RealTime Operating System
Modelling and Simulation

Using SystemC

Ke Yu

Submitted for the degree of Doctor of Philosophy

Department of Computer Science

THE UNIVERSITYW

June 2010

Abstract

Increasingystem complexityand stringent timé¢o-market pressure bring dha
lenges to the design productivity of réshe embeddedystemsVariousSystem
Level Design(SLD), SystemLevel Design Languges (SLDL)and Transaction
Level Modelling (TLM) approaches have been proposedenabling tools for
reattime embedded system specification, simulation, implementation and- verif
cation SLDL-basedRealTime Operating SystenRTOS modelling and simal-
tion arekey methodso understandlynamic scheduling and timing issues in teal
time softwarebehaviourakimulationduring SLD. However, arrent SLDL-based
RTOS simulationapproacheslo not supporteattime softwaresimulation ae-
quately in terms of botfunctionality and accuragye.g., simplistic RTOS fun
tionality or annotatiordependent software time advance.

This thesis is concerned wiBystemGbasedbehaviouraimodelling and sim-
lation of realtime embedded software, fodtng uponRTOSs. The RTOScentric
simulationapproactcansupport flexiblefastand accurateeattime softwaretim-
ing and functionasimulation Theycanhelpsoftware desigersto undertakeeal
time software prototypingt earlydesignphases

The contributions in this thesiseafourfold.

Firstly, we propose a mixed timing retime software modelling and sinasl
tion approactwith various timing related techniquyeghich are suitablefor early
softwaremodelling andsimulation We show that thisppproachnot only avoids
the accuracy drawback in some existingthodsbut also maintains a high sim
lation performance.

Secondly, we proposelave CPU Modelto assist softwarbehaviouratiming
modelling and simulationit supports interruptibleand accuratesoftwaretiming
simulationin SydgemC andextends modelling capability of the mixed timing-a

proach for HW/SW interactions.

Thirdly, we propose &TOScentricreattime embeddedsoftware simulation
model It provides a systematic approach for buildmgdularsoftware (including
both application tasks and RTOS) simulation models in Systénfiéxibly sup-
ports mixed timing application task modelEhe functions and timing overheads
of the RTOS model are carefully designed amhsideredWe show thatthe
RTOScentic modelis both convenient and accurate for raale software sin-
lation.

Fourthly, we integrateTLM communication interfaces in thseftwaremodels
which extend the proposed RT@®ntric software simulation model for SW/HW
inter-module TLMcommunication modelling.

As a whole this thesis focusean RTOS and realime software modelling and
simulation in the context of Systentfased SLDand provides guidance to sof
ware developerabouthow toutilise this approach in their retine softwarede-
velopment Thevarious aspects oksearch workn this thesis constitute an @t
grated software Processing Element (PE) madtdroperable with existing TLM

hardware and communication made.

Table of Contents

Y 0] 1 = T O PRSP iii
TaDIE Of CONTENES....eiiiiiiiiiiiiie et et e e e e s st b e e e e s s snbbeennrseeeeeesssrneeeeesss) V.
IS A 1= 1] [3 PP PRPP X
IS T [PP Xi
IS o X3 0] 017 1. SRS PPPPRPRRI XV
ACKNOWIEAGEIMENTS. ...ttt ettt e e et e e e e e e e et e e e e e aneeeee Xix
(= Tod =T = 11T o O SPRR XXi
Chapter 1 INtrOQUCTIONeiiieiiiiieiee ettt e et e e e s st e e e e e s st e e nnbneeeeeeans 1
1.1 General BackgroUNn............cooiiuiiiiiaiiee it 1

1.2 Challenges in Embedded System DesSigh......ccccoeveeeeiiiiiiveee e, 5.

1.3 SystemLevel Design MethodolOgIeS.........cccevvvveiiiiiiieecee e e e e e eeaees 7

1.3.1 Raising Abstraction Levels.............cceeeiiiiiiccceiiiii e 7

1.3.2 Orthogonal Concepts in Systdmevel Design............ccceeeeieieieeeeeeennn. 8

1.3.3 SystemLevel Design FIOWS........ccccooeiiiiiiiiiiiieeee e eeen, 9

1.4 SystemLevel Design LanQUagES..........cceeeverieeiviiiemmrereeeinieiiiaseeeeeaeeeaeneaeens 12

141 SYSIEMOC. ... ittt ettt eerrr et e e e e e e e e e 12

L1.4.2 SPECC... . oot e ettt e e e e 14

1.4.3 SYSIEMVEIIIOQ. . cciii ittt 14

1.5 Software Simulation in Systetrevel DeSign.........occvveveeeiiiiiieeeiie e 15

1.5.1 Instruction Set Software Simulatian..............cccccccvvieerriieiicciiinns 15

1.5.2 Behavioural Software Simulation................ccoov i 17

1.6 Research Objective and ContribUtion...............coovvviiiiccceriiiiicie e 18

1.6.1 Timed Software Simulation.............cooouiiiiiiiiicce e, 19

1.6.2 RTOS MOAEIING....cciiiiiiiiaeiiiii et 19

1.6.3 Interrupt Handling..........oueeeiiiiiiiiiiieiieee e 20

1.6.4 Research Hypothesis and ObjJecCtives...........ceevvviiiiiiccciiiieeieeeenenn. 21

1.6.5 Research Contributions and Methods..........cccccccooiiiiiiannin. 23

1.7 Organisation of the TheSIS.........ocuiiiiiiiiiiiee e 25

Chapter 2 Literature Review: Transaction-Level Modelling and SystemLevel RTOS

SIMUIALION ...t et e e e 27
2.1 TransactioALevel Modelling and Simulation..............ccccoeov v i, 28
2.1.1 Abstraction Levels and Models in TLM.......cccccooviiivieinieenieneninen. 30

2.1.2 Communication Modelling in TLM..........cooooiiiiiiiiiiiiee s 35

2.1.3 Embedded Software Development with TLM.............cccccviviieennn. 39

2.2 The SystemC LanQUAGE........cccccuurrrrirrieeiereissinnensrensneserereeessesssssssnsssssseeens 43
2.2.1 SystemC Language FeatUIBS..........coviiiiiiiiiieeei et eeained 44

2.2.2 SystemC Discrete Event Simulation Kernel............cccooovvivieeeeneen, 46

2.2.3 A SystemC SW/HW System Example..........ccooveeeiiiiimmmiiiieeeennnns 51

2.3 RTOS Modelling and Simulation in Systeevel Design............ccccceveeeeienen. 54
2.3.1 CoarseGrained Timed Abstract RTOS Modelling.............c.ccooueeee. 85

2.3.2 Fine-Grained Timed NativCode RTOS Simulation....................... 58

2.3.3 ISSbased RTOS Simulation.............c.covrirmmrimeneeie e 60
2.3.4 The Proposed RTOS Simulation Model..............cccceiiiceeiinnnnnnn. 61

P S 1011 011 4= 1 U TPPPIN 62
Chapter 3 Mixed Timing Real-Time Embedded Software Modelling and Simulation......... 65
3.1 Issues in Software Timing SiMUlation..............cccovveveericen e 68
3.1.1 AnnotationDependent Time AdVANCE...........cccvvvveeirieemiineeeeennens 68

3.1.2 Fine-Grained Time ANNOLAtION...........coviuiiiiiiriieenieieee e 70

3.1.3 Multiple-Grained Time ANNOtatioN............ccceviiiiiiiiicane e iiiieeeeeens 71

3.1.4 Result Oriented Modelling.............oeeeiiiiiiiiieeeee e 72

3.2 The Mixed Timing ApPProach..........cccccoiiiiiiiiieac e 75
3.2.1 Separating and Mixing TimMING ISSUES.........ccccvriiiiiiiiicaceee e, 76
3.2.2 TLM Software Computation Modelling............ccccceeiiiiiimeniieeneennns 7

3.2.3 Defining Software Models.............cccoviiiiiiieenc e 80
3.2.4 Techniques for Improving Simulation Performance...................... 87
3.2.5 Application Software Performance Estimation..............ccccccovvceeene 90

3.2.6 RTOS Performance EStimation............cccccvveiiiiemnnineeene e Q3

3.2.7 Timing Issues in Software Simulatian............ccccceeevvieemiiieeeeennens 95

3.3 The Live CPU MOGEL......coooiiiiiiiiieiieemc e 99
3.3.1 The HW Part of the SW Processing Element Model..................... 99

3.3.2 The Virtual Registers Model...........ccccoooiiiiiiiecciine e 101
3.3.3 The Interrupt Controller Model..........ccoeeeeeeiiiiiiicccieee s 102
3.3.4 The Live CPU Simulation ENGINe............ccoovviiiiiiiceneeeeniiieeeeeenn 103

3.4 EVvaluation MetriCS......ouvviiiie ittt 109
3.4.1 Simulation Performance MetriC.........cccevveiiiiiiiieeeiiee e 110
3.4.2 Simulation Accuracy MetriCS.......ccoueeeiiiiiiiiiiiiccce s 110

Vi

3.5 Experimental RESUILS..........uuuiiiiiiiiiiiii e 112

3.5.1 Performance Evaluation.............ccccooiuviiieeciiie e 113

3.5.2 Accuracy Evaluation.............cccccciiiiiimeen e eeeeees 119

3.0 SUMMIAIY . ettt e e et e e e e e e e e e e e nnmeanan s 121

Chapter 4 A Generic and Accurate RTOSCentric Software Simulation Model................ 125

4.1 Motivation and ContribBULION...........ceveiiieieiiieeree e reeeee e 126

4.2 Research Context and ASSUMPLIONS........ccccccvvuiiriiieeerinneeereeereeeee e 127

4.3 The Embedded Software Stack Model............ccceviiiiieccrninie e 129

4.4 Common RTOS Concepts and FeatUIBS.........cuuveeveeiiieminiiiieeee e 132
441 AReTailmed Features of .Embe.dded32Applicati

4.4.2 RTOS Kernel StrUCIUIES........uvviiieiiiiiiiit et 134

4.4.3 RTOS Requirements and Modelling Guidance...............ccvveeenee. 136

4.5 The RealTime Embedded Software Simulation Model........................... 150

4.5.1 Simulation Model SHCIU...........cvvvvieiiiiiiieeeeee e 150

4.5.2 Application Software Modelling............coeevvvviiiiiieeee e, 155

4.5.3 RTOS Task/Thread and Process Modelling..........ccccooevveieeeeeennn. 159

4.5.4 Multi-Tasking Management Modelling.............ccovvvvvvivieenreeeeennnns 165

4.5.5 Scheduler Modelling...........uueieiiiiiieiiieeee e 172

4.5.6 Task Synchronisation and Communication Modelling................. 180

4.5.7 Interrupt Handling Modelling............oeveiiiiiiiiieeeie e 188

4.5.8 HAL MOAElNG ..oooiiiiiiiiiiiiiiieie e 194

4.5.9 General Modelling Methods for RTOS Services......cccccevveeeeeeennne 197

4.6 EVAlUALION MEIIICS. . .ueiiiiiiiiiiiiieee ettt 202

4.6.1 Simulation Performance MetriCs............coveiiiiiiiiieenieee e 202

4.6.2 Simulation AcCuracy MEtriCS.......ccuuveiiiiiiiiiiiieert e 203

4.7 Experimental RESUILS.........ooovviiiiii e 204

4.7.1 Multi-Tasking Simulation witlfC/OSII RTOS..........cccceieeiiiinen. 204

4.7.2 Interrupt Simulation with RTX RTOS..........iiiiiiiieeeecceeeie e, 207

4.8 SUMIMAIY ... iiiiiiiiee ittt emmt et e b e e e e et e s aaeee e e et n e e eeetba e e aeerassmnnnnneaes 210

Chapter 5 Extendingthe Software PE Model with TLM Communication Interfaces......... 213

5.1 Integrating OSCI TLM2.0 INterfaces..........ccccvveiiiiiiiiicereie e 215

5.1.1 The OSCI TLM2.0 Standard........ccccccceeeeeiiiiiiiicciiiieeeeees 215

5.1.2 TLM Constructs in the Software PE Model............cccvveiiiiacnennne 216

5.1.3 The TLM Systermn-Chip Model..........ccouveiiiiiiiiiiiceeieeeiiieen 218

5.2 EXPEIMENTS. ..ciiiiiiiiiiiie ittt ettt s e bbb e e e e e eeeae e 221

5.2.1 Performance Study of TLM Models...........cccccoviiiiiieeccnenniineen. 221

5.2.2 DMA-Based I/O SIimulation............cccueeeeeeiiiimmmiiiiiee e 223

5.3 SUMIMAIY . ittt ettt e e e e et e e e e e e e e e e e s e s rmmme e e e e s 226

Vii

Chapter 6 Conclusions and FUtUre WOrKcoooiiiiiiiiee e 227

6.1
6.2

6.3

Bibliography

Summary of ContribUtiONS..........c.coiiiiiiiieiie e 227
CONCIUSIONS......eeeee ittt sme e e e e enme s 229
6.2.1 The Mixed Timing APProach............ccccoeviiiiiiiinee e 229
6.2.2 The Live CPU MOUEL........cccuviiiiiiiiiiiiieeeieiee e 230
6.2.3 The RTOSCentric RealTime Software Simulation Model............ 230
6.2.4 Extending Software Models for TLM Communication.................. 231
FULUIE WOTK ..ot e 232
6.3.1 Improving Timing Modelling Techniques............cccccoviiiiieecneenen. 232
6.3.2 Enriching RTOS Model Features...........cccuvvvieiiiiicemniiieee e 232
6.3.3 Multi-Processor RTOS Modelling..........cooocviiieiiiiiemnniiiieeeeee 233
.. 235

viii

List of Tables

Table 21. Modelling and simulation speed compariSoNS [3].......c.ccuuvvrrrerereeerinveinrnenneeeneen. 29
Table 22. SystemC code of a HW MOdUIE...........eeiiiiiiiiiii e 51
Table 23. SystemC code of a SW PE MOdULe.............cooiiiiiieee e eceeee s 52
Table 24. SystemC code of the main fuNCON............coooiiiiiiiice e 53
Table 31. Abstract software models and coagsained time annotations..................cc.eeeeeee. 83
Table 32. Nativecode software models and figeained time annotations..............c..ccocevee. 85
Table 33. Reducing number of time annotations............ccoovvvviiieeee e 38
Table 34. Reducing number of time advance POINIS.............eceiiiiivceciiiiie e, 89
Table 35. Basic RTOS actions and their relative execution times.[2]..........cccccoeeeevveeennn. 93
Table 36. RTX RTOS timing specification [L]...........cceiiiiiiieiiieeeie e 94
Table 37. IC/OS-I RTOS timing SPeCifiCatioNS.........ccceiiiiiiiiieiiieee i reeee s 94
Table 38. VIrtual REGISIEIScoiiiiiiiie ettt eeeeee s 102
Table 39. Sensitivity list of the Live CPU Simulation Engine...........cccccooviiieeniiieeeeneee 104
Table 310. Descriptions of experimental CASESccouiiiiiiiiiiiece e 114
Table 311. Timing accuracy of nativeode Models...............ouueiiiiiiiccciiiiii e 119
Table 312. Comparison of theoretical and measured interrupt latencies............ccccoeevuee. 121
Table 41. Multi-tasking models in some RTOS standards and products................cccccee... 141
Table 42. Scheduling policies in some standards and RTQSS........cccccoeviiiiiecceiiiiiiieeeeen, 144
Table 43. Priority levels in some standards and RTOSS.........ccccvvvviiiimmerinnieiiiieeeeeee 145
Table 44. Resource access protocols in some stand@adRTOSS............ccoeeccvvvieiieennnenn. 147
Table 45. The abstract periodic task MOdel..........ooooiiiiiiiiiicc e, 156
Table 46. The nativecode task MOdEl.............oevviiiiiiiiiicee e, 158
Table47. Two task exampl es HIRTGOSh..e.a.d.X...RIT.OBH9
Table 48. Task (Thread) Control BIOCK..............uuiiiiiiii e 161
Table 49. Process CONtrol BIOCK..........ccouuiiiiiiiiii e 164
Table 410. Task services in the RTOS model and some RTOSSoocvvieieiricceeeeniineen. 170
Table 411. Implementation Of taSK SEIVICES.......cccuiiiiiiiiiiie e 171
Table 412. Event control block (ECB) and management primiitves............cccveeeeveceeeennns 181
Table 413. Example code afiait andsignalprimitives...........cccoovvveeieeiiiemnniiiiiee e 182
Table 414. Semaphore services in the RTOS model and some RTQSS.........ccccceveveeunnee 183
Table 415 POSIXlike semaphore APIs in the RTOS model.........ccccoooviiiiiiicccn, 184

and

eC/ O

file:///D:/Kernel/Documents/thesis/final/combined%20-%202nd.docx%23_Toc273083834
file:///D:/Kernel/Documents/thesis/final/combined%20-%202nd.docx%23_Toc273083835
file:///D:/Kernel/Documents/thesis/final/combined%20-%202nd.docx%23_Toc273083836
file:///D:/Kernel/Documents/thesis/final/combined%20-%202nd.docx%23_Toc273083837
file:///D:/Kernel/Documents/thesis/final/combined%20-%202nd.docx%23_Toc273083838
file:///D:/Kernel/Documents/thesis/final/combined%20-%202nd.docx%23_Toc273083839
file:///D:/Kernel/Documents/thesis/final/combined%20-%202nd.docx%23_Toc273083840
file:///D:/Kernel/Documents/thesis/final/combined%20-%202nd.docx%23_Toc273083841
file:///D:/Kernel/Documents/thesis/final/combined%20-%202nd.docx%23_Toc273083842
file:///D:/Kernel/Documents/thesis/final/combined%20-%202nd.docx%23_Toc273083843
file:///D:/Kernel/Documents/thesis/final/combined%20-%202nd.docx%23_Toc273083844
file:///D:/Kernel/Documents/thesis/final/combined%20-%202nd.docx%23_Toc273083845
file:///D:/Kernel/Documents/thesis/final/combined%20-%202nd.docx%23_Toc273083846
file:///D:/Kernel/Documents/thesis/final/combined%20-%202nd.docx%23_Toc273083847
file:///D:/Kernel/Documents/thesis/final/combined%20-%202nd.docx%23_Toc273083848
file:///D:/Kernel/Documents/thesis/final/combined%20-%202nd.docx%23_Toc273083849
file:///D:/Kernel/Documents/thesis/final/combined%20-%202nd.docx%23_Toc273083850
file:///D:/Kernel/Documents/thesis/final/combined%20-%202nd.docx%23_Toc273083851
file:///D:/Kernel/Documents/thesis/final/combined%20-%202nd.docx%23_Toc273083852
file:///D:/Kernel/Documents/thesis/final/combined%20-%202nd.docx%23_Toc273083853
file:///D:/Kernel/Documents/thesis/final/combined%20-%202nd.docx%23_Toc273083854
file:///D:/Kernel/Documents/thesis/final/combined%20-%202nd.docx%23_Toc273083855
file:///D:/Kernel/Documents/thesis/final/combined%20-%202nd.docx%23_Toc273083856
file:///D:/Kernel/Documents/thesis/final/combined%20-%202nd.docx%23_Toc273083857
file:///D:/Kernel/Documents/thesis/final/combined%20-%202nd.docx%23_Toc273083858
file:///D:/Kernel/Documents/thesis/final/combined%20-%202nd.docx%23_Toc273083859
file:///D:/Kernel/Documents/thesis/final/combined%20-%202nd.docx%23_Toc273083860
file:///D:/Kernel/Documents/thesis/final/combined%20-%202nd.docx%23_Toc273083861
file:///D:/Kernel/Documents/thesis/final/combined%20-%202nd.docx%23_Toc273083862
file:///D:/Kernel/Documents/thesis/final/combined%20-%202nd.docx%23_Toc273083863
file:///D:/Kernel/Documents/thesis/final/combined%20-%202nd.docx%23_Toc273083864

Table 416. SystemC implementation code of gan_wait{ function..............ccccceeevvivieennen. 184

Table 417. Mutex services in the RTOS mo@dgld some RTOSS.......cccevvviiiiieeeviceen e, 186
Table 418 POSIXlike mutex APIS in thdRTOS mModel..........ccuvevviiiiiiiiiieeciee e 186
Table 419. Message queue services in thedSTmodel and some RTOSS......ccccvvveeeeennn. 188
Table 420. POSIXlike messagewgue APIs in the RTOS model.........cccccvvvvvevevieeeccinnnnnnns 188
Table 421. Time advance medds for RTOS SEIrVICES.......ccooeviiiiiiiiiiiiceee e 201
Table 422. Accuracy loss of thRTOScentric simulation compared with ISS.................... 207
Table 423. Simulation Speed COMPANSOMN........cuiiiiiiiiiiiie et 208
Table 424. Interrupt handtig in the RTOSentric SImulator...........cc.vevveeiiiiieesciicee e, 209
Table 425. TiMiNG ACOIrACY I0SSESuuuuuiiiiiiiiiiiiii e ceeeirrrrerrr e e e re e e e e e e s rsarrerreaaaaaaaaeaaeaaann 210
Table 51. TLM implementation in the softve PE model.........ccccccvvveeiiiiiicccie, 217
Table 52. LT and AT targetS....coooiieiiiiiiiie s e e e e et mmme e e e e e e e e e e e aeeeeeas 219
Table 53. Implementation of the DMA CONtrOlEr...........coovviiiiiiiiiecer e eeee 220

file:///D:/Kernel/Documents/thesis/final/combined%20-%202nd.docx%23_Toc273083865
file:///D:/Kernel/Documents/thesis/final/combined%20-%202nd.docx%23_Toc273083866
file:///D:/Kernel/Documents/thesis/final/combined%20-%202nd.docx%23_Toc273083867
file:///D:/Kernel/Documents/thesis/final/combined%20-%202nd.docx%23_Toc273083868
file:///D:/Kernel/Documents/thesis/final/combined%20-%202nd.docx%23_Toc273083869
file:///D:/Kernel/Documents/thesis/final/combined%20-%202nd.docx%23_Toc273083870
file:///D:/Kernel/Documents/thesis/final/combined%20-%202nd.docx%23_Toc273083871
file:///D:/Kernel/Documents/thesis/final/combined%20-%202nd.docx%23_Toc273083872
file:///D:/Kernel/Documents/thesis/final/combined%20-%202nd.docx%23_Toc273083873
file:///D:/Kernel/Documents/thesis/final/combined%20-%202nd.docx%23_Toc273083874
file:///D:/Kernel/Documents/thesis/final/combined%20-%202nd.docx%23_Toc273083875
file:///D:/Kernel/Documents/thesis/final/combined%20-%202nd.docx%23_Toc273083876
file:///D:/Kernel/Documents/thesis/final/combined%20-%202nd.docx%23_Toc273083877

List of Figures

Figure 1. Typical layers of an embedded system.............coooioiiieee e 2
Figure 2. Embedded software size increases in industry (reprint [5].J2Q])......cccvveveerirrienans 5
Figure £3. The hardwardirst deSign ProCESS......ccceeiiiiiiii i i e e e e 5
Figure 4. Gaps between the design complexity and productivity (reprint.[4]).................... 6.
Figure 5. A systerdevel design fIOW..........coooiiiiiiie e 10
Figure 16. Interpretive instruction set software simulatian.............ccccoocvimeeiiieie e 16
Figure 7. The SLDL-based behavioural software simulatian...................ccccceeeeiiiieeeeennnnns 18
Figure 21. Various TLM abstraction levels (partially based on [7].).......cccoevvviviiiiiccccnnnnnn. 31
Figure 22. An AMBA TLM model example............iiiiiiiiiiiiiee e 36
Figure 23. TLM Interface Method Call Communication...............cceevevivieeee e e, 37
Figure 24. TLM technique for modelling SW/HW interfaces..........ccocceeeiiiiieenciicie e, 40
Figure 25. Software generation using TLM modelS.............ccoiiiiiiineniinieinie e 41
Figure 26. Software processing element modelling in TLM.........ooooiiiiiiiiccn i 42
Figure 27. SystemC [anguage SITUCLULE..........uueiiieiiiiie ettt eeee e e 44
Figure 28. SystemC kernel Working ProCeaUIE.cceeeviiiiiiiieeer e e erree e a7
Figure 29. Block diagram of a SystemC eXample............cccovviiiiiiieeeeeieieeecie e eeeee 51
Figure 210. Norpreemptible @XECULION.coiiiiiiiiiicere e e e e eeee e e e e e 53
Figure 211. Three types of RTOS simulation models..............oiiiiiceciiiiiiii e 55
Figure 31. Mixed timing software modelling and Simulation................ccccceiieceeeiiiiiieeeeens 67
Figure 32. Annotationdependent time advance methad..............cccco e, 69
Figure 33. Finegrained timing annotation..............ccceveeiiiieeniniiiiee e esreeee e d L
Figure 34. The Result Oriented Modelling approach............ccceevieiiccniiiiiiie e, 73
Figure 35. Successive corrective wdidr-delay statementS...........ccceeeeieiieevcceeiie e, 75
Figure 36. Related SW modelling abstraction level definitions (reprint [6].[9])................... 78
Figure 37. OSCI TLM-2.0 models and proposed TLM software models................ccccevaeeee. 79
Figure 38. Execution trace of an abstract task software model..............cccuveeeciiieniiinnnn. 84
Figure 39. Unmatched real execution and simulation traces..........cccccvevvvceniiiiiieee e 86
Figure31 0. A Awhi | e.d..l.oo0p...ex.amp.l. ... 87
Figure 311. WVision software pProfileh...........cooeiiiiiiiiiiec e 92
Figure 312. The variablestep time advance methad................ccccoiiiieciiiii e 96
Figure 313. The fixedstep time advance Method...........cccooeiiiiiiic e, 97

Xi

file:///D:/Kernel/Documents/thesis/final/combined%20-%202nd.docx%23_Toc273083878
file:///D:/Kernel/Documents/thesis/final/combined%20-%202nd.docx%23_Toc273083879
file:///D:/Kernel/Documents/thesis/final/combined%20-%202nd.docx%23_Toc273083880
file:///D:/Kernel/Documents/thesis/final/combined%20-%202nd.docx%23_Toc273083881
file:///D:/Kernel/Documents/thesis/final/combined%20-%202nd.docx%23_Toc273083882
file:///D:/Kernel/Documents/thesis/final/combined%20-%202nd.docx%23_Toc273083883
file:///D:/Kernel/Documents/thesis/final/combined%20-%202nd.docx%23_Toc273083884
file:///D:/Kernel/Documents/thesis/final/combined%20-%202nd.docx%23_Toc273083885
file:///D:/Kernel/Documents/thesis/final/combined%20-%202nd.docx%23_Toc273083886
file:///D:/Kernel/Documents/thesis/final/combined%20-%202nd.docx%23_Toc273083887
file:///D:/Kernel/Documents/thesis/final/combined%20-%202nd.docx%23_Toc273083888
file:///D:/Kernel/Documents/thesis/final/combined%20-%202nd.docx%23_Toc273083889
file:///D:/Kernel/Documents/thesis/final/combined%20-%202nd.docx%23_Toc273083890
file:///D:/Kernel/Documents/thesis/final/combined%20-%202nd.docx%23_Toc273083891
file:///D:/Kernel/Documents/thesis/final/combined%20-%202nd.docx%23_Toc273083892
file:///D:/Kernel/Documents/thesis/final/combined%20-%202nd.docx%23_Toc273083893
file:///D:/Kernel/Documents/thesis/final/combined%20-%202nd.docx%23_Toc273083894
file:///D:/Kernel/Documents/thesis/final/combined%20-%202nd.docx%23_Toc273083895
file:///D:/Kernel/Documents/thesis/final/combined%20-%202nd.docx%23_Toc273083896
file:///D:/Kernel/Documents/thesis/final/combined%20-%202nd.docx%23_Toc273083897
file:///D:/Kernel/Documents/thesis/final/combined%20-%202nd.docx%23_Toc273083898
file:///D:/Kernel/Documents/thesis/final/combined%20-%202nd.docx%23_Toc273083899
file:///D:/Kernel/Documents/thesis/final/combined%20-%202nd.docx%23_Toc273083900
file:///D:/Kernel/Documents/thesis/final/combined%20-%202nd.docx%23_Toc273083901
file:///D:/Kernel/Documents/thesis/final/combined%20-%202nd.docx%23_Toc273083902
file:///D:/Kernel/Documents/thesis/final/combined%20-%202nd.docx%23_Toc273083903
file:///D:/Kernel/Documents/thesis/final/combined%20-%202nd.docx%23_Toc273083904
file:///D:/Kernel/Documents/thesis/final/combined%20-%202nd.docx%23_Toc273083905
file:///D:/Kernel/Documents/thesis/final/combined%20-%202nd.docx%23_Toc273083906
file:///D:/Kernel/Documents/thesis/final/combined%20-%202nd.docx%23_Toc273083907
file:///D:/Kernel/Documents/thesis/final/combined%20-%202nd.docx%23_Toc273083908

Figure 314. Hardware part of the software PE madel..............cccooeiiiiieeee 100

Figure 315. Interrupt Controller Model.............ooo oo e 103
Figure 316. Real CPU execution and Live CPU simulation............ccccuvvveeeevrccnnnvnnnnennnn. 104
Figure 317. Operations of the Live CPU Simulation ENgiNe.......cccccccvvevieiiiccceeeeeeeeeeeee, 106
Figure 318. Simulation time reSUILS............uuuiiiiiiiiiiiieeere e eeerrr e e e e e 115
Figure 319. Simulation time COMPAIISON..........uuiiiiiiiiiii ettt 117
Figure 320. Comparison of varying fixestep lengths...........cccccoiiiiiiiece e, 118
Figure 321. Interrupt handling @XPeriment.............eeeeii e 120
Figure 41. Software part of the software PE model............ccoooiiiiiieen e, 127
Figure 42. Embedded software stack and its abstract model.............cccvvvveeevicccniiinvnennnnn. 130
Figure 43. Timing parameters of a refine task...............oooeeeiiiieeee e 133
Figure 44. Block diagrams of two RTOS kernel approaches...........ccccevvvvvieemreveeeiinvnnnnnnn. 135
Figure 45. Two definitions of interrupt latency and task switching latency....................... 138
Figure 46. The classical thregtate task state machine..............cccoociiieeeii 140
Figure 47. Structure of the software PE Model............ccoviiiiiiemniiiiee e 150
Figure 48. SystemC implementation of the software PE simufatnodel...............ccccceeene 154
Figure 49. Defining @ RTOS task MOdel.........ccuuiiiiiiiiiieei e 160
Figure 410. INItIaliSING TCBS.....cciiiiiieieiiiiie s ceeesr e s e e e e e e e et rnnr e e ee e e s e e e e e e e anennas 163
Figure 411. Task state machines: reprint A [8] [11], B [12]....ccovvrrrririiiiiiiieeciei e, 166
Figure 412. The proposed fotgtate extensible task state machine..............ccccceovveeeennnnn. 167
Figure 413. A priority-descending doubly linked task qUEUE..........ccceeeeeeeiivieeee e, 169
Figure 414. Priority setting in the RTOS task model............ccccoviimmniiiiieice e 173
Figure 415. FPS scheduler wWorking flaW.............cooiiiiiiiieee e 175
Figure 416. Tick scheduling MOdel..........oouiiiiiiiiiie e 177
Figure 417 Calculating absolute deadlines of tasks in simulation.................cccccccvvvvvvnnee. 179
Figure 418 Message queue coNtrol BIOCK. ..o 187
Figure 419 RTOSassisted (nowectored) interrupt handling model.................ocoevvvieeee. 191
Figure 420. Vectorbased interrupt handling model.............ccooooiiiiiieeeiii e 193
Figure42 1. TI1 MA | aborator y.0s..HAL...model.l.i.ngl9%vor k
Figure 422. Context SWItCH SEIVICE.c.ciiiiiiiiiie i iieeei et 196
Figure 423. Unmatched RTOS service execution and simulation traces.............ccceeeueee. 199
Figure 424. Evaluating the timing accuracy by comparing traces..........occvvveeeiicceeeiiennen. 203
Figure 425. EXPEriMENT SELUD.......ccciiiiiiiiiiiiii it e s e s e e e e e e e e e e e ees e emeeeeeaesenra s e e e e eaeaananas 204
Figure 426. Simulation Speed COMPANSON.........cciiiiiiiiiiii e 205
Figure 427. Simulation output COMPAIISAN........ccoeiiiiiiiiiiie e 206
Figure 428. Simulation timing accuracy COMPAriSON.ccuuuiaiiiiiieariiieeee e e 206
Figure 429. Interrupt handling @XPeriment.............eeeeiiiiiiieeiiiee e 208
Figure 430. RTX interrupt handling in the ISS..........cooiiii e 209
Figure 431. Simulation timing accuracy COMPArISON.........c.uuueieeriiiimeeiiieieeesariiieeeeeeesnies 210

Xii

file:///D:/Kernel/Documents/thesis/final/combined%20-%202nd.docx%23_Toc273083909
file:///D:/Kernel/Documents/thesis/final/combined%20-%202nd.docx%23_Toc273083910
file:///D:/Kernel/Documents/thesis/final/combined%20-%202nd.docx%23_Toc273083911
file:///D:/Kernel/Documents/thesis/final/combined%20-%202nd.docx%23_Toc273083912
file:///D:/Kernel/Documents/thesis/final/combined%20-%202nd.docx%23_Toc273083913
file:///D:/Kernel/Documents/thesis/final/combined%20-%202nd.docx%23_Toc273083914
file:///D:/Kernel/Documents/thesis/final/combined%20-%202nd.docx%23_Toc273083915
file:///D:/Kernel/Documents/thesis/final/combined%20-%202nd.docx%23_Toc273083916
file:///D:/Kernel/Documents/thesis/final/combined%20-%202nd.docx%23_Toc273083917
file:///D:/Kernel/Documents/thesis/final/combined%20-%202nd.docx%23_Toc273083918
file:///D:/Kernel/Documents/thesis/final/combined%20-%202nd.docx%23_Toc273083919
file:///D:/Kernel/Documents/thesis/final/combined%20-%202nd.docx%23_Toc273083920
file:///D:/Kernel/Documents/thesis/final/combined%20-%202nd.docx%23_Toc273083921
file:///D:/Kernel/Documents/thesis/final/combined%20-%202nd.docx%23_Toc273083922
file:///D:/Kernel/Documents/thesis/final/combined%20-%202nd.docx%23_Toc273083923
file:///D:/Kernel/Documents/thesis/final/combined%20-%202nd.docx%23_Toc273083924
file:///D:/Kernel/Documents/thesis/final/combined%20-%202nd.docx%23_Toc273083925
file:///D:/Kernel/Documents/thesis/final/combined%20-%202nd.docx%23_Toc273083926
file:///D:/Kernel/Documents/thesis/final/combined%20-%202nd.docx%23_Toc273083927
file:///D:/Kernel/Documents/thesis/final/combined%20-%202nd.docx%23_Toc273083928
file:///D:/Kernel/Documents/thesis/final/combined%20-%202nd.docx%23_Toc273083929
file:///D:/Kernel/Documents/thesis/final/combined%20-%202nd.docx%23_Toc273083930
file:///D:/Kernel/Documents/thesis/final/combined%20-%202nd.docx%23_Toc273083931
file:///D:/Kernel/Documents/thesis/final/combined%20-%202nd.docx%23_Toc273083932
file:///D:/Kernel/Documents/thesis/final/combined%20-%202nd.docx%23_Toc273083933
file:///D:/Kernel/Documents/thesis/final/combined%20-%202nd.docx%23_Toc273083934
file:///D:/Kernel/Documents/thesis/final/combined%20-%202nd.docx%23_Toc273083935
file:///D:/Kernel/Documents/thesis/final/combined%20-%202nd.docx%23_Toc273083936
file:///D:/Kernel/Documents/thesis/final/combined%20-%202nd.docx%23_Toc273083937
file:///D:/Kernel/Documents/thesis/final/combined%20-%202nd.docx%23_Toc273083938
file:///D:/Kernel/Documents/thesis/final/combined%20-%202nd.docx%23_Toc273083939
file:///D:/Kernel/Documents/thesis/final/combined%20-%202nd.docx%23_Toc273083940
file:///D:/Kernel/Documents/thesis/final/combined%20-%202nd.docx%23_Toc273083941
file:///D:/Kernel/Documents/thesis/final/combined%20-%202nd.docx%23_Toc273083942
file:///D:/Kernel/Documents/thesis/final/combined%20-%202nd.docx%23_Toc273083943
file:///D:/Kernel/Documents/thesis/final/combined%20-%202nd.docx%23_Toc273083944
file:///D:/Kernel/Documents/thesis/final/combined%20-%202nd.docx%23_Toc273083945
file:///D:/Kernel/Documents/thesis/final/combined%20-%202nd.docx%23_Toc273083946
file:///D:/Kernel/Documents/thesis/final/combined%20-%202nd.docx%23_Toc273083947

Figure 51.
Figure 52.
Figure 53.
Figure 54.
Figure 55.
Figure 56.
Figure 57.

TLM communication interface of the software PE madel..................cooce 213
OSCI TLM2.0 €SSENLALS.......eveiiieeeiiiiiiie e 216
Combining software PE model with TLM interfaces and SoC maodels............ 218
The DMA controller MOdel.........ooouiiiiiiiiiieee e 220
Simulation performance rESUILS...........uuuuiriieiieeirrerieirieeee e e e eeeerrrerreeeeees 223
The simulation log of the DMA eXperiment..........ccccouiviiiieeneeee s 225
SIMUIALION MEIINE.....eeeiiiiiiiii e 226

Xii

file:///D:/Kernel/Documents/thesis/final/combined%20-%202nd.docx%23_Toc273083948
file:///D:/Kernel/Documents/thesis/final/combined%20-%202nd.docx%23_Toc273083949
file:///D:/Kernel/Documents/thesis/final/combined%20-%202nd.docx%23_Toc273083950
file:///D:/Kernel/Documents/thesis/final/combined%20-%202nd.docx%23_Toc273083951
file:///D:/Kernel/Documents/thesis/final/combined%20-%202nd.docx%23_Toc273083952
file:///D:/Kernel/Documents/thesis/final/combined%20-%202nd.docx%23_Toc273083953
file:///D:/Kernel/Documents/thesis/final/combined%20-%202nd.docx%23_Toc273083954

List of Acronyms

AHB Advanced Highperformance Bus

AMBA Advanced Microcontroller Bus Architecture
APB Advanced Peripheral Bus

API Application Program Interface

ARM Advanced RISC Machine

ASIC Application-Specific Integrated Circuit
AT ApproximatelyTimed

BCET BestCase Execution Time

BIOS Basic I/0 System

BSP Board Support Package

CA Cycle-Accurate

CP Communicating Process
CP+T Communicating Process with Time
CPU Central Processing Unit

DMA Direct Memory Access

DPS DynamicPriority Scheduling
DSE DesignSpaceExploration

DSP Digital Signal Processor

ECB Event Control Block

EDA Electronic Design Automation
EDF Earliest Deadline First

ESL Electronic System Level

FIFO FirstIn-FirstOut
FPGA Field-Programmable Gate Array
FPS Fixed-Priority Scheduling

GPP Generalpurpose Programmable Processor

XV

ROM

Hardware

Hardware Abstraction Layer
Hardware Description Language
Hardwaredependent Software
Input/Output

Integrated Circuit

Interface Method Call
IntellectualProperty
InterProcessCommunication
Immediate Priority Ceiling Protocol
Interrupt Request

Instruction Set Architecture
Instruction Set Compiled Simulation
Interrupt Service Routine
Instruction Set Simulation
International Technology Roadmap for Semiconductors
LooselyTimed

Memory Management Unit
Non-Recurring Engineering
Non-RealTime

Open Core Protocol International Partnership
Open System(nitiative

Operating System

Printed Circuit Board

Priority Ceiling Protocol

Processing Element

Priority Inheritance Protocol
Portable Operating System Interface
Programmers View

Programmers View Timed

Rate Monotonic

ReadOnly Memory

XVi

ROM Result Oriented Modelling

RR RoundRobin

RT-CORBA RealTime Common Object Request Broker Architecture
RTES RealTime EmbeddedSystem

RTL RegistefTransfer Level

RTOS RealTime Operating System

RTS RealTime System

RTSJ RealTime Specification for Java

RTX Real Time eXecutive

SHaRK Soft Hard Reatime Kernel

SW Software

SLDL SystemLevel Design Language
SoC System=on-Chip

TCB Task Control Block

TLM TransactiorLevel Modelling
UML Unified Modelling Language

VHDL Very-high-speedntegrated circuiHardwareDescriptionLanguage
WCET WorstCase Execution Time
MITRON micro Industrial The Reaime Operating system Nucleus

XVil

Acknowledgements

| am most grateful tany supervisor Dr. Neil Audsley for hisorstantand
valuablesupportandguidanceduring myPhD study inthe University of York

| would also like to thank my assessdtrofessor Andy Wellinggnd Dr.
Leandro Soares Indrusiddér theiradviceandhelpin myresearch

| give all my loveto my parens Yu Shiliang and Song Yipu for thegndless
love to meThis PhD thesis ialsomy sinceregift to them.

I am full of gratitude toMs. Zhang JingShe gavenvaluablespiritual sypport
to meduring the bitterswed®hDyears.

| would like to expres mythanksto all colleaguesand friendsin RealTime
Systems Research Graup particular, | thank Dr. Chang YanBr. Shi Zheng
Dr. Gao RuiDr. Zhang Fengxiand)r. Kim Min Seong Lin Shiyao, and MrsSue
Helliwell for their helpto me and experience shared witle | also thank Qian
Jun, Shen Jie, Yao Yinin@r. Liu Yang, and Dr. Chen Jingxin for our fridgghip

andcheeful livesin UK.

XiX

Declaration

The research work presented in this thesss independently and originally
undetaken by me between October 2005 dnde2010 with advicdrom my su-
pervisor Dr. Neil AudsleyThree conference papédrave beempublished

K. Yu and N. Audsley, "A Mixed Timing Systetevel Embedded Software
Modelling and Simulation Approach,” #th International Conference on Entbe
ded Software and Systems 2009, (ICESS '09), 2039.This paper received the
best paper award the conference

K. Yu and N. Audsley, "A Generic and Accurate RTGhtric Embedded
System Modelling and Simulation Framework," 5th UK Embedded Forum
2009 (UKEF '09), 200914]

K. Yu and N.Audsley, '‘Combining Behavioural Redime Software Mode
ling with the OSCI TLM2.0 Communication Standgfdn 7th International Ca-
ference on Efmedded Software and Systems 201CESS 10), 2010. [15]

Certain chapters dhis thesisare based oabovepapers as follows:
Chapter 3 is based ¢b3] and[15].

Chapter 4 is based ¢i4].

Chapter 5 is based ¢h5].

XXi

Chapter 1

Introduction

1.1 General Background

No matter whether or noby are aware of the networked printer in your office,
the electronic stability program in your car or the portable media player in the
palm of your hand, over the past decades embedded systems havedresinape
everyday work, life angblay. Embedded systems are spegiaipose computer
based information processing systepesformng some predefined tasksand of-
ten built into enclosing product$16]. They arewidely integrated into various
product categoriessuch as transportation vehicles, telecommunication devices,
industrial equipment, home appliances, etc. It is estimated that embedded systems
consume more than 99% of the manufactured processors in the [vojldBe-
sides these invisible embedded systems, consumer electronics (e.g., handheld
computers, mobile internet devices, and smarinphpcan be also seen as -self
contained embedded $gms in terms of their similarandware(HW) components.
Embedded systems amsually designed with resourcenstrained hardware and
low-extensible softwar¢SW), and are optimised to work with specifiequire-
ments for dedicated applications. These characteristics make embedded systems
distinct from generapurpose computer systenfier instancepersonal computers
work stations and servers

A special category of embedded systems is classified agahttnme embe-
ded system, which can be distinguished by its requirement to respond to external
environment in real time. Bt er m-tirmeal | eads oulmeattent.i
Systems (RTSs), which usually occur in company with embedded systems. There

are \arious interpretations of whatarg¢ali me system i s, rhowever

actions wi

world environment. These events are then processed inside the RTS andi-appropr
ate actions finally rgpond. Timing requirementsieanthat the coresponding
output must be generated frothe input within a finite and specified timing
bound, giving the deterministic timing behaviour. The correctness of a BTS d

pends not only on the computation result, dab @n the time whethe result is

t h

two essential characteristi€s7]. A RTS receives physical events from the teal

t he

produce-tli méiRedbes

ti meo. Nei

of embedded systems have reale requirements, and masiattime systems are
embedded in product#t their intersectiorare RealTime EmbeddedSystens
(RTES) The Operating System (OS) used IRBESis usually a Realime Op-
erating System (RTOS), which supports the constructioRT#s[16]. RTESs

t her a

real worl do

not me an ias

too | ate output

and RTOSs arthe general context for this thesis

From theperspectiveof systemdesign, an embedded system is constructed
from various hardware and softwacemponents. As illustrated iRigure 1-1,
they can beclassifiedinto four reference layergl8]. The architecturef an en-
bedded system represents an abstraanodel including all embedded cooip
nents. It introduces relationskifpetweenabstract hardware and software-el

ments without implementation details.

All embedded systems have a hardware layer, which contains electromics co

ponents and circuits locatea a Printed Circuit Board (PCB) or on an Integrated

task, task, tasks
Distributed comp.|| ~ Servers |
| RTOS |
| Device Drivers || Frmware |

| /O || GPP || ASC || Qock |
L L L L

| Merlnory I Controllers |

Application software layer

Middleware layer

} System software layer

Hardware layer

Figurel-1. Typical layers of an embedded system

ng

as

too

r

€

pos

Circuit (IC). Although some timeritical or powerhungry portions of a system

can be implemented with customised applicaspacifc hardware (e.g., Appl&
tion-Specific Integrated Circuits (ASICs), idfd-Programmable Gate Arrays
(FPGAS)), most embedded systems mainly function through software running on
embedded Generaurpose Programmable Processors (GPPs) (e.g., Centcal Pro
essing Units (CPU9)r Digital Signal Processors (DSPs)). With the develepim

of the microelectronics industry, SystemsChips (SoCs) have emerged as the
stateof-the-art implementation of embedded systems. A SoC is an integrated ci
cuit combining multiple GPPs, customised cores, memories, peripheral interfaces,
as well as comunication fabric, albn a single silicon chip, which providesisu
stantial computation capability for handling complex concurrentweald events.
Comparingthe different embedded hardware solutions as indicated alappé;
cationspecific hardware offies high computing performance and low powen<o
sumption at the expense of limited programming flexibility, whii®Psoffer
higher design flexibilityand lower Non-Recurring Engineering (NRE) castbut

with a relatively low computing capabilif{6].

In general, embedded software cargbeupednto threelayers: the application
software layerthe middleware layegnd the system software lay@&he applia-
tion functions of an embedded systeonsistof atask or asetof tasks.

Middleware is an optional layemder applicatiorsoftwarebut on top of sg-
tem software. Middleware provides general services for applications, such as
flexible schedulind19], distribued computinge.g., RealTime Common Object
Request Broker Architecture (RTORBA) [20]), andJava application envime
ment (e.g., Reallime Specification for Java (RTSJ21]). Using middleware
technologies hastrengths to reduce complexity of applications, simptifigra-
tion of applicatiors, and ensure correct implemetida of reusabldunctions.

The system software layer is sandwiched between tlppel software and
bottomlayer hardware. It usually contains device drivemmot firmware and
RTOS which closely interact with the hardware platfoithis kind of softwae is
also called Hardwardependent Software (Hd322]. Device drivers,e.g., a
Board Support Package (BSP) for a given platform, are tegance between any

software and underlying hardware. They are the software libraries that take charge

of initialising hardware and managing direct access to hardware for higher layers
of software[18]. Boot firmware, e.g., the &ic I/O System (BIOS) carries out

the initial selftest process foan embedded system and initiates REOS It is
usually stored in the Red&dnly Memory (ROM).

Regarding the RTOS} iis unnecessary and cesefficient to introduce a
RTOS in some small embedded devices, where an infinite loop program with the
polling policy for Input/Output (I/O) events may work wgi3]. However, in o
der to satisfithe complex functional requirements and timing constraintsdior
currentreaktime software executionthe RTOS has become an essential @@mp
nent in mostembedded systemslere, concurrenteattime software execution
refers to situations thatunder thecontrol of a RTOSmultiple tasks either share a
uniprocessor in interleaving steps or execute on multiple processors in parallel. A
RTOS is needed tgorovide convenient interfaseand comprehensive control
mechanisms to let applicatientilise and shardardware and software resources
effectively and reliably. Thé&ernelis the core element of a RTOS and contains
the most essential functions. most kernelsthereis the notion of task priority,
dynamicpre-emptivescheduling services, synchronisatiomptives, timing se-
vices, and interrupt handling servicisl] [25] [26]. Other OS featuresuch as
memory management, file systems, device 1/O etc. are often optional in a RTOS
in order to maintain its compactness and scalability. As a central part of the real
time embedded software stack, a RDOS tming behaviouralso needs to be
predictdble and computabldesigneranust know some important RTOS timing
properties,for example,the context switch timeyWorstCase Execution Times
(WCETSs) of system callghe interrupt handling latencgndthe maximum inte-
rupts disabled timeetc. Hence,they cananalyse and evaluate the rtiate pe-
formance of the whole system.

The research in this thesis will investigate how to model RkK&8el func-
tional and timing behavioursn order to support higkevel realtime software

simulationin a uniprocess system.

1.2 Challenges inEmbeddedSystemDesign

In recent years, the complexity of embeddsoftware has increased rapidly.
According to the International Technology Roadmap for Semiconductors (ITRS)
2007 Edition(ITRS 2007) embedded softwar ethedsgsi gn ha
critical challenge of SoC productiviyf4]. For many products of consumer@le
tronics, the amount of software per product is thoughteaouble every two
years[27]. The GeneralMotor Information Systems CTO predicts that therave
age ar, with one million lines of software codes in 1990, will run on one hundred
million lines by 2010[28]. Figure 1-2 shows growing trends &dmbeddedsoft-
ware complexity in motor and mobile phone indigstr

Program Size Software Sizes of Cellular Phones
* + Content

A Internat, TV, Gaming,

= Mulimedia Online, Distribution

Audio @ Application
¢ @ Modem

«+Video
Data Services

"+ MMS, Imaging

Veics, SMS i H
T T
2000

1996 2004 2008
Year
Automobile software size increase Mobile phone software size increase
(Toyota) (Infineon)

Figure1-2. Embedded software size increaseindustry (reprin{5] [10])

In addition to the overwhelming system complexitye timeto-marketpres-
sure is another overriding priority in contemporary embedded systems mlevelo
ment[10] [29]. If the projected delivery date is missed, it results not only in an
increase of design costs but also a decreas®dfet share. This pressure is even

tougher for embedded software desig§mcein atraditional hardwardirst design

Software
development

revising

- wait for
< conceptuatiesign - Watlor

System
integration

‘ System Architecture
testing

specification design

Hardware development

Figure1-3. The hardwardirst design process

log # | Additional SW required for HW

s 2610 months
LoC SW/Chip

Technology capabilities
2x¢/36 months

HW design productivity
Filling with IP and memory

HW desigh productivity

————— SW productivity
25 years

time

1981
1985
1989
1993
1997
2001
2005
2009
2013
2017

Figurel-4. Gaps between the design complexity and product{wéyrint[4])

flow (see Figure 1-3), the software developmemtannot go through until the
hardware prototype is availabl€his meanghat software designers often face
imminent product delivery deadling30].

There is also a big gap between egeswing semiconductor fabrication ap
bility and the design productivity of embedded systemdugieg bothHW and
SW aspecis[31]. The ITRS 2007 presents a summary about hardware and sof
ware design gapandFigure1-4 is the pictorial illustration[4]. In Figure 1-4, re-
garding theHW design aspecthée cuttingedge embeddedW advancements and
design methodologies, e.g., mudtire/processor components afhutellectual
Property (P) reuse, have somewhat narrowed the distance betderesign
productivity and HW technologycapdilities. Unfortunately, although enormous
SW complexity has already been exacerbated, thi@¥eadvances further increase
demand foHdS developmeh As what is shown in the figure, SWoductivity is
further behind thesteeplyincreasingSW complexity An industrial reporieven
indicates that rapidly increasing software design efforts may exceed the cost of
hardware development when IC technologieslve from deep submicrestale

to nanescale[29].

1.3 SystemL evel Design Methodologies

Motivated by the challenges outlined above, since the 1990s, Sksterh
Design (SLD), or saalled Electronic Systethevel design (ESL), and ca+
sponding Systerhevel Design Languages (SLDLs) have been developedaas en
bling tools for embedded system sjfieation, simulation, implementation and
verification[32].
In the view of Electronic Design Automation (EDA) industBy,D is indicated
atha new | evel of abstradtriamrs f ad4f.dhise vieh & f
definition reflects a hardwaeentric viewpoint. A more complete definitiome
phasisegithe concurrent haware and software design interactivas a guiding
concept in &LD procesq17], tha is, the HW/SW codesign[33] philosghy is

inherent inSLD methodologies.

1.3.1 Raising Abstraction Levels

Raising system abstraction to higher levels is a traditionally intuitive solution
to cope with design compleyitin the area of digital electronic design, alistra
tion levelswent from the tansistor modein the 1970s to the gatelevel modelin
the 1980s, to the Regist&€ransfer Level (RTL) models in the 1990s, and latterly
to the higher systerevel modeld17]. Higherlevel abstractions focus on critical
systemwide behaviour and ignore unnecessary-level implementation details
at early design tine System behavioarare represented by executable models.
These models are continuously refined and evaluated through simulatioe-and d
tails are gradually added in tllesignprocess, whictenablesarly and fast val
dation of the systenfid4]. The current RTL Hardware Description Languages
(HDLs) (e.g., Verilog[35] and VHDL [36]) are believed too low and time
consumingto descrilte hardwareat early development stag¢37]. Furthermore,
despite expressive features of RTL HDLs for hardware development, they fail to
support description and validation of an entire system, including both hardware
and embedded software, which is a kegessityin systemlevel design.Conse-
quently SLDLs (e.g., System(38] and Spec(39]) have been developed topsu
port unified highlevel HW/SW specification, modelling, simulation, verification

and synthesis in recent yeals.this thesis, SystemC is the reseatl for soft-

ware modelling and simulation.

1.3.2 Orthogonal Concegs in System-Level Design

SLD aims to separate orthogonal design concerns in order to allow independent
and swift exploration of alternative solutiof#)]. At a specific design stagefdi
ferent design aspects may not require the same level of abstraction. Consequently,
separating design issues and building independent abstract models neavanly
design timebut also achieve better simulation performance when various models
are simulated together. The following two classical separation ideas arefmost o
ten referred to ir5LD:

Functionality versusarchitecture[41] (also calledApplication and Platform
Implementatior{17]): According to the definitions put forward [A0] [42], the
functionality aspect refers to what basic tasks a system is suppos#a i.e.,
specification;whereasthe architectureaspect refers to how to these tasks by
configuring resources, i.e., implementation.ShD, there are often a series of
mapping and refinement steps betweefunctional specification modaind the
final implementatiorarchitecture The motivation of this orthogonal separatien
for design reuse and flexibility. Supposing foactionality is defined in a sep
rate specificationomodel, designers can explore many possible architectureimpl
mentations with different performance and astibutes As well, if several basic
HW or SW architecture implementations can construct some generic clusters, i.e.,
components and platforms, then they could be reused for a variety of applications
[40].

Computatiorversuscommunicatiorf7]: The central idea i® develop comp-
tation and communication independently by hiding their detail® each other.
Computation components, either hardware or software, are modelled as modules
(i.e., Processing Elements (PEs)) that contain a set of concurrent processes.
Communication components such as buses echgm networks are modelled
based on kmc abstract elements, e.gorts, channels, and interfac€mpus-
tion modules communicate by transferring data transactions through thase co

munication infrastructures. This separation introduces an important and widely

acceptedSLD approachTransactio-Level Modelling TLM) [3]. TLM methods
often define a number of intermediate computation and commatioricmodels

for simulation in a design flow. At each level, models include necessacy fun
tional and timing details for a specific design stage. An important TLM research
topic is the tradeff between simulation performance and the accuracy ofrdiffe
ent nodels. Theesearchn this thesis is also concerned with this tradfe

1.3.3 SystemL evel DesignFlows

Systemlevel design flow is a process containing multiple design steps, during
which an embedded system is gradually transformed from a conceptual specific
tion to a final product. At each design step, desigeecsessivelpuild, simulate
and refine various abstract models in order to validate system propertiesesarly b
fore detailed implementatidd3]. Ther e i s not a generally
template The startig and endinglesignpointsalsovary in differentSLD theo-
ries and practices. This is becaasspecific design processlargely dependent
on its applying domains and contaxte.g., reusing an existing platform may
shorten the design flow. There ar®lpably as many systefavel design flows as
there are researchers and projects. Nevertheless, we can observe thaé-many r
searchworks [43] [44] [45] [46] [47] generally group dggn activities into three
top-down phases with corresponding models: the system specification phase
(specification models), the architecture exploration phase (architecture models),
and the architecture implementation phase (implementation moBasye 1-5
outlines a typical systetievel design flowincluding above three phasekhe e-
search in[48] [49] presents a different view of systdavel design flow which
excludes the implementation phase. TWiswpointin fact reflects the status of
currentsystemlevel design communityhat existing SLD methodologies arstill
not mature enough to effectively cover all phases from system specification to
implementation.

At the system specification phase, the embeddgds t plandedfunctions
and requirements are clarified and written in documents or models. Natwal la
guages are used in documents, whilst some computer specification languages (e.g.,
Unified Modelling Language (UML]50], MATLAB [51], SpecC[39], Rosetta

_§ Application
8 r— functionalityand <& —
."9-)% 1 requirements Executable
gL Refinement specification
£ . (e.g., untimed)
5 | _ > Specification 1]
% model
2
Refinement Hardware/ software Behavioral
—————— partitioning, mapping, <&— -cycle-approximate
scheduling simulation

func. & beha.
models

Software
func. & beha.
models

k}
\
Low resolution/

Architecture exploration
phase

TLM virtual platform in S.DLs (e.g., SystemC FecO

_ Hardware Gommunication Dftware
| high-level (Interface) . —.
| synthesis generation Oycle-accurate
Refi t simulation
inemen eg. |I$ RT)

| HW impl. s i |
_ modelinRIL el models T oompiable s, |
HI?Ls, eg., ‘ impl. modelsin

topologies\w/ protocols

Modelling abstraction levels
High resolution

Architecture implementation
phase

Logic synthesis,
Integration,
Physical Design...

Figurel-5. A systemlevel design flow

[52]) can bealsoused toproduce formal or executable models. These models can
describe behaviour of a system and may become a vehicle festepxsystem
refinement.

The architecture exploration phase;cadled hardware/software partitioning
and mapping phase, is concerned with how to Histei system functions between
hardware and software, i.®©gsignSpaceExploration (DSE). This phasecan be
further divided into the prgpartitioning step, the partitioning step, and the post
partitioning stepaccordingto a detailed design flow explanation[82]. Usually,
this designphasestarts from a uniéd abstract TLM model, which comprises a set
of PEs for computation and channels for communications@R& modelsare
explored to implement in either HW (i.@pplicationspecifichardware logis) or

1C

SW (i.e., programs running onGPB, and channel mads are tried with various
abstract communication topologies and protocols. These TLM models ars-succe
sively refined, with timing information and implementation details added. Various
alternatives are simulated in order to evaluatd analyseliverse syeem chara-
teristics e.g., functional correctnesscheduling decisions, retine performance,
power consumption, chip areand communication bandwidth, etc. Once &=y

t emdés fhave been partitisned and mapped onto some hardware and sof
wareelementsa golden architecture modgl6] comes into being anithe imple-
mentationstep is ready tbegin.This thesis studies RTOS and r&ale software
behavioural modelling and simulation, which can be seenbeirg after
paritionedTLM software PE computation research in #nehitecture exploration
phase Our researcthas somerelevance to current SLD and TLM research, in
terms of comparable abstract modelling styles, fast simulation performaace, re
sonable accuracy, and semnteroperability with other systelavel abstract
hardware and communication models.

In the architecture implementation phapeeviousarchitectural models are
transformed into lowelevel models in automated synthesis for final prodoct i
plementation dsign and manufacturing. For the hardware aspect, the developing
high-level synthesis (sometimes also referred to as Electronic Systeeh syn-
thesis, system synthesis, behavioural synthesis) technologies aim to synthesise
HW models in the form of higlevel languagege.g.,C, C++, SpecCG SystemQ@
into synthesisable RTL descript®nRTL descriptios areinput of the existing
ARTLt o L adesigun flow[32]. This automadd high-level synthesigprocess
connecs systemlevel design with the current design flow in order to produce a
tual integrated circuits. Although there is a substantial body of researchirwork
this domain automatic higHevel synthesis is still thought to be not mat[58]
and iheges gaified industrial relevangg¢54]. In SLDL-based systetevel
design, communication synthegalso known as interface synthesis) aims to map
TLM channels or similar highevel interfaces to a set of synthesisable cycle
accuratesoftware protocols and RTLdescriptionsof target communicationot
pologies[55]. There are several approachiegardingbusbased communication
synthesis[56] [57] and onchip communication networks syntheg&8] [59].

11

More complete surveys on this topic can be founfb#4j and[17]. In high-level
software synthesignamely target software generatioembeddedsoftwae (in-
cluding the applications, RTOS and othétdS) implementation models (i.e.,
C/C++ codeghat areready tobe compiled into binaries foratarget instruction set)
can be generated from TLM software PE modeittenin SLDLs[60] [61]. Sev-
eral approachebaveinvestigatedembedded softwartarget code generatipm
which SLDL functions orgeneric RTOS services in TLM models are mapged
translatedo the Application Program Interfad@PI) of aspecfic RTOS[43] [62]
[63] [64] [65].

1.4 SystemL evel Design Languages

The need for efficient and effectigpecification, modelling, simulation, verif
cation and synthesis BLD hasled to manySLDLs. In general, SLDLs provide a
collection of libraries of data types, modular components, and disaretd ke-
nels to model an entire HW/SW system and simulateaayc system behaviour
at a higher level of abstractionsing SLDLs enhances system design producti
ity by represenihg a whole systenin expressive programming models goe-
sentingdiverse traceable rduiime information through simulation.

Inspired by he need to describe boHW and SW parts with a general pf
gramming language, C/C++ based design and specification langigagesSg-
temC and SpecQ)ave been developed and used by the design community. It is
attractive to extend C/C++ for hardware adnenunication design exploration in
SLD, since they are already familiar to software designers. These C/C++ based
SLDLs are equipped with builb hardware descriptiooonstructs such as signals,
ports, clocks, explicit parallisins and the structural hiechy for system mode

ling.

14.1 SystemC

SystemCis the most commonly used C-based SLDLIt has been in dele
opment by the association Open SystemC Initiative (OSCI) 4i9@8[38]. In its
early days, the initial System@rsions 0.9 and 1.0 concentrated on describing
hardwarecentric RTL featuresvith the goalto replace Verilogand VHDL as a

12

new HDL, so as to realise higkvel synthesisFromthe version 2.0, its focus
changed to higtevel computation and communicationodelling and becamena
effective SLDL. It was approved asndEEE standard in 208 [66] and is cu
rently thede facto ndustry standard fdESL specification, modelling, simulatn,
verification and synthesis.

The syntax of SystemC msed a thestandard C++anguage.tlis not a brand
new language but a set of C++ libraries together with a disevetet simulation
kernel that is also built with C++. A mixture ebftware programsvritten with
SystemC and C++ can be compiled by a standard €ompiler (e.g., GC@r
Visual C++) and linked with SystemC libraries in order to genexatexecutable
simulation program

A module(SC_MODULE namely a class, is thmsic SystemCahguage oo
struct to describe amdependenfunctional componentlit contains a variety of
elements to define behaviour and structure of a medgl,data variablesgcom-
putation processescommunicationports and interfaces, etc. SystemGsupports
the hierarchicaimodelstructure, which means a parent module can ircinstan-
tiations of other modules as member data. This characteristic is helpful to break
down a large systeminto manageable suimodels. The main SystemC meeh
nisms for inte-module communicationgrechannelssc_channel), which can
be either ssimplesignal (sc_signal) or a complex hierarchical structusach
asthe Advanced Microcontroller Bus ArchitectufAMBA) bus[67]. The can-
munication methods implemented lbhannelsare namednterfaces which are
abstract classes declaring pure virtual methodsna@dlule accessea channel
through aport by calling interface methods. In this wasgmputation and c¢o-
municationcan be explicitly separated and modelle&ystemC

SystemC uses a discretevent simulation kernel which relies on a co
operative so-called co-routine, executn model[68]. It does not suppos prior-
ity assignment or premption. Only one SystemC process can execute at a time.
The executing process cannot bejgrapted or interrupted by either the kernel or
another proces processonly yields contol to the kernel bycalling wait-for-
time andwait-for-eventfunctionsat its own will. When two processes are ready at

the same timén simulation it is nondeterministicwhich process will be chosen

13

to run by the simulation kernel. This particular @weristic is suitable fgpard-

lel hardwareoperations and outperforms a feptivesimulation kerneln terms

of fast smulation speedbecause of less context switch overls{éd]. However,

it is not applicable foconcurrentreattime software simulationwhich requires
preemptive and deterministischeduling servicesThis deficieng/ can be prb-
lematic when importing legacy retiine software into SystemCome research
pessimistically abandoned rdahe software simulation in System70].
Whereas, many researchdérave presented various remedies on this problem to
some extent, e.g., extending the SystemC language with process control constructs
[71], revisingthe SystemC simulation kern@9] [68], implementing RTOS fus:
tions on top ofthe SystemC library[72] [73]. This thesis presents a morento

pletesolution in thdastdirection.

1.4.2 SpecC

SpecC is a system specification and description language that operates as an
extension of standard C langud86]. The SpecC language and associated design
methodologies were originally developed at the University of California Irvine
beginnng in the mid1990s and continuing up to the present day. In contrast to
SystemC, SpecC introduces new keywords to C language, so it needs a special
SpecC Reference Compilgf4]. Many design corepts (e.g., separation ofre
munication and computation) and language constructs (e.g., modular str#cture d
scriptions) of SpecC are either possessed or adoptin idevelopment of Sy
temC As well, both SpecC and SystemC can fulfil multiple level $pation,
verification and synthesis tasks SLD and TLM Their similarities and diffe-

encesareintroducel and compaed in[44].

1.4.3 SystenVerilog

Arising from the semiconductor and electronic design industry, SystemVerilog
is a hardware description and verification language based on extensions of Ve
ilog [75]. In addition to features available in the class\éatilog, SystemVerilog
provides new verification and objeatiented programming facilities, such as a

sertions, coverage, constrained random generation, -inuikkl/nchronisation

14

primitives and classes. Although SystemVerilog offers both internal ebject
oriented software features and a direct programming interface to call external C
functions, its scope is mostly constrained to hardware design, simulation and ver
fication[76] [32].

1.5 Software Simulation in SystemLevel Design

In SLD, simulation approaches lie at the heart of many methodologies.a&imul
tion techniques are traditional and useful tools for debugging, validation, and ver
fication [32] [44] [77]. They are successively applied at eachsgin the design
flow. A set of simulation models is built to represeehavioursof various co-
ponents or the whole system. By executing these simulation models, output values
for given input patterns amgeneratedand observed. The correctness and igual
of output values are evaluatedorderto ensure that specified requirements have
been fulfilled in the models. These results can also help designers to explore and
trade off differentlesignalternatives throughimulationexperiments.

Today, most sibware simulation approaches 8LD can be classified into two
categories Instruction Set Simulain (ISS) and behavioural simulatiom this
thesis, theeattime softwaremodelling andsimulation research falls into the-la

ter category.

15.1 Instruction Set Software Simulation

In ISS, a clock cyckaccurate processor model runs on a host machine, which
mimics the behaviour ofa targetprocessoby fexecuti ngdhei t s
internal architecturef the target processor (g.general registers, statregisters)
alongside memory space (i.e., storing execution binaries for a target and local
variables) are both modelled at the Instruction Set Architecture (ISA) levek-Som
times, peripheral models such as timers, interrupts, and /O ports are also int
grated into an ISSo that it canprovide more completeeatures for software
simulation.

Most commercial ISSs are based on the interpretation techpi@ueAn ISS
reads target instructions from its memapaceand executes in an interpretive

i F e-DexddeDispatchE x e ¢ u t e on opderto cimwdasebehaviour of m-

n s

Target Foecial
Input memory Registers
program
: space
binary
General
Registers

Instruction Set Smulator

Figure1-6. Interpretive instruction set software simulation

structionsbeing executedn a target machine, as shownFigure 1-6. The main
advantages of ISS simulation are fgined functional and timing accurasy
various ISS simulators are traditionally used by software programmers to debug
crosscompiled targeprograms instead of using real hardwaked in systern
level design ISS simulators can be seas reference to evaluate othecorre-
spondingcycle-approximate simulators. However, simulation performaisca
drawbackof the ISS approachbecausdts interpretive simulation process incurs a
large overhead. Typically, they run on the order of 100K cycles per s¢td@hd
which is not a satisfactory speed for simulating large amounts of sofinvays-
temlevel design79]. BesidesanISS simulator needs a detailed el pra-
essorsimulationmodel, which may not bavailable at thelesired highevel of
abstraction in early design stages

The host compilatiorbased ISS is an improved approdshaddressing the
performance disadvantage wéditional interpretivelSS methods[80]. The ca-
tral idea of thistechniquei s t o transl ate target machi ned
ma ¢ h i nseftvarecampiletime. This binanto-binary translation avoids big
runtime overheads ahe interpretive process in simulationenceresulting in a
faster simulation speed. Thest compilationSS research irj80] repors a three
ordersof magnitude speedupompared tanterpretivelSS. Unfortunately, there

are also some deficiencies to this approach. This technique assunsextthate

16

does not changat run time, as a result it is not sed to seHmodifying cod€80].

Poor portability is another problem, because a compiled ISS is not applicable for
processors with different instruction s¢tg] [81]. ThelnstructionSet Compiled
Simulation (ISCS)[81] technique combines theegormance of a compilatien
based approach with the flexibility of an interpretive ISS, by movegdecode

step to compiletime and carrying duvarious compiletime optimisations. It
claims a 70% simulation performance improvement compared with the best
known results in its domain. However, it still faces challenges in terms of both a
long compilation time and a large memory usggg. In general, the simulation
peformance of ISSapproachess perceived as a bottleneck for a rapid design

space exploration at the system lg\vél] [82].

1.5.2 Behavioural Software Simulation

In systemlevel design, there is always a need for fast fexble software
validation, whichcan beprovided by behavioural software simulation. Its siaaul
tion performance is usually several orders of magnitude faster than th@4SS a
proach, for example, one order spegdin [83], three orders speag in [84],
and three to five orders speed in [85]. Its modelling accuracy and spee@ ar
flexible in various approaches, which indeed depend on the specific modelling
abstraction levels and technigues. In behavioural software simulationlekiglh
embedded software source code (e.g., in C/C++ or SLDL) is compiled for and
natively executs on a host workstation or a PC. In many cases, behavioutal sof
ware simulation is based on the support of a SLDL simulation framevibek
targetCPU hardware architectunmodel is notdirectly usefd for native software
execution,henceis oftennot modelle in a software PE modeThis methodis
unlike the detailed processor modappearedn ISS simulationFigure1-7 shows
the simulationmechanism of a typical discretéeentSLDL simulator,which in-
cludes three main steps, i.e., evahmtand scheda of a process, execot in
zerotarget time, and taggsimulationtime advance

From the perspective of abstract embedded procassidii.M communication
modelling, Schirnersummariseshree major issues related to a fast sysievsl

software simulation i.e., timed native softwareexecution, dynamicsoftware

17

/>: process1 | o T
/) | : — ——

[Pad process2 | wait(7) / A
‘: ‘ /v: process3 | wait(4) . \ ‘
||| 4 process4 | - wait(3) V]

9 DL Smulation Kernel

SN native [z Target-delay T Pre-defined S.DL Smulation
execution annotation | synchronisation point Framework

Figurel-7. The SLDL-basedbehaviourakoftwaresimulation

scheduling, and externdLM communicatior79]. We will adapt them to reflect

our software/RTOSentricresearch perspective the followingsection

1.6 Research Objective and Contribution

This thesisfocuseson modelling and simulatindunctional and timing belva
iours of reattime embedded softwarecluding the RTOSWe concludehe most
important isuesas

1 Timed software simulatiorthis refers totimed modeling and simulang
reaktime software in the SLDL environment;

1 RTOS modellingthis enlarged topic should not only provide rgale
scheduling servicelsut also support other typical RTOS services necessary
for reattime softwaresimulation

1 Interrupt handling from a software simulation perspectivée tinterrupt
Reques({IRQ) based HW/SW synchronisati¢86] is the most essentiake

ternal communication protocol

18

1.6.1 Timed Software Simulation

As show in Figure1-7, in SLDL-based timed software simulation, embedded
software (both applications and the RTOS) is organ{sgdpped)into several
concurrent processes in a SLDL simulation framework. These processes natively
execute on the host undée supervision of a eoperative SLDL simulation ke
nel. Since the desired timing behaviaitargetsoftware executiocannot be d
rectly represented in native software execution, estimated software execution
costs (time delays) on the target are mdyual automatically annotated torre-
spondingcodesegment®f simulation processes. These time delays are executed
by SLDL wait(delay) statement#n orderto suspend the calling process, pass co
trol to the kernel, and advance the simulator cl@kthis way, timingbehaviour
of realsoftwareexecutionon the targetnachines simulated

According to the above descriptiom this coeoperative SLDL execution
model,a number ofvait(delay) statementare annotatethto softwareprocesses
when buildingthe model Theyin effect predefinesynchronisation pointsetween
softwareprocesses and the SLIMernel Softwareprocessesan only yield the
running statusit these pointat simulation rutime and the simulatdime is pro-
gressed according to trenrotated delays without an interrupt possibilifyhis
annotatiordependensoftwaretime advance method makes it hard to model a
pre-emptive reatime system. The intuitive but halfway solutions tackle thi®pro
lem by using morevait() statements with fingraineddelaysto advance SW time
[87], or by inserting some imperative synchronisation pdjgis However, the
timing accuracy is limitedly enhanced at the cost of large modelling (moreaannot
tion and synchronisation) and simulation (frequent simulation kernel context

switch) overheads.

1.6.2 RTOS Modelling

A RTOS simulation model is a keyoint for dynamc scheduling and timing
issues inbehaviourakeattime software simulatiorf72] [77]. This is kecause the
RTOS6s cruci al r-tioné softwiardayegsimbteznts dfdagk nrae a |
agementpre-emptiveschedulingjnter-task communicatiomnd synchronisation,

etc. Whereas, grrent SLDLsimulation frameworksnd related RTOS simulation

19

modek do not, in general, suppoRTOS smulation adequately. There exist some
problems in this area, which affect the functional and timing accuracy of models,
as well as their simulation performance.

For example, from the perspective of maximising flexibilitysystemlevel
design, designsrmay want to simulate multiple types application modelsot
gether.Current RTOS modelling researdoes not address this issue sufficiently
andis incapable of integrating abstract task models {iad or simple task fury
tions with coarsegrained execution time estima}emnd nativecodetask models
(i.e., fully functional taskswith fine-graineddelay annotations) in one simulator.

Besides, from the perspectiveficticalRTOSsimulation some RTOS nub
els provide simplistic task management and limited synchronisation services,
which are inadequate to imitate behaviour of a real multitasking RTOS.

Furthermore, the low timing accuracy is a common, yet critical, prololem
someRTOS modelling approachdy lack of RTOS servicesod6 timing o0\

modellingand proper time advance

1.6.3 Interrupt H andling

As we mentioned before, the target processor, which executes software in the
final implementation, isot usually modelledn SLDL-based behavioural gef
ware sinulation. Because of the high abstraction level andSbBL software
simulation mechanism, multiple concurreaskstogether with a RTOS model
canconstitute asoftware PEmodelwithout the necessityof modeling low-level
processor architecture. Howeveegardingtimed HW/SW co-simulation,a sof-
ware PE modelshould be abléo handlehardware interrupts for HW/SW sy
chronisationlIn terms ofa real processor or a lel@vel processor model, the-i
terrupt handling process is natural to implement becausleeof cycleaccurate
time resolutions. However, the situation i ¢
model is hidden in a higlevel software behaviouraimulation. From the segne
tial reattime software perspective, neither applicattasksnor the RTC can
monitor asynchronous interrupt events (we are not talking about synchronous
mechanisms such as polling) in a timely and real manner. What is more critical, it

is not straightforward to interrupt a SLDL process by current SLDL kernels, since

2C

they do mt support rurtime process premption or interruption. Consequently, it

Is essential tamplementa HW/SW synchronigeon methodfor SLDL-based
softwaresimulation, which behaves liken interrupt controller in a real CPn
orderto monitor external eves and interrupt the executing SLDL process: B
sides, this mechanism should minimise the synchronisation frequency sceas to r
duce simulation time overhead, which is not yet achieved well in curgent a

proaches.

1.64 Research H/pothesisand Objectives

This thesis is motivatedy current insufficient research regardiaigovethree
key issues in the domain of reiine software behavioural modelling and siarul
tion. The research work in #hthesispresents solutions tihe threetopics. Spe-
cifically, we am to support SLDtbased interruptible software timing simulation
with high simulation performance; we will propaséexible andpracticalRTOS
modelling and simulatiompproach that also has reasonable timing accuracy; we
will support fully functional imerrupt handling in higtevel RTOS simulation as
well.

The main goal of the research in this thesis is to support the central proposition
that:

A SystemC mixed timing modelling and simulaapproachcan enable fast,
flexible and accurate RTOSased rektime embedded software behavioural
modelling andsimulationin systerevel design.

To examinethis hypothesis, this thesis focuses upon the investigation of timing
issues in behavioural software modelling and simulation, and builds a generic
RTOS modelto support reatime embeddedsoftware simulation. Specifically,
this thesis aimgo:

1) Investigate timing issues in modelling and simulating-tiea¢ software
(both applications and the RTOS) in a SystemC environment, which are
closely relevant to a fast simulation performarecéexible modellingand
simulatingcapability and reasonaltiening accuacy.

a. Fast performance is a necessitytlod proposedhigh-level behavioural

software simulation. Simulation speed should be at the scale of several

21

orders of magnitude faster than traditioia6 simulations and is also
better than some redbehavioural software simulationethods.

b. Flexibility is adesired benefit ofoftwarebehavioural moelling and
simulationfor the sake of tradeff. The proposed approadan utilise
varying modelling levelsand degrees different softwaremodelsin
terms of the functional accuradyming accuracyobservability ofexe-
cution tracesandperformance of snulation.

c. Regarding timing accuraayf software time advancéhe proposedpa
proachshoulda voi d t he ¢ onv ednetpieonndael rt fda nunnoi tnattei
ruptible time advancerather it shouldsupport interruptible timed-
vance

d. Although the timing accuracy of behavioural software simulatioe-is r
stricted by its high modelling level, it still should be sufficient ta-ge
erate a timed software execution traceichhs the same as core-
sponding ISS simulation.

2) Build an abstrac€CPU modelwhich can simulate HW/SW interactions and
supporthightlevel interruptiblesoftware timing simulation

a. The HW/SW timing synchronisatiofn.e., interrupt handlingproblem
must be solvedsince it is related to interruptible software time advance

b. There isalimited abstracthardware modéhg that suppors hardware
dependent softwargervice modelse.g.,context switch, interrupts se
vice, and reatime clock serice.

c. The organisation of software models and hardware models should
mimic the typical structure of an embedded system, and be extensible
for future development.

3) Captureessentiand commorRTOS featuresand build agenericRTOS
mode| in order to flexiblysupport earlyand practicakimulationof realt

time software in System@ased systertevel design.

a. The RTOS model should provide generic and standardiseldi-
tasking,scheduling and synchronisation services as well as otleer ne

essary OS functions

22

b. In order to enhance modelling flexibilitpn application tasksthe
RTOS simulation model should support both coapsen timed &-
stract task models and figeained timed native applications in &-h
brid simulation.

c. The RTOS model should achieve accurate &tran in terms of both
timing accuracy and functional results.

4) Incorporate imited TLM communication into software moddts transa-
tion-based intemodule communication modelling) order tomake saf
ware modelsnteroperablewith existing TLM modelling and simulation

concepts and techniques

1.6.5 Research Contributionsand Methods

Corresponding t@aboveobjectivesthe research work undertaken in this thesis
is fourfold, with objectives1-3 beingthe main focusof this thesisi.e., software
modelling and simulation

The first partof research worlcontributes results related to tlibjective 1,
representingguidance ofbuilding specific simulation model#A mixed timing
softwarebehaviouraimodelling and simulation approaghproposed. Iseparates
conventionally inteidependent softwaréming modelling and simulation intwvo
partially separate phases. It supports mixed software timing information
granularities and annotation methods for performance and accuracyotfrade
the modellig phase. The mixed timing models can use both capeseed task
timing estimates and firgrained delay annotations in one simulation. Good
software preemption modelling capability isachievedby the SLDL wait-for-
eventmethod,with a goodsimulation performance during the simulation phase.
The proposedariablestepandfixed-steptime advance methods supply vagyin
observability of system simulatiamaces and hence enable a traoié with the
simulation speed.

Regardinghe Objective2, a Live CPU Model is proposed. tlepresentsin es-
sentialabstract hardware base a high-level software PE modednd is a proper
container to include hardware related components and funclibasmost crucial

function of the Live CPU Modask to supporinterruptible time advance mixed

23

timing softwarebehaviouralsimulation Also, the Live CPU Model includes an
interrupt controller and some virtual registers, which acavely involved in
HW/SW synchronisatiormodelling andhardwaredependent softwarmodelling

By this means, theoretical interrupt modelling latency and software time advance
stopping latency can reach zanme in simulation, which means an ideal resol

tion.

In terms ofthe Objective 3, lhe third partof researctfocuses on the devele
ment of a generic and accurate SystelaSed RTOSentricreattime software
simulation frameworklt integratesmixed timingapplicationmodels the RTOS,
andtheLive CPUModel in a software PEodel The softwarecore isthe generic
RTOS simulation mael. It supples a set of fundamentand practicakervices
including multi-tasking management, scheduling services, synchronisation and
inter-task communication mechanisms, clock services, context switclsaiad
ware interrupt handling services, etthes functionsare summarised andb-
stracted from a survey on some popular RTOS standards and prdaubtsid a
predictable RTOS timing model, the timing overheads of various RTOS services
are considered in models, which is an advantage sm@eother sinlar works.

The dynamic execution scenarioSreattime embedded softwaan be exposed

by tracing diverse system events and values in simulation, e.g., RTOS kernel calls,
RTOS runtime overheads, task execution times, dynamic scheduling decisions,
task gnchronisation and communication activities, interrupt handling latencies,
context switch times, and other usencerned properties. With this RTOS
centric simiation frameworkyealtime embedded software designers cackly

and accuratelsimulate andevaluate the behaviour dioth abstract and native
reattime applications and the RTGd#uring the early design phases.

Objective 4 is fulfilled bycombiningthe de facto OSCI TLM2.0[88] comnu-
nication interfaces into the retme software PE simulation model generated in
the abovesecond and third parts of research. This work also defines a SoC TLM
model, which not only integrat¢he software PE model but also includes other
typical TLM initiator, target, and interconnection models. This part of wark e
tends the software simulation models to the TLM modelling community.

24

1.7 Organisation of the Thesis

The remainder of ik thesis is oganised as follows:

Chapter 2 Literature Review: Transaction-Level Modelling and System
Level RTOS Simulation

This chaptewill introducecurrent TLM researchdescribe the System&LDL,
and surveyRTOS modellingand simulation research in the context gfstem
level design.

This chapterwill start with an overview aimportantconcepts and techniques
in TLM design including various topics such asabstraction levels, aage
racy/performance tradeff, and typical simulation frameworks. After that, some
important SystemC language constructs and the OSCI reference simuldtbe
introduced along with their relevance to réale software simulatiothat is ca-
cerned by usFinally, thischapterwill survey related systerievel RTOS mode
ling and simulatiorresearch The existing approachewill be classified and d+
cussed based on their modelling granularities, functional featmdsapplication
areadn systemlevel design flow.

Chapter 3 Mixed Timing RealTime Embedded Software Modelling and
Simulation

This chaptemwill propose aSLDL-basedmixed timing software behavioural
modelling and simulation approaemd an associated Live CPU Modet fast,
flexible and accurate retime software behavioural modelling and simulation.

At first, this chaptemill introduce thgroblematicannotatiordependent time
advance methooh SLDL-based software simulati@and survey some remedpg-a
proacheslt will thendescribe the mixed timing approaddy defining two types
of software models for TLM software computatiomodelling and discugsy
various issues in timing modelling and timing simulation. Afterwatts¢comppo-
nents and operations of theve CPU Modelwill be introduced in detail. Finally,
evaluation metcs and experimentsill alsobe presentédin order toevaluate the
research in this chapter

Chapter 4 A Generic and Accurate RTOScentric Software Simulation
Model

This chapterwill introduce a SystemCGbasedgeneric and accurate RTOS
centric reaitime software simulation moddk can support flexible angdractical
reakttime software simulation in early design phases.

Firstly, this chapter will present the research context and assumptiong- An a
stract embedded software stack will be defined as the research target. It will then
survey common RTOS conceptsdarequirementss guidanceof following re-
search.Afterwards, details of thdRTOScentric realfime software simulation
modelwill be described. This research will include three main parts, i.e., thie ove
all structure of all simulation modelapplicationsoftwaremodelling andRTOS
modelling RTOS modelling is the core part and will be introduced from both the
functional modelling aspect and the timing modelling aspgéwt. chaptewill af-
terwardsexplan evaluation metricsegardingsimulation performare; functional
accuracy and timing accuracy the poposedRTOScentric simuléor. Accord-
ingly, experimentwill be carried outn order to demostratethese aspects

Chapter 5: Extending the Software PE model with TLM Communication
Interfaces

This chaptewill extendsoftwaresimulationmodels withTLM communication
interfaces by utilisinghe OSCI TLM-2.0 library. This aimsto populariseour
software modellingand simulationresearch into th@romising TLM modelling
domain

It will firstly introduce related concepts of the OSTIM-2.0 library in brief.
Then it will describe how to integrate TLM communication constructs timo
Live CPU Model.Afterwards, asimple SoC TLM modeWill be presentedn or-
derto integrate the Lie CPU Model andeveal how various typical systemnie
ponents are defined faro-simulation with behavioural RTO&entric software
models.Finally, an experiment will study the simulation performance of the SoC
simulation model, whilst anothé&MA /O experment will demonstrate then+
teroperable simulation capability of the combined software and TLM models.

Chapter 6: Conclusions and Future Work

The last chaptewill summarse contributionsgoncludechaptersand suggest

future research directisn

26

Chapter 2
Literature Review: Transaction-Level Modéd-

ling and System-Level RTOS Simulation

In order to help developers deal with the increasing design cost and shert time
tomar ket of t oday dndustsy,rhereid a massing nyeedtfos mew
design methodologies to ameliorate these problems. Syst@indesign tde-
niques have been proposdtat use higHevel abstraction methods to design
hardware and software concurrently in a unified environmi@nthis research
domain, systentevel modelling and simulation are key techniques to describe,
validate, analyse and verify complex systems. In various sylstezh modelling
and simulation approacheshe Systemébased Transactiebhevel Modelling
(SystemCTLM) has become a de facto standard. Based on the essential TLM
principle Aseparating computation from c
system modelling and simulation into two main aspects, i.ecdhmputationas-
pect and theommunicatioraspect.

In the general context of embedded systems modellingaim@utationcan be
further divided into thesoftwareaspect (i.e., software running on a CPU) and the
hardwareaspecti(e., applicationspecific hardware logics). In this thesis, we-sp
cifically concentrate on modelling and simulating réale software at a high
level, namely thesoftwarePE model The HW/SW timing synchronisation in the
unified evertdriven SystemC simulation environment is addressed, whicluis cr
cial for modelling interrupts angreatly affects both simulation timing accuracy
and performanceBecause obenefitsof dynamic scheduling and muttasking
execution of concurrereaktime applications, RTOS behavioural modelling has
increasing relevance fdyoth fast simulation and Viaation of different software
implementation alternatives itne early stage®f design Various RTOS design

27

space exploration activitie@.g., assigning task priorities, deciding scheduling
strategies and designing applicatigpecific OS servicgsalso require an early
and efficient test benh order to becaried out. Consequently, the RTOS model is
regarded as the heart of behavioural-teaé software modelling and simulation
research in this thesis.

This chapter starts with some basics of currdri¥l Tesearchand work exan-
ples in ®&ction2.1 As the programming language and research environment of
this thesis, SystemC language constructs and the OSCI refeespatdriven
simulator kernel are introduced 8ection2.2, alongwith their relevance andh
adequatability for modelling and simulation of reéime softwareIn Section2.3,
an overview is presented on related RTOS modelling and simulation research in
the context of systerievel and TLM design. These works motivate study in
this thesis. The HW/SW timing synchronisation approaches and problems-in Sy
temC simulation aralso introducedin several paragraphsithin this chapter.

Section2.4 will summarise this chapter.

2.1 Transaction-L evel Modelling and Simulation

Transactiolevel modelling has generallgeen consideredas the emerging
systemlevel modelling stylefor improving productivity in the design of highly
integrated embedd systems which may integrate heterogeneous processors, IP
cores, peripherals, memory components, andghop communication infrastod
tures. TLM models are expected to serve as interoperable references across diffe
ent design teams for fast embedded systarchitecture exploration, earlyne
bedded software development and functional verificd8¢n

Fromt he hardware developerods poi st of
tems at a range of abstraction levels highan the traditional RTI89]. Can-
pared to conventional RTL modelling and simulation, TLM not only reduces the
model building cost, but also speeds up the simulation performance by orders of
magnitude Theliterature[3] provides an example project in which the modelling
effort and simulation efficiency of three diffetefiLM, cycle-accurate and RTL
models are comparediable2-1 shows the distinct speeg of the TLM approach.

Another benefit of the TLM approach, more inteirggto software developers, is

28

Vi ew

1500 12

- 10
1000 + - 8
T 6
500 + 14
T 2
0 || 0
RTL Cycle-accurate TLM
B Modelling speed-up VS 1 100 1000
RTL
—e— Simulation speed-up V| 1 3 10
RTL

Table2-1. Modelling and simlation speed compigons[3]

that it can support early development and validation of hardware dependent sof
ware. Developers can esimulae software withhardware models in a single
source SLDEbased simulation framework, almost as soon as the initial archite
ture specification is determing@0]. I n t hi s t hesi s, from
perspective, TLM refers thigh-level interaction between different setire and
hardware moduledt includes behavioural software modellisgnulation high-

level hardware modellingimulation and transacticbhased communicationeb
tween them.

However, the higher abstraction levels of TLM models also indicaterleds
elling detail andsomeloss of accuracy. The accuracy of TLM simulation, in terms
of both data accuracy and timing accuracy, is necessarily sacrificed to some extent
due to coarsgrained data transfers and larger tiagvancing steps. Of course,
with the goalof rapidly describinghe system architecture and validatiagplica-
tions, requirements are relaxed in terms of accuracy dével data or cycle
accurate timing. Usualjycoarsegrained and reasonably accurassumptions are
made, e.g., packdevel transmission and cyebpproximate timing. Tradingca
curacy issues against simulation spf¥q, or preserving accuracy whilst gaining
in simulation performancf®2], are popular TLM research topics in terms oi-eff
ciency and flexibility. We are also concerned with therthis thesis and will g
sent some studies the next chapter. At this point, thermi c y-appreximate
tim n@@od the si mil art itneffghbdidateptpat @ procetae e

29

(either a computation action or a communication transaction) in a modsi is a
signed with timing information that spans multiple clock cycles, #rad the
simulation clock can be progressed with multiple clock cycles in stgh -
spitethe factthat this term is broadly used as a temporal resolution in the TLM
taxonomy, its exact timing granularity is vague. A variety of interpretations from
diverse researchers often reveal their own intearestodelling and intention of
optimisation, which may make it difficult to compare the performance and acc
racy of different TLM works quantitatively and horizontally.

In order to present a general idea of the existing research on TLM, three main

topics will be hereby introduced:

1 Abdraction levels of TLM:A fundamental essence of transactievel
modelling is to raise the level of abstraction by hiding-lewel implema-
tation detail. Some important concepts and popular definitions on T-M a
straction levels will be addressed.

1 Commuitation exploration:A variety of transactiobased communication
modelling approaches have been developed in both academia and industry
to define how system components communicate. The research on cemmun
cation modelling and simulatiois a contribubr factor to most of current
TLM achievementsHere,a brief introduction on related woik presented
in order to reveal this essentidlM aspect.

1 Embedded software development in TUMTLM comprehendswo pa-
tions Acommuni cati ono delimy softwacemp ut ati ono.

surely a paramount topic of the TLM computation portion.

2.1.1 Abstraction Levels and Models in TLM

A centralissuein various systentevel design methodologies concermred with
appropriateabstraction levels and coding styles for modelvagious compa-
tion and communication activities in TLM. By a general consensus, TLM does not
specificallyor explicitly indicate a single abstraction level. In fact, a seriedbeof a
straction levels are classified in the general category of TLM in diffeFrem
taxonomies. It is not practical to precisely enumerate all abstraction levels for

TLM, because there are many differemierpretationsHowever, it is still poss

30

ble to indicate the range of TLM levels. Without much dispute, most researchers
agreehat TLM abstraction | evel sLuseden rel at.i
traditional designAlso, TLM abstraction levels areonsidered o b e fil ower o0 t
functional(algorithmic) models.Functional models are not defined as TLMdno
els, although the abstiion level of them isufficiently high[88]. This is because
a functional model usually includessingle software threamhly, e.g., in the form
of a C function or a SLDL process. It does not bear two essential features of a
TLM model: concurrent multitasking computati@nd inter-process commuréc
tion [88].
Conventionally,TLM abstract modelare organisewith respect to some ce#
ria, including
1 Timing accuracy:This is a firstclass characteristic regarding the accuracy
of a model. It refers to how a model is assigned with timing information,
e.g., a line of code, a code block, or a task, and cares about theioesofu
timing information, e.g.untimed, cycleapproximate, or cycley-cycle.

1 Functional accuracyThis refers to how a model captures the function of a

Communication
timing degree

Cycle-

accurate

Cycle-
approxim
ate

Programmers
Loosely- View Models

timed

o
ecification M4
model

Untimed

Computation
\ I I \ timing degree

Loosely- Cycle- Cycle-
timed approximate accurate

Figure2-1. Various TLM abstraction levelgartially based ofi7])

31

target system. For instana@mme higHevel simulators only abstract timing
properties (e.g., execution time, period, and deadline) of a software model in
order to enhance simulation speed, but without modelling its functienal b
haviour. The functional accuracy can be evaluatedobyparing the outputs

of the model with a reliable reference by giving them the same inputs.

1 Communication data granularityfhis criterionregardsvhat data structures
are transmittedhroughcommunication channel$pr example,an appli@a-
tion packet, a sipacket, or a word.

Therearean number of literaturel8] [88] [7] [93] that featuredefinitions of
TLM abstraction levelsin the following, Section®2.1.1.1to 2.1.1.4will present
some exampleg:igure 2-1 provides a conjunctional view of these TLM abstra
tion taxonomies by comparintpe timing accuracy of the computationaspects

and communicatioaspects

2111 OSCI TLM Abstraction Levels

The most acknowledged TLM abstraction level taxonevay proposed by the
OSCI TLM working group[3] [88]. The OSCI TLM specification defines two
general levels for TLM modelling: thBrogrammers ViewPV) level and the
Programmers VieWwimed(PVT) level (seeFigure2-1). The PV models are cha
acterised by theooselyTimed(LT) coding styleand the blocking transpaiiter-
face, in which each transactiondassociated with two timing points, corresgen
ing to the start and the end of a blocking transport. It is appropolasoftware
programmers who require a functional virtual hardware platform with sufficient
timing information in order to run an operaisystem and application software.
A PVT model is identical to the PV level model in terms of functionality, but each
PVT transaction is annotated with multiple timing points and uses the non
blocking transport interface, namely tA@proximatelytimed (AT) coding style.

It enables architecture exploration asldo performance analysis of the apphc

tion system. This OSCI TLM abstraction level view reflects a communication
centrichardwaredesign perspective, although some software designers, with the
aim d promoting interoperable TLM modelling, are seeking its application for
computation modellingg].

32

21.1.2 Donlinés Extended TLM Abstraction Le

In [93], Donlin introduces three TLM | evels
above,i.e., theCommuircating Proces§CP) level, theCommunicating Process
with Time(CP+T) level, and theCycleAccurate(CA) TLM level. Referring to
Figure2-1, CP and CP+T abstraction levels are even higher than-OSZllev-
els wherefiTo meanscoarse timing information. CP and CP+T models are more
architecturendependent and implementatiodependent than PV and PVT
models. System models at the two levels consist of parallel processeg-that e
change higHevel data structures by poitd-point connections, rather than arb
trated buses. In contrast, thgdlaAccurate(CA) abstraction level is lowehan
OSCI levels. It captures micarchitectural details and is tinsecurate to the
level of each clock cycle. In some TLM literatuf8% [94], CA models are soea
times not referred to as a part of the TLM space because of their limitedigpeed
compared ta RTL model (Table2-1 hints at thi3. However, in[93], Donlind s
focus is tainvestigate the use of CA TLM models for detailed performance/anal
sis and verification of hard retime software inthe final design stagesons-
quently the drawbackegardingperformance is consaded to be worthpf tolera-

tion.

2113 Cai and Gajskidés Orthogonal TLM Mode

Another early and classical TLM taxonomy is introduced by Cai and Gajski in
[7], which concludeghat communicatiorand computationare equally important
yet orthogonal aspects of TLM research. Referringrigure 2-1, these two s
pects are illustrated as two axes according to degrees of timing accuracysin a sy
tem modelling graphThey identify three timing degrees, i.e., untimed, approx
matetimed (secdled cycleapproximate), and cyclétmed (secalled cycle
accurate)Moreover, the authors define six abstraction models in the graph and
explore their usage in embedded system design flowsngtédm the specifia-
tion stage and emay at the implemenéation stage. Among the six models, four
(the shaded circles in the figure) are classified as TLM modelsthe comp-
nentassembly model, the basbitration model, the bufsinctional model, and the

cycle-accurate computation model. The solid arrowghanfigure represent a tiyp

33

cal TLM system design flow, whilshe other dotted arrows stand for some poss
ble design routes depending on different design intentions, e.g., communication

focused or computatiefocused.

2.1.1.4 Mixed-Level and Multiple-Level TLM Modelling Research

Various TLM models at different degrees of accuracy bring a potential fler mu
tiple-level or mixedlevel modelling in which designers can trade off modelling
accuracy and simulation performance according to different strategies.

In Chapter2 of [3], the researchers propose a general idea for TLM mixed
level modelling by combining untimed TL¥hodels and standalone timed TLM
models.This allows for concurrently developing pure functional models (by a
chitecture teams) and timing models (by miarchitecture teams) with dissimilar
modelling purposes. Multiple timing scenarios with differenbhetsons can o-
exist in a unified simulation model, and simulation speed can be optimiseg by d
namically switching untimed and timed models at runtime.

For bus communication modelling, Schirner and Dédner quantitatively analyse
simulation speed and timingccuracy of three abstract communication models,
e.g., the conventional TLM model, the arbitrated TLM model, and the -cycle
accurate and ptaccurate bus functional modgl2]. They configurehem with
varying data granularities and arbitration handling methods in order to trade off
simulation accuracy and performance. Focusing on software computatioir mode
ling, they define five abstraction levels for processor modelling (e.g., the applic
tion level, the task scheduling level, the firmware level, the processor TLM level,
the processor functional model) and quantify accuracy loss and simulation speed
up of each moddl79].

For processor and communication desigregploration, an integrated design
methodology $ presented if95]. It combines multievel processor hardwar
models (e.g., instructieaccurate and cyclaccurate) and communication models
(TLM buses and RTL buses), by which the processor design team -cgrei@ie

with the communication team early in the design flow.

34

2115 Summary

The dfferent views of TLM abstra®n levels and related modéisive com-
mon notiors of hardware and commication modelling EachTLM abstraction
level can be seen as a limited design space for exploring and validating some
functional and timing issuesith corresponding models. Multiple TLM abstra
tion levels thus constitutewside design space, namely a design fléov,succs-
sive model refinemerihrough the additioof designdetail.

The OSCI TLM standard is gaininghégh level of popularity and sustadile
development in both industry and academia. It provides two distinguishing levels
(i.e.,LT or AT) for communication models depending on their timing degrees and
synchronisatiormethods The relevance of th modelling ideawill be examined
to the propsedsoftware modelling approadn Section3.2.2 The mixed mode
ling idea is widely advocated for accuracy and speed-wéde both the OSCI
TLM standard andheresearctsurveyed in Sectio.1.1.4 Specifically, it is also
a guiding concepbf the mixed timing software modelling approach that is to be
presented irSecton 3.2 The recent OSCI TLM standard Version 2.0 provides
standard interfaces for creating bus communication moGekspter Swill inves-
tigate combining these API interfaces with the proposed software models in order
to advance interoperability between TLM communication and our natige

software simulation models.

2.1.2 Communication Modelling in TLM

I f we interpret t habsttact commufidatioa operai@nt i on o
[47] or a s highleftel form of a communication protoodbB6], then the name
Atrandgd @avteilomodel | i ng o cammunicatiddedmainrée-o 1 mpl y
search topicFrom a narrow viewpoint, TLM is understood as a communication
centric embedded systems modelling paradi@f. Early in 2002, Grdker et al.
introducel the basic TLM interfacd®ased communication séylwith a high sima-
lation performancg98]. This work forwardsSystemCasthe most establisheded
sign language vehicle for TLM approacheday.In this section, we will make a
brief introduction mainly, but not limited to, SystemC based TLM communication

and architecture exploration studies.

35

% ARV df’U/ModéIm/
(ISSor high-level model)

Ay

Bus
Arbiter

Interrupt
controller

Port @ Interface

Figure2-2. An AMBA TLM model example

In TLM, in order to build a virtual prototype that represents abstract models of
an embedded system, a system is broken down to a set of computatiam comp
nents comprising concurrent processes to implement application functians. Co
putation components commuate with each other through ports and channels by
sending and receiving transaction requesigure 2-2 shows a block diagram of
an example SoC TLM mode#,g.,the AMBA bus In this model, the architecture
is composed of two main computation compongirgs an ARM microprocessor
and an applicatiospecific processor (e.g., DSP or custom logics) as initiator
components in the system. Some other components inclddstigand slow
memories, peripherals, and devices are connected to processors by dirast port
port connections and buses, e.g., the Advanced-pkgformance Bus (AHB) and
the Advanced Peripheral Bus (APB). From the TLM perspective, the buses are
complexchannels accessed by multiple modules through respective ports.

Figure 2-3 depicts the basic method of TLM communication modelling. In this
example, two modules commigate through a channel. TReocess Aln Mod-
ule A can write a value to the channel by calling the metinaie () through
its parent pAwhlst theRvosesspBdretrieves a value from the
channel by the methogkad() via portpB. This Interfge Method Call (IMC)
scheme achieves high modularity in iateodule communication modelling, and

essentially separates communication and computation details.

36

Module A Module B

PA S °e
Pl SR i) e (s B

Process B1
Port @ Interface

Figure2-3. TLM Interface Method Call Communication

As the key element of the TLM IMC communication, a channel can haye var
ing complexityacrosdifferent designs. la SystemCTLM specification, a cha
nel anbe implemented in twetyles, i.e.,the primitive channel and the hierarch
cal channel. A primitive channel contaiprocesses and ports and aims to provide
simple and fast communication. ThesE&mC language reference man{G8]
defines several buiin primitive channels (all derived from a base class
sc_prim_channel), e.g.,sc_signal (to model a simple wire carrying a
digital electronic signal),sc_fifo (to model a firstin-first-out buffer),
sc_mutex (to model a mutual exclusion lock) asd semaphore (to model a
software semaphore), etc. Hierarchical channels are indeed hybrid modules and
can contain other instances of modules, processes, ports aed channels.

They are used to model complex customised communications, such as buses or
networks.

In order to advocate model interoperability betwefferent communication
modelling and architecture design communities, some standards are proposed to
promote the SystemC TLM communication paradigm. The following are teto pr
dominant standards.

The OSCI TLM Working Group, whicivasfounded in 2003, has published a
series of OSCI TLM standards. The-tgpdate OSCITLM library version 2.088]

[99] introduces a set of wetlefined core APIs, data structures, initiators, targets,
the generic payload, and the base protocol for transasésed communications.
The core interfaces supportd types of transport, i.e., th#ockingtransport (a
transaction can suspend its parent process) anddhdlocking transport (a
transaction is atomic and does not suspend its parent process). The generic pa

load is primarily intended for modelling gpical memorymapped bus, which is

37

abstracted away from the details of any specific bus protocols. An extension
mechanism is also offered to model specific bus protocols ebusmprotocols by
users. The Open Core Protocol International Partnership {©L&onsortium is
another active TLM standardisation organisation. It has proposed and maintained
a SystemC TLM modelling kit since 20Q200] [101], defininga stack of cm-
munication layers including four abstraction levels, i.e., Message Lay8), (L
Cycle-approximate Transaction Layer-g), Cycleaccurate Transfer Layek 1),

and the RTL Layer (10). Its latest version, which is built on top of OSIZIM

v2.0, provides an interoperable standard for SystemC component models with
OCP protocol features.

A number of TLM modelling and simulation approaches have been proposed
for the design of complex communication systems. The following are songe repr
sentative works.

Gaj ski 6s g meaupesofpTiLM soenmuingation research mainly
based on the SpecC language. The literdtl02] describes a general TLM o6
munication modelling style for SoC design. For NetworkChip synthesis, they
define some successive system communication abstraction layers and carespon
ing design models to refine abstract mesgaagsing down to a cyckeccurate,
busfunctional implenentation[58]. For AMBA AHB bus modelling, they pr
pose a Result OrienteModelling (ROM) technique that improves accuracy
drawback of conventional TLM models and gains high speed by omitting internal
states andhakingend result correctiofi103].

In 2002,Pasricha pointed out the directitor usng the SystemC TLM mode
ling approachin early architecture exploration and developed communication
channels for fast simulation for embeddedtwaredevelopmen{90]. In order to
bridge the gap between higével TLM models and bus cyckccurate models,
Pasrichaetalpr esent an intermediate TLM- abstract.i
rate at Transaction Boundarieso (CCATB) f ot
improves simulation spedaly keeping cycldevel timing accuracy only at tran
action boundarie$104].

Kogel et al. propose a series of npli-level System€TLM co-simulation

and virtual architecture mapping methodologies for architectural exploration of

38

NoC, SoC, and MPSo{105] [106] [95]. Klingauf et al. describe the TRAMsa
tion INterchange (TRAIN) architectureor mapping abstract transacticlevel
communication channels onto a syntkaisie MPSoC implementation by virtual
transaction layerfs5]. They also propose a genericierconnect fabric for TLM
communication modelling that aims to support flexible buses, multiple ThM a
straction levels, and various TLM standard ARRB7].

2.1.3 Embedded Software Development with TLM

Embedded software development with TLM models is not a new topic and
many studies have beeonductedn this area. In this sectiome introduce them
depending on relationstgjpetween software modelling and TLM techniques:

1 ConventionalSS softwaresimulatorsutilise TLM communication for na-

elling SW/HW interfacesnly (Sectiorn2.1.3.2);

1 Systemlevel ftware modellingand simulatiorcomply with general TLM

concepts and techniquéSection2.1.3.2and2.1.3.3.

2.13.1 ISS SW Simulationwith TLM SW/HW Interfaces

In an early TLM literaturd90], Pasricha indicated the concejtdevelopng
embedded software with SystemC TLM mod@&isis ismainly motivated by two
encouraging TLM modellingesults: the edy availability of TLM architectural
models in the SoC design lifecycle and the much higher simulation speed co
pared to detailed RTL models. The goal is to design and simulate embedded sof
ware on top of a virtual prototype of the target architectureaasof using traed
tional RTL models or the final implementation. Thigsearch uses a
HW/communicatiorcentric TLM and conventionaoftwaresimulationapproach

Several efforts have been made to combine conventional-agcieate saf
ware simulation (g., an ISS) with System@ased abstract TLM hardware and
communication model§108] [109] [95]. As shown inFigure 2-4, TLM tech-
niques are used to model SW/HW communication interface and hardware-comp
nents, which are outside the scope of software modelling. The SPACE methodo
ogy [108] encapsulates an ISS in a SystemC wrapper and connects it with rest

modules of the modelling platform through TLM channels. Two types of TLM

39

Instruction Set Smulator

SW application binary

RTOSport binary

Drivers binary

S DL Wrapper

Figure2-4. TLM technique for modelling SW/HW interfaces

communication channels (untimed and timed) are igeal/to support two TLM
abstraction levels: untimed channel for a faster verification of applications
before partitioning, while timed channels are used for egctairate modelling.
Crosscompiled binary code afoftwareapplication, the OS, and devs executes

in the ISS. For MPSoC design space exploration, the MPARM approaeh int
grates multiple SystemBased ARM processor models (ISS simulators is-Sy
temC wrappers), the AMBA bus model, and memory mofl€9]. The TLM

channels implement the bus communication architecture in a rsdeterstyle.

2.1.3.2 Embedded Software Generation Using TLM Models

Recalling the fundaental TLM principle of separatintpe concerns of comp
tation and communication, these two design aspects should be paid equal attention
in TLM contexts Some researchers are also concerned about applying TiM co
cepts and techniques to design aatidation of the computation portioff] [6].
Software is the integral and main part of many embedded systems anchhence
become a major area of interest in transadgwoel computation modelling.

Motivated by the goal to edesign an entire electronic system from the ispec
fication phase down tthe implementation phase by using a single SLDL, some
systemlevel design flows have been proposed to support embedded software ge
eration and synthesis. In these studies, a series of BlaBéd specification and
TLM models are simulatedefined and trasformed, in order to automatically
generate target embedded software C/C++ ¢02l[63] [110], or to further ge-
erate final binary files, i.e., systelevel software synthes[89] [61].

Figure 2-5 shows a typical embedded software generation flow. Firstly, u

timed and beforgartitioned system functions are described by a set of hierarch

40

Fecification model

W™ moldels

Before-partition:
functional, untimed,
unscheduled, parallel

After-partition:
functional, timed,
scheduled, sequential

SN module ||| | HW Module
tak | tack | B Process3 \ gt | OoS \(Geg
Dososstiiesesst | | | Dhassssscesses Complled for .
| Scheduler or | ger oode‘ target EITE
| RTOSmodel | | ["Code generation
|
4 > S

RTOS
library

Figure2-5. Software generation using TLikodels

cal SLDL elements such as modules,gasses, interfaces, channels, and ports.
These processes run in parallel and communicate with each other by means of
transaction style channels. Through iterative simulation and partition, untimed
specification models are transformed into PV or PVT TLM eiledAt the TLM
architecture exploration stage, a simple scheduler or a RTOS model mag-be int
grated to assist sequential software simulation. In order to generate software i
plementation code towards a specific operating system, a Bpé&sfic library

(e.g., RTEMS[59], QNX [63]) is introduced to replace the RTOS model wigi b
haviourally equivalent RTOS furiohs, and SLDL processes are mapped to real
RTOS tasks. Finally, SLDbased software code is cressmpiledinto execua-

ble binarycodefor a target processor.

These approaches reveal a systewel design point of view and make aw-al
able contribution to calesign and ceynthesis flows. However, such a design
flow is still not straightforward. The first obstacle resides in transforming specif
cation malels described in a SLDL into RTOS based TLM software execution
models. The hardwargtyle channel communication mechanism used in spaeific
tions is not suitable for redgime software design, which may sacrifice the-co
ventional software implementation guiuctivity and legacy. Besides, it is known
that the SystemC library bedaise weakness of not supporting priority assignment
and preemptive scheduling, so the buiilt SystemCkernel scheduér and sy-
chronisation primitive channels are not applicableréattime software mode
ling. Consequently, the idea [62] that simply replaces SystemC library elements
with target RTOS functions may nbe appropriateA usual solution is to iet
grate a RTOS model on top of the SLIN_order to supply necessary dynamic

41

reaktime software services, which is also thethodusedin the thesis. Another
problem is the increasing size of binary code, because the generated software code
includes overhead from some SLDL language constf6&{s[59]. For resource

limited embedded systems, some efficient optimisation techniques mag- be r

quired to reduce the interference from the SLDL library in target code.

2.1.3.3 TLM Modelling of Software Processing Eement

While some research activities have been devised for software development in
the overall systeAevel design flow, recently some methodologies and techniques
have emerged thapecifically focus on the need of abstract modelérspftware
PE (i.e., software running on a CPU) in the context of T[] [111]. This topic
can be seen as a mixture of two aspects: abstract processor modellingdthe har
ware aspect) and behavioural softwareation (the software aspectyigure
2-6 depicts features of a TLM software PE model and some possible modelling
options.

From the hardware designersé angl e,
processor features into functional elements in order to simulateldvghsof-
ware models in the execution environment and cors@tivaremodels withthe
rest of the systemnl[111], Bouchhima et al. present an abstract CPU mode! ali
ing for timed MPSoC HW/SW ceimulation. It provides a set of Hardward®-A
straction Layer (HAL) APIs for yperlayer software models anah anterface for
connecting other system components. This CPU model captures an ardlitectur

view of a processor, which includes subsystems like an execution unit for HW

; Software aspect
Software Processing \17
””””””””””” Bement (GPU) /task 7 task Timing granularity ?
——————————————————— model ' _model / Functions ?
Sftware abstraction || L—L—— — i _
—— - model Y A Generic or specific ?
| | RTOSmodel Timing granularity ?

[At S) : ; N Functions ?
yY _ _ v

Interrupt /O port h
) plicit or explicit ?
\\ Hardware abstraction Interrupt ?

Hardware aspect / =

Figure2-6. Software processing element modelling in TLM

42

t

he

multiprocessing, a data unit wrapping any devices and memory elements, an a
cess unittontaining address space, and a synchronisation unit behavingras an i

terrupt controller. In a subsequent w8k, they introduce a SW TLM commiin

cation refinement approach namegdicai SW bus

resources of HW TLM models. [79], Schirner et al. develop a higgvel prac-
essor model to support software simulation. The abstract processor moddtis mo
elled in a layered approach including five increasing feature levels, i.e., tlie appl
cation layer, the OS layethe HAL layer, the TLM hardware layer, and the bus
functional hardware layer. This model enables incremental and flexible escri
tion of the software subsystem at different design stages.

I f we turn to a software dessimgelene®r s o6
modelshould consist of various software models at appropriate levels of@abstra
tion for behavioural software simulation. Timed software simulation, RTOS
scheduling, and interrupt handling are three key aspects to evaluate research in
this area. In a large number of embedded systems, a RTOS provides a liseful a
straction interface between raahe applications and processor hardware abstra
tion. Consequently, most software processing element modelling approaeles int
grate a RTOS model in cgdto supervise native execution of application, which
is known as RTOS modelling 2, 43, 73, 87, 112, 113, 114, 115h respecof
theresearch in tis thesis concenttang onthe RTOS modelling, a more complete
survey will be giva in Section2.3. In Figure 2-6, timing granularity and furt
tional accuracy are used as dimensions to guide and compare software models,
which offer choices on abstraction levels of tasbdels and RTOS model. Still in
the figure, the hardware abstraction model is illustrated by a dotted frames-this r
flects the current situatiowherebysome software modelling approaches do not
include interrupt handling, nor consider the interoperabaiti hardware models,

i.e., hardware abstraction is implicit in the higlrel PE model.

2.2 The SystemC Language

SystemC is an opesource C++ based systdavel design language that i o
ten used for higtevel system modelling and simulation. Unlike tleneentional

heterogeneous HDISS HW/SW cesimulation, the SystemC modelling fram

43

p e

work can provide a homogeneous prograngrandco-simulation environment,

by which users can write boffoftwareandhardwaremodels ina unified common
language and nativelyompile them as a single process on the host computer. The
SystemC execution model uses a diseestent simulation kernel to schedule
model processes (a set of Cracro3 so as to mimic functional behaviour and
time progress of a target system.

In this section, we will start with a brief introduction to SystemC language fe
tures with regard to concerned support for software modelling. We will then take
a look at the SystemC @aiperative execution model which closely affects-real
time software simulatiarFinally, an example of a simple SW/HW system model

is presented in order to illustrate the structure of a SystemC model.

2.2.1 SystemC Language Features

The SystemC class library is implemented by a set of C++ library routines,
macros, type definitions, tempéss, and overloaded operatoFsgure 2-7 shows
the simplified layered structure of a SystemC application. Users can develop
simulation models based on SystemC and C++ languages, and thagdaim-
ally use some SystemcC libraries depending on specific design necessity, e.g., the
OSCI TLM library[88].

Referring toFigure 2-7, the components of the SystemC library are briefly
classified and introduced as followslore comprehensive description can be

found in the language reference mari6al.

User application

Libraries:
TLM library, verification library, mixed-signal library, other IPlibraries

T : Core language ! :
> I i Predefined channels: | | Utilities:
8 | Modules: SC MODULE | signal, clock, HFO, | Report handling,
2 || 9mulation | Imutex, semaphore, etc. | tracing
Q kernel |, o _—__—__ —_—_—_—_—_—]
= g | I~
g Wa’tt(t'm‘?' || Processes: Interface-comm: Bvent-sync: | Datatypes:
& | (event).\|| oo METHOD, || ports, exports, || notify(event), | logic,

1| SC_THREAD, interfaces, cancel(event). | integers,
i 1| SC_CTHREAD. channels. | L fixed-point

C++language

Figure2-7. SystemC language structure

44

The Simulation Kernel
It schedules SystemC processes in response to an event or a time delay. The
exact execution mechanism will be describethennext &ction2.2.2
Language Utilities
These utility classes provide some assisted services in terms of tracing value
changes, reporting exceptions, and mathematical functions.
Data Types
In addition to suppontg native C++ types, SystemC defines some data types
for hardware modelling, for instance, integer types within and beyoHroit 64
width (e.g.,sc_int <WIDTH>, sc_bigint <WIDTH), fixed point data types
(e.g., sc_fixed , sc_ufixed , etc.) and fouwalued logic types (e.g.,
sc_logic , sc_Iv<WIDTH> , etc.). Because SystemC data types are defined in
classes with inevitable overhesad is recommended to use C++ native types or
simple SystemC integer types for best performance if pog&ib&g.
The Core Language
This category of classes provides main modelling functions regarding model
hierarchy, execution units, concurrency, synchronisation and communication, etc.
1 A module(SC_MODULEIs the basic SystemC building blgakamely an
object of a C++ classThe model of a computing system is composed of
several interconnected hierarchical modules. A module is the container of a
variety of modelling elements such as processes, events, ports, channels,
member module instancasd data members
1 A processis the basic SystemC execution unit (a macro) that is eacaps
lated in aSC_MODULEnNstance in order to perform computation of a-sy
tem. There are three types of process to wrap a function: the method process
(SC_METHOD the thread processSC_THREADand the clocked thread
process $C_CTHREAP The main difference between them is that the
method process atomically runs from beginning to end once triggered, but
the thread and clocked thread processes can be suspended and t®sumed
directly or indirectly callingvait() functions that can be used to simulate

time cost of a real activity. Th6C_CTHREADprocess, a variation of

45

SC_THREADiIs only statically sensitive to a single clock and mainly used
in high-level synthesi$116].

1 Ports (classsc_port), exports(classsc_export), interfaces(abstract
base classsc interface) and channels (a type definition of
SC_MODULENd implementing one or more interfaces) are main language
constructs to model inteanodule communication of a system by means of
the aforementioned interface method call approach.

1 An event(classsc_event) is used to synchronise processes. The innmed
ate or pending notification of an evengvent.notify()) can trigger
(resumeg the process that is waiting onimhmediately or at a future time
point. An event can also be cancelleént.cancel()) whenit is at a
pendingnotification status Compared to thenterface method call method,
using an event is a lightweight synchronisation and communication method
to ease modellingosts.By flexibly changing the opportunity to notifgr
cancelan event during simul at isuspendingiser s can
time at runtime.

Predefined channels

SystemC contains a number of predefined channels with affiliated methods and

ports, which implement some straightforward communication sché€mge-
ducedin Section2.1.2. Note that although the mutual exclusion and the aem
phore synchronisation methods are provided as predefined channels in SystemC,
their characteristics differ from what they usually ardhia realtime software

context. We will address this issue lateSection2.2.2.2

2.2.2 SystemC Discrete Event Simulation Kernel

Apart froma few attempts that develop their own proprietary simulation ke
nels such as the synchronous data flow execution modéBjrand the POSIX
thread implementation model in [69], most current SystemC simulations are
driven by the buikin OSQ discrete event kernel. Weow summarise some sh
tinctive characteristics of the simulation kernel and discuss its advantages-and di

advantages regarding rdahe software simulation in particular.

46

2.2.2.1 The Co-operative Simulation Engine

The current System€xecution model (afteversion 2.1) can be implemented
(compiled) using three thread libraries on different host OS platforms, i.e., the
QuickThread package for UNH{ke OSs, the Fiber thread package for Windows
OS and the more portable POSIX pthreadalifp [117]. But no matter what #h
implementation is, the eoperative multitasking policy remains the same. Simply
speaking, only one process will be dispatched by the scheduler to run at a time
point. The running process cannot be-pnepted by another. In case the running
process is ahread type, it transfers the control to the scheduler by calling
wait() functions or exits; a method process only yields control when its fun
tion body finishes.

Figure 2-8 illustrates the operatingycle of the kernel. Notably, due to ireel
vance to the simulatiocycle the initialelaborationphase (i.e., before the start of
simulation) at which SystemC modies are constructeds not included in the dr
ure

Initialisation : This is the first phase after a SystemC simulation starts, fre., a
ter calling the functiorsc_start() in the main model program. All modelling

processes without a special declaratiodaft_init i alize() are put into a

_ Initialisation _
| Make all eligible |
| processesready | (mmmm————————

|

No ready process, |

S simulation ends. |
[
|-

. Execute aready
P Evaluation —P process
delta cydle Ready
4 Ye Process?
ﬁNO
Update
Ready
Ye rocess?
ﬁN
Time advance
]

Figure2-8. SystemC kernelorking procedure

47

ready pool.

Evaluation: At the evaluation stage, ready processes execute sequentlally, ot
erwise the simulation ends if there aerunnable processes. The execution order
of them is unspecified in the SystemC specificatlarthe ceoperative execution,

a process quits the running state either by initiatively caingit() statement
or simply finishng its function body. There are two kindswéit() statements:
1 Thewait(time) function makes a process blocked for aAnterruptible
time duration and will resume the process aftat $pecified time This will
be also referred to as thait-for-delaymethod hereafter.

1 The wait(event) function makes a process blocked until the specified
event occursThis will be alsoreferred to as thevait-for-eventmethod
hereafter.

Because processes may also notify some events immediately in execution and
thuscauseother processe® beready to run at once, the evaluation stage will i
erate until no process is runnable. Besi@ggcuting a process may access prim
tive channels and change the signal value, which asitisequentlyesult in the
updaing of data at the next update phase.

Update: In order to model the phenomenon that combinational electragic si
nals change values i@taneously in parallelithin the sequential SystemC
simulation, SystemC uses awaluationrupdatemethod to guarantee all signals
are synchronised. At the update phase,ujpdate() = method of each channel
thatpreviouslyhadrequested an update befosecalled by the kernel to renew the
signal with a new value. If this action notifies an event to wake up a process, or
the kernel findghatsome events an® notify blocked process then the kernel
will enter the evaluation phase againorderfor repetition to occur This proe-
dure, from evaluation to update and iteration, is known dslta cycle which
does not advance the simulation clock because everything happens at the same
time point in actual life.

Time advance When there is no runnable pess, the kernel will progress the
simulation clock to the earliest time point specified by a time delay or the nearest
pending eventit is scheduled to notify. Some processes may thus become ru

nable and it ishusnecessary to begin a new evaluate phase.

48

2.2.2.2 Advantages and Disadvantages for Redaime Software Modelling

Regardingfast TLM HW simulation and behaviowoftware simulation, the
SystemC SLDL can supply a homogeneous environment to model SW/HW by the
same C++ language description and drive theisinomlation by the same engine.
The global SystemC clock can be used for both the HW part asdftinearepart,
which avoids the overhead of exchanging local clock information in a heterog
neous cesimulation environmenil18] [86]. However, the HW/SW timing sy
chronisation problem still existsithin the SystemC simulation. The uninterrupt
ble SystemGwait(time) clock advancenethod leads to a problewherebya
process usingvait(time) is not preemptible during its delay duration. The
timeliness to respontb an asynchronous event depends on the length of the cu
rent time delay slice.

In the SystemC discrete event simulation, if events occur at different time
points and make corresponding processes ready, the scheduler is deteramdistic
schedule process execution sequentially. However, if multiple processes get
ready at the same time poifie., during the same evaluation phase or in a-delta
cycle), the SystemC standard does not specify their running [@®@lerThis pa-
tial ordering concurrency has disadvantages for-treed software modelling
which requires predictability andeterminism. For examplenultiple processs
are blocked waiting to execute &ystemC mutex.lock() operation, then
which process will ge& charce torun is nondeterministic, depending on the-o
der of process execution during the evaluation phase. Thévioeir also happens
on the SystemC semaphore synchronisation mechanism.

The SystemC coperative execution model has a native tfect of keeping
the integrity of shared data in atomic process execution. Because a process cannot
be preempted involuntaly, it can access shared variables exclusively in zero
time. However, this feature cannot replace common software synchronisation
methods for protecting shared resogy@@nceit is necessaryo guarantee thexe
clusive access in a period of time by gsawait() function in a timed software
simulation. It is possible that another process/rewrite shared data in the same
delta cycle before theait() delayof the last accessing operatibas been -

gressed, which is nakesiredsimulation behaviour.

49

Consequentlyjn order to model and simulateattime software in the Sy
temC environment, people should try to avoid or otherwise carefullythese

aforementioned erregprone features.

2.2.2.3 Discussions on Simulation Time

SystemC uses an integemlued absol@ time model. A time object (class
sc_time) is represented by two parts: a numeric value and a time unit. The time
value is a 64it unsigned integemhilst the time unit can have six granularities
from the most fineggrained femtosecon®&C_F9 level to he most coarsgrained
second $C_SEQ level. The time resolution is the smallest time that can e pr
sented in a simulation and is defined beforeisggimulation.

When people talk about time in SystemC modelling and simulation, there are
often two temsinvolved

1 Target Time (also called simulated time, target simulation time People

build models in SystemC and simulate them on the host computer in order
to mimic the behaviour of a target system. If models are timed, then people
need to assign time delays for various operations in models, which represent
the corresponding exetion time on a target systerhis kind of "exea-

tion time"can be calledhe "ta r g e t, which melatés to theirtual clock

(also known awirtual time, target cloch. In SystemCsimulation its elapse

can be observed by insertitige SystemCsc_time_ stamp() function in
modelcode

1 Host time(also called simulation time): As a native simulation approach,

SystemC models are compiled for and mma host computer. Running a

SystemC program necessarily consumes some host CPU time, just like all

othersof war e pr ogr ams. People call this "hos
or the fAsimulation time", and regard it
that indicates how fast a simulation is in the real world.

It is worth noting that there is not a simple linealation between the sum
lated time and the simulation time regarding different SystemC simulatiers. B

cause of the discretvent nature of the simulation engine, in general, the aimul

50

tion speed mainly depends on how many events are involved in sonulie¢.,

the more events, the lowttte speed.

2.2.3 A SystemC SW/HW System Example

This section gives a simple SystemC example consisting of a softvemes-
ing element and a hardware componé&igure 2-9 depicts the architecture of this
example. The hardware model transmits integer data to a software process via a

signal channel, and another software process is in charge of outputting- the r

ceived data.
SV PEModule HW Module
: - out_port
signal<int> 5
read)) wite((e DS

Figure2-9. Block diagram ofa System@xample

This example covers several basic SystemC modelling issues, e.g.renhcu
processessoftware sequential execution, amperative scheduling, evehased
synchronisation method, interface method call communication, static sensitivity,
and dynamic sensitivity, etc. The SystemC code of this example includes three
parts: the hrdware modulén Table 2-2, the software modula Table 2-3, and

the main functionn Table2-4.

#001 | SC_MCODULE(HW [/ Har dwar e conponent nodul e
#002 | {

#003 int TXD;

#004 sc_out<int> out_port; //Data transm ssion port
#005 SC_CTOR(HW

#006 {

#007 SC_METHOD(hw_gen) ; /1 Process declaration
#008 }

#009 voi d hw_gen()

#010

#011 TXD = rand() %0;

#012 out _port->wite(TXD);

#013 cout <<sc_ti me_stanp()<<" HW " <<TXD<<endl ;

#014 next _trigger(1l+rand()%, SC_US); /1 Next run

#015 }

#016 | };

Table2-2. SystemC code of a HW module

51

Referring toTable 2-2, the function of the hardware module is simply enhibo
ied in aSC_METHOIIhw_gen) , which executes repeatedly after a randomised
interval (see line 14). In each execution, it writes a random infEg§Er to the
output port by calling the method on the port.

Referring toTable 2-3, there are twd&SC_THREADype processes in the sof
ware processing element modufd.line 12, thesw_isr process is sensitive to

the value change of the_port and then receives data frotn ©ncesw_isr

#001 | SC_MODULE(SW// Sof t ware PE nodul e

#002 | {

#003 Sc_i n<i nt> in_port; // Data receiving port
#004 sc_event evt _sw,

#005 i nt RXD;

#006 bool ean cpu_busy; //CPU is occupied
#007 SC_HAS_PROCESS(SW ;

#008 SW sc_nodul e_nanme nane):sc_nodul e(nane), cpu_busy(fal se)
#009 {

#010 SC_THREAD(sw_i sr);

#011 dont _initialize();

#012 sensitive<<in_port; //Static sensitivity
#013 SC_THREAD(sw_out put) ;

#014 dont_initialize();

#015 sensi tive<<evt_sw;

#016 }

#017 void sw_isr()

#018 {

#019 for (;;)

#020 {

#021 if (!cpu_busy)

#022 {

#023 cpu_busy = true;

#024 cout <<sc_tinme_stanp()<<" sw_.isr runs"<<endl;
#025 RXD = in_port->read();

#026 wait(1, SC_US); //wait for delay
#027 cpu_busy = fal se;

#028 evt_sw. notify(); /1 Trigger sw func()
#029 }

#030 wai t(); I/ Revive static sensitivity
#031 }

#032 }

#033 voi d sw_out put ()

#034 {

#035 for (;;)

#036 {

#037 if (!cpu_busy)

#038 {

#039 cpu_busy = true;

#040 cout <<sc_time_stanp()<<" sw_ output data:"<<RXD<<endl;
#041 wai t (2, SC_US);

#042 cpu_busy = fal se;

#043 }

#044 wait();

#045 }

#046 }

#047 | };

Table2-3. SystemC code of a SW PE module

52

#001 |int sc_main(int argc, char **argv) //Miin function
#002 | {

#003 sc_si gnal <i nt > sig;

#004 HW hw_i (" HW noduel ") ;

#005 SWsw_ i (" SW. nodul e");

#006 hw_i . out _port(sig);

#007 Sw_i.in_port(sig);

#008 sc_start (100, SC US);

#009 return(0);

#010 |}

Table2-4. SystemC code of the main function

finishes execution, it notifies the eventt_sw in order to make the other o
esssw_output ready (see line 28). The two processes wsd(time)
statements to simulate their execution time costglg&eand 41). Sincé is as-
sumed thathere is only one concepl SW PE the two processes need to execute
sequentially. A flag variable is used to guarantee that only one software process
can be at the running state (i.e., during a delay interval) at a time.

Referring to thanain functionin Table 2-4, modules and channels aneated
and instantiated (line 3-6). Correspondingports on bottHW and SWmodules
are connected by the channel objsigt (lines 6, 7) in the elaboration phase. A
call to the functiorsc_start() begins the simulation, which will continue for
100 microseconds target time in our sintigla (line 8).

It should benotedthat, in this example, two software processes executedaccor
ing to the SystemC native @perative scheduling policand use ta uninterry-
tible wait(time) function to advance the target clocKhat is, one software
process executes up to completion and one process canvevhptihe other. As

a result, if ahardwaresignal arrives when aoftwareprocess is executing, the

Missed Missed
—~ -~
/ \ 7 \
value!| ,/ \|value: ,/ uel \ alue
hw_gen 1 | L8 /I 7 | L /I 9
/ \ 4, \VY g
- N_ .~ N_ .~ g
sw_isr -] -]
Sn_output
\ \ | \ | | | | \ \ \ »
0 1 2 3 4 5 6 7 8 9 10

Ll
11 time (us)

Figure2-10. Non-pre-emptible execution

53

softwae Interrupt Service Routine (ISR) cannot serve théardware interrupt.
Figure2-10 shows thigphenomenonin whichinterrupts are missed at time points

3 s and 6. In Chapter 3we will present the solution to this problem.

2.3 RTOS Modelling and Simulation in Systernlevel
Design

In recent years, RTOS modelling and simulation have been proposed &s impo
tant embedded software validation techniques in the context of embedded systems
systemlevel design. This section surveys related Sthdised RTOS modelling
and simulatiorresearch There are several criteria by which to classify ant-co
pare different appaxhes, for instance:

1 By application scopeVarious RTOS models have been developed for-high
level abstract software simulatigdl2] [72] [113], nativecode software
simulation[119] [87], HW/SW cesimulation[120] [121] and systerievel
design flow refinement researf4s].

1 By software simulation methad&s already introduced i8ectionl.5, there
are two main softwaremsiulation approaches being used in systevel de-
sign: Instruction Set Siolation and behaviouraimulation. Accordingly,
researchergdevelop ISSbhased RTOS modefer complete and accurate
validation of final software implementatigh08] [109], whilst behavioural
RTOS simulation modetse more widely used for fast and flexible software
early exploration.

1 By functional accuracyAccording to the functional accuracy of the RTOS
model, RTOS simulation modelre summarisednto three categoriem
[77]: abstract OS modekhat rely on communication pnitives and sche
uling service by the underlying SLDL kernglrtual OS modelshat mimic
the functionalities of the final OS but with independent implementation
code, andinal implementation OS modelghich can be used in ISS simaul
tion. It should be nied that the definition odbstract OS modelseems to
overlook the fact that SLDLs fail to supply enough RTOS capability

natively.

54

Untimed Approximate-timed Cycle-accurate

/—/H
| System analysis phase [System exploration phase Implementation phase Design How
Abstnrgét etlask) Native apgligation oode\ Compiled
{ thread1() ¥ thread2() ; application binary
L)l 20 3] S — B — for target
; ARt Real RTOS
istart()|sleep() kill()| Task Man. ‘ <he. ‘ s/nc. Model
terminate() IR | Real-time Qock Port by
Abstract RTOS : J
r;odel Ceneric or real RTOSmodel QL @
; : \ Target 1SS \
Processing Hement Processing Hement
CGoarse-grained timed Fne-grained time native- Cycle-accurate ISShased
abstract RTOSModelling application RTOSModelling RTOSsimulation

Figure2-11. Three types oRTOS simulation models

We categorise and analyse RTOS modelling and simulation research based on
their timing and functional accuracy kg, as wk as their applicabilitystage in
an embedded system design flow. Referringrigure 2-11, most existing mét
odsfall into three maircategoriescoarsegrained timed abstract RTOS modelling,
fine-grained timed nativeodeRTOS modelling and ISS based RTOS simulation.
The fAgoai sedograaidndido neriteria refer to
of software models (including both the RTOS aspect and SW applications), and
they both belong to the domain of behavioural software simulation.

2.3.1 CoarseGrained Timed Abstract RTOS Modelling

Abstract RTOS modelling and simulation focus on early design phases, such as
system specification, system analysis and SW/HWpgarétioning stges. Atthis
time, the target platform is undetermined aodtwarecode has not been ingl
mented Also, it is not possible tpresume specific RTOAPI servicesn the sg-
temlevel simulation framework before enough decisibagse beemade regard
the sysem architecturedowever, general structures and execution mechanisms of
the RTOS model should still be not far from real RTOSs, in order to make sure
that the RTOS model has a practical usability for-tieaé software desigmb-
stract RTOS modelling isupposed tprovideextensiblereattime systenmodé-
ling capabilities and be fast to be changedwolvingsimulationloops.

In this approachsoftwareapplications are normally organised as a collection

of abstract tasks associated with coaysened émporal properties, e.g., period,

55

deadline, offset, and execution tin{@42] [72]. Periodic, aperiodic, and sporadic
tasks are typically explicitly defined by different timing characteristics, wimeh
clude the main information obtained by the RTO® orderto hardle a task. A
qualified abstract RTOS model needs to at least provide prloaggd pre
emptive scheduling services and basic primitives to cotitedi st ar t 0i-and ft er m
nationo of a task. This feature i s essenti :
order to overcomethe previouslymentionedlimitations of underlying SLDL
bases. A taskods execut i watfocdelaystatement. usual | y n
The delay interval of every task instance (i.e., a job) is either statically annotated
by estimatio or dynamically randomised by some statistical theories, eig. un
form distribution [8]. T h e -measwedmany and bagkn not ati ono ti min
method is also proposed [ihl13] [43], but it is applied at a coarggained timing
granularity (i.e., taskevel). Intertask synchronisation for resource sharing,
communication services and interrupt handling are usually not adequatelg-consi
ered in this kind of modeThe advantage of this method is the fast simulation
speed, since applications and RTOS are highly abstract models. The main dra
backs of this method are low timing accuracy (coarse time annotations for appl
cations and inadequate modelling of RTOS tiginverhead) and incomplete
modelling capability bRTOS functionalities. Besides, in most existing research,
there isa lack of SW/HW interaction modelling, arfthrdware parts of a CPU
subsystem are not explicitly modelled eitiEnis means thasoftwareapplication
tasks andheabstract RTOS modé&brm the softwarePE modeby themselves
Gerstlauer et al. present early SpecCGbased abstract RTOS modielorderto
integratesoftware scheduling support in the TLM model refinement fl¢48]
[122]. This RTOS model providels basic primitives to support task management
and scheduling. RTOS timing overheade not mentioned sufficientlyBesides,
it uses the imperfeatvait-for-delay time advance method, so interrupt handling
cannot be accurately modelled and the timing accuracy is limited by the minimal
resolution of time annotations. A subsequent wfR3] resolves this initial
HW/SW synchronisation problem by using an improwvedit-for-delay method
naned AResul t Or ilrerecéneZdbel dtaldl24l] use the gystemC

SLDL to implement an absta®TOS model whre most parts are based on the

56

work of [43]. They solve the HW/SW timing synchronisation problem by using
the SystemQvait-for-eventmethod, which is also utilised wur researchn this
thesis.

Early work by Madsen et al. presents a Systdma€ed abstt RTOS model
[112], which is further extended for MPSoC simulati@& and NoCsimulation
[125]. The basic idea is to decompose an embedded system model into three co
pact submodels: the task graph model, the scheduler model, and the limkicom
nication model. Ta schedulemodel provides both fixegriority scheduling (e.qg.,
ratemonotonic priority assignment) and dynarpigority scheduling (e.g., EDF)
services by using three primitives (i.e., run,-prept, and resume) to manage
tasks.Thetask model is characterised by coagsained temporal information or
estimates, e.g., WCET, BCET, period, deadline and offset, but without acyy fun
tionality code. This RTOS model &sgood basis for higlhevel system exploration,
but it also has some litations. Firstly, RTOS serviceverhead arenot included
in the model Furthermore, its task state machine model is different fhathus-
ally foundin a typical reatime kernel, and the task modelasotoo simple to
mimic a realsystem Finally, its link communication model heavily relies on the
SystemC MasteBlave messageased communication library fdroth software
internal and inte-module communicatios, whose behaviourare different from
common RTOS synchronisatiamd communicatiomechanims.

Hessel et al. describe an abstract RTOS model in SystemC SLDL for use in the
embedded systems refinement flfiil 3]. Both the structure and implementation
of this RTOS model is similanot Madsends model ; ddedonc e,
simplistic task modelling and incomplete RTOS service modelling.

Moigne et al. propose a generic RTOS model for-tiead systems simulation
[114]. This work hasthe advantage of considering timing overheau three
RTOS services.e. contexdoad time, contexsave time and scheduling algorithm
duration. Nevertheless, this work does not address task functionality modelling,
interrupt handling and synchronisation modelling.

Hastono et al. use an abstract RTOS model fortimal scheduling asses
ments[126] and embedded software simulatigi2]. The RTOS model provides

basic task management services similathe models ofserstlauer andladsen.

57

Various static and dynamic scheduling policies, e.g., edenen, timetriggered,
fixed-priority RMS, dynamiepriority EDF, etc. are integrated in order to evaluate
and compare different task scheduling decisions. The functionality of a tdek is
composed into nepreemptive atomic actions and peenption is assumed to
happen only at boundaries of atomic actions. Consequently, thisnppeon
model cannot simulate interruptsaistically.

Hartmann et al. present an abstract RTOS simulatiorehasla part of their
SystemCbased system synthesis design fli7]. They modelsoftwareon a
generc runtime system rather than directly molded existing RTOS services,
l.e., all conventional software synainisation and intetask communication
mechanisms are modelled by the shared objects method. The intention is to inherit
their previous hardware modelling work and thus allow a seamlessédvigh

SW/HW specification environment.

2.3.2 Fine-Grained Timed Native-Code RTOS Simulation

Nativecode RTOS models are used to support simulation of ‘egkl soft-
ware functional code at the system exploration phase, when the target platform
and the RTOS are in the process of being selected, and application scftware
der development.

Its timing accuracyhas beerimproved compared to abstract RTOS models.
Softwareexecution delays are measured and annotated in models at some finer
granularities (e.g., function level, block level, and source code line levelmso ti
ing accuracy becomes a major focus in this approadbk.kifid of RTOS simu-
tion model often suppscomprehensive and specific services, and costime
timing overhead information. In some research, a real RTOS is modiist
[87] [129] [130], whilst some other works attempt to build a generic RTOS model
[131] [12] [130]. Because of its much faster simulation speed (twbreetorders
of magnitude faster than ISS simulatidr28]) and acceptable loss of modelling
accuracy, finggrained imed nativecode RTOSand softwaresimulationis pro-
posed as the counterpart of TLM HW and communication modelling.

Jerrayads group pesadfiressingsativeoftveaeesimula-s o f

tion in SoC HW/SW ceimulation, and presents two differenpisal software

58

stud

simulation methods ifiL21] [128] [130], respectively.n [121] [128], they build a
softwaresimulation model (including OS, applicatisoftwae, and a bus fum
tional model) annotated with timing delays and run it as a host Unix process,
whilst, thehardwarepart is modelled in SystemC SLDL. The communicatien b
tween softwareand hardwareis implemented with Unix IPC methods, such as
shared menmy and signal. In order to solve the HW/SW synchronisation problem,
they propose a fdvariable timing granul a
trading off the simulation performance with the timing accuracy[180], they
usea different way to model the softwargart whereapplication tasks are sahe
uled by an OS model by using the multreading functionality of the host OS,
and then the wholeoftware part is integrated into a SystemC HW/SW- co
simulation framework. Both a prmptive FIFO based scheduler and a real eCOS
RTOS are implemented in the OS model library. With the same RTL model on
the HW side, compared to the cyeecurate 1ISSoftwaresimulation, the co
simulation performance with native RTOS simulation is reportedrag thrders
of magnitude faster, and the simulation accuracy achieves 86% of the IS8- In ge
eral, from the RTOS modelling aspeittis research has tteelvantage of congi
ering various detailed RTOS service overlsad accurately modelling HW/SW
interactons (e.g., interrupt handling and memory access). However, their models
sometimes utilise the underlying host OS services, which may deteriorate the
portability and negate SLDLO6s intent as .

A SystemGCGbased native simulatiomodel for a commercial Texas Instrument
RTOS is presented by He et al[87]. It models common RTOS services such as
task management, priorityase scheduling, task synchronisation, /O, and-inte
process communication with timing overhsadtimate from the target procs-
sor 06s benchmark sheet. T h-stamp prediction at or L
method for interrupt modelling, which is based on an assumption that application
tasks can repottappening time of their future synchrosation everd to the ke-
nel. This tight requirement requires pegjuisite analysis of the whole system and
may hence restrict its usability.

A HW/SW cosimulator that includes a spee@alur pose €I TRON 4.0

model is introduced if129]. Itnai vel y si mul ates a compl et

59

model with applicatiorsoftwareon the host computer. For the HW aspect, C/C++
or HDL HW models can be included in the simulator aadcommunicate with
the softwaresimulator by using Windows IPC metheodrhis workhas a dra-
backin that its simulatedlock relies on the host OS clock, i.e., it is untimed from
the perspective of targebftwaresimulation. Furthermore, host IPC methods may
bringanextra and unexpected simulation overhead.

Chung et al. describe a generic SystebaSed RTOS model which is oriented
for MPSoC simulation irf131]. Its generic RTOS and POSIX like APl models
support native application code to execute with RTIMTHW models. However,
its RTOS task machine model lscking in modelling realtime synchronisation
mechanismsAnd it alsouses a polling method to check interrupt events in every
clock-cycle, which may result in undesired consequsrbat interrupt lagncy
dependingon the length of a simulation clock cycle, i.e., itisfaanno-t ati on
dependent o HW SW timing synchronisation app

Posadas et al. develop a comprehensive POSIX compliant RTOS simulation
model on top of SystemC ii2] and apply a dynamic delay annotation method
by assigning each C++ operator with a corresponding tatgdorm execution
cost. In[132], they address té global variable accessing problem and propose
three joint solutions. Their first method is a figeined annotation technique (see
Section3.1.2; the second method can guarantee a correct functional simulation
result but still has the delayed interrupt handling deficiency due twaiisfor-
delaymethod (see Sectid®1.1); the third method is satisfactory and similar to a
method used in this thesis (see Sec8¢h3.3, but it focuses on abstract software
programming models by providing specialprimitive channel tgorotectglobal

variables.

2.3.3 ISS-based RTOS Simulation

ISSbased RTOS simulation can be used in a HW/SWicmlation frane-
work when embeddesdoftware has been fully implemented. The high accuracy,
low simulation performance speed and late availability are its contradictary cha
acteristics, and therefore make it applicable for the late development phases where

high reliability and high accuracgre the man focuses of simulation. Finished

60

softwaresource code is croxompiled and simulated in a cyedecurate instrct
tion set simulator that representus the t
ally wrapped in a SLDL module. A real RTOSoéien ported in the ISS to supe
vise software application. Other SLDibased HW component models areno
nected with the 1SSrapper model by the SLDL communication backplane to
achieve a csimulation. This cesimulation approach is similar to the traditional
cycleaccurate embedded systemsimulation approach, which uses HDLs to
model hardware components at RTL level and uses the ISS to execute software.
Compared with the conventional approach, this unified sy&eet HW/SW ce
simulation approach can emfw@ design productivity by raising the abstraction
level of HW models and then gain simulation speedup to some eMi@never,
this may somewhat contradict the systdavel design concept of raising abstra
tion level for more efficient design space explan, because it does nchiange
thesoftwaresimulationmethod

Chevalier et al. integratereC/OS 11 RTOS on an ARM ISS which is wrapped
by a SystemC modg¢lL08]. Their modelling framework constructs a conversion
interface between SystemC API and ti&/OS Il API in order tolet the RTOS
schedule System@Basedapplication softwar@rocessesBenini et al. build a S
temGbased multprocessor caimulation platfom [109] that uses SystemC to
wrap several cyclaccurate ARM ISS simulatots run multiple crossompiled
nClinux kernels andoftwareapplications.

To tradeoff simulation speed with accuracy, the approach¢$2f] and[133]
take a different approady runningsoftwareapplication on the ISS whilst bdH
ing a RTOSmodel on tp of the SLDLs. However[120] only supplies task pre

emption services and considers limited RTOS timing ovediead

2.3.4 TheProposed RTOS SimulationModel

In this thesis a SystemCGbased generiRTOS modding and simulationep-
proachwill be presentedEssentially,it falls into the mtive.codeRTOS smula-
tion category butalsointegratessomeabstract RTOS modellinigaturesn terms
of supporting abstratask models

61

Compared with existingesearchthe proposed RTOS simulation mocheh-
bodies the mixed timing software modelling idé&a $ection3.2) by supporting
hybrid abstract task models and natogele task models in a single simulator
orderto enhance modelling flexibilitgnd expand applicaticshomain
FurthermorethegenericRT OS mo d e | 6 sis determioed bycsurye | i t y
ing some popular RTOS prodascand standards. It ainhs supportmorerealistic
software simulation than other simplistic RTOS modelsMost importantly, he
high simulation performance and good timing accuracy are preserved at the same
time inthe RTOSsimulaton modelbecause of thenderlying Live CPU Model
The details of this model will béescribedn Chapter 4

2.4 Summary

In this chapter, some basic conceptstransactiodevel modellingresearch
have beerntroduced The focus is to survegurrentabstraction levelstiming de-
grees, and communication modelling the TLM research contexin order to m-
spire our research on rethe software behavioural modelling and simulation
that can beseen as the TLM software computation aspdotvever, wenoticed
that existing TLM abstraction levels and madie not appropriate arateinsu-
ficient for realtime software modelling. Thu# the next chaptewe will define
somereaktime embeddedoftware simulation models in the context of SystemC
based TLM research.

SubsequentlySystemClanguage constructand theco-operative simulation
kernel were introduced A SystemGbased HW/SW system example mode&ls
presentedThis demonstratebow the use of uninterruptiblevait-for-delay stae-
ments may lead to misg external interrupts in simulation, whidfighlights a
problem tobe solved.

Somestateof-the-art RTOSmodelling approaches ansimulationmodelsfor
SLDL-based systerfevel designwere surveyedalsa They are classified into
three categories depending timing and functional accuradgvels. Among them,
the abstract RTOS modelling approach and the natde RTOS modellingpa

proach areof concernto this thesis We aim to propose geneic mixed timing

62

RTOS simulation model with improved features in terms of timing accuracy,
functionality, and modelling flexibility.

63

Chapter 3
Mixed Timing RealTime Embedded Software

Modelling and Simulation

In previouschaptersSLDL-based softwarbehaviouraimodelling andsimula-
tion have been introducddr validation of reatime embeddedoftware applia-
tions and RTOXIn the context of systedevel and TLM design Threeobjectives
can bebeen identified as keygquirements

1) Fast simulation performanc®empared to ISS simulation

2) Flexibly modellingsoftware functions and their timing delays

3) Accurate simulation resulia terms ofboth functional and timing aspects

if they areboth modelled

This chapter presents SystemGbasedmixed timing software behavioural
modelling and simulatiorapproach(referred to as the mixed timing approach
hereafter)and the associated Live CPU ModeA basic assumptiowof this -
proach s thatthe proposedsimulationmodels are applicable after HW/SW part
tioning and applications can be divided into tadkgnultiple tasks need to e®-
cute concurrently and pmptively, then a behavioural OS model shouldre i
cluded in simulation.

Referring toFigure 1-7 (Pagel8), a SLDL-based behavioural simulatiap-
proachincludesthreemain stepsi.e., schedué of processs naive execuion of a
processn zero targetime, andtargetdelaytime advanceaccording toannotation.
Thefirst and secondtes arethe functional aspecof behaviouraimodelling and
simulation, whereashe third step refers to thé&ming aspect According to the
OSbasedtask simulation model assumption, in this thesis, the functional aspect
of modelling and simulation is relatively fixexb software functions are wrapped

in OStasksandthe OS model contls their execution order

65

In this chapter, the mixed timing approadainly seels answers tdhe above
threekey requirementérom thetiming perspectiveof modelling and simulatign
but also consides software functional modellingSeparating timing issues
modellingandpreserving high timing accurady simulationare twocharactes-
tics of this approach.The conventionallyannotatiordependent SLDibased
softwaremodelling ancsimulationis treatedastwo partially separatestages:

1) Thetiming modellingstep mainly refers tannotating target platform ex
cution coss (time delays) and defining time advance pointssoftwaretask
code,whenSLDL-basedsoftwaretaskmodelsare being built.

2) Thetiming simulationstepmainly refers toadvancinghe target simulated

clock according tahose annotated timdelays when theseSLDL-based

softwaretask modelsare dynamically simulated upon a SLDL simulation

engine
This approactallows flexibility in softwaretiming modelling achevesgood
timing accuracy imsoftwaretiming simulation and maintains high simulation
speedIt has following basic features:

1 It utilises multiple-grainedsoftwaretiming information andariableannog-
tion methods fosoftwaremodels at the modellingtage(in Section3.2). It
facilitates model builderand simulation user®r using a variety of avhi
able means of timingstimation sourcesandallows building mixed timing
simulationmodels with varying timing precisidior workloadand accuracy
tradeoff.

1 It preserves highardware interrupt handlirgndsoftwarepre-emptiontim-
ing accuracy within a certain bouatithe timingsimulationstage The Live
CPU Model (in Section3.3) is introduced tosupervisesoftware timing
simulation and monitor external interrupbssimulation By excludng pos-
sible interrpt disabled caseée.qg., critical setion codg, the Live CPU

Model caninterruptcurrentsoftwaresimulation(i.e., stop its delayime a-

1t is necessary to point out that the separation of timing issues in modelling and in simulation is

fipartial o, because these two aasnptatedtimed sofiwanm o t

simulation

66

be

tot a

vance as soon as aiRQ is caughtand resumeemaining time advance for
the preempted taslat the correct time pait, just like real CPU execution.
Compared tosome conventionalpre-emption simulation approaches that
trade off simulation speed for accuradye tsimulation performancoaf the
proposedapproachs not sacrificed wlitst timing accuracy isustained

1 It offers varying system simulation similarity and +ime information -

servability. By configuring the Live CPU Simulation Engine withe vai-
ablestep and the fixedtep time advance methodshe users can make
tradeoffs between simulation similarity,nformation observability and
simulation performanc@n Section3.3.4).

Figure 3-1 illustratesthe mixed timing software modelling and simulatiep-
proach In the figure,variousgrained delayime slices e.g.,tasklevel, function
level, and source code listevel, can beannotated to the same software maatel
the timing modelling stage The Live CPU Modeluses hese dferent sizes of
time annotatiorstatementdo progress the targeimulatedclock. In this mxed
timing approach, thgranularityof a time annotatiordoes not interferewith the
dynamic timing accuracy diW/SW synchronisatior{i.e., interrupt handlingjn
timing simulation.Interrupt handlingloes noheed to wait until @elayslice has
totally elapsed, i.e., reaching a delay bound@ny.the contraryan ISRcanpre-
empt current running software task as soonresxéernalinterrupt happens, just
like the situatioratthetime pointt;. After anISR finishesexecuion at timet,, the
preempted software task is resumed dnelremainingvalue of the previously
interrupteddelayannotation slice ialsocontinued.

Case 1:Task-level annotation | \mms N |
. e N /L J—

Case 2: Function-level annotation/ /! 250ms 4 Ny 1 100ms T|m|ng
ISR /2P S N N)l L T) Modelling
Case 3: Source code line-level D R Qe AU D U Y ome 7
annotation | HMS oM) Sms| || 2MSTAmsy 10ms
z‘ app. SW execution (L] app. SW execution| 2 Timing
SE— timeSmulation

AnIRQ || Executing O time advance start

arriving the IR e timeadvance stop

Figure3-1. Mixed timing software moelling and simulation

67

In the reminder of this chaptesome problems and approachegarding tm-
ing issues in existin§LDL-based software modellirend simulatiorwill be su-
veyed(Section3.1). Section3.2 describegshe mixed timing approadn detail,in
terms of various timing techniqudsr softwaremodelling and simulationThe
Live CPU Modelis introducedn Section3.3, which is not only important forrti-
ing accuratgpre-emptive softwaresimulaton but also meaningful for extending
the softwareprocessing element model to the TLM modelling context. Finally,
evaluation metrics anexperiments are presented in Sectiohand Sectior83.5
respectivelyin orderto demonstrate benefits die proposedapproachSection

3.6 will summarisehis chapter.

3.1 Issuesin Software Timing Simulation

This sectiorbriefly surveyssome timing issues irelated SLDLbased beha
ioural softwaretiming simulation approache€oncerning two important simat
tion timing characteristicstiming accuracyandsimulation performancewve will

introduce their capabilitiesndalso theirdeficiencies

3.1.1 Annotation-DependentTime Advance

In SLDL-basedreattime softwarebehaviouralsimulation, asoftwaremodel
executes its function code on the hG8tU architecturewhich does not have any
timing correlation tats execution cost on the target CPAtcordingly, the SLDL
wait-for-delay function (e.g., wait(time) in SystemC)is usedto model sof-
ware timing behaviour on the targét?] [43]. On the one hand, &dds target
platform delay annotationia softwaremodek; on the other, ilsoprogresesthe
simulakd clock Hence software timing modelling (adding delays) antéiming
simulation (using delaysjre not separated this kind of time advance approach

However, the uninterruptible characteristic of thait-for-delay statements
problemati¢ with thefi a n n o-tl @ p & 0 d emare time advdndte methoe-b
coming an issuein software simulation Figure 3-2 shows examplesegarding
wait-for-delay statements in softwarsimulation.There are two application tasks

(i.e., task andtask) andan ISR that seres an externahardwareinterrupt. The

68

Priority task1 Iwajt(Z) ;

low | tase2 | wait(®) ! ,
= D T— N
high ISRis delayed wrongly.
=" o ty time
happens

(A) Delayed interrupt handling

Priority taskl Iwait(2) ;

B
low | task2 I wait(8)
IR DEAN
high ISRand task2 execute in parallel.
tof time
HW IRQ
happens

(B) Wrong concurrency in a uniprocessor system

Zero-target-time - wait-for-delay + Synchronisation
SN execution function 1 point

Figure3-2. Annotationdependent time advance method

interrupt event should be procedss soon as possibbmceit occurs just likethe
normalsituationof a realtime system.

In simulation, mce await-for-delaystatements invoked,the value of software
delaytime will be totally consumedvithout a possibility ofinterruption.Conge-
quently,task can only execute after theait-for-delay statement ofask is fin-
ished. In suls cases, mcean interrupt event is raised byhardwaremoduledur-
ing this delayduration e.g, at timetp in theexample it may lead tawo problem-
atic simulaton phenomenaepending on modelling methad

Figure3-2 (A) shows the first possible problendefayed interrupt handlirg
Becausehe wait-for-delay statement of theunningtask cannot be iterrupted
the ISR can only start whetine currentdelaytime slice finishes at timet;. It can
be observe that the ISR is wrongly postponedather tharservingthe interrupt
requestat the expectktime point. Under such circumstangeboth softwaretick
schedulingandthe HW/SW synchronisatiofi.e., interrupt handlinyycanonly oc-
cur at the boundaries of delay annotatior&mulation time advance is dependent
on the granularity of annotatioin simulation, bothhe preemption latency and

the interrupt latency; are unrealistically restricted by length délays that are

69

definedat the modelling stagé&Jnderthe worstcircumstanceghe latencyequas
the largest time delay valu€his time adance method makes it hardrimdel a
pre-emptivereattime system or a real interrupt handling procedure.

Considering the second caseHRigure 3-2 (B), the model programmemay
choose to start the ISR asogoas it israised However,this brings a critical prob-
lemin thatthe ISRandthe exising taskexecutan parallelin simulation, i.e., they
areboth at theRUNNING statefrom the perspective of CPktheduling Obwvi-
ously, in a uniprocessor systerhis situationcamot occur For this simulation
problem programmershereforeneed to correct thaffected time delain orderto
serialise software execution with right timing behaviduris problemresembles
the conventional optimistic esimulation that may require time rollback and re
execution.

In the following Sections3.1.2- 3.1.4 three existingechniqueswill be intro-
duced, whichaim to remedy this annotatiesbependent time advance problem
More importantly we will presentour complete solutionshei mi x miag gt |
proactotLtime efi CP U théoedtefthis chiapter.

3.1.2 Fine-Grained Time Annotation

An intuitive meansof solvingtheaboveme nt i oned fAdel ayed interr
problemis to usemore wait-for-delay statements with firregrained delaytime
slices[132]. In the context of mixing untimed and timed TLM modéienassia
et al. propose a similar idea to defiseme pseudo synchronisation poimsin-
timed TLM modelsvhere other timed TLM threads catetect interrupt more dr
guentlybut without advancinghe simulaed clock[3].

Figure 3-3 illustratesthis fine-grained time advance approadhhe software
model code is divided into small segmendise granularity ofwait-for-delay time
annotations idimited to an acceptableextentat the model building stag&his
meansthat there arenoretime advancepoints inthe models As a consequence
interrupt eventgan befrequentlycheckedn orderto more realistically represent
the interrupt latency ithe simulation Unfortunately the HW/SW timing sy-

chronisatioraccuracy is enhancedatostof:

70

Prionity yog1 Jwodwo
low | {ask2 Iw(t)'w(t)lw(t)l
0 g
hich IR RN
[le]
IRis till delayed.
to] 1 time
HW IRQ

happens

Figure3-3. Fine-grained timing annotation

1 A large quantity of time profiling work and annotation statements when

building simulation models

1 More wait-for-delay statements na frequent SLDL simulation engine

context switclesandthus large overhead.

1 Interrupt handling may still be delayed, although the delay time is meior b

cause of finggrained annotation slices.

Compared to this approactmne-grained time annotatiois also suppo#d in
the proposed mixed timing approa¢owever,this is not anecessarygondition
to ensurehigh timing accuracy of HW/SWsynchronisation. ThélW/SW syn-
chronsation problem is tackled by the Live CRWbdelin this thesiswhichfully
relaxes the limitation othe annotatiordependent problenhe Live CPU time
advance approactan maintain the same and high timing accuracysé&ftware
preemption and hardware interrupt handlingt simulation runtimg no matter
what the time annotation granularity idence Jess overheadan be expecteithan
in thefine-grained annotation approach.

3.1.3 Multiple -Grained Time Annotation

For UNIX processhasednativecode softwareand Systemasedhardware
co-simulation,Bacivarovet al.discusdradeoffs betweersimulation performance

andtiming accuracy by adopting muttie-grain HW/SW timing synchronisation

[121]. The basic idea is to reduce or increase the granularity of time annotations

depending onthedesired timing accuracy of interrupt handling.
The approach ifil21] usesasynchronouso-simulation in whichsoftwareand

hardwaresimulatorsare two separate UNIX processeBhe software and haw

71

ware simulatorsnanage their local clockseparatelyand exchange timing infe
mation viainter-process communicatioft is known thatPC overheasimay con-
tribute a large portiomf simulationtime andaffectthe simulation performance.
The HW/SWtiming synchronisation ii121] can be seen ascompromisef the
classicconservativealgorithm[134]. Therefore HW/SW timing synchronisation
accuracymay not be guaranteed when usinmacsegrainedgranularity oftiming

annotations

3.14 Result Oriented Modelling

To solvethe problemin Figure3-2 (B), Schirneret al.introducetheir time ca-
rection metlbd Result Oriented Modellinfpr SLDL-basedpre-emptivesoftware
simulation[123]. It still usesthe uninterrptible wait-for-delay statementor time
annotation and clocgrogressbutit can virtually interrupt wait-for-delay stae-
mentin order to enabl@re-emptionat any time pointin the case of an interrupt
event the ROMbasedRTOS modefirst records pre-emptiontiming information
Then, after the finish of both the existimgit-for-delay statement and interrupt
disturbance, iwill finally makea new correctivevait-for-delay statementor the
affected time advancsep

Figure3-4 illustratestwo possiblanterrupt handlingscenariosn the ROM ap-
proach In case (A), the applicatiotask begins torun at ty andthencalls a wait-
for-delaystatementanging 8 time units frornyto t3, SO as to mimic its execution
timing cost Thisstepis calledaniii ni t i al ROM becacse it simpty
assumes that thtask can solely occupy the CPU during thsit-for-delaytime
interval. However, &at;, ahardwarenterrupt request is detecteéthus,the RTOS
scheduledispatches correspondingSR as the neiRUNNING taskto pre-empt
the lowerpriority task. Herein, theRTOS modelchange%S statusof task from
RUNNING to READY, andrecord the pre-emption timestampin the TaskCon-
trol Block (TCB) of task. Afterwards, the ISR executes some functions agad b
gins itswait-for-delay statementDuring the time durationfrom t; to t,, although
both thelSR andtask are suspended byvait-for-delay statements, theitask
statesaredistinct in the sense of RTOS task managemafenthe ISR finishes
at t;, RTOS changes OS status tdsk to RUNNING aain More importariy,

72

Calculate pre-
emption amount:

t2—11:3
L ' Initial prediction: Correction:
Priority taskl wait(3) wait(8) wait(3)
|
oW tasio R k(3
. IR IR (kt=3)
high
to ty tr t3 ty time’
HW IRQ
happens
(A) Pre-empted task wakes up later than the finish of ISR
Calculate
pre-emption
L ' Initial prediction: amount: || Correction:
Priority g4 Iml wait(8) tot1 =2 wait(2)
low s
task2 kt=6 kiF2
< !
. IR HIR (kt=3)
high
t0 t;f tz t3 t4 time’
HW IRQ
happens

(B) Pre-empted task wakes up earlier than the finish of ISR

Figure3-4. The Result Oriented Modelling approach

RTOS calculates how londgask is preemptedas its new delay timeinterval
namelyt,-t;. The initial prediction otask ends at; andthe new correctivewait-
for-delaystatemenis then issued imnugately.

Thescenarioof Figure3-4 (B) is slightly more complex than the previcase
In this example, thénitial prediction of thepre-emptedtask finishesat t, thatis
earlier than tal S Rviais-for-delayfinishing timets. This means thataslk will
wake up ancheeds to be processed immediately so as not to exkssehe-
quent model code. The RTOS model firstly calculéitegpre-emption intervabf
task ast,-t; and thenindefinitely sispend task. The ISR finishesat t3 while
task is scheduledy the RTOS to resumggain A new wait-for-delay statement
that uses the beforealculated preemption intervalasthe delayparameteis re-
leasedn orderto revise time advander task.

In summary, a ROM simulatigorocedurecontains three step$) Executon of
an initial wait-for-delay statement2) Collection of any disturbingeventsand p-
dae of delay information 3) Making a correctivewait-for-delay statementBy

this approach, the sequentsalftwareconcurrencycan berealised for a unipm@

73

essor system model. Thygwodtiming accuracy oHW/SW synchronisatiorand
softwarepre-emptionis successfullyachieved from the perspective aftually
pre-emptirg wait-for-delaystatementén SLDL-based simulation
The cikblbaox 0 si mul adherwaorthy paonhemphadizediby a
ROM [135]. It prefersto only presentadjustend results(e.g., termination time
andfinal statg of a simulation process rather thanodelandrevealany internal
statechangego usersFor example, during wait-for-delayinterval of a software
task, if multiple interrupts happen, the ROM will collect the disturbsitagether
and only issue one correctiveait-for-delay statementThisfi ad k b ongept c o
has positive and negative aspects
1) It bringsthe advantage of speeding up simulation performance by hiding
intermediate stateand maintainingtiming advanceaccuracyby conside-
ing interference from hardware interrupts
2) In ROM, it is difficult to maintain the similarity of middle state changes to
a real execution at certain circumstanddss is an inevitable compromise
BecauseROM uses the inherently uninterruptibhait-for-delayfunctions,
there is no way to cancel or postpawait-for-delaystatemenbnce itbe-
gins.Hence, the tinmg point when a model process wakes up froma#-
for-delayduration isalsounchangeable eithefhis feature may bring aed
fect in simulation tracg incuring an amount okimulation overheasl In
ROM, the preempted task may wake up at unexpected time points as long
as itswait-for-delaytime period is finished. Referring tigure3-4 (B) for
instance,task wakes up at; and calls for processing from the RTOS
model. However, from the perspective of OS multitasking management,
task should notinitiatively trigger the OS to process it at this time point
because it has been pmpted. Thigghenomenomill result inanunnec-
essary RTOS processingocedure a SLDL simulation kernelcontext
switch andaconsequential simulation overhead.
3) The ROM approachims tocollect all interrupts that happen duringvait-
for-delay time advance interval and launchesewwait-for-delay stae-
ment for the affected task to correct its delay time. In the best aalse,

one new correctivevait-for-delay statements needed to revise an affected

74

Initial

i Corrective
prediction: Z2VS orrective)
wait(8) predl'?tf ™ prediction; Prrective
o wait(4) wait(2) Prediction:
Priority wait(1)
ow | s [T =< o<
IR wait @ EHEH)
high :
to t1 t, t3 ts Its s time
HW IRQ HW IRQ HW IRQ
happens happens happens

Figure3-5. Successive corrective wditr-delay statements

time advance steplVhereasthe possibility should betaken into account
tha anotherpre-emptionevent may happen during a correctivait-for-
delay interval This means thabne moresuccessive correctivevait-for-
delaystatement is requireérigure 3-5 shows such an example. fact, he
exact number oivait-for-delay statement may vary depending on thenau
ber of preemption eventandwhere theyhappen which are dynamically
determined irsimulation.It may be very costly to corresuccessivelyn-

terruptedtime advancatepsn some conditions.

3.2 The Mixed Timing Approach

In this section, anixed timing approacks proposed. lachievesa similar tim-
ing accuracy level to the ROM approattowever, he two approaches arerczo
ceptually different because of their underlying time advance metratie add-
tion the proposedppioach can generate a better simulation trace without the
above Ainappropriate wake upo probl em.
Concerning the fundamental problem of handling interrupts during an ongoing
time advance step, mixed timing approachsubke wait-for-eventmechanism to
ensurethat a preempted task only wakes up upon receiving an event issued at the
correct time point. Only oneait-for-eventstatement is called by a software task
in a time advance step. We do not need to call awaivfor-eventstatement for
the preemptedtask. Hence, the SLDL processes (wrappers of software tasks) do
not frequently change bet wepeon sitsaat-supse.n dG onr

75

quently, a simulation speedup can be expected daeféavernumber of costly
simulation kernel context switches.

Themixed timingapproachs a general approach oriented to S:bdsed real
time softwareg(including tasks and the RTO8ghavioural modelling and sinal
tion. According to the aforementioned taxonomy of sysevel software and
RTOS simulation research Bection2.3, it can be applied to both coargmined
timed abstract software modelling and figrained timed native software made
ling. In this section this moetlling and simulation approach is implemented by
typical SystemC language constructs, mainlywlagt-for-eventmethod(see Se-
tion 2.2). Because of the similarithetween SystemC and SpecC SLDL, it is

promising to be generalised to the SpecC context.

3.2.1 Separatingand Mixing Timing Issues

In SLDL-based behaviouradoftware simulation multiple-facetlevel timing
modelscan bewritten and simulated in theamediscreteevent software simat
tion environmente.g.,the SystemC frameworRhesekinds of approackscan be
dividedinto two parts i.e., modelling and simulation.

1 In modelling functional and timing characteristi¢éme delays)of target
softwarecomputtion componentsare described bgystemClanguage In
this research, specifically, software applications are divided to tasks and
each task is then mapped to a SystemC prodéssresuls of this modd-
ling process are&SystemC procesmodels forexecutablesimulation pu-
poses.

1 In simulation,thesemodelsarecompiled together with the SystemC sianul
tion kernel andhatively executed om hostcomputerin order tohelp sof-
ware designers tobservebehaviour of theargetsoftware systemvalidate
different design strategiemandmeasurgéhe mean or extremsimulationdata
for analysis.

In reattime embedded software desjgimelinessis a firstclass factoto de-

termire the accuracy of modelling and simulation. The mixed timing approach

puts focus on timingssuesof above two aspects

76

1) Timing issues in modellingThis aspect is concerned about timing issues
that are statically determined at the model building stthgelates to var
ous jobsthatadd time delays fosoftware computatiomodels,e.g, dedine
timing stylesof models choog sources otiming information,apply vai-
able annotation granularities, annetaming information into model code
and insert time advance points in models

2) Timing issues in simulationThis refers to timing issues thate dynam-
cally behavd at simulation runtimelt relates to jobshat use time delays
for simulation time advancee.g., simulate targetiming behaviour for
software modelgprogresghe simulation clock, and process interrupts

In the following, this mixed timing approach iexplainedwith regard tovari-

ous issuedn relation toaspects ofiming modelling (Sectiors 3.2.2- 3.2.6 and
timing simulation (Section3.2.7). Besidesthe Live CPU Models an essential
basisof this approachection3.3).

3.2.2 TLM Software Computation Modelling

Before presenting any detailed timingpdelling and simulation methadse
clarify general guidancéor defining software timingsimulationmodelsand the
relevance to existing TLM research

In Section2.1.1, abstraction levelin SystemCTLM modelling are reviewed
with this thesis concerned witboftware computation modellingn the general
context ofSystemCTLM researchConsequently, it is natural explore the ps-
sibility of inheriing somecommonconcepts frm existing TLM proposalsFor
example, the OSCI TLMstandarddefines the PV and PVT abstraction levels
based on criterisuch aghe transmissiormethod and theriing granularity of a
communcation transactiarBaklouti et al.proposethe application othe PV and
PVT concepto refine softwarecommunicatiorj6]. As shown inFigure3-6 (A),
its horizonfocuseson usingTLM synchronous and asynchronous interfafoas
abstractsoftwareinter-module (between initiators and targets) communication.
[9], Damer proposes to define TLM computation abstraction levels based on the
concept of separatg functionality and timing Referring toFigure 3-6 (B), four

levelsare identifiedin a modelling flow forsoftwarethatruns on programmable

77

HW TLM SNTM

PVT PVT
Specific bus model Specific arbitration

|
|
|
|
1
PV 1 R
Generic bus model } Genenca;bmalmn T - Untimed Specification
|
|
l Service Layer g < - Computation TLM
} Sync./asyn. = 3
1 Fre T - Host Compiled 1SS
Y v
TLM OO Transport Layer: i - Instruction Set
blocking, non-blocking, unidirectional, Smulator
bidirectional, single, burst transfers

(B) Abstraction levels of computation using

(A) SW TLM layers (defined by Baklouti et al.) programmable processors (by Domer)

Figure3-6. Related SW modelling abstraction level definitigreprint[6] [9])

processorsHowever,this workdoes not specificallgistinguish various TLM la
stractionlevels In general, bearing the current status of TLM research in mind,
most TLM abstraction level definitions have focused on modelling abstractions
for communication and hardware design, and may not be appropriate for software
modelling.

According to the hsic assumptionf OS-based tasknodellingand simulation
in this thesisit is not recommened touse TLM communication techiques in
software modelling, since they are not common methods in conventgaktime
softwaredevelopmentThis idea is contrary tf6] that uses OSCI TLM comua
nication services for joint HW and SW communication exploration.

Notethat it is not nontrivial to utilise existing TLM concepisectly. Herewe
needto define gpropriatebehaviourakoftware abstraction levéfsodelsandin-

troducetheir relatiorships with existing TLM modelling communication concepts.

3.2.2.1 Comparison with the OSCI TLM-2.0 Standard

Regarding the TLM communication modelling abstraction le\dinition, the
latest OSCI TLM2.0 modelling standard is selected as the refer@8&je It de-
fines two coding styles for bdsased communication modelling, i.e., thE style
for PV models and thAT style for PVT modelsRegarding the software mdede

78

ling part, n Section2.3, systerdevel software (RTOS) behavioural modelling
and researcls classifiedinto two general categories depending on their timing
accuracy:coarsegrained timedabstractmodek and finegrained timednative
codemodds.
This sectiorcompaescharacteristics athe mixed timingsoftware models and
the OSCI communication modellingtandardseeFigure3-7):
1 Both modelling approachedecompos@ modeb $unctionality into several
basicertities i.e., tasks (or finer-grainedfunctiong for softwaremodelling
in our approachandtransactios with corresponding transport functions for
TLM communicationmodelling If there is afurther necessityfor moreac-
curate modellingthena basicentity can bedividedinto somefiner-grained
entities, i.e., multiple functionmside a task omultiple basic blocksnside
a function as well acorrespondingnultiple phaseshat task placéuringa
t r an s dransmissiorides
1 Wedefinetwo comparable timing abstraction levels for modélse coarse
grained tined level andthe fine-grainedtimed level for softwaremodelling
are comparableo the LT coding style andthe AT coding style for TLM
communicationWe propose thathe coarsgrained timed level usewo
time pointsto representhe execution cost o& taskor a function i.e., the
beginning and the end of executiorhe LT coding stylealso definestwo

time points for each transaction to denote calling to and returning from the

Osd TLM-2.0 Gommunication Modelling TLM Software Modelling
Functional Timing Functional Timing
Granularity Models Granularity | Granularity Models Granularity
Programmers View, Loosely-timed Qoarse-grained
Tran&actions<ﬁ (PV) i> (twotiming | | FuTnaft(ijns ¢ Agiéaeft i> timed (two
model points) | timing points)
lEL
glg
g
v \ Y 8 \J v
. Programmers view Approximately- Satement . Fine-grained
Mﬁg;glse ¢ timed (PVT) i> timed (multiple I segments/ ¢ Natr:/(?d(;?de i> timed (multiple
P model timing points) | basic blocks timing points)
!

Figure3-7. OSCI TLM-2.0 models and proposé&d.M software models

79

transmission respectivelyAccordingly, the concept othe fine-grained
timed level is also parallel tthe OSCI AT communication coding style
This is becausethey bothuse multiple timing pointsinside a basic fuo-
tional unit, namely, multiple annotations anding synchronisation points.
1 Besides, bththeuntimedtimedlevel andthe cycleaccuratdimedlevel are
not recommended iritherour softwaremodellingor the OSCITLM stan-
dard. This isbecausemodelling reattime software and contemporary bus
communicatiorsystems apparently neediming concept
Based on the above comparison, our software ringgbroposal has some
similarity to the OSCI TLM2.0 communication modelling standarthat is,in
terms of modelling concepts about timing granularity and functional granularity.
Since they are both implemented in the SystemC simulation environment, they
alsoinclude similar changing trends termsof modelling accuracy and sinaul
tion performanceThis mears that modelsat acorrespondingleved r e ARk ar mon
oud to each other without r edsdhetontexy i n unde
of TLM co-simulation We will explain softwvare model definitiog in detail in
Section3.2.3
In addition eachhardwarecomputationmodel(e.g., a hardwarperipheral é-
vice) needs to be antated with delayso accompany with softwareming mad-
els Each TLM inter-module conmunicationactionis also tobe assignedwith
corresponding communication delayowever, these two parts are not the focus

of this thesis

3.2.3 Defining Software Models

Let usconsiderntwo possible situations ian embeddedoftwaredevelopment

flow:

1) At an early designphase the applicationsoftware RTOS, andhardware
devicesmay have differentevels ofdevelopment progresshis means that
the component®f a systenmay haveincompletesourcecode The ped-
sion of orrespondingiming informationalso varies Therefore, in many

cases, it is difficult to build models at the same abstraction level.

80

2) Different systendesign teamsiay focus on modkhg different system s
pects according tdheir respectivedesign circumstances. For example,
modelling computation andmodelling communication are two distinct
working directionsin the context of embedded systemm®delling and
simulation. As well, RTOS designers and applicatisaftware progran-
mers also pay different attentiom SW modelling.It is not ony infeasible
but also costly to build all suimodels with the same timiragcuracyevel.

Therefore in order toincreag flexibility of softwarevalidation a mixed tm-

ing approachs an efficientand practicasolution At some certain early and dhi

dle design stages, with the advance of the development and change of validating
intention, software designersan build and simulateehaviourakoftware models
atvariousfunctional and timing levels in a unifilystemCramework.

Therearetwo difficult issuesin systemlevel softwaremodelling and simal-

tion: timing accuracy and simulation performance It is well known that the
granularity of annotation is dominant factoof timing accuracyin terms of
mostly detemining whetheror not theexecutioncost of a code segmentfisa & ¢
rat el yo theniotlebForteradple, ipen a code segment includimly-
namicdatadependent loops, a single coagsained time annotaticior the whole
code segmeris very likely to be less accurate than several-§reened time a-
notationsfor each loopOn the other hand, simulation performance is also a major
issueconceriing simulation usersn the early designphasesSimulation models
need to processanyannotation statemenistervening betweefunctionalcodes
which necessarily result isimulationoverhead. Moreover,a delay annotation
statements alwaysimplementedasa wait-for-delay statemenbr associatety a
wait-for-event statement inorder to progress theimulatal target clock. Such
statemerg result incontext switclesbetweenthe SystemCsimulation kernebnd
software model processésonsequently,ifie-grainedtime annotatioa may lead

to more simulation overheadis a sideffect. The mixed timingapproach -
posesudng different annotation granularities in software models, and thus anable
model programmers tgwitch timing accuracyfor simulation performancen

simulatiors.

81

There are already some typical annotation granulamtiestionedin existing
annotatiorbasedsoftware simulatiorresearch, e.gtheassemblynstructionlevel,
the source linelevel, the basic block levelthe function level, andthe task level
[121]. This thesisuses some of them in research anesensg guidelinesfor using
some appropriate timing annotation granularitiethmtwo types ofsoftwarebe-
haviouralmodels i.e.,abstract software modehnd nativecode software model
Currently, time annotations are manyafiserted into software models andaut
matic amotation is beyond the focus of this theflesearch examples in this area
can befound in[136] [137].

3.2.31 Abstract Software Models

The underlying assumption tiie abstract software model is thiatis usually
applied atthe early design phases ftast reattime software prototyping simat
tion and validationAt the time, the targdtardwareplatform is undetermined and
most softwarecode has noyet been implemented. Consequentystractsoft-
ware modelsdo not contain much implementation code or only conlianited
functional specification codeéCorresponding timing information of rumg code
on a target platform camot beobtainedwith high precisionfor thesekinds of
modesk. Rather timing estimates andxecution budgets are used for timengo-
tations This kind of modelling and simulatios similarto the reservaticihased
timing analysis approach in retine s/stemtiming analysisresearch, whichda
vocates using timing predictions itacrementally validate timing properties of a
system from its early development staff33].

Softwareapplications are organised asetof SLDL processasedndeper-
ent tasks with coarsgrained temporal properties, e.g., period, deadline, offset,
and execution times. Periodic execution should be explicitly supported by a g
neric RTOS model that supplies baperiodic executiorservices meaning that
the RTOScan schedule periodic tasks according to explicidfined period
properties Timing overhead of RTOSfunctions can be&onsideredasrough es-
timates and annotated in models

An abstract software task model contains one conceptual functional und (i.e.,

task) or several subunits (i.e., several functions). Corresponditagiiglevel

82

#001
#002
#003
#004
#005
#006
#007
#008
#009
#010

void taskl(){

}

whi | e(1){
/1 No code or

functional _code;
DELAY(fi xed_val ue);

/1 or

DELAY(random val ue);

wai t - for-event;

}

#001
#002
#003
#004
#005
#006
#007

voi d funcl()
{

DELAY(t);
wai t -for-event;

}

(A) Pseudo code of task-level time

(Table3-1 (A)) and functionlevel (Table3-1 (B)) time annotationevelsarepro-

annotation

(B) Pseudo code of function-level time

annotation

Table3-1. Abstract software models and coatgained time annotations

posedfor abstract software model&ach annotation statement corresponds to an

execution unit, i.e., a task or a functidrhe delaytime informationcan either be
given as a fixed valueepresentinghe WCETat the model building stager be
randomised between a lower bouind., the BCET)and an upper boun@e., the
WCET) for each job of a task simulation time

An annotatiorvalue isinserted bythe DELAY() function(e.g., line 5 inTable
3-1 (A)), which passsthe delayvalue to the Live CPU Modelind triggers it for

aninterruptibletime advanceA wait-for-eventstatements inserted after a delay

statement (e.g., line 8 ifable3-1 (A)), in order to yield control of the SystemC

simulation kernel andet the task waifor resuming aftethe delay It defines a
time advance point (also referred to as a timing synchrammspbint). From the

multitasking OS point of view, calling th&ait-for-eventstatement and returning
the end

from

it mar k

t he

beginning and

model along the target simulation timeline. From the perspective of SystemC

si mul

ation

of a SystemC process

As shown inFigure 3-8, becausen abstract software moded assumed to be

independentand does notaccess shared variablas executiondurationcan be

a

pi ece

of fexecuti

on

dur at i

freely interupted byhigherpriority IRQs i.e., any asynchronous interrupt events

canstop its time advance steflthough a delay value is only annotatewice, it

can be divided into many slices due to ISRss models a correct timing order of

execution.

83

Independent Bxecution
execution cost of the
iori task model
Priority : / \
o) = TS SEES

W4 A A
IR o I [

high

f f f time *
IRQ IRQ IRQ

| zero-target-time SW execution Time advance of a delay (cost)

Figure3-8. Execution trace of an abstract task software model

The cetails of the wait-for-eventmethod theinterruptible time advance method
andtheDELAY/() functionwill be introduced irSectiors 3.2.7, 3.3.4and4.5.8.1

3.2.3.2 Native-Code Software Models

When alarge quantity of softwareapplicationcodehas been developezhda
RTOS has beeaithersupplied as an offhe-shelf product or developed-house,
nativecode software modetsan be builtThe availablesoftware codés wrapped
in some software task modelsthat are also implemented as SLDL processes
Thesetask modelsan be further divided intstatemensegment®r atomic basic
blocks whoseperformanceas measurabler estimable with retavely high acci-
racy. Thesenative codeapplication softwar@askscanutilise the APIs ofaRTOS
model| which maymodelspecific services of a real RTOS andarmotatedvith
corresponding timing delay information.

Timing accuracy becomes a major condernativecode softwareimulation
The desired target timing behaviour cannot be directly representethvie-cade
software executionHence, eftware execution costs (time delay®s) the target
platform need to be eith@malysedby a static analysismethodor dynamically
evaluatedn ameasuremerbased methqdand then be manually or automatically
annotated to corresponding coslatementsn task models Fine-grainedstate-
mentsegmentevel annotatios andbasicblocklevel annotatims are advocatetb

be appliedin this type of software models

84

#001 | void funcl()({ #001 | void funcl()

#002 f (condition) #002 | { .

#003 [Acompound 4003 DELAY(t 1) : annotation before code

#004 v statement #004 wai t-for-event;

#005 #005 =0,

#006 | DELAY(T): ‘ tnt temp = 0, ‘Basic block 1

#007 wai t - for- event ; #006 i f(condi tion)

#008 | #007

#009 i ghpt emp: #008 [tenmp++; Basic block 2

011 t e+t ' Several statements #009 DELAY(t,);, 4— |

#012 DELAY(t2) #010 wai t-for-event; .

#013 wai t-for-event; #011 } annotation

#014 |} #012 |} after code

(A) Pseudo code of statement segment level (B) Pseudo code of basic block level time
time annotation annotation

Table3-2. Native-code software models and figeained time annotations

In the example codsownin Table 3-2 (A), a statement segmers either a
compoundstatemenbr several sequential statememiscompound statement is
defined asa sequence of source statements enclosed by a pairlpfbcaces
[139]. In modelling, several sequential assignmestt number operatiorstate-
mentsare also treateéds a statement segment for conveniencearofotation
However,a statemat segmenshould not include access @n OS service, which
should be treated as another segment.

A basic blockis a sequence of code that has only one entry point and only one
exit point[140]. In Table 3-2 (B) the annotation statemerif a basic block may
havetwo possibleplacesi.e., beforethe basicblock or after the basicblock. In
modelling, where tplacethe annotation statement dependhowtoi gl ue o t
time annotatiomearits code blockin order to makenativecode executiorsyn-
chronise with correspondingrgettime advancates as much as possible.

Multiple DELAY() functions andwait-for-eventtime advancepoints are n-
serted in nativeode software models. Their respective behaviour is the same as
thebeforementionedabstract software models.

In nativecode models, software codegmentsnay access globaharedvari-
ables that may be affected by external interrdpts.code segmerand its annat-
tion aredefinedimproperly, a wrongsimulation traceanda result maybe gene
ated As shown inFigure3-9 (A), in real software execution, a task independently
executes code segmenfrbm timety. At timet;, an IRQ happens and peapts
the task. An ISR writgea value to a global variable. Afterwards, the task resumes

and its code segment 2 reads the global variable to obtain an updated value.

85

he

Figure 3-9 (B) shows a possible corresponding simulation tratevhichthe
task code segmefwith its correspondinginnotation includes both code segment
1 and 2.This means that the taskot only executes some independent functions
but alsoreads the global variable @t and its total delay begireccordingly The
IRQ still happens at, then preempts the taslgndwrites the global variable.IA
though the time advance of the task can be intéblepand mantained correctly
in terms of the simulation time orddehe functional simulation result is possibly
wrong because the software task getsatdatedvalue d the global variable.

The solutios to this problenarestraightforward:

1) In softwaremodels global variables should be protected by mutualiexcl

sionsin order to avoid race condition$his is effectivelya commoncon-

Independent Function segment2:
function read the shared
segment1 variable.
Priority \
low | task | codel | | code2 |
IR
high ! IRwritesavalue >
to to the shared time
variable.
(A) Real software execution
Segment 1 and 2 Execution cost
Priority
low | task i delay; delay,
IR
high

: | IRwrites anew _
o tlTI value to the time
hF;?)pens shared variable.

(A) Native-code software simulation

I Zero-target-time SV execution Time advance of a delay (cost)

Figure3-9. Unmatched real executiondsimulation traces

86

ventionin software programming

2) In terms of nativecode simulation, a code segment should not include both
independent factions andcanaccess t@ global variable. Iranotherwords,
an access to a global variable should be placed in a separate sé@nent
as short as possiblBased on the first solution, this requirement is nbt di
ficult to implement in modelling, beaae a global variable segment Is a

ways marked by calling to O8utually exclusiveservices.

3.2.4 Techniquesfor Improving Simulation Performance

Fine-grained time annotations can improve timing accuracy in case there are
datadependent conditional or loopirsgatements in code, but too many intrusive
annotations not only require more modelling work but also decrease simulation
speedSimilarly, defining many time advance poirfg®-calledtiming synchromn
sation poing) can make the simulated clock be progrdssmoothly. However, it
also decreases simulation performan€ensequentlytwo techniquesregarding
timing annotatios and time advancpoints are utilised in ordeto improvesimu-

lation performance.

3.2.4.1 Reducing the Number of Time Annotations

This firsttechniques to reduce the number of annotation statements bg-mer
ing several sequential time annotations iot@longer annotation

Givenas i mp | e A vplogramim Bigute® XD (A) as an examplehe In-
tel VTune Performance Tuning Utilitjl41] is usedto carry out basic block

Address | Line | Assembly
+ Block 10 15

0x10A0 15 cmp DWORD PTR [sbp-207, 02710k
Ox10A7 15 ige Block 12
+ Block 11 17
(A) {2003 @RS 27 (o KXSE {2210 0x10A9 17 mow gax. DVORD PTR [sbp-20]
Ox10AC 17 add eax, 01h
O0x10AF 17 mow DUORD PTR [ebp-20].=ax
0x1082 18 inp Block 10
(B)! &Svofe RS2 & KA f22L.J
— Block 21
(O / 2yl NLE 2F 66 KX 2210
Figure3-100A fiwhi |l ed0 | oop exampl e

87

#001 | while (a < 10000) #001 | while (a < 10000)
#002 | { #002 | {

#003 DELAY(t pb10) ; #003 a++;

#004 wai t - for-event; #004 DELAY(t bp10tt bb11) ;
#005 at++; #005 wait-for-event;
#006 DELAY(t pp11) ; #006 |}

#007 wai t-for-event; #007 | DELAY(t bh1o) ;

#008 |} #008 | wai t-f or-event;
#009 | DELAY(t po1o) ; #009

#010 | wai t-for-event; #010

(A) Precise basic block level time

annotations (B) Merging time annotation statements

Table3-3. Reducingnumber of time annotations

analysis for application software. This tool can orgaassembly codén basic
blocks (seeFigure 3-10 (B)) and generate eontrol flow graph(seeFigure 3-10
(C)). Referring to the figurehere aregwo basic blocks in theprogram i.e., the
fiBlock1000 f t h e f wh and theBlosktlk bf ehenleoping body

If this programis annotated witlbasic block levetiming delays then three &
notation statementre neededas shown inrable3-3(A). Because the two basic
blocks fiBlock 100 and fiBlock 110 (line 1 and line 5 offable 3-3 (A)) execute
sequentially at most tinseexcept for jumping out of the while loggeir time a-
notations gp10andtpp;; caN be mergkinto one annotation as showed on line 4 of
Table3-3 (B).

This techniqueadvanceghe annotation level from the basic block level to the
statement segment level, wh is a mixed timingannotatiortechniqueand widely
used inour researchNormally, merging multiple annotation statemenshould
sacrificetiming accuracyof annotationss little as possibld-or instance, thBE-
LAY (t pp1o) Statementline 9 of Table3-3 (A)) corresponds tb h eompare and
jump out 0 e x e cstatemantandi®impropent@ beeoimbinkedeinto
the annotation statement inside the Idmply. Otherwise, target time advance
steps cannot match the natisede exeution flow. However, ifmodel buiders
intentionally make trad#fs between accuracy and pemmance, it is also accep

able that some tingneshotannotations can bamitted

3.2.4.2 Reducing the Number of Time Advance Points

The secondechniqueto increase the simulation speeddsedue the number

of wait-for-eventstatementsn models i.e., reducing the number of time advance

88

pointsThe basic idea is iosgsips$ atidntimgucethdteh dd a

by Hartmann et al[127], in which this method is used in proprietary abstract
software modelling. Here, we refine it for nativede software simulation models.

As introduced beforea time advance pointefers toa timing synchronisation
point where a software model process yields contrthéoSLDL simulation ke
nelin order to let iadvane the simulated clock.

In discussions and figureis Section3.2.3 the annotation statemeDELAY()
and thewait-for-eventmethodare used togetheA DELAY() function finishes
two jobs, i.e.jnjectingan annotdon value intothe Live CPU Modeblnd invok-
ing it to advancethe timing delay value at oncdn fact, in the proposed mixed
timing approach, a delay annotation function does not need to implement the two
jobs conjunctivelyAnd, a wait-for-eventmethod does not necessarily foll@ach
time annoation statemergither.

As shownon line 5 and line9 in Table 3-4, the lightweight DELAY WR)
function only processsan annotatiorvaluein terms of storingandaccumulating
it in a variable(see Virtual Registers in Secti@m3.2 in the Live CPUModel, but
it does not invoke theéive CPU Model to progress the simulated clock immed
ately. It is especiallyappropriate fousein datadependent loops in order te-r
duce time advance overheads.

The dualfunctionDELAY() and thewait-for-eventstatemerg arealso impa-
tant at specific points in model codé¢e.g.,lines 12 and 13 iMable 3-4). Some
rulesare defined tandicate wherg¢ime advance pointare essential. In modelling,

these situations include:

#001 | void funcl(){

#002 i f(condition){

#003 ce

#004 }

#005 DELAY _WR(tq); Input
#006 annotations
#007 int tenp=0;

#008 temp++;
#009 DELAY_WR(t) ;
#010

#011 L Annotation
#012 DELAY(t) ; 47 and time
#013 wait-for-event; advance
#014 |}

Table3-4. Reducing number of timadvance points

89

1) In application taskstime advancepoints are necessary before callinglan
retuning from RTOS system functions. These points define the boundary
of a task and a RTOS function, and allow switctedbe maddetween
them.

2) If the currentrunningapplication task will terminate execution, thetime
advancepoint is necessary. Thpoint defines the boundary between dife
ent tasks.

3) In any critical sections (no matter in tasks or in RTOS functions) where i
terrupts are disabletime advanceoints are necessaiy orderto progress
the target clock

This techniqueessentially se@rates annotation points from time advance

points Thisis a nativecapabilityof the mixed timingapproachoecause othe un-
derlying annotationindependenttime advance methodThe reduced running
chances of the Live CPU Model and fewer context switdfigbe SystemC ke
nel can speed up simulation speAtithe same timefine-grained timing annet
tions canstill be used in order to accurately reflélee timing cost of software

model sé6 execution traces.

3.2.5 Application Software PerformanceEstimation

Prevously, it has been noted thHag¢haviouraloftwaremodelling and sima-
tion need timing information of softwaexecutionon the target platform. Sef
ware nstrumentation and performance estimation meerequisites of all back
annotation basebehaviourbsimulation.This isa quite broad and netnivial re-
search domainwhich is far beyondthe focus of this thesisExample research in
this domain can be found [84] and[142]. In Sectiors 3.2.5and3.2.6 somere-
lated performance estimatiomethodsare introducedn brief rather than presén
ing indepth researchrhe final modelling buildersand simulation usersan -

termine and apply appropriate time estimation methhogsactice

90

3.2.5.1 Static Timing Analysis Method

A typical static analysis method is the WCET anafyid43]. It aims to com-
putean upper bound for the execution timm&a piece ofprogramby analysing the
code buwithoutactually running it. A WCET analysis includes three steps:

1 The program flow analysigxtractspossibé executing sequences of apr
gram at the basic block leverhis study shouldry to cover all possible
pathsin order to generate a safe coverage

1 Thelow-level analysiscalculatesexecution time of each basic block on a
given target hardware architeauihe complexity of this study is to ge
sider various performanemhancing features of modern processors, such as
caches, pipelines, etc.

1 The calculation stepcombinespathsinformation and lowlevel execution
times in order to derive a WCET.

WCET resultsmight be used as source of time annotationgur mixed timing

softwaremodelling

For abstract software models, the assumption isnthath software code has
not been available; hence, specific WCET analysis cannot be implemEnted
nativecode models, model programmers can use conventional WCET analysis to
obtain software timing informatiomn our consideration, now that the source code
is available for simulation, we prefer to annotate statements at a fine granularity,
which mans that the basislock WCET informationare more useful than fan
tion-level or tasklevel WCET results that may be ovgessimistic Colin et al.
specificallytakeWCET analysisonthe RTEMS RTOSwith the intention to study
the predictability ofRTOS timing behavioura[144]. This researchieveals the
possibility of obtaining timing irdrmation of RTOServicesdy the static analysis

approach

3.25.2 Statistical Methods

We can use time estimateftasks and functions to build simulation models in

orderto capture initialapproximatetiming behaviouralof a systemThese time

2The BCET analysis is a related problem to find the lower execution bound of a program.

91

estimates cabe generateckitherfrom functional specifications or a randdunc-

tion. Regarding the latter technique, for simple cases that do not have aestrict r
quirement on the approximation of generated numbersyahe() pseude
random function in the C Standard General Utilities Library (with the head file
stdlib.h) is used If there are some definitions on the probability densities of
periods and computation times of tasks, the-aeknowledged UUNIFAST atg
rithm can beusedto generate task sets with uniform distribution in a given space
[145].

3.2.5.3 Dynamic Simulation-BasedMethod

In simulationbased software performance estimation methods, sofsoaree
codeis compiled fora given processor architectui@nd isthenexecuted on the
actual target CPU or on an accurate model of the target CPU, e.g., an instruction
set simulatorAccurate performanceformation can berofiled after execuhg
real software In this thesis the ISSbased pofiling tectiqueis usedto acquire
accurate timing informatioaf both application software artke selecteRTOS

For ARM-basedembedded systemthe KEIL Vision ARM development kit
[146] is recommended to usehich providesvariouscycle-accurate instrumon-
set models of ARMprocessorand complete execution profiling function&s
shown inFigure 3-11, the Wision execution profiler can display and recaxk-

cution times and calling times of eacHunction or statementhrough I1SSexea-

tion.

0911 void 03_TaskIdle (void *pdata) 19 /* initialize the serial
.0812 0125 #EE { 20 0.132 ps PINSELOD = 0x00050000;

0913 #if O5_CRITICAL _METHOD == 3 -0 o

a4 O5_CPU_SRE opu_sr: 2t o1oows | UILCR = 0x83;

0956 #endif 22 0.100 p= UIDLL = 97;

0916 23 0.100 ps UlLCR = 0x03;

ot data = pdata; .

0919 Dfoi:ca(;_;)D {ata. 26 0117 ps printf ("Hello World\n");
g 0920 20154 ms 05_ENTER_CRITICAL () ; =

0921 30231 ma 05IdleCtr++: 27 while (1) {

0922 20154 mg 05_EXIT_CRITICAL() 28 S B

0923 3023 mz 05TaskIdleHook () ; . 0050

050 ps }
0924 1
0325 L} = }
Function-level profiling information Satement-level profiling information

Figure3-11. Wision software profiler

92

3.2.6 RTOS Performance Estimation

3.2.6.1 The Saling Parameter Method

For earlyand abstractimodellingresearchin which both RTOS andhe target
platform arenot fixed simulation usersnay beinterested irthe relative magn
tude of RTOS timingcostand compare simulation rdts of several differented
sign alternativeslt is not necessary to assigarecise timing estimaseor every
RTOS activity. RTOS systemservicescan be annotatebly a scaling parameter
methodin [2]. This relates execution codior each RTOS action ta scaling @a-
rameter(S), which reflects relativéiming magnitudes oflifferent RTOS services
depending on their typical computational complexitiezble 3-5 shows execution
times of some typical RTOS services in terms of the scaling parameter S. Note
that inan individualmodellingcase the programmecancorrect the scaling factor
of a specifiRTOS function depending availabletiming information.

Action S Action Action S
Context switch 2 Task suspend Semaphore/ mutex create/ delete 6
Task initiate 12 Task resume Message queue create/ delete 10

Task create and run 28 Semaphore/ mutex post Message queue available 2

PRk~ |®n

Message queue not available

Task delete 10 Semaphore/ mutex wait

Table3-5. Basic RTOS actions and their relative execution tifags

3.26.2 The Benchmark Method

If the software model programmer intends to modeled-documented ao-
mercial RTOS case thenRTOS benchmarkesultsfrom productionvendos can
be usedas the tinmg annotation sourctr the RTOS simulation modelwvhich is
similar to the approach if87]. A benchmark document supplies timing sost
various RTOS services, for example: kernel entry, context entry, message passing,

synchronization, timers, signataskmanagement, and message queues.

93

RTX-RTOSon LPC2138 ARM7 CPU @ 60MHz (Unit : ps)
code executed from internal flash with Memory Accelerator Module

Action Time Action Time
Initialize system 34.9 Task switch 7.1¢105
Create defined task, no task switch 14.3 Send semaphore (no task switch) 2.7
Create defined task, switch task 16.7 Send message (no task switch) 53
Delete task 9.6 Interrupt response for IRQ IR 0.8

Table3-6. RTX RTOS timing specificatiofi]

For instance, the QNX Neutrino RTQ$47] is provided with averagekernel
bencimark resultdbasedon different hardware platforms such as Intel Pentium4
processors, XScale processors, and TI OMAP procegsods.referring toTable
3-6, the RTXRTOS is also provided timing specifications on a specific ARM
platform [1]. If benchmark documesfare not available for some speciffat-
forms and RTOS versiondgvelopment k& or benchmark suiteare sometimes

supplied by their vendorg order to letusers measure timing cefty themselves.

3.2.6.3 The 1SS-based Measurement Mthod

The ISS-basedsimulation methodis utilisedto measure RTOSming ove-
head. Table3-7 shows some timing information of tle/OS |1l RTOS measured
onthe48 MHz ARMKEIL ISS simulatorlt is worth noting that, althoughnISS
simulator can produce fingranularity timing information of real RTOS source
code,only the functiortlevel timing cost of each RTO&ervice isconcernedThis
is becausehis thesisproposes to build generic RTOS model that can provide
comparable funabinality to a real RTOSThe implementation code of the RTOS
model may not have orte-one correspondence to actual RT&xbircecode. It is

pc/ OS |l RTOSon Keil LPC2378 ARM7 ISS@ 48MHz (Unit : ns)
code executed from internal flash

Action Time Action Time

Enter the main RTOSfunction 1366310 Task switch 2660
RTOSinitialisation 51750 Initialise a semaphore 3170
RTOSstarts multi-tasking 2770 Wait a semaphore 3930
Qreate atask 22500 Received a message 3160

Table3-7. p)C/OS-Il RTOS timing specifications

94

not feasible to annotate the RTOS model at the basic block leatitioe stag-

ment level.
3.2.7 Timing Issuesin Software Simulation

3.2.7.1 The Variable-Step Time Advance Method

In the mixed timingapproach, at simulatioruntime a softwaremodelfirstly
executegdts functional code in zerbme and thenpassests correspondinglelay
information to the Live CPU ModeRAfterwards the Live CPU Modehdvances
the simulated clockn order to mimic the software execution timing cost on the
target platformThe $ecific progressstep of the clockot onlydepends omput-
ted delayinformation but isalsoaffected by viaether arinterrupt event happens
during this delay duratigrwhich maydisturb delaysof low-priority tasks. It is
namedt h eariableste® t i me a d v sintcathe actoadlendthootiatime
delay stemt simulation runtimés variable rather thabeingrestricted by the time
annotation defined at the modelling stageure 3-12 shows thistime advance
ideain two simulation case$\Note that @ matter which simulatio case, when an
event is planned to be releaged arc in the figureat a futuretime point, it is ac-
tually unknown when thisevent will be finally releasedecause of possible imte
rupts and premptions

In Figure3-12 (A), sincethere is no interrughterferencean event is thusuc-
cessfullyreleased according to the input delay informatipim order to resume
the waiting softwargéask The simulation clock islsoprogressedvith a step ofy.

However, h Figure3-12 (B), an external interrupt is raisedtaetime pointt;
thatis earlier than (Ot tg). Consequentlythe planned event is ceglled andhe
initial endingtime point (0+ tg) is no longer validatedor time advance of the
waiting software taskThe software task is prempted and its remaining delay
value is calculated ag,. After atime interval i.e.,following theexecution of the
ISR in this casethe preempted task resumes and the rest of its delay tim@-is a
vanced agaimintil completion ats. This examples hows t hea t @p®r icalal e
acteristic of the time advance method.

95

1) Delay time =tq4
2) wait-for-event
3) Release event_1 after tg

0~

event_1

consume tq totally

1 simulation time line

tq
(A) Progressthe clock and consume the delay time as planned

Xcancel it

1) Delay time =tq4

2) wait-for-event Gonsume tg; Release event_1
3) Release event_1 after tq Remain tq, after tq
TPO~
! 7 IR \A‘ \'/
T t 3 simulation time line

tar ta2
(B) Progressthe clock and consume the delay time with interrupt disturbance

Figure3-12. The variablestep time advance method

3.2.7.2 The FixedStep Time Advance Method

Schirner et alpropose that it is unnecessary to mimic intermediate states in
simulation, andt is only essentiald generate correct results at stelt@nging
boundarieq123]. High performance is thus the primary ga#l simulation In-
deed, with the consideration for simulation performance and efficiencyb-all a
stract and behavioural simulation bears tinderlying assumption to hide inte
mediate simulation runtime dels andonly maintain similarity between the sim
lation trace and the real executivaceto a certain extenfhe variablestep time
advance methodlso generally accosdo this point of view. lconsumes software
executiondelaysin coarsegrainedsteps, and aims tminimise the number of
i s t e pasbettedinoulation speed-rom the perspective oaintainingsimula-
tion correctnessat specifiedeventchanging points, e.g., interrupt points or task
switching pointsthis time advance method istiséactory.

From the perspective of debugging réale embeddedoftware execution
tracesandobservingstatus ofsystemwide variables, simulation users may not be
satisfied by observing limited informatiammly at eventchangingpoints. Thus
thefixedsteptime advance methad proposeds a complementatyme advance
method Referring toFigure 3-13, this advancs the simulated target cloakver

more steps according topre-defined periods In the fixedstep mode, the Live

96

event_1

Update t4 frequently
AR
0 i simulation timeline
Afixed period for
time advance

ta

Figure3-13. The fixedstep time advance method

CPU Simulation Enginecanrun periodically toupdateruntime changing var
ables,such asvalue oftimers, softwaredelayslices, execution budget®tc. The
increasing number of time adwee steps may also increase simulation ¢sime
Hence, he Live CPUSimulation Enginecan blend variablestep and fixeestep
time advancenethods in simulatioif simulation users want tvade off simua-

tion performancawith intermediateobservability

3.2.7.3 Timing Accuracy of Simulation

In the mixed timing simulation approach, the theoretical timing accuracy of
software simulation can be evaluatbdoughthree aspects, i.e., thiening of the
simulated targetlock, the timing of software delay advance, and the timing of
software/hardware interactisn

1) Resolutionsthe minimum interval of timedf progressing the simulation

clock, which are dependent aming resolutions of two basic actions:
a. The resolution of advancing software delay duration:

i. General requirement This resolutiorrefers to the minimum step
to progress the target simtitan clock. It should be as fingrained
as possible in order toe able taepresent tinglelaysaccurately

ii. Features of he proposedapproach: Since models are simulated
in the SystemC environmenthey arerestricted by the SystemC
simulation kernédd s t i mi n g thedefaulbvhluetisi ljpico-
second It is enough to represent software execution sastu-
rately. In fact, for high-level behavioural software simulatiothe
commontiming resoldion is at the microsecon(s) level or the

millisecond(ms)levelin practice.

97

b. The resolution of stopping softwareldy duration:

I. General requirement It refers to the latency to stop the current
target simulation clock advance step.tle case that minterrupt
happensilt should be as small as possible, i.e., zere® in theory,
in order to mimic the real situatio

ii. Features of te proposedapproach: Becausehe proposedhnter-
ruptible time advance methaelies on the Live CPU Simulation
Engine when a interrupt happens, the simukd clock is po-
gressed to this time point. At the same tithe,consumed part cd
softwaredelayis immediately calculat andthe remaining delay
partis saval. Consequentlythis means that the resolution of pto
ping software delay duration is zetime, i.e.,withoutincorrect -
tency.

2) Maintainingexecution delaynformationof sotware modes:

a. General requirement Every software model lsssome delay informa-
tion representing its running cost on the target architecture. Teese d
lays must be accurately consumed in terntheguantity ancorder.

b. Features of he proposed approach According to the time advance
methodsintroduced earlieras o f t wa r ssimimgalelay infdrna-
tion is securelykept on a petask basis andorrectlyconsumed irits
time advance irsimulation In case of a premption, the delay infe
mation of a tasks updatedandits remaining part isble to resume in
futuretime advance

3) Timing accuracy of handling interrupts:

a. General requirement Thisis mainly revealed by the interrupt latency,
which is the time from the raising of an external interrupt sighahe
beginning of a software interrupt handl&he simulated interruptat
tency should be similar to the real situation in terms of predictability
andfunctionality.

b. Features of he approach: The interrupt handling approads based
on a combination fothe timely hardware interrupt catchimgodeland

the zerelatency software delay stopping methdtie Live CPUModel

98

cansense external interrupt requshenit consumesoftwaredelays

at the same time. Since both hardware models and software models
execute in thediscreteevent SystemC simulation framework with a
unified global clock, there is nadditionalHW/SW synchronisatiorat

tency that may appear iasynchronous eeimulation Hardware
initiated nterrupt handling can begin immediatelgd can be prap

gated to a software handler without del@ifie theoretical minimurm-
terrupt latencyis zerotime in simulation, and the worstseinterrupt
latencyis bounded by the longest interrupt disabled twéch is fully
configured by model bullers. This timing behaviouris the same aa

reattime system that runs orr@al CPU.

3.3 The Live CPU Model

3.3.1 The HW Part of the SWProcessing Element Model

To undertake accurate systéewel embeddedoftwaremodelling and simal-
tion, it is necessary toonsder and modethe underlying hardware architectae
an appropriate abstract lev@ecause many RTOS servicesy.,context switch,
interrupt service, and clock serviae hardwargependent, it could be difficult
to model HW/SW interactions accurigtevithout support from a hardware model
on which software modelsare assumed to rumMoreover, onesided software
modelling is against the systdevel HW/SW cedesign principle for embedded
systemsThe existence ofiardwaremodels makes the simulation more likely to
resemble a full embedded systdvtany studies have suggested using transaction
level models for highevel system modelling and simulatidn. Section2.1.3.3
the concept of theoftware processing element motiak beerntroduced which
consists oftwo researchaspectof this thesisi.e., software modelling and lehr
ware modellingAs shown inFigure 3-14, this software PEnodel can be seen as
a mixture of two parts: behavioural software simulation (from the softwarelmode
ling aspect) and the hardware abstraction model (from theaabktardware b

elling aspect).

99

Software Processing
Hement (CPU)

Behavioural software
simulation model

Software aspect

——_———_m—_--rL e —t —— — 4+ — | — — — —

Y \ 4
Hardware aspect Hardware abstraction

‘CPU Sm. Engine‘ ‘\Artual Registers‘ ‘ Interrupt Cbntroller‘

Live CPU Model

Figure3-14. Hardware part of the software PE model

In a real embedded system, software ransop of a CPU subsystem. In our
software processing elementodelling approach, te CPU subsystem isba
stracted and encapsulated itb@ hardware abstraction modabmely the Live
CPU Model. It provides abstract yet essential hardware controlling functionality
and architecture (e.g., interrupt controllezattime clock, and virtualregisters)
for modellinguppetlevel softwaresystemsMore importantly it supportsinter-
ruptible andpre-emptive SystemGbased behaviouraoftware simulatiorby the
Live CPU Simulation Engindt plays a live role in managing software timg- a
vance in order to mimic the timing behaviour of executing software on a target
platform, just like a real CPU executing software instructions.

Because of the high abstraction level and the underlying native simulation co
cept, our mixed timing softwarersulation does not need a ldevel instruction
set architecture processor model with complete internal components, such as logic
units, control units, memory subsystems, gerpuapose registers and special
purpose registersthe Live CPU Model is compodeof three essentialcomyo-
nentsfor software simulation

1) The Virtual Registers are used for storing delay information and setting

flag bits (in Sectior8.3.2. They are internal model construdtsthe po-
posed simulation approach

2) The Interrupt ControlleModel monitors interruptequest lines and act

vates software handlefs Section3.3.3.

100

3) The Live CPU Simulation Engine tek charge ofadvancing software
simulationtime (in SectiorB.3.4).
Based on theseomponents, thiabstractLive CPU Modelis actively involved
in high-level softwaresimulation. In the followingtheywill beintroducel in de-

tail.

3.3.2 The Virtual Registers Model

In a typical realworld processor systencomputer programs are storedadn
threelevel memory hierarchye.g., main memory, cache, and hardware register
The CPU directly accesseshesememorycomponentdo load and store instecu
tions and data Memory potection, cache management, coherency and sonsi
tency are important research issues in this area. However, for con&irbéd
basedbehavioural softwarsimulation this thesisdoes not model this memory
subsystem, because it is not necessary to modahghrectionexecution mech-
nism of the target processor. Instead, software Hgtasecutes on the host pla
form, which maintains its own memory system as a blamkfor our simulation.

However,in order to support hardwaependent software simulatioa Vir-
tual Registersnodelis built inside the Live CPU Modellhese Virtual Registers
do not correspond to register$ a real CPU, but rathdride inside theabstract
Live CPU Model and take effect in a blabkx way.Model builders can tailor
this virtual register sah our software simulation contexiReferring toTable 3-8,
Virtual Registersaredivided into two categorieslepading on their use

1 Some Virtual Rgistersare related to software time advancEhe prime

concernof thesevirtual registers is to assittte Live CPU Simulation &

gine to progressoftware simulatioriime. Six virtual registers storé4-bit

softwaretiming informaion such as delay value, deadline, start time stamp,

etc.The CPU_REG[0]i Del ay Regi ster 6 an-imet he CPU
Stamp Registero are t wo fopsaftware ttmel ar | y |
advanceand will befrequentlyreferred to m description of the Live CPU

Simulation Engindater. When asoftware taskcontext switch is invoked,

currentcontents of theseegistersaresaved in the prempted tasks T CB,

101

Virtual Registers
For SW simulation time advance For system status and flags setting
Fﬁgrﬁgr Descriptions Register Name Descriptions
CPU_REF[0] |Delay Register: delay value of current code block CPR Qurrent Program Satus Register
CPU_REJ[1] (Total delay of current task job PR Saved Program Satus Register
CPU_REF 2] |Absolute deadline of current task job ICRR Interrupt Controller Raw Satus
CPU_REG 3] |Gonsumed delay time ICR Interrupt Controller Satus Register
CPU_REG[4] |Sart-time Samp: start time of current delay ICMR Interrupt Controller Mask Register
CPU_REJ5] |Task suspension time X... X...

Table3-8. Virtual Registers

and t he newl ytimng mfpradtianin ksd CB isdoadedirgo
these registers.

1 As illustrated in the right part ofable 3-8, some 8-bit Virtual Registers
hold system rutime status andhelpthe Interrupt Controller Moddb han-
dle interrups. For example, e Current Program Status Regist@PSRH is
mainly used o distinguishthe execution mode of the Live CPU Model, i.e.,
the normal software simulation moder the interrupt requestode. Then-
terrupt Controller Raw Stat($CRS), the Interrupt Controller Status Regi
ter (ICSR), and the Interrupt Controller MasRegister (ICMR) contain
original interrupt request information, interrupt service information, and i

terrupt masking configuration, respectively.

3.3.3 The Interrupt Controller Model

It is acknowledged that thaterrupt latency interrupt response timeandin-
terrupt recovery timeare someconcernediming properties of a redgime embé-
ded system. The Interrupt Controller Model providdgedwarelevel foundation
to modela usual HW/SW cooperative interrupt handling mechanism, whigh us
ally has three bottorap layers: the HW interrupt controller, the RTOS interrupt
handler, andapplicationISRs.As illustrated inFigure 3-15, the main function of
the Interrupt ControllerModel is encapsulatedh the cpu_ic() SC_METHOD
process. Itmonitorsa set ofsc_ports , which arefurther connectedo various

interrupt sources (e.g., peripheral devid®s)RQ lines.

102

—e(_irg_line0 IRQ_source_0Module |

I%gitsltjglrs InterruPt Controller Model _.< rqiine IRQ_source_1 Module ‘
o5 ?_‘_’_‘}’—'CO <] o irq_line2 IRQ_source_2 Module |
IOVIR Irq_pqrtin] —e(_irq_line3 IRQ_source_3Module |
Live CPU Model Lo irg_linei IRQ_source_i Module |

Figure3-15. Interrupt Controller Model

In order to deal with multiple simultaneous interrupts from various devices and
bound thanterrupt latency theInterrupt Controller Modetan prioritise, mask or
disable interrupt sources bgting corresponding register bitsICRR, ICSR and
ICMR. When a hardware device raises an IRQ by asserting a $igoabhits
interrupt request line, the Interrupt Controller Model can catch the signal immed
ately and call softwareinterupt handlerwhich could be eithea RTOS kernel
interrupt handler function or wectored ISRdepending on a specific interrupt
handling schemeThis software handlewill subsequently invoke the Live CPU
Simulation Engine to stop the current delay procBependingon specific m-

plementation, a software handler can begrgtble or nonpreemptble.

3.3.4 The Live CPU Simulation Engine

In the mixedtiming software modellingand simulationapproach, SystemC
based softwarenodelsare compiled for the host platform atietnexecuted on it.
It is necessary to model the targ@nulatedclock in order to mimicthe timing
behaviour of reatime softwarein the target environmenfs introduced before,
current SLDL-based reatime software simulation approaches have some def
ciencies onnterrupt and premptionmodelling. The Live CPU Simulation &
gine relaxesthe existing problems bgontrolling time advancdor software mad-
els, andcooperates witlthe Interrupt Contréér Model to handleexternal had-
ware interruptdn a timdy manner Excluding possible interrutisabled sita-
tions, e.g.executing aritical section, the Live CPU Simulation Engine caire-
rupt current software execution (stopping its delay period in practice) as soon as
an interrupteventis caughtby the Interrupt Controllerjust like software exeg-

tion on areal CPU.

103

#001 | SC_METHOD(cpu_si m engi ne) ;

#002 |dont_initialize();

#003 | sensitive << evt_rtos_start_call_cpu_si mengine
#004 << evt_apps_cal |l _cpu_si m engi ne

#005 << evt_rtos_service_call _cpu_simengine
#006 << evt_tick_isr_2_cpu

#007 << evt_interrupt_handl er_enter_2_cpu
#008 << evt_cpu_advance_tot al

#009 | #i fdef _CPU DYNAM C_FI XED

#010 << m.cpu_cl k. posedge_event ()

#011 | #endi f

Table3-9. Sensitivity list of the Live CPU Simulation Engine

The basic modelling idea dhe Live CPU Simulation Enginis to usethe
SLDL wait-for-event mechanism instead of the uninterruptidait-for-delay
mechanism. The Live CPU Simulation Engiseamplemented as 8C_METHOD
process. Itoordinatests executionandcontrolstime advance ofarious software
tasks by correspormlj events(i.e., objects of the System&c_event class.
Table3-9 shows thestaticsensitivity list of the Live CPU Simulation Bme.The
eventson lines 3-7 areexternally called by software models to trigger execution
of the Live CPU Simulation Enginéhe eventon line 8 is interndly usedby the
Live CPU Simulation Enginéo trigger itself for time advance, arities 911
configure the running mode of théve CPU SimulatiorEngineif it needs taun
periodically, i.e., the fixeestep time advance method

Referring toFigure3-16 (A), mostreal CPUs execute softwareycle-by-cycle

Fetch Instructions Fetch delay time
from program memory of a software code block

Write back _
the result of the Decode Instructions Update status Decode delay time
) to determine purpose of delay time and into standard format for
operation to and get operands resume (begin) a SV task time advance

register or memory

Execute Instructions Advance simulation time
to perform the desired aocordlng to the delay
operation value

(B) Delay time advance cycle of the
Live CPU Smulation Engine

(A) Instruction execution cycle of areal CPU

Figure3-16. Real CPUexecutionand Live CPUsimulation

104

according to an executianechanisnthatincludesfour fundamentaktagesfetch
instructions decoe instructiors, execue instructions and stoe (write back) e-
sults. Inspired by this classical mechanisthe Live CPU Simulation Enginén-
steadexecuts softwaremo d edelaydimes over four comparableconceptual
stagesfetch delaytime, decode delay time,advane simulation(delay) time, and
updae status(seeFigure3-16 (B)).

3.3.4.1 Software Prerequisites of the Live CPU Simulation Engine

Before describinghe Live CPUsimulationcycle it is necessary to indicate
some assumptions angrerequisite background knowledgef the Live CPU
based software simulation approach:

1) Application software habeen organised into tasks. Each task is wrapped in

a SystemCSC_THREADprocess and has a TCB storisgme individual
information. Each task is registered to an exclusive event, whose &otific
tion can make the task resume fronvait-for-eventstatement.

2) If there are multiple concurrent tasks in the systeasidoOS software
functions are needed. They inde: OS scheduling functions to select a
new task to run and mark it with the RUNNING state; OS interrupt ha
dling functions to select an appropriate ISR for a relevant IRQ; and OS

cont ext switch functions to save

tween its TCB and Virtual Regi sters.

information of a task such afor examplethe execution cost, the used
execution time, the deadline and the start time.

3) The Live CPU Simulation Engine is only responsible for mammaj delay
value stored in Virtual Registers and advandimgsimulaed targetclock
for the RUNNING task. It is independent from any above software OS
functions. This reflects the SW/HW orthogonal and modular modelling

principle.

3.3.4.2 Operation of the Live CPU Simulation Engine

Referring toFigure 3-17, the Live CPU basedoftwaretime advancerocess
can be describedover five steps alonghe target simulation timene. There are

two possble software time advanaases, i.e., withounhterrupt interference(see

105

and
T h €

Figure3-17 (A)), or with interrupt interferencéseeFigure3-17 (B)). In following
descriptiors, Steps (A), (B), (C), and (D) of the two cases are the same, their di
ference resimg in Step (E).

1) Step (A): Preliminary to advancing software simulation time by the Live

CPU Simulation Engine, a software task is firstly loaded into the Live CPU

Virtual Registers

Time
- Other Delay
(1) Soret nsin DR Registers ngairggr Register
(2) Maintain registers. g

(1) GPU Engine
executes again when
the t nsdelay expires.
(2) It consumesthe
value in DR

(3) It resumesthe SV
task.

A

N\

Nr Fetch N ‘Decode L ! Advance |
delalytlmel_’| delaytlmel_> delaytlmel

L|ve cPU Smulallon Engme

"Update |
status |

o,

(1) Delay annotation is

injected into Live CPU.

(2) The SN code block
waits for an event.

Plan to release the event after t

—

SWVtask... ...

X X \ SW task delay duration

—
dmulation time line

totHt

A SN code block
executesin zero-time.

The CPU Engine plans
to trigger itself after t ns
and then returns.

(A) No interrupts during atime advance

Virtual Registers
Time
- Other Delay
(1) Soret nsin DR Registers Fifair;gr Register Wh{adataa
(2) Maintain registers. g context and loads an
A IR
g | b L] M advrcs | " Undate | (2) OScallsthe CPU
cl Decode vance paate Engine and cancels
— "delaytlmel_ﬂdelayt|mel_>|delayt|me| L status th(gold event.
.(1.) Delay_anno_tatlon IS L|ve cPU Smulatlon Englne — OZ (3) CPU Engine starts
injected into Live CPU. 6742 h diately and
(2) The SW code block Plan to release the event after t %’ gnme Iite o IR
Vi r
waits for an event. N ™~ ; egnsthe new
RW\Itask delay duration ISRdeIay X... -
t. A Smulation time line
A SN code block The CPU Engine plans

executesin zero-time. to trigger itself after t ns

and then returns.

(B) The time advance isinterrupted

SN execution in
zero-target-time

SW delay

duration © time advance start ¢ time advance stop

Figure3-17. Operation®f the Live CPU Simulation Engine

106

2)

3)

Model by an OS context switch operation. Then a soéwarde block,
which could either be a whole task, a function, a statement segment, or a
basic block, executes in zetargettime at timet.

Step (B): After the software code block finishes execution, an explicit time

advance pointan be reachedHere, hereis a delay annotation function

and a SystemQvait(event) statement, just aghat isintroduced in

Section3.2.3

a. The delay annotation function generates a delay value which may have
different timing units (e.g., second, millisecond, microsecond, etc.) and
meanings (e.g., task level delay or basic blieslel delay) for mode
ling convenience. The value is written into a temporary variable in the
Live CPU Model, i.e.delay information is fetched and the Live CPU
Simulation Engine is triggered to be readyrun.

b. The software code block then keeps wmajtfor its exclusive SystemC
sc_event objectthat will be released by the Live CPU Simulation
Engine at a future time pointhis sc_event objectrepresents the
faddress of code block to rumodo in ou
lar to theprogram couter in a real CPU.

c. From the perspective dhe internalSystemC schedet, the SystemC
processwhich the software code unit belongs yelds control to the
SystemC simulation kernahd the Live CPU Simulation Engine pro
ess will be selectedo run in rext. However, from theperspective of
OS scheduling, thisoftwaretask is still at the RUNNINGtate

d. Note that,when usingthe simple singlg@urpose annotation function
DELAY_WR() in Section3.2.4.2 only the delay value is storddr
prospective time advancbut the Live CPUSimulation Engine is not
triggered and there is neait(event) statementHence, he sof-
ware model will contina executinguntil a time advance point is
reached

Step C): Because inputted delay information may have specific formats, it

is necessary to transform them into standarth data forusewith time

advance. Theive CPU Simulation Engine thetlecodes delg informa-

107

4)

5)

tion into a double float number witthe naneecondtiming scale.The ce-

coded resulfit n s ig storad in the Delay Register(DR) thatbelongs tahe

virtual regiger setof the Live CPU Model.At the same time, the current
time stamp t,, which can be obtained by the SystemC function
sc_time_stamp() ,is also recorded in ather virtual register.

Step (D):Subsequently, theive CPU Simulation Engine starts thgimu-

lation (delay) time advanoeo stepat to. This stage consists of two oper

tions: the Live CPU Simulation Engindans to wake up itself at a future

time point andhenreturnsThe CPU Engineds slseping dur

execution cost o& software modelDepending on the execution mode of

the Live CPU Simulation Engine, tieearethree possibleases:

a. If the Live CPU Simulation Engine works in a pure variattieptime
advancemode, itplans toprogresshe delaytimet in the DRin a sih-
gle step It ses the internaleventto trigger itselfat thecomingtime
pointtg+t. Then itreturns control back to the simulation kerimebrder
to advance the simulatiaime by the duration of

b. If the Live CPU Simulation Engines set with a fixedsteptime al-
vancemode, it runs periodicallin orderto decrement and updatiee
delay value in DR untithe delay value is totallgxhaustedwhilst, the
simulation clock is progresseariodby-period.

c. If the Live CPU Simulation Engines configured withboth the var-
ablestep andhe fixed-step modes, ihot only plans tavake upat the
final time point, but also periodically decrements the delay value.

Step (E):In this stage, the Live CPU Simulation Engungdates thesimu-

lation status by maintainingdelay time andesuming or beginning soft-

waretask.There are two possibituations depending on whether an iinte
rupt happens:

a. Assuminga simple casavherethere is no interruption or pmmption
during tre t time durationas illustrated inFigure 3-17 (A), thus the
Live CPU Simulation Engine wakes @b timetyt+t. It consumeshe

value in DR and then issues the event related to the current RUNNING

108

task so as tonake it continue executy. Upon that, the above exec
tion cycle is repeated.

b. A main target ofthe mixed timing approachis to solve the non
interruptibleproblem of SystemC software simulatidib.is important
to consider the interferenédeom an unexpected interrupt eventrihg
ongoingsoftwaredday duration.As shown inFigure3-17 (B), before
thetime advancelurationt expires,an IRQ happensat t; thatis earlier
than the time pointy;+t projected in Step (D). Given thtte interrupt
handlingmechanisnof the system isiot intentionallydisabled the In-
terrupt ControllerModel thus catcles the IRQ immediately andhen
invokesthe software O$nterrupt handlingunctionto servethis IRQ,
i.e., the current RUNNING task will qgre-empted by a highepriority
ISR. TheOSinterrupt handling functiosaves theemainingportion of
thedelaytime sliceand othetiming information in Virtual Register®o
thepree mpt ed t fosflkubesuseTh€ B2mainingportionof the
delay tme iscalculated astiemain = t-(t1-to), wheret is the initial value
of the DR and; is the current time stam@he OSinterrupt handling
functionthen dispatche@.e., loads its context to Virtual Registees)
appropriate ISRas he nextto-run softwaretaskand cals the Live CPU
Simulation Engineby notifying an eventto replacethe previously
planned wakeaip event The Live CPU SimulationEngine faces fresh
values in the Virtual Registers and sends an event to allow the ISR to
run immediately Consequently, e software ISR executes its fur:
tional codeand repeatthe abovetime advancegrocess In this way,
both softwaretime advance anbardwareinterrupthandlingare simu-

lated accurately.

3.4 Evaluation Metrics

Recalling the three requirements SLDL-based softwarbehaviouraimodd-
ling andsimulationmentionedat the beginning of this chaptahe flexibke modd-

ling aspect is mainly addressen Section 3.2.3by supportingdifferent software

109

functional and timing models he simulationperformance andimulationaca-
racy aspects am@ddressed in this sectiam orderto evaluae experiments in Se
tion 3.5

34.1 Simulation Performance M etric

In this section, the metric of simulation performamceefined ashow much
simulation time (i.e., host time) is usedexecutea specific simulatiomn the host
computer A specific simulation refers to executing saftware test program
which ismodelled in the mixed timing approaehd simulated byhe Live CPU
Model for a set of repeated iterationss the referenced cleaccurate simulator,
the KEIL ARM ISS[146] executes the same test progriima same number of
loops Simulation speeds of the mixed timing simulation approach and the ISS
approach are compare@dorderto calculate a simulation speeduwyhich is:

.. oYYQda 6 4 @@ OE
LN QO R R0 0o 6 & & men:

Note that although the ISS simulator is alssoftwarebasedsimulation @-

proach,it executescrosscomplied software binaries for a target hardwaré-pla
form. In the context of higHevel software simulatiorfunctional and timing &-
havioursof an ISSare commonly deemed the same as se#tlvareexecution on

acorrespondingrocessar

3.4.2 Simulation Accuracy Metrics

Simulation accuracy metriasf the mixed timing apprad relate to two gsects,
i.e., functional accuracy and timing accuracy. In Secidi4d some simple OS
functions are introduced as the isa®r mixed timing software simulation. ke
ever, the focus of this section is not to present a detailed OS simulation model
with complete multitasking and concurremixecutionservices. Rather, this ce
tion concentrates on relatisinps betweersoftware modelsnd theirtiming cha-
acteristics, i.e., timannotdion and advanceHence, a test progradoes not utt
ise many OS functionsbut needs to includdatadependent loops thaequire

dense time annotations.

110

3.4.2.1 Functional Accuracy

Functional accuracyefers thatjn terms of a given test program, whetlver
havioural simulation models carpresensimilar functions andgeneratecorrect
results compared to real software execution. Based on the definition in Section
3.2.3.1 abstract software models do sofficiently reflectthis propertyif theydo
not aim to includeenoughfunctioral code. Regardingative.codesoftware sim-
lation modelsthis property can be evaluated by compared its simulaéeultsto
those ofan ISS simulation.

However, evaluating functional accuracy is noeamphasisn this chapter, &
cause it is not difficult to guarantee that a single task model can execute correct
modelling functions. Especially, a natieede task model may have the same
code as a real task. Functional accuracy of concurrent-tasking software
modek will be addressed iG@hapter 4 when a complete RTOS model is o3tr
duced.

3.4.2.2 Timing Accuracy

By simulating a software model in the proposed mixed timing apprdaaish,
known how muchsimulated time (i.e., the target time in Systeng)sed to ea-
cute a set ofepeated iterationsf a given test progranwhich is referred to as
tmixea It can alsdind the simulated time of the same test program and iterations in
anISSsimulator whichis referred to agss

Timing accuracycan be reflected by comparitgwegandtiss If they are close,
then the timing accuracy of the mixed timing approach is deemed good eAough.
timing accuracy loss is computed as:

Sy 0 §
0

p Tht

Inaccuracyof timing is contributed by three parts, i.e., software performance
estimation, delay annotation, and time advance.

The first part isnot within research focusf this thesisso ISS-based measear
ment method is used (See SectBR.5.3. It can provide highly accurate software

performance information.

111

The second part is addressed in definitions of software models in S&&idn
It should be noticed that inaccurate annotations mayntemtional choices of
simulation users for the sake of fast simulation performance and ease of modelling.

The third part is aotable advatage of the mixed timing approathterms of
supporing interruptible software time advantg the Live CPU Simulation r=
gine. However,in this chapterwithout involving many task switches and RTOS
services in simulatiorthis aspectannot be evaluatdadoroughly

Still, referring to Sectior8.2.7.3 thae arethreebasicfeatures relatedimula-
tion timing accuracgan beevaluated

1) The resolution of stopping software time advance step

2) Timing accuracy of handling interrupts

3) Maintaining execution delay information of software models

The firstpoint can be evaluated by measuring how fast a time adstewean
be stopped in the proposed simulation approach. The second point can Ilpe simpl
fied asthe interrupt latencgt the moment. Inafct, it refers to the same feature as
the first point. The third point can be eva

advance can be resumed properly after it isgongted.

3.5 Experimental Results

All simulation testgn this sectionare grformed withSystemC v2.2 on three
x86 PCs (frequencies ranging from 1.86GHz to 2.2GHm)ning Windows O§
Tests of a single topic asdwayscarried on the same FA@ order to becompaa-
ble. Host simulation times are measured by WindMis32 functionQuer y-
PerformanceCounter() , Which can retrieve thealue of the highresolution
hardwareperformance countemd provide microsecond level host execution time
[148]. Target simulated times are obtained bysing SystemC function

sc_time_stamp()

112

351 Performance Evaluation

3.5.1.1 Simulation Performance of Different Timing Models

In Section3.2.3 the abstract software model and natteele software model
are introducedBecause thehavedistinct functional and time annotation chara
teristics, their simulation performance necessarily diffEtsthermore, in Section
3.2.4 two techniques are introduced to impraisulation performancéy ad-
justing time annotation and advance statements in cdte section presents
some tests to evaluate simulatiarfprmance of these different models anddmo
elling techniques. In order to concentrate the abovementionedaspectsand
eliminate the possibility that softwafenctional complexitymay dominatesimu-
lation performancethe testprogram includes a singtaskimplementinga sele-
tion sortalgorithm This algorithminvolvestypical datadepenént if conditional
operationsandfor loop operationswhichrequire finegrainedtime annotation#
the timing accuracy is a concerhlthough RTOS services are not called by the
task,limited RTOS services (without delay annotatioagstill executel in order
to initialise the software simulation system.

As shown inTable3-10, the same program ssmulated in six cases

1 Two abstract software model§he first abstract software model does not

implementthe actual function ofhe sort algorithmwhilst the secondba
stract model doesThey are both annotated one timm@notation statement
and one timadvanceointat the task level

1 Threenativecode moded They all implement the sort function and \rea

four fine-grainedsegment level annotation statementkich are approx-
matelytiming accurateegardingdatadependent loops.

A The nativecode 1 and 2 are botmplementedby the proposednixed
timing method and the interruptibleive CPU based time advance
method.Their difference is:wo time advance points are definada-
tive-codemodel 1, which utilises the reduced time advanced technique
in Section3.2.4.2 whereasfour time advance points are defined & n

tive-code model 2nd inside d@dependent loops.

113

Proposed |Proposed Prqposed Interup.tbl Uninterruptibl
native- ble native- .
abstract |abstract e native-code | ISS
model 1 |[model 2 code code model 3
model 1 |model 2
. With With With With) . .
Functions tC.)Ut t . t . t . With functions|Final code
functions [functions |functions [functions
Coarse- [Coarse- |Fine- Fine-
Time annotation [lgrained |grained |[grained |grained [Fine-grained
granularity function- |[function- |segment- |segment- |segment-level
level level level level Cycle-
Number of time 1 4 4 4 accurate
anno. statements ARM7TDM
Coarse- [Coarse- Fine- I-S
Time advance |[lgrained |grained [Reduced |grained [Fine-grained |LPC2124
granularity function- [function- |advance |segment- |[segment-level|@60MHz
level level level
N f ti
umber of time 1 5 4 4
adva. statements

Table3-10. Descriptions of experimental cases

A The nativecode model 3 utilises the uninterruptilait-for-delaytime
advance method. It is a conventional annotatiependent software
simulation model.

1 The test program is also run on tkEIL ARM ISSwithout cache and OS
supportand its execution timcosts are used to annotate above behavioural
models.

Simulation results are shownkigure3-18. Somephenomenand conclusions

can be inferred:

1 The abstract model 1 is fast@ver 400x speedup compared to 1S&n
other models because that it does not madwitiorality andhasthe fewest
execution counts of annotation and time advana@mulation The abstract
model 2 is slower than abstract model 1 due to its functional complexity.
They both can be used for abstract software modelling in this thesis.

1 Theproposed nativeode model has fast simulation spedce.,over 200x
speedup compared to ISIBis functionalaccuratei.e.,with thenativecode
fundtion. Its timing accuracyis also promising because sifficient exea-

tion couns of annotation stateemts in simulation (sethe quantification e-

114

Simulation time comparisor

10000000
o 2699990 805926.05 815000
£ 1000000
= 100000
© 3237.126.3527.092
E ,(/?10000 looZ. 7o
2 2 1000
‘D 100 -+
1)
2 10 -
T 1 L
Abstract | Abstract Native- Native- Native-
model 1 | model 2 code code code ISS
model 1 | model 2 | model 3
Hostsimulation| o0) 78 3037124 3527.004 1845550 8029261 81500(
time (us)
Total execution
counts of 1 1| 125749 125749 125749
annotation
Total time 1 1 2| 125749 125749
advance steps

Figure3-18. Simulation time results

sult in Section3.5.2.). It is recommendd to be used in nativeode saf

ware modelling in this thesis.

1 The interruptible nativeode modeP also hasimilar functional and tinng

accuracybehaviours compared to the nate@de model 1. However, its

slowest simulation speerd not satisfactory Certainly, it may represent

some special software simulation situaiowhere many time advance

points are necessarysee Sectior3.2.4.2.1 f t hese

funcommonao

indeed happen frequently, the simulation spefethe proposed mixednt-

ing simulation approacWwill necessarilglecrease

1 Theuninterruptible nativeeode 3is weak in terms of its uninterruptible time

advance method and slow simulatgpeedi.e., using over 200x simulation

time more than the proposed natc@de model 1

In addition,Figure3-18 shows some statistics on execution counts of time a

notation statements and time advance steps in simul&egarding the proposed

mixed timing simulation approach in this thedisp characteristicean bein-

ferred fromthe perspective dhis experiment and give guidance to some extent:

115

1) More awnotation tatements do not contributeo muchsimulationtime.
Comparing the nativeode model 1 and the abstract model 2, 125749 times
more annotation statements result in less than 10% simulation overheads.

2) Time advance steps (i.e., execution of the Live CPU Njaféect simula-
tion performancegreatly Comparing the nativeode model 2 and thean
tive-code model 1, 62875 times more time advance steps incur 500 times

moresimulationtime.

3.5.1.2 Simulation Performanceof Varying Time AdvanceMethods

In the previoussection, simulation performaneeasevaluated by varyingrti-
ing modelling related aspects. This section ingpsthulation performancef
modelsby changingime advance methaaf the Live CPU Simuldon Engine

In Section3.2.7, the variablestep and fixeestep time advance methods amne i
troduced as execution mechanisms of the Live CPU Simulation Eiyirsetting
the two time advance methodétsr the Live CPU Simlation Engine tradeoffs
can be made osimulation speedybservability, andime advance accuracy.

The software test programsonsiss of eight abstracttasks (i.e., four equat
priority periodic tasks and fouhigherpriority ISR taskg with randomly
generatedasklevel delays.A very simple OS modeprovides preemptive multi
tasking service The OS schedulemplements fixeepriority and rounerobin
scheduling algorithms and is triggered Aycombinedtime-driven and event
driven mechanismFour interrupt sourcesre includedin simulationand raised
randomlyin orderto triggerISRs. Thetest progranrunsfor 1000ms target time
that allows a task teepeatat leas0times

TheLive CPUSimulation Engineis configuredn following modés:

1) Modd A: usesa fixed-steptime advanceanethod which runs everyl ns
and advancs the target clocky a step ofl ns. It is similarto thefine-
grained time period synchronization approaich Section 3.1.2 This
achieve 1 nstime advanceesolution.

2) Modd B: uses aualgraired fixed-steptime advancenethod It is similar
to the multiplegrained time annotation methodroducedn Section3.1.3
When a software delay values greater than ins, the engine runs every

116

1msto progresshe target clock by step ofl ms. Oncethe delay value

falls below 1ms, then the engine runs evelyrs to advancehe target

clock by a step ofl ns. Thisachieve 1 nstime advanceesolution.
3) Modd C: uses a mixed fixedtep and variabietep time advancenethod
It progresses a delagfice in an interruptiblevariablelength stepandalso
runs everyl msto advancedhe target clock by step of Ins The time d-
vance resolution is only restricted by thiming resolution of SystemC
simulationengine.
4) Modd D: usesa variablesteptime advancemethod It progresses delay
slicein an interruptiblevariablelength stepThe time advance resolution is
only restricted by théming resolution of SystemGimulationengine.

The samdest program isun on KEIL ARM ISS for a sameduration of 1000
ms. The target processor aNXP LPC2378 running at 40MHZ. A L C/Ob
RTOS[149]is ported on this ISS to manage tasks.

Obtainedsimulation speedesults areshownin Figure3-19. Comparedto ISS
simulation, mixed timing modelsobtain drastic performance improvemant
terms of the biggest speedoper 3000 times Unsurprsingly, the variablestep

approachis also fasterthan thefixed-step time advance approactModel D

100000

o 10000 +—
E
[
= 1000 +—
=
c
=) 100 +—
ot
o
3
£ 10 +— —
&
1
ARM 1SS A B c D
|Simu|ation time (ms)| 65892.5 13743.924 213.874 31.285 19.697
Simulation Engine Instruction Fixed-step at Fixed-step at FD.(ed-step at .
Set 1us and ims and | Variable-step
Mode) ; Tus ')
Simulation ! ims variable-step
SW Time Advance Cycle- Depending |Depending on
: Tus 1us on SystemC SystemC
Resolution accurate . .
resolution resolution
Live CPU Engine N/A 1,000,000 42,389 3,062 2,064
Running Count

Figure3-19. Simulation time comparison

117

achieves a considale speeadp (Over 600 times)compared to model AThis is
becausehe fixed-stepapproach progressése target clocknuch mordrequently
than the variablstep aproach, which is reflected bygherrunning cours of the
Live CPU Simulation Engine

The modelsB and Cuse combined time advance methdé®m her simula-
tion results it can be inferredhatfiner periodic time adance steps result in more
simulation overheadsn order to reveatelationsbetween step lengttand simu-
lation speed of fixed-steptime advancenethod,threeadditional tests are carried
out with periodic stepof 2 ms, 5ms and 10Gns which mean the ke CPUSIimu-
lation Engineis activated to advance the target clatlevery 2ms, 5ms, and 10
msrespectively

Figure3-20 shows that simulation tinsendLive CPUrunning cours steadily
decreas whilst the fixedstepperiodis growinglarger This characteristic can be
used to tunghe Live CPU Simulation Enggand optimise the simulatioper-
formance andsimulation observabilityin different situations Besides, thepeii-
odic fixed-step time advance methadn represent behaviour of handling the
periodicreattime clock interrupt ot RTOS, in which the Live CUP Simulation
Engine is triggered periodicallyAccording tosimulation resultsfiner reattime
clock interrupt periods incuextra but not excessive overheads, which can be used

35.000 3500
30.000 & 3000 =
= \ E
3
‘E‘ 25.000 2500 (3
2 =
E \IQL_]
= 20,000 —*—tono0 E
L &
2 15000 1500 2
£ =
% 10000 1000
=2
5.000 500 &
0.000 +— - - - 0
Fixed-step | Fixed-step | Fixed-step | Fixed-step Pure
at imz & at 2ms & at sme & at 10me & | Variable-
Var.-step | Vari-step | Vari-step | Vari.-step step
—il— Simualtion time{ms) 31.285 25758 22177 20697 19.697
—ae— CPU count 3,082 2,601 2,294 2187 2064

Figure3-20. Comparison of varying fixedtep length

118

as a referenc® determine the period of tloéock interruptin a RTOS model.
3.5.2 Accuracy Evaluation

3.5.2.1 Experimental Timing Accuracy

Experimental tests in Sectidh5.1.1are also studied heréccording to the
analysis in Sectio8.4.2.2 regarding a simple software model,titeing accuracy
depends on itperformance estimation and delaynotation granularity?erfom-
ance is measured I8S andused for nativecode software modelTiming delays
areannotated athe segment level. Consequently, a good timing accuracy should
be expectedAs shown inTable3-11, in terms of the same test program, native
code models consume very dizn target time to the ISS simulator. This table also
demonstrates that reducing time advance points does not affect timing accuracy of

independent software models.

Native-code| Native-code 1SS
model 1 model 2
Simulated times |19 6986.1115 6986.11% 6977.5]
Accuracy loss 0.129 0.129

Table3-11. Timing accuracy of nativeode models

3.5.2.2 Timing Accuracy of Basic Operations

Referring to thehree basic features related simulation timing accuiraSec-
tion 3.4.2.2 an interrupt experimens executed in order to evaluateemin simu-
lation.

This expeimentincludesfive IRQs (IRQ1-5) andfive associatedSRs (ISR1
5), which areassigned ascending prioritieBach IRQ randomlyhappens500
times in 10 seconds simtga time.A normal task runs ithebackground and can
be interrupted by any IRQs apde-empted by their ISR he software system is
configuredso that interrupts are always enabled and the Live CPU Simulation
Engine can stogurrent time advancas soon as a higheriority interrupt h@-
pens. Therefore, at any simulation time pointerrupt latencyof the highest

119

SW task SW task
]

o2 lRQli [}/
IRst [Ise /g
N Cl I3 [Iss719
. IlRQ4 N CI\ 14 [7/1C _ >
7011 7016 7022 7027 7041 7053 t(>9)
ti Ltirew tireco

AN interrupt_handler_enter tj :interrupt latency time
V7777 interrupt_handler_exit tiresp: interrupt response time
context switch tireco iNterrupt recovery time

Figure3-21. Interrupt handling experiment

priority IRQ should always be zero, and atherIRQs are only able to be pges
poned by highepriority ISRs.

Figure3-21 shows gartof thetimeline of this expeiment, which is drawn&
cording to the actual simulation lol.illustratesthree concerned basic timing-r
lated featuresi.e., immediate stop of time advancesumabldime advance, and
zeratime interrupt latencyAs well, it demonstrates some functions of the inte
rupt Handler Model.

Referring to this simulation tracatt=7011pus, IRQ2 and IRQ3 happen siu
taneously. Since the Live CPU model contratétwaretime advance and mén
tors IRQ linesthe current softwarBme advancetep isstoppedmmediatelyand
an IRQ is handled imediately. Thisinterrupt latency is zerome. Because the
priority of IRQ3 is higher than IRQ2, thinterrupt Controller Model ignores
IRQ2 and begins to service IRQ3. Afterwards, RTiG8rrupt services and ISR3
execute sequentially. At t=7022spa highefpriority IRQ4 happens anishvokes
nestedinterrupt service by preempting ISR3.Note thatIRQL1 is raisedduring
ISR4 execution however, itis ignored by theriterupt GontrollerModel die to its
lower-priority priority. After the completionof ISR4, lowefpriority ISRsarehan-
dled successivelaccording to their prioritiesAmong them,ISR3 is released
firstly to continue its remaining delay and finishes at t=7j0gl1

In order toquantifythe interrupt latencin simulation we measureterrupt b-
tenges of these iive IRQs in thisexperment. The theoretical maximum interrupt
latency ofan IRQ can be computed as the sum of all highierity ISR time

costs:

120

0

Table 3-12 compares measured maximum interrupt laenwith calculated
theoretical values As expectedthe highespriority IRQ5 is always serviced
without any dedy. And otherlRQs are also serviced witheratime latencyif
there is no other highgariority ISR in the systemn casehatan IRQis delayed
by some other highegriority ISRs, its maximum interrupt latency does net e
ceed the theoretical worstisevalue either.

Counts of [Counts of)
. . Theoratical |Measured

zero-time |delayed |ISR time . .

interrupt [Interrupt [cost(us maximum - jmaximum

latency [latency latency (g (latency (s
IRQ5 500 0 500 0 0
IRQ4 441 59 10 500 494
IRQ3 440 60 10 510 488
IRQ2 448 52 10 520 502
IRQ1 444 56 10 530 488

Table3-12. Comparisorof theoretical anagneasured interrupt latencies

3.6 Summary

In this chapter a SystemCGbasedmixed timingsoftwarebehaviouraimodelling
and simulatiorapproachandthe Live CPU Modelhave beerntroduced

In the context of TLM software computation modelling, two typesaffware
timing modelsvereproposedor use indifferentsoftwaremodelling sages. Also,
theycan be mixed in simulatiofor modelling flexibility. By isolatingthe timing
modelling aspectfrom the timing simulatioraspect,various timing annotation
granularitieq(i.e., tasklevel, functionlevel, segmenltevel, and basiblock-level),
functional accuracievels (i.e., abstract and natigede) andtime advance mét
ods (i.e., variablestep and fixegstep)can be utilised on mixed timing software
modelsfor various sakes of fast simulation performance, modellirigxibility,

simulation observabilityand reasonable accuracy.

121

The proposed SystemBasedLive CPU Model canachieveinterruptiblesott-
waretime advanceand zerotime delayednterrupt handlindatency in software
simulation The HW/SW synchronisation problems solved without the need of
fine-grained timeannotation anagdvance.This approactavoids the annotatien
dependent software time advance approach that may result in uninterruptible
software tming simulation.The Live CPU modelsupports multiple execution
modes, which could trade off simulatispeedwith simulation observabilityThe
Live CPU Modelalso providesan essentialinterrupt Controller Modegla real
time clock and some Virtual Reggssto assistsoftware simulaon. In the context
of a software PE moddhe Live CPU Modebehaves as the conceptual hardware
part and is promising to be extended with SW/HW interfaces for-mtetule
communication.

Regarding the requirement of fast performarecegpresentative test program
shows thatthe proposed mixed timing software modalshieveabout200 to3000
timesspeedupto an ARM ISS simuladr andthe conventionafine-grainedunin-
terruptible behaviourasoftware model. The proposed abstract and natocale
software modelslsoshow distinct simulation performanes expectedvarious
execution models ofive CPU Simulation Enginare tested in order to present
their effects on simulation performance.dganeral, more time advance points in
models inevitably incur more simulation overheads.

In this chapteriwofold timing accuracy othe simulationapproachwas meas-
ured in experimentg=irstly, focusing on timing accuracy of single task execution,
with fine-grained segmedevel annotations, the proposed natogeles only incur
a 0.12% timing accuracy losSecondly, the basic time advance stopping latency

and interrupt latency is evaluated by measuring interrupt latencies in simulation

% The variation in simulation speedup are mainly because of two reasons: firstly, differeft exper
ments and test settings affect the simulation speed of a specifitregpt secondly, experiments
were carried out at different times when the overall functionality and complexity of the proposed
software simulator werevolving which affected simulation speeds. In general, compared to the
KEIL ARM ISS, the proposed simation approach has two or three orders of magnitude speedups

in this thesis.

122

tests. The resultcaords with the theoretical value, i.e., zéroe latency. Thea-

sumable time advance method is demonstrated in a simulation case.

123

Chapter 4
A Generic and Accurate RTOSCentric

Software Simulation Model

In recent years, with embeditleystems moving towards System-Chip pla-
forms, the complexity of the hosted embedded software is increasing. The RTOS
has become an essential software component in manyimeakembedded sy
tems, providing efficient resource sharing and controllingjlifees as well as
guaranteed services between uppger application software and underlying
hardware resources. The traditional software simulation approach, which executes
a real RTOS and fully developed applications in an instruction set simulptor, a
pears to be time consuming. In order to speed up simulation performance and
validate reatime embedded software early in the systewel design flow, e-
searchers have proposed systemel SLDL-based behavioural software simul
tion as a new design parguah.

RTOS behavioural modelling and simulation have been proposed as enabling
techniques that simulate and evaluate differenttiesd embedded softwareed
sign alternatives in the early design phases. They can be used to evaluate system
wide, dynamic, ro-time properties of redime software, such as schedulingipol
cies, application execution times, and interrupt handling, etc. These methieds us
ally build generic RTOS models that can provide various typical RTOS services
or can be adapted to mimic beh@awi or specific RTOSs. The RTOS model and
abstract software models or natisede application software models are dyram
cally executed together in an SLDL environment on a host machine, in order to

mimic timing and functional behaviour of a software systena target platform.

12¢

4.1 Motivation and Contribution

Within the systemlevel RTOS modelling and simulation research area, there
still exist some unaddressed aspects and issues for improvement. These relate to
the functionality, timing accuracy, ansimulation performance of simulation
models. For example, from the perspective of maximising flexibility of system
level software modelling, designers may want to simulate multiple abstraction
level software models in one simulation framework. Current Rim@8elling e-
search does not address integrating cegramed timed abstract task models (i.e.,
associated with bestase and worstase execution times) and figeained timed
nativecode application software (i.e., associated with multiple delay amma
in one simulator. Besides, from the perspective of practical RTOS engineering,
some RTOS models provide simplistic task management and limited syneahkronis
tion services, which are inadequate to imitate the behaviour of a reataskitig
RTOS. Furhermore, the low timing accuracy is a common, yet critical, problem
borne by many RTOS modelling approaches. On the one hand, this is due to the
|l ack of inclusion of RTOS servicesd timing
hand, some SLDIbased modellingnethods rely excessively on the uninterrupt
ble SLDL wait-for-delay time advance mechanisfsee Sectior8.1.1); con®-
quently, task switches and HW/SW synchronisation can only happen at limited
pre-defined time advance points.

In this chapter, a Systerd@ased systerfevel RTOScentric reattime embd-
ded software simulation model is presented. Its objectives are fast simulation and
behavioural evaluation of reime embedded software with good flexibility and
reasonable accuracy in early design phases. Dynamic execution scenarios of a
modelled targetystem can be exposed by tracing diverse system events land va
ues in simulation, e.g., RTOS kernel calls, RTOS runtime overheads, task exec
tion times, dynamic scheduling decisions, task synchronisation and conamunic
tion activities, interrupt handling lateies, context switch overheads, and other
properties. The whole simulation framework integrates rtatking applications,
RTOS, Live CPU and other hardware component models in a unified SystemC
prototyping environment. The core is a generic RTOS sinmmatiodel, which

supplies a set of fundamental and typical services including task management,

12¢

scheduling services, synchronisation, ifteesk communication, clock services,
context switch and interrupt handling services, etc. These services refer &l sever
commercial RTOS products and specifications in order to supply general and
standard functions. With the aim of building a timing RTOS simulation model,
timing overheads of various RTOS services and application tasks are alst consi
ered in the models.

All models in the simulation framework are implemented on top of tlse Sy
temC library. The basic SystemC core language and the OSCI referenceat simul
tion kernel are used without modification.

In the remainder of this chapteBection4.3 introduces a typical embedded
software stack and considers it€lusion within our simulation model. Section
4.4 presents background knowledge of fiéale applications and the RTOS.cSe
tion 4.5 describestte RTOScentric software modelling approach in detailcSe
tions 4.6 and4.7 introduce evaluation metrics and experiments to demonstrate the
simulation performance, function, and accuracy of RI®&tric reaitime sof-

ware models. Finally, the chaptersismmarisedn Sectior4.8.

4.2 Research Context and Assumptions

Referring toFigure4-1, we have introduced software PE modellingsiction
2.1.3.3 The Live CPU Model, as described $ection3.3, representthe had-
ware aspect of the software PE model. This chapter will introduce the behavioural
RTOScentric software simulation model, namelye tkoftware aspect of this

software PE. The software simulation model runs on top of the Live CPU Model,

Software Processing

Hement (CPU)

I

|| Behavioural software
I| simulation model
I

A, A,
—r Hardware

Hardware aspect abstraction:

—L Live CPU Model

SystemCEnviroment

Figure4-1. Software part of the software PE model

so softwaresimulationis guaranteed with reasonable timing accuracy and good
HW/SW synchronisation (i.e., interrupt handling) timing accuracy. The whole
software PE model is the research context, i.e., #tagking reatime appli@a-
tions and a RTOS run in a uniprocessor erdbeddsystem model.

Due tothe high abstraction level of the software simulation approach in this
thesis, advanced CPU architectures such as mulépé caches and pipelines
are not considered, i.e., their effects on software execution times are noitlgxpli
modelled. However, according to the software performance estimation methods
discussed irbections3.2.5and3.2.6 aKEIL ARM ISS without cache isised to
measure software performance for back annotations of our software nmottess
thesis In terms ofotherspecific IS®s caches may or may not be supported when
the ISS executes software instructions, which means that caches can still affect
timing accuracy of software time annotations. Hence, timing accuracy losses of
software execution timesbetween the proposed behavioural software simulation,
the referenced 1SRnd the real hardware platfornare inevitable. Recalling the
research intention of this thesis for fast and accurate software simulatiors-it is a
sumed that the referenced ISS is accurate enough to support and evaluate our b
havioural software simulatn.

As introducedn Section3.3.1 the memory subsystem for actual software-ex
cution (e.g., RAM) is not included in the Live CPU Model because that it is not
necessary for behavioural (i.e., abstract or nativde) software simulation.
Hence, target software memory environments such as stack, heap, and memory
protection, and RTOS memory management services such as swapping, paging,
allocation, segmentation, andtual memory, are also out of the modelling focus.

Nowadays, tereare many general RTOS concepts, popular RTOS standards,
and specific RTOS products. This thesis aims to present a generic RTOS model
for behavioural realime software simulation. It shti be representative yet
without a loss of generality. The selection and determination of functionseand r
guirements of the RTOS model are made with reference to both some classical
RTOS literaturg25] [26], and some current RTOS specifications and products,

including:

12¢

1 The Didactical C Kernel (DICK])25]: this is a small reatime kernel that
introduces basic and important issues for designing a hartimeakernel
and hencénformsour simulation model from the theoretical aspect.

1 RealTime extensions of the P@$ (Portable Operating System Interface)
standard 1003.1 (referred to as-RDSIX hereafter]150]: this is a very
broad andsuccessful API standard particularly facilitating handling mult
threading and multiprocessing rd¢athe applications. RPPOSIX is scalable
with four subsets (nameRealTime Profile PSE51 (minimal), PSE52 (To
troller), PSE53 (dedicated), and PSE54 (mplitpose)) for differenscale
systems. The RTOS model in this thesis refers to the PSE51 profile for
small embedded systems.

7 ¢l TRON (mi cr o RdalficheiQGperatingasysten Nueleus) 4.0
standard[151]: this standard is oriented to small/medisire embedded
systems. Over 40% of RTOSs used in Japan are based on this sfa@édprd
It inspires the task state machine in the proposed RTOS model.

1 ¢ C/ -0 849], ThreadX[152], and Keil RTX (Real Time eXecutivé]]:
they are representative poputamallsize RTOSs. Their functions andrke
nel structures mostly influence the proposed RTOS model from a practical
engineering aspect.

1 QNX Neutrino[147]: this is a RFPOSIX compliant multiprocess@nabled
highrend RTOS. Its implements baghread and redime services in the
microkernel and can be extended to support multiple processes by adding

optional components.

4.3 The Embedded Software Stack Model

The left part ofFigure 4-2 depicts a typical embedded software stacknit i
cludes three layers, i.e., the application software layer, the middleware layer, and
the system software layer. According to the research context and intention of this
chapter, tk software stack needs to be abstracted into a model in order to-acco
modate software components for highrel modelling and simulation.

The right part ofFigure 4-2 illustrates the abstract model of the embedded

software stack. The application layer is obviously essential to be included, b

