Embedded software stack and its abstract model .. 130

Figure 4-3. Timing parameters of a real-time task .. 133

Figure 4-4. Block diagrams of two RTOS kernel approaches ... 135

Figure 4-5. Two definitions of interrupt latency and task switching latency 138

Figure 4-6. The classical three-state task state machine .. 140

Figure 4-7. Structure of the software PE model .. 150

Figure 4-8. SystemC implementation of the software PE simulation model 154

Figure 4-9. Defining a RTOS task model .. 160

Figure 4-10. Initialising TCBs ... 163

Figure 4-11. Task state machines: reprint A [8] [11], B [12] .. 166

Figure 4-12. The proposed four-state extensible task state machine ... 167

Figure 4-13. A priority-descending doubly linked task queue .. 169

Figure 4-14. Priority setting in the RTOS task model ... 173

Figure 4-15. FPS scheduler working flow ... 175

Figure 4-16. Tick scheduling model .. 177

Figure 4-17 Calculating absolute deadlines of tasks in simulation .. 179

Figure 4-18 Message queue control block ... 187

Figure 4-19 RTOS-assisted (non-vectored) interrupt handling model .. 191

Figure 4-20. Vector-based interrupt handling model... 193

Figure 4-21. TIMA laboratoryôs HAL modelling work .. 194

Figure 4-22. Context switch service .. 196

Figure 4-23. Unmatched RTOS service execution and simulation traces 199

Figure 4-24. Evaluating the timing accuracy by comparing traces ... 203

Figure 4-25. Experiment setup .. 204

Figure 4-26. Simulation speed comparison ... 205

Figure 4-27. Simulation output comparison .. 206

Figure 4-28. Simulation timing accuracy comparison ... 206

Figure 4-29. Interrupt handling experiment ... 208

Figure 4-30. RTX interrupt handling in the ISS .. 209

Figure 4-31. Simulation timing accuracy comparison ... 210

file:///D:/Kernel/Documents/thesis/final/combined%20-%202nd.docx%23_Toc273083909
file:///D:/Kernel/Documents/thesis/final/combined%20-%202nd.docx%23_Toc273083910
file:///D:/Kernel/Documents/thesis/final/combined%20-%202nd.docx%23_Toc273083911
file:///D:/Kernel/Documents/thesis/final/combined%20-%202nd.docx%23_Toc273083912
file:///D:/Kernel/Documents/thesis/final/combined%20-%202nd.docx%23_Toc273083913
file:///D:/Kernel/Documents/thesis/final/combined%20-%202nd.docx%23_Toc273083914
file:///D:/Kernel/Documents/thesis/final/combined%20-%202nd.docx%23_Toc273083915
file:///D:/Kernel/Documents/thesis/final/combined%20-%202nd.docx%23_Toc273083916
file:///D:/Kernel/Documents/thesis/final/combined%20-%202nd.docx%23_Toc273083917
file:///D:/Kernel/Documents/thesis/final/combined%20-%202nd.docx%23_Toc273083918
file:///D:/Kernel/Documents/thesis/final/combined%20-%202nd.docx%23_Toc273083919
file:///D:/Kernel/Documents/thesis/final/combined%20-%202nd.docx%23_Toc273083920
file:///D:/Kernel/Documents/thesis/final/combined%20-%202nd.docx%23_Toc273083921
file:///D:/Kernel/Documents/thesis/final/combined%20-%202nd.docx%23_Toc273083922
file:///D:/Kernel/Documents/thesis/final/combined%20-%202nd.docx%23_Toc273083923
file:///D:/Kernel/Documents/thesis/final/combined%20-%202nd.docx%23_Toc273083924
file:///D:/Kernel/Documents/thesis/final/combined%20-%202nd.docx%23_Toc273083925
file:///D:/Kernel/Documents/thesis/final/combined%20-%202nd.docx%23_Toc273083926
file:///D:/Kernel/Documents/thesis/final/combined%20-%202nd.docx%23_Toc273083927
file:///D:/Kernel/Documents/thesis/final/combined%20-%202nd.docx%23_Toc273083928
file:///D:/Kernel/Documents/thesis/final/combined%20-%202nd.docx%23_Toc273083929
file:///D:/Kernel/Documents/thesis/final/combined%20-%202nd.docx%23_Toc273083930
file:///D:/Kernel/Documents/thesis/final/combined%20-%202nd.docx%23_Toc273083931
file:///D:/Kernel/Documents/thesis/final/combined%20-%202nd.docx%23_Toc273083932
file:///D:/Kernel/Documents/thesis/final/combined%20-%202nd.docx%23_Toc273083933
file:///D:/Kernel/Documents/thesis/final/combined%20-%202nd.docx%23_Toc273083934
file:///D:/Kernel/Documents/thesis/final/combined%20-%202nd.docx%23_Toc273083935
file:///D:/Kernel/Documents/thesis/final/combined%20-%202nd.docx%23_Toc273083936
file:///D:/Kernel/Documents/thesis/final/combined%20-%202nd.docx%23_Toc273083937
file:///D:/Kernel/Documents/thesis/final/combined%20-%202nd.docx%23_Toc273083938
file:///D:/Kernel/Documents/thesis/final/combined%20-%202nd.docx%23_Toc273083939
file:///D:/Kernel/Documents/thesis/final/combined%20-%202nd.docx%23_Toc273083940
file:///D:/Kernel/Documents/thesis/final/combined%20-%202nd.docx%23_Toc273083941
file:///D:/Kernel/Documents/thesis/final/combined%20-%202nd.docx%23_Toc273083942
file:///D:/Kernel/Documents/thesis/final/combined%20-%202nd.docx%23_Toc273083943
file:///D:/Kernel/Documents/thesis/final/combined%20-%202nd.docx%23_Toc273083944
file:///D:/Kernel/Documents/thesis/final/combined%20-%202nd.docx%23_Toc273083945
file:///D:/Kernel/Documents/thesis/final/combined%20-%202nd.docx%23_Toc273083946
file:///D:/Kernel/Documents/thesis/final/combined%20-%202nd.docx%23_Toc273083947

 xiii

Figure 5-1. TLM communication interface of the software PE model .. 213

Figure 5-2. OSCI TLM-2.0 essentials ... 216

Figure 5-3. Combining software PE model with TLM interfaces and SoC models 218

Figure 5-4. The DMA controller model .. 220

Figure 5-5. Simulation performance results .. 223

Figure 5-6. The simulation log of the DMA experiment ... 225

Figure 5-7. Simulation timeline .. 226

file:///D:/Kernel/Documents/thesis/final/combined%20-%202nd.docx%23_Toc273083948
file:///D:/Kernel/Documents/thesis/final/combined%20-%202nd.docx%23_Toc273083949
file:///D:/Kernel/Documents/thesis/final/combined%20-%202nd.docx%23_Toc273083950
file:///D:/Kernel/Documents/thesis/final/combined%20-%202nd.docx%23_Toc273083951
file:///D:/Kernel/Documents/thesis/final/combined%20-%202nd.docx%23_Toc273083952
file:///D:/Kernel/Documents/thesis/final/combined%20-%202nd.docx%23_Toc273083953
file:///D:/Kernel/Documents/thesis/final/combined%20-%202nd.docx%23_Toc273083954

 xv

List of Acronyms

AHB Advanced High-performance Bus

AMBA Advanced Microcontroller Bus Architecture

APB Advanced Peripheral Bus

API Application Program Interface

ARM Advanced RISC Machine

ASIC Application-Specific Integrated Circuit

AT Approximately-Timed

BCET Best-Case Execution Time

BIOS Basic I/O System

BSP Board Support Package

CA Cycle-Accurate

CP Communicating Process

CP+T Communicating Process with Time

CPU Central Processing Unit

DMA Direct Memory Access

DPS Dynamic-Priority Scheduling

DSE Design Space Exploration

DSP Digital Signal Processor

ECB Event Control Block

EDA Electronic Design Automation

EDF Earliest Deadline First

ESL Electronic System Level

FIFO First-In-First-Out

FPGA Field-Programmable Gate Array

FPS Fixed-Priority Scheduling

GPP General-purpose Programmable Processor

 xvi

HW Hardware

HAL Hardware Abstraction Layer

HDL Hardware Description Language

HdS Hardware-dependent Software

I/O Input/Output

IC Integrated Circuit

IM C Interface Method Call

IP Intellectual Property

IPC Inter-Process Communication

IPCP Immediate Priority Ceiling Protocol

IRQ Interrupt Request

ISA Instruction Set Architecture

ISCS Instruction Set Compiled Simulation

ISR Interrupt Service Routine

ISS Instruction Set Simulation

ITRS International Technology Roadmap for Semiconductors

LT Loosely-Timed

MMU Memory Management Unit

NRE Non-Recurring Engineering

NRT Non-Real-Time

OCP-IP Open Core Protocol International Partnership

OSCI Open SystemC Initiative

OS Operating System

PCB Printed Circuit Board

PCP Priority Ceiling Protocol

PE Processing Element

PIP Priority Inheritance Protocol

POSIX Portable Operating System Interface

PV Programmers View

PVT Programmers View Timed

RM Rate Monotonic

ROM Read Only Memory

 xvii

ROM Result Oriented Modelling

RR Round-Robin

RT-CORBA Real-Time Common Object Request Broker Architecture

RTES Real-Time Embedded System

RTL Register-Transfer Level

RTOS Real-Time Operating System

RTS Real-Time System

RTSJ Real-Time Specification for Java

RTX Real Time eXecutive

SHaRK Soft Hard Real-time Kernel

SW Software

SLDL System-Level Design Language

SoC Systems-on-Chip

TCB Task Control Block

TLM Transaction-Level Modelling

UML Unified Modelling Language

VHDL Very-high-speed integrated circuit Hardware Description Language

WCET Worst-Case Execution Time

µITRON micro Industrial The Real-time Operating system Nucleus

 xix

Acknowledgements

I am most grateful to my supervisor Dr. Neil Audsley for his constant and

valuable support and guidance during my PhD study in the University of York.

I would also like to thank my assessors Professor Andy Wellings and Dr.

Leandro Soares Indrusiak for their advice and help in my research.

I give all my love to my parents Yu Shiliang and Song Yipu for their endless

love to me. This PhD thesis is also my sincere gift to them.

I am full of gratitude to Ms. Zhang Jing. She gave invaluable spiritual support

to me during the bittersweet PhD years.

I would like to express my thanks to all colleagues and friends in Real-Time

Systems Research Group. In particular, I thank Dr. Chang Yang, Dr. Shi Zheng,

Dr. Gao Rui, Dr. Zhang Fengxiang, Dr. Kim Min Seong, Lin Shiyao, and Mrs Sue

Helliwell for their help to me and experience shared with me. I also thank Qian

Jun, Shen Jie, Yao Yining, Dr. Liu Yang, and Dr. Chen Jingxin for our friendship

and cheerful lives in UK.

 xxi

Declaration

The research work presented in this thesis was independently and originally

undertaken by me between October 2005 and June 2010 with advice from my su-

pervisor Dr. Neil Audsley. Three conference papers have been published:

K. Yu and N. Audsley, "A Mixed Timing System-level Embedded Software

Modelling and Simulation Approach," in 6th International Conference on Embed-

ded Software and Systems 2009, (ICESS '09), 2009. [13] This paper received the

best paper award in the conference.

K. Yu and N. Audsley, "A Generic and Accurate RTOS-centric Embedded

System Modelling and Simulation Framework," in 5th UK Embedded Forum

2009 (UKEF '09), 2009. [14]

K. Yu and N. Audsley, "Combining Behavioural Real-time Software Model-

ling with the OSCI TLM-2.0 Communication Standard," in 7th International Con-

ference on Embedded Software and Systems 2010, (ICESS '10), 2010. [15]

Certain chapters of this thesis are based on above papers as follows:

Chapter 3 is based on [13] and [15].

Chapter 4 is based on [14].

Chapter 5 is based on [15].

 1

Chapter 1

Introduction

1.1 General Background

No matter whether or not you are aware of the networked printer in your office,

the electronic stability program in your car or the portable media player in the

palm of your hand, over the past decades embedded systems have reshaped our

everyday work, life and play. Embedded systems are special-purpose computer-

based information processing systems performing some pre-defined tasks and of-

ten built into enclosing products [16]. They are widely integrated into various

product categories, such as transportation vehicles, telecommunication devices,

industrial equipment, home appliances, etc. It is estimated that embedded systems

consume more than 99% of the manufactured processors in the world [17]. Be-

sides these invisible embedded systems, consumer electronics (e.g., handheld

computers, mobile internet devices, and smart phones) can be also seen as self-

contained embedded systems in terms of their similar hardware (HW) components.

Embedded systems are usually designed with resource-constrained hardware and

low-extensible software (SW), and are optimised to work with specific require-

ments for dedicated applications. These characteristics make embedded systems

distinct from general-purpose computer systems, for instance, personal computers,

work stations and servers.

A special category of embedded systems is classified as the real-time embed-

ded system, which can be distinguished by its requirement to respond to external

environment in real time. The term ñreal-timeò leads our attention to Real-Time

Systems (RTSs), which usually occur in company with embedded systems. There

are various interpretations of what a real-time system is, however ñphysical inter-

 2

actions with the real worldò and ñtiming requirements of these interactionsò are its

two essential characteristics [17]. A RTS receives physical events from the real-

world environment. These events are then processed inside the RTS and appropri-

ate actions finally respond. Timing requirements mean that the corresponding

output must be generated from the input within a finite and specified timing

bound, giving the deterministic timing behaviour. The correctness of a RTS de-

pends not only on the computation result, but also on the time when the result is

produced. ñReal-timeò does not mean ñas fast as possibleò, but emphasises ñon

timeò. Neither a too late output nor a too early output is correct. The vast majority

of embedded systems have real-time requirements, and most real-time systems are

embedded in products. At their intersection are Real-Time Embedded Systems

(RTES). The Operating System (OS) used in a RTES is usually a Real-Time Op-

erating System (RTOS), which supports the construction of RTSs [16]. RTESs

and RTOSs are the general context for this thesis.

From the perspective of system design, an embedded system is constructed

from various hardware and software components. As illustrated in Figure 1-1,

they can be classified into four reference layers [18]. The architecture of an em-

bedded system represents an abstraction model including all embedded compo-

nents. It introduces relationships between abstract hardware and software ele-

ments without implementation details.

All embedded systems have a hardware layer, which contains electronics com-

ponents and circuits located on a Printed Circuit Board (PCB) or on an Integrated

task1 task2 task3

Device Drivers

RTOS

Firmware

GPPI/O

Memory Controllers

ASIC Clock

Application software layer

Middleware layer

System software layer

Hardware layer

Distributed comp. Servers

Figure 1-1. Typical layers of an embedded system

 3

Circuit (IC). Although some time-critical or power-hungry portions of a system

can be implemented with customised application-specific hardware (e.g., Applica-

tion-Specific Integrated Circuits (ASICs), Field-Programmable Gate Arrays

(FPGAs)), most embedded systems mainly function through software running on

embedded General-purpose Programmable Processors (GPPs) (e.g., Central Proc-

essing Units (CPUs) or Digital Signal Processors (DSPs)). With the development

of the microelectronics industry, Systems-on-Chips (SoCs) have emerged as the

state-of-the-art implementation of embedded systems. A SoC is an integrated cir-

cuit combining multiple GPPs, customised cores, memories, peripheral interfaces,

as well as communication fabric, all on a single silicon chip, which provides sub-

stantial computation capability for handling complex concurrent real-world events.

Comparing the different embedded hardware solutions as indicated above, appli-

cation-specific hardware offers high computing performance and low power con-

sumption at the expense of limited programming flexibility, whilst GPPs offer

higher design flexibility and lower Non-Recurring Engineering (NRE) costs, but

with a relatively low computing capability [16].

In general, embedded software can be grouped into three layers: the application

software layer, the middleware layer, and the system software layer. The applica-

tion functions of an embedded system consist of a task or a set of tasks.

Middleware is an optional layer under application software but on top of sys-

tem software. Middleware provides general services for applications, such as

flexible scheduling [19], distributed computing (e.g., Real-Time Common Object

Request Broker Architecture (RT-CORBA) [20]), and Java application environ-

ment (e.g., Real-Time Specification for Java (RTSJ) [21]). Using middleware

technologies has strengths to reduce complexity of applications, simplify migra-

tion of applications, and ensure correct implementation of reusable functions.

The system software layer is sandwiched between upper-level software and

bottom-layer hardware. It usually contains device drivers, boot firmware and

RTOS, which closely interact with the hardware platform. This kind of software is

also called Hardware-dependent Software (HdS) [22]. Device drivers, e.g., a

Board Support Package (BSP) for a given platform, are the interface between any

software and underlying hardware. They are the software libraries that take charge

 4

of initialising hardware and managing direct access to hardware for higher layers

of software [18]. Boot firmware, e.g., the Basic I/O System (BIOS), carries out

the initial self-test process for an embedded system and initiates the RTOS. It is

usually stored in the Read-Only Memory (ROM).

Regarding the RTOS, it is unnecessary and cost-inefficient to introduce a

RTOS in some small embedded devices, where an infinite loop program with the

polling policy for Input/Output (I/O) events may work well [23]. However, in or-

der to satisfy the complex functional requirements and timing constraints for con-

current real-time software execution, the RTOS has become an essential compo-

nent in most embedded systems. Here, concurrent real-time software execution

refers to situations that, under the control of a RTOS, multiple tasks either share a

uniprocessor in interleaving steps or execute on multiple processors in parallel. A

RTOS is needed to provide convenient interfaces and comprehensive control

mechanisms to let applications utilise and share hardware and software resources

effectively and reliably. The kernel is the core element of a RTOS and contains

the most essential functions. In most kernels, there is the notion of task priority,

dynamic pre-emptive scheduling services, synchronisation primitives, timing ser-

vices, and interrupt handling services [24] [25] [26]. Other OS features such as

memory management, file systems, device I/O etc. are often optional in a RTOS

in order to maintain its compactness and scalability. As a central part of the real-

time embedded software stack, a RTOSôs own timing behaviour also needs to be

predictable and computable. Designers must know some important RTOS timing

properties, for example, the context switch time, Worst-Case Execution Times

(WCETs) of system calls, the interrupt handling latency, and the maximum inter-

rupts disabled time, etc. Hence, they can analyse and evaluate the real-time per-

formance of the whole system.

The research in this thesis will investigate how to model RTOS kernel func-

tional and timing behaviours in order to support high-level real-time software

simulation in a uniprocessor system.

 5

1.2 Challenges in Embedded System Design

In recent years, the complexity of embedded software has increased rapidly.

According to the International Technology Roadmap for Semiconductors (ITRS)

2007 Edition (ITRS 2007), embedded software design has emerged as ñthe most

critical challenge of SoC productivityò [4]. For many products of consumer elec-

tronics, the amount of software per product is thought to be double every two

years [27]. The General Motor Information Systems CTO predicts that the aver-

age car, with one million lines of software codes in 1990, will run on one hundred

million lines by 2010 [28]. Figure 1-2 shows growing trends of embedded soft-

ware complexity in motor and mobile phone industries.

In addition to the overwhelming system complexity, the time-to-market pres-

sure is another overriding priority in contemporary embedded systems develop-

ment [10] [29]. If the projected delivery date is missed, it results not only in an

increase of design costs but also a decrease of market share. This pressure is even

tougher for embedded software design. Since in a traditional hardware-first design

 Automobile software size increase
(Toyota)

Mobile phone software size increase
(Infineon)

Figure 1-2. Embedded software size increases in industry (reprint [5] [10])

System
integration

testing

wait for
the prototype

Software
development

Hardware development

conceptualdesign

System
specification

Architecture
design

revising

Figure 1-3. The hardware-first design process

 6

flow (see Figure 1-3), the software development cannot go through until the

hardware prototype is available. This means that software designers often face

imminent product delivery deadlines [30].

There is also a big gap between ever-growing semiconductor fabrication capa-

bility and the design productivity of embedded systems (including both HW and

SW aspects) [31]. The ITRS 2007 presents a summary about hardware and soft-

ware design gaps and Figure 1-4 is the pictorial illustration [4]. In Figure 1-4, re-

garding the HW design aspect, the cutting-edge embedded HW advancements and

design methodologies, e.g., multi-core/processor components and Intellectual

Property (IP) reuse, have somewhat narrowed the distance between HW design

productivity and HW technology capabilities. Unfortunately, although enormous

SW complexity has already been exacerbated, these HW advances further increase

demand for HdS development. As what is shown in the figure, SW productivity is

further behind the steeply increasing SW complexity. An industrial report even

indicates that rapidly increasing software design efforts may exceed the cost of

hardware development when IC technologies evolve from deep submicron-scale

to nano-scale [29].

A

B

C

D

Figure 1-4. Gaps between the design complexity and productivity (reprint [4])

 7

1.3 System-Level Design Methodologies

Motivated by the challenges outlined above, since the 1990s, System-Level

Design (SLD), or so-called Electronic System-Level design (ESL), and corre-

sponding System-Level Design Languages (SLDLs) have been developed as ena-

bling tools for embedded system specification, simulation, implementation and

verification [32].

In the view of Electronic Design Automation (EDA) industry, SLD is indicated

at ña new level of abstraction above the familiar register-transfer levelò [4]. This

definition reflects a hardware-centric viewpoint. A more complete definition em-

phasises ñthe concurrent hardware and software design interactionò as a guiding

concept in a SLD process [17], that is, the HW/SW codesign [33] philosophy is

inherent in SLD methodologies.

1.3.1 Raising Abstraction Levels

Raising system abstraction to higher levels is a traditionally intuitive solution

to cope with design complexity. In the area of digital electronic design, abstrac-

tion levels went from the transistor model in the 1970s, to the gate-level model in

the 1980s, to the Register-Transfer Level (RTL) models in the 1990s, and latterly

to the higher system-level models [17]. Higher-level abstractions focus on critical

system-wide behaviour and ignore unnecessary low-level implementation details

at early design times. System behaviours are represented by executable models.

These models are continuously refined and evaluated through simulation and de-

tails are gradually added in the design process, which enables early and fast vali-

dation of the system [34]. The current RTL Hardware Description Languages

(HDLs) (e.g., Verilog [35] and VHDL [36]) are believed too low and time-

consuming to describe hardware at early development stages [37]. Furthermore,

despite expressive features of RTL HDLs for hardware development, they fail to

support description and validation of an entire system, including both hardware

and embedded software, which is a key necessity in system-level design. Conse-

quently, SLDLs (e.g., SystemC [38] and SpecC [39]) have been developed to sup-

port unified high-level HW/SW specification, modelling, simulation, verification

 8

and synthesis in recent years. In this thesis, SystemC is the research tool for soft-

ware modelling and simulation.

1.3.2 Orthogonal Concepts in System-Level Design

SLD aims to separate orthogonal design concerns in order to allow independent

and swift exploration of alternative solutions [40]. At a specific design stage, dif-

ferent design aspects may not require the same level of abstraction. Consequently,

separating design issues and building independent abstract models not only save

design time, but also achieve better simulation performance when various models

are simulated together. The following two classical separation ideas are most of-

ten referred to in SLD:

Functionality versus architecture [41] (also called Application and Platform

Implementation [17]): According to the definitions put forward in [40] [42], the

functionality aspect refers to what basic tasks a system is supposed to do, i.e.,

specification; whereas the architecture aspect refers to how to do these tasks by

configuring resources, i.e., implementation. In SLD, there are often a series of

mapping and refinement steps between a functional specification model and the

final implementation architecture. The motivation of this orthogonal separation is

for design reuse and flexibility. Supposing the functionality is defined in a sepa-

rate specification model, designers can explore many possible architecture imple-

mentations with different performance and cost attributes. As well, if several basic

HW or SW architecture implementations can construct some generic clusters, i.e.,

components and platforms, then they could be reused for a variety of applications

[40].

Computation versus communication [7]: The central idea is to develop compu-

tation and communication independently by hiding their details from each other.

Computation components, either hardware or software, are modelled as modules

(i.e., Processing Elements (PEs)) that contain a set of concurrent processes.

Communication components such as buses or on-chip networks are modelled

based on basic abstract elements, e.g., ports, channels, and interfaces. Computa-

tion modules communicate by transferring data transactions through these com-

munication infrastructures. This separation introduces an important and widely

 9

accepted SLD approach Transaction-Level Modelling (TLM) [3]. TLM methods

often define a number of intermediate computation and communication models

for simulation in a design flow. At each level, models include necessary func-

tional and timing details for a specific design stage. An important TLM research

topic is the trade-off between simulation performance and the accuracy of differ-

ent models. The research in this thesis is also concerned with this trade-off.

1.3.3 System-Level Design Flows

System-level design flow is a process containing multiple design steps, during

which an embedded system is gradually transformed from a conceptual specifica-

tion to a final product. At each design step, designers successively build, simulate

and refine various abstract models in order to validate system properties early be-

fore detailed implementation [43]. There is not a generally accepted ñdesign flowò

template. The starting and ending design points also vary in different SLD theo-

ries and practices. This is because a specific design process is largely dependent

on its applying domains and contexts, e.g., re-using an existing platform may

shorten the design flow. There are probably as many system-level design flows as

there are researchers and projects. Nevertheless, we can observe that many re-

search works [43] [44] [45] [46] [47] generally group design activities into three

top-down phases with corresponding models: the system specification phase

(specification models), the architecture exploration phase (architecture models),

and the architecture implementation phase (implementation models). Figure 1-5

outlines a typical system-level design flow including above three phases. The re-

search in [48] [49] presents a different view of system-level design flow which

excludes the implementation phase. This viewpoint in fact reflects the status of

current system-level design community that existing SLD methodologies are still

not mature enough to effectively cover all phases from system specification to

implementation.

At the system specification phase, the embedded systemôs planned functions

and requirements are clarified and written in documents or models. Natural lan-

guages are used in documents, whilst some computer specification languages (e.g.,

Unified Modelling Language (UML) [50], MATLAB [51], SpecC [39], Rosetta

 10

[52]) can be also used to produce formal or executable models. These models can

describe behaviour of a system and may become a vehicle for next-step system

refinement.

The architecture exploration phase, so-called hardware/software partitioning

and mapping phase, is concerned with how to distribute system functions between

hardware and software, i.e., Design Space Exploration (DSE). This phase can be

further divided into the pre-partitioning step, the partitioning step, and the post-

partitioning step, according to a detailed design flow explanation in [32]. Usually,

this design phase starts from a unified abstract TLM model, which comprises a set

of PEs for computation and channels for communication. These PE models are

explored to implement in either HW (i.e., application-specific hardware logics) or

Hardware/software
partitioning, mapping,

scheduling

Refinement

TLM virtual platform in SLDLs (e.g., SystemC, SpecC)

Hardware
func. & beha.

models

Software
func. & beha.

models

Communication
channels

Behavioral
cycle-approximate

simulation

Specification
model

Application
functionality and

requirements Executable
specification

(e.g., untimed)

Hardware
high-level
synthesis

Software
generation

Communication
(Interface)
synthesis

Refinement

link to

A
rc

h
it

e
ct

u
re

 im
p
le

m
e
n
ta

ti
o
n

 p
h
as

e
A

rc
h
it

e
ct

u
re

 e
xp

lo
ra

ti
o
n

p
h
as

e
Sy

st
e
m

 s
p
e
ci

fi
ca

ti
o
n

p
h
as

e

Refinement

Communication
impl. models

Target-
compilable SW
impl. models in

C/C++

HW impl.
model in RTL
HDLs, e.g.,

Verilog, VHDL

HW
topologies

SW
protocols

Cycle-accurate
simulation

(e.g., ISS, RTL)

Logic synthesis,
Integration,

Physical Design...
M

o
d
e
lli

n
g

ab
st

ra
ct

io
n
 le

ve
ls

Lo
w

 r
e
so

lu
ti

o
n

H
ig

h
 r

e
so

lu
ti

o
n

Figure 1-5. A system-level design flow

 11

SW (i.e., programs running on a GPP), and channel models are tried with various

abstract communication topologies and protocols. These TLM models are succes-

sively refined, with timing information and implementation details added. Various

alternatives are simulated in order to evaluate and analyse diverse system charac-

teristics, e.g., functional correctness, scheduling decisions, real-time performance,

power consumption, chip area, and communication bandwidth, etc. Once a sys-

temôs functions have been partitioned and mapped onto some hardware and soft-

ware elements, a golden architecture model [46] comes into being and the imple-

mentation step is ready to begin. This thesis studies RTOS and real-time software

behavioural modelling and simulation, which can be seen as being after-

partitioned TLM software PE computation research in the architecture exploration

phase. Our research has some relevance to current SLD and TLM research, in

terms of comparable abstract modelling styles, fast simulation performance, rea-

sonable accuracy, and some interoperability with other system-level abstract

hardware and communication models.

In the architecture implementation phase, previous architectural models are

transformed into lower-level models in automated synthesis for final product im-

plementation design and manufacturing. For the hardware aspect, the developing

high-level synthesis (sometimes also referred to as Electronic System-Level syn-

thesis, system synthesis, behavioural synthesis) technologies aim to synthesise

HW models in the form of high-level languages (e.g., C, C++, SpecC, SystemC)

into synthesisable RTL descriptions. RTL descriptions are input of the existing

ñRTL to Layoutò design flow [32]. This automated high-level synthesis process

connects system-level design with the current design flow in order to produce ac-

tual integrated circuits. Although there is a substantial body of research work in

this domain, automatic high-level synthesis is still thought to be not mature [53]

and has ñnever gained industrial relevanceò [54]. In SLDL-based system-level

design, communication synthesis (also known as interface synthesis) aims to map

TLM channels or similar high-level interfaces to a set of synthesisable cycle-

accurate software protocols and RTL descriptions of target communication to-

pologies [55]. There are several approaches regarding bus-based communication

synthesis [56] [57] and on-chip communication networks synthesis [58] [59].

 12

More complete surveys on this topic can be found in [54] and [17]. In high-level

software synthesis (namely target software generation), embedded software (in-

cluding the applications, RTOS and other HdS) implementation models (i.e.,

C/C++ codes that are ready to be compiled into binaries for a target instruction set)

can be generated from TLM software PE models written in SLDLs [60] [61]. Sev-

eral approaches have investigated embedded software target code generation, in

which SLDL functions or generic RTOS services in TLM models are mapped and

translated to the Application Program Interface (API) of a specific RTOS [43] [62]

[63] [64] [65].

1.4 System-Level Design Languages

The need for efficient and effective specification, modelling, simulation, verifi-

cation and synthesis in SLD has led to many SLDLs. In general, SLDLs provide a

collection of libraries of data types, modular components, and discrete-event ker-

nels to model an entire HW/SW system and simulate dynamic system behaviour

at a higher level of abstraction. Using SLDLs enhances system design productiv-

ity by representing a whole system in expressive programming models and pre-

senting diverse traceable run-time information through simulation.

Inspired by the need to describe both HW and SW parts with a general pro-

gramming language, C/C++ based design and specification languages (e.g., Sys-

temC and SpecC) have been developed and used by the design community. It is

attractive to extend C/C++ for hardware and communication design exploration in

SLD, since they are already familiar to software designers. These C/C++ based

SLDLs are equipped with built-in hardware description constructs such as signals,

ports, clocks, explicit parallelisms and the structural hierarchy for system model-

ling.

1.4.1 SystemC

SystemC is the most commonly used C++ based SLDL. It has been in devel-

opment by the association Open SystemC Initiative (OSCI) since 1999 [38]. In its

early days, the initial SystemC versions 0.9 and 1.0 concentrated on describing

hardware-centric RTL features with the goal to replace Verilog and VHDL as a

 13

new HDL, so as to realise high-level synthesis. From the version 2.0, its focus

changed to high-level computation and communication modelling and became an

effective SLDL. It was approved as an IEEE standard in 2006 [66] and is cur-

rently the de facto industry standard for ESL specification, modelling, simulation,

verification and synthesis.

The syntax of SystemC is based on the standard C++ language. It is not a brand

new language but a set of C++ libraries together with a discrete-event simulation

kernel that is also built with C++. A mixture of software programs written with

SystemC and C++ can be compiled by a standard C++ compiler (e.g., GCC or

Visual C++) and linked with SystemC libraries in order to generate an executable

simulation program.

A module (SC_MODULE), namely a class, is the basic SystemC language con-

struct to describe an independent functional component. It contains a variety of

elements to define behaviour and structure of a model, e.g., data variables, com-

putation processes, communication ports and interfaces, etc. SystemC supports

the hierarchical model structure, which means a parent module can include instan-

tiations of other modules as member data. This characteristic is helpful to break

down a large system into manageable sub-models. The main SystemC mecha-

nisms for inter-module communications are channels (sc_channel), which can

be either a simple signal (sc_signal) or a complex hierarchical structure such

as the Advanced Microcontroller Bus Architecture (AMBA) bus [67]. The com-

munication methods implemented by channels are named interfaces, which are

abstract classes declaring pure virtual methods. A module accesses a channel

through a port by calling interface methods. In this way, computation and com-

munication can be explicitly separated and modelled in SystemC.

SystemC uses a discrete-event simulation kernel, which relies on a co-

operative, so-called co-routine, execution model [68]. It does not support a prior-

ity assignment or pre-emption. Only one SystemC process can execute at a time.

The executing process cannot be pre-empted or interrupted by either the kernel or

another process. A process only yields control to the kernel by calling wait-for-

time and wait-for-event functions at its own will. When two processes are ready at

the same time in simulation, it is non-deterministic which process will be chosen

 14

to run by the simulation kernel. This particular characteristic is suitable for paral-

lel hardware operations and outperforms a pre-emptive simulation kernel in terms

of fast simulation speed because of less context switch overheads [69]. However,

it is not applicable for concurrent real-time software simulation, which requires

pre-emptive and deterministic scheduling services. This deficiency can be prob-

lematic when importing legacy real-time software into SystemC. Some research

pessimistically abandoned real-time software simulation in SystemC [70].

Whereas, many researchers have presented various remedies on this problem to

some extent, e.g., extending the SystemC language with process control constructs

[71], revising the SystemC simulation kernel [69] [68], implementing RTOS func-

tions on top of the SystemC library [72] [73]. This thesis presents a more com-

plete solution in the last direction.

1.4.2 SpecC

SpecC is a system specification and description language that operates as an

extension of standard C language [39]. The SpecC language and associated design

methodologies were originally developed at the University of California Irvine

beginning in the mid-1990s and continuing up to the present day. In contrast to

SystemC, SpecC introduces new keywords to C language, so it needs a special

SpecC Reference Compiler [74]. Many design concepts (e.g., separation of com-

munication and computation) and language constructs (e.g., modular structure de-

scriptions) of SpecC are either possessed or adopted in the development of Sys-

temC. As well, both SpecC and SystemC can fulfil multiple level specification,

verification and synthesis tasks in SLD and TLM. Their similarities and differ-

ences are introduced and compared in [44].

1.4.3 SystemVerilog

Arising from the semiconductor and electronic design industry, SystemVerilog

is a hardware description and verification language based on extensions of Ver-

ilog [75]. In addition to features available in the classical Verilog, SystemVerilog

provides new verification and object-oriented programming facilities, such as as-

sertions, coverage, constrained random generation, build-in synchronisation

 15

primitives and classes. Although SystemVerilog offers both internal object-

oriented software features and a direct programming interface to call external C

functions, its scope is mostly constrained to hardware design, simulation and veri-

fication [76] [32].

1.5 Software Simulation in System-Level Design

In SLD, simulation approaches lie at the heart of many methodologies. Simula-

tion techniques are traditional and useful tools for debugging, validation, and veri-

fication [32] [44] [77]. They are successively applied at each phase in the design

flow. A set of simulation models is built to represent behaviours of various com-

ponents or the whole system. By executing these simulation models, output values

for given input patterns are generated and observed. The correctness and quality

of output values are evaluated in order to ensure that specified requirements have

been fulfilled in the models. These results can also help designers to explore and

trade off different design alternatives through simulation experiments.

Today, most software simulation approaches in SLD can be classified into two

categories: Instruction Set Simulation (ISS) and behavioural simulation. In this

thesis, the real-time software modelling and simulation research falls into the lat-

ter category.

1.5.1 Instruction Set Software Simulation

In ISS, a clock cycle-accurate processor model runs on a host machine, which

mimics the behaviour of a target processor by ñexecutingò its instructions. The

internal architecture of the target processor (e.g., general registers, status registers)

alongside memory space (i.e., storing execution binaries for a target and local

variables) are both modelled at the Instruction Set Architecture (ISA) level. Some-

times, peripheral models such as timers, interrupts, and I/O ports are also inte-

grated into an ISS so that it can provide more complete features for software

simulation.

Most commercial ISSs are based on the interpretation technique [77]. An ISS

reads target instructions from its memory space and executes in an interpretive

ñFetch-Decode-Dispatch-Executeò process in order to simulate behaviour of in-

 16

structions being executed on a target machine, as shown in Figure 1-6. The main

advantages of ISS simulation are fine-grained functional and timing accuracy, so

various ISS simulators are traditionally used by software programmers to debug

cross-compiled target programs instead of using real hardware. And in system-

level design, ISS simulators can be seen as references to evaluate other corre-

sponding cycle-approximate simulators. However, simulation performance is a

drawback of the ISS approach, because its interpretive simulation process incurs a

large overhead. Typically, they run on the order of 100K cycles per second [78],

which is not a satisfactory speed for simulating large amounts of software in sys-

tem-level design [79]. Besides, an ISS simulator needs a detailed ISA-level proc-

essor simulation model, which may not be available at the desired high level of

abstraction in early design stages.

The host compilation based ISS is an improved approach by addressing the

performance disadvantage of traditional interpretive ISS methods [80]. The cen-

tral idea of this technique is to translate target machineôs instructions into host

machineôs at software compile time. This binary-to-binary translation avoids big

run-time overheads of the interpretive process in simulation, hence resulting in a

faster simulation speed. The host compilation ISS research in [80] reports a three

orders of magnitude speedup compared to interpretive ISS. Unfortunately, there

are also some deficiencies to this approach. This technique assumes that software

Input
program
binary

Target
memory
space

 General
Registers

 Special
Registers

Fetch

Decode

Dispatch

Execute

Instruction Set Simulator

Figure 1-6. Interpretive instruction set software simulation

 17

does not change at run time, as a result it is not suited to self-modifying code [80].

Poor portability is another problem, because a compiled ISS is not applicable for

processors with different instruction sets [77] [81]. The Instruction Set Compiled

Simulation (ISCS) [81] technique combines the performance of a compilation-

based approach with the flexibility of an interpretive ISS, by moving the decode

step to compile time and carrying out various compile time optimisations. It

claims a 70% simulation performance improvement compared with the best-

known results in its domain. However, it still faces challenges in terms of both a

long compilation time and a large memory usage [77]. In general, the simulation

performance of ISS approaches is perceived as a bottleneck for a rapid design

space exploration at the system level [79] [82].

1.5.2 Behavioural Software Simulation

In system-level design, there is always a need for fast and flexible software

validation, which can be provided by behavioural software simulation. Its simula-

tion performance is usually several orders of magnitude faster than the ISS ap-

proach, for example, one order speed-up in [83], three orders speed-up in [84],

and three to five orders speed-up in [85]. Its modelling accuracy and speed are

flexible in various approaches, which indeed depend on the specific modelling

abstraction levels and techniques. In behavioural software simulation, high-level

embedded software source code (e.g., in C/C++ or SLDL) is compiled for and

natively executes on a host workstation or a PC. In many cases, behavioural soft-

ware simulation is based on the support of a SLDL simulation framework. The

target CPU hardware architecture model is not directly useful for native software

execution, hence is often not modelled in a software PE model. This method is

unlike the detailed processor model appeared in ISS simulation. Figure 1-7 shows

the simulation mechanism of a typical discrete-event SLDL simulator, which in-

cludes three main steps, i.e., evaluation and schedule of a process, execution in

zero-target time, and target simulation time advance.

From the perspective of abstract embedded processor and TLM communication

modelling, Schirner summarises three major issues related to a fast system-level

software simulation, i.e., timed native software execution, dynamic software

 18

scheduling, and external TLM communication [79]. We will adapt them to reflect

our software/RTOS-centric research perspective in the following section.

1.6 Research Objective and Contribution

This thesis focuses on modelling and simulating functional and timing behav-

iours of real-time embedded software including the RTOS. We conclude the most

important issues as:

¶ Timed software simulation: this refers to timed modelling and simulating

real-time software in the SLDL environment;

¶ RTOS modelling: this enlarged topic should not only provide real-time

scheduling services but also support other typical RTOS services necessary

for real-time software simulation;

¶ Interrupt handling: from a software simulation perspective, the Interrupt

Request (IRQ) based HW/SW synchronisation [86] is the most essential ex-

ternal communication protocol.

Figure 1-7. The SLDL-based behavioural software simulation

wait(2)

wait(7)

process 1

process 2

process 3 wait(4)

SLDL Simulation
Framework

process 4 wait(3)

Evaluate
and

schedule

Progress
time

Native
execution

SLDL Simulation Kernel

SW native
execution

wait(t)
Target-delay
annotation

Pre-defined
synchronisation point

 19

1.6.1 Timed Software Simulation

As shown in Figure 1-7, in SLDL-based timed software simulation, embedded

software (both applications and the RTOS) is organised (wrapped) into several

concurrent processes in a SLDL simulation framework. These processes natively

execute on the host under the supervision of a co-operative SLDL simulation ker-

nel. Since the desired timing behaviour of target software execution cannot be di-

rectly represented in native software execution, estimated software execution

costs (time delays) on the target are manually or automatically annotated to corre-

sponding code segments of simulation processes. These time delays are executed

by SLDL wait(delay) statements in order to suspend the calling process, pass con-

trol to the kernel, and advance the simulator clock. By this way, timing behaviour

of real software execution on the target machine is simulated.

According to the above description, in this co-operative SLDL execution

model, a number of wait(delay) statements are annotated into software processes

when building the model. They in effect predefine synchronisation points between

software processes and the SLDL kernel. Software processes can only yield the

running status at these points at simulation runtime and the simulator time is pro-

gressed according to the annotated delays without an interrupt possibility. This

annotation-dependent software time advance method makes it hard to model a

pre-emptive real-time system. The intuitive but halfway solutions tackle this prob-

lem by using more wait() statements with fine-grained delays to advance SW time

[87], or by inserting some imperative synchronisation points [3]. However, the

timing accuracy is limitedly enhanced at the cost of large modelling (more annota-

tion and synchronisation) and simulation (frequent simulation kernel context

switch) overheads.

1.6.2 RTOS Modelling

A RTOS simulation model is a key point for dynamic scheduling and timing

issues in behavioural real-time software simulation [72] [77]. This is because the

RTOSôs crucial role in embedded real-time software layers, in terms of task man-

agement, pre-emptive scheduling, inter-task communication and synchronisation,

etc. Whereas, current SLDL simulation frameworks and related RTOS simulation

 20

models do not, in general, support RTOS simulation adequately. There exist some

problems in this area, which affect the functional and timing accuracy of models,

as well as their simulation performance.

For example, from the perspective of maximising flexibility of system-level

design, designers may want to simulate multiple types of application models to-

gether. Current RTOS modelling research does not address this issue sufficiently

and is incapable of integrating abstract task models (i.e., void or simple task func-

tions with coarse-grained execution time estimates) and native-code task models

(i.e., fully functional tasks with fine-grained delay annotations) in one simulator.

Besides, from the perspective of practical RTOS simulation, some RTOS mod-

els provide simplistic task management and limited synchronisation services,

which are inadequate to imitate behaviour of a real multitasking RTOS.

Furthermore, the low timing accuracy is a common, yet critical, problem in

some RTOS modelling approaches by lack of RTOS servicesô timing overhead

modelling and proper time advance.

1.6.3 Interrupt H andling

As we mentioned before, the target processor, which executes software in the

final implementation, is not usually modelled in SLDL-based behavioural soft-

ware simulation. Because of the high abstraction level and the SLDL software

simulation mechanism, multiple concurrent tasks together with a RTOS model

can constitute a software PE model without the necessity of modelling low-level

processor architecture. However, regarding timed HW/SW co-simulation, a soft-

ware PE model should be able to handle hardware interrupts for HW/SW syn-

chronisation. In terms of a real processor or a low-level processor model, the in-

terrupt handling process is natural to implement because of their cycle-accurate

time resolutions. However, the situation is complex when a ñhardwareò processor

model is hidden in a high-level software behavioural simulation. From the sequen-

tial real-time software perspective, neither application tasks nor the RTOS can

monitor asynchronous interrupt events (we are not talking about synchronous

mechanisms such as polling) in a timely and real manner. What is more critical, it

is not straightforward to interrupt a SLDL process by current SLDL kernels, since

 21

they do not support run-time process pre-emption or interruption. Consequently, it

is essential to implement a HW/SW synchronisation method for SLDL-based

software simulation, which behaves like an interrupt controller in a real CPU in

order to monitor external events and interrupt the executing SLDL process. Be-

sides, this mechanism should minimise the synchronisation frequency so as to re-

duce simulation time overhead, which is not yet achieved well in current ap-

proaches.

1.6.4 Research Hypothesis and Objectives

This thesis is motivated by current insufficient research regarding above three

key issues in the domain of real-time software behavioural modelling and simula-

tion. The research work in the thesis presents solutions to the three topics. Spe-

cifically, we aim to support SLDL-based interruptible software timing simulation

with high simulation performance; we will propose a flexible and practical RTOS

modelling and simulation approach that also has reasonable timing accuracy; we

will support fully functional interrupt handling in high-level RTOS simulation as

well.

The main goal of the research in this thesis is to support the central proposition

that:

A SystemC mixed timing modelling and simulation approach can enable fast,

flexible and accurate RTOS-based real-time embedded software behavioural

modelling and simulation in system-level design.

To examine this hypothesis, this thesis focuses upon the investigation of timing

issues in behavioural software modelling and simulation, and builds a generic

RTOS model to support real-time embedded software simulation. Specifically,

this thesis aims to:

1) Investigate timing issues in modelling and simulating real-time software

(both applications and the RTOS) in a SystemC environment, which are

closely relevant to a fast simulation performance, a flexible modelling and

simulating capability and reasonable timing accuracy.

a. Fast performance is a necessity of the proposed high-level behavioural

software simulation. Simulation speed should be at the scale of several

 22

orders of magnitude faster than traditional ISS simulations and is also

better than some related behavioural software simulation methods.

b. Flexibility is a desired benefit of software behavioural modelling and

simulation for the sake of trade-off. The proposed approach can utilise

varying modelling levels and degrees in different software models in

terms of the functional accuracy, timing accuracy, observability of exe-

cution traces, and performance of simulation.

c. Regarding timing accuracy of software time advance, the proposed ap-

proach should avoid the conventional ñannotation-dependentò uninter-

ruptible time advance, rather it should support interruptible time ad-

vance.

d. Although the timing accuracy of behavioural software simulation is re-

stricted by its high modelling level, it still should be sufficient to gen-

erate a timed software execution trace which is the same as a corre-

sponding ISS simulation.

2) Build an abstract CPU model, which can simulate HW/SW interactions and

support high-level interruptible software timing simulation.

a. The HW/SW timing synchronisation (i.e., interrupt handling) problem

must be solved, since it is related to interruptible software time advance.

b. There is a limited abstract hardware modelling that supports hardware-

dependent software service models, e.g., context switch, interrupts ser-

vice, and real-time clock service.

c. The organisation of software models and hardware models should

mimic the typical structure of an embedded system, and be extensible

for future development.

3) Capture essential and common RTOS features and build a generic RTOS

model, in order to flexibly support early and practical simulation of real-

time software in SystemC-based system-level design.

a. The RTOS model should provide generic and standardised multi-

tasking, scheduling and synchronisation services as well as other nec-

essary OS functions.

 23

b. In order to enhance modelling flexibility on application tasks, the

RTOS simulation model should support both coarse-grain timed ab-

stract task models and fine-grained timed native applications in a hy-

brid simulation.

c. The RTOS model should achieve accurate simulation in terms of both

timing accuracy and functional results.

4) Incorporate limited TLM communication into software models for transac-

tion-based inter-module communication modelling, in order to make soft-

ware models interoperable with existing TLM modelling and simulation

concepts and techniques.

1.6.5 Research Contributions and Methods

Corresponding to above objectives, the research work undertaken in this thesis

is fourfold, with objectives 1-3 being the main focus of this thesis, i.e., software

modelling and simulation.

The first part of research work contributes results related to the Objective 1,

representing guidance of building specific simulation models. A mixed timing

software behavioural modelling and simulation approach is proposed. It separates

conventionally inter-dependent software timing modelling and simulation into two

partially separate phases. It supports mixed software timing information

granularities and annotation methods for performance and accuracy trade-off at

the modelling phase. The mixed timing models can use both coarse-grained task

timing estimates and fine-grained delay annotations in one simulation. Good

software pre-emption modelling capability is achieved by the SLDL wait-for-

event method, with a good simulation performance during the simulation phase.

The proposed variable-step and fixed-step time advance methods supply varying

observability of system simulation traces, and hence enable a trade-off with the

simulation speed.

Regarding the Objective 2, a Live CPU Model is proposed. It represents an es-

sential abstract hardware base in a high-level software PE model and is a proper

container to include hardware related components and functions. The most crucial

function of the Live CPU Model is to support interruptible time advance in mixed

 24

timing software behavioural simulation. Also, the Live CPU Model includes an

interrupt controller and some virtual registers, which are actively involved in

HW/SW synchronisation modelling and hardware-dependent software modelling.

By this means, theoretical interrupt modelling latency and software time advance

stopping latency can reach zero-time in simulation, which means an ideal resolu-

tion.

In terms of the Objective 3, the third part of research focuses on the develop-

ment of a generic and accurate SystemC-based RTOS-centric real-time software

simulation framework. It integrates mixed timing application models, the RTOS,

and the Live CPU Model in a software PE model. The software core is the generic

RTOS simulation model. It supplies a set of fundamental and practical services

including multi-tasking management, scheduling services, synchronisation and

inter-task communication mechanisms, clock services, context switch and soft-

ware interrupt handling services, etc. These functions are summarised and ab-

stracted from a survey on some popular RTOS standards and products. To build a

predictable RTOS timing model, the timing overheads of various RTOS services

are considered in models, which is an advantage over some other similar works.

The dynamic execution scenarios of real-time embedded software can be exposed

by tracing diverse system events and values in simulation, e.g., RTOS kernel calls,

RTOS runtime overheads, task execution times, dynamic scheduling decisions,

task synchronisation and communication activities, interrupt handling latencies,

context switch times, and other user-concerned properties. With this RTOS-

centric simulation framework, real-time embedded software designers can quickly

and accurately simulate and evaluate the behaviour of both abstract and native

real-time applications and the RTOS during the early design phases.

Objective 4 is fulfilled by combining the de facto OSCI TLM-2.0 [88] commu-

nication interfaces into the real-time software PE simulation model generated in

the above second and third parts of research. This work also defines a SoC TLM

model, which not only integrates the software PE model but also includes other

typical TLM initiator, target, and interconnection models. This part of work ex-

tends the software simulation models to the TLM modelling community.

 25

1.7 Organisation of the Thesis

The remainder of this thesis is organised as follows:

Chapter 2 Literature Review: Transaction-Level Modelling and System-

Level RTOS Simulation

This chapter will introduce current TLM research, describe the SystemC SLDL,

and survey RTOS modelling and simulation research in the context of system-

level design.

This chapter will start with an overview of important concepts and techniques

in TLM design, including various topics such as abstraction levels, accu-

racy/performance trade-off, and typical simulation frameworks. After that, some

important SystemC language constructs and the OSCI reference simulator will be

introduced along with their relevance to real-time software simulation that is con-

cerned by us. Finally, this chapter will survey related system-level RTOS model-

ling and simulation research. The existing approaches will be classified and dis-

cussed based on their modelling granularities, functional features, and application

areas in system-level design flows.

Chapter 3 Mixed Timing Real-Time Embedded Software Modelling and

Simulation

This chapter will propose a SLDL-based mixed timing software behavioural

modelling and simulation approach and an associated Live CPU Model for fast,

flexible and accurate real-time software behavioural modelling and simulation.

At first, this chapter will introduce the problematic annotation-dependent time

advance method in SLDL-based software simulation and survey some remedy ap-

proaches. It will then describe the mixed timing approach, by defining two types

of software models for TLM software computation modelling and discussing

various issues in timing modelling and timing simulation. Afterwards, the compo-

nents and operations of the Live CPU Model will be introduced in detail. Finally,

evaluation metrics and experiments will also be presented in order to evaluate the

research in this chapter.

Chapter 4 A Generic and Accurate RTOS-centric Software Simulation

Model

 26

This chapter will introduce a SystemC-based generic and accurate RTOS-

centric real-time software simulation model. It can support flexible and practical

real-time software simulation in early design phases.

Firstly, this chapter will present the research context and assumptions. An ab-

stract embedded software stack will be defined as the research target. It will then

survey common RTOS concepts and requirements as guidance of following re-

search. Afterwards, details of the RTOS-centric real-time software simulation

model will be described. This research will include three main parts, i.e., the over-

all structure of all simulation models, application software modelling, and RTOS

modelling. RTOS modelling is the core part and will be introduced from both the

functional modelling aspect and the timing modelling aspect. The chapter will af-

terwards explain evaluation metrics regarding simulation performance, functional

accuracy and timing accuracy of the proposed RTOS-centric simulator. Accord-

ingly, experiments will be carried out in order to demonstrate these aspects.

Chapter 5: Extending the Software PE model with TLM Communication

Interfaces

This chapter will extend software simulation models with TLM communication

interfaces by utilising the OSCI TLM-2.0 library. This aims to popularise our

software modelling and simulation research into the promising TLM modelling

domain.

It will firstly introduce related concepts of the OSCI TLM-2.0 library in brief.

Then it will describe how to integrate TLM communication constructs into the

Live CPU Model. Afterwards, a simple SoC TLM model will be presented in or-

der to integrate the Live CPU Model and reveal how various typical system com-

ponents are defined for co-simulation with behavioural RTOS-centric software

models. Finally, an experiment will study the simulation performance of the SoC

simulation model, whilst another DMA I/O experiment will demonstrate the in-

teroperable simulation capability of the combined software and TLM models.

Chapter 6: Conclusions and Future Work

The last chapter will summarise contributions, conclude chapters, and suggest

future research directions.

27

Chapter 2

Literature Review: Transaction-Level Model-

ling and System-Level RTOS Simulation

In order to help developers deal with the increasing design cost and short time-

to-market of todayôs embedded systems industry, there is a pressing need for new

design methodologies to ameliorate these problems. System-level design tech-

niques have been proposed, that use high-level abstraction methods to design

hardware and software concurrently in a unified environment. In this research

domain, system-level modelling and simulation are key techniques to describe,

validate, analyse and verify complex systems. In various system-level modelling

and simulation approaches, the SystemC-based Transaction-Level Modelling

(SystemC-TLM) has become a de facto standard. Based on the essential TLM

principle ñseparating computation from communicationò, developers can divide

system modelling and simulation into two main aspects, i.e., the computation as-

pect and the communication aspect.

In the general context of embedded systems modelling, the computation can be

further divided into the software aspect (i.e., software running on a CPU) and the

hardware aspect (i.e., application-specific hardware logics). In this thesis, we spe-

cifically concentrate on modelling and simulating real-time software at a high

level, namely the software PE model. The HW/SW timing synchronisation in the

unified event-driven SystemC simulation environment is addressed, which is cru-

cial for modelling interrupts and greatly affects both simulation timing accuracy

and performance. Because of benefits of dynamic scheduling and multi-tasking

execution of concurrent real-time applications, RTOS behavioural modelling has

increasing relevance for both fast simulation and validation of different software

implementation alternatives in the early stages of design. Various RTOS design

28

space exploration activities (e.g., assigning task priorities, deciding scheduling

strategies and designing application-specific OS services) also require an early

and efficient test bed in order to be carried out. Consequently, the RTOS model is

regarded as the heart of behavioural real-time software modelling and simulation

research in this thesis.

This chapter starts with some basics of current TLM research and work exam-

ples in Section 2.1. As the programming language and research environment of

this thesis, SystemC language constructs and the OSCI reference event-driven

simulator kernel are introduced in Section 2.2, along with their relevance and in-

adequate ability for modelling and simulation of real-time software. In Section 2.3,

an overview is presented on related RTOS modelling and simulation research in

the context of system-level and TLM design. These works motivate our study in

this thesis. The HW/SW timing synchronisation approaches and problems in Sys-

temC simulation are also introduced in several paragraphs within this chapter.

Section 2.4 will summarise this chapter.

2.1 Transaction-Level Modelling and Simulation

Transaction-level modelling has generally been considered as the emerging

system-level modelling style for improving productivity in the design of highly

integrated embedded systems which may integrate heterogeneous processors, IP

cores, peripherals, memory components, and on-chip communication infrastruc-

tures. TLM models are expected to serve as interoperable references across differ-

ent design teams for fast embedded systems architecture exploration, early em-

bedded software development and functional verification [3].

From the hardware developerôs point of view, TLM captures embedded sys-

tems at a range of abstraction levels higher than the traditional RTL [89]. Com-

pared to conventional RTL modelling and simulation, TLM not only reduces the

model building cost, but also speeds up the simulation performance by orders of

magnitude. The literature [3] provides an example project in which the modelling

effort and simulation efficiency of three different TLM, cycle-accurate and RTL

models are compared. Table 2-1 shows the distinct speed-up of the TLM approach.

Another benefit of the TLM approach, more interesting to software developers, is

29

that it can support early development and validation of hardware dependent soft-

ware. Developers can co-simulate software with hardware models in a single-

source SLDL-based simulation framework, almost as soon as the initial architec-

ture specification is determined [90]. In this thesis, from a software researchôs

perspective, TLM refers to high-level interaction between different software and

hardware modules. It includes behavioural software modelling/simulation, high-

level hardware modelling/simulation, and transaction-based communication be-

tween them.

However, the higher abstraction levels of TLM models also indicate less mod-

elling detail and some loss of accuracy. The accuracy of TLM simulation, in terms

of both data accuracy and timing accuracy, is necessarily sacrificed to some extent

due to coarse-grained data transfers and larger time-advancing steps. Of course,

with the goal of rapidly describing the system architecture and validating applica-

tions, requirements are relaxed in terms of accuracy of bit-level data or cycle-

accurate timing. Usually, coarse-grained and reasonably accurate assumptions are

made, e.g., packet-level transmission and cycle-approximate timing. Trading ac-

curacy issues against simulation speed [91], or preserving accuracy whilst gaining

in simulation performance [92], are popular TLM research topics in terms of effi-

ciency and flexibility. We are also concerned with them in this thesis and will pre-

sent some studies in the next chapter. At this point, the term ñcycle-approximate

timingò (or the similar term ñapproximate-timedò [7]) indicates that a procedure

0

500

1000

1500

0

2

4

6

8

10

12

Modelling speed-up vs

RTL

1 100 1000

Simulation speed-up vs

RTL

1 3 10

RTL Cycle-accurate TLM

Table 2-1. Modelling and simulation speed comparisons [3]

30

(either a computation action or a communication transaction) in a model is as-

signed with timing information that spans multiple clock cycles, and that the

simulation clock can be progressed with multiple clock cycles in each step. De-

spite the fact that this term is broadly used as a temporal resolution in the TLM

taxonomy, its exact timing granularity is vague. A variety of interpretations from

diverse researchers often reveal their own interest in modelling and intention of

optimisation, which may make it difficult to compare the performance and accu-

racy of different TLM works quantitatively and horizontally.

In order to present a general idea of the existing research on TLM, three main

topics will be hereby introduced:

¶ Abstraction levels of TLM: A fundamental essence of transaction-level

modelling is to raise the level of abstraction by hiding low-level implemen-

tation detail. Some important concepts and popular definitions on TLM ab-

straction levels will be addressed.

¶ Communication exploration: A variety of transaction-based communication

modelling approaches have been developed in both academia and industry

to define how system components communicate. The research on communi-

cation modelling and simulation is a contributor factor to most of current

TLM achievements. Here, a brief introduction on related work is presented

in order to reveal this essential TLM aspect.

¶ Embedded software development in TLM: If TLM comprehends two por-

tions ñcommunicationò and ñcomputationò, then modelling software is

surely a paramount topic of the TLM computation portion.

2.1.1 Abstraction Levels and Models in TLM

A central issue in various system-level design methodologies is concerned with

appropriate abstraction levels and coding styles for modelling various computa-

tion and communication activities in TLM. By a general consensus, TLM does not

specifically or explicitly indicate a single abstraction level. In fact, a series of ab-

straction levels are classified in the general category of TLM in different TLM

taxonomies. It is not practical to precisely enumerate all abstraction levels for

TLM, because there are many different interpretations. However, it is still possi-

31

ble to indicate the range of TLM levels. Without much dispute, most researchers

agree that TLM abstraction levels are relatively ñhigherò than the RTL used in

traditional design. Also, TLM abstraction levels are considered to be ñlowerò than

functional (algorithmic) models. Functional models are not defined as TLM mod-

els, although the abstraction level of them is sufficiently high [88]. This is because

a functional model usually includes a single software thread only, e.g., in the form

of a C function or a SLDL process. It does not bear two essential features of a

TLM model: concurrent multitasking computation and inter-process communica-

tion [88].

Conventionally, TLM abstract models are organised with respect to some crite-

ria, including:

¶ Timing accuracy: This is a first-class characteristic regarding the accuracy

of a model. It refers to how a model is assigned with timing information,

e.g., a line of code, a code block, or a task, and cares about the resolution of

timing information, e.g., untimed, cycle-approximate, or cycle-by-cycle.

¶ Functional accuracy: This refers to how a model captures the function of a

Communication
timing degree

Computation
timing degree

Untimed

Component-
assembly

model

Bus-
arbitration

model

Bus-functional
model

Cycle-accurate
computation

model

Implementation
modelCycle-

accurate

Cycle-
approxim

ate

Loosely-
timed

Loosely-
timed

Cycle-
approximate

Cycle-
accurate

Specification
model

Cycle Accurate
Models

Programmers
View Timed

Models

Programmers
View Models

CP+T
Models

CP
Models

Figure 2-1. Various TLM abstraction levels (partially based on [7])

32

target system. For instance, some high-level simulators only abstract timing

properties (e.g., execution time, period, and deadline) of a software model in

order to enhance simulation speed, but without modelling its functional be-

haviour. The functional accuracy can be evaluated by comparing the outputs

of the model with a reliable reference by giving them the same inputs.

¶ Communication data granularity: This criterion regards what data structures

are transmitted through communication channels, for example, an applica-

tion packet, a bus packet, or a word.

There are an number of literatures [3] [88] [7] [93] that feature definitions of

TLM abstraction levels. In the following, Sections 2.1.1.1 to 2.1.1.4 will present

some examples. Figure 2-1 provides a conjunctional view of these TLM abstrac-

tion taxonomies by comparing the timing accuracy of their computation aspects

and communication aspects.

2.1.1.1 OSCI TLM Abstraction Levels

The most acknowledged TLM abstraction level taxonomy was proposed by the

OSCI TLM working group [3] [88]. The OSCI TLM specification defines two

general levels for TLM modelling: the Programmers View (PV) level and the

Programmers View Timed (PVT) level (see Figure 2-1). The PV models are char-

acterised by the Loosely-Timed (LT) coding style and the blocking transport inter-

face, in which each transaction is associated with two timing points, correspond-

ing to the start and the end of a blocking transport. It is appropriate for software

programmers who require a functional virtual hardware platform with sufficient

timing information in order to run an operating system and application software.

A PVT model is identical to the PV level model in terms of functionality, but each

PVT transaction is annotated with multiple timing points and uses the non-

blocking transport interface, namely the Approximately-timed (AT) coding style.

It enables architecture exploration and also performance analysis of the applica-

tion system. This OSCI TLM abstraction level view reflects a communication-

centric hardware design perspective, although some software designers, with the

aim of promoting interoperable TLM modelling, are seeking its application for

computation modelling [6].

33

2.1.1.2 Donlinôs Extended TLM Abstraction Levels

In [93], Donlin introduces three TLM levels in addition to OSCIôs definition

above, i.e., the Communicating Process (CP) level, the Communicating Process

with Time (CP+T) level, and the Cycle-Accurate (CA) TLM level. Referring to

Figure 2-1, CP and CP+T abstraction levels are even higher than OSCI-TLM lev-

els, where ñTò means coarse timing information. CP and CP+T models are more

architecture-independent and implementation-independent than PV and PVT

models. System models at the two levels consist of parallel processes that ex-

change high-level data structures by point-to-point connections, rather than arbi-

trated buses. In contrast, the Cycle-Accurate (CA) abstraction level is lower than

OSCI levels. It captures micro-architectural details and is time-accurate to the

level of each clock cycle. In some TLM literatures [3] [94], CA models are some-

times not referred to as a part of the TLM space because of their limited speed-up

compared to a RTL model (Table 2-1 hints at this). However, in [93], Donlinôs

focus is to investigate the use of CA TLM models for detailed performance analy-

sis and verification of hard real-time software in the final design stages; conse-

quently the drawback regarding performance is considered to be worthy of tolera-

tion.

2.1.1.3 Cai and Gajskiôs Orthogonal TLM Modelling Graph

Another early and classical TLM taxonomy is introduced by Cai and Gajski in

[7], which concludes that communication and computation are equally important

yet orthogonal aspects of TLM research. Referring to Figure 2-1, these two as-

pects are illustrated as two axes according to degrees of timing accuracy in a sys-

tem modelling graph. They identify three timing degrees, i.e., untimed, approxi-

mate-timed (so-called cycle-approximate), and cycle-timed (so-called cycle-

accurate). Moreover, the authors define six abstraction models in the graph and

explore their usage in embedded system design flows, starting from the specifica-

tion stage and ending at the implementation stage. Among the six models, four

(the shaded circles in the figure) are classified as TLM models, i.e., the compo-

nent-assembly model, the bus-arbitration model, the bus-functional model, and the

cycle-accurate computation model. The solid arrows in the figure represent a typi-

34

cal TLM system design flow, whilst the other dotted arrows stand for some possi-

ble design routes depending on different design intentions, e.g., communication-

focused or computation-focused.

2.1.1.4 Mixed-Level and Multiple-Level TLM Modelling Research

Various TLM models at different degrees of accuracy bring a potential for mul-

tiple-level or mixed-level modelling in which designers can trade off modelling

accuracy and simulation performance according to different strategies.

In Chapter 2 of [3], the researchers propose a general idea for TLM mixed-

level modelling by combining untimed TLM models and standalone timed TLM

models. This allows for concurrently developing pure functional models (by ar-

chitecture teams) and timing models (by micro-architecture teams) with dissimilar

modelling purposes. Multiple timing scenarios with different resolutions can co-

exist in a unified simulation model, and simulation speed can be optimised by dy-

namically switching untimed and timed models at runtime.

For bus communication modelling, Schirner and Dömer quantitatively analyse

simulation speed and timing accuracy of three abstract communication models,

e.g., the conventional TLM model, the arbitrated TLM model, and the cycle-

accurate and pin-accurate bus functional model [92]. They configure them with

varying data granularities and arbitration handling methods in order to trade off

simulation accuracy and performance. Focusing on software computation model-

ling, they define five abstraction levels for processor modelling (e.g., the applica-

tion level, the task scheduling level, the firmware level, the processor TLM level,

the processor functional model) and quantify accuracy loss and simulation speed-

up of each model [79].

For processor and communication design co-exploration, an integrated design

methodology is presented in [95]. It combines multi-level processor hardware

models (e.g., instruction-accurate and cycle-accurate) and communication models

(TLM buses and RTL buses), by which the processor design team can co-operate

with the communication team early in the design flow.

35

2.1.1.5 Summary

The different views of TLM abstraction levels and related models have com-

mon notions of hardware and communication modelling. Each TLM abstraction

level can be seen as a limited design space for exploring and validating some

functional and timing issues with corresponding models. Multiple TLM abstrac-

tion levels thus constitute a wide design space, namely a design flow, for succes-

sive model refinement through the addition of design detail.

The OSCI TLM standard is gaining a high level of popularity and sustainable

development in both industry and academia. It provides two distinguishing levels

(i.e., LT or AT) for communication models depending on their timing degrees and

synchronisation methods. The relevance of this modelling idea will be examined

to the proposed software modelling approach in Section 3.2.2. The mixed model-

ling idea is widely advocated for accuracy and speed trade-off in both the OSCI

TLM standard and the research surveyed in Section 2.1.1.4. Specifically, it is also

a guiding concept of the mixed timing software modelling approach that is to be

presented in Section 3.2. The recent OSCI TLM standard Version 2.0 provides

standard interfaces for creating bus communication models. Chapter 5 will inves-

tigate combining these API interfaces with the proposed software models in order

to advance interoperability between TLM communication and our native-code

software simulation models.

2.1.2 Communication Modelling in TLM

If we interpret the term ñtransactionò as an ñabstract communication operationò

[47] or as a ñhigh-level form of a communication protocolò [96], then the name

ñtransaction-level modellingò is likely to imply that communication is a main re-

search topic. From a narrow viewpoint, TLM is understood as a communication-

centric embedded systems modelling paradigm [97]. Early in 2002, Grötker et al.

introduced the basic TLM interface-based communication style with a high simu-

lation performance [98]. This work forwards SystemC as the most established de-

sign language vehicle for TLM approaches today. In this section, we will make a

brief introduction mainly, but not limited to, SystemC based TLM communication

and architecture exploration studies.

36

In TLM, in order to build a virtual prototype that represents abstract models of

an embedded system, a system is broken down to a set of computation compo-

nents comprising concurrent processes to implement application functions. Com-

putation components communicate with each other through ports and channels by

sending and receiving transaction requests. Figure 2-2 shows a block diagram of

an example SoC TLM model, e.g., the AMBA bus. In this model, the architecture

is composed of two main computation components, i.e., an ARM microprocessor

and an application-specific processor (e.g., DSP or custom logics) as initiator

components in the system. Some other components including fast and slow

memories, peripherals, and devices are connected to processors by direct port-to-

port connections and buses, e.g., the Advanced High-performance Bus (AHB) and

the Advanced Peripheral Bus (APB). From the TLM perspective, the buses are

complex channels accessed by multiple modules through respective ports.

Figure 2-3 depicts the basic method of TLM communication modelling. In this

example, two modules communicate through a channel. The Process A1 in Mod-

ule A can write a value to the channel by calling the method write() through

its parent moduleôs port pA, whilst the Process B1 retrieves a value from the

channel by the method read() via port pB. This Interface Method Call (IMC)

scheme achieves high modularity in inter-module communication modelling, and

essentially separates communication and computation details.

ROM/Flash

Dual Port
RAM

Bus
Arbiter

AHB

ARM7 CPU Model
(ISS or high-level model)

task DSP/
Custom

hardware

task task

AHB to APB
Bridge

APB

Interrupt
controller

GPIO

UART Timers

InterfacePort

Figure 2-2. An AMBA TLM model example

37

As the key element of the TLM IMC communication, a channel can have vary-

ing complexity across different designs. In a SystemC-TLM specification, a chan-

nel can be implemented in two styles, i.e., the primitive channel and the hierarchi-

cal channel. A primitive channel contains processes and ports and aims to provide

simple and fast communication. The SystemC language reference manual [66]

defines several built-in primitive channels (all derived from a base class

sc_prim_channel), e.g., sc_signal (to model a simple wire carrying a

digital electronic signal), sc_fifo (to model a first-in-first-out buffer),

sc_mutex (to model a mutual exclusion lock) and sc_semaphore (to model a

software semaphore), etc. Hierarchical channels are indeed hybrid modules and

can contain other instances of modules, processes, ports and nested channels.

They are used to model complex customised communications, such as buses or

networks.

In order to advocate model interoperability between different communication

modelling and architecture design communities, some standards are proposed to

promote the SystemC TLM communication paradigm. The following are two pre-

dominant standards.

The OSCI TLM Working Group, which was founded in 2003, has published a

series of OSCI TLM standards. The up-to-date OSCI-TLM library version 2.0 [88]

[99] introduces a set of well-defined core APIs, data structures, initiators, targets,

the generic payload, and the base protocol for transaction-based communications.

The core interfaces support two types of transport, i.e., the blocking transport (a

transaction can suspend its parent process) and the non-blocking transport (a

transaction is atomic and does not suspend its parent process). The generic pay-

load is primarily intended for modelling a typical memory-mapped bus, which is

Figure 2-3. TLM Interface Method Call Communication

Module A
Channel

pAProcess A1
pA->write()

write() read()

Module B

pB

Process B1
pB->read()

InterfacePort

Process A2

Process B2

38

abstracted away from the details of any specific bus protocols. An extension

mechanism is also offered to model specific bus protocols or non-bus protocols by

users. The Open Core Protocol International Partnership (OCP-IP) consortium is

another active TLM standardisation organisation. It has proposed and maintained

a SystemC TLM modelling kit since 2002 [100] [101], defining a stack of com-

munication layers including four abstraction levels, i.e., Message Layer (L-3),

Cycle-approximate Transaction Layer (L-2), Cycle-accurate Transfer Layer (L-1),

and the RTL Layer (L-0). Its latest version, which is built on top of OSCI-TLM

v2.0, provides an interoperable standard for SystemC component models with

OCP protocol features.

A number of TLM modelling and simulation approaches have been proposed

for the design of complex communication systems. The following are some repre-

sentative works.

Gajskiôs group presents examples of TLM communication research mainly

based on the SpecC language. The literature [102] describes a general TLM com-

munication modelling style for SoC design. For Network-on-Chip synthesis, they

define some successive system communication abstraction layers and correspond-

ing design models to refine abstract message-passing down to a cycle-accurate,

bus-functional implementation [58]. For AMBA AHB bus modelling, they pro-

pose a Result Oriented Modelling (ROM) technique that improves accuracy

drawback of conventional TLM models and gains high speed by omitting internal

states and making end result correction [103].

In 2002, Pasricha pointed out the direction for using the SystemC TLM model-

ling approach in early architecture exploration and developed communication

channels for fast simulation for embedded software development [90]. In order to

bridge the gap between high-level TLM models and bus cycle-accurate models,

Pasricha et al. present an intermediate TLM abstraction level ñCycle Count Accu-

rate at Transaction Boundariesò (CCATB) for communication exploration, which

improves simulation speed by keeping cycle-level timing accuracy only at trans-

action boundaries [104].

Kogel et al. propose a series of multiple-level SystemC-TLM co-simulation

and virtual architecture mapping methodologies for architectural exploration of

39

NoC, SoC, and MPSoC [105] [106] [95]. Klingauf et al. describe the TRAnsac-

tion INterchange (TRAIN) architecture for mapping abstract transaction-level

communication channels onto a synthesisable MPSoC implementation by virtual

transaction layers [55]. They also propose a generic interconnect fabric for TLM

communication modelling that aims to support flexible buses, multiple TLM ab-

straction levels, and various TLM standard APIs [107].

2.1.3 Embedded Software Development with TLM

Embedded software development with TLM models is not a new topic and

many studies have been conducted in this area. In this section, we introduce them

depending on relationships between software modelling and TLM techniques:

¶ Conventional ISS software simulators utilise TLM communication for mod-

elling SW/HW interfaces only (Section 2.1.3.1);

¶ System-level software modelling and simulation comply with general TLM

concepts and techniques (Sections 2.1.3.2 and 2.1.3.3).

2.1.3.1 ISS SW Simulation with TLM SW/HW Interfaces

In an early TLM literature [90], Pasricha indicated the concept of developing

embedded software with SystemC TLM models. This is mainly motivated by two

encouraging TLM modelling results: the early availability of TLM architectural

models in the SoC design lifecycle and the much higher simulation speed com-

pared to detailed RTL models. The goal is to design and simulate embedded soft-

ware on top of a virtual prototype of the target architecture instead of using tradi-

tional RTL models or the final implementation. This research uses a

HW/communication-centric TLM and conventional software simulation approach.

Several efforts have been made to combine conventional cycle-accurate soft-

ware simulation (e.g., an ISS) with SystemC-based abstract TLM hardware and

communication models [108] [109] [95]. As shown in Figure 2-4, TLM tech-

niques are used to model SW/HW communication interface and hardware compo-

nents, which are outside the scope of software modelling. The SPACE methodol-

ogy [108] encapsulates an ISS in a SystemC wrapper and connects it with rest

modules of the modelling platform through TLM channels. Two types of TLM

40

communication channels (untimed and timed) are provided to support two TLM

abstraction levels: untimed channels are for a faster verification of applications

before partitioning, while timed channels are used for cycle-accurate modelling.

Cross-compiled binary code of software application, the OS, and drivers executes

in the ISS. For MPSoC design space exploration, the MPARM approach inte-

grates multiple SystemC-based ARM processor models (ISS simulators in Sys-

temC wrappers), the AMBA bus model, and memory models [109]. The TLM

channels implement the bus communication architecture in a master-slave style.

2.1.3.2 Embedded Software Generation Using TLM Models

Recalling the fundamental TLM principle of separating the concerns of compu-

tation and communication, these two design aspects should be paid equal attention

in TLM contexts. Some researchers are also concerned about applying TLM con-

cepts and techniques to design and validation of the computation portion [9] [6].

Software is the integral and main part of many embedded systems and hence has

become a major area of interest in transaction-level computation modelling.

Motivated by the goal to co-design an entire electronic system from the speci-

fication phase down to the implementation phase by using a single SLDL, some

system-level design flows have been proposed to support embedded software gen-

eration and synthesis. In these studies, a series of SLDL-based specification and

TLM models are simulated, refined and transformed, in order to automatically

generate target embedded software C/C++ code [62] [63] [110], or to further gen-

erate final binary files, i.e., system-level software synthesis [59] [61].

Figure 2-5 shows a typical embedded software generation flow. Firstly, un-

timed and before-partitioned system functions are described by a set of hierarchi-

 SLDL Wrapper

Instruction Set Simulator

RTOS port binary

Drivers binary

TLM
channels

TLM HW
module

TLM HW
module

SW application binary

INT

Figure 2-4. TLM technique for modelling SW/HW interfaces

41

cal SLDL elements such as modules, processes, interfaces, channels, and ports.

These processes run in parallel and communicate with each other by means of

transaction style channels. Through iterative simulation and partition, untimed

specification models are transformed into PV or PVT TLM models. At the TLM

architecture exploration stage, a simple scheduler or a RTOS model may be inte-

grated to assist sequential software simulation. In order to generate software im-

plementation code towards a specific operating system, a RTOS-specific library

(e.g., RTEMS [59], QNX [63]) is introduced to replace the RTOS model with be-

haviourally equivalent RTOS functions, and SLDL processes are mapped to real

RTOS tasks. Finally, SLDL-based software code is cross-compiled into executa-

ble binary code for a target processor.

These approaches reveal a system-level design point of view and make a valu-

able contribution to co-design and co-synthesis flows. However, such a design

flow is still not straightforward. The first obstacle resides in transforming specifi-

cation models described in a SLDL into RTOS based TLM software execution

models. The hardware-style channel communication mechanism used in specifica-

tions is not suitable for real-time software design, which may sacrifice the con-

ventional software implementation productivity and legacy. Besides, it is known

that the SystemC library bears the weakness of not supporting priority assignment

and pre-emptive scheduling, so the built-in SystemC kernel scheduler and syn-

chronisation primitive channels are not applicable for real-time software model-

ling. Consequently, the idea in [62] that simply replaces SystemC library elements

with target RTOS functions may not be appropriate. A usual solution is to inte-

grate a RTOS model on top of the SLDL in order to supply necessary dynamic

Module 1

Process 1

Process 2

Module 2

Process 3

SW module HW Module

Process 3task task

Scheduler or
RTOS model

Before-partition:
functional, untimed,
unscheduled, parallel

Specification model TLM models

After-partition:
functional, timed,

scheduled, sequential

RTOS
library

Cross-
compiled for

target

Target
C/C++ code

Target
binary

Code generation

Figure 2-5. Software generation using TLM models

42

real-time software services, which is also the method used in the thesis. Another

problem is the increasing size of binary code, because the generated software code

includes overhead from some SLDL language constructs [62] [59]. For resource-

limited embedded systems, some efficient optimisation techniques may be re-

quired to reduce the interference from the SLDL library in target code.

2.1.3.3 TLM Modelling of Software Processing Element

While some research activities have been devised for software development in

the overall system-level design flow, recently some methodologies and techniques

have emerged that specifically focus on the need of abstract modelling a software

PE (i.e., software running on a CPU) in the context of TLM [79] [111]. This topic

can be seen as a mixture of two aspects: abstract processor modelling (the hard-

ware aspect) and behavioural software simulation (the software aspect). Figure

2-6 depicts features of a TLM software PE model and some possible modelling

options.

From the hardware designersô angle, the motivation is to abstract physical

processor features into functional elements in order to simulate high-level soft-

ware models in the execution environment and connect software models with the

rest of the system. In [111], Bouchhima et al. present an abstract CPU model aim-

ing for timed MPSoC HW/SW co-simulation. It provides a set of Hardware Ab-

straction Layer (HAL) APIs for upper-layer software models and an interface for

connecting other system components. This CPU model captures an architectural

view of a processor, which includes subsystems like an execution unit for HW

Software Processing
Element (CPU)

task
model

task
model

RTOS model

Timing granularity ?
Functions ?

Hardware abstraction

Generic or specific ?
Timing granularity ?
Functions ?

Implicit or explicit ?
Interrupt ?

Interrupt I/O port

Execution Unit

Data Unit

Sync Unit

Software abstraction
model

Hardware aspect

Software aspect

Figure 2-6. Software processing element modelling in TLM

43

multiprocessing, a data unit wrapping any devices and memory elements, an ac-

cess unit containing address space, and a synchronisation unit behaving as an in-

terrupt controller. In a subsequent work [6], they introduce a SW TLM communi-

cation refinement approach named ñSW busò to enable SW tasks to access logical

resources of HW TLM models. In [79], Schirner et al. develop a high-level proc-

essor model to support software simulation. The abstract processor model is mod-

elled in a layered approach including five increasing feature levels, i.e., the appli-

cation layer, the OS layer, the HAL layer, the TLM hardware layer, and the bus

functional hardware layer. This model enables incremental and flexible descrip-

tion of the software subsystem at different design stages.

If we turn to a software developersô perspective, a software processing element

model should consist of various software models at appropriate levels of abstrac-

tion for behavioural software simulation. Timed software simulation, RTOS

scheduling, and interrupt handling are three key aspects to evaluate research in

this area. In a large number of embedded systems, a RTOS provides a useful ab-

straction interface between real-time applications and processor hardware abstrac-

tion. Consequently, most software processing element modelling approaches inte-

grate a RTOS model in order to supervise native execution of application, which

is known as RTOS modelling [12, 43, 73, 87, 112, 113, 114, 115]. In respect of

the research in this thesis concentrating on the RTOS modelling, a more complete

survey will be given in Section 2.3. In Figure 2-6, timing granularity and func-

tional accuracy are used as dimensions to guide and compare software models,

which offer choices on abstraction levels of task models and RTOS model. Still in

the figure, the hardware abstraction model is illustrated by a dotted frame, this re-

flects the current situation whereby some software modelling approaches do not

include interrupt handling, nor consider the interoperability with hardware models,

i.e., hardware abstraction is implicit in the high-level PE model.

2.2 The SystemC Language

SystemC is an open-source C++ based system-level design language that is of-

ten used for high-level system modelling and simulation. Unlike the conventional

heterogeneous HDL-ISS HW/SW co-simulation, the SystemC modelling frame-

44

work can provide a homogeneous programming and co-simulation environment,

by which users can write both software and hardware models in a unified common

language and natively compile them as a single process on the host computer. The

SystemC execution model uses a discrete-event simulation kernel to schedule

model processes (a set of C++ macros) so as to mimic functional behaviour and

time progress of a target system.

In this section, we will start with a brief introduction to SystemC language fea-

tures with regard to concerned support for software modelling. We will then take

a look at the SystemC co-operative execution model which closely affects real-

time software simulation. Finally, an example of a simple SW/HW system model

is presented in order to illustrate the structure of a SystemC model.

2.2.1 SystemC Language Features

The SystemC class library is implemented by a set of C++ library routines,

macros, type definitions, templates, and overloaded operators. Figure 2-7 shows

the simplified layered structure of a SystemC application. Users can develop

simulation models based on SystemC and C++ languages, and they can addition-

ally use some SystemC libraries depending on specific design necessity, e.g., the

OSCI TLM library [88].

Referring to Figure 2-7, the components of the SystemC library are briefly

classified and introduced as follows. More comprehensive description can be

found in the language reference manual [66].

C++ language

User application

Libraries:
TLM library, verification library, mixed-signal library, other IP libraries

 Core language

Sy
st

e
m

C
 li

b
ra

ry

Modules: SC_MODULE

Processes:
SC_METHOD,
SC_THREAD,
SC_CTHREAD.

Interface-comm:
ports, exports,

interfaces,
channels.

Event-sync:
notify(event),
cancel(event).

Data types:
logic,

integers,
fixed-point

Predefined channels:
signal, clock, FIFO,

mutex, semaphore, etc.

Utilities:
Report handling,

tracingSimulation
kernel

wait(time),
wait(event).

Figure 2-7. SystemC language structure

45

The Simulation Kernel

It schedules SystemC processes in response to an event or a time delay. The

exact execution mechanism will be described in the next Section 2.2.2.

Language Utilities

These utility classes provide some assisted services in terms of tracing value

changes, reporting exceptions, and mathematical functions.

Data Types

In addition to supporting native C++ types, SystemC defines some data types

for hardware modelling, for instance, integer types within and beyond 64-bit

width (e.g., sc_int <WIDTH>, sc_bigint <WIDTH>), fixed point data types

(e.g., sc_fixed , sc_ufixed , etc.) and four-valued logic types (e.g.,

sc_logic , sc_lv<WIDTH> , etc.). Because SystemC data types are defined in

classes with inevitable overheads, it is recommended to use C++ native types or

simple SystemC integer types for best performance if possible [116].

The Core Language

This category of classes provides main modelling functions regarding model

hierarchy, execution units, concurrency, synchronisation and communication, etc.

¶ A module (SC_MODULE) is the basic SystemC building block, namely an

object of a C++ class. The model of a computing system is composed of

several interconnected hierarchical modules. A module is the container of a

variety of modelling elements such as processes, events, ports, channels,

member module instances and data members.

¶ A process is the basic SystemC execution unit (a macro) that is encapsu-

lated in a SC_MODULE instance in order to perform computation of a sys-

tem. There are three types of process to wrap a function: the method process

(SC_METHOD), the thread process (SC_THREAD) and the clocked thread

process (SC_CTHREAD). The main difference between them is that the

method process atomically runs from beginning to end once triggered, but

the thread and clocked thread processes can be suspended and resumed by

directly or indirectly calling wait() functions that can be used to simulate

time cost of a real activity. The SC_CTHREAD process, a variation of

46

SC_THREAD, is only statically sensitive to a single clock and mainly used

in high-level synthesis [116].

¶ Ports (class sc_port), exports (class sc_export), interfaces (abstract

base class sc_interface) and channels (a type definition of

SC_MODULE and implementing one or more interfaces) are main language

constructs to model inter-module communication of a system by means of

the aforementioned interface method call approach.

¶ An event (class sc_event) is used to synchronise processes. The immedi-

ate or pending notification of an event (event.notify()) can trigger

(resume) the process that is waiting on it immediately or at a future time

point. An event can also be cancelled (event.cancel()) when it is at a

pending notification status. Compared to the interface method call method,

using an event is a lightweight synchronisation and communication method

to ease modelling costs. By flexibly changing the opportunity to notify or

cancel an event during simulation, users can change a processôs suspending

time at run-time.

Predefined channels

SystemC contains a number of predefined channels with affiliated methods and

ports, which implement some straightforward communication schemes (intro-

duced in Section 2.1.2). Note that although the mutual exclusion and the sema-

phore synchronisation methods are provided as predefined channels in SystemC,

their characteristics differ from what they usually are in the real-time software

context. We will address this issue later in Section 2.2.2.2.

2.2.2 SystemC Discrete Event Simulation Kernel

Apart from a few attempts that develop their own proprietary simulation ker-

nels such as the synchronous data flow execution model in [68] and the POSIX

thread implementation model in [69], most current SystemC simulations are

driven by the built-in OSCI discrete event kernel. We now summarise some dis-

tinctive characteristics of the simulation kernel and discuss its advantages and dis-

advantages regarding real-time software simulation in particular.

47

2.2.2.1 The Co-operative Simulation Engine

The current SystemC execution model (after Version 2.1) can be implemented

(compiled) using three thread libraries on different host OS platforms, i.e., the

QuickThread package for UNIX-like OSs, the Fiber thread package for Windows

OS and the more portable POSIX pthread library [117]. But no matter what the

implementation is, the co-operative multitasking policy remains the same. Simply

speaking, only one process will be dispatched by the scheduler to run at a time

point. The running process cannot be pre-empted by another. In case the running

process is a thread type, it transfers the control to the scheduler by calling

wait() functions or exits; a method process only yields control when its func-

tion body finishes.

Figure 2-8 illustrates the operating cycle of the kernel. Notably, due to irrele-

vance to the simulation cycle, the initial elaboration phase (i.e., before the start of

simulation), at which SystemC modules are constructed, is not included in the fig-

ure.

Initialisation : This is the first phase after a SystemC simulation starts, i.e., af-

ter calling the function sc_start() in the main model program. All modelling

processes without a special declaration of dont_init i alize() are put into a

Initialisation

Evaluation
Execute a ready

process

Ready
Process?

Make all eligible
processes ready

to run

Update

No

Yes

Ready
process?Yes

Time advance

No

delta cycle

No ready process,
simulation ends.

Figure 2-8. SystemC kernel working procedure

48

ready pool.

Evaluation: At the evaluation stage, ready processes execute sequentially, oth-

erwise the simulation ends if there are no runnable processes. The execution order

of them is unspecified in the SystemC specification. In the co-operative execution,

a process quits the running state either by initiatively calling a wait() statement

or simply finishing its function body. There are two kinds of wait() statements:

¶ The wait(time) function makes a process blocked for an un-interruptible

time duration and will resume the process after that specified time. This will

be also referred to as the wait-for-delay method hereafter.

¶ The wait(event) function makes a process blocked until the specified

event occurs. This will be also referred to as the wait-for-event method

hereafter.

Because processes may also notify some events immediately in execution and

thus cause other processes to be ready to run at once, the evaluation stage will it-

erate until no process is runnable. Besides, executing a process may access primi-

tive channels and change the signal value, which will consequently result in the

updating of data at the next update phase.

Update: In order to model the phenomenon that combinational electronic sig-

nals change values instantaneously in parallel within the sequential SystemC

simulation, SystemC uses an evaluation-update method to guarantee all signals

are synchronised. At the update phase, the update() method of each channel

that previously had requested an update before is called by the kernel to renew the

signal with a new value. If this action notifies an event to wake up a process, or

the kernel finds that some events are to notify blocked processes, then the kernel

will enter the evaluation phase again in order for repetition to occur. This proce-

dure, from evaluation to update and iteration, is known as a delta cycle, which

does not advance the simulation clock because everything happens at the same

time point in actual life.

Time advance: When there is no runnable process, the kernel will progress the

simulation clock to the earliest time point specified by a time delay or the nearest

pending event it is scheduled to notify. Some processes may thus become run-

nable and it is thus necessary to begin a new evaluate phase.

49

2.2.2.2 Advantages and Disadvantages for Real-time Software Modelling

Regarding fast TLM HW simulation and behaviour software simulation, the

SystemC SLDL can supply a homogeneous environment to model SW/HW by the

same C++ language description and drive their co-simulation by the same engine.

The global SystemC clock can be used for both the HW part and the software part,

which avoids the overhead of exchanging local clock information in a heteroge-

neous co-simulation environment [118] [86]. However, the HW/SW timing syn-

chronisation problem still exists within the SystemC simulation. The uninterrupti-

ble SystemC wait(time) clock advance method leads to a problem whereby a

process using wait(time) is not pre-emptible during its delay duration. The

timeliness to respond to an asynchronous event depends on the length of the cur-

rent time delay slice.

In the SystemC discrete event simulation, if events occur at different time

points and make corresponding processes ready, the scheduler is deterministic and

schedules process execution sequentially. However, if multiple processes get

ready at the same time point (i.e., during the same evaluation phase or in a delta-

cycle), the SystemC standard does not specify their running order [66]. This par-

tial ordering concurrency has disadvantages for real-time software modelling

which requires predictability and determinism. For example, multiple processes

are blocked waiting to execute a SystemC mutex.lock() operation, then

which process will get a chance to run is non-deterministic, depending on the or-

der of process execution during the evaluation phase. This behaviour also happens

on the SystemC semaphore synchronisation mechanism.

The SystemC co-operative execution model has a native side-effect of keeping

the integrity of shared data in atomic process execution. Because a process cannot

be pre-empted involuntarily, it can access shared variables exclusively in zero

time. However, this feature cannot replace common software synchronisation

methods for protecting shared resources, since it is necessary to guarantee the ex-

clusive access in a period of time by using a wait() function in a timed software

simulation. It is possible that another process may rewrite shared data in the same

delta cycle before the wait() delay of the last accessing operation has been pro-

gressed, which is not desired simulation behaviour.

50

Consequently, in order to model and simulate real-time software in the Sys-

temC environment, people should try to avoid or otherwise carefully use the

aforementioned error-prone features.

2.2.2.3 Discussions on Simulation Time

SystemC uses an integer-valued absolute time model. A time object (class

sc_time) is represented by two parts: a numeric value and a time unit. The time

value is a 64-bit unsigned integer, whilst the time unit can have six granularities

from the most fine-grained femtosecond (SC_FS) level to the most coarse-grained

second (SC_SEC) level. The time resolution is the smallest time that can be pre-

sented in a simulation and is defined before starting simulation.

When people talk about time in SystemC modelling and simulation, there are

often two terms involved:

¶ Target Time (also called simulated time, target simulation time): People

build models in SystemC and simulate them on the host computer in order

to mimic the behaviour of a target system. If models are timed, then people

need to assign time delays for various operations in models, which represent

the corresponding execution time on a target system. This kind of "execu-

tion time" can be called the "target timeò, which relates to the virtual clock

(also known as virtual time, target clock). In SystemC simulation, its elapse

can be observed by inserting the SystemC sc_time_ stamp() function in

model code.

¶ Host time (also called simulation time): As a native simulation approach,

SystemC models are compiled for and run on a host computer. Running a

SystemC program necessarily consumes some host CPU time, just like all

other software programs. People call this "host CPU time" as the "host timeò

or the ñsimulation time", and regard it as the simulation performance (speed)

that indicates how fast a simulation is in the real world.

It is worth noting that there is not a simple linear relation between the simu-

lated time and the simulation time regarding different SystemC simulations. Be-

cause of the discrete-event nature of the simulation engine, in general, the simula-

51

tion speed mainly depends on how many events are involved in simulation, i.e.,

the more events, the lower the speed.

2.2.3 A SystemC SW/HW System Example

This section gives a simple SystemC example consisting of a software process-

ing element and a hardware component. Figure 2-9 depicts the architecture of this

example. The hardware model transmits integer data to a software process via a

signal channel, and another software process is in charge of outputting the re-

ceived data.

This example covers several basic SystemC modelling issues, e.g., concurrent

processes, software sequential execution, co-operative scheduling, event-based

synchronisation method, interface method call communication, static sensitivity,

and dynamic sensitivity, etc. The SystemC code of this example includes three

parts: the hardware module in Table 2-2, the software module in Table 2-3, and

the main function in Table 2-4.

SW PE Module

signal<int>
in_portSC_THREAD

sw_isr
read() write()

HW Module

out_port
SC_METHOD
hw_gen

SC_THREAD
sw_output

sc_event

Figure 2-9. Block diagram of a SystemC example

SC_MODULE(HW) / / Har dwar e component modul e

{

 i nt TXD;

 sc_out <i nt > out _por t ; / / Dat a t r ansmi ssi on por t

 SC_CTOR(HW)

 {

SC_METHOD(hw_gen) ; / / Pr ocess decl ar at i on

 }

 voi d hw_gen()

 {

TXD = r and() %10;

out _por t - >wr i t e(TXD) ;

cout <<sc_t i me_st amp() <<" HW: " <<TXD<<endl ;

next _t r i gger (1+r and() %5, SC_US) ; / / Next r un

 }

} ;

#001

#002

#003

#004

#005

#006

#007

#008

#009

#010

#011

#012

#013

#014

#015

#016

Table 2-2. SystemC code of a HW module

52

Referring to Table 2-2, the function of the hardware module is simply embod-

ied in a SC_METHOD (hw_gen) , which executes repeatedly after a randomised

interval (see line 14). In each execution, it writes a random integer TXD to the

output port by calling the method on the port.

Referring to Table 2-3, there are two SC_THREAD type processes in the soft-

ware processing element module. At line 12, the sw_isr process is sensitive to

the value change of the in_port and then receives data from it. Once sw_isr

SC_MODULE(SW) / / Sof t war e PE modul e

{

 sc_i n<i nt > i n_por t ; / / Dat a r ecei v i ng por t

 sc_event evt _sw;

 i nt RXD;

 bool ean cpu_busy; / / CPU i s occupi ed

 SC_HAS_PROCESS(SW) ;

 SW(sc_modul e_name name) : sc_modul e(name) , cpu_busy(f al se)

 {

SC_THREAD(sw_i sr) ;

 dont _i ni t i al i ze() ;

 sensi t i ve<<i n_por t ; / / St at i c sensi t i v i t y

 SC_THREAD(sw_out put) ;

 dont _i ni t i al i ze() ;

 sensi t i ve<<evt _sw;

 }

 voi d sw_i sr ()

 {

 f or (; ;)

 {

 i f (! cpu_busy)

 {

 cpu_busy = t r ue;

 cout <<sc_t i me_st amp() <<" sw_i sr r uns" <<endl ;

 RXD = i n_por t - >r ead() ;

 wai t (1, SC_US) ; / / wai t f or del ay

 cpu_busy = f al se;

 evt _sw. not i f y() ; / / Tr i gger sw_f unc()

 }

 wai t () ; / / Revi ve st at i c sensi t i v i t y

 }

 }

 voi d sw_out put ()

 {

 f or (; ;)

 {

 i f (! cpu_busy)

 {

 cpu_busy = t r ue;

 cout <<sc_t i me_st amp() <<" sw_out put dat a: " <<RXD<<endl ;

 wai t (2, SC_US) ;

 cpu_busy = f al se;

 }

 wai t () ;

 }

 }

 } ;

#001

#002

#003

#004

#005

#006

#007

#008

#009

#010

#011

#012

#013

#014

#015

#016

#017

#018

#019

#020

#021

#022

#023

#024

#025

#026

#027

#028

#029

#030

#031

#032

#033

#034

#035

#036

#037

#038

#039

#040

#041

#042

#043

#044

#045

#046

#047

Table 2-3. SystemC code of a SW PE module

53

finishes execution, it notifies the event evt_sw in order to make the other proc-

ess sw_output ready (see line 28). The two processes use wait(time)

statements to simulate their execution time cost (lines 26 and 41). Since it is as-

sumed that there is only one conceptual SW PE, the two processes need to execute

sequentially. A flag variable is used to guarantee that only one software process

can be at the running state (i.e., during a delay interval) at a time.

Referring to the main function in Table 2-4, modules and channels are created

and instantiated (lines 3-6). Corresponding ports on both HW and SW modules

are connected by the channel object sig (lines 6, 7) in the elaboration phase. A

call to the function sc_start() begins the simulation, which will continue for

100 microseconds target time in our simulation (line 8).

It should be noted that, in this example, two software processes execute accord-

ing to the SystemC native co-operative scheduling policy and use the uninterrup-

tible wait(time) function to advance the target clock. That is, one software

process executes up to completion and one process cannot pre-empt the other. As

a result, if a hardware signal arrives when a software process is executing, the

i nt sc_mai n(i nt ar gc, char * * ar gv) / / Mai n f unct i on

{

 sc_si gnal <i nt > si g;

 HW hw_i (" HW_moduel ") ;

 SW sw_i (" SW_modul e") ;

 hw_i . out _por t (s i g) ;

 sw_i . i n_por t (s i g) ;

 sc_st ar t (100, SC_US) ;

 r et ur n(0) ;

}

#001

#002

#003

#004

#005

#006

#007

#008

#009

#010

Table 2-4. SystemC code of the main function

10 2 3 4 5 6 7 8

value: 1 value: 7

value:
1

value:
8

value:
7

value:
1

9 10 11

value:
9

value: 9

Missed Missed

sw_isr

sw_output

hw_gen

time (us)

Figure 2-10. Non-pre-emptible execution

54

software Interrupt Service Routine (ISR) cannot serve the hardware interrupt.

Figure 2-10 shows this phenomenon, in which interrupts are missed at time points

3 µs and 6 µs. In Chapter 3, we will present the solution to this problem.

2.3 RTOS Modelling and Simulation in System-level

Design

In recent years, RTOS modelling and simulation have been proposed as impor-

tant embedded software validation techniques in the context of embedded systems

system-level design. This section surveys related SLDL-based RTOS modelling

and simulation research. There are several criteria by which to classify and com-

pare different approaches, for instance:

¶ By application scope: Various RTOS models have been developed for high-

level abstract software simulation [112] [72] [113], native-code software

simulation [119] [87], HW/SW co-simulation [120] [121] and system-level

design flow refinement research [43].

¶ By software simulation methods: As already introduced in Section 1.5, there

are two main software simulation approaches being used in system-level de-

sign: Instruction Set Simulation and behavioural simulation. Accordingly,

researchers develop ISS-based RTOS models for complete and accurate

validation of final software implementation [108] [109], whilst behavioural

RTOS simulation models are more widely used for fast and flexible software

early exploration.

¶ By functional accuracy: According to the functional accuracy of the RTOS

model, RTOS simulation models are summarised into three categories in

[77]: abstract OS models that rely on communication primitives and sched-

uling service by the underlying SLDL kernel, virtual OS models that mimic

the functionalities of the final OS but with independent implementation

code, and final implementation OS models which can be used in ISS simula-

tion. It should be noted that the definition of abstract OS models seems to

overlook the fact that SLDLs fail to supply enough RTOS capability

natively.

55

We categorise and analyse RTOS modelling and simulation research based on

their timing and functional accuracy levels, as well as their applicability stage in

an embedded system design flow. Referring to Figure 2-11, most existing meth-

ods fall into three main categories: coarse-grained timed abstract RTOS modelling,

fine-grained timed native-code RTOS modelling and ISS based RTOS simulation.

The ñcoarse-grainedò and ñfine-grainedò criteria refer to the timing accuracy level

of software models (including both the RTOS aspect and SW applications), and

they both belong to the domain of behavioural software simulation.

2.3.1 Coarse-Grained Timed Abstract RTOS Modelling

Abstract RTOS modelling and simulation focus on early design phases, such as

system specification, system analysis and SW/HW pre-partitioning stages. At this

time, the target platform is undetermined and software code has not been imple-

mented. Also, it is not possible to presume specific RTOS API services in the sys-

tem-level simulation framework before enough decisions have been made regard

the system architecture. However, general structures and execution mechanisms of

the RTOS model should still be not far from real RTOSs, in order to make sure

that the RTOS model has a practical usability for real-time software design. Ab-

stract RTOS modelling is supposed to provide extensible real-time system model-

ling capabilities and be fast to be changed in evolving simulation loops.

In this approach, software applications are normally organised as a collection

of abstract tasks associated with coarse-grained temporal properties, e.g., period,

Coarse-grained timed
abstract RTOS Modelling

Processing Element

Abstract RTOS
model

Abstract task
 model

Processing Element

Generic or real RTOS model

Native application code

Target ISS

Compiled
application binary

for target

Cycle-accurate ISS based
RTOS simulation

1̱ 2̱ 3̱

start()

terminate()

sleep() kill()

Fine-grained time native-
application RTOS Modelling

 Real RTOS

Port
Model
by SLDL

RTOS API

Task Man. Sche.

ISR

Sync.

Real-time Clock

System analysis phase System exploration phase Implementation phase Design Flow

Untimed Approximate-timed Cycle-accurate

thread1() thread2()

Figure 2-11. Three types of RTOS simulation models

56

deadline, offset, and execution times [112] [72]. Periodic, aperiodic, and sporadic

tasks are typically explicitly defined by different timing characteristics, which in-

clude the main information obtained by the RTOS in order to handle a task. A

qualified abstract RTOS model needs to at least provide priority-based pre-

emptive scheduling services and basic primitives to control the ñstartò and ñtermi-

nationò of a task. This feature is essential for a practically usable RTOS model in

order to overcome the previously-mentioned limitations of underlying SLDL

bases. A taskôs execution cost is usually modelled by the wait-for-delay statement.

The delay interval of every task instance (i.e., a job) is either statically annotated

by estimation or dynamically randomised by some statistical theories, e.g. uni-

form distribution [8]. The ñdelay-measurement and back-annotationò timing

method is also proposed in [113] [43], but it is applied at a coarse-grained timing

granularity (i.e., task-level). Inter-task synchronisation for resource sharing,

communication services and interrupt handling are usually not adequately consid-

ered in this kind of model. The advantage of this method is the fast simulation

speed, since applications and RTOS are highly abstract models. The main draw-

backs of this method are low timing accuracy (coarse time annotations for appli-

cations and inadequate modelling of RTOS timing overhead) and incomplete

modelling capability of RTOS functionalities. Besides, in most existing research,

there is a lack of SW/HW interaction modelling, and hardware parts of a CPU

subsystem are not explicitly modelled either. This means that software application

tasks and the abstract RTOS model form the software PE model by themselves.

Gerstlauer et al. present an early SpecC-based abstract RTOS model in order to

integrate software scheduling support in the TLM model refinement flow [43]

[122]. This RTOS model provides 16 basic primitives to support task management

and scheduling. RTOS timing overheads are not mentioned sufficiently. Besides,

it uses the imperfect wait-for-delay time advance method, so interrupt handling

cannot be accurately modelled and the timing accuracy is limited by the minimal

resolution of time annotations. A subsequent work [123] resolves this initial

HW/SW synchronisation problem by using an improved wait-for-delay method

named ñResult Oriented Modellingò. In recent, Zabel et al. [124] use the SystemC

SLDL to implement an abstract RTOS model where most parts are based on the

57

work of [43]. They solve the HW/SW timing synchronisation problem by using

the SystemC wait-for-event method, which is also utilised in our research in this

thesis.

Early work by Madsen et al. presents a SystemC-based abstract RTOS model

[112], which is further extended for MPSoC simulation [8] and NoC simulation

[125]. The basic idea is to decompose an embedded system model into three com-

pact sub-models: the task graph model, the scheduler model, and the link commu-

nication model. The scheduler model provides both fixed-priority scheduling (e.g.,

rate-monotonic priority assignment) and dynamic-priority scheduling (e.g., EDF)

services by using three primitives (i.e., run, pre-empt, and resume) to manage

tasks. The task model is characterised by coarse-grained temporal information or

estimates, e.g., WCET, BCET, period, deadline and offset, but without any func-

tionality code. This RTOS model is a good basis for high-level system exploration,

but it also has some limitations. Firstly, RTOS service overheads are not included

in the model. Furthermore, its task state machine model is different from that usu-

ally found in a typical real-time kernel, and the task model is also too simple to

mimic a real system. Finally, its link communication model heavily relies on the

SystemC Master-Slave message-based communication library for both software

internal and inter-module communications, whose behaviours are different from

common RTOS synchronisation and communication mechanisms.

Hessel et al. describe an abstract RTOS model in SystemC SLDL for use in the

embedded systems refinement flow [113]. Both the structure and implementation

of this RTOS model is similar to Madsenôs model; hence, it is also weak due to

simplistic task modelling and incomplete RTOS service modelling.

Moigne et al. propose a generic RTOS model for real-time systems simulation

[114]. This work has the advantage of considering timing overheads of three

RTOS services, i.e. context-load time, context-save time and scheduling algorithm

duration. Nevertheless, this work does not address task functionality modelling,

interrupt handling and synchronisation modelling.

Hastono et al. use an abstract RTOS model for real-time scheduling assess-

ments [126] and embedded software simulation [72]. The RTOS model provides

basic task management services similar to the models of Gerstlauer and Madsen.

58

Various static and dynamic scheduling policies, e.g., event-driven, time-triggered,

fixed-priority RMS, dynamic-priority EDF, etc. are integrated in order to evaluate

and compare different task scheduling decisions. The functionality of a task is de-

composed into non-pre-emptive atomic actions and pre-emption is assumed to

happen only at boundaries of atomic actions. Consequently, this pre-emption

model cannot simulate interrupts realistically.

Hartmann et al. present an abstract RTOS simulation model as a part of their

SystemC-based system synthesis design flow [127]. They model software on a

generic run-time system rather than directly modelling existing RTOS services,

i.e., all conventional software synchronisation and inter-task communication

mechanisms are modelled by the shared objects method. The intention is to inherit

their previous hardware modelling work and thus allow a seamless high-level

SW/HW specification environment.

2.3.2 Fine-Grained Timed Native-Code RTOS Simulation

Native-code RTOS models are used to support simulation of high-level soft-

ware functional code at the system exploration phase, when the target platform

and the RTOS are in the process of being selected, and application software is un-

der development.

Its timing accuracy has been improved compared to abstract RTOS models.

Software execution delays are measured and annotated in models at some finer

granularities (e.g., function level, block level, and source code line level), so tim-

ing accuracy becomes a major focus in this approach. This kind of RTOS simula-

tion model often supplies comprehensive and specific services, and contains some

timing overhead information. In some research, a real RTOS is modelled [128]

[87] [129] [130], whilst some other works attempt to build a generic RTOS model

[131] [12] [130]. Because of its much faster simulation speed (two or three orders

of magnitude faster than ISS simulation [128]) and acceptable loss of modelling

accuracy, fine-grained timed native-code RTOS and software simulation is pro-

posed as the counterpart of TLM HW and communication modelling.

Jerrayaôs group performs a series of studies addressing native software simula-

tion in SoC HW/SW co-simulation, and presents two different typical software

59

simulation methods in [121] [128] [130], respectively. In [121] [128], they build a

software simulation model (including OS, application software, and a bus func-

tional model) annotated with timing delays and run it as a host Unix process,

whilst, the hardware part is modelled in SystemC SLDL. The communication be-

tween software and hardware is implemented with Unix IPC methods, such as

shared memory and signal. In order to solve the HW/SW synchronisation problem,

they propose a ñvariable timing granularityò method to simulate interrupts by

trading off the simulation performance with the timing accuracy. In [130], they

use a different way to model the software part, where application tasks are sched-

uled by an OS model by using the multi-threading functionality of the host OS,

and then the whole software part is integrated into a SystemC HW/SW co-

simulation framework. Both a pre-emptive FIFO based scheduler and a real eCOS

RTOS are implemented in the OS model library. With the same RTL model on

the HW side, compared to the cycle-accurate ISS software simulation, the co-

simulation performance with native RTOS simulation is reported as three orders

of magnitude faster, and the simulation accuracy achieves 86% of the ISS. In gen-

eral, from the RTOS modelling aspect, this research has the advantage of consid-

ering various detailed RTOS service overheads and accurately modelling HW/SW

interactions (e.g., interrupt handling and memory access). However, their models

sometimes utilise the underlying host OS services, which may deteriorate the

portability and negate SLDLôs intent as a homogeneous modelling framework.

A SystemC-based native simulation model for a commercial Texas Instrument

RTOS is presented by He et al. in [87]. It models common RTOS services such as

task management, priority-base scheduling, task synchronisation, I/O, and inter-

process communication with timing overheads estimated from the target proces-

sorôs benchmark sheet. This simulator uses an event time-stamp prediction

method for interrupt modelling, which is based on an assumption that application

tasks can report happening times of their future synchronisation events to the ker-

nel. This tight requirement requires pre-requisite analysis of the whole system and

may hence restrict its usability.

A HW/SW co-simulator that includes a special-purpose ɛITRON 4.0 RTOS

model is introduced in [129]. It natively simulates a complete ɛITRON RTOS

60

model with application software on the host computer. For the HW aspect, C/C++

or HDL HW models can be included in the simulator and can communicate with

the software simulator by using Windows IPC methods. This work has a draw-

back in that its simulated clock relies on the host OS clock, i.e., it is untimed from

the perspective of target software simulation. Furthermore, host IPC methods may

bring an extra and unexpected simulation overhead.

Chung et al. describe a generic SystemC-based RTOS model which is oriented

for MPSoC simulation in [131]. Its generic RTOS and POSIX like API models

support native application code to execute with RTL/TLM HW models. However,

its RTOS task machine model is lacking in modelling real-time synchronisation

mechanisms. And it also uses a polling method to check interrupt events in every

clock-cycle, which may result in undesired consequences that interrupt latency

depending on the length of a simulation clock cycle, i.e., it is an ñannotation-

dependentò HW/SW timing synchronisation approach.

Posadas et al. develop a comprehensive POSIX compliant RTOS simulation

model on top of SystemC in [12] and apply a dynamic delay annotation method

by assigning each C++ operator with a corresponding target-platform execution

cost. In [132], they address the global variable accessing problem and propose

three joint solutions. Their first method is a fine-grained annotation technique (see

Section 3.1.2); the second method can guarantee a correct functional simulation

result but still has the delayed interrupt handling deficiency due to its wait-for-

delay method (see Section 3.1.1); the third method is satisfactory and similar to a

method used in this thesis (see Section 3.2.3.2), but it focuses on abstract software

programming models by providing a special primitive channel to protect global

variables.

2.3.3 ISS-based RTOS Simulation

ISS-based RTOS simulation can be used in a HW/SW co-simulation frame-

work when embedded software has been fully implemented. The high accuracy,

low simulation performance speed and late availability are its contradictory char-

acteristics, and therefore make it applicable for the late development phases where

high reliability and high accuracy are the main focuses of simulation. Finished

61

software source code is cross-compiled and simulated in a cycle-accurate instruc-

tion set simulator that represents the target processorôs behaviour. The ISS is usu-

ally wrapped in a SLDL module. A real RTOS is often ported in the ISS to super-

vise software application. Other SLDL-based HW component models are con-

nected with the ISS-wrapper model by the SLDL communication backplane to

achieve a co-simulation. This co-simulation approach is similar to the traditional

cycle-accurate embedded system co-simulation approach, which uses HDLs to

model hardware components at RTL level and uses the ISS to execute software.

Compared with the conventional approach, this unified system-level HW/SW co-

simulation approach can enhance design productivity by raising the abstraction

level of HW models and then gain simulation speedup to some extent. However,

this may somewhat contradict the system-level design concept of raising abstrac-

tion level for more efficient design space exploration, because it does not change

the software simulation method.

Chevalier et al. integrate a mC/OS-II RTOS on an ARM ISS which is wrapped

by a SystemC model [108]. Their modelling framework constructs a conversion

interface between SystemC API and the mC/OS-II API in order to let the RTOS

schedule SystemC-based application software processes. Benini et al. build a Sys-

temC-based multi-processor co-simulation platform [109] that uses SystemC to

wrap several cycle-accurate ARM ISS simulators to run multiple cross-compiled

mClinux kernels and software applications.

To trade-off simulation speed with accuracy, the approaches in [120] and [133]

take a different approach by running software application on the ISS whilst build-

ing a RTOS model on top of the SLDLs. However, [120] only supplies task pre-

emption services and considers limited RTOS timing overheads.

2.3.4 The Proposed RTOS Simulation Model

In this thesis, a SystemC-based generic RTOS modelling and simulation ap-

proach will be presented. Essentially, it falls into the native-code RTOS simula-

tion category, but also integrates some abstract RTOS modelling features in terms

of supporting abstract task models.

62

Compared with existing research, the proposed RTOS simulation model em-

bodies the mixed timing software modelling idea (in Section 3.2) by supporting

hybrid abstract task models and native-code task models in a single simulator, in

order to enhance modelling flexibility and expand application domain.

Furthermore, the generic RTOS modelôs functionality is determined by survey-

ing some popular RTOS products and standards. It aims to support more realistic

software simulation than other simplistic RTOS models. Most importantly, the

high simulation performance and good timing accuracy are preserved at the same

time in the RTOS simulation model because of the underlying Live CPU Model.

The details of this model will be described in Chapter 4.

2.4 Summary

In this chapter, some basic concepts in transaction-level modelling research

have been introduced. The focus is to survey current abstraction levels, timing de-

grees, and communication modelling in the TLM research context, in order to in-

spire our research on real-time software behavioural modelling and simulation

that can be seen as the TLM software computation aspect. However, we noticed

that existing TLM abstraction levels and models are not appropriate and are insuf-

ficient for real-time software modelling. Thus, in the next chapter, we will define

some real-time embedded software simulation models in the context of SystemC

based TLM research.

Subsequently, SystemC language constructs and the co-operative simulation

kernel were introduced. A SystemC-based HW/SW system example model was

presented. This demonstrates how the use of uninterruptible wait-for-delay state-

ments may lead to missing external interrupts in simulation, which highlights a

problem to be solved.

Some state-of-the-art RTOS modelling approaches and simulation models for

SLDL-based system-level design were surveyed also. They are classified into

three categories depending on timing and functional accuracy levels. Among them,

the abstract RTOS modelling approach and the native-code RTOS modelling ap-

proach are of concern to this thesis. We aim to propose a generic mixed timing

63

RTOS simulation model with improved features in terms of timing accuracy,

functionality, and modelling flexibility.

65

Chapter 3

Mixed Timing Real-Time Embedded Software

Modelling and Simulation

In previous chapters, SLDL-based software behavioural modelling and simula-

tion have been introduced for validation of real-time embedded software (applica-

tions and RTOS) in the context of system-level and TLM design. Three objectives

can be been identified as key requirements:

1) Fast simulation performance compared to ISS simulation.

2) Flexibly modelling software functions and their timing delays.

3) Accurate simulation results in terms of both functional and timing aspects

if they are both modelled.

This chapter presents a SystemC-based mixed timing software behavioural

modelling and simulation approach (referred to as the mixed timing approach

hereafter) and the associated Live CPU Model. A basic assumption of this ap-

proach is that the proposed simulation models are applicable after HW/SW parti-

tioning and applications can be divided into tasks. If multiple tasks need to exe-

cute concurrently and pre-emptively, then a behavioural OS model should be in-

cluded in simulation.

Referring to Figure 1-7 (Page 18), a SLDL-based behavioural simulation ap-

proach includes three main steps, i.e., schedule of processes, native execution of a

process in zero target time, and target delay time advance according to annotation.

The first and second steps are the functional aspect of behavioural modelling and

simulation, whereas the third step refers to the timing aspect. According to the

OS-based task simulation model assumption, in this thesis, the functional aspect

of modelling and simulation is relatively fixed as software functions are wrapped

in OS tasks and the OS model controls their execution order.

66

In this chapter, the mixed timing approach mainly seeks answers to the above

three key requirements from the timing perspective of modelling and simulation,

but also considers software functional modelling. Separating timing issues in

modelling and preserving high timing accuracy in simulation are two characteris-

tics of this approach. The conventionally annotation-dependent SLDL-based

software modelling and simulation is treated as two partially separated stages
1
:

1) The timing modelling step mainly refers to annotating target platform exe-

cution costs (time delays) and defining time advance points in software task

code, when SLDL-based software task models are being built.

2) The timing simulation step mainly refers to advancing the target simulated

clock according to those annotated time delays, when these SLDL-based

software task models are dynamically simulated upon a SLDL simulation

engine.

This approach allows flexibility in software timing modelling, achieves good

timing accuracy in software timing simulation, and maintains a high simulation

speed. It has following basic features:

¶ It utilises multiple-grained software timing information and variable annota-

tion methods for software models at the modelling stage (in Section 3.2). It

facilitates model builders and simulation users for using a variety of avail-

able means of timing estimation sources, and allows building mixed timing

simulation models with varying timing precision for workload and accuracy

trade-off.

¶ It preserves high hardware interrupt handling and software pre-emption tim-

ing accuracy within a certain bound at the timing simulation stage. The Live

CPU Model (in Section 3.3) is introduced to supervise software timing

simulation and monitor external interrupts in simulation. By excluding pos-

sible interrupt disabled cases (e.g., critical section code), the Live CPU

Model can interrupt current software simulation (i.e., stop its delay time ad-

1
 It is necessary to point out that the separation of timing issues in modelling and in simulation is

ñpartialò, because these two aspects cannot be totally decoupled in back-annotated timed software

simulation.

67

vance) as soon as an IRQ is caught, and resume remaining time advance for

the pre-empted task at the correct time point, just like real CPU execution.

Compared to some conventional pre-emption simulation approaches that

trade off simulation speed for accuracy, the simulation performance of the

proposed approach is not sacrificed whilst timing accuracy is sustained.

¶ It offers varying system simulation similarity and run-time information ob-

servability. By configuring the Live CPU Simulation Engine with the vari-

able-step and the fixed-step time advance methods, the users can make

trade-offs between simulation similarity, information observability and

simulation performance (in Section 3.3.4).

Figure 3-1 illustrates the mixed timing software modelling and simulation ap-

proach. In the figure, various grained delay time slices, e.g., task-level, function-

level, and source code line-level, can be annotated to the same software model at

the timing modelling stage. The Live CPU Model uses these different sizes of

time annotation statements to progress the target simulated clock. In this mixed

timing approach, the granularity of a time annotation does not interfere with the

dynamic timing accuracy of HW/SW synchronisation (i.e., interrupt handling) in

timing simulation. Interrupt handling does not need to wait until a delay slice has

totally elapsed, i.e., reaching a delay boundary. On the contrary, an ISR can pre-

empt current running software task as soon as an external interrupt happens, just

like the situation at the time point t1. After an ISR finishes execution at time t2, the

pre-empted software task is resumed and the remaining value of the previously-

interrupted delay annotation slice is also continued.

1.5ms 5ms 2ms1ms 4ms 10ms

250ms 200ms 100ms

10ms

time

Timing
Simulation

app. SW execution

An IRQ
arriving

Case 1:Task-level annotation

Case 2: Function-level annotation

Case 3: Source code line-level
 annotation

Timing
Modelling

app. SW execution

Executing
the ISR

time advance start

time advance stop

t1 t2

Figure 3-1. Mixed timing software modelling and simulation

68

In the reminder of this chapter, some problems and approaches regarding tim-

ing issues in existing SLDL-based software modelling and simulation will be sur-

veyed (Section 3.1). Section 3.2 describes the mixed timing approach in detail, in

terms of various timing techniques for software modelling and simulation. The

Live CPU Model is introduced in Section 3.3, which is not only important for tim-

ing accurate pre-emptive software simulation but also meaningful for extending

the software processing element model to the TLM modelling context. Finally,

evaluation metrics and experiments are presented in Section 3.4 and Section 3.5

respectively, in order to demonstrate benefits of the proposed approach. Section

3.6 will summarise this chapter.

3.1 Issues in Software Timing Simulation

This section briefly surveys some timing issues in related SLDL-based behav-

ioural software timing simulation approaches. Concerning two important simula-

tion timing characteristics - timing accuracy and simulation performance, we will

introduce their capabilities and also their deficiencies.

3.1.1 Annotation-Dependent Time Advance

In SLDL-based real-time software behavioural simulation, a software model

executes its function code on the host CPU architecture, which does not have any

timing correlation to its execution cost on the target CPU. Accordingly, the SLDL

wait-for-delay function (e.g., wait(time) in SystemC) is used to model soft-

ware timing behaviour on the target [72] [43]. On the one hand, it adds target-

platform delay annotations in software models; on the other, it also progresses the

simulated clock. Hence, software timing modelling (adding delays) and timing

simulation (using delays) are not separated in this kind of time advance approach.

However, the uninterruptible characteristic of the wait-for-delay statement is

problematic, with the ñannotation-dependentò software time advance method be-

coming an issue in software simulation. Figure 3-2 shows examples regarding

wait-for-delay statements in software simulation. There are two application tasks

(i.e., task1 and task2) and an ISR that serves an external hardware interrupt. The

69

interrupt event should be processed as soon as possible once it occurs, just like the

normal situation of a real-time system.

In simulation, once a wait-for-delay statement is invoked, the value of software

delay time will be totally consumed without a possibility of interruption. Conse-

quently, task2 can only execute after the wait-for-delay statement of task1 is fin-

ished. In such cases, once an interrupt event is raised by a hardware module dur-

ing this delay duration, e.g., at time t0 in the example, it may lead to two problem-

atic simulation phenomena depending on modelling methods.

Figure 3-2 (A) shows the first possible problem: ñdelayed interrupt handlingò.

Because the wait-for-delay statement of the running task2 cannot be interrupted,

the ISR can only start when the current delay time slice finishes at time t1. It can

be observed that the ISR is wrongly postponed rather than serving the interrupt

request at the expected time point. Under such circumstances, both software tick

scheduling and the HW/SW synchronisation (i.e., interrupt handling) can only oc-

cur at the boundaries of delay annotations. Simulation time advance is dependent

on the granularity of annotation. In simulation, both the pre-emption latency and

the interrupt latency til are unrealistically restricted by length of delays that are

 t0 t1 time
HW IRQ
happens

wait(2)

wait(8)

task1

task2

ISR ISRt il

(A) Delayed interrupt handling

Synchronisation
point

 t0 time
HW IRQ
happens

wait(2)

wait(8)

task1

task2

ISR ISR

ISR and task2 execute in parallel.

(B) Wrong concurrency in a uniprocessor system

Zero-target-time
SW execution

low

high

Priority

low

high

Priority

wait(t)
wait-for-delay

function

ISR is delayed wrongly.

Figure 3-2. Annotation-dependent time advance method

70

defined at the modelling stage. Under the worst circumstances, the latency equals

the largest time delay value. This time advance method makes it hard to model a

pre-emptive real-time system or a real interrupt handling procedure.

Considering the second case in Figure 3-2 (B), the model programmer may

choose to start the ISR as soon as it is raised. However, this brings a critical prob-

lem in that the ISR and the existing task execute in parallel in simulation, i.e., they

are both at the RUNNING state from the perspective of CPU scheduling. Obvi-

ously, in a uniprocessor system, this situation cannot occur. For this simulation

problem, programmers therefore need to correct the affected time delay in order to

serialise software execution with right timing behaviour. This problem resembles

the conventional optimistic co-simulation that may require time rollback and re-

execution.

In the following Sections 3.1.2 - 3.1.4, three existing techniques will be intro-

duced, which aim to remedy this annotation-dependent time advance problem.

More importantly, we will present our complete solutions the ñmixed timing ap-

proachò and the ñLive CPU Modelò in the rest of this chapter.

3.1.2 Fine-Grained Time Annotation

An intuitive means of solving the above-mentioned ñdelayed interrupt handlingò

problem is to use more wait-for-delay statements with finer grained delay time

slices [132]. In the context of mixing untimed and timed TLM models, Ghenassia

et al. propose a similar idea to define some pseudo synchronisation points in un-

timed TLM models where other timed TLM threads can detect interrupt more fre-

quently but without advancing the simulated clock [3].

Figure 3-3 illustrates this fine-grained time advance approach. The software

model code is divided into small segments. The granularity of wait-for-delay time

annotations is limited to an acceptable extent at the model building stage. This

means that there are more time advance points in the models. As a consequence,

interrupt events can be frequently checked in order to more realistically represent

the interrupt latency in the simulation. Unfortunately, the HW/SW timing syn-

chronisation accuracy is enhanced at a cost of:

71

¶ A large quantity of time profiling work and annotation statements when

building simulation models

¶ More wait-for-delay statements mean frequent SLDL simulation engine

context switches and thus large overhead.

¶ Interrupt handling may still be delayed, although the delay time is minor be-

cause of fine-grained annotation slices.

Compared to this approach, fine-grained time annotation is also supported in

the proposed mixed timing approach. However, this is not a necessary condition

to ensure high timing accuracy of HW/SW synchronisation. The HW/SW syn-

chronisation problem is tackled by the Live CPU Model in this thesis, which fully

relaxes the limitation of the annotation-dependent problem. The Live CPU time

advance approach can maintain the same and high timing accuracy for software

pre-emption and hardware interrupt handling at simulation runtime, no matter

what the time annotation granularity is. Hence, less overhead can be expected than

in the fine-grained annotation approach.

3.1.3 Multiple -Grained Time Annotation

For UNIX process-based native-code software and SystemC-based hardware

co-simulation, Bacivarov et al. discuss trade-offs between simulation performance

and timing accuracy by adopting multiple-grain HW/SW timing synchronisation

[121]. The basic idea is to reduce or increase the granularity of time annotations

depending on the desired timing accuracy of interrupt handling.

The approach in [121] uses asynchronous co-simulation, in which software and

hardware simulators are two separate UNIX processes. The software and hard-

 t0 t1 time
HW IRQ
happens

task1

task2

ISR

ISR is still delayed.

w(t) w(t)

w(t) w(t) w(t)

wait(t)

ISR
t il

low

high

Priority

ISR

Figure 3-3. Fine-grained timing annotation

72

ware simulators manage their local clocks separately and exchange timing infor-

mation via inter-process communication. It is known that IPC overheads may con-

tribute a large portion of simulation time and affect the simulation performance.

The HW/SW timing synchronisation in [121] can be seen as a compromise of the

classic conservative algorithm [134]. Therefore, HW/SW timing synchronisation

accuracy may not be guaranteed when using coarse-grained granularity of timing

annotations.

3.1.4 Result Oriented Modelling

To solve the problem in Figure 3-2 (B), Schirner et al. introduce their time cor-

rection method Result Oriented Modelling for SLDL-based pre-emptive software

simulation [123]. It still uses the uninterruptible wait-for-delay statement for time

annotation and clock progress, but it can virtually interrupt a wait-for-delay state-

ment in order to enable pre-emption at any time point. In the case of an interrupt

event, the ROM-based RTOS model first records pre-emption timing information.

Then, after the finish of both the existing wait-for-delay statement and interrupt

disturbance, it will finally make a new corrective wait-for-delay statement for the

affected time advance step.

Figure 3-4 illustrates two possible interrupt handling scenarios in the ROM ap-

proach. In case (A), the application task2 begins to run at t0 and then calls a wait-

for-delay statement ranging 8 time units from t0 to t3, so as to mimic its execution

timing cost. This step is called an ñinitial predictionò in ROM, because it simply

assumes that the task2 can solely occupy the CPU during this wait-for-delay time

interval. However, at t1, a hardware interrupt request is detected. Thus, the RTOS

scheduler dispatches a corresponding ISR as the new RUNNING task to pre-empt

the lower-priority task2. Herein, the RTOS model changes OS status of task2 from

RUNNING to READY, and records the pre-emption time stamp in the Task Con-

trol Block (TCB) of task2. Afterwards, the ISR executes some functions and be-

gins its wait-for-delay statement. During the time duration from t1 to t2, although

both the ISR and task2 are suspended by wait-for-delay statements, their task

states are distinct in the sense of RTOS task management. When the ISR finishes

at t2, RTOS changes OS status of task2 to RUNNING again. More importantly,

73

RTOS calculates how long task2 is pre-empted as its new delay time interval,

namely t2-t1. The initial prediction of task2 ends at t3 and the new corrective wait-

for-delay statement is then issued immediately.

The scenario of Figure 3-4 (B) is slightly more complex than the previous case.

In this example, the initial prediction of the pre-empted task2 finishes at t2 that is

earlier than the ISRôs wait-for-delay finishing time t3. This means that task2 will

wake up and needs to be processed immediately so as not to execute its subse-

quent model code. The RTOS model firstly calculates the pre-emption interval of

task2 as t2-t1 and then indefinitely suspends task2. The ISR finishes at t3 while

task2 is scheduled by the RTOS to resume again. A new wait-for-delay statement

that uses the before-calculated pre-emption interval as the delay parameter is re-

leased in order to revise time advance for task2.

In summary, a ROM simulation procedure contains three steps: 1) Execution of

an initial wait-for-delay statement; 2) Collection of any disturbing events and up-

date of delay information; 3) Making a corrective wait-for-delay statement. By

this approach, the sequential software concurrency can be realised for a uniproc-

 t0 t1 t2 t3 t4 time
HW IRQ
happens

task1

task2

ISR

wait(3)

 ҟt=4

ISR (ҟt=3)

low

high

Priority
Initial prediction:

wait(8)

ҟǘ=3

Correction:
wait(3)

 t0 t1 t2 t3 t4 time
HW IRQ
happens

task1

task2

ISR

wait(3)

ҟt=6

ISR (ҟt=3)

low

high

Priority
Initial prediction:

wait(8)

ҟǘ=2

Correction:
wait(2)

(A) Pre-empted task wakes up later than the finish of ISR

(B) Pre-empted task wakes up earlier than the finish of ISR

Calculate
pre-emption

amount:
 t2-t1 =2

Calculate pre-
emption amount:

t2 - t1 =3

Figure 3-4. The Result Oriented Modelling approach

74

essor system model. The good timing accuracy of HW/SW synchronisation and

software pre-emption is successfully achieved from the perspective of virtually

pre-empting wait-for-delay statements in SLDL-based simulation.

The ñblack boxò simulation concept is another worthy point emphasized by

ROM [135]. It prefers to only present adjust end results (e.g., termination time

and final state) of a simulation process rather than model and reveal any internal

state changes to users. For example, during a wait-for-delay interval of a software

task, if multiple interrupts happen, the ROM will collect the disturbances together

and only issue one corrective wait-for-delay statement. This ñblack boxò concept

has positive and negative aspects:

1) It brings the advantages of speeding up simulation performance by hiding

intermediate states and maintaining timing advance accuracy by consider-

ing interference from hardware interrupts.

2) In ROM, it is difficult to maintain the similarity of middle state changes to

a real execution at certain circumstances. This is an inevitable compromise.

Because ROM uses the inherently uninterruptible wait-for-delay functions,

there is no way to cancel or postpone a wait-for-delay statement once it be-

gins. Hence, the timing point when a model process wakes up from a wait-

for-delay duration is also unchangeable either. This feature may bring a de-

fect in simulation traces, incurring an amount of simulation overheads. In

ROM, the pre-empted task may wake up at unexpected time points as long

as its wait-for-delay time period is finished. Referring to Figure 3-4 (B) for

instance, task2 wakes up at t2 and calls for processing from the RTOS

model. However, from the perspective of OS multitasking management,

task2 should not initiatively trigger the OS to process it at this time point

because it has been pre-empted. This phenomenon will result in an unnec-

essary RTOS processing procedure, a SLDL simulation kernel context

switch, and a consequential simulation overhead.

3) The ROM approach aims to collect all interrupts that happen during a wait-

for-delay time advance interval and launches a new wait-for-delay state-

ment for the affected task to correct its delay time. In the best case, only

one new corrective wait-for-delay statement is needed to revise an affected

75

time advance step. Whereas, the possibility should be taken into account

that another pre-emption event may happen during a corrective wait-for-

delay interval. This means that one more successive corrective wait-for-

delay statement is required. Figure 3-5 shows such an example. In fact, the

exact number of wait-for-delay statement may vary depending on the num-

ber of pre-emption events and where they happen, which are dynamically

determined in simulation. It may be very costly to correct successively in-

terrupted time advance steps in some conditions.

3.2 The Mixed Timing Approach

In this section, a mixed timing approach is proposed. It achieves a similar tim-

ing accuracy level to the ROM approach. However, the two approaches are con-

ceptually different because of their underlying time advance methods and in addi-

tion the proposed approach can generate a better simulation trace without the

above ñinappropriate wake upò problem.

Concerning the fundamental problem of handling interrupts during an ongoing

time advance step, mixed timing approach uses the wait-for-event mechanism to

ensure that a pre-empted task only wakes up upon receiving an event issued at the

correct time point. Only one wait-for-event statement is called by a software task

in a time advance step. We do not need to call a new wait-for-event statement for

the pre-empted task. Hence, the SLDL processes (wrappers of software tasks) do

not frequently change between ñsuspendingò status and ñwake-upò status. Conse-

 t0 t1 t2 t3 t4 t5 t6 time
HW IRQ
happens

task

ISR

wait(4)

Initial
prediction:

wait(8)

HW IRQ
happens

wait(2)

w(1)

Corrective
prediction:

wait(4)

Corrective
prediction:

wait(2)

Corrective
prediction:

wait(1)

HW IRQ
happens

low

high

Priority

Figure 3-5. Successive corrective wait-for-delay statements

76

quently, a simulation speedup can be expected due to a fewer number of costly

simulation kernel context switches.

The mixed timing approach is a general approach oriented to SLDL-based real-

time software (including tasks and the RTOS) behavioural modelling and simula-

tion. According to the aforementioned taxonomy of system-level software and

RTOS simulation research in Section 2.3, it can be applied to both coarse-grained

timed abstract software modelling and fine-grained timed native software model-

ling. In this section, this modelling and simulation approach is implemented by

typical SystemC language constructs, mainly the wait-for-event method (see Sec-

tion 2.2). Because of the similarity between SystemC and SpecC SLDL, it is

promising to be generalised to the SpecC context.

3.2.1 Separating and Mixing Timing Issues

In SLDL-based behavioural software simulation, multiple-facet/level timing

models can be written and simulated in the same discrete-event software simula-

tion environment, e.g., the SystemC framework. These kinds of approaches can be

divided into two parts, i.e., modelling and simulation.

¶ In modelling, functional and timing characteristics (time delays) of target

software computation components are described by SystemC language. In

this research, specifically, software applications are divided to tasks and

each task is then mapped to a SystemC process. The results of this model-

ling process are SystemC process models for executable simulation pur-

poses.

¶ In simulation, these models are compiled together with the SystemC simula-

tion kernel and natively executed on a host computer in order to help soft-

ware designers to observe behaviour of the target software system, validate

different design strategies, and measure the mean or extreme simulation data

for analysis.

In real-time embedded software design, timeliness is a first-class factor to de-

termine the accuracy of modelling and simulation. The mixed timing approach

puts focus on timing issues of above two aspects:

77

1) Timing issues in modelling: This aspect is concerned about timing issues

that are statically determined at the model building stage. It relates to vari-

ous jobs that add time delays for software computation models, e.g., define

timing styles of models, choose sources of timing information, apply vari-

able annotation granularities, annotate timing information into model code,

and insert time advance points in models.

2) Timing issues in simulation: This refers to timing issues that are dynami-

cally behaved at simulation runtime. It relates to jobs that use time delays

for simulation time advance, e.g., simulate target timing behaviour for

software models, progress the simulation clock, and process interrupts.

In the following, this mixed timing approach is explained with regard to vari-

ous issues in relation to aspects of timing modelling (Sections 3.2.2 - 3.2.6) and

timing simulation (Section 3.2.7). Besides, the Live CPU Model is an essential

basis of this approach (Section 3.3).

3.2.2 TLM Software Computation Modelling

Before presenting any detailed timing modelling and simulation methods, we

clarify general guidance for defining software timing simulation models and the

relevance to existing TLM research.

In Section 2.1.1, abstraction levels in SystemC TLM modelling are reviewed,

with this thesis concerned with software computation modelling in the general

context of SystemC TLM research. Consequently, it is natural to explore the pos-

sibility of inheriting some common concepts from existing TLM proposals. For

example, the OSCI TLM standard defines the PV and PVT abstraction levels

based on criteria such as the transmission method and the timing granularity of a

communication transaction. Baklouti et al. propose the application of the PV and

PVT concepts to refine software communication [6]. As shown in Figure 3-6 (A),

its horizon focuses on using TLM synchronous and asynchronous interfaces for

abstract software inter-module (between initiators and targets) communication. In

[9], Dömer proposes to define TLM computation abstraction levels based on the

concept of separating functionality and timing. Referring to Figure 3-6 (B), four

levels are identified in a modelling flow for software that runs on programmable

78

processors. However, this work does not specifically distinguish various TLM ab-

straction levels. In general, bearing the current status of TLM research in mind,

most TLM abstraction level definitions have focused on modelling abstractions

for communication and hardware design, and may not be appropriate for software

modelling.

According to the basic assumption of OS-based task modelling and simulation

in this thesis, it is not recommended to use TLM communication techniques in

software modelling, since they are not common methods in conventional real-time

software development. This idea is contrary to [6] that uses OSCI TLM commu-

nication services for joint HW and SW communication exploration.

Note that it is not nontrivial to utilise existing TLM concepts directly. Here we

need to define appropriate behavioural software abstraction levels/models and in-

troduce their relationships with existing TLM modelling communication concepts.

3.2.2.1 Comparison with the OSCI TLM-2.0 Standard

Regarding the TLM communication modelling abstraction level definition, the

latest OSCI TLM-2.0 modelling standard is selected as the reference [88]. It de-

fines two coding styles for bus-based communication modelling, i.e., the LT style

for PV models and the AT style for PVT models. Regarding the software model-

PVT
Specific arbitration

PV
Generic arbitration

Service Layer
Sync./asyn.

RPC

TLM OSCI Transport Layer:
blocking, non-blocking, unidirectional,

bidirectional, single, burst transfers

PVT
Specific bus model

PV
Generic bus model

HW TLM SW TLM

A
cc

u
ra

cy

- Untimed Specification

- Computation TLM

- Host Compiled ISS

- Instruction Set
Simulator

Sp
ee

d

(A) SW TLM layers (defined by Baklouti et al.)
(B) Abstraction levels of computation using

programmable processors (by Dömer)

Figure 3-6. Related SW modelling abstraction level definitions (reprint [6] [9])

79

ling part, in Section 2.3, system-level software (RTOS) behavioural modelling

and research is classified into two general categories depending on their timing

accuracy: coarse-grained timed abstract models and fine-grained timed native-

code models.

This section compares characteristics of the mixed timing software models and

the OSCI communication modelling standard (see Figure 3-7):

¶ Both modelling approaches decompose a modelôs functionality into several

basic entities, i.e., tasks (or finer-grained functions) for software modelling

in our approach, and transactions with corresponding transport functions for

TLM communication modelling. If there is a further necessity for more ac-

curate modelling, then a basic entity can be divided into some finer-grained

entities, i.e., multiple functions inside a task or multiple basic blocks inside

a function, as well as corresponding multiple phases that task place during a

transactionôs transmission life.

¶ We define two comparable timing abstraction levels for models. The coarse-

grained timed level and the fine-grained timed level for software modelling

are comparable to the LT coding style and the AT coding style for TLM

communication. We propose that the coarse-grained timed level uses two

time points to represent the execution cost of a task or a function, i.e., the

beginning and the end of execution. The LT coding style also defines two

time points for each transaction to denote calling to and returning from the

OSCI TLM-2.0 Communication Modelling TLM Software Modelling

A
cc

u
ra

cy

P
erfo

rm
an

ce

Programmers View
(PV)

model

Programmers view
timed (PVT)

model

Transactions

Multiple
phases

Models

Loosely-timed
(two timing

points)

Approximately-
timed (multiple
timing points)

Functional
Granularity

Timing
Granularity

Tasks/
Functions

Statement
segments/
basic blocks

Functional
Granularity

Abstract
model

Native-code
model

Models

Coarse-grained
timed (two

timing points)

Fine-grained
timed (multiple
timing points)

Timing
Granularity

Figure 3-7. OSCI TLM-2.0 models and proposed TLM software models

80

transmission respectively. Accordingly, the concept of the fine-grained

timed level is also parallel to the OSCI AT communication coding style.

This is because they both use multiple timing points inside a basic func-

tional unit, namely, multiple annotations and timing synchronisation points.

¶ Besides, both the untimed timed level and the cycle-accurate timed level are

not recommended in either our software modelling or the OSCI TLM stan-

dard. This is because modelling real-time software and contemporary bus

communication systems apparently need a timing concept.

Based on the above comparison, our software modelling proposal has some

similarity to the OSCI TLM-2.0 communication modelling standard, that is, in

terms of modelling concepts about timing granularity and functional granularity.

Since they are both implemented in the SystemC simulation environment, they

also include similar changing trends in terms of modelling accuracy and simula-

tion performance. This means that models at a corresponding level are ñharmoni-

ousò to each other without resulting in undesired extreme behaviour in the context

of TLM co-simulation. We will explain software model definitions in detail in

Section 3.2.3.

In addition, each hardware computation model (e.g., a hardware peripheral de-

vice) needs to be annotated with delays to accompany with software timing mod-

els. Each TLM inter-module communication action is also to be assigned with

corresponding communication delays. However, these two parts are not the focus

of this thesis.

3.2.3 Defining Software Models

Let us consider two possible situations in an embedded software development

flow:

1) At an early design phase, the application software, RTOS, and hardware

devices may have different levels of development progress. This means that

the components of a system may have incomplete source code. The preci-

sion of corresponding timing information also varies. Therefore, in many

cases, it is difficult to build models at the same abstraction level.

81

2) Different system design teams may focus on modelling different system as-

pects according to their respective design circumstances. For example,

modelling computation and modelling communication are two distinct

working directions in the context of embedded systems modelling and

simulation. As well, RTOS designers and application software program-

mers also pay different attention to SW modelling. It is not only infeasible

but also costly to build all sub-models with the same timing accuracy level.

Therefore, in order to increase flexibility of software validation, a mixed tim-

ing approach is an efficient and practical solution. At some certain early and mid-

dle design stages, with the advance of the development and change of validating

intention, software designers can build and simulate behavioural software models

at various functional and timing levels in a unified SystemC framework.

There are two difficult issues in system-level software modelling and simula-

tion: timing accuracy and simulation performance. It is well known that the

granularity of annotation is a dominant factor of timing accuracy, in terms of

mostly determining whether or not the execution cost of a code segment is ñaccu-

ratelyò reflected in the model. For example, given a code segment including dy-

namic data-dependent loops, a single coarse-grained time annotation for the whole

code segment is very likely to be less accurate than several fine-grained time an-

notations for each loop. On the other hand, simulation performance is also a major

issue concerning simulation users in the early design phases. Simulation models

need to process many annotation statements intervening between functional codes,

which necessarily result in simulation overheads. Moreover, a delay annotation

statement is always implemented as a wait-for-delay statement or associated by a

wait-for-event statement in order to progress the simulated target clock. Such

statements result in context switches between the SystemC simulation kernel and

software model processes. Consequently, fine-grained time annotations may lead

to more simulation overheads as a side-effect. The mixed timing approach pro-

poses using different annotation granularities in software models, and thus enables

model programmers to switch timing accuracy for simulation performance in

simulations.

82

There are already some typical annotation granularities mentioned in existing

annotation-based software simulation research, e.g., the assembly instruction level,

the source line level, the basic block level, the function level, and the task level

[121]. This thesis uses some of them in research and presents guidelines for using

some appropriate timing annotation granularities in the two types of software be-

havioural models, i.e., abstract software models and native-code software models.

Currently, time annotations are manually inserted into software models and auto-

matic annotation is beyond the focus of this thesis. Research examples in this area

can be found in [136] [137].

3.2.3.1 Abstract Software Models

The underlying assumption of the abstract software model is that it is usually

applied at the early design phases for fast real-time software prototyping simula-

tion and validation. At the time, the target hardware platform is undetermined and

most software code has not yet been implemented. Consequently, abstract soft-

ware models do not contain much implementation code or only contain limited

functional specification code. Corresponding timing information of running code

on a target platform cannot be obtained with high precision for these kinds of

models. Rather, timing estimates and execution budgets are used for timing anno-

tations. This kind of modelling and simulation is similar to the reservation-based

timing analysis approach in real-time system timing analysis research, which ad-

vocates using timing predictions to incrementally validate timing properties of a

system from its early development stages [138].

Software applications are organised as a set of SLDL process based independ-

ent tasks with coarse-grained temporal properties, e.g., period, deadline, offset,

and execution times. Periodic execution should be explicitly supported by a ge-

neric RTOS model that supplies basic periodic execution services, meaning that

the RTOS can schedule periodic tasks according to explicitly-defined period

properties. Timing overheads of RTOS functions can be considered as rough es-

timates and annotated in models.

An abstract software task model contains one conceptual functional unit (i.e., a

task) or several subunits (i.e., several functions). Correspondingly, task-level

83

Table 3-1. Abstract software models and coarse-grained time annotations

voi d t ask1() {

 whi l e(1) {

 / / No code or

 f unct i onal _code;

 DELAY(f i xed_val ue) ;

 / / or

 DELAY(r andom_val ue) ;

 wai t - f or - event ;

 }

}

#001

#002

#003

#004

#005

#006

#007

#008

#009

#010

(A) Pseudo code of task-level time
annotation

voi d f unc1()

{

 . . .

 . . .

 DELAY(t 1) ;

 wai t - f or - event ;

}

#001

#002

#003

#004

#005

#006

#007

(B) Pseudo code of function-level time
annotation

(Table 3-1 (A)) and function-level (Table 3-1 (B)) time annotation levels are pro-

posed for abstract software models. Each annotation statement corresponds to an

execution unit, i.e., a task or a function. The delay time information can either be

given as a fixed value representing the WCET at the model building stage, or be

randomised between a lower bound (i.e., the BCET) and an upper bound (i.e., the

WCET) for each job of a task in simulation time.

An annotation value is inserted by the DELAY() function (e.g., line 5 in Table

3-1 (A)), which passes the delay value to the Live CPU Model and triggers it for

an interruptible time advance. A wait-for-event statement is inserted after a delay

statement (e.g., line 8 in Table 3-1 (A)), in order to yield control of the SystemC

simulation kernel and let the task wait for resuming after the delay. It defines a

time advance point (also referred to as a timing synchronisation point). From the

multitasking OS point of view, calling the wait-for-event statement and returning

from it mark the beginning and the end of ñexecution durationò of a software

model along the target simulation timeline. From the perspective of SystemC

simulation, a piece of ñexecution durationò is in fact a piece of ñwaiting durationò

of a SystemC process.

As shown in Figure 3-8, because an abstract software model is assumed to be

independent and does not access shared variables, it execution duration can be

freely interrupted by higher-priority IRQs, i.e., any asynchronous interrupt events

can stop its time advance step. Although a delay value is only annotated once, it

can be divided into many slices due to ISRs. This models a correct timing order of

execution.

84

The details of the wait-for-event method, the interruptible time advance method,

and the DELAY() function will be introduced in Sections 3.2.7, 3.3.4 and 4.5.8.1.

3.2.3.2 Native-Code Software Models

When a large quantity of software application code has been developed and a

RTOS has been either supplied as an off-the-shelf product or developed in-house,

native-code software models can be built. The available software code is wrapped

in some software task models that are also implemented as SLDL processes.

These task models can be further divided into statement segments or atomic basic

blocks whose performance is measurable or estimable with relatively high accu-

racy. These native-code application software tasks can utilise the APIs of a RTOS

model, which may model specific services of a real RTOS and is annotated with

corresponding timing delay information.

Timing accuracy becomes a major concern in native-code software simulation.

The desired target timing behaviour cannot be directly represented in native-code

software execution. Hence, software execution costs (time delays) on the target

platform need to be either analysed by a static analysis method or dynamically

evaluated in a measurement-based method, and then be manually or automatically

annotated to corresponding code statements in task models. Fine-grained state-

ment segment level annotations and basic block level annotations are advocated to

be applied in this type of software models.

 time
IRQ

ttask

ISR

low

high

Priority

Independent
execution

Execution
cost of the
task model

t

t

t

t

t

IRQ IRQ

Zero-target-time SW execution t Time advance of a delay (cost)

Figure 3-8. Execution trace of an abstract task software model

85

In the example code sown in Table 3-2 (A), a statement segment is either a

compound statement or several sequential statements. A compound statement is

defined as a sequence of source statements enclosed by a pair of curly braces

[139]. In modelling, several sequential assignment or number operation state-

ments are also treated as a statement segment for convenience of annotation.

However, a statement segment should not include access to an OS service, which

should be treated as another segment.

A basic block is a sequence of code that has only one entry point and only one

exit point [140]. In Table 3-2 (B) the annotation statement of a basic block may

have two possible places, i.e., before the basic block or after the basic block. In

modelling, where to place the annotation statement depends on how to ñglueò the

time annotation near its code block, in order to make native-code execution syn-

chronise with corresponding target-time advance steps as much as possible.

Multiple DELAY() functions and wait-for-event time advance points are in-

serted in native-code software models. Their respective behaviour is the same as

the before-mentioned abstract software models.

In native-code models, software code segments may access global shared vari-

ables that may be affected by external interrupts. If a code segment and its annota-

tion are defined improperly, a wrong simulation trace and a result may be gener-

ated. As shown in Figure 3-9 (A), in real software execution, a task independently

executes code segment 1 from time t0. At time t1, an IRQ happens and pre-empts

the task. An ISR writes a value to a global variable. Afterwards, the task resumes

and its code segment 2 reads the global variable to obtain an updated value.

Table 3-2. Native-code software models and fine-grained time annotations

(B) Pseudo code of basic block level time
annotation

Basic block 1

Basic block 2

annotation before code

annotation
after code

(A) Pseudo code of statement segment level
time annotation

voi d f unc1() {
 i f (condi t i on)
 {
 . . .
 }

 DELAY(t 1) ;

 wai t - f or - event ;

 i nt t emp;
 t emp = 100;
 t emp++;

 DELAY(t 2) ;

 wai t - f or - event ;

}

voi d f unc1()

{

 DELAY(t 1) ;

 wai t - f or - event ;

 i nt t emp = 0;

 i f (condi t i on)

 {

 t emp++;

 DELAY(t 2) ;

 wai t - f or - event ;

 }

}

#001

#002

#003

#004

#005

#006

#007

#008

#009

#010

#011

#012

#001
#002
#003
#004
#005
#006
#007
#008
#009
#010
#011
#012
#013
#014

A compound
statement

Several statements

86

Figure 3-9 (B) shows a possible corresponding simulation trace, in which the

task code segment (with its corresponding annotation) includes both code segment

1 and 2. This means that the task not only executes some independent functions

but also reads the global variable at t0, and its total delay begins accordingly. The

IRQ still happens at t1, then pre-empts the task, and writes the global variable. Al-

though the time advance of the task can be interruptible and maintained correctly

in terms of the simulation time order, the functional simulation result is possibly

wrong because the software task gets an outdated value of the global variable.

The solutions to this problem are straightforward:

1) In software models, global variables should be protected by mutual exclu-

sions in order to avoid race conditions. This is effectively a common con-

 time
IRQ
happens

task

ISR

low

high

Priority

Segment 1 and 2 Execution cost

ISR writes a new
value to the

shared variable.

delay1 delay2

t

 time
IRQ
happens

task

ISR

low

high

Priority

Independent
function
segment1

ISR writes a value
to the shared

variable.

code1 code2

Function segment2:
read the shared
variable.

(A) Real software execution

(A) Native-code software simulation

t0 t1 t2

t0 t1

Zero-target-time SW execution delay Time advance of a delay (cost)

Figure 3-9. Unmatched real execution and simulation traces

87

vention in software programming.

2) In terms of native-code simulation, a code segment should not include both

independent functions and an access to a global variable. In another words,

an access to a global variable should be placed in a separate segment that is

as short as possible. Based on the first solution, this requirement is not dif-

ficult to implement in modelling, because a global variable segment is al-

ways marked by calling to OS mutually exclusive services.

3.2.4 Techniques for Improving Simulation Performance

Fine-grained time annotations can improve timing accuracy in case there are

data-dependent conditional or looping statements in code, but too many intrusive

annotations not only require more modelling work but also decrease simulation

speed. Similarly, defining many time advance points (so-called timing synchroni-

sation points) can make the simulated clock be progressed smoothly. However, it

also decreases simulation performance. Consequently, two techniques regarding

timing annotations and time advance points are utilised in order to improve simu-

lation performance.

3.2.4.1 Reducing the Number of Time Annotations

This first technique is to reduce the number of annotation statements by merg-

ing several sequential time annotations into one longer annotation.

Given a simple ñwhileò loop program in Figure 3-10 (A) as an example, the In-

tel VTune Performance Tuning Utility [141] is used to carry out basic block

(A) {ƻǳǊŎŜ ŎƻŘŜ ƻŦ ŀ άǿƘƛƭŜέ ƭƻƻǇ

(B) !ǎǎŜƳōƭȅ ŎƻŘŜ ƻŦ ŀ άǿƘƛƭŜέ ƭƻƻǇ

(C) /ƻƴǘǊƻƭ ƎǊŀǇƘ ƻŦ ŀ άǿƘƛƭŜέ ƭƻƻǇ

Figure 3-10. A ñwhileò loop example

88

analysis for application software. This tool can organise assembly code in basic

blocks (see Figure 3-10 (B)) and generate a control flow graph (see Figure 3-10

(C)). Referring to the figure, there are two basic blocks in the program, i.e., the

ñBlock 10ò of the ñwhileò statement and the ñBlock 11ò of the looping body.

If this program is annotated with basic block level timing delays, then three an-

notation statements are needed, as shown in Table 3-3(A). Because the two basic

blocks ñBlock 10ò and ñBlock 11ò (line 1 and line 5 of Table 3-3 (A)) execute

sequentially at most times except for jumping out of the while loop, their time an-

notations tbb10 and tbb11 can be merged into one annotation as showed on line 4 of

Table 3-3 (B).

This technique advances the annotation level from the basic block level to the

statement segment level, which is a mixed timing annotation technique and widely

used in our research. Normally, merging multiple annotation statements should

sacrifice timing accuracy of annotations as little as possible. For instance, the DE-

LAY(t bb10) statement (line 9 of Table 3-3 (A)) corresponds to the ñcompare and

jump outò execution of the while statement and is improper to be combined into

the annotation statement inside the loop body. Otherwise, target time advance

steps cannot match the native-code execution flow. However, if model builders

intentionally make tradeoffs between accuracy and performance, it is also accept-

able that some tiny one-shot annotations can be omitted.

3.2.4.2 Reducing the Number of Time Advance Points

The second technique to increase the simulation speed is to reduce the number

of wait-for-event statements in models, i.e., reducing the number of time advance

Table 3-3. Reducing number of time annotations

whi l e (a < 10000)

{

 DELAY(t bb10) ;

 wai t - f or - event ;

 a++;

 DELAY(t bb11) ;

 wai t - f or - event ;

}

DELAY(t bb10) ;

wai t - f or - event ;

#001

#002

#003

#004

#005

#006

#007

#008

#009

#010

(A) Precise basic block level time
annotations

whi l e (a < 10000)

{

 a++;

 DELAY(t bb10+t bb11) ;

 wai t - f or - event ;

}

DELAY(t bb10) ;

wai t - f or - event ;

#001

#002

#003

#004

#005

#006

#007

#008

#009

#010

(B) Merging time annotation statements

89

points. The basic idea is inspired by the ñlazy synchronisationò method introduced

by Hartmann et al. [127], in which this method is used in proprietary abstract

software modelling. Here, we refine it for native-code software simulation models.

As introduced before, a time advance point refers to a timing synchronisation

point where a software model process yields control to the SLDL simulation ker-

nel in order to let it advance the simulated clock.

In discussions and figures in Section 3.2.3, the annotation statement DELAY()

and the wait-for-event method are used together. A DELAY() function finishes

two jobs, i.e., injecting an annotation value into the Live CPU Model and invok-

ing it to advance the timing delay value at once. In fact, in the proposed mixed

timing approach, a delay annotation function does not need to implement the two

jobs conjunctively. And, a wait-for-event method does not necessarily follow each

time annotation statement either.

As shown on line 5 and line 9 in Table 3-4, the lightweight DELAY_WR()

function only processes an annotation value in terms of storing and accumulating

it in a variable (see Virtual Registers in Section 3.3.2) in the Live CPU Model, but

it does not invoke the Live CPU Model to progress the simulated clock immedi-

ately. It is especially appropriate for use in data-dependent loops in order to re-

duce time advance overheads.

The dual-function DELAY() and the wait-for-event statements are also impor-

tant at specific points in model code (e.g., lines 12 and 13 in Table 3-4). Some

rules are defined to indicate where time advance points are essential. In modelling,

these situations include:

voi d f unc1() {
 i f (condi t i on) {
 . . .
 }

 DELAY_WR(t 1) ;

 i nt t emp=0;
 t emp++;

 DELAY_WR(t 2) ;

 . . .

 DELAY(t N) ;

 wai t - f or - event ;

}

#001
#002
#003
#004
#005
#006
#007
#008
#009
#010
#011
#012
#013
#014

Input
annotations

Annotation
and time
advance

Table 3-4. Reducing number of time advance points

90

1) In application tasks, time advance points are necessary before calling and

returning from RTOS system functions. These points define the boundary

of a task and a RTOS function, and allow switches to be made between

them.

2) If the current running application task will terminate execution, then a time

advance point is necessary. This point defines the boundary between differ-

ent tasks.

3) In any critical sections (no matter in tasks or in RTOS functions) where in-

terrupts are disabled, time advance points are necessary in order to progress

the target clock.

This technique essentially separates annotation points from time advance

points. This is a native capability of the mixed timing approach because of the un-

derlying annotation-independent time advance method. The reduced running

chances of the Live CPU Model and fewer context switches of the SystemC ker-

nel can speed up simulation speed. At the same time, fine-grained timing annota-

tions can still be used in order to accurately reflect the timing cost of software

modelsô execution traces.

3.2.5 Application Software Performance Estimation

Previously, it has been noted that behavioural software modelling and simula-

tion need timing information of software execution on the target platform. Soft-

ware instrumentation and performance estimation are pre-requisites of all back

annotation based behavioural simulation. This is a quite broad and non-trivial re-

search domain, which is far beyond the focus of this thesis. Example research in

this domain can be found in [84] and [142]. In Sections 3.2.5 and 3.2.6, some re-

lated performance estimation methods are introduced in brief rather than present-

ing in-depth research. The final modelling builders and simulation users can de-

termine and apply appropriate time estimation methods in practice.

91

3.2.5.1 Static Timing Analysis Method

A typical static analysis method is the WCET analysis
2
 [143]. It aims to com-

pute an upper bound for the execution time of a piece of program by analysing the

code but without actually running it. A WCET analysis includes three steps:

¶ The program flow analysis extracts possible executing sequences of a pro-

gram at the basic block level. This study should try to cover all possible

paths in order to generate a safe coverage.

¶ The low-level analysis calculates execution time of each basic block on a

given target hardware architecture. The complexity of this study is to con-

sider various performance-enhancing features of modern processors, such as

caches, pipelines, etc.

¶ The calculation step combines paths information and low-level execution

times in order to derive a WCET.

WCET results might be used as source of time annotations in our mixed timing

software modelling.

For abstract software models, the assumption is that much software code has

not been available; hence, specific WCET analysis cannot be implemented. For

native-code models, model programmers can use conventional WCET analysis to

obtain software timing information. In our consideration, now that the source code

is available for simulation, we prefer to annotate statements at a fine granularity,

which means that the basic-block WCET information are more useful than func-

tion-level or task-level WCET results that may be over-pessimistic. Colin et al.

specifically take WCET analysis on the RTEMS RTOS with the intention to study

the predictability of RTOS timing behavioural [144]. This research reveals the

possibility of obtaining timing information of RTOS services by the static analysis

approach.

3.2.5.2 Statistical Methods

We can use time estimates of tasks and functions to build simulation models in

order to capture initial approximate timing behavioural of a system. These time

2
 The BCET analysis is a related problem to find the lower execution bound of a program.

92

estimates can be generated either from functional specifications or a random func-

tion. Regarding the latter technique, for simple cases that do not have a strict re-

quirement on the approximation of generated numbers, the rand() pseudo-

random function in the C Standard General Utilities Library (with the head file

stdlib.h) is used. If there are some definitions on the probability densities of

periods and computation times of tasks, the well-acknowledged UUNIFAST algo-

rithm can be used to generate task sets with uniform distribution in a given space

[145].

3.2.5.3 Dynamic Simulation-Based Method

In simulation-based software performance estimation methods, software source

code is compiled for a given processor architecture, and is then executed on the

actual target CPU or on an accurate model of the target CPU, e.g., an instruction-

set simulator. Accurate performance information can be profiled after executing

real software. In this thesis, the ISS-based profiling technique is used to acquire

accurate timing information of both application software and the selected RTOS.

For ARM-based embedded systems, the KEIL µVision ARM development kit

[146] is recommended to use, which provides various cycle-accurate instruction-

set models of ARM processor and complete execution profiling functions. As

shown in Figure 3-11, the µVision execution profiler can display and record exe-

cution times and calling times of each function or statement through ISS execu-

tion.

Function-level profiling information Statement-level profiling information

Figure 3-11. µVision software profiler

93

3.2.6 RTOS Performance Estimation

3.2.6.1 The Scaling Parameter Method

For early and abstract modelling research in which both RTOS and the target

platform are not fixed, simulation users may be interested in the relative magni-

tude of RTOS timing cost and compare simulation results of several different de-

sign alternatives. It is not necessary to assign precise timing estimates for every

RTOS activity. RTOS system services can be annotated by a scaling parameter

method in [2]. This relates execution cost for each RTOS action to a scaling pa-

rameter (S), which reflects relative timing magnitudes of different RTOS services

depending on their typical computational complexities. Table 3-5 shows execution

times of some typical RTOS services in terms of the scaling parameter S. Note

that in an individual modelling case, the programmer can correct the scaling factor

of a specific RTOS function depending on available timing information.

3.2.6.2 The Benchmark Method

If the software model programmer intends to model a well-documented com-

mercial RTOS case, then RTOS benchmark results from production vendors can

be used as the timing annotation source for the RTOS simulation model, which is

similar to the approach in [87]. A benchmark document supplies timing costs of

various RTOS services, for example: kernel entry, context entry, message passing,

synchronization, timers, signals, task management, and message queues.

Action

Context switch

Task initiate

Task create and run

Task delete

S

2

12

28

10

Action

Task suspend

Task resume

Semaphore/mutex post

Semaphore/mutex wait

S

1

1

1

1

Action

Semaphore/mutex create/delete

Message queue create/delete

Message queue available

Message queue not available

S

6

10

2

1

Table 3-5. Basic RTOS actions and their relative execution times [2].

94

For instance, the QNX Neutrino RTOS [147] is provided with average kernel

benchmark results based on different hardware platforms such as Intel Pentium4

processors, XScale processors, and TI OMAP processors. And, referring to Table

3-6, the RTX RTOS is also provided timing specifications on a specific ARM

platform [1]. If benchmark documents are not available for some specific plat-

forms and RTOS versions, development kits or benchmark suites are sometimes

supplied by their vendors, in order to let users measure timing costs by themselves.

3.2.6.3 The ISS-based Measurement Method

The ISS-based simulation method is utilised to measure RTOS timing over-

heads. Table 3-7 shows some timing information of the µC/OS-II RTOS measured

on the 48 MHz ARM KEIL ISS simulator. It is worth noting that, although an ISS

simulator can produce fine-granularity timing information of real RTOS source

code, only the function-level timing cost of each RTOS service is concerned. This

is because this thesis proposes to build a generic RTOS model that can provide

comparable functionality to a real RTOS. The implementation code of the RTOS

model may not have one-to-one correspondence to actual RTOS source code. It is

Action

Initialize system

Create defined task, no task switch

Create defined task, switch task

Delete task

Time

34.9

14.3

16.7

9.6

Action

Task switch

Send semaphore (no task switch)

Send message (no task switch)

Interrupt response for IRQ ISR

Time

7.1 ς 10.5

2.7

5.3

0.8

RTX-RTOS on LPC2138 ARM7 CPU @ 60MHz (Unit : µs)
code executed from internal flash with Memory Accelerator Module

Table 3-6. RTX RTOS timing specification [1]

Action

Enter the main RTOS function

RTOS initialisation

RTOS starts multi-tasking

Create a task

Time

1366310

51750

2770

22500

Action

Task switch

Initialise a semaphore

Wait a semaphore

Received a message

Time

2660

3170

3930

3160

µc/ OS-II RTOS on Keil LPC2378 ARM7 ISS @ 48MHz (Unit : ns)
code executed from internal flash

Table 3-7. µC/OS-II RTOS timing specifications

95

not feasible to annotate the RTOS model at the basic block level or at the state-

ment level.

3.2.7 Timing Issues in Software Simulation

3.2.7.1 The Variable-Step Time Advance Method

In the mixed timing approach, at simulation runtime, a software model firstly

executes its functional code in zero-time and then passes its corresponding delay

information to the Live CPU Model. Afterwards, the Live CPU Model advances

the simulated clock in order to mimic the software execution timing cost on the

target platform. The specific progress step of the clock not only depends on input-

ted delay information, but is also affected by whether an interrupt event happens

during this delay duration, which may disturb delays of low-priority tasks. It is

named the ñvariable-stepò time advance method, since the actual length of a time

delay step at simulation runtime is variable rather than being restricted by the time

annotation defined at the modelling stage. Figure 3-12 shows this time advance

idea in two simulation cases. Note that no matter which simulation case, when an

event is planned to be released (an arc in the figure) at a future time point, it is ac-

tually unknown when this event will be finally released because of possible inter-

rupts and pre-emptions.

In Figure 3-12 (A), since there is no interrupt interference, an event is thus suc-

cessfully released according to the input delay information td in order to resume

the waiting software task. The simulation clock is also progressed with a step of td.

However, in Figure 3-12 (B), an external interrupt is raised at the time point t1

that is earlier than (0 + td). Consequently, the planned event is cancelled and the

initial ending time point (0 + td) is no longer validated for time advance of the

waiting software task. The software task is pre-empted and its remaining delay

value is calculated as td2. After a time interval, i.e., following the execution of the

ISR in this case, the pre-empted task resumes and the rest of its delay time is ad-

vanced again until completion at t3. This example shows the ñvariable-stepò char-

acteristic of the time advance method.

96

3.2.7.2 The Fixed-Step Time Advance Method

Schirner et al. propose that it is unnecessary to mimic intermediate states in

simulation, and it is only essential to generate correct results at state-changing

boundaries [123]. High performance is thus the primary goal of simulation. In-

deed, with the consideration for simulation performance and efficiency, all ab-

stract and behavioural simulation bears this underlying assumption to hide inter-

mediate simulation runtime details and only maintain similarity between the simu-

lation trace and the real execution trace to a certain extent. The variable-step time

advance method also generally accords to this point of view. It consumes software

execution delays in coarse-grained steps, and aims to minimise the number of

ñstepsò for a better simulation speed. From the perspective of maintaining simula-

tion correctness at specified event-changing points, e.g., interrupt points or task

switching points, this time advance method is satisfactory.

From the perspective of debugging real-time embedded software execution

traces and observing status of system-wide variables, simulation users may not be

satisfied by observing limited information only at event-changing points. Thus,

the fixed-step time advance method is proposed as a complementary time advance

method. Referring to Figure 3-13, this advances the simulated target clock over

more steps, according to pre-defined periods. In the fixed-step mode, the Live

simulation time line

1) Delay time = td

2) wait-for-event
3) Release event_1 after td

(A) Progress the clock and consume the delay time as planned

consume td totally

t1

event_1

0
td

simulation time line

(B) Progress the clock and consume the delay time with interrupt disturbance

t1

event_1

0
td1

cancel it

Consume td1

Remain td2

ISR

td2

Release event_1
after td2

1) Delay time = td

2) wait-for-event
3) Release event_1 after td consume td2

t3 t2

Figure 3-12. The variable-step time advance method

97

CPU Simulation Engine can run periodically to update run-time changing vari-

ables, such as value of timers, software delay slices, execution budgets, etc. The

increasing number of time advance steps may also increase simulation times.

Hence, the Live CPU Simulation Engine can blend variable-step and fixed-step

time advance methods in simulation if simulation users want to trade off simula-

tion performance with intermediate observability.

3.2.7.3 Timing Accuracy of Simulation

In the mixed timing simulation approach, the theoretical timing accuracy of

software simulation can be evaluated through three aspects, i.e., the timing of the

simulated target clock, the timing of software delay advance, and the timing of

software/hardware interactions:

1) Resolutions (the minimum interval of time) of progressing the simulation

clock, which are dependent on timing resolutions of two basic actions:

a. The resolution of advancing software delay duration:

i. General requirement: This resolution refers to the minimum step

to progress the target simulation clock. It should be as fine-grained

as possible in order to be able to represent tiny delays accurately.

ii. Features of the proposed approach: Since models are simulated

in the SystemC environment, they are restricted by the SystemC

simulation kernelôs timing resolution - the default value is 1 pico-

second. It is enough to represent software execution costs accu-

rately. In fact, for high-level behavioural software simulation, the

common timing resolution is at the microsecond (µs) level or the

millisecond (ms) level in practice.

simulation time linet1

event_1

0

td

Update td frequently

A fixed period for
time advance

Figure 3-13. The fixed-step time advance method

98

b. The resolution of stopping software delay duration:

i. General requirement: It refers to the latency to stop the current

target simulation clock advance step, in the case that an interrupt

happens. It should be as small as possible, i.e., zero-time in theory,

in order to mimic the real situation.

ii. Features of the proposed approach: Because the proposed inter-

ruptible time advance method relies on the Live CPU Simulation

Engine, when an interrupt happens, the simulated clock is pro-

gressed to this time point. At the same time, the consumed part of a

software delay is immediately calculated and the remaining delay

part is saved. Consequently, this means that the resolution of stop-

ping software delay duration is zero-time, i.e., without incorrect la-

tency.

2) Maintaining execution delay information of software models:

a. General requirement: Every software model has some delay informa-

tion representing its running cost on the target architecture. These de-

lays must be accurately consumed in terms of the quantity and order.

b. Features of the proposed approach: According to the time advance

methods introduced earlier, a software modelôs timing delay informa-

tion is securely kept on a per-task basis and correctly consumed in its

time advance in simulation. In case of a pre-emption, the delay infor-

mation of a task is updated, and its remaining part is able to resume in

future time advance.

3) Timing accuracy of handling interrupts:

a. General requirement: This is mainly revealed by the interrupt latency,

which is the time from the raising of an external interrupt signal till the

beginning of a software interrupt handler. The simulated interrupt la-

tency should be similar to the real situation in terms of predictability

and functionality.

b. Features of the approach: The interrupt handling approach is based

on a combination of the timely hardware interrupt catching model and

the zero-latency software delay stopping method. The Live CPU Model

99

can sense external interrupt requests when it consumes software delays

at the same time. Since both hardware models and software models

execute in the discrete-event SystemC simulation framework with a

unified global clock, there is no additional HW/SW synchronisation la-

tency that may appear in asynchronous co-simulation. Hardware-

initiated interrupt handling can begin immediately and can be propa-

gated to a software handler without delay. The theoretical minimum in-

terrupt latency is zero-time in simulation, and the worst-case interrupt

latency is bounded by the longest interrupt disabled time which is fully

configured by model builders. This timing behaviour is the same as a

real-time system that runs on a real CPU.

3.3 The Live CPU Model

3.3.1 The HW Part of the SW Processing Element Model

To undertake accurate system-level embedded software modelling and simula-

tion, it is necessary to consider and model the underlying hardware architecture at

an appropriate abstract level. Because many RTOS services, e.g., context switch,

interrupt service, and clock service, are hardware-dependent, it could be difficult

to model HW/SW interactions accurately without support from a hardware model

on which software models are assumed to run. Moreover, one-sided software

modelling is against the system-level HW/SW co-design principle for embedded

systems. The existence of hardware models makes the simulation more likely to

resemble a full embedded system. Many studies have suggested using transaction

level models for high-level system modelling and simulation. In Section 2.1.3.3,

the concept of the software processing element model has been introduced, which

consists of two research aspects of this thesis, i.e., software modelling and hard-

ware modelling. As shown in Figure 3-14, this software PE model can be seen as

a mixture of two parts: behavioural software simulation (from the software model-

ling aspect) and the hardware abstraction model (from the abstract hardware mod-

elling aspect).

100

In a real embedded system, software runs on top of a CPU subsystem. In our

software processing element modelling approach, the CPU subsystem is ab-

stracted and encapsulated into the hardware abstraction model, namely the Live

CPU Model. It provides abstract yet essential hardware controlling functionality

and architecture (e.g., interrupt controller, real-time clock, and virtual registers)

for modelling upper-level software systems. More importantly, it supports inter-

ruptible and pre-emptive SystemC-based behavioural software simulation by the

Live CPU Simulation Engine. It plays a live role in managing software time ad-

vance in order to mimic the timing behaviour of executing software on a target

platform, just like a real CPU executing software instructions.

Because of the high abstraction level and the underlying native simulation con-

cept, our mixed timing software simulation does not need a low-level instruction-

set architecture processor model with complete internal components, such as logic

units, control units, memory subsystems, general-purpose registers and special-

purpose registers. The Live CPU Model is composed of three essential compo-

nents for software simulation:

1) The Virtual Registers are used for storing delay information and setting

flag bits (in Section 3.3.2). They are internal model constructs in the pro-

posed simulation approach.

2) The Interrupt Controller Model monitors interrupt-request lines and acti-

vates software handlers (in Section 3.3.3).

Software Processing
Element (CPU)

Hardware abstraction

Behavioural software
simulation model

Hardware aspect

Software aspect

Live CPU Model

CPU Sim. Engine Interrupt ControllerVirtual Registers

Figure 3-14. Hardware part of the software PE model

101

3) The Live CPU Simulation Engine takes charge of advancing software

simulation time (in Section 3.3.4).

Based on these components, this abstract Live CPU Model is actively involved

in high-level software simulation. In the following, they will be introduced in de-

tail.

3.3.2 The Virtual Registers Model

In a typical real-world processor system, computer programs are stored in a

three-level memory hierarchy, e.g., main memory, cache, and hardware register.

The CPU directly accesses these memory components to load and store instruc-

tions and data. Memory protection, cache management, coherency and consis-

tency are important research issues in this area. However, for concerned SLDL-

based behavioural software simulation, this thesis does not model this memory

subsystem, because it is not necessary to model the instruction-execution mecha-

nism of the target processor. Instead, software natively executes on the host plat-

form, which maintains its own memory system as a black-box for our simulation.

However, in order to support hardware-dependent software simulation, a Vi r-

tual Registers model is built inside the Live CPU Model. These Virtual Registers

do not correspond to registers of a real CPU, but rather hide inside the abstract

Live CPU Model and take effect in a black-box way. Model builders can tailor

this virtual register set in our software simulation context. Referring to Table 3-8,

Virtual Registers are divided into two categories depending on their use:

¶ Some Virtual Registers are related to software time advance. The prime

concern of these virtual registers is to assist the Live CPU Simulation En-

gine to progress software simulation time. Six virtual registers store 64-bit

software timing information such as delay value, deadline, start time stamp,

etc. The CPU_REG[0] ñDelay Registerò and the CPU_REG[4] ñStart-time

Stamp Registerò are two particularly important registers for software time

advance and will be frequently referred to in description of the Live CPU

Simulation Engine later. When a software task context switch is invoked,

current contents of these registers are saved in the pre-empted taskôs TCB,

102

and the newly dispatched taskôs timing information in its TCB is loaded into

these registers.

¶ As illustrated in the right part of Table 3-8, some 8-bit Virtual Registers

hold system runtime status and help the Interrupt Controller Model to han-

dle interrupts. For example, the Current Program Status Register (CPSR) is

mainly used to distinguish the execution mode of the Live CPU Model, i.e.,

the normal software simulation mode or the interrupt request mode. The In-

terrupt Controller Raw Status (ICRS), the Interrupt Controller Status Regis-

ter (ICSR), and the Interrupt Controller Mask Register (ICMR) contain

original interrupt request information, interrupt service information, and in-

terrupt masking configuration, respectively.

3.3.3 The Interrupt Controller Model

It is acknowledged that the interrupt latency, interrupt response time, and in-

terrupt recovery time are some concerned timing properties of a real-time embed-

ded system. The Interrupt Controller Model provides a hardware-level foundation

to model a usual HW/SW cooperative interrupt handling mechanism, which usu-

ally has three bottom-up layers: the HW interrupt controller, the RTOS interrupt

handler, and application ISRs. As illustrated in Figure 3-15, the main function of

the Interrupt Controller Model is encapsulated in the cpu_ic() SC_METHOD

process. It monitors a set of sc_ports , which are further connected to various

interrupt sources (e.g., peripheral devices) by IRQ lines.

CPSR

SPSR

ICRR

ICSR

ICMR

Delay Register: delay value of current code block

Total delay of current task job

Absolute deadline of current task job

Consumed delay time

Start-time Stamp: start time of current delay

slice Χ ...Task suspension time

Descriptions

CPU_REG[0]

CPU_REG[1]

CPU_REG[2]

CPU_REG[3]

CPU_REG[4]

CPU_REG[5]

Register
Name

For SW simulation time advance For system status and flags setting

DescriptionsRegister Name

Current Program Status Register

Saved Program Status Register

Interrupt Controller Raw Status

Interrupt Controller Status Register

Interrupt Controller Mask Register

Χ ...

Virtual Registers

Table 3-8. Virtual Registers

103

In order to deal with multiple simultaneous interrupts from various devices and

bound the interrupt latency, the Interrupt Controller Model can prioritise, mask or

disable interrupt sources by setting corresponding register bits in ICRR, ICSR and

ICMR. When a hardware device raises an IRQ by asserting a signal through its

interrupt request line, the Interrupt Controller Model can catch the signal immedi-

ately and call a software interrupt handler, which could be either a RTOS kernel

interrupt handler function or a vectored ISR depending on a specific interrupt

handling scheme. This software handler will subsequently invoke the Live CPU

Simulation Engine to stop the current delay process. Depending on specific im-

plementation, a software handler can be pre-emptible or non-pre-emptible.

3.3.4 The Live CPU Simulation Engine

In the mixed-timing software modelling and simulation approach, SystemC-

based software models are compiled for the host platform and then executed on it.

It is necessary to model the target simulated clock in order to mimic the timing

behaviour of real-time software in the target environment. As introduced before,

current SLDL-based real-time software simulation approaches have some defi-

ciencies on interrupt and pre-emption modelling. The Live CPU Simulation En-

gine relaxes the existing problems by controlling time advance for software mod-

els, and cooperates with the Interrupt Controller Model to handle external hard-

ware interrupts in a timely manner. Excluding possible interrupt-disabled situa-

tions, e.g., executing a critical section, the Live CPU Simulation Engine can inter-

rupt current software execution (stopping its delay period in practice) as soon as

an interrupt event is caught by the Interrupt Controller, just like software execu-

tion on a real CPU.

Figure 3-15. Interrupt Controller Model

irq_line3

irq_line2

irq_line1

irq_line0

Live CPU Model

Interrupt Controller Model

irq_port[n]

ICRR
ICSR
ICMR

Virtual
Registers

cpu_ic()
{...}

irq_line i

IRQ_source_0 Module

IRQ_source_2 Module

IRQ_source_3 Module

IRQ_source_i Module

IRQ_source_1 Module

104

The basic modelling idea of the Live CPU Simulation Engine is to use the

SLDL wait-for-event mechanism instead of the uninterruptible wait-for-delay

mechanism. The Live CPU Simulation Engine is implemented as a SC_METHOD

process. It coordinates its execution and controls time advance of various software

tasks by corresponding events (i.e., objects of the SystemC sc_event class).

Table 3-9 shows the static sensitivity list of the Live CPU Simulation Engine. The

events on lines 3-7 are externally called by software models to trigger execution

of the Live CPU Simulation Engine, the event on line 8 is internally used by the

Live CPU Simulation Engine to trigger itself for time advance, and lines 9-11

configure the running mode of the Live CPU Simulation Engine if it needs to run

periodically, i.e., the fixed-step time advance method.

Referring to Figure 3-16 (A), most real CPUs execute software cycle-by-cycle

SC_METHOD(cpu_si m_engi ne) ;

dont _i ni t i al i ze() ;

sensi t i ve << evt _r t os_st ar t _cal l _cpu_si m_engi ne

 << evt _apps_cal l _cpu_si m_engi ne

 << evt _r t os_ser vi ce_cal l _cpu_si m_engi ne

 << evt _t i ck_i sr _2_cpu

 << evt _i nt er r upt _handl er _ent er _2_cpu

 << evt _cpu_advance_t ot al

#i f def _CPU_DYNAMI C_FI XED

 << m_cpu_cl k. posedge_event ()

#endi f

#001

#002

#003

#004

#005

#006

#007

#008

#009

#010

#011

Table 3-9. Sensitivity list of the Live CPU Simulation Engine

Fetch Instructions
from program memory

Decode Instructions
to determine purpose

and get operands

Execute Instructions
to perform the desired

operation

Write back
the result of the

operation to
register or memory

Fetch delay time
of a software code block

Decode delay time
into standard format for

time advance

Advance simulation time
according to the delay

value

Update status
of delay time and

resume (begin) a SW task

(A) Instruction execution cycle of a real CPU
(B) Delay time advance cycle of the

Live CPU Simulation Engine

Figure 3-16. Real CPU execution and Live CPU simulation

105

according to an execution mechanism that includes four fundamental stages: fetch

instructions, decode instructions, execute instructions, and store (write back) re-

sults. Inspired by this classical mechanism, the Live CPU Simulation Engine in-

stead executes software modelsô delay times over four comparable conceptual

stages: fetch delay time, decode delay time, advance simulation (delay) time, and

update status (see Figure 3-16 (B)).

3.3.4.1 Software Prerequisites of the Live CPU Simulation Engine

Before describing the Live CPU simulation cycle, it is necessary to indicate

some assumptions and pre-requisite background knowledge of the Live CPU

based software simulation approach:

1) Application software has been organised into tasks. Each task is wrapped in

a SystemC SC_THREAD process and has a TCB storing some individual

information. Each task is registered to an exclusive event, whose notifica-

tion can make the task resume from a wait-for-event statement.

2) If there are multiple concurrent tasks in the system, basic OS software

functions are needed. They include: OS scheduling functions to select a

new task to run and mark it with the RUNNING state; OS interrupt han-

dling functions to select an appropriate ISR for a relevant IRQ; and OS

context switch functions to save and load taskôs context information be-

tween its TCB and Virtual Registers. The ñcontextò mainly refers to timing

information of a task such as, for example, the execution cost, the used

execution time, the deadline and the start time.

3) The Live CPU Simulation Engine is only responsible for maintaining delay

value stored in Virtual Registers and advancing the simulated target clock

for the RUNNING task. It is independent from any above software OS

functions. This reflects the SW/HW orthogonal and modular modelling

principle.

3.3.4.2 Operation of the Live CPU Simulation Engine

Referring to Figure 3-17, the Live CPU based software time advance process

can be described over five steps along the target simulation timeline. There are

two possible software time advance cases, i.e., without interrupt interference (see

106

Figure 3-17 (A)), or with interrupt interference (see Figure 3-17 (B)). In following

descriptions, Steps (A), (B), (C), and (D) of the two cases are the same, their dif-

ference residing in Step (E).

1) Step (A): Preliminary to advancing software simulation time by the Live

CPU Simulation Engine, a software task is firstly loaded into the Live CPU

Virtual Registers

Delay
Register

Time
stamp

Register

Other
Registers

Live CPU Simulation Engine

Fetch
delay time

Decode
delay time

Advance
delay time

 t0 t0+t

Χ Χ

Simulation time line

SW task delay duration

 The CPU Engine plans
to trigger itself after t ns
and then returns.

Update
status

 A SW code block
executes in zero-time.

A

Plan to release the event after t

Virtual Registers

Delay
Register

Time
stamp

Register

Other
Registers

Live CPU Simulation Engine

Fetch
delay time

Decode
delay time

Advance
delay time

 t0 t1

ISR delayΧ Χ Χ ...

Simulation time line

SW task delay duration

 The CPU Engine plans
to trigger itself after t ns
and then returns.

IRQ

Update
status

 A SW code block
executes in zero-time.

A

(1) h{ ǎŀǾŜǎ ǘŀǎƪΩǎ
context and loads an
ISR.
(2) OS calls the CPU
Engine and cancels
the old event.
(3) CPU Engine starts
immediately and
begins the new ISR.

E

D

(1) Store t ns in DR.
(2) Maintain registers.

C

(1) Store t ns in DR.
(2) Maintain registers.

C

(1) Delay annotation is
injected into Live CPU.
(2) The SW code block

waits for an event.

B

(1) Delay annotation is
injected into Live CPU.
(2) The SW code block

waits for an event.

B

D

(1) CPU Engine
executes again when
the t ns delay expires.
(2) It consumes the
value in DR.
(3) It resumes the SW
task.

E

SW task

Plan to release the event after t
ca

nc
el
 th

e

ol
d
ev

en
t

(A) No interrupts during a time advance

(B) The time advance is interrupted

SW execution in
zero-target-time

SW delay
duration

time advance start time advance stop

Figure 3-17. Operations of the Live CPU Simulation Engine

107

Model by an OS context switch operation. Then a software code block,

which could either be a whole task, a function, a statement segment, or a

basic block, executes in zero-target-time at time t0.

2) Step (B): After the software code block finishes execution, an explicit time

advance point can be reached. Here, there is a delay annotation function

and a SystemC wait(event) statement, just as what is introduced in

Section 3.2.3.

a. The delay annotation function generates a delay value which may have

different timing units (e.g., second, millisecond, microsecond, etc.) and

meanings (e.g., task level delay or basic block level delay) for model-

ling convenience. The value is written into a temporary variable in the

Live CPU Model, i.e., delay information is fetched, and the Live CPU

Simulation Engine is triggered to be ready-to-run.

b. The software code block then keeps waiting for its exclusive SystemC

sc_ event object that will be released by the Live CPU Simulation

Engine at a future time point. This sc_event object represents the

ñaddress of code block to runò in our simulation. Its importance is simi-

lar to the program counter in a real CPU.

c. From the perspective of the internal SystemC scheduler, the SystemC

process, which the software code unit belongs to, yields control to the

SystemC simulation kernel and the Live CPU Simulation Engine proc-

ess will be selected to run in next. However, from the perspective of

OS scheduling, this software task is still at the RUNNING state.

d. Note that, when using the simple single-purpose annotation function

DELAY_WR() in Section 3.2.4.2, only the delay value is stored for

prospective time advance, but the Live CPU Simulation Engine is not

triggered and there is no wait(event) statement. Hence, the soft-

ware model will continue executing until a time advance point is

reached.

3) Step (C): Because inputted delay information may have specific formats, it

is necessary to transform them into standard-form data for use with time

advance. The Live CPU Simulation Engine then decodes delay informa-

108

tion into a double float number with the nanosecond timing scale. The de-

coded result ñt nsò is stored in the Delay Register (DR) that belongs to the

virtual register set of the Live CPU Model. At the same time, the current

time stamp t0, which can be obtained by the SystemC function

sc_time_stamp() , is also recorded in another virtual register.

4) Step (D): Subsequently, the Live CPU Simulation Engine starts the ñsimu-

lation (delay) time advanceò step at t0. This stage consists of two opera-

tions: the Live CPU Simulation Engine plans to wake up itself at a future

time point and then returns. The CPU Engineôs sleeping duration represents

execution cost of a software model. Depending on the execution mode of

the Live CPU Simulation Engine, there are three possible cases:

a. If the Live CPU Simulation Engine works in a pure variable-step time

advance mode, it plans to progress the delay time t in the DR in a sin-

gle step. It sets the internal event to trigger itself at the coming time

point t0+t. Then it returns control back to the simulation kernel in order

to advance the simulation time by the duration of t.

b. If the Live CPU Simulation Engine is set with a fixed-step time ad-

vance mode, it runs periodically in order to decrement and update the

delay value in DR until the delay value is totally exhausted, whilst, the

simulation clock is progressed period-by-period.

c. If the Live CPU Simulation Engine is configured with both the vari-

able-step and the fixed-step modes, it not only plans to wake up at the

final time point, but also periodically decrements the delay value.

5) Step (E): In this stage, the Live CPU Simulation Engine updates the simu-

lation status by maintaining delay time and resuming or beginning a soft-

ware task. There are two possible situations depending on whether an inter-

rupt happens:

a. Assuming a simple case where there is no interruption or pre-emption

during the t time duration as illustrated in Figure 3-17 (A), thus the

Live CPU Simulation Engine wakes up at time t0+t . It consumes the

value in DR and then issues the event related to the current RUNNING

109

task so as to make it continue executing. Upon that, the above execu-

tion cycle is repeated.

b. A main target of the mixed timing approach is to solve the non-

interruptible problem of SystemC software simulation. It is important

to consider the interference from an unexpected interrupt event during

ongoing software delay duration. As shown in Figure 3-17 (B), before

the time advance duration t expires, an IRQ happens at t1 that is earlier

than the time point t0+t projected in Step (D). Given that the interrupt

handling mechanism of the system is not intentionally disabled, the In-

terrupt Controller Model thus catches the IRQ immediately and then

invokes the software OS interrupt handling function to serve this IRQ,

i.e., the current RUNNING task will be pre-empted by a higher-priority

ISR. The OS interrupt handling function saves the remaining portion of

the delay time slice and other timing information in Virtual Registers to

the pre-empted taskôs TCB for future use. The remaining portion of the

delay time is calculated as: tremain = t-(t1-t0), where t is the initial value

of the DR and t1 is the current time stamp. The OS interrupt handling

function then dispatches (i.e., loads its context to Virtual Registers) an

appropriate ISR as the next-to-run software task and calls the Live CPU

Simulation Engine by notifying an event to replace the previously-

planned wake-up event. The Live CPU Simulation Engine faces fresh

values in the Virtual Registers and sends an event to allow the ISR to

run immediately. Consequently, the software ISR executes its func-

tional code and repeats the above time advance process. In this way,

both software time advance and hardware interrupt handling are simu-

lated accurately.

3.4 Evaluation Metrics

Recalling the three requirements on SLDL-based software behavioural model-

ling and simulation mentioned at the beginning of this chapter, the flexible model-

ling aspect is mainly addressed in Section 3.2.3 by supporting different software

110

functional and timing models. The simulation performance and simulation accu-

racy aspects are addressed in this section in order to evaluate experiments in Sec-

tion 3.5.

3.4.1 Simulation Performance Metric

In this section, the metric of simulation performance is defined as how much

simulation time (i.e., host time) is used to execute a specific simulation in the host

computer. A specific simulation refers to executing a software test program,

which is modelled in the mixed timing approach and simulated by the Live CPU

Model for a set of repeated iterations. As the referenced cycle-accurate simulator,

the KEIL ARM ISS [146] executes the same test program for a same number of

loops. Simulation speeds of the mixed timing simulation approach and the ISS

approach are compared in order to calculate a simulation speedup, which is:

ίὴὩὩὨόὴ
ὍὛὛ ίὭάόὰὥὸὭέὲ ὸὭάὩ

ὓὭὼὩὨ ὸὭάὭὲὫ ίὭάόὰὥὸὭέὲ ὸὭάὩ

 Note that although the ISS simulator is also a software-based simulation ap-

proach, it executes cross-complied software binaries for a target hardware plat-

form. In the context of high-level software simulation, functional and timing be-

haviours of an ISS are commonly deemed the same as real software execution on

a corresponding processor.

3.4.2 Simulation Accuracy Metrics

Simulation accuracy metrics of the mixed timing approach relate to two aspects,

i.e., functional accuracy and timing accuracy. In Section 3.3.4, some simple OS

functions are introduced as the basis for mixed timing software simulation. How-

ever, the focus of this section is not to present a detailed OS simulation model

with complete multi-tasking and concurrent execution services. Rather, this sec-

tion concentrates on relationships between software models and their timing char-

acteristics, i.e., time annotation and advance. Hence, a test program does not util-

ise many OS functions but needs to include data-dependent loops that require

dense time annotations.

111

3.4.2.1 Functional Accuracy

Functional accuracy refers that, in terms of a given test program, whether be-

havioural simulation models can represent similar functions and generate correct

results compared to real software execution. Based on the definition in Section

3.2.3.1, abstract software models do not sufficiently reflect this property if they do

not aim to include enough functional code. Regarding native-code software simu-

lation models, this property can be evaluated by compared its simulation results to

those of an ISS simulation.

However, evaluating functional accuracy is not an emphasis in this chapter, be-

cause it is not difficult to guarantee that a single task model can execute correct

modelling functions. Especially, a native-code task model may have the same

code as a real task. Functional accuracy of concurrent multi-tasking software

models will be addressed in Chapter 4, when a complete RTOS model is intro-

duced.

3.4.2.2 Timing A ccuracy

By simulating a software model in the proposed mixed timing approach, it is

known how much simulated time (i.e., the target time in SystemC) is used to exe-

cute a set of repeated iterations of a given test program, which is referred to as

tmixed. It can also find the simulated time of the same test program and iterations in

an ISS simulator, which is referred to as tISS.

Timing accuracy can be reflected by comparing tmixed and tISS. If they are close,

then the timing accuracy of the mixed timing approach is deemed good enough. A

timing accuracy loss is computed as:

ȿὸ ὸ ȿ

ὸ
 ρππϷ

Inaccuracy of timing is contributed by three parts, i.e., software performance

estimation, delay annotation, and time advance.

The first part is not within research focus of this thesis, so ISS-based measure-

ment method is used (See Section 3.2.5.3). It can provide highly accurate software

performance information.

112

The second part is addressed in definitions of software models in Section 3.2.3.

It should be noticed that inaccurate annotations may be intentional choices of

simulation users for the sake of fast simulation performance and ease of modelling.

The third part is a notable advantage of the mixed timing approach in terms of

supporting interruptible software time advance by the Live CPU Simulation En-

gine. However, in this chapter, without involving many task switches and RTOS

services in simulation, this aspect cannot be evaluated thoroughly.

Still, referring to Section 3.2.7.3, there are three basic features related simula-

tion timing accuracy can be evaluated:

1) The resolution of stopping a software time advance step

2) Timing accuracy of handling interrupts

3) Maintaining execution delay information of software models

The first point can be evaluated by measuring how fast a time advance step can

be stopped in the proposed simulation approach. The second point can be simpli-

fied as the interrupt latency at the moment. In fact, it refers to the same feature as

the first point. The third point can be evaluated by observing whether a taskôs time

advance can be resumed properly after it is pre-empted.

3.5 Experimental Results

All simulation tests in this section are performed with SystemC v2.2 on three

x86 PCs (frequencies ranging from 1.86GHz to 2.2GHz) running Windows OSs.

Tests of a single topic are always carried on the same PC in order to be compara-

ble. Host simulation times are measured by Windows Win32 function Quer y-

PerformanceCounter() , which can retrieve the value of the high-resolution

hardware performance counter and provide microsecond level host execution time

[148]. Target simulated times are obtained by using SystemC function

sc_time_stamp() .

113

3.5.1 Performance Evaluation

3.5.1.1 Simulation Performance of Different Timing Models

In Section 3.2.3, the abstract software model and native-code software models

are introduced. Because they have distinct functional and time annotation charac-

teristics, their simulation performance necessarily differs. Furthermore, in Section

3.2.4, two techniques are introduced to improve simulation performance by ad-

justing time annotation and advance statements in code. This section presents

some tests to evaluate simulation performance of these different models and mod-

elling techniques. In order to concentrate on the above-mentioned aspects and

eliminate the possibility that software functional complexity may dominate simu-

lation performance, the test program includes a single task implementing a selec-

tion sort algorithm. This algorithm involves typical data-dependent if conditional

operations and for loop operations, which require fine-grained time annotations if

the timing accuracy is a concern. Although RTOS services are not called by the

task, limited RTOS services (without delay annotations) are still executed in order

to initialise the software simulation system.

As shown in Table 3-10, the same program is simulated in six cases:

¶ Two abstract software models: The first abstract software model does not

implement the actual function of the sort algorithm, whilst the second ab-

stract model does. They are both annotated one time annotation statement

and one time advance point at the task level.

¶ Three native-code models: They all implement the sort function and have

four fine-grained segment level annotation statements, which are approxi-

mately timing accurate regarding data-dependent loops.

Á The native-code 1 and 2 are both implemented by the proposed mixed

timing method and the interruptible Live CPU based time advance

method. Their difference is: two time advance points are defined in na-

tive-code model 1, which utilises the reduced time advanced technique

in Section 3.2.4.2; whereas, four time advance points are defined in na-

tive-code model 2 and inside data-dependent loops.

114

Á The native-code model 3 utilises the uninterruptible wait-for-delay time

advance method. It is a conventional annotation-dependent software

simulation model.

¶ The test program is also run on the KEIL ARM ISS without cache and OS

support and its execution time costs are used to annotate above behavioural

models.

Simulation results are shown in Figure 3-18. Some phenomena and conclusions

can be inferred:

¶ The abstract model 1 is faster (over 400x speedup compared to ISS) than

other models because that it does not model functionality and has the fewest

execution counts of annotation and time advance in simulation. The abstract

model 2 is slower than abstract model 1 due to its functional complexity.

They both can be used for abstract software modelling in this thesis.

¶ The proposed native-code model 1 has fast simulation speed, i.e., over 200x

speedup compared to ISS. It is functional accurate, i.e., with the native-code

function. Its timing accuracy is also promising because of sufficient execu-

tion counts of annotation statements in simulation (see the quantification re-

Table 3-10. Descriptions of experimental cases

Proposed

abstract

model 1

Proposed

abstract

model 2

Proposed

native-

code

model 1

Interuptbi

ble native-

code

model 2

Uninterruptibl

e native-code

model 3

 ISS

Functions
Without

functions

With

functions

With

functions

With

functions
With functions Final code

Time annotation

granularity

Coarse-

grained

function-

level

Coarse-

grained

function-

level

Fine-

grained

segment-

level

Fine-

grained

segment-

level

Fine-grained

segment-level

Number of time

anno. statements
1 1 4 4 4

Time advance

granularity

Coarse-

grained

function-

level

Coarse-

grained

function-

level

Reduced

advance

Fine-

grained

segment-

level

Fine-grained

segment-level

Number of time

adva. statements
1 1 2 4 4

Cycle-

accurate

ARM7TDM

I-S

LPC2124

@60MHz

115

sult in Section 3.5.2.1). It is recommended to be used in native-code soft-

ware modelling in this thesis.

¶ The interruptible native-code model 2 also has similar functional and timing

accuracy behaviours compared to the native-code model 1. However, its

slowest simulation speed is not satisfactory. Certainly, it may represent

some special software simulation situations, where many time advance

points are necessary (see Section 3.2.4.2). If these ñuncommonò situations

indeed happen frequently, the simulation speed of the proposed mixed tim-

ing simulation approach will necessarily decrease.

¶ The uninterruptible native-code 3 is weak in terms of its uninterruptible time

advance method and slow simulation speed, i.e., using over 200x simulation

time more than the proposed native-code model 1.

In addition, Figure 3-18 shows some statistics on execution counts of time an-

notation statements and time advance steps in simulation. Regarding the proposed

mixed timing simulation approach in this thesis, two characteristics can be in-

ferred from the perspective of this experiment and give guidance to some extent:

Figure 3-18. Simulation time results

1882.75 3237.126 3527.092

1845550
802926.05 815000

1

10

100

1000

10000

100000

1000000

10000000

H
o

st
 s

im
u

la
ti
o

n
 t
im

e

(u
s)

Simulation time comparison

Abstract

model 1

Abstract

model 2

Native-

code

model 1

Native-

code

model 2

Native-

code

model 3

ISS

Host simulation

time (us)
1882.75 3237.126 3527.092 1845550 802926.1 815000

Total execution

counts of

annotation

1 1 125749 125749 125749

Total time

advance steps
1 1 2 125749 125749

116

1) More annotation statements do not contribute too much simulation time.

Comparing the native-code model 1 and the abstract model 2, 125749 times

more annotation statements result in less than 10% simulation overheads.

2) Time advance steps (i.e., execution of the Live CPU Model) affect simula-

tion performance greatly. Comparing the native-code model 2 and the na-

tive-code model 1, 62875 times more time advance steps incur 500 times

more simulation time.

3.5.1.2 Simulation Performance of Varying Time Advance Methods

In the previous section, simulation performance was evaluated by varying tim-

ing modelling related aspects. This section inspects simulation performance of

models by changing time advance method of the Live CPU Simulation Engine.

In Section 3.2.7, the variable-step and fixed-step time advance methods are in-

troduced as execution mechanisms of the Live CPU Simulation Engine. By setting

the two time advance methods for the Live CPU Simulation Engine, trade-offs

can be made on simulation speed, observability, and time advance accuracy.

The software test program consists of eight abstract tasks (i.e., four equal-

priority periodic tasks and four higher-priority ISR tasks) with randomly-

generated task-level delays. A very simple OS model provides pre-emptive multi-

tasking services. The OS scheduler implements fixed-priority and round-robin

scheduling algorithms and is triggered by a combined time-driven and event-

driven mechanism. Four interrupt sources are included in simulation and raised

randomly in order to trigger ISRs. The test program runs for 1000 ms target time

that allows a task to repeat at least 20 times.

The Live CPU Simulation Engine is configured in following models:

1) Model A: uses a fixed-step time advance method, which runs every 1 ms

and advances the target clock by a step of 1 ms. It is similar to the fine-

grained time period synchronization approach in Section 3.1.2. This

achieves 1 ms time advance resolution.

2) Model B: uses a dual-grained fixed-step time advance method. It is similar

to the multiple-grained time annotation method introduced in Section 3.1.3.

When a software delay value is greater than 1 ms, the engine runs every

117

1ms to progress the target clock by a step of 1 ms. Once the delay value

falls below 1 ms, then the engine runs every 1 ms to advance the target

clock by a step of 1 ms. This achieves 1 ms time advance resolution.

3) Model C: uses a mixed fixed-step and variable-step time advance method.

It progresses a delay slice in an interruptible variable-length step and also

runs every 1 ms to advance the target clock by a step of 1 ms. The time ad-

vance resolution is only restricted by the timing resolution of SystemC

simulation engine.

4) Model D: uses a variable-step time advance method. It progresses a delay

slice in an interruptible variable-length step. The time advance resolution is

only restricted by the timing resolution of SystemC simulation engine.

The same test program is run on KEIL ARM ISS for a same duration of 1000

ms. The target processor is a NXP LPC2378 running at 40MHZ. A µC/OS-II

RTOS [149] is ported on this ISS to manage tasks.

Obtained simulation speed results are shown in Figure 3-19. Compared to ISS

simulation, mixed timing models obtain drastic performance improvement in

terms of the biggest speedup over 3000 times. Unsurprisingly, the variable-step

approach is also faster than the fixed-step time advance approach. Model D

Figure 3-19. Simulation time comparison

118

achieves a considerable speedup (over 600 times) compared to model A. This is

because the fixed-step approach progresses the target clock much more frequently

than the variable-step approach, which is reflected by higher running counts of the

Live CPU Simulation Engine.

The models B and C use combined time advance methods. From their simula-

tion results, it can be inferred that finer periodic time advance steps result in more

simulation overheads. In order to reveal relations between step lengths and simu-

lation speeds of fixed-step time advance method, three additional tests are carried

out with periodic steps of 2 ms, 5 ms and 10 ms, which mean the Live CPU Simu-

lation Engine is activated to advance the target clock in every 2 ms, 5 ms, and 10

ms respectively.

Figure 3-20 shows that simulation times and Live CPU running counts steadily

decrease whilst the fixed-step period is growing larger. This characteristic can be

used to tune the Live CPU Simulation Engine and optimise the simulation per-

formance and simulation observability in different situations. Besides, the peri-

odic fixed-step time advance method can represent the behaviour of handling the

periodic real-time clock interrupt of a RTOS, in which the Live CUP Simulation

Engine is triggered periodically. According to simulation results, finer real-time

clock interrupt periods incur extra but not excessive overheads, which can be used

Figure 3-20. Comparison of varying fixed-step lengths

119

as a reference to determine the period of the clock interrupt in a RTOS model.

3.5.2 Accuracy Evaluation

3.5.2.1 Experimental Timing Accuracy

Experimental tests in Section 3.5.1.1 are also studied here. According to the

analysis in Section 3.4.2.2, regarding a simple software model, its timing accuracy

depends on its performance estimation and delay annotation granularity. Perform-

ance is measured in ISS and used for native-code software models. Timing delays

are annotated at the segment level. Consequently, a good timing accuracy should

be expected. As shown in Table 3-11, in terms of the same test program, native-

code models consume very similar target time to the ISS simulator. This table also

demonstrates that reducing time advance points does not affect timing accuracy of

independent software models.

3.5.2.2 Timing Accuracy of Basic Operations

Referring to the three basic features related simulation timing accuracy in Sec-

tion 3.4.2.2, an interrupt experiment is executed in order to evaluate them in simu-

lation.

This experiment includes five IRQs (IRQ1-5) and five associated ISRs (ISR1-

5), which are assigned ascending priorities. Each IRQ randomly happens 500

times in 10 seconds simulated time. A normal task runs in the background and can

be interrupted by any IRQs and pre-empted by their ISRs. The software system is

configured so that interrupts are always enabled and the Live CPU Simulation

Engine can stop current time advance as soon as a higher-priority interrupt hap-

pens. Therefore, at any simulation time point, interrupt latency of the highest-

Native-code

model 1

Native-code

model 2
ISS

Simulated times (µs) 6986.115 6986.115 6977.51

Accuracy loss 0.12% 0.12%

Table 3-11. Timing accuracy of native-code models

120

priority IRQ should always be zero, and all other IRQs are only able to be post-

poned by higher-priority ISRs.

Figure 3-21 shows a part of the timeline of this experiment, which is drawn ac-

cording to the actual simulation log. It illustrates three concerned basic timing re-

lated features, i.e., immediate stop of time advance, resumable time advance, and

zero-time interrupt latency. As well, it demonstrates some functions of the Inter-

rupt Handler Model.

Referring to this simulation trace, at t=7011 µs, IRQ2 and IRQ3 happen simul-

taneously. Since the Live CPU model controls software time advance and moni-

tors IRQ lines, the current software time advance step is stopped immediately and

an IRQ is handled immediately. This interrupt latency is zero-time. Because the

priority of IRQ3 is higher than IRQ2, the Interrupt Controller Model ignores

IRQ2 and begins to service IRQ3. Afterwards, RTOS interrupt services and ISR3

execute sequentially. At t=7022 µs, a higher-priority IRQ4 happens and invokes

nested interrupt service by pre-empting ISR3. Note that IRQ1 is raised during

ISR4 execution; however, it is ignored by the Interrupt Controller Model due to its

lower-priority priority. After the completion of ISR4, lower-priority ISRs are han-

dled successively according to their priorities. Among them, ISR3 is released

firstly to continue its remaining delay and finishes at t=7041 µs.

In order to quantify the interrupt latency in simulation, we measure interrupt la-

tencies of these five IRQs in this experiment. The theoretical maximum interrupt

latency of an IRQ can be computed as the sum of all higher-priority ISR time

costs:

SW task

7011 7016 7022 7027

IRQ2

ISR3

SW task

IRQ1

7041 7053 t (s˃)
t il

C

t iresp
t ireco

t il : interrupt latency time

t iresp : interrupt response time

t ireco : interrupt recovery time

 interrupt_handler_enter

interrupt_handler_exit

C context_switch

IRQ3

C
IRQ4

ISR4 C

ISR3 C

ISR2 C

ISR1 C

Figure 3-21. Interrupt handling experiment

121

ὸ ὸ
ͺ

Table 3-12 compares measured maximum interrupt latencies with calculated

theoretical values. As expected, the highest-priority IRQ5 is always serviced

without any delay. And other IRQs are also serviced with zero-time latency if

there is no other higher-priority ISR in the system. In case that an IRQ is delayed

by some other higher-priority ISRs, its maximum interrupt latency does not ex-

ceed the theoretical worst-case value either.

3.6 Summary

In this chapter, a SystemC-based mixed timing software behavioural modelling

and simulation approach and the Live CPU Model have been introduced.

In the context of TLM software computation modelling, two types of software

timing models were proposed for use in different software modelling stages. Also,

they can be mixed in simulation for modelling flexibility. By isolating the timing

modelling aspect from the timing simulation aspect, various timing annotation

granularities (i.e., task-level, function-level, segment-level, and basic block-level),

functional accuracy levels (i.e., abstract and native-code), and time advance meth-

ods (i.e., variable-step and fixed-step) can be utilised on mixed timing software

models for various sakes of fast simulation performance, modelling flexibility ,

simulation observability, and reasonable accuracy.

Counts of

zero-time

interrupt

latency

Counts of

delayed

Interrupt

latency

ISR time

cost (µs)

Theoratical

maximum

latency (µs)

Measured

maximum

latency (µs)

IRQ5 500 0 500 0 0

IRQ4 441 59 10 500 494

IRQ3 440 60 10 510 488

IRQ2 448 52 10 520 502

IRQ1 444 56 10 530 488

Table 3-12. Comparison of theoretical and measured interrupt latencies

122

The proposed SystemC-based Live CPU Model can achieve interruptible soft-

ware time advance and zero-time delayed interrupt handling latency in software

simulation. The HW/SW synchronisation problem is solved without the need of

fine-grained time annotation and advance. This approach avoids the annotation-

dependent software time advance approach that may result in uninterruptible

software timing simulation. The Live CPU model supports multiple execution

modes, which could trade off simulation speed with simulation observability. The

Live CPU Model also provides an essential Interrupt Controller Model, a real-

time clock and some Virtual Registers to assist software simulation. In the context

of a software PE model, the Live CPU Model behaves as the conceptual hardware

part and is promising to be extended with SW/HW interfaces for inter-module

communication.

Regarding the requirement of fast performance, a representative test program

shows that the proposed mixed timing software models achieve about 200 to 3000

times speedup
3
 to an ARM ISS simulator and the conventional fine-grained unin-

terruptible behavioural software model. The proposed abstract and native-code

software models also show distinct simulation performance as expected. Various

execution models of Live CPU Simulation Engine are tested in order to present

their effects on simulation performance. In general, more time advance points in

models inevitably incur more simulation overheads.

In this chapter, twofold timing accuracy of the simulation approach was meas-

ured in experiments. Firstly, focusing on timing accuracy of single task execution,

with fine-grained segment-level annotations, the proposed native-codes only incur

a 0.12% timing accuracy loss. Secondly, the basic time advance stopping latency

and interrupt latency is evaluated by measuring interrupt latencies in simulation

3
 The variation in simulation speedup are mainly because of two reasons: firstly, different experi-

ments and test settings affect the simulation speed of a specific experiment; secondly, experiments

were carried out at different times when the overall functionality and complexity of the proposed

software simulator were evolving, which affected simulation speeds. In general, compared to the

KEIL ARM ISS, the proposed simulation approach has two or three orders of magnitude speedups

in this thesis.

123

tests. The result accords with the theoretical value, i.e., zero-time latency. The re-

sumable time advance method is demonstrated in a simulation case.

 125

Chapter 4

A Generic and Accurate RTOS-Centric

Software Simulation Model

In recent years, with embedded systems moving towards System-on-Chip plat-

forms, the complexity of the hosted embedded software is increasing. The RTOS

has become an essential software component in many real-time embedded sys-

tems, providing efficient resource sharing and controlling facilities as well as

guaranteed services between upper-layer application software and underlying

hardware resources. The traditional software simulation approach, which executes

a real RTOS and fully developed applications in an instruction set simulator, ap-

pears to be time consuming. In order to speed up simulation performance and

validate real-time embedded software early in the system-level design flow, re-

searchers have proposed system-level SLDL-based behavioural software simula-

tion as a new design paradigm.

RTOS behavioural modelling and simulation have been proposed as enabling

techniques that simulate and evaluate different real-time embedded software de-

sign alternatives in the early design phases. They can be used to evaluate system-

wide, dynamic, run-time properties of real-time software, such as scheduling poli-

cies, application execution times, and interrupt handling, etc. These methods usu-

ally build generic RTOS models that can provide various typical RTOS services

or can be adapted to mimic behaviour or specific RTOSs. The RTOS model and

abstract software models or native-code application software models are dynami-

cally executed together in an SLDL environment on a host machine, in order to

mimic timing and functional behaviour of a software system on a target platform.

 126

4.1 Motivation and Contribution

Within the system-level RTOS modelling and simulation research area, there

still exist some unaddressed aspects and issues for improvement. These relate to

the functionality, timing accuracy, and simulation performance of simulation

models. For example, from the perspective of maximising flexibility of system-

level software modelling, designers may want to simulate multiple abstraction-

level software models in one simulation framework. Current RTOS modelling re-

search does not address integrating coarse-grained timed abstract task models (i.e.,

associated with best-case and worst-case execution times) and fine-grained timed

native-code application software (i.e., associated with multiple delay annotations)

in one simulator. Besides, from the perspective of practical RTOS engineering,

some RTOS models provide simplistic task management and limited synchronisa-

tion services, which are inadequate to imitate the behaviour of a real multi-tasking

RTOS. Furthermore, the low timing accuracy is a common, yet critical, problem

borne by many RTOS modelling approaches. On the one hand, this is due to the

lack of inclusion of RTOS servicesô timing overheads in modelling. On the other

hand, some SLDL-based modelling methods rely excessively on the uninterrupti-

ble SLDL wait-for-delay time advance mechanism (see Section 3.1.1); conse-

quently, task switches and HW/SW synchronisation can only happen at limited

pre-defined time advance points.

In this chapter, a SystemC-based system-level RTOS-centric real-time embed-

ded software simulation model is presented. Its objectives are fast simulation and

behavioural evaluation of real-time embedded software with good flexibility and

reasonable accuracy in early design phases. Dynamic execution scenarios of a

modelled target system can be exposed by tracing diverse system events and val-

ues in simulation, e.g., RTOS kernel calls, RTOS runtime overheads, task execu-

tion times, dynamic scheduling decisions, task synchronisation and communica-

tion activities, interrupt handling latencies, context switch overheads, and other

properties. The whole simulation framework integrates multi-tasking applications,

RTOS, Live CPU and other hardware component models in a unified SystemC

prototyping environment. The core is a generic RTOS simulation model, which

supplies a set of fundamental and typical services including task management,

 127

scheduling services, synchronisation, inter-task communication, clock services,

context switch and interrupt handling services, etc. These services refer to several

commercial RTOS products and specifications in order to supply general and

standard functions. With the aim of building a timing RTOS simulation model,

timing overheads of various RTOS services and application tasks are also consid-

ered in the models.

All models in the simulation framework are implemented on top of the Sys-

temC library. The basic SystemC core language and the OSCI referenced simula-

tion kernel are used without modification.

In the remainder of this chapter, Section 4.3 introduces a typical embedded

software stack and considers its inclusion within our simulation model. Section

4.4 presents background knowledge of real-time applications and the RTOS. Sec-

tion 4.5 describes the RTOS-centric software modelling approach in detail. Sec-

tions 4.6 and 4.7 introduce evaluation metrics and experiments to demonstrate the

simulation performance, function, and accuracy of RTOS-centric real-time soft-

ware models. Finally, the chapter is summarised in Section 4.8.

4.2 Research Context and Assumptions

Referring to Figure 4-1, we have introduced software PE modelling in Section

2.1.3.3. The Live CPU Model, as described in Section 3.3, represents the hard-

ware aspect of the software PE model. This chapter will introduce the behavioural

RTOS-centric software simulation model, namely the software aspect of this

software PE. The software simulation model runs on top of the Live CPU Model,

Figure 4-1. Software part of the software PE model

Software Processing
Element (CPU)

SystemC Enviroment

Hardware
abstraction:

Live CPU Model

Behavioural software
simulation model

Software aspect

Hardware aspect

 128

so software simulation is guaranteed with reasonable timing accuracy and good

HW/SW synchronisation (i.e., interrupt handling) timing accuracy. The whole

software PE model is the research context, i.e., multi-tasking real-time applica-

tions and a RTOS run in a uniprocessor embedded system model.

Due to the high abstraction level of the software simulation approach in this

thesis, advanced CPU architectures such as multiple-level caches and pipelines

are not considered, i.e., their effects on software execution times are not explicitly

modelled. However, according to the software performance estimation methods

discussed in Sections 3.2.5 and 3.2.6, a KEIL ARM ISS without cache is used to

measure software performance for back annotations of our software models in this

thesis. In terms of other specific ISSes, caches may or may not be supported when

the ISS executes software instructions, which means that caches can still affect

timing accuracy of software time annotations. Hence, timing accuracy losses of

software execution times - between the proposed behavioural software simulation,

the referenced ISS, and the real hardware platform - are inevitable. Recalling the

research intention of this thesis for fast and accurate software simulation, it is as-

sumed that the referenced ISS is accurate enough to support and evaluate our be-

havioural software simulation.

As introduced in Section 3.3.1, the memory subsystem for actual software exe-

cution (e.g., RAM) is not included in the Live CPU Model because that it is not

necessary for behavioural (i.e., abstract or native-code) software simulation.

Hence, target software memory environments such as stack, heap, and memory

protection, and RTOS memory management services such as swapping, paging,

allocation, segmentation, and virtual memory, are also out of the modelling focus.

Nowadays, there are many general RTOS concepts, popular RTOS standards,

and specific RTOS products. This thesis aims to present a generic RTOS model

for behavioural real-time software simulation. It should be representative yet

without a loss of generality. The selection and determination of functions and re-

quirements of the RTOS model are made with reference to both some classical

RTOS literature [25] [26], and some current RTOS specifications and products,

including:

 129

¶ The Didactical C Kernel (DICK) [25]: this is a small real-time kernel that

introduces basic and important issues for designing a hard real-time kernel

and hence informs our simulation model from the theoretical aspect.

¶ Real-Time extensions of the POSIX (Portable Operating System Interface)

standard 1003.1 (referred to as RT-POSIX hereafter) [150]: this is a very

broad and successful API standard particularly facilitating handling multi-

threading and multiprocessing real-time applications. RT-POSIX is scalable

with four subsets (namely Real-Time Profile PSE51 (minimal), PSE52 (con-

troller), PSE53 (dedicated), and PSE54 (multi-purpose)) for different-scale

systems. The RTOS model in this thesis refers to the PSE51 profile for

small embedded systems.

¶ ɛITRON (micro Industrial The Real-Time Operating system Nucleus) 4.0

standard [151]: this standard is oriented to small/medium-size embedded

systems. Over 40% of RTOSs used in Japan are based on this standard [129].

It inspires the task state machine in the proposed RTOS model.

¶ ɛC/OS-II [149], ThreadX [152], and Keil RTX (Real Time eXecutive) [1]:

they are representative popular small-size RTOSs. Their functions and ker-

nel structures mostly influence the proposed RTOS model from a practical

engineering aspect.

¶ QNX Neutrino [147]: this is a RT-POSIX compliant multiprocessor-enabled

high-end RTOS. Its implements basic thread and real-time services in the

microkernel and can be extended to support multiple processes by adding

optional components.

4.3 The Embedded Software Stack Model

The left part of Figure 4-2 depicts a typical embedded software stack. It in-

cludes three layers, i.e., the application software layer, the middleware layer, and

the system software layer. According to the research context and intention of this

chapter, the software stack needs to be abstracted into a model in order to accom-

modate software components for high-level modelling and simulation.

The right part of Figure 4-2 illustrates the abstract model of the embedded

software stack. The application layer is obviously essential to be included, be-

