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Abstract 

Different techniques are required to produce different vocal qualities in singing. The demands 

placed on modern singers as they seek to take advantage of the full range of vocal influences 

available potentially creates vocal strain. Good vocal health stemming from the appropriate vocal 

technique is an essential requirement for longevity of the voice regardless of singing style. The 

objective scientific analysis of professional singers' vocal qualities and vocal techniques is a good 

starting point for the understanding of efficient and healthy modes of singing production. 

It is hypothesised that standard two-channel speech analysis and speech synthesis techniques are 

appropriate for modelling two perceptually very different qualities in the female singing voice; 

"classical" opera quality, and the non-classical "belting" quality, which is heard in much popular and 

ethnic music today. 

This thesis details the results of an experiment comparing the vocal qualities of female opera 

singers with West End musical singers who are trained to "belt". 

Standard two-channel speech analysis normally involves recording in stereo, vocal fold vibration 

by means of a single-channel electrolaryngograph on one channel, and the acoustic output from a 

microphone on the other. In this study, a multi-channel recording set-up has been used. This is to 

employ larynx height measurement, a relatively new addition to voice analysis techniques, which 

requires a two-channel electrolaryngograph. It has shown that the additional use of the larynx height 

measurement is an improvement over the standard two-channel speech technique, since it appears to 

be an important parameter in singing production. 

The important quantifiable parameters which relate to the perceptual differences between the two 

qualities has been shown to be the closed quotient measure, the spectral envelope, and vibrato. These 

have been used as input parameters to drive a speech synthesizer in order to resynthesize the singing 

qualities. A perceptual test has shown that the robustness of the models derived from the results are 

adequate. 

In conclusion, it has been shown that it is possible to use standard two-channel speech analysis 

techniques and speech synthesis techniques for perceptually differentiating between female opera and 

belting qualities. However, in terms of understanding singing production, these techniques benefit 

considerably from additional analysis equipment more suited to the extra features of singing 

production, and a synthesizer which is specifically designed for singing synthesis. 
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Chapter 1 

Research Objectives and 

Report Structure 

1.1 Introduction 

Singing is a science as well as an artform. Understanding and tuning the physiological 

mechanisms that govern singing production to the extent that the appropriate physiological gestures 

become automatic, allows the singer to concentrate on the interpretative and communicative aspects 

of the performance. Modern technology has the potential of allowing singing students of any ability 

the chance to develop their vocal skills by providing objective technical feedback of their own voices 

and those of others. Modelling different vocal qualities using the appropriate speech and singing 

technology can create a body of data which students can draw from in order to clarify their vocal 

aims, thus speeding up their singing progress. 

The main objective of this research is to model two different vocal qualities exhibited by female 

singers: the traditional, well documented "classical" opera quality (e. g., Bel Canto); and the 

relatively unexplored "belting" quality, a distinctively brassy quality which is heard in rock, gospel, 

and Broadway singing. The integrity of the models will be then be demonstrated by synthesis and 

perceptual tests. 

1.2 Hypothesis 

It is hypothesised that standard speech analysis and synthesis techniques are appropriate for 

sufficiently discriminating between, and therefore, modelling opera quality and belting quality in the 

female singing voice. The speech analysis techniques encompass non-invasive voice source and 

acoustic measurements. 



1.3 Thesis Content and Structure 

Chapter 2 

provides a brief description of the human vocal and hearing systems. 

Chapter 3 

presents a description of standard non-invasive speech analysis techniques. 

Chapter 4 
discusses previous literature on vocal qualities and modes of production. 

Chapter 5 
describes the experimental and analysis methods used in this investigation. 

Chapter 6 
details the results of the experiments. 

Chapter 7 
is divided into two sections. The first section outlines current synthesis procedures and 

describes the main synthesizer used in this study. The second section describes the results of a 

perceptual test. 

Chapter 8 

provides conclusions to the above work and also includes a discussion of any future work 

which may be undertaken in order to further understanding of this subject area. 

The appendices consist of the synthesizer algorithms for each of the synthesized tones used in 

the perceptual experiment, plus the results of a short questionnaire given to the judges of the 

perceptual test. 
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Chapter 2 

Voice and Hearing Systems 

2.1 Introduction 

This chapter reviews the voice and hearing literature which contributes to the understanding of 

this research. The chapter is divided into two sections. The first part overviews the physiology of the 

vocal system. The second section concentrates on the hearing system, incorporating both physiology 

and perception. 

2.2 The Human Vocal System 

Human vocal communication utilises the same basic apparatus as that used to sustain life. The 

human vocal system comprises of three systems: 

- the subglottal system 

the larynx, and 

the supralaryngeal vocal tract. 

Catford (1977) describes the vocal system as being a pneumatic device made up of two bellows 

(the lungs), tubes and valves. Connected to the lungs is a large tube (the trachea), with a moveable 

piston with a vertical sliding motion (the larynx) sitting on top. The larynx acts as a valve. The space 

between the vocal folds is called the glottis. The structures situated above the larynx are collectively 

known as the supraglottal or supralaryngeal tract. This consists of three chambers (the pharynx, oral 

cavity and the nasal cavity), and other valves, such as the velum, the tongue, and the lips. A 

simplistic representation of the human vocal system is shown in figure 2.1. 

2.2.1 The Subglottal System 

Although this study is concerned with the analysis of the voice source and supraglottal vocal tract 

only, a description of the breathing mechanisms in singing is included here since the subglottal 

system drives the voice and can, under certain circumstances, substantially determine the vocal 

output. 

3 
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Figure 2.1. The three physiologic 

components of human speech production 
(from Lieberman & Blumstein, 1988). 

The subglottal system, also known as the pulmonary system, is shown in figure 2.2. It consists of 

the trachea, bronchi, alveoli and lungs with their associated muscles. The trachea is joined below to 

the larynx and forms a tube of 18 cartilages enclosed by the trachealis muscle. The bottom of the 

trachea stems into two smaller tubes called bronchi. Each of these inserts into one of the two lungs 

where it branches further into bronchioles and ducts ending in a great number of minute air sacs 

called alveoli. The subglottal air ways are contained in the upper of two cavities making up the torso. 

This upper cavity is called the thorax (chest) and is a barrel-shaped bone and cartilage cage 

containing the pulmonary system, respiratory airways and the heart. The lower cavity is called the 

abdomen. It contains mainly the digestive system and other organs such as the kidneys, liver and 

reproductive organs. The thorax and abdomen are separated by a dome-shaped muscular structure 

called the diaphragm. 

Peripheral lower airway 

Parietal 
pleura 

Visceral 
pleura 

Fight 

lung 

Figure 2.2. Front view of the major 

structures of the pulmonary system (from 

Hixon et al., 1987). 
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2.2.1.1 The Lungs 
The lungs can be thought of as balloons with a large capacity to expand or collapse. They are 

prevented from doing so by being in close relationship with the thoracic cage. The lungs sit on top of 

the diaphragm and are encased in a double-walled airtight sac called the pleural cavity. The inner 

membrane (visceral pleura) lines the outside surface of the lungs. The outer membrane (parietal 

pleura) covers the inside of the thoracic cage. This pleural linkage of the lungs and thorax is 

essential in respiration since the lungs and thorax move as a "lungs-thorax unit" (Hixon, 1987). Due 

to pleural linkage, the air pressure within the lungs is very sensitive to forces applied to it by the 

thorax, the diaphragm and the abdomen. 

2.2.1.2 The Subglottal System in Respiration 
The lungs are the main organs of respiration. They act as a pump in order to transfer air to and 

from the alveoli where gaseous exchange occurs, maintain constant blood gas pressures within the 

body's cells, and are made up of mainly elastic fibres which enable them to change shape and size. 

Respiration in breathing is accomplished automatically using a variety of homeostatic 

physiological mechanisms to drive the lungs at the required rate (Proctor, 1980). In certain types of 

speech and singing production, some of these mechanisms are consciously controlled to sustain 

phonation and to help generate different qualities of phonation. 

Some simple mechanical principles govern respiration. These involve air pressures, forces, 

volumes, capacities, air flow, and the mechanical motion of individual structures within the 

respiratory system. A full overview of these principles is not provided here, since excellent 

descriptions are to be found in Hixon et al. (1987), and Proctor (1980). However, figure 2.3 

illustrates some of the main terms used in respiratory function. 

Inspiratory 
capacity 

Functional 
residual 
capacity 

{ Resting tidal 
volume 

mj 

ispiratory reserve volume 

I jI Tidal volume 
. --j (any level of activity) 

Expiratory reserve volume 

Residual 
volume 

0 
Lung capacities Lung volumes 

Figure 2.3. Spirogram illustration of lung volumes and capacities (from Hixon et al., 1987). 

5 



The basic principles underlying respiration are that: air movement occurs from regions of higher 

pressure to areas of lower pressure; and air flow velocity depends on the pressure difference between 

the areas concerned. 

By muscular and passive recoil forces the volume of the lungs and consequently the pressure 

within the lungs, can be varied to achieve the appropriate air pressure difference between 

atmospheric pressure and within the alveoli of the lungs for air flow to and from the lungs. 

Two stages of air flow occur in respiration: inspiration, when air flows into the lungs; and 

expiration, when air flows out of the lungs. Expiration is an important process especially in singing. 

In inspiration, alveolar pressure must be lower than atmospheric pressure in order to create a 

pressure gradient favouring inward flow. At the resting expiratory level, which is with the airways 

open (i. e., with an open glottis) and the respiratory system in a neutral position, alveolar pressure 

equals atmospheric pressure. In order to decrease alveolar pressure required for inspiration, the lungs 

must be enlarged which will expand the air within them leading to a decrease in alveolar pressure. 

This is achieved by enlarging the size of the thorax using muscular forces which leads to a 

corresponding movement of the lungs due to pleural linkage. 

At the end of inspiration alveolar pressure is equal to atmospheric pressure. In order for 

expiration to occur, alveolar pressure must be greater than atmospheric pressure. This happens by 

squeezing the lungs-thorax unit, which increases the alveolar pressure thus enabling air to flow 

outward. Both active (muscular) and passive (non-muscular) forces are used in expiration. In quiet 

breathing, expiration above the resting level is generally termed passive, even though some muscular 

energy is exerted. 

2.2.1.3 Respiration in Phonation 
If the breath is held, "changes in the contours of the thorax and belly must be equal and opposite" 

(Proctor, 1980). That is, as the thorax gets smaller the diaphragm is pushed downward and the belly 

is pushed outward. Sustained phonation requires : 

1. a relatively constant average pressure 

2. a relatively constant average airflow 

3. a resistance of the upper airway (the approximation of the vocal folds) which is referred to as 

glottal resistance 

4. both passive and active forces in regulating air pressure (Hixon, 1987). 

The muscular activity required to maintain a constant subglottal pressure in phonation is 

dependent on lung volume and the amount of alveolar and relaxation pressures (Hixon et al., 1987). 

With the use of muscular pressure the subglottal pressure can be varied. When the lungs are filled 

with air the lung volume is large and high subglottal pressure is generated. The main muscles 

involved in actively regulating subglottal pressure are: 
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1. The inspiratory muscles: diaphragm and external intercostals 

2. The expiratory muscles: the internal intercostals, external oblique, and rectus abdominis 

3. The latissimus dorsi which is inspiratory or expiratory. 

Sustained phonation is initiated at near the total lung capacity and is preceded by a deep 

inspiration, involving contraction of the muscles of inspiration; the diaphragm, external intercostals 

and accessory muscles. The vocal folds are positioned close together at this point. 

2.2.1.4 Lung Volumes in Phonation 
We normally inhale and exhale about .5 

litres every 5 seconds in normal breathing. Airflow, the 

amount of air escaping the lungs per unit time, is consequently very low, about .1 
litre per second. In 

normal breathing, lung volume is varied only slightly at a level just above the functional residual 

capacity (FRC). The FRC is the amount of air that is held in the lungs at resting expiratory level. 

However, in phonation, a number of factors defined by Proctor (1980) determine the lung volume at 

which phonation is initiated. These include: 

1. inspiring sufficiently in between phrases so that there is no break in the flow of the song or 

speech 

2. inspiring sufficiently enough to complete the phrase 

3. controlling subglottal pressure in order to produce the required sound intensity 

4. controlling airflow in order to sustain the desired tone quality for the phrase. 

In speech, phonation is mostly initiated at about 50% of the vital capacity (VC) (Proctor, 1980). 

The VC is the maximum volume of air that can be expelled from the lungs after a maximum 

inspiration and corresponds to the amount of air used for breathing and phonation. 

Sundberg (1987) suggests this is because we are taking advantage of the passive exhalatory forces 

in establishing the subglottal pressures required for normal speech. In normal and loud reading these 

passive forces are also used since people tend to take a breath when lung volumes are close to FRC. 

Normal breathing is characterized by its regularity of rate and rhythm, whereas in conversational 

speech rate and rhythm are irregular (Hixon, 1987). 

The demands on lung volumes are even greater in singing than in speech. Whereas in speech a 

breath normally takes about every 5 seconds, in singing, phrases commonly extend over 10 seconds. 

There are less opportunities to take a breath, and they must often be taken during very brief pauses. 

Consequently, higher lung volumes are used in singing than in speaking. Long phrases are initiated 

at very high lung volumes, almost 100% of the VC. Also, a trained singer can use nearly all his/her 

vital capacity, well below the FRC. A trained singer uses a greater portion of her/his total lung 

capacity. Gould (1977) has demonstrated that singers have a vital capacity about 20% larger than 

non-singers. 
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2.2.1.5 Subglottal Pressure in Phonation 
Subglottal pressure is raised when the abdominal muscles contract after inspiration. It is 

dependent on the amount of contraction and glottal resistance to airflow. Different singers use highly 

varying subglottal pressures, and voice category and type of voice (or singing technique) are 

important factors (Sundberg, 1987). 

Loudness is related to subglottal pressure. In order to change loudness, subglottal pressure must 

be changed appropriately. Figure 2.4 illustrates that pressure is raised with increased loudness for a 

tenor singing tones of a chromatic scale in piano, mezzoforte and forte. It also shows that pressure 

increases with rising phonation frequency. This seems to be true for most singers in the upper parts 

of their phonation frequency ranges. 
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Figure 2.4. Subglottic pressure in a tenor who sang a chromatic scale between the pitches of E3 

and E4 (about 165-330 Hz) in soft, middle, and loud phonation (open circles, squares, and filled 

circles, respectively). The pressure is increased for increasing loudness, but it is also raised with 

rising phonation frequency (from Cleveland & Sundberg, 1983). 

There must be a delicate balance of inspiratory and expiratory muscle effort with the elastic recoil 

forces related to lung volume at any given instant in order to produce a tone of a desired loudness 

(Proctor, 1980). In order to sing a soft tone decreasing inspiratory effort and increasing expiratory 

effort is required, whereas for a loud tone, expiratory effort must be delicately initiated at the moment 

of attack but should then gradually increase in order to sustain this loudness near the residual volume 

(RV, which is the volume of air that always remains in the lungs after maximum expiration, and 

remains even after death). 

In singing subglottal pressure varies rapidly adapting to changes in loudness and phonation 

frequency demanded by the music. This is illustrated in figure 2.5 which shows that during a 

coloratura passage a singer's subglottal pressure changes in synchrony with phonation frequency. 
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Figure 2.5. The pressure in the esophagus (P as), approximately corresponding to subglottic 

pressure and phonation frequency (Fo) in a professional baritone singer performing a coloratura 

passage. Both pressure and frequency increase and decrease once for each tone, or approximately 

6 times per second (from Sundberg, 1987) 

2.2.1.6 Subglottal Pressure and Airflow 
Airflow increases with an increase in subglottal pressure if glottal resistance (the resistance 

against airflow through the glottis) is constant. Glottal resistance can be varied greatly depending on 

the degree of adduction of the vocal folds. It is possible to produce similar tones with widely varying 

airflows. Assuming an appropriate adduction, within the opera tradition, the less air consumption, 

the better the singer. Constant glottal leakage of air due to the vocal folds not contacting properly 

results in a high consumption of air and is a sign of poor voice technique. Constant glottal leakage is 

characterised by a "breathy" vocal quality (Laver, 1980). Conversely, one can greatly lower airflow 

by tensing the vocal folds together which raises the subglottal pressure high enough to be able to 

overcome the glottal resistance. This leads to a very high subglottal pressure and is characterised by a 

"pressed" or strained vocal quality (Laver, 1980). 

A doubling of subglottal pressure increases sound level of phonation by 9 dB (Sundberg, 1987). 

Subglottal pressure also slightly increases phonation frequency. 

Rubin et al. (1967) have found that airflow tends to increase when both phonation frequency and 

loudness are increased simultaneously. However, higher tones do not necessarily consume more air 

than lower tones since they have shown that trained singers can perform a rising glissando with 

constant loudness with no increase in airflow. 

Airflow, then, does not necessarily depend on phonation frequency since it has been shown that 

even though doubling the fundamental frequency doubles the frequency of the glottal opening, it 

actually halves the time the glottis is open in each cycle so air consumption is the same for higher 

tones as for lower tones. 
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For non-singers airflow does tend to increase with phonation frequency in the falsetto register, 

though for trained singers there seems to be no dependency of airflow on either loudness or 

phonation frequency. This is demonstrated in figure 2.6, which shows that for a professional singer 

performing a rising scale and descending glissando, airflow remains constant whilst subglottal 

pressure rises with pitch. 
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Figure 2.6. Recording of airflow, subglottic pressure, and sound level (curves marked A, P, and 

L) in a professional singer performing an ascending scale (upper graph) and a descending 

glissando (lower graph). Airflow is kept essentially constant, while subglottic pressure rises with 

pitch (from Sundberg, 1987). 

A demonstration of the very rapid changes in subglottal pressure needed in quickly changing 

pitch is given in figure 2.7 for a singer singing an ascending major triad and a dominant-seventh 

chord with each tone beginning with a /p/. 
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Figure 2.7. Simultaneous recordings of sound level (SPL), subglottic pressure, and phonation 

frequency in a professional singer singing an ascending major triad followed by a descending 

dominant-7th chord with each tone beginning with a /p/. Higher tones are sung with higher 

pressure. Pressure regulates loudness, and the musically most stressed note is the one that follows 

the highest pitch. This stressed note is given the highest pressure (from Sundberg, 1987). 
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This can also be seen in figure 2.8, where subglottal pressure is substantially raised for a pitch in 

the upper part of the singer's range than for a lower one for a professional singer singing a series of 

ascending and descending octave intervals (Sundberg, 1987). 
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Figure 2.8. Simultaneous recordings of sound level (SPL) pressure in the esophagus and 

phonation frequency in a professional singer singing a series of ascending and descending octave 

intervals. As higher tones are sung with higher pressure, the pressure has to be changed in 

accordance with pitch (from Sundberg, 1987). 

2.2.1.7 Muscular Combinations in Phonation 
Different combinations of muscular activity can be used to accomplish the desired subglottal 

pressure. However, some combinations are better than others. 

Singers use different positionings of the abdominal wall. Some singers sing with their abdominal 

wall pulled in (belly-in) whilst others sing with an expanded abdominal wall (belly-out). With the 

belly-in strategy, the contraction of the abdominal wall pushes the diaphragm into the rib cage, 

whilst with the belly-out method the diaphragm is flatter. Experimental findings comparing these 

different breathing techniques and diaphragm and abdominal activity during speech and singing are 

to be found in Proctor (1980); Leanderson et al., (1987); and Watson & Hixon (1983). 

2.2.2 The Larynx 

The larynx is suspended from the hyoid bone, a small horseshoe-shaped bone just underneath the 

jaw. The muscles of the hyoid bone form what Laver (1980) describes as a "triple sling system", 

shown schematically in figure 2.9. Vertical movement and support of the larynx is accomplished by 

the infrahyoid and suprahyoid muscles. These belong to a group of muscles known as the extrinsic 

laryngeal muscles. The fine balancing of the tensions of these muscular hyoid slings also provide 

precise articulatory control of the jaw. 
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Figure 2.9. Schematic diagram of the action and location of the muscles of the hyoid complex 
(from Laver, 1980). 

The laryngeal framework consists of five separate cartilages: the epiglottis, thyroid, cricoid and 

two arytenoid cartilages. They are connected by ligaments and muscles, and the total framework is 

covered by mucous membrane. The larynx is situated in front of the lower pharynx which leads to 

the esophagus and stomach. The main role of the epiglottis, a leaf shaped cartilage, is to cover the 

entrance to the larynx during swallowing. This allows food and liquids to travel past the larynx into 

the esophagus. 

The other three types of cartilage take part in phonation. The relative positions of the thyroid, 

cricoid, and arytenoid cartilages to each other are shown in figure 2.10. Various views of the larynx 

showing the relationship between its components are presented in figures 2.11,2.12, and 2.13. 
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2.2.2.1 The Components of the Larynx 

Figure 2.10. Schematic diagram of the 

principal laryngeal cartilages (from 

Laver, 1980). 

The following section provides a summary of the main component functions of the larynx. 

The Thyroid Cartilage 

The thyroid cartilage is large and shield shaped. Together with the cricoid it forms a 

protecting structure for the larynx. It consists of two side plates fused anteriorly under a central 

V-shaped notch. The two plates form a more acute angle in males than in females, forming what 

is known as the "Adam's Apple". The two plates enclose the arytenoids and are widely separated 

at the back. They also extend above and below forming two superior horns which project toward 

the hyoid bone above via the thyrohyoid muscle and ligament, and two inferior horns which 

articulate with the cricoid below via the cricothyroid muscle. The inner surface of the fused 

anterior angle of the thyroid also forms the points at which the true vocal folds and false folds are 

anteriorly attached. 
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Figure 2.11. Front and back views of 

the larynx (from Borden & Harris, 

1984). 
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The Cricoid Cartilage 

The cricoid cartilage forms the top ring of the trachea. However, unlike the other horseshoe- 

shaped tracheal rings, the cricoid forms a complete ring. The posterior part of the ring forms a 

distinctive large plate like the signet of a ring. The cricoid articulates with the thyroid and the 

arytenoid cartilages. 

The Arytenoid Cartilages 

The arytenoids are small pyramid-shaped cartilages which sit on top of and articulate with the 

top of the back plate of the cricoid. They can be moved very quickly and precisely, and can rotate 

horizontally, vertically and slide from side to side thereby separating or bringing together the 

posterior ends of the vocal folds. The small projections at the base of each arytenoid are the vocal 

processes. The posterior ends of the true vocal folds are attached to these vocal processes. The 

apex of each arytenoid is attached to the posterior ends of the false vocal folds (the ventricular 

folds). The normal position for breathing is with the arytenoids apart. This results in a triangular 

gap between the vocal folds, called the glottis. When the arytenoids are closely approximated, the 

vocal folds close together and act as a shut valve. 
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Figure 2.12. Frontal section of the larynx. 
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f the 

ventricular folds and the `true vocal folds' F. arynx 
below (Borden & Harris, 1984). 

Thyro- 
arytenoid 
(vocal) 
Muscle 

uscular process 

-Vocal process 

glottis 

thyroid 
cartilage 

Figure 2.13. The larynx from a superior 

view, showing the relationships among the 

thyroid, cricoid, and arytenoid cartilages, 

and the thyroarytenoid muscle (from 

Borden & Harris, 1984). 
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The Laryngeal Musculature 

The main laryngeal musculature can be divided into two groups (Laver, 1980): 

1. those that change phonation frequency by changing the position of the cricoid relative to 

the thyroid, shown schematically in figure 2.14 

2. those that control abduction and adduction by changing the position of the arytenoids 

relative to the cricoid, shown schematically in figure 2.15. 
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Figure 2.14. Schematic diagram of 

the location of the laryngeal muscles 

connecting the cricoid cartilage to 

the thyroid cartilage, and related 

organs (from Laver, 1980). 

The Muscles Determining Phonation Frequency 

The muscles which change phonation frequency are the cricothyroid (CT) muscles and the 

thyroarytenoid (TA) muscles. The paired cricothyroid muscles connect the thyroid to the cricoid and 

are the main muscles for determining phonation frequency by stretching the vocal folds. Contraction 

of the CT muscles enlarges the distance between the thyroid and the cricoid cartilages which 

lengthens and tenses the vocal folds (Borden and Harris, 1984). This causes an increase in phonation 

frequency and also introduces fluctuations in phonatory quality due to small variations in the vocal 

fold movement (Laver, 1980). 
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The paired thyroarytenoid muscles form the true folds and the ventricular folds. The TA muscles 

are divided into an upper portion and a lower portion by a small cavity, known as the laryngeal 

ventricle (or sinuses of Morgagni). 

The lower portion of each TA muscle is called the vocalis muscle. Each vocalis muscle stretches 

from the vocal process of each arytenoid to the inner surface of the fused anterior angle of the 

thyroid. The vocal folds consist of the vocalis muscles, which are connected to the vocal ligaments 

which form the innermost glottal edges of the vocal folds, and mucous membrane. Contraction of the 

vocalis muscle creates a longitudinal tension of the vocal folds resulting in a shortening in their 

length. 

The upper portion of each TA muscle is connected to the upper part of the arytenoid and are 

called the ventricular folds (or false folds). The ventricular folds comprise of a few muscle fibres 

covered in a thick mucous tissue. Contraction of the TA muscles pulls the arytenoids anteriorly, 

tilting them towards the thyroid. 

The Muscles determining Abduction and Adduction 

This second category of muscles positions the vocal folds by moving the arytenoid relative to the 

cricoid thus adducting (closing) or abducting (opening) the glottis. These muscles arise from the 

muscular process, the larger extension at the base of each arytenoid. 
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Abduction of the vocal folds is required in inhalation and also in producing voiceless consonants in 

speech. It is achieved by contraction of the posterior cricoarytenoid muscles (PCA). They originate 

on the posterior surface of the back wall of the cricoid and insert into the top of the muscular process 

of each arytenoid. Upon contraction they rotate the arytenoids by pulling the muscular processes 

downwards and backwards. This causes the vocal processes to move outwards, and consequently, the 

vocal folds separate at the back in a V-shape. This is the natural resting position of the vocal folds. 

In order to produce voiced sounds the vocal folds must be set into vibration by bringing them 

together. This process is called adduction and is achieved by the interarytenoid muscles (IA), and the 

lateral cricoarytenoid muscles (LCA). 

The IA muscles consist of the transverse muscle and the paired oblique arytenoid muscles which 

cross over it diagonally in both directions. They tilt the top of the arytenoids closer together with the 

vocal processes rotated inwards. This brings the vocal folds together along their length. 

The LCA muscles are attached to the muscular processes of the arytenoid at one end, and the top 

outer surface of the cricoid at the other. Their contraction rocks the muscular process anteriorly and 

downwards which adducts the vocal folds. The LCA muscles directly oppose the action of the PCA 

muscles. 

The Structure of the Vocal Folds 

The human vocal fold consists of three tissues: 

1. vocal ligaments 

2. vocalis muscle 

3. mucous membrane. 

A three layer structural model of the human vocal fold based on tissue examination is presented 

schematically in figure 2.16. Each layer has a different structural property, and hence, has a different 

mode of vibration. The transition portion can be considered as part of the body. The three layer 

model can then be simplified further to a two layer cover-body model (Sawashima and Hirose, 1983). 
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Figure 2.16. Schematic presentation 

of the structure of the human vocal 

fold (from Sawashima & Hirose, 

1983). 
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The pattern of vibration differs vertically and longitudinally along the length of the vocal fold. 

This is due to the vocal fold having a posterior cartilaginous portion where the vocal process of the 

arytenoid to which the vocal ligament and vocalic muscle is attached, protrudes about one third along 

the length of the vocal fold. Consequently this cartilaginous portion is stiffer than the anterior 

flexible membranous portion. Borden and Harris (1984) describe the relaxed vocal folds as being 

thick which "open and close in an undulating manner, the mucous membrane moving somewhat 

independently like flabby skin on a waving arm. " 

The main basic features of laryngeal adjustments are (Sawashima & Hirose, 1983): 

"1. abduction-adduction of the vocal folds 
2. constriction of the false folds and other supraglottic laryngeal structures 
3. changes in the length and thickness of the vocal fold 
4. up and down movements of the larynx. " (Sawashima & Hirose, 1983). 

2.2.2.2 Vocal Fold Vibration 
The two aerodynamic forces which produce vibration of the vocal folds are the subglottal air 

pressure applied to the lower part of the folds, forcing them open, and the negative pressure which 

occurs as air passes between the folds, due to the Bernoulli effect. These positive and negative 

pressures set the vocal folds into vibration due to the elasticity of the folds. 

The vocal folds are set into vibration when the airstream from the lungs is forced past. This 

results in the rapid opening and closing of the glottis, the air passage between the vocal folds, which 

chops up the airstream into tiny pulses. 

Each vocal fold closure results in an acoustic excitation/pressure pulse set up at the glottis which 

is transmitted via the vocal tract. A series of such pulses, produced by periodic vocal fold closures 

result in a buzz-like voice source. The tensions within the vocal folds and arising from the 

positioning of the arytenoids varies the mode of vibration, the vibration frequency, and the spectral 

components of the voice-source waveform. 

Voicing relies on three principles. One is that the air pressure below the folds (subglottal air 

pressure) must exceed the supraglottal air pressure in order to force them apart. The second is the 

Bernoulli effect. The vocal folds are quickly sucked together as the air pressure drops against the 

edges of the vocal folds due to air being forced past the glottis. This accounts for the closing phase of 

each vibratory cycle. The third principle is that the vocal folds are elastic which allows them to be 

blown open and also permits them to recoil (the elastic recoil force). The above account is known as 

the traditional myo-elastic theory of vocal fold vibration. In normal male chest voice the vocal folds 

peel apart slowly from the bottom upwards in a wave-like motion. There is a vertical phase difference 

as the bottom part closes while the top part of the vocal folds opens (Titze, 1989). 
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2.2.3 The Supraglottal System 
Also known as the supralaryngeal vocal tract, the supraglottal system consists of the various air 

passages from the glottis to the lips. Figure 2.17a shows the relative positions of the structures of the 

vocal tract. 

It includes the pharynx, the mouth and nasal cavities, and various articulators such as the tongue, 

teeth, the velum, and the lips. The vocal tract can be modelled as a tube with a variable cross- 

sectional area. Articulatory movement results in the creation of various cavities, each with their own 

resonance mode, called formants, within the tube according to which articulator is moved and the 

degree of movement. The vocal tract filters the voiced sound generated by vocal fold vibration, the 

voice source, shown in figure 2.17b. 
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Figure 2.17. The acoustic production of a voiced sound (from Rossiter, 1993, personal correspondence). 

The vocal tract not only acts as a variable resonator, but also serves as a sound source for 

unvoiced sounds (aperiodic sounds) and combined voiced and unvoiced sounds. Table 2.1 presents 

some examples of these. 

Articulation is responsible for creating separate vowel sounds. The lower the formant frequency, 

the more that frequency depends on articulatory factors. The most important formants for 

determining vowel quality are the first and the second formants, which have ranges of about 250-900 

Hz and 800-2200 Hz respectively. These differences appear to be similar across languages. In speech, 

nonarticulatory factors such as pharynx length and larynx tube size tend to be responsible for 
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formant frequencies the higher in frequency they are. For example, the fourth formant frequency is 

highly dependent on the dimensions of the larynx tube, which is independent of vowel articulation. 

Speech sound sources 
Source Resonator Sound Manner Examples 

Vocal tract Vocal tract Periodic 
Vowels Al lu/ 
Diphthongs tai/ /ou/ 
Semivowels /w/ /y/ 
Nasals /m/ /q/ 

Vocal tract Vocal tract Aperiodic 
Stops 
Fricatives 

/p/ lid 
/s/ if/ 

Affricate /tS/ 

Vocal folds and Vocal tract Mixed periodic and Voiced stops /b/ /g/ 
vocal tract aperiodic Voiced fricatives /i/ /v/ 

Voiced Affricate /d3/ 

Table 2.1. Various speech sounds and their origin (from Borden & Harris, 1984). 

2.2.4 The Acoustics of the Vocal Tract 

This section describes the acoustic production of spoken vowels in relation to the source-filter 

theory (Fant, 1960), and the modelling of the vocal tract as a tube resonator. 

2.2.4.1 Speech Production 
A speech sound can be recorded in terms of a sound pressure waveform in the time domain or a 

sound pressure spectrum in the frequency domain. The sound pressure spectrum, or "spectral 

envelope" consists of the transfer function of the vocal tract plus source and radiation characteristics. 

Resonances within the vocal tract are shown as poles in the transfer function, and anti-resonances 

are shown as zeros. A pole or zero is characterized by its bandwidth and its centre frequency. 

A non-nasal vowel is the simplest model to begin with since it can be characterized by just poles. 

Many other sound classes can be described in terms of modifications to the vowel theory described 

below. The following passages are based primarily on Kent & Read (1992). This book also contains a 

review of these other sound classes which are not described here. 

2.2.4.2 Vowels 
Vowels are sounds which are spectrally shaped according to the resonance properties of the vocal 

tract. They are termed voiced when excited by vocal fold vibration. The resonances of the vocal tract 

are termed "formants". The vocal tract can be thought of as a frequency-variable filter, since altering 

the shape of the vocal tract will result in formant frequency shifts, heard as a timbral modification in 

vowel quality. 
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2.2.4.3 The Source-Filter Theory 
In speech literature, the voicing source and the vocal tract have traditionally been modelled as 

being independent. Vibration frequency and vibration amplitude of the vocal folds does not appear to 

appreciably affect the resonance characteristics of the vocal tract. This apparent independancy of 

source and vocal tract is the basis of an important theory, the source-filter theory, which states that 

the output energy is a product of the source energy and the resonator response (Fant, 1960). 

Vibrating vocal folds produce a sound spectrum, called the laryngeal, or voice source spectrum, 

where the energy lies at integer multiples of the fundamental frequency, typically falling at a rate of 

approximately 12 dB per octave with increasing frequency for speech. 

The vocal tract resonator has an infinite number of formants associated with it. A formant is 

categorised by its centre frequency (or formant frequency) and its bandwidth (the width of the energy 

band, or the frequency range within the band). All the formants together give the transfer function of 

the vocal tract. 

As sound energy escapes the mouth it undergoes a sound radiation. The filtering effect termed the 

"radiation characteristic" behaves as a high-pass filter, dampening more low frequency energy than 

high frequency energy, and is modelled with a +6 dB per octave slope. The resulting drop in energy 

of the ouput speech signal when the 12 dB per octave roll off in the laryngeal spectrum is combined 

with the 6 dB per octave increase in the radiation characteristic is at a rate of -6 dB per octave. This 

is shown in figure 2.18. 
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Figure 2.18. Idealized diagram of the source-filter model for speech production. 

The source-filter theory of vowel production states that "the radiated sound pressure waveform of 

speech is the product of the laryngeal spectrum, the vocal tract transfer function, and the radiation 

characteristic" (Kent & Read, 1992). This is summarised in the following equation as: 

P(f) = U(f). T(f). R(f) 
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P(f) is the radiated sound pressure spectrum of speech 

P is pressure and (f) indicates it is a function of frequency 

U(f) represents the laryngeal source spectrum as volume velocity 

T(f) is the transfer function. 

R(f) is the radiation characteristic. 

U(f) and R(f) can be taken as being constant. Different vowels can then be described in terms of 

just the transfer function and the radiated spectrum (Kent & Read, 1992). 

2.4.4.4 The Tube Resonator Model 
The resonance frequencies of a tube resonator are determined by two factors; its length and its 

cross-sectional area as a function of its length. A single uniform tube can produce two types of 

resonance depending on whether the ends of the tube are the same or are different. If the ends are 

both open or both closed, the first resonance occurs for a tone with a wavelength double the tube 

length, and all the higher resonance frequencies are integer multiples of the first resonance. 

The relaxed vocal tract can be modelled as a tube which has one open end and one closed end. 

For this model, the first resonance frequency has a quarter wavelength (i. e., occurring for a tone with 

a wavelength four times the tube length) and higher resonances are odd multiples of the first 

resonance. This relationship can be expressed using the odd-quarter wavelength formula: 

Fn = (2n - 1) c/4L 

n is an integer 

c is the speed of sound (34400 cm/sec), 

L is the length of tube. 

The equation shows that a sound with a wavelength 4 times (or odd multiples of 4) the length of 

the tube will resonate with the maximum amplitude. The higher resonances are then located at c/4L, 

3c/4L, 5c/4L, 7c/4L, etc. For example, if a tube has a length (L) of 17.5 cm, the average size of a 

relaxed male vocal tract, the first resonance frequency (F1) can be calculated according to: 

F1 = c/4L = 35,000 cm/s / (4* 17.5 cm) = 500 1/s, or 500 Hz 

From this, F2 = 1500 Hz, F3 = 2500 Hz, F4 = 3500 Hz, F5 = 4500 Hz, etc.; that is, the formants 

for a relaxed male vocal tract fall at about 1 kHz intervals. Formants are identified by their number 

which increases with frequency. 

The relaxed vocal tract relates to the articulation of the vowel known in phonetics as a schwa. 

The air pressure relationship between the first three formants of a schwa is shown in figure 2.19. 
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First Formant Frequency 

Figure 2.19. The sinusoidal 

relationship of air pressure at the 

first three formant frequencies 

(after Lieberman, 1977). 
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Overpressure from the lungs forces the vocal folds open and upwards. The speed of the air 

particles increases as they flow through the glottis, whilst the air pressure decreases. The decrease in 

pressure between the folds causes them to snap shut. At the instance of closure the pressure behind 

the folds suddenly increases again, forcing the folds open once more. Single pressure pulses are 

emitted which travel up and down the vocal tract. These pulses can be thought of as individual waves 

of compression and rarefaction. 

Sound waves are changes in pressure over time. When air molecules are pushed together they 

spring back to their original position due to their inherent elasticity. This sets up a disturbance which 

is transferred through the medium as a series of alternating compression (high pressure) and 

rarefaction (low pressure) waves. It is this disturbance which travels as the sound wave. 

When two waves meet they superimpose, resulting in an acoustic amplitude change in that 

location which is determined by the direction of travel of the waves and their individual amplitudes. 

When two waves moving in the same direction meet, their molecular movements combine to produce 

a wave of increased amplitude, i. e., an increase in molecular vibration. This is known as resonance. 

The converse holds true also, the amplitudes of two similar waves moving in opposite directions may 

even cancel each other out, resulting in no molecular movement. This occurs if the wavelength of the 

sound and the length of the tube obey a fixed ratio, and results in the formation of standing waves. In 

standing waves, the locations of minimum molecular vibration are called nodes, and the locations of 

maximum molecular vibration are called antinodes. In a tube each formant has its own characteristic 

standing wave pattern consisting of nodes and antinodes which are determined by the 

superimposition of incidence (incoming) and reflected waves. 
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Curvature of the tube does not appreciably alter the resonant frequencies of the model. This is 

why it is convenient to model the vocal tract as a two-dimensional straight tube with a variable cross- 

sectional area, assuming that the vocal tract approximates a cavity which is circular along its length. 

Each vowel will then have associated with it a different shaped tube which generates a set of formant 

frequencies which differ from the schwa pattern. 

Combining some 2-D models of different vowels with their associated spectra reveals a 

relationship between tongue height and the first two formant frequencies. The frequency of FI is 

inversely related to tongue height, and the frequency of F2 is related to tongue advancement, as seen 

graphically in figure 2.20 (Kent & Read, 1992). Lip rounding increases the length of the vocal tract 

which lowers the formant frequencies. In English, lip rounding occurs in some middle and back 

vowels such as those in who, hoe, and her, but does not occur in front vowels. 
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2.3 The Human Hearing System 

Figure 2.20. Classic F1-F2 chart in 

which a vowel for an average adult 

male is represented acoustically by 

its F1 and F2 frequencies. The 

phonemic symbols are positioned to 

show the Fl and F2 values for that 

vowel. An articulatory-acoustic 

relationship is suggested by the 

labels in the figure. (from Kent & 

Read, 1992). 

This section describes how many perceptual phenomena are determined by the physiological 

functions of the hearing system. It begins with a description of the physiology of the hearing system 

which is largely based on Campbell & Greated (1987). 

2.3.1 Hearing Physiology 
Figure 2.21 is a simplified diagram of the main features of the ear. The main task of the ear is to 

transform incoming air pressure fluctuations into electrical signals which the brain can then process. 
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Figure 2.21. Anatomical sketch of the human car (from Campbell & Greated, 1987). 

The ear can be divided into three sections - the outer, the middle, and the inner ear. Each of 

these sections are shown in figure 2.22. 
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Figure 2.22. Schematic diagram of the human ear (from Campbell & Greated, 1987). 

2.3.1.1 The Outer Ear 
The outer ear comprises of the pinna (the prominent visible flaps, one on each side of the head), 

leading to the auditory canal (auditory meatus) and ending at the eardrum (tympanic membrane), a 

membrane at the entrance to the middle ear. The pinna's task is to funnel short-wavelength sound 

into the canal and towards the eardrum, and also provides some high frequency selectivity between 

anterior and posterior located sounds. Having one ear on either side of the head provides us with 

binaural hearing enabling sound localization also on the horizontal plane. 

2.3.1.2 The Middle Ear 
The middle ear comprises of an air-filled cavity in the skull bone, extending from the eardrum on 

the outside, to the oval window (fenestra ovalis) and round window (fenestra rotunda) on the inner 

side, which are two small holes in the bone marking the entrance to the inner ear. 
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The outer ear is linked to the inner ear through a system of levers which operate within this 

cavity. The lever system is made up of three small connecting bones known as ossicles. They are 
individually titled, in turn, the hammer (malleus), which is connected to the inner part of the 

eardrum, the anvil (incus), and the stirrup (stapes), which acts like a piston, the footplate of which 

moves in and out of the oval window (Rhode, 1978). Both the oval window and round window are 

covered with a thin membrane. 

A sound wave consists of air pressure fluctuations. When these air pressure fluctuations hit the 

eardrum, they set it vibrating. The main function of the lever system is to transmit these vibrations to 

the oval window as efficiently as possible, that is, with minimal energy loss, shown in figure 2.23. 
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Figure 2.23. Changes in pressure and velocity between eardrum and oval window, due to 

reduction in area and lever action of ossicles (from Campbell & Greated, 1987). 

About 50% of energy is transmitted to the inner ear, as opposed to 1% if the middle ear 

mechanism was absent. This is due to a massive increase in pressure across the middle ear. The 

pressure exerted on the oval window is approximately 50 times larger than on the eardrum due to a 

combination of lever action which increases pressure, the relative surface areas of the oval window 

and eardrum, and the difference in specific acoustic impedance of the materials making up barriers 

(which is the ratio of pressure amplitude to velocity amplitude). The higher the specific acoustic 

impedance of a material, the lower the transmission of energy. Air can be thought of as a barrier with 

perfect sound energy transmission. The eardrum is three times less efficient in transmitting energy 

than air, but is 100 times more efficient than the oval window (de Boer, 1980). Bone has an even 

higher specific acoustic impedance. For middle-range frequencies, approximately 50% of the sound 

energy is reflected back up the canal. The amount of reflected sound is much greater for low- 

frequency energy below 100 Hz and for high-frequency energy above 10 kHz, due to the mass and 

stiffness properties of the middle-ear mechanism. 

The eustachian tube which runs from the middle ear to the back of the throat regulates air 

pressure between the eardrum, between the middle ear and the outside atmosphere. 
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2.3.1.3 The Inner Ear 
The inner ear is a fluid-filled cavity in the skull just behind the middle ear. It consists of a 

complex labyrinth of passages and chambers. It performs two major functions, giving us our sense of 

balance as well as our sense of hearing. The semi-circular canals and the cochlea respectively are 

responsible for these two tasks. 

The cochlea is a tube about 3.5 cm long which is coiled about 2.5 turns and resembles a snail's 

shell. The base of the spiral is about 2 mm in diameter, gradually tapering off at the apex. 

It is the cochlea's job to convert vibrations from the middle ear into electrical signals which are 

then transmitted via the auditory nerve to the brain. How the cochlea actually achieves this has been 

subject to debate in recent times, resting on the battle between temporal and placement theories (see 

below). However, it is agreed that many musically important parameters of hearing can be attributed 

to the cochlea and that both theories can account for most, but not all, pitch perception phenomena 

(Moore, 1989). 

A simplified cross-section of the cochlea is shown in figure 2.24. The tube is divided into three 

parts by two membranes. The Reissner's membrane is extremely flimsy and separates the upper 

gallery (scala vestibuli) from the cochlear duct (scala media). The basilar membrane is more solid 

and divides the cochlear duct from the lower gallery (scala tympani). It performs a particular 

function as a "mechanical frequency analyser" (Moore, 1989), which will be described later. The 

membranes run most of the length of the cochlea. The helicotrema, a hole at the apex of the spiral is 

the only place where the upper and lower galleries are connected. 

Covering the upper surface of the basilar membrane is a blanket of tiny hair cells, collectively 

known as the organ of Corti. Approximately 30,000 nerve fibres carry the electrical signals from the 

organ of Corti to the brain. 
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2.3.1.4 Basilar Membrane Movement 

Figure 2.24. Cross-section of 

cochlea (from Campbell & Greated, 

1987). 

One can think of the behaviour of the peripheral auditory system as if it were a bank of bandpass 

filters with continuously overlapping centre frequencies (Fletcher, 1940). These filters are called 

"auditory filters". Experiments suggest that these filters have their origin on the basilar membrane, 

and each of these filters responds to a small range of frequencies (Fletcher, 1940; Moore, 1986). 
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Figure 2.25 shows the action of the basilar membrane and round window as a pressure pulse arrives 

at the oval window. 

oval window 

>-ba. 
Oar Figure 2.25. Arrival of a pressure 
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hclicotrema pulse at the oval window (from 

Campbell & Greated, 1987). 
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A continuous pure tone played into the eardrum causes it to vibrate periodically with simple 

harmonic motion. The stirrup footplate moves rhythmically in and out of the oval window causing a 

series of alternately upward and downward bulges to travel up the basilar membrane from the oval 

window. These bulges gradually increase in size until they reach a peak amplitude at a particular 

place along the basilar membrane related to the frequency of the pure tone being heard. This 

generates impulses along the amplitude envelope, the strongest ones under the amplitude peak which 

are sent to the brain. The brain recognises the sound signal as having a particular frequency 

sensation (von Bekesy, 1960). The progress of a wave travelling along the basilar membrane is 

shown in figure 2.26. 
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Figure 2.26. Successive cross-sections of the basilar membrane showing the progress of a travelling wave 

(from Campbell & Greated, 1987). 
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Higher frequencies travel shorter distances along the basilar membrane (see figure 2.27). This 

frequency response of the basilar membrane is due to its shape and stiffness. It is stiffer and narrower 

at the oval window end, gradually flattening and widening out towards the helicotrema end. 
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Figure 2.27. Amplitude envelope of basilar membrane vibrations when hearing a pure tone at 

different frequencies (from Campbell & Greated, 1987). 

This theory of frequency discrimination is titled the "place theory", and is illustrated in figure 

2.28. It does not, however, totally account for pitch perception in complex tones where individual 

harmonics are not resolved resulting in a pattern of distribution of displacement. The maximum 

displacement along the basilar membrane may not correspond to the pitch heard (Moore, 1989). 
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Figure 2.28. Illustration of a `place theory', in which frequencies are distinguished by the 

positions of the corresponding amplitude envelope peaks on the basilar membrane of the inner ear 

(from Campbell & Greated, 1987). 
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Several studies (Rhode, 1978; Sellick et al., 1982) suggest that the amplitude peak is very sharp 

with a very steep cut off. This possibly explains why two tones in succession varying very slightly in 

frequency can be distinguished. The brain may either concentrate on the peak amplitude where the 

signal is strongest, or on the cut-off, where the position of the signal changes the most (Evans, 1975). 

Another theory, called the "volley theory" (Wever, 1949) suggests that frequency recognition is 

dependent on the timing of nerve signals. Nerve fibres are collected into a large bundle. A "volley" of 

impulses are sent down this bundle at every peak of the vibration cycle and are combined by the 

brain. The pitch of the tone is determined by the relative number of fundamental periods of the 

vibrations. The volley theory is illustrated in figure 2.29. 
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Figure 2.29. (a)-(e) Electrical pulses on five different nerve fibres activated by the pure tone 

whose vibration curve is shown in (g). The sum of the signals on all five fibres is shown in (f) 

(from Campbell & Greated, 1987). 

2.3.2 Hearing Perception and Psychoacoustics 

There are three main attributes of hearing perception: pitch, loudness and timbre. Previous studies 

have fallen into two categories: pure tone perception which can be studied with some accuracy, but 

which is ultimately of little consequence to real world sounds; and complex tone perception, which is 

more relevant to everyday hearing, but which proves difficult to quantify. In order to understand 

hearing perception as it relates to singing, it is useful to begin by focusing in on those aspects of 

fundamental hearing perception and physiology which form the basis for discrimination of complex 

sounds. 

Musical perception probably involves rule-governed processes akin to those used in speech 

perception with the perceptual values of many phenomena being affected by musical training, culture 

and experience. 
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Pitch can be considered as the perceptual correlate of frequency, and loudness can be thought of 

as the perceptual correlate of intensity. Both pitch and loudness values can be thought of as points on 

a scale ranging from one extreme to another (either low to high as in pitch, or soft to loud as in 

loudness). These can be quantified using pitch-halving or loudness-halving tests. However, the 

subjective nature of these attributes makes judgement and quantification difficult, though they do 

provide some perceptual clues in the understanding musical sound. 

2.3.3 Critical Bands 

The concept of the "critical band" underlies much of hearing perception. It accounts for many of 

the phenomena associated with pitch, loudness and timbral discrimination and has its origins in the 

pattern of movement of the basilar membrane. For example, when two pure tones are heard 

simultaneously but are of a sufficient interval apart (e. g., an octave), two separate patterns of 

vibration are generated on the basilar membrane. The amplitude envelopes of these vibrations do not 

overlap sufficiently to excite many of the same hair cells and the two tones are heard separately with 

ease. However, reducing the frequency separation increases the number of hair cells which are fired 

by both signals. The amplitude envelopes of pure tones under a tone apart overlap considerably on 

the basilar membrane. When there is this strong overlap between the two tones, they are said to fall 

between one critical band. If the two tones fire essentially two sets of hair cells, they are said to be 

separated by more than one critical band (Fletcher 1940; Zwicker et al. 1957; Plomp, 1976). The 

critical bandwidth is about 0.9 mm on the basilar membrane for most of the audible frequency range 

(Moore, 1986). The critical band is a frequency band which has a varying bandwidth over frequency 

reflecting our auditory frequency scale, which is linear at low frequencies and logarithmic above 

about 500 Hz (Terhardt, 1974). For low frequencies the critical bandwidth of hearing is 

approximately 100 Hz, and at 500 Hz it is about 20 % of the centre frequency (Sundberg, 1987). 

2.3.4 Pitch 

Pitch is defined as "that attribute of auditory sensation in terms of which sounds may be 

ordered on a musical scale" (American Standards Association, 1960, cited in Moore, 1989). Most 

psychoacoustical experiments are based on this concept. 

Pitch is a subjective phenomenon. The ability to attribute a specific pitch to an acoustic signal is a 

fundamental property of the human auditory system. (Whitfield, 1980). 

Pitch is generally thought of as the perceptual correlate of the physical property of frequency. 

That is, for most cases, we perceive the pitch of a periodic sound as equalling the pitch of a sinusoid 
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at that frequency. There are exceptions. Not only does the perceived pitch of a tone vary as a function 

of frequency, but it is also determined to a lesser extent by other factors such as acoustic background, 

and duration. Below is a summary of some results from pure tone studies that are relevant to this 

thesis, followed by some results from complex tone studies. Pitch perception in pure tones: 

1. The audible range of frequencies varies from person to person, though generally a young 

person with normal hearing may hear a lower limit of between 20 to 30 Hz, and an upper limit of 

15 to 18 kHz. The upper limit gradually drops as one gets older (Campbell & Greated, 1987). 

2. The pitch of a pure tone varies as a function of duration. Below 1000 Hz the shortest duration 

that a pure tone can be perceived of as having pitch varies as a function of frequency. An audible 

tone will be perceived of as having pitch if it is of sufficient duration. If it is too short, a click 

will be heard. If it is a little longer it will be heard as a click with some timbral quality. Two or 

three cycles of waveform are required to perceive the pitch of a pure tone below 1000 Hz. So, 

longer durations are necessary for lower frequencies (e. g. 25 ms at 125 Hz, but only 10 ms above 

1000 Hz). Above 1000 Hz only a constant minimum duration is required. 

3. Some changes in frequency are not perceptible. There needs to be a certain amount of 

frequency change, called the just noticeable difference (JND), before two pure tones are heard as 

being different in pitch. The JND is a function of frequency. Figure 2.30 (a) shows that the 

ability of the ear to discriminate between pitches at low pitches is severely impaired. So, a listener 

would find it extremely difficult to hear any difference in pitch between a sinusoid BO followed by 

a sinusoid Cl. However, the listener should not have difficulty discriminating between these two 

pitches when using complex tones, since the information about the pitches of complex tones at 

low pitches is contained in the upper harmonics. 
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Figure 2.30. The smallest pitch change which can just be detected in a pure tone by the average 

listener: (a) Abrupt change in loud tone, with SL = 80 dB, (b) Steady fluctuation in loud tone, 

with SPL = 80 dB, (c) Steady fluctuation in quiet tone, with LL = 30 phons (from Campbell & 

Greated, 1987). 
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Pitch Perception in Complex Tones: 

It appears that most pitch phenomena are dependent on spectral frequency clues. The main 

experimental discoveries are summarised below: 

1. In a complex musical tone the spectral components lying in the frequency region between 

about 500 Hz and 2000 Hz, called the "dominance region" are primarily responsible for the pitch 

of that tone. (Plomp 1967). Figure. 2.31, which summarises these results shows that the 4th and 

5th harmonics are responsible for determining the pitch of the complex tone for notes in the bass 

clef, the 2nd and 3rd harmonics for notes in the top of the treble clef, and the Ist harmonic (the 

fundamental) only for the upper extreme of the range. 
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Figure 2.31. The dominant 

harmonic in the perception of the 

pitch of a complex musical tone 

(from Campbell & Greated, 1987). 

2. Under certain circumstances the pitch of one sinusoid can be affected by the addition of 

another at a different frequency (Terhardt and Fastl, 1971). So, for even completely harmonic 

complex tones the pitch does not necessarily correlate with a sinusoid at the fundamental 

frequency. 

3. Reducing the frequency separation between two tones lying within one critical band increases 

the sensation of roughness, reaching a peak at about a quarter of a critical bandwidth (Plomp, 

1976). 

4. Listeners can generally pick out separately the first five to eight harmonics in a complex tone, 

depending on the critical bandwidths of the components. Critical bandwidths increase with 

frequency over 500 Hz but the harmonics of a complex tone are spaced equidistantly. This means 

that high harmonics are separated by less than the critical bandwidth, so the components cannot 

be discriminated separately. Figure 2.32 shows the critical bandwidths for pure tones. 
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2.3.5 Loudness 

Figure 2.32. Critical bandwidth 

measurements: (a) Critical 

bandwidth, (b) Minimum frequency 

separation for which two 

simultaneous pure tones can still be 

distinguished, (c) Minimum 

detectable sudden change in the 

frequency of a pure tone, with SL = 

80 dB (frone Campbell & Greated, 

1987). 

As pitch can be thought of as the perceptual correlate of frequency, so loudness can be thought of 

as the perceptual correlate of intensity. Like pitch, loudness changes in discrete steps whilst its 

physical correlate intensity can be continuously varying. Again, as in determining pitch, other factors 

influence the perception of loudness, such as frequency, spectral shape and context. 

2.3.5.1 The Threshold of Audibility 
Some sounds lie below the threshold of audibility, that is, they are so quiet that they cannot be 

heard. Likewise, some sounds are so loud that they induce a tactile sensation of tickling, or pain, 

along with or instead of an auditory sensation. These loudness levels lie at the upper limit of 

loudness. The threshold of pain does not depend on frequency. 

The smallest pressure which is required for a tone to be audible in the absence of any external 

sounds is called the minimum audible pressure (MAP). This varies as a function of frequency. More 

pressure is needed to hear a low-frequency or high-frequency tone than a mid frequency tone, that is, 

we are less sensitive at low and high frequencies than to mid-range frequencies, reflected in the 

threshold curves in figure 2.33. 

Von Bekesy (1960) suggests that the minimum audible pressure curve is a biological function 

aimed to block out the sound of natural processes of our body, such as blood flow or footsteps and is 

determined partly by the transmission characteristics of the middle ear (Moore, 1989). Our 

sensitivity to mid-range frequencies (in the range 1000-5000 Hz) can also be attributed partly to the 

functions of the pinna and ear canal, the outer ear increasing sound pressure at the eardrum for 

frequencies ranging from 1-9 kHz, with a peak at 3 kHz of 15 dB (Moore, 1989). We become 

incredibly desensitized to intensity discrimination and pitch at the extremes of audibility (below CO). 

34 



pynesjCtn2 , _^-Decibels above 0.0002 Dyne/Cm' 

10.000 dB 

1004 

] 

140 o 

ioo 120 

io >100 

Mbar 
j 80 

N ,N 

0.1 ä 60 

Z 
0.01 40 

0.001 20 

0.0002 -0 
0.0001 

-'0 

Figure 2.33. The area of audible tones (from Gerber, 1974). 
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The threshold of audibility of a tone depends on its duration up to 500 ms (Garner, 1947). 

Perceived loudness increases up to about 1 sec (Littler, 1965). 

Sounds having the same intensity can differ greatly in loudness (Gerber & Bauer, 1974). This is 

demonstrated by using a Fletcher-Munson diagram which represents contours of equal loudness for 

sine waves at different frequencies. This is shown in figure 2.34. If intensity level of a tone is kept 

constant and then its frequency is changed, its loudness changes. 

2.3.5.2 Loudness Levels and Equal Loudness Contours 
Loudness levels, measured in phons, determine how intense a pure reference tone of 1000 Hz 

must be in order to sound equally loud to a previously heard pure test tone, or vice versa. From equal 

loudness contour graphs (see figure 2.34) it can be shown that the rate of growth of loudness of pure 

tones is dependent on frequency. Low frequencies and very high frequencies have a greater growth of 

loudness with increasing intensity than for mid-range frequencies. 

The overall level of a complex sound determines the relative loudness of the different frequency 

components in that sound. Changing the overall level of a complex sound will vary its `tonal 

balance' (Moore, 1989). At low sound levels, the ear is less sensitive to very low frequencies and 

very high frequencies in a complex sound than mid-range frequencies so these components do not 

add much to the total loudness of the sound. However, at high levels, we are relatively more sensitive 

to very low frequencies and very high frequencies at high levels; all frequencies similarly 

contributing to the loudness level, as shown in flat equal-loudness contours (Moore, 1989). 
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Figure 2.34. Contours of equal loudness for sine waves (Campbell & Greated, 1987). 

2.3.5.3 The Musical Dynamic Scale 

Decibels measure ratios, or the difference between two sounds; not absolute quantities. It is a 

scale of magnitude. Similar to turning the relative pitch scale into an absolute scale where A4 = 440 

Hz, an absolute logarithmic intensity scale can be drawn by choosing a standard intensity reference. 

The mathematics behind intensity measurements are found in Campbell & Greated (1989). 

In terms of music, loudness is expressed in discrete dynamic markings usually ranging from ppp 

to fff. For a pure 1000 Hz tone there appears to be a logarithmic relationship between intensity and 

musical dynamic level, shown in table 2.2. 

The ear's dynamic range is large; the intensity of a fff tone is ten million times greater than for a 

ppp tone. The ear's dynamic range is not proportional to frequency, but contracts at the lower end. A 

low pitch requires a smaller change in intensity to go through the dynamic levels from ppp to fff, 

than a higher pitch. This can be related to the dynamic range available on the threshold curves. 

Musical dynamic level Intensity (Wm-2) IL(dB re 10-12 Wm-Z) 

fli 10-2 100 
ff 10-3 90 
f 10 -4 80 
mf 10-5 70 
mg 10 -6 60 
p 10 -7 50 
pp 10-8 40 
ppp 10-9 30 

Table 2.2. Rough correspondence between intensity and musical dynamic level for a single 

isolated 1000 Hz tone (from Campbell & Greated, 1987). 
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2.3.5.4 Loudness Masking of Complex Tones 
The context in which one sound is heard determines the apparent loudness of that sound. This 

happens for different instrument combinations and for individual partials in a single complex tone. 

The loudness of a complex tone is not necessarily simply the sum of the loudnesses of its partials. 

This is because each partial may reduce the loudness of adjacent partials. This process is known as 

masking. A sound is masked if its threshold of audibility is raised by the presence of another sound. 

A sound is considered to be totally masked if it is inaudible in the presence of another sound but 

audible in its absence (Zwislocki, 1978). The amount by which the threshold of audibility is raised is 

measured in decibels. 

The chances of masking occurring is increased if the masking signal has frequency components 

which are the same or similar to the signal being masked (Mayer, 1894; Wegel & Lane, 1924). 

Masking can be related to critical bands on the basilar membrane. Pure tones which are 

sufficiently close together in frequency activate the same group of neurons. This results in a complex 

mixture of the signals. However, if the tones are sufficiently separated in frequency, they will activate 

different sets of neurons, two separate signals are sent to the brain and no masking will occur. 

Lower frequencies mask higher frequencies far better than the other way round. This is because 

the amplitude envelope drops sharply in the direction of the lower frequencies, yet fans out to the 

higher frequencies in the direction of the oval window. as seen in figure 2.35. A lower tone will 

mask an upper tone if it comes under its envelope tail. Total masking can be thought of as a 

distortion of the threshold of audibility curve. 

It is also possible for one tone to partially mask another tone. That is, the masker does not 

obliterate the presence of another tone, but just reduces the loudness of it. Partial masking can be 

thought of as a distortion of the equal loudness contours as shown in figure 2.34. 

A loud musical note may include the effects of masking over 2 octaves above its fundamental 

pitch. In this case each partial may contribute to the overall masking effect, raising the threshold of 

the tone. 

Figure 2.35. Basilar membrane 

amplitude envelopes corresponding to 

(a) quiet 1000 Hz tone; (b) loud 1000 

Hz tone; (c) loud 1000 Hz tone + quiet 

2000 Hz tone; (d) loud 1000 Hz tone + 

quiet 500 Hz tone (from Campbell & 

Greated, 1987). 

oval window helicotrema 
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For a moderately loud tone with partials separated by several critical bands, there is hardly any 

masking of partials. The total loudness will be the sum of the loudnesses of the component partials. 

If, however a complex tone has a small "cluster" of upper partials all lying within one critical band, 

each partial excites roughly the same region of nerve fibres, so the intensities can be added together. 

In summary, adding a second partial to one within one critical band and at equal intensity increases 

the loudness level by a lot less than if the second partial is outside the critical band. 

2.3.6 Timbre 

Timbre can be defined as "that attribute of a tone by which a listener can judge that two sounds of 

the same loudness and pitch are dissimilar (ANSI 1973)" (Handel, 1989). It has also been described 

as "the characteristic quality of an instrument which enables it to be identified" ( Campbell & 

Greated, 1987). 

Whereas pitch and loudness can be described along a one-dimensional continuum, the parameters 

of timbre are multidimensional and complex, changing both dependently and independently. 

Several parameters contribute to the perception of timbre. These include the steady-state spectral 

components of the sound, the amplitude envelope of the sound, and any transients that may be 

present. The degree of contribution of each attribute to the overall timbral perception will depend on 

the nature of the instrument producing the sound and the way the sound is produced. These will be 

described in turn. 

2.3.6.1 Steady State Spectral Components 
Differences in the spectrum of a sound changes its timbre. The ear is very sensitive to differences 

in the spectrum of periodic waveforms, but is relatively insensitive to changes in phase. Timbre is 

dependent on the number and amplitude of the components in the sound. It is the combined strength 

of the spectral components within the critical band which determines the sensation of timbre. 

Harmonics whose frequencies are within 15% of each other lie within one critical band. Harmonic 

components up to the sixth or seventh harmonic contribute independently to timbre. At around the 

seventh harmonic, the components start to overlap and merge. The 28th through to the 32nd 

harmonics lie within one critical band. 

Rating the timbre of steady-state portions of a sound has proved to be very difficult due to its 

subjectivity. However perceptual studies have independently reached the same conclusion that most 

timbres can be reasonably correctly described using three scales (Bismarck 1974; Plomp 1976). 

Out of these, the dull-sharp scale gives consistent results. Hall (1980) uses scales catalogued in a 

similar way to taste sensations where the brain only picks out just three or four major "independent 

intensity parameters" (Plomp, 1976) representable as numbers on polar scales, regardless of the 

actual number of separate pieces of information. 
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fine - -- coarse 
reserved - -- obtrusive 
dark - -- bright 
dull - -- sharp 
soft - -- hard 

smooth - -- rough 
broad - -- narrow 
wide - -- tight 
clean - -- dirty 

solid - -- hollow 

compact - -- scattered 
open - - closed 

Table 2.3. Some verbal scales used to rate timbre 

(after Bismarck) (from Campbell & Greated, 1987). 

Bismarck (1974) also uses 28 verbal scales used to rate timbre, many of which overlap. Another 

method uses a tristimulus diagram. This represents the timbre of any steady state sound as a point in 

2 dimensions, by dividing the spectrum up into 3 parts and using three independent variables to 

represent the loudness (Pollard & Jansson, 1982). Tristimulus diagrams are presented in figure 2.36. 
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Figure 2.36. Tristimulus diagrams representing the timbre of musical instruments. The fraction 

of the intensity in partials 2,3, and 4 is plotted along the y-axis, and the fraction in higher 

harmonics along the x-axis. 

(a) Regions where tones with strong fundamentals, midfrequency partials, and high-frequency 

partials would be found. 

(b) Tibre of three Gedact organ pipes from 10 to 60 ms after attack. 

(c) Attack transients of trumpet, clarinet, and viola (Pollard and Jansson, 1982). 

2.3.6.2 Transients 
Different pressure/time waveforms can generate sounds with perceptually the same timbres. 

These waveforms have the same overall shape whilst having different phase relationships. They can 

all be represented by a single harmonic spectrum. Conversely, the same perception of timbre can be 

obtained from different harmonic spectra. This is accounted for by the fact that the timbre of an 
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instrument may change for each note, and each dynamic level, and also the player will introduce 

"involuntary fluctuations" into the sound. Part may also be due to small differences in the relative 

position of the instrument to the microphone, where the pattern of directionality of independent 

harmonics may be different, thus preferentially favouring certain harmonics (Meyer, 1978). 

Musical timbre depends critically on transient cues produced during the first 20-50 ms following 

the onset of the tone. Such transient cues correspond to the cues for consonants in speech. In other 

words, temporal patterning can be crucial in the perception of timbre. 

A steady-state repeated waveform cut from the middle of a complex tone is sometimes not enough 

to establish the identity of the instrument being played. Even though each instrument can be broadly 

characterized by its own spectum, it is sometimes difficult to recognise since our recognition of 

instruments necessarily relies on more than just the steady-state spectrum. It appears that we are very 

sensitive to non-linear additional spectral bursts which accompany the steady-state tone. This can 

include, the attack (beginning) and the decay (ending) of a complex spectral envelope, the initial 

sound from an instrument before it settles down to its steady-state natural mode of vibration, or 

incidental noise or sound during production. Not only that, but the instrumentalist may add his/her 

own colour to the instrument spectrum and can vary the attack and decay, thus modifying the 

transients. Whole notes may possibly consist entirely of transients such as for jabbing staccato notes 

from wind or brass instruments. 

Saldanha and Corso (1964) showed that steady-state patterns are not sufficient as a basis for all 

musical timbre discrimination. They showed that the clarinet, oboe, and flute were easiest to identify 

and the trombone, violin, cello, and bassoon were the most difficult to identify. Overall performance 

dropped from 47% correct to 32% correct when the onset transients of the instrumental sounds were 

eliminated, leaving the steady-state part of the musical instrument tone. 

Onset transients ("attacks") are more important as a cue to instrument identification or spoken 

syllables than decay transients (Saldanha and Corso, 1964). The spectral components of a complex 

tone can vary in different ways during initiation: the onset may include transient noises; there may be 

formant shifts arising from varying intensity changes of the harmonics; and the actual duration of the 

transient, the overall rate of attack (the steepness in reaching an intensity peak) also serve as strong 

cues to instrument identification (Winckel, 1967). Initial attack times usually differ for low and high 

notes. The spectrum during an attack is always varying, each spectral component rises at different 

rates. A tristimulus diagram can also be used to chart the relative intensities of the spectral 

components as the transient progresses, as in figure 2.36 (Rossing, 1990). 

2.3.6.3 The Amplitude Envelope 
The tone onset or attack is an important feature which helps us identify the instrument being 

played. Some instrument tones do not have a steady state, such as the harp or piano. Their principle 

timbral cue is the "amplitude envelope". Timbre comprises of both steady state components and 

transient components. The "characteristic" of an instrument, leading to its recognition, is its 
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"combination of acoustic variables" (Campbell & Greated, 1987). Risset & Matthews (1969) have 

found that brass instruments are principally characterised by the manner in which their timbre 

changes with volume. Clarinet tones are characterised by strong first and third harmonics for most of 

the playing range, whilst flute sounds have very strong fundamentals but their harmonic series 

decreases in intensity with increasing pitch. It has been suggested that the listener gains a "timbral 

constancy" through familiarity with the instrumental groups, allowing identification of the 

instrument at any point through its playing range (Erickson, 1977). 

2.3.6.4 Timbre Changes with Frequency 
A pure sine wave (that is, all the energy in the first partial) has a timbre that changes from very 

dull at low frequencies (due to lack of energy above the first partial) to very bright at high 

frequencies (due to the frequency of the sinusoid falling within the frequency region where our 

hearing perception is at its most acute). Instruments characterized by strong formant ranges tend to 

keeps timbre uniform for about an octave (Hall, 1980). This is true for vowels, plotted on a pitch 

scale in figure 2.37, and also trombones (Campbell & Greated, 1987). 

(a) "cc" (b) "oo" 

Figure 2.37. Formants of the vowel 

sounds (a) 'eel; (b) `oo' (from Campbell 

& Greated, 1987). 

2.3.6.5 Timbre Changes with Intensity 
Timbre also changes with intensity. The intensity of a given harmonic is proportional to the 

square of its pressure amplitude. A complex tone with strong harmonics and a fundamental 

frequency in the range of 100 Hz to 200 Hz has a rich full timbre when presented to the ear at levels 

of 80 dB to 100 dB. This is because the ear is sensitive to all harmonics at this intensity level. 

However, if the same tone, with the same relative distribution of partial energy is presented to the ear 

at levels of only 40 dB to 50 dB, the tone will sound softer and also thinner in quality. This is 

because the ear's sensitivity to lower partial components decreases much more than for others as 

intensity decreases. 
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Harmonic spectra do not show the relative importance of the amplitudes of the harmonics in the 

perceived sound. For this we need a loudness spectrum which is similar to a harmonic spectrum but 

takes into account that the ear is more sensitive to high frequencies. Each harmonic is converted into 

its corresponding loudness level or loudness reflecting the fact that a harmonic with double the 

amplitude has four times the intensity. 

Dowling & Harwood (1986) simplify the interactions by first reducing timbre down to the two 

types of acoustic categories derived from speech science, namely the vowel and the consonant. ".. the 

steady-state correlates of vowel-like timbre differences and the transient (rapidly changing) correlates 

of consonant-like timbre differences" apply to music perception as well as speech perception. This 

may be because "complex sounds such as spoken vowels are actually discriminated in terms of timbre 

variations rather than variations of fundamental frequency" (Gerber & Bauer, 1974). 

2.3.6.6 Timbre and Singing 
Timbral differences between tenors and altos can be explained by the larger size of the larynx 

tube and the vocal folds of males as compared with females. The larynx tube dimensions influence 

the 4th formant frequency. By increasing the larynx tube dimensions, the 4th formant frequency is 

lowered in tenors, bringing it closer to the 3rd formant, and positioning both the 3rd and 4th 

formants within a critical band. The increased ability of the vocal tract to transmit sound between the 

two formants results in an intensification of the spectral partials in this region, perceived as a harsh 

or rough auditory quality (Terhardt, 1974; Sundberg, 1987), shown in figure 2.38. 
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Figure 2.38. Average source 

spectra from two alto (open circles) 

and two tenor (filled circles) singers 

singing at identical pitches (after 

Agren & Sundberg, 1978). 
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This is possibly not the reason for the difference in quality between opera and belting in the same 

singer, since larynx tube dimensions remain relatively fixed. Sundberg (1987) suggests that voice 

source differences also determine perceived harshness. He believes that reducing voice source 

spectral tilt, (i. e. increasing the amplitude of the higher spectral partials of the voice source) will also 

increase the roughness of the voice quality. The amplitudes of the voice source partials indicate the 

rate at which the glottis closes. 
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Chapter 3 

Standard Speech Analysis Techniques 

3.1 Introduction 

This chapter will describe standard non-invasive speech analysis techniques which are commonly 

used by voice scientists and speech therapists in assessing speech qualities. 

3.2 Voice Source Parameter Analysis 

The voice source analysis method used in this study concentrates on laryngography techniques. 

Laryngography provides a means of assessing vocal fold contact area and the nature of vocal fold 

vibration. 

3.2.1 Electrolaryngography 

Vocal fold vibration can be monitored non-invasively using a device known as an 

electrolaryngograph (Fourcin & Abberton, 1971; Fourcin, 1987; Abberton et. al., 1989). In 

laryngography, a small constant high frequency voltage is applied between a central conductor and 

an outer guard ring of one electrode. The other electrode acts as a receiver and picks up the high 

frequency current flow. The electrodes are strapped on either side of the larynx at the level of the 

vocal folds, and the current flowing between the electrodes is measured. In voiced sounds, for each 

vibratory cycle, as vocal fold contact area increases the current flow increases. This current 

modulation can be represented on an oscilloscope. A signal which increases in amplitude when the 

vocal folds are closing, and decreases in amplitude when the vocal folds are opening is called the Lx 

waveform and represents conductance. The USA version of the electrolaryngograph is the 

electroglottograph (E. G. G. ). This measures impedance rather than conductance, and consequently 

the E. G. G. waveform is the inverse of the Lx signal. Vocal fold closure is represented by the steepest 

slope on both the Lx and E. G. G. signal. From this waveform the closed and open portions or phases 

of each vibratory cycle can be calculated. Figure 3.1 represents the output waveform of the 

laryngograph, the Lx signal as it varies with time (Abberton et al., 1989). 
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Figure 3.1. A typical Lx waveform with open and closed phases (after Evans & Howard, 1993). 

There are four distinct portions of this waveform relating to the degree of conductance between 

the vocal folds, shown in figure 3.2. In normal modal phonation, the waveform can be divided into 

an open and a closed phase, corresponding to the degree of closure of the vocal folds. The closed 

phase is further divided into three parts: the closing phase, the peak closure, and the opening, or 

separation phase. 

1I 

VOCAL FOLD 
CONTACT "j i 
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nnIc 

1 closing phase 
II maximum contact CLOSED PHASE (CP) 
llI opening phase 
IV open phase OPEN PHASE (OP) 

Vocal fold open and closed phases and the Laryngograph output wavcºoun, 

Figure 3.2. A few idealized cycles of a modal laryngograph output waveform (Lx) to illustrate the 

main phases in each cycle (from Abberton et al., 1989). 

The closing phase is characterized by a steep rise in the amplitude of the Lx waveform. This 

corresponds to the snapping shut of the vocal folds from the bottom upwards. The period of 

maximum closure is represented by the peak in the differentiated Lx waveform. The opening phase 

corresponds to the slow peeling away of the vocal folds, resulting in a more gradual decrease in 

amplitude of the Lx waveform. It is a matter of definition determining the open and closed portions 

of the Lx waveform. The point at which the vocal folds separate is harder to determine than the point 

of closure, since the Lx waveform decreases in amplitude before any air can escape through the 

glottis (Breen, 1990). However, the point at which air flow starts, corresponding to the beginning of 

the open phase can be easily seen as a knee in the opening phase of the Lx waveform of many 

speakers (Breen, 1990). This knee can be seen in figure 3.1. 
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Successive points of closure of the laryngograph signal determine the duration of each cycle (Tx), 

from which fundamental frequency (F0) can be estimated. Other parameters which relate to the 

timing of pitch such as flutter, jitter, and diplophonia may also be calculated from the Lx signal. 

Laryngograph signals not only allow the estimation of pitch periods, but also the relative durations of 

the open and closed phases of each vibratory cycle which provide an indication of the nature of vocal 

fold vibration which are of great importance in characterizing vocal quality and voice pathology. One 

such method which gives an indication of voice quality is larynx closed quotient estimation. 

Larynx closed quotient, or CQ, is defined as the percentage of each larynx cycle for which the 

vocal folds are in contact (Davies et al., 1986). It is calculated here as follows: 

CQ =((CP/Tx)*100) % 

CQ is often plotted against time (figure 3.3) or as a scattergram (figure 3.4). 
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Figure 3.3. CQ plotted against time for a female speaking the word "bard". 

A two channel electroglottograph (Glottal Enterprises) will also be used to measure larynx 

height. This device is described fully in chapter 5 since it is a relatively new invention and is not yet 

a standard speech technology item. 
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Figure 3.4. CQ (%) against pitch scattergrams for the vowel /u: / (from the word "booed") sung in 

(a) belt quality and (b) opera quality by a soprano (after Evans & Howard, 1993). 
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3.3 Acoustic Signal Parameter Analysis 

The analysis of the acoustic output for the purposes of this work divides into two areas; the 

overall energy of the acoustic signal, and the spectral content of the acoustic signal as it dynamically 

varies (spectrography) or as an average (average spectrum). 

3.3.1 Sound Pressure Level Recording 

A sound pressure level meter records sound level using an inbuilt microphone which adjusts to a 

selection of international and national standards frequency response weightings. The C-weighting is 

used here as it provides a flat response across all the audible frequency range and can be used to 

measure the acoustic output of an instrument such as the voice. The meter is calibrated in decibels 

(Rossing, 1990). 

3.3.2 Fast Fourier Transfer Analysis 

Fast Fourier Transform (FFT) is based upon converting continuous (analog) signals into 

discontinuous (digital) signals in the AID converter. The resulting digital signals are stored then 

processed by the analyzer before being output to the screen. In the AND AD-3523 Sound Analyzer 

used in this research, the input signal is optimised by an amplifier then fed into an anti-aliasing filter 

which eliminates frequencies above the specified frequency range before being passed into an A/D 

converter. This is shown in figure 3.5 (from the AND AD-3523 manual). 

Input 
terminal 

External computer 

Figure 3.5. Typical Configuration of the FFT Analyzer (from AND AD-3523 Sound Analyzer manual). 

FFI' Analysis performs high-speed spectral analysis on an input signal by observing the signal for 

a discrete period of time, known as a frame. The duration of this frame is the frame time. This frame 

is split into a fixed number of points with associated signal values. These values are called samples, 
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and are necessar ly app oX ": >i of the inoc s' nat. The fixed interval between each sample is 
known as the s.., g cycle. :s reciproca= i: c ... v the sampling frequency. Th is process is called 

Discrete Fourier Tra.. -: s formation (DFT). A know vc ge of sampling theory and the above processes 

can reduce the approximation error when analyzing signals. DFr ana ysis provides the basis for bo n 

traditional spectrograpi s and spectra. Average spectral analysis has been chosen over spectrographic 

analysis since this work- concentrates on the steady-state of a vowel only, so the average spectrum is 

adequate. However, spectrography will be reviewed. 

3.3. E .. -.., y 

A spectrograph is a device wich produces a dynamic graphical representation (called a 

spectrogram) of the relative amplitudes of the spectral content of an acoustical signal with time. 

Different acoustic information is iighlig hited as dark horizontal bands, with frequency or. the vertical 

axis, and time on the horizontal axis. The relative darkness of these bands corresponds to the 

intensity of the energy of that band within a specified bandwidth. In voice analysis, a narrow 

b aradwidtli gives individual partial Infor ration (seer, as thin dark bands which are regularly spaced 

at intervals equivalent to the fundamental period), shown in figure 3.6, whilst a larger bandwidth 

will show formants of the signal, that is, high energy peaks (seer: as broader dark bands), as seen in 

figure 3.7. 

Figure 3.6. A narrow band speech spectrogram (from Curtis & Schultz, 1986). 

By varying the analysis bandwidths, it is possible to get both individual partial information and 

formant information, though there will be some loss oi clarity for both. 

Spectrographs may be real-time, providing spectral information on the voice almost 

instantaneously, or non-real-time, working on a stored speech file. The spectral inforrnation from a 

specified duration of signal can sometimes also be averaged as a'ong-time average spectrum {LIAS) 

which can be useful in assessing the quality of a sustained sung tone. At any point or "frarnne" along 
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the duration of the time-varying spectrogram the darkness of marking shows the relative amplitudes 

o the acoustic components within a preset frequency range, :.: :.:. y well wi hiri de audible 

hearing range. This slice is called a spectrum. 

Figure 3.7. A wide band speech spectrogram (from Curtis & Schultz, 19986). 

A spectrum may also represent the average spectral contents of a sound over a period of time. An 

example of this is given in figure 3.8 which shows the average spectrum for a sustained vowel /a: / 

sung in opera quality at pitch E4 and at pitch E5 by a soprano. An AND AD-3523 sound analyzer 

was used for this purpose. 
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Figure 3.8. Average spectra for , i., vowel /a: / sang at pitch E4 (on the left) and at pitch E5 (on 

the right) in opera quality by a so_, -. s. 

Speech signals decay at at least -6 dB per octave. This arises as a sum of combining the natural 

radiation characteristics of the glottis 2 dB per oct) and the lips (+6 dB per oct). This means that 

the higher the frequency of a partial in the acoustic spectrum, the less energy it gener: Jly has 

associated with it in normal speech. Higher partials whit , are present in the voice signal may 

certain such little acoustic energy as to contribute very little to the acoustic signal. Articulatory 

settings and laryngeal settings can be drastically modified from the average speech settings to boost 

the high frequency energy. In order to see the total spectrai content most spectrographs pre- 

emphasise the vocal signal multiplying the signal by a +6 dB per octave slope which balances out the 
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-6 dB per average slope on the speech. It is important, therefore, to know if the spectrogram shows a 

normal or a pre-emphasised signal. It is also important to use the correct algorithms and analysis 

window lengths depending on whether one wants to observe individual partial components or 
formant frequencies. 

3.3.4 Inverse Filtering 

Inverse filtering is a means of extracting the voice source waveform from either an acoustic 

signal from a microphone or from a pressure flow signal from a mask placed over the subject's nose 

and mouth (Rothenberg, 1973). In both cases, the voice source waveform is achieved by cancelling 

out the formants (resonances) of the vocal tract from the output signal thus in theory leaving the 

source signal. This presupposes that the formant frequencies and bandwidths can be found, and that 

there is no voice source-vocal tract interaction during phonation, that is, the voice source and the 

vocal tract are decoupled. This is true for the period of the vibrational cycle when the vocal folds are 

closed, but is not the case when the vocal folds open. This has to be taken into account in the 

measurements since not only is there the possibility of coupling between vocal tract and vocal folds if 

the open phases is sufficiently large, but also several phonatory types involve vocal fold settings 

whereby the folds themselves do not come into full contact with each other during any portion of the 

vibratory cycle. 

The two methods complement each other when used together, as both have disadvantages which 

can be overcome by the other method. The Rothenberg mask is a device which records the oral air 

flow by measuring the pressure difference across a fine gauze over the mouth and nose. Inverse 

filtering of this signal provides low frequency information on the glottal airflow and can indicate 

how much leakage is present in the vocal folds. The inverse filtered signal contains spectral 

information on the voice source up to 1200 Hz due to microphone characteristics (Karlsson, 1986) 

and is a very useful tool for evaluating clinical voice function. Inverse filtering of the acoustic signal 

provides the necessary high frequency information (up to about 4000 Hz) and sufficient low 

frequency information for an acoustic analysis of the voice source. 

3.3.5 Linear Predictive Coding 

Linear Predictive Coding (LPC) is a particular inverse filtering method for representing speech 

waveforms as time-varying parameters related to the characteristics of the excitation and the transfer 

function of the vocal tract. The speech signal can be considered as the output of a linear system 

which consists of an input (modelled as a periodic pulse for voiced sounds, and noise for unvoiced 

sounds) which has been passed through a series of filters; the vocal tract, the glottis, and the lips. 
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The combined effects of the glottis and lip filters gives the source-radiation characteristic. In other 

words, the given signal is considered as the output of the dynamic system to which the input is 

unknown. A diagram representing the system is shown in figure 3.9. 

Anolyser Synthesizer 

Sampler I--. (- ouontizer Encoder --- 

Decoder 

Predictor 

Figure 3.9. Block diagram of a predictive coding system (from Ainsworth, 1976). 

The LPC models the speech signal as a linear combination of previous values. Model coefficients 

are generated by minimising the prediction error between real and predicted samples and 

recalculating these every 5 to 20 ms. Up to about 16 coefficients is sufficient to appropriately model 

speech. So an LPC speech sample can be defined as the predicted sample based on past values plus a 

prediction error. A fuller description of the mathematics behind LPC can be found in Makhoul 

(1975), Markel & Gray (1976), and Rabiner & Schafer (1978). It is an important tool in speech 

analysis and has many applications such as synthesis, formant frequency and formant bandwidth 

estimation, and spectral envelope determination. Figure 3.10 represents an lpc formant estimation for 

a female speaking the word "bard". The analysis bandwidth is set at 400 Hz. 
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Figure 3.10. An LPC estimation of formant frequency and bandwidth of the word "bard" spoken 

by a female. 
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In the frequency domain, formant frequencies can be predicted by modelling the signal spectrum 

as a pole-zero spectrum. For modelling vowels, an all-pole model of the transfer function is required 

since the poles determine the resonances of the model tract. 

Its advantages include simple algorithmic design, faithful spectral representation of the original 

signal which is derived directly from the analysis method, and automatic analysis (Rabiner & 

Schafer, 1978). 

LPC analysis is prone to errors in estimation. In automatic formant detection methods such as 

LPC analysis it is crucial to model the overall spectral envelope of the original signal. If the analysis 

window is too short, only the pitch period will be detected. If the analysis window is too large, 

however, along with detecting the formant frequencies, it may also wrongly associate a partial as a 

formant and give spurious formant peaks which do not relate to original formant positions. Thus 

errors in formant estimation will occur if these spurious peaks are not eliminated. If the analysis 

window is reduced, it may eliminate the individual partial information but this could smear the 

formants bandwidths so making centre frequency location more difficult. LPC also has errors with 

the overall spectral gain and in formant amplitude estimation (Hughes, 1990). 
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Chapter 4 

Vocal Qualities 

4.1 Introduction 

Voice quality is a perceptual attribute derived from a particular mode of production of the vocal 

system. This chapter gives an overview of the current issues involved in classification of vocal 

qualities in speech and singing. It is generally agreed that speech and singing registers/vocal 

qualities are separate though they may share common characteristics. 

4.1.1 Voice Registers 

A study of vocal quality in singing is not possible without first considering the controversial issue 

of voice registers. A consummate definition of voice registers, their terminology, number and mode 

of production has not been achieved, though there is now some agreement between voice specialists. 

A useful definition of a register is that of "a phonation frequency range in which all tones are 

perceived as being produced in a similar way and which possess a similar voice timbre" (Sundberg, 

1987). There appears to be two sources for vocal registers; the larynx and the supraglottal vocal tract 

(Hollien, 1983; Hollien and Schoenard, 1983). The phenomenon is common to both the speaking 

voice and the singing voice (Hollien, 1983). 

Terminology is rather ambiguous, with some authors agreeing on two main registers for the male 

singing voice; modal register and falsetto (Sundberg, 1987; Wendler & Seidner, 1982) and others 

agreeing on three main registers (in order of increasing pitch); chest, middle, and head (Appelman, 

1967); chest, falsetto and head (Garcia, 1840); and chest, head and falsetto (Vennard, 1967). 

Catellengo et al. (1983) believes that the female singing voice also has two main registers; chest 

and head, though some believe that the female singing voice has three registers; chest, head, and an 

extra middle register with a register break at about C4 to E4 between chest and middle voice, and 

about an octave higher between middle and head register (Sundberg, 1987; Appelman, 1967). The 

middle register has not been proved or disproved scientifically but it is subjectively present (Hollien 

and Schoenhard, 1983). 

Large compared the spectrums of tones sung in chest register and middle register belonging to 

female singing students singing at pitch E4. He observed that chest register contains more energy in 

the higher partials than middle register which is characterized by a stronger fundamental frequency 

(Large, 1968; Large, 1973). 
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It has been suggested that modal and chest registers have more energy in the higher partials than 

falsetto and head registers due to the vocal fold vibrations for modal and chest registers having a 

longer closed phase and steeper closing slopes, producing richer partials in the acoustic spectrum 

than for head and falsetto registers which tend to have fundamental frequency and lower partial 

dominance. For example, this has been observed in tenors (Hirano et at., 1989; Sunaga, 1971) and 

female singers (Large, 1968). 

A myo-elastic theory for explaining register breaks is described in Titze (1989). It suggests that 

the muscles in the larynx behave like gears. An increase in frequency increases the tension on the 

vocalis muscle, and therefore the stress on the muscle fibres necessarily increases to the point of 

maximum physiological stress for the muscle at a certain fundamental frequency. The muscle has to 

"disengage itself' and release tension since it cannot sustain the stress required to produce higher 

fundamental frequencies. 

Fundamental frequency ranges do not necessarily determine what register is being used. It is 

more a matter of mode of vibration of the vocal folds and the various muscle tensions associated with 

it which determines the type of glottal waveform being produced. Individual variations are great in 

terms of overlap of registers. 

At the register transition, or "break", quality and pitch are detrimentally affected for one or more 

tones. The pitch positions of the register transitions depend largely on the singer's voice category. 

The lower the centre pitch of a person's vocal range, the lower the register transitions and vocal 

category to which he or she belongs (Sundberg, 1987). 

Classical singing training enables singers to conceal register transitions where quality is affected, 

allowing them to "smooth" over the breaks and extend the range of their registers. This is carried out 

by adjustments in vocal tract shape, at the larynx, and subglottally. 

4.2 Vocal Fold Vibration and Acoustic Quality 

Differences in vocal quality arise from supralaryngeal settings, subglottal pressure and also 

different modes of vocal fold vibration. Vocal qualities in speech pathology are generally compared 

to ordinary healthy vocal quality which is called the modal voice (Hollien, 1974), described below. 

4.2.1 Modal Voice 

Hollien (1974) describes the modal voice as the phonation produced when the vocal tract is "in a 

neutral setting" and "no specific feature is explicitly changed or added". He states that "the modal 

register is so named because it includes the range of fundamental frequencies that are normally used 
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in speaking and singing (i. e., the mode)". It is generally agreed that the modal register corresponds 

to the "chest voice" register in singing (Appelman, 1973; Vennard, 1967), though some would argue 

that it also includes the "head voice" register (including Hollien). The physiological characteristics of 

modal voice for normal conversation (i. e., relaxed vocal tract producing low pitches) are as follows: 

1. short and thick vocal folds 

2. fully vibrating vocal folds (large amplitudes) 

3. moderate muscle tension 

4. no audible friction arising from incomplete glottal closure (Van den Berg, 1968). 

Laver (1980) states that both the ligamental and the cartilaginous sections of the glottis function 

as a single unit, so the full glottis is involved, and vibration is efficient and periodic. He suggests that 

differences in quality arise from variations in laryngeal settings. His theory for vocal quality 

classification is described below. He suggests that five phonatory settings for speaking can be 

compared with modal voice. These are: 

1. falsetto 

2. whisper 

3. creak 

4. harshness 

5. breathiness. 

Laver (1980) divides the six phonatory settings into three categories which may or may not 

combine into compound phonatory types depending on their category. 

In all, 20 laryngeal settings can be achieved. Modal voice and falsetto belong to the primary 

category. They can exist independently as simple phonation types or may combine with any other 

type in the second and third categories, but they are mutually exclusive. 

The phonatory types belonging to the second category are whisper and creak. These may exist 

independently or combine with each other and with other types in the other categories. 

The third category comprises of harshness and breathiness. These can only exist as compound 

phonation types. However, breathiness and falsetto are incompatible and therefore cannot combine. 

Other incompatibilities may also arise. Incompatibility arises from either redundant or conflicting 

acoustic requirements, or conflicting physiological requirements, which may arise from a "mutually 

exclusive specification of the phonatory settings involved in one or more of three muscular 

parameters concerned in adjustment of the vocal folds" (Laver, 1980). These are : 

1. longitudinal tension - which is achieved by the vocalis and/or CT muscles 

2. adductive tension - which is achieved by the IA and LCA which brings the arytenoid 

cartilages together closing the cartilaginous glottis and hence the ligamental glottis 

3. medial compression - where tension of the LCA closes the ligamental glottis (Laver, 1980). 

These tensions are represented in figure 4.1. 

The five main phonatory types in speech which can be compared with modal voice are described 

below. 
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1 

2 
Figure 4.1. Geometric relationship between 

three laryngeal parameters (from Laver, 

1980). 

3 

LT - longitudinal tension 1. Thyroid cartilage 
MC - medial tension 2. Cricoid cartilage 
AT - adductive tension 3. Arytenoid cartilage 

4.2.2 Falsetto 

Modal voice and falsetto arise from completely different laryngeal settings (Laver, 1980). Falsetto 

has high tensions whereas modal voice only operates at moderate tensions (Hollien, 1971; Van den 

Berg, 1968; Laver, 1980). Falsetto is characterized by: 

1. high adductive tension and medial compression. This arises from contraction of the IA and 

LCA muscles 

2. high longitudinal passive tension of the vocal ligaments. The vocal ligaments are put under 

strong tension by the contraction of the CT muscle. This results in the vocal folds being 

maximally lengthened 

3. only slight active longitudinal tension in the vocalis muscles, and they can generally be 

thought of as being relaxed along the glottal edge of the vocal folds. However, apart from the 

vibrating glottal edges, vocal fold mass is stiff and rather immobile. This is due to contraction of 

the outer vocal fold muscles, the lateral thyroarytenoid muscles. The result is a thin vertical edge 

to the vocal fold and a cross-section of the vocal folds shows them to be thin and triangular. The 

glottis is often slightly open, and the subglottal air pressure is often lower than in modal voice 

(Kunze, 1964). 

Another important aspect of falsetto is that the average pitch range for male falsetto is higher 

than in modal voice, although there is some overlap. Hollien and Michel (1968) found it to be from 

275 Hz to 634 Hz for male falsetto, whilst it was 94 Hz to 287 Hz for modal voice in males. The 

characteristically thin quality arises from this combination between high fundamental frequency and 

mode of vibration of the vocal folds. Sundberg (1987) puts the range of overlap between male modal 

and falsetto registers as in the region of 200 Hz to 350 Hz, which correspond to approximately 

pitches G3 to F4. 
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Several different types of falsetto can exist, depending on differing fundamental frequency 

control, glottal closure, and airflow rates. The untrained falsetto register exhibits a stable relationship 

between fundamental frequency and airflow. Fundamental frequency is determined by airflow, and 

an increase in airflow results in an increase in phonation frequency (Isshiki, 1964). This is not 

apparent in the falsetto register of trained singers. 

One spectral feature distinguishing falsetto from modal is the amplitude of the fundamental 

relative to the higher partials. As seen in figure 4.1 the amplitude is 5 dB stronger in the falsetto 

register than in the modal register, and the difference between the fundamental and the second 

partial is also much smaller. 
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Figure 4.2. Average source spectra for 

three trained male singers pronouncing 

the vowel /a: / on the same fundamental 

frequency in modal register (triangles) 

and falsetto register (circles). The 

spectra are represented by a curve 

showing how the spectrum contour 

deviates from the standard slope of -12 
dB/octave (from Sundberg, 1987). 

Also, in falsetto the spectral slope falls off more steeply (about -20 dB per octave) across the 

range than in modal voice, which falls off at about -12 dB, and gets steeper with increasing 

fundamental frequency (Monsen and Engebretson, 1977). The laryngeal waveform of the falsetto 

register has a steeper opening portion as opposed to that of the modal register which has a steeper 

closing portion. 

4.2.3 Creak 

Creak is characterised by very low fundamental frequency (in males, it ranges from about 30 Hz 

to 90 Hz) with an auditory effect of "a rapid series of taps, like a stick being run across a railing" 

(Catford, 1964). Wendahl, Moore and Hollien (1963) attribute this to a high dampening of the vocal 

tract between "glottal excitations". It is believed that this mechanical vocal tract damping arises from 

the action of the ventricular folds lightly coming into contact with the surface of the true folds. This 

explains the observation made by Moore (1971) that the closed phase of each cycle is lengthened. 
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The laryngeal setting of creak is not fully understood, but it is known that the vocal folds are 

adducted, thick and compressed; the ventricular folds are adducted; and 

"the inferior surfaces of the false folds actually come into contact with the superior surfaces of 
true vocal folds. Thus, an unusually thick, compact (but not necessarily tense) structure is 
created prior to the initiation of phonation" (Hollien et al., 1966). 

Catford (1964) suggests that only a tiny portion of the anterior ligamental glottis is used. Control 

of fundamental frequency is different to modal voice, and the sub-glottal air pressure is lower than 

for modal voice. Cyclical vibration of the vocal fold is irregular, or aperiodic. Also, the spectrum 

falls off less steeply than in other types of phonation. Other synonyms for creak found in the glottal 

literature include vocal fry, glottal fry and laryngealization. 

Lx waveforms of Laver's (1980) simple phonation types are shown in figure 4.3. 

1. Modal 
voice 

Increasing 
impedance 2. Falsetto 

1 3. Creak 

40 -see 

Figure 4.3 Lx waveforms of the simple phonation types (from Laver, 1980). 

4.2.4 Breathiness 

Breathiness is a quality combining modal phonation with inefficient glottal closure leading to a 

high amount of wasted breath. Catford (1977) describes breathiness as "the sound of voice mixed in 

with breath". The vocal folds narrow but do not close at any time. Breathiness is not limited to using 

a high rate of air flow. It is possible to produce a breathy quality with a low rate of air flow, as is the 

case in conversational speech at low frequencies. However, breathiness arises from an inefficient 

mode of vocal fold vibration, and as such, this small element of audible friction makes breathiness 

auditorily similar to whispery voice. However, whispery voice has a high amount of audible glottal 

friction. Physiologically, the two modes are incompatible since breathiness is produced with a low 

degree of laryngeal effort and whispery voice with its more constricted glottis, requires a greater 

amount of laryngeal effort (Laver, 1980). 
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The modal voice element in breathiness is always dominant. Breathiness is only compatible with 

modal voice since all other phonatory settings require too much muscular tension (Laver, 1980). 

Breathiness arises out of minimal adductive tension and minimal medial compression to enable the 

largish airflow to just cause the vocal folds to vibrate. Longitudinal tension is generally low, though 

it can be increased for the purposes of increasing fundamental frequency (Laver, 1980). 

In terms of acoustic output, the general relaxation of muscles in breathy phonation contributes to 

the damping effect on the sound, leading to general energy loss and a broadening of the bandwidth of 

the first formant (Laver, 1980). 

4.2.5 Whisper 

Whisper arises from a partly constricted glottis. There appears to be a triangular opening of the 

glottis. For weak whisper part of the ligamental glottis may remain open. Increasing intensity results 

in an increase in glottal constriction until only the cartilaginous portion is open. This is the result of 

low adductive tension, with moderate to high medial compression. It uses a great deal of airflow, so 

is a very inefficient phonatory setting (Laver, 1980). The whisper characteristic is produced by 

"eddies generated by friction of the air in and above the larynx" (van den Berg, 1968). 

1. Whispery 

voice 
1 _. 

Increasing 
impedance 

2. Breathy 
voice 

40 ursec 

Figure 4.4. Lx waveforms of compound phonation types (from Laver, 1980). 

4.2.6 Harshness 

Harsh voice occurs in compound with other phonatory types and is characterised as including 

irregular and aperiodic spectral noise. As with creak, there are irregular cyclical vibrations in the 

action of the vocal folds. This is termed "jitter" (Cooper et al., 1957), and lends an auditory 

roughness, or rasping sound to the acoustic sound. Harshness sounds less severe in females than in 

males due to the higher fundamental frequency of females. This percentage deviation in fundamental 

58 



frequency due to jitter is therefore lower it females that in mates (Hess, 1959), possibly eypla hing 

why harsh voice is perceived less commonly in women than in men (, aver, 1980). 

Vocalisation is generally agrees to be 3 n: bated on a gotta: attack and at lowish frequencies. 

Tensions from the extrinsic an L. Is'. laryngeal muscles, that is bot : in tie larynx al 

pharynx, is high. Excessive tension in the vocal folds draws them too tight:; together, and ray 

account for the jitter and noise element In the acoustic out-out (Zemlin, 1964;. This results in a louder 

inters ty than in modal voice. Van Riper and Irwin (1958) suggest that "some ol' he apparent 

loudness may come from resonation effects clue to the tenseness of the oral and pharyngeal cavities". 

Russe-_ 1936' as observed that "as the vo=ce begins to become strident and blatant, one sees the 

red-s_ Ace.; .:.. ýc1es which lie above O he vocal cords begin to forma tense channel". 

Laver (193, -)' suggests that the extreme tension in harsh voice is due to over-contraction of the 

musc es responsible for modal voice resulting in both excessive adductive tension and medial 

compression. 

Figure 4.5 presents spectrograms of the six major phonatory categories defined by Laver. 
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figure 4.5. Spectrograms of steady-state vowels with six p omuos y settings 

a. modal voice d. breathy voice 

b. faisetto e. whispery voice 

c. creak f. harsh voice 

(from Lav: r, l'). 
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4.3 Male and Female Voice Differences 

Adult male and adult female vocal tract dimensions differ in a number of ways. These are divided 

below into voice source (laryngeal) differences and supralaryngeal vocal tract differences. 

Differences between male and female vocal tract and laryngeal physiologies not only account for 

some of the male-female differences in voice quality, but also underlie some of the articulatory 

strategies used by professional singers. 

4.3.1 Voice Source Differences 

Voice-source differences between adult males and adult females can be attributed to the relative 

size of the larynx. The male larynx is 20% larger than the female larynx in all three planes: 

horizontal, vertical, and lateral (Kahane, 1978). However, in the anterior two-thirds of the larynx, 

the membranous vocal fold length is 60% larger in males than in females, shown in figure 4.6. 

loot-'ý 20% 

tcmale male 

(a) Sagittal View 

(b) Horizontal Section 

Figure 4.6. Male-female comparisons of 

dimensions of the larynx. (a) Sagittal 

view of thyroid cartilage, (b) horizontal 

section showing difference in 

membranous length (from Titze, 1989). 
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Below is a list of main vocal fold differences which exist between adult males and adult females: 

1. Vocal Fold Length and Fundamental Frequency 

Vocal fold length changes as a function of fundamental frequency with the adducted vocal fold 

length in phonation always being shorter than the abducted length. There is a systematic lengthening 

of the vocal folds with increase in pitch (Hollien, 1960; Hollien & Moore, 1960). 

2. Vocal Fold Thickness 

Males have 20 % to 30 % thicker vocal folds than females (Hollien, 1960). Vocal fold thickness 

does not account for male-female differences in FO. Thickness and length have been observed to be 

inversely proportional (Hollien, 1960), proabably related to conserving tissue volumes (Titze, 1989). 

3. Vocal Fold Tissue and Stress-Strain Curves 

Female vocal fold tissue is slightly stiffer than male tissue (Titze, 1989) producing linear stress- 

strain curves, whereas the larger quantity of collagenous fibres present in the male vocal folds may 

account for the nonlinearity of the male stress-strain curve (Hirano, 1983; Fung, 1981). However, the 

difference between the two types is minimal. 

4. Glottal Waveforms 

The male glottal waveform is more asymmetrical than the female glottal waveform. This 

asymmetry is due to a slightly out of phase movement of the upper and lower parts of each vocal fold 

due to the increased male vocal fold size. Female vocal folds come into contact more as a single mass 

since they are relatively shorter and smaller (Titze, 1989; Monsen & Engebretson, 1977). 

Male glottal waves approach the shape of female waveforms at higher fundamental frequencies 

(Monsen and Engebretson, 1977). That is, the glottal waveform differences between male and female 

speakers is the same as that between phonations at low and high fundamental frequencies in males. 

The average female speaking voice is about -4 dB to -6 dB less intense than the average male 

speaking voice. However, due to a higher fundamental frequency of the female voice (about an octave 

higher), it has been predicted that the female voice should be 25% more efficient than the male voice 

(Schutte, 1980; Holmberg et al., 1988). The energy distribution in the female and male spectrum 

turns out to be equal due to the steeper tilt of the octave harmonics in the spectrum of the female 

glottal wave. This can be interpreted physiologically as the female having a much greater separation 

of the vocal processes than a male, that is having a posterior glottal "chink", or opening, in 

phonation. This too, is apparent in the glottal wave change which occurs when male speakers 

producing a rising glide of an octave (Titze, 1989). Monsen and Engebretson (1977) found that 

spectral envelopes fall off rather irregularly, but on average, the male voice spectrum has an initial 

tilt of -12 dB per oct, increasing to -15 dB per oct at higher frequencies. Females have a steeper 

slope. The only differences observed between the male and female glottal waveforms is a higher 

fundamental frequency and a larger open quotient in the female. 

61 



5. Breathiness from Incomplete Glottal Closure 

One of the main acoustically perceived correlates of incomplete glottal closure is breathiness. It 

appears that the degree of perceived breathiness and incomplete glottal closure in female speaking 

voices is culturally determined, with English speaking females exhibiting higher breathiness with 

larger open quotient values than speakers of other languages (Klatt & Klatt, 1990; Sodersten & 

Lindestad, 1990; Karlsson, 1986) and conforming to subjective stereotypes (Henton & Bladon, 

1985). 

Both males and females can exhibit a visible posterior glottal aperture during the closed portion 

of a vocal period (Bless et al. 1986). In this study, this was observed in 20% of the males as opposed 

to 80% of the females. Holmberg et al. (1988) confirm this in a study of normal voices. They 

concluded that females have a more breathy voice than males, though both sexes have some 

breathiness when phonating vowels surrounded by voiceless consonants. They also found in the study 

that in normal voices, softer vocal effort is more breathy, with increase in open quotient and slow 

closure, and louder vocal effort is more laryngealized (pressed), with reduced open quotient. 

(Holmberg et al., 1988) 

6. Glottal Models 

Titze (1989) has drawn up both a static and a dynamic model of the glottis. The static model 

represents the prephonatory glottis, and the dynamic model represents the "time varying" glottis. 

This model contains two modes, a "horizontal string mode" and a "vertical ribbon mode". A phase 

delay quotient is built in because of the out of phase ribbon-like movement exhibited by the vocal 

folds. Figure 4.7 represents Titze's model showing this difference in settings between male and 

female vocal folds (Titze, 1989). 

Figure 4.7. Scaling of the glottis in terms 

of length L, amplitude of vibration A, and 

separation of the vocal processes \V (from 

Titze, 1989).. 

The main male-female difference in this model is the presence of a bulging factor in the medial 

surface of the male glottis, as opposed to the female glottis which does not bulge. A medial glottal 
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chink is present in the female model, allowing for continuous airflow. However, the presence of the 

medial bulge in the male glottis prevents a glottal chink from occurring. This bulging factor also 

accounts for the hump or "knee" in the opening phase of the simulated vocal fold contact area 

waveform (Ac) of the male model, represented in figure 4.8. 

Titze (1989) believes that this bulging factor may be due to the greater contraction of the vocalis 

muscle in male speech. The female glottal flow (Ug) and female glottal area (Ag) waveforms also 

show a relatively longer open phase than the males. The open portion of the simulated female contact 

area waveform is also flatter, as opposed to the more rounded open portion of the male contact area 

waveform. 

This is similar to the two mass model by Ishizaka and Flanagan (1972). In this model, a hump is 

generated in the opening phase of the glottal waveform when there is a low coupling between the 

upper and lower masses of the vocal fold. That is, an asymmetry is built into the model, as is the case 

in the male glottal waveform. 
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Figure 4.8. Differences in medial surface contour and corresponding glottographic waveforms. 

(a) Female-like with linear convergence and (b) male-like with medial surface bulging. Ac = vocal 

contact area, UG = glottal flow, AG = glottal area (from Titze, 1989). 

An increase in the coupling between the masses results in the model becoming more symmetrical, 

similar to female glottal waves. Hirano (1975) has shown that for males the vocalis muscle is 

contracted far more than in females. He suggests that males tend to speak using a chest register 

whilst the female voice is more "falsettolike" in quality. 
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4.3.2 Supralaryngeal Differences 

The relative size of the supralaryngeal vocal tract to the vocal folds can be related to some of the 

differences in vocal quality between males and females. 

The dimensions of the average female vocal tract are not proportional to the corresponding 

dimensions of the male vocal tract. The average female adult has a mouth length which is 85% that 

of a male, but the average female pharynx is only 77% the size of the average male pharynx 

(Nordström, 1977). However, these values do not explain the actual formant frequency differences 

between males and females (Nordström, 1977). On average, women have higher formant frequencies 

than men. This is because of the smaller vocal tract lengths of women as comparedwith men 

(Sundberg, 1987). The higher the centre pitch of the vocal range the higher the formant frequency 

averages (Cleveland, 1977). Averaged across all vowels as a percentage, women's first three formant 

frequencies are higher than in men by 12%, 17%, and 18%, respectively (Fant, 1975). 

Phonation frequency is perceptually much more important in identifying speaker sex than the 

three lowest formant frequencies (Coleman, 1976; Agren & Sundberg, 1978). The average female 

voice is about an octave higher than the average male voice. When a countertenor sings an alto part, 

which is associated with the modal voice range of a female, he sounds more like a female than a 

male, even though he has a male set of formant frequencies. The similarity to a female voice timbre 

may be explained by the voice source differences which are found between modal and falsetto 

registers in male singing (Coleman, 1976). 

In the next section, the main physiological differences between male and female adult voices, 

discussed above, will be shown to be accountable for the various strategies used in the classical male 

and female opera voice, and differences between female opera and belting (Estill, 1992). 

4.4 Opera Quality 

The main feature which is common to both male and female opera singing is "formant tuning". 

Formant tuning allows the singer to project his or her voice. At any pitch, the relationship of the 

formant positions to the spectrum of the voice source accounts for many of the differences in the 

formant tuning techniques adopted by male and female operatic singers. The "singer's formant" is a 

crucial factor in the projection of the operatic voice. It is a parameter of the operatic sound mainly 

associated with male opera singers, though to a lesser extent can be observed in some female opera 

voices. However, the soprano adopts a different approach to vocal projection than the male. Rather 

than using a singer's formant, the soprano employs "pitch-dependent tuning" (Sundberg, 1987). This 

strategy arises as a direct consequence of trying to benefit from the harmonic effects of the first 
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formant which would often lie below the singing pitch, and therefore not contribute significantly to 

the spectrum of the sung tone. Different types of vibrato exist (Sundberg, 1987). 

Vibrato is a phenomenon which is highly associated with the western operatic singing tradition. 

It seems to have become an integral esthetic parameter of the professional operatic voice, and 

develops as operatic singing training progresses even though it is not consciously learned 

(Bjorklund, 1961). Different types of vibrato exist (Sundberg, 1987), though the main attributes of 

opera vibrato are that it consists of a very low frequency quasi-sinusoidal modulation of the sung 

pitch at a rate of between 5 Hz and 6 Hz (Sundberg, 1987). 

4.4.1 Male Opera Quality 

The singing voice of Western male opera and concert singers exhibit a spectrum amplitude peak 

at around 3 kHz. This peak is known as the "singer's formant" (Sundberg, 1974). It arises from a 

migration/clustering (Sundberg, 1987) of the 3rd, 4th and 5th formants (Sundberg, 1974). By 

reducing the distance between these formant frequencies, the ability of the vocal tract to transfer 

sound is greatly increased in the region of these formant frequencies, shown below in figure 4.9. 
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Figure 4.9. Spectrum envelopes for the vowel /u: / as sung and spoken by a male 

professional opera singer. The peak in the spectrum envelope near 3 kHz is typical of all 

voiced sounds in singers except sopranos; it is called the singer's formant (from Sundberg, 

1987). 

A spectrum amplitude peak is generated, the amplitude of which depends on how apart the 3rd, 

4th, and 5th formant frequencies are (Sundberg, 1987) and also on the amplitudes of those partials in 

the voice source. The amplitudes of the voice source partials indicate the rate at which the glottis 

closes. A low singer's formant amplitude is indicative of a low glottis closing rate. 
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The amplitude of the singer's formant is also dependent on other factors. One factor influencing 

the level of the singer's formant is loudness of phonation. A louder tone has stronger partials than a 

softer tone (Sundberg, 1987) resulting in a less steep spectral roll-off. It is expected, therefore, that, 

as figure 4.10 shows, the amplitude of the singer's formant in louder tones is greater than in soft 

tones. 

This also applies to pitch. High notes are generally sung louder than low notes, and therefore, 

their voice source spectra has higher partials. Consequently, the singer's formant belonging to the 

spectra of high pitches is greater in amplitude (Hollien, 1983). 
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Figure 4.10. Sound level of the singer's 

formant in a baritone singing a 

chromatic scale on the vowel /ae: / in 

soft (filled circles), middle (squares), 

and loud phonation (open circles). The 

gain in the level of the singer's formant 

is greater than the rise in the overall 

sound level (from Cleveland and 

Sundberg, 1983). 

Formant frequencies depend on articulation. This implies that type of vowel will also determine 

the level of the singer's formant. Bloothooft (1985) found that in professional male singers, the 

singer's formant of vowels such as /i: / and /e: / which have high second formant frequencies is about 

12 dB weaker than the SPL of the tone, but in vowels with a low second formant, e. g., /u: / or /o: / the 

singer's formant is about 20 dB weaker. 

However, the singer's formant is independent of vowel articulation since it is always present in 

the professional singer's voice regardless of vowel (Sundberg, 1987). Rather, one way of achieving it 

is by lowering the larynx. Lowering the larynx lengthens the pharynx and the bottom part 

surrounding the larynx tube, the sinus piriformis, and widens both the sinus piriformis and the 

laryngeal ventricle, shown in figure 4.11. 

Lengthening the pharynx increases the 2nd formant frequency of front vowels. Lengthening and 

widening the bottom of the pharynx and the laryngeal ventricle lowers the 4th formant frequency 

only when "the cross-sectional area in the pharynx at the level of the larynx tube opening is more 

than six times the mean of that opening" (Sundberg, 1987). This satisfies the conditions required for 

achieving a singer's formant, resulting in a grouping of 2nd, 3rd, and 4th formant frequencies. The 

4th formant frequency can be lowered from about 3.5 kHz to about 2.8 kHz in adult males. 
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Figure 4.11. Left: Tracings of frontal X-ray pictures of a male singer singing and speaking the 

same vowel (solid and dashed contours). In singing, the larynx was lower and the piriform sinuses 

were wider. (from Sundberg, 1970, cited in Sundberg, 1987). Right: Contours shown in frontal X- 

ray pictures of the deep pharynx, when a subject deliberately raised and lowered his larynx. The 

laryngeal ventricle and the sinus piriformis expanded considerably when the larynx was lowered 

(from Sundberg, 1987). 

There are several acoustical advantages which can be attributed to the presence of a singer's 

formant. One is that a voice can be heard over an orchestra since the loudest partials in the singing 

voice are found in the 3 kHz region as opposed to about 450 Hz in the orchestra or normal speaking 

voice. Also, the higher partials will be radiated directly towards the audience rather than be diffused 

upwards and to the sides of the singer. 

Tuning of the two lowest formants to match partials of the voice source is also an established 

technique in classical singing. Miller & Schutte (1990) studied formant tuning in a professional 

baritone. They found that the baritone tuned his first two formants by modifying vowel articulation in 

order to amplify his voice. Accurate formant tuning of the first and second formants to voice source 

partials in the sung tone typically results in those partials having the highest sound pressure level. 

The first formant, followed by the second formant largely determine the overall SPL of a tone. As 

fundamental frequency increases, accurate formant tuning necessarily becomes more important as 

the distance between partials increases. This is relevant to female opera singing, described below. 

4.4.2 Female Opera Quality 

A greater difference in sound level exists between female singers and non-singers than between 

male singers and non-singers. Female singers have a greater maximum sound level than female non- 

singers. However, the singer's formant has a lower amplitude in female voices than in male voices 

(Seidner et al., 1983). This is especially so in sopranos (Bloothooft, 1985). The first formant 

frequencies for vowels having a narrow jaw opening are comparatively low. 
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The first formant frequency in the vowel /u: / in a female speaker is about 350 Hz. However, 

female singers have to sing in excess of 700 Hz. At that pitch there are no partials to excite the first 

natural resonance of the vocal tract. In order to use to advantage the first formant frequency which 

would otherwise not be used, female singers, especially sopranos widen their jaw opening at higher 

pitches. This raises the first formant frequency up to, or close to that of the pitch. This tuning of the 

first formant to match the frequency of the pitch where the ist formant would normally drop below 

the phonation frequency. This is shown in figure 4.12. 
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Figure 4.12. The four lowest 

formant frequencies (Fl, F2, F3, 

and F4) in the vowels indicated 

used by a professional soprano 

singing at various pitches. The 

circled values pertain to the 

subject's speech. The lines 

illustrate the trends; the first 

formant is not allowed to be 

lower than the phonation 
frequency; the second formant 

of back vowels /u: / and /a: / rises 

and that of front vowels /e: / and 
/1: / drops with rising phonation 
frequency (from Sundberg, 

1987). 

The gain in amplitude can be as much as 30 dB. The skill involved in tuning the first formant 

frequency accounts for the difference in maximum SL reached between female singer and non- 

singers. This is a very economical way of singing. Sundberg (1987) states that "the pitch-dependant 

tuning of formant frequencies gives the singers' vowels a high loudness at a low price in terms of 

muscular energy". 

Sopranos do not have to work as hard as altos to be heard over an orchestra, since they frequently 

sing above 450 Hz, the loudest partials in the orchestral sound, whereas altos have to compete in this 

region. According to Seidner et al. (1983), and Bloothooft (1985), altos use the help of a singer's 

formant, whereas it is much smaller in sopranos. Further investigation is needed in order to observe 

the articulatory strategies used by altos for producing their singer's formants. Figure 4.12 also shows 

the relative positions of the first four formant frequencies with rising phonation frequency for a 

professional soprano. With increasing phonation frequency: 

68 



1. in front vowels such as /i: / and /e: / the 2nd formant frequency drops; 

2. in back vowels /u: /, /o: /, and /a: /, the 2nd formant frequency is tuned close to the 2nd partial; 

3. the 3rd formant frequency drops after the phonation frequency of 440 Hz; 

4. the 4th formant frequency rises after the phonation frequency of 440 Hz; 

It also shows that the 1st and 2nd formant frequencies of the vowels studies are all very similar at 

the highest pitch. Johansson et al. (1983) found that at 960 Hz the tongue shapes for vowels /u: / /a: /, 

and / i: / are practically the same, as shown in figure 4.13. 
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Figure 4.13. Mid-sagittal 

contours of the tongue body: 

dashed, solid, and chain-dashed 

curves pertain to the vowels /i: /, 

/a: /, and /u: /. The upper left 

family of contours are from 

spoken vowels; the others were 

sung at the phonation 

frequencies indicated.. 

The same tongue shape was 

used for all vowels at the top 

pitch (after Sundberg, 1987). 

Other articulatory devices apart from jaw opening used by professional sopranos also include 

pitch dependent retraction of the corners of the mouth and also pitch dependent vertical positioning 

of the larynx. Raising the larynx increases the 1st formant frequency. 

The effect of formant shifting is most apparent in high pitched singing where often projection of 

the sung tone is often achieved at the expense of vowel intelligibility (Sundberg, 1987). 

Rothenberg (1985) has modelled a situation where efficiency of voice production for a soprano 

can be further enhanced by combining vocal tract tuning with sharp vocal fold adductive control. 

Sopranos sing very loud high pitches with high subglottal pressures. In order to reduce the risk of 

vocal abuse, the vocal tract and larynx interact in order to maintain low average air flows whilst 

avoiding excessive vocal fold adduction, which will cause strain and fatigue (Rothenberg, 1985). 

A reduction in airflow combined with the production of a harmonically rich tone can be achieved 

through the interactive effects of vocal tract tuning with almost complete vocal fold closure for a 

significant part of the glottal cycle (Sundberg, 1975). This excludes nazalization which appears to 

increase air flow (excessive air flows can lead to the risk of drying out the mucosal linings) possibly 

due to F1 damping which reduces the interactive effect (Rothenberg, 1985). Other mechanisms could 

be used for nazalized vowels or the efficient production of tones at lower pitches. A reduction in 
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average air flow is achieved through first formant tuning. This increases the amount of energy in the 

fundamental frequency therefore increasing the amount of interaction with F1. A harmonically richer 

tone is produced by keeping open quotient values for the glottal cycle above 50%. With OQ values 

greater than 50% the subglottal pressures become negative just as the vocal folds begin to open and 

close. This increases the glottal air flow at the beginning and end of the glottal pulse producing an 

air flow pulse with sharper onsets and offsets. The resultant spectrum has strengthened higher 

partials. 

4.5 Belting 

"Belting" has been described as "yelling set to music" (Yanagisawa et at., 1989), and can be 

heard in musicals, rock and gospel singing, and in much ethnic world music. Famous exponents of 

this technique, known as "betters", include Ethel Merman, Judy Garland, and Liza Minelli. The term 

"belting" is used synonymously with the term "belt" in the literature (see Schutte & Miller, 1993). 

Several speech pathologists, doctors, and scientists have claimed that this quality is dangerous to 

vocal health (Lawrence, 1979; Osborne, 1979). It is a sad truth that with the demand for louder and 

louder singing, many rock singers and music theatre singers end up with vocal traumas such as 

throat strain, hoarseness, or even vocal nodes and ruptured vocal folds by either singing very loudly 

in the wrong register (such as falsetto in men), or by singing too loudly too low, in women (Howell, 

1978). The term "belting" has had an ambiguous and confused history. One definition has described 

it as chest voice range extended upwards and over the break (Ruhl, 1986). Howell (private 

correspondence) uses the term "belting" to describe "the forced vocal muscles, pushed-air 

oversinging of anyone in any material, whether it's opera or rock". 

The misunderstandings surrounding the quality are finally being dispelled through the scientific 

work of Jo Estill and her associates. It is now slowly becoming regarded by western voice scientists 

and voice pedagogues as a legitimate form of singing which can be undertaken in a healthy manner. 

The following passages aim to describe the physiological and acoustic characteristics of belting 

thoough experimental evidence. Most of the papers compare the functional role of one or a group of 

related physiological components in a number of voice qualities, belting being just one of several 

qualities under scrutiny. Her work also challenges some of the strongly held beliefs about opera 

singing, and shows that there are physiological settings which are common to the production of both 

opera and belting qualities (Estill, 1992). Estill has worked her experimental results into a single 

theory for voice training, called "Voice Craft" which is rooted firmly in the understanding of the 

physiology of vocal production. It relies on the learning of a set of exercises called the "compulsory 

figures for voice". When mastered, these exercises allow singers and speakers control over individual 

parts of their vocal apparatus, overcoming the natural functions of the vocal tract, whilst enabling 

them to create any desired vocal quality effectively and efficiently (Kmucha et al., 1990). 
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4.6 Belting and Opera Quality Comparisons 

This section relates belting to opera in the female singing voice by describing the differences 

between the qualities and then the similarities. 

4.6.1 Differences Between Belting and Opera 

Experimental evidence for the physiological differences existing between belting and opera are 

summarised below: 

1. the activity pattern for extrinsic and intrinsic muscles differs between the two qualities (Estill 

et al., 1983; Estill, 1988). 

2. the levator palatini, the muscle associated with the raising of the palate, is more active in 

belting than opera (Estill et al., 1983), but the genioglossus posterior, the tongue muscle, works 

harder in opera than in belting, possibly to create the "roundness" associated with the opera tone, 

since tongue compression darkens the sound (Estill, 1988). 

3. in opera with "squillo" (the "ringing component"), the pharynx is wide laterally, and wide 

front to back because the tongue is compressed, whilst in belt, the pharynx is constricted (Estill, 

1988; Sundberg, Gramming, & Lovetri, 1993). 

4. in belting the larynx is higher than in opera, resulting in higher first formants (Schutte & 

Miller, 1993). In opera quality with "squillo", the larynx is pulled in two directions - up for the 

twang quality in order to constrict the AES which provides the "ringing" quality, and down, to 

provide the width required for the depth in the quality of opera. It is at a relatively neutral to mid- 

high setting (Estill, 1988). For other schools of opera singing in the middle range, the larynx is 

stabilised in a comfortably low position, resulting in low first formants (Schutte & Miller, 1993). 

Lowering the larynx, as in opera, creates the perception of a fuller and darker sound by creating a 

frequency spectrum with odd partials at higher amplitudes than the even partials and by lowering 

the 2nd formant frequency (Yanagisawa et al., 1990). 

5. the greater effort required to belt reduces the vibrato (Schutte & Miller, 1993). 

6. belting exhibits far more glottal adduction across the range than any other quality, (Estill 1988; 

Sundberg, Gramming, & Lovetri 1993, Schutte & Miller 1993). Glottal adduction can be linked 

to closed quotient measures, described in chapter 3 (Abberton et al., 1989). Estill (1988) suggests 

that different vocal qualities have associated with them characteristic patterns of larynx closed 

quotient across the vocal range. Belting tends to have a consistently high CQ value, whilst for 

female opera quality in the middle register, the value is low for the lowest pitches and increases 

as pitch rises. This is shown in figure 4.14. 
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Figure 4.14. A comparison of the closed 

quotients of opera and belting in a female 

singer. Data points represent the average 

of all tokens recorded for each condition 
(after Estill, 1988). 

7. except for the tongue muscle, muscle activity is higher in belting than for opera in the head, 

neck and torso, and increases with rising pitch, (confirming the observation that belting is a far 

more strenuous quality than opera quality to achieve (Estill, 1988)). One explanation for the 

higher larynx position, the greater adductive effort and the greater subglottal pressure required to 

belting is that it is in order to raise the frequency of the first formant up to the frequency of the 

second harmonic This results in "a loud sound with a bright, somewhat harsh quality that 

conveys the excitement of high tension" (Schutte & Miller, 1993). 

8. belting has been shown to contain high energy in the upper partials above about partial 8; 

much higher than in opera quality, as seen in figure 4.15 (Yanagisawa et al., 1990; Estill, 1988). 
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Figure 4.15. Comparison of average spectra for opera and belting at five frequencies (top 

line) (after Estill, 1988). 

72 



4.6.2 Similarities Between Belting and Opera 

Belting has been shown to share several physiological characteristics with opera with "squillo", 

or "ring" (as heard in the Italian tradition). High intensity vocal production in both belting and opera 

can be achieved with: 

1. the tight constriction of the aryepiglottic sphincter (AES). This results in "twang", which is 

typically heard in the country and western voice (Yanagisawa et al., 1990) and contributes to the 

ringing quality known as the "singer's formant" (Sundberg, 1974) by increasing the amplitude of 

the spectral partials in the region of 3 kHz (Yanagisawa et al., 1989; Yanagisawa et al., 1990). 

Constriction of the AES creates an extra resonator from the rim of the aryepiglottis to the vocal 

folds. The small size of this resonator accounts for the amplitude increase of the partials in the 3 

kHz region (Yanagisawa et al., 1989). The twang sound is most perceptable in an oral twang /i/ 

where the amplitude of adjacent partials from 2-3 kHz is nearly equal. Oral twang is a main 

component of oral belting which exhibits an amplitude plateau of spectral partials from 2 kHz 

upwards to 4 kHz (Yanagisawa et at., 1990); 

2. the avoidance of harmful endolaryngeal constriction, i. e., the constriction of the ventricular 

folds and vocal folds (Kmucha et al., 1990); 

3. the high pressed tense tongue position (which has been shown to not interfere with the vocalis 

muscles, as thought of previously (Estill, 1983); 

4. a raised larynx (for opera with "squillo"); 

5. an increase in supralaryngeal muscle activity with increasing fundamental frequency. 

Geniohyoid muscle activity (the geniohyoid muscle is found under the jaw and inserts into the 

hyoid) is highest at all frequencies for both qualities (Estill, 1983); 

6. good posture (Estill et al., 1983). 

Schutte & Miller (1993) believe that there are performance related reasons why nonclassical 

singing (of which "belt" is a part) differs from classical singing: 

1. the texts of the songs have a more important role in nonclassical music than in classical music. 

Since texts should be understood, vowel modification is minimal; 

2. vocal individuality and naturalness are valued more than in classical singing; 

3. songs maybe adapted to the "strengths and weaknesses of the individual voice and 

temperament" (Schutte & Miller, 1993). 

Figure 4.16 compares the spectra of "classical" and belting on the same note. Their definition of 

belting is quoted below: 

"Belting is a manner of loud singing that is characterized by consistent use of "chest" register 
(>50% closed phase of glottis) in a range in which larynx elevation is necessary to match the 
first formant with the second harmonic on open (high F1) vowels, that is -G4-D5 in female 

voices" (Schutte & Miller, 1993). 
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Figure 4.16. Spectrograms sung in "classical" mode (left) and "belt" mode (right) on the same 

pitch. For the classsical tones, "both F1 and F2 are low and the first harmonic is also prominent". 
The perceptual result is a "round" and "dark" tone. For the belt tones, which Scutte & Miller 

equate with being sung "in "chest" register (> 50% closed phase), F1 and F2 are higher, with F1 

following the second harmonic. Vibrato is diminsihed and higher-frequency component is 

increased. Perceptually this is a loud, bright, "edgy" sound" (after Schutte & Miller, 1993). 

4.6.3 Larynx Height Differences 

Vertical larynx position, called larynx height naturally varies in speech. For example, larynx 

height rises considerably for an exclamation. Varying the larynx height changes the shape and 

length of the vocal tract leading to timbral differences and vowel differences. Therefore varying the 

larynx height would be expected to contribute to the production of different singing qualities. 

Raising the larynx not only shortens the pharynx, but also constricts the lower part of it, by 

causing the tissues of the side and back walls to compact together. This occurs by constricting the 

lower and middle pharyngeal muscles which run from the cricoid and thyroid cartilages and the 

hyoid bone around and upwards to the back wall. Lowering the larynx stretches the pharynx walls 

which widens the pharynx (Sundberg, 1987). 

Larynx height influences the voice source. A raised larynx position has been associated with an 

increase in adduction of the vocal folds perceived as pressed phonation, and a lowered larynx height 

has been perceived as flow phonation which is generally associated with good opera quality 

technique (Sundberg & Askenfelt, 1983). Raising the larynx can also stiffen, stretch and thin the 

folds (Shipp, 1977). All these will affect the voice source (Titze, 1988; Gauffin & Sunberg, 1989). 

Differences in larynx height position will also change vocal tract length, which determines 

formant frequencies (Sundberg & Nordstrom, 1983). The combination of changes in formant 
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frequencies and voice source will change the voice and vowel timbre. If larynx height is raised both 

vowel timbre and voice timbre brightens and if it is lowered timbre darkens (Sundberg & Askenfelt, 

1983). In speech and singing, perceptually the vowel [u: ] produced with a low larynx, is perceptually 

a lot less bright than [i: ] (produced with a high larynx) and [a: ] (Wang, 1985). Larynx height 

appears to be vowel dependent regardless of singing style (Wang, 1983; Pabst & Sundberg, 1992; 

Seidner eta]., 1983). 

Generally, the smaller the vocal tract, the higher the voice tessitura. Tenors have smaller vocal 

tracts than basses and hence have higher formant frequencies. The percentage difference in formant 

frequencies between male and female voices is comparable to those found between tenors and basses 

(Cleveland, 1977), and those between raised and lowered larynx height (Sundberg & Nordstrom, 

1983). Lowering the larynx slightly reduces the distance between the 3rd and 4th formant 

frequencies across vowels. In the study by Sundberg & Nordstrom (1983) the 4th formant frequency 

averaged across vowels reduced by 17 % as opposed to 11 % for the 3rd formant frequency when 

subjects were asked to phonate from a high to low larynx position. 

Different schools of singing advocate different vertical larynx positions for correct qualities. 

There are two strands of thought concerning larynx height and correct singing. The traditionalists 

believe that for good operatic singing the larynx should be anchored at or below the larynx rest 

position throughout the singing range since this contributes to the production of the singer's formant 

and minimises possible variations in vocal quality across pitch due to changing formant frequencies 

(Shipp, 1974; Sundberg, 1974). It also reduces excessive vocal fold adduction. A low larynx height 

changes the formant frequencies of the vowels (Sundberg, 1987). For example, a vowel pronounced 

with a low larynx position becomes similar to the vowel /oe: / (Sundberg and Nordstrom, 1983). 

On the other hand, several recent studies have shown that professional opera singers do not 

necessarily maintain a low larynx height throughout their pitch range, but allow it to rise with pitch 

without causing any harm to the voice and with little disruption to vocal timbre or the intensity of the 

singer's formant (Johansson et at., 1983; Pabst & Sundberg, 1992). This is shown in figure 4.17. 
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Figure 4.17. Vertical larynx position observed in a professional soprano. The bracketed 

symbols refer to speech; the unbracketed to singing (from Sundberg, 1987). 
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Yanagisawa et al. (1989) argue that the ring produced by a lowered larynx, as is the convention 

in operatic singing is harder to achieve since lowering the larynx "masks the tone", making it darker 

and softer. 
Studies on singing styles other than opera quality have also shown that they are also produced 

with a raised larynx. These include belting, discussed above (Estill, 1988; Yanagisawa et al., 1989), 

and a Scandinavian female herding singing style called Kölning which shares the same pitch range 

as sopranos (Johnson et. al., 1983). Strategies are used to minimise the risk of vocal abuse. For 

example, first formant tuning by pitch dependent jaw widening has been observed in Kolning, a 

method shared by operatic sopranos to increase the SPL with the minimum of effort (Sundberg, 

1982). As with operatic singing, Kölning is reported to be efficient for its function, vocal economy 

being the key. Kölning is usually sung in shortish bursts, therefore the very high subglottal pressures 

and elevated larynx position are not a possible vocal abuse problem (Johnson et. al., 1983). 

A study of tenors by Wang (1983) has also shown that Chinese and Western early music is sung 

with an elevated larynx which rises with increasing pitch. This was as part of a study to show that 

bright timbre can be produced in different singing styles with similar spectral features at differing 

larynx heights. 

Chinese and early music styles were compared to Western operatic style. Larynx height remained 

below the larynx rest position and decreased with increasing pitch for the operatic style only. 

Perceptually all styles were considered bright, though the Chinese style was considered to be the 

brightest. For all three singing styles spectral peaks were found in the region between 1.8 kHz and 

3.8 kHz, termed the "Bright Timbre frequency Range", or BFR, (seen in figure 4.18, comparing 

Chinese voice and Western Operatic voice spectra) and the relative amplitudes of these peaks 

increased with increasing fundamental frequency. However, the formant positions for the Western 

operatic voices were lower than the other two styles. 
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Figure 4.18. A spectral comparison of the Chinese singing voice and the Western operatic 

voice (from Wang, 1983). 
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Larynx height tends to rise with increasing phonation frequency in untrained singers. The studies 

above have shown that larynx height measurements are not necessarily a good way of distinguishing 

between trained and untrained voices since trained singers can sing efficiently with an elevated 

larynx, and brightness can be achieved with elevated as well as lowered larynx height (Wang, 1983). 

Since many singers have been shown to sing with an elevated larynx, Wang (1983) concluded that 

singing with an elevated larynx does not necessarily lead to poor vocal health. 

It appears, then, that larynx height does not need to remain independent of pitch in order to 

maintain an efficient and good singing technique. 

4.7 Conclusions 

In summary, singing qualities can incorporate various attributes of spoken qualities; modal 

(chest), breathiness, harshness, and falsetto, though harshness and breathiness are seen to be 

inefficient and potentially dangerous especially when singing. Classical female opera quality arises 

from blending the two (or three) registers within the natural female voice (chest, (middle) and head) 

as one sings up the scale usually in order to derive a homogenous single quality throughout the 

range, though this is not a rule; female belting perceptually incorporates elements of chest quality, 

though it appears that some aspects of mode of production are different. 

The conclusions to the literature review reveal several prominent areas which can be considered 

for investigation using available speech science resources: 

From the acoustic output (microphone output): 

Voice quality - frequency spectrum characteristics and dynamic perturbations 

From the voice source (laryngograph signal): 

Closed quotient; 
Dynamic perturbations of the voice source; 

Larynx height - though standard speech analysis techniques do not tend to use larynx-height 

measurements, it appears to be worthy of study in singing quality discrimination, as shown above. 
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Chapter 5 

Experimental Procedure 

5.1 Introduction 

The applicability of standard speech technology to the study of singing science is the basis of this 

thesis. The experimental techniques described below have been chosen to reflect this. A number of 

the technological tools described previously are incorporated in a computer software package, thus 

reducing the amount of expensive bulky hardware equipment that would otherwise be needed. This 

outcome of these experiments will show how useful these techniques are in determining different 

vocal qualities in female singing. 

5.2 Recording Location 

The recordings were made in a sound proof booth in the Sound Acoustics Laboratory within City 

University's Department of Clinical Communication Studies. The sound booth has "dead acoustics" 

(National Sound Archives, personal communication with Allen Hirson). The dimensions of the booth 

measure 4m * 3m * 3m. The walls comprise of 8 layers of fibre glass sound insulation with an 

innersurface consisting of perforated customised acoustic tiles. The floor is carpeted. Minimum 

sound transmission occurs around the door and through the power points where there are no acoustic 

tiles. The sound booth is raised off the cement floor to minimise vibration transmission. 

5.3 Subjects 

West End musical singers and sopranos were recorded. From this, four sopranos and five West 

End musical singers were chosen. Three of the West End musical singers had been trained in both 

belting and opera qualities. 
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5.4 Equipment and Experimental Method 

A multi-channel recording setup including a cardioid microphone, a Glottal Enterprises MC2-1 

two-channel electroglottograph (described below) and an eight-track Alesis ADAT recorder to 

capture the acoustic output, the averaged Lx data and larynx height data from the voice source, was 

used. The equipment used in the recording procedure is listed below: 

Sennheiser cardioid microphone MKH 40P 48U3 

Beyerdynamic microphone stand 

Microphone Phantom Power 

Shure Prologue 200M microphone mixer to attenuate Lx signal 

Glottal Enterprises MC2-1 tow channel electroglottograph 

Alesis 8-track professional digital audio recorder (ADAT) 

Two B+K Precision 3020 sweep/function generators 

Crrus CRL 252 sound pressure level meter 

Cirrus sound level meter calibrator 

Chromatic pitch pipe 

Glottal Enterprises conductive gel 

Shure SM58 microphone 

ITT instruments OX 7520 metrix oscilloscope 

5.4.1 The Two-Channel Electroglottograph 

This device has several advantages over the standard single-channel laryngograph; for example, 

it has ouptut channels which provide information relating to larynx height, average 

electroglottograph signal (EGG), fundamental frequency, extended low frequency limit signal, 

differentiated EGG, as well as the normal EGG outputs. 

The two-channel electroglottograph can either be operated as a single-channel unit, with a single- 

channel cable, or, as in this experiment, as a two-channel unit using 34mm diameter two-channel 

electrodes. The device has a number of controls. 

The normal outputs: These outputs are called the electroglottograph (EGG) signal, or 

electrolaryngograph (LX) signal. With the electrodes positioned so that the cable is at the bottom, the 

upper pair of electrodes provide outputs from channel A (CH A), whilst the lower pair provide 

outputs from channel B (CH B). 

The average output: This is the average of the normal outputs, calculated by adding the 

waveforms together and then dividing by 2, i. e., (CH A+ CH B) / 2. 

The laryngeal tracking output: This output is a dc voltage signal taken from the laryngeal 

tracking meter on the front of the device. This output records vertical larynx movements. To 
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calibrate correctly vertical larynx movement, it is advised that the electrodes should be placed on the 

larynx such that the meter reads zero when the subject is vocalising continuously after taking a deep 

breath. The location of the vocal folds corresponding to zero on the tracking meter is called the 

"larynx resting position". At this point, the vocal folds are midway between the upper and lower 

pairs of electrodes. With the electrodes in this position, a vertical movement of the larynx will result 

in a positive voltage change, and a lowering of the larynx will result in a negative voltage change. 

The extended LF limit outputs: These outputs are the EGG signals with an increased low 

frequency response. Abductory movements are represented by a positive increase in voltage. 

The DEGG outputs: These signals represent the differentiated EGG signal and track glottal 

opening and closing points. They record the rate of change of the signal up to 3 kHz. 

The FO trigger output: This signal represents vocal fundamental frequency. A positive spike at 

each glottal cycle is recorded, the time between spikes is the period (Tx). This can be converted into 

a fundamental frequency contour (F0=1/ Tx). 

The electroglottograph has no output gain controls and the DAT recorder has no input gain 

controls. The averaged EGG signal was passed through a microphone mixer before being recorded in 

order to optimise the EGG signal amplitude. 

Both the laryngeal tracking signal and the extended LF limit signal are dc voltages. These signals 

were passed into the function generators which converted the dc signals into ac sine wave signals of 

an appropriate frequency such that they could be optimally modulated within the frequency response 

range of the DAT recorder (between 20 Hz and 20 kHz). The carrier frequencies were set to 6 kHz 

for the laryngeal tracking signal and 10 kHz for the extended LF limit signal. For every 1V change 

the function generators frequency modulated the carrier signals by 2 kHz. The recording 

connections are shown in figure 5.1. 
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Figure 5.1. A diagram of the connections between the microphone and electroglottograph output 

channels and the input channels of the 8-track ADAT recorder. 
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5.5 Recording Procedure 

At the start of each recording several procedures were carried out. 

1. the sound level pressure (SPL) meter was set to mid-range, C-weighting and was calibrated 

with a 94 dB 1kHz test tone. 

2. it was then set to max, with a 80-140dB range. 

3. the electrolaryngograph electrodes were cleaned with water and a thin film of conductive gel 

was applied to the electrodes. 

The subject was then asked to carry out some tasks to set up the recording levels, in the order 

outlined below. These were: 

4. to strap on the electrodes and become comfortable with wearing the electrodes. 

5. to find her larynx resting position by monitoring the laryngeal tracking meter whilst also 

producing a maximum amplitude Lx signal, monitored on the oscilloscope. 

6. to stand 10 cm infront of the microphone and sing the loudest pitch she could. All signals were 

then adjusted so that they would not overload the ADAT recorder. The singer was requested to 

keep movement to a minimum and'try and keep the same distance from the microphone during 

recording. 

7. the SPL meter was positioned next to the microphone at arms length. The singer was asked to 

sing a sustained high pitch vowel whilst being recorded by the SPL meter. The maximum 

amplitude reading on the SPL meter was noted. 

The singer was then asked to read a spoken passage then sing through a series of vowel exercises 

at different pitches in opera or belt qualities. 

5.6 Digital Recording 

The recordings were made on Ampex 489 super VHS tape with an Alesis ADAT professional 

eight-track digital audio tape recorder. The data was transferred into a Viglen 486 PC and stored in 

files using The EdDitor and Soundblaster software. 

5.7 The Speech Filing System (SFS) 

The computer software used for manipulating the recorded audio data is the Speech Filing 

System (SFS) (Edgington et. al., 1992). This tool allows convenient storage and handling of an 

original single speech data file which also contains the processing history of any subsequent 

manipulations by adding a header to the original file. A variety of utility programs are present in the 

SFS. The main programs provide spectrographic analysis, formant frequency estimations using LPC 
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analysis, larynx closed quotient analysis, and fundamental frequency estimation. This project does 

not use the spectrographic analysis program and LPC formant frequency estimations provided by 

SFS as these tools are not suitable for singing analysis at present; a stand-alone sound analyzer, the 

AND AD-3523 described in chapter 3 was used to create average spectra of the sung tones. The 

general purpose graphics program allows for SFS data display of files no longer than 2 seconds 

duration. The data files captured from ADAT into the computer are converted into SFS format which 

adds a header and arranges the stereo patterning. 

5.8 Method for Extracting Larynx Height Data 

The Larynx height data (referred to as Lx-height) in the form of a varying voltage was converted 

by a frequency modulator into a frequency varying sine wave on tape. In order to derive a larynx rest 

position (referred to as LRP) the subjects were told to relax, breathe in and on an outbreath phonate a 

sustained schwa vowel with relaxed vocal tract. The electrodes were then positioned so that the LRP 

was lined up as zero on the electroglottograph monitor. The frequency modulator was set to 6 KHz. 

The subjects were required to periodically repeat the larynx rest phonation and to line up the 

electrodes so that the signal on the monitor was zeroed. It was assumed that there would be some 

movement of the electrodes during the course of the experiment, so for comparison, the frequency 

signal which corresponded to the LRP phonation just prior to the above phonations was used and 

averaged. Any deviation in frequency denoted a change in Lx-height from this position, assuming 

that the electrodes did not move. This was captured by SFS and presented as a single frequency 

sampled at 100Hz. It was found that a frame size of lOms duration gave the smoothest results. The 

spoken and sung phonations were compared to the LRP average. 
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Chapter 6 

Results 

6.1 Introduction 

This chapter reports the results of several related investigations. It is divided into a number of 

analysis sections each with results and discussion work, concluding with a section drawing the 

several strands of work together. The analysis results will be presented in this order: 

1. an investigation of CQ patterns between opera and belting qualities; 

2. an investigation of the relationships between CQ, FO, vibrato, and lx-height; 

3. a spectral analysis comparing opera with belt; 

4. an investigation of larynx height with respect to opera and belting qualities. 

The data has been chosen from a group of four opera singers (referred to by their initials AG, SS, 

SW, and TT), and five West End musical singers (MC, KK, CM, VP, and AW), of which three have 

also been operatically trained (MC, CM, AW). 

Each singer was required to speak and then sing a passage of words in belting quality or opera 

quality at different pitches. The passage was "booed, bead, bad, bud, bed, bird, bard, board" repeated 

at the pitches C4, E4, G4, C5, E5, and G5 (comprising aC major arpeggio). The analysis data are all 

extracted from this passage. 

6.2 CQ Differences Between Opera and Belting 

The aim was to investigate whether there is any difference in CQ measures between female opera 

quality and belting quality for a database of singers. The recorded laryngograph data from 4 opera 

singers, 4 West End musical singers, and one West End musical singer who also sings operatically 

was used. The Lx data was extracted from the steady-state portions of three vowels /3: /, a: /, and /i: / 

from the carrier words "bird", "bard" and "bead" at the pitches described above. The data was 

subjected to CQ analysis and statistical analysis using the Wilcoxon rank sum Test. 

6.2.1 Results 

Table 6.1 contains the average CQ values for individual singers and a total average across singers 

for each pitch-vowel token. The subject's initials are followed by either "(o)" denoting that the 
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subject was asked to sing operatically, or "(b)", denoting that the subject was asked to sing in belting 

quality. The sung pitch-vowel tokens are grouped by vowel, and are listed as a rising arpeggio. 

opera quality 

token 
AG(o) SS(o) TT(o) SW(o) CD1(o) group average 

C4r: / 41.02 33.38 51.83 40.65 32.76 39.928 
E4/i: / 24.71 32.69 44.67 40.34 36.83 35.848 
G4/i: / 25.77 24.96 35.16 40.4 40.66 33.39 
C5r: / 21.99 29.89 34.88 40.73 44.57 34.412 
E5/i: / 23.93 27.08 41.69 36.72 42.25 34.334 
G5/i: / 20.47 26.44 46.36 37.47 45.94 35.336 

C4/3: / 33.29 32.01 51.52 34.63 38.24 37.938 
E4/3: / 23.02 29.09 47.79 33.95 29.3 32.63 
G4/3: / 20.68 26.36 29.84 37.26 33.33 29.266 
C5/3: 1 18.75 31.31 29.77 36.23 42.69 31.75 
E5/3: / 22.26 27.48 39.09 35.51 44.26 33.72 
G5/3: / 24.75 30.84 45.21 39.79 44.76 37.07 

C4/a: / 34.82 31.21 47.65 35.01 39.3 37.598 
E4/a: / 23.67 29.49 47.3 35.51 31.68 33.53 
G4/a: / 21.6 25.49 29.73 34.88 34.63 29.266 
C5/a: / 18.31 30.28 30.69 35.17 42.72 31.434 
E5/a: / 21.91 29.03 38.17 32.61 45.57 33.458 
G5/a: / 25.05 30.89 46.79 37.22 44.92 36.974 

belting quality 

token 
CD? (b) DMC(b) KK(b) VP(b) AW(b) group average 

C4/i: / 40.57 52.5 47.92 41.03 42.87 44.978 
E411: t 41.28 55.16 56.7 47.94 36.9 47.596 
G4/i: / 47.07 57.8 63.69 53.64 40.71 52.582 
C5r: / 40.18 59.55 44.92 50.44 46.11 48.24 
E5/i: / 45.07 58.08 63.49 49.91 39.76 51.262 
G5/i: / 45.42 46.07 48.02 46.503 

C4/3: / 43.4 44.96 50.41 40.23 41.61 44.122 
E4/3: / 46.54 51.4 50.72 50.02 37.53 47.242 
G4/3: / 53.8 53.9 63.15 54.39 36.55 52.358 
C5/3: / 41.87 56.73 37.85 50.06 44.33 46.168 
E5/3: / 44.77 59.39 59.65 40.91 47.97 50.538 
G513: 1 40.64 46.2 50.81 45.883 

C4/a: / 46.84 46.54 51.61 42.4 41.04 45.686 
E4/a: / 47.42 54.33 45.27 47.04 34.69 45.75 
G4/a: / 51.67 56,24 60.32 54.44 36.54 51.842 
C5/a: / 44.81 56.62 37.86 55.47 43.72 47.696 
E5/a: / 42.04 59.74 64.51 39.91 45.07 50.254 
G5/a: / 42.66 44.48 48.3 45.146 

Table 6.1. CQ values for sung vowels at different pitches. 

84 



6.2.1.1 Average CQ of Opera Set versus Belting Set 
CQ data from the opera group and belting group were averaged for each pitch-vowel token (final 

column of table 6.1). This is presented in figure 6.1. The most striking feature of this graph is the 

difference in patterns between opera and belting. The opera CQ patterns are lower in value than for 

belting, with a prominent dip then rising upwards as pitch increases. The opera patterns display a 

pivotal dip at G4 and the belting patterns display a dip at C5. 
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Figure 6.1. Average CQ patterns for the opera and belting sets (from final column of table 6.1). 

6.2.1.2 Average CQ Statistics of Opera Set versus Belting Set 
A Wilcoxon rank sum test statistical analysis of the results in figure 6.1 is shown in figure 6.2. Most 

of the results are at or above the 5% significant level, meaning that the vowels requested to be sung in 

belting have a significantly different value of average CQ than for those requested to be sung in opera, 

and the two sets can be described as mutually exclusive for most of the singing range. Vowels at pitch 

G5 were not considered so the sets could have an equal number of samples. 
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Figure 6.2. Statistically significant differences (at 5% level) in CQ between the opera and belting 

sets. The taller the column the more significant the difference is between the two sets. 
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The statistical results show that there is no significant difference for all pitch-vowel tokens at C4, 

and pitch-vowel tokens E4/i: /, E4/a: /, and E5/a: /. However, a number of the pitch-vowel tokens lie on 

the significant threshold. There is a low level of significance for pitch C4. The extremes of the range 

(C4/i: /, plus all vowels at G5 which are not represented in figure 6.2) show no significance. 

6.2.1.3 Individual Average CQ Patterns of Opera Set 
Figure 6.3 charts the CQ patterns for each singer, taken from the results in table 6.1. Differences 

exist between the singers, though each singer's pattern remains relatively consistent across vowels. 

There is a good deal of variablity in CQ patterns across the singers, which is not exhibited in the average 

trends shown in figure 6.1. 
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Figure 6.3. Individual CQ patterns for the opera set. 
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Figure 6.3 shows that there appears to be no consistency in CQ value, CQ pattern or CQ range across 

pitch for each singer, though there is reasonable consistency between vowels. Each singer's average CQ 

pattern can be characterized by its range, its degree in percent, and its pattern. These attributes appear to 

be unique to the individual, in other words, each singer has her own personal CQ pattern, CQ range and 

CQ position. These individual trends do, however, follow a general trend for opera quality, shown in 

figure 6.1. For the opera tokens, all vowels show a general increase in CQ after G4, up through the 

middle register. For the highest pitch G5, the more open vowels /3: / and /a: / have higher CQ values 

than the closed vowel /i: /. 
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6.2.1.4 ý?: ý. _! Belting 
'ire CQ values cov ,a 

large range of nearly 3 %, ex, v. .:. r 
from 34% to 63%, the lowest values 

being mich lower than expected. These resu is are also reffe . ed if one -eliminates the influence of the 

extreme values on the results, by taking the medians for each CQ pattern, as shown i. i figure 6.4. There 

is niter-sl eject consistency even though the range in values appears larger than one wind expect for 

belting. 
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Figure 6.4. CQ medians for the belting sample. 

The CQ patterns can be divided into those thy:: display a CQ dip at C5, and those that rio not. Figure 

6.5 presents those singers whose CQ patterns .: s : liy a CQ dip at C5. The patterns are highly irregular. 
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KK(b) 

-- CM(b) 

VP (b) 

Of the two singers that do not display a dip at C5 in their belting CQ patterns, shown in figure 6.6, 

singer AW's belting pattern more closely resembles the opera pattern displayed in figure 6.1. Of the 

patterns in PM's belting, C5 and E5 have the highest CQ values. 
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Figure 6.6. Belting CQ patterns which do not display a dip at C5. 

6.2.1.5 Comparison of Opera and Belting CQ Patterns of one singer 
Figure 6.7 below shows that the CQ differences in opera and belting for subject CM who is trained 

equally in opera and belting do show a difference in trends similar to the Estill (1988) study. However, 

CM's CQ values are lower in both patterns, the opera pattern has a smaller CQ range, and the belting 

pattern is markedly angular with a prominent peak at G4. 
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Figure 6.7. Comparison of opera and belting CQ patterns of singer CM. 

6.2.2 Discussion 

This section is divided into a seperate discussions of the opera and belting CQ results, followed by a 

general discussion of the two sets. 
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6.2.2.1 Summary of Results 
The analysis so far has resulted in these observations on CQ: 

a) on average, different patterns of CQ exist between opera and belting- 

- belting has generally higher CQ values in the middle pitches (E4-C5) than opera; 

- in opera: pivotal dip in CQ at G4; rise in CQ after G4; 

- in belting: dip in CQ at C5 in some singers; highly erratic CQ pattern (unlike results from Estill's 

study (1988)); 

b) extremes of CQ show little difference (statistically no significant difference); 

c) both opera and belting: not much influence from vowels on CQ (however, spectral analysis needs to 

be done - the singers may have modified the vowel quality). 

d) each singer's CQ set can be characterized by its scalar position, range, and pattern. 

6.2.2.2 Discussion of CQ Results 
These results partly resemble the CQ patterns for opera and belting observed in the single-case study 

by Estill (1988), shown in figure 4.14. She suggests that the differences in trends between the two 

qualities arise from their different production mechanisms. She attributes the consistently higher belting 

values to there being no register differentiation in belting, whereas in opera quality, the low values for 

CQ at around D4 in her study represent the chest-middle register transition for that subject. 

a) discussion of the opera CQ results 
The general trend for the opera CQ results is a dip at 64 followed by a rise (see figure 6.1) which 

conforms to the observations found in the literature. Referring to figure 6.1, the pivotal dip at pitch G4 

exhibited by the opera CQ patterns indicates that at around this pitch, there is a possible register 

transition from chest to middle register, chest register being characterized by higher CQ values than for 

middle register (Sundberg, 1987). This register break is higher here than in Estill (1988). The results 

reported by Howard (1995) supports this theory: 

"A number of [trained] female subjects exhibit turning points in their Qx plots (mean = 
404 Hz, or approximately G#4). This could be indicative of a chest-middle register break 
point. The results were plotted as scattergrams (Qx) of CQ(%) against FO (log Hz). All the 
Qx plots exhibited an overall pattern of variation with an essentially linear variation of CQ 
with log(F0) within two FO sub ranges approximately either side of G4" (Howard, 1995). 

For the opera group, the higher than average CQ values across the vowels at C4 suggest that, on 

average, the opera singers are mainly using their chest register. All of the opera singers are sopranos and 

it is not uncommon to have a chest-middle register break around E4. Extending the middle register 

down below the register break is difficult and results in an unclear tone with a low average CQ value. 

These singers may be predominantly using chest register because at these lowest pitches, the action of 

the set of muscles used in the chest register can be stronger than those used in the middle register. A 

higher CQ value (in the region 35-50%) is usually associated with a good frequency spread of harmonics 

which can be transmitted by the vocal tract, resulting in a strong sound. A low CQ (below about 25%) is 

89 



usually associated with slow vocal fold closure, suggesting that the glottal waveform spectrum could be 

lacking in components in the high frequency range, thus making it potentially more difficult for the 

vocal tract to transmit the higher frequency information required for voice projection at the lowest range. 

Opera singers are, trained to mix registral qualities on and around the register breaks in order to 

achieve a homogeneity of sound. It is likely that these singers are mixing a little middle register quality 

in with the chest sound on pitch C4. 

For the opera tokens, all vowels show a general increase in CQ after G4, up through the middle 

register. For the highest pitch G5, usually sung in the "head" register, the more open vowels /3: / and /a: / 

have higher CQ values than the closed vowel /i: /. One may speculate that the mechanisms used to 

project the sound at high pitches in opera quality favour more open vowels and a rise in CQ. However, 

singers tend to sing louder at high pitches. This may be responsible for the rise in CQ across the opera 

singers' range. More investigation into the effects of loudness on CQ is required. The singers SS and 

AG have opera patterns which do not rise consistently with pitch (accounting partly for the drop in 

average CQ value for vowel /i: / in figure 6.1). It should be noted that not all opera singers exhibit this 

CQ rise with pitch after G4. Singer AG has an average CQ rise at C5 combined with an unusually low 

CQ range. In the authors' opinion, this does not appear to detrimentally affect the quality of the operatic 

tone with rising pitch. 

There remains a good deal of variability in the CQ patterns between subjects, but is relatively 

consistent within singers on different vowels (see figure 6.4). Figure 6.3 highlights the individuality in 

CQ characteristics for each singer. There is greater variability within CQ for opera quality than is 

suggested by the average CQ patterns across singers. Conclusions on CQ and vocal quality should be 

drawn not only from averaged data but also in conjunction with individual singers' CQ patterns. 

b) discussion of the belting CQ results 
A discussion of the results for this particular set of singers is difficult due to the fact that some of the 

singers may not be belting consistently across the pitch range. It is unclear from looking at these CQ 

results in isolation whether these tokens are representitive of belting quality. 

The results discussed below depart from results found in the current literature on belting: 

The dip in CQ at C5 in the belting patterns in figure 6.1 and figure 6.4 indicate that at this pitch 

there appears to be a break in quality for some of the singers. A closer look at table 6.1 will reveal that 

CQ values vary widely within the individual belting sets. These results depart from Estill (1988) and 

Evans & Howard (1993) which have shown that belting values are at a consistently high level across the 

singers' ranges and attribute this to there being a consistently high adductory force on the vocal folds. 

The singers in this study may be taking their chest quality up too high through the middle range (from 

E4 to C5) resulting in a register transition at this pitch. This suggests that the vocal production of these 

singers is not characteristic of belting production. These CQ values must be looked at in conjunction 

with the corresponding acoustic spectrums before any reasonable conclusion can be reached. 

Singer AW's belting pattern (see figure 6.5) does not remotely resemble the model pattern for 

belting, as proposed by Estill (1988), though in the author's opinion, she perceptually sounds like 
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belting. It is possible that a spectral analysis will reveal that this singer is singing in a quality which is 

inbetween opera and belting called "mixed", which has been described in chapter 4. The CQ pattern for 

this singer is closer to that for opera quality, yet the percept is closer to belting. This is evidence that one 

must be aware of classifying vocal qualities based on CQ evidence alone. 

The Estill subject can reach notes in belting quality (G5) in a consistent fashion (in terms of CQ 

values) which the singers in this study fail to reach. Even pitch E5 proves to be difficult. The results in 

table 6.1 suggest that the belting tessituras for most of the belters do not extend up to pitch G5. This is 

confirmed from listening to the samples. The singers appear to be using a vocal quality which has a 

lower CQ value than is normal for belting for the upper extremes of the range, possibly, again, "mixed" 

quality. 

The CQ values for belting are lower than those found in the Estill study. The disparity in results 

between this study and the Estill study (average CQ is around 70%) could be the result of a different 

technique with harder glottal adduction in the case of the Estill subject. If one eliminates the influence of 

the extreme values on the results, by taking the medians for each set, as shown in figure 6.6, there is 

inter-subject consistency even though the range in values appears larger than one would expect for 

belting. This is an indication that along the CQ continuum for belting, different singers may occupy 

their own individual space within a relatively large range (perhaps the upper level being occupied by the 

Estill subject), in much the same way that the opera singers do. In other words, there may be some 

freedom in the degree of glottal adduction required to produce belting. The natural strengths of each 

singer's laryngeal and associated musculature could be the origin of this. Assuming the correct 

production, it is possible that there is an individual lower limit in glottal adduction below which the 

singer's vocal tract may not be able to compensate for the lack of higher frequency energy, and belting 

quality cannot be produced. Conversely, there may be an individual upper limit above which the voice is 

too strained. CQ values above 60 % with no stress on the vocal system may be easily reached in one 

singer (for example, the Estill (1988) subject) but not in another without harm to the voice. This could 

also apply to opera singing, though it has been shown that the stress on the vocal system is somewhat 

less in opera singing than in belting (Estill, 1988). 

The single subject results (see figure 6.7) show a highly erratic belting pattern. At the time of 

recording, CM was singing in a music theatre production which required her to sing in opera quality. It 

is possible that with a singer who is equally trained in different qualities, the quality which is currently 

in use is the strongest quality; rather like a bilingual speaker. It is suggested that CM's belting quality is 

possibly weaker than her opera quality due to her being out of practice with belting. 

Of the five belters, singer MC appears to have the most consistent CQ values across the pitch range. 

c) general discussion 
The non-significance in CQ difference between the opera and belting sets for pitch C4, E4/i: / and 

E4/a: / has been attributed to the use of chest register in the opera voices which has a higher CQ value 

than for middle register. This means that the CQ values for chest quality are very similar to belting 

quality. It has been stated in chapter 4 that belting makes use of elements of chest production. Sound 
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pressure level must be taken into account. It is possible that the belters are in fact chesting C4 and E4 

but with greater loudness due to greater subglottal pressure in combination with a higher adductory force 

(hence a possible higher CQ value), since belting is supposed to be "loud". It is difficult to say whether 

someone is belting or chesting using CQ measurements alone. However, Estill's theory for belting versus 

chesting would be that if there is a break in the CQ pattern for belting, then the production is incorrect. 

Chest versus belting production is an important issue which cannot be easily clarified from looking 

at CQ measurements alone. However, deviations in a CQ pattern across range are good indications that 

some other production mechanism may be in use. Within a single voice, it appears that an anomalous 

CQ value is a good indicator that a register transition may have occurred in the same voice. For 

example, see the opera patterns - there is definitely a difference between chest and "middle", although 

there is no apparent difference between middle and head registers in terms of CQ. It is a continuum, 

possibly reflecting an increase in loudness. CQ in itself does not indicate the amount of stress on the 

larynx, yet a variation of CQ from, say, a professional singer's normal pattern of behaviour for CQ could 

indicate an error in production which could then be further investigated. CQ as a parameter in visual 

feedback displays in singing training is attributed to David Howard and Paul Garner at the University of 

York where CQ feedback systems for vocal training is being developed. 

The results here suggest that within sets, the CQ range is large. This may also be due to the belting 

set including a large portion of non-belted tokens, hence the need for spectral analysis and perceptual 

testing as well. The very definition of belting may be different for different people. 

One explanation for the lack of real belting data (in terms of Estill's work) in these results and would 

account for the lower than expected CQ values, could be that the type of sound required by London 

musicals seems to have moved away from the traditionally American hard belt sound to a softer more 

naturalistic sound which has elements of the belting sound in it (the "mixed" quality). It is possible that 

the absence of twang in (southern) British speakers makes belting harder than for Americans who have 

this natural element in their accents. This study has shown that the concept of belting for most of these 

singers is not as rigid as the author originally thought. The CQ dips in the belting patterns may be a 

result of poor singing technique. If the singers practised this pitch, then the quality may be more 

continuous through the range, and the CQ pattern could be more linear. However, these singers produce 

tones which sound like belting but which may not fit the definitions given in the literature on belting. If 

they can produce a tone which sounds like belting without damaging their vocal instruments, to what 

extent does the production matter? 

CQ as a measure of length of vocal fold closure does not really give any indication as to the true 

source of the production since CQ is one measurement derived from another measurement, Lx. Vocal 

fold closure is determined by a combination of subglottal pressure and glottal adduction through tensing 

muscles in the larynx. The CQ measurement alone cannot provide information on the respective degrees 

of laryngeal tension and subglottal pressure in a vocal production. These are very important factors 

which must be known if vocal production mechanisms are to be understood and especially if CQ is to be 

used as a parameter in vocal training. It is suggested that Lx shape should be looked at closely with its 

corresponding CQ value, since laryngeal tension can be more easily assessed from the shape of the Lx 
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waveform. CQ does appear to suggest general differences in production between different qualities and 

has a role in indicating erroneous vocalisations within a pattern. The most consistent results across 

singers are the CQ patterns in the opera quality, though it has also been pointed out that a CQ pattern 

may be that of one quality yet the percept is of another (in the case of singer AW, the CQ pattern of 

opera, yet the perception of belting). It appears then, that in singing, the CQ measurement alone is not 

an absolute indicator of vocal quality, yet it has a useful role in indicating voice-source differences which 

may then be further looked at. It is suggested that CQ would be of far greater value when studied in 

conjunction with a number of other parameters such as subglottal pressure and the degree of tension in 

the larynx (for example, from the Lx waveform). 

6.3 CQ, FO, Vibrato, and Larynx Height Relationships 

Figure 6.8 shows the relationship between FO, CQ, and Lx-height for each singer singing "bard" on 

pitches E4 and E5. 

6.3.1 Vibrato Differences Between Opera and Belting 

As observed in previous studies (Schutte & Miller, 1993; Estill, 1988) the opera tones are sung with 

vibrato, whilst the belting tones generally have very little vibrato or are sung completely straight. The 

observations above are also apparent in this study. Vibrato rate in opera appears to be quite consistent 

between subjects and across the subjects' ranges, varying between just over 5 Hz to 7 Hz. For example, it 

is observed in figure 6.8, in the FO analysis sections for each utterance, that vibrato rate is between 5 Hz 

to 5.5 Hz for TT(o)E4 (5 Hz) and TT(o)E5 (5.5 Hz); 5.5 Hz for CM(o)E4 and CM(o)E5,6 Hz for 

AG(o)E4 and AG(o)E5, SW(o)E5, and SS(o)E4, and a little more for SS(o)E5 (7 Hz). 

Sundberg (1987) states that most singers find it difficult to change their vibrato rate. It appears that 

for two of these opera singers TT and SS, vibrato rate increases slightly (0.5 Hz) with an octave increase 

in pitch. Whether this slight increase is a function of an increase in loudness remains to be investigated. 

It should be noted that these vibrato rates have only been calculated from the 1-2 second tokens shown in 

figure 6.3. It is also apparent that vibrato frequency modulation differs between each opera singer, with 

singer SS having very little, whilst singer TT has a pronounced modulation in both the E4 and E5 

utterance. It has been suggested that vibrato may be a function of the voice system being under optimum 

stress, and also a function of the system monitoring pitch (Graham Welch, personal correspondence 

1995). 

In the belting tokens, there is little or no vibrato present. Each singer exhibits similar patterns of 

vibrato within their own ranges, though the amount of vibrato varies between singers. For example, 

singers KK and CM sing with almost no vibrato whilst singers MC and AW sing with clear modulating 

vibrato. The vibrato rate is the same (at 6 Hz) for MC who was asked to sing in both belt and opera, and 
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for AW it is 6 Hz for her attempt at belting and nearly 6 Hz for her opera attempt on E5 (her opera 

attempt on E4 appears to be a little wobbly), further adding to Sundberg's argument stating that when 

vibrato is present, it represents a set feature of a singer's vocal mechanism and cannot be changed easily. 

The results here suggest that vibrato rate may be independent of vocal quality. It could also reflect 

what is considered appealing for the Western ear, which, as it happens, corresponds to the rate at which 

vibrato is produced when it develops as a natural consequence of vocal training in Western culture. Of 

the three singers who were asked to sing in both qualities, only singer CM distinguishes between the two 

qualities by singing her belting tones almost straight. A little vibrato is added at the termination of the 

word in belting for singers CM, KK, and VP suggesting that these singers can "switch on" their vibrato 

at will, probably for the sake of adding a little colour and variation to an otherwise flat sounding tone. 

The results here suggest, then, that when asked, opera singers will sing a tone in opera quality which 

has a stable vibrato rate between about 5.5 Hz and 7 Hz, implying that vibrato is an important feature of 

opera quality, but singers who are asked to belt, produce tones which vary between containing no vibrato 

at all, to those which have vibrato at a rate similar to that sung in opera quality, suggesting that vibrato 

is not so important in defining belting, but it's inclusion is more probably left up to interpretation of the 

text and character by the singer. 

6.3.2 Relationship Between CQ and Vibrato 

For TT(o) both tones on E4 and E5 display CQ moving in synchrony with vibrato. The vibrato has a 

large modulation amplitude, as does the CQ line. 

For SW(o) and AG(o) only the tone at pitch E5 shows this CQ-vibrato synchronicity. Both singers' 

E4 tone have less vibrato and very little CQ movement. 

SS(o) has the opposite; CQ-vibrato synchronicity is more evident for the lower note E4, even though 

there is vibrato in the E5 tone. 

It appears, then, that CQ movement can exist as a function of vibrato production, since it can vary in 

synchrony with vibrato, or it can be independently stabilised at a particular value (or, as in singer AW, 

interestingly in both opera and belting qualities at pitch E4, CQ moves out of synchronicity with the 

vibrato towards the end of the utterances, showing that it can do its own thing, too). It seems to depend 

on the individual singers. For those singers displaying CQ-vibrato synchronicity, a possible explanation 

is given below: 

Vibrato involves modulation in frequency below and above a mean. The frequency deviation would 

not be great enough in order to appreciably alter the length of the vocal folds, so an explanation that the 

longitudinal stretching and relaxing of the vocal folds due to the vibrato frequency modulation may alter 

the adductory force (and hence CQ) is not appropriate here, since adduction involves medial 

compression; however, there is also an intensity amplitude modulation due to harmonics moving in and 

out of the formant peak that is in synchrony with the vibrato - see the Lx waveforms for the whole 

utterance. It is possible that the whole larynx mechanism tenses and relaxes with the production of 

vibrato. CQ-vibrato synchronicity is possibly derived from a cyclical mass tensing and relaxing of the 
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vocal mechanism (evident in SPL measurements of the acoustic output and at the larynx level), as 

opposed to some localised phenomenon, and it is possibly dependent on the way the singer produces her 

vibrato. It is doubtful whether CQ modulation of this order can be perceived since it is hard enough 

being able to correctly determine the CQ value for a well-produced tone. What it does show is that 

vibrato production can involve a great deal of the vocal mechanism, if not all of it. 

6.3.3 Relationship Between Vibrato and Lx-Height 

Again, as for the relationship between vibrato and CQ, there appears to be no correlation for half of 

the singers, and correlation for the other half. For most of the tones Lx-height is held constant 

throughout the steady-state portion of the tone. This suggests that Lx-height is not appreciably altered 

during the production of vibrato for these singers. However, there appears to be some movement as 

observed in four singers: CM, SW, AG, and MC at pitch E5, which is in synchrony with the vibrato. 

6.3.3.1 Discussion 
One suggestion for the synchronous movement of Lx-height and vibrato is that vibrato involves 

vertical variation of the larynx, and this can be related to the effects of subglottal pressure upon the 

larynx mass. As shown previously in figure 2.5, subglottal pressure varies in synchrony with 

fundamental frequency at a vibrato rate of 6 Hz (Sundberg, 1987). It seems, then, that not only is the 

vocal tract and larynx involved in the production of vibrato, but that the vibrato subglottal pressure 

variations suggest that the subglottal system, and possibly the diaphragm and/or stomach muscles are 

also utilised. This vibrato variation in subglottal pressure could cause the larynx to move up and down 

with the rise and fall of the pressure upon it, thus accounting for the synchronous movement of the 

larynx with vibrato. 

These measurements are beyond the scope of this thesis, and further work combining subglottal 

pressure, Lx-height movement, vibrato and other features is needed. It is also not possible from these 

results alone to assess whether vibrato is produced intentionally or unintentionally, other than by asking 

the singer. It is also not possible to address what the exact causes of CQ, FO, and Lx-height movement 

really are, and the causal relationships between them (for example, which parameters are direct 

functions of others, which are determinants, and which are secondary observations). 

The observation of the larynx moving up and down in synchrony with vibrato implies that certain 

muscles belonging to the hyoid complex must be relaxing also. One can speculate that these will be the 

ones connecting the thyroid, such as the stylopharyngeus muscle, the palatopharyngeus muscle, and the 

sternothryoid (muscles 13,15, and 17 respectively on figure 2.9) (Graham Welch, personal 

correspondence, 1995). 
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6.4 Spectral Comparison of Opera and Belting 

The average spectra of the three vowels /i: /, /3: /, and /a: / extracted from the words bead, bird, and 

bard were obtained from the sung exercises from the sample of nine singers. 

The average spectra for the vowel /3: / (pronounced "it") was chosen as the analysis data. This is a 

middle vowel where formant positions should in theory be reasonably equally spaced for the spoken 

voice. This should help facilitate discrimination of formant positions for singing voice qualities. The 

average spectra results for the spoken vowel are shown in figure 6.4. 

There are two ways of analyzing the data. One can look for relationships and patterns within each 

subject (inter-subject) or between subjects (extra-subject). Inter-subject analysis can show individual 

acoustic cues and pitch varying acoustic changes whilst extra-subject analysis allows comparison of 

these cues for acoustic modelling purposes. 

6.4.1 Comparison of Spoken Vowels 
It is useful to first look at a spectrum analysis of the spoken vowels, shown in figure 6.9. The lower 

formant locations for the vowel /3: / are clearly visible on the average spectra. They are roughly 

equidistant for each singer with the CQ values, listed in table 6.2, falling between about 30 -36%, lower 

than is expected for chest voice quality. Most of the singers are soft spoken with a breathy voice quality. 

This would account for the generally low CQ values shown below. 

/3: / /a: / /i:! 
AG 31.96 30.71 35.57 

SS 34.35 36.68 31.01 

TT 36.27 37.33 36.51 

SW 32.52 33.26 36.33 

CM 33.80 33.52 35.57 

MC 32.91 35.15 41.26 

KK 35.53 37.38 37.14 

VP 29.92 26.72 29.38 

AW 32.62 32.29 35.77 

Table 6.2. Average CQ results for spoken /3: /, /a: /, and /i: / for each singer. 
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6.4.2 Analysis of the Opera G4/3: / Spectra 

The spectra for the opera vowels (AG(o), SS(o), TT(o), SW(o), and CM(o)) from figure 6.10 share 

several characteristics: 

1. the first 3 partials have the highest amplitude (excluding CM(o)); 

2. the first 2 partials are separated by at most 3 dB; 

3. a characteristic pattern emerges - high energy for the first 3 or 4 partials with a dip in energy at 

about 2 kHz and a hump shaped amplitude curve from 2.5 kHz to about 4.5 kHz. The apex of this 

hump is at about 3 kHz, corresponding to the spoken 3rd formant position, and is around 12 dB on 

average lower than the highest partial, which compares to 21 dB lower for the spoken vowel; an 

increase in gain of 9 dB at about 3 kHz over the spoken vowel. 

It is suggested that the first and second formants are shifted down in frequency from that of the 

spoken vowel, thus accounting for the high energy peak in the lower partials, whilst the third and 

fourth formants are grouped together, to give the energy hump peaking at around 3 kHz. 

4. there is little energy above 4.5 kHz to 5 kHz. Although energy does show up in the spectrums 

above 6 kHz, rules governing masking suggest that it is not perceived. 

6.4.3 Analysis of the Belted G4/3: / Spectra 

The spectra for the first 4 belted vowels from figure 6.10 share several characteristics. However, the 

differences between these spectra and AW(b) suggest that AW(b) is not indicative of a belted tone, 

though perceptually it is similar. It is possible that this tone is produced with a "mixed" quality which 

sounds like belting. 

For the first 4 belted vowels (CM(b), MC(b), KK(b), VP(b)) : 
1. the Ist partial is much lower in amplitude than the 2nd partial (as observed by Miller & Schutte, 

1993) 

2. there is less amplitude decrease at 2 kHz compared with the spoken vowel, the high energy level is 

maintained; 

3. there is more energy in the higher partials - extending upwards of 4.5 kHz for MC(b), and KK(b). 

4. the average amplitude of the highest partial in the region of 3 kHz is only 7 dB lower than that of 

the highest partial overall (the 2nd partial) apart from in KK(b) where the highest partial is the one 

at about 3 kHz. 

6.4.4 Analysis of the Opera E5/3: / Spectra 

The spectra for the opera vowels (AG(o), SS(o), TT(o), SW(o), and CM(o)) from figure 6.11 share 

several characteristics: 

1. there is little spectral energy above 4 kHz, that is, above the 6th partial (similar to the opera G4 

tokens); 

2. the fundamental has the highest energy (apart from AG(o)); 
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3. there are similarities between the spectral envelopes. CM(o), TT(o) and SW(o) have very similar 

spectral envelopes; a peak at the fundamental with energy decreasing down to the 4th partial then a 

slight rise, the fundamental dominating the spectra, whilst AG(o) and SS(o) have the Ist and 2nd 

partials sharing dominance with a large drop in energy in the 3rd partial. 

6.4.5 Analysis of the Belted E5/3: / Spectra 
From figure 6.11, VP(b) appears not to be a belted tone- the fundamental has spectral dominance 

and there is minimal energy above 5 kHz - this could be a "mixed" quality tone. CM(b) is also probably 

from a "mixed" production; even though high energy is maintained up to 2 kHz, it does not extend 

further than this. 

MC(b), KK(b), and A\'V(b) share several characteristics - spectral energy above 5 kHz (extending 

upwards of partial 8), and a quite consistent spread of energy in the first 7 partials, with the fundamental 

having less or equal dominance as the 2nd partial. 

6.4.6 Discussion 
In opera quality, spectral dominance appears to be concentrated in two areas; the highest energy peak 

is in the lowest partial or partials below about 1.2 kHz, and there is a lower energy hump between about 

2.8 kHz and 4 kHz. 

In belting, spectral dominance is concentrated especially in the 2nd partial and across a wide 

frequency range extending from the 2nd partial upwards, and there is little spectral tilt in the 3-4.5 kHz 

region. 

There is a little more variation in spectral patterning for belting - possibly this is because opera 

quality is a very specifically defined quality in terms of pedagogy and tradition - whereas for belt, there 

is not such a firm tradition, and singers are possibly allowed to incorporate a little of their naturalness in 

the belting sound (also suggested by Miller and Schutte, 1993)- in other words, belting may be a little 

more loosely defined, with there being more room for manoeuvre within the quality, though the high 

level of energy within the region 2 kHz to 4.5 kHz must be maintained, and also the frequency of the 

first formant must be raised to boost the energy of 2nd partial ( Estill, 1988; Schutte & Miller, 1993). 
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Figure 6.10. Average spectra for sung G413: / tokens. 
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Figure 6.11. Average spectra for sung E5/3: / tokens. 
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6.5 Larynx Height Differences Between Opera and Belting 

Larynx height data (referred to as Lx-height) was extracted from a sample of singers comprising of 

four vocalisations on the word "bard". These were at larynx resting position (LRP), spoken, and sung at 

pitches E4 qualities. The method for extracting the Lx-height data is described in chapter 4. 

Figure 6.12 presents Ix-height data for all the singers. The x-axis of each graph represents the 

average of the LRP. The two graphs and E5 in either belting or opera representing the opera singers 

SW(o) and AG(o) share several features; the spoken phonation has the highest Lx-height, at roughly the 

same distance above the singers' LRPs. The E4 phonation is produced with the larynx just a little above 

the LRP. This suggests that the singers are stabilising their larynx across the pitch range at a suitably 

comfortable height. 

The graph for the KK(b) shows the opposite; all Lx-height positions lie above the LRP. Here the 

spoken phonation is the lowest of the three phonations, with the E5 phonation lying highest, and 

occupying a position which is comparable to the spoken phonations of the opera singers. The E4 

phonation lies in between the spoken and the sung E5 phonations. 

The data for the belters shows that all phonations are produced above the LRP, regardless of whether 

they are true belt quality sounds (some of the E5 phonations are not belted). 

The data for the opera singers is more varied in general, the spoken word is produced with the 

highest larynx position, with the E4 phonation lying beneath this, but not necessarily below the LRP. 

The E5 phonation always lies below the LRP. Only in the case of one singer SS does the larynx appear 

to be anchored down appreciably; even so the E4 phonation has a higher larynx position than at E5. 

Of the data for the singers who were asked to sing both operatically and also belt, singer MC shows 

an interesting feature. All phonations are produced above the LRP, and, as expected, the E5(b) 

phonation is sung with the highest larynx position (it is also quite unstable). However, lying just below it 

is the E5(o) phonation. All MC's phonations, whether it be opera or belting are produced with an 

elevated larynx. At the time of recording she had been singing in a West End show requiring her to belt. 

Possibly she was applying some physiological aspects associated with belting to her opera singing since 

that was what she was used to at the time. This is in contrast to singer CM, who had just finished 

singing an operatic part in a West End musical show. Her operatic phonations are at LRP whilst her 

E4(b) phonation is roughly at spoken level and her E5(b) phonation is much more elevated. Singer AW, 

who was also asked to sing in belting and opera, shows another different feature in her attempt at 

belting. Both her E4(b) and E5(b) phonations do not rise above her spoken level, suggesting that she is 

not belting at the higher pitch. This together, with a low CQ for this phonation, and an uncharacteristic 

spectum for the vowel /3: / (which is taken from the previous word in the exercise) provide good 

evidence for a production which is neither operatic, nor belt. It is most likely to be "mixed" which is 

described below. 
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musical singers comparing the spoken word "bard" with the sung word on pitches E4 and E5. 
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Figure 6.13. Average spectral comparison of vowel-pitch token (belt G4/3: /) from exercises with 

similar from a song passage (belt G4sharp /a: /) in same singer. 

Figure 6.13 presents a spectral comparison of a singer's sung tone from the exercises with a similar 

sung tone from a song passage. It shows that the spectral envelope is similar in both cases, and so it may 

be assumed that the tones extracted form the exercises are a reasonable reflection of the singer's vocal 

quality when performing a song. 

6.6 Mixed Quality 

The singing quality known as "mixed" ( also known as "legit") which is an "intermediate" vocal 

quality between opera and belting and is perceptually similar to belting in the higher range is in vogue 

with music-theatre critics and trainers since it reduces the amount of strain on the larynx which can 

occur from trying to belt. Sundberg, Gramming, & Lovetri (1993) have carried out a single-case study 

on a professionally trained singer (the co-author, JL) who exhibited three differing vocal qualities; 

opera, belting, and "mixed". The results show that the three qualities can be defined by differences 

arising from the relative amplitudes of the spectrum partials, subglottal pressure, and formant frequency 

locations. 

Differences existed between the relative amplitudes of the two lowest spectrum partials, and between 

those in the upper part of the spectrum. It was shown that in operatic quality the fundamental was strong 

whilst in belting it was so weak that it was almost missing. In the singer's formant region for opera and 

mixed qualities the partials were lower in frequency and had a much greater amplitudes than for belting. 

For a phrase sung in each quality, the SPL of opera and mixed were similar, but for belting was 10 

dB louder. This reflected the finding that subglottal pressure was lower for opera and mixed than for 

belt. The findings seemed to follow a relationship between SPL and subglottal pressure, where SPL was 

"a linear function of the log of the subglottal pressure". 
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The three singing qualities also showed differences in formant frequency locations. The first two 

formant frequencies were much lower in opera than in mixed or belt, and the second formant frequency 

was the highest in mixed. 

Schufte & Miller (1993) provide an acoustic explanation for why "mixed" quality (what they call 

"legit") is potentially safer than belt. They state that 

"for open vowels the first formants rise higher than in speech in the middle range to keep Fl in the vicinity 

of the second harmonic. If vocal-fold function is allowed to relax into a "falsetto" adjustment, Fl can stay 

below, but close to the second partial, permitting a high but non-extreme larynx position. This is the basis 

of the so-called "legit" Broadway voice: a pretty, but nonetheless "open" sound in the middle range with 

text articulation seemingly not far removed from that of speech" (Schutte & Miller, 1993). 

Larynxes appear to move considerably more from the LRP in belting quality than in opera quality. 

For the belting group, for E4 phonations which are similar in Lx-height to the spoken phonations, it is 

suggested that these singers may not be belting fully, and are more probably using a quality closer to 

speech quality, possibly because it may be physiologically harder belting at this pitch. 

6.8 Conclusions 

It has been shown that standard (two-channel) speech technology techniques do provide some 

useful modelling cues for different singing qualities, such as vibrato rate, spectral differences, and 

closed quotient differences, though the addition of the larynx height parameter adds a significant 

contribution to defining a singer's voice production. It is suggested, then, that two-channel speech 

technology is adequate for describing a singer's vocal quality (in terms of the acoustical features of 

the vocal output) but falls short of adequately defining its production. 
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Chapter 7 

Synthesis and Perception 

7.1 Introduction 

To test the robustness of acoustic models derived from analysis, sounds are synthesized using 

parameters obtained as a result of analysis, and then the results are evaluated perceptually. The 

investigation here is whether the analysis adequately distinguishes between two different vocal qualities. 

If the correct acoustic features used to describe each quality have been correctly identified, and have 

been synthesized faithfully, there should be a perceptual difference which should be measurable. A large 

number of control parameters are required to optimally resynthesize a speech signal. A consideration of 

the constraints of articulatory and aerodynamic systems upon the sound, and the timing of such 

processes as observed in human speech is of critical importance in determining the optimal design, 

usage and control rate of the parameters in the synthesis system. A description of the perceptual tests 

will follow descriptions of synthesis systems and perception. 

7.2 Speech Synthesis 

Two main methods are used to derive the parameters needed to drive speech synthesizers; synthesis 

by rule and synthesis by analysis. Synthesis by rule attempts to generate intelligible speech either by 

joining phonemes together using grammatical rules, or by analysing text to derive the input parameters 

for a synthesizer. Natural sounding synthesis is difficult to achieve using this technique since in English, 

the context in which a phoneme occurs can change the sound of the phoneme (Allen et al., 1987). 

However, complex programs do exist in order to generate the effects of context and co-articulation 

resulting in allophonic variation. The rest of this section describes synthesis by analysis since this is the 

chosen method of synthesis for this research. 

7.2.1 Speech Synthesis By Analysis 

Speech synthesis by analysis attempts to simulate the perceptual qualities of the original speech. It 

can be categorised into articulatory synthesis and spectral synthesis. Articulatory synthesis attempts to 
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simulate the movement of the vocal tract (Scully & Allwood, 1983), whilst spectral synthesis attempts to 

simulate the speech signal. Direct analysis of the speech signal is easier to achieve than modelling the 

vocal tract. 

7.2.2 Formant Synthesis 

Spectral synthesis is based on the source-filter theory of speech production which states that a quasi- 

periodic source or noise source can be used to drive a separate filter which imposes resonance responses 

on the source signal. Two main techniques are used; formant synthesis (Klatt, 1980; Klatt & Klatt, 

1990), and diphone concatenation (O'Shaughnessy et al., 1988) which is based on linear prediction 

coding (LPC) (Atal & Hanauer, 1971). 

Formani synthesis reconstructs the vocal tract transfer function by simulating the formant 

characteristics of the vocal tract. This is achieved by connecting a set of resonators (each resonator 

representing a formant) and anti-resonators (for nasals, fricatives, and plosives) together. These are then 

excited by a controlled excitation source (Fant, 1960). The excitation source simulates a voiced sound 

source or an unvoiced source, which is modified by resonators and anti-resonators resulting in a 

specified speech spectrum. "The advantage of this technique is that its parameters are highly correlated 

with the production and propagation of sound in the oral tract" (Styger & Keller, 1994). 

The formant resonators act as band-pass filters (or pole filters) with resonance frequency and 

bandwidth control. The anti-resonators have the inverse characteristics; they act as band-stop filters (or 

zero filters). For speech, generally the first five or six formants are specified. 

Typically two configurations of resonators are used in formant synthesis; parallel and cascade, shown 

schematically in figure 7.1. In the parallel configuration, each resonator is excited at the same time and 

has its own peak amplitude control. The parallel design successively adds the transfer functions of the 

individual resonators. In the cascade configuration, the resonators are connected in series which 

successively multiplies the transfer functions. 

The parallel formant synthesizer (Holmes, 1983) attempts to model the acoustic signal directly from 

its spectral waveform offering a closer approximation to the real speech signal, than is possible for the 

cascade synthesizer. Its design is more suited to modelling consonants than vowels since it does not 

attempt to model vocal tract behaviour. Holmes (1983) states, that for [parallel] formant synthesizers, 

".. it is assumed... that the aim is to approximate as closely as possible to those features of speech 
signals that are perceptually significant, with no intrinsic importance being attached to the 
relationship with the human speech production mechanism. It seems to be generally accepted that 
to achieve this aim it is sufficient to reproduce the short-term spectrum of the speech, defined 

with a frequency and time resolution similar to that of the human auditory system" (Holmes, 
1983). 
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Figure 7.1. Digital resonators can be configured in cascade with the output of one acting as input to 

the next (top), or in parallel, in which case each receives the same source input, whose gain is 

determined by an independent amplitude control, and outputs are summed algebraically (bottom) 

(from K1att, 1988). 

The cascade (series) formant synthesizer does attempt to model the modifications to the voice source 

signal as it moves through the vocal tract in order to derive the acoustic waveform by adding "the effect 

of each higher resonance to the final output, and thus produces a direct replica of the total formant 

energy distribution, which corresponds quite well to the natural resonance mode of the vocal tract. This 

approach constitutes a fairly faithful imitation of vocal tract behaviour, and as a result, serial 

synthesizers are particularly good for synthesizing vowel sounds. " (Styger & Keller, 1994). It is simple, 

having only frequency control and bandwidth control of the resonators, the amplitude being implicitly 

controlled by the all-pole transfer-function of the vocal tract with no nasal coupling. It models 

appropriately open non-nasal vowel sounds. 

7.2.2.1 Vocal Tract Modelling for Formant Synthesizers 
Both cascade and parallel designs have advantages and drawbacks. An all-cascade formant 

synthesizer is better designed to produce non-nasalized vowels than a parallel formant synthesizer, but 

this is counteracted by the need to use extra control information for consonant production or 

nasalization, and the difficulty in ensuring correct formant amplitudes (Holmes, 1983). In the case of the 

parallel formant synthesizer, it has the advantage of being able to effectively model all speech sounds, 

but requires a more complex implementation in its design for synthesizing vowels. The KLSYN88 (Klatt 

& Klatt, 1990) is a software based cascade/parallel synthesizer which draws upon the best features from 

both designs, and is the principle craft for this research. 
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7.2.3 The KLSYN88 Synthesizer 

The information extracted from the analysis procedures outlined in the previous chapter is used as 

control data to drive a voice synthesizer. Synthesis has been implemented on the KLSYN88 synthesizer 

(Klatt & Klatt, 1990) modified for PC. 

The Klatt synthesizer "KLSYN88" is a greatly improved version of the original KLSYN80 synthesizer 

(Klatt, 1980). The KLSYN88 has better modelling of female and children speakers with improved voice 

source and interactions between source and vocal tract (Klatt & Klatt, 1990). 

The KLSYN88 models the vocal tract by having two sound sources with the same resonator 

specifications; one models the larynx and drives the cascade branch, and the other models the points of 

constriction within the supralaryngeal vocal tract and essentially drives the parallel branch. They can 

operate separately or together as in real speech. Each resonator is duplicated in both branches so 

resonance continuity during transitions between consonants and vowels can be maintained. The cascade 

branch only results in good non-nasalized vowels and aspirants. The parallel branch is used mainly to 

produce fricatives. Together, nasals and voiced sounds can be produced. 

The KLSYN88 is controlled by 60 parameters. These are listed in figure 7.2 which represents the 

ASCII output file produced by the synthesizer for the default setting. The first 12 control parameters are 

constants. The other 48 control parameters are time variable, usually in 10 ms frames. Each control 

parameter is listed with its own symbolised name, a minimum value, a default value, a maximum value, 

and a description of its function. 

7.2.3.1 Voicing Source Models 
The constant parameter SS, "source switch" can select one of three voicing source waveforms; an 

impulse source model, an LF voicing model, and a KLGLOT88 voicing model which is the default 

model and is used in this research. This is described below: All three sources are controlled by three 

basic parameters: 

1. fundamental frequency (F0). Parameter FO specifies, in tenths of Hz for increased accuracy, the 

rate at which the vocal folds vibrate; 

2. amplitude of voicing (AV). AV simulates the amplitude of the voicing source which is specified in 

dB; 

3. spectral tilt (TL). TL controls a low-pass filter used to spectrally tilt the voice source. It offers an 

extra spectral attenuation at 3 kHz. The outputs from all the sources pass through this filter. 
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SIM MIN VAL MAX DESCRIPTION 
DU 30 500 5000 Duration of the utterance, in msec 
UI 15 20 Update interval for parameter reset, in msec 

3. SR 5000 10000 20000 
4. NF 1 5 6 
5. SS 1 2 3 
6. RS 
7. SB 
8. CP 
9. OS 

10. GV 
11. GH 
12. GF 

1 8 8191 
0 1 1 
0 0 1 
0 0 20 
0 60 80 
0 60 80 
0 60 80 

Output sampling rate, in samples/sec 
Number of formants in cascade branch 
Source switch (1=impulse, 2=natural, 3=LF model) 
i. andom seed (initial value of random number generator) 
Same noise burst, reset A. S if AF=O and AH=O (0=no, l=yes) 

0 implies Cascade, 1 implies parallel tract excitation by AN' 

Output selector (0=normal, l=voicing source,... ) 

Overall gain scale factor for AV, in dB 
Overall gain scale factor for AH, in dB 
Overall gain scale factor for AF, in dB 

13. F0 0 1000 5000 Fundamental frequency, in tenths of a Hz 
- 14. AV 0 60 8 0 Amplitude of voicing, in dB 

15. OQ 10 50 9 9 Open quotient (voicing open-time/period), in 
16. SQ 100 200 500 Speed quotient (rise/fall time of open period. LF model), in i 
17. TL 00 4 1 Extra tilt of voicing spectrum, dB down 03 kHz 
18. FL 00 100 Flutter (random fluct in f0) in % of maximum 
19. DI 00 100 Diplophonza (pairs of periods migrate together), in % of max 
20. AH 00 80 Amplitude of aspiration. in dB 
21. AF 00 80 Amplitude of frication, in dB 
22. F1 180 500 1300 Frequency of the Ist formant. in Hz 
23. B1 30 60 1000 Bandwidth of the Ist form. ant, in Hz 
24. DFI 00 100 Change in FI during open portion of a period, in Hz 
25. DB1 00 
26 F2 550 1500 

400 Change in B1 during open portion of a period, in Hz 
F . 3000 requency of the 2nd formant. in Hz 

27. B2 40 90 1000 Bandwidth of the 2nd formant. in Hz 
28. F3 1200 2500 4800 Frequency of the 3rd formant. in Hz 
29. B3 60 150 1000 Bandwidth of the 3rd formant, in Hz 
30. F4 2400 3250 4990 Frequency of the 4th formant. in Hz 
31. B4 100 200 1000 Bandwidth of the 4th formant. in Hz 
32 F5 3000 3700 4990 Frequency of the 5th formant. in Hz 
33. B5 100 200 1500 Bandwidth othe 5th formant. in Hz ' 34. F6 3000 4990 4990 Frequency of -. he 6th formant. in Hz (frication or if NF=6) ( 
35. B6 100 500 4000 only applies if NF=6) Bandwidth of the 6th formant in Hz 
36. F\P 180 280 500 Frequency of the nasal pole, in Hz 
37. BNP 40 90 1000 Bandw-id. h of the nasal pole. in Hz 
38. FILZ 180 280 800 Frequency of the nasal zero. in Hz 
39. BNZ 40 90 1000 Bandwidth of the nasal zero. in Hz 
40. FTP 300 2150 3000 Frequency- of the tracheal pole. in Hz 
41. BTP 40 180 1000 Bandwidth of the tracheal pole. in Hz 
42. FTZ 300 2150 3000 Frequency of the tracheal zero, in Hz 
43. BTZ 40 180 2000 Bandwidth of the tracheal zero. in Hz 
44. A2F 00 80 Amplitude of frication-excited parallel 2nd formant, in dB 
45. A3F 00 80 Amplitude of frication-excited parallel 3rd fortnant, in dB 
46. A4F 00 80 Amplitude of frication-excited parallel 4th forinant, in dB 
47. A5F 00 80 Amplitude of frication -excited parallel 5th formant, in dB 
48. A6F 00 80 Amplitude of frication-excited parallel 6th forrnant, in dB 
49. AB 00 80 Amplitude of frication-excited parallel bypass path, in dB 
50. B2F 40 250 1000 Bandwidth of frication -excited parallel 2nd formant, in Hz 
51. B3F 60 320 1000 Bandwidth of frication-excited parallel 3rd formant, in Hz 
52. B4F 100 350 1000 Bandwidth of frication-excited parallel 4th formant, in Hz 
53. B5F 100 500 1500 Bandwidth of frication-excited parallel 5th formant, in Hz 
54. B6F 100 1500 4000 Bandwidth of &ication-excited parallel 6th formant, in Hz 

55. ANV 00 80 Amplitude of voicing-excited parallel nasal forrnant, in dB 
56. Al\' 0 60 80 Amplitude of voicing-excited parallel ist formant, in dB 
57. A2V 0 60 80 Amplitude of voicing-excited parallel 2nd formant, in dB 
58. A3V 0 60 80 Amplitude of voicing-excited parallel 3rd formant, in dB 
59. A4V 0 60 80 Amplitude of voicing-excited parallel 4th formant, in dB 
60. ATV 00 80 Amplitude of voicing-excited parallel tracheal fotmant, in dB 

Figure 7.2. The parameter listing for the KLSYN88 Synthesizer (Klatt, 1988). 
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The voicing source 2 model is the default source KLGLOTT88, which approximates a natural 

waveform. It is the voicing source used in the present synthesis. The characteristics of this source are 

controlled by a further 4 parameters in addition to FO, AV, and TL: 

1. varying the "open quotient", OQ variable changes the relative amplitude of FO and hence the 

spectral tilt of the waveform. It simulates the acoustic effects of varying the degree of adduction of 

the vocal folds prior to the onset of phonation. OQ is defined as the percentage open period of vocal 

fold vibration at a specified fundamental frequency. 

The vocal fold behaviour that is being modelled (i. e. the degree of glottal opening) directly 

determines the spectral characteristics of the voicing source (Klatt & Klatt, 1990). In synthesis, a 

breathy phonation would require a high OQ (high relative FO amplitude with steep spectral tilt) 

whilst a more pressed phonation should have a low OQ (lower relative FO amplitude with shallow 

spectral slope). OQ works in conjunction with the parameter AH. 

2. AH controls the amplitude of aspiration. Aspiration is the noise resulting from a constriction at the 

level of the vocal folds when they are close but not in contact. Aspiration is an important component 

of breathy phonation. 

3. the parameter FL, "flutter" simulates the slow drift of the fundamental frequency found in natural 

speech. It adds a quasi-random element to each FO value which is the sum of three slowly changing 

sine-waves, as opposed to the random component found in jitter. 

4. the parameter DI, "diplophonia" increases/decreases alternate FO pulses. A delayed pulse is 

attenuated in amplitude. 

The excitation pulse spectrum can be varied in a more realistic way due to the inclusion of additional 

controls. Both the flutter and diplophonia parameters introduce irregularities into the fundamental 

period cycle contributing to more natural voicing (Klatt, 1988). 

The 3rd voicing source is based on a modified Liljencrants-Fant (LF) model (Fant, 1986). It is 

similar to the natural waveform described above, and is controlled by the same variables; FO, OQ, AV, 

and TL. However, it uses an additional variable, SQ, "speed quotient" which is the ratio of the duration 

of glottal opening to closing. The glottal pulse shape is significantly changed at voicing onset and offset, 

and at vowel-consonant boundaries due to changes in rate of glottal opening and closing (Gobi, 1988). 

The default source has been used in this synthesis to synthesize the steady-state portion of vowels. 

7.2.3.2 Vocal Tract Models 
As mentioned above, the synthesizer can be configured to model the resonances of the vocal tract 

which arise from either a laryngeal source waveform, using the cascade branch, or from frication noise, 

that is, constriction above the larynx using the parallel branch. The parallel branch can also be used with 

a laryngeal source waveform for synthesis of some rare pathological types. 
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Cascade Vocal Tract 
The Cascade vocal tract model can produce vowels, liquids and glides using a series of six 

controllable resonators. Each resonator is controlled by a centre frequency variable and a bandwidth. 

Varying these two parameters changes the relative amplitudes of the formants and their frequency 

position for non-nasal sounds. These resonators in cascade approximate the vocal tract transfer function 

for a decoupled vocal tract, which behaves as an all-pole filter, enhancing those partials corresponding 

to the transfer function of that particular vocal tract configuration. Consequently, the vocal tract for 

nonnasalized vowels can be modelled with a set of poles. Spectral peaks in the transfer function 

correspond to the position of the poles. 

However, if the nasal cavities are coupled to the vocal tract, extra damping occurs due to the anti- 

resonating properties of the nasal cavities. This introduces zeros or troughs into the transfer function, 

corresponding to dips in the frequency spectrum. Nasalized sounds therefore contain both poles and 

zeros in their transfer functions. Zeros also occur in fricatives and stops (Styger & Keller, 1994), and 

when tracheal coupling is present (Klatt & Klatt, 1990). 

In the Klatt synthesizer, to account for this, the cascade model has an additional two pairs of 

resonators to the six controllable ones. The nasal resonator and anti-nasal resonator form the nasal pole- 

zero pair and are activated to simulate nasals and nasalization. An additional tracheal pole-zero pair can 

also be used to mimic tracheal coupling which can occur in breathy vowels when the glottal opening is 

sufficiently large. For non-nasal sounds, the anti-nasal resonator is the exact mirror image of the nasal 

resonator, and they cancel each other out. If the tracheal pole-zero pair also cancel eachother out, the 

vocal tract model can be said to have an all-pole transfer function. 

The source-tract filter theory assumes that the voice source and the vocal tract are independent of 

eachother. However, under a number of conditions there exists a non-linear coupling between the voice 

source and the first few formants of the vocal tract modes (Fant, 1986; Stevens & Bickley, 1986). This is 

due to the time-varying impedance of the vocal folds with glottal opening which interact with the vocal 

tract impedances, and various irregular perturbations and constrictions of the vocal folds caused by vocal 

tract standing-wave pressure changes. The increased glottal impedance when the glottis is open 

introduces low-frequency zeros into the vocal tract transfer function due to tracheal coupling. Glottal 

opening also has the effect of increasing the first formant frequency and changing its bandwidth. These 

are modelled in the KLSYN88 synthesizer. 

Parallel Vocal Tract 
This branch has 5 resonators and, for bilabials and labiodentals, there is a by-pass path since there 

are no formants above the point of constriction. A block diagram of the KLSYN88 synthesizer is shown 

in figure 7.3. A vibrato function has been added to the synthesizer. All synthesis is programmed using 

an algorithm called "kspandoc" which interpolates between two points set at specific times in either a 

linear or a logarithmic manner. An example program is shown in Appendix A. 
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7.3 Perceptual Tests 

This section provides a perceptual evaluation of the proposed models described in the previous 

section on synthesis. It begins with a short introduction to the nature of hearing perception followed by 

the perceptual experiments. 

7.3.1 Introduction 

It is possible to predict performance measures from absolute judgement experiment using statistics. It 

is labelled the "measure of information transmission" (Garner, 1962). 
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Figure 7.3. Block diagram of the new KLSYN88 formant synthesizer. Three voicing source models 

are available. Also added are a tracheal pole-zero pair, and control parameters allowing the first 

formant frequency and bandwidth to vary over a fundamental period (from Klatt, 1988). 

Experimental evidence points to the difficulty of identifying stimuli varying along one continuum or 

attribute. Individuals can only identify up to about 9 different stimuli along the same attribute, 

depending on that attribute. Garner (1962) has shown that there is little improvement in identification 
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performance even when the stimulus range is increased greatly. The identification measures are poor 

when compared to experiments with stimuli varying independently on multi-dimensions. It has been 

shown that extra dimensions aid in identification as the stimuli vary independently on each dimension, 

thus increasing perceptual information. Listeners can identify extremely small differences in detail 

between two stimuli, but are insensitive to stimuli that differ along one attribute. For mulit-dimensional 

experiments, the larger the physical difference between similar stimuli, the less confusion there is likely 

to be. 

7.3.1.1 Categorical Perception 
Complex tones such as speech and music are discriminated differently to pure tones. It is the physical 

difference which forms the basis to pure tone discrimination, whereas functional labelling of complex 

tones, that is, the meaning, also aids discrimination between speech events or musical events. The 

physical difference between tones is related to acoustic perception, and functional labelling is related to 

categorical perception. 

The intensity and frequency of a pure tone can be heard to change gradually. However, for complex 

tones, the change is non-linear and complicated by the fact that acoustical events such as formant 

transitions and frequency ratios and are not normally heard. They are either drawn into more 

"meaningful" segments or are ignored if they are insignificant (Handel, 1989): 

"For categorical perceiving, the event is heard directly; the acoustic properties of the sound are 
recovered from memory. For auditory perceiving, the acoustic properties are heard directly; the 
perceptual events are deduced" (Handel, 1989). 

Categorical perception is a complex dynamic process which is task dependent and dependent on the 

listener's performance of memory and judgement. It can be learned. It is possible that categorical 

perception arises partly out of the inclination of the auditory system to perceive equally continuous 

changes as discontinuous. For these changes to be significant, they must combine with other acoustic 

variations resulting from specific production changes. 

There is a general psychological theory which relates physical properties to psychological ones. Diehl 

(1987) describes it as "mutual enhancement". In the auditory sphere, for meaning to be conveyed, 

speech sounds must be easily discriminated. This is increased by maximising and combining the 

acoustic contrasts resulting from physical production changes (articulation) with the qualitative 

perceptual changes related to the hearing system mechanisms. Categorical perception is multi- 

dimensional and is explained as a combination of both production changes and perceptual 

discontinuities. 

"All perceiving comes form acoustic patterning, and all perceiving can yield both the 
categorisation and the auditory detail. Acoustic information is usually ambiguous and supports 
many possibilities. The best perceptual strategy would be to retain as much acoustic information 

as possible for as long a time as possible to allow surrounding information to influence the 
percept. Without the ability to switch among perceptual levels, our perceptual capabilities would 
be static, and we would be unable to tune to the properties of the stimulation" (Handel, 1989). 
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7.3.1.2 The Effect of Context 
The perceptual meaning of an acoustic segment depends on its context, which requires integration of 

multiple perceptual information. 

Repp (1982) has shown that one acoustic cue can be compensated for by a change in another cue in 

order to maintain the original perception. The cues can be totally dissimilar, such as the relationship 

equating a temporal cue (voice onset time) with a spectral cue (first formant onset frequency) (Handel, 

1989). This is termed a trading relationship and takes place at specific points in time. It appears that 

trading relationships are general perceptual phenomena. 

The same speech segment can also give rise to both speech and non-speech perception. Experiments 

with simulated speech segments where the formants are replaced with sinusoids having the same 

frequency and amplitude changes have shown that phonetic perception is still possible with a reduction 

in structure, but it is significantly weakened with an increase in ambiguity due to the inclusion of non- 

speech elements. This dual perception can be seen in other musical phenomena. A violin tone played 

badly may result in a set of partials being too loud. This may lead to the perception of the proper timbre 

plus a separate sound. In summary: 

"The context may decrease the resolution due to interference from other parts of the speech 
signal, or the context may enhance the resolution, because of comparison with "reference" or 
unchanging parts of the signal" (Handel, 1989). 

7.3.2 Perceptual Test 

Using the Klatt Synthesizer, four sung vowels were synthesized based on results derived from the 

analysis of the opera and belting sets. The vowel-pitch tokens chosen were G4/3: / and E5/a: / in both 

opera and belting quality. Figure 7.4 provides a spectral comparison of the real sung data (from which 

the synthesized tones were based on) and the synthesized versions. The synthesized tones used average 

CQ and average FO measurements derived from the real data. The synthesized spectrums were based on 

the spectrums of the real data and visually modified. However, as mentioned above, many more higher 

formants were needed to model the spectral components above 3 kHz than would be present in the real 

vocal tract. The introduction of vibrato into the tone, the vibrato rate and the vibrato amplitude was 

averaged between the opera and belting tokens, and incorporated into both qualities. This was done so 

that the differences in vibrato would not have served as a major cue for differentiation of the synthesis 

qualities. It was more important to concentrate on discriminating the spectral qualities (lack of vibrato, 

as can be found in belting tones, would have been too obvious a cue). Another reason to include vibrato 

on belting tones, which can be sung straight, is that without some vibrato, it is difficult to achieve 

"naturalness" on sustained synthesized vowels. 

In all, 8 tones (4 real and 4 synthesized) tones were used'for the perceptual test. These were played 

randomly 10 times each. A small passage of real opera and belting was played twice prior to the tests 

and once through halfway through the experiment (after 40 vowels). Ten York University students 
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Figure 7.4. Average spectra of the synthesized sung vowels (right column) derived from the 

real sung vowels (left column). All the vowel sounds above were used in the perceptual test. 
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with varying musical experiences served as judges. The tests were undertaken in a music technology 

laboratory and played in digital stereo over headphones. The judges were asked to identify whether each 

tone was produced in belting or opera quality. 

The modelling of the vocal tract as a tube open at one end and closed at the other produces a transfer 

function with an infinite number of poles. In reality, in the KLSYN88 synthesizer only the resonances 

below 5 kHz can be controlled with accuracy. The resonators above 5 kHz are fixed with respect to 

centre frequency and bandwidth. Little significance is attached to these higher formants because little 

voiced energy above 5 kHz is present in the speech signal, due to the low-pass characteristics of the 

source signal spectrum. and also the hearing system is less sensitive above 5 kHz, so it is unneccessary 

to have precise control of higher formants above this. 

Holmes (1983) gives a number of advantages of the parallel synthesizer over the cascade synthesizer. 

The cascade model cannot easily reproduce vocal effort changes or changes in the output spectrum due 

to glottal pulse shape, this would require an more control data since relative formant amplitudes cannot 

be explicitly set, and glottal pulse shape is modelled as constant. The parallel model has individual 

control over formant amplitudes so is better suited to modelling these changes. The cascade model only 

mimics the vocal tract response accurately up to 3 kHz, after which it breaks down leading to large 

errors in modelling (Holmes, 1983). 

Appendix [A] gives a full example of the synthesis algorithm for the opera tone on G4/3: /, labelled 

here as G4opera. spk. Appendices [B], [C], [D] show the parameters which were varied from the default 

values in order to produce the other three synthesized tones, the files being called G4belt. spk, 

E5opera. spk, and ESbelt. spk. The programs are all used with an algorithm called "kspandoc" which 

interpolates between two given values. As can be seen from the input data and the results, the 

synthesizer does not provide good spectral control over 5 kHz. In order to achieve the correct spectral 

amplitude over 3 kHz, it was necessary to use synthesizer formants very close together, and those which 

do not relate to the formant locations of the real tones. A lot of time was spent trying to copy the spectral 

content. A number of alterations had to be made in order to smooth over perceived vibrato stepping at 

the high pitches due to the quantisation errors. This was achieved by placing vibrato on the formant 

frequency locations and bandwidths. This would not necessarily occur in the real voice, though it does 

point to how important smoothness of vibrato is as a naturalness cue. The open quotient (OQ) values 

were determined from the real data (the inverse of the CQ values). The only parameters which were 

varied between synthesis tones were number of formants, formant frequency and bandwidth and OQ. 
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7.3. E :e;. lr 

The results for the tests are shown in figure 7.5. The judges have been grouped simply into three 

categories depending on musical experience. 

% real sung vowels 
correct 
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Figure 7.5. Perceptual test results arranged according to the musical experience of each judge. 

It can be seen that correct identification of the real data is high for all Judges. The performance for 

the synthesized tones, as expected, is lower than for the real tones. It is interesting to note that the group 

with no musical experience has the lowest identification performance for the synthesized tones. 

Figure 7.6 below shows the average percentage of incorrect judgements. It can be seen that many 

more synthesized tones were incorrectly judged than sung tones, and overall, there was a higher instance 

of error in correctly labelling the belting tones than the opera tones. 
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Figure 7.6. Average incorrect judgements (%) for both sung and synthesized tones. 
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7.4 Discussion and Conclusions 

Figures 7.5 and 7.6 show that most judges managed to correctly label the real sung tones, yet the 

instance of error in the labelling of the synthesized tones was greater in the judges with no musical 

experience. One may speculate that this is due to auditory familiarity. Most people, regardless of musical 

background tend to be familiar with the Western female singing voice, hence the high instance of correct 

judgements across the board. It may be that those judges with less musical background have more 

difficulty in differentiating between the slightly reduced auditory information associated with the higher 

pitches in female singing. This is proabably more significant when the tones are synthesized, partly due 

to the increased unnaturalness of the synthesized tone (the synthesized tone is a repeated waveform 

pattern with no fluctuations) and also due to the great reduction in the amount of vibrato on the 

synthesized opera tones. One would suggest that vibrato is an important auditory cue in the 

identification of differing vocal qualities. 

The cascade model of the KLSYN88 Synthesizer cannot account appropriately for vibrato and high 

energy content in the region of the singers formant and above when synthesizing the female singing 

voice, hence vibrato was reduced in the synthesiaed tones. However, the results from the perceptual tests 

have shown that the parameters used to differentiate between belting and opera qualities in the female 

voice seem to be sufficiently important in the identification of these qualities. These parameters include 

CQ and spectral envelope. 

With assessing the number of formants, formant frequency and bandwidth, it was impossible to 

exactly relate the values of these synthesis parameters to the real sung tones since the KLSYN88 

synthesizer was not designed for singing work and hence, had to be forced in to a mode of operation 

unrelated to the vocal tract. However, it is apparent that it is possible to cause a fair distinction between 

vocal qualities in female singing by using very few parameters. The problem with cascade synthesizers is 

that the real human voice, especially the female singing voice is that there is a vast amount of 

interaction between various muscles, and structures within the human vocal tract, which cannot yet be 

defined and accounted for in the synthesizer. 

One can speculate that a lot of the perceptual distinction between belting and opera is due to two 

spectral features: firstly, whether or not there is lowest partial dominance, as is usually the case in opera; 

and secondly, the amount of energy content of the partials above the 6th or 7th, in the area of 3-5 kHz, 

which is high and contributes to the rough and cutting sound of belting. It was possible to achieve this 

"edge" sound using the KLSYN88 synthesizer, even though it was time costly and the number, position, 

and location of formants used to recreate the spectral envelope shapes did not appear to tally with the 

real sung tones. Much fine manual adjustments to the synthesized parameters had to be done which were 

unrelated to the real tones. In one sense, the synthesizer did achieve a purpose in being able to recreate 

the acoustic differences in female singing vocal quality, though it cannot recreate the differences in 

production. 
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Chapter 8 

Conclusions and Future Research 

8.1 Conclusions 

This thesis set out to assess the appropriateness of standard two-channel speech technology for the 

differentiation of two vocal qualities exhibited by female singers. 

The speech analysis techniques used go some way towards differentiating opera and belting qualities 

in terms of assessing single words or vowels. However, singing requires extended phonations of up to 

several seconds at a time, and so it would have been useful to look at singing production and vocal 

quality over these long passages to see how a tone may develop over these phrases which may lead to 

insights into interpretation. The speech analysis system, SFS, used in this study was unsuited for this 

purpose since it could only present 2 seconds worth of data at a time, it was very slow, the manipulations 

were not universal for all items, the spectrographic analysis tools and LPC analysis tools were unsuited 

for singing analysis (and hence were discounted for this work), and it could only deal with two channels 

worth of input data. Larynx height analysis (which has been added to the speech analysis techniques) 

appears to be a good indicator of voice technique (not necessarily good voice technique) and a good 

addition to the standard two-channel analysis techniques, although a multi-channel recorder is needed 

plus a multi-channel analysis system. The speech synthesizer is unsuited to proper female singing 

synthesis, but it does recreate the necessary perceptual changes based on analysis of opera and belting 

qualities. 

To summarize: In order to do this type of work justice, it is proposed that multi-channel analysis 

and synthesis equipment should be used which can deal with both the demands placed on the equipment 

of the additional features and extended vocal ranges found in the singing voice plus the extended 

durational demands of vocal music. 
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8.2 Future Research 

There are a number of areas which need further investigation. 

Mixed quality need further investigation since it has been shown that not all the belters were belting 

when asked to, but rather, sang in mixed quality, which is more commonly used in the West End 

musicals. 

Comparisons in the ease of articulation of different vowels at different pitches in both qualities 

should be considered. This may provide clues as to the nature of vowel modification. This has been 

scientifically investigated for opera quality, but not for belting quality. For example, do different vocal 

tract and larynx settings provide different problems for articulation, and what are the acoustical 

consequences? Positioning of the lips greatly influences formant positions. How do lip settings differ in 

belting and opera, and what are the acoustical consequences? Is lip setting an important factor in 

producing different vocal qualities? 

Voice source-vocal tract interaction should also be considered. This may have some affect on the 

quality of the lower part of the middle register in opera quality which has a large open quotient. The 

glottis remains open for a large period of the vibratory cycle which potentially couples the subglottal 

airways with the supraglottal airways. This may lead to extra damping of the voice source since some air 

pressure can escape back down into the lungs. This may account for the decrease in loudness in this 

pitch range for female opera singers. An airflow mask (Rothenberg, 1973) is required in order to assess 

the subglottal pressure in phonation. 

Jitter is a random fluctuation in the length of a vibratory cycle providing minute inflections in the 

pitch of a tone (Klatt and Klatt, 1990). It is present in all spoken voices to some extent. Perceptual 

experiments have shown that if jitter is not incorporated into a synthesized spoken vowel, it is judged to 

be "unnatural" and mechanical sounding. However, too much jitter is indicative of a pathological voice, 

or an aged voice. It seems that jitter is a consequence of the muscular setting of the larynx when 

speaking. It will be interesting to investigate how jitter in opera quality compares to that in belting 

quality; how it varies with pitch; and whether it is tension dependent. Shimmer is a cycle-to-cycle 

variation in amplitude (Klatt & Klatt, 1990). 

This could be useful as well as further assessing the real value of CQ in singing analysis. For 

example, some important areas which require investigation are how subglottal pressure influences CQ, 

how CQ changes across different levels of intensity, the relationship between CQ and registration, lx 

signal shapes and patterning for different voice qualities, and fundamental frequency range for different 

qualities. Interpretational aspects of singing in terms of vocal quality modification during different 

passages is also a useful area of investigation. 

127 



References 

Abberton, E., Howard, D., & Fourcin, A. (1989). "Laryngographic Assessment of Normal Voice: A 

Tutorial", Clinical Linguistics and Phonetics, 3, (3), 281-296. 

Agren, K., & Sundberg, J. (1978). "An Acoustic Comparison of Alto and Tenor Voices", Journal 

Research in Singing (JRS), 1,26-32, 

Ainsworth, W. A. (1976). "Mechanisms of Speech Recognition", Oxford: Pergamon Press. 

Allen, J., Hunnicutt, M. S., & Klatt, D. (1987). "From Text to Speech: The MITalk System", 

Cambridge: Cambridge University Press. 

Anderson, V. A. (1977). "Training the Speaking Voice", Oxford: Oxford University Press. 

Atal, B. S., & Hanauer, S. L. (1971). "Speech Synthesis by Linear Prediction of the Speech Wave", 

Journal Acoustical Society America (JASA), 50,637-655. 

Berg., J. van den (1968). "Mechanism of the Larynx and the Laryngeal Vibrations", In: Manual of 

Phonetics, B. Malmberg, (Ed. ), London: North-Holland, 278-308. 

Bismarck, G. von (1974). "Timbre of Steady Sounds: a Factorial Investigation of its Verbal 

Attributes", Acustica, 30,146-159. 

BjOrklund, A. (1961). "Analysis of Soprano Voices", JASA, 33,575-582. 

Blauert, J. (1983). "Spatial Hearing: the Psychophysics of Human Sound Localization", J. S. Allen 

(Tr. ), Cambridge, Mass: MIT Press. 

Bless, D. M., Biever, D., and Shaikj, A. (1986). "Comparisons of Vibratory Characteristics of Young 

Adult Males and Females", Proceedings of International Conference on Voice, Kurume, Japan, 2, 

46-54. 

Bloothooft, G. (1985). "Spectrum and Timbre of Sung Vowels", PhD diss., Amsterdam: Vrije 

Universiteit to Amsterdam. 

128 



Boer, E. de (1980). "Auditory Physics. Physical Principles in Hearing Theory. I", Physics Reports, 

62,87-174. 

Borden, G. J., & Harris, K. S. (1984). "Speech Science Primer: Physiology, Acoustics, and Perception 

of Speech", J. P. Butler (Ed. ), U. S. A: Waverly Press. 

Bouhuys, A., Proctor, D. F., & Mead, J. (1966). "Kinetic aspects of singing", J. Appl. Physiol., 21, 

483-96. 

Breen, A. (1990). "An Investigation into Synthesis-by-Analysis", PhD diss, UCL, Unpublished. 

Campbell, M. & Greated, C. (1987). "The Musician's Guide to Acoustics", London: J. M. Dent & 

Sons. 

Catellengo, M., Roubeau, B., & Valette, C. (1983). "Study of the Acoustical Phenomena 

Characteristic of the Transition Between Chest Voice and Falsetto", In: Proc. of Stockholm Music 

Acoustics Conference 1983 (SMAC 83), (1), A. Askenfelt, S. Felicetti, E. Jansson, & J. Sundberg 

(Eds. ), Stockholm: Royal Swedish Acad. of Music, 46, (1), 113-124. 

Catford, J. C. (1964). "Phonation Types: The Classification of Some Laryngeal Components of 

Speech Production", In: Elements of General Phonetics, Abercrombie et al. (Eds. ), Edinburgh: 

Edinburgh University Press, 26-37. 

Catford, J. C. (1977). "Fundamental Problems in Phonetics", Edinburgh: Edinburgh University Press. 

Cleveland, T. F. (1977). "Acoustic Properties of Voice Timbre Types and Their Influence on Voice 

Classification", JASA, 61,1622-29. 

Cleveland, T., & Sundberg, J. (1983). "Acoustic Analysis of Three Male Voices of Different 

Quality", In: SMAC 83, (1), A. Askenfelt, S. Felicetti, E. Jansson, & J. Sundberg (Eds. ), Stockholm: 

Royal Swedish Acad. of Music, 46, (1), 143-56. 

Coleman, R. O. (1976). "A Comparison of the Contributions of Two Voice Quality Characteristics to 

the Perception of Maleness and Femaleness in the Voice", Journal Speech and Hearing Research 

J(SHR), 20,197-204. 

Cooper, F. S., Peterson, E. & Faringer, G. S. (1957). "Some Sources of Characteristic Vocoder 

Quality", JASA, 29,183(A). 

129 



Crowder, R. (1993). "Auditory memory", In: Thinking in Sound: the Cognitive Psychology of 

Human Audition, S. McAdams & E. Bigand (Eds. ), Oxford: Clarendon Press. 

Curtis, J. & Schultz, M. (1986). "Basic Laboratory Instrumentation for Speech and Hearing", 

Boston: Little, Brown. 

Davies, P., Lindsey, G. A., Fuller, M., & Fourcin, A. J. (1986), "Variation in Glottal Open and Closed 

Phase for Speakers of English", Proceedings of the Institute of Acoustics (Proc. IOA), 8,539-546. 

Doehring, D. G. (1974). "Pitch", In: Introductory Hearing Science: Physical and Psychological 

Concepts , S. E. Gerber (Ed. ), Philadelphia: Saunders, 128-150. 

Dowling, W. J. & Harwood, D. L. (1986). "Music Cognition", Orlando: Academic Press. 

Edgington, M., Barnes, C., Stringer, P., & Howard, D. (1992). "The Speech Filing System: A Tool 

for Cooperative Speech Research", Proc. IOA, 14,79-86. 

Erickson, R. (1977). "The Structure of Music: A Listener's Guide", Conneticut: Greenwood Press. 

Estill, J., Baer T., Honda, K., & Harris, K. (1983). "The Control of Pitch and Quality, Part 1: An 

EMG study of supralaryngeal activity in six voice qualities", In: Transcripts, Twelfth Symposium: 

Care of the Professional Voice, The Juillard School, New York, 1983, V. Lawrence (Ed. ), New York: 

The Voice Foundation, 86-91. 

Estill, J., Baer T., Honda, K., & Harris, K. (1984). "The Control of Pitch and Quality, part 2: An 

EMG study of Infrahyoid Muscles", Transcripts, Thirteenth Symposium: Care of the Professional 

Voice, New York: The Juillard School, New York, 1984, New York: The Voice Foundation, 65-69. 

Estill, J., Baer T., Harris, K., and Honda, K. (1983). "Supralaryngeal Activity in a study of six voice 

qualities", In: SMAC 83, A. Askenfelt, S. Felicetti, E. Jansson, & J. Sundberg (Eds. ), Stockholm: 

Royal Swedish Acad. of Music, 46, (1), 157-174. 

Estill, J. (1988). "Belting and Classic Voice Quality: Some Physiological Differences", Medical 

Problems of Performing Artists, Philadelphia: Hanley and Belfus, March, 37-43. 

Evans, E. F. (1975). "Cochlear Nerve and Cochlear Nucleus", In: Handbook of Sensory Physiology, 

W. D. Keidl & W. D. Neff (Eds. ), Berlin: Springer, 2, ch. 1.. 

130 



Evans, M. & Howard, D. M. (1993). "Larynx Closed Quotient in Female Belt and Opera Qualities: a 

Case Study", Voice, 2, (1), 7-14. 

Fant, G. (1960). "Acoustic Theory of Speech Production", The Hague: Mouton. 

Fant, G. (1975). "Nonuniform Vowel Normalization", Speech Transmission Laboratory Quarterly 

Progress and Status Report (STL-QPSR), Stockholm: Royal Institute of Technology, 2, (3), 1-19. 

Fant, G. (1986). "Glottal Flow: Models and Interaction", Journal of Phonetics, 14,393-399. 

Fletcher, H. (1940). "Auditory Patterns", Rev. Modem Physics, 12,47-65. 

Fletcher, H. & Munson, W. A. (1933). "Loudness, its Definition, Measurement, and Calculation", 

JASA, 5,82-108. 

Fletcher, H. & Munson, W. A. (1937). "Relation Between Loudness and Masking", JASA, 9,1-10. 

Fourcin, A. (1987). "Electrolaryngographic Assessment of Phonatory Function", J. Phonetics, 14, 

435-442. 

Fourcin, A. & Abberton, E. (1971). "First Applications of a New Laryngograph", Med. and Biol. Ill., 

21,172-182. 

Fung, Y. C. (1981). "Biomechanics", New York: Springer. 

Gerber, S. E., & Bauer, B. B. (1974). "Loudness", In: Introductory Hearing Science: Physical and 

Psychological Concepts, S. E. Gerber (Ed. ), Philadephia: Saunders, 151-171. 

Gelfand, S. A. (1981). "Hearing: An Introduction to Psychological and Physiological Acoustics", 

New York: Marcel Dekker. 

Gobi, C. (1988). "Voice Source Dynamics in Connected Speech", STL-QPSR, 21,123-159. 

Goldstein, J. L. (1973). "An Optimum Processor Theory for the Central Formation of the Pitch of 

Ccomplex Tones", JASA, 54,1496-1516. 

Gould, W. J. (1977). "The Effect of Voice Training on Lung Volumes in Singers and the Possible 

Relationship to the Damping Factor of Pressman", JRS, 1,3-15. 

131 



Hall, D. E. (1980). "Musical Acoustics: an Introduction", Belmont: Wadsworth. 

Handel, S. (1989). "Listening", Cambridge, Mass.: MIT Press. 

Heffner, R. (1950). "General Phonetics", Madison: University of Wisconsin Press. 

Helmholtz, H. L. F. von (1954). "On the Sensation of Tone as a Physiologucal Basis for the Theory of 

Music", repr. New York: Dover (originally 1863). 

Henton, C. G., & Bladon, A. W. (1985). "Breathiness in Normal Female Speech: Inefficiency versus 

Desirability", Language and Communication 5, (3), 221-227. 

Hertegard, S., Gauffin, J., & Sundberg, J. (1990). "Open and Covered Singing as Studied by Means 

of Fiberoptics, Inverse Filtering, and Spectral Analysis", J. Voice, 4, (3), 220-230. 

Hess, D. A. (1959). "Pitch, Intensity, and Cleft Palate Voice Quality", JSHR, 2,113-25. 

Hirano, M. (1983). "The Structure of the Vocal Folds", Vocal Fold Physiology, K. Stevens and M. 

Hirano (Eds. ), Tokyo: University of Tokyo, 33-34. 

Hirano, M. (1975). "Phonosurgery: Basic and Clinical Investigations", Otol. Fukuoka, 21, Suppl 1. 

Hirano, M., Hibi, S., & Sanada, T. (1989). "Falsetto, Head/Chest, and Speech Mode: An Acoustic 

Study with Three Tenors", J. Voice, 3, (2), 99-103. 

Nixon, T. (1987). "Respiratory Function in Speech", In: Respiratory Function in Speech and Song, 

T. Hixon (Ed. ), Mass.: College Hill Press, 1-54. 

Hixon, T., & Hoffman, C. (1978). "Chest Wall Shape in Singing", In: Transcr. of the 7th Syposium 

Care of the Professional Voice, L. van Lawrence (Ed. ), New York: Voice Foundation, 9-10. 

Hollien, H. (1960). "Vocal Pitch Variation Related to Changes in Vocal Fold Length", JSHR, 3, (2), 

150-156. 

Hollien, H. (1971). "Three Major Vocal Registers: A Proposal", Proceedings of the 7th International 

Congress of Phonetic Sciences, Montreal, 320-31. 

Hollien, H. (1974). "On Vocal Registers", J. Phonetics, 2,125-143. 

132 



Hollien, H. (1983). "The Puzzle of the Singer's Formant", In: Vocal Fold Physiology: Contemporary 

Research and Clinical Issues, D. M. Bless & J. H. Abbs (Eds. ), San Diego: College-Hill, 368-378. 

Hollien, H., & Michel, J. F. (1968). "Vocal Fry as a Phonational Register", JSHR, 11,600-604. 

Hollien, H., & Moore, G. P. (1960). "Measurements of the Vocal Folds During Changes in Pitch", 

JSHR, 3, (2), 157-165. 

Hollien, H., Moore, P., Wendahl, R. W., & Michel, J. F. (1966). "On the Nature of Vocal Fry", JSHR, 

9,245-247. 

Hollien, H., & Schoenhard, C. (1983). "The Riddle of the "Middle" Register", In: Vocal Fold 

Physiology Biomechanics, Acoustics and Phonatory Control, I. Titze and R. Scherer (Eds. ), Denver: 

The Denver Centre for the Performing Arts, 256-272. 

Holmberg, E. B., Hillman, R. E., & Perkell, J. S. (1988). "Glottal Airflow and Transglottal Air 

Pressure Measurements for Male and Female Speakers in Soft, Normal, and Loud Voice", JASA, 84, 

(2), 511-529. 

Holmes, J. N. (1983). "Research Report. Formant Synthesizers: Cascade or Parallel? ", Siech 

Communication, 2,251-273. 

Howard, D. M. (1995). "Variation of Electrolaryngographically Derived Closed Quotient for Trained 

and Untrained Adult Female Singers", J. Voice, 9, (2), 163-172. 

Howell, E. (1978). "Chest Voice-Belting", Equity News, April, 14. 

Ishizaka, K., & Flanagan, J. L. (1972). "Synthesis of voiced sounds from a two-mass model of the 

vocal cords", Bell Syst. Tech. J., 51,1233-1268. 

Isshiki, N. (1964). "Regulatory Mechanism of Voice Intensity Variation", JSHR, 7,17-29. 

Johansson, C., Sundberg, J., & Willbrand, H. (1983). "X-ray Study of Articulation and Formant 

Frequencies in Two Female Singers". In: SMAC 83, A. Askenfelt, S. Felicetti, E. Jansson, & J. 

Sundberg (Eds. ), Stockholm: Royal Swedish Acad. of Music, 46, (1), 203-218. 

Johnson, A., Sundberg, J., & Wilbrand, H. (1983) " "Kölning". Study of Phonation and Articulation 

in a Type of Swedish Herding Song. " In: SMAC 83, A. Askenfelt, S. Felicetti, E. Jansson, & J. 

Sundberg (Eds. ), Stockholm: Royal Swedish Acad. of Music, 46, (1), 187-202. 

133 



Kahane, J. (1978). "A Morphological Study of the Human Prepubertal and Pubertal Larynx", 

American. Journal Anatomy, 151,11-120. 

Karlsson, I. (1986). "Glottal Waveforms for Normal Female Speakers", J. Phonetics, 14,415-419. 

Kent, R. D. & Read, C. '(1992). "The Acoustic Analysis of Speech", London: Whurr. 

Kitzing, P. (1982). "Photo- and Electroglottographical Recording of the Laryngeal Vibratory Pattern 

During Different Registers", Folia Phoniatrica, 34,234-241. 

Klatt, D. H. (1980). "Software for a Cascade/Parallel Formant Synthesizer", JASA, 67,971-995. 

Klatt, D. H. (1988). KLSYN88 Syntheiszer Manual. 

Klatt, D., & Klatt, L. (1990). "Analysis, Synthesis, and Perception of Voice Quality Variations 

among Female and Male Talkers", JASA, 87, (2), 820-857. 

Kmucha, S., Yanagisawa, E., & Estill, J. (1990). "Endolaryngeal Changes During High-Intensity 

Phonation Videolaryngoscopic Observations", J. Voice, 4, (4), 346-354. 

Kunze, L. H. (1964). "Evaluation of Methods of Estimating Sub-Glottal Air Pressure", JSHR, 7,151- 

164. 

Large J. W. (1968). "An Acoustical Study of Isoparametric Tones in the Female Chest and Middle 

Registers in Singing", NATS Bulletin, 0,12-15. 

Large, J. W. (1973). "Acoustical Study of Register Equalization in Singing", Folia Phoniatrica, 25, 

39-61. 

Larsson, B. (1977). "MUSSE - Music and Singing Synthesis Equipment", Master's Thesis, Dept. 

Speech Comm. & Music Acoustics, Royal. Institue of Technology, Stockholm, 1975. 

Lawrence, V. (1979). "Laryngological Observations on Belt", JRS, 2,26-28. 

Laver, J. (1980). "The Phonetic Description of Voice Quality", Cambridge: Cambridge University 

Press. 

Leanderson, R., Sundberg, J, & von Euler, C. (1987). "The Role of Diaphragmattic Activity During 

Singing", J. Applied. Physiology, 62, (1), 259-270. 

134 



Lieberman, P. (1977). "Speech Physiology and Acoustic Phonetics", New York: MacMillan. 

Lieberman, P. & Blumstein, S. E. (1988). "Speech Physiology, Speech Perception, and Acoustic 

Phonetics", Cambridge: Cambridge University Press, 3-15. 

Makhoul, J (1975). "Linear Prediction: A Tutorial Review", Proc. of the IEEE, 63, (4), 561-580. 

Markel, J. D., & Gray, A. H. (1976). "Linear Prediction of Speech", Springer-Verlag. 

Mayer, A. M. (1876). "Researches in Acoustics", Philos. Mae., 2,500-507, Repr. in Schubert (1979), 

193-200. 

McAdams, S. (1993). "Recognition of Sound Sources and Events", In: Thinking in Sound: The 

Cognitive Psychology of Human Audition, S. McAdams & E. Bigand (Eds. ), Oxford: Clarendon 

Press. 

Meyer, J. (1978). "Acoustics and the Performance of Music", Frankfurt: Verlag Das 

Musikinstrument. 

Miller, D., & Schutte, H. (1990). "Formani Tuning in a Professional Baritone", J. Voice, 4, (3), 231- 

237. 

Miller, D., & Schutte, H. (1990). "Feedback From Spectrum Analysis Applied to the Singing Voice", 

J. Voice, 4, (4), 329-334. 

Miller, D. & Schutte, H. (1991). "Toward a Definition of Male "Head" Register, Passagio, and 

"Cover" in Western Operatic Singing", Paper presented at the XXth Annual; Symposium: Care of 

the Professional Voice. Philadelphia, Pennsylavania. 

Monsen, R. B., & Engebretson, A. M. (1977). "Study of Variations in the Male and Female Glottal 

Wave", JASA, 62, (4), 981-993. 

Moore, B. C. J. (1986). "Parallels Between Frequency Selectivity Measured Psychophysically and in 

Cochlear Implants", Scand. Audiol. Suppl., 25,139-152. 

Moore, B. C. J. (1989). "An Introduction to the Psychology of Hearing", London: Academic Press. 

Moore, G. P. (1971). "Organic Voice Disorders", Englewood Cliffs, N. J.: Prentice-Hall. 

135 



Nordstrom, P. E. (1977). "Female and Infant Vocal Tracts Simulated From Male Area Functions", J. 

Phonetics, 5,81-92. 

Osborne, C. (1979). "The Broadway Voice, Part 1: Just Singin' in the Pain", Hi-Fidelity, 29, (1), 57- 

65. 

O'Shaughnessy, D., Barbeau, L., Bernardi, D., & Archambault, D. (1988). "Diphone Speech 

Synthesis", Speech Communication, 7,55-65. 

Pabst, F., & Sundberg, J. (1992). "Tracking Multi-Channel Electroglottograph Measurement of 

Larynx Height in Singers". In: STL-OPSR 2-3,67-78. 

Pappenheimer, J., et al. (1950) "Standardization of Definitions and Symbols in Respiratory 

Physiology", Federation Proceedings, 9,602-605. 

Peretz, I. (1993) "Auditory Agnosia: a Functional Analysis", In: Thinking in Sound: The Coenitive 

Psychology of Human Audition, S. McAdams & E. Bigand (Eds. ), Oxford: Clarendon Press. 

Plomp, R. (1976). "Aspects of Tone Sensation", London: Academic. 

Pollard, H. F., & Jansson, E. V. (1982). "A Tristimulus Method for the Specification of Musical 

Timbre, " Acustica, 51,162. 

Proctor, D. F. (1980). "Breathing, Speech, and Song". New York: Springer-Verlag, 16-43. 

Rabiner, L. R., and Schafer, R. W. (1978). "Digital Processing of Speech Signals", New Jersey: 

Prentice Hall: 

Rhode, W. S. (1978). "Some Ovservations on Cochlear Mechanics", JASA, 64,158-176. 

Risset, J. C. & Mathews, M. V. (1969). "Analysis of Musical Instrument Tones", Physics Today, 22, 

(2), 23-30. 

Rossing, T. D. (1990). "The Science of Sound", Dekalb: Addison Wesley. 

Rothenberg, M. (1973). "A New Inverse-Filtering Technique for Deriving the Glottal Air FLow 

Waveform During Voicing", JASA, 53, (6), 1632-1644. 

136 



Rothenberg, M. (1985). "Cosi Fan Tutte and What it Means or Nonlinear Source-Tract Acoustic 

Interaction in the Soprano Voice and Some Implications for the Definition of Vocal Efficiency", In: 

Vocal Fold Physiology: Laryngeal Function in Phonation and Respiration, T. Baer, C. Sasaki, & 

K. Harris (Eds. ), Boston: College-Hill Press, 254-270. 

Rothenberg, M. (1992). "A Multichannel Electroglottograph", J. Voice, 6,36-43. 

Rubin, H. J., LeCover, M., & Vennard, W. (1967). "Vocal intensity, subglottic pressure, and airflow 

relationships in singers", Folia Phoniatrica, 19,393-413. 

Ruhl, J. (1986). "Is Singing a Dying Art? ", The NATS Journal, 42,30-35. 

Russell, G. O. (1936). "Etiology of Follicular Pharyngitis, Catarrhal Laryngitis, So-called 

Clergyman's Throat; and Singer's Nodes", Journal of Speech Disorders, 1,113-122. 

Saldanha, E. L., & Corso, J. F. (1964). "Timbre Cues and the Identification of Musical Instruments", 

JASA, 36,2021-2026. 

Sawashima, M., & Hirose, H. (1983). "Laryngeal Gestures in Speech Production", In: The 

Production of Speech, P. F. MacNeilage, (Ed. ), New York: Springer-Verlag, 11-38. 

Schubert, E. D. (Ed. ) (1979). "Benchmark Papers in Acoustics Vol. 13: Psychological Acoustics", 

Pennsylvania: Dowden, Hutchinson & Ross. 

Schutte, H. K. (1980). "The Efficiency of Voice Production", Netherlands: Groningen Druk. 

Schutte, H., & Miller, D. (1993). "Belt and Pop, Nonclassical Approaches to the Female Middle 

Voice: Some Preliminary Considerations", J. Voice, 7, (2), 142-150. 

Scully, C. and Allwood, E. (1983). "Simulation of Singing with a Composite Model of Speech 

Production", In: SMAC 83, A. Askenfelt, S. Felicetti, E. Jansson, & J. Sundberg (Eds. ), Stockholm: 

Royal Swedish Acad. of Music, 46, (1), 247-260. 

Seidner, W., Schutte, H., Wendler, J., and Rauhut, A. (1983). "Dependence of the High Singing 

Formant on Pitch and Vowel in Different Voice Types", In: SMAC 83, A. Askenfelt, S. Felicetti, E. 

Jansson, & J. Sundberg (Eds. ), Stockholm: Royal Swedish Acad. of Music, 46, (1), 261-268. 

Sellick, P. M., Patuzzi, R., & Johnstone, B. M. (1982). "Measurement of Basilar Membrane Motion in 

the Guinea Pig Using the Mössbauer Technique", JASA, 72,131-141. 

137 



Sodersten, M., and Lindestad, P. (1990). "Glottal Closure and Perceived Breathiness during 

Phonation in Normally Speaking Subjects", JSI-IR, 33,601-611. 

Sonninen, A. (1956). "The Role of the External Laryngeal Muscles in Length Adjustment of the 

Vocal Cords in Singing", Acta Otolarvngo1, Suppl 2,130. 

Sonninen, A. (1968). "The External Frame Function in the Control of Pitch in the Human Voice", 

In: Sound Production in Man, New York: New York Academy of Science, 68-90. 

Sunaga, Y. (1971) "A Study on the Singing Voice. A Physiological Experiment on an Opera 

Singer", Japanese Journal Logopedics Phoniatrics, 12,53-61. 

Sundberg, J. (1974). "Articulatory Interpretation of the "Singing Formans"", JASA, 55,838-844. 

Sundberg, J. (1978). "Synthesis of Singing", Swedish Journal of Musicology, 60,107-112. 

Sundberg, J. (1987). "The Science of the Singing Voice", Dekalb: Northern Illinois University Press. 

Sundberg, J. (1991). "The Science of Musical Sounds", San Diego: Academic Press. 

Sundberg, J., and Askenfelt, A. (1983). "Larynx Height and Voice Source: A Relationship? ", In: 

Voice Physiology, D. M. Bless & J. H. Abbs (Eds. ), San Diego: College-Hill, 307-316. 

Sundberg, J., Gramming, P., & Lovetri J. (1993) "Comparisons of Pharynx, Source, Formant, and 

Pressure Characteristics in Operatic and Musical Theatre Singing", Journal of Voice, 7, (4), 301- 

309. 

Sundberg, J., and Nordström, P. -E. (1983). `Raised and Lowered Larynx: The Effect on Vowel 

Formant Frequencies", JRS, 6,7-15. 

Terhardt, E. (1974). "On the Perception of Periodic Sound Fluctuations (Roughness)", Acustica, 30, 

201-13. 

Terhardt, E. (1980). "Toward understanding pitch perception: problems, concepts and solutions", In: 

Psychophysical, Physiologcial and Behavioural Studies in Hearing: Proceedings of the 5th 

International Synposium on Hearin 
, 
The Netherlands: Delft University Press, 353-360. 

Terhardt, E. & Fastl, H. (1971). "Zum Einfluss von Störtönen und Störgerauschen auf die Tonhöhe 

von Sinustönen", Acustica, 25,53-61. 

138 



Titze, I. R. (1989). "Physiologic and Acoustic Differences Between Male and Female Voices", JASA, 

85,1699-1707. 

Van Riper, C., & Irwin, J. V. (1958). "Voice and Articulation", Englewood Cliffs, N. J.: Prentice- 

Hall. 

Vennard, W. (1967). "Singing, the Mechanism and the Technique", New York: Fischer. 

Vennard W., and Hirano, M. (1973). "The Physiological Basis for Vocal Registers", In: Vocal 

Registers in Singing, J. W. Large (Ed. ), The Netherlands: Mouton & Co., 45-58. 

Wang, S. (1983). "Singing Voice: Bright Timbre, Singer's Formants and Larynx Positions. " In: 

SMAC 83, A. Askenfelt, S. Felicetti, E. Jansson, and J. Sundberg (Eds. ), Stockholm: Royal 

Swedish Acad. of Music, 46, (1), 313-322. 

Watson, P., J., & Hixon, T. J. (1985). "Respiratory Kinematics in Classical (Opera) Singing", JSHR, 

28,104-22. 

Wawezynek, J. (1989) "VLSI Models for Sound Synthesis", Current Directions in Computer Music 

Research, M. V. Mathews & J. R. Pierce (Eds. ), Cambridge, Mass.: MIT Press, 113-148. 

Wegel, R. L., & Lane, C. E. (1924). "The Auditory Masking of one Pure Tone by Another and its 

Probable Relation to the Dynamics of the Inner Ear", Physics Review, 23,266-276. 

Wendahl, R. W., Moore, P., & Hollien, H. (1963). "Comments on Vocal Fry", Folia Phoniatrica, 15, 

251-255. 

Wever, E. G. (1949). "Theory of Hearing", New York: Wiley. 

Whifield, I. C. (1979a). "Periodicity, Pulse Interval and Pitch", Audiology 18,507-512. 

Whitfield, I. C. (1979b). "The Object of the Sensory Cortex", Brain Behav. Evol., 16,129-154. 

Whitfield, I. C. (1980) "The Relation Between Pitch and Frequency in Complex Tones", In: 

"Psychophysical, Physiologcial and Behavioural Studies in Hearing: Proceedings of the 5th 

International Synposium on Hearing", The Netherlands: Delft University Press, 361-366. 

Wightman, F. L. (1973). "The Pattern-Transformation Model of Pitch", JASA, 54,407-416. 

139 



Winkel, F. (1967). "Music, Sound and Sensation", New York: Dover. 

Yanagisawa, E., Estill, J., Kmucha, S., and Leder, S. (1989). "The Contribution of Aryepiglottic 

Constriction to "Ringing" Voice Quality -A Videolaryngoscopic Study with Acoustic Analysis", J. 

Voice, 3, (4), 342-350. 

Yanagisawa, E., Kmucha, S., and Estill, J. (1990). "Role of the Soft Palate in Laryngeal Functions 

and Selected Voice Qualitites", Ann. Otol. Rhinol. Laryngol., 99,18-28. 

Zemlin, W. R. (1964). "Speech and Hearing Science", Englewood Cliffs, N. J.: Prentice Hall. 

Zwislocki, J. J. (1978). "Masking: Experimental and Theoretical Aspects of Simultaneous, Forward, 

Backward, and Central Masking", In: Handbook of Perception, E. C. Carterette & M. P. Friedman 

(Eds. ), New York: Academic, 4, ch. 8. 

140 



Appendices 

Appendix [A] 

/* G4OPERA. SPK */ 

/* D. M. Howard April 1993 - for use with Iospan using kspandoc 
/* based on Mark Huckvale's example spk file from kspan manual pages 
/* In order for the doc version (kspandoc) to work, all parameters */ 
/* MUST be setup to some value at the start 

/* NOTES: FO (or FX) values are in Hz and NOT in *10Hz as for klsyn88a 
/* Call SET_DEFAULTS at the start to initialise default values */ 

/* Set up the values of klsyn88a constant parameters 
/* these can be edited if desired but format MUST be preserved */ 
/* NOTE: Iospan sets DU and UI at present */ 
extern struct klpars { char *name; 

char type; 
short min; 
short val; 
short max; 
char *desc; 

1* set the synthesiser update interval in ms */ 
int update_interval = 5; 

struct klpars consts[] { 
/* DU is set by Iospan as determined by your synthesis length */ 
/* UI takes the value set for 'update-interval' defined above */ 
/* ****** THEREFORE ALTERING THESE TWO LINES MAKES NO DIFFERENCE ****** */ 
("DU", 'C', 30,300,5000, "Duration of synthesis utterance, ms"}, 
{"UI", 'C', 1,5,20, "Update interval for parameter reset, ms"), 

("SR", 'C', 5000,29000,20000, "Output sampling rate, in samples/sec"), 
{"NF", 'C', 1,6,6, "Number of formants in cascade branch"), 
("SS", 'C', 1,2,3, "Source (1=impulse, 2=natural, 3=LF model)"), 
{"RS", 'C', 1,8,8191, "Random seed"), 
{"SB", 'C', 0,1,1, "Same noise burst, (0=no, l=yes)"}, 
("CP", 'C', 0,0,1, "Excitation by AV, O cascade, 1 parallel"), 
("OS", 'C', 0,0,20, "Output selector (0 = normal)"}, 
{"GV", 'C', 0,60,80, "Overall gain for AV, dB"), 
{"GH", 'C', 0,60,80, "Overall gain for Al!, dB"), 
{"GF", 'C', 0,60,80, "Overall gain for AF, dB") 

#define SILENCE {\ 
AV(O, LOG); AlI(O, LOG); AF(O, LOG); 
A2F(O, LOG); A3F(O, LOG); A4F(O, LOG); \ 
A5F(O, LOG); A6F(O, LOG); AB(O, LOG); \ 
ANV(O, LOG); A1V(O, LOG); A2V(O, LOG); \ 
A3V(O, LOG); A4V(O, LOG); ATV(O, LOG); \ 
} 

#define SET_DEFAULTS (\ 
SILENCE\ 
F0(100, FIX); OQ(50, FIX); SQ(200, FIX); \ 
TL(0, FIX); FL(0, FIX); DI(O, FIX); \ 
Fl(500, FIX); Bl(60, FIX); DFI(O, FIX); DBI(O, FIX); \ 
F2(1500, FIX); B2(90, FIX); F3(2500, FIX); B3(150, FIX); 
F4(3250, FIX); B4(400, FIX); F5(4700, FIX); B5(400, FIX); \ 
F6(4990, FIX); B6(500, FIX); FNP(280, FIX); BNP(90, FIX); \ 
FNZ(280, FIX); BNZ(90, FIX); FTP(2150, FIX); BTP(180, FIX); 
FTZ(2150, FIX); BTZ(180, FIX); B2F(250, FIX); B3F(300, FIX); \ 
B4F(320, FIX); B5F(360, FIX); B6F(1500, FIX); ANV(0, FIX); \ 

/* SYNTHESIS STARTS FIERE 

141 



SYNTH() 
{ 
/* synthesis 0 
AT(0); 

/* initialise parameters 
SET DEFAULTS; 

/* YOUR ALTERATIONS SHOULD START HERE.. 

AT(0); 

FX(390, VIB); 
F1(700, VIB); F2(1450, VIB); F3(2800, VIB); F4(3250, VIB); F5(3600, VIB); F6(4000, VIB); 
BI(60, VIB); B2(90, VIB); B3(200, VIB); B4(200, VIB); B5(200, VIB); B6(150, VIB); 
AV(O, LIN); 
OQ(74, FIX); 

AT(15); 
AV(55, VIB); 

AT(925); 
AV(55, VIB); 

AT(1000); 
FX(390, FIX); 
OQ(74, FIX); 
F1(700, FIX); F2(1450, FIX); F3(2800, FIX); F4(3250, FIX); F5(3600, FIX); F6(4000, FIX); 
BI(60, FIX); B2(90, FIX); B3(200, FIX); B4(200, FIX); B5(200, FIX); B6(150, FIX); 
AV(50, FIX); 

\VAIT(15); 
I make this synthesis "1 
FLUSH; 

******************************************************************************** 

Appendix [B] 
/* G4BELT. SPK */ 

("NF ', 'C', 1,8,6, "Number of formants in cascade branch"), 

AT(O); 
FX(390, VIB); 
F1(880, VIB); F2(1650, VIB); F3(2738, VIB); F4(3341, VIB); F5(3890, VIB); F6(4140, VIB); 
Bl(60, VIB); B2(60, VIB); B3(175, VIB); B4(250, VIB); B5(150, VIB); B6(200, VIB); 
AV(O, LIN); 
OQ(44, FIX); 

AT(15); 
AV(55, VIB); 

AT(925); 
AV(55, VIB); 

AT(1000); 
FX(390, FIX); 
OQ(44, FIX); 
FI(880, FIX); F2(1650, FIX); F3(2738, FIX); F4(3341, FIX); F5(3890, FIX); F6(4140, FIX); 
B1(60, FIX); B2(60, FIX); B3(175, FIX); B4(250, FIX); B5(150, FIX); B6(200, FIX); 
AV(50, FIX); 

******************************************************************************** 

Appendix [C] 
/* ESOPERA. SPK */ 

("NF", 'C', 1,8,6, "Number of formants in cascade branch"), 

AT(O); 
FX(645, VIB); 
F1(800, VIB); F2(1300, VIB); F3(3250, VIB); F4(3700, VIB); F5(4200, VIB); F6(4600, VIB); 
Bl(60, VIB); B2(80, VIB); B3(150, VIB); B4(150, VIB); B5(250, VIB); B6(150, VIB); 
OQ(65, FIX); 
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AV(O, LIN); 
AT(20); 

AV(55, LIN); 
AT(925); 

AV(55, LIN); 
AT(1000); 

FX(645, FIX); 
FI(800, FIX); F2(1300, FIX); F3(3250, FIX); F4(3700, FIX); F5(4200, FIX); F6(4600, FIX); 
BI(60, FIX); B2(80, FIX); B3(150, FIX); B4(150, FIX); B5(250, FIX); B6(250, FIX); 
AV(50, FIX); 

*******s*****tttttt****ýs******s*s*ýs*****r**t**********ýs*ýa**ý****ý*sý******s* 

Appendix [D] 
/* E5BELT. SPK */ 

("NF", 'C', 1,10,6, "Number of formants in cascade branch"}, 

AT(0); 
FX(651, VIB); 
FI(1225, VIB); F2(1800, VIB); F3(3250, VIB); F4(4250, VIB); F5(4900, VIB); F6(5400, VIB); 
B1(90, VIB); B2(120, VIB); B3(180, VIB); B4(250, VIB); B5(250, VIB); B6(200, VIB); 
OQ(40, VIB); 
AV(O, LIN); 

AT(20); 
AV(55, VIB); 

AT(980); 
AV(55, VIB); 

AT(1000); 
FX(651, FIX); 
FI(1225, FIX); F2(1800, FIX); F3(3250, FIX); F4(4250, FIX); F5(4900, FIX); F6(5400, FIX); 
B1(90, FIX); B2(120, FIX); B3(180, FIX); B4(250, FIX); B5(250, FIX); B6(200, FIX); 
OQ(40, FIX); 
AV(50, FIX); 

Appendix [E] 
Lists the answers given by the judges, arranged in order of musical experience, to questions asked 

after the perceptual tests. 

1. Were you aware that half of the vowels were real and half were synthesized? 

PG - Yes 

MT - Yes 

ME - Yes 

IG - No. I could recognise a proportion were synthesized. 

JT - Vaguely, I knew some were synthesized 

NG - Yes 

TB - Yes - well I suspected anyway. 

CR - No, but I thought some of the higher ones might have been transposed versions of the lower 

ones 

IH - Some sounded synthesized. 

JE - Yes 
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2. Could you tell which ones were real and which ones were synthesized? 

PG - Some 

MT - Some seemed to lack "fullness" of the sound. 

ME - Yes 

IG - Some appeared synthesized. 

JT - Most of the time 

NG -Yes 

TB -I thought I could, mostly 
CR - There was a subtle difference. You could tell. 

IH - Mainly high requency ones and mainly belt 

JE - Yes. The synthesized ones sounded very restrained - they lacked "roundness" and "fullness". 

3. Did the synthesized vowels sound realistic? 

IG - Most sounded real. The higher registers sounded less realistic. 

JT - The ones that I noticed didn't 

NG-No 

PG - Most 

MT - Yes. Some seemed to lack "fullness" of the sound. 

ME - Low pitch - yes. High pitch - not so realistic 

TB - Sounded a bit loopy, especially the high opera ones 

CR - Yes. But maybe not so much compared to the real ones. 

IH - Some of the lower frequencies 

JE-No 

4. Did the real vowels sound realistic? 

PG - Yes 

MT - Yes. 

ME - Yes - significantly more than the synthesized 

IG - Most sounded real. The higher registers sounded less realistic. 

JT - Mostly 

NG - Yes 
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TB - Apart from being chopped, yes 

CR - Yes 

IH - Mainly the lower opera 

JE - Yes 

5. Could you make out the vowel quality? 

IG - Yes, especially in opera. 

JT - No 

NG - Sometimes 

PG - Yes 

MT - Yes 

ME - Yes, particularly with opera and low-pitch. 

TB - What's that? 

CR - Yes, but not so well with the higher notes. 

IH - Sometimes 

JE - Not really 

6. How did you make your judgements on whether it was an opera sound or belt sound? 

IG - Opera - clearer, more defined vowel sound. Belt - rougher quality, less defined vowel sounds, 

more gritty quality. 

JT - "Harshness" of sound - belt seemed harsher than the opera 

NG - Belt sounds rougher and less rounded 

PG - Belt - sounded harder, sharp attack more higher freuqencies. Belt - had vibrato, more lower 

frequencies. 

MT -I expected the synthesized vowels to be gritty, or not as rich as the real vowels. 

ME - The opera vowels tend to have a high frequency vibrato on them. The pitch variations on 

the Belt vowels tended to be slower - and less "precise" than the opera. 

TB - The belt ones seemed to have more presence (and top harmonics, to a lesser extent). 

CR - By how the sound was being voiced. The belt sounds tend to be more "natural" or "organic", 

the opera voices sound more controlled. 

IH - The opera sounds were smoother less comlex sounding more like a pure sinewave, whereas 

the belt has more of an edge. 

JE - Instinct. Opera had a particular sound quality so if it wasn't opera it became "belt". 
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7. Did you have to guess at all? 

IG - With maybe 5% 

JT - Once or twice. 

NG - Yes 

PG-No 

MT - Yes. 

ME - Yes - for some of the synthesized vowels. 

TB - Yes, can't remember why though. 

CR - Yes, for a few of the lower ones. 

IH - No 

JE - No 

8. Any other comments? 
MT - Some of the vowels did seem absolutely identical, to the extent I had to guess completely. 

ME - It seemed easier to make a judgement with low-pitch vowels than with higher ones. The 

main difference between opera and belt was high-frequency vibrato on the opera vs. a lower and 

more variable variations on the belt. Belt vowels often also seemed to make abrupt pitch/register 

variation wheras the opera flowed more continuously. 

IG -A good time -I recommend this test. 

NG - Cheers for the beer. 

TB - Changed my mind about a few when I heard the next ones. Also found it more difficult at 

first while I was getting used to the test. 

CR - The synthesized vowels threw me slighty. I thought they were processed versions of the 

"real" ones. This was where I had to guess on a few occasions. 

IH - The sounds tended to cut off very abruptly thus creating a very off-putting click. 

JE - There were some sounds which whilst not sounding "opera", did appear to be an attempt at 

synthesizing opera so I chose opera. The lower pitches were harder to distinguish. It sounded as 

thought the lower pitch was too low for both the "belt" and "opera" so both sounded unnatural 

and constrained. The higher pitches sounded much more natural for both so were much easier to 

distinguish between [ possibly related to her personal experience - she thinks she finds it difficult 

to sing at lower pitches because she has no formal training]. 
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