

Access to Electronic Thesis

Author:

Alejandro Carlos Torres-Echeverria

Thesis title: Modelling and Optimization of Safety Instrumented Systems Based on
Dependability and Cost Measures.

Qualification: PhD

Date awarded: 01/06/2009

This electronic thesis is protected by the Copyright, Designs and Patents Act 1988.
No reproduction is permitted without consent of the author. It is also protected by
the Creative Commons Licence allowing Attributions-Non-commercial-No
derivatives.

This thesis was embargoed until 01/06/2010

ii

SUMMARY

This thesis is centred on modelling and multi-objective optimization of Safety Instrumented

Systems (SIS) in compliance with the standard IEC 61508. SIS are in charge of monitoring that

the operating conditions of a plant remain under safe limits and free of hazards. Their

performance is, therefore, critical for the integrity of people around the plant, the environment,

assets and production.

A large part of this work is devoted to modelling of SIS. Safety integrity and reliability

measures, used as optimization objectives, are quantified by the Average Probability of Failure

on Demand (PFDavg) and the Spurious Trip Rate (STR). The third objective is the Lifecycle

Cost (LCC); ensuring system cost-effectiveness. The optimization strategies include design and

testing policies. This encompasses optimization of design by redundancy and reliability

allocation, use of diverse redundancy, inclusion of MooN voting systems and optimization of

testing frequency and strategies.

The project implements truly multi-objective optimization using Genetic Algorithms. A

comprehensive analysis is presented and diverse applications to optimization of SIS are

developed. Graphical techniques for presentation of results that aid the analysis are also

presented.

A practical approach is intended. The modelling and optimization algorithms include the level

of modelling detail and meet the requirements of IEC 61508. The focus is on systems working

in low-demand mode. It is largely based on the requirements of the process industry but

applicable to a wide range of other process.

Novel contributions include a model for quantification of time-dependent Probability of Failure

on Demand; an approximation for STR; implementation of modelling by Fault Trees with

flexibility for evaluation of multiple solutions; and the integration of system modelling with

optimization by Genetic Algorithms. Thus, this work intends to widen the state-of-the-art in

modelling of Probability of Failure on Demand, Spurious Trip Rate and solution of multi-

optimization of design and testing of safety systems with Genetic Algorithms.

iii

Statement of originality

Unless otherwise stated in the text, the work described in this thesis has been carried out solely

by the candidate. None of this work has already been accepted for any other degree, nor is it

being concurrently submitted in candidature for any degree.

Candidate:
Alejandro C. Torres-Echeverría

Supervisor: Prof. Haydn Thompson

iv

Acknowledgements

I would like to thank my supervisor Prof. Haydn Thompson for his guidance, support and patience

through the development of my research project. He has certainly been a fundamental contributor to the

completion of my PhD.

A very special mention and huge thanks to Prof. Sebastián Martorell from the Polytechnic University of

Valencia, Spain. He provided a helpful and generous hand in difficult times, and enriched decisively my

knowledge and contributed to my self-confidence in the topics exposed in this thesis, and thus my

formation as researcher. I enjoyed very much the vivid discussions and exchange of ideas with him,

which led to the publication of several joint articles.

I would also like to thank my friend Dr. Salem Adra for his guidance with Genetic Algorithms and his

friendship.

This has been a large and eventful journey, which I have shared with many people that certainly made it

enjoyable. To mention everyone here would be an impossible task, and I thank them all. However, I

should make a special mention for my friend Dr. Miguel Gamma with whom I went through this life-

changing journey, growing together and forming an irreplaceable friendship in the pathway. My life has

also been enriched by my friends Jandia Martínez, Hector Barron and Guillermo Valencia, for what I am

thankful and indebted. My friend of many years Juan Adriano has also somehow shared this journey with

me. It has been stimulating to have a good friend that since the years of high school have been following

parallel paths even without intention, thus growing together. He also provided an enormous uninterested

helping hand in difficult financial times; helping especially to make possible those fabulous travels to

different parts of the world! I would also like to mention my friend and former housemate Raquel

Llorente, who was my accomplice during my first year at Sheffield and taught me to love everything

Spanish.

My beloved Jarus has been a supportive and loving partner and my shinning sun during this journey. She

has made my stay in Sheffield beautiful, and changed my life filling it with love and tenderness. Thanks

to you love.

I would also like to thank my beloved mother and my entire family, who are always in my thoughts

wherever I go.

Finally, I want to acknowledge the support of the Mexican Council for Science and Technology,

CONACyT, that funded this work making it thereby possible.

v

To my beloved Jarus...

For filling my life with love and tenderness

vi

CONTENTS

SUMMARY ii

Acknowledgements iv

List of acronyms and abbreviations xii

Nomenclature xv

INTRODUCTION 1

1. OVERVIEW 1

2. MOTIVATION 1

3. STATEMENT OF THE PROBLEM 2

4. OBJECTIVES 3

5. MAIN NOVEL CONTRIBUTIONS 4

6. PUBLICATIONS 4

7. THESIS OUTLINE 5

CHAPTER 1
SAFETY INSTRUMENTED SYSTEMS AND RAMS+C
MODELLING

8

1.1. SAFETY INSTRUMENTED SYSTEMS 8

1.2. HARDWARE FAULT TOLERANCE 10

1.3. ARCHITECTURES FOR SIS 13
1.3.1. Voting architectures 13
1.3.2. Technologies used for SIS 15
1.3.3. Energized and de-energized systems 16

1.4. RELIABILITY AND SAFETY CONCEPTS 16
1.4.1. Reliability 18
1.4.2. Failure rate 18
1.4.3. Availability 19
1.4.4. System reliability 19
1.4.5. Diagnostic coverage 21
1.4.6. Common Cause Failure 21
1.4.7. Failure classification 21
1.4.8. Random hardware failure modes 22
1.4.9. Risk reduction 23
1.4.10. Probability of Failure on Demand 24

vii

1.4.11. Spurious Trip Rate 25

1.5. REQUIREMENTS OF THE STANDARD IEC 61508 26

1.6. DEPENDABILITY MODELLING 29
1.6.1. Modelling methods 29
1.6.2. Overview of modelling of PFD for SIL analysis 31
1.6.3. Overview of modelling of STR for quantification of safe failures 33
1.6.4. Fault Tree Analysis 34

1.7. LIFECYCLE COST MODELLING 36

1.8. SAFETY INSTRUMENTED SYSTEM OPTIMIZATION ISSUES 39

CHAPTER 2
RAMS+C OPTIMIZATION AND GENETIC ALGORITHMS 41

2.1. THE MULTI-OBJECTIVE OPTIMIZATION PROBLEM 41
2.1.1. The general problem 41
2.1.2. The multi-objective optimization problem for Safety Instrumented Systems 43
2.1.3. Pareto dominance and optimality 44

2.2. MULTI-OBJECTIVE OPTIMIZATION TECHNIQUES 46
2.2.1. Treating the multi-objective problem as a single-objective problem 46
2.2.2. Multi-objective optimization 47

2.3. OPTIMIZATION OF RAMS+C WITH GENETIC ALGORITHMS 50

2.4. PRINCIPLES OF GENETIC ALGORITHMS 60
2.4.1. Working principle 60
2.4.2. Development of Genetic Algorithms 62
2.4.3. The generic Genetic Algorithm 63

2.4.3.1. Initial population 63
2.4.3.2. Evaluation (fitness allocation) 64
2.4.3.3. Selection (for variation) 65
2.4.3.4. Crossover 67
2.4.3.5. Mutation 69
2.4.3.6. Reinsertion 71
2.4.3.7. Termination criteria 72

2.4.4. Multi-objective Genetic Algorithms performance questions 72
2.4.4.1. Exploration vs exploitation 72
2.4.4.2. Proximity (convergence) 72
2.4.4.3. Diversity 73

2.5. CONCLUDING REMARKS 73

CHAPTER 3
OPTIMIZATION OF SIS DESIGN WITH PARALLEL
REDUNDANCY

75

3.1. OPTIMIZATION OF SAFETY SYSTEM’S SPECIFICATIONS 75

3.2. FAULT TREES WITH HOUSE EVENTS 76

3.3. THE LIFECYCLE COST MODEL 77

3.4. FONSECA & FLEMING MULTI-OBJECTIVE GENETIC ALGORITHM 80
3.4.1. Pareto-based ranking 80

viii

3.4.2. Fitness allocation 81
3.4.3. Presentation of results 83

3.5. DESCRIPTION OF THE APPLICATION PROBLEM 83

3.6. MODELLING AND QUANTIFICATION 87

3.7. IMPLEMENTATION OF THE OPTIMIZATION ALGORITHM 89

3.8. DISCUSSION OF RESULTS 91

3.9. CONCLUDING REMARKS 99

CHAPTER 4
OPTIMIZATION OF DESIGN WITH DIVERSE REDUNDANCY 102

4.1. COMMON CAUSE FAILURE 102
4.1.1. The phenomenon of CCF 102
4.1.2. CCF modelling 103
4.1.3. Quantification of CFF at system level 105
4.1.4. Optimization considering CCF 108

4.2. DIVERSITY 109
4.2.1. The role of diversity against CCF 109
4.2.2. Diversity quantification 110

4.3. DESCRIPTION OF THE APPLICATION PROBLEM 111

4.4. QUANTIFICATION OF DEPENDABILITY OBJECTIVES 114
4.4.1. Fault Tree Analysis 114
4.4.2. Computer code for solving fault trees 116

4.5. THE LIFECYCLE COST MODEL 118

4.6. IMPLEMENTATION OF THE OPTIMIZATION ALGORITHM 119

4.7. DISCUSSION OF RESULTS 121
4.7.1. Architectures and their performance 121
4.7.2. Discussion of diversity 124

4.8. CONCLUDING REMARKS 128

CHAPTER 5
MODELLING AND OPTIMIZATION OF PROOF TESTING
POLICIES

130

5.1. OVERVIEW OF TESTING MODELLING AND OPTIMIZATION 130
5.1.1. Testing modelling 130
5.1.2. Testing optimization with Genetic Algorithms 133
5.1.3. Consideration of testing adverse effects 134

5.2. PROOF TESTING PRACTICES IN THE PROCESS INDUSTRY 135

5.3. TESTING BASIC CONCEPTS 137
5.3.1. Mean test cycle 137
5.3.2. Test Strategies 138

ix

5.4. PFD TIME DEPENDENT MODEL 139
5.4.1. The PFD(t) baseline model 139
5.4.2. Inclusion of the effect of automatic diagnostics 140
5.4.3. The contribution of independent failures 141
5.4.4. The contribution of Common Cause Failure 142
5.4.5. Quantification of the average PFD 146

5.5. APPLICATION EXAMPLE 146
5.5.1. Influence of the test strategy 147
5.5.2. Influence of CCF 148
5.5.3. Influence of the diagnostic coverage 150

5.6. THE MULTI-OBJECTIVE PROOF TESTING POLICY PROBLEM 151

5.7. MODULARIZATION OF FAULT TREES WITH THE PFD(T) MODEL 152

5.8. SPURIOUS TRIP RATE MODEL 154

5.9. ELITIST NON-DOMINATED SORTING GENETIC ALGORITHM II 155
5.9.1. Non-domination sorting for ranking 156
5.9.2. Crowding distance density estimation 156
5.9.3. Crowded-comparison operator 157
5.9.4. The complete algorithm 157
5.9.5. Controlled elitism 159

5.10. APPLICATION CASE 160
5.10.1. Description of the problem and approach 160
5.10.2. Problem modelling 162
5.10.3. Implementation of the Genetic Algorithm 163

5.11. DISCUSSION OF RESULTS 165

5.12. CONCLUDING REMARKS 169

CHAPTER 6
MODELLING AND OPTIMIZATION OF SIS INCLUDING MooN
VOTING ARCHITECTURES

171

6.1. OVERVIEW OF MOON VOTING ARCHITECTURES 171
6.1.1. Effects of introducing voting architectures 172
6.1.2. Modelling of MooN architectures 173
6.1.3. Optimization with MooN systems 175

6.2. MODELLING PFD FOR MOON ARCHITECTURES 176
6.2.1. Previous considerations 176
6.2.2. Bypassing philosophy during test 177
6.2.3. Reduction of fault trees 180
6.2.4. CCF during test 181
6.2.5. Reconfiguration of fault trees with bypasses 182
6.2.6. Estimation based on first-order cut sets 185
6.2.7. Estimation of PFD considering null CCF 188
6.2.8. Application to the PFD(t) model 189
6.2.9. Application example 193

6.3. MODELLING STR FOR MOON ARCHITECTURES 194
6.3.1. Effects of bypass on the STR 194
6.3.2. Reconfiguration of STR fault trees with bypasses 194
6.3.3. Probability of safe failures 198

x

6.3.4. Quantification of STR modified during test 199
6.3.5. Test-induced STR 200
6.3.6. Application example 204

6.4. APPLICATION TO OPTIMIZATION OF SYSTEM DESIGN 205
6.4.1. Description of the problem 205
6.4.2. Implementation of the solution 206
6.4.3. Discussion of results 207

6.5. APPLICATION TO OPTIMIZATION OF TESTING POLICIES 212
6.5.1. Description of the problem 212
6.5.2. Implementation of the solution 213
6.5.3. Discussion of results 213

6.6. CONCLUDING REMARKS 219

CHAPTER 7
CONCLUDING REMARKS 222

7.1. SCOPE OF THE THESIS 222

7.2. OPTIMIZATION DESIGN WITH PARALLEL REDUNDANCIES 223

7.3. OPTIMIZATION OF DESIGN WITH DIVERSE REDUNDANCY 225

7.4. OPTIMIZATION OF TESTING POLICIES 226

7.5. OPTIMIZATION OF DESIGN AND TEST WITH MOON VOTING ARCHITECTURES 228

7.6. IMPLEMENTATION OF THE GENETIC ALGORITHM 231

7.7. VISUALIZATION OF OPTIMAL SOLUTIONS 232

7.8. IMPORTANCE OF MULTI-OBJECTIVE OPTIMIZATION OF SIS AND
APPLICABILITY OF THE METHODOLOGY

234

7.9. MAIN ACHIEVEMENTS OF THE THESIS 237

7.10. FUTURE WORK 238

REFERENCES 244

APPENDIX A
EXTENDED TOPICS IN RELIABILITY AND SAFETY 254

A.1. DETAILED REVIEW OF DEPENDABILITY MODELLING 254
A.1.1 Modelling methods 254
A.1.2. Modelling PFD for SIL analysis 256
A.1.3. Modelling of STR 259
A.1.4. Fault Tree Analysis 261

A.2. CCF MODELLING 265

A.3. REVIEW OF MOON ARCHITECTURES 268
A.3.1. Definition of MooN architectures 268
A.3.2. Advanced voting techniques in NMR systems 270

xi

A.3.3. Modelling of 1oo2D systems 271

APPENDIX B
ADVANCED TOPICS IN GENETIC ALGORITHMS 272

B.1. GENETIC DRIFT AND NICHING 272

B.2. CONSTRAINT HANDLING 272

B.3. MULTI-CRITERIA DECISION-MAKING 273

B.4. ADVANCED TOPICS IN THE FONSECA & FLEMING MOGA 274
A.4.1. Sharing 274
A.4.2. Niching by fitness sharing 275
A.4.3. Mating restriction 275
A.4.4. Articulation of preferences 276

B.5. DETAILED PROCEDURES IN THE NSGA-II 278
A.5.1. Non-dominated sorting 278
A.5.2. Crowding distance density estimation 278
A.5.3. Controlled Elitism 279

xii

LIST OF ACRONIMS AND ABBREVIATIONS

ALARP As Low As Reasonably Practicable
AOT Allowed Outage Time
API American Petroleum Institute
ARC ARC Advisory Group
BDD Binary Decision Diagram
BLX- Blend Crossover
BP British Petroleum
CCF Common Cause Failure
CCPS Center for Chemical Process Safety
CMF Common Mode Failure
CRelA Continuous Reliability Allocation
CS Cut Set
CSU Critical Safety Unavailability
DDC Dangerous Detected Common (cause failure)
DDN Dangerous Detected Normal (independent failure)
DI Diversity Index
DM Decision Maker
DrelA Discrete Reliability Allocation
DTU Unavailability due to Test and Maintenance Downtime
DUC Dangerous Undetected Common (cause failure)
DUN Dangerous Undetected Normal (independent failure)
EA Evolutionary Optimization
EIR Extended Intermediate Recombination
ELR Extended Line Recombination
ESD Emergency Shutdown System
F&G Fire and Gas detection system
FC Final Control element
FCT Fault Contribution Tree
FDS Firewater Deluge System
FSC Formal Software Construction Limited
FT Fault Tolerance
FTA Fault Tree Analysis
GA Genetic Algorithm
HID Hazardous Installations Directory
HIPS High Integrity Protection System
HPIS High Pressure Injection System
HSE Health and Safety Executive
I/O Input/Output
IEC International Electrotechnical Commission
IP International Practice
ISA The Instrumentation, Systems and Automation Society
k-out-of-n:F An n-component system that fails when k components are Faulty
k-out-of-n:G An n-component system that success when k components are Good
LAC Life Acquisition Cost
LCC Lifecycle Cost
LS Logic Solver
LSC Life Support Cost
LUC Life Unavailability Cost
MA Markov Analysis
MATLAB® MATrix LABoratory (programming language)
MCDM Multi-Criteria Decision Making
MCS Minimal Cut Set
MDT Mean Down Time
MGL Multiple Greek Letter (model)
MO Multi-Objective
MOGA Multi-Objective Genetic Algorithm (Fonseca & Fleming's)
MooN M-out-of-N redundant arrangement

xiii

MooND M-out-of-N with enhanced Diagnostics
MTBF Mean Time Between Failures
MTTF Mean Time To Fail
MTTR Mean Time to Restoration
NORSOK The Competitive Standing of the Norwegian Offshore Sector (in Norwegian)
NPGA Niched-Pareto Genetic Algorithm
NPP Nuclear Power Plant
NSGA-II Non-dominated Sorting Genetic Algorithm II
NTI Norwegian Technology Standards Institution (in Norwegian)
NUREG Standard of the US Nuclear Regulatory Commission
OLF Standard of the Norwegian Oil Industry Association
PAES Pareto Archived Evolution Strategy
PDS Reliability of computer based systems (in Norwegian)
PES Programmable Electronic System
PFD Probability of Failure on Demand
PFDavg Average Probability of Failure on Demand
PFDmax Maximum Probability of Failure on Demand
PLC Programmable Logic Controller
PRA Probabilistic Risk Analysis
PT Pressure Transmitter
PTIF Systematic Test-independent failures
PWR Pressurized Water Reactor
RAMS+C Reliability, Availability, Maintainability and Safety plus Cost
RBD Reliability Block Diagram
RedA Redundancy Allocation
RelA Reliability Allocation
RP Recommended Practice
RPIS Reactor Protection Instrumentation System
RPS Random Probability Shock (model)
RRF Risk Reduction Factor
RWS Roulette Wheel Selection
S&M Surveillance and Maintenance
SBX Simulated Binary Crossover
SD Safe Detected
SDC Safe Detected Common (cause failure)
SDN Safe Detected Normal (independent failure)
SE Simplified Equations
SFF Safe Failure Fraction
SIL Safety Integrity Level
SINTEF The Foundation for Scientific and Industrial Research (in Norwegian)
SIS Safety Instrumented System
SO Single-Objective
Sol # Solution number
SPEA2 Strength Pareto Evolutionary Algorithm 2
SRS Stochastic Universal Selection
SSGA Steady State Genetic Algorithm
SSPR Stochastic Sampling with Partial Replacement
SSR Stochastic Sampling with Replacement
STI Surveillance Technical Specifications
STR Spurious Trip Rate
SUC Safe Undetected Common (cause failure)
SUN Safe Undetected Normal (independent failure)
SUS Stochastic Universal Sampling
SUT Safe failures Undetected by diagnostics but detected by proof Test
T&M Test and Maintenance
TI Test Interval
TMR Triple Modular Redundant
TS Test Strategy
TSM Technical Specifications and Maintenance
TT Temperature Transmitter

xiv

VEGA Vector Evaluated Genetic Algorithm
VPF Value of Preventing a Fatality

xv

NOMENCLATURE

A(t) Availability (time dependent)
C1oo(N-1) Beta modification factor for N-1 components (M=1)
Ca(x) Yearly cost of accidents
CACC Cost of an accident
CCFAB CCF of components A and B
CCFN CCF on N components
CCM, CCM

i Corrective maintenance cost, corrective maint. cost of ith component
Ccons Consumption cost per year
Cdesign Design cost
CHAZARD Cost of hazard
Chr Repair hourly cost
Chs Cost of production per hour
Cht Test hourly cost
Cinst/comm Installation & commissioning cost
Ci

spares Spares cost per repair (%purchase cost/event) of ith comp.
CMooN Beta modification factor for MooN architecture
CN Sum of all CMooN factor with equal N (Eq. (6.3))
Componentsi Number of components of the ith subsystem
COP Operation cost
CPM, CPM

i Preventive maintenance cost; preventive maint. cost of ith component
CPROC Procurement cost
Cpurchase, Ci

purchase Acquisition cost, acquisition cost of the ith component
CRISK Risk cost
CSD Cost per spurious shutdown
CSP Average cost of expenditure of spares per repair
CStart-up Cost of first start-up
CSTR Cost of production loss by spurious trip rate
CT&CM Cost of test and corrective maintenance
CT, CT

i Proof test cost; proof test cost of ith component
Ctest Constant value of PFDind during test
CTMooN CMooN factor modified during test
cu Cost of outage time
D Dangerous
DDC Dangerous Detected Common (cause failure)
DDN Dangerous Detected Normal (independent failure)
DI Diversity Index
d, dij Distance between two solutions ij (in the objective space)
di, dm

i Crowding distance of solution i; Crowding distance of the mth objective
DTU Unavailability due to Test and Maintenance Downtime
DUC Dangerous Undetected Common (cause failure)
DUN Dangerous Undetected Normal (independent failure)
F Number of failed units
F(ACC|PFDavg) Accident frequency without the SIS per year
f(r) Assignment function in the MOGA
f(t) Probability of failure
F(t) Unreliability (time dependent)
f(x) Objective function vector
fi Fitness of the ith individual
Fi, fi Non-dominated front ith
fj

CM Repair frequency of ith component
fk

(i) Objective function value of the ith individual
fk

max Maximum objective value of the kth objective
fk

min Minimum objective value of the kth objective
Fr Frequency of safe failure
FT Fault tolerance
FTR Tolerable risk frequency
G Generational gap

xvi

g(x) Vector of constraints
HN modification factor for independent failures of a N-component system
i ith component being tested or last tested subscript (in the PFD(t) model)
i Subsystem subscript
Ii Importance measure for cut set i
j Technology type subscript
K Staggering factor
K Total number of non-dominated fronts
l Chromosome length
l, ll Lower limit
LCC Lifecycle Cost
LCCT&CM Test and corrective maintenance related LCC
m Factor used in mutation for real numbers (Eq. (2.13))
M, m Points defining a parallelogram in the objective space
Mij Maintenance frequency of ij component
mod Modulo operator
mshr Mutation range shrinking factor
n Number of point evaluations (in Eq. (5.20))
n Number of components in a redundant subsystem
n Number of objectives
n Degree of diversity in a system (CCF Boundary model)
nci Niche count
ni Number of individuals permitted from the ith front
np Dominance count
N, Number of components of a subsystem
Ni Number of components of the ith subsystem
Nij Number of ij components
Npop Size of population
Ns Number of subsystems
Ntests Number of tests
Ntrips Number of spurious trips
P Test-staggering multiplication factor
p Member of a population
p Probability factor used in mutation for real numbers (Eq. (2.13))
P() Probability of failure
P(A) Probability of event A
P(Ci) Probability of cut set i occurring
P, P0 Array of the parent population, Initial (parent) population
pc Crossover probability
PFD Probability of failure on demand
PFD(t), PFD(ti) Time-dependent PFD; time-dependent PFD point evaluation
PFDavg Average Probability of failure on demand
PFDCCF PFD from CCF
PFDIND Total PFD by combination of independent failures
PFDind i(t) PFD(t) from independent failure of the ith component
PFDmax Maximum (peak) PFD(t)
PFDMooN Total PFD of a MooN system
PFDTOT(t) Total time-dependent PFD
pfn nth variable of the father chromosome
pi

(t) Number of individuals at generation t
pm Mutation probability
pmn nth variable of the mother chromosome
pnew1i ith gene of the offspring chromosome number 1
pnewi Mutated individual ith
pnewn nth variable of an offspring
Ppop Fixed size of parent population
Pr-trip Probability of test-induced spurious trip
Psf Probability of safe failure
Psf(CCF) Probability of safe CCF
Psf(SD) Probability of safe detected failure

xvii

Psf(SN) Probability of safe normal (independent) failure
Psf(SU) Probability of safe undetected failure
Psf(SUT) Probability of safe failure undetected by diagnostics but detected by proof test
Pt Parent population at generation t
PVF Factor by present value
q Constant unavailability symbol; unreliability
Q Array of the offspring population
Q(A) Probability of independent failure of component A
Q(CCF), Q(CCFN) Probability of CFF; probability of CFF of N components
Q(f) Probability of failure
Q(Ind) Probability of independent failure of one single component
Q(t) Unavailability (time dependent)
Qk/n Unavailability of k-out-of-n system
QSYS(q(t)) Probability of system unavailability
Q, Q0 Offspring population set; first offspring population
Qt Offspring population at generation t
r Reduction rate parameter for NSGA-II
r Rank value assigned to an individual
r Reliability
rangei Mutation range
rank Rank value of an individual
Redundancyi Redundancy level of the ith subsystem
rs Number indication position in RWS and SUS
ru

(t) Number of individuals preferable to xu at generation t
R Discount rate
R Random number (in crossover operation)
R(t) Reliability (time dependent)
R(x) Yearly risk contribution
Rf Reduction factor (in Eq. (2.12))
Ri Reliability of ith component
Rsys System reliability
RtN Relative time under normal operation
RtTR Relative time under test and (possible) repair
R, Rt Combined population parents+offspring; same population at generation t
s Relative fitness desired for the best individual
S Safe
S, SD Score for undetected failures; for detected failures (IEC 61508 factor method)
S Number of successful units (in a redundant arrangement)
SD Safe Detected
SDC Safe Detected Common (cause failure)
SDLOSS Cost of production loss per hour
SDN Safe Detected Normal (independent failure)
SDTime Restart time after shutdown
SFF Safe failure fraction
Sh(d) Sharing function
SIL Safety integrity level
Sk/n Probability of spurious operation of k-out-of-n system
Sp Set of solutions dominated by individual p
STR Spurious trip rate
STR STR caused by internal failure
STR -IND STR total contribution by combination of independent failures
STR -CCF STR contribution by CCF
STRN STR during normal operation
STRT Total spurious trip rate
STRtest Proof test-induced STR
STRTR STR during test and repair
SUC Safe Undetected Common (cause failure)
SUN Safe Undetected Normal (independent failure)
t Time
T Total period evaluation time (mission time)

xviii

Technologiesi Number of technologies used in the ith subsystem
TI, TIij Test interval; test interval of the ith component of the jth type
TP, Time to first test,
TP1 Time to first test of the first component
TPi Time to first test of the ith component
TPN Time to first test of the Nth component
Tr Repair time
TS Test strategy
Ts Start-up time
Tt Test time
Type Type of device as variable
u, ul Upper limit
u Objective vector of individual u
USF Unavailability by safe failure
v Objective vector of individual v
w Test interval remainder parameter
wCCF Test interval remainder parameter for CCF
wi Test interval remainder of the ith component
x, X Decision variables vector; decision space
xi ith individual
xu Individual with objective vector u
y, Y Objective function vector; objective space

Parameter for the sharing function (Eq. (A.2))
Random number in the interval [-0.25, 1.25] (only in Eq. (2.9))

i Factor used in mutation for real numbers (Eq. (2.13))
Random number in the interval [0, 1] (only in Eq. (2.8))

factor for quantification of CCF
factor modified for MooN architecture (same as MooN)

CM- factor cost modifier (P, D, I, C for purchase, design, installation, consumption)
D factor for detected failures
DD factor for dangerous detected failures
DU factor for dangerous undetected failures

DD
MooN for dangerous detected failures

DD
N-1 factor for N-1 components for dangerous detected failure

DU
MooN for for dangerous undetected failures

DU
N-1 factor for N-1 components for dangerous undetected failure

MooN factor modified for MooN architecture
SD factor for safe detected failures
SU factor for safe undetected failures
U factor for undetected failures

Factor used in mutation for real numbers (Eq. (2.11))
Difference between point M and m
Diagnostic coverage

D, Danger Diagnostic coverage for dangerous failures
S, Safe Diagnostic coverage for safe failures
ts Diagnostic coverage of proof test on safe failures

Representation of a offspring population
Failure rate

DDC
test DDC failure rate modified during test

Detected Detected failure rate
DUC

test DUC failure rate modified during test
l Lower bound failure rate
STi Test-induced spurious trip failure rate per component
C Common cause failure rate
D, Danger Dangerous failure rate
DC

N-1 Detected common cause for N-1 components
DD Dangerous detected failure rate
DDC Dangerous detected common cause failure rate
DDC

N-1 Dangerous detected CCF rate for N-1 components

xix

DDN Dangerous detected normal (independent) failure rate
DN Detected normal (independent)
DU Dangerous undetected failure rate
DUC Dangerous undetected common cause failure rate
DUC

N-1 Dangerous undetected CCF rate for N-1 components
DUN Dangerous undetected normal (independent) failure rate
N Normal (independent) failure rate
S, Safe Safe failure rate failure rate
SC Safe common cause failure rate failure rate
SD Safe detected failure rate
SDC Safe detected common cause failure rate failure rate
SDN Safe detected normal (independent) failure rate
SN Safe normal (independent) failure rate
SU Safe undetected failure rate
SUC Safe undetected common
SUN Safe undetected normal (independent)
SUTC Safe undetected by automatic diagnostics but detected by test (CCF) failure rate
SUTN Safe undetected by diagnostics but detected by test (independent) failure rate
T, Total Total failure rate
u Upper bound failure rate
Undetected Undetected failure rate

Representation of a parent population
Factor used in exponential assignment function in the MOGA

i Remaining slots
mate Mating restriction parameter
share Fitness sharing parameter (niche size)

%PCE Fraction of component purchase cost
%Safe Percentage of safe mode failures over total

1

INTRODUCTION

1. OVERVIEW

This thesis specifically addresses the modelling and optimization of Safety Instrumented

Systems (SIS) including design and testing policies. These are the most important aspects to

consider during the realization phase of the system lifecycle. It comprises a series of studies into

different aspects of SIS. The intention is to implement a practical approach that permits

application to industrial systems, and therefore it takes into account the requirements of the

international standard IEC 61508. This implies that dependability modelling must be performed

to the level of detail required by this standard. Research into reliability optimization rarely

approaches this level of detail, and therefore this work pays special attention to it. The

optimization is made using multi-objective Genetic Algorithms. Several different aspects of the

design are gradually approached and incorporated into the analysis.

2. MOTIVATION

Safety Instrumented Systems are used in a wide range of different applications. They are

employed in order to reduce risk of hazards to acceptable levels. It is known that their failure to

perform their intended function could result in loss of the assets of a company, widespread

damage to the environment, harm to personnel and people around the facilities and even loss of

life. It is therefore crucial to ensure their effective performance, which is basically achieved by

an optimal design and operation. This requires careful balance of the system benefits against its

costs, which must include the entire system lifecycle cost (not only its acquisition cost). The

system can be very efficient in terms of responding to hazardous events, but it must not be so

sensitive that it could create spurious activations. This affects the trustworthiness that the

operator places upon the system, and even its lifecycle costs. Therefore, this becomes a problem

of balancing safety and reliability, and these two in turn against cost. This is the problem

addressed in this work.

A safety instrumented system must follow a safety lifecycle in order to ensure that the required

dependability level is achieved and actually maintained during its entire operating lifetime. This

is mainly devised and executed during the realization phase of the system: that is during its

design. It is this phase that is the focus of this study, to aid the decision making process during

system design.

Introduction 2

The two main ways of ensuring the adequate system cost-effective dependability are to achieve

both an optimal design and an optimal proof test policy for its operation. These are addressed

here.

In order to give a practical approach to the study, it is based on relevant standards and current

best practice. The international standard IEC 61508 Functional safety of

electrical/electronic/programmable electronic safety-related systems (IEC, 1998-2005) aims to

provide a means of ensuring that safety is effectively reached based on functionality of

electrical, electronic or programmable electronic systems. Since IEC 61508 is a generic

document, non-specific to any industry sector, it is relevant to a large range of different sectors.

This is the main standard used as the reference in this work, although some other relevant

standards and approaches are explored as necessary.

In order to be able to achieve the objective of finding optimal designs and testing policies two

fundamental areas must be put together. First of all, an adequate comprehensive model with a

good level of resolution is required. Secondly, a powerful optimization tool capable of handling

the specific functions of the models and delivering the results is needed. This thesis thus focuses

on both the modelling and optimization aspects of safety systems.

3. STATEMENT OF THE PROBLEM

The main problem statement being addressed by this thesis is: The development of Safety

Instrumented Systems with the aim of achieving optimal designs and testing policies at the

conceptual design stage, based on the most important design objectives, using a practical

approach founded on current standards, and addressing some of the key issues .

This study is largely focussed on optimization of safety, which is the requirement of IEC 61508.

However, reliability and cost are fundamental measures that must also be addressed during the

system realization. This makes achievement of well balanced, safe, reliable and cost-effective

systems possible. Therefore, the project bases the system optimization on the following three

main objectives:

Average Probability of Failure on Demand (PFDavg). This is a measure of loss of safety by

unavailability of the system (by dangerous failures), and determines the SIL achieved.

Spurious Trip Rate (STR). This addresses the issue of reliability, and has an important

impact on the trustworthiness that the user places upon the system and the overall system

life cycle cost since it results in loss of production.

Introduction 3

Life Cycle Cost (LCC). Complete costing of the overall system life cycle, comprising

design, procurement and implementation, operation and risk costs.

The project aims to integrate a methodology that gradually addresses different issues that affect

and enhance the overall final design, namely:

1. Reliability and redundancy allocation for parallel architectures.

2. Design with diversity as a countermeasure to Common Cause Failure and its effects.

3. Formulation of the most effective proof test policies.

4. System design with MooN voting architectures for a better balance of objectives.

Genetic Algorithms are one technique of evolutionary computation which mimics the natural

selective process of evolution for solution of optimization problems. Different from other

optimization methods, they present several advantages: They are very useful for solving

complex, high dimensional, discrete, non-linear and discontinuous problems, with capacity to

handle integer variables. GAs are able to deal with problems where the objective function is not

explicit (such as those generated by fault tree analysis). In addition, they provide the decision

maker a pool of good optimal solutions. Genetic Algorithms are therefore the tool used for

solution of the optimization problems herein.

4. OBJECTIVES

To develop a comprehensive study of multi-objective optimisation of safety instrumented

systems for the realization phase based on important dependability measures and lifecycle cost.

Particular objectives:

To develop the optimization for safety systems in compliance with relevant standards and

current best practices

To incorporate safety, reliability and lifecycle cost into the design optimization.

To integrate safety and reliability modelling techniques with lifecycle costing into

optimization by multi-objective Genetic Algorithms.

To explore the most relevant design and testing issues (e.g. Common Cause Failure (CCF),

testing, voting) during the optimization.

To provide an integrated tool for safety system analysis.

Introduction 4

5. MAIN NOVEL CONTRIBUTIONS

Application of multi-objective Genetic Algorithms to optimisation of safety systems

considering the level of modelling detail required by IEC 61508.

Development of an integrated methodology compliant with IEC 61508 and focussed on the

needs of the process industry.

Development of a time dependent PFD model for inclusion of test, CCF and diagnostic

coverage.

Development of a Spurious Trip Rate model including testing adverse effects.

Inclusion of Common Cause Failure analysis and reduction by redundancy with diversity.

Optimization of testing policies with an adequate level of modelling detail and based on

current best practice.

Development of a diversity index to measure diverse redundancy effects.

Study of MooN system s reconfiguration during test dependant upon the operation

philosophy.

Application of Fonseca and Fleming MOGA (Fonseca & Fleming, 1993) and NSGA-II

(Deb et al., 2000, 2002) for RAMS+C optimization (Martorell et al., 2005a).

6. PUBLICATIONS

Journal articles

Torres-Echeverria A.C., Thompson H.A. Multi-objective genetic algorithm for optimization

of system safety and reliability based on IEC 61508 requirements: a practical approach.

Proceedings of the IMechE Part O: Journal of Risk and Reliability 2007, Vol 221(O3),

pp.193-205.

Torres-Echeverria A.C., Martorell S., Thompson H.A. Design optimization of a safety

instrumented system based on RAMS+C addressing IEC 61508 requirements and diverse

redundancy. Reliability Engineering and System Safety 2009;94(2):162-179.

Torres-Echeverria A.C., Martorell S., Thompson H.A. Modelling and optimization of proof

testing policies for safety instrumented systems. Reliability Engineering and System Safety

2008. Article in press. doi:10.1016/j.ress.2008.09.006.

Torres-Echeverria A.C., Martorell S., Thompson H.A. Modelling and optimization of safety

instrumented systems with MooN voting architectures. In preparation, to be submitted to

Reliability Engineering and System Safety.

Introduction 5

Conference and symposium contributions

Torres-Echeverria A.C. and Thompson H.A. Multi-objective genetic algorithm for

optimization of system safety and reliability based on IEC 61508 requirements: a practical

approach. Procs. 17th Advances in Risk and Reliability Technology Symposium AR2TS,

Loughborough University, Loughborough, UK, April 2007.

Torres-Echeverria A.C., Martorell S. and Thompson H.A. Optimization of RAMS+C for

safety instrumented system design with diverse redundancy. In: Aven A & Vinnem JE (eds),

Procs. European Safety and Reliability Conference ESREL 07. Stavanger, Norway June

2007.

Torres-Echeverria A.C., Martorell S., Thompson H.A. Modelling test strategies effects on

the Probability of Failure on Demand for Safety Instrumented Systems. In: Martorell S.

(ed), Procs. European Safety and Reliability Conference ESREL 08. Valencia, Spain,

September 2008.

Torres-Echeverria A.C., Martorell S., Thompson H.A. Optimization of proof testing policies

for safety instrumented systems using multi-objective genetic algorithms. In: Martorell S.

(ed), Procs. European Safety and Reliability Conference ESREL 08. Valencia, Spain,

September 2008.

7. THESIS OUTLINE

In general, the thesis firstly provides the theoretical basis and literature review behind the work

(Chapters 1 and 2), it then presents the bulk of the research (Chapters 3 to 6), and finally

presents the concluding remarks. Since the research work comprises a series of studies on

different issues of safety instrumented systems, chapters 3 to 6 are practically self-contained

units that have this structure: Introductory theory, exposition of the approach, methodology,

modelling, optimization case and presentation and discussion of results.

The outline of the thesis is a follows:

Chapter 1 presents the basic theory of Safety Instrumented Systems and system modelling

necessary to understand the material in the thesis. A brief introduction to hardware fault

tolerance and reliability theory is given. The chapter then describes the most important

requirements of the standard IEC 61508. The most relevant models for dependability, and then

for lifecycle costing, are described and analyzed. Additional background material is provided in

Appendix A. After this general overview, the most important issues related to design and testing

of safety instrumented systems are discussed.

Introduction 6

Chapter 2 introduces the multi-objective optimization problem, followed by a review of

optimization techniques. It then makes an account of optimization of RAMS+C, in both design

and testing, putting special emphasis on application using Genetic Algorithms. The second part

of the chapter focuses on the theory behind Genetic Algorithms and an account of their most

important features. Additional topics on GAs are discussed in Appendix B.

Chapter 3 presents a preliminary optimization case. This study introduces the optimization of

the parallel architectures design, being a problem of reliability and redundancy allocation plus

test intervals. The multi-objective optimization problem is solved by the Fonseca & Fleming

MOGA, which is described here. Dependability modelling is made using fault tree analysis with

house events, and the first lifecycle cost model is formulated. This is used throughout the entire

thesis with relevant adaptations in subsequent chapters.

Chapter 4 analyzes the system design optimization introducing diverse redundancy as a defence

against Common Cause Failure. Since there are several different technological choices per

subsystem, the fault trees become much more complex, and thus a cut set reduction algorithm is

implemented for the dependability measures quantification. The factor model is analyzed and

applied together with some modifications. Finally, the application case compares the results of

using diverse and non-diverse implementations.

Chapter 5 investigates the optimization of proof testing policies for Safety Instrumented

Systems. A comprehensive review of the current standards and practice is given, which guides

the optimization problem. In order to include its effects realistically a new model for time

dependent probability of failure on demand has been developed, and it is presented here. The

effects of testing strategies and intervals are analyzed, being the variables used during the

optimization. The multi-objective algorithm NSGA-II is thoroughly introduced in this chapter.

The results of this are presented towards the end of the chapter.

Chapter 6 studies the introduction of MooN voting redundant architectures in the optimization

of SIS. Here the relevant parts of the entire methodology previously developed are integrated,

including the PFD time dependent model of Chapter 5. A large part of the chapter is dedicated

to the extension of the PFD(t) and STR models for inclusion of MooN voting architectures. Two

application cases are studied, one of optimization of design and another one of testing policies.

The benefits of introducing MooN voting subsystems in both optimization of system design and

proof testing are addressed, looking for the achievement of better balanced solutions with

respect to the three objectives.

Introduction 7

Finally, Chapter 7 presents the concluding remarks. The chapter makes a summary of the thesis,

giving a revision of the optimization approaches and their resolution. It also comments on the

importance of multi-objective optimization of Safety Instrumented Systems. To conclude, what

are considered to be the main achievements of the thesis are highlighted and the possible

avenues for future work are outlined.

8

CHAPTER 1

Safety Instrumented Systems and RAMS+C modelling

Safety Instrumented Systems (SIS) are widely used in several industry sectors. The name is

specific to the process industry, but similar systems are used for other sectors, such as the

nuclear industry. The resilience of SIS against faults is provided through fault tolerant

architectures. These subjects are reviewed in this chapter. The analysis of safety systems relies

largely on reliability theory, on which dependability analysis is based. The most influential

international standard for safety systems in general is IEC 61508, so its analysis is presented

here. Following this, the modelling of dependability and lifecycle cost is reviewed, together

with the main issues concerning SIS.

1.1. SAFETY INSTRUMENTED SYSTEMS

It is known that the failure of a safety critical control system to perform its intended function

could result in loss of the assets of a company, widespread damage to the environment, harm to

personnel and people around the facilities, and even loss of life. When safety is achieved by

means of the correct operation of a system or equipment, e.g. a safety instrumented system, it is

said that functional safety is being used.

Safety Instrumented Systems (SIS) pertain to the generic category established by the

international standard IEC 61508 (IEC, 1998-2005) as safety-related systems. Safety

Instrumented System is a term more currently used for process industry. It is defined by IEC

61511 (IEC, 2003), a standard derived from IEC 61508 specific for this sector, as an

instrumented system used to implement one or more safety instrumented functions. A SIS is

composed of any combination of sensors, logic solver and final elements . Notice that all

instruments located in the plant grounds are designated with the generic name of field

instruments; basically the sensors and final elements: transmitters, valves, etc.

A SIS has the objective of detecting and preventing plant hazardous conditions, which if they

were not mitigated could develop into catastrophic events which could have consequences such

as loss of assets and production, widespread damage to the environment and loss of life. Gruhn

& Cheddie (1998) give another definition: Safety instrumented systems are those designed to

respond to conditions of a plant that may be hazardous in themselves or if no action were taken

could eventually give rise to a hazard. They must generate the correct outputs to prevent the

Chapter 1. Safety Instrumented Systems and RAMS+C modelling 9

hazard or mitigate the consequences . In the process industry, SIS are usually implemented as

Emergency Shutdown Systems (ESD), although they might be used for other applications, such

as fire and gas detection (F&G). Each function that a SIS implements is called a safety

function . They are normally implemented in low-demand mode of operation (i.e. they are in

standby and operate only as a response of a demand, not continuously), with their architectures

limited to a few practical options.

A process plant usually has several layers of protection. A layer of protection is a measure put

in place as a defence to reduce the risk presented by the plant. It performs its function in a

hierarchical fashion, with the aim of maintaining the safe condition of the plant after the

previous protection layer has failed to do so. Examples of protection layers can be: the basic

process control system, the ESD system, the pressure relief valves and the active and passive

fire protection systems (Fig. 1.1). These protection layers usually would take action in the

mentioned order.

Basic process control system

PROCESS PLANT

Pressure relief devices

ESD system

F&G detection system

Passive fire protection facilities

On-site emergency response plan

Safety
Instrumented

Systems

Figure 1.1. Position of SIS with the plant protection layers

An example of SIS used in this thesis is a protection system against high pressure and

temperature of a chemical reactor (Fig. 1.2). The system is composed of four subsystems:

Temperature measurement and transmitter (TT), pressure measurement and transmitter (PT), a

safety controller or logic solver (LS) and a valve acting as the final control element (FC). Upon

detection of either high temperature or pressure the safety system cuts the reactor supply off in

order to prevent a runaway reaction. A pertinent clarification is that a transmitter usually

includes the measurement sensor plus a transmission system for the measurement signal. This is

the reason why in the safety function only transmitters are mentioned sometimes, omitting that

Chapter 1. Safety Instrumented Systems and RAMS+C modelling 10

it includes the sensor in the same device. Transmitters have the function to send the

measurement signal to the control room, where the controller is usually located.

Pressure
measurement

Safety
controller

FC1

Control valve

Chemical
reactor

LS1

Temperature
measurement

Process
fluids

Product

PT1

TT1

Product

Figure 1.2. Example of SIS: Chemical reactor protection system.

The design of SIS entails achievement of some minimum levels of safety integrity, as required

by IEC 61508. The safety integrity requirements include the restriction of the system probability

of failure on demand (PFDavg) to a maximum target limit and the compliance with some

minimum levels of fault tolerance. Fault tolerance, the capacity of a system to prevent single

faults escalating into system failures, is usually achieved by some form of redundancy. The

most basic forms of redundancy are hardware and software redundancy. The implementation of

hardware redundancy implies the use of extra equipment or parts, which the system would not

normally need to perform its function, to tolerate potential faults.

Plain identical hardware redundancy may, however, introduce some collateral issues that cannot

be overlooked, since they may lead to overoptimistic designs. Several identical redundant

components are sensitive to stress factors that may lead to their simultaneous failure. This is

known as Common Cause Failure (CCF). In consequence, CCF can be counteracted by

implementing redundancy with components technologically diverse components; i.e. diversity

in redundancy.

1.2. HARWARE FAULT TOLERANCE

Safety related systems must achieve high levels of dependability. In order to ensure that

dependability attributes (e.g. reliability, availability) meet the required specifications, some

measures to prevent faults affecting the system must be put in place. This is addressed using two

approaches: fault prevention (which encompasses fault avoidance and error removal) and fault

Chapter 1. Safety Instrumented Systems and RAMS+C modelling 11

tolerance (Laprie, 1985). Fault prevention intends to avoid faults occurring or being introduced

into the system as far as possible. Fault tolerance is a measure to prevent that faults that take

place during service provoking a system failure. These two approaches are complementary. As

Jalote (1994) stated, Fault prevention methods focus on methodologies for design, testing, and

validation; whereas fault tolerant methods focus on how to use components in a manner that

such failures can be masked .

Fault tolerance is always achieved by means of some form of redundancy. The implementation

of redundancy requires usage of extra equipment or parts that the system would not normally

need to perform its function, but are used to tolerate potential faults. The most common form of

redundancy is hardware redundancy, which makes use of extra hardware or replicate

components.

A system is considered to be fault tolerant if it can prevent the presence of faults in the system

by using redundancy. This prevents a component failure from producing a failure at higher

levels. The system must have the capacity to avoid a failure of one component or module

affecting the external behaviour of the entire system.

Whilst identical redundancy aims to address the problem of random failures, the technique of

diversity is usable for tackling the problem of common cause failures as well. In systems with

diversity in place a function is implemented in two or more different ways, in the hope that the

same fault is not present in two diverse technologies or techniques. Diversity of design can be

utilised for both hardware and software redundancy. When using redundancy and diversity

together it is possible to address both random and (some) design faults. However, mistakes

within the specification are not covered, and they must be addressed by other means of fault

management.

Storey (1996) states that there are three different forms for implementing hardware redundancy:

static (or passive), dynamic (or active) and hybrid. Static redundancy is based on fault masking,

which means that the system masks the faults without taken any specific action, preventing

the faults from resulting in further errors. Dynamic redundancy relies on fault detection

followed by some action to counteract its effects removing the faulty hardware from the system.

Hybrid redundancy relies on a combination of the two.

Static redundancy is usually implemented in two forms: using triple redundancy or using more

than three redundant modules (N-modular). Figure 1.3 shows these two architectures. Static

redundancy can also be implemented with double redundancy. However the effectiveness of

Chapter 1. Safety Instrumented Systems and RAMS+C modelling 12

fault masking depends on the failure mode to be tolerated and the voting configuration. This is

because if one channel fails it is not straightforward for the voter to determine which channel

has failed and which has not when there is a discrepancy between them. This is further analyzed

in Chapter 6, section 6.2 for SIS.

Figure 1.3. Examples of static fault tolerance

According to Storey, dynamic redundancy is based on fault detection, location and recovery to

provide fault tolerance. Because this technique does not seek to mask faults, it does not prevent

temporary errors occurring. Therefore, it is used where the error can be tolerated until the

system reconfigures itself and eliminate the fault in a reasonable amount of time. The simplest

way is to provide two redundant modules, one of them in standby. Basically, this redundancy

scheme can be implemented using two modules being supervised by a fault detection

mechanism, and a switching element that can select both of their outputs.

Fault tolerance is a term used mainly for computer systems. Nowadays many of the logic

solvers used for SIS are computers (e.g. Programmable Logic Controllers - PLCs). However,

fault tolerance is also implemented when redundancy is added to the field instruments (e.g.

measurement devices, valves, etc). To simply connect two transmitters in parallel provides some

degree of fault tolerance. Simple parallel redundancy is not usually mentioned in literature about

fault tolerance. However, a parallel system actually makes a fault tolerant architecture if one or

more parallel channels are there to only back up another in case of failure.

Chapter 1. Safety Instrumented Systems and RAMS+C modelling 13

1.3. ARCHITECTURES FOR SIS

As stated before, a SIS is basically a combination of field instruments (sensors and final control

elements) and a logic solver. As it will be detailed below, hardware redundancy in process

industry SIS is practically limited to parallel and majority voting schemes with a small number

of components (usually up to four).

1.3.1. Voting architectures

Voting architectures for SIS are usually limited to structures with some few components. For

example, regarding field instruments, Gruhn & Cheddie (1998, 2005) identified the

redundancies 1oo1D, 1oo2D and 2oo3 for sensors, while for final control elements they

mentioned the schemes 1oo1, 1oo2 and 2oo2. Goble & Cheddie (2005) presented practical

examples for the same sensor architectures. Leinum (1992) studied the redundancy of heat (fire)

detector systems for and Emergency Shutdown System, and compare the metrics of several

sensor voting schemes, such as 1oo2, 2oo2, 1oo3, 2oo3, 1oo4 and other kinds of combinations.

Bodsberg & Hokstad (1995) showed sensor redundancies with up to 8 units, although it is not

clear if the example was taken from real practice. CCPS1 (2007) identifies the following voting

architectures as the most common: Sensors: 1oo1, 1oo2, 2oo2 and 2oo3; Logic solver: 1oo1,

1oo2, 2oo2 and 2oo3; Final elements: 1oo1, 1oo2 and 2oo2. However, it recognizes that in

some cases 2ooN with large N are used, usually where the unacceptable process condition can

occur in multiple distinct locations .

The case of logic solver architectures is more complex, and it has received much more attention.

Fault tolerant programmable controllers for safety applications in the process industry were

examined firstly by Frederickson (1990) and Frederickson & Beckman (1991). They made a

comparison of dual and triple PLC systems with different Input/Output redundancies (simple,

dual and triple). Gruhn (1996) made a comparison of three technologies of logic solver: relay,

PLC and Triple Modular Redundant (TMR). Goble et al. (1998) introduced the analysis of the

diagnostic coverage for Programmable Electronic Systems (PES), which added the term D to

the voting architectures. They analyzed the case of 1oo1D and 1oo2D architectures, where the

D indicates that the diagnostic circuitry can be used to modify the voting output of the system

in order to convert dangerous failures into safe ones. Goble (1998) developed dependability

models for several different common architectures for PES: 1oo1, 1oo2, 2oo2, 1oo1D, 2oo3,

2oo2D, 1oo2D. These models were later incorporated into practical process industry examples

(Goble & Cheddie, 2005). The standard IEC 61508 Part 6 makes an analysis to obtain

simplified equations (by Reliability Block Diagrams) for the following architectures: 1oo1,

1 Center for Chemical Process Safety

Chapter 1. Safety Instrumented Systems and RAMS+C modelling 14

1oo2, 2oo2, 1oo2D and 2oo3.

IEC 61508 (and IEC 61511) refers to these architectures with the generic name of MooN (M-

out-of-N) systems, which is widely accepted in the process industry. IEC 61511 defines MooN

as a Safety instrumented system, or part of thereof, made of “N” independent channels, which

are so connected that “M” channels are sufficient to perform the safety instrumented function .

This term is also used by the PDS2 method (Hauge et al., 2006a). According to CCPS (2007)

N” designates the total number of devices (or channels) implemented; “M” designates the

minimum number of devices (or channels) out of N required to initiate, take, or maintain the

safe state . What the IEC standards do not explicitly mention (but it is clear from the examples

given by Gruhn & Cheddie (1998, 2005), Goble (1998) and Goble & Cheddie (2005)) is that

when the sensors and logic solver redundancy is more than 1, the MooN architecture is subject

to majority voting, where M out of the N units need to vote for the protective function to be

commanded. It can be said that a simple parallel redundancy is a case of MooN where M=1.

Therefore, it can be concluded that SIS are usually implemented using simple parallel and

MooN majority voting architectures.

Goble et al. (1998) show that in voting architectures with diagnostics (MooND) the diagnostic

circuit can disconnect the faulty unit in order to change a dangerous failure into a safe failure.

This idea was incorporated by Goble in his analysis of architectures. It is clearly seen that the

diagnostic circuitry influences the voting outcome by its action. Therefore, it can be said that the

term MooND implies that the diagnostic circuit can take part in the voting outcome (in

substitution of the faulty unit). This would not apply to units that include automatic built-in

diagnostics that only announce a fault. Notice that Gruhn & Cheddie (1996) and Goble &

Cheddie (2005) present examples of MooND architectures for smart sensors as well (sensors

with embedded microprocessors for added functionality and diagnostics).

It can be concluded that for sensor and logic solvers the most used architectures are parallel and

voting MooN and MooND (this last only for logic solvers and smart sensors). For final control

elements not many architectural examples have been found, the most common being simple

parallel.

2 Acronym for Reliability of computer based systems in Norwegian

Chapter 1. Safety Instrumented Systems and RAMS+C modelling 15

1.3.2. Technologies used for SIS

The logic solvers for SIS have evolved from the original use of simple relays and switches, to

solid-state devices, then integrated circuits with programmable capability, and finally

dependable PLCs (Adamsky, 1991). They all have advantages and disadvantages, and although

PLCs are highly used, the other options are still valid. Gruhn & Cheddie (1998) offer an account

of them. Goble & Cheddie (2005) and CCPS (2007) in addition describe and analyse several

devices for field instruments.

A PLC is a computer-based system, where a processor executing the safety functions is

integrated with Input/Output (I/O) modules to provide control capability, and sometimes

communications systems for interfacing to other systems. PLCs provide the advantages of

programming capability, flexibility and interfacing to other systems (e.g. the control systems).

Not all the PLCs used in industry for protective purposes are fail-safe and fault tolerant, but

those utilised for highly critical applications are actually required to be. There are some other

PLCs specially developed for implementing protective systems, called safety PLCs. They have

a much higher diagnostic coverage and redundancy to increase fault tolerance. Three of the

most widely used fault tolerant architectures are: Triple Modular Redundant (TMR), Duplex

with extensive diagnostics and Quad Redundant. A study made by ARC3 (1999) presents a brief

description of the described PLCs as well as which are the main suppliers in the market.

Technologies for sensors can be very varied according to the required measurement. Four of the

most common variables in process industry are flow, level, temperature and pressure. The last

two are some of the most critical in hazardous processes. Dependant on the device a sensor is

attached to, in order to send a signal to the controller, there are several options:

Electromechanical switches: The sensor is attached to a contacts switch that changes its

position (open or closes) when some limit is reached in the measured variable.

Conventional transmitters. The sensor is connected to an electronic or pneumatic device that

amplifies and transmits an analogue signal representing the measured variable. They are

used for transmitting the signal over longer distances, which is very common when the

control room is far from the measuring point.

Smart transmitters. They are electronic transmitters with an embedded microprocessor for

enhanced functionality, which includes better diagnostic coverage. They usually send a

coded analogue signal.

Final control elements, those which execute the commands of the controller, are very varied as

3 ARC Advisory Group

Chapter 1. Safety Instrumented Systems and RAMS+C modelling 16

well. In the process industry the most common are valves and electric motors, and alarm devices

(e.g. beacons, lights) for safety systems. Valves for safety systems are usually valves with only

two positions (open and closed), called on-off valves. Their reliability is different depending

on the kind of valve and the actuator used to command it.

1.3.3. Energized and de-energized systems.

The majority of safety instrumented systems are implemented as normally energized and de-

energize to actuate (to trip) (Gruhn & Cheddie, 1998). These are called de-energized-to-trip

systems. This is usually safer because if the power supply to the device fails, the system goes to

a fail-safe position (i.e. self-revealed failure). An example is given by CCPS (2007) of a high

level switch, where the switch has closed contacts during normal operation. If the level exceeds

the permitted level (set point), the switch would open, de-energizing the circuit, to indicate this

condition and command the required response (e.g. closure of an emergency valve). Some other

applications are opposite; i.e. energized-to-trip, (usually machine control). Since energized-to-

trip systems are normally de-energized, and a failure on this state may not be self-revealed, they

usually require additional hardware to monitor its state; for example to monitor the continuity in

the circuit.

1.4. RELIABILITY AND SAFETY CONCEPTS

In a broad sense, reliability deals with the ability of an item or system to perform its intended

function. Reliability has become a term that encompasses several meanings, and because of this

it has become somewhat confusing. Reliability engineering is a branch of engineering, a part of

probability and statistics and also an attribute or measure.

At the lowest level, reliability is defined as the probability of a component or system to perform

its intended function during a specific period of time and under a given set of conditions. It is

therefore a measure of trustworthiness.

The study of reliability has grown to include many different aspects: analysis, modelling, etc. It

has produced a body of theory derived mainly form probability and statistics: Reliability

Theory. The study and application of Reliability Theory to engineering structures or systems

has become known as Reliability Engineering. According to Rausand & Hoyland (2004),

structural reliability deals with the analysis of structural elements, like beams and bridges.

Another different approach is system reliability, which is focussed on the reliability of systems

composed of several components, based on the probability distribution function of the time to

failure of these components. This is the approach adopted in this work.

Chapter 1. Safety Instrumented Systems and RAMS+C modelling 17

System reliability is associated with several metrics, one of them is actually reliability, and this

can be another source of confusion. Availability and maintainability are other metrics studied in

reliability theory and engineering. This makes reliability a global concept. It is for this reason

that the author prefers to use the term Dependability to make reference to attributes such as

availability, reliability and safety, as formulated by Laprie (1992). Rausand & Hoyland (2004)

designate dependability as a collective term to describe the availability performance and its

influencing factors”. According to Avizienis et al. (2000), dependability is the ability to

deliver a service that can justifiably be trusted . Dependability has several attributes:

availability, reliability, safety, security, maintainability, etc. These attributes can become

competing objectives, as remarked by Despotou & Kelly (2007), which results in inevitable

trade-offs .

Another collective term is RAMS, which stands for reliability, availability, maintainability and

safety. Martorell et al. (2005) added the important cost factor when analyzing systems,

becoming RAMS+C. It should be noted that RAMS is therefore a subset of dependability.

Safety is the freedom of conditions that can cause accidents or losses (Rausand & Hoyland,

2004; Leveson, 1995). CCPS (2007) provides a less absolute definition: The expectation that a

system does not, under defined conditions, lead to harm people, either directly or indirectly .

The attribute of safety enforced by a system is designated as system safety.

Safety and reliability engineering share techniques and theory, but they are not the same. Since

reliability theory is an older discipline, many of its foundations are used in safety engineering.

Leveson (1995) argues that it is often assumed that reliability and safety are synonymous, but

that this is true only in special cases. Certainly, safety and reliability overlap, but they are not

the same. Consider that accidents can occur without any component failure, and components

may fail without resulting in accident. In addition, increasing reliability can increase safety, but

in some other cases it can actually lead to situations that may reduce safety. This is quite true in

safety systems, where reliability and safety can even be in conflict, depending on the measure

used for reliability, as we will see later in Chapters 3 to 6. Reliability engineering aims to reduce

failures, but this has a positive impact on safety only when this reduction affects failures that

lead to hazards. This leads us to think that there are some failures that can lead to accidents, and

there are others that will not. It would be therefore necessary to use two different metrics to

measure the effects of those two different types of failures. This is actually the approach used in

analyses of Safety Instrumented Systems.

Chapter 1. Safety Instrumented Systems and RAMS+C modelling 18

1.4.1. Reliability

Reliability is the probability that an item will perform its intended function for a specific period

of time under specific conditions. It is thus a probability of non-failure, or survival. Unreliability

is the opposite, being the probability of failure for a specific time under specific conditions.
t

dttftR
0

)(1)((1.1)

)(1)(tRtF (1.2)

1.4.2. Failure Rate

This is defined as the number of failures per unit time of a sample of identical items. The

Bathtub curve shown in Figure 1.4 represents an idealization of the typical behaviour of the

failure rate of many devices. It is split into three periods: The burn-in period (infant mortality),

where the failure rate is high and decreasing since many weak items with manufacturing or

other faults fail. The useful life time section has as characteristic a practically constant failure

rate. It is during this period of time that the components fail randomly, caused by external loads.

The last part of the curve corresponds to the wear-out zone, where the failure rate increases due

to the items ageing and their useful life ends.

Infant
mortality

t

Useful life Wearout

Figure 1.4. Bathtub curve model of failure rate

The constant failure rate is a valid assumption for many devices, especially electronic ones.

Some other types of devices, such as mechanical equipment, present a typical decreasing failure

rate. However, the constant failure rate would be a conservative worst-case assumption, and can

still be used (Goble, 1998). The failure rate equals:

)(
)()(

tR
tft (1.3)

The constant failure rate leads to an exponential distribution (Lewis, 1996), which gives a

cumulative distribution function:
tetF 1)((1.4)

Chapter 1. Safety Instrumented Systems and RAMS+C modelling 19

tetR)((1.5)

Assuming that t is small (<<0.1), the probability of failure F(t) can be approximated by the

rare event approximation as:

ttF)((1.6)

1.4.3. Availability

This is the probability of an item being capable of (available for) performing its intended

function at a given time. This is an instantaneous measure, and it can be averaged over a

specific period of time T to give average availability. In contrast, unavailability is the

probability that the system is not capable to perform its intended function at a given time. This

is a measure of failure.

)(1)(tAtQ (1.7)

T

avg dttA
T

A
0

)(1
(1.8)

Reliability is a measure mostly used for non-repairable systems, with availability being used for

repairable systems. Notice that an item can be unavailable at a specific moment either because it

has failed (unreliability) or because it is under maintenance (preventive maintenance, test or

repair). This means that availability is a function of both the internal reliability of the item and

maintainability. In summary, unavailability is a measure of downtime.

1.4.4. System reliability

The total reliability of a system composed of several components can be quantified considering

the particular structure they form. The most basic structures are series and parallel. Another very

used structure is the k-out-of-n. In this section we use Reliability Block Diagrams (RBD) for

system reliability quantification. It is a method that illustrates conveniently simple structures.

Other methods may be more suitable for more complex structures. These are discussed is

discussed in Section 1.6.

Reliability Block Diagrams represent the logical relationship between the components for

successful functioning of the system. Each square block represents one component. Figure 1.5

shows the RBDs for examples of the three basic structures with three components.

Chapter 1. Safety Instrumented Systems and RAMS+C modelling 20

1 2 3

1

2

3

1

1

2

2

3

3

1

2

3

2/3

a) Series structure b) Parallel structure

c) k-out-of-n structure d) k-out-of-n structure,
alternative representation

Figure 1.5. Basic system structures

Parallel structure. A parallel structure (Fig. 1.5b) corresponds to a system that functions if

at least one of its components is functioning. Eq. (1.10) expresses the reliability of a parallel

structure.
n

i
insys RRRRR

1
21)1(1)1()1()1(1 (1.10)

For two components this can be reduced to:

)(2121 RRRRRsys (1.11)

Notice that in Eq. (1.10) the term (1-Ri) is equal to the component unreliability, which can

be directly substituted in the equation if the value is known.

k-out-of-n structure. The k-out-of-n is a structure widely used in SIS. A k-out-of-n:G

corresponds to a system that functions if at least k out of the total n components work. The

letter G indicates a good condition. In contrast a k-out-of-n:F system is that that fails if at

least k out of the n components fail. Notice that when no letter G or F is indicated it is

assumed that it is a k-out-of-n:G structure. A MooN voting system is equivalent to a k-out-

of-n:G structure plus a perfect voter. This type of system will be studied in detail in Chapter

6. Figure 1.5c shows the example of a 2-out-of-3 structure, while Figure 1.5d shows an

alternative representation for the same example.

The reliability of a k-out-of-n:G system in its most basic form (when all the n components

are identical) can be quantified based on the binomial distribution:

ini
n

ki

ini
n

ki
sys RR

i
n

RR
ini

nR)1()1(
)!(!

!
(1.12)

Chapter 1. Safety Instrumented Systems and RAMS+C modelling 21

Since reliability and availability are both probabilistic measures of success, Eqs. (1.9-1.12)

are equally applicable to system availability quantification. System unavailability can also

be worked out from these equations. For a more detailed treatment the interested reader is

referred to Rausand & Hoyland (2004). There are several more complex structures that for

simplicity are omitted here. A detailed analysis can be found in Kuo & Zuo (2003).

1.4.5. Diagnostic Coverage

Modern safety systems usually have an in-built hardware and/or software mechanism for

automatic detection of internal failures. This is called diagnostics (CCPS, 2007). The

diagnostic coverage () is the fraction, usually expressed in percentage, of the total failure rate

that this diagnostic mechanism can actually detect. It therefore splits the total failure rate

between detected and undetected failures.
TotalDetected (1.13)

TotalUndetected)1((1.14)

1.4.6. Common Cause Failure

This is the failure of more than one item due to the same stress or cause (Goble, 1998).

Common Cause Failure (CCF) is a phenomenon that negates the benefits of redundancy, and it

is therefore an important problem to address. This phenomenon has been given great attention in

this work, and it will be considered in detail in the following chapters. There are several models

to quantify CCF. The most popular is the factor model (Mosleh et al., 1988). The factor

represents the fraction of the total failure rate that can be attributed to a common cause,

affecting an entire group of items. This factor splits the total failure rate into common cause

failures and independent (or normal) failures:
TotalCCF (1.15)

TotalNormal)1((1.16)

1.4.7. Failure classification

In the most general sense, there are two categories of failures: Random (or physical) failures and

systematic (or functional) failures. Random hardware failures are caused by the component

ageing degradation (Hauge et al., 2006a), which can be accelerated by stress factors (CCPS,

2007). Systematic failures are caused by practically any other cause than degradation. Hauge et

al. (2006a) classify them as stress failures, design failures and interaction (operational) failures.

Systematic failures can cause Common Cause Failures. They can also prevent a component

from performing its intended function even when it is still able to operate. IEC 61508

recommends considering only random failures in the calculations given that systematic failures

Chapter 1. Safety Instrumented Systems and RAMS+C modelling 22

cannot usually be quantified. However, as Hauge et al. (2006a) points out, IEC 61508 implicitly

includes the quantification of some (undetermined) systematic failures on the method for

quantifying hardware common cause failures. Figure 1.6 illustrates the failure classification

used in this thesis.

Figure 1.6. Failure classification and nomenclature

1.4.8. Random hardware failure modes

As previously mentioned, not all hardware failures have the same effects. In safety systems,

some failures can lead to hazardous situations, and some others can cause false activations (but

without causing any hazard). Thus, there are two main types of failure modes: dangerous and

safe. Dangerous failures have potentially hazardous consequences, i.e. failure to perform the

protective function when required; while safe failures result in spurious activations of the

system (spurious trips). Consider for example the protective systems given in Figure 1.2. A

hazardous condition could be a very high reactor pressure. The sensor/transmitter could be

faulty, and fail to detect that the pressure value has surpassed the set point. This is a dangerous

failure, which could fail to stop a runaway reaction for example, with disastrous consequences.

In contrast, it could be the case that there is actually no hazardous condition present in the

reactor, no high pressure or temperature, and the sensor/transmitter falsely detects a high value

of one of those variables. This would lead to the emergency isolation valve to be shut: a

spurious reactor trip. This is a safe failure since no hazardous condition has been created or

overlooked. It certainly causes production losses, or the entire upset of the plant, but it is still in

a safe condition.

Consequently, the total failure rate must be split into safe (S) and dangerous (D) failure rates.

Chapter 1. Safety Instrumented Systems and RAMS+C modelling 23

SDT (1.17)

Additionally, the system built-in diagnostic coverage () divides both dangerous and safe

fractions into those revealed by its action and those not (Eq. (1.18)).
SSSSDDDDT)1()1((1.18)

Observe that there is a different diagnostic coverage for dangerous and safe failures. This

further splits the total failure rate into detected (DD and SD) and undetected (DU and SU)

failure modes (Eq. (1.19)).
SUSDDUDDT (1.19)

Applying the fractions determined by the factor (Eqs. (1.15-1.16)) to total failure rate Eq.

(1.19), we finally include the CCF quantification:
SUNSUCSDNSDCDUNDUCDDNDDCT (1.20)

Where the failure rates are:
T= Total failure rate
DDC= Dangerous detected common
DDN= Dangerous detected normal (independent)
DUC= Dangerous undetected common
DUN= Dangerous undetected normal (independent)
SDC= Safe detected common
SDN= Safe detected normal (independent)
SUC= Safe undetected common
SUN= Safe undetected normal (independent)

1.4.9. Risk reduction

Intolerable

ALARP

Broadly
acceptable

Risk reduction
by other

protection
layers

Risk reduction
undertaken by

the SIS
RRF

Process risk

Residual risk

Risk level

Figure 1.7. Risk reduction concept

Chapter 1. Safety Instrumented Systems and RAMS+C modelling 24

The objective of a safety system is to reduce the risk presented by the plant to acceptable levels.

The UK Health and Safety Executive established a suggested framework for risk criteria to be

used in the UK (HSE4, 2001), called the Framework for the Tolerability of Risk . Figure 1.7

shows that the risk comprises three regions regarding the actual level of risk:

Intolerable region. If the risk falls within this region, its level is intolerable, and further

measures to reduce it must be implemented irrespective of their cost.

ALARP region. In this region, the level of presented risk might be acceptable, but only if can

be demonstrated if that it is As Low As Reasonably Practicable (ALARP). This means that

it must be demonstrated that all the reasonably practical measures have been put in place to

reduce the risk to be as low as possible. If this principle is demonstrated, the risk is

considered tolerable. Determination whether a risk has been reduced to an ALARP level

depends on several factors. Some guidance on the subject can be found in HID5 (2003).

Broadly acceptable region. In this region the level of risk is negligible, and hence broadly

acceptable. Therefore, no additional measure needs to be considered.

The risk reduction required to the SIS is estimated based on the difference existing between the

actual risk and the risk considered acceptable. The conceived acceptable risk represents the

target that the SIS must contribute to achieve; i.e. the risk target. Therefore, the Risk Reduction

Factor (RRF) is a figure that specifies the factor to be applied for reducing the risk from the

actual level to the target level. Figure 1.7 illustrates the concept. It shows that the risk reduction

is achieved by the application of several layers of protection, where the SIS is one of them. The

figure of the RRF may be determined for the entire risk or only for that addressed by the SIS.

1.4.10. Probability of Failure on Demand

Probability of failure on demand (PFD) is a measure of unavailability of the safety system for

performing its protective action when required to do so. It is therefore a measure of loss of

safety (Hauge et al., 2006a). It is also used by IEC 61508 and thus the metric of system safety

used in this work. It is important to clarify that PFD does not refer to the probability of the

system having a failure caused by the demand to actuate itself (i.e. the demand is the initiating

event), which is another contribution to system unavailability used in other disciplines (Vaurio,

1995a). PFD can be a confusing term, and some other authors have proposed to use alternative

names, like probability of not functioning on demand (Duduit et al., 2008).

tetPFD DtD

1)((1.21)

4 Health and Safety Executive (UK)
5 Hazardous Installations Directorate (UK)

Chapter 1. Safety Instrumented Systems and RAMS+C modelling 25

Since PFD(t) is a measure of loss of safety, it is affected only by the dangerous failure mode D.

The PFD is a time dependent measure, and it is averaged over a defined time interval, which is

usually assumed to be the test interval TI (CCPS, 2007), to become PFDavg:

TI

avg dttPFD
TI

PFD
0

)(1
(1.22)

Figure 1.8 shows the PFD(t) behaviour. According to Eq. (1.21), it follows an exponential

increment until the component is tested. Under the ideal assumption of perfect testing, the

PFD(t) is reduced to zero each test event. Another important measure is the maximum

instantaneous PFD (PFDmax).

Figure 1.8. Time-dependent Probability of Failure on Demand

1.4.11. Spurious Trip Rate

Spurious Trip Rate (STR) is the frequency of spurious activations of the safety system per time

unit (Hauge et al., 2006a). For one single system is equivalent to its safe failure rate.
SSTR (1.23)

There is no unanimous consensus about which metric to use for quantifying the effect of safe

failures, since this is not a requirement of IEC 61508. However, IEC 61511 requires

specification of a maximum STR for any system, and the PDS Method uses this as well as a safe

failure metric (Hauge et al., 2006a). STR addresses the issue of reliability, and has an important

impact on the trustworthiness that the user places upon the system and the overall system life

cycle cost since it results in losses of production.

Chapter 1. Safety Instrumented Systems and RAMS+C modelling 26

1.5. REQUIREMENTS OF THE STANDARD IEC 61508

The international standard IEC6 61508 Functional safety of electrical/electronic/programmable

electronic safety-related systems (IEC, 1998-2005) aims to provide a means of ensuring that

safety is effectively reached based on functionality of electrical, electronic or programmable

electronic systems. Since IEC 61508 is a generic document, non-specific to any industry sector,

it is relevant to a large range of different sectors: aircraft industry, process industry, nuclear,

automotive, marine, etc.

IEC 61508 comprises seven parts, being a fairly complex standard. However, the first three

parts are the most important ones. It can be said that Part 1 addresses management, mainly non-

technical, requirements, while Part 2 deals with technical requirements for the hardware

realisation and Part 3 with technical requirements for software.

The basis of IEC 61508 is the establishment of the safety lifecycle and the definition of Safety

Integrity Levels (SIL). The standard requires that every safety function must achieve a specific

SIL, determined beforehand based on a previous risk assessment. The SIL is a quantitative

index that indicates the acceptable probability of dangerous failure that a system can have to

consider it appropriate for a given specific safety integrity requirement. Distinction is made

between two different kinds of systems: low-demand mode and high-demand/continuous mode

of operation. Safety Instrumented Systems are usually in low-demand mode of operation. This

mode of operation is defined by IEC 61580-4 as the one where the frequency of demands for

operation made on a safety-related system is not greater than one per year and no greater than

twice the proof-test frequency . For these, the SIL levels are defined in terms of average

probability of failure on demand (Table 1.1).

Table 1.1. SIL for Low Demand Mode of Operation (IEC 61508 Part___ 1)
SIL PFDavg___
4 10-5 to <10-4

3 10-4 to <10-3

2 10-3 to <10-2

1 10-2 to <10-1

In addition to the requirement of bounded PFDavg, the highest SIL that can be claimed for a

subsystem s combination for hardware is limited by architectural constraints, which are detailed

in IEC 61508 Part 2. These constraints are the hardware Fault Tolerance (FT) and the Safe

Failure Fraction (SFF). Table 1.2 shows the multiple combinations that the standard

acknowledges. Notice that subsystems are treated as belonging to two different types: A and B.

6 International Electrotechnical Commission

Chapter 1. Safety Instrumented Systems and RAMS+C modelling 27

Subsystems Type A must be composed of components that meet the following conditions:

their failure modes must be well defined; their behaviour under fault conditions must be

completely determined; and sufficient dependable failure data from field (must) show that the

claimed rates of failure for (all) dangerous failures are met” (IEC 61508 Part 2). Practically, a

subsystem is considered to be Type B if it does not meet any of these conditions. Goble &

Cheddie (2005) specify that examples of Type A devices are relays, solenoids, valves and

simple electronic modules (e.g. conventional transmitters). Any device with embedded

microprocessors (such as smart transmitters) or complex application specific integrated circuits

is considered Type B.

Table 1.2. SIL architectural constraints (IEC 61508 Part 2)___
Subsystem TYPE A B ______________ ___________________ ________________________
Hardware FT 0 1 2 0 1 2______________ ___________________ ________________________
SFF:
< 60 % SIL 1 SIL 2 SIL 3 N/A* SIL 1 SIL 2
60% -<90% SIL 2 SIL 3 SIL 4 SIL 1 SIL 2 SIL 3
90% -<99% SIL 3 SIL 4 SIL 4 SIL 2 SIL 3 SIL 4

99 % SIL 3 SIL 4 SIL 4 SIL 3 SIL 4 SIL 4___
*Not allowed

The Fault Tolerance (FT) is the number of faults that a subsystem can tolerate before resulting

in system failure. This means that with a Fault Tolerance of N, N+1 faults would cause the

system to fail. Notice that the maximum Fault Tolerance level contemplated in Table 1.2 is two.

This may be considered as a restriction to claim higher SILs for higher levels of Fault

Tolerance. The effects of this restriction will be seen in the discussion of results in Chapter 3.

Safe Failure Fraction (SFF) is the percentage of subsystem failures considered safe: i.e. that

they are either safe mode or they are revealed by the diagnostic coverage (Eq. (1.24)).

T

DUT

SFF)(
(1.24)

If a safety function is implemented using only one single channel the highest SIL level to be

claimed is that of the subsystem with the lowest SIL. On the other hand, if a safety function

were implemented using multiple channels of subsystems, the SIL would be determined making

an analysis of the combination. For example, consider a subsystem of two smart transmitters in

parallel, each having a SFF of 92%. Since the overall arrangement would tolerate the failure of

one transmitter (still being able to perform its safety function), the Fault Tolerance is 1. Smart

transmitters have a microprocessor embedded, thus classified as Type B devices. For example,

Table 1.2 indicates that for a subsystem with Type B devices, Fault Tolerance of 1 and SFF of

92% a maximum SIL of 3 can be claimed.

Chapter 1. Safety Instrumented Systems and RAMS+C modelling 28

It is important to notice that SFF is a function of system architecture. Therefore, it is determined

based on the specific combination of components. When the redundant channels or components

of a system have different SFF (i.e. different failure rates), the total SFF will be a result of their

combination. Thus, the failure rates used in Eq. (1.24) shall be at system level.

Goble & Cheddie (2005) substituted the different failure modes rates (Eq. (1.19)) into Eq.

(1.24), and demonstrated that:
DSafeSafeSFF)%1(% (1.25)

Where %Safe is the percentage of only safe mode failures:

T

S

Safe% (1.26)

This clearly shows that the SFF depends on the ratio of the safe failure rate to the total failure

rate. Note that the SFF is basically the percentage of the total failure rate that does not cause a

dangerous undetected failure. Therefore, two components with very different total failure rates

(one with very high rate and one with very low total failure rate) can have the same SFF.

Considering this, it is possible to say that the architectural constraints imposed by the IEC

61508 tables aim to ensure that an over-optimistic failure rate data is not used. This prevents the

claim of unrealistically high SIL levels for designs without an adequate level of redundancy.

This is permitted by the fact the FT is independent of the total failure rate, and the SFF is a

metric of the ratio of failure rates rather than the total.

The use of PFDavg as the standard metric has been questioned by Signoret et al. (2007) and

Duduit et al. (2008), because the PFD(t) can reach a maximum value significantly higher than

the PFDavg, and spend a large share of the time in a SIL region one value higher than the one

determined by the PFDavg. However, there is not a generalized consensus about the use of any

other metric, and the PFDavg continues to be accepted.

There also is some controversy about the real usefulness of the SFF and its precision to fulfil its

intended effect (Signoret, 2007; Lundteigen & Rausand, 2008; Yoshimura & Sato, 2008). Their

arguments are well founded, and it is probable that during the revision of the standard some

modifications are introduced (due in 2010). However, so far the standard is still valid as it is,

and therefore we take into account its requirements as they established at the moment.

In summary, determination of the final SIL, which implies calculation of PFDavg, FT and SFF,

requires a sufficient level of modelling detail (see IEC 61580-2 Clause 7.4.3.2.2). This means

Chapter 1. Safety Instrumented Systems and RAMS+C modelling 29

that the following factors must be included:

Specific architecture (redundancy scheme)

Hardware type: Type A or B

Multiple failure modes (safe and dangerous failure rates)

Diagnostic coverage (share of detected and undetected failures)

Common Cause Failure (factor)

Proof Test Intervals

Repair times

1.6. DEPENDABILITY MODELLING

1.6.1. Modelling methods

Dependability can be modelled for safety analysis using various approaches. Analytical models

are the basis for any quantification, and they are useful for analyzing time dependencies.

However, they are only easily implementable for single components or for systems with few

components (usually up to three). In addition, when increasing the modelling detail, including

features such as CCF, diagnostics, and maintenance, analytic models become difficult to obtain

and handle. Therefore, for more complex systems other probabilistic models are used. The most

popular are combinatorial methods, mainly Reliability Block Diagrams (RBD) and Fault Tree

analysis (FTA). These are static models that permit calculation of point or average values. RBD

are generally useful for non-repairable systems. FTA can handle repairable systems, but for

systems with sophisticated repair policies or time dependencies other more sophisticated

methods are used. These are methods which can be termed transitional , such as Markov

Analysis (MA), Petri Nets and Bayesian Networks. However, these methods have the problem

of exponential growing complexity (i.e. 2n potential states in Markov chains for n components,

Signoret et al., 2007).

The next sections present a review of modelling techniques and their application in

quantification of PFDavg and STR. For the reader not familiar with these topics or looking for

more detailed account, further details are given in Appendix A.

The main methods used for dependability measures in safety analysis are:

1. Simplified equations (SE).

2. Reliability Block Diagrams (RBD).

3. Fault Tree Analysis (FTA).

Chapter 1. Safety Instrumented Systems and RAMS+C modelling 30

4. Markov Analysis (MA).

5. Petri Nets (Duduit et al., 1997, 2008).

6. Hybrid methods.

There are several comparative studies on dependability models. In general, these comparisons

find that the diverse methods provide very similar results (ISA, 1999; Goble, 1998; Goble &

Cheddie, 2005). Goble (1998) concluded that FTA and MA provide similar results for

modelling MooN architectures; however the MA approach is advantageous for inclusion of time

dependency and multiple failure modes interactions. Regarding RBD and FTA, Goble &

Cheddie (2005) found that the main difference is that RBD focus on system success, while FTA

focuses on system failure. They prefer FTA since it shows clearly the failure propagation

mechanisms. Rouvroye & Brombacher (1999) showed that RBD gives very pessimistic results.

FTA and some hybrid methods have approximately the same capabilities although FTA cannot

include systematic failures. For these authors MA is the preferred method.

Andrews & Ericson (2000) compared FTA and MA for several design complexities. They

concluded that FTA delivers either the same results or very good approximations to MA.

Although MA is more exact, it is frequently necessary to exclude many contributing events in

order to simplify the model, which coverts it into an approximation. They point out that to

create Markov models for systems that are not very simple is difficult and error prone, and for

complex systems solutions can be only obtained by using numerical methods. FTA in contrast,

is powerful for modelling large and complex systems easily, and their results are very good

when small probabilities are involved (usual in safety systems). Bukowski (2005) also

concluded that SE may lead to significant errors and that MA requires expert knowledge for

their application.

IEC 61508 Part 6 suggests a PFDavg quantification method based on simplified equations

(obtained from RBD). It presents the disadvantages of SE mentioned above since it seems to be

oversimplified and not adequate for detailed analysis. Hauge et al. (2006a) in the PDS Method

presents a more refined technique based on calculation formulas. The method aims to include

failure categories and causes excluded by previous techniques. It also presents a very novel

approach to quantification of CCF by the factor model, which is incorporated in this thesis.

In general, it seems that the only method that could be superior to FTA is MA, since this is

capable of handling time-dependencies, apart from sequential failures. However, MA has the

significant drawback of growing complexity, which increases exponentially with the number of

components. Even modelling with more than two components can become unmanageable when

Chapter 1. Safety Instrumented Systems and RAMS+C modelling 31

several failure modes are included. In addition, FTA has the advantage over MA that it is much

easier and intuitive to construct and it provides a graphical representation of the failure

mechanisms. Other methods such as Petri nets (Schneeweiss, 2001) can handle time

dependencies, but they are also complex to construct and analyze. Sequential failures can be

handled by dynamic fault trees (Dugan et al., 1992).

FTA is frequently preferred over RBD because it provides a more graphic understanding of the

failure processes, and it focuses on failure rather than success probability, which is generally the

approach from the safety view point (Andrews & Ericsson, 2000). Also, FTA is at a more

researched and developed stage. In addition, Simplified Equations and the hybrid methods

mentioned here (based on SE as well), present the disadvantage of oversimplification (IEC

61508-6) and inflexibility to accommodate changing conditions of design (Hauge et al., 2006a).

1.6.2. Overview of Modelling of PFD for SIL analysis

IEC 61508 established the use of the average Probability of Failure on Demand as the standard

metric for loss of safety. The IEC 61508-6 method for quantification of PFDavg is, as mentioned

before, based on simplified equations derived from RBDs. It also provides tables for the PFDavg

of a few specific architectures for fixed combinations of failure rate, diagnostic coverage and

factor. IEC 61508 has been adopted as standard practice in many industrial sectors and different

countries, since it provides an effective organizational framework for implementation and

operation of safety systems. However, some authors have identified several limitations and

inconsistencies, especially with the method for quantification of PFD and the evaluation of SIL

levels (Zhang et al., 2003; Hokstad & Corneliussen, 2004; Signoret et al., 2007; Guo & Yang,

2007; Duduit et al., 2008; Lundteigen & Rausand, 2008a).

The main drawbacks of the IEC 61508 methodology are:

It does not provide sufficient detail and explanation to implement it (Zhang et al., 2003;

Guo & Yang, 2007). According to Signoret et al. (2007), it does not detail the method and

underlying hypothesis to derive the given formulae, and therefore it is difficult to know

under what conditions they are really valid.

Zhang et al. (2003) found some inconsistencies in the calculation of the equivalent mean

down time TCE and TGE terms, which is not clearly defined in the standard, and on which all

the PFDavg calculations are based.

Insufficient failure taxonomy and definitions (Signoret et al., 2007; Hokstad &

Corneliussen, 2004).

Its capacity to handle test and maintenance procedures is very limited. Considering this,

Signoret et al. (2007) proposes to extend the parameters included in the formulation.

Chapter 1. Safety Instrumented Systems and RAMS+C modelling 32

The use of architectural constraints as guidance for validation of SIL figures, specially the

SFF (Signoret et al., 2007; Lundteigen & Rausand, 2008a).

Limitations of the factor model for evaluating accurately systems where the redundancy is

larger than two, and when voting is introduced (Hokstad and Corneliussen, 2004).

The formulae provided by IEC 61508 are limited to a few architectures, and its tables limited to

some specific combinations of component failure rates, diagnostic coverage and factor. It

would be necessary to derive new formulae for other architectures. Fundamentally, there is no

flexibility for handling changing conditions, such as it would be needed in optimization studies.

Goble (1998) provides an alternative to modelling PFDavg. As mentioned above, it uses either

FTA or MA, providing the detailed modelling of several architectures, including safe and

dangerous failures, CCF and diagnostic coverage. This is the base used in this thesis for fault

tree modelling. Goble bases his modelling on using the failure modes taxonomy as presented in

Eq. (1.20). He solves the FTs by deriving simplified equations and obtaining the average value

by integration. The methods presented by ISA7 TR84.0.02 (ISA, 1999) (SE, FTA and MA) use

the same failure modes taxonomy. The standard attempts to include systematic failures, but

recognizes that it is very difficult to obtain statistical data for them. Some other authors

(Knegtering & Brombacher, 1999; Rouvroye & Brombacher, 1999; Rouvroye & van den Bliek,

2002) proposed other more complex Hybrid methods.

SINTEF8 proposed a new analytic method for quantification of reliability for process safety

systems (Bodsberg & Hokstad, 1995, 1997). It is called the PDS9 Method. It explores the

creation of an alternative failure taxonomy that relates directly failure cause, consequence and

their means of improvement. This also addresses the need of using reliability calculations for

LCC quantification in order to find cost-effective designs and operating philosophies. At a later

stage (Hokstad & Corneliussen, 2004), they started to identify the weaknesses in the IEC 61508

methods, proposing their new failure classification and suggesting an extended and more precise

factor model for quantification of CCF of different MooN architectures (discussed in Chapter

4). The PDS method is more comprehensive than the one of IEC 61508-6. However, there exists

the difficulty of getting explicit input data for all its parameters. The PDS method is classified

as a hybrid method (it uses simple RBDs), but is largely based on SE, and therefore it presents

some of their drawbacks (oversimplification, difficulty to handle test and repair, etc.). However,

its contribution is enormous, especially considering its provision for quantification of CCF and

7 The Instrumentation, Systems and Automation Society
8 The Foundation for Scientific and Industrial Research (in Norwegian)
9 Norwegian acronym for reliability and availability of computer-based safety systems

Chapter 1. Safety Instrumented Systems and RAMS+C modelling 33

independent failure rates of different MooN architectures. This has had large influence on the

work presented in this thesis, from Chapter 4 on, and especially in Chapter 6. A more detailed

description of the PDS Method is given in Appendix A, Section A.1.2.

Signoret et al. (2007) and Duduit et al. (2008) have proposed the use of fault trees for

quantification of PFDavg complemented with more powerful methods so that time-dependencies

can be handled, and test and maintenance properly modelled. This constitutes hybrid methods

based on fault trees. The idea is to introduce multi-phase Markov models or Petri Nets

substituting sub-modules of the fault tree, included as basic events. In this thesis, a similar idea

has been developed (Chapters 5 and 6), but introducing time-dependent analytical models that

comprise entire subsystems.

1.6.3. Overview of modelling of STR for quantification of safe failures

The quantification of safe failures of SIS has traditionally not had as much attention as

dangerous failures by the safety community. Since it is generally considered that safe failures do

not have a direct impact on safety, it is usually overlooked in safety system analysis. However,

this approach is starting to change (Lundteigen & Rausand, 2008b). The standard IEC 61508

does not include safe failure s consequence quantification, and therefore does not provide any

quantification method. However, IEC 61511 (IEC, 2003) does include a requirement to specify

a maximum level of STR for safety systems in the process industry. As it will be seen below,

several related measures have been proposed as metric of safe failure consequences. STR has

been adopted herein because is the one that has become more widely accepted (e.g. IEC, 2003;

Hauge et al., 2006a; CCPS, 2007; Lundteigen & Rausand, 2008b).

Goble (1988) includes quantification of Probability of Failing Safely (actually unavailability by

safe failure) in the modelling with FTA and MA. The contribution of Goble is significant

because he analyzes safe failures with the same level of detail as dangerous ones. The measure

for safe failure included by ISA TR84.0.02 (ISA, 1999) is the Mean Time to Spurious Trip

(MTTFspurious=1/STR). Notice that ISA TR84.0.02 drops one level of modelling detail (i.e.

separation by diagnostic coverage) in the Markov examples to avoid the complexity problem.

The PDS Method acknowledges the fundamental importance that the quantification of

consequences of safe failures has for SIS, conceptualizing the STR as a measure of the system s

ability to maintain safe production. Therefore, STR is a measure of loss of production. The

method also establishes firmly the necessity of quantifying STR in order to keep a balance

between loss of safety and loss of production, and not only as a secondary performance metric.

It gives a set of generic equations for evaluation of STR for different architectures is given. The

Chapter 1. Safety Instrumented Systems and RAMS+C modelling 34

method is oriented to contemplate the different effects of the specific MooN voting architecture,

embedded in the modified factor model.

Lu & Lewis (2006, 2008) presented analytical models for probability of spurious operation (and

unavailability) based on the binomial distribution. Although the level of modelling detail is too

basic, their contribution of this work is important because it introduces the evaluation of the

relative time the system spends in normal operation and test and maintenance, during which its

probability of spurious operation changes. This concept is considered in Chapter 6.

The first monothematic study about spurious activation of SIS was presented by Lundteigen &

Rausand (2008b). This article defines and clarifies concepts related to spurious activation of SIS

and presents several analytical expressions for quantification of STR including multiple

contributions. They develop a set of simplified equations for a few architectures, and compare

results against the equations given by the PDS method and ISA TR84, concluding that the

results are similar.

1.6.4. Fault Tree Analysis

Fault Tree Analysis is well established as a very convenient method for dependability

modelling. In comparison with other methods, it permits modelling of large and complex

systems more easily. It provides a graphic representation to visualize the failure process and its

basic causes, and it is easy to quantify. Based on these advantages, and the comparative account

made in the previous sections, FTA has been selected to be used in this thesis, together with

some additional techniques, for quantification of system dependability.

A fault tree is a graphic analytical model that represents the interrelationship between a potential

critical event and the combination of events that cause that event. The main critical event being

studied, which usually is an accident or a system failure, is called the top event of the fault tree.

Fault tree analysis is a deductive top-down method: The immediate causal events of the top

event are identified and represented as branches below it, then the immediate sub-causal events

are branched below, and the procedure continues until the most basic causes are found. These

are called the basic events. The causal events are interrelated by logic gates.

Once the fault tree has been constructed a qualitative and quantitative analysis are executed: The

qualitative analysis of the fault tree intends to visualize paths of propagation of failure, and to

identify the most critical events and weaknesses. When the fault tree is very small and simple

this can be done just by direct analysis. Otherwise, the analysis requires reducing the tree to a

logically equivalent form, showing the specific combinations of basic events sufficient to cause

Chapter 1. Safety Instrumented Systems and RAMS+C modelling 35

the top event (Leveson, 1995). This is the identification of minimal cut sets (CS). A CS is a set

of basic events that combined ensure the top event occurs. When a cut set cannot be further

reduced it is called a minimal cut set (MCS). The order of a cut set is the number of basic events

that compose it. Identification of the MCS permits visualization of which combinations of basic

events lead to the immediate occurrence of the top events. Therefore, low-order cut sets, e.g.

first and second order ones, are the most influential combinations in system failure. MCS

reduction for small fault trees can be produced by hand, and computer algorithms are available

for more complex situations (see Andrews & Moss, 2002). The quantitative analysis permits

calculation of the likelihood of occurrence of the top event, based on the likelihood of the basic

events. This can be expressed as a probability or frequency. The top event probability can be

quantified using several methods (Andrews & Moss, 2002): gate-to-gate quantification, minimal

cut sets and computer codes.

There are some other developments in fault tree analysis worthy of discussion. The most

relevant to this thesis are:

1. House events. House events were originally named external events (Vesely et al., 1981),

which are basic events that are not themselves faults and that can either occur or not to

occur. Thus, they take a logical value of cero or one. Andrews (1994) proposed to use them

to permit to switch on and off several branches of the tree in order to accommodate

changing designs (such as needed for design optimization).

2. Modularization of fault trees. A technique used for splitting the fault tree into independent

sub-trees and solving them separately (Chatterjee, 1975). This permits the solution of

independent sub-structures of the tree by another method. For example, the solution can use

Markov models in order to integrate time-dependencies (Gulati & Dugan, 1997). Then the

probabilistic result is introduced in the fault tree as a basic event.

3. A similar idea is used by Signoret et al. (2007), who introduce time-dependent analytic

models into the basic events of the fault trees (so they are empowered to handle time

dependencies). Duduit et al. (2008) uses Markov models or Petri Nets for solving sub-trees.

Notice that an alternative way of empowering fault trees for handling time dependencies, so to

avoid using MA, is modularization. A time-dependent analytic model could be inserted instead

of including Markov models in the modularized sub-trees. The entire fault tree can be then

evaluated a repeated number of times and then averaged. This method is proposed in Chapter 5.

An additional method for reduction of fault trees from a generic form to a particular design has

been proposed by Lu & Lutz (2002). They developed a recursive algorithm that permits a top-

down pruning of fault trees. This is intended to enable reuse of a generic Fault Contribution

Chapter 1. Safety Instrumented Systems and RAMS+C modelling 36

Tree (FCT) that represents an entire product family, and which sub-trees and branches represent

commonalities and variabilities respectively, for modelling a specific member of the family (i.e.

a product). This is achieved by identifying the specific features of the product (i.e. its

commonalities and variabilities), and then cutting down (pruning) the product family FCT

iteratively in a top-down order until achieving a satisfactory representation of the product

according to the resolution needed. The method has been further developed for construction of

Software FTA for product lines in Dehlinger & Lutz (2004, 2006). This method has not been

explored here, but it has been proposed as an interesting opportunity for future research in

Chapter 7.

1.7. LIFECYCLE COST MODELLING

Lifecycle costing is fundamental for the successful implementation of a safety system.

Achieving plant safety is a noble goal itself, but at the end of the day the safety system must be

cost-effective; otherwise the burden of system cost could be so high that the plant owner could

choose rather to withdraw from the enterprise of putting the plant into operation. This is

recognized in the ALARP principle, which establishes that, after demonstrating that all the risk

reduction measures considered reasonable have been put on place to lower the risk level, the

effort (usually expressed in monetary terms) needed for further reduction through the

implementation of additional risk reduction measures is not grossly disproportionate to the

benefit to be gained (HID, 2003), and that the residual risk is not disproportionate to the

benefits to be obtained. This is usually made through a cost-benefit analysis.

There are a few Lifecycle Cost models (LCC) developed specifically for safety instrumented

systems, some of them specific for process industry. The choice of model is mainly based on its

capacity to include all relevant factors and the availability of data to apply it. A comprehensive

guide to lifecycle costing can be found in Dhillon (1989), which also deals with reliability

applications. Maybe the first model developed specially for process safety systems was

provided by SINTEF (Lydersen & Aaro, 1989). This model was developed as part of the work

for the PDS Method (the latest version of which is Hauge et al., 2006a, and which is based on

the standard IEC (1987)). They define the LLC of a system as the total cost to the user of the

purchase and installation, and the use and maintenance during a stated period of life . It

therefore must include not only the initial acquisition cost, but operation costs as well. Their

general model is:

LCC= LAC + LSC +LUC (1.27)

Chapter 1. Safety Instrumented Systems and RAMS+C modelling 37

Where:

LAC = Life Acquisition Cost. This includes the cost of the initial investment: equipment cost

plus, design, installation and commissioning.

LSC = Life Support Cost. It comprises resources for operation and maintenance, including their

yearly cost during the entire operational life.

LUC = Life Unavailability Cost. The loss of production (STR) is included here. However, the

expected costs due to potential accidents caused by hazardous situations; i.e. cost of

safety unavailability (i.e. failure to prevent accidents) is not included here.

To include accident cost in the quantification of LUC is a controversial and difficult issue. This

may be the reason for it not being included in the model of Lydersen & Aaro (1989). The author

considers, however, that it is a significant omission, because the real benefits of risk reduction

cannot be quantified and included in the LCC. Notice that Lydersen & Aaro also used the

present value of yearly costs to transform the yearly cash flow to present value of yearly costs:

i.e. annuities.

The NORSOK10 standard O-CR-001 (NORSOK, 1996) intended to standardized LCC

calculations for systems and equipment. It also takes into account the time value of financial

costs. Its main factors are capital cost, operating cost and cost of deferred production. The latter

is calculated based on the average number of critical failures per year. This can be adjusted to

include spurious trips and dangerous failures, but for quantifying only the losses in production.

This standard advises to include the uncertainty of calculations (standard deviation), based on

the confidence of the input data.

An alternative method, specific for SIS, is given by Goble (1998). He splits the primary costs

categories into two: procurement and operating costs (Eq. (1.28)). The relationship of these two

cost factors and equipment reliability is given in Figure 1.9.

LCC= CPRO+COP (1.28)

Procurement cost includes design, purchase, installation and start-up. Operation cost basically

includes cost of engineering changes, consumables, fixed maintenance costs and cost of failure

(risk costs). These costs are treated considering the time value of money, which is discussed

below with the complete LCC model.

10 NORSOK stands for The Competitive Standing of the Norwegian Offshore Sector (in Norwegian), a
series of standards issued by the Norwegian Technology Standards Institution (NTI)

Chapter 1. Safety Instrumented Systems and RAMS+C modelling 38

Reliability0.9 1.0

Operating
cost

Procurement
cost

Total cost

Figure 1.9. Cost behaviour against reliability (Goble, 1988)

Goble affirms that a SIS represents a special case, as failure costs consist primarily of risk

costs , and that this should be considered in lifecycle cost analysis. He proposes to calculate the

cost of risk based on the multiplication of the probability of the event without the SIS times the

PFD of the SIS:

PEVENT with SIS = PEVENT without SIS PFDSIS (1.29)

This event is clearly a hazardous one, i.e. a potential accident, and thus includes the risk s cost

by dangerous failures. This idea has been included in the LCC model presented in this thesis. As

with SINTEF, Goble compels the reader to include the cost of false trips.

Kawauchi & Rausand (1999) presented a report with a survey and comprehensive analysis of

lifecycle costing for the oil and chemical process industry. They did not present any specific

mathematical model, but rather an exposition of the theory behind the LLC.

Studies for the nuclear industry have many times been ahead of the process industry. Martorell

et al. (2002, 2005a) introduced an important contribution to the models for system operation

cost considering the test and maintenance strategy and the technical specifications in nuclear

power plants. Martorell et al. (2002) developed yearly cost functions test, preventive

maintenance and corrective maintenance costs, specifically applied for safety system

optimization. It also included outage cost and the cost of system overhaul. The cost of outage

time cu (a concept similar to shutdown) is also included, which considers loss of production:

cu=Ts chs (1.30)

Where Ts is the start-up time and chs is the cost of production per hour. Martorell et al. (2005a)

subsequently firmly established the cost factor as an additional objective for optimization of

Chapter 1. Safety Instrumented Systems and RAMS+C modelling 39

safety systems, formulating the system objectives as RAMS+C. They also added to the

operation cost model the cost of possible accidents ca:

ca(x)=R(x) cacc (1.31)

Where R(x) is the yearly risk contribution and cacc is the cost per accident. Eqs. (1.30-1.31)

account therefore for equivalents of cost of spurious trips and dangerous failures, which is

included in the risk cost in the LCC model used in this thesis (presented in Chapters 3-4).

1.8. SAFETY INSTRUMENTED SYSTEM OPTIMIZATION ISSUES

This chapter has presented the introductory theoretical material to understand and analyze

Safety instrumented Systems, the theory and approaches for modelling them and the normative

framework currently valid. IEC 61508 has progressively become the international standard for

safety related systems in several different industrial sectors. It fundamentally regulates the

ensurance of system functional safety. However, other works, mainly the PDS method, have put

emphasis on including the analysis of loss of production as a consequence of spurious

activations, so a proper balance between safety and reliability is achieved. This should be

evaluated against the system lifecycle cost. A convenient balance between these three objectives

can be achieved by two strategies: optimizing the design of the system and optimizing

maintenance, specifically the testing policy. This is the problem approached in this thesis.

Design of safety systems relies basically in either choice of system components according to

their reliability specifications or the allocation of redundancy. Component choice depends

largely on the technological options available. Redundancy allocation may improve safety but

affect reliability, or vice versa. It also has a considerable impact on system cost. In addition, the

increment in subsystem redundancy using identical components conveys an inherent problem

that can significantly negate its benefits: the simultaneous failure of all the redundant

components due to the same cause, called Common Cause Failure. One of the most effective

techniques for counteracting CCF is to implement redundancy using technologically diverse

components. Increasing redundancy, however, can improve one dependability objective but can

affect the other. This can be counteracted using partial redundancy, implemented by voting

architectures (MooN systems).

Testing is an activity that can largely benefit system performance without actually modifying its

design. It requires the choice of optimal policies, which includes the testing frequency and its

strategy. Too much testing can however convey negative effects, like large system downtimes

and event transients that may increase spurious trips. This impacts negatively the Lifecycle Cost

Chapter 1. Safety Instrumented Systems and RAMS+C modelling 40

and the confidence that the operator places on the safety system. To find a correct balance in

testing policies is, therefore, another optimization problem. The way testing policies relate to

system design changes when MooN voting architectures are introduced. This may increase the

benefits of both testing and design, but also may increase the complexity of the optimization

problem.

It is when considering these opportunities and challenges that the analysis and research of the

safety system optimization problem becomes important. Those described above are the

opportunities for research that are explored in this thesis. This work is mainly focussed on the

safety systems used in the process and oil and gas industries, but its techniques, methods and

results are sufficiently general to be easily extrapolated and applied to other sectors; e.g. the

nuclear industry, transport, aerospace, etc.

41

CHAPTER 2

RAMS+C optimization and Genetic Algorithms

The previous chapter provided an introduction to Safety Instrumented Systems and the theory

behind them. It also established that the metrics for measuring the dependability performance of

the SIS are the average Probability of Failure on Demand (PFDavg) and Spurious Trip Rate

(STR), which will be used for measuring system safety and reliability respectively. These two

dependability metrics, together with the system Lifecycle Cost (LCC) are the three objectives to

optimize, and are encompassed within the generic concept of RAMS+C (Reliability,

Availability, Maintainability and Safety plus Cost). The problem to solve becomes therefore a

RAMS+C multi-objective optimization. This chapter gives an introduction to the theory and

techniques of the approach adopted for the solution of this problem.

Primarily, an introduction to the multi-objective optimization problem, together with the basics

for its solution, is presented. Several classical optimization methods are outlined, so a

comparison can be drawn against the approach chosen in this work. In order to motivate the

interest of the reader, a review of the most influential works of RAMS optimization with

Genetic Algorithms (GAs) is given before introducing their theory. The principles of GAs are

subsequently explained. Finally, the two specific GAs used for the optimization cases of the

thesis are detailed.

2.1. THE MULTI-OBJECTIVE OPTIMIZATION PROBLEM

2.1.1. The general problem

Optimization is the process of selecting the values of the input variables of a problem in order to

find the optimal solution. The input variables are those that can be controlled or modified by the

optimizer. The optimization seeks to either minimize or maximize some specific objectives of

the problem at hand, which are the output of the problem. Each objective is defined by an

objective function.

A single-objective optimization is the process where only one objective is optimized. The

optimizer in this case gives as a result one single optimal solution. The case of multi-objective

optimization is different. Multi-objective optimization deals with two or more objectives to be

optimized simultaneously. The different objectives can present different relationships between

Chapter 2. RAMS+C optimization and Genetic Algorithms 42

one another: independency, conflict or harmony. It is very common to find that several of the

competing objectives present conflictive relationships. Therefore, it is not possible to find an

ideal solution that is best for all the objectives. There is no single optimal solution but a group

of several trade-off solutions that are all optimal. Without additional preference information, no

single solution can be said to be better than another. This is what the multi-objective

optimization problem addresses.

The problem of multi-objective optimization is one of simultaneously minimizing the n

different objectives of an objective function vector f(x):

Yxxxf(x)y)(),...,(),(21 nfff (2.1)

Where x is a decision variables vector

Xx nxxx ,...,, 21 (2.2)

Usually the objective space Y is restricted by a vector of constraints; e.g.:

nn gfgfgf)(,...,)(,)(2211 xxxg(x) (2.3)

The vector of constraints has the objective of forcing the optimizer to provide only feasible

solutions (those that are useful for the decision maker). As mentioned by Marseguerra et al.

(2006), the vector of constraints place limits on the objective space, considered as implicit

constraints. Alternatively, limits can be imposed directly on the decision variables vector, which

are called explicit constraints. This is the case when it is intended for the decision variables

varying only between realistic limits.

As mentioned above, it is generally impossible to find a unique solution that optimizes all the

objectives at once. In its place, a set of non-dominated optimal solutions is found, which contain

the best solutions in decision space X, called the Pareto-optimal set, which constitutes the

Pareto front. This implies that a single solution is to be picked up from this set of alternative

solutions by the decision maker, which usually is a human.

The bounds placed on the decision variables vector constitute the decision variables space.

Since the decision variables vector has correspondence with an objective function vector, there

is a mapping between the decision space (where the search is performed) and the objective

space: there is one solution in the objective space corresponding to each point of the decision

space. The bounds on the objective space, being those imposed by the limits of the variables or

the constraints vector, constitute the feasible region of the search space. Figure 2.1 shows a

representation of the mapping between the decision space and the objective space.

Chapter 2. RAMS+C optimization and Genetic Algorithms 43

Figure 2.1. Representation of the decision and the objective spaces

2.1.2. The multi-objective optimization problem for Safety Instrumented Systems

The optimization of SIS falls within the category of reliability optimization. A complete

analysis and classification of the reliability optimization problems can be found in Kuo et al.

(2001). Several different optimization cases are developed in this work. They can be

summarized into the following general cases:

Optimization of design with redundancy and reliability allocation. System design is

improved choosing the level of redundancy in subsystems, and choosing from specific

available components that have different reliability specifications (technological principles,

failure rates, diagnostic coverage, etc.). Therefore, the reliability values available are

discrete values. There are some studies in which the reliability allocation is continuous (e.g.

Salazar et al., 2006). This is, however, hardly applicable to real-life cases, where

components have to be selected from off-the-shelf options. This limits the range of choices

to some few discrete cases. In the optimization, each technological choice is designated with

an integer index number. These index numbers are used as decision variables to indicate the

type of component chosen.

Optimization of proof testing policies. The design of the system is fixed, and the system test

frequency and strategy are optimized. The test frequency, determined by the Test Interval

(TI) is indicated in hours. The test strategy establishes how the tests of the redundant

components are scheduled with respect to one another. This is set with the time of first test

of each ith component TPi (which is repeated every Test Interval). Thus, both the TI and TPi

can be expressed as integer variables.

Chapter 2. RAMS+C optimization and Genetic Algorithms 44

Given that the decision variables in both generic problems are integers, they can be viewed as

non-linear integer programming problems. These problems are NP-hard, which are usually

unlikely to have computationally efficient algorithms for exact optimal solutions (Kuo et al.,

2001). There are no powerful generic algorithms for solving non-linear problems.

In general, the problem is to minimize the objectives: Average Probability of Failure on

Demand, Spurious Trip Rate and Life Cycle Cost:

)(),(),(xxxf(x)y LCCSTRPFDavg (2.4)

Where x is a vector of integers,

nxxx ,...,, 21x (2.5)

Subject to:

niuxl iii ,...,1for

The problem is combinatorial (choice of components or test times) and stochastic (component

failure rates, dependability outputs) (Kuo et al., 2001). It is therefore a discrete optimization.

2.1.3. Pareto dominance and optimality

The criteria for determination of which are the optimal solutions from all the solutions in the

feasible space rest on the concept of Pareto dominance and optimality. These permit comparison

of any two solutions from the search space with respect to their multiple objectives and

determine which are the optimal. According to Deb (2001) a solution A dominates another

solution B if:

The solution A is not worse than B in all objectives, and

The solution A better than B in at least one objective

For the minimization case, this is:

}...1{allfor)()(niff ii BA , and

}...1{oneleastatfor)()(niff ii BA

It is therefore said that:

BA (2.6)

If solution A dominates B, A is better than B. A solution that is not dominated by any other

solution is a Pareto-optimal solution. The entire group of Pareto-optimal solutions form a

Pareto-optimal set, and the curve they form when being joined is called the Pareto-optimal front

Chapter 2. RAMS+C optimization and Genetic Algorithms 45

(Deb, 2001). The size of the entire Pareto-optimal set is usually too big to be completely

determined. Therefore, the optimizer must seek to find an optimal set of solutions that

represents it as faithfully as possible.

Figure 2.2. A six-solution population, demonstrating the concept of dominance

Figure 2.2 illustrates the concepts explained, showing a population of six solutions. Solution A

and E are Pareto-optimal solutions because they are non-dominated by any other solution of the

set. Observe that solution B has the same value in the objective f2 that A, but A is better in f1

than B; thus A dominates B. The same situation can be observed with solutions E and D.

Solution C is clearly a non-optimal one, because it is dominated by many other solutions. Also

notice that although solution F is at the border of the feasible region, it is not an optimal

solution because it is dominated by solution A, which is better in both objectives. Notice that

the solutions contained in the Pareto-optimal front are the best achievable trade-offs of the

objectives of the problem.

It is important to highlight the comment made by Deb (2001) that there exist mutiple Pareto-

optimal solutions in a problem only if the objectives are conflicting to each other . Otherwise, if

they are not conflict one single optimal solution is achievable.

An optimizer must meet two basic requirements:

Proximity. The obtained best-known Pareto front should be as close a possible to the true

Pareto front (Konak et al., 2006).

Diversity. The obtained Pareto set must be uniformly distributed and cover all areas along

the Pareto front, so that it is a true representative sample of it.

Chapter 2. RAMS+C optimization and Genetic Algorithms 46

Purshouse (2003) formulated the additional objective of pertinence, meaning that the obtained

Pareto set must provide solutions on the pertinent regions of interest. This, however, implies to

guide the search based on previously expressed preferences.

2.2. MULTI-OBJECTIVE OPTIMIZATION TECHNIQUES

2.2.1. Treating the multi-objective problem as a single-objective problem.

The multi-objective optimization problem is a vector optimization problem. There are

traditional methods of dealing with this. One is to optimize a single objective function

composed of the sum of all normalized objectives multiplied each by a user-supplied weight,

called the Weighted Sum Methods (Deb, 2001). The weights are chosen according to the

relative importance of each objective. However, as an alternative, all the objectives can be

combined into a single function to optimize using weighted metrics (Weighted Metric Method).

Another approach is to optimize only one objective at a time while the other objectives are used

as constraints included into an -vector. This is called the -Constraint Method. This method

often lead to a solution which may not be the best or most satisfactory (Kuo et al., 2001). To

formulate the weights for each objective or the weighted metrics requires knowledge of the

process and expression of previous preferences on the objectives. The same happens in the -

Constraint Method, since one of the objectives must be prioritized over the others, and previous

knowledge of the desired boundaries of the objectives used as constraints is needed. The

required normalization of objectives in these methods necessitates previous knowledge of

minimum and maximum values of each objective.

Goal Programming methods intend to find solutions towards a predefined target for one or more

of the objectives. In case the solution is not reachable, the method seeks to minimize the

deviations from the target. The methods can use weighted factors for deviations (Weighted Goal

Programming) and minimize the weighted sum of deviations (which in fact becomes a single-

objective optimization), or to categorize the goals with priority ordering (Lexicographic Goal

Programming) and solve then in sequence.

Deb et al. (2001) finds several difficulties with these classical methods. First of all, they convert

the multi-objective optimization problem into a single-objective problem. This must be solved

using a single-objective optimizer. In order to find another Pareto-optimal solution, the

parameters must be changed and a new run performed. There is no guarantee of finding a

solution in the entire Pareto-optimal front. They therefore provide only one single Pareto-

optimal solution per run, and the algorithms require good previous knowledge of the problem.

Chapter 2. RAMS+C optimization and Genetic Algorithms 47

The main drawback the author finds in the methods is the fact that the objectives must be

prioritized one over the others, and this prioritization be expressed as quantities. This can be a

complex task. It may also be quite subjective; solely left to the programmer s criteria. It is true

that for SIS safety there must be a prioritisation. However, the author considers that better

balanced objectives may be found if all the objectives have the same importance in the

optimization and are treated independently. The a priori articulation of preferences may be

useful, but only if it is based on a deep knowledge of the problem at hand. It is also the case that

the constrained bounds of the objectives are not always previously known. To obtain as a result

only one or few Pareto-optimal solutions could conceal some other good optimal solutions from

the decision maker. In addition, as Kuo et al. (2001) mentions, the Pareto-optimal solutions

given by the traditional methods mentioned above may be quite sensitive to the weights and

relative importance given to the objectives. To leave this articulation to the decision maker a

posteriori, visualizing all the options available on a set of well-distributed Pareto-optimal

solutions in a more interactive decision making process, may provide better trade-offs.

2.2.2. Multi-objective optimization

A very comprehensive review of optimization methods in reliability is given by Kuo et al.

(2001), highly based on Kuo & Rajendra-Prasad (2000). They chiefly report the main advances

in the field from 1980 onwards. It is interesting to note that they state that very little attention

has been paid to application of exact solution methodologies by researchers (from 1980) for

reliability optimization. The methods presented fall within the four broad techniques of exact

methods, approximation methods (based on non-linear programming), heuristics and meta-

heuristics. In general, they have been applied for single-objective optimization problems.

Heuristics methods are usually bespoke methods applicable to the specific problem for which

they were developed. An account of these methods applied to reliability optimization can be

found in Kuo et al. (2001). A brief review of other methods (other than meta-heuristics) is made

herein. Dynamic programming can be quite effective for certain deterministic and stochastic

problems, and it is powerful for discrete optimization problems. These methods transform a n-

variable optimization problem into a multi-stage decision making process. This transformation

is, nevertheless, not always simple, and may require a lot of ingenuity. It is good for problems

with no more than one constraint, since its computational complexity increases exponentially

with the number of constraints. This is the main drawback of this method. It is usually useful for

redundancy optimization if the system is series or hierarchical series-parallel. An advantage is

that it gives an exact optimal solution for problems with integer data input (in single-objective

optimization).

Chapter 2. RAMS+C optimization and Genetic Algorithms 48

Several discrete optimization methods are available for solving non-linear integer programming

problems; mainly dynamic programming, branch-and-bound techniques, implicit enumeration

methods and lexicographic search. Nevertheless, their computational complexity is also very

high. The structure of the problem, number of variables and number of constraints highly

influence the performance of these methods. A singular advantage is that they give an exact

optimal solution. However, in the opinion of Kuo et al. (2001), there is not a unique discrete

optimization method that can be considered to be the best for all discrete reliability optimization

cases.

Non-linear optimization problems with integer variables can be dealt with by solving its

continuous version and rounding off the optimal values. These non-linear programming

methods are based on three primary approaches: Gradient methods, Lagrange multipliers and

solving unconstrained optimization problems by penalizations. Penalizations are widely used for

their simplicity, but their convergence may be slow. These methods are useful even when

functions do not satisfy assumptions of continuity and differentiability. By penalizations, there

are two methods for solving an unconstrained optimization problem: derivative-type methods

and search methods. The former require an iterative evaluation of partial derivatives of the

objective function. Although they converge faster than search methods, if the number of

variables is large they involve a lot of preparatory work. Thus, search methods may be more

convenient for large scale problems. Generally, non-linear programming methods have high

computational complexity. In addition, their main drawback is that rounding off may not give

an optimal solution when solving discrete reliability optimization problems.

The methods described above are highly complex in terms of computation. Consider in addition

that Kuo et al. (2001) mention them only in single-objective optimization applications for

relative simple cases: Usually for only either redundancy or reliability allocation for reliability

optimization and subject to reliability constraints. The complexity of implementing these

methods for multi-objective optimization may be excessive.

Deb (2001) suggests that classical methods may face strong difficulties in solving practical

optimization problems when major fix-ups are not put in place. He states that, generally, these

methods are designed to solve a specific type of problem. In addition, a big drawback is that if

they fall into local minima it is not possible to escape it. The finding of an optimal solution

depends largely on the initial solution chosen. Many real world problems have discrete

variables, with discontinuities and noisy search spaces, and classical methods are not very

efficient in handling them.

Chapter 2. RAMS+C optimization and Genetic Algorithms 49

Evolutionary Algorithms (EAs) are metaheuristic methods based on the evolutionary principle

of survival of the fittest. They are part of soft computation artificial intelligence. They mimic

the natural selection and evolution process based on stochastic search techniques. EAs rely on

the process of selection and search of a population of potential solutions to evolve towards a set

of optimal solutions. Perhaps the most popular and widely researched of the group of EAs are

the Genetic Algorithms (GAs). GAs are explained in detail in Section 2.4, and two particular

algorithms are discussed in Chapters 3 and 5. For a complete overview of multi-objective EAs

and a good explanation of the basics of GAs the reader can see Deb (2001) and Haupt & Haupt

(2004). A review from the point of view of RAMS optimization can be read in Marseguerra et

al. (2006) and Konak et al. (2006).

As mentioned above, the problems of redundancy and reliability allocation, as well as testing

policy optimization, is a stochastic non-linear integer programming problem. In addition, for

highly complex problems the objective function may not be explicitly known. This is the case

with changing system designs, where the system fault tree is dynamically rearranged to generate

a new implicit objective function. For solving these problems dynamic programming may have

dimensionality difficulties with increasing number of variables, and integer programming

requires transformation of non-linear objectives into linear forms, which may be very complex.

The problems are thus not easy to subject to analytical treatment. Discrete variables make it

difficult to use gradient descent techniques and mathematical programming.

Genetic Algorithms (GA) present several features that make them advantageous over classical

optimization methods, especially for solution of multi-objective optimization problems. GAs

work on potential solutions codified into chromosomes. This permits easy adaptation of

complicated problems, codifying them instead of defining them analytically. Working with a

pool of multiple solutions and iteratively modifying it, the search is steered towards multiple

directions in the search space, which increases the likelihood of providing a superior better-

known Pareto-front. In case it falls into local minima, this also permits to escape it. Different

from classical methods, the population-based strategy makes it possible to obtain multiple

optimal solutions in a single run. Since the operators of GAs operate on stochastic principles,

and do not use deterministic rules, they do not assume any particular structure of the problem

being solved (Deb, 2001). This confers them their great flexibility for application to a large

diversity of problems.

GAs are useful for solving problems that are difficult for direct mathematical treatment (Kuo et

al., 2001). What is more, they can be applied when the objective function is not known

explicitly (as it is the case of the function evaluated based on changing fault trees). They can

Chapter 2. RAMS+C optimization and Genetic Algorithms 50

handle high dimensional, non-linear and discrete problems, with discontinuous functions. This

is remarkably useful for solution of real-life problems. They permit implementation with few

assumptions and constraints; avoiding unrealistic assumptions and approximations being made.

Being population-based, GAs can handle many different design scenarios efficiently, which is

the case of the design and test optimization problems treated in this work. Another big

advantage is that GAs provide a pool of several optimal solutions, which conveys great

flexibility for decision making.

Perhaps the big popularity of application of GAs is due to their flexibility and simplicity for

being adapted to a broad range of different applications. As Coello-Coello (1999) concisely

points out, they are less susceptible to the shape or continuity of the Pareto front, (which) are

big issues for mathematical programming techniques . GAs are surely not the perfect method

universally applicable. As the number of objectives and the complexity of their objective

function increase, they can become quite computationally expensive. The main disadvantage

can be the series of design parameters that the user has to choose or tune for the GA to work

efficiently, tailored to the specific application in hand. Nevertheless, as said by Schwefel (2000)

a universal method able to solve all problems effectively and efficiently cannot exist. GAs can

still be robust to the lack of perfection in some of their parameters, and deliver results

satisfactory enough for the decision making process to take place.

2.3. OPTIMIZATION OF RAMS+C WITH GENETIC ALGORITHMS

According to Kuo & Rajendra-Prasad (2000) the main structures approached in reliability

optimization are:

Parallel-series systems

k-out-of-n:G(F) systems

Network systems

Other unspecified systems

Regarding system design optimization, mainly three kinds of problems have been addressed:

1. Reliability Allocation (RelA). The reliability of the components or subsystems is changed in

order to find an optimum. Depending on the steps of reliability variation, this can be

continuous (CRelA; e.g. steps 10-6) or discrete component reliability allocation (DRelA).

Discrete allocation corresponds to the selection of reliability values from a predetermined

set of components, likely off-the-shelf, which is usually the real-life case.

Chapter 2. RAMS+C optimization and Genetic Algorithms 51

2. Redundancy Allocation (RedA). Reliability is optimized selecting redundancy levels for the

subsystems or components. When k-out-of-n architectures are included, optimization may

also involve choice of the number of voting components.

3. Redundancy and (component) reliability allocation (Red&RelA). A mixture of the two

previous cases.

A complete discussion of all reliability optimization models can be found in Kuo et al. (2001).

Optimization of system Test and Maintenance (T&M), also treated as Surveillance and

Maintenance (S&M), can be considered as a different problem category. An account of the main

works in this area is included below, but it is discussed in more detail in Chapter 5.

A review of the development of optimization by Genetic Algorithms in system RAMS+C is

given next. It is limited to the architectures most relevant to Safety Instrumented Systems (i.e.

no networks or more complex configurations). Application of GAs to reliability optimization is

fairly recent. Practically, this field of knowledge has been developed since the mid-nineties.

Some surveys useful as a general overview are Kuo & Rajendra-Prasad (2000) for general

system reliability optimization, and two surveys on GA-based approaches for reliability

optimization made by Gen & Kim (1999) and Gen & Yun (2006). These are however not

comprehensive reviews.

Perhaps the first propositions for using GAs in reliability optimization are Gen et al. (1993) as

cited in Kuo et al. (2001) and Smith & Tate (1993) as cited in Coit & Smith, (1994). Ida & Gen

(1994) (as cited by Kuo et al., 2001), proposed (a series-parallel) system reliability optimization

by redundancy allocation of components with several failure modes by GAs. Failures modes

belonged to two different classes: O and A. Class-O failures fail an entire subsystem by the

failure of one single component, while class-A failures do it only if all subsystem s components

fail.

Coit & Smith (1994) made an early application of a Neural Network as a reliability (objective

function) estimator of k-out-of-n systems for a design problem (where components of different

types could be mixed). The problem was of RedA & DRelA through component selection,

treating it as a combinatorial problem. The case was a series-parallel system cost optimization

plus a penalty for exceeding a reliability constraint.

Painton & Campbell (1995) solved a DRelA problem for a series-parallel system of a personal

computer: Maximization of MTBF. The problem was combinatorial and stochastic, since the

inputs were failure rates represented by distributions (rather than deterministic point values).

Chapter 2. RAMS+C optimization and Genetic Algorithms 52

The variables were three choices per component: no improvement (actual design), and two

levels of improvement, each with a characteristic failure distribution. The constraint was cost,

and the goal was to achieve a specific MTBF improvement. The constraints were incorporated

into the fitness assignment function.

Coit & Smith (1996a) solved a RedA problem with choice of different components (DRelA) of

a series-parallel system, including k-out-of-n:G subsystem redundancy. Components of different

types could be mixed. The component s reliabilities were deterministic (e.g. uncertainty is not

considered). The coding was made in integer values rather than binary. Fitness allocation

includes a dynamic penalty function. Two examples were solved: Reliability maximization

given cost and weight constraints, and cost minimization given reliability and weight

constraints. A further work was made for generating an adaptive penalty for reliability

optimization with cost and weight constraints and tested in several benchmark problems (Coit &

Smith, 1996b). In Coit & Smith (1996c) they applied a Neural Network (in optimization by GA)

for estimation of system reliability in a redundancy allocation problem with k-out-of-n

redundancies.

Muñoz et al. (1997) made an early exploration of constrained optimization by GAs of

Surveillance and Maintenance (S&M) of components with respect to risk (unavailability) and

cost. The case study was for S&M intervals for a motor driven pump. The single objective cases

address optimization of risk with cost constraints and vice versa.

Yang et al. (1999) approached the RelA problem of different systems composing a typical

Pressurized Water Reactor (PWR) of a Nuclear Power Plant (NPP). Reliability allocation was

based on probabilistic safety models (using event trees for probability of plant damage states

(the hazards) and fault trees for system unavailability). They paid special attention to the

formulation of a realistic objective function (based on value impact analysis) that considers the

impact of potential hazards on the costs by health and investment risks. Optimization was made

by improving or degrading the unavailability of the subsystems. The goal was to minimize

overall cost, while preserving certain safety goals (constraints). They presented a form of

parallel-coordinates plots to show the result of availability in different subsystems under

different constraints.

Pattison & Andrews (1999) introduced the application of GAs for optimal safety system design

that can be considered to be a pioneer application for design of a SIS. The optimization case is

for a High Integrity Protection System (HIPS), which includes an Emergency Shutdown System

(ESD). Redundancy, component choice, one MooN voting and test intervals are the variables.

Chapter 2. RAMS+C optimization and Genetic Algorithms 53

The objective function is not given explicitly, and here the flexibility of GAs is well exploited.

Instead, fault trees with house events are used. The resulting fault trees are solved by Binary

Decision Diagrams (BDD), a methodology previously developed in Andrews (1994). The

problem is RedA & DRelA (component choice). The fitness function is a sum of unavailability

and penalization by exceeding the unavailability, cost, Mean Down Time (MDT) and STR.

Cantoni et al. (2000) applied a GA with Monte Carlo simulation for optimal plant design (for a

case that could not be put explicitly in analytical form). The problem at hand was a series-

parallel system with k-out-of-n:G. It included DRedA with selection of components with

different failure and repair rates and cost. GAs were used for evaluation of the optimal given

designs (i.e. validation). The optimization was made to an objective function of gains (profits vs

costs), which included safety aspects: Cost of different types of accidents in the damage costs

component. The methodology was then applied for optimizing maintenance and repair policies

in Marseguerra & Zio (2000). The optimization was of maintenance intervals and number of

repair teams. A profit function was used for the fitness function which included the cost of an

accident having as a consequence of damage to the environment.

Martorell et al. (2000) integrated the Probabilistic Risk Analysis (PRA) modelling with a

customized Steady State Genetic Algorithm (SSGA) for optimization of safety systems in NPPs.

The application case deals with Test Intervals (TIs) variation of the components of a High-

Pressure Injection System (HPIS) of a Pressurized Water Reactor (PWR) of a NPP. The

optimization was made using an integer-coded GA. Analytical models were presented for the

risk function (in terms of unavailability) and cost (of maintenance and test). Two optimization

cases were presented: Optimization of risk under cost constraints and vice versa. Penalty

functions were fully developed for the application cases. The overall concept was further

developed in Martorell et al. (2002) to include maintenance intervals and Allowed Outage

Times (AOT), besides the TIs, as decision variables. The Lifecycle Cost (LCC) model was also

refined.

Giuggioli-Busacca et al. (2001) presented their first application of multi-objective GAs for

reliability optimization. Optimization was performed for two examples. The first being a simple

redundancy allocation with component choice. The problem was a two-objective maximization

case: reliability during the mission time and revenues. The profit function included penalties for

shutdown time. The second application was about optimization of TIs for the equipment items

of a HPIS. Three objectives were optimized: availability, cost and exposure time (to radiation).

The authors validated the algorithm against a single-objective solution. The cost function

included cost of accidents. A MOGA is used, but does not specify if it the Fonseca & Fleming

Chapter 2. RAMS+C optimization and Genetic Algorithms 54

(1993) algorithm.

Elegbede & Adjallah (2003) solved a multi-objective problem using a weighting technique,

making it a single-objective optimization problem: Maximization of availability and cost (by

availability performance) with penalties for a repairable series-parallel system. The decision

variables were redundancy per subsystem, failure rate and repair rate. This means that the

problem at hand had both continuous and discrete variables. The authors provided a

contribution for tuning the algorithm for the specific application based on experimentation with

some few runs of specific combinations.

Andrews & Bartlett (2003) extended the methodology of single objective optimization of

Pattison & Andrews (1999) to a larger system. The application was for optimization of the

probability of not functioning on demand of a Firewater Deluge System (FDS) plus (penalized)

constraints of LCC (maintenance and test) and STR. The problem was of DRedA with

component selection and test and maintenance intervals. The design was optimized for field

instruments (transmitters, valves, pumps). Different failure modes: dormant and spurious are

considered in the components data (failure rates and repair times) for the first time. The costs

considered include only test and maintenance.

Greiner et al. (2003) compared the performance of various second-generation GAs (SPEA2,

NSGA-II and NSGA-II with controlled elitism) in the multicriteria optimization of safety

system design. They constructed fault trees and applied the weight method (published later in

Gonzalez et al., 2004) to solve them. The problem was of component selection (discrete

redundancy allocation) for a Containment Spray Injection System of NPP for optimization of

unavailability versus cost. They found that the NSGA-II with controlled elitism gave the best

overall average results.

Marseguerra et al. (2004a) explicitly included uncertainty in the parameters in a multi-objective

optimization with GAs. One of the cases presented addressed optimization of surveillance

intervals (STI) for a Residual Heat Removal Safety System of a Nuclear Boiling Water Reactor.

The two objective functions evaluated the inverse of the s-expected system failure probability

and the inverse of its variance. The uncertainties lay in the failure rate and duration of

inspection parameters. Inclusion of uncertainty for surveillance requirements optimization has

received further attention in more recent works, such as Martorell et al. (2008a). A survey on

the topic can be found in Villanueva et al. (2008).

Marseguerra et al. (2004b) upgraded their method (Marseguerra & Zio, 2000) to multi-objective

Chapter 2. RAMS+C optimization and Genetic Algorithms 55

GA with Monte Carlo simulation for the optimization of the Technical Specifications of a

Reactor Protection Instrumentation System (RPIS) of a NPP, specifically regarding the testing

policies (test intervals and allowable bypass times). The method starts by taking into account

uncertainties in the model parameters to minimize both the mean value of the system

unavailability and its variance (consequence of parameter uncertainty). A recent application of

the methodology in Zio & Podofillini (2007a) includes system design (component selection)

and spare parts allocation.

Martorell et al. (2004) introduced a general framework for multi-objective GA optimization of

safety related systems based on the concept (coined by them) of RAMS+C criteria. They

presented an application to the benchmark HPIS problem with optimization of maintenance

based on the subset A[U]+C (unavailability and cost). It is a comprehensive case involving

surveillance test, preventive maintenance and overhaul intervals, and allowed outage times for

the valves and pumps of the HPIS. They contrasted the solution of the problem by two

approaches: (1) direct multi-objective optimization and (2) converting the problem into several

single-objective problems to be solved sequentially. It is also the second work to reportedly use

a second generation GA: SPEA2.

In a subsequent paper, Martorell et al. (2005a) extended and refined the approach for a more

comprehensive integration of Technical Specifications (surveillance requirements and limiting

conditions of operation) and Maintenance (TSM) requirements. This with the objective of

meeting the requirements of the nuclear industry standards. They introduced risk as function of

RAM attributes. The costing model was here fully developed based on a previous work

(Martorell et al., 2002), which includes reactor core damage as a risk scenario. The goals were

included as constraints (of RAMS+C). The case study analysed was for an Emergency Diesel

Generator. The objective function evaluated unavailability, incremental risk and cost.

Martorell et al. (2005b) explored the multi-objective optimization of the plant surveillance

requirements simultaneously optimizing the TIs and the test planning (strategy), based on time-

dependent modelling. Subsequently, Martorell et al. (2006) treated the HPIS system

optimization with a double nested loop. An external loop optimized the TIs with a learning

machine, while the internal loop (a multi-objective GA) optimized the test staggering.

Salazar et al. (2006) solved some benchmark problems using a second-generation multi-

objective GA: NSGA-II. The problems addressed included RedA, RelA and RedA & RelA.

Reliability was assumed to be discretized in steps of 10-6, making practically continuous

Chapter 2. RAMS+C optimization and Genetic Algorithms 56

reliability allocation cases with very big search spaces. Thus, they use a mixed real/integer

codification. It validated the results against single-objective solutions of the same problems.

Borisevic & Bartlett (2007a, b) and Riauke & Bartlett (2008) upgraded the methodology

presented in Pattison & Andrews (1999) and Andrews & Bartlett (2003) respectively for multi-

objective optimization using the SPEA2 genetic algorithm. The HIPS and FDS problems were

optimized this time having the system unavailability (with penalizations), cost and STR

objectives (the last three were originally treated as constraints in the single-objective

optimization studies).

Hussain & Todinov (2007) presented a single-objective optimization case of component

selection for a series parallel system for minimization of total cost with reliability constraints,

which basically included the initial investment for risk reduction plus the costs of system

failure.

Zio & Podofillini (2007b) incorporate importance measures to the GA multi-objective

optimization. The TIs of the HPIS were varied for optimization of unavailability, cost (of T&M)

and an importance balance function. This last objective was based on the Fussell-Vesely

measure of each component of the system, and intends to balance the testing frequency of each

component according to its contribution to the other two objectives. In a subsequent work

Podofillini & Zio (2008) compare the performance of the optimization using Birbaum and Risk

Achievement Worth important measures against the Fusell-Vesely original proposition. These

studies add interestingly to the Risk-Informed decision making strategy for safety systems,

which is a concept presented in previous works by the same authors (an introduction to the topic

can be see at Vesely & Apostolakis, 1999; and Vesely, 1999).

Taboada et al. (2007) approached an implementation form of the Decision Maker for reduction

of the Pareto-optimal set by two different methods: Pseudo-ranking (similar to weighted sum

method but with the objectives being ranked non-numerically by preference) and data mining

clustering (where the choice is reduced to some few non-similar solutions, i.e. from individuals

of different clusters), applied to several benchmark problems for demonstration. The case was

of maximization of reliability and minimization of cost and weight by RedA with component

selection using NSGA.

Tavakkoli-Moghaddam et al. (2008) proposed a single-objective optimization of plain reliability

with cost and weight constraints, where the redundancy allocation and component selection

redundancy scheme can be chosen between active and (cold) standby redundancies. A novel

Chapter 2. RAMS+C optimization and Genetic Algorithms 57

encoding is made with matrix-formed individuals.

Some new hybrid approaches have emerged in the utilization of GAs for RAMS optimization.

These are out of the scope of this work. However they are worthy of mention. Early applications

are the optimization of the RedA problem with GAs and Neural Networks (NNs) for evaluation

of the objective function, given by Coit & Smith (1994, 1996c). A brief account of some newer

approaches can be found in Gen & Yun (2006). They propose some hybrid strategies of GAs

mixed with other techniques to improve performance of the program and to solve problems

inherent to GAs, such as premature convergence and the complicated, time consuming, tuning

of the algorithm s parameters. Examples include GAs with Neural Networks for initialisation,

GAs with local search (Hill climbing) and GAs with fuzzy logic. More recent works include

Salazar et al. (2007), Rao et al. (2007) and Zio et al. (2008).

System modelling has recently been extended to Multi-state systems. In these, the system and

its components have a range of performance levels, from perfect functioning to complete failure

(Levitin et al., 1998). One example of optimization by redundancy and reliability allocation for

series-parallel multi-state systems can be seen in Levitin et al. (1998). An application based on

GAs was addressed by Tian & Zuo (2006). Multi-state systems are different from systems with

two failure modes, and are out of the scope of this work. A comprehensive introduction to

multi-sate systems is given in Lisnianski & Levitin (2003).

Based on the review given above, a summary of the main developments in the subject is

presented in Table 2.1. It can be seen that not much work has been developed in the field of SIS

for the process industry. Although the level of system complexity has been growing, no study

has addressed optimization towards compliance with IEC 61508, which implies some level of

modelling detail (e.g. like several failure modes). Specific measures of SIS dependability, like

quantifying system safety with the Probability of Failure on Demand and considering besides

Spurious Trip Rate, have not been fully addressed. These last two points have been treated in

the works of Pattison & Andrews (1999), Andrews & Bartlett (2003), Bosirevic & Batlett

(2007a, b) and Riauke & Bartlett (2008). Nevertheless, the requirements as specified by IEC

61508, such as system safety integrity, have not been approached by these works or any other

optimization study so far.

Regarding the level of detail, especially Common Cause Failure and diagnostic coverage are

issues that have been neglected. Another overlooked possibility is the integration of diverse

redundancy for improvement of system performance. Coit & Smith (1994, 1996a) approached

the option of diverse redundancy for optimization of plain reliability for simple systems. No

Chapter 2. RAMS+C optimization and Genetic Algorithms 58

more development for practical safety systems have appeared. Just recently, Martorell et al.

(2005b, 2006) integrated time-dependent modelling for more precise modelling of unavailability

in optimization of test intervals and strategies, a matter of study with still a lot of possibilities.

Finally, although some studies have included k-out-of-n architectures in design optimization

(Coit & Smith, 1994, 1994a; Pattison & Andrews, 1999; Andres & Bartlett, 2003; Borisevic &

Bartlett, 2007a, 2007b; Riauke & Bartlett, 2008), not much detailed work has been made for

comprehensively studying its impact on the optimization of system design when fully-detailed

modelling in made (i.e. IEC 61508), let alone with time-dependent models. Researchers that

have addressed complex k-out-of-n architectures have done it with expensive methods, like

Monte Carlo Simulation (e.g. Cantoni et al., 2000). All these issues deserve attention. These are

opportunities for research that are explored in this work.

Table 2.1. Milestones in RAMS optimization with Genetic Algorithms
Year References Contributions Remarks
1993-
1994

[1] Gen et al. (1993)
[2] Smith & Tate (1993)
[3] Ida & Gen (1994)

First application
of GAs

First applications of Genetic Algorithms to system
RAMS has been developing since the first half
nineties

1994-
2000

[1] Ida & Gen, (1994)
[2] Painton & Campbell (1995)
[3] Yang et al. (1999)
[4] Coit & Smith (1994)
[5] Coit & Smith (1996a, 1996b)
[6] Coit & Smith (1996c)
[7] Pattison & Andrews (1999)
[8] Cantoni et al., (2000)

Problems
addressed in
optimization of
system design

GAs have been used for two main fields: system
design optimization and optimization of test and
maintenance. Regarding system design, some have
addressed reliability allocation [2, 3] and redundancy
allocation [1]. However, the most addressed problem
is redundancy and reliability allocation; e.g. [4, 5, 7,
8]. The first hybrid applications of neural networks
and GAs were made by Coit & Smith [4, 6].

1994-
2003

[1] Coit & Smith (1994, 1996a,
1996c)

[2] Patison & Andrews (1999)
[3] Cantoni et al. (2000)
[4] Andrews & Bartlett (2003)

Optimization of
design with k-
out-of-n
structures

The most studied redundant structure is the parallel
case. Nevertheless, the cited researchers have
introduced k-out-of-n structures in the design.

1994-
2004

[1] Coit & Smith (1994)
[2] Painton & Campbell (1995)
[3] Muñoz et al. (1997)
[4] Yang et al. (1999)
[5] Martorell et al. (2000)
[6] Marseguerra et al. (2004)

Objectives used
in the
optimization

Since the unavailability of a safety system is critical,
this is the most optimized objective [6], together with
cost [1, 4]. Several authors use unavailability as a
measure of risk [5]. In single objective optimization,
constraints were placed as reliability [1], and cost [2,
3].

1997 [1] Muñoz et al. (1997)
[2] Martorell et al. (2000, 2002,

2004, 2005a, 2005b)
[3] Marseguerra et al. (2000,

2004a, 2004b)
[4] Zio & Podofillini (2007a,

2007b)

Optimization of
testing

The first application of surveillance (test) and
maintenance interval optimization is [1]. Work in this
area has been led by the group of Martorell [2] and
Marseguerra and Zio [3, 4].

1999 [1] Yang et al. (1999) Introduction of
combinatorial
methods

Introduced the solution of the objective function by
combinatorial methods (i.e. fault trees), which has
been developed in further works by other researchers.

1999-
2005

[1] Yang et al. (1999)
[2] Martorell et al. (2000, 2004,

2005a)
[3] Giuggioli-Busacca et al.

(2001)
[4] Marseguerra et al. (2004a,

2004b)

Applications in
the nuclear
industry

Optimization applied to safety systems has mostly
been developed in the nuclear industry, where the
HIPS is a frequent case study.

Chapter 2. RAMS+C optimization and Genetic Algorithms 59

Table 2.1. Milestones in RAMS optimization with Genetic Algorithms
Year References Contributions Remarks
1999-
2007

[1] Pattison & Andrews (1999)
[2] Andrews & Bartlett (2003)
[3] Borisevic & Bartlett (2007a,

2007b)
[4] Riauke & Bartlett (2008)

Applications
related to
process industry

Applications relevant to the process industry are [1,
2]. They approach safety systems normally used in
SIS and introduced optimization of more complex
problems with design and test. Given the difficulty to
define analytically an objective function in, they used
fault trees with house events (synthesized by BDDs)
instead of an explicit function. Ref. [2] introduced for
first time the use of different failure modes (safe and
dangerous) for quantification of system probability of
failure and spurious trip rates. These works were
upgraded to multi-objective optimization in [3, 4].

2000 [1] Cantoni et al. (2000)
[2] Marseguerra & Zio, (2000)
[3] Marseguerra et al. (2004b)

GAs and Monte
Carlo
simulation
combined

To be able to model highly complex systems, [1] put
together GAs and Monte Carlo simulation, a work
that has been applied to other cases [2, 3].

2001 [1]. Giuggioli-Busacca et al.
(2001)

First application
of multi-
objective GAs

The first application of multi-objective GAs was
made by Giuggioli-Busacca et al. (2001), in which
objectives formerly treated as constraints were now
included as objectives to optimize.

2001-
2007

[1] Giuggioli-Busacca et al.,
(2001)

[2] Martorell et al, (2005a)
[3] Borisevic & Bartlett, (2007a,

2007b)

Number of
objectives being
optimized

In the most of the cases, only two objectives are
optimized, being some few cases with three [1, 2] or
four objectives [2, 3].

2004 [1]. Marseguerra et al. (2004a)
[2]. Martorell et al. (2008a)

Inclusion of
uncertainty

Marseguerra et al. (2004a) have included
consideration of uncertainty in the parameters when
using optimization by GAs. Other more recent works
have developed it further [2].

2004-
2005

[1] Martorell et al. (2004, 2005a) Development of
the concept of
RAMS+C

Martorel et al. (2004, 2005a) introduced the broader
concept of RAMS+C optimization, addressing
technical specifications and maintenance of safety
systems in NPPs. Their work intends to meet the
requirements of nuclear industry regulations.

2005-
2006

[1] Martorell et al. (2005b)
[2] Martorell et al. (2006)

Use of time-
dependent
models for test
& maintenance
optimization

Time-dependent models where introduced by
Martorell et al. [1] in multi-objective optimization of
test & maintenance. They solve it with a double-
nested loop in Martorell et al. [2], so that test
intervals and test strategy can be both optimized.

2004-
2007

[1] Marseguerra et al. (2004a, b)
[2] Grainer et al. (2003)
[3] Martorell et al. (2004)
[4] Borisevic & Bartlett (2007a,

b)
[5] Riauke & Bartlett (2008)
[6] Salazar et al. (2006)

Off-the-shelf
GAs

Few authors indicate which GA they are using. [1]
use a customized GA (which based on their
references, could be thought to mix operators of the
Fonseca & Fleming MOGA and SPEA). Grainer et
al. [2] made the first application and comparison of
second generation GAs (SPEA2 vs NSGA-II). Refs.
[3, 4, 5] use SPEA2, while [6] made an application
with NSGA-II for test in benchmark cases of
reliability and cost optimization.

2006-
2008

[1] Tian & Zuo, (2006)
[2] Gen & Yun (2006)
[3] Salazar et al. (2007)
[4] Rao et al. (2007)
[5] Zio & Podofillini (2007b)
[6] Taboada et al. (2007)
[7] Zio et al. (2008)
[8] Tavakkoli-Moghaddam et al.

(2008)

Latest
developments

Latest developments have been attempting to get
better balanced optimizations, incorporating
importance measures into the objectives; e.g. [5]. The
implementation of the decision maker is getting
relevance as well, in the form of getting reduced
Pareto sets [6]. The issue of complexity in the
objective functions have led to mix other soft-
computing approaches with Gas (i.e. hybrids), like
Neural Networks and Fuzzy Logic [2, 3, 7]. Finally,
applications to more complex cases are being
investigated. For instance, Ref. [8] considers design
with choice between active and passive redundancies.
Another notable development in this sense is the
application of GAs for optimization of multi-state
systems [1].

Chapter 2. RAMS+C optimization and Genetic Algorithms 60

2.4. PRINCIPLES OF GENETIC ALGORITHMS

Evolutionary Algorithms (EAs) is a group of techniques that mimic nature s selective process of

evolution for solution of optimization problems. Genetic Algorithms are one of the most

researched of EAs. They have been widely used for solution of single objective problems. For

multi-objective problems, Genetic Algorithms have been extended to be able to handle two or

more objectives, usually in conflict with each other.

2.4.1. Working principle

A Genetic Algorithm performs a stochastic search guided by the principle of natural selection

based on individual genetics. The algorithm simulates the process of evolution of a population

of individuals whose genetic characteristics are inherited from those ancestors that were fittest

for survival, the same as the natural evolution of species does.

Fig. 2.3. Standard Genetic Algorithm flowchart

Figure 2.3 shows the general scheme of a GA. A GA works with a pool of solutions

denominated individuals. They are evaluated, selected and mated to create new and hopefully

better ones, which are fed into a new generation, making an iterative process that mimics the

natural evolution. Each step of the GA is executed through the application of genetic operators.

These operators together form the breeding algorithm. The standard GA follows generally the

following steps:

Chapter 2. RAMS+C optimization and Genetic Algorithms 61

1. Creation of a random initial population. The standard GA starts with a random initial

population of several potential solutions in the decision space. Each individual is a coded

representation of one set of decision variables (one single solution) in the decision space,

called a chromosome. One chromosome is composed of individual discrete units or genes.

This constitutes the genotype of the chromosome (see Figure 2.4). The codification is

traditionally made in binary numbers, although nowadays other codes are used, such as

integer and real numbers. In binary codification, each bit constitutes an allele (one gene is

typically composed of more than one allele). These individuals pose a series of attributes

that will determine their potential for being an optimal solution of the objectives of the

problem at hand. Notice that since an individual is a potential solution to the optimization

problem, many times they are referred to as a solution too.

Figure 2.4. Encoding/decoding of an individual

2. Evaluation of the individuals, which are ranked and fitness-assigned. The chromosomes

are decoded into the real values of the variables they represent. This is the phenotype of the

individuals. With this the objective functions are evaluated. According to the evaluation in

the objective space, the individuals are ranked and then assigned a fitness value, which

determines their likelihood of reproduction in the next generation.

3. Selection for reproduction (crossover), generating a number of new individuals. A

fraction of this population is selected for reproduction (recombination). The crossover is

usually made by mating chosen pairs of parent solutions, generating a number of children

called offspring.

4. Mutation of the offspring. The offspring are then mutated (commonly flipping one or

more bits)

5. Replacement of the offsprings into the parent population. Offspring are reinserted in the

population, usually substituting the same number of parents. This population represents a

new generation.

The cycle of evaluation, selection, reproduction and reinsertion is repeated until a certain

condition to stop the algorithm is met. This condition may be the exhaust of a generation count

Chapter 2. RAMS+C optimization and Genetic Algorithms 62

or the compliance with a specific goal. At the end, the algorithm delivers a set of optimal

solutions: the Pareto-optimal front. The individuals are evaluated, selected and mated to create

new and hopefully better ones, which are fed into a new generation, making an iterative process

that mimics the natural evolution.

2.4.2. Development of Genetic Algorithms

Genetic Algorithms (GA) were initially proposed by Holland (1975), while Evolution Strategies

where firstly devised by Rechenberg (1973). These two fields have practically merged to form

the basis of Evolutionary Algorithms. Comprehensive historical reviews of EAs are given by

Coello-Coello (2006) and Adra (2007). This section is based on those works. The first

implementation of a GA was the Vector Evaluated Genetic Algorithm VEGA (Schaffer, 1985).

This GA was not based on Pareto-optimality. VEGA splits the population into subpopulations,

each of them applied selection according to one of the objectives. Then they were merged back

for crossover and mutation to get a general solution. The selection scheme of this approach was

its main drawback, since it was unable to retain solutions with good trade-off performance,

tending to keep ones that were very good in one specific objective (the speciation problem,

according to Adra, 2007). Some others approaches were developed like Lexicographic Ordering

GA.

The evolution of GAs up to date is categorized into two generations. Goldberg (1989) proposed

the application of the concept of Pareto-optimality for ranking and selection in the GAs. This

idea has been very influential in the development of the GAs after his publication, and the

author considers this is maybe the main characteristic of the first generation of GAs. Goldberg

also proposed to use niching to prevent the GA converging into a single point of the front (i.e. to

enhance diversity). Several GAs where developed during the first generation. The most

representative being the Non-dominated Sorting Genetic Algorithm NSGA (Srinivas & Deb,

1994), the Niched-Pareto Genetic Algorithm NPGA (Horn et al., 1994), and the Multi-Objective

Genetic Algorithm MOGA (Fonseca & Fleming, 1993). The main difference among first-

generation GAs is the mechanism of assignment of fitness (Adra, 2007). The Fonseca &

Fleming MOGA is accepted as the most efficient algorithm of the first generation, based on a

comparative study by Van Veldhuizen (1999).

The second generation is characterized by the incorporation of elitism to the GAs. They also

have new and more sophisticated mechanisms of promotion of diversity. Elitism is a mechanism

that helps to preserve good solutions during the optimization process. There are two different

strategies for enforcing elitism (Konak et al., 2006): Storing the elitist solutions in a secondary

archive, and maintaining elitist solutions in the population. The first implementation of elitism

Chapter 2. RAMS+C optimization and Genetic Algorithms 63

was made in the Strength Pareto Evolutionary Algorithm SPEA (Zitzler & Thiele, 1999). This

makes use of two populations, both participating in the optimization process. The second

additional population keeps an archive of the non-dominated individuals, enforcing the elitist

mechanism. Elitism with external population presents some drawbacks: It is computationally

expensive as it requires management of the size of the second archive and an algorithm for

reintroduction of elitism solutions into the population.

Other notable GAs of the second generation are the Pareto Archived Evolution Strategy PAES

(Knowles & Corne, 2003), the Strength Pareto Evolutionary Algorithm 2 SPEA2 (Zitzler et al.,

2002), an improvement of the SPEA, and the Non-dominated Sorting Genetic Algorithm II

NSGA-II (Deb et al., 2000, 2002). The latter was presented as an improvement of the first-

generation NSGA, but they can be considered different algorithms due to their significant

differences. The NSGA-II, different from the other second-generation algorithms, does not use

an external population for preservation of the best solutions. It instead combines the best

individuals of both parent and offspring populations. This algorithm is in comparison so

efficient, with such as good performance that it is considered a landmark against which other

multi-objective evolutionary algorithms have to be compared (Coello-Coello, 2006).

In this work the two leading GAs, MOGA and NSGA-II, have been used for the optimization

cases. They are described in Chapters 3 and 5 respectively. A complete historical review,

describing the contribution of each GAs to the field, can be found in the two references given

above.

2.4.3. The generic Genetic Algorithm

2.4.3.1. Initial population

The population of the GA is a group of Npop individuals. The most popular encoding is binary,

but real numbers are used too and sometimes integer codes. The choice of a particular

codification is always problem-dependent. Choosing between binary and real operators, there

are some differences between the genetic operators used, mainly for the crossover and mutation

operators.

There is an argument for using Gray codes in binary representation. Gray codes have a

Hamming distance of one between consecutive numbers. Hamming distance is the number of

different bits between two strings of the same length. As cited by Haup & Haput (2004), some

authors argue that binary codes may slow the convergence progress because the large variance

that can occur in the crossover operator. In contrast, Gray codes reduce this variance and speed

Chapter 2. RAMS+C optimization and Genetic Algorithms 64

convergence. However, Haupt & Haupt report as their experience that the conversion to Gray

codes slows the GA and do not provide a significant improvement. As many of the tuning issues

in GAs, the author believes the benefit of using Gray codes instead of binary must be problem-

dependent.

The population size Npop is one of the parameters of the GA to choose. The act of choosing the

parameters of the GA is referred to as tuning the algorithm. As Marseguerra et al. (2006)

discuss, a too small population can have as consequence low genetic diversity, causing the

population to be dominated by similar chromosomes. This can cause premature convergence,

convergence to a local optima, or lack of diversity in the found Pareto-optimal set. In contrast, a

too large population can provoke an excessive genetic diversity, leading to the phenomenon of

clustering around local optima. Mating of parents from a different cluster can create offspring

that lack the good genetic qualities of both parents. These individuals are called lethals.

The initial population can be created following several strategies. Perhaps the most popular, for

its simplicity, is to create it randomly. Other strategies can be followed in order to ensure

diversity of guiding the search, such as creating per se a diverse population, or a population with

individuals whose chromosomes favour one goal of the optimization.

2.4.3.2. Evaluation (fitness allocation)

Evaluation is a composite process. It requires evaluation of the objective functions based on the

individual s phenotypes. This will give us the real values of each objective per individual. The

second step is to allocate a (scaled) fitness value. The fitness is a measure that indicates the

relative performance eligibility of a particular individual, and thus its ability to survive

(Goldberg, 1989). A higher fitness indicates that the individual has a higher probability of

surviving the next generation and of being chosen for reproduction.

A fitness function is used to assign the relative fitness of each individual. This is usually based

on ranking; i.e. the relative rank of a particular individual among the population to which it

belongs. It is therefore obvious that the Evaluation task comprises three steps: Evaluation of the

objective function, ranking and fitness allocations (as indicated in Figure 2.3). Dominance-

based ranking can be done by three different methods (Marseguerra et al., 2006):

Dominance rank. A count of the number of solutions that dominate an individual. This is

used in the MOGA.

Dominance depth. An assessment of to which dominance front an individual belongs. Used

in the NSGA-II.

Chapter 2. RAMS+C optimization and Genetic Algorithms 65

Dominance count. A count of the number of solutions and individual dominates. The

method of SPEA2.

The fitness function is calculated based on the rank value (rather than on its actual objective

function value, as Konak et al., 2006 indicate). In general, this chapter refers to the best fitness

values as those of higher fitness . However, it is important to note that in minimization

problems the fitness value may decrease as it improves. Thus, the lowest fitness values would

represent the fittest individuals. It can be said that, in its most basic form, fitness is a function of

ranking as follows:

),(),(trtf xx (2.7)

Where f represents the fitness of the x individual at generation t.

In addition, the fitness function can be modified in order to meet other requirements. For

example, to add penalizations to individuals who violate established constraints. But most

important is the adjustment of fitness to foster diversity in the population. Without additional

measures to specifically promote diversity, the population may tend to form a few clusters of

individuals (genetic drift), clearly affecting the performance of the algorithm. These measures

are based on estimation of the density of the population in the neighbourhood of the individual

being allocated its fitness. One example is fitness sharing, used in the Fonseca & Fleming

MOGA, and crowding distance, the mechanism of the NSGA-II. A detailed account of these

and the ranking methods is given in Chapters 3 and 5, where the MOGA and the NSGA-II are

discussed respectively in depth.

2.4.3.3. Selection (for variation)

The selection of specific individuals for mating is based on their fitness value, which is

equivalent to their reproduction expectation (Adra, 2007). Selection is a stochastic process.

However, the better the fitness the higher the likelihood of being selected for reproduction. The

selection operation consists on identification of good solutions and determination of their

expected number of trials. This can be done by creating a mating pool (i.e. a temporary

secondary parent population), substituting within it some bad solutions by multiple copies of the

good ones. Once this is done, the selection is made.

There are several operators for selection. Some of the most popular are Tournament selection,

Roulette Wheel Selection (RWS) and Stochastic Universal Selection (SRS). Tournament

Selection (see Deb, 2001) is a simple algorithm that consists in playing tournaments between

couples of individuals. The best individual (the one with better fitness) is chosen and placed in

the mating pool. Each individual is chosen to play two tournaments. In this way, the mating

Chapter 2. RAMS+C optimization and Genetic Algorithms 66

pool is filled with the winning solutions from the tournaments.

In the Roulette Wheel Selection (also known as Stochastic Sampling with Replacement SSR) an

area of the roulette wheel is designated to each solution. This area is proportional to the

solution s scaled fitness. The wheel is spun N times equal to the population size. One pointer

indicates which solution is chosen every spin. In reality, when simulated in a computer, a

linear wheel remains static and the pointer is moved by generating a random number rs that

indicates its position. The random number is generated in the range [0, Sum], where Sum can be

the sum of the expected selection probability (e.g. the cumulative probability=1). The selection

probability of each individual is based on their fitness; and this determines its share of the

wheel. This mechanism is illustrated in Figure 2.5.

Figure 2.5. Roulette Wheel Selection and SUS

Since individuals with higher fitness occupy a bigger area, they have more chances of being

selected multiple times. The segment s size allocated to each individual does not change during

the entire selection process. Thus, any individuals could be chosen many times, even to fill a

large part of the next generation, which would affect diversity. Several variations of this

mechanism are available, one being the Stochastic Sampling with Partial Replacement (SSPR),

which reduces an individual s segment every time this is selected (Chipperfield et al., 1994).

Another option is the Stochastic Universal Sampling (SUS). This, rather than one single pointer,

has N equi-spaced pointers equal to the number of solutions to select (usually the size of the

population). The operator is completed in one single run, generating one random number

indicating the position of the first pointer is generated, which moves the entire set of pointers,

indicating the chosen solutions (Fig. 2.5). SUS is used with the aim of achieving the objectives

of reducing stochastic selection errors as much as possible, and to reflect through the assigned

fitness of individuals their expected eligibility for reproduction. Reeves and Rowe (2002)

indicate that SUS and tournament selection are considered more efficient that RWS.

Chapter 2. RAMS+C optimization and Genetic Algorithms 67

2.4.3.4. Crossover

Crossover together with mutation constitute the variation operators of the GA. They carry out

the exploration process of the GA, creating new individuals that will be later introduced into the

population and therefore into the search space. It is in the variation operators where the major

differences between genetic operators for binary and real codifications take place.

Crossover is also called Recombination. The operator picks two parent solutions from the

mating pool and exchanges portions of their chromosome strings (i.e. genetic features) to create

two offspring. This is equivalent to using the parent s genes to create new individuals, in the

hope that they will retain the best genetic information and be fitter. The simplest recombination

is the Single Point crossover (Fig. 2.6), in which a cross point is randomly chosen. The two

parents exchange their portions of chromosome indicated by the crossover point. Variations of

this operator include the Double Point crossover and the Multiple Point crossover. As its name

indicates, the latter consists in randomly choosing multiple cross points for exchanging the

portion of the parent s strings. The Uniform Crossover (Fig. 2.6) operates by choosing every bit

from the other parent with a probability p (usually p=0.5) to create the offspring (Deb et al.

book). To implement it, a mask of bits can be randomly created, which decides whether a

particular bit is chosen from one parent (0) or the other (1). The mentioned crossover operators

are for binary codifications. They can be used for real numbers, but they are quite

unsophisticated. Some adaptations of them are used instead.

Figure 2.6. Crossover methods for binary numbers

With the objective of preserving some of the good solutions put by the selection process in the

mating pool, not all of them are picked for recombination. This is indicated by a crossover

probability pc (typically high, e.g. pc 0.6) that determines which percentage of the mating pool s

individuals are to be recombined. A random number R is generated, and if R<pc no crossover

takes place and the children are simple copies of the parents (Marseguerra et al., 2006). This

determines a crossover rate, which becomes one more of the parameters of the GA to be tuned.

Chapter 2. RAMS+C optimization and Genetic Algorithms 68

Methods for real codes are more sophisticated. An account can be found in Haupt & Haupt

(2004). They practically enclose the real crossover method into two categories. The first

category of methods swaps sections of the chromosomes of the parents, similar to binary

methods. One or more points are randomly chosen as cross points and the segments are

interchanged. The most elaborate of these methods is the real version of the Uniform Crossover,

called Discrete Recombination. This works in the same fashion as the binary version. These

methods have the drawback that they do not introduce any new information into the offspring.

This is in contrast to binary codes where the phenotype values themselves are altered.

The second types of methods use algebraic formulae that combine the values of the two parent

variables into a new variable value. This technique intends to enhance the introduction of new

genetic material. These are a group of algorithms generally referred to under the generic name

of Blending methods (Haupt & Haupt, 2004). This is a generic name, and some other

denominations specific to each algorithm are found. A representative example given by Haup &

Haupt is the function:

fnmnnewn ppp)1((2.8)

Where pnewn is the nth variable of the offspring, is a random number in the interval [0, 1], and

pmn and pfn are the nth variable of the mother and father chromosomes respectively. The

complementary value of (i.e. -1) can be used to generate the second offspring. In general,

Blending methods use this kind of algebraic functions with some particular variations. Two

methods implemented by Mulenbein & Schlierkamp-Voosen (1993) are the Extended

Intermediate recombination (EIR) and the Extended Line recombination (ELR), both illustrated

in Figure 2.7. The EIR intends to produce new phenotypes around and between the values of the

parent s phenotypes:

)(2
)(1

fimiifiinew

mifiimiinew

pppp
pppp

(2.9)

Where i=1,..., n represent each variable (gene) of the chromosome, and is a random number in

the range [-0.25, 1.25].

The ELR uses only a single value of for all variables, creating a point in the line defined by

the parents and the perturbation .

)(2
)(1

fimifiinew

mifimiinew

pppp
pppp

(2.10)

Chapter 2. RAMS+C optimization and Genetic Algorithms 69

Figure 2.7. Recombination methods for real numbers (Chipperfield et al., 1994)

Geometrically, Discrete Recombination generates a defined hypercube using the parent s

values. EIR makes it possible to create offspring inside the volume of the hypercube larger than

the one defined by the parents (constrained by). ELR achieves the same but only along a line.

This is shown in Figure 2.7. Other interesting methods are the Blend Crossover (BLX-) and

the Simulated Binary Crossover (SBX), the latter created by Deb (see Deb, 2001).

The adequacy of choosing one blending method over another is quite context-related. Deb

(2001) reports that one of his studies found similarities in all these methods. However, it seems

that Blending methods are indeed advantageous over the methods that simply swap segments of

the parent s chromosomes. Since the selection operator makes multiple copies of some solutions

and deletes others, it reduces the diversity of the population. It is clear that Blending methods

permit this diversity to be steered more than the other methods, since they introduce variability

in the new chromosomes, restoring somewhat the balance between reduction and improvement

of diversity.

2.4.3.5. Mutation

Mutation is the second variability operator. This operator randomly changes one of the genes in

the new offspring s chromosomes. Typically, this is done with low probability, in the range of

0.001 and 0.01 (Adra, 2007). Reeves & Rowe (2002) recommend using an adaptative mutation

rate, although Haupt & Haupt (2004) report no significant difference between varying and

constant mutation rate. A mutation rate that is frequently recommended is a fixed rate of 1/l

(where l is the length of the chromosome). The simplest binary mutation operator is the bit-

flipping mutation (Fig. 2.8), where the bits of a chromosome are simply flipped with a certain

probability pm. Mutation is an operator that has responsibility to keep diversity in the

population, and it ensures that all the sub-regions in the search space are explored. It contributes

Chapter 2. RAMS+C optimization and Genetic Algorithms 70

also to escape local minima. The mutation rate must, however, be low since a high mutation rate

could convert the search process into a plain random search.

Figure 2.8. Bit-flipping mutation

Mutation operators for real numbers are more sophisticated. Mutation is performed by either

perturbation of the gene values or choosing randomly new values within a permitted range

(Chipperfield et al., 1994). For mutation of real numbers, higher mutation rates (than for

binaries) are advised, between 5 and 20% (Haupt & Haupt, 2004). There are many variations of

the mutation operator. For the sake of brevity only one example is discussed here. One method

is to add a normally distributed random number (bounded within a specific range) to a variable.

There is no specific generic name for these algorithms, so we simply call them mutation for

real numbers .

A mutation operator proposed by Mulenbein & Schlierkamp-Voosen (1993) for real numbers

goes as follows:

shriiprevinew mrangepp (2.11)

The individual pnew is the new mutated solution from the preceding one pprev. The sign + or (-) is

chosen with a probability of 0.5. range determines the mutation range established by a the

variable search interval multiplied by a reduction factor:

)(iififi llulRSearchRrange (2.12)

Where Rf is the reduction factor, Searchi the search interval of the variable and ul and ll the

upper and lower limits of the variable. The factor mshr is a mutation-range shrinking factor

introduced by Chipperfield et al. (1994), with default value of 1. The factor is calculated from

a distribution:
1

0

2
m

i

i
i (2.13)

Chapter 2. RAMS+C optimization and Genetic Algorithms 71

The factor i is equal to zero before mutation. It acquires a value =1 with probability p =1/m.

With this it is expected that in average only one term i=1 contributes to the sum (i.e. =2-j, for

i=j). This algorithm permits location of the optimal pprevi up to a precision of rangei·mshr·21-m. It

generates any point in the hypercube with centre in pprevi defined by pprevi rangei. Mulenbein &

Schlierkamp-Voosen (1993) propose values of Rf=0.1 and m=16 (since they do not include mshr,

it would equivalent to 1), while Chipperfield et al. (2004) implement the algorithm with Rf=0.5,

m=20, and user-defined mshr. A deeper analysis of the algorithm is provided in the references

given.

2.4.3.6. Reinsertion

Reinsertion is the operator responsible for implementing what is called selection for survival.

This determines which of the individuals will pass to the next generation at the time that they

replace others. Marseguerra et al. (2006) categorize the replacement schemes with three

alternatives:

Fittest individuals. The two parents are replaced by the two fittest individuals involved in

the recombination from both the parents and offspring pools. When the selection process

discards weak individuals, this mechanism is not recommended because the fittest

individuals would propagate constantly to the next generations.

Weakest individuals. The weakest individuals in the entire population are replaced by the

offsprings. This is useful in a large population, since it reduces the presence of weak

individuals in subsequent populations.

Random replacement. Individuals randomly chosen from the previous population are

replaced by the offspring. This is quite effective in small populations because it favours a

deeper search.

It can be noticed that the first two replacement schemes implement a form of elitist strategy,

since they allow the preservation of the fittest individuals in the next generation.

The selection of individuals can be made from both populations, parents and offspring, or only

the offspring. This is referred as (+) and (,) respectively, where represents the parent

population and the population of offspring. It is a common strategy to produce (or reinsert)

fewer offspring than the total number of individuals in the parent population. In this case, the

generation gap is the fraction of the parent population that is permitted to be reproduced or the

fraction of the population that is replaced at each generation (Back et al. 2000). Therefore, a

generational gap G=1 indicates that the entire population is replaced.

Chapter 2. RAMS+C optimization and Genetic Algorithms 72

2.4.3.7. Termination criteria

The termination of the iterative process can be done based on three basic criteria:

The exhaustion of certain predetermined number of generations. In this case, the number of

generations practically becomes a tuning parameter. This is the most commonly used

termination criteria for its simplicity.

Based on the fitness of the population. It can be that either the mean fitness of the

population achieves an established value, or that the fitness of the best individual does. It

can also be that the fitness of the population does not have significant evolution.

Based on the genetic diversity of the population. Here the diversity drops below an assigned

limit.

2.4.4. Multi-objective Genetic Algorithms performance questions

2.4.4.1. Exploration vs exploitation

Perhaps the most pressing issue in GA s performance is the right balance exploration versus

exploitation e-e balance (Purshouse, 2003). Good exploration means to search all possible sub-

regions on the search space, while a good exploitation requires making good exploration in the

neighbourhood of identified good solutions. The variation operators are considered to provide

the exploration capability of the GA, while the exploitative capability resides mainly in the

selection operator. According to Deb (2001), premature convergence may be a consequence of

excessive exploitation of determined solutions. In contrast, an excessive emphasis on the

exploration may considerably increase the solution time, even to exhibit the behaviour of a

random search. The clear cut division of exploration and exploitation operators may be quite

relative. Consider for example the case of Blending crossover. These methods can implement

exploitation and enhance exploration at the same time.

2.4.4.2. Proximity (convergence)

It was mentioned above that an optimizer must have the two basic properties of proximity and

diversity. Proximity, also called convergence, is the prime requirement of a GA. Premature

convergence to a local optima or having a poor approximation to the real Pareto-optimal front is

a considerable issue in GAs. Fitness assignment and selection (for survival) are the main

mechanisms for promotion of good proximity. They must steer the search process towards the

Pareto-optimal front, thus their importance is fundamental. In addition, the implementation of

elitism is another important strategy added to the selection process. The active implementation

of elitism if a characteristic feature of the second-generation GAs. Some comparative studies;

e.g. Zitzler et al. (2000), have found that the performance of GAs with elitism is notably better

than those without it. These features are the main mechanisms for promotion of good proximity.

Chapter 2. RAMS+C optimization and Genetic Algorithms 73

However, additional measures contribute to the compliance of this objective. Mutation helps to

escape local optima, and then premature convergence. An adequate population size and number

of generations are necessary to achieve convergence.

2.4.4.3. Diversity

Diversity is the second most important requirement of a GA. The mechanism of fitness sharing

for niche formation discussed above is one of the most effective strategies for promotion of

diversity. The main difficulty for its implementation is the choice of the niche size share. Second

generation GAs have proposed alternative mechanisms, such as nearest neighbour density

estimation techniques. These include the clustering technique of the SPEA (Ziztler & Thiele,

1999), and the crowding technique of the NSGA-II (Deb et al., 2002). The crowding technique

is based on the computation of a crowding distance for each solution. It is notable because it

eliminates the need of using a user-defined parameter such as share. The crowding distance is

the sum of averages of the Euclidean distance of each solution to the two closest solutions at

both sides in the same front per objective.

Additional mechanisms for promotion of diversity have been proposed in different GAs. Deb &

Goel (2001) argued that diversity must be promoted not only along the Pareto-optimal front, but

lateral to it as well, which in turn ensures better convergence. Since a strong elitism may reduce

lateral variability, they proposed a lateral-diversity preserving mechanism of controlled elitism.

This controls the extent of exploitation in benefit of diversity. The crowding technique and the

controlled elitism mechanism will be further explained when studying the NSGA-II algorithm

in Chapter 5.

The mentioned additions tend to complement the GAs for promotion of diversity. It must not be

forgotten, however, that the right choice of fundamental attributes of the GAs is important, such

as the mutation rate and the population size. Mutation rate is the standard operator for diversity

promotion, which permits the exploration of all regions of the search space. In addition, a too

small population can lack of sufficient diversity for the algorithm to explore the entire search

space.

2.5. CONCLUDING REMARKS

This chapter has introduced the problem of multi-objective optimization, in which several

objectives are simultaneously optimized in order to find the best solutions of a problem. This

permits better and more solutions to be presented to the decision maker than when treating the

problem as single objective, where one objective was selected as the one with major priority and

Chapter 2. RAMS+C optimization and Genetic Algorithms 74

the others introduced as constraints. Multi-objective optimization proves a series of best trade-

off solutions called the Pareto-optimal set.

Optimization of RAMS+C for safety systems is a complex non-linear integer, combinatorial and

stochastic problem. Many times it is difficult to define the dependability functions in explicit

analytical form. It is here when the advantages that GAs convey for efficiently treating ill-

behaved problems can be exploited. GAs mimic the natural evolution process based on

stochastic search techniques. They are able to handle high dimensional, non-linear and discrete

problems with discontinuous functions. They produce a pool of several optimal solutions which

provides great flexibility for decision-making. Two of the most efficient multi-objectives GAs

are the Fonseca & Fleming MOGA and the NSGA-II. The advantages of these two GAs is

exploited in this thesis for solution of SIS optimization problems. They are used for

implementing the optimization cases of chapter 3 to 6, where a detailed description of the

working principles of these algorithms is provided.

RAMS+C multi-objective optimization with GAs has a recent history, where several aspects of

it has been approached in the search for better designs and test and maintenance polices. An

overview of these approaches has been provided in this chapter, and some issues not fully

explored have been detected. The optimization cases previously addressed by other researchers

have not comprised the compliance with the requirements with the international standards IEC

61508, including the level of modelling detail necessary for real-life SIS. Detected niches and

opportunities for research of system optimization with GAs that will be explored in this work

include modelling of Common Cause Failure and diagnostic coverage, integration of diverse

redundancy for improvement of system performance, time-dependent modelling for more

precise modelling of unavailability in optimization of test intervals and strategies and

integration of MooN voting architectures optimization of system design and test.

75

CHAPTER 3

Optimization of SIS design with parallel redundancy

This chapter presents an initial optimization case by Genetic Algorithms of a SIS design based

on safety and reliability measures plus Lifecycle Cost. It combines the theory of safety systems,

the standard IEC 61508, dependability modelling and GAs presented in the previous chapters

and demonstrates how the overall methodology works. The standard IEC 61508 establishes the

requirement for safety-related systems to meet specific Safety Integrity Levels (SIL). The SIL is

determined in terms of Average Probability of Failure on Demand (PFDavg) for systems that

operate in low-demand mode. This optimization takes into account the level of modelling detail

contemplated by the standard, including multiple failure modes, diagnostic coverage and

Common Cause Failures. This chapter addresses the case of series-parallel systems.

Optimization is approached by treating the problem as one of redundancy allocation and

component selection together with some test specifications. Modelling is made using Fault Tree

Analysis with house events. The Multi-Objective Genetic Algorithm proposed by Fonseca &

Fleming (1993) is used as optimization technique.

3.1. OPTIMIZATION OF SAFETY SYSTEM S SPECIFICATIONS

An overview of optimization of safety systems with GAs was provided in the previous chapter.

Therein, it was established that multi-objective optimization of SIS for process industry has not

been thoroughly investigated yet. First of all, no optimization compliant with IEC 61508

requirements have been addressed so far. This also means that the required level of modelling

detail for dependability quantification of safety systems within the frame of the standard has

been consistently omitted. Common Cause Failure is usually ignored, and distinction of

dangerous and safe failure modes has only been taken into account by a few studies. Diagnostic

coverage, a fundamental feature of components used in safety systems, has never been

mentioned in any optimization study. Some studies have included safety-related costs or risk-

based measures (such as exposure times or frequency of hazards) in the optimization (e.g. Yang

et al., 1999; Cantoni et al., 2000; Giuggioli-Busacca et al., 2001). However, these do not treat

directly the specific measures of SIS dependability, like quantifying system safety with the

average Probability of Failure on Demand, and even more rarely considering the Spurious Trip

Rate. The only studies that have considered measures of dangerous and safe failures together for

optimization against cost are Pattison & Andrews (1999), Andrews & Bartlett (2003), and more

recently in multi-objective optimization Borisevic & Batlett (2007a, b) and Riauke & Bartlett

Chapter 3. Optimization of SIS design with parallel redundancy 76

(2008). Their study cases (the High Integrity Protection System and the Water Deluge System)

are maybe the closest applications to the field of SIS for process industry. However, they did

not approach either the IEC 61508 requirements or the necessary full detail in the modelling. In

addition, several multi-objective GAs have been applied to the solution of reliability problems.

However, the GA developed by Fonseca & Fleming (1993) has not been explicitly found in any

related application. This opportunity for research is explored here.

The problem explored in this chapter is the optimization of safety system design with parallel

architectures. It includes redundancy allocation, component selection (discrete reliability

allocation) and Test Intervals. It addresses the requirements of IEC 61508. Thus, it contemplates

the level of modelling detail necessary for quantification of dependability: type of hardware,

multiple failure modes, diagnostic coverage and Common Cause Failure (CCF). This initial

optimization case includes optimization of dependability with three objectives: Probability of

Failure on Demand (PFDavg), Spurious Trip Rate (STR) and overall system (maximum)

unavailability. This addresses the negative effects of both dangerous and safe failures. The

fourth objective is Lifecycle Cost, which full model s first formulation is made herein.

3.2. FAULT TREES WITH HOUSE EVENTS

Fault Tree Analysis is the method used for modelling dependability measures. Its advantages

over other methods were detailed in the previous chapter, such as its versatility for modelling

large complex systems, its functionality for documenting and visualizing the failure

mechanisms and its relative construction simplicity. Based on these advantages it has been

chosen as the dependability quantification the method. Optimization of system design requires

the evaluation of many potential designs in order to find the optimum. This would require the

construction of one fault tree for every single solution, which would be complicated and time-

consuming. It is, therefore, necessary to empower the fault tree with the capacity to

accommodate changes in the design, so that one single tree can be used for modelling all

potential solutions. This has been achieved using house events.

House events (see Fig. A.2) are logic external events that take only a value of true or false (1 or

0). They are not completely new to Fault Tree Analysis, and were already included by Vesely et

al. (1981). However, Andrews (1993) suggested their application for turning sections of fault

trees on and off so that changes in the design of safety systems could be accommodated. This

was later applied with GAs in subsequent works of his research team (Pattison & Andrews,

1999; Andrews & Bartlett, 2003; Borisevic & Bartlett, 2007a, b; Riauke & Bartlett, 2008). The

logic behind house events can be better understood observing Figure 3.1. This figure shows the

Chapter 3. Optimization of SIS design with parallel redundancy 77

modelling of failure of a system that has one component A, and the possibility of having one or

two more components, B and C. If the house events of B or C are activate (=1), these

components are fitted into the system s tree and then their failure contributes to the system s

failure. Also notice that the CCF event is activated by a house event that indicates that the

redundancy is higher than 1. Fault trees with house events are used for modelling safety and

reliability in the following sections.

A
failure

Independent failure
of all components CCF

System failure

B
failure

B
fitted

=1

B
fails

C
failure

C
fitted

=1

C
fails

Redun
dancy

>1

Failure
of all

comps.

Figure 3.1. Example of application of house events

3.3. THE LIFECYCLE COST MODEL

The model presented here is largely based on Goble (1998), and it has been modified and

adapted for the necessities of this chapter. The overall Lifecycle Cost, given by Eq. (3.1), is split

into three main factors: procurement, operation and risk costs. The annually adjusted financial

cost is considered by calculating the operating and risk costs in annuities at present value (Eq.

(3.2)) for the operating life of the system. The present value of a future expense is an equivalent

estimation of how much money is necessary to invest now in order to pay for the expense in the

future.

PVFCCCLCC RISKOPPROC)((3.1)

Where the applied factor by present value is:

R
RPVF

T)1(1
(3.2)

The term R represents the discount rate, which combines both the interest rates and inflation

rates (e.g. high-risk projects are given higher discount rates). T is the useful life of the system

(mission time) in years.

Chapter 3. Optimization of SIS design with parallel redundancy 78

Procurement cost per year is quantified as:

upStartii ICM
comminst

iDCM
design
iPCM

purchase
iPROC CNCCCC)(/ (3.3)

Where Ni is the number of components of the ith subsystem. Basically, these are the decision

variables of the problem, and:

Cdesign= Design cost

Cpurchase= Purchase cost

Cinst/comm= Installation & Commissioning cost

CStart-up= Initial plant start-up

The terms CM correspond to factor cost modifiers (where P, D, and I stand for purchase,

design and installation respectively). These are explained in Section 3.5.

The overall operating cost per year (Eq. (3.4)) includes consumption (Ccons), preventive

maintenance (CPM), testing (CT) and corrective maintenance (CCM). These three latter factors are

respectively calculated in Eqs. ((3.5)-(3.7)).

TPMconsOP CCCC (3.4)

Where:

i iCCM
cons
icons NCC)((3.5)

i i
PM
iPM NCC (3.6)

i i
T
i

ij
T NC

TI
C 1

(3.7)

Where Ci
cons is the consumption cost per year, Ci

PM is the cost of preventive maintenance per

year, and Ci
T the cost of test per event, all of them per component. CM-C the consumption cost

modifier, TI is the test interval per year.

The risk cost per year comprises both the cost per spurious trip rates and the cost of hazards (Eq.

(3.8)). This cost must be certainly considered. It could be necessary to be paid in the form of

insurance premiums.

HAZARDSTRRISK CCC (3.8)

The cost caused by safe failures (STR) is proportional to the cost of production loss from each

spurious shutdown and the cost of repair of those failures:

STRNCSDSDCC ii
spares
iTimeLossi

CM
iSTR])[((3.9)

Where:
purchase

i
spares
i CPCEC %

Chapter 3. Optimization of SIS design with parallel redundancy 79

Ci
CM= Cost of repair per hour

SDLoss= Loss of production per hour

SDTime= Plant restoration downtime after spurious trip

Ci
spares= Cost of spare consumption per event

%PCE= Fraction of component purchase cost

The cost of hazard includes the cost of a catastrophic accident modified by the frequency of

estimated plant failure frequency and the SIS PFDavg:

avgavgACCHAZARD PFDPFDACCFCC)((3.10)

Notice that the term F(ACC|PFDavg) is the frequency of plant failure (or accident) per year

without the SIS, which is actually the frequency of plant failure assuming the SIS is

unavailable: i.e., by the Total Probability Theorem, it is the F(ACC|PFDavg) term in the

expression:

)1()1()(avgavgavgavg PFDPFDACCFPFDPFDACCFACCF (3.11)

The cost of an accident CACC can be determined using the sum of different factors. This thesis

considers that the fundamental factors to be considered are: plant assets loss, deferred

production and liability (i.e. fatalities) costs. Including the cost of liability contemplating the

potential loss of life is usually a controversial affair, but to include it is useful to reflect the

benefit of preventing fatalities. The Health and Safety Executive (HSE, 2001) approaches this

by using the Value of Preventing a Fatality (VPF). The VPF is problem-specific. The HSE gives

as example the figure of £1,000,000 (2001 figure) used in the appraisal of road safety measures.

A reader interested in estimating the CACC is encouraged to consult this reference.

Figure 3.2 summarizes the entire LCC model.

LIFECYCLE COST

Initial Fixed costs Annual costs

Procurement Operation Risk

Design Purchase
Installation

Commissioning
startup

Consumption Preventive
maintenance Testing Repair Spurious trips Hazards

Figure 3.2. Safety System Lifecycle Cost

Chapter 3. Optimization of SIS design with parallel redundancy 80

3.4. FONSECA & FLEMING MULTI-OBJECTIVE GENETIC ALGORITHM

The Fonseca and Fleming Multi-Objective Genetic Algorithm was formulated in Fonseca &

Fleming (1993). Some additional developments were proposed in Fonseca & Fleming (1995a,

1995b, 1998). This algorithm was empowered for multi-objective optimization and named

Multi-Objective Genetic Algorithm (MOGA). As mentioned in Section 2.4, this is accepted as

being the most efficient algorithm of the first generation. The MATLAB® toolbox used for the

present research work is documented in Chipperfield et al. (1994). MOGA was one of the first

genetic algorithms to be proposed to approach multi-objective problems based on the concept of

Pareto dominance.

The Fonseca & Fleming MOGA has the following specific characteristics:

Ranking based on Pareto dominance

Fitness assignment based on dominance-rank ranking

Option to implement niching by fitness sharing, and mating restriction

Selection by stochastic universal sampling

Suggested a progressive preference-based method, incorporating the Decision Maker with

the GA

Uses parallel coordinates for visualization of the trade-off surface in two dimensions

3.4.1. Pareto-based ranking.

Since a cost is calculated for each member of the population, ranking is made after the

population is sorted based on the cost (a measure of utility) of each individual. The Fonseca &

Fleming (1993) proposition is to assign an individual s rank equal to the number of individuals

by which it is dominated. Therefore, the non-dominated solutions have all the same rank. This

ranking technique allows adaptation of the algorithm for search of the Pareto front in both

convex and non-convex trade-off surfaces. The original approach was to compute the rank:

1),()(t
ii ptxrank (3.12)

Where xi is an individual at generation t dominated by pi individuals. This ranking method is

illustrated in Figure 3.3. It makes the non-dominated individuals to be ranked one (although it is

frequently applied without summing 1, so that the non-dominated individuals are ranked zero).

A second proposition for ranking was made later (Fonseca & Fleming 1995a, 1998), see Eq.

(B.6) in Appendix B.

Chapter 3. Optimization of SIS design with parallel redundancy 81

Figure 3.3. Pareto-based ranking in MOGA

3.4.2. Fitness allocation

As mentioned in Chapter 2, fitness assignment in the MOGA is based on dominance rank. The

concept of average fitness is used by Fonseca (1995) to describe the fitness of an individual

normalized by the average fitness of the population. This gives a good direct indication of how

much better, or worse, than the current average individuals are.

The MOGA uses rank-based fitness assignment, where the fitness is mapped against the rank

values in a monotonic fashion, and where the fitness must be non-negative values.

The method proposed in Fonseca & Fleming (1993, 1995a, 1998) is:

1. The population is sorted by rank order (i.e. cost).

2. Fitness is allocated by a mapping with the rank (from best to worst ranked individual); i.e.

position in the population, according to a pre-defined function. The mapping may be linear

or exponential. Fitness must be non-negative in all cases. This makes the fitness assignment

independent from the scale of the problem, so performing scaling is not necessary.

From Fonseca (1995), the function for the linear assignment could be:

1
2)1()(

popN
rssrf (3.13)

Chapter 3. Optimization of SIS design with parallel redundancy 82

Where s (1<s 2) is the relative fitness desired for the best individual. The sum of all fitness

values must be equal to the population size: pop
N

i
Nifpop 1

0
)(

The exponential assignment formula proposed by Fonseca (1995) is:

srf r)((3.14)

Where s>1 and is determined so that sN pop
N

i i
pop /1

0
. Exponential mapping is more

flexible than linear mapping since there is no upper bound for s.

According to Fonseca (1995), the exponential assignment contributes to a more diverse

search because, different from the linear mapping, it does not penalize the worst individuals

too much and it assigns middle individuals fitness values slightly less than average.

3. The fitness of individuals with the same rank is then averaged. This permits all individuals

with the same rank to be sampled at the same rate while keeping the global population

fitness constant.

Figure 3.4.Fitness assignment by exponential function and average fitness (Fonseca, 1995)

Figure 3.4 (reproduced from Fonseca, 1995) illustrates an example of a population of 10

individuals, where they are sorted by they rank. The fitness values assigned with an exponential

function are represented by the narrower bars. The wider bars represent the averaged fitness of

the individuals with the same rank.

Chapter 3. Optimization of SIS design with parallel redundancy 83

Ranking-based fitness assignment allows the best individual in the population to be invariably

given the same relative fitness (s). Thus the excessive reproduction of potential super

individuals is averted. In the same fashion, the best individual is still consistently preferred from

the others when all of them perform similarly well.

3.4.3. Presentation of results

Fonseca & Fleming (1993, 1998) make use of the parallel coordinates as the graphical

representation of the trade-off data. This is similar to the Value Path Method (see Deb, 2001).

The method of parallel coordinates is the representation of each non-dominated solution from

the Pareto-optimal set in two coordinates, being each point in the X-axis one of the objectives,

plotted against the normalized objectives in the Y-axis. Each point is united to one another by a

line (each line representing one solution), where lines run non-concurrently they represent non-

competing objectives, while crossing lines make evident conflicting objectives. An example is

shown in the Discussion of Results section, Figure 3.12.

3.5. DESCRIPTION OF THE APPLICATION PROBLEM

The problem at hand is the design of a Safety Instrumented System for a process plant. The

safety system, illustrated in Figure 3.5, is for a hypothetical compression system of a LNG

distribution plant. A compressor s outlet pipeline must be protected against leakages. The

detection system is comprised by a pressure measurer/transmitter subsystem (PT), a logic solver

subsystem (LS) implemented by a PLC, and a shut-down valve as Final Control element

subsystem (FC). If the LS detects a considerable fall in pressure (measured by the PT), the FC

valve must be shut immediately to interrupt the flow of gas. A failure to interrupt a leakage

could have as a consequence a vapour cloud formation within the confined conditions of the

compressor house, which in case of being ignited would have catastrophic consequences (a

vapour could explosion). It is assumed that the compressor itself has its own protective system,

and the safety function approached is the last line of defence to prevent the leakage. Table 3.1

shows all the relevant data. Notice that failure rates () are split into four different modes (see

the first column).

A variety of sources have been consulted to put together a realistic case study based on similar

equipment. This included books (Goble, 1998; Smith, 2005; CCPS, 2000), standards (ISA,

1999), databases (Hauge et al., 2006b), test reports or real equipment data publicly available

(Medoff, 2007), and engineering judgement (especially for estimating some costs). The same

has been done for the case studies presented in following chapters.

Chapter 3. Optimization of SIS design with parallel redundancy 84

Figure 3.5. Leakage protection system of a natural gas compressor

The figure for the Catastrophic loss cost presented in Table 3.1 has been estimated for a

hypothetic case, summing up the cost for loss of the plant s facilities of 3.6x106, the cost of loss

of production for the entire plant s useful life of 240x106, and the estimated total value of

preventing fatalities of 50x106 (VPF=1x106 x 50), all of them in monetary units. Notice that the

number of potential fatalities must always be estimated based on a rigorous hazard analysis,

consequence modelling and quantitative risk assessment.

The criticality of the system being analyzed requires high integrity. This can be enhanced by

changing components, increasing redundancy (as indicated in the figure), or changing the design

for reduction of CCF. In this thesis CCF is quantified using the factor model. The model and

the phenomenon of CCF are discussed in detail in Chapter 4.

The decision variables of the problem are as follows:

1. Redundancy scheme: four options of parallel redundancy: 1, 2, 3 or 4.

2. Type options: There are four optional different types per subsystem (referred to here as

Optional-type so it is not confused with the component type classification of IEC 61508, see

Section 1.5). Each choice has different diagnostic coverage, failure rate and cost

specifications.

3. factor: This factor indicates the percentage of the total failure rate that will be attributed to

Common Cause Failure. Since enhancing the design minimizes the likelihood of Common

Cause Failure, the factor diminishes. For field instruments there are two design options,

the baseline case (=0.035) and design with additional electrical separation (=0.02). Field

instruments are usually physically separated, so this contributes a baseline case with lower

factor than for the controllers. For the controller there are three options: baseline case (the

controllers are located in the same rack and supported by the same electric supply; =0.05),

Chapter 3. Optimization of SIS design with parallel redundancy 85

design with electrical separation (=0.035) and design with electrical plus physical

separation (=0.02).

4. Test Interval: This may be between 1 and 24 months, in steps of one month.

Table 3.1. Dependability and lifecycle cost data__
Subsystem TRANSMITTER CONTROLLER VALVE_________________ ________________________ ___________________________ _________________________

Supplier 1 Supplier 2 Supplier 1 Supplier 2 Supplier 1 Supplier 2_______________________ ___________________________ _________________________
Type 1 2 3 4 1 2 3 4 1 2 3 4

standard-PLC safety-PLC standard-PLC safety-PLC_________________ ________________________ ___________________________ _________________________
Diagnostic Coverage (%) 0 75 30 80 57.5(S) / 99(S) / 45(S) / 90(S) / 0 30 25 50

48.8(D) 98.2(D) 60(D) 95(D)_________________ ________________________ ___________________________ _________________________
Failure rates data (x10-6/hr)
Safe detected 0 4.3 13.68 36.48 3.894 9.996 1.773 3.852 0 7.2 9.5 19.0
Safe undetected 5.7 1.4 31.92 9.12 2.878 0.098 2.167 0.428 24.0 16.8 28.5 19.0
Dangerous detected 0 17.1 6.84 18.24 2.906 5.956 2.886 4.959 0 5.7 7.125 14.25
Dangerous undetected 22.8 5.7 15.96 4.56 3.048 0.112 1.924 0.261 19.0 13.3 21.375 14.25
Total 28.5 28.5 68.4 68.4 12.726 16.162 8.75 9.50 43.0 43.0 66.5 66.5_________________ ________________________ ___________________________ _________________________
Life cycle cost data
Purchase 35000 50000 25000 32000 60000 90000 75000 100000 25000 30000 25000 30000
Design 800 800 800 800 11000 11000 11000 11000 800 800 800 800
Installation 340 340 340 340 500 500 500 500 400 400 400 400
Consumption per year 140 150 160 160 200 210 180 180 120 120 125 125
Maintenance per year 6000 6000 7000 7000 5000 5000 4000 4000 5000 4000 3500 3500
Repair cost
(Cost per hour + 50/hr 60/hr 50/hr 60/hr 60/hr 60/hr 50/hr 50/hr 45/hr 45/hr 50/hr 50/hr
 %purchase cost/event) +10% +10% +10% +10% +15% +15% +15% +15% +7% +7% +7% +7%
Test cost per event 100 70 85 65 250 150 270 200 120 100 105 80_________________ ________________________ ___________________________ _________________________
Beta Factor
Base case = 0.035 = 0.05 = 0.035
With electrical separation = 0.02 = 0.035 = 0.02
With electrical & physical separation - = 0.02 -_________________ ________________________ ___________________________ _________________________
Other data
Repair time =8 hours
SDTime=24 hours
Start up cost = 1000 units
Shutdown loss cost = 3200 units/hr production loss
Plant s risk (without SIS) = 5.88x10-3 dangerous events per year
Catastrophic loss cost = 300x106 units/event including liability
Discount rate = 5%
Mission time T = 15 years__

The overall problem is of minimization of four objectives: Average Probability of Failure on

Demand (PFDavg), Spurious Trip Rate (STR), Unavailability and Lifecycle cost (LCC). The

problem has approximately 6.8x108 potential solutions. This large number of solutions means

that evaluation of every single combination in order to find the optimal is not a realistic option.

Thus, application of Genetic Algorithms makes a practical approach.

The system is required to achieve a SIL 3, with a goal of maximum PFDavg of 1.7x10-4. The

actual risk presented by the plant has been estimated to be 5.88x10-3 dangerous events per year,

which is the demand rate of the safety system (F(ACC|PFDavg)). On the other hand, the tolerable

risk frequency (FTR) or risk target has been set to 1x10-6 per year. The necessary risk reduction

is equivalent to the PFDavg, determined by the expression:

Chapter 3. Optimization of SIS design with parallel redundancy 86

)(avg

TR
avg PFDACCF

FPFD (3.15)

According to Table 1.1, a PFDavg=1.7x10-4 truly corresponds to a SIL 3. For a detailed account

of the quantitative method for determination of the target SIL (which is out of the scope of this

work) consult IEC 61508 Part 5.

It is important to notice that Table 3.1 provides a separate diagnostic coverage () for each

failure mode for controllers. Eqs. (3.16) and (3.17) give the for dangerous and safe failure

modes respectively. Notice that in the table the values for controller s diagnostic coverage of

dangerous failures D are indicated with a (D), and for safe failures S with a (S). In contrast,

transmitters and valves used in this example have the same diagnostic coverage for both failure

modes (D= S), and thus only one single value is indicated.

DUDD

DD
D (3.16)

SUSD

SD
S (3.17)

As it can be seen in Table 3.1, the lifecycle cost data includes both procurement and operation

related costs. In addition, consider that the improvement of defences against CCF, which

modifies the factor, affects some costs. Table 3.2 shows the applicable cost modifiers (CM),

indicating the percentage of increment for the affected costs to be applied in Eqs. (3.3) and

(3.5).

Table 3.2. Cost increments by design for factor improvement___
Cost increment__

Cost modifier per concept Electrical separation Electrical & physical separation__
Purchase, CM-P 15 % 35 %
Design, CM-D 5 % 10 %
Installation, CM-I 10 % 25 %
Consumption, CM-C 30 % 35 %__

Additional data and assumptions necessary for the quantification are given next: all the

instruments are considered Type B (see Table 1.2); the system is considered to be in low-

demand mode of operation; component failure rates are constant; failure of each subsystem is

independent from others; once a component has failed, it remains in that state until it is repaired;

Chapter 3. Optimization of SIS design with parallel redundancy 87

testing and repair are assumed to be perfect (return to normal state and as new condition

respectively).

3.6. MODELLING AND QUANTIFICATION

Two fault trees were developed to quantify both the PFDavg and the STR, shown in Figures 3.6

and 3.7 respectively. In order to enable the fault trees to flexibly accommodate the changing

redundancy design, house events were put in place. It is important to highlight that Figures 3.6

and 3.7 do not show the full fault trees. Only the branches corresponding to the PT subsystem

are fully shown. Since the other two branches are identical they are omitted for the sake of

brevity. Both fault trees have been solved gate-by-gate using simplified approximation

equations in the basic events. This method is suitable since there are no repeated basic events in

the trees, thus reducing the complexity and computational effort needed to solve them by other

methods. Since the product t is very small (i.e. t<<0.1), the rare event approximation 1-e- t t

is conveniently used in the equations that solve the fault trees. This lessens the complexity of

the gate-by-gate solution implementation and permits a better understanding of the models.

Red
>1

PT 1
fitted

=1 PT 1
fails
DUN

PT 1
fails
DDN

PT 2
fitted

=1 PT 2
fails
DUN

PT 2
fails
DDN

PT N
fitted

=1 PT N
fails
DUN

PT N
fails
DDN

System dangerous failure

LS subsystem fails
dangerously

FC subsystem fails
dangerously

All LS's fail
dangerously

common cause

 All LS s fail
dangerously
independent

All FC's fail
dangerously

common cause

All FC s fail
dangerously
independent

All PT's fail
dangerously

common cause

PT subsystem fails
dangerously

All PT s fail
dangerously
independent

All PT's
fail DUC

All PT's
fail DDC

PT 1 fails
dangerously
independent

PT 2 fails
dangerously
independent

PT N fails
dangerously
independent

DUC·(TI+Tr) DDC·Tr

DUN·(TI+Tr) DDN·Tr

FAILURE MODES:
DUN = Dangerous undetected normal
DDN = Dangerous detected normal
DUC = Dangerous undetected common cause
DDC = Dangerous detected common cause

DUN·(TI+Tr) DDN·Tr
DUN·(TI+Tr) DDN·Tr

Figure 3.6. Fault tree for quantification of Probability of Failure on Demand

Chapter 3. Optimization of SIS design with parallel redundancy 88

System spurious trip

Red
>1

All PT's
fail SUC

All PT's
fail SDC

PT 1 fails
safely

independent

PT 1
fitted

=1 PT 1
fails
SUN

PT 1
fails
SDN

PT 2
fitted

=1 PT 2
fails
SUN

PT 2
fails
SDN

PT N fails
safely

independent

PT N
fitted

=1 PT N
fails
SUN

PT N
fails
SDN

PT subsystem
fails safely

LS subsystem fails
safely

FC subsystem
fails safely

All LS's fail
safely common

cause

All LS s fail
safely

independent

All FC's fail
safely common

cause

All FC s fail
safely

independent

All PT s fail
safely

independent

All PT's fail
safely common

cause

PT 2 fails
safely

independent

SUC·SDTime
SDC·SDTime

FAILURE MODES:
SUN = Safe undetected normal
SDN = Safe detected normal
SUC = Safe undetected common cause
SDC = Safe detected common cause

SUC·SDTime
SDC·SDTime

SUC·SDTime
SDC·SDTime

SUC·SDTime
SDC·SDTime

Figure 3.7. Fault Tree for quantification of Spurious Trip Rate

It is important to fully understand the logic in the fault trees. The dangerous failure of any of the

three subsystems can develop into the top event of the tree in Figure 3.6. The OR gate that leads

to PT subsystem failure indicates that this subsystem can be failed by either the simultaneous

independent (normal) failure of all the redundant components or a common cause failure. Notice

that each basic event represents a probability of failure (given by a product t), there being one

basic event per each component failure mode (common cause and normal failure, detected or

undetected). The fault tree in Figure 3.6 is solved to obtain the PFD. The fault tree of Figure 3.7

can be understood following the same analysis.

The average PFD is obtained integrating the PFD equation with respect to the Test Interval (see

Eq. (1.22)). Eqs. (3.18) and (3.19) give the PFDavg for simplex subsystems and for redundant

cases respectively.

i r
DD
ir

DU
iavg TTTIPFD)

2
((3.18)

i r
DDC
ir

DUC
i

i
DUN
i

N
r

DDN
i

DUN
i

N
r

DDN
ir

DUN
i

avg TTTI
TIN

TTTTI
PFD

ii

)
2

(
)1(

])[(])([11

(3.19)

The unavailability by safe failure is given in Eq. (3.20), which was derived from the fault tree of

Figure 3.2. The STR per year was also derived from Figure 3.2 considering the basic event as

only failure rates. This is given by Eq. (3.21), which only shows the terms for the PT subsystem

Chapter 3. Optimization of SIS design with parallel redundancy 89

(for the other two subsystems just add the same corresponding terms). Notice that for

redundancy =1 both formulae are the same, since SUC+ SDC=0.

i Time
SDC
i

SUC
iiTime

SDN
i

SUN
iSF SDNSDU)()((3.20)

i
SDC
i

SUC
ii

SDN
i

SUN
i NSTR)()((3.21)

Finally, the unavailability is obtained adding the PFD and the PFS up:

SFUPFDlityUnavailabi (3.22)

3.7. IMPLEMENTATION OF THE OPTIMIZATION ALGORITHM

The safety system design was optimized using the Fonseca & Fleming MOGA (2003). Since the

decision variables are integer, a binary string was created; which has a total length of 31 bits

(Fig. 3.8).

Figure 3.8. Chromosome code for the safety system design

A baseline program was created in MATLAB® to use the MOGA toolbox (Chipperfield et al.,

1994). The algorithm follows the flowchart of a standard GA (Fig. 1.3). Figure 3.9 shows the

pseudo-code of the baseline program. The first step is to create a random population. Then the

algorithm is evaluated iteratively until the number of generations is exhausted. This requires

decoding the chromosomes into phenotype values, followed by evaluation of the four objective

functions. A table of the objectives with the function value vectors of the population is created

(subsequently named TOF), to which the GA operators are applied. The parameters used for the

program are: Population: 50 individuals; Generations: 300; Generational gap: 0.8 (80% of the

population is renewed per generation); Crossover: Single point crossover at 0.7; bit-flipping

mutation at 0.1; reinsertion rate 1.0; fitness mapping: exponential (Eq. (3.14)); selection by

Stochastic Universal Sampling. An external archive gathers the best ranked individuals per

iteration (Table_nondominated). After the maximum number of generations is exhausted, its

content is re-ranked to select only the global non-dominated individuals. This gives the Pareto-

optimal set of solutions. These results are plotted in graphs, and a table is presented with the

solutions of the Pareto-optimal front. Finally, the parallel coordinates plot is generated.

Chapter 3. Optimization of SIS design with parallel redundancy 90

Figure 3.9. Pseudo-code for the Baseline Program

Three different program modalities implementing different approaches, based on the baseline

program, have been designed. The difference among the three modalities lies in the way the

initial population of the second and subsequent runs of the algorithm is created. The intention is

to explore whether creating the initial population by feeding good solutions from the previous

run (rather than just randomly) can help to improve the obtained Pareto-optimal set (i.e. more

solutions and better distributed), and whether this can also guide the search towards a specific

goal. The three modalities are as follows:

Modality 1. The baseline program is run 10 times; every run is independent from one

another. Every run the optimal individuals are fed into an external archive. This is finally re-

ranked to obtain the non-dominated individuals from all the 10 runs and plotted.

Modality 2. The baseline program is run 10 times, but each new run is fed with the optimal

individuals from the previous run as the new initial population. In this way, every run

intends to optimize an optimal population from the last run.

Modality 3. The baseline program is run 10 times. After every run, only individuals with

SIL 3 or higher are chosen for the new population, which is fed to the next run as the initial

population. Every three runs, this population is purged from non-optimal individuals

(rank>0).

Chapter 3. Optimization of SIS design with parallel redundancy 91

3.8. DISCUSSION OF RESULTS

Figure 3.10 shows the graphical results of one single run of the Modality 1 program. Notice the

difference of scale (linear and logarithmic) between the two graphs for the PFDavg, which is to

improve visualization. The graphs show all solutions found in the entire objective space plus the

Pareto-optimal set (indicated with black stars). Observe that the PFDavg in the range >1x10-2 is

not in conflict with the lifecycle cost: the lower the former, the lower the later, which suggests

that, in general, introducing the safety system results in a lower LCC since the gross cost of risk

is lowered (which is about $18x106 without the safety system). However, it is observable that

these two measures become conflictive objectives in the optimal front. This means that after a

certain point, to reach a lower PFDavg (which could be for the sake of meeting a specific SIL

requirement) actually requires an increment of the LCC. This increment in LCC is very sharp

after PFDavg<1.2x10-4. This indicates that a saturation point exists, after which obtaining a

marginal reduction of PFDavg (i.e. improvement of safety integrity) involves a disproportionate

cost. This situation could be only justified to meet a requirement to achieve some specific low

PFDavg value.

Figure 3.10. Result from one single run optimization, Modality 1

The plots in pairs of the four objectives (result form Modality 1) are shown in Figure 3.11.

Some comments can be drawn from the pair wise relationships between objectives:

PFDavg and LCC are conflictive objectives in the Pareto-optimal front (see also Fig. 3.10).

This is made possible by the fact that the contribution of the cost of hazards (i.e.

catastrophic loss cost, CACC in Eq. (3.10), which is a fairly large figure) is not significant

once the safety system is introduced. This is because when CACC is multiplied by the PFDavg

Chapter 3. Optimization of SIS design with parallel redundancy 92

(which is <<1) its influence is reduced drastically. Thus, this cost does not drive the

optimization process any more. Therefore, it can be said that to meet one specific SIL

requirement there are additional costs for the plant.

PFDavg and STR have points where their relationship is conflictive and points where this is

neutral (no change in STR as response to a change in PFDavg). This difference of behaviour

can be explained in two parts: Firstly, the conflictive relationship is verified in the design

changes. Whenever the optimizer changes any of the design variables (e.g. redundancy), a

lower PFDavg produces a higher STR, which is the normal relationship in parallel

redundancy. The sections of the optimal front where reductions in PFDavg do not cause

increments in STR correspond to those where the optimizer does not change any design

variable but rather reduces the Test Interval. This can be seen for example in Table 3.3

(Modality 3) and Figure 3.14 for solutions 4 to 7. In this group of solutions the system s

design is fixed, and the only changing variable is the TI, affecting all variables excepting the

STR. This suggests that the TI does not affect the STR, which needs further investigation.

The trend of the STR vs. LCC relation suggests that they are generally not conflictive

objectives: Increments in STR raises the LCC, suggesting that the cost of production losses

by spurious trips is a significant burden. However, in a few cases increments of STR

actually goes along with some cost reduction. This is possible when the optimizer changes

several variables simultaneously at once, achieving a combination where the increment in

STR (caused by higher redundancy) does not affect the LLC (for instance between solutions

10-11 and 15-16, see Figure 3.14) because the reduction in costs, other that loss of

production, becomes dominant.

PFDavg and Unavailability are generally non-conflicting objectives up to a minimum point.

However, in our zone of interest (PFDavg<2x10-4), they become conflicting objectives due to

the growing unavailability by safe failure (see the STR in Table 3.3, Modality 3).

The graph of Unavailability vs LCC shows the same conflictive behaviour as the plot

PFDavg vs LCC (since PFDavg generally is the dominant factor of unavailability).

A similar situation happens between the graphs of the couples Unavailability-STR and

PFDavg-STR: they show analogous relations.

Chapter 3. Optimization of SIS design with parallel redundancy 93

Figure 3.11. Pair wise plots of results from Modality 1

0
0.005

0.01
0.015

0

1

2

3
0

1

2

3

4

5

6
x 106

PFDavg vs STR vs LCC

STR
10-4 10-3 10-20

1

2

3

4

5

6 x 106

PFDavg

PFDavg vs LCC

PFDavg

Modality 1

Modality 2
Modality 3

Modality 1

Modality 2
Modality 3

1e-4 5e-42e-4 1e-31

2

3

4

5

6x 106

PFDavg

Modality 1
Modality 2
Modality 3

PFDavg: 1.54e-4
STR: 0.844 /year
LCC: 2.34e+6 ($)

Figure 3.12. Comparison of results from all three modality approaches

Figure 3.12 shows the optimal solutions obtained from running the three different optimization

program modalities described above. Notice that the solutions from Modality 1 are generally

dominated by the solutions from the other two modalities. Modalities 2 and 3 seem to converge

approximately in the same Pareto-optimal front. However, Modality 3 shows a slightly more

Chapter 3. Optimization of SIS design with parallel redundancy 94

uniform distribution along the front in the SIL 3 region (i.e. PFDavg<1x10-3). Additionally,

Modality 3 gave a set with many more SIL 3 solutions than the other two approaches (81

solutions, against 19 and 36 solutions from the other two). Therefore, it can be said that for

seeking a specific SIL level Modality 3 is the best strategy.

Table 3.3 presents a selection of solutions from the three modalities that achieved SIL 3 by

PFDavg. Remember from Section 1.5 that to meet a specific SIL value requires both achieving a

specific PFDavg and meeting the necessary architectural constraints. Also notice that the row for

the best solution from each modality is grey-highlighted in the table. From the optimal set given

by Modality 1, solution number 1 was the only one that meets all the requirements (including

architectural constraints), and from the set of Modality 2 solution 4 was the one that met the

both the architectural constraints and PFDavg requirements with the lowest LCC, STR and

unavailability.

A set of 35 solutions from modality 3 are shown in Table 3.3 (out of a total of 81). It is evident

that Modality 3 gave many more SIL 3 solutions in the optimal front than the other two

modalities, which gives more options for decision making, especially for lower LCC and STR

values. Figure 3.12 presents an inbox zooming up the SIL 3 region of the solution space. The

situation in the Pareto-optimal front of solution 21 from Modality 3, the one chosen as the best

one, is indicated in this figure. All in all, the best solution achieved by Modality 3 is better in all

the objectives than the one given by the Modality 1 approach.

An example of the parallel coordinates graph shown in Figure 3.13 for the results of the

Modality 3 approach. Observe the crossing lines between PFDavg and STR, which manifest a

conflictive relationship. Lines between STR and LCC are mostly not criss-crossing, confirming

that the prevalent relation between them is not conflictive.

Figure 3.13. Parallel coordinates graph Modality 3 approach with final chosen solution

Chapter 3. Optimization of SIS design with parallel redundancy 95

Table 3.3. Some optimization results that achieved SIL 3 by PFDavg__
 SUBSYSTEMS CONFIGURATION RESULTS
PT LS FC PFDavg STR Unav SIL LCC_____________ ________________ _______________

S T R TI T R TI T R TI (x10-4) (/year) Arch (x106)__ _____________ ________________ _______________ _____________________________________
Modality 1
1 2 3 0.02 1 2 3 0.02 16 2 4 0.02 1 1.5946 1.23790 0.0037028 3 3.4212
2 2 2 0.02 1 2 3 0.02 12 2 3 0.02 1 1.6270 0.98291 0.0030166 2 2.6864
3 2 4 0.02 1 3 2 0.02 2 2 3 0.02 1 1.7711 0.88738 0.0027809 2 2.4550__ _____________ ________________ _______________ _____________________________________
Modality 2
1 4 3 0.02 1 2 3 0.05 2 2 4 0.02 1 1.4359 2.26720 0.0064895 4 4.5673
2 2 3 0.02 1 2 2 0.02 1 2 3 0.02 1 1.4743 0.94519 0.0028772 3 2.4788
3 2 4 0.02 1 4 3 0.02 1 2 3 0.02 1 1.4836 0.93002 0.0028376 3 3.1105
4 2 3 0.02 1 4 2 0.02 1 2 3 0.02 1 1.4840 0.84434 0.0026030 3 2.3817
5 2 2 0.02 1 2 2 0.035 5 2 3 0.02 1 1.6085 0.89493 0.0027712 2 2.1024
6 2 2 0.02 1 2 2 0.035 6 2 3 0.02 1 1.6230 0.89493 0.0027741 2 2.1012__ _____________ ________________ _______________ _____________________________________
Modality 3
1 4 4 0.02 1 2 3 0.02 1 2 4 0.02 1 1.3886 2.66390 0.0075685 4 5.8950
2 4 3 0.02 1 2 4 0.02 1 2 4 0.02 1 1.3887 2.35910 0.0067335 4 5.8323
3 4 4 0.02 1 2 2 0.02 1 2 3 0.02 1 1.3909 2.37120 0.0067675 3 4.6023
4 4 3 0.02 1 2 2 0.02 2 2 3 0.02 1 1.3993 1.97980 0.0056967 3 3.8216
5 4 3 0.02 1 2 2 0.02 3 2 3 0.02 1 1.4076 1.97980 0.0056984 3 3.8154
6 4 3 0.02 1 2 2 0.02 4 2 3 0.02 1 1.4160 1.97980 0.0057001 3 3.8123
7 4 3 0.02 1 2 2 0.02 6 2 3 0.02 1 1.4328 1.97980 0.0057035 3 3.8092
8 4 2 0.02 1 2 2 0.02 2 2 3 0.02 1 1.4408 1.58830 0.0046360 3 3.0895
9 4 2 0.02 1 2 2 0.02 3 2 3 0.02 1 1.4491 1.58830 0.0046377 3 3.0833
10 4 2 0.02 1 4 2 0.02 2 2 3 0.02 1 1.4617 1.48750 0.0043641 3 3.0221
11 2 4 0.02 1 2 3 0.02 1 2 4 0.02 1 1.4718 1.28680 0.0038122 4 3.7646
12 2 3 0.02 1 2 3 0.02 1 2 4 0.02 1 1.4720 1.23790 0.0036782 3 3.4736
13 2 4 0.02 1 2 2 0.02 1 2 3 0.02 1 1.4741 0.99412 0.0030112 3 2.7418
14 2 3 0.02 1 2 2 0.02 1 2 3 0.02 1 1.4743 0.94519 0.0028772 3 2.4788
15 2 3 0.02 1 2 2 0.02 2 2 3 0.02 1 1.4826 0.94519 0.0028789 3 2.4601
16 2 4 0.02 1 4 3 0.02 1 2 3 0.02 1 1.4836 0.93002 0.0028376 3 3.1105
17 2 4 0.02 1 4 2 0.02 1 2 3 0.02 1 1.4838 0.89328 0.0027370 3 2.6406
18 2 3 0.02 1 4 2 0.02 1 2 3 0.02 1 1.4840 0.84434 0.0026030 3 2.3817
19 2 3 0.02 1 4 2 0.02 2 2 3 0.02 1 1.5035 0.84434 0.0026070 3 2.3568
20 2 2 0.02 1 2 2 0.02 1 2 3 0.02 1 1.5372 0.89625 0.0027612 2 2.2217
21 2 3 0.02 1 4 2 0.02 4 2 3 0.02 1 1.5431 0.84434 0.0026150 3 2.3444
22 2 2 0.02 1 4 2 0.02 1 2 3 0.02 1 1.5468 0.79541 0.0024870 2 2.1287
23 2 2 0.02 1 4 2 0.02 2 2 3 0.02 1 1.5663 0.79541 0.0024909 2 2.1038
24 2 2 0.02 1 4 2 0.035 1 2 3 0.02 1 1.5674 0.79485 0.0024890 2 2.0370
25 2 2 0.02 1 4 2 0.05 1 2 3 0.02 1 1.5879 0.79429 0.0024909 2 1.9668
26 2 2 0.02 1 4 2 0.05 2 2 3 0.02 1 1.6359 0.79429 0.0025005 2 1.9420
27 2 2 0.02 1 3 2 0.02 1 2 3 0.02 1 1.6742 0.78951 0.0024970 2 1.9873
28 2 4 0.02 1 2 2 0.02 1 2 2 0.02 1 1.7880 0.78809 0.0025392 2 2.3159
29 2 4 0.02 1 4 3 0.02 1 2 2 0.02 1 1.7975 0.72399 0.0023656 2 2.6347
30 2 4 0.02 1 4 2 0.02 1 2 2 0.02 1 1.7977 0.68724 0.0022650 2 2.2091
31 2 3 0.02 1 4 3 0.02 2 2 2 0.02 1 1.8167 0.67505 0.0022355 2 2.3395
32 2 4 0.02 1 4 2 0.02 2 2 2 0.02 1 1.8171 0.68724 0.0022690 2 2.1843
33 2 3 0.02 1 2 2 0.02 5 2 2 0.02 1 1.8216 0.73915 0.0024120 2 2.0365
34 2 3 0.02 1 2 2 0.035 3 2 2 0.02 1 1.8305 0.73783 0.0024094 2 1.9608
35 2 2 0.02 1 3 2 0.02 2 2 3 0.02 1 1.8341 0.78951 0.0025309 2 1.9540__
S=Solution, T=Type, R=Redundancy, =Beta factor, TI=Test interval
SIL arch = SIL achieved according with the system s architectural constraints

Chapter 3. Optimization of SIS design with parallel redundancy 96

It can be said that for a general approach, Modality 2 gives better results since it comprises a

larger range of solutions (i.e. more diversity) with a uniform distribution along the Pareto-

optimal front. The Modality 3 approach is more suitable if some specific goal is being sought

(for example SIL 3 compliance in this case).

Figure 3.14 shows the plot of the entire Pareto-optimal set given by Modality 3. The upper plot

presents only the objective function values, the rest shows a single plot for the decision

variables of each subsystem. Notice that the graphs are arranged according to the decreasing

values of the PFDavg. Thus, the numbering of solutions runs in inverse order. Also note that

from this complete set, only solutions 1 to 35 are detailed in Table 3.3.

0.0
0.6
1.2
1.8
2.4
3.0

1.0E-04

1.0E-03

0
1
2
3
4
5

PT

0.000
0.010
0.020
0.030
0.040
0.050

0
1
2
3
4
5

LS

0.000
0.010
0.020
0.030
0.040
0.050

0
1
2
3
4
5

FC

0.000
0.010
0.020
0.030
0.040
0.050

05101520253035404550556065707580
Number of the specific solution

Decision variables: Optional type Redundancy TI Beta factor

Objective function values: PFDavg STR LCCPFDavg

SIL
3

STR
(/year)

0.0E+6
1.2E+6
2.4E+6
3.6E+6
4.8E+6
6.0E+6

LCC
($)

Figure 3.14. Complete Pareto-optimal set given by Modality 3

The following remarks can be made based on Table 3.3 and Figures 3.11-3.14:

Overall, Modality 3 gave better results than Modality 1. However, while (in Modality 3)

lower values have been achieved for PFDavg (than in Modality 1), higher values have been

obtained for the STR (see Table 3.3). This is a situation that the optimizer cannot avoid,

since it is a condition inherent to the problem and the equipment provided.

Chapter 3. Optimization of SIS design with parallel redundancy 97

Also remember that the goal was to achieve a maximum PFDavg of 1.7x10-4. Table 3.3

shows that only two and six solutions from Modalities 1 and 2 respectively met this

requirement. Notice that amongst those eight solutions, some achieve only SIL 2 by

architectural constraints (which column s respective sections are highlighted red in Table

3.3). Therefore, only five solutions from these sets can be chosen as valid. If we had to

choose one best solution from each set, they would be solutions 1 and 4 respectively.

As with Modalities 1 and 2, only a fraction of the set of solutions given by Modality 3

achieving SIL 3 by PFDavg can be actually used as a solution to the problem, since the

architectural constraints do not permit claiming a SIL higher than 2 for most of them (e.g.

see red-highlighted column s section in Table 3.3). It is worth mentioning that if type A

subsystem components were used instead of type B (with the same reliability specifications)

for the design of the safety system, the proportion of solutions that could claim a SIL level

higher than 2 by architectural constraints would be larger, since IEC 61508 poses less strict

constraints for type A components. In consequence there would be more solutions in the

Pareto-optimal front to choose from, which could give better results in terms of the four

optimized objectives, including cost. For instance, if we had the same components

considered in this problem but they were type A, some better solutions could be picked

from Table 3.3 (see solutions 22 to 27 of Modality 3, which meet the maximum PFDavg

requirement).

Solution 21 from Modality 3 has been selected as the best one (highlighted in grey in Table

3.3). This is the one that meets all the requirements and achieves SIL 3 by architectural

constraints. Note that this solution gives better overall results in all the four objectives than

solution 1 of Modality 1, and lower LCC with the same STR than solution 4 of Modality 2.

Looking at Figure 3.14, it can be confirmed that PFDavg and STR show mostly a conflicting

relation, although in some parts decrements in PFDavg actually do not increase the STR, or

require very short increments. Solutions 1-35 however, do evidently cause increments in

STR when reducing PFDavg (what can be confirmed analyzing the numbers in Table 3.3).

Therefore, considering this and the comments previously drawn, it can be concluded, that

PFDavg and STR have a relationship that is between neutral (i.e. the change of one do not

cause a change on the other, which happens when only TI is changed) and conflictive

(changes in design variables). The conflictive relation is dominant for lower levels of

PFDavg.

Chapter 3. Optimization of SIS design with parallel redundancy 98

Notice from Table 3.3, that amongst the solutions achieving a SIL 3, the more convenient

optimal solutions use the optional-type 2 for transmitters and valves (which according to

Table 3.1 have low failure rate, and high diagnostic coverage and cost). Observe in Table

3.3 that transmitters optional-type 4 are used for solutions with a PFDavg lower than

1.47x10-4, which nevertheless increments the STR and LCC even further (which can be

easily seen in Fig. 3.14).

The factor values chosen in solutions 1-35 are the lowest possible for redundant systems

(=0.20) in all the subsystems. This indicates that electrical separation for field instruments

(PT and FC) and electrical separation plus physical segregation for LS, give the best results.

In solutions 35-81 the values are not constantly the lowest possible ones, but those

solutions do not achieve a PFDavg as low as the established goal.

In addition, testing the equipment as frequently as permitted by the problem (i.e. every

month, see Fig. 3.14) is the more selected option. The fact that the chosen field instruments

are the second most expensive option available and that they must be tested very frequently

indicates that perhaps a equipment with better specifications should be sought to permit a

lower Test Interval. This chapter assumes perfect testing. However, remember that

imperfect testing can overlook potential problems, and even induce them in extreme cases.

Observe in the set of solutions of Modality 3 that meet the PFDavg goal (solutions 1-35) that

the main trade-offs are in the redundancy variable. In general, it can be noticed that changes

in redundancy are quite influential (observe that when passing from redundancy=1 to >1 the

adverse effects of CCF are also introduced).

In addition, notice that for the complete set of solutions, the main trade-offs are for the

Logic Solver subsystem s design rather than the field instruments. Observe that the graphs

of the PT and FC subsystems are relatively stable compared with the LS graph. Comparing

to the field instruments (PT and FC), the components available for the FS subsystems have

lower total failure rates, much higher diagnostic coverage and a very high cost. They also

have more options for CCF reduction. This difference seems to provide the optimizer with

more room to manoeuvre. Observe that the PT and FC subsystems are practically stuck in

TI=1 month and =0.2. This could indicate that the CCF rates are quite high on those

subsystems, and the optimizer has exhausted the resources for reduction and dependability

improvement by test. Therefore, it resorts to trading with the LS variables. This hypothesis

is feasible if we compare PT against FC performance. Again, the PT components have

Chapter 3. Optimization of SIS design with parallel redundancy 99

better reliability specifications, so the optimizer trades more with the PT variables than with

the FC variables, which seem to be rather static. Also note that the majority of solutions

implement the two best-diagnosed and most expensive LS optional-types (2 and 4), similar

to the situation for the PT. It is notable that equipment with good diagnostic coverage is

generally chosen. Again, it can be said that equipment choices available may be not

appropriate for the selected application, since a high Test Interval is required (once per

month). In addition, the STR seems to be quite high for a safety system, which reinforces

this hypothesis.

3.9. CONCLUDING REMARKS

This chapter introduced the initial case of multi-objective optimization of SIS based on IEC

61508 requirements and using GAs as optimization method. It demonstrates the fundamental

applications of concepts detailed in previous chapters, integrating it for achieving practical

results.

First of all, as demonstrated by the Modality 2 approach, it was seen that feeding back optimal

solutions for previous runs of the GA as initial population of the next run can improve the

Pareto-optimal set obtained (Modality 2 gave overall better results than Modality 1). What is

more, feeding back such a population in a portion which objective values are closer to a specific

goal (like the specific SIL required in the presented problem) can actually guide the search

towards that goal (Modality 3 gave a much larger optimal set around that goal).

It was demonstrated that introducing the safety system and making an initial improvement of its

safety integrity is economically convenient, since it actually reduces the initial LCC. Besides,

any solution included in the Pareto-optimal set has far better trade-offs (e.g. must lower costs)

that the initial solutions.

The objectives to optimize included PFDavg, STR, Unavailability and LCC. It has been seen that

introducing Unavailability as optimization objective does not provide any significant

improvement to the method since this measure is implicitly contained in the PFDavg and STR. It

can be, therefore, omitted in future optimizations.

PFDavg is consistently in conflict with the system LCC in the Pareto-optimal front. This means

that achieving any improvement of safety integrity will have an additional cost. In addition,

there is a saturation point where any marginal improvement has a significantly large cost

increment. Regarding its relationship to STR, PFDavg is sometimes in neutral relation and

Chapter 3. Optimization of SIS design with parallel redundancy 100

sometimes in conflict. Nevertheless, they are not in any case harmonious objectives. It is matter

of further investigation to determine how this relationship behaves. In contrast, STR and LCC

do no show a consistent conflictive relationship.

The architectural constraints imposed by IEC 61508 (see Section 1.5.) can actually decrease the

SIL that a certain design can achieve. All solutions presented in Table 3.3 did achieve SIL 3 by

their PFDavg value. However, many of them (highlighted in red) are limited to claiming a lower

SIL by the architectural constraints.

It was seen that the optimizer gives preference to components with better reliability

specifications (like lower failure rates and higher diagnostic coverage) in spite of their higher

acquisition cost. Reduction of CCF is also a highly favoured factor. It has been observed that

the optimizer consistently chooses the lowest factor values possible. CCF is a very significant

negative influence on the system dependability values. An optimization method addressing this

problem is presented in the next chapter.

The optimizer also selected the highest test frequency available as TI option. It has been seen

that increasing testing frequency seems not to have influence over STR, and only reduces

PFDavg. It is, however, a matter of further research to investigate whether this frequent testing

can have some negatives effects not being considered here. This problem is approached in

Chapter 5.

The parallel coordinates graphs suggested by Fonseca & Fleming (1993) is actually a useful tool

that can assist the decision making problem. However, for a more generic analysis other kind of

graphs (e.g. Figs. 3.12 and 3.14) were more useful.

The case study presented in this chapter has permitted verification of the relationship of PFDavg

versus STR in parallel redundancies. Incrementing parallel redundancy with the aim of reducing

the PFDavg increases the STR because every new component added is a new chance of safe

failure. In optimization of design this can be mitigated by other alternatives, such as choice of

different components (with lower safe failure rates) or reduction of CCF. Results in Figure 3.14

showed, especially at the right end of the graph, that reducing the PFDavg by solely increasing

redundancy necessarily raises the STR. This effect can be counteracted by using MooN voting

redundancy rather than simple parallel, in the search of achieving a better balance PFDavg-STR.

This is analyzed in detail in Chapter 6.

Chapter 3. Optimization of SIS design with parallel redundancy 101

It can be said that the optimization method has been successfully implemented in its initial

version. The results obtained by the optimizer also allowed an analysis of system design in

terms of dependability and cost to be undertaken.

In this chapter a specific goal of PFDavg has been set for the optimization in order to explore

how the search can be guided by the formation of the initial population. In practise, the

acceptable limits of PFDavg can be set between determined bands (i.e. compliance with a

determined SIL level) or it can be a hard constraint. The latter is the case when a specific risk

reduction value has to be achieved, which is a frequent requirement. In this thesis, which

intends to implement a SIS optimization methodology, the search is not constrained with the

aim of developing the ability of the optimizer to explore the whole search space and the

relationship among the different objectives along the entire Pareto-optimal front. Therefore, the

case studies in subsequent chapters do not present the desired level of PFDavg as a hard

constraint.

102

CHAPTER 4

Optimization of Design with Diverse Redundancy

This chapter analyzes the optimization of Safety Instrumented System design introducing

diverse redundancy in the subsystems as a defence against Common Cause Failure (CCF). CCF

can have a significant influence on a system s dependability, and it can even be the dominant

factor affecting it. Among several design measures, the use of diverse redundancy is an effective

defence against CCF. However, it is a topic barely researched in safety system optimization.

This chapter primarily presents an introduction to the CCF phenomenon, the quantification of

the CCF share over the total failure rate of a component and its modelling at system level. A

novel index for quantification of the level of diversity in a system is introduced. This permits

comparison of the diversity index of a particular system design against its performance, and thus

to assess its benefits in relation to rival designs. Following a similar structure to the previous

chapter, a methodology for modelling dependability (adaptable to the changing demands of the

optimization activity) and Lifecycle Cost is presented. Then a case study exemplifies the

implementation of the multi-objective optimization program. The present chapter is aimed at

demonstrating how the consideration of diverse redundancy can provide even more flexibility

for RAMS+C based decision-making as a consequence of its positive impact, not only on

system safety integrity, but also on Lifecycle Cost.

4.1. COMMON CAUSE FAILURE

4.1.1. The phenomenon of CCF

Common Cause Failure is the term used to define the event of the simultaneous failure of

several components due to the same cause. According to CCPS (2000), there are three

conditions for an event to be considered a CCF:

1. Multiple components are failed.

2. The failures must be simultaneous. This means sufficiently close in time to result in failure

to perform the safety function required of the multiple [components] .

3. The cause of the failure must be the same for all the failed components.

The phenomenon of CCF deserves an important consideration because it can affect considerably

the dependability of the system. Given that safety systems consistently employ redundancy in

their architectures to implement the safety function with the required safety integrity, CCF

Chapter 4. Optimization of design with diverse redundancy 103

becomes a fundamental issue since it can negate the entire benefits of redundancy when failing

all the redundant components simultaneously. It therefore can increase considerably the PFD of

a system. For high-integrity systems (which are normally implemented with components with

very low failure rates) CCF can particularly become the dominant factor in the system

unavailability. Since CCF affects the failure rates of the components, it also influences

considerably the system s STR.

4.1.2. CCF modelling

Several different models have been proposed for modelling CCF. Mosleh et al. (1988) presented

an account of the main parametric methods used for quantification in safety and reliability

studies. He categorized the parametric models as shock or non-shock models. Non-shock

models include the best known models for safety and reliability studies: Factor, Multiple

Greek Letter and the Alpha Factor methods. For shock models, the binomial failure rate model

is mentioned. A detailed account of those models is presented in Appendix A.

The factor model (Mosleh et al., 1998) is a single-parameter model that assumes that the total

failure rate of a component is the sum of independent and common cause failures (Eq. (4.1)),

and that the fraction of the common cause failure rate over the total is the factor (Eq. (4.2)).

This can be interpreted as a fixed fraction of the total failure rate of a component (belonging

to a group of components) that can be attributed to a common cause event. It also assumes that

the common cause event will fail all the components of that group.
CNT (4.1)

CN

C

(4.2)

Given that the total failure rate of a component is the sum of the independent and the CCF

(dependent) failure rates (Eq. (4.2)), it is possible to determine the independent failure fraction

(also called normal failure, hence the N superscript) and the common cause (dependent) failure

fraction of the component based on the total failure rate and the estimated factor (Eqs. (4.3)

and (4.4) respectively).
TN)1((4.3)

TC (4.4)

Between all models for CCF, the -factor model remains as the most widely applied due to its

simplicity and traceability to real design and operating conditions. Mosleh et al. (1988)

expressed that considering the state of data involving large uncertainties, the impact of choosing

Chapter 4. Optimization of design with diverse redundancy 104

a particular model over another is not highly relevant (unless sound statistically significant data

were available). They added that the factor model provides results with reasonable accuracy

for redundancy up to four (albeit slightly conservative), although for higher levels of

redundancy the method is still applicable, but more conservative, and more sophisticated

models would be advised. Smith (2005) points out, in addition, that the Multiple Greek Letter

(MGL) model is yet too sophisticated to be supported by field data until more detailed

information is available. The author of this thesis considers that the same consideration is

applicable to the other multi-parametric methods. Although some guidance to estimate the

parameters of multi-parametric models, it is still difficult to relate this estimation to the

perceived causes of CCF and specific plant design and operation conditions.

It is a fact that the original factor model (Fleming, 1975; as cited in Mosleh et al., 1988) is a

rather basic estimation of CCF. However, due to its simplicity and practicality it has survived as

the most used model for real life applications. This has been made possible, however, by further

refinements practised to the original model. Some of them are presented as new models, but the

author considered they are extensions of the factor model. The partial factor model (as

described by Smith, 2005) splits the total factor into several contributions that influence the

CCF (i.e. similarity, separation, complexity, analysis, procedures, training, control and test).

This is equivalent to having one partial for each contribution, which are summed up to

determine the final factor. This allows estimation of the factor using engineering judgment

based on the actual design and operational conditions. Smith (2005) developed a new extension

in the Betaplus model, with the aim to make the model more objective and maximize the

traceability in the estimation of . It takes into account important features relevant to SIS, such

as equipment type and diagnostic coverage. The method for quantification of CCF suggested by

IEC 61508 is based on these models, as will be detailed in the next section.

The factor model does not account for differences in the number of redundant components

and the MooN voting architecture (where M<N). The factor is the same regardless of these

features. The PDS Method (Hauge et al., 2006a) introduced a new development to modify the

basic factor (relevant to two components in parallel) by an additional factor CMooN dependent

on the voting configuration (Eq. (4.5)). The proposal has been developed from Hokstad &

Corneliussen (2004), Hokstad (2004), and Hokstad et al. (2006), where it is called the Multiple

factor model. A salient feature of the proposition made in the PDS method is that suggested

values of the CMooN factors are given for quantification of PFDavg and STR.

MooNMooN C' (4.5)

Chapter 4. Optimization of design with diverse redundancy 105

Figure 4.1. Modification of the factor for a 1oo3 system

The intersection of events shown in Figure 4.1 represents the fact that the occurrence of failure

of multiple components by a common cause is not probabilistically independent. As can be

seen, the intersection is smaller for three (or bigger) number failed components. The suggested

value for a 1oo3 voting, for example, is a third of this intersection for only two components

(CMooN=0.3). This is the logic behind the SINTEF s CMooN modification factor.

4.1.3. Quantification of CCF at system level

A seminal work presenting a complete methodology for treating CCF in safety and reliability

studies is Mosleh et al. (1988). A summary was presented in Mosleh (1991). Mosleh et al.

(1988) identified the three essential factors to consider when analysing CCF:

The root cause of the failure, which is the event or factor that leads to CCF

The coupling mechanism, which permits that one single root cause affects multiple

components. Coupling is what makes a real difference between independent and common

cause failures (CCPS, 2000). This reference details six different types of coupling: common

support system, common hardware, equipment similarity, common location, common

internal environment and common operating or maintenance staff and procedure.

The lack of defences against CCF mechanisms. Defences can approach the elimination of

root causes or coupling mechanisms. These are of engineering or operational nature.

Examples of defences are separation and segregation of equipment, design review, test and

maintenance procedures, training of operation and maintenance staff, etc.

Mosleh et al. (1988) established that the couplings that may lead to CCF must be identified

when developing safety and reliability analysis, and that the probability of these events must be

quantified in order to have a realistic assessment. CCF events can have important contributions

to the overall unreliability of a system, since they become basic failure events, and can even

become a dominant factor of the overall failure probability of a redundant system. Section A.2

lists the steps of the procedural framework for CCF analysis defined in Mosleh et al. (1988).

Chapter 4. Optimization of design with diverse redundancy 106

IEC 61508 Part 6 provides a methodology for estimating the factor for the specific application

being analysed. Although the standard does not mention any direct reference, it seems to be

based on the Partial Beta model and resembles very closely the Betaplus model mentioned

above (both explained in Smith, 2005).

The methodology suggested by IEC 61508 bases the estimation of the factor on determining

which defence measures against CCF have been put in place, which fall into one of these three

categories: reduction of overall failure rates, maximization of independence of channels, and

revelation of non-simultaneous CCF. The measures are thus enlisted by the type of defence

measures: 1) separation/segregation; 2) diversity/redundancy; 3) complexity/design/application/

maturity/experience; 4) assessment/analysis and feedback of data; 5) procedures/human

interface; 6) competence/training/safety culture; 8) environmental control; 9) environmental

testing.

This methodology conveniently extends the basic model so that it can be determined on the

basis of the specific system design and plant conditions. It considers the technological

differences between logic subsystems and field instrumentation (sensors and final elements) and

their dissimilar working conditions. It also takes into account the difference between factors that

are enhanced by the diagnostic coverage and those that are not.

The standard provides tables that allow determination of a score for each defence measure of the

mentioned categories put in place (based on engineering judgement). Tables provide the final U

factor that corresponds to undetected failures, and D for detected failures based on those scores.

The tables provide separate scoring values for logic solver and for field instruments. The reader

is referred to IEC 61508 part 6, Annex D to see the mentioned tables.

For the sake of simplicity, IEC 61508 makes the same assumption of the basic factor model

that once a CCF event takes place it affects all the channels in the redundant subsystem

regardless of the level of redundancy. This approach does not distinguish between different

schemes of redundancy or voting logic. However, the approach can be complemented with the

formulation made by Hauge et al. (2006a), shown in Eq. (4.5), to include the difference in CCF

for different MooN architectures.

There are two different approaches for incorporating CCF into Fault Tree Analysis and other

combinatorial methods: implicit and explicit methods. The description given by Vaurio (1998)

is that in the explicit method the CCF is modelled as basic events in the fault tree. These events

are repeated as input to all components they affect. These events are preserved by Boolean

Chapter 4. Optimization of design with diverse redundancy 107

reduction. On the contrary, in the implicit method only independent basic events are modelled

in the system logic initially. The terms of the probability expression obtained after Boolean

reduction are evaluation in such a way that the contribution of CCF is included. Vaurio (2002)

recognized that the implicit method may require a large number of terms to be quantified

manually, and that truncation of the system equation in large systems can carry the possibility of

losing important terms. He proposed a methodology for transformation of implicit into explicit

models, given the reasons previously mentioned and that the former can handle automatically

independent events. It is therefore reasonable to say that explicit methods are more flexible and

perhaps more powerful.

The CCF basic events generated in explicit methods can be subject to Boolean reduction to

represent only the Minimal Cut Sets (MCS). The simplest example is the CCF of a double

parallel redundant system shown in Figure 4.2. All the components that would be failed by a

common cause are included in one single group. These are usually the identical components in a

redundant arrangement. This group is then represented by a fault tree, the top event of which is

originated by an OR gate whose inputs are the simultaneous independent failure events of the

components plus the event that fails all components by common cause.

Figure 4.2. Modelling of CCF for a two-component system

Vaurio (2003) has developed analytical equations that include CCF probabilities for

quantification of the average unavailability of redundant standby safety systems for up to four

components. It includes simultaneous, sequential and uniform staggered testing. Quantification

of CCF is based on the General Multiple Failure Rate model (a general formulation of the Alpha

factors and the MGL models (Vaurio, 1994)). This work in Vaurio (2003) is a continuation of

previous work by the same author (Vaurio 1994, 1995b, 1998, 2002). The resulting equations

however do not take into account separation of detected and undetected failure modes, and

Chapter 4. Optimization of design with diverse redundancy 108

therefore it does not consider the effects of diagnostic coverage. They are also tied to a uniform

distribution of the test events in case of staggering testing.

In this work the CCF is quantified using the factor model. As can be concluded from the

previous discussion, the main advantages are its simplicity and traceability to actual system

design and operation conditions. Different from multi-parameter models, it only requires

estimation of the factor and to have the total failure rate of the component. Multi-parameter

models are more sophisticated, but without a practical method for estimation of the various

parameters its applicability is not feasible. The factor model also presents a similar advantage

over shock models, where the various shock events and the conditional probability of CCF

subject to all these shocks would have to be estimated. In addition, if the method given by IEC

61508 is complemented with the framework given by Mosleh et al. (1988) and the modification

formulated by Hauge et al. (2006a), the model can be considered well developed for

incorporation into the modelling and optimization studies in this work. This model is, to the best

of the author of this thesis knowledge, the only one currently used for the assessment of SIS

based on operational data so far.

4.1.4. Optimization considering CCF

Even though CCF is a very influential factor in system unavailability, very few optimization

works consider it. Total independence is, in contrast, usually assumed between failure events of

redundant components. Bai et al. (1991) presented an early optimization study of the number of

redundant components n in k-out-of-n systems based on reliability at the time of minimizing the

mean cost rate, using predetermined CCF rates. Pham (1993) determined system reliability

against number of spares on the search for their optimal value in a TMR-plus-spares system,

considering predetermined values of CCF and diagnostic coverage. Coit & Smith (1996a)

addressed the optimization of redundancy allocation with component selection for a series-

parallel system (including k-out-of-n:G subsystem redundancy), where components of different

types could be mixed, using a GA. They solved reliability maximization given cost and weight

constraints, and cost minimization given reliability and weight constraints. In a subsequent

work, Ramirez-Marquez & Coit (2007) addressed the problem by non-linear programming

permitting mixing diverse components is series-parallel systems. They estimate CCF using the

discrete shock model presented in Kvam & Martz (1995). Different cases with various CCF

values are analyzed for a series system with five parallel-redundant subsystems. Yu et al. (2007)

also addressed reliability optimization for a redundant system with failure dependencies,

modelling different redundant dependencies (independence, weak, linear and strong).

Chapter 4. Optimization of design with diverse redundancy 109

4.2. DIVERSITY

4.2.1. The role of diversity against CCF

It has been mentioned in Section 1.1.3 that coupling mechanisms have a large influence in the

difference between independent and common cause failures. One of those mechanisms has been

defined as equipment similarity . Equipment that is similar or, even more, identical can be

expected to be affected by the same causes. Goble (1998) establishes three basic design defence

rules against CCF: physical separation, diversity and making the design more robust for higher

strength (ruggedization). Diversity means that units that have different design or construction

are put together in a redundant arrangement. This tends to eliminate the susceptibility of the

units to the same common cause of failure. Notice that one of the defence categories that IEC

61508 uses for quantification of the factor is diversity/redundancy.

It was seen in Chapter 1 that fault tolerance, the capacity of a system to prevent single failures

escalating into system failures, is usually achieved by some form of redundancy. This involves

the use of extra equipment or parts that the system would not normally need to perform its

function, but are used to tolerate potential faults. Plain identical hardware redundancy may,

however, introduce susceptibility to CCF, which in turn reduces drastically the benefits of

redundancy. In consequence, CCF can be counteracted by implementing redundancy with

components technologically diverse; i.e. diversity in redundancy. Observe that whilst identical

redundancy aims to address the general problem of random failures, the technique of diversity is

used for additionally tackling the particular problem of CCF. When implementing diversity, a

function is implemented in different ways in the hope that the same fault is not present in two

diverse technologies or techniques.

Although the concept of diversity as defence against dependent failures in redundant systems is

well known, investigation of its benefits and strategies is a topic barely studied. For example,

Littlewood & Miller (1989) approached the estimation of probability of failure of multi-version

software system with forced diversity of design. Littlewood (1996) subsequently derived an

analogous model for hardware forced diversity, in which it is expected that differently designed

hardware items responds differently (i.e. probability of failure is different) to a particular

operational environment (i.e. stresses). He concludes that the best design is the one that uses

all the available types of components, but uses each as little as possible . Fischer & Piel (1999)

made an analysis on the achievement of independence between redundant trains of computer-

based safety instrumentation and control systems in the nuclear industry, focussing on the logic

solver (i.e. the computer). They classified diversity as physical (different design) and functional

(different operation principle). They analyze in which case the implementation of diversity is

Chapter 4. Optimization of design with diverse redundancy 110

convenient and under which modality. Interestingly, they remark that a reasonable way to

implement physical diversity is the use of non-safety equipment to implement redundancy of

safety functions. This is justifiable if the final safety (i.e. availability) performance meets the

relevant targets. The case of implementing diversity with smart sensors (i.e. sensors with

enhanced capabilities by a microprocessor) was approached by Meulen (2003). He recognizes

the advantages of using diversity to counteract CCF among redundant systems using smart

sensors, and analyzes in which ways it can be implemented. Nevertheless, he also recognizes

that diversity can have some disadvantages, mainly of an operational nature (e.g. different types

of equipment have to be maintained, which could potentially lead to maintenance errors).

This chapter presents an optimization of system design using diversity as a countermeasure

against CCF. Different from the few approaches that have previously contemplated CCF in

optimization (e.g. especially diagnostic coverage is omitted), this work considers all modelling

detail relevant to safety systems. This work implements a practical approach that uses the

factor model for estimation of CCF (together with some enhancements mentioned above), that

allows incorporation of engineering judgement and traceability to the real design and plant

operating conditions. Notice that the simplicity of the Factor model reduces the problem of

getting CCF data for industrial equipment to the availability of suitable historical statistically

significant failure rate data, in addition to the system s design and operation data.

IEC 61508-4 defines diversity as different means of performing a required function . It adds a

note complementing that diversity may be achieved by different physical methods or different

design approaches . It this thesis diversity is implemented permitting the mixture of

technologically diverse equipment in redundant subsystems.

4.2.2. Diversity quantification

In order to analyze more effectively the effect of diversity on system dependability and cost a

Diversity Index (DI) was formulated. The objective of this index is to reflect the relative level of

both redundancy (Redundancy/Components) and diversity (Technologies/Components) to the

total number of components. The first formulation made was the following:

i

iNs

i
i

i

Components
Redundancy

Components
esTechnologi

Ns
DI 1

1 (4.6)

Where Ns is the number of subsystems. Notice that the term Redundancy refers to the number of

extra components not necessary for the execution of the safety function but added for the sake

of subsystem dependability improvement (i.e. Components-1). The term Technologies simply

refers to the number of different technologies used per subsystem.

Chapter 4. Optimization of design with diverse redundancy 111

The index given by Eq. (4.6) may be somewhat insensitive to changes in redundancy when this

is changed simultaneously with diversity. For this reason the index was slightly modified into

the index given by Eq. (4.7). The two indexes are numbered with a subscript just for the purpose

of facilitating the analysis, made at the end of the case study.

Ns

i
i

ii

Components
RedundancyesTechnologi

Ns
DI 1

2 (4.7)

4.3. DESCRIPTION OF THE APPLICATION PROBLEM

The application problem is about redundancy allocation with component selection (discrete

reliability allocation) with the option of diverse redundancy for a series-parallel system.

Different from the study case of the previous chapter, this case is only about design

optimization. In Chapter 3, where optimization of design was mixed with optimization of test

frequency, it was observed that the optimizer consistently selected the highest possible test

frequency. It is a matter of further research to verify that such a frequent testing is truly possible

and convenient. Therefore, optimization of test will be studied as a separate problem in Chapter

5. The three objectives to optimize in this case are: Average Probability of Failure on Demand

(PFDavg), Spurious Trip Rate (STR) and Lifecycle Cost (LCC).

Figure 4.3 shows the SIS, which is composed of four subsystems. The field instrumentation

comprises both the pressure and temperature sensor/transmitter subsystems, and the final

control element subsystem (basically composed of a set of actuator and shutdown valve). The

logic solver subsystem is a safety PLC. These subsystems are referred as PT, TT, FC and LS

respectively. The optimization is focussed on the variability of redundancy and diversity of the

field instruments subsystems. It is assumed that the LS subsystem meets all requirements for a

SIL 3 application, and its design is not varied during the optimization. The redundancy per

subsystem can be varied between one and four components, and each component can be chosen

from three different technologies in order to implement diversity. These technologies are called

A, B and C. They have different failure rates, diagnostic coverage and cost specifications. All

relevant dependability and lifecycle cost data is presented in Table 4.1. It is important to bring

to the reader s attention that the IEC 61508 device type classification (A or B), and the three

different kinds of technologies available per subsystem (named A, B, C), should not be

confused. The latter will be referred to as technology , and the former as device Type .

Chapter 4. Optimization of design with diverse redundancy 112

Fig. 4.3. Chemical reactor protection system

Table 4.1. Dependability and Lifecycle Cost data___
Subsystem Pressure Temperature Final control element Logic

measurement/transmitter measurement/transmitterb (valve & actuator) solver_____________________________________ ________________________ ______________________ ______
Technology A B C A B C A B C_________________________ _________________________ ______________________

Smart Conventional Switch Smart Conventional Switch Air Hydraulic Motor Safety
 transmitter Electronic transmitter Electronic operatedc operatedd operatedd PLC

transmitter transmitter___
S/ D (%) 69.2/31.8 56.0/51.1 10/10 97.9/7.5 86.9/45.5 10/10 0/25 0/20 0/10 -/81.25
SD (x10-6/hr) 0.265 1.21 0.68 5.05 6.5 0.92 0 0 0 3.46f

SU (x10-6/hr) 0.118 a 0.95 6.13 0.11a 0.98 8.30 3.94 3.17 9.17
DD (x10-6/hr) 0.048 0.97 0.41 0.026 1.57 0.76 0.84 1.09 0.79 0.026
DU (x10-6/hr) 0.103 0.93 3.70 0.322 1.88 6.84 2.51 4.35 7.11 0.006
T (x10-6/hr) 0.534 4.06 10.92 5.508 10.93 16.82 7.29 8.61 17.07 3.492

Type B A A B A A A A A B
SFF (%) 80.7 77.09 66.12 94.15 82.79 59.33 65.57 49.48 58.35 99.83
Cpurchase ($) 4844 3206 500 2560 1406 500 6940 6400 6200 40000___
Lifecycle cost data: Other data:
Design/install/commissioning PLC= 10,320 ($) Repair time=8 (hrs)
Repair PLC= 8000 ($/event) Shut down time= 24 (hrs)
Maintenance PLC= 960 ($/event) Test Interval= 1 (year)
Test PLC= 240 ($/event) Plant risk without SIS=8.55 (x10-3 /yr)
Design overall instrumentation= 3,060 ($) C1oo2=1.0
Installation/commissioning per instrument=600 ($) C1oo3=0.3
Maintenance per instrument= 240 ($/event) C1oo4=0.15
Test per instrument= 60 ($/event) =10%e

Repair cost per instrument & PLC= 480 ($/event) Notes:
Spares per repair= 7.5% component cost aThis failure mode doesn t cause spurious trip, only quantified for SFF
Loss of production= 2,000 ($/hour) bThe measurement element is a thermocouple
Start up cost= 1800 ($) cIncludes the solenoid valve
Catastrophic loss=150x106 ($) dIncludes the electromechanical relay
SIS life= 15 (years) eApply for all cases, except for SD of: PTA=5%, TTA=2%, TTB=5%
Discount rate=0.05 fThis figure includes SD+ SU

A second optimization case that constrains the design to only variation in redundancy without

diversity is also studied. In this, the level of redundancy can be varied but all the components of

each redundant subsystem must be of the same technology. The objective is to contrast the case

of optimization of design with diversity against the optimization without mixing components.

Chapter 4. Optimization of design with diverse redundancy 113

The following assumptions apply for the solution of the problem:

The system operates in low-demand mode.

Components have constant failure rate.

Failure of each subsystem is independent from others.

Once a component has failed it remains in that state until it is repaired.

Testing and repair are perfect: no faults are overlooked, and the item is returned to as new

condition or normal state after repair.

The testing strategy is independent test per component.

For redundancy higher than two only the CCF that affects all redundant components is

considered (in the same fashion as suggested by Hauge et al., 2006a).

The different factors for each kind of technology per subsystem shown in Table 4.1 have been

estimated using the tables presented in IEC 61508 Part 6 Annex D. Since this is considered a

design made in an early project stage, the only categories relevant for estimating the factors

were: complexity/design/application/maturity/experience; assessment/analysis and feedback of

data; procedures/human interface; environmental control; environmental testing. Specific

factors for each failure mode (dangerous detected, dangerous undetected, safe detected and safe

undetected) have been determined. However, practically the factor in every case is the same

(10%), with the few exceptions of safe detected failure mode for PT technology A which is 5%,

TT technology A is 2%, and TT technology B is 5%.

For simplicity it has been assumed that appropriate measures have been put in place to eliminate

coupling among different technologies, so that common cause failure events are negligible. This

means that CCF is only considered between components of same technological type.

Quantification of CCF caused by coupling factors between different technologies is a very

complex task. In addition, remember that different CCF rates can take place between the four

failure modes (dangerous detected, dangerous undetected, safe detected and safe undetected). It

therefore would require a CCF model capable of handling quantification of contributions by

different couplings in a way traceable to actual design and plant conditions, and a combinatorial

model capable of handling them efficiently in the changing conditions of the design

optimization process. This is an opportunity of research proposed as such in the Future Work

section of the last chapter.

Chapter 4. Optimization of design with diverse redundancy 114

4.4. QUANTIFICATION OF DEPENDABILITY OBJECTIVES

4.4.1. Fault Tree Analysis

The two dependability objectives, PFDavg and STR, are quantified based on Fault Tree Analysis.

The fault trees are empowered with house events, which confer the fault trees the flexibility to

accommodate the dynamic changes in redundancy and technology during the optimization

process. Figure 4.4 and 4.5 show the fault tree for quantification of PFDavg and STR

respectively. In the fault trees of Figures 4.4 and 4.5 the house events allow switching on and

off the redundant units per technology per subsystem by changing their logic value to 1 or 0.

Notice that the full fault trees are not displayed; only the full branch for technology A of the PT

subsystem is shown, which is exactly the same for technologies B and C. In the same fashion,

the sub-fault trees for the TT and FC subsystems would be identical to the entire PT subsystem

sub-tree.

The fault trees have as basic events the independent and CCF events of each subsystem. Thus,

each basic event is composed by a detected and undetected component (as in Eq. 1.19). The

formulas for these basic events of both fault trees are shown below. Notice the separation

between independent (normal) and common cause failures, formulated in Eqs. (4.3) and (4.4).

Also observe that the factors are modified by the factor CMooN given by Eq. (4.5).

For dangerous independent failure basic events:

)
2

()1()1(r
DUDU

MooNr
DDDD

MooNavg TTICTCPFD (4.8)

For dangerous common cause failure:

)
2

(r
DUDU

MooNr
DDDD

MooNavg TTICTCPFD (4.9)

For safe independent failure basic events:
SUSU

MooN
SDSD

MooN CCSTR)1()1((4.10)

For safe common cause failure:
SUSU

MooN
SDSD

MooN CCSTR (4.11)

The fault trees are solved by quantification of MCS. The program developed for quantification

of the objective function selects dynamically the cut sets relevant to the candidate solution under

evaluation. It then calculates the total PFDavg and the STR of this candidate solution.

Chapter 4. Optimization of design with diverse redundancy 115

System dangerous
failure

PTA 1 selected
and dangerous
random failure

PTA 1
selected

PTA 1
dangerous

failure -
random

Measurement
subsystem

dangerous failure

Logic solver
subsystem

dangerous failure

Final Control element
subsystem

dangerous failure

PLC
dangerous

failure

PT technology A
selected &

dangerous failure

PT technology C
selected &

dangerous failure

PT technology B
selected &

dangerous failure

Temperature
measurement

subsystem
dangerous failure

Pressure
measurement

subsystem
dangerous failure

FCA FCB FCC

TTA TTB TTC

PTB PTC

All PTAs fail
dangerous by
random cause

PTA redundancy >1
All PTAs fail dangerous

by common cause

PTA
redundancy

>1

All PTAs fail
dangerous –

common
cause

PTA 2 selected
and dangerous
random failure

PTA 2
selected

PTA 2
dangerous

failure -
random

PTA 3 selected
and dangerous
random failure

PTA 3
selected

PTA 3
dangerous

failure -
random

PTA 4 selected
and dangerous
random failure

PTA 4
selected

PTA 4
dangerous

failure -
random

Figure 4.4. Fault tree for quantification of Probability of Failure on Demand

System
spurious trip

PTA 1 selected
and safe random

failure

PTA 1
selected

PTA 1 safe
failure -
random

Logic solver
subsystem

spurious trip

Final Control element
subsystem

spurious trip

PLC
safe

failure

PT technology B
selected &
safe failure

Temperature
measurement

subsystem
spurious trip

Pressure
measurement

subsystem
spurious trip

FCA FCB FCC
TTA TTB TTC

PTB PTC

PTA
redundancy

>1

All PTAs fail
safe –

common
cause

PTA 2 selected
and safe random

failure

PTA 2
selected

PTA 2 safe
failure -
random

PTA 3 selected
and safe random

failure

PTA 3
selected

PTA 3 safe
failure -
random

PTA 4 selected
and safe random

failure

PTA 4
selected

PTA 4 safe
failure -
random

PT technology A
selected &
safe failure

PT technology C
selected &
safe failure

PTA redundancy >1
All PTAs fail safe by

common cause

Figure 4.5. Fault tree for quantification of Spurious Trip Rate

Chapter 4. Optimization of design with diverse redundancy 116

4.4.2. Computer code for solving fault trees

As it can be seen comparing the fault trees presented here with those of Chapter 3 (Figs. 3.6 and

3.7), their size has grown considerably which presents a challenge for their quantification. A

program that reduces the MCS to those applicable to the specific architecture chosen by the

optimizer has been developed based on MATLAB®. This program is used in the last two out of

the four steps to quantify the PFDavg:

1. Draw the fault trees with house events representing all possible basic events.

2. Obtain the MCS of the complete tree (assuming all the basic events are included in the

system configuration). They have been obtained using the program OpenFTA© (FSC1

1991).

3. Reduce the MCS to those only applicable based on the house events corresponding to the

actual system configuration selected.

4. Calculate the PFDavg.

The program s working principle is described by an example illustrated in Figure 4.6. This

considers only the subsystem FC with a combination of two components A and two C.

1. The program is fed with a vector with of all MCS and another vector with all possible

combinations by subsystem (in this case they are 34 combinations).

2. A specific combination to be evaluated is chosen (this would be determined by a specific

phenotype in the GA application). For example combination number 1 is AACC.

3. Create a mask of applicable house events in order to delete irrelevant terms (those that do

not belong to the chosen combination AACC) from all the MCS, and apply it to filter them

out. For example, one MCS is:

][43211 FCAFCAFCAFCAFCCFCBMCS CCFCCF

In this example FCBCCF represents the CCF of the FC element for technology B. FCA1

represents the independent failure of component 1 of the FC technology A. As can be seen

in Figure 4.6 the terms in this MCS relevant to the combination AACC would be only

FCCCCF, FCA1 and FCA2. Therefore the mask would permit only those terms to be passed.

The irrelevant terms are substituted by a 1.

4. Evaluate the MCS in turn.

5. Calculate the PFDavg summing up all cut sets.

The combination for the three subsystems (PT, TT and FC) is determined by its corresponding

chromosome (transformed into a phenotype) in the GA. The computer program for

quantification of STR works in a similar fashion. Then the two obtained values PFDavg and

1 Formal Software Construction Limited

Chapter 4. Optimization of design with diverse redundancy 117

STR, together with the LLC, represent the solution of the objective function for the specific

chromosome.

N

i inewMCSPFDavg
1

Figure 4.6. Algorithm for solving fault trees based on MCS reduction

Chapter 4. Optimization of design with diverse redundancy 118

4.5. THE LIFECYCLE COST MODEL

The LCC model has been modified (from the previous chapter) to the requirements of the new

problem. It is fully included here for the sake of completeness. The overall LCC is given by:

PVFCCCLCC RISKOPPROC)((4.12)

The applied factor by present value (PVF) is determined in Eq. (3.2). The procurement cost per

year is:

ijij
comminst

ij
purchase

ijdesignPRO NCCCC)(/ (4.13)

Where Nij is the number of components of the jth type of technology of the ith subsystem.

Basically, these are the decision variables of the problem, and:

Cdesign= Design cost

Cpurchase= Purchase cost

Cinst/comm= installation, commissioning and start-up costs

The operating cost per year (Eq. (4.14)) includes preventive maintenance (CPM), testing (CT) and

corrective maintenance (CCM), calculated by Eqs. (4.14-4.17).

CMTPMOP CCCC (4.14)

Where:

ij ij
PM
ij

ij
PM NC

M
C 1

(4.15)

ij ij
T
ij

ij
T NC

TI
C 1

(4.16)

ij ij
CM
ij

CM
ijCM NCfC (4.17)

Where M is the maintenance frequency, TI the test interval, and f the frequency of repair. The

costs Cij
PM, Cij

T and Cij
CM are costs per event. The repair frequency is given by:

Total
ij

CM
ijf (4.18)

The risk cost per year includes both the costs caused by safe and dangerous failures:

HAZARDSTRRISK CCC (4.19)

The cost for spurious trip rate CSTR is directly proportional to the cost of production loss from

each spurious shutdown CSD (Eq. (4.20)). This is in turn proportional to the restoration time of

the plant after a spurious shutdown (Eq. (4.21)).

SDSTR CSTRC (4.20)

LossTimeSD SDSDC (4.21)

Chapter 4. Optimization of design with diverse redundancy 119

The cost of hazard contemplates the cost of a potential accident (Eq. (4.22)), where

F(ACC|PFDavg) is the frequency of plant failure (or accident) per year without the SIS (see Eq.

3.11).

avgavgACCHAZARD PFDPFDACCFCC)((4.22)

4.6. IMPLEMENTATION OF THE OPTIMIZATION ALGORITHM

Same as in Chapter 3, the optimization of the safety instrumented system design was based on

the Fonseca & Fleming MOGA genetic algorithm (Fonseca & Fleming, 1993). The optimization

program was implemented in MATLAB®, using the MOGA toolbox (Chipperfield et al., 1994).

The implementation of the optimization algorithm follows the flowchart presented in Figure 4.7.

For each single subsystem there are 34 unique combinations of redundancy and technologies

(making a total of about 40x103 possible combinations for the design of the overall system),

which were codified and included in a vector (see Section 4.4.2). The vector permits access to

these combinations by their index. Notice that the decision variables are integer, which favours

the use of a binary chromosome. The 21-bit binary chromosome (seven bits per subsystem, as

shown in Figure 4.8), access the relevant combination in the combinations vector according to

the candidate solutions being evaluated. With this information the objective function is called

and calculated, which returns a vector with values of the objectives under optimization. These

vectors are stored in an Objectives Matrix. After the genetic operators are applied to the

Objectives Matrix, another Best Matrix collects and stores the best-ranked individuals from

each generation. Once the program termination criterion is met (i.e. maximum number of

generations is exhausted) this matrix is re-ranked, in order to eliminate all the dominated

individuals. The resulting pool of solutions constitutes the Pareto Optimal Front.

Tuning was made for the algorithm, and the parameters that provided better results (more

diversity and individuals in the Pareto front) were:

Population: 20 individuals

Generations: 300

Generational gap: Incremental from 10 to 70%

Fitness mapping: Exponential

Selection algorithm: Stochastic Universal Sampling

Crossover mechanism/rate: Single point at 70%

Mutation mechanism/rate: Bit-flipping at 5%

Chapter 4. Optimization of design with diverse redundancy 120

Generation=1

Individual=1

Individual=Individual+1

Rank [Objectives Matrix]
Add it to the pool of non-

dominated from ALL generations
Best Matrix

Non-dominated matrix 1

Non-dominated matrix N

Eliminate
dominated
individuals

[Non-dominated matrix 1]

Generation=
Generation+1

Rank [Best Matrix]

Eliminate dominated &
repeated individuals

PARETO
OPTIMAL
FRONT

Initial population
Chromosome 1

Chromosome N

Transform to Phenotype
Phenotype 1

Phenotype N

PT1 FC1TT1

PTN FCNTTN

Populate Objectives Matrix
PFDavg1 STR1 LCC1

PFDavgN STRN LCCN

Individual=N+1?

Transform Phenotype into combinations

Combination 1

Combination N

Combination
Vector

PT1

PT1

Combination 1

Combination N

Combination
Vector

TT1

TT1

Combination 1

Combination N

Combination
Vector

FC1

FC1

Chromosome 1

Chromosome N

New population

Apply Genetic Operators
Fitness
Selection
Recombination =
Mutation
Reinsertion

Generations=
MaxGen+1?

Termination
criteria

No

No

Yes

Yes

Evaluate objective function

PFDavg STR LCC

(shown in Fig. 4.6)

Figure 4.7. Flowchart of the implementation of the optimization algorithm

Figure 4.8. Chromosome code for the SIS design

Chapter 4. Optimization of design with diverse redundancy 121

4.7. DISCUSSION OF RESULTS

4.7.1. Architectures and their performance

Table 4.2 presents the Pareto-optimal front solutions numbered and sorted by decreasing

PFDavg. The table shows the corresponding decision variables (i.e. the number of elements per

technology per subsystem, under the headings A, B, C) and the objectives values of each

solution. The Diversity Index values given by DI1 and DI2 are also presented.

Analyzing the table, it seems that some technologies are much less competent for optimal

design. Specifically, observe technologies C for the two transmitter subsystems. These appear

only in a very few solutions, and presumably only when it is very necessary to further improve

diversity (solutions 56 to 64). In contrast, smart transmitters appear in all the optimal solutions,

which indicate that they are preferred by the optimizer. Smart transmitters have significantly

higher acquisition cost than the other two options (see Table 4.1). Nevertheless, they are still

used in all the 64 solutions given by the optimizer. This suggests that for high dependability

requirements quality (low failure rates and high diagnostic coverage) outweighs cost.

The case of temperature transmitters is particularly notable. The TT and PT subsystems are in

parallel, eliminating the need for implementation of high levels of redundancy in both of them

(see solutions 1 to 46). Temperature transmitters have redundancy higher than two only in

solutions with very low PFDavg values. It is evident that the optimizer gives preference to the

PTs over the TTs, even thought TTs have lower purchase costs. Notice that TTs have higher

total failure rates than PTs with the same technology, particularly higher safe failure rates. This

has a negative impact on the cost of losses by higher spurious trip rates. It can be said that the

dominance of these costs exerts considerable influence on the optimizer so that the optimizer

discards the TTs as a better choice over the PTs.

Table 4.2 presents two columns with SIL values. The first one is the SIL that the systems would

achieve according to its PFDavg (Table 1.1). The second value is the final SIL, which takes into

account the architectural constraints (Table 1.2). Observe that in most of the solutions the final

SIL is limited by the architectural constraints to a lower level than the one corresponding to

their PFDavg (highlighted in red). This suggests that for these solutions better levels of SFF and

FT are required to make them congruent with the PFDavg. This may be interpreted as that the

nominal failure rates of the equipment may be overoptimistic. Nevertheless, it is important to

highlight that IEC 61508 only indicates the SIL for up to a maximum Fault Tolerance of 2

(Table 1.2). This has been interpreted as a restriction on taking credit for a larger SIL with

higher FT. It is worth mentioning that if this were permitted, more solutions in Table 4.2 would

Chapter 4. Optimization of design with diverse redundancy 122

have a higher final SIL. Specifically, solutions 59 and from 61 to 64 would achieve SIL 4.

Table 4.2. Optimization results with diversity index__
 SUBSYSTEM RESULTS _______________________________ ___

Sol PT TT FC PFDavg STR SIL SIL LCC DI
 # A B C A B C A B C (/year) PFDavg Final (x105 $) DI1 DI2 DI3__ _______________________________ ___
1 1 0 0 1 0 0 0 1 0 1.91236952329x10-2 0.105 1 1 3.983 0.00 0.00 0.00
2 2 0 0 1 0 0 0 1 0 1.91231201575x10-2 0.107 1 1 4.080 0.08 0.17 0.00
3 3 0 0 1 0 0 0 1 0 1.91230751771x10-2 0.109 1 1 4.178 0.07 0.22 0.00
4 1 0 0 1 0 0 1 0 0 1.10477752329x10-2 0.111 1 1 2.978 0.00 0.00 0.00
5 2 0 0 1 0 0 1 0 0 1.10472001575x10-2 0.114 1 1 3.075 0.08 0.17 0.00
6 3 0 0 1 0 0 1 0 0 1.10471551771x10-2 0.116 1 1 3.173 0.07 0.22 0.00
7 1 0 0 1 0 0 0 2 0 2.23221566451x10-3 0.130 2 1 1.936 0.08 0.17 0.00
8 2 0 0 1 0 0 0 2 0 2.23164058915x10-3 0.132 2 2 2.033 0.17 0.33 0.00
9 3 0 0 1 0 0 0 2 0 2.23159560875x10-3 0.134 2 2 2.131 0.16 0.39 0.00

10 4 0 0 1 0 0 0 2 0 2.23158602014x10-3 0.137 2 2 2.228 0.15 0.42 0.00
11 1 0 0 1 0 0 1 1 0 2.37630341174x10-4 0.139 3 1 1.754 0.17 0.33 0.17
12 2 0 0 1 0 0 1 1 0 2.37055265814x10-4 0.141 3 2 1.851 0.25 0.50 0.17
13 3 0 0 1 0 0 1 1 0 2.37010285417x10-4 0.144 3 2 1.949 0.24 0.56 0.17
14 4 0 0 1 0 0 1 1 0 2.37000696805x10-4 0.146 3 2 2.047 0.23 0.58 0.17
15 1 1 0 1 0 0 1 1 0 2.36993721879x10-4 0.158 3 2 1.920 0.33 0.67 0.33
16 3 1 0 1 0 0 1 1 0 2.36991186720x10-4 0.163 3 2 2.115 0.29 0.83 0.25
17 1 0 0 1 0 0 1 2 0 5.14761014431x10-5 0.164 4 1 1.931 0.15 0.44 0.11
18 2 0 0 1 0 0 1 2 0 5.09010260834x10-5 0.166 4 2 2.028 0.23 0.61 0.11
19 3 0 0 1 0 0 1 2 0 5.08560456863x10-5 0.169 4 2 2.125 0.22 0.67 0.11
20 1 0 0 1 0 0 2 1 0 5.00994103623x10-5 0.170 4 1 1.997 0.15 0.44 0.11
21 2 0 0 1 0 0 2 1 0 4.95243350025x10-5 0.172 4 2 2.094 0.23 0.61 0.11
22 3 0 0 1 0 0 2 1 0 4.94793546054x10-5 0.175 4 2 2.192 0.22 0.67 0.11
23 4 0 0 1 0 0 2 1 0 4.94697659932x10-5 0.177 4 2 2.290 0.21 0.69 0.11
24 1 1 0 1 0 0 2 1 0 4.94627910677x10-5 0.189 4 2 2.163 0.31 0.78 0.28
25 2 1 0 1 0 0 2 1 0 4.94604398146x10-5 0.191 4 2 2.260 0.30 0.89 0.22
26 1 0 0 1 0 0 1 3 0 3.35589320790x10-5 0.193 4 1 2.149 0.13 0.50 0.08
27 1 0 0 1 0 0 2 2 0 2.98222459436x10-5 0.195 4 1 2.196 0.13 0.50 0.08
28 2 0 0 1 0 0 2 2 0 2.92471705838x10-5 0.197 4 2 2.293 0.21 0.67 0.08
29 3 0 0 1 0 0 2 2 0 2.92021901867x10-5 0.200 4 2 2.390 0.20 0.72 0.08
30 4 0 0 1 0 0 2 2 0 2.91926015744x10-5 0.202 4 2 2.488 0.19 0.75 0.08
31 1 1 0 1 0 0 2 2 0 2.91856266489x10-5 0.214 4 2 2.362 0.29 0.83 0.25
32 2 1 0 1 0 0 2 2 0 2.91832753958x10-5 0.216 4 2 2.459 0.27 0.94 0.19
33 3 1 0 1 0 0 2 2 0 2.91830914890x10-5 0.219 4 2 2.557 0.25 1.00 0.17
34 2 2 0 1 0 0 2 2 0 2.91830401816x10-5 0.233 4 2 2.616 0.25 1.00 0.17
35 1 0 0 1 0 0 2 1 1 2.78905818210x10-5 0.251 4 1 2.451 0.19 0.75 0.17
36 2 0 0 1 0 0 1 2 1 2.73584661064x10-5 0.247 4 2 2.482 0.27 0.92 0.17
37 2 0 0 1 0 0 2 1 1 2.73155064612x10-5 0.253 4 2 2.548 0.27 0.92 0.17
38 3 0 0 1 0 0 1 2 1 2.73134857093x10-5 0.249 4 2 2.579 0.26 0.97 0.17
39 4 0 0 1 0 0 1 2 1 2.73038970971x10-5 0.251 4 2 2.677 0.25 1.00 0.17
40 1 1 0 1 0 0 1 2 1 2.72969221716x10-5 0.263 4 2 2.551 0.35 1.08 0.17
41 3 0 0 1 0 0 2 1 1 2.72705260641x10-5 0.255 4 2 2.646 0.26 0.97 0.17
42 4 0 0 1 0 0 2 1 1 2.72609374519x10-5 0.257 4 2 2.744 0.25 1.00 0.17
43 1 1 0 1 0 0 2 1 1 2.72539625264x10-5 0.269 4 2 2.617 0.35 1.08 0.33
44 2 1 0 1 0 0 2 1 1 2.72516112733x10-5 0.272 4 2 2.714 0.34 1.19 0.28
45 3 1 0 1 0 0 2 1 1 2.72514273664x10-5 0.274 4 2 2.812 0.31 1.25 0.25
46 2 2 0 1 0 0 2 1 1 2.72513760591x10-5 0.289 4 2 2.871 0.31 1.25 0.25
47 2 1 0 2 0 0 2 1 1 2.72513754906x10-5 0.315 4 3 2.996 0.37 1.36 0.28
48 1 1 0 1 1 0 2 1 1 2.72513705522x10-5 0.335 4 2 3.001 0.52 1.42 0.50
49 3 1 0 2 0 0 2 1 1 2.72513568894x10-5 0.317 4 3 3.094 0.35 1.42 0.25
50 2 2 0 2 0 0 2 1 1 2.72513516999x10-5 0.332 4 3 3.153 0.35 1.42 0.25
51 2 1 0 1 1 0 2 1 1 2.72513511261x10-5 0.337 4 2 3.098 0.50 1.53 0.44
52 3 1 0 1 1 0 2 1 1 2.72513496067x10-5 0.340 4 2 3.196 0.48 1.58 0.42
53 2 2 0 1 1 0 2 1 1 2.72513491828x10-5 0.354 4 2 3.255 0.48 1.58 0.42
54 2 1 0 2 1 0 2 1 1 2.72513491781x10-5 0.381 4 3 3.380 0.48 1.64 0.39
55 3 1 0 2 1 0 2 1 1 2.72513490244x10-5 0.383 4 3 3.478 0.46 1.69 0.36
56 2 1 1 1 1 0 2 1 1 2.72513489941x10-5 0.397 4 2 3.442 0.54 1.83 0.50
57 2 2 0 1 2 0 2 1 1 2.72513489828x10-5 0.416 4 3 3.620 0.46 1.69 0.36
58 3 1 0 1 1 1 2 1 1 2.72513489783x10-5 0.420 4 3 3.648 0.53 1.92 0.47
59 3 1 0 3 1 0 2 1 1 2.72513489783x10-5 0.428 4 3 3.766 0.53 1.75 0.33
60 2 1 1 2 1 0 2 1 1 2.72513489625x10-5 0.440 4 3 3.724 0.52 1.94 0.44
61 2 1 1 3 1 0 2 1 1 2.72513489599x10-5 0.485 4 3 4.013 0.60 2.00 0.42
62 2 2 0 1 2 1 2 1 1 2.72513489596x10-5 0.497 4 3 4.072 0.65 2.00 0.42
63 1 2 1 2 2 0 2 1 1 2.72513489593x10-5 0.517 4 3 4.149 0.60 2.00 0.42
64 2 1 1 2 1 1 2 1 1 2.72513489590x10-5 0.521 4 3 4.177 0.71 2.25 0.50__

Chapter 4. Optimization of design with diverse redundancy 123

The parallel coordinates graph is presented in Figure 4.9. This graph shows the optimal

solutions with their optimized objectives in normalized parallel coordinates. Observe that the

PFDavg is in logarithmic scale, and that the SIL achieved by this figure may be different from the

final SIL (further commented below). On the other hand, crossing lines confirm that the PFDavg

is generally in conflict with both the STR and the LCC. Nevertheless, there are some exceptions

to this observation for SIL levels 1 and 2, where PFDavg and LCC are sometimes harmonious

(non-conflicting) objectives, which will better observed in Figure 4.11 later.

Figure 4.9. Parallel coordinates graph of the optimal set

0
0.005

0.01
0.015

0.02

0.1
0.2

0.3
0.4

0.5
0.6

1

2

3

4

5

x 10
5

PFDavg

PFDavg AND SPURIOUS TRIP RATE VS LIFECYCLE COST

Spurious Trip Rate 10
-5

10
-4

10
-3

10
-2

10
-1

0.1

0.2

0.3

0.4

0.5

0.6

PFDavg

PFDavg VS SPURIOUS TRIP RATE

10
-5

10
-4

10
-3

10
-2

10
-11.5

2

2.5

3

3.5

4

4.5
x 10

5

PFDavg

PFDavg VS LIFECYCLE COST

0.1 0.2 0.3 0.4 0.5 0.6
1.5

2

2.5

3

3.5

4

4.5
x 10

5

Spurious Trip Rate

SPURIOUS TRIP RATE VS LIFECYCLE COST

Solutions with diversity
Solutions without diversity

Figure 4.10. Comparison of diverse vs non-diverse solutions

Chapter 4. Optimization of design with diverse redundancy 124

Figure 4.10 serves a dual purpose. First of all, it presents the graphs for the obtained optimal

solutions of Table 4.2 (optimization with diversity). Secondly, it shows over the same graphs

the optimal solution obtained from the optimization without diversity, enabling the reader to

compare both diverse and non-diverse approaches.

It can be noticed that discontinuities in the search space exist, presumably caused by the discrete

nature of the problem. Analysing Table 4.2 it is possible to find an explanation. Jumps are

caused when both redundancy and diversity are changed simultaneously between two

consecutive solutions, creating clusters of solutions and empty spaces in the search space and

the Pareto-optimal front.

4.7.2. Discussion of diversity

The graphs in Figure 4.10 illustrate the most relevant demonstration of this chapter. Comparing

the optimal sets obtained with and without diversity, it can be noticed that, for solutions that are

not members of both sets, the non-diverse solutions are dominated by the diverse ones. This was

verified re-ranking all solutions of both sets together (see Section 3.4.1) in order to get only the

overall non-dominated ones. It was found that the non-diverse set did contain some few non-

dominated solutions, but they were part of the set of solutions belonging to both sets. This leads

us to conclude that, in general, the optimization permitting diversity gives better solutions (i.e.

better trade-offs) than the one without diversity.

Analyzing the data presented in Table 4.2 it is possible to find many examples that reinforce the

hypothesis that increasing diversity reduces the PFDavg. The Diversity Index of several solutions

is highlighted in yellow in the last columns of the table. Among these solutions several pairs can

be made for which the two DIs are consistently larger for more diverse solutions, and which

show improvements in the PFDavg. Three different cases have been detected:

a) The following pairs have exactly the same level of redundancy with different level of

diversity in one of the subsystem, where the solutions with higher diversity have lower

PFDavg: 27-35, 28-36, 29-38-41, 30-39-42, 31-40-43, 32-44, 33-45, 34-46, 47-51, 50-53, 53-

56, 55-58, 55-60 and 61-64. The majority of the changes in diversity are implemented in the

FC subsystem, although there are cases where the change is in the PT or TT as well.

b) For the pairs 7-11, 8-12, 9-13 and 10-14, with same redundancy and different diversity as

well, the sole increment of diversity produces the simultaneous reduction of not only PFDavg

but LCC as well.

Chapter 4. Optimization of design with diverse redundancy 125

c) Finally, for the adjoining pairs 14-15, 23-24, 30-31, 39-40 and 42-43 the PFDavg is reduced

by reducing redundancy and increasing diversity simultaneously, which also results in lower

LCC. All these pairs have in common that the only change is from having four PTs of

optional type A to having one PT A and one PT B, what basically eliminates CCF. Notice,

however, that the reductions in both PFDavg and LCC are not significant.

From those cases it could be concluded that increasing the diversity can enhance the system s

PFDavg, and in some cases it may even improve the LCC when considering reduction in STR.

In order to facilitate the analysis of the convenience of using either DI1 or DI2 as Diversity

Index, these are plotted next to the number of total components, diversity and number of

different technologies used in each optimal solution in Figure 4.11. In addition, the upper part of

the figure shows the objective function values of the optimal set.

Recall that the Diversity Index aims to reflect the relative level of diversity in the overall

system, and this was the idea behind DI1 (Eq. (4.6)). However, since the reduction of PFDavg

does not solely depend on diversity but redundancy as well, DI2 (Eq. (4.7)) was formulated.

Figure 4.11. Comparison of Diversity Index vs optimized objectives

Chapter 4. Optimization of design with diverse redundancy 126

Observe the performance of DI1, for instance between solutions 7-10. From solution 7 to 8 the

PFDavg decreases as DI1 increases, which could suggest that the increment in diversity is

enhancing PFDavg. However from solution 8 to 10 PFDavg decreases further, but DI1 also

decreases. Thus, the improvements in PFDavg are not due to diversity in this solution. Observing

the plot of redundancy, it can be seen that PFDavg decreased due to an increment in redundancy.

This is not reflected by DI1. This is, however, reflected by DI2. Observe that this DI2 increases

steadily for solutions 7-10. This seems to be more consistent. Observe that between solutions

25-26 both redundancy and diversity decrease, and DI2 do it as well. Therefore, DI2 seems to

reflect more consistently that the improvement in PFDavg is due to both diversity and

redundancy. Although DI1 could be used for emphasizing more the contribution of diversity it

can be misleading. For instance, between solutions 17-20 the diversity remains constant but DI1

changes. This seems to be confusing. It can be seen that it is following the level of redundancy,

but this indication is already given by the DI2. Thus, in the search of a DI that put precise

emphasis solely on diversity a new formulation of diversity relative to redundancy is made in

Eq. (4.23).

Ns

i
i

i

Components
esTechnologi

Ns
DI 11

3 (4.23)

The upper term is formulated as Technologies-1 in order to rule out the possibility of a system

composed of one single component being considered as a diverse arrangement. Thus, this term

indicates that a subsystem can be considered diverse if it has two or more components with two

or more different options. The values given by this equation are also included in Table 4.2 and

plotted in Figure 4.11. The formula reflects only changes in diversity, not redundancy.

Some of the most significant changes in PFDavg between two consecutive solutions of the

optimal set are analyzed in Table 4.3. The major jumps in PFDavg values between two

solutions are compared against the numerical values of the DIs. From the table, notice that all

these major changes in PFDavg are not caused by an increment of redundancy, since its level

decreases for all these cases. The number of total technologies being used actually only changes

for the cases 16-17 and 25-26. However, the relative diversity only changes for 16-17.

Table 4.3. Analysis of DI change in the cases of major changes of PFDavg

Solutions Redundancy Number of used
technologies DI 1 DI 2 DI 3

3-4 Decreases No change Decreases Decreases No change
6-7 Decreases No change Increases Decreases No change
10-11 Decreases Increases Increases Decreases Increases
16-17 Decreases Decreases Decreases Decreases Decreases
25-26 Decreases Decreases Decreases Decreases Decreases
34-35 Decreases No change Decreases Decreases No change

Chapter 4. Optimization of design with diverse redundancy 127

Observe that in solutions 1-9 there is actually no diversity, which is truly expressed by DI3. Both

DI1 and DI3 show correctly an increment of diversity between solutions 10-11. However, DI1

also shows a change in diversity for the case 6-7, which is not possible since there is not actual

diversity. Therefore, DI3 is more precise. It is notable that the major changes in PFDavg indicated

in the table are not caused by an increment of diversity nor redundancy. This means that the

decrements of PFDavg are caused by a change in the technologies being selected in the

subsystems, which can be confirmed analyzing Table 4.2.

We can conclude that the Diversity Index that reflects more faithfully changes in only diversity

is DI3. If changes in both redundancy and diversity must be reflected, DI2 is a better option.

They could actually be used together to guide better the analysis.

The Diversity Indexes DI2 and DI3 may still need improvement. As indicated by the cases in

Table 4.3, sometimes the PFDavg can be reduced when the DI3 actually decreases. As previously

commented, this happens when the choice of technologies is changed. However, the formulation

of the DI is still useful and facilitates system analysis. For example, Figure 4.11 shows that

there is a general trend in which as the PFDavg decreases the DI tends to raise. This observation

is possible due to the plotting of the DI. This is also true for all the three DI formulations. In

addition, consider the analysis made at the beginning of these sections regarding couples of

solutions where increasing the diversity index decreases PFDavg. These relationships are valid

for all the three formulations. This means that when the number of components remained

constant and only the level diversity changed, this change caused a reduction of PFDavg. This

situation was correctly reflected by any of the DIs formulated here.

Going back to Figure 4.11, and focussing on DI3 as Diversity Index, observe that the graph

shows a general trend where the larger the DI the lower PFDavg and the higher STR and LCC.

The general trend leads us to think that the higher levels of diversity benefit the system safety

integrity, making possible to achieve a design with lower levels of PFDavg.

The relationship between PFDavg and LCC is, however, harmonious for solutions 1 to 10 (see

the corresponding column in Table 4.2 as well). This group of solutions has a PFDavg>1x10-3

(i.e. SIL 2 or 1). These solutions also have lower levels of redundancy than the rest. Observing

DI3, it can be seen that there is no diversity in the subsystems (DI3=0). Therefore, reductions in

PFDavg in these solutions cannot be attributed to diversity. The results obtained in the previous

chapter showed a consistent conflictive relationship between PFDavg and LCC (see Fig. 3.14).

However, the optimal solutions in that chapter had all PFDavg<1x10-4, same as solutions 11 to 64

in this chapter. This suggests that for optimal solutions (with parallel architectures) where

Chapter 4. Optimization of design with diverse redundancy 128

PFDavg>1x10-3 the costs associated with dangerous failures (cost of hazards) dominate over the

cost associated to safe failure (loss of production by spurious trips). Thus, reductions in PFDavg

also diminish LCC, becoming harmonious objectives. This relationship is inverted when

PFDavg<1x10-3 because further reductions of PFDavg are associated with increments of STR

that now dominate the LCC.

A word of caution is necessary about the search of lower levels of PFDavg. Albeit the general

increment of the diversity index generally produces decreasing PFDavg, the overall benefit

obtained must be carefully considered. Figure 4.10 shows that in some cases some marginal

improvements in PFDavg can incur in very large increments in LCC and STR. Due to this

situation, solutions 40 to 64 may not be useful, unless very specific requirements were being

sought (e.g. either SIL 3 by architectural constraints or to achieve a specific PFDavg value), such

as for example the ones adopted in the nuclear energy field.

The large benefits obtained by introducing diverse redundancy are clearly consequences of CCF

reduction. This is because CCF has a big impact on both dependability measures, PFDavg and

STR. This can be quickly identified going back to Figure 4.2. The CCF basic event dominates a

redundant arrangement failure. Frequently, CCF basic events are first-order cut sets of the entire

system fault tree. Therefore, their prevalent dominance is evident. The influence of CCF and its

importance in the fault tree hierarchy is further analyzed through an example in Section 5.5.2.

4.8. CONCLUDING REMARKS

This chapter put special emphasis on the study of the impact of introducing diversity into the

redundant subsystems upon the SIS design optimization. Looking for a practical approach, the

optimization methodology has been applied to a safety function for a chemical reactor. The

level of modelling detail and the assessment of functional system safety necessary to meet

IEC61508 provisions are analysed, and further applied to the optimization process.

The use of redundancy to enhance the design of Safety Instrumented Systems introduces the

issue of Common Cause Failure. The effects of CCF can be so substantial that it may even

dominate dependability calculations, such as Probability of Failure on Demand. This has a

direct negative impact on the Safety Integrity Level achieved by the system. The results

presented here showed that, in general, the design optimization with diversity gives better

results than the one without diversity. The results with diversity generally dominated the ones

without diversity, which means that the former achieve better trade-offs between the optimized

objectives.

Chapter 4. Optimization of design with diverse redundancy 129

On the other hand, the set of optimal solutions obtained showed that introducing diversity as a

defence measure against CCF has a positive impact on the functional safety of the safety

system, which in turn improves the overall plant safety. Specifically, it has been seen that

sometimes the sole increment of diversity, even without altering system redundancy, reduces

the overall PFDavg. However, in contrast, this gain in safety integrity usually has an increment in

some costs and the Spurious Trip Rate, which may have a negative impact in the overall

system s Lifecycle Cost and in the trust given to the SIS performance. This would be justified

only by the specific safety requirements of the plant.

A first attempt for quantifying the level of diversity in a SIS with a Diversity Index was made

here. One formulation was made for reflecting just the change in diversity level, and a second

one for reflecting change in diversity and redundancy. It has been shown that there exists a

general trend to reduce PFDavg at the time diversity increases. This in a few cases even reduced

the system LCC. On the other hand, when the level of redundancy remains constant and the

level of diversity changed, the Diversity Indexes formulated here were consistent with the

improvements of PFDavg. The Diversity Indexes formulated here may require further research to

be refined. However, at this stage, they are a good foundation for quantification of the benefits

driven by using diverse redundancy, which is a novel contribution of this work.

130

CHAPTER 5

Modelling and optimization of proof testing policies

This chapter has a double objective: firstly, it introduces a new development for modelling, the

time-dependent Probability of Failure on Demand for parallel architectures. Secondly, it

presents the integration of this model into the multi-objective optimization of proof testing

policies for Safety Instrumented Systems. The article also presents an in-depth review of proof

testing optimization and the current standardization and practice for SIS, specifically in the

process industry. With this, the modelling and optimization are tailored for a practical approach.

The model is based on the mean test cycle, which includes the different evaluation intervals that

a module goes through periodically during its time in service: test, repair and time between

tests. The model is aimed at evaluating explicitly the effects of different test frequencies and

strategies (i.e. simultaneous, sequential and staggered). It includes quantification of both

detected and undetected failures, and puts special emphasis on the quantification of the

contribution of the common cause failure on the system probability of failure on demand as an

additional component. Its effectiveness is demonstrated with an application case, analyzing the

sensitivity of the system dependability to diagnostic coverage and common cause failure.

Subsequently, the chapter presents the multi-objective optimization of proof testing policies

with Genetic Algorithms, using this model for quantification of PFDavg as one of the objectives.

The other two objectives are the system STR and LCC. This allows balancing of the most

important aspects of safety system implementation. The overall methodology is illustrated

through a practical application case of a protective system against over temperature and pressure

of a chemical reactor.

5.1. OVERVIEW OF TESTING MODELLING AND OPTIMIZATION

5.1.1 Testing modelling

Proof testing is a periodic activity that mainly verifies that the specified Safety Integrity Level

of the safety system is met and kept during the system lifecycle. Its more direct objective is to

detect dangerous unrevealed failures. It has therefore a fundamental importance for SIS. As a

consequence, periodic proof testing can contribute to achieving and improving the SIL of the

system without making modifications to the safety system design. However, testing can also

convey some collateral adverse effects since it is not a totally innocuous activity. It is therefore

Chapter 5. Modelling and optimization of proof testing policies 131

necessary to find an optimal planning policy for the testing activity throughout the overall

operational life of the system, so that a good balance between its benefits and its direct and

indirect costs is achieved.

The PFD, as it was seen in Chapter 1, can be modelled using classical methods such as Fault

Tree Analysis, Markov Analysis, Reliability Block Diagrams, etc. Perhaps the only method that

has the flexibility to include quantification for the changing test strategy could be Markov

Analysis, which is capable of accommodating failure and repair processes. However, it is well

known that its complexity grows exponentially with the number of the system nodes and states.

The time dependent PFD algorithm has been developed with the specific aim to evaluate the

impact that different test frequencies and strategies have on the PFDavg. It also intends to include

explicitly the Common Cause Failure rate of the system components (using the factor model)

and their diagnostic coverage. It is primarily based on the previous work developed by Martorell

et al. (1988, 1995), Cepin & Mavko (1997) and Cepin (2002), which was intended for

surveillance requirements of Nuclear Power Plants (NPP). The model addresses the level of

detail required by IEC 61508 for the quantification of PFDavg. The model aims to be able to

accommodate changing conditions on the test strategy of the system components, with the

objective of being suitable for solution of multi-objective optimization problems. Therefore, it

requires a treatment that at the same time includes the modelling detail required for a real SIS

application, and it does not present the disadvantage of excessive complexity growth.

An early analysis for finding the optimal Test Interval (TI) of safety related equipment of NPPs

was made by Martorell et al. (1988). It established the average test cycle and quantified

unavailability as the contribution of failure between tests, test time and repair time, obtaining

simplified analytical equations for the sequential and staggered test strategies of a two-

component parallel system. Subsequently, Uryas ev & Vallerga (1993) proposed an approach

for single objective optimization of TIs of standby safety systems. They identified four states of

the instantaneous unavailability of tested components. They estimated unavailability applying

probabilistic analysis tools: considered each component as a four-state Markov Chain and used

fault tree s cut set quantification for calculation of the time-dependent unavailability at the

system level. Unavailability minimization was solved by a numerical technique (gradient

nonlinear programming method). Schofield (1993) approached the optimization of proof TIs

using Fault Tree Analysis. This minimizes a function of the total time a component is under test

and its Fusell-Vesely important measure subject to a top event frequency constraint (in a

Lagrange multiplier). It requires solution of a set of non-linear simultaneous equations, solved

by numerical methods. Vaurio (1994) developed analytical expressions for quantification of

Chapter 5. Modelling and optimization of proof testing policies 132

average unavailability for sequential and uniform staggered testing (uniformly distributed over

the Test Interval time) for k-out-of-n systems with up to four components. It included

quantification of CCF by analyzing the convenience of several multi-parameter models. In a

subsequent work, Vaurio (1995a) carried out a study for optimization of test and maintenance

intervals at component level (for series systems) and plant level (using fault trees minimal cut

stets) by minimization of cost subject to risk constraints. Martorell et al. (1995) approached the

interaction of surveillance TI requirements and operating restrictions (i.e. Allowed Outage

Time) in NPPs. They identified the unavailability components of the periodic test cycle and

developed analytical expressions for each contribution based on probabilistic methods. The

concept of critical and non-critical safety unavailability separate contributions was coined by

Hokstad et al. (1995), who developed a model for their quantification. It included unavailability

by test in the non-critical contributions given that it is scheduled (i.e. previously known). Their

model accounts for both manual and automatic (diagnostic) tests, failures introduced during

testing and the probability of imperfect test. This permitted the quantitative comparison of

testing schemes applied to single fire and gas detectors.

Cepin & Mavko (1997) introduced an unavailability time dependent probabilistic model taking

into account the different contributions during the test cycle, and adaptable to several test

strategies. The model was later applied in Cepin (2002) for optimization of safety equipment

outage scheduling due to testing and maintenance by minimization of risk with simulated

annealing. Bukowski (2001) presented a development that permitted inclusion of periodic

inspections and repairs into Markov models of safety-critical systems. Vaurio (2003) developed

analytical equations for including CCF (quantified by the General Multiple Failure Rate model)

in unavailability fault trees for standby safety systems, and addressed the effects of test intervals

and test staggering. Lapa et al. (2003) presented a novel approach to include non-periodic tests

(within an established period) adapted to optimization constrained problems, the constraints

adapted to the season-changing demands of system availability (e.g. of an emergency diesel

generator). The problem studied considered a single component. Curtois & Delsarte (2006)

obtained an analytic expression of the optimum simultaneous inspection interval for m out of a

total of n redundant components (where m<n, and assuming perfect inspection), minimizing a

function (by direct derivation) that comprises the probability of all the n components failing

between tests plus the probability of n-m components failing during the test of m components. It

thus finds an optimum test interval minimizing system unavailability caused only by internal

failures. An expression for staggered inspection was considered as well. They found that there

exists a single optimum value for the test interval of the m components.

Chapter 5. Modelling and optimization of proof testing policies 133

5.1.2. Testing optimization with Genetic Algorithms

An account of optimization of system RAMS with Genetic Algorithms was given in Section

2.3. From the point of view of testing optimization the main developments in the field are the

following: The first application was made by Muñoz et al. (1997) in optimization of TIs of a

motor-driven pump with a single objective GA. Pattison & Andrews (1999) included

maintenance TIs as one of several decision variables for safety system design optimization,

incorporating the use of binary decision diagrams for quantification of dependability of the High

Integrity Protection System. This methodology was later applied in Andrews & Bartlett (2003)

to a water deluge system, under maintenance and spurious trip rate costs constraints. Booth

studies were later repeated for multi objective optimization in Borisevic & Bartlett (2007a, b)

and Riauke & Batlett (2008).

Martorell et al. (2000) refined and applied the unavailability model developed in Martorell et al.

(1994) for optimization of TIs for the High Pressure Injection System (HPIS) of a NPP. The

optimization was made considering risk (unavailability) and cost. Marseguerra & Zio (2000)

implemented a GA in combination with Monte Carlo Simulation for optimization of

maintenance and repair policies. Giuggioli-Busacca et al. (2001) introduced the application of

multi-objective GAs to safety systems, with an application to optimization of TIs for a HPIS,

based on mean availability, cost and risk (exposure time). The cost function included

surveillance and maintenance plus the cost of an accident (plant damage). Martorell et al. (2002)

combined the optimization of TIs, preventive maintenance and allowed outage times of a NPP,

so the technical specifications and maintenance requirements were addressed integrally. Vinod

et al. (2004) applied a GA to optimization of in-service inspection (which included functional

test). Marseguerra et al. (2004a) included the analysis of uncertainty in the parameters in

optimization of TIs. The topic has been later addressed by Martorell et al. (2008)

Martorell et al. (2004) reformulated its approach as a general multi-objective RAMS+C

optimization, and refined it in (2005a). This formalized the method for assisting the decision-

making process in NPPs with a strategy based on: (1) technical specifications and maintenance,

(2) RAMS plus cost, and (3) goals included as constraints. Martorell et al. (2005b) explored the

multi-objective optimization of the plant surveillance requirements simultaneously optimizing

the TIs and the test planning (strategy), based on time-dependent modelling. Martorell et al.

(2006) treated the HPIS system optimization with a double nested loop. An external loop

optimizes the TIs with a constrained exhaustive search, while the internal loop (a MO GA)

optimizes the test staggering.

Chapter 5. Modelling and optimization of proof testing policies 134

In the latest developments, Zio & Podofillini (2007b) incorporate importance measures to the

GA multi-objective optimization. Subsequently, Podofillini & Zio (2008) compared the

performance of the optimization Birbaum and Risk Achievement Worth important measures

against the original proposition with Fusell-Vesely. Rao et al. (2007) addressed the problem of

TIs optimization with uncertain parameters using a hybrid fuzzy-genetic approach (the

uncertainty handled by the fuzzy sets).

This chapter deals specifically with testing optimization. The interested reader can see Martorell

et al. (2007, 2008b) for a deeper treatment of maintenance (including test) modelling and

optimization and their application with GAs. Also Villanueva et al. (2008) gives a survey from

the point of view of uncertainty in this type of applications.

5.1.3. Consideration of testing adverse effects

As mentioned above, the testing activity also conveys some adverse effects. Obviously, the

most direct one is the incurred test down time. Nevertheless, other adverse effects may be also

significant, one of the most relevant being an increment in spurious trips, mostly attributable to

human error. Several researchers have approached the investigation into human error effects and

imperfect procedures in test. Perhaps the first contribution is Apostolakis & Bansal (1977), who

considered the increment in system unavailability by probabilities of error of omission and

errors of commission. Subsequently, McWilliams & Martz (1980) incorporated the effects of

two types of human errors (failure to detect a fault and leaving a components in bad state after

test) in the determination of the optimum test interval at component level minimizing cost or

maximizing availability. This concept was used by Lee et al. (1990) in an analysis of optimal

test interval of some k-out-of-n subsystems of a reactor protection system. Two types of

operator errors and the probability of test-caused failure were considered. These are modelled as

constant unavailability due to human error and added to the time-dependent unavailability

quantification.

Kim et al. (1992, 1994) made a thorough analysis of (single-component) test adverse effects

over plant risk (availability), and introduced the concept of test-caused risk transients that lead

or require a plant (reactor) trip. This can be attributed to human error, equipment failure or

procedure inadequacy. This is the basis of the concept applied in this thesis. This impact on

plant risk was also contemplated by Cepin et al. (1994) (together by test-caused degradation) in

the search of the best test interval and strategy of an actuation system. Vaurio (1995a)

contemplated errors of omission (failure to return a component to service after test) in the

optimization of test and maintenance intervals inserting them as basic events (in a similar

fashion as CCF) in the logic models. Hokstad et al. (1995) also introduced a probability term

Chapter 5. Modelling and optimization of proof testing policies 135

encompassing test-introduced failures and imperfect test in their reliability models for fire and

gas detectors. In a similar fashion, Bukowski (2001) included imperfect inspection and repair

into Markov models of safety-critical systems. Zhao et al. (2007) approached the evaluation and

optimization of reliability at component level, considering imperfect inspections at non-constant

intervals. Lundteigen & Rausand (2008b) presented the first monothematic study about system

spurious activation of SIS, where they discussed human error during test as an additional factor

in the increment of spurious activations.

5.2. PROOF TESTING PRACTICES IN THE PROCESS INDUSTRY

This chapter intends to approach the optimization of SIS testing from a practical approach.

Given that SIS are mainly relevant to the process industry some of the most relevant standard

and design codes have been consulted in order to find out what is the current standard and best

practice in the industry. The definition of proof test given by IEC 61508-4 is a periodic test

performed to detect failures in a safety-related systems so that the system can be restored to an

“as new” condition or as close as practical to this condition . The need of routine maintenance

action in order to detect unrevealed failures is clearly established by the standard, and proof test

is one of these activities. Therefore, it has an important role in the achievement of safety

integrity. According to IEC 61508-2, the frequency of proof test will be dependent upon the

target failure measure associated with the SIL, the architecture, the automatic diagnostic

coverage and the expected demand rate. IEC 61508-6 provides tables for determination of the

PFDavg for subsystems tested specifically at 6 months, 1, 2 and 10 years intervals. No more

specific guidance is provided. Notice that IEC 61508-7 defines functional testing as an

activity to reveal failures during the specification and design phases.” Therefore, proof and

functional testing are not the same. In addition, IEC 61511 states that the frequency of proof test

shall be decided using the PFDavg calculation . It remarks that different parts of the SIS may

require different test frequencies.

The Norwegian Oil Industry Association (2004) standard OLF 070 requires the proof test to

confirm correct operation for the entire SIS loop, including sensors, logic solver and final

control elements. It provides a list of aspects to be included in the proof tests, summarized in

complete system functionality. The document establishes that the test should preferably test the

entire safety loop at once (integral test). This same requirement was laid out by ISA 84.01-1996

(ISA, 1996) (the first standard to formally address SIS specifically for the process industry), as

it required the final element actuation to be tested in response to sensor inputs. However, if this

was not possible, partial test (by subsystem) would be accepted under certain conditions. This

standard considered the periodically scheduled functional testing as part of the SIS regular

Chapter 5. Modelling and optimization of proof testing policies 136

maintenance. It established the necessity of providing test facilities as an integral part of the

SIS. According to ISA 84.01-1996, the functional Test Interval (TI) should be selected to

achieve the system SIL.

British Petroleum (1994) RP 32-6 advocates for the assessment of complete loops, giving

however consent to use testing on as sectional basis (i.e. sensor, logic solver and final elements

on separate intervals) when full loop testing is not practicable. Just a loose guidance is given

regarding testing frequency. The document provides a list of ranges of typical test intervals

(mainly for field instrumentation), all in months, typically ranging from three to 24 months

(although some functions may only need to be tested between 12 and 36 or 60 months).

However, it establishes that for the most critical systems the TIs must be determined based on a

reliability and risk analysis. Another design code, Exxon s International Practice IP 15-7-2

(Exxon, 1999), only makes a requirement for the provision of testing facilities for protective

systems which proof test interval is larger than the process continuous run length (for instance

bypass valves in order to enable protective valves to be tested online).

American Petroleum Institute (2001) API RP-14C is the more prescriptive standard. It

establishes the necessity of carrying out performance testing for confirmation of the ability of

the systems to perform the design safety function. It establishes as a requirement the execution

of the operational test at least once per year. However, it permits usage of an alternative larger

TI as long as it is ensures the same or higher reliability. Some guidance is given, advising

monthly test of pneumatic sensors, and quarterly for electronic transmitters. This standard

indicates intervals between 3 and 24 months and up to 36 or 60 for some non-critical equipment.

It can be noticed that there is no a standard, clear, generic, thoroughly developed clear guidance

about the test frequency, scope, and procedures for the process industry (comparing for example

with the nuclear industry, e.g. NUREG1/CR-6141 (Samantha et al., 1994). This lack of

standardization was implicitly recognized by the British Health and Safety Executive (HSE),

when commissioning a study about actual proof testing practices in the chemical industry (HSE,

2002). The study confirmed the existence of conflict between the need for realistic proof

testing and the need to minimise downtime (i.e. system unavailability). It establishes that the

purpose of the proof testing is the detection of unrevealed fail-to-danger faults at the time of

testing (different from automatic diagnostics that intend to reveal faults between tests). It also

requires including all the subsystems (sensors, logic solvers and final elements) in the proof test.

Although the study describes the end-to-end testing as the ideal practice, it acknowledges the

1 A series of standard issued by the U.S. Nuclear Regulatory Commision

Chapter 5. Modelling and optimization of proof testing policies 137

need to resort to partial testing as a necessary practice under certain conditions, since end-to-end

testing is not always practicable. This document gives a definition for partial testing, which is

considered either the testing of system components at different times and frequencies or the

testing of sub-sets of functions of single components . As other documents, the guidance

provided about the frequency of tests is quite loose.

In summary, there exists a trend to use the terms functional test and proof test as the same

thing. However, they are not completely the same. We consider the IEC 61508 definition of

proof test as the more convenient, and thus it is the one we use in this work. The objective of

proof test is to detect unrevealed failures (especially dangerous ones), and it should include both

inherent and functional integrity. Some standards make requirements for the inclusion of the

necessary facilities so online testing is possible where this is relevant (ISA S84.01-1996, Exxon

IP-15-7-2). Proof testing is required to confirm correct operation for the entire SIS loop,

including sensors, logic solver and final control elements. It should be an integral end-to-end

test (OLF 070, ISA S84.01, BP2 RP 32-6). However, when this is not practicable partial test is

widely accepted (ISA S84.01, BP RP 32-6, HSE 2002). Proof test frequency should be specified

according to the required system safety integrity and its design (IEC 61508, IEC 61511, BP RP

32-6, ISA S84.01). There is no more specific guidance or constraints about how to set the test

frequency. Only a few numerical examples were found (IEC 61508, BP RP 32-6, API3 RP

14C). It can be concluded that during optimization of test frequency and strategy, partial test

seems to be the most convenient for manipulation rather than integral test. This is feasible since

redundancies in the SIS are usually at the subsystem level rather than at the system level.

5.3. TESTING BASIC CONCEPTS

The proof test requirements of a SIS are addressed by the test policy. A proof testing policy

includes the type of test, the Test Interval (TI, which determines the frequency), and the Test

Strategy (TS). These two last items, denominated together TI+TS, can be manipulated to find an

optimal solution (Martorell et al., 2005b; Martorell et al., 2006). They are defined under the

framework of the mean test cycle, which is described below.

5.3.1. Mean test cycle

Proof testing is a periodically executed activity. The mean test cycle includes all the events

between two consecutive tests of a component (Martorell et al., 1995). The component goes

through several states along the cycle: Testing, repair and standby (with respect to test) or time

2 British Petroleum
3 American Petroleum Institute

Chapter 5. Modelling and optimization of proof testing policies 138

between tests. There is additionally a previous time before the first test of the component which

is necessary to consider for quantification of unavailability. Figure 5.1 illustrates the description

of the mean test cycle. Each of the states described in the figure has a contribution to the

component unavailability. The time to first test TP is the time that elapses between the first

system start up (t=0) up to the time of the first test event of the component. The test time and

repair time have a Tt and Tr duration time respectively. In this work they are assumed to be

fixed mean values. The time between two consecutives tests of the same component, called

standby between tests, is the time elapsed between the last test-repair event and the next test,

and it is equivalent to TI-Tt-Tr.

Figure 5.1. Mean test cycle

5.3.2. Test Strategies

The Test Strategy (TS) establishes how the tests of the redundant components are scheduled

with respect to one another. Proof testing can be implemented using several different strategies.

A general classification of TS is listed below, where TPi is the time of first test of the ith

component, Tt the duration time of the test, and TI the test interval.

Simultaneous test. The N redundant components are tested at the same time, i.e.

TP1=TP2=...TPN. This implies that there are N crews available to test the N components. This

is a strategy not suitable for safety systems that must remain in service permanently, since

the system is made unavailable during the test.

Sequential test. The N redundant components are tested consecutively one after another.

Immediately after one component is tested and restored to work the next one is tested and so

on until finishing with all the components of the subsystem. For simplification, it can be

said that the only difference between the test events of two components is the time the

component is under test Tt, i.e TP2=TP1+Tt... TPN=TPN-1+Tt. The components are usually

tested at the beginning or end of the test interval TI (Cepin, 1995).

Staggered test. The N redundant components are tested with a difference of time of TI/N

Chapter 5. Modelling and optimization of proof testing policies 139

between one another. This is the most common staggering strategy. This thesis explores,

however, a staggered strategy where the components are scheduled for a test with difference

in time larger than Tt, but not necessarily uniformingly distributed as TI/N. In this thesis the

former is called non-uniform staggered test and the latter uniform staggered test.

Independent test. The relative test time of the N components are tested without any specific

schedule, with a random difference of time between one another.

5.4. PFD TIME DEPENDENT MODEL

5.4.1. The PFD(t) baseline model

The PFD is the system safety unavailability, thus it requires a system unavailability model. A

preliminary baseline model has been developed using as departure point the model presented by

Cepin & Mavko (1997). The mean test cycle is repeated periodically with a frequency 1/TI.

This situation can be seen as a periodic reset of system unavailability. It is thus convenient to

adopt a time dependent variable that, based on this situation, allows re-initialization of the

time scale instead of handling a continuously-increasing value of t. Consider the definition of a

variable w that will replace the usage of t in the time dependent modelling:

TITtw P mod)((5.1)

Where mod is the modulo operation (dividing remainder), which permits to reset w every time a

Test Interval is completed and a new test must be performed.

The contributions that each phase of the mean test cycle has to the unavailability are formulated

next:

a) Standby before first test. This is the time elapsed between t=0 and TP. The unavailability

during this phase is simply the temporal contribution due to the component unreliability plus a

constant q. The q parameter represents a constant that depending of the application can include

different contributions (as analyzed by Vaurio (1995a)), for instance the unavailability caused

by detected failures (which will be explored later).

0for1)(P
t TteqtPFD (5.2)

b) Testing. During testing the component is taken out of service so it can be intervened. It is

assumed that it is unavailable during the entire test time.

}0&0{for1)(tP TwTttPFD (5.3)

Chapter 5. Modelling and optimization of proof testing policies 140

c) Repair. This contribution to the PFD is due to the possibility of the component being found

failed during test, and thus it must be repaired (assuming it is repaired immediately after test).

Therefore, the unavailability is composed of two terms: one where the component is found

failed at the moment of test (thus under repair), the other where the component is not failed (i.e.

working) subject to the probability of failure. Notice that there exists a difference in the

formulation of the exponents of the base e between the equations for repair after the first test

and for repair after subsequent tests.

}&-{for
)1)((1

}&-0{for
)1)((1

)(

P

)()()(
P

)(

rtt

TwTTTITTTI
rtt

TwTT

TTwTTITt
eqqeeq

TTwTTITt
eqqeeq

tPFD
trtrt

tPP

(5.4)

d) Standby between tests. The quantification is the same as the first standby interval, just

different in the model s exponents.

}&0{for1)()(
rtP

TTw TTwTteqtPFD rt (5.5)

It is important to note that the PFD(t) goes through a transient initial state before becoming

periodically steady (steady state). For convenience of formulation, it can be assumed that the

initial state comprises the time from t=0 up to t=TP+TI. It will be seen later that this elapse of

time will be considered as t=TP1+TI for redundant systems.

5.4.2. Inclusion of the effect of automatic diagnostics

First of all, it is important to remember that the total failure rate T in a SIS is split between safe

failures S and dangerous failures D (Eq. (1.17)), and that the latter are those only contributing

to the PFD. Components for safety systems are usually empowered with automatic diagnostics,

which have an important effect on the reduction of their PFD. Their effectiveness is measured

with the diagnostic coverage (). As a result, the provision of an automatic in-built diagnostics

mechanism splits the total failure rate into two failure modes: detected and undetected (Eqs.

(1.13-1.14)). For dangerous failures this is:
DUDDDDD)1((5.6)

As previously mentioned, according to Vaurio (1995a), the parameter q in the baseline model

(Eqs. (5.2-5.5)) can represent different contributions to the unavailability attributed to detected

failures. One of these possibilities is the unavailability attributed to detected failures, assuming

that they are detected immediately (i.e. negligible failure residence time). Therefore, it is

possible to reformulate the PFD(t) baseline model in terms of detected and undetected failures,

Chapter 5. Modelling and optimization of proof testing policies 141

where the former are modelled as a constant, and the contribution by undetected failures shapes

the time dependency of the PFD. Therefore, the constant q of the basic model is substituted by

the detected failures share of Eq. (5.6) in the subsequent formulations.

5.4.3. The contribution of independent failures

The model developed here intends to include both independent and common cause failures.

Since the contribution of CCF to the PFD(t) is the most complex to model, the contribution for

independent failures to the PFD(t) is modelled first. The contribution of CCF is modelled in the

next section.

We are applying the CMooN modification factor in order to modify the basic factor according to

the system voting logic, as defined by Eq. (4.5). For parallel systems M=1. Thus, the

modification factor becomes C1ooN. Applying this concept to Eq. (5.6), the detected and

undetected failure modes are divided into independent and common cause failures (in the

fashion of Eqs. (1.15-1.16)), and thus the total dangerous failure rate is split into four factors:
DDUDDUDDDDDDD)1(')1()'1(')'1((5.7)

Note that = MooN. The four failure modes are renamed to simplify the formulation originating

Eq. (5.8), which would correspond to the dangerous failure share in Eqs. (1.17-1.20):
DUCDUNDDCDDND (5.8)

Eq. (5.7) indicates a difference between factors for detected and undetected failures (as

defined by IEC 61508-6). Nevertheless, some methods (e.g. Hauge et al. 2006a) do not

distinguish this difference. In this work we do differentiate them, but the choice of the most

relevant value for is left to the reader s discretion.

The model of the PFD(t) due to the contribution of independent failures, PFDind(t), is derived by

substituting Eq. (5.8) into the baseline model given by Eqs. (5.2-5.5). This is made considering

the provisions made in Section 5.4.2 regarding the treatment of detected and undetected failures.

The contribution of independent failures is given by Eqs. (5.10-5.13).

Notice that this set of equations represents the PFDind i(t) for each single component, being the

index i the correspondence to the ith component. As a consequence, the time for first test per

component TPi and the parameter wi would change, being denominated as given in Eq. (5.9).

Also observe that it is assumed that the TI is the same for all the redundant components.

TITtw Pii mod)((5.9)

Chapter 5. Modelling and optimization of proof testing policies 142

PFD(t) model for parallel architectures. Independent failures contribution

Standby before first test: (5.10)
0for1)(Pi

t
r

DDN
iind TteTtPFD

DUN

Testing: (5.1
}0&0{for1)(tiPiiind TwTttPFD

Repair: (5.1

}&- t{for
)1)((1

}&-t0{for
)1)((1

)(
)()()(

)(

rtitPi

Tw
r

DDN
r

DDNTTTITTTI
r

DDN
rtitPi

Tw
r

DDN
r

DDNTT
r

DDN

iind

TTwTTIT
eTTeeT

TTwTTIT
eTTeeT

tPFD
ti

DUN
rt

DUN
rt

DUN

ti
DUN

Pi
DUN

Pi
DUN

Standby between tests: (5.1
}&0{for1)()(

rtiPi
TTw

r
DDN

iind TTwTteTtPFD rti
DUN

1)

2)

3)

5.4.4. The contribution of Common Cause Failure

CCF is usually modelled in probabilistic analysis as an additional component in series with the

redundant system (see Section 4.1.3). A fault tree depicting this situation for the PFD of a

parallel system of three components is shown in Fig. 5.2. It is thus possible to think about the

creation of an individual unavailability time dependent model for the CCF component. Figure

5.3 shows the PFDind(t) for all the components, incorporating a hypothetical plot of the PFD(t)

due to the CCF component, denominated PFDCCF(t).

Figure 5.2. Fault tree for PFD of a three-component parallel system

Chapter 5. Modelling and optimization of proof testing policies 143

Figure 5.3. System PFD with CCF

Several remarks can be made observing Figure 5.3:

The CCF unavailability follows the same structure of the mean test cycle (Fig. 5.1): A

preliminary interval before first test, followed by test, repair and standby states. Therefore,

it can also be defined based on the baseline model.

The mean test cycle for the CCF is reinitiated every time a component is tested. Thus, the

CCF cycle is repeated N times (being N the number of the redundant components) during

the TI of one physical component.

It is clear that after some time the mean test cycle of the CCF will repeat itself periodically,

which for formulation convenience has been placed after the time of the first test of the first

component plus the test interval (TP1+TI), that is when all components have already had

their first test and at least one single TI has been completed. After this, all the components

contributing to the PFD(t) become periodically stable. The same happens with the PFDCCF(t)

component. Based on this assumption, it can be said that the time previous to TP1+TI

corresponds to the initial state of the PFDCCF(t), and the time afterwards corresponds to its

steady state as shown in Figure 5.3.

Following these remarks, the model has been derived for the PFDCCF(t). In order to keep the

model simple, CCF is modelled as a single additional component that fails all the redundant

channels at once, and the level of redundancy is reflected using the modification factor of Eq.

(4.5) proposed by the PDS Method (Hauge et al., 2006a). After modelling unavailability by

CCF for two, three and four components in parallel, it was observable that there exists a pattern,

which is repeated for N number of components in parallel (N>2). This permits to make

Chapter 5. Modelling and optimization of proof testing policies 144

generalizations in the formulation of the exponents (of e) for each state of the time-dependent

equations. This was the basis for making the definition of the PFDCCF(t) model for N number of

components. The model would be the same as the baseline model (Eqs. (5.2-5.5)), including

detected and undetected failures as formulated in Section 5.4.3.

Since the PFDCCF(t) periodicity depends on the moment of the first test of the first component

TP1 plus the test interval TI, the parameter w for the CCF becomes equivalent to the parameter w

for that first component being tested, i.e.:

TITtww PCCF mod)(11 (5.14)

Based on this concept it is possible to formulate the contribution of CCF to the PFD(t),

presented in Eqs. (5.15-5.18). Notice that the formulation for standby before first test, repair and

standby between tests (Eqs. (5.15, 5.17, 5.18)) is basically the same as in the baseline model

(Eqs. (5.2-5.5)), just with reformulated exponents to accommodate the CCF contribution.

Nevertheless, the PFDCCF(t) during test time (Eq. (5.16)) required a different formulation

considering several factors. First of all consider that during test of one of the components the

PFDCCF(t) requires a formulation that takes into account that this component is unavailable. This

means that the CCF is only due to N-1 components. Therefore the factor is modified during

the duration of the test. For a system with two components, the CCF becomes zero (=0), and

for a system with N>2, the CCF becomes equivalent to the contribution of N-1 components

(N-1). In addition, if the difference in time between tests of the components is less than Tt, this

implies that it is a simultaneous TS. Thus, no CCF can occur since all the components are

unavailable. Therefore, for cases in which TPi+1-TPi<Tt, the PFDCCF(t) is zero.

The complete PFD(t) model is contained in Eqs. (5.9-5.18). It is important to remark again that

in each equation the subscript i stands for the ith component being tested or the last tested.

Notice that the model makes the following assumptions:

The system operates on low demand mode.

Components failure rates are constant and t<0.1 (i.e. exponential failure distribution).

Once a component has failed it remains in that state until it is repaired.

Failures are detected either by automatic diagnostics or testing.

The automatic diagnostic period is very small (<<TI).

Testing and repair are perfect: no faults are overlooked, and the item is returned to an as

new condition or normal state after repair. The test does not degrade the components

Components are not available during test.

Repair rates for detected failure rates (by automatic diagnostics) are also close to zero.

Chapter 5. Modelling and optimization of proof testing policies 145

Test and repair times (for detected failures by testing) are constant values (mean values).

Test and repair times are very small in comparison to the test interval (Tt<<TI; Tr<<TI).

PFD(t) model for parallel architectures. CCF contribution

Standby before first test: (5.15)
0for1)(1P

t
r

DDC
CCF TteTtPFD

DUC

Testing: (5.16)
tiPiP TTTIF 1 (Simultaneous test)

0
&0for0)(

111

1
1

tPPiPPi

t
PCCF TT TwTT

 Tw
TttPFD

tiPiP TTTIF 1 (Non-simultaneous test)
)(tPFDCCF

tP
TTTTTIw

r
DDC
N

tPPiPPiP
TTTTw

r
DDC
N

tP
t

r
DDC
N

TwTITteT

TTTwTTTteT

TwTITteT

rtPPN
DUC
N

rtPPi
DUC
N

DUC
N

11
))((

1

1111
))((

1

111

0&for1

&0for1

0&0for1

111

1111

1

Where:
D

Noo
DDDDD

N
DDC
N C)1(111 '

D
Noo

DUDDU
N

DUC
N C)1()1(')1(111

Repair: (5.17)
)(tPFDCCF

rttP

Tw
r

DDC
r

DDCTTTTTITTTTTI
r

DDC

rtPPitPPiP

TTTw
r

DDC
r

DDCTTTTTTTT
r

DC

rttP

Tw
r

DDC
r

DDCTT
r

DDC

TTwTTIt-T
eTTeeT

TTTTwTTTt-T
eTTeeT

TTwTTIt-T
eTTeeT

t
DUC

rtPPN
DUC

rtPPN
DUC

tPPi
DUC

rtPiPi
DUC

rtPiPi
DUC

t
DUC

P
DUC

P
DUC

11

)())(())((

1111

))(()()(

11

)(

&for
)1)((1

&0for
)1)((1

&0for
)1)((1

111

1111

111

Standby between tests: (5.18)

NiTIwTTTT
NiT TwTTTT

Tt

eTtPFD

rtPPN

PPirtPPi
P

TTTTw
r

DDC
CCF

rtPPi
DUC

if
if

&0for

1)(

11

1111
1

))((11

Chapter 5. Modelling and optimization of proof testing policies 146

5.4.5. Quantification of the average PFD

To quantify PFD using the time dependent model its equations are embedded in the tree basic

events for independent and common cause failures. Observe this effect in Figure 5.4 and

compare with Figure 5.2. It is possible to see that, generalizing, the total PFD(t) for parallel

redundant systems with N components can be calculated with the generalization made in the

following equation:

)()()(
1

tPFDtPFDtPFD CCF
N

i iindTOT (5.19)

The point PFD(ti) can been evaluated in discrete steps for the length of the mission time. The

sum of the point values are then divided over the total number of evaluations n to obtain the

PFDavg:

n
tPFD

PFDavg
T

i i0
)(

(5.20)

Figure 5.4. Example of use of the PFD(t) model in fault trees

5.5. APPLICATION EXAMPLE

A system corresponding to the fault tree shown in Figure 5.2 is used for application of the

PFD(t) model. The data corresponding to the problem is: T=1.9x10-6; Tr=8 hrs; Tt=1 hr, TI=1

year. C1oo2=1, C1oo3=0.3. =10%; =50%. The mission time T=10 years. It is assumed that
D= U. In order to demonstrate the capability of the model for handling several strategies four

different cases have been analyzed, namely:

Chapter 5. Modelling and optimization of proof testing policies 147

1. Simultaneous test: TP1=TP2=TP3=TI/3

2. Sequential test: TP1=TI/3; TP2=TP1+Tt; TP3=TP2+Tt

3. Non-uniform Staggered test: TP1=(4/12)TI; TP2=(5/12)TI; TP3=(6/12)TI

4. Uniform Staggered test: TP1=(1/3)TI; TP2=(2/3)TI; TP3=TI

The influence of several factors in the system PFD has been analyzed with the data collected:

the influence of TS, factor and diagnostic coverage. For this purpose, and according to Figure

5.4, the total PFD(t) is calculated with Eq. (5.21). The point PFD(ti) has been evaluated in steps

of 1 hour for the length of the mission time, and then the PFDavg was calculated using Eq.

(5.20).

)()]()()([)(321 tPFDtPFDtPFDtPFDtPFD CCFindindindTOT (5.21)

5.5.1. Influence of the test strategy

PFDavg vs Test Interval PFDmax vs Test Interval

SIL 4

3(mth) 6(mth) 1(yr) 1.5(yr) 2(yr) 6(yr)
TI

SIL 2

SIL 3

10-2

10-1

100

10-5

10-4

10-3

SIL 1

SIL null

TI
3(mth) 6(mth) 1(yr) 1.5(yr) 2(yr) 6(yr)

10-2

10-1

100

10-5

10-4

10-3

Simultaneous
Sequential
Staggered non-uniform
Staggered uniform

Figure 5.5. PFD for different TI+TS combinations

Plots of the PFDavg and PFDmax for different test intervals are presented in Figure 5.5. First of

all, observe the behaviour of the simultaneous TS. When increasing TI (lower frequency), the

PFDavg improves. This strange phenomenon is the effect of taking out of service the system less

frequently. The right-hand illustration remarks that PFDmax=1, since all the components have to

be taken out of service at the same time. There is, however, a point where further increment of

TI affects the PFDavg negatively (as in any other TS it does). Notice in contrast that simply

changing the difference of test between components from 0 to barely Tt, i.e. changing the TS

from simultaneous to sequential, provides considerable benefits. Firstly and most important, it

makes the PFDmax<1, which allows the system to be kept in service while testing one component

Chapter 5. Modelling and optimization of proof testing policies 148

at a time. Secondly, there is a dramatic improvement in PFDavg (e.g. 79% PFDavg reduction

when TI=6 months).

Focus now on the staggered strategy. It is observable that staggering the tests between

components reduces further the PFDavg. Firstly, notice how staggering the test decreases the

PFDavg in comparison with the sequential strategy (e.g. 29% when TI=1 year). Secondly,

observe how spreading uniformly the TP1 of the components over the test interval (uniform

staggering) improves remarkably the PFDavg (50%). The shift from sequential to non-uniform

staggering even increases the SIL achieved by the system (when TI= 1 year).

Finally, reading Figure 5.5 from right to left, focusing on the three non-simultaneous strategies,

it is clear that a decreasing TI (higher test frequency) improves consistently the PFDavg. Even

sometimes better SIL figures can be achieved. It is in general clear that distributing the test

events along the TI more informingly diminishes the maximum PFD, and in consequence the

PFDavg.

5.5.2. Influence of CCF

The improvements in terms of PFD observed above have been achieved simply by modifying

the TS, without addressing changes in the system itself. Additionally, this application case

addresses the changes in factor and diagnostic coverage (). The options being analyzed are

referred to by their combination of factor and diagnostic coverage values as / . Five

combinations have been tried (for TI=1 year), which results are presented in Figure 5.6. The

first three cases in the figure are for a changing with fixed diagnostic coverage (=50%). It

can be seen how the increment in the factor affects directly the PFDavg. Notice that in the ideal

case where there is no CCF (=0%), the PFDavg is much lower than for the other two cases.

Take as an example the uniform staggered test case. Increasing from =0% to =5%, raises the

PFDavg 438 times (a result not shown, but significant, is that going from =0 to =1% makes the

PFDavg larger by 80 times). Changing from =5% to =10% represents a higher PFDavg by

100%. Analyzing the figure it could be supposed that for devices with higher total failure rate

than those used for the present case, a larger factor may even imply to lose one SIL level.

The high influence of CCF over the PFD(t) can be observed closely in Figure 5.7. This figure

presents the PFDind i(t) per component plus the PFDCCF(t) contribution (black dotted line), and

the total and average PFD for one system with no CCF and others with different values of CCF.

Note the large increment of PFD(t) when incrementing the from 0% to 1%. The significant

influence of the CCF contribution is easily noticed. It can be seen that for >0 the system

PFD(t) practically has the same shape as the CCF component. These figures suggest that the

Chapter 5. Modelling and optimization of proof testing policies 149

CCF becomes the dominant factor in the PFD. It is thus possible to conclude that the PFDavg is

quite sensitive to changes in the share of CCF rate.

Figure 5.6. PFD for different / combinations

The fundamental influence of the CCF contribution can be finally demonstrated with a measure

of importance. Consider the Fussell-Vesely measure of minimal cut set importance. This

important measure is defined simply as the probability of occurrence of cut set i given that the

system has failed:

))((
)(
tqQ

CPI
SYS

i
i (5.22)

Figure 5.7. PFD for different factor

Chapter 5. Modelling and optimization of proof testing policies 150

If we consider the fault tree of Figure 5.4, where the top event is produced either by the

simultaneous independent failure of the three components (where =0 for example just to

simplify the analysis) or the CCF of all of them, then the importance measure would be:

CCFind

CCF
CCF PFDPFD

PFDI 3)(
(5.23)

Since , thenCCFind PFDPFD 3)(1CCFI ; or 100% importance for the CCF cut set. In a

numerical example, take the case where the factor is 1% (remember = ·CMooN=0.003). For

the failure rate of 1.9x10-6: and . As it is obvious

the importance measure for the CCF basic event is almost 100%, i.e. CCF is the dominant cut

set in the fault tree, even for a factor as low as 1%.

9107.5 xPFDCCF
183 108.6)(xPFDIND

5.5.3. Influence of the diagnostic coverage

The third factor explored in the case study was the diagnostic coverage () of the components.

The last three cases in Figure 5.6 correspond to a changing with fixed factor (=10%). For

the uniform test staggering case, the improvement obtained in PFDavg from increasing the from

0% to 20% and to 50% are reductions of 20% and 38% respectively. It can be seen that the

influence of is not as prominent as that exerted by the factor. However, it is still important.

Figure 5.6 shows that a better may mean the difference between achieving a higher SIL. The

relative difference of PFDavg sensitivity between the factor and the diagnostic coverage is

easily observed in Figure 5.8. It is easy to see the changing PFDavg for different values of these

measures. While decreasing in orders of unity makes quite large improvements to the PFDavg,

increments in order of tens of achieve far more modest gains. It is important, however, not to

underestimate the huge positive impact that diagnostic coverage has for system safety.

Figure 5.8. PFDavg(t) for different values of and

Chapter 5. Modelling and optimization of proof testing policies 151

Further explanation on why the effects of increasing diagnostic coverage are much lower than

the effects of decreasing CCF (i.e. the factor) can be found by observing the fault tree of

Figure 5.2. It can be observed that the CCF basic events (detected and undetected) are at the

upper level in the tree just next to the top event; i.e. they are first order cut sets. Therefore, any

small change in CFF will affect directly the top event. Consider also the Fusell-Vesely measure

of minimal cut set importance quantified for the CCF basic event at the end of the previous

section. Even for a factor as low as 1% the CCF has an importance of almost 100%. On the

other hand, diagnostic coverage reduces the contributions to total PFD when increased. Its

effects do reduce the contributions to the probability of failure in all the basic events, but the

CCF events are still prominent as first-order cut sets of the fault tree. Its prominence is such

that, as it will be seen in next chapter, the total PFDavg of a MooN redundant subsystem (where

M<N) can be conveniently approximated by simply quantifying the total contribution of CCF to

PFD.

5.6. THE MULTI-OBJECTIVE PROOF TESTING POLICY PROBLEM

The second part of this chapter is focussed on the optimization of proof testing policies for

Safety Instrumented Systems using the PFD(t) model. As previously mentioned, a proof testing

policy includes both the Test Interval and the Test Strategy TI+TS. Any change in the policy

impacts on the three system objectives PFDavg, STR and LCC. The test strategies explored for

optimization are the sequential and the staggered test. In addition, the difference of staggering

can give uniform and non-uniform strategies. Therefore, the degree of distribution of the test

events of different components along the test interval of the staggered test strategy provides an

additional large number of options for the TS. This distribution, formulated in Eq. (5.24), is

commanded by a factor K (Eq. (5.25)) that determines the difference of time between the time

of first test of the first component (TP1) and the test of the rest of the components.

Remember in addition that the time elapsed since t=0 (system first start-up) up to the first test

TP of each component shapes their contribution to the system PFDavg during the initial time. The

larger the TP the bigger the unavailability contribution (recall that in general PFD=1-e- t). This

initial time interval is bounded by the start of the system being put in service until the periodic

tests settle down in a steady state. Therefore the TS is composed by both the TP and the factor

K. The TP per component is then determined as follows:

KNTTKTTKTTTT PPNPPPPPP)1(,...2,, 321 (5.24)

Chapter 5. Modelling and optimization of proof testing policies 152

Where:

P
N
TIRoundK (5.25)

This formulation intends to spread the TPs of the N components along the TI with the same

difference of time amongst them, and that this difference of time is bounded between 0 (in

reality Tt) and TI·(N-1)/N. Note that a higher K (P closer to 1) means higher staggering, while a

lower K (P closer to 0) represents lower staggering. This is better explained by an example.

Figure 5.9 shows the distribution of test events for a three-component system (where the

components are called A, B and C), and TI=1 year. The figure illustrates how for P=0.25, the

three components are tested during the first two months of the TI (with K=1 month difference

between consecutive tests). In contrast, when P=1, the components are tested with a difference

K=4 months between them (i.e. they are uniformly staggered, since K=TI/N). Thus, a higher P

means a more uniform staggering. It is important to observe that the multiplication factor P (Eq.

(5.25)), which determines the values of K, is the direct decision variable.

Figure 5.9. Example of TPs distribution for different values of K

In conclusion, it can be said that the for optimization purposes the proof testing policy depends

of three variables: test interval TI, time to first test of first component TP1 and multiplication

factor P. Given this, it becomes clear that the decision variable vector per subsystem, which

intends to solve the decision variables vector in Eq. (2.2), becomes:

PTTI P ,, 1x (5.26)

5.7. MODULARIZATION OF FAULT TREES WITH THE PFD(t) MODEL

In the sections where the development of the PFD(t) model is detailed, it has been made clear

that all the phases of the mean test cycle have their own contribution to a component s

unavailability. In consequence, the model has been empowered with the capacity to handle all

Chapter 5. Modelling and optimization of proof testing policies 153

relevant parameters for the quantification of those contributions. Previous analytical models

ignore some of those important contributions; namely the test and repair time contributions and

the difference in testing staggering. This indeed happens very notably in the method suggested

by IEC 61508 Part 6, as Signoret et al. (2007) has also pointed out. For comparison purposes

this lesser degree of accuracy in the modelling may be acceptable at a preliminary design stage.

However, for quantification and optimization of the impact of different testing policies over the

final PFD this approach would be unsuitable. As pointed out by Duduit et al. (2008) the saw

tooth nature of the instantaneous unavailability cannot be handled properly by using averaged

values (such as those given by the IEC 61508-6 equations). Hence, the importance of the

development of the PFD(t) model presented here.

Section 5.4.4 demonstrated how the PFD(t) model can be integrated in Fault Tree Analysis at

redundant subsystem level. For quantification of PFD at system level the same principle applies,

but some additional considerations are worth of mention. A large fault tree with several

subsystems can be seen as a collection of independent modules, each module representing for

example a single subsystem. These modules can be solved separately and their result combined

to complete the analysis of the full fault tree (Chatterjee, 1975). This is actually a technique

called modularization of fault trees. The modular approach has been applied in both static and

dynamic fault trees, as presented by Gulati & Dugan (1997). These authors define the modular

approach as one where a fault tree is divided into independent sub-trees (sub-trees that do no

share inputs). Each sub-tree can be solved by different solutions techniques. Several methods

have been proposed to find the modules (i.e. independent sub-trees) of large trees, such as

Kohda et al. (1989) and Duduit & Rauzy (1996). Gulati & Dugan (1997) mention the latter as

the most efficient and simple algorithm. They, for example, proposed to convert fault trees

module into Binary Decision Diagrams for solution of static fault trees and into Markov chains

for dynamic fault trees.

The modular approach makes possible to use different solution methods that make more

efficient or easy to solve a fault tree. It also permits empowerment of the fault tree with new

capabilities that it usually lacks; i.e. to model time dependencies. For this reason we use here

this approach, and propose to incorporate the PFD(t) at subsystem level (i.e. modules),

quantifying them in the same fashion as the example of section 5.5. (see Fig. 5.4), for solution

of the system-level fault tree. At the same time that the work of this thesis was developed, some

other authors have been proposing the use of similar approaches for SIL analysis. Duduit et al.

(2006) proposed to incorporate into fault trees multi-phase Markov diagrams for quantification

of time dependent unavailability (they prefer to use the term probability of not functioning on

demand rather than PFD) in several instants of time and average in the same way as proposed in

Chapter 5. Modelling and optimization of proof testing policies 154

Eq. (5.20). They illustrated their methodology with an application to a HIPS in Signoret et al.

(2007) and further developed their method in Duduit et al. (2008). The method proposed in

those articles is quite sophisticated, but too complex for solution of an optimization problem.

The problem of exponentially growing complexity in Markov models has been already

discussed in Section 1.6.

In this work it is therefore proposed to use the PFD(t) model embedded into the subsystems of

the system-level fault trees for solution of complete redundant subsystems, as demonstrated in

Figure 5.4 (for one single subsystem). The scope of this thesis does not require the use of any

special methodology for identifying modules within the fault trees, since the modules

correspond to subsystems easily identifiable. This might be necessary, however, if the size of

the modelled SIS increased to several safety functions in future research. Quantification of

PFDavg by the concept proposed here is further illustrated in the application case of Section 5.10.

5.8. SPURIOUS TRIP RATE MODEL

It was mentioned in Section 5.1.3 that one of the adverse effects of proof testing includes test-

induced spurious activations. This has been also discussed by Lundteigen & Rausand (2008b) in

their recent monothematic study of spurious activations in SIS. This is a non-negligible

contribution that is usually ignored. Therefore, the STR model presented here includes it. As a

consequence, the model for quantification of the STR of a component includes the spurious trips

caused by internal failures STR (Eqs. (4.10-4.11)) plus the test-induced component STRtest:

testT STRSTRSTR (5.27)

On the other hand, STRtest is estimated by Eq. (5.28). This was developed based on a general

equation formulated by Kim et al. (1994), where some additional guidance can be found to

estimate the parameter Pr-trip. A similar expression was obtained by Cepin et al. (1994).

triprtest P
TI

STR 1
(5.28)

Where Pr-trip can be estimated by:

tests

trips
tripr N

N
P (5.29)

It is important to take into account that proof testing of every single component of a system can

contribute to the test-induced STR. Fig. 5.10 shows how the test-induced STR can be introduced

as a basic event into a fault tree of a two-component system.

Chapter 5. Modelling and optimization of proof testing policies 155

Independent safe
failure of all
components

Safe failure modes:
SUN = undetected normal
SDN = detected normal
SUC = undetected common cause
SDC = detected common cause

Safe
CCF

A
failure

Spurious trip

B
failure

Proof test induced
spurious trip

SDN SUN SDN SUN

SDC SUC
Test

comp.
B

Test
comp.

A

Figure 5.10. Fault tree for STR of a two-component system

5.9. ELITIST NON-DOMINATED SORTING GENETIC ALGORITHM II

One of the most competitive algorithms developed so far is the NSGA-II. Coello-Coello (2006)

stated that it is a highly efficient algorithm, with such a good performance that it has become a

landmark against which other multi-objective evolutionary algorithms have to be compared .

Greiner et al. (2003) made a comparative study of SPEA2, NSGA-II and NSGA-II with

controlled elitism for application to safety system design, and found that the last option gave the

best overall average results.

The Non-dominated Sorting Genetic Algorithm NSGA-II was introduced in Deb et al. (2000,

2002). A suggested improvement for diversity preservation called controlled elitism was

subsequent issued in Deb & Goel (2001). The NSGA-II is a second-generation algorithm. The

characteristic feature of this generation is the implementation of elitism in order to preserve the

best individuals for subsequent generations. The NSGA-II has the following main features:

Ranking based on non-domination sorting.

Crowding distance metric as explicit diversity-preserving mechanism.

Implementation of elitism by preserving elitist solutions in the population (using

dominance-depth ranking; no usage of external population).

Diversity preservation and elitism reinforced by a Crowded-Comparison operator.

Optional controlled elitism for promotion of lateral diversity.

NSGA-II eliminates the necessity of introducing a user defined niche size for sharing, replacing

the sharing function by a crowded-comparison operator. It also has the advantage of elitism, and

it is supposed to reduce the complexity of the non-dominated sorting. Its elitist mechanism also

Chapter 5. Modelling and optimization of proof testing policies 156

eliminates the need for a second archive (of elitist solutions) and its complexities. Its reinsertion

strategy (selection for survival) is also simple: a (+) scheme (Adra, 2007).

5.9.1. Non-domination sorting for ranking

The method determines for each member of the population to which dominance front Fi they

belong to (i.e. dominance depth). It then assigns the individual s rank (which is also the fitness)

according to the belonging front (non-domination level). In broad terms, the non-dominated set

of the population is identified and made front F1 (rank=1). It is then disregarded from the

population. A new non-dominated set is identified and assigned front F2 (rank=2). Then this set

is also disregarded. The operation continues iteratively until all individuals are assigned to a

front Fi and ranked (Deb, 2001). This ranking method is illustrated in Figure 5.11. Compare the

difference in ranking with MOGA (Fig. 3.3). The procedure by which the algorithm is

implemented is fully described in Appendix B (Section B.5.1).

Figure 5.11. Non-dominated sorting ranking in NSGA-II

5.9.2. Crowding distance density estimation

The population density around a particular solution i is estimated by the average distance of the

two solutions at either side of i along each of the objectives. This is called the crowding distance

di, which is an estimate of the parameter of the cuboid formed by the vertices fixed by the

nearest neighbours. The measure di represents the space not occupied by any other solution

around i (Deb, 2001), as it can be seen in Figure 5.12. The crowding distance di represents a

measure of population density around i. Therefore, the smaller di the more crowded its

surrounding environment. See section B.5.2 for further details.

Chapter 5. Modelling and optimization of proof testing policies 157

Figure 5.12. Crowding distance calculation

5.9.3. Crowded-comparison operator

Selection for variation is performed using a crowded-comparison operator. The operator

performs tournament selection in a similar fashion than the conventional operator described in

Section 2.4.3.3. However, besides comparing couples of individuals by ranking (in this

algorithm ranking=fitness), it compares their crowded distance for tie-breaking. The algorithm

is called Crowded Tournament Selection. It works as follows: When comparing two solutions i

and j, solution i is preferred over j if it has a better (lower) rank. If both i and j have the same

rank, i is preferred over j if it has a higher crowding distance (di>dj). The crowded-comparison

operator replaces the sharing function approach used in other GAs, such as MOGA and the first

version of NSGA, for diversity promotion. Thus, it does not require any user defined parameter

for diversity preservation. The crowding distance is normally calculated in the objective space.

Notice that the crowding-comparison operator is applied twice in the algorithm: during the

selection for survival (steps 3-4 in next section) and the crowding tournament selection (step 5).

5.9.4. The complete algorithm

The flowchart of the NSGA-II algorithm as proposed in Deb et al. (2002) is presented in Figure

5.13. The algorithm works with a population of fixed size Npop. After creating a random initial

parent population P0, each solution is given a fitness value (rank) according to non-dominated

sorting. An initial offspring population Q0 is created based on traditional binary tournament

selection, recombination and mutation. This is then fed to the GA generational loop, which

works as follows:

1. Both populations P0 and Q0 are combined in a population R (size 2·Npop).

2. Ranking is then carried out by sorting the individuals by non-dominated sorting creating

several fronts Fi for all i individuals.

Chapter 5. Modelling and optimization of proof testing policies 158

Figure 5.13. NSGA-II algorithm

3. A completely new parent population Pt+1 is created and set to Pt+1= . Then it is populated

by adding up the individuals from the fronts, starting progressively from the first front F1

(better rank=1), the front F2 and so on until a spillover occurs (Pt+1>Npop). This is what

enforces the elitist mechanism. The individuals of the front that spilled over are deleted

from Pt+1.

4. The entire population of this front (which spilled over) is sorted by crowding distance di

(the diversity-preserving mechanism), and the individuals with wider spread (larger

crowding distance) are inserted into Pt+1 until Pt+1=Npop. This completes the new parent

population Pt+1. Observe that steps 3 and 4 carry out the selection for survival mechanism.

This is at the heart of the NSGA-II procedure (illustrated in Figure 5.14). The iterative

program could be finished here if the termination criterion were met (as shown in Fig. 5.13).

Chapter 5. Modelling and optimization of proof testing policies 159

5. From Pt+1 a new offspring population Qt+1 is created by crowded tournament selection. This

executes the selection for variation operation.

6. Crossover and mutation is applied. The new populations Pt+1 and Qt+1 are then used to feed

a new generation (to make Rt+1=Pt+1+Qt+1). Goes back to step 1.

Figure 5.14. Selection for survival; original NSGA-II and with Controlled Elitism
(Deb et al., 2002; Deb & Goel, 2001)

5.9.5. Controlled elitism

Emphasis over elite solutions is made twice by NSGA-II: one in the tournament selection and

second in selection for survival. This can result in solutions not belonging to non-elitist fronts

being deleted too soon. This compromises the balance of exploitation versus exploration. The

crowding tournament selection will promote diversity along the non-dominated front. However,

lateral diversity will be lost. This is the diversity lateral to the non-dominated fronts. Therefore,

in order to preserve the good balance, it is necessary to ensure good diversity both along the

Pareto-optimal front and also lateral to the front (see Fig. 5.15).

Objective 1

Pareto-optimal
front

Diversity along
the front

Lateral diversity

Figure 5.15. The meaning of lateral diversity

Chapter 5. Modelling and optimization of proof testing policies 160

Deb & Goel (2001) conceived a mechanism that intends “to maintain a predefined distribution

of the number of individuals in each front” (not only the elitist ones), and thus foster lateral

diversity (at the time the NSGA-II promotes diversity along the front). This is made by

restricting “the number of individuals in the current best non-dominated front adaptively”,

allowing individuals of diverse non-dominated fronts to be integrated into the new population.

The Controlled Elitism mechanism of selection for survival is compared against the original

NSGA-II in Figure 5.14. The maximum number of individuals of the ith front (i=1,2,..., K) Ni

permitted in the new population is restricted by:

1

1
1 i

Kpopi r
r
rNn (5.30)

Where Npop is the size of the population and r is the reduction rate (r<1). With this, each front

is allowed an exponentially reducing number of solutions . Notice that the allowable number of

individuals from the first front is the highest, and it decreases progressively with each front. The

full procedure to implement the algorithm is detailed in Section B.5.3. Figure 5.13 indicates

which part of the original NSGA-II would be replaced with the controlled elitism mechanism.

As Deb & Goel (2001) discuss, the reduction rate r is important in the balance exploration

versus exploitation, since it determines the extent or exploration allowed: the smaller r the

larger exploration and vice versa. However, the parameter r is also problem-dependent,

becoming an additional parameter to tune for the GA. In the test problem given in Deb (2001), a

r=0.65 keeps a good exploration-exploitation trade-off. This may be a good value for start

tuning it.

5.10. APPLICATION CASE

5.10.1. Description of the problem and approach

In order to illustrate the overall approach, the proof test optimization is applied to a protection

system against high pressure and temperature of a chemical reactor (Fig. 5.16). The system is

composed of four subsystems: Temperature transmitter (TT), pressure transmitter (PT), logic

solver (LS) and final control element (FC). Upon detection of either high temperature or

pressure the safety system cuts the reactor supply off in order to prevent a runaway reaction.

Each subsystem is parallel redundant. All data are presented in Table 5.1.

The optimization cases presented here consider the possibility of using sequential or staggered

test. As concluded above, partial testing provides the opportunity for optimization. International

standards do not present constraints for partial testing, in addition they do not provide sound

Chapter 5. Modelling and optimization of proof testing policies 161

guidance about the setting up of TIs. Therefore, the proof test optimization problem is addressed

by optimizing the test policy for each single subsystem. This means that 12 variables (3 per

subsystem: TI, TP1 and P) compose the decision variables vector in Eq. (5.26).

Figure 5.16. Chemical reactor protection system

Table 5.1. Dependability and Lifecycle Cost data___
Instrument Safety PLC Standard PLC Electronic PT Press. Switch Smart TT Temp. switch Air Opt. valve___

Safe (x10-6/h) 3.46 3.94 2.16 6.81 5.05 9.22 3.94
Danger (x10-6/h) 0.0036 4.81 1.90 4.11 0.348 7.60 3.35
Total (x10-6/h) 3.492 8.75 4.06 10.92 5.398 16.82 7.29
Safe (%) 100 45 56 10 100 10 00
Danger (%) 81.25 60 51.1 10 7.5 10 25

Cpurchase ($) 3000 2000 2300 500 2560 500 6940___
Lifecycle cost data: Other data:
Design/install/commissioning PLC= 10,320 ($) =10% (for all instruments, both failure modes)
Maintenance PLC= 960 ($/event) =5% (smart TT, safe failure only)
Test PLC= 240 ($/event) Tr= 8 (h)
Design overall instrumentation= 3,060 ($) Tt= 1 (h)
Installation/commissioning per instrument=600 ($) C1oo2=1.0
Maintenance per instrument= 240 ($/event) C1oo3=0.3
Test per instrument= 60 ($/event) Shut down time= 24 (h)
Repair cost per instrument & PLC= 60 ($/h) Plant risk without SIS=8.55 (x10-3 /yr)
Spares per repair= 25% component cost per event
Cost safety PLC rack: 31000 ($)
Cost standard PLC rack: 20500 ($)
Loss of production= 2,000 ($/h)
Start up cost= 1800 ($)
Catastrophic loss=150x106 ($)
SIS operational life= 15 (years)
Discount rate=0.05___

Three different cases have been analyzed:

Case 1. SIS with safety instruments: Safety PLC, conventional electronic pressure

transmitter, smart temperature transmitter and air operated valve. We use a Pr-trip=1x10-3.

Kim et al. (1992, 1994) suggest a method for estimation of Pr-trip, giving examples for some

instruments. The value used here has been estimated as a representative average following

Chapter 5. Modelling and optimization of proof testing policies 162

values provided by those references.

Case 2. The SIS uses the same kind of instruments, but with a Pr-trip=0 (ideal proof test

case), in order to draw comparisons with Case 1.

Case 3. The SIS is composed by standard instruments: Standard PLC, electromechanical

switches for pressure and temperature and air operated valve. Pr-trip=1x10-3.

5.10.2. Problem modelling

Modelling of the dependability objectives has been discussed in previous sections of this

chapter, so only some minor problem-specific details are added here. System dependability is

quantified by Fault Tree Analysis. The fault tree for STR follows the philosophy shown in Fig.

5.10. The fault tree for PFD is presented in Figure 5.17. Observe that the subsystems sub-trees

are not fully developed as in Figure 5.2. In Figure 5.17 the basic events are the failures at

subsystem level, given that they are considered as independent modules and quantified

following the philosophy illustrated in Figure 5.4. Eq. (5.31) gives the expression that calculates

the system PFD(t). Each term in the equation indicates correspondence to a subsystem by a

subscript. The instant values are averaged as indicated in Eq. (5.20) to get the PFDavg.

)()()()()(tPFDtPFDtPFDtPFDtPFD FCTTPTLS (5.31)

Figure 5.17. Fault tree for quantification of PFD

The LCC of the system is calculated based on equations given in Chapter 4 (Eqs. (4.12-4.22)).

From Eq. (4.12), the operational costs relevant to proof testing include test and corrective

maintenance during the system lifetime:

PVFCCLCC RISKCMTCMT)(&& (5.32)

Chapter 5. Modelling and optimization of proof testing policies 163

Where:

CMTCMT CCC & (5.33)

CT and CCM are estimated using Eqs. (4.16) and (4.17). In this work we are provided with the

cost of test per event (alternatively it could also be determined by Eq. (5.34)). The repair cost

per hour is estimated with Eq. (5.35).

htt
T
i CTC (5.34)

SPhrr
CM
i CCTC)((5.35)

Notice that the corrective maintenance costs include repair of safe failures as well (Eq. (4.17)).

Although proof testing is focussed on dangerous failures detection, it is clear that if safe failures

occur they must be repaired as well.

On the other hand, it is important to consider the impact that proof testing has upon the plant

risk cost, which is calculated by Eqs. (4.19-4.22). Proof testing has both positive and negative

effects upon LCC, since the practice of periodic proof testing reduces the dangerous failure risk

when improving PFDavg, but it can increment the safe failure risk (through its adverse impact on

the STR).

5.10.3. Implementation of the Genetic Algorithm

The optimization is based on the NSGA-II (Fig. 5.13). All the 12 decision variables of the

problem are integer. Explicit constraints are included in the decision vector: The TI is bounded

between 30 and 365 days (730 for the LS), and TPs between 0 and TI. The multiplication factor

P is a number between 0 and 1000 (then multiplied by 1x10-3 so that P<1). The total number of

potential solutions is 9.27x1029. Given that the decision variables are integer, an integer code is

used rather than the classic binary code. This opened the possibility of using genetic operators

for both binary and real numbers (with minor modifications), especially for the crossover and

mutation operators.

A baseline algorithm setup was used as the initial configuration. Then the algorithm was tuned

trying several different schemes. A qualitative comparison was made between pairs of different

algorithm setups, based on a good balance of the following factors: convergence (proximity to

the real (unknown) Pareto Front), and the diversity along the front (good uniform spread of

solutions) and number of individuals in the optimal set.

Chapter 5. Modelling and optimization of proof testing policies 164

Only a few of the GA multi-objective optimization studies report use of integer codification.

They implement combinations of operators for either binary or real numbers. Coit & Smith

(1994, 1996a) used an algorithm similar to uniform crossover and mutation by integer flipping.

Billings & Zheng (1995) reported what seems to be two variations of the uniform crossover

algorithm, called fixed length and variable length crossover. Mutation was made through a

mechanism similar to integer flipping. Weile & Michielsen (1996) proposed special formulas

for crossover (similar to blending methods), and utilized addition or subtractions formulas for

mutation. Martorell et al. (2000) used single point crossover and flip mutation. Tao et al. (2003)

implemented double-point crossover, and performed mutation through addition formulas.

Damousis et al. (2004) used multiple point crossover and employed a non-uniform mutation

operator. Li et al. (2005) applied formulas similar to blending methods for crossover, and

mutated the individuals through integer flipping. Salazar et al. (2006) used a hybrid integer-real

code. He used a single point crossover, just permuting the values where the crossover point laid

between integer variables. They tried both flipping mutation and a triangular mutation

operator emulating Gaussian mutation. Some other optimization studies were found, but they

do not specify which operators they implemented.

The settings that were tried (in different combinations) are detailed below. The crossover and

mutation operators for real numbers that were tested are those formulated by Mulenbein &

Schlierkamp-Voosen (1993), described in Section 2.4.3.

Population size and number of generations: 50/100, 100/50, 200/20, 100/25, 100/40.

Mutation: Flip mutation at 0.1, 0.2; mutation for real numbers at 0.1, 0.2.

Recombination: Single point crossover, double point crossover, discrete recombination

(uniform crossover), blending crossover.

Selection: Basic NSGA-II against controlled elitism at r=0.50, 0.80, 0.65, 0.40.

In general, it can be reported that a population size larger than 100 provided no significant

improvement. Fine tuning could be made through changing the number of generations.

Changing the mutation operator (using both algorithms for real and binary codes) did not make

any important difference. From all the recombination operators compared, discrete

recombination showed a slightly better performance, while a more notable improvement was

found with the blending crossover: Better distribution along the optimal front and enhanced

exploration since new solutions at the two extremes of the front were found. The most

significant enhancement overall was achieved by implementing controlled elitism. It was

noticed that this improves the exploration made by the algorithm. Nevertheless, the exploitation

can be compromised, and it is only improved if the right reduction rate parameter r is found.

This fact, however, increments the complexity of the NSGA-II implementation, since the

Chapter 5. Modelling and optimization of proof testing policies 165

parameter r has to be tuned. The improvements achieved in terms of exploration meant that both

ends of the optimal front were further pushed, finding new solutions. The distribution along the

front was slightly enhanced as well.

The best final combination of parameters was:

Population size: 100 individuals.

Number of generations: 50.

Recombination by blending crossover at 0.7.

Flip mutation at 0.1.

Selection using controlled elitism with r=0.40.

5.11 DISCUSSION OF RESULTS

Case 1 is taken as the baseline case. The results of this case are presented in Fig. 5.18. In order

to demonstrate the benefits of the optimization by GA, the Pareto-optimal front (i.e. optimal set)

is compared against the initial population. A specific single solution may have been proposed as

an initial candidate solution and introduced into the initial population for comparisons purposes.

However, it was considered that the random creation of the initial population (initial set) would

contain both good and bad solutions. So this is used as basis for comparison. It is easily

observed that the optimal set is superior to the initial set in every objective. The optimal set

provides a smooth well distributed set of solutions for the decision maker to choose. It is clear

that every single solution provided in the initial set is dominated by the optimal set. Hence, the

advantage of implementing the GA-based optimizer is evident.

Figure 5.18. Case 1. Comparison of initial and optimal set populations

Chapter 5. Modelling and optimization of proof testing policies 166

The plots in Fig. 5.18 (right) compare the performance or both populations by pairs of

objectives. Notice that for any PFDavg value, the cost (LCC and STR) in the optimal set is

always lower than in the initial set. It shows the benefits of risk reduction comparing again both

initial and optimal sets. It can be seen how around solution 50, any reduction in PFDavg has a

lower LLC and STR costs (in comparison with the initial set). After that point, further reduction

of the PFDavg is more expensive. Notice however, that in every case the PFDavg is lower for the

optimal set than for the initial set. Observe though that when the graph is following the

increasing solution numbers, gains in terms of PFDavg become more expensive in terms of both

LCC and STR. The optimal set shows that there is an area where risk reduction (lower PFDavg)

is practically free (low cost increment). Around solution 40, risk reduction becomes much more

expensive.

Fig. 5.19 shows the Pareto-optimal fronts for the three cases. The complete results obtained

from all three cases are presented in Fig. 5.20. This figures plot the multiplication factor P rather

than K, since this is the direct decision variable (see Eq. 5.25). It is very important to notice that

a different scale is used for Case 3 in comparison to Cases 1 and 2. Observe the two scales at the

top of Fig. 5.20, at the left and right extremes.

Fig. 5.19 corroborates that the PFDavg is consistently in conflict with the STR and LCC. In

addition, notice that in Case 1 there is a saturation point in the Pareto-optimal front, where a

marginal reduction of PFDavg causes a large increment of both STR and LCC. This starts around

solution 80 (also seen in Fig. 5.20). Trying to achieve any further small reduction of PFDavg

after this point is very expensive, and it would be justified only to meet some specific safety

requirements. Again, notice that from solution 1 to 41 risk reduction cost is more profitable (the

cost of improving the PFDavg is less significant).

Figure 5.19. Comparison of the optimal front for the three cases

Chapter 5. Modelling and optimization of proof testing policies 167

Figure 5.20. Results obtained from all cases

Analyzing the decision variables obtained for the optimal set of Case 1 (Fig. 5.20), the

following comments can be drawn. First of all, the test interval TI of every subsystem depends

on the reliability specifications of its components. The lower the dangerous failure rate (and

higher diagnostic coverage), the higher TI (lower test frequency). Observe that, in general, the

TI for the LS subsystem is above 700 days, while for the other subsystems it is below 400 days.

On the other hand, for the LS, PT and TT subsystems the TP1 and P variables seem not to have a

consistent trend. However, the case of the shutdown valves (FC) is notable. The TP1 is generally

low, meaning they are tested early from the start of the system s operational life. The FC

subsystem TI declines steadily along the system PFDavg reduction; i.e. the overall system PFDavg

is following the FC s TI trend. This is due to the fact that the FC subsystem is the system s

weakest link, given that the valves have the highest failure rate and lowest diagnostic coverage.

If we follow the parallel decline of system PFDavg together with the FC s TI, we will notice that

once the TI is very low, and cannot be further lowered, the TI of the other subsystems starts

decreasing, i.e. lower TI (around solution 80) specially in the LS. This indicates that the

improvements in PFDavg are achieved testing the FC components more frequently. Once this

frequency cannot be increased, the benefits have to be extracted increasing the test frequency of

Chapter 5. Modelling and optimization of proof testing policies 168

another subsystem. This is by natural choice the LS, because the TP and TT subsystems act as

redundant subsystems of one another. Also observe that in both the FC and LS subsystems, once

the TI has been considerably lowered, the TP1 (time to first test) is also decreased.

Note that the behaviour of the multiplying factor P is similar to the one of TI. This means that in

order to obtain further reductions in PFDavg the distribution of the test of the components is

made more uniformly; i.e. full staggering. Notice that no single value of P goes close to zero,

which clearly indicates that sequential testing is completely discarded.

Observe now the performance of the optimization for Case 2 in Figure 5.20. Remember that

Case 2 corresponds to the ideal case were the proof testing activity has not adverse affects over

the system STR (Pr-trip=0). In the upper plot it is noticed that PFDavg is still in conflict with the

LCC: The safer the system the more expensive it is (although the increment in LCC is not as

pronounced as in Case 1). However, it is not in conflict with the STR anymore. Observe that the

STR plot is flat. Different from Case 1, there is no saturation point; the test frequency is

constantly low for the three more dependable subsystem: LS, PT and TT. Nevertheless, the

PFDavg behaviour continues to follow the FC s TI trend: The shutdown valves remain the

system weakest link. Referring to Figure 5.19, it is also evident that the LCC is lower. This

situation is possible basically because there is no STR increment caused by testing. Thus, the

most important conclusion from comparing Case 1 against Case 2 can be drawn: Apart from the

natural costs caused by the testing activity itself, it is illusory not to consider the adverse effects

of testing, especially for STR in SIS. Testing does have an additional, considerable cost through

STR. Thus, it is fundamentally important to consider its adverse effects for decision making.

Finally, consider the results given by Case 3 in Figure 5.20. This case implements the safety

function using less reliable components than in Case 1. Notice the difference between Case 3

and Case 1 in the optimal solutions obtained (do not forget to consider their different scales

again). The most notable is the case of the LS subsystem. All in all, now the system PFDavg

follows both the LS and FC test interval (in Case 1 it did only the FC s TI). This is because now

the PLC failure rates (and diagnostic coverage) are not outstandingly lower then the rest of the

instruments (as it was in Case 1). Notice as well that the subsystems PT and TT are tested more

frequently than in Case 1, despite them backing up each other. Fig. 5.19 clearly shows that the

optimal set of Case 3 is always dominated by the one of Case 1. At every value, the cost for a

similar PFDavg is higher for Case 3, both in terms of STR and LCC. The acquisition cost for

Case 3 system may be lower, but in the long term, for the entire system operating life, Case 1 is

much less costly.

Chapter 5. Modelling and optimization of proof testing policies 169

Considering test staggering it is important to make some conclusions. Section 5.5.1 showed that

there is a definite benefit in PFDavg, since increasing the level of staggering (i.e. uniform

distribution of the test events along the TI) reduces PFDavg. First of all, the maximum PFD is

reduced with the more uniform distribution of the test events. In addition, the CCF component is

tested more frequently; hence its contribution to PFD is actually reduced. It can also be seen in

Figure 5.20 that in increment of the variable P (in the LS and PT subsystems in Case 1 and LS

subsystem in Case 3) coincides with the increment of STR and also LCC. At the same time,

however, the TI is being reduced. Therefore, it is clear that the increment in STR is due to the

increasing testing frequency. There is no evidence to suggest that increasing test staggering can

affect negatively the STR.

5.12. CONCLUDING REMARKS

This chapter approached the modelling and optimization of proof testing policies for SIS. A

model with a new approximation for the time dependent PFD of parallel architectures in SIS

was presented here. The model addresses the level of modelling detail required by IEC 61508,

since it is capable of evaluating explicitly the effects of the component s diagnostic coverage

and the system Common Cause Failure. It is powerful enough to accommodate different testing

strategies, i.e. simultaneous, sequential and staggered (with varying degrees of staggering).

An application to a parallel three-component arrangement showed clearly the benefits of

staggering the test events of the redundant components of the system, improving the PFD as the

time for the test event is distributed more uniformly during the Test Interval. In addition,

increments of testing frequency (lower test intervals) affected also positively the PFD. Safety

Instrumented Systems usually employ components with very low failure rates. It has been

demonstrated that in these cases the CCF has a significant impact on the system PFD. Even a

low factor makes the contribution of the CCF to shape the PFD(t). Practically the value of the

PFD(t) becomes the equivalent to the value of the contribution of the CCF. On the other hand,

albeit the diagnostic coverage has not as prominent influence as the CCF over the PFD, it is

certainly improved when the coverage in enhanced. It is known that the inclusion of a built-in

diagnostic mechanism is one fundamental strategy for the improvement of performance of

safety systems. To use components with better diagnostic coverage can reduce the PFD in such

a way that it can even achieve a higher Safety Integrity Level.

The model was subsequently integrated into a methodology for optimization of proof testing

policies with the NSGA-II genetic algorithm for a four-subsystem protective system. The

requirements of IEC 61508 and current real testing practice for SIS were taken into account.

Chapter 5. Modelling and optimization of proof testing policies 170

Proof testing system policies are evaluated as the combination of test interval and strategy

TI+TS. The test strategy includes the time for first test of the components the strategy itself

(sequential or staggered), and the level of staggering.

The results obtained show that proof testing is very relevant for achieving and maintaining high

levels of system safety integrity. At the system level increments of testing frequency (lower TIs)

also affect positively the PFDavg. This is, however, in conflict with the system LCC. Apart from

the obvious benefits of the testing activity, it also certainly conveys adverse effects. One of the

most relevant is an increment of the STR. It has been demonstrated that ignoring this factor in

the dependability model results in overoptimistic assumptions. It is therefore important to

consider and quantify them. On the other hand, the results show that the combination TI+TS is

very influential on the system safety integrity; especially the TIs of the components with the

lowest dependability in the system (high dangerous failure rates and low diagnostic coverage)

have even shaped the system PFDavg. The second observed factor is the trend of the test to be

fully staggered for lower PFDavg levels. The application case showed the benefits of staggering

the test events of the redundant components of the system, improving the PFDavg as the time for

the test events are distributed more uniformly along the TI.

The choice of instruments with lower cost may lower the initial acquisition cost of the system,

but at the same time they can have the effect of increasing considerably the overall system LCC.

This knowledge can be used for decision making regarding system design at early stages of the

lifecycle. Nevertheless, testing should not be overexploited. As with design optimization, there

is one point where further intensification of the testing activity certainly enhances safety

lowering the PFDavg but a very high cost: Very small marginal decrements of PFDavg may have

disproportionate costs in terms of both STR and LCC. Considering all of these factors, it is easy

to conclude that the optimization methodology implemented offers many benefits to the

decision maker, in terms of both the optimization itself and a better knowledge of the safety

system behaviour, making it a powerful tool analysis for practical industrial application.

171

CHAPTER 6

Modelling and optimization of SIS including MooN

voting architectures

The developments presented in previous chapters have addressed only redundant systems

implemented with parallel redundancies. This has followed the rationale that it was simpler to

develop models and optimization techniques for parallel systems and then to extend them to

MooN voting systems. This chapter, therefore, approaches the optimization of SIS where

inclusion of MooN voting architectures is an available option for subsystem redundancy. It

includes optimization of system design and optimization of test policies. The main aim is to

explore whether introducing voting architectures as an alternative to simple parallel

redundancies allow achievement of a better balance between the system s dependability

attributes (PFDavg and STR), and therefore better LCC. Regarding optimization of the testing

policies, this chapter also analyzes if introduction of MooN subsystems in the system facilitates

the implementation of better testing polices that counteract the negative impact of testing while

still giving benefits in terms of safety and cost.

The structure of the chapter is as follows: A preliminary review of concepts and modelling

techniques related to MooN systems is provided together with a review of their application in

optimization cases. In order to extended the application of the PFD(t) model presented in the

previous chapter to MooN architectures, an analysis of modelling of MooN systems with fault

trees and their probabilistic behaviour is made, obtaining expressions for quantification of PFD

at subsystem level. This is subsequently integrated with the PFD(t) model. A similar analysis is

made for extending the STR model used in previous chapters to MooN architectures. The

models are then integrated with optimization of SIS in two separate applications: design and

testing policies.

6.1. OVERVIEW OF MooN VOTING ARCHITECTURES

A MooN system was defined in Section 1.3 as a system with N units (i.e. components, channels,

etc.) in which M out of them are sufficient to initiate the safety function. It requires a minimum

of M units to vote for the execution of the safety function. It also implies that these M units

must be functional for the system to be successful, and that a voting mechanism is provided.

Chapter 6. Modelling and optimization of SIS including MooN voting architectures 172

This is equivalent to a k-out-of-n:G with an added voter. There are, however, several diverse

terms to designate the same or similar configurations, which can be confusing. A detailed

review of terms is presented in Appendix A, Section A.3.1.

6.1.1. Effects of introducing voting architectures

Safety systems must present fault tolerance, mostly against dangerous failures. As it was seen in

Section 1.2 this is implemented usually by use of redundancy, where in order to ensure

continuity in the execution of the safety function, one failed component s function is taken over

by a redundant element. The most basic and used form of redundancy is the parallel structure.

However, every component that is added to the system introduces a new chance of failure. This

results in new chances of spurious trips. It has been seen in previous chapters that spurious trips

can bear a considerable cost. This is a manifestation of the conflict between PFD and STR. For

this purpose, voting systems are introduced in the search for the achievement of a better

compromise between fault tolerance and spurious trip rate.

In comparison with active standby redundancies, the fact that the redundancy is passive in

MooN systems eliminates some inconveniences; i.e. the switchover time, the probability of

switch failures and the probability of unrevealed standby-mode failures. In this way a voting

system ensures the non-interrupted operation, which is fundamental in safety-critical systems.

At the same time, although a non-perfect voter may be a new issue introduced into the system

architecture, a voter is usually less complex than a switch mechanism for cold or warm standby

systems (and even for some complex couplers of parallel systems). A voter is a fault masking

mechanism, simpler than more sophisticated fault tolerance mechanisms that involve fault

detection and system reconfiguration, and which have their own integrity issues.

A redundant voting system usually has a higher reliability than a single component (in the high-

reliability region, which is customary for safety components), although less than a parallel

system. At the same time, increasing the number of voting components increases the MTTF,

and raises system reliability (in comparison with other voting systems). A low STR must be a

fundamental attribute of a safety system, since it has an impact on the system LCC, and what is

very important, the confidence the operator places upon the system. The operator may even be

tempted to bypass (or even switch off!) a noisy safety system, negating completely the benefits

it should bring to plant safety.

It can be seen that a voting system permits implementation of fault tolerance with a lower STR

than a parallel system with the same number of components N. Although it improves the PFDavg

compared with a single-component system, compared with a similar parallel system it, however,

Chapter 6. Modelling and optimization of SIS including MooN voting architectures 173

does not. Nevertheless, it contributes to ensuring continuous operation of the safety system.

Considering what has been described, the option of choosing amongst voting systems could

permit an additional reduction of STR while implementing fault tolerance. This may represent

an increment in the acquisition cost, but a decrement of STR costs. It is thus a question of cost

balance to achieve a positive impact on the system LCC. Due to the increment on PFDavg (in

comparison to a similar parallel system), a voting architecture could have a negative impact on

the test intervals. Also remember, as we found in the previous chapter, that proof testing may

also have a negative impact on STR. It is therefore a matter of research to determine whether the

benefits of introducing voting architectures regarding STR outweigh the disadvantages of higher

PFDavg (in terms of LCC), and if the necessary increment in testing activity is compensated.

Consider in addition the impact of CCF on both the system performance measures and costs.

Implementing redundancy implies that CCF is introduced, which is another factor that has an

impact on the system s three main objectives: PFDavg, STR and indirectly LCC. The PDS

Method (Hauge et al., 2006a) shows that, for a fixed number of components N, as the M voting

components increase the configuration factor CMooN (Eq. (4.5)) increases as well (i.e.

C1oo3<C2oo3, C1oo4<C2oo4<C3oo4). This change is in the opposite direction for STR. Therefore, the

impact of introducing voting into system optimization becomes less clear, and this complements

the opportunities for research.

6.1.2. Modelling of MooN architectures

Modelling of k-out-of-n systems has several different approaches. The most basic approach is to

evaluate their reliability using the binomial distribution (S+F)N, where S=successful and

F=Failed units, provided that all the components are identical (Billington & Allan, 1983). For

reliability the distribution becomes (r+q)N, being r=reliability and q=unreliability for each

component. This is used in the general expression previously given in Eq. (1.12).

Biernat (1990) developed further this concept and obtained equations for reliability and MTBF

of NMR systems (k-out-of-n:G where n=2k-1). He later developed algebraic models for

estimation of the reliability bounds for systems with compensation of logical faults (Biernat,

1994, 1995). Moustafa derived (from continuous Markov chains) simultaneous linear

differential equations for estimation of reliability of k-out-of-n:G systems with two failure

modes with and without repair (Moustafa, 1996), and systems with dependent failures and

imperfect coverage (Moustafa, 1997). Duduit & Rauzy (2001) analyzed the case of k-within-r-

out-of-n systems (where r is a window of consecutive components in a linear arrangement) with

solution by BDD. Arulmozhi (2002) proposed a procedure to compute exact reliability of k-out-

Chapter 6. Modelling and optimization of SIS including MooN voting architectures 174

of-n:G systems with a recursive algorithm that generates all possible failure/no-failure

combinations.

Due to the higher level of complexity, the approach for analysis of SIS has been rather based on

combinatorial methods, a review of which was given in Chapter 1. The brief account presented

here is focused on MooN architectures. Frederickson (1990) and Frederickson & Beckman

(1991) used MA for determination of MTBF of dual and triple PLCs. Bodsberg & Hokstad

(1995, 1997) presented the VULCAN model, a method based on RBD. Gruhn (1996) addressed

in practical SIS the problem of choosing the best combination of architectures and components

for design of a SIS. He included diagnostic coverage, CCF rates, and manual TIs. His approach

is to use MA for the logic solver and FTA for the whole system.

IEC 61508-6 suggests a methodology for evaluation of PFDavg based on simplified equations

obtained from RBDs. The PDS method (Hauge et al., 2006a) is more sophisticated, but is also

based on SE. A significant contribution of the method is the introduction of the multiple factor

model (developed in Hokstad & Corneliussen (2004), Hokstad (2004) and Hokstad et al.

(2006)) and the modification factor CMooN that alters the value of the factor according to the

different MooN architectures (Eq. (4.5)). Goble (1998) developed models for several voting

configurations using both FTA and MA, including dangerous and safe failure modes, CCF and

diagnostic coverage. He incorporated into the models the effect of the diagnostic circuit into the

voting outcome in MooND architectures. Wilton (1998) used MA (with some simplifications) to

determine MTTF and the Risk Reduction Factor (RRF) of 1oo2D and TMR architectures. ISA

TR84.0.02 (ISA, 1999) intends to provide a standard set of methods for evaluation of SIL, using

SE, FTA or MA.

Recently, Lu & Lewis (2006) presented formulas for evaluation of unavailability and

probability of spurious operation of k-out-of-n systems (Qk/n, Sk/n) based on the binomial

distribution for independent failures. In addition, they developed equations for CCF based on

the load-strength interference model. Analytical comparisons were made between two types of

Emergency Shutdown Systems (ESD) in NPPs with 2oo3 and 2oo4 configurations. The study

was subsequently extended to any k-out-of-n configuration (Lu & Lewis, 2008), although only

embracing independent failures, with a relevant analysis of the sensitivity of Qk/n and Sk/n to

changes in n and k. Lu & Jiang (2007) made a comparison of impact that three on-line test and

maintenance strategies (corrective, time-base preventive and condition-based predictive

maintenance) have on the Qk/n, Sk/n and operation and risk costs of k-out-n systems (considering

only independent failures).

Chapter 6. Modelling and optimization of SIS including MooN voting architectures 175

6.1.3. Optimization with MooN systems

Ben-dov (1980) gave an early example of reliability optimization of k-out-of-n systems subject

to two types of failure, with quantification by analytical methods seeking to find the optimal k

given n. Bai et al. (1991) studied optimization of k-out-of-n systems with CCF, intending to find

the optimal n for different combinations of k based on the ratios CCF/independent-failure and

repair/acquisition costs. Pham & Galyean (1992) approached minimization of cost by finding

the optimal number of spares S in a NFSR system. Pham (1992) included acquisition plus

failure cost when finding the optimal k given a fixed n. Pham (1993) then addressed the search

for optimal number of spares for a TMR+S system for optimal reliability, considering

diagnostic coverage and CCF. Chari (1994) looked for the optimal k-out-of-n redundancy under

two kinds of CCF (lethal and non-lethal) for cost minimization. Amari et al. (2004) incorporated

imperfect fault coverage in the reliability and cost optimization analysis

Suich & Patterson (1991) sought to minimize the total and failure (average loss) costs of a k-

out-of-n:G system by both selection of n and n/k combinations. This is an early analysis of

building redundancy into a subsystem. Subsequently, Coit & Liu (2000) extended the analysis

to series systems with k-out-of-n subsystems that could be either active or standby ones. The

reliability optimization was executed by integer programming, subject to cost and weight

constraints. This was later extended (Coit, 2003) to include imperfect sensing and switching in

optimization of system reliability with component selection and redundancy allocation and

choice of redundancy strategy of either active or cold-standby redundancy (integer

programming).

Optimization of k-out-on-n architectures with genetic algorithms (GA) has been included in a

few studies. Coit & Smith (1996a) used a single objective GA for redundancy and component

selection: reliability maximization subject to cost and weight constraints. The problem is

optimization of systems where k-out-of-n:G subsystems can be chosen. They are solved by the

binomial distribution formula. In a subsequent work (Coit & Smith, 1996c) they estimated the

quantification of reliability of a large system with k-out-of-n redundancies using neural

networks. Pattison & Andrews (1999) implemented the SO GA optimization of a HIPS with

component selection and where the number n of transmitters per subsystem and the number k

necessary to trip were decision variables. The system dependability is estimated by using fault

trees synthesized by BDD. The single-objective optimization is for system unavailability with

cost, Spurious Trip Rate and maintenance time constraints. The methodology was scaled up for

the larger problem of the firewater deluge system (Andrews & Bartlett, 2003). The work of the

last two references was later adapted to multi-objective optimization in Borisevic & Bartlett

(2007a, 2007b) and Riauke & Bartlett (2008).

Chapter 6. Modelling and optimization of SIS including MooN voting architectures 176

Cantoni et al. (2000) combined a single objective GA optimization with Monte Carlo simulation

design of a series-parallel system with k-out-of-n:G and cold-standby architecture options

(redundancy and components selection), later extended to multi-objective optimization

(Marseguerra et al., 2004b). A nuclear reactor protective system is analyzed, which contains a

2oo4 system analyzed by MA. The optimization is not for plant design but for test and

maintenance policies. Tavakkoli et al. (2008) proposed single-objective reliability optimization

by GA, where the redundancy strategy of each individual subsystem can be selected between

active and cold k-out-of-n standby schemes.

6.2. MODELLING PFD FOR MooN ARCHITECTURES

The objective of this section is to present an analysis to extend the PFD(t) model (presented in

the Chapter 5) for application to MooN architectures. This model has the power to explicitly

model CCF, diagnostic coverage and changes in the mean test cycle of the components. This

makes it convenient for optimization of design and testing policies. In contrast, quantification of

dependability based on the binomial distribution models (Section 6.1.2) is limited to

independent and identical components. Other studies that have approached it at system level

either ignore the level of modelling required for quantification of PFD according to IEC 61508

requirements or result in very complex models difficult to handle in optimization cases.

6.2.1. Previous considerations

Safety Instrumented Systems are generally composed of sensors, logic solvers and actuators.

Some authors have chosen to use switch diagrams to demonstrate the failure mechanisms of

the logic solver (Goble, 1998) and the trip logic of protective systems (Lu & Lewis, 2008). This

is applicable for showing the logic followed by MooN voting configurations for transmitters

and, under some assumptions, actuators.

This study assumes that SIS are configured as de-energize-to-trip systems. This means that for

execution of the safety function the system de-energizes the components. In addition,

components are usually open-to-trip, which means a switch will open to execute the safety

action. Therefore, for a MooN architecture to execute the safety function, M channels (or

components) must agree to de-energize the system output. It is also considered that a parallel

system is a particular case on MooN, where M=1. Finally, it is assumed that the voter is a

perfect mechanism (i.e. reliability=1). This a valid assumption in SIS because the voter is

usually a very simple mechanism, with very low failure rates (in comparison with the voting

components themselves) and not subject to CCF (when it is not redundant, as is the most

frequent case).

Chapter 6. Modelling and optimization of SIS including MooN voting architectures 177

Consider the six different states that a component can have, showed in Figure 6.1. The first row

corresponds to normal states of a component. The closed (energized) state corresponds to the

component in service, ready to execute the safety action: to trip the system opening the switch.

The second row corresponds to failure states. Notice that the dangerous failure is when the

component fails stuck-closed, and the safe failure is stuck-open.

Figure 6.1. Symbols for the different states of a component

The third row in Figure 6.1 shows possible states for a component being under test. During test

of one of its components the system is reconfigured, which is similar to the system being

degraded during failure of one component. This means that the MooN architecture assumes a

different M ooN arrangement during test. The implementation of the physical reconfiguration

in the system is made through bypasses. Whether it is bypassed open or closed depends on the

specific operational philosophy. The PDS Method (Hauge et al., 2006a) discusses three basic

philosophies:

1. Always shutdown during testing

2. Degraded operation during testing, otherwise shutdown,

3. Continue production during testing, even with no protection.

The operational philosophy can either be selected from these three or made from a combination

of them. This determines how the system is reconfigured during test. For example, a 2oo3

system may become either a 2oo2 or a 1oo2 during test (dependant on how it is bypassed). This

is very relevant because it shapes the CCF contribution to the PFD(t) during test, which is

analyzed later.

6.2.2. Bypassing philosophy during test

Consider the analysis of a 1oo2 voting system shown in Figure 6.2. The figure presents the

voting logic, how many faulty components can fail the system (dependant on the failure mode),

and the result of bypassing one component (under test) by the two possibilities: open and closed

bypass. Since N=1, this means that one single component is needed to vote for execution of the

safety function (de-energize the load). Notice that if the bypass (for test) is open, the system

would have to be taken out of service (plant shutdown), which in some way would negate the

benefits of redundancy implemented to ensure uninterrupted operation. In contrast, bypassing

Chapter 6. Modelling and optimization of SIS including MooN voting architectures 178

one component closed reconfigures the system to 1oo1 during test, which allows continuity of

operation.

Figure 6.2. Analysis of 1oo2 architecture

Figure 6.3. Analysis of 2oo2 architecture

A similar analysis for the 2oo2 architecture is shown in Figure 6.3. Observe the bypassing

during test. If one component is bypassed closed, this would make the system unsafe since it

would not actuate upon a demand during test whatsoever. This would make the system

unavailable. In contrast, bypassing the component open would reconfigure the system to 1oo1

Chapter 6. Modelling and optimization of SIS including MooN voting architectures 179

voting, permitting the system to keep performing its intended function. Thus, this is the more

convenient bypassing during test.

It is evident that, as a result of this analysis, the selection of bypasses for both architectures,

1oo2 and 2oo2, must be different. For the 1oo2 architecture the bypass is left open so to avoid a

plant shut down. For 2oo2 the bypass is closed, so that the system still performs its intended

function during test of one component. Since the system is made of only two components, both

architectures, 1oo2 and 2oo2, reconfigure to a 1oo1 arrangement during test (which is different

for MooN systems where N>2, as it will be seen later).

Relating this bypassing strategy to the operation philosophies enumerated in Section 6.2.1, it is

clear that it would correspond to a combination of philosophies 2 and 3. This philosophy can be

described as continue production during testing with degraded operation in the safest possible

way . This means that for 1ooN systems, the component during test would be bypassed closed

to permit continuous production, reconfiguring the system to a 1oo(N-1) configuration. In a

different fashion, for MooN architectures with M>1 the bypass would be open, permitting the

system to keep performing its intended function in the safest possible way (i.e. with lowest

PFDavg possible). This is verified for Moo3 architectures in Figure 6.4.

Figure 6.4. Analysis of bypasses for Moo3 architectures

Chapter 6. Modelling and optimization of SIS including MooN voting architectures 180

Observe that for the 1oo3 architecture an open bypass would result in a system trip. On the

contrary, a closed bypass allows reconfiguration to a 1oo2 arrangement, keeping the safety

function in place. For the 2oo3 configuration, the close bypass reconfigures the system to 2oo2,

while the open bypass reconfigures to 1oo2. Since the PFD1oo2<PFD2oo2, the open bypass is

considered safer. For the 3oo3 system a closed bypass is unsafe since it is equivalent to

bypassing the entire system. Observe that this bypass would annul the action of any of the other

two working components. Therefore, the open bypass, which reconfigures to 2oo2 is safer. This

pattern is practically the same for any MooN system where N>3. Therefore, the bypassing

philosophy to be used is:

Bypass closed for 1ooN architectures.

Bypass open for MooN architectures where M>1.

6.2.3. Reduction of fault trees

Different MooN architectures keep a different balance between PFD and STR. This is the main

reason for their application in safety system design. A particular architecture results in either

dangerous or safe system failure as consequence of different combinations of the number of

faulty components. This is modelled in the fault trees of the system. Fault trees for MooN

systems where N>2 can become very big and unmanageable. Fortunately, it is possible to

reduce its size by Boolean algebra working with their logical expressions. Take the example of

the 2oo3 architecture of Figure 6.5. It can be seen how the fault tree is reduced. This mechanism

helps to simplify a fault tree with many possible combinations of repeated failure basic events.

Figure 6.5. Example of fault tree reduction of a 2oo3 architecture

Chapter 6. Modelling and optimization of SIS including MooN voting architectures 181

One important thing to notice here is that the CCF events of two components cannot be further

reduced. Notice that in this example they are the most influential factors on the total probability

of failure given that they are first order cut sets. For safety systems, probabilities of failure are

very small, which means that multiplying two or more basic events (cut sets of order higher than

one) gives events with an insignificant probability of failure compared with the first order

events. This can be very helpful when further reducing the fault tree to get an acceptable

approximation of the total probability of failure. This is the approach used here when treating

fault trees.

6.2.4. CCF during test

When a component of a MooN architecture (N>1) is bypassed during test its independent-mode

failure is irrelevant because it would not affect the system s performance. Nevertheless, a

component under test is not in a failed state and, therefore, it still can fail. Therefore, a CCF

would still affect the system s functioning since it could lead to a simultaneous failure of the

other components of the redundant arrangement. For instance, in a Moo2 system, a (common

cause) failure of the component under test can lead the component not being tested to fail, and

then to fail the entire arrangement. This means that putting the CCF contribution to zero (during

test) in the architecture s fault tree would not be accurate.

An example serves to illustrate the concept: A system with two redundant transmitters

dependant on a single power supply. One of the transmitters is taken out of service for test,

being bypassed. At this time the second transmitter is still working and susceptible to failure. If

the power supply fails at that moment both components will fail, the one being tested and the

one being not. Thus, the system will fail. Notice that the bypass of the component under test

does not protect the other transmitter from the CCF. This is a simple example, but the same

situation would occur if we consider another different potential cause of CCF; e.g.

subcomponents from the same manufacturer used in both transmitters, poor training in the

person installing them, poor high-frequency isolation of sensitive equipment, etc.

The effect can be seen in Figure 6.6. Observe the first figure indicating the separation of events

(failure modes). In the figure, Q(A) and Q(B) represent only the independent fractions. For a

system 2oo2, the probability of failure is Q(f)=Q(A)+Q(B)+Q(CCF). However, during test this

would become Q(f)=Q(A)+Q(CCF), since CCF is still relevant. Notice that this is equal to the

total failure rate of the component, which is congruent for a single component.

Chapter 6. Modelling and optimization of SIS including MooN voting architectures 182

Figure 6.6. Probability of failure for a 2oo2 architecture

6.2.5. Reconfiguration of fault trees with bypasses

The reconfiguration of the safety system during test can be reflected by changing the fault tree

of the system considering the values that the PFD corresponding to the independent components

and CCF take during test. Observe the symbols for bypasses and for failure states in Figure 6.1.

Although they are not the same, an open bypass resembles a safe failure (which impacts

spurious trips), and a closed bypass resembles a dangerous failure (which impacts PFD). It

could be then possible to consider the effects of bypasses (which reconfigure the system only

during test) similar to failure effects in terms of PFD. For the 1oo2 architecture (Fig. 6.2) the

bypass is closed (like a dangerous failure), and we could consider that the PFD of the

component bypassed is equivalent to 1. Recalling that PFD is a measure of unavailability this

concept acquires more congruence. On the contrary, if the bypass in the 2oo2 system is open

(Fig. 6.3), it is like a safe failure, and then the PFD of the bypassed component could be

considered equivalent to zero. In conclusion, independent failure events in fault trees would take

the following values when their corresponding component is bypassed: bypass closed, event=1;

bypass open, event=0. The concept is applied to the Moo2 architectures in Figure 6.7.

CCF
AB

Independent failure
of all components

Dangerous
failure

A B

A B

During test of component A=1

Independent failure
of all components

Dangerous
failure

1 B

CCF
AB

Dangerous
failure

B CCF
AB

CCF
AB

During test of component A=0

0 B CCF
AB

Dangerous
failure

B CCF
AB

1oo1

1oo1

A B

CCF CCF

B

A B

CCF CCF

B

Dangerous
failure

Dangerous
failure

Reconfigured tree

Reconfigured tree Change in first-order cut sets

Change in first-order cut sets

During test

During test

1oo2 system
Components to fail: 2

2oo2 system
Components to fail: 1

Figure 6.7. Reconfiguration of PFD fault trees of Moo2 architectures

Chapter 6. Modelling and optimization of SIS including MooN voting architectures 183

Figure 6.8. Reconfiguration of Moo3 architectures

Figure 6.9. Reconfiguration of Moo4 architectures

Figure 6.7 shows how the fault trees of Moo2 architectures are reconfigured according to the

type of bypass applied to one component under test. The last column shows the changes in PFD

based on first-order cut sets. A similar analysis for Moo3 architectures is presented in Figure

6.8. Observe again the effect from the difference of bypasses: closed for 1oo3 and open for 2oo3

and 3oo3. Focus attention on the basic events that are directly related to the top event (are first-

order cut sets). The 1oo3 tree changes to make the Q(CCFBC) event a first order cut set during

Chapter 6. Modelling and optimization of SIS including MooN voting architectures 184

test, which would increase its total probability of failure (PFD). Observe in contrast that for the

2oo3 system the first-order cut sets do not change; they are the same sum of all the Q(CCF)

events. Since during test the reconfiguration only affects second-order cut sets, the total PFD

practically does not change during test. This is assuming that the system does have some degree

of CCF. If the system did not have CFF, the PFD would actually decrease during test, since two

of its three (second-order) cut sets would be eliminated during test. Finally, observe that during

the reconfiguration for the 3oo3 system the cut set of the independent failure of the component

under test (A) is eliminated, which actually reduces the PFD during test.

Also notice that the reconfiguration of each MooN system during test has a similarity with

another different M ooN system (plus the CCF basic events). The 1oo3 system is practically

reconfigured into a 1oo2, while 2oo3 and 3oo3 are changed to a 1oo2 and 3oo3 configuration

respectively. A similar situation has been seen for the 1oo2 and 2oo2, which both change to a

1oo1 system. For architectures with N>3 the pattern repeats itself (Fig. 6.9 demonstrates for

Moo4 architectures). It can be concluded that during test 1ooN architectures are reconfigured to

1oo(N-1), while MooN (with M>1) are changed to (M-1)oo(N-1) architectures. It is evident that

the difference between having CCF and designing it out of the system has a significant

influence on the system probability of failure. Table 6.1 summarizes the analysis for MooN

architectures with N 4, and presents on the bottom row a generalization for any MooN

arrangement. It also indicates the number of faulty components able to fail the system in both

dangerous and safe mode.

It is important to notice that the Venn Diagrams represent the probability of system failure

based on only first-order cut sets. Also, notice that the intersections are denominated as CCF of

certain combinations of components in the diagrams (for example CCF ABC) for simplicity.

This represents the probability of simultaneous failure by CCF of the denominated components

(A, B y C in this example).

Table 6.1. Analysis of MooN systems

N MooN Components to
fail dangerous

Components to
fail safe Bypass Reconfiguration

during test
1oo2 2 1 closed 1oo12
2oo2 1 2 open 1oo1
1oo3 3 1 closed 1oo2
2oo3 2 2 open 1oo2

3

3oo3 1 3 open 2oo2
1oo4 4 1 closed 1oo3
2oo4 3 2 open 1oo3
3oo4 2 3 open 2oo3

4

4oo4 1 4 open 3oo3
1ooN closed 1oo(N-1)N
MooN N-M+1 M open (M-1)oo(N-1)

Chapter 6. Modelling and optimization of SIS including MooN voting architectures 185

6.2.6. Estimation of PFD based on first-order cut sets

The Venn diagrams shown in Figures 6.7-6.9 represent the PFD based on first-order cut sets.

Analyzing the diagrams, it is possible to identify the pattern that the PFD follows for any MooN

architecture:

1. For 1ooN systems the PFD is approximately equivalent to the probability of CCF of N

components Q(CCFN), and during test it is equivalent to the probability of CCF of N-1

components Q(CCFN-1) (for N 3).

2. For MooN systems where 1<M<N the PFD is approximately equivalent to the contribution

of given by probabilistic sum (union) of non-mutually CCF events of N-M+1

components; i.e. (notice that N-M+1 is the number of faulty

components necessary for the system to fail dangerously, see Table 6.1.). During test this

equivalence remains the same.

1MN
N

11 MNCCF
MN
N

3. For NooN systems the PFD is approximately equivalent to the sum of the probability of N

independent failures plus the PFD equivalent to . During test this

equivalence only changes in the contribution of the number of independent failures to N-1.

11 MNCCF
MN
N

It can be noticed that the PFD can be quantified separating the independent and CCF

components and applying them in combinations relevant to the first-order cut sets. This would

permit their use in the PFD(t) model. The PFD of 1ooN and MooN architectures (point 1 and 2

above) requires only quantification of the shares related to different combinations of CCF

events. These can be quantified determining the different CCF rates by modifying the factor

choosing the relevant CMooN factors (Eq. (4.5)). For the NooN architectures it is actually

necessary, in addition, to determine the share of independent failures (given that they are first-

order cut sets) so they can be used in the PFD(t) model.

Chapter 6. Modelling and optimization of SIS including MooN voting architectures 186

As described in Section 4.1.2, the PDS method (Hauge et al., 2006a) proposed the use of a

CMooN modification factor that changes the value of the factor according to the specific MooN

voting logic (Eq. (4.5)). Thus, the CCF rate of a single component is determined by substituting

Eq. (4.5) into Eq. (4.4):
T

MooN
TC C' (6.1)

The PDS method provides a formula for calculating the CMooN factors. It is based on the multiple

factor model (Hokstad & Corneliussen, 2004; Hokstad, 2004). It assigns a value to the

multiple betas based upon expert judgment, and then calculates the CMooN factor. These formulas

are not relevant here, and are thus omitted. The PDS method, however, gives other equations

relevant to this study (reproduced in Eqs. (6.2-6.5)). The expression for all failures in a system

(i.e. single, double, triple, etc), is given by Eq. (6.2). This can be considered the total rate of a

NooN system:
T

N
SYS
NooN CN)((6.2)

Where SYS is the total failure rate of the system, and T the total failure rate of one single

component. In addition:
1

1

N

M MooNN CC (6.3)

The independent failure rate of one single component (N) in a MooN system is determined by:
T

N
N H)1((6.4)

Where:

N
CC

H ooNNN
N

)1((6.5)

Notice that the factor used in Eqs (6.2) and (6.4) is the basic used for two components.

Table 6.2 reproduces the table given by the PDS method for MooN architectures up to N=6.

Table 6.2. Values of CMooN, CN and HN (Hauge et al., 2006a)
CMooN

M=1 M=2 M=3 M=4 M=5 CN HN

N=2 1.0 - - - - 1.0 1.0
N=3 0.30 2.4 - - - 2.7 1.7
N=4 0.15 0.75 4.0 - - 4.9 2.2
N=5 0.08 0.45 1.2 6.0 - 7.7 2.7
N=6 0.04 0.26 0.8 1.6 8.1 10.8 3.2

Chapter 6. Modelling and optimization of SIS including MooN voting architectures 187

Eq. (6.2) can be manipulated to get the estimation of the system total failure rate considering the

separation between independent failures and CCF rates of a NooN system.
T

ooNNooNNN
T

N
SYS
NooN CCCNCN)1()1((6.6)

This can be rearranged to:

T
ooNN

ooNNNT
ooNN

ooNNNSYS
NooN C

N
C

N
CNC

N
C

N
CN)1(

)1(
)1(

)1(11

(6.7)

Substituting the equivalence by the term HN:
CNT

ooNN
T

N
SYS
NooN ooNNNCHN)1()1(1 (6.8)

This equation meets the definition of equivalence of PFD for NooN systems in Eq. (6.2). The

equation indicates that the independent failure rate of one single component can be calculated

using Eq. (6.4). Thus for a NooN system = ·C(N-1)ooN.

Table 6.3 summarizes what has been exposed so far, where Q(CCFN) represents the probability

of failure by CCF on N components, and Q(Ind) represents the probability of independent

failure of one single component. Columns 3 and 4 show the modification factor CMooN to be

used for quantification of the overall CCF contribution, both during normal operation and

during test.

Table 6.3. Quantification of PFD based on first-order cut sets
Architecture PFD

Normally
PFD

During test
CMooN

Normally
CMooN

During test
PFD behaviour

during test

1ooN Q(CCFN) Q(CCFN-1) C1ooN C1oo(N-1) Increases

MooN
(1<M<N) Q(CCFMooN) Q(CCFMooN) CMooN CMooN No change

NooN N·Q(Ind)
+Q(CCF(N-1)ooN)

(N-1)·Q(Ind)
+Q(CCF(N-1)ooN) C(N-1)ooN C(N-1)ooN Decreases

Chapter 6. Modelling and optimization of SIS including MooN voting architectures 188

6.2.7. Estimation of PFD considering null CCF

The PFD can be approximated very well considering only first-order cut sets (Table 6.3). This is

possible because the contribution of higher-order cut sets is negligible compared with the first-

order ones. However, according to Table 6.3, for 1ooN and MooN systems, if there was no CCF

(=0) the PFD would become zero. This is clearly unrealistic. It is therefore necessary to

consider the independent failure contributions given that they would solely shape the PFD when

CCF does not exist.

One solution would be to include all the cut sets of the fault tree, but this would lead to

complications in the application of the PFD(t) model. Consider as an example the 1oo3

architecture (Fig. 6.8). It is evident that any basic event of multiple combinations of 1

independent failure plus CCF of two components has a much higher contribution to PFD than

the triple independent failure of three components. Thus, it would be natural to include these

combinations in the PFD quantification. This reasoning, however, would require to additionally

estimate the PFDCCF(t) for three and for two components. This would be even more complicated

for system with a larger number of components. In addition, the combinations of one (or more)

independent failures with the CCF of two (or more) components are irrelevant when CCF exists,

since the first-order cut sets dominate the PFD. Therefore, for cases where CCF>0 they are

irrelevant in the PFD quantification. What is more, when CCF=0 these cut sets lose significance

because they become zero. Therefore, in this case the dominant cut set in the 1oo3 system

becomes the simultaneous independent failure of three independent failures. In general, for

1ooN system, this would be the simultaneous independent failure of the N components. It can

then be concluded that when CCF=0 in 1ooN systems, only the combination of simultaneous

independent failure of all the N components is to be considered.

Observe now the 2oo3 system (Fig. 6.8). There are three combinations of two independent

failures. These combinations vary in MooN system for different M and N values. Regarding

NooN architectures, however, the contribution of independent failure is always the sum of the

independent failures of the N components, as already seen in Table 6.3. In addition, these

combinations of independent failures change in the system fault tree when the system is

reconfigured for test, which in turn is dependent upon the kind of bypass used. Based on fault

trees (e.g. Figs. 6.7-6.8), a table can be developed to observe how these contributions change

within a MooN system when M is increased, and how they change when the system is

reconfigured. The results are presented in Table 6.4. The coefficients and exponents depend

upon the number of faulty components necessary to fail dangerously the system, the formula for

which was given in Table 6.1. Table 6.4 demonstrates that an identifiable pattern does exist,

summarized in the last rows.

Chapter 6. Modelling and optimization of SIS including MooN voting architectures 189

Table 6.4. General rule of contribution of independent failures to PFD
Contribution of independent failuresMooN Normal state During test

1oo2 1·Q(Ind)2 1·Q(Ind)1

2oo2 2·Q(Ind)1 1·Q(Ind)1

1oo3 1·Q(Ind)3 1·Q(Ind)2

2oo3 3·Q(Ind)2 1·Q(Ind)2

3oo3 3·Q(Ind)1 2·Q(Ind)1

1oo4 1·Q(Ind)4 1·Q(Ind)3

2oo4 4·Q(Ind)3 1·Q(Ind)3

3oo4 6·Q(Ind)2 3·Q(Ind)2

4oo4 4·Q(Ind)1 3·Q(Ind)1

1ooN NIndQ)(1)(NIndQ

MooN (1>M>N) 1)(
1

MNIndQ
MN
N 1)(

1
1 MNIndQ

MN
N

NooN)(IndQN)(1 IndQN

6.2.8. Application to the PFD(t) model

As a consequence of the previous analysis, a formulation can be made establishing that the total

time dependent PFD of a MooN architecture PFDMooN can be determined by:

)()()(tPFDtPFDtPFD CCFINDMooN (6.9)

Where:

PFDMooN(t) = Total system PFD

PFDIND(t) = PFD by combination of independent failures

PFDCCF(t)= PFD by combination of CCF

The instant contributions PFDCCF and PFDIND were determined in Tables 6.3 and 6.4

respectively, and they are summarized in Table 6.5. The independent failure rates N, to be used

for calculating the PFDind i(t), can be determined by Eq. (6.4). The PFDCCF(t) contribution can be

estimated substituting the modification factors CMooN determined in Table 6.5 into Eq. (6.1).

Chapter 6. Modelling and optimization of SIS including MooN voting architectures 190

Table 6.5. Summary of formulae for quantification of PFD
Architecture State PFDIND PFDCCF CMooN

1ooN Normal
operation

NIndQ)()(NCCFQ C1ooN

Test 1)(NIndQ)(1NCCFQ C1oo(N-1)

MooN
(1<M<N)

Normal
operation

1)(
1

MNIndQ
MN
N

)(MooNCCFQ CMooN

Test 1)(
1

1 MNIndQ
MN

N
)(MooNCCFQ CMooN

NooN Normal
operation)(IndQN ooNNCCFQ)1((C(N-1)ooN

Test)(1 IndQN)()1(ooNNCCFQ
C(N-1)ooN

The formulation presented in Table 6.5 can be used to determine how to adapt the PFD(t) model

presented in Chapter 5 (Eqs. (5.10-5.18)) for modelling of MooN systems. Changes to the

PFD(t) model itself are minimal, and the changes are more about the way CCF and independent

failure rates are quantified. Secondly, Table 6.5 guides the construction of fault trees regarding

independent failures. The contribution of CCF to PFD is still modelled as a single component,

and what changes is the way the CCF rates are quantified using distinct CMooN modification

factors. Although the modifications to the model are minimal, it is included here in full to help

the reader (Eqs. (6.10-6.19)).

PFD(t) model for MooN architectures. Independent failures contribution

Standby before first test: (6.10)
0for1)(Pi

t
r

DDN
iind TteTtPFD

DUN

Testing: (6.1
}0&0{for)(tiPitestiind TwTtCtPFD

Repair: (6.1

}&- t{for
)1)((1

}&-t0{for
)1)((1

)(
)()()(

)(

rtitPi

Tw
r

DDN
r

DDNTTTITTTI
r

DDN
rtitPi

Tw
r

DDN
r

DDNTT
r

DDN

iind

TTwTTIT
eTTeeT

TTwTTIT
eTTeeT

tPFD
ti

DUN
rt

DUN
rt

DUN

ti
DUN

Pi
DUN

Pi
DUN

Standby between tests: (6.1
}&0{for1)()(

rtiPi
TTw

r
DDN

iind TTwTteTtPFD rti
DUN

where:
TITtw Pii mod)((6.1

1)

2)

3)

4)

Chapter 6. Modelling and optimization of SIS including MooN voting architectures 191

PFD(t) model for MooN architectures. CCF contribution

Standby before first test: (6.
0for1)(1P

t
r

DDC
CCF TteTtPFD

DUC

Testing: (6.

tiPiP TTTIF 1 (Simultaneous test)

15)

16)

0
&0for0)(

111

1
1

tPPiPPi

t
PCCF TT TwTT

 Tw
TttPFD

tiPiP TTTIF 1 (Non-simultaneous test)
)(tPFDCCF

tP
TTTTTIw

r
DDC
test

tPPiPPiP
TTTTw

r
DDC
test

tP
t

r
DDC
test

TwTITteT

TTTwTTTteT

TwTITteT

rtPPN
DUC
test

rtPPi
DUC
test

DUC
test

11
))((

1111
))((

11

0&for1

&0for1

0&0for1

11

111

Repair: (6.
)(tPFDCCF

rttP

Tw
r

DDC
r

DDCTTTTTITTTTTI
r

DDC

rtPPitPPiP

TTTw
r

DDC
r

DDCTTTTTTTT
r

DDC

rttP

Tw
r

DDC
r

DDCTT
r

DDC

TTwTTIt-T
eTTeeT

TTTTwTTTt-T
eTTeeT

TTwTTIt-T
eTTeeT

t
DUC

rtPPN
DUC

rtPPN
DUC

tPPi
DUC

rtPiPi
DUC

rtPiPi
DUC

t
DUC

P
DUC

P
DUC

11

)())(())((

1111

))(()()(

11

)(

&for
)1)((1

&0for
)1)((1

&0for
)1)((1

111

1111

111

Standby between tests: (6.

17)

18)

NiTIwTTTT
NiT TwTTTT

Tt

eTtPFD

rtPPN

PPirtPPi
P

TTTTw
r

DDC
CCF

rtPPi
DUC

if
if

&0for

1)(

11

1111
1

))((11

where:
TITtww PCCF mod)(11 (6.

(first test of cycle for initial state)

(any other test)

(first test of cycle for steady state)

(first repair of cycle for initial state)

(any other repair)

(first repair of cycle for steady state)

19)

Chapter 6. Modelling and optimization of SIS including MooN voting architectures 192

Failure modes:
D

N
DDN H)1((6.20)

D
N

DUN H)1()1((6.21)

D
MooN

DDC C (6.22)

D
MooN

DUC C)1((6.23)

D
TMooN

DDC
test C (6.24)

D
TMooN

DUC
test C)1((6.25)

Table 6.6. Modification factors
Architecture CTest CMooN CTMooN

1ooN 1 C1ooN C1oo(N-1)
MooN (1<M<N) 0 CMooN CMooN
NooN 0 C(N-1)ooN C(N-1)ooN

The changes and adaptations derived from Table 6.5 are described next:

1. The only change to PFDind i(t) is in Eq. (6.11) (originally Eq. (5.11)) for the contribution

during test. PFDind i(t) during test is equal to a constant Ctest that takes a value depending on

how it is bypassed during test (closed=1, open=0), see Table 6.6. The rest of the PFDind i(t)

model remains unaltered.

2. Independent failure rates (DN) are quantified using the factor HN (rather than simply),

Eqs. (6.20-6.21).

3. CCF rates are quantified based on distinct modification factors (Eqs. (6.22-6.25)). There are

two factors, CMooN and CTMooN, one for normal operation and one for test respectively. These

change according to the MooN architecture being modelled as indicated in Table 6.6. Also

notice that the CCF failure rates during test are indicated as andDDC
test

DUC
test .

4. The only change in the PFDCCF(t) model is made for the notation of CCF rates during test in

Eq. (6.16) (originally Eq. (5.16)). The rest of the PFDCCF(t) remains unaltered.

5. Table 6.5 (column headed PIND) guides the construction of fault trees of a specific MooN

architecture related to the contribution of the independent failures of each component as

follows: The coefficients of each formula determine the number of combinations of

independent failures. The exponents indicate the number of basic events (independent

failures) to be included per combination.

Chapter 6. Modelling and optimization of SIS including MooN voting architectures 193

6.2.9. Application example

In order to demonstrate the functionality of the model, a case study is formulated. The

maximum and average PFD is evaluated for MooN systems with up to five components. The

data of the problem is: T=1.9x10-6; =10%; =50%; Tr=8 hrs; Tt=1 hr, TI=1 year, uniform

staggered test, mission time T=10 years. The results are shown Figure 6.10.

1oo2 2oo2 1oo3 2oo3 3oo3 1oo4 2oo4 3oo4 4oo4 1oo5 2oo5 3oo5 4oo5 5oo5

10-2

10-1

Architecture

SIL 1

SIL 2

SIL 3

SIL 4

PFDavg
PFDmax

10-3

10-4

10-5

10-6

MooN PFDavg PFDmax

1oo2 2.209e-004 4.161e- 003

2oo2 7.504e-003 1.164e- 002

1oo3 4.192e-005 2.878e- 004

2oo3 3.650e-004 7.269e- 004

3oo3 1.038e-002 1.447e- 002

1oo4 1.572e-005 6.264e- 005

2oo4 7.866e-005 1.576e- 004

3oo4 4.788e-004 9.385e- 004

4oo4 1.291e-002 1.696e- 002

1oo5 6.721e-006 2.508e- 005

2oo5 3.777e-005 7.587e- 005

3oo5 1.009e-004 2.023e- 004

4oo5 5.857e-004 1.131e- 003

5oo5 1 .519e-002 1.922e- 002

Figure 6.10. PFD of MooN architectures

The results obtained are congruent with what was formulated in Table 6.1 regarding the number

of faulty components that can fail the entire system (N-M+1). As M increases (with fixed N) the

number of faulty components that can fail the system is reduced, and thus the probability of

dangerous failure increases, as can be seen in the graph. Also observe that the trend of the graph

for 1ooN systems is congruent: as N raises (with M=1) PFD drops. Just for illustration purposes,

Figure 6.11 shows the plot of PFD for a 4oo5 system. The plots show the independent and CCF

(dotted red line) PFD(t) in the upper graph, while the lower graph illustrates the PFDmax (blue)

and PFDavg (black).

Figure 6.11. Plots of PFD(t) of a 4oo5 system

Chapter 6. Modelling and optimization of SIS including MooN voting architectures 194

6.3. MODELLING OF STR FOR MooN ARCHITECTURES

6.3.1. Effects of bypass on the STR

This section is dedicated to study the behaviour of MooN during normal operation and their

reconfiguration during test from the perspective of STR modelling. The analysis follows the

same structure as for the one made for PFD modelling in Section 6.2. The bypassing philosophy

established in that section is that the bypass will be closed for 1ooN (parallel) architectures

closed and open for MooN (M>1) architectures. It has been seen that the specific bypass for one

component influences how the system fault tree is reconfigured during test. However, the effect

that a bypass has on the spurious trips is different than the effect of a bypass on PFD. Actually,

as with the PFD quantification, a bypass has an effect that resembles a failure, but in the

opposite direction. Remember that spurious trips are safe failures. For PFD the bypasses behave

in a similar way to a dangerous failure of the corresponding basic event in the fault tree. A

closed bypass resembles a dangerous failure (and thus it takes a similar value in the PFD fault

tree). However, regarding safe failure this would resemble the opposite, and thus a zero in the

STR fault tree. This can be easily understood for the open bypass. This would resemble a no-

failure for PFD (since the action to trip is an open switch). But for the STR this resembles a

failure (because a false trip is always the result of an open state). Therefore, an open bypass

corresponds to a value of one in the STR fault tree. In conclusion, the bypasses take the opposite

value in the PFD and the STR fault trees. For STR a closed bypass is equivalent to a value of

zero, and an open bypass a value of one.

6.3.2 Reconfiguration of STR fault trees with bypasses

Figure 6.12. Reconfiguration of STR fault trees of Moo2 architectures

Chapter 6. Modelling and optimization of SIS including MooN voting architectures 195

Figure 6.12 illustrates the reconfiguration of STR fault trees during test. It also shows the

changes in the Venn diagrams related to the first-order cut sets. Observe the change of the value

of component A during test according to the corresponding bypass: a closed bypass for the 1oo2

system makes the basic event A=0; an open bypass for the 2oo2 system makes the basic event

A=1. As a consequence, according to the Venn diagram, the STR decreases for the 1oo2 system

during test, while for the 2oo2 increases. It is important to remember that the Venn Diagrams

represent the probability of system failure based only in first-order cut sets.

Figure 6.13. Reconfiguration of Moo3 architectures from the STR perspective

1oo4 architecture

During test

2oo4 architecture

3oo4 architecture 4oo4 architecture

During test

During test During test

A

B

C

D

CCF
AB

CCF
BC

CCF
AD

CCF
CD

CCF
ABC CCF

BCD

CCF
ABD

CCF
ACD CCF

ABCD

A

B

C

D

CCF
AB

CCF
BC

CCF
AD

CCF
CD

CCF
ABC

CCF
BCD

CCF
ABD

CCF
ACD CCF

ABCD

A

B

C

D

CCF
AB

CCF
BC

CCF
AD

CCF
CD

CCF
ABC CCF

BCD

CCF
ABD

CCF
ACD

CCF
ABCD

A

B

C

D

CCF
AB

CCF
BC

CCF
AD

CCF
CD

CCF
ABC CCF

BCD

CCF
ABD

CCF
ACD

CCF
ABCD

A

B

C

D

CCF
AB

CCF
BC

CCF
AD

CCF
CD

CCF
ABC CCF

BCD

CCF
ABD

CCF
ACD

CCF
ABCD

A

B

C

D

CCF
AB

CCF
BC

CCF
AD

CCF
CD

CCF
ABC CCF

BCD

CCF
ABD

CCF
ACD

CCF
ABCD

A

B

C

D

CCF
AB

CCF
BC

CCF
AD

CCF
CD

CCF
ABC CCF

BCD

CCF
ABD

CCF
ACD

CCF
ABCD

A

B

C

D

CCF
AB

CCF
BC

CCF
AD

CCF
CD

CCF
ABC CCF

BCD

CCF
ABD

CCF
ACD

CCF
ABCD

Figure 6.14. Reconfiguration of Moo4 architectures from the STR perspective

Chapter 6. Modelling and optimization of SIS including MooN voting architectures 196

Different from the PFD, the STR is a measure of frequency (no probability). Frequency basic

events cannot be multiplied in AND gates, which means that some of their basic events have to

be converted to probabilities before quantifying the top event. This is indicated in the fault trees

with Fr for frequency basic events, and with P() for probabilities. This problem did not

arise during optimization of parallel systems because their fault trees contain only OR gates.

However for systems with M>1 this conversion has to be taken into account. Observe the AND

gate in the fault tree of the 2oo2 system. The first basic event is the frequency of the failure of

the A component, while the second one is the probability of the second component B. This

similar situation will be seen for three-component systems in Figure 6.13. Notice again this

change in the AND gates of the basic events. The same assumptions for the bypasses apply.

Figures 6.13-6.14 illustrate the changes in STR during test for architectures with three and four

components based on the first-order cut sets. Observe these figures and compare them with

Figures 6.8-6.9. It can be noticed that the CCF of the STR of a MooN architecture behaves in a

similar fashion to the CCF of the PFD of a (N-M+1)ooN architecture. The PDS Method (Hauge

et al., 2006a) had previously arrived to a similar conclusion. It can be therefore formulated that

the modification factor to use for estimating the CCF related to STR of a MooN system would

be C(N-M+1)ooN. Therefore, the CCF share can be calculated as:
S

ooNMN
SSC C)1(' (6.26)

The safe independent failure rate of a single component (SN) can be calculated based on Eq.

(6.2), previously used for estimating dangerous independent failures:
S

N
SN H)1((6.27)

In the same fashion as for PFD, and based on the conclusions drawn above, an equivalence of

STR based on first-order cut sets can be established, which are shown in Table 6.7. In the table

the probability of spurious failure related to CCF on N components is indicated as Psf(CFFN).

The values indicated for the CMooN modification factors can be taken from Table 6.2.

Table 6.7. Quantification of STR based on first-order cut sets
Architecture STR

Normally
STR
During test

CMooN
Normally

CMooN
During test

STR behaviour
during test

1ooN N SN

+Psf(CCFN-M+1)
(N-1) SN

+Psf(CCFN-M+1)
C(N-M)ooN C(N-M)ooN Decreases

2ooN Psf(CCFN-M+1)
(N-1) SN

+Psf(CCFN-M+1)
C(N-M+1)ooN C(N-M+1)ooN Increases

MooN
(2<M<N) Psf(CCFN-M+1) Psf(CCFN-M+1) C(N-M+1)ooN C(N-M+1)oo(N-1) Increases

NooN Psf(CCFN) Psf(CCFN-1) C1ooN C1oo(N-1) Increases

Chapter 6. Modelling and optimization of SIS including MooN voting architectures 197

Several observations can be made from Table 6.7:

The final values of the system STR are practically shaped by the CCF contribution in every

MooN architecture.

For 1ooN systems the STR decreases during test, while that for MooN architectures (M>1)

the STR decrease. This difference is caused by the kind of bypass used.

1ooN architectures have the N independent basic events as first-order cut sets, and thus

these events have an important contribution in the STR.

2ooN architectures are different for other architectures (where M>2): during normal

operation only the CCF contribution is important, but during test the independent failures of

N-1 components are added to the total STR as first-order cut sets.

For MooN architectures where M>2, only the CCF gives first order cut sets. At the same

time, during test reconfiguration, the CCF contribution to the STR increases, and thus the

modification factor CMooN changes (which does not happen when M 2). This can be

observed comparing the Venn diagrams of Moo4 architectures for PFD and STR (Fig. 6.9

vs Fig. 6.14). For example, the Venn diagram of the 3oo4 architecture in the STR behaves

like a 2oo4 system by PFD during normal operation (i.e. C1oo2), but during test it behaves

like a 2oo3 system (C2oo3). Making a generalization, this means that the modification factor

changes from C(N-M+1)ooN to C(N-M+1)oo(N-1). This generalization can be verified analyzing the

logic of systems with larger M (with switch diagrams for example).

Table 6.8. General rule of contribution of independent failures to STR
Contribution of independent failuresMooN Normal state During test

1oo2 2· SN SN

2oo2 SN·Psf(SN)1 SN

1oo3 3· SN 2· SN

2oo3 3 SN·Psf(SN)1 2 SN + SN· Psf(SN)1

3oo3 SN· Psf (SN)2 SN· Psf(SN)1

1oo4 4· SN 3· SN

2oo4 6 SN· Psf (SN)1 3 SN +3 SN · Psf(SN)1

3oo4 4 SN· Psf (SN)2 3 SN · Psf (SN)1+ SN· Psf(SN)2

4oo4 SN· Psf (SN)3 SN · Psf (SN)2

1ooN SNN SNN)1(

2ooN*)(SNPsf
M
N SN SNSNPsfN

M
N

N)(11

MooN
(2>M>N)

1)(MSN SNPsf
M
N SNMM SNPsf

M
N

M
N

SNPsf
M
N 12)(

1
1

)(
1
1

NooN 1)(NSN SNPsf 2)(NSN SNPsf
*The equations for 2ooN are a particular case derivation from MooN

Same as with the PFD, the total STR could be approximated based the contribution of the first-

order cut sets given in Table 6.7. However, if the system did not have CCF the STR would be

Chapter 6. Modelling and optimization of SIS including MooN voting architectures 198

equal to zero, which would be unrealistic. For this reason, the cut sets with order higher than

one and with only independent failures in their basic events are also taken into account during

the STR quantification. Table 6.8 shows the contribution by independent failures for MooN

systems with up to N 4. Here SN is the safe independent failure rate, and Psf(SN) indicates the

probability of independent safe failure (here SN stands for Safe Normal failure mode).

Following the contributions indicated in the table, it is possible to identify the pattern that is

summarized in the equations presented in the last rows.

6.3.3. Probability of safe failures

Remember that the failure modes of a component are split by the automatic diagnostic coverage

into detected and undetected (Eqs. (1.13-1.14)). Thus, the probability of safe failure is related to

the failure residence time. For safe detected (SD) failures (assuming they are detected and

repaired immediately) the probability of safe failure (Psf) is determined by the Tr (Eq. (6.28)).

In contrast, the residence time for safe undetected (SU) failures could be the entire system

mission time T (or life time until an overhaul), see Eq. (6.30). This affects considerably the STR

by internal failures (STR) of a redundant system. Observe the fault tree for a 2oo2 system (Fig.

6.12), and the formula for independent failures in Table 6.8. With two components voting in

2oo2, i.e. an AND gate, the failure rate of one component is multiplied times the probability of

spurious (safe) failure of a second component, which may become quite large by the undetected

failure mode.

In Chapter 5 it was considered that proof testing targeted only dangerous failures, and therefore

it did not affect the STR . However, some authors consider that the proof test actually detects

some safe failures (CCPS, 2007). If it is considered that proof test actually manages to detect

some fraction of safe failures, an intermediate failure mode between detected and undetected

would appear: the safe failures undetected by the automatic diagnostic coverage but detected by

proof test (SUT). Thus, the probability of safe failures could be finally split into three failure

modes:

r
SD

r
S TTSDPsf)((6.28)

)()()1()(r
tsSU

r
tsS TTITTISUTPsf (6.29)

TTSUPsf tsSUtsS)1()1()1()((6.30)

Where:
ts= Diagnostic coverage of proof test on safe failures

Psf(SUT)= Safe undetected failures (by automatic diagnostics) but detected by the proof test

Chapter 6. Modelling and optimization of SIS including MooN voting architectures 199

As mentioned above, if the proof test coverage ts were 100%, Eq. (6.30) would become void. In

contrast, if we consider that the proof test does not detect any safe failures (ts =0%), Eq. (6.29)

would become void.

6.3.4. Quantification of STR modified during test

As seen in Figures 6.12-6.14, the total STR of a determined architecture changes during test as a

consequence of the system being reconfigured by the bypass of the component under test. The

STR of 1ooN architectures decreases during test, and for MooN (M>1) the STR actually

increases during test and repair. The test-plus-repair time could seem that short (compared to the

Test Interval) that it could be neglected. However, remember that this contribution is considered

so important that it is being included in the quantification of PFD(t).

The question that arises is how to include the effect of the reconfiguration in the final STR if the

model being used is not time dependent. Lu & Jiang (2007) estimated the relative time spent in

each configuration (normal operation versus operation with one component under test). Then

they multiplied the corresponding STR by the relative time, and summed up both contributions:

)()(TRTRNN STRRtSTRRtSTR (6.31)

Where:

RtN= Relative time under normal operation

RtTR= Relative time under test and (possible) repair

STRN= STR for normal operation

STRTR= STR for test (and repair)

Substituting the value of relative times and reordering:

TR

rt

N

rt
STR

T
TI
TfQTT

STR
T

TI
TfQTTT

STR
)()(

(6.32)

Since:

TI
fQTT

Rt rt
TR

)(
(6.33)

Therefore:

TRTRNTR STRRtSTRRtSTR)1((6.34)

Where Q(f) is the probability of the component under test being found failed would be given by

Eq. (6.35), considering that Q(f)=Q(t)=Q(t=TI):
TIeqfQ 1)((6.35)

Chapter 6. Modelling and optimization of SIS including MooN voting architectures 200

Remember that q is equivalent to the unavailability as a result of (dangerous) detected failures

in the PFD(t) model (Eqs. (6.10-6.19)). It is important to remember that in Chapter 5 it was

assumed that proof testing detects only dangerous failures, so its benefits did not impact the

STR quantification. This is not the case of its adverse effects. Therefore the test interval TI

refers to the dangerous proof test. However, apart from test time, when a component is found

dangerously failed it is kept out of service for the additional repair time. These test and repair

times (of dangerous failures) thus affect the STR because during this time the total STR changes

due to the temporary system reconfiguration.

Therefore, if it is considered that the proof test does detect some safe failures, the complete

expression for Eq. (6.35), would become:

TI
r

SDCSDNDDCDDN SUTCSUTNDUCDUN

eTfQ)(1)()((6.36)

Notice that:
tsSUNSUTN (6.37)
tsSUCSUTC (6.38)

In Eqs. (6.36-6.38), the new failure rates nomenclature is:
SUTN= Safe undetected by automatic diagnostics, but detected by test (independent)
SUTC= Safe undetected by automatic diagnostics, but detected by test (CCF)

It is worth highlighting that the above discussion refers to the STR related to component internal

failures (STR). Notice that the change in STR during test can have either a negative or positive

effect, depending on the MooN architecture and the bypass used. This effect is independent

from the adverse effect caused by the human error test-induced additional STRtest, which is

discussed in the next section.

6.3.5. Test-induced STR

Eq. (5.27) established that the total STR of a component is the sum of the STR attributed to

internal failure (STR), and the test induced (STRtest). The expression for estimation of STRtest

was given in Eq. (5.28). The probability of test-induced spurious trip Pr-trip can certainly be

influenced by the type of bypass used during test. A closed bypass in a 1ooN architecture could

not trip the plant, but an open bypass in a MooN (M>1) actually could. This is not the only

factor to consider indeed; otherwise Pr-trip would be equal to zero for a closed bypass. The

human error influence on Pr-trip must include potential errors induced on the component being

tested: e.g. it is possible to finish test and not exactly put electric cards to their places (sic) and

start with test on another channel , but it can also contemplate errors that could affect other

Chapter 6. Modelling and optimization of SIS including MooN voting architectures 201

components (not only the one being tested): e.g. during test of one channel another channel is

taken off by human error for example (Cepin et al., 1994).

Section 5.8 demonstrated how the total STR of a parallel system could be modelled with fault

trees (Fig. 5.10). There, the STRtest contribution is included into the fault tree as a basic event

per component. In the example of Figure 5.10 the system is a two-component parallel

arrangement, so the STR by test basic events are just summed up (i.e. OR gate).

In the case of spurious trips by internal failures in MooN voting systems the failure mechanism

is more complex, not a simply OR gate anymore, and it changes according to the specific voting

scheme, as it has been seen in the previous section. The question that arises here is whether the

basic events related to STRtest should be subject to voting as well. As explained above, Pr-trip can

include induced transients on both the component under test and possibly the other redundant

components. It is therefore not clear enough whether the voting mechanism also changes the

relation amongst the STRtest basic event in the fault tree. For example the question in a 2oo2

system would be whether the fault tree of the STRtest events would have an AND gate in a

similar fashion as shown in Figure 6.12.

Several options arise. To quantify the total STRtest as a parallel system regardless of the MooN

voting architecture could give a too large STRtest figure for MooN systems where M>1. On the

contrary, modelling STRtest using a fault tree with the specific MooN voting architecture may

give a too small STRtest figure, because it could ignore that human error may affect both, the

component under test or the components remaining in service. Since it is very difficult to

determine at this stage if other components are affected and to what extent, a good strategy is to

reach a compromise between the two options mentioned. An approach is using the voting

scheme but based on the fault trees as they are reconfigured during test, during which time the

test activity is truly prone to affect the STR. This situation is analyzed in Figure 6.15. The first

column of the figure shows the fault trees corresponding to (independent) safe failure of the

components. From this, the potential spurious trips caused during test (test-induced spurious

trips) are derived, and shown in the second column.

For 1ooN architectures, the fault trees would remain without change due to the fact that the used

bypass is closed, which is equivalent to a dangerous failure. Therefore, with relation to safe

failures this basic event is equivalent to a value of zero (A=0 in Fig. 6.15) when modelling for

STR . However, under this condition the operator still can erroneously open the bypass (instead of

closing it) and provoke a spurious activation. Thus, even under test reconfiguration, all the

components are considered.

Chapter 6. Modelling and optimization of SIS including MooN voting architectures 202

Figure 6.15. Derivation of test-induced STR (second column)

On the contrary, the bypass must be open for MooN architectures (M>1), equivalent to a safe

failure (thus A=1). This bypass could be left in place by error. However, since A=1 this is

irrelevant to STRtest because this is equivalent to A being already spuriously failed. Therefore, the

expression that would be used for quantify STRtest would be derived from the fault tree

reconfigured by the test (compare Fig. 6.15 with 6.13-6.14). Notice that in this case STRtest would

be larger than the one obtained using the fault tree during normal operation, but it is still smaller

than simply adding the individual STRtest. This option is therefore, a middle ground solution

between the two options initially mentioned. Table 6.9 derives the equations for quantifying the

contribution of test-induced failures to the STR (based on Fig. 6.15). In the table STi stands for

test-induced spurious trips failure rate per component. Finally, table 6.10 presents a summary of

formulae for quantification of STR.

Chapter 6. Modelling and optimization of SIS including MooN voting architectures 203

Table 6.9. Contribution of test-induced failures STRtest
MooN Contribution of test-induced failures
1oo2 2 STi

2oo2 STi

1oo3 3 STi

2oo3 2 STi + STi·Pr-trip
3oo3 STi ·Pr-trip
1oo4 4 STi

2oo4 3 STi +3 STi ·Pr-trip
3oo4 3 STi ·Pr-trip+ STi (Pr-trip)2

4oo4 STi (Pr-trip)2

1ooN STiN

2ooN STi
triprPN

M
N

N 11

MooN
(2>M>N)

STiM
tripr

M
tripr P

M
N

M
N

P
M
N 12

1
1

1
1

NooN 2N
tripr

STi P

Table 6.10. Summary of formulae for quantification of STR
Architecture State Contribution CMooN
1ooN STR -IND

SNNNormal
operation STR -CCF)(1MNCCFPsf C(N-M)ooN

Test STR -IND
SNN)1(

STR -CCF)(1MNCCFPsf C(N-M)ooN

STRtest* STiN

2ooN Normal
operation STR -IND)(SNPsf

M
N SN

STR -CCF)(1MNCCFPsf C(N-M+1)ooN

Test STR -IND
SNSNPsfN

M
N

N)(11

STR -CCF)(1MNCCFPsf C(N-M+1)ooN

STRtest*
STi

triprPN
M
N

N 11

MooN
(2<M<N)

Normal
operation STR -IND

1)(MSN SNPsf
M
N

STR -CCF)(1MNCCFPsf C(N-M+1)ooN

Test STR -IND
SNMM SNPsf

M
N

M
N

SNPsf
M
N 12)(

1
1

)(
1
1

STR -CCF)(1MNCCFPsf C(N-M+1)oo(N-1)

STRtest*
STiM

tripr
M

tripr P
M
N

M
N

P
M
N 12

1
1

1
1

NooN STR -IND
1)(NSN SNPsfNormal

operation STR -CCF)(NCCFPsf C1ooN

Test STR -IND
2)(NSN SNPsf

STR -CCF)(1NCCFPsf C1oo(N-1)

STRtest*
2N

tripr
STi P

*Applies only during test

Chapter 6. Modelling and optimization of SIS including MooN voting architectures 204

6.3.6. Application example

The STR model is tested in a group of MooN redundant subsystems (where N 5) composed of

conventional transmitters. The device specification corresponds to the electronic PT in Table

5.1. Simultaneous test is assumed, with a mission time of 10 years, and a proof test coverage

over safe failures ts=50%.

Figure 6.16. Evaluation of STR for several MooN architectures

Results are shown in Figure 6.16. The first two figures show the STR , STRtest and total STR for

one-month and one-year test interval respectively. The third graph presents the comparison of

total STR for the two cases. Observe the first plot where TI=1 month. STRtest is larger than

STR for some architectures, which in turn increments considerably the total STR. This

demonstrates the importance of including STRtest in the quantification. Observe in the second

plot, however, that with a larger TI (1 year), STRtest is usually smaller than STR , and the total

STR is practically equivalent to STR , which indicates that with a larger TI the negative effects

of the test have less importance. The third plot compares the total STR for both cases. STR for

TI=1 month is consistently higher or equal to TI=1 year, which confirms the negative effects of

too frequent testing. However, observe that for architectures where M 3 the effect of test on the

STR becomes negligible, and the STR for both cases become practically equal.

Chapter 6. Modelling and optimization of SIS including MooN voting architectures 205

6.4. APPLICATION TO OPTIMIZATION OF SYSTEM DESIGN

6.4.1. Description of the problem

Both models developed above, for PFDavg and STR, are applied in this and the next section to

optimization of SIS. In this section, the application case is for optimization of system design.

The application case is the protective function against high pressure and temperature of a

chemical reactor. Figure 6.17 shows the system. It is assumed that in every case the voters are

perfect. It is also assumed that the PT and TT must be both fully functional for the safety system

to be working. Therefore, the four subsystems are to be modelled in a logical series structure.

The data of the problem is shown in Table 6.11. The case study seeks to explore whether

introducing voting architectures as an alternative to simple parallel redundancies in the

optimization of design would enable the achievement of better trade-offs between the two

dependability attributes (PFDavg and STR), and therefore to attain a better LCC. This can be

achieved optimizing the N and M indices of the MooN voting system. Two optimization cases

are run in order to contrast their results.

FC1

FC Subsystem

FC2 FCN

PT1

PT2

PTN

PT Subsystem

M/N

TT1

TT2

TTN

TT Subsystem

M/N

LS Subsystem

LS1

LS2

LSN

M/N

Chemical
reactor

Figure 6.17. Chemical reactor protection system with MooN subsystems

Case 1. Optimization of system design with option of MooN architectures. All subsystems,

excepting the FC, can be subject to voting. The decision variables are: the type of

components for the subsystem (three choices per subsystem, distinguished and type 1, 2, 3,

excepting for FC that are two), the number of components N (up to 5), and the number of M

voting components (M N) (for PT, TT and LS). The search space has approximately

4.22x106 potential solutions. The vector of decision variables is therefore:

FCFCLSLSLSTTTTTTPTPTPT NTypeMNTypeMNTypeMNType ,,,,,,,,,,x (6.37)

Case 2. Optimization of system design with only parallel architectures. The same as above,

but all subsystems are constrained to M=1.

Chapter 6. Modelling and optimization of SIS including MooN voting architectures 206

Table 6.11. Dependability and Lifecycle Cost data__
Subsystem PT TT LS FC__
Type 1 2 3 1 2 3 1 2 1 2 3___

Smart Conventional Switch Smart Conventional Switch Safety Standard Air Hydraulic Motor
transmitter Electronic transmitter Electronic PLC PLC operatedb operatedb operatedb

transmitter transmitter___
S/ D (%) 69.2/31.8 56.0/51.1 10/10 97.9/7.5 86.9/45.5 10/10 100/81.25 45/60 0/25 0/20 0/10
SD (x10-6/hr) 0.265 1.21 0.68 5.05 6.5 0.92 3.46 1.77 0 0 0
SU (x10-6/hr) 0.118 a 0.95 6.13 0.11a 0.98 8.30 0 2.17 3.94 3.17 9.17
DD (x10-6/hr) 0.048 0.97 0.41 0.026 1.57 0.76 0.026 2.89 0.84 1.09 0.79
DU (x10-6/hr) 0.103 0.93 3.70 0.322 1.88 6.84 0.006 1.92 2.51 4.35 7.11
T (x10-6/hr) 0.534 4.06 10.92 5.508 10.93 16.82 3.492 8.75 7.29 8.61 17.07

Type B A A B A A B B A A A
SFF (%) 80.7 77.09 66.12 94.15 82.79 59.33 99.83 78.06 65.57 49.48 58.35
Cpurchase ($) 4844 2306 500 2560 1406 500 3000c 2500c 6940 6400 6200__
Lifecycle cost data: Other data:
Design/install/commissioning PLC= 10,320 ($) Cost of rack of Safety PLC: 31000 ($)
Maintenance PLC= 960 ($/event) Cost of rack of Standard PLC: 20500 ($)
Test PLC= 240 ($/event) Repair time=8 (hrs)
Design overall instrumentation= 3,060 ($) Shut down time= 24 (hrs)
Installation/commissioning per instrument=600 ($) Test Interval= 1 (year)
Maintenance per instrument= 240 ($/event) Plant risk without SIS=8.55 (x10-3 /yr)
Test per instrument= 60 ($/event) =10%e

Repair cost per instrument & PLC= 60 ($/hour)
Spares per repair= 25% component cost Notes:
Loss of production= 2,000 ($/hour) aThis failure mode does not cause spurious trip, only quantified for SFF
Start up cost= 1800 ($) bIncludes actuator
Catastrophic loss=150x106 ($) cThe PLC must be bought with a rack which cost is indicated above
SIS life= 15 (years) eApply for all cases, except for SD of: PTA=5%, TTA=2%, TTB=5%
Discount rate=0.05__

6.4.2. Implementation of the solution

Modelling of the dependability objectives is made with the models developed in Sections 6.2

and 6.3. The fault tree for PFD(t) at subsystem level is constructed based on the guidance given

by Table 6.5. The fault tree at system level includes house events that select amongst different

architectures for each subsystem, as it is shown in Figure 6.17. The tree only exemplifies the PT

subsystem, while the other subsystems are developed in the same fashion.

The quantification of PFD(t) at subsystem level is based on the model given by Eqs. (6.10-

6.19). The failure rates for the basic events are determined by Eqs. (6.20-6.25). The

modification factors CMooN for each architecture can be determined based on Table 6.6, and their

actual values taken from Table 6.2. Same as in Chapter 5, the PFD(t) is evaluated every hour for

the entire system operating life, and then these point values are averaged (Eq. (5.20)).

The fault tree for STR follows the philosophy of Figure 6.18 regarding the application of house

events, and using of course the adequate selection of logic gates. At subsystem level the fault

trees can be constructed and quantified following Table 6.10 (the values for modification factors

are taken from Table 6.62). Remember that, according to Eq. (5.27), the total Spurious Trip

Rate of each subsystem is composed by the sum of spurious trip caused by internal failures and

test-induced (STRT=STR +STRtest). The fault tree follows the general structure seen in Figure

5.10. These contributions are reconfigured during testing, determined by Table 6.10, and

summed as indicated by Eq. (6.34). Failure rates of basic events can be determined applying

Chapter 6. Modelling and optimization of SIS including MooN voting architectures 207

Eqs. (6.28-6.30) and (6.37-6.38), and the test-induced share by Eq. (5.28).

System dangerous
failure

Pressure transmitter
subsystem dangerous

failure

Logic solver
subsystem

dangerous failure

Final Control element
subsystem

dangerous failure

Temperature transmitter
subsystem dangerous

failure

1oo1 architecture
selected &

dangerous failure

1oo1
selected

1oo1
dangerous

failure

1oo2 architecture
selected &

dangerous failure

1oo2
selected

1oo2
dangerous

failure

2oo2 architecture
selected &

dangerous failure

2oo2
selected

2oo2
dangerous

failure

5oo5 architecture
selected &

dangerous failure

5oo5
selected

5oo5
dangerous

failure

t ttt

t

Figure 6.18. Fault tree for quantification of PFD with optional MooN architectures

Modelling of LCC is made using the model presented in Chapter 4 (Eqs. (4.12-4.22))

quantifying the cost of repair time with Eq. (5.35).

The implementation of the optimization algorithm is the same as in Chapter 5. The NSGA-II

algorithm is used with controlled elitism, following the structure showed in Figures 5.13-5.14.

The codification is made with integer numbers and the parameters are used as indicated in

Section 5.10.3.

6.4.3. Discussion of results

The Pareto-optimal sets obtained from both cases are compared in Figure 6.19. The plots PFDavg

vs STR and PFDavg vs LCC clearly show that the solutions of both fronts with the same level of

PFDavg have lower LCC and lower STR in the optimal set of Case 1, where the option to choose

MooN architectures was available. For the graph STR vs LCC this advantage is not that clear.

However, if one solution of Case 1 is picked, it can be seen that for the same LCC a solution in

Case 2 would have a higher STR. In order to make a more rigorous verification of the advantage

of Case 1 over Case 2, the solutions belonging to both sets were put together and re-ranked to

find only the non-dominated individuals. From all the set (202 solutions altogether), Case 2

Chapter 6. Modelling and optimization of SIS including MooN voting architectures 208

provided only three optimal solutions (at the extreme end of the front, where PFDavg~1x10-4),

and one of them actually belonged to both sets (Cases 1 and 2). The other two are still a sub-set

of Case 2. Thus, they should still be locatable in the front in further runs of this optimization

case. In general, the optimal set with MooN architectures dominated the only-parallel one.

Figure 6.19. Comparison of optimal sets of both optimization of design cases

Another important observation from Figure 6.19 is that in these cases the PFDavg is not always

in conflict with LCC in the Pareto-optimal front. There is a region where PFDavg and LCC hold

a harmonious relationship (PFDavg<2.2x10-3), and another where they are in conflict

(PFDavg>2.2x10-3). This is a result of the balance of costs achieved with the changing design:

procurement vs operation costs and safe vs dangerous risk costs. On the other hand, STR is also

in a dual relationship with LCC in the front, which change around STR~0.087. Finally, it can be

seen that PFDavg and STR are consistently in conflict. Another feature to observe is that a region

of high saturation (PFDavg vs LCC) on the left side of the graph is not present as in the cases of

previous chapters. A high saturation point appears only if the PFDavg scale is changed to linear.

Observe now Figure 6.20, in which the full results are shown for both cases. In this figure, the

particular combination of decision variables and resulting objectives are shown for each

solution of the optimal set. It is notable that the optimizer consistently selects the components

with better specifications despite their higher acquisition cost (mostly Type 1, see Table 6.10).

These components have overall lower failure rates and mostly higher diagnostic coverage. This

means that they have a reduced impact in both PFDavg and STR (i.e. lower values) in

Chapter 6. Modelling and optimization of SIS including MooN voting architectures 209

comparison with the other types of components available. This in turn impacts positively on the

overall LCC. Therefore, their benefits in terms of reduced operational costs and risk costs, by

both loss of production and loss of safety (i.e. catastrophic hazards) outweigh the expenditure

caused by their high initial acquisition cost.

Figure 6.20. Results obtained from both design optimization cases

Comparing the solutions from both cases, as shown in Figure 6.20, it is clear that optimization

with MooN offers many more options to the optimizer. In the only-parallel case, improvements

in PFDavg are gained by adjusting the FC subsystem, then the PT. In these two subsystems lie

most of the trade-offs. Once no more improvements are possible changes in the TT and LS

Chapter 6. Modelling and optimization of SIS including MooN voting architectures 210

subsystems are explored. It can be seen in the optimization with MooN that the trends of the

variables of the four objectives are much less flat than the only-parallel case, meaning they

change more dynamically to achieve optimal trade-offs.

In Case 1, the FC subsystem (which has only parallel redundancy) dominates the changes in

PFDavg and LCC. This is observable in Figure 6.21, where the solutions have been ordered

ascending number of FC s components. Notice the step-like changes in those variables when the

number of components, or the type, are changed. This suggests that the improvements in PFDavg

are largely acquired by increasing the parallel redundancy level of the FCs. This, however, also

increases the STR.

1.E-04

1.E-03

1.E-02

1.E-01

0
1
2
3
4
5

1 10 20 504030 60 70 80 90 100 110 120
Solutions

PFDavg STR LCCType N

FC subsystem’s variables

ObjectivesPFDavg

Figure 6.21. Case 1. Objectives in relation to the FC subsystem

It is important to notice how, from left to right, decreasing the PFDavg requires an increment in

the number of components in the subsystem N and a reduction in the M voting components.

This is easy to spot in the variables of the PT and TT subsystems. These changes, however,

affect the STR in the opposite sense. Therefore, the option of being able to choose between

different levels of M voting components provides a better balance of PFDavg against STR.

Observe both ends of the PT and TT subsystems. At the far left, with the lowest STR, the voting

is NooN. On the contrary, at the far right, with the lowest PFDavg, the voting is 1ooN.

Clearly this trading between the variables N and M also allows balancing of the total LCC

associated with the system. Observe that the top graph showing the objectives reiterates the

trend in which the PFDavg and STR have a dual relationship with the LCC in the different halves

of the graph, the transition of which is marked by solution 61 which has the lowest LCC. The

likely explanation is that the risk cost associated to the STR (CSTR in Eq. 4.23) becomes the

dominant factor of the LCC after solution 61. Observe the set of solutions 1-61. Trade-offs are

both in N and M values of the three MooN subsystems (PT, TT and LS). Also the number of

Chapter 6. Modelling and optimization of SIS including MooN voting architectures 211

solutions with M>1 (i.e. non-parallel subsystems) is very high, being also with M quite close to

N in most of the cases. It was seen in previous sections that, with a fixed number of components

N, increments in the voting components M increases the PFDavg (Fig. 6.10) but reduces the STR

(Fig. 6.16). It is thus clear that a low N/M ratio keeps the STR low (>0.087), which results in a

reduction of PFDavg and also reduces the LCC. On the contrary, for solutions 62-127 the number

of solutions with M>1 is largely reduced. The trade-offs increasingly depend on the number of

components N. Observe that, in general, the values of M are smaller than for solutions 1-61.

What is more, the PT subsystem has mostly M=1 (in solutions 62-127), and the number of

components in the FC subsystem is increased significantly. This means that many more

solutions in that group (65-127) have subsystems which are simple parallel and with a higher

number of components. Also the number of subsystem with M>1 have a larger N/M ratio. This

situation increments the STR consistently above 0.087, becoming a dominant factor of the LCC.

Observe that the LCC practically follows the trend of the STR for solutions 62-127. In

conclusion: systems with a higher level of voting (lower N/M ratio) achieve lower values of

STR greatly benefiting the LCC. However they have higher values of PFDavg. On the contrary,

increasing the number of components and using more parallel architectures decreases PFDavg

(i.e. safer systems) but increases the STR and, to some extent, the LCC.

Finally, Figure 6.22 presents the values of Safety Integrity Levels (SIL) achieved by the

solutions. The SIL corresponding to the system PFDavg and their architectural constraints are

shown. Remember that the final SIL is the one with the lowest values from these two. Observe

that in both optimization cases, for systems achieving SIL 2 or 3 by PFDavg, the architectural

constraints limit the SIL claimable to one inferior level many times. The opposite happens for

systems with SIL 1 by PFDavg. This is surely a constraint for the decision maker to consider.

Figure 6.22. SIL achieved by the solutions of the optimal sets of Cases 1 and 2

Chapter 6. Modelling and optimization of SIS including MooN voting architectures 212

6.5. APPLICATION TO OPTIMIZATION OF TESTING POLICIES

6.5.1. Description of the problem

This second case study is about application of the models to optimization of testing polices. The

design of the reactor protective system has been defined as shown in Figure 6.23. The

technology used in the subsystem is as follows: conventional pressure transmitter, smart

temperature transmitter, safety PLC and air operated valves. All data has already been provided

in Table 6.10.

In Chapter 5 it was verified that proof testing has both positive and negative impact on the

system dependability and LCC. This case study aims to explore whether the optimization of

testing policies where additionally the voting scheme (M) of some MooN subsystems can be

chosen could permit the implementation of better testing polices, counteracting the negative

impact of testing while having the same benefits in terms of safety and cost. This requires

optimization of the testing policy at subsystem level together with the number of M voting

components, subject to the constraint M N.

Figure 6.23. Safety system for the testing optimization case

Two optimization cases are carried out:

Case 3. Optimization of testing polices with option of MooN architectures. The testing

policies of the subsystem are optimized in the same fashion as in the previous chapter (see

Section 5.10). The TI is bounded between 30 and 365 days (730 for the LS), and TP1s

between 0 and TI. The multiplication factor P is a number between 0 and 1000 (then

multiplied by 1x10-3 so that P<1). In addition the number of voting components M of the

PT, TT and LS subsystem can be chosen (subject to M N). The total number of potential

solutions is 1.68x1031. The decision variables vector is then:

,,,,,,,,,,,,,,, 1111 FCFCFCLSLSLSLSTTTTTTTTPTPTPTPT PTpTIPTpTIMPTpTIMPTpTIMx
(6.38)

Chapter 6. Modelling and optimization of SIS including MooN voting architectures 213

Case 4. Optimization of testing policies only. The same as above, but all subsystems have

just simple parallel redundancy.

6.5.2. Implementation of the solution

The theory of testing polices and their optimization has been detailed in Chapter 5, and the

reader needs to be familiar with its content to be able to understand the implementation of this

case study. The execution of the case study is also made in a similar fashion as for the one in the

previous section. For Case 3, house events in the fault trees enable the change in voting

components M when selecting amongst different architectures constrained by the number N of

each subsystem. This is illustrated in Figure 6.24 for the PFDavg. Construction of the fault tree

for STR follows the same philosophy. Variations in the testing variables (TI, Tp1 and P) are

incorporating by feeding them into the equations for dependability modelling.

System dangerous
failure

Pressure transmitter
subsystem dangerous

failure

Final Control element
subsystem

dangerous failure

1oo2
dangerous

failure

1oo4 architecture
selected &

dangerous failure

1oo4
selected

1oo4
dangerous

failure

2oo4 architecture
selected &

dangerous failure

2oo4
selected

2oo4
dangerous

failure

3oo4 architecture
selected &

dangerous failure

3oo4
selected

3oo4
dangerous

failure

4oo4 architecture
selected &

dangerous failure

4oo4
selected

4oo4
dangerous

failure

Logic solver
subsystem

dangerous failure

Temperature transmitter
subsystem dangerous

failure

1oo2 architecture
selected &

dangerous failure

1oo2
selected

1oo2
dangerous

failure

2oo2 architecture
selected &

dangerous failure

2oo2
selected

2oo2
dangerous

failure

1oo3 architecture
selected &

dangerous failure

1oo3
selected

1oo3
dangerous

failure

2oo3 architecture
selected &

dangerous failure

2oo3
selected

2oo3
dangerous

failure

3oo3 architecture
selected &

dangerous failure

3oo3
selected

3oo3
dangerous

failure

Figure 6.24. Fault three for PFDavg of Case 3

6.5.3. Discussion of results

The Pareto-optimal sets obtained from both optimization cases are compared in Figure 6.25.

The first notable feature to observe is the domination of the optimal set of Case 3 over the

optimal set of Case 4. It is clear from observing the graphs PFDavg vs STR and PFDavg vs LCC

that, for the same levels of PFDavg, the costs in terms of STR and LCC are lower for Case 3

(optimization of testing together with voting M). It is also shown, in the STR vs LCC graph,

that solutions with the same level of LCC have lower STR in Case 3. An exercise in which the

solutions of both optimal sets were put together and re-ranked to obtain the only optimal ones

Chapter 6. Modelling and optimization of SIS including MooN voting architectures 214

showed that, from a set of 149 solutions, only three of them belonged to the optimal set of Case

4. Since these belong also to the search space of Case 3, it is believed that new runs of the

algorithm could find them. Therefore, it can be concluded that the optimization of testing

polices together with the level of voting M gives results that dominate those from optimization

without M.

Analyzing the relationships between the objectives in the optimal set of Case 3, it is shown that

the PFDavg has a dual relationship with LCC. There is a region of harmonious relationship

(PFDavg>1.09x10-3), and another region of conflicting relationship (PFDavg<1.09x10-3). The

PFDavg and STR (as with the cases analyzed in previous chapters) have a consistently conflictive

relationship. The STR and LCC tend also towards conflict.

Figure 6.25. Comparison of optimal sets of both optimization of testing cases

Figure 6.26 shows the complete results of both optimization cases, including the values of the

objectives and decision variables of each solution belonging to the Pareto-optimal sets. The two

graphs are put side by side to allow the reader to easily compare the two optimization cases.

With this one can easily identify the trends and trade-offs amongst the variables and

subsystems. Observe firstly the results given by Case 4. The PFDavg is reduced by primarily

lowering the TI of the FC subsystem (the time to first test Tp1 is already low). Notice that the

trend is to reduce the TI at the lowest possible level (30 days). Once this is done, the TI of the

TP and TT subsystems are also lowered to achieve further reduction in the PFDavg. The

Chapter 6. Modelling and optimization of SIS including MooN voting architectures 215

relationship of the PFDavg versus the LCC and STR is always conflictive in this optimization

case. Therefore, the action described consistently raises these two objectives. Recall that the FC

subsystem is the one with the lowest level of redundancy (1oo2) and with the less reliable

components. Therefore the reduction of PFDavg depends largely on its testing policy. On the

contrary, the LS that has high redundancy (1oo4) and highly-reliable components remains with

a high TI; i.e. above 400 days (low testing frequency). Also notice that the multiplication factor

P (explained in Eq. 5.25) of every subsystem, excepting LS, tends towards a high value, i.e.

towards full uniform staggering.

Figure 6.26. Results obtained from both testing optimization cases.

Now observe the results from Case 3. In comparison with Case 4, solutions with the same value

of PFDavg have lower LCC and STR values. This is notably evident for the STR, where the

difference of values can be noticed at a single glance at the upper part of Figure 6.26. Note,

however, that the TI and the Tp1 values of the PT, TT and FC subsystems remain at very low

levels. Their values are even lower than for the system with only-parallel redundancies (Case 4).

Chapter 6. Modelling and optimization of SIS including MooN voting architectures 216

This means higher testing frequencies and earlier in the system lifecycle. Nevertheless, in an

opposite sense, the multiplication factor P (in Case 3) has lower and more changing values than

in Case 4. This means that the distribution of the test events along the test interval has a lower

trend to be uniform (full staggering).

Remember that the only difference between cases 3 and 4 lies in the fact that Case 3 permits

voting (i.e. M is a decision variable) and Case 4 is limited to parallel redundancies (i.e. M=1).

Therefore, it is possible to that say introducing voting, permitting M to be varied between 1 and

N, causes of lower values of P in the optimal set of Case 3. This in turn suggests that trade-offs

are made between the level of voting M and the level of test staggering (determined by P) to

achieve lower values of PFDavg. This strongly suggest that by trading between the voting level

M and the test staggering P (with low TIs), low levels of PFDavg can be achieved with lower

values of STR and LCC rather than when varying only the testing parameters (with M=1).

This conclusion motivates a deeper analysis. It is clear that introducing voting in the subsystem

(i.e. M>1) lowers the level of staggering in the optimal set (the variable P). Even in the FC

subsystem that has only parallel redundancies the values of P are also lower (than in Case 4).

Therefore, the introduction of voting in some subsystems causes lower levels of P in all

subsystems. Also notice that even for solutions 124 to 149 (Case 3), where M=1 for all

subsystems except for LS, the values of P are still lower than in Case 4. Also observe that in

Case 3 the same values of PFDavg in both cases correspond to lower STR and LCC figures (than

in Case 4). All these remarks lead to the conclusion that the trade-offs between M and P are at

the system level. It is however difficult to establish what is the specific trade-off at subsystem

level, since there is no a recognizable clear exchange between M and P on a case-by-case basis.

Observe also that the level of reduction of P is more prominent in the TT and FC subsystems, in

that order. This can be explained observing Table 6.11, where it is seen that the total failure rate

per component T is higher in the smart transmitter and the air operated valves than in the

conventional pressure transmitter and the safety PLC (the technologies used in this case study).

In addition, compare the safe and dangerous failure rates of the smart temperature transmitter

against the conventional pressure transmitter. The PT has higher dangerous failure D rates than

the TT, but the TT has significantly higher safe failure rates S than the PT. Thus, is can be said

that the staggering P is lowered in the TT to decrease the STR (which is affected by higher S).

Observe now in the results given by Case 3 that the test intervals are also lower than in Case 4;

i.e. higher testing frequency. This is true for all subsystems, although more notable in the field

instruments (PT, TT and FC). This observation can be reinforced by comparing the group of

Chapter 6. Modelling and optimization of SIS including MooN voting architectures 217

solution that are between the same band of values of PFDavg in both cases. These are solutions

50-149 in Case 3 against the complete set of Case 4. The TIs in Case 3 solutions are consistently

lower. Therefore, it is evident that there is also a trade-off between TI and P. Since proof testing

is aimed at dangerous failures, this suggests that once voting is introduced in the form of the

variable M, the optimizer chooses to test more frequently the dangerous failures in all

subsystems (with lower TIs) in exchange of less staggered testing especially in the subsystems

with higher safe failure rates.

In addition, also trade-offs between the variables M and TI can be seen in some specific

solutions of Case 3. For instance, observe solutions 94-96 in the PT subsystem. The value of M

decreases and TI increases simultaneously. Also in solutions 125-149 of the PT subsystem the

variable M becomes equal to 1 at the same time that the values of TI are raised. For the TT

subsystem there is a rise in TI values after solution 81, where M becomes equal to 1. Thus, it is

clear that reduction of M cause TI to rise.

Considering the analysis of the previous paragraphs, it can be said that introducing voting levels

as the variable M in the subsystems enables trade-offs between this and the TI and P variables.

These are generally in the form of higher testing frequency in exchange of less staggered test.

This trading in turn allows achievement of similar values of PFDavg with lower STR and LCC

than with only parallel architectures.

It is customarily believed that full staggering (the uniform distribution of the test events of the N

components along the test interval; i.e. TI/N) is the best option. It can be seen in this exercise,

however, that reducing the level of staggering can actually bring benefits when combined with

the changes in the voting scheme M and the test intervals. Nevertheless, it is important to notice

that very low staggering (i.e. low values of P) can affect negatively the LCC, which can be seen

in solutions 71, 75 and 90 that present high sudden peaks in LCC. As it was seen above, in Case

4 the reduction in PFDavg is primarily achieved by lowering the TI and Tp1 of the FC, TP and TT

and FC subsystems. In Case 3, this is achieved by reducing in addition the number of voting

components M towards simple parallel (M=1) of the TP and TT subsystems. It is evident that

the addition of the voting level M as a variable in the optimization of testing policies opens the

possibility of new interesting trade-offs that enable the achievement of overall better solutions.

The conclusions drawn above are believed to be applicable to low-demand safety systems under

similar conditions as those assumed in this thesis; especially constant and low failure rates. It is

necessary to note that the results are also dependent on the values given for the probability of

test induced spurious trip per component (Pr-trip in Eq. 5.28). Based on the evidence provided by

Chapter 6. Modelling and optimization of SIS including MooN voting architectures 218

this single case study it is difficult to determine whether this is a general design lesson for safety

systems. It is however a promising result that could be validated as a generalization through

further research.

Consider now the trend obtained for the LCC in Case 3. The graph of objective s values for

shows that the trend of the LCC is to be firstly reduced and later incremented (congruent with

the dual relationship PFDavg vs LCC described above). This may be explained by the changing

influence of the costs caused by the STR over the LCC. It is suggested that by varying M

together with the testing policy variables permits lowering of the STR to such a level that it does

not considerably affect the LCC (solutions 1-42). It is in this region that the LCC is in harmony

with the PFDavg. Subsequently, the STR increases, when reducing the values of the M variables,

in such a way that seems to exert considerable influence over the LCC, and even dominates it

when all M=1 (i.e. all subsystems have parallel redundancy). Thus, the PFDavg and LCC become

conflicting objectives (solutions 43-149). It is difficult to determine the exact influence of the

variables over the LCC given that they are numerous. However, a useful analysis can be made

by reordering the objective s value graph, as made in Figure 6.27.

10 20 504030 60 70 80 90 100 110 120 130 1401

Objectives

1.0e+5

4.0E+5

6.0E+5

8.0E+5

LCC
($)

STR
(/year)

1.0E-05

1.0E-04

1.0E-03

1.0E-02

PFDavg

0.0

0.1

0.2

0.3

0.4

2.0e+5

PFDavg LCCSTR

Solutions

Figure 6.27. Optimal set objective s values of Case 3 reordered by LCC

In Figure 6.27 the optimal set is ordered in descending LCC for the group of solutions 1-42

(because solution 42 is the one with lower LCC and where its trend changes direction), and

ascending order for solutions 43-149. It is important to clarify that solutions in Figure 6.27

correspond to the ones in Figure 6.26 only as groups 1-42 and 43-149, not necessarily

individually. For the first group 1-42 (Fig. 6.27) changes in PFDavg and STR along the LCC are

smooth. These changes correspond to the group of solutions 1-42 in Figure 6.26. Practically the

M values of the PT and TT subsystems are high and constant. For the second group 43-149 (Fig.

27), where the LCC raises steadily, the trend of the PFDavg is to descend and the trend of the

STR is to ascend. There are regions of high trade-offs between these two variables that permit

the LCC to keep rising steadily. These trade-offs are notable for example in the group

comprised by solutions 110-120 in Figure 6.27. Clearly this trading between the costs related to

both PFDavg and STR is important to keep the LCC trend stable. In Figure 6.26 this can be seen

Chapter 6. Modelling and optimization of SIS including MooN voting architectures 219

for example in the region of solutions 60-80 and 95-125, where M is changing together with P,

and the changing rate of STR and LCC is non-smooth.

The group of solutions 1-42 (Fig. 6.26) where changes in the objectives are pretty smooth

correspond to the voting level M of PT and TT being held constant. This region is not explored

in the optimization with only parallel architectures. Observe that the highest PFDavg value

achieved in Case 4 is 7.13x10-4. In Case 3 solutions 1-50 have higher values than this. Thus

exploration in the area of SIL 2 (PFDavg>1x10-3) is not present in Case 4. This is another

interesting feature of the optimization adding M as variable.

Finally, Figure 6.28 presents the SIL levels achieved in both optimization cases. The SIL 3 level

achieved by architectural constraints do no change in Case 4 because the only-parallel

architecture of the system does not change. However, after solution 146 the PFDavg corresponds

to a SIL 4 level. On the contrary, the SIL by architectural constraints in Case 3 changes between

levels 2 and 3. It cannot go higher than the level 3 (achieved with only parallel redundancies)

because increasing M lowers the PFDavg. The problem of diverging SIL levels (achieved by

PFDavg and architectural constraints) is again present as in previous optimization cases. This

needs to be considered when choosing a specific architecture.

Figure 6.28. SIL achieved by the solutions of the optimal sets of Cases 3 and 4

6.6. CONCLUDING REMARKS

This final chapter puts together the work done for modelling and optimization of SIS (including

the required level of modelling detail) of previous chapters and extends it for inclusion of MooN

voting architectures into the redundant subsystems.

An extensive part of the chapter has been dedicated to the further development of the PFD(t)

and the STR models in order to enable them for quantification of MooN systems dependability.

This has required a large amount of work on the analysis of the system reconfiguration when

changing from the normal operation state to testing of one component dictated by the fact that

Chapter 6. Modelling and optimization of SIS including MooN voting architectures 220

the component being tested (with the system on-line) is taken out of service. This is determined

by the operational philosophy, which establishes the type of bypass to be used depending on the

specific MooN voting architecture. Therefore, given the particular bypassing philosophy, the

combinations of independent failures, and specially the CCF contribution, change; this is

reflected in the fault tree of the system.

The PFD(t) model for parallel architectures (developed in Chapter 5) did not change

significantly for MooN systems. The major changes to accommodate MooN architectures reside

in how the independent and common cause failure events are quantified and how their

combinations are structured in fault trees. The STR model also considers the adverse effects due

to the proof testing activity, and how this contribution changes during the test itself. Thus, the

analysis completed here has provided a set of formulae that guide the construction of fault trees

and determine the quantification of failure rates. Both models are based on approximations by

quantification of first-orders cut sets, which in turn are based on quantification of CCF by using

the factor model.

The developed models have been applied to two optimization cases. One for optimization of

system design (redundancy allocation and component selection) with the option of choosing the

number of M voting components. The second case is about optimization of testing policies with

also the addition of the voting level M as a decision variable. The case studies have been solved

following the methodology of previous chapters based on fault trees with house events and

multi-objective genetic algorithms. It was seen that the set of solutions given by the

optimization cases with the variable M dominated the set of solutions of the optimization cases

without it. In other words, for the same values of PFDavg, lower levels of STR and LCC were

achievable. These results demonstrated that the inclusion of the voting level M as an additional

decision variable (in both optimization cases) permits the achievement of better trade-offs than

when this is not considered. In addition, this has allowed extension of the search space

considerably. For the test optimization case it even pushed the results to a region not explored

by the optimization with only parallel architectures (i.e. SIL 2). In the optimization of system

design it opens up the possibility of new trade-offs between the number of components N and

the voting components M. In general, to increase the number of components M (with a fixed

total number N) raises the PFDavg but reduces the STR. This trading permits the achievement of

designs with a better balance between these two dependability measures. In addition, this trade-

off has a significant, potentially positive, impact on the system LCC.

Important trade-offs have also been found in the optimization of testing policies between the

voting level M, the test intervals and the level of staggering of the test events (i.e. distribution of

Chapter 6. Modelling and optimization of SIS including MooN voting architectures 221

the test events along the test interval, determined by a multiplication factor P) of the redundant

components. It is mainly this trade-off that enabled the achievement of equivalent levels of

PFDavg with better STR and LCC. This interesting result may be a general design lesson, but it

requires further research in order to be validated as such. It can be finally said, to conclude, that

the multi-objective optimization of safety systems is therefore highly enhanced by the inclusion

of the voting level M as an additional decision variable.

222

CHAPTER 7

Concluding remarks

7.1. SCOPE OF THE THESIS

This thesis has addressed the multi-objective optimization of Safety Instrumented Systems in

compliance with the Standard IEC 61508. The project has made an integration of dependability

and Lifecycle Cost modelling with multi-objective optimization using Genetic Algorithms. The

focus is on systems working in a low-demand mode of operation (opposite to continuous

operation mode systems like process-control systems). Therefore, the metric used for safety

integrity is the average Probability of Failure on Demand. Although IEC 61508 does not make

any requirement for performance in terms of spurious operation, this is a fundamental aspect of

SIS. It certainly has an impact on the LCC of the system and the confidence that the operator

places on the system. Therefore, the Spurious Trip Rate is the metric used for measuring

reliability of the system. Thus, PFDavg and STR were the two dependability objectives that were

optimized. The third objective was the LCC, comprising procurement, operation and risk costs.

The cost of risk included production losses by spurious operations and the costs of potential

hazards. Therefore, the multi-objective optimization of these three objectives permitted

achievement of SIS with a good balance of safety, reliability and costs.

The project concentrated on the study of dependability modelling at component and subsystem

level. Dependability modelling at system level was made with Fault Tree Analysis, since the

method is versatile enough to model large complex systems without the model becoming too

complex itself, as can happen with other methods (i.e. Markov chains). In order to be able to

accommodate the changes in architecture design and test policies during the optimization two

strategies have been followed: One, the usage of house events that allows the switch on and off

of different branches of the fault tree model to cover all potential designs. Secondly, the solution

of basic events with different approaches according to the level of complexity of the problem

being handled. For this purpose a new PFD(t) model was developed motivated by the need of

accommodating the changes in testing policy. The fault tree is modularized by subsystems that

are solved by the PFD(t) model.

The second stage for solution of the optimization problem was the integration of the models into

the multi-objective optimization. Genetic Algorithms have been selected because they are a

powerful tool suitable for ill-structured problems; such as those with non-linearities,

discontinuities, mixed variables and even non-explicit functions. These are usual characteristics

Chapter 7. Concluding remarks 223

of reliability optimization problems. Genetic Algorithms permit truly multi-objective

optimization: all the objectives are given the same importance and optimized at the same time.

This gives as a result a set of Pareto-optimal solutions. In this set no solution is better than any

other: all of them are optimal and only differ in the trade-offs between their objectives. Thus,

the decision maker (usually a human) has several options from which to pick the most

appropriate solution.

Four major strategies for optimization of SIS, each corresponding to one chapter, have been

approached:

1. Optimization of system design with redundancy allocation and component selection

(reliability allocation at discrete steps) with parallel redundancies.

2. Optimization of system design with diverse redundancy. The same as the previous case, but

now the optimizer has the option to combine different technologically-diverse components

into the redundant subsystems.

3. Optimization of the safety system s testing policies. This included the Test Interval and Test

Strategy (i.e. the scheduling of the test events of the components with respect to one

another) at subsystem level (TI+TS) for parallel systems.

4. Optimization of system design and test with MooN voting architectures. In this, the

optimizer can choose the number of redundant components N plus the number of voting

components M. In the testing case it includes the TI+TS optimization together with the

voting level M.

In this thesis the search was not implicitly constrained with the aim of developing the ability of

the optimizer to explore the whole search space and the relationship among the different

objectives along the entire Pareto-optimal front. Therefore, the case studies included did not

present the desired level of PFDavg as a hard constraint. This is proposed as a future research

opportunity in the Future Work section below.

7.2. OPTIMIZATION OF DESIGN WITH PARALLEL REDUNDANCIES

The first optimization case, parallel redundancy allocation and component selection plus TIs,

demonstrated that the implementation of the safety system was cost effective since reducing the

PFDavg reduces also the LCC in the area of highest PFDavg. The convenience of using multi-

objective optimization was also verified because the set of optimal solutions were better than

any other solution in the search space. The relationship between the two dependability

measures, PFDavg and STR, and LCC was also analyzed. It was confirmed that PFDavg and STR

are valid metrics that reflect the reality of the two performance aspects of SIS, safety integrity

Chapter 7. Concluding remarks 224

and reliability. They were optimized against total unavailability (encompassing the effects of

both safe and dangerous failures in one single metric). It was seen that the inclusion of this

objective provided only limited additional information that PFDavg and STR did not already

provide. The overall unavailability was largely dominated by the PFDavg. Its introduction did not

make clearer the information already provided by the PFDavg and STR about the system s

performance. It did not help to simplify the decision-making process either, conversely making

it rather more complex. Therefore, it was omitted in subsequent optimization analyses.

This first analysis showed that, in the optimal set, the PFDavg is usually in conflict with the LCC.

There were, however, three regions:

1. A region of best solutions, with the lowest LLC.

2. A region of fair trade-offs where reducing the PFDavg increments the LCC. However, any

solution in this set was still better than any other solution in the rest of the search space.

3. A saturation point, after which marginal reduction of the PFDavg required very large

increments of the LCC. This would be justifiable only for compliance of some specific

safety requirement.

The PFDavg and the STR were generally conflicting. However, there were some regions where

reductions of the PFDavg did not require considerable increments in STR. The STR and LCC

showed a harmonious relationship.

The application case showed that the optimizer preferred, for lower levels of PFDavg,

components with high integrity specifications (low failure rates and high diagnostic coverage,

see Section 6.4.3). In the search of lower PFDavg, large changes were made to the subsystems

with low-reliability components, showing in their variables low variability and a trend towards

the best possible specification. As a second strategy, the subsystems with high-reliability

components provided many more opportunities for fine trade-offs.

The optimal solutions of this first optimization case depended heavily on the lowest possible

factor and TI. This, first of all, indicated that CCF was a dominant issue in all the three

objectives, and it was necessary to approach it. Testing was assumed to be perfect, without

making any special consideration of adverse effects such as unavailability through downtime

and introduction of spurious trips. Therefore, it was necessary to explore separately the

optimization of testing from the optimization of design in order to make a deeper analysis.

The optimization case was thus fixed with a goal to achieve SIL 3 and a specific maximum level

of PFDavg. Three cases regarding the treatment of the initial population in the optimization case

Chapter 7. Concluding remarks 225

showed that feeding the optimal set as an initial population in consecutive runs gives more

optimal results than starting with a new random initial population. A third optimization case fed

the optimal set but only in the region of interest when seeking a specific goal (e.g. SIL 3), and

this guided the search giving more optimal solutions in the area of interest than simply initiating

with a new random population.

7.3. OPTIMIZATION OF DESIGN WITH DIVERSE REDUNDANCY

The second optimization strategy was the optimization of SIS design with diversity at

subsystem level. This was the first study that approached diversity in optimization, and several

revealing findings were made. First of all, two optimal sets from two different cases were

compared, one allowing diversity and the second not allowing it. The optimal set of diverse

solutions in general dominated the set of non-diverse solutions. This means that introducing

diversity allowed the achievement of better trade-offs.

As a result of the optimization with diversity, the set of optimal solutions contained a large

proportion of solutions with diversity in at least one of the subsystems. The solutions in the

optimal set with no diversity were only achieving SIL 1. For higher SIL levels (2 to 4), diversity

was always in place. A Diversity Index was formulated to represent the relative level of

diversity in the system also considering the level of redundancy. The DI is a first attempt to

quantify diversity, which provides a useful guideline for the analysis.

Changes in the DI amongst the solutions of the optimal set showed a general trend in which the

increment of the DI reduced the PFDavg. Although the general trend was to increment the LCC

with an increase of the DI, in a few specific cases this also reduced the LCC, more commonly

when SIL was 1-3 (PFDavg>1x10-4). This could be seen in cases where redundancy was reduced

and diversity increased simultaneously, improving the STR (when reducing its CCF) but not

affecting considerably the LCC. On the other hand, most of the improvements in PFDavg through

diversity were in the area of highest integrity (SIL 4) where the cost of marginal reduction of

PFD was very high. This is only justified if these high integrity levels are an actual requirement.

The optimizer of the case approached gave a large percentage of optimal solutions in this area

(SIL 4). A convenient exercise would be to guide a new optimization process towards an

specific area of the search space (e.g. SIL 3), and to find if the improvements of PFDavg are less

costly.

The results obtained in this chapter regarding the introduction of diversity and the reduction of

PFDavg and STR as a consequence were previously expected, and it has been reassuring to see

Chapter 7. Concluding remarks 226

them as evidence. No previous study has approached the introduction of diversity in the

optimization process and tried to quantify its effects. This is a contribution of this work.

It is evident that the presence of CCF is a significant issue that can reduce considerably systems

dependability. Quantification of CCF is not a trivial matter. Several sophisticated methods are

available for this purpose. However, in the opinion of the author, the only method that can be

traceable to actual plant conditions without very complex treatment is the factor. More

complex and accurate methods could be applied if a reliable and feasible procedure to estimate

the multiple parameters was available.

7.4. OPTIMIZATION OF TESTING POLICIES

In order to approach the optimization of testing polices a new model for PFD(t) was developed.

The model has demonstrated to be able to accommodate different testing polices, i.e. Test

Intervals and Test Strategies. Since it was intended for optimization of SIS, it was empowered

with the capability to include Common Cause Failure and diagnostic coverage. At the first stage

it was developed for parallel redundancies. CCF was modelled as a single additional

component, as it is usually done in combinatorial models (e.g. Fault Tree Analysis).

A case study for application of the PFD(t) model was carried out. It was verified that through

proof testing it was possible to enhance considerably the safety integrity of the system without

actually having to modify its design; i.e. lower Test Intervals and test staggering had a

beneficial effect on the PFDavg. On the other hand, a sensitivity analysis showed that CCF may

indeed become a dominant factor in the PFDavg. This is especially true in safety systems, where

components with very low failure rates are generally used. An importance analysis

demonstrated that in these cases the CFF becomes the dominant cut set on the redundant

arrangement s fault tree. The time dependent graphs showed that when there was no CFF (=0)

the PFDavg was significantly lower than when having a small CCF (=1): the total PFD(t) had

even the same shape of the CCF component of the PFD (PFDCCF). The increment was of 400%.

The influence of the diagnostic coverage was also analyzed. Although this was not as dramatic

as the influence of CCF, it was certainly important. For instance, a change from =20% to

=50% could help the system to achieve one SIL level higher.

Following the practical approach of the thesis, an investigation into current standards and

practices of proof testing in the process industry was carried out in order to detect the

opportunities for optimization. It was found that testing at a subsystem level is a widely

accepted practice, and that the frequency of testing is not regulated whatsoever, only some loose

Chapter 7. Concluding remarks 227

guidance is given by some standards. In addition, regarding test strategy no guidance was found.

Therefore, testing at subsystem level was explored in the optimization cases.

The optimization of testing polices included TI+TS. The TS has been determined by the time to

first test of the first component TP1 and a staggering factor K, which determined the level of

distribution of the test events of the components of a subsystem along the TI. The fault tree of

the system was split into modules, each module being a subsystem. These modules were solved

by the PFD(t) model. Regarding the quantification of STR, the adverse effects of the testing

activity were included as test-induced spurious trips. In this way a better balance of the

dependability objectives and the LCC was sought when including both beneficial and negatives

effects of testing.

The NSGA-II was used for the implementation of the optimization algorithm. The addition of

controlled elitism was the tuning change that provided the most significant enhancement in

terms of diversity of solutions along the Pareto-optimal front and new solutions at both its

extremes. It was verified that the optimization algorithm provided a set of solutions that were

superior to all solutions of the initial population set. Thus, its effectiveness was demonstrated.

Comparing two different optimization cases it was possible to verify the crucial importance of

including the adverse effects of testing on the STR. An optimization case without this

consideration showed that increasing the testing frequency and staggering reduced the PFDavg

without affecting the STR, and therefore the costs by safe failure. However, when including the

mentioned adverse effects in the optimization, the conflictive relationship PFDavg-STR becomes

evident again. When increasing the testing activity for reduction of PFD the STR increased, also

raising the LCC considerably. A saturation point in the Pareto front even appeared after which

further decrements of the PFD had very high costs in terms of both STR and LCC. Thus two

conclusions arise: First of all, not considering the adverse effects of testing can very likely lead

to overoptimistic results. Secondly, with this consideration the relationship amongst the three

objectives, PFDavg, STR and LCC are very similar for both optimization of testing policies and

optimization of system design, with three regions in the Pareto front: one region of better trade-

offs where diminishing the PFDavg is not very costly, second where this cost is more prominent

and a third of saturation.

Regarding the test policies obtained through the optimization process it has been seen that the

reliability specifications of the components largely determine the frequency and staggering of

testing. The lower the reliability specifications the higher the required testing activity. Even the

test frequency of the subsystems with lowest reliability (and lower redundancy) shaped the

Chapter 7. Concluding remarks 228

improvements of the PFDavg (e.g. the graph of the PFDavg the system had the same shape of the

graph of the TI of the lowest-reliability subsystem). In order to achieve lower PFDavg levels the

low-reliability subsystems have to be tested earlier in the operational life, more frequently and

more staggered. The two latter approaches, however, have been seen to increase the STR.

Therefore, to fully stagger the test to improve system safety, as it is commonly believed,

disregarding secondary negative effects is not advisable. It is evident that devices with high

reliability specifications require a higher initial expense (by acquisition costs) but in the long

run (system operational life) they are more cost-effective.

7.5. OPTIMIZATION OF DESIGN AND TEST WITH MooN VOTING
ARCHITECTURES

In the last chapter of the thesis the previous work was extended for optimization of system

design and testing policies including MooN voting redundant architectures. This required

reformulation of the PFD(t) and STR models and revision of the construction of fault trees in

order to accommodate the voting systems. The basis of the analysis has been to determine the

behaviour of the system during normal operation and how this is reconfigured during test (and

repair), given that one of the components is taken out of service. This depends on the

operational philosophy of the system. For this study the philosophy was formulated to be

continue production during testing with degraded operation in the safest possible way . The

component under test is bypassed during the test, and the mode of this bypass (open or close)

depends upon the operation philosophy. It is this bypass that determines the reconfiguration of

the system. A large part of the analysis has been focussed on the changes in CCF. It has been

found that, contrary to previous conclusions, given that the component under test is not failed,

its CCF can still affect the other components and drag them towards simultaneous failure.

It has been seen that the PFD(t) can be conveniently approximated by quantifying the first-order

cut sets plus the next lowest-order combinations of simultaneous independent failures. Thus, the

PFD(t) model originally formulated in a previous chapter was only slightly modified. The CCF

contribution to the PFD(t) is still modelled as a single additional component, shaped by the

specific modification factor CMooN. The quantification of failure rates and how the combinations

in the fault trees were created are the main modifications in the modelling strategy.

In order to meet the operational philosophy the bypass for 1ooN systems was set to be closed

for 1ooN (parallel) systems and open for MooN where M>1. When implementing a bypass, this

has a changing effect on the dependability measures of the systems. This effect is opposite in

the PFD and the STR.

Chapter 7. Concluding remarks 229

Based on first-order cut sets, it has been seen that PFD of 1ooN systems increases during test.

On the contrary, for MooN systems (with 1<M<N) it remains unchanged, and for NooN it

actually decreases. A case study demonstrated that with a fixed number of redundant

components N, increasing M raises the PFD. On the other hand, with fixed M, increasing N

reduces PFD.

Regarding the STR model, quantification of the STR by internal failures was approximated in

the same fashion as the PFD: quantifying first-order cut sets plus the lowest-order combinations

of simultaneous independent failures. The probabilistic analysis revealed that the STR of a

1ooN system decreases during test, and for a MooN system (M>1) it actually increases.

Modifying the previous assumption, it was considered that proof testing actually has some

coverage over safe failures. This has been included in the modelling of STR as for the negative

effects previously addressed. The test-induced increment in STR is a contribution that takes

place only during test; thus duration of the test (and repair) time matters.

The case study showed that the effect of increasing either M or N with the other variable fixed is

the opposite in STR than in PFDavg: Increasing M (at fixed N) reduces the STR. On the contrary,

increasing M (at fixed N) raises the PFDavg. Remember that the total STR is the sum of STR by

internal failures and test-induced. It was seen, thus, that the length of the Test Interval affects

the influence of STRtest over the total STR. The larger the test interval the less significant the

test-induced contribution to the total STR (per year), and thus the more equivalent to the STR

related to internal failures.

A design optimization case study compared two different cases: one of redundancy allocation

and component selection plus the option to change the voting level M. The second case only had

parallel architectures (fixed M=1). The main finding is that comparing both Pareto-optimal

fronts the optimization with MooN architectures case dominated the one with only parallel

subsystems. This means better solutions: For pairs of solutions with the same PFDavg, the

optimization with MooN gave lower values of STR and LCC.

The optimal front of the optimization with MooN had two regions regarding the relationship

PFDavg-LCC: One of harmonious relationship (lowest PFDavg-values end of the graph), and

another one with the two objectives in conflict, giving a U-shaped curve. There was in this case

no evident saturation point as in previous optimization cases.

Chapter 7. Concluding remarks 230

The optimizer consistently selected for the optimal set of solutions devices with the best

reliability specifications, confirming the conclusions drawn above. The main reductions of

PFDavg along the optimal front were made by incrementing the redundancy of the only

subsystem with only parallel architecture. It was possible to see that the design of this

subsystem had a prominent influence over the PFDavg shape. Additional reductions were

achieved by adjusting the redundancy of the PT and TT subsystems, towards a higher

redundancy N and lower voting M for lower values of PFDavg. This in contrast increased the

STR and to some extent the LCC. Therefore, it can be said that the two ends of the front

correspond to, at one extreme designs with NooN subsystems and high PFDavg and low STR, at

the opposite extreme designs with 1ooN (parallel) subsystems with low PFDavg and high STR.

It is clear that introducing the voting level M as a variable increased significantly the option for

new trade-offs. Trading M and N of the subsystems allowed a new balance of the LCC, giving

the U-shaped optimal front. One half of the front has the PFDavg in harmony with the LCC: both

decreasing along the front (with increasing STR). The second half of this relationship is

switched to conflictive: decreasing PFDavg with increasing LCC (and STR). The first half has

the lowest STR, while the second half has a steeper increasing STR. This leads one to think that

there is a point in which the STR becomes so prominent that it starts dominating the LCC. Thus,

further reduction of PFDavg (that is in conflict with the STR) leads to an increment in LCC.

Another conclusion is that systems with a high level of voting (low N/M ratio) achieve lower

values of STR with a general positive impact on the LCC. On the contrary, parallel systems

(M=1) reduce the PFDavg but increase the STR and, with this, the LCC.

The second case study addressed optimization of testing policies plus the additional option to

vary the voting level M of some subsystems. Two optimization cases were compared again, one

with the voting level M of some subsystems as variables and another with fixed M=1 (i.e.

parallel redundancies). Again, the optimization of testing policies with variable M gave results

that dominated the ones with fixed M. At same levels of PFDavg lower values for STR and LCC

were achieved.

The optimization of testing policies plus variable M gave an optimal front similar to the design

optimization case: split into two regions, one of harmony between PFDavg and LCC and another

of conflict.

In the optimization of testing policies with only parallel architectures the PFDavg was largely

influenced by increasing the testing activity on the FC subsystem (the one with lowest reliability

specifications), followed by increment of testing in the PT and TT subsystems (same as the

Chapter 7. Concluding remarks 231

results in the previous case study). The PFDavg is consistently in conflict with the STR and the

LCC.

In contrast, optimization with the additional voting level M gave for the same levels of PFDavg

lower values of LCC and STR (compared with the parallel-only case). This is considerable

regarding STR values. However, the Test Intervals were lower (than in optimization of test in

the simple parallel system) and time to first test TP1 values remained low; i.e. higher testing

frequency. In contrast, the level of staggering (determined by the multiplication factor P) has

lower and more changing values. Thus, the trend of the TS is not towards full staggering

(uniform distribution of the test events along the TI). The changes in the variable M are the

same as in the design optimization case: Higher values of M for lower STR and towards M=1

(parallel redundancy) for lower PFDavg. However, there are areas where the variable has fast-

changing values. In this, both the PFDavg and STR alternate in opposite directions. It could be

said that trading between the Test Interval and test staggering P and the voting level M (rather

than just varying the testing variables) allows achievement of low values of PFDavg with lower

LCC and STR than in the simple-parallel case. Thus, varying the level of staggering, rather than

just fully staggering the test events, combined with changes in TI and M can bring benefits.

Notice, however, that very low levels of staggering (towards sequential test) increments

significantly the LCC.

It can be said, to conclude, that the addition of M as a variable provided many more trade-offs

for the optimal front. It also extended the search space and pushed the optimizer to find

solutions in a region where the parallel-only optimization case did not. It also allowed the U-

shaped optimal front, which can be explained by the changing influence of the STR as above.

7.6. IMPLEMENTATION OF THE GENETIC ALGORITHM

The implementation of the Genetic Algorithm has been made using two leading Genetic

Algorithms: the Fonseca & Fleming MOGA and the NSGA-II based on Matlab®.

The initial set of parameters was made based on recommendations of previous studies on theory

of GAs and applications to RAMS+C optimization detailed in Chapter 2. Some generalizations

were found that can be used as initial tuning for future studies:

Coding can be binary or integer for integer variables (such as redundancy level, type of

component, etc.)

A population larger than 100 did not show any enhancement in the search. Thus a

population 100 is convenient.

Chapter 7. Concluding remarks 232

Generations: Even for a very large search space (e.g. in the order of 1x1030) a combination

of number of generations and population size to give around a total of 5000 evaluations per

run seemed to satisfy the balance of proximity and diversity of the Pareto-optimal front (i.e.

Generations x Population = 5000).

Crossover: Single Point Crossover at 0.7 probabilities works well for binary codes. For

integer coding, blending algorithms worked well at 0.7 probability (algorithm given by

Mulenbein & Schlierkamp-Voosen (1993), see Eq. (2.9))

Mutation: Bit flipping works well for both coding schemes. A low mutation probability 0.1

is the best. Some authors recommend a rate of 1/chromosome-length.

Tuning for the optimization cases of this thesis was made comparing qualitatively the spread of

solutions along the obtained Pareto-optimal set (diversity), the appearance of new solutions at

both end extremes of the front and the size of the set. With the advent of second-generation

Genetic Algorithms the emphasis of research changed from simplicity to efficiency (as

described by Coello-Coello (2006)). This has brought, apart from more efficient GAs, the

formulation of new performance measures to quantify the performance of the algorithms. This is

an opportunity for future research to improve the tuning process of the GAs.

The first two optimization cases were implemented using the Fonseca & Fleming MOGA,

which demonstrated good results. For the second half of optimization cases the implementation

was switched to NSGA-II in order to improve the optimizer performance and update it to the

state-of-the-art. It would be expected that the implementation of the optimization cases of

Chapters 3 and 4 (those done with MOGA) would provide similar results with the NSGA-II,

although this would be possibly improved in terms better distributed solutions closer to the real

Pareto-optimal front (which is unknown).

The implementation of optimization by GA produced valuable results when confirming

relationships among the objectives (PFDavg, STR and LCC) already expected. This is a positive

outcome that validates the implementation. The fact GAs produce a pool of optimal solutions

has also made possible to visualize, with the aid of graphs, relationships between decision

variables and objectives in a large range of solutions, becoming useful tool for system analysis.

7.7. VISUALIZATION OF OPTIMAL SOLUTIONS

Visualization of results given by multi-objective optimization problems can become an issue

due to the large amount of information produced. There is first the visualization of optimal

solutions, the illustration of which becomes difficult when there are more than two objective

Chapter 7. Concluding remarks 233

functions involved. In addition, the presentation of the resulting combinations of decision

variables can be difficult to analyze in both tabular and graphic form. Thus, the visualization

techniques implemented in this work sought to implement a tool to provide the decision maker

with all the information needed to analyze and decide. Three techniques have been used:

1. Graphs of the objective functions in three and two-dimensional spaces. This shows the

relation of the three objective functions firstly in a three-dimensional graph depicting the

general performance of the optimal set. Then the objective functions are plotted in pairs.

This facilitates the analysis between the pairs PFDavg-STR, PFDavg-LCC and STR-LCC.

Also, they are very useful to compare optimal sets from different optimization cases. This

representation is very similar to the Scatter-Plot Matrix method (as described in Deb

(2001)), where all pair combinations are plotted. However, in this work each combination is

only plotted once to avoid duplications (e.g. PFDavg-LCC and LCC-PFDavg).

2. The Parallel Coordinates graph. This is similar to the Value Path Method (see Deb, 2001).

The method of parallel coordinates is the representation of each non-dominated solution

from the Pareto-optimal set in two coordinates, with each point in the X-axis being one of

the objectives, plotted against the normalized objectives in the Y-axis. The points are united

to by a line, each line representing one solution. This is useful to identify conflicting

relations when lines are crossing and harmonious when they are concurrent. Therefore, it is

convenient for visualization of trade-offs between objectives. However, the graph requires

an additional effort to plot it, since it needs normalization of the objectives. The author

considers that the graph is useful when the optimization involves many objectives (e.g. >5).

However, for a three-objective optimization the graph does not present a clear advantage:

The user must perform the reverse conversion of the normalized values and scan amongst

many criss-crossing lines that agglomerate too much information and do not highlight

specific solutions. This makes it difficult to read and interpret. For a more efficient use of

this graph a more sophisticated, maybe interactive, graphic interface is required.

3. A group of (two-dimensional) graphs that shows the values of either the objective functions

or the decision variables against all solutions of the optimal set. This is a novel contribution

of this work. Each point of the x-axis corresponds to one single optimal solution, and the

multi-scale Y-axis represents the values of the objective functions/decision variables. Thus

at least two graphs are needed, one with the objective functions and one with the decision

variables. In the optimization cases one graph was used for each subsystem. All the graphs

are aligned vertically, so that it is possible to visualize all the information, values of

objectives and variables, related to each solution. These graphs have been demonstrated to

Chapter 7. Concluding remarks 234

be very useful for analyzing the influence of decision variables in the objectives and to

determine the different influences per subsystem. The author has found these graphs easier

to read and interpret than the Parallel Coordinates method and more informative. They were

very convenient for optimization problems of the size presented here. In contrast, although

they could be extended for a slightly larger number of objective functions (e.g. up to 6), it is

considered that they would become too big and complex for visualization of results of

optimization cases for very large problems, with many objectives and many decision

variables.

7.8. IMPORTANCE OF MULTI-OBJECTIVE OPTIMIZATION OF SIS AND
APPLICABILITY OF THE METHODOLOGY

This thesis presents an initial endeavour to integrate a methodology for multi-objective

optimization of Safety Instrumented Systems. It analyzes cases of a single safety function. It has

been seen that the optimization of safety functions with only some few subsystems can involve

many decision variables resulting in very large search spaces (between the order of 1x103 up to

1x1030). Since life-size SIS usually have more than one safety function, and frequently more

than 10, the complexity of these optimization cases would grow considerable. It is clear that to

conduct an exhaustive search to find the optimal solutions is impracticable for these cases. This

brings the necessity of multi-objective optimization. The effectiveness of multi-objective

optimization, on the other hand, has been verified given that in every case the optimal set of

solutions obtained is superior to any solution of the initial population. In addition, the search

during the optimization process can be constrained so to give only feasible solutions and guided

towards the satisfaction or pre-established goals, as can be seen in Chapter 3.

Multi-objective optimization is required when at least some of the objectives are in conflict. It

has been seen that in some areas of the search space the PFDavg and LCC can be reduced

simultaneously, which indicates that the implementation of the SIS is cost-effective.

Nevertheless, the relationship between objectives in the Pareto-optimal front is quite different.

First of all, the system PFDavg is consistently in conflict with the STR in the optimal set

resulting from both design and testing optimization. In addition, the relationship between LCC

and PFDavg is mostly conflictive, and between LCC and STR mostly harmonic (see Figs. 3.14,

5.20 and 6.26). This means that the higher the LCC, the lower the PFDavg and the higher the

STR. These relationships are prevalently true, but not true for all cases. For some optimization

cases involving diverse redundancy or optimization with MooN voting systems these

relationships are inverted in the higher-PFDavg side of the optimal set; i.e. lower LCC goes

alongside lower PFDavg and higher STR. For example, for optimization with MooN voting

Chapter 7. Concluding remarks 235

redundancies, solutions with not very low PFDavg (e.g. 1x10-3 or SIL 2) this relation is

harmonious. For these optimal sets the plot of LCC values takes a U shape with respect to

PFDavg and STR (see Figs. 4.11, 6.20 and 6.26).

The relationships described above can be partly explained by the influence of both risk costs

(i.e. those related to dangerous and safe failures; Eq. 4.19) on the LCC. The cost of hazards is

determined by the cost of a potential catastrophic accident and its estimated frequency. However

this is significantly reduced when multiplied by the PFDavg of the SIS. In this case, the costs of

production loss by spurious trips, determined by the STR, become dominant over the LCC.

Therefore, since PFDavg and STR are conflictive measures, at lower PFDavg one gets higher STR

and, as a consequence, higher LCC. This is the mostly dominant case. However, this balance

has been altered when introducing diverse redundancy in the optimization of design, and

significantly when introducing voting systems in the optimization of design and testing,

although only in the section of the PFDavg graph with higher values (this can be seen clearly in

Fig. 6.20). In can be thought that in this section the costs related to dangerous failures are not so

significantly reduced, and therefore become more prominent than those originated by the STR.

Thus, the lower the PFDavg the lower the LCC (and the higher the STR). There is a point around

which this relationship is inverted (originating the LCC U-shaped graph), and the effects of STR

become the dominant factor in the LCC, as explained above. In correspondence to PFDavg the

value of this inversion point varies. In the optimization cases studied here it lies between 1x10-3

and 1x10-2.

The complexity in the relationship between objectives described above, together with the large

search space originated by the multiple decision variables involved in both design and testing of

SIS, reinforces the importance of multi-objective optimization.

The results obtained through the optimization process and the visualization tools used have

allowed an analysis of the relations between decision variables and the objective functions. This

made also possible to identify trends and the level of influence per subsystem (for instance, the

Final Control subsystem was identified as the weakest arrangement of the SIS). This has

provided an additional insight into the analysis of SIS. Therefore, the modelling and

optimization method presented here has turned into an effective analysis tool.

The methodology developed for the dependability measures allows hierarchical modelling of

Safety Instrumented Systems, from component level (where the different failure modes are

defined) and subsystem level (integrated as redundant arrangements with quantification of CCF)

to system level. The power of the model resides in is capacity of quantifying explicitly different

Chapter 7. Concluding remarks 236

failure modes, the capability of modelling time-dependent changing factors (in the PFD) and the

flexibility to accommodate changes in both design and testing policies.

The models developed here are based on quantification of CCF by the factor model. The

rationale behind this is that it is the most widely applied method due to its simplicity and

traceability to real design and operating conditions. Therefore, the application of the method is

only enabled by the factor model. This is also the basis of its strength as a practical method.

There are limitations in the method formulated in this thesis as is normal for every methodology

that intends to be applicable in practise. The method has been developed to comply with IEC

61508, and this gives its strength as a practical approach. Although it does not intend to be a

universal method applicable to every existing standard, it may be easily applicable under the

framework of other standards as long as the assumptions made here are met. This is especially

true for low-demand systems. For continuous operating systems further study is required to

expand its applicability.

The method has been approached having in mind a conceptual design stage. At this stage some

limitations are that some data and the full architecture definition may not be available, and

relevant assumptions would have to be made. These assumptions can be revisited and reviewed

to during the detailed design stage. In Safety Instrumented Systems the requirements during the

conceptual design and detailed design stages are not considerably different. The main difference

is the final definition of design and operating conditions. Therefore, the method is still

applicable if the assumptions made are still valid. It can thus be used as a design and decision

making tool for Safety Instrumented Systems and similar systems.

The limitation of sufficient detailed data certainly exists. Especially dependability data for

components at the level required by IEC 61508. The standard, however, is becoming widely

used in several sectors, and the availability of data is becoming common place. As a result of its

widespread used, generic databases have been appearing recently dedicated to SIS (i.e. Hauge et

al., 2006a; Exida, 2008). These can be a source of data to be used to substitute for real

meaningful data under the correct assumptions.

Another limitation for applicability of the method is the need for tuning the parameters of the

Genetic Algorithm. However, good guidance of initial tuning can be found in the literature

referenced in Section 2.4 and Appendix B, and also in the tuning schemes presented here. Also,

as it was seen at the end of Section 2.2.2, GAs can still be robust to the lack of perfection in

some parameters and still deliver good results.

Chapter 7. Concluding remarks 237

Every methodology is subject to limitations and with particular assumptions are still applicable.

All the mentioned limitations are opportunities of further research, and they are proposed in

Section 10 Future work as such. The methodology developed here is a powerful tool for

decision making, and the opportinities of further expansion are certainly promising.

7.9. MAIN ACHIEVEMENTS OF THE THESIS

The main achievements accomplished through the work described in this thesis are detailed

below:

The prime achievement has been to provide a deep analysis of safety system dependability

modelling with sufficient detail for compliance with IEC 61508 requirements and its

integration with multi-objective optimization.

The development of a PFD(t) model for MooN architectures (that includes parallel

redundancies).

The development of a STR model that includes spurious trips from internal failures and by

test-adverse effects.

To devise a Lifecycle Cost model that includes both procurement and operation along the

complete system s operational life, and that considers the effects of both safe and dangerous

failures of the system.

The approach of safety system optimization addressing important questions that are

frequently overlooked:

o Common Cause Failure quantification and its mitigation by diverse redundancy.

o Optimization of MooN redundancies with different levels of voting M.

A comprehensive study of proof testing in the process industry and its effects, positive and

negative, in system dependability.

Integration of dependability modelling at component level with Fault Tree Analysis for

modelling at system level, and capable of accommodating variable conditions suitable for

optimization.

Integration of safety system dependability modelling with application of leading multi-

objective optimization Genetic Algorithms.

An analysis of application of two leading Genetic Algorithms for safety system

optimization that open the door for further research into tuning and parameterization.

Formulation of a novel graphic technique for analysis of results. This has provided, as an

additional benefit, a tool for comparison of different optimization cases and for analysis of

system design and testing policies with relation to system performance in the dependability

and cost measures.

Chapter 7. Concluding remarks 238

7.10. FUTURE WORK

The avenues of further research that have been opened up through this work are numerous,

stretching to the field of system modelling at component and system levels, tuning of Genetic

Algorithms, integration of modelling and optimization algorithms to encompass diverse

optimization strategies, scaling up the entire methodology and extrapolation of the methodology

to other types of safety-critical systems. The avenues for future research can be enumerated as

follows:

1. The most imposing task is the integration of all the optimization strategies into one single

optimization procedure. Specifically integration of optimization with diversity into design

optimization of MooN voting architectures. This will increase considerably the complexity

of the fault trees and their solution. One option to explore is the use of Binary Decision for

synthesis of fault trees, such as applied by Andrews research group (Pattison & Andrews,

1999; Andrews & Bartlett, 2003; Borisevic & Bartlett, 2007a, 2007b; and Riauke &

Bartlett, 2008).

2. The second step would be the integration of optimization of system design and testing

polices together. This could be done as a double nested loop, the other loop optimizing

design and the inner loop testing policies. A similar exercise for optimization of test

intervals and strategies was made by Martorell et al. (2006).

3. Scaling the method up for optimization of life-size SIS with several safety functions (e.g.

10). This will mainly bring forward the problem of growing complexity, and for which a

feasible path of research is the application of Binary Decision Diagrams for solutions of

fault trees as mentioned above.

4. The method for pruning Fault Trees developed by the Lutz research group (Lu & Lutz,

2002; Dehlinger & Lutz, 2004, 2006) is worthy of investigation for application in the

optimization of SIS design. This permits pruning of a Fault Tree that corresponds to a

complete Product Family in order to represent a single product member, enabling reuse of

fault trees. The method can be investigated in order to determine whether it could be used as

an alternative method for adapting the generic fault tree to represent several optional

designs during the optimization process (in substitution of the method based on house

events used in this work). The intention would be to see whether it provides a more efficient

solution, especially for modelling larger systems.

Chapter 7. Concluding remarks 239

5. The extrapolation of the analysis of modelling and optimization for systems in continuous

mode of operation. This would extend the application to safety-critical control systems that

cover both aspects, performance of safety-critical control, such as those used in aerospace

and marine industry.

6. The effects of human error on both models, PFDavg and STR, is certainly a topic that

requires further research. In Sections 5.8 and 6.35 a first approach to include human error in

the form of test-induced spurious trips has been addressed. It can be said that human error

affects construction of fault trees in two ways: Firstly, how the probabilities of failures

induced by human errors are quantified, and secondly how the basic events of human error-

induced failures are placed in the fault tree hierarchy and how they are associated (by logic

gates) within it (this is an important issue in MooN voting systems). In addition, how these

basic events are reconfigured during testing of one component is also another issue.

7. Several extensions to the PFD(t) model to include further contributions could be made in

the future. One very important aspect is the adverse effects of proof testing over the PFDavg.

This can be encompassed basically in imperfect testing and the increment of PFD by human

error induced faults during test. Vaurio (1995a) found that an additional constant q in the

unavailability model (see Eq. (5.2)) could accommodate several diverse contributions, such

as human error. Due to the amount of research that this would require, it has not been

included in the scope of this work, although it has been acknowledged and well documented

in the literature review of Section 5.1.3. Thus, this can be a good starting point for the

investigation.

8. To further investigate the influence of proof testing into STR. Proof testing is primarily

aimed at detection of dangerous failures. However, it is clear that a proportion of safe

failures must be also revealed during the practise of proof testing; what is more, some safe

failures are explicitly targeted. Therefore, further definition of the coverage of proof testing

over safe failures needs to be done. The investigation into this and the previous point would

allow quantification of the effects of proof testing, both positive and negative, over the two

different failure modes, dangerous and safe, and hence the two dependability measures,

permitting the achievement of a better balance of loss of safety and loss of production.

9. An additional extension of the PFD(t) model to consider is the probability of failure of the

system caused by the demand itself (i.e. the demand, by the onset of a potentially hazardous

condition, to the system to actuate causes the system itself to fail, as mentioned in Duduit et

Chapter 7. Concluding remarks 240

al. (2006)). This is another contribution that can be accommodated in the term q described

by Vaurio (1995a).

10. Another important contribution to explore is the constraint of Allowed Outage Time (AOT).

This is a limited time span allowed for restoration of faulty equipment within a safety

system. If the equipment fails to be restored within this time, the plant must be brought to a

safe operational state (Martorell et al., 1995). This concept is widely used in safety systems

of Nuclear Power Plants. Martorell et al. (2002, 2004) included the AOT as a decision

variable in the optimization of the technical specifications and maintenance of the HPIS. A

similar restriction to the AOT is prescribed in IEC 61508 Part 2, Section 7.6.4 as Mean

Time to Restoration (MTTR).

11. Research into quantification of CCF with couplings between different technologies. It has

been seen that the introduction of diversity increased considerably the size of the fault trees.

These would become considerable complexity issues; the quantification of CCF between

technologies and its introduction as basic event into the fault trees, if dependencies

(couplings) were considered between different types of technologies in a diverse redundant

arrangement. It therefore would require investigating into a CCF model capable of handling

quantification of contributions by different couplings in a way traceable to actual design and

plant conditions. This would also imply to research into a combinatorial model capable of

handling them efficiently in the changing conditions of the design optimization process

(which would increase considerably the modelling complexity, as discussed in point 1

above).

12. Further refinement of the Diversity Index. It may be convenient to refine the mathematical

formulation of the Diversity Index (introduced in Chapter 4), especially to separate the

effects of changes in diversity from changes in redundancy levels or changes in the

technology of the devices.

13. The powerful PFD(t) model developed here is convenient for accommodation of many

different changing conditions. However, for optimization of design it may be convenient to

explore whether some more simplified equations to solve the basic events of fault trees give

an adequate approximation. A promising possibility is to investigate the extension and

application of the equations developed by Vaurio (1994).

14. Spurious Trip Rate is a widely used metric as a standard to measure the effects of safe

failures on SIS (e.g. IEC, 2003; Hauge et al., 2006a; CCPS, 2007; Lundteigen & Rausand,

Chapter 7. Concluding remarks 241

2008b). However, some other authors have used the probability of safe failure (or spurious

activation) as a metric (e.g. Goble, 1998; Lu & Lewis, 2006, 2008). Since compliance with

some levels of STR is not a requirement of IEC 61508 it has not received much attention. It

is, however, a fundamental measure of SIS performance which has a significant impact on

the LCC as has been seen in this thesis. It would be interesting to analyze what would be the

benefits of using a time-average measure of system unavailability (due to safe failures) or

probability of safe failures instead of the STR. This would also require developing a

modelling strategy at component and system level for this probability.

15. The optimization of proof testing with varying the level of voting M showed that there is a

trading-off between M and the variables TI and P, where P tends towards non-fully

staggered testing. This is an interesting result that opens the possibility of becoming a

general design lesson for safety systems. To validate it as such requires further research.

16. Optimization cases where the PFD(t) was used were computationally expensive due to the

simulation involving sampling of values along the entire useful time-life of the system. It is

a worthy research avenue to explore the application of numerical methods to make the

integration of PFD (rather than simulate it) so the computational cost is lowered.

17. A comprehensive study of tuning of the different parameters of the GA. This includes

measuring changes in the performance of the algorithm with changes in the parameters.

Tuning has been made by qualitative comparison of the Pareto-optimal front obtained in

terms of the quantity of solutions obtained, uniform distribution (exploitation) and new

solutions at both extremes of the front (exploration). Given that in these practical

applications the Pareto-optimal front is unknown, some performance measures for

proximity and diversity cannot be used. However, an alternative parametric study could be

made to quantitatively measure which tuning arrangement gives better results. For example

quantifying the average fitness of the Pareto front or using metrics of spread.

18. Multi-objective optimization with constraint handling by a vector of constraints in order to

guide the search towards specific regions in order to meet goals. The optimization cases in

this thesis have been implemented with explicit constraints that limit the decision variable

space to feasible solutions. This is due to the intention to make it a practical approach. An

area to investigate is therefore constraint handling in the implementation of optimization

subject to a vector of implicit constraints, in which the search must be guided to be

compliant with them. A specific case to explore is when PFDavg is a hard constraint, which

is a frequent requirement in the specification of safety systems.

Chapter 7. Concluding remarks 242

19. Guidance of the search process towards specific goals. A convenient future exercise would

be to guide a new optimization run towards a specific area of the search space (e.g. SIL 3),

and to find if the improvements of PFDavg are less costly.

20. Specifically in the MOGA a deeper treatment of fitness sharing and mating restriction.

Specifically for the Fonseca & Fleming MOGA fitness sharing for reduction of genetic drift

and mating restriction against the formation of lethals (see appendix A) are two areas to be

further explored.

21. The added controlled elitism in the NSGA-II demonstrated to be a very relevant feature of

the implementation in Chapter 5. A study into a procedure for tuning the reduction rate

parameter r that determines the controlled elitism, and which is problem dependent, would

very likely permit considerable enhancement of the performance of the algorithm.

22. The implementation of the decision maker is an area of current extensive research. It has

been seen that the optimizer provides tens of optimal solutions for one single safety

function. It could be the case that the optimization of a complete SIS with several safety

functions would give hundreds of solutions as part of the optimal set. From there the

decision maker must usually select one single solution. Therefore, this is another

opportunity for research. As it can be seen in Appendix A, Fonseca & Fleming (1993,

1995a) incorporated a form of decision maker in the algorithm. This may be a starting point.

23. The process of making the final decision for selection of one solution from the optimal set

requires analysis of the trade-offs between the system s objectives with a consistent

methodology. Despotou et al. (2005) and Despotou & Kelly (2005, 2007) presented a

methodology based on the ALARP principle and the Goal Structuring Notation for making

justified trade-offs in safety critical systems. Investigation into usage of this methodology to

guide the decision maker is thus another research opportunity.

24. Visualization of results with many objectives and variables is always complicated. Further

research into application of graphic techniques would be useful. Especially development of

an interactive user interface would be very convenient to help in the interpretation of the

results.

25. The standard IEC 61508 is currently in the last phases of a new revision. It is uncertain

when the new version will be published, although it is probable that this will take place in

the first months of 2010. As it was mentioned in Chapter 1, there has been some

Chapter 7. Concluding remarks 243

controversy about the IEC 61508 requirements for specification of SIL levels, including the

name of the PFDavg itself (Duduit (2008), see section 1.4.10 of this thesis) and the

architectural constraints (Signoret (2007), Lundteigen & Rausand (2008), Yoshimura &

Sato (2008); see section 1.5 herein). It will be then important to review the changes made to

the standard and make the necessary adjustments to the methodology presented in this

thesis.

244

REFERENCES

[1] Aarø P., Bodsberg L., Hokstad P. (1989). Reliability prediction handbook; computer-based process
safety systems. SINTEF report, Trondheim, Norway.

[2] Adamsky R.S. (1991). Evolution of protective systems in the petrochemical industry. ISA
Transactions, 1991(4), 27-32.

[3] Adra S.F. (2007). Improving convergence, diversity and pertinency in multiobjective optimization.
PhD Thesis. The University of Sheffield, Sheffield, UK.

[4] Amari S.V., Pham H., Dill G. (2004). Optimal design of k-out-of-n:G subsystems subjected to
imperfect fault-coverage. IEEE Transactions on Reliability, 2004, 53(4), 567-575.

[5] American Petroleum Institute (2001). API RP 14C Recommended Practice. Analysis, design,
installation, and testing of basic surface safety systems for offshore production platforms. 7th ed.
Washington D.C., USA.

[6] Andrews J.D. (1994). Optimal safety system design using fault tree analysis. Procs. of IMechE Part
E, Journal of Process Mechanical Engineering 1994;208(E2):123–131.

[7] Andrews J.D., Bartlett L.M. (2003). Genetic Algorithm Optimisation of a Firewater Deluge System.
Quality & Reliability Engineering International 2003;19(1):39-52.

[8] Andrews J.D., Ericson II C.A. (2000). Fault Tree and Markov analysis applied to various design
complexities. In Proc of 18th International System Safety Conference. Texas, USA, 2000.

[9] Andrews J.D., Moss T.R. (2002). Reliability and Risk Assessment. 2nd ed. Professional Engineering
Publishing Limited. London, UK.

[10] Apostolakis G.E., Bansal P.P. (1977). Effect of Human Error on the availability of periodically
inspected redundant systems. IEEE Transactions on Reliability 1977;R-26(3):220-225.

[11] ARC (1999). Critical Control and Safety Shutdown Systems Strategies Technical report. ARC
Advisory Group, USA, July 1999.

[12] Arulmozhi G. (2002). Exact equation and an algorithm for reliability evaluation of K-out-of-N:G
systems. Reliability Engineering and System Safety 2002;78(2):87-91.

[13] Aviezienis A., Laprie J.C., Randell B. (2000). Fundamental concepts of dependability. 3rd
Information survivability Workshop, (ISW-2000), Boston, Massachusetts, October 24-26, 2000.

[14] Back T, Fogel DB, Michalewicz Z (eds.) (2000). Evolutionary computation 1. Basic algorithms and
operators. Institute of Physics Publishing. Bristol, UK.

[15] Bai D.S., Yun W.Y., Chung S.W. (1991). Redundancy optimization of k-out-of-n systems with
common cause failures. IEEE Transactions on Reliability 1991;40(1):56-59.

[16] Ben-Dov Y. (1980). Optimal reliability design of K-out-of-N systems subject to two kinds of failure.
Journal of the Operational Research Society 1980;(31):743-748.

[17] Biernat J. (1990). The alternate approach to the reliability modeling of fault masking systems.
Microelectronics and Reliability 1989;30(3):503-506.

[18] Biernat J. (1994). The effect of compensating fault models on NMR systems reliability. IEEE
Transactions on Reliability 1994;43(2):294-300.

[19] Biernat J. (1995). Discussion of compensating faults in modelling of NMR system reliability.
Reliability Engineering and System Safety 1995;47(3):221-228.

[20] Billings S.A., Zheng G.L. (1995). Radial basis function network configuration using genetic
algorithms. Neural Networks 1995;8(6):877-886.

[21] Billington R., Allan R.N. (1983). Reliability Evaluation of Engineering Systems: Concepts and
Techniques. Pitman Books Limited, London, UK.

[22] Bodsberg L., Hokstad P. (1995). A system approach to reliability and life-cycle cost of process
safety-systems. IEEE Transactions on Reliability 1995;44(2):179-186.

[23] Bodsberg L., Hokstad P. (1997). Transparent reliability model for fault-tolerant safety systems.
Reliability Engineering and System Safety 1997;55(1):25-38.

[24] Borisevic J., Bartlett L.M. (2007a). Safety System Optimisation by Improved Strength Pareto
Evolutionary Approach (SPEA2). In: Bartlett L. (ed.) Proceedings of the 17th Advances in Risk and
Reliability Technology Symposium, Loughborough, UK, 2007, p. 38-49.

[25] Borisevic J., Bartlett L.M. (2007b). Genetic Algorithm based Multi-objective Optimization of a
Firewater Deluge System. In: Aven A. & Vinnem J.E. (eds), Procs. European Safety and Reliability
Conference ESREL ’07. Stavanger, Norway 2007, p. 107-114.

[26] British Petroleum (1994). BP RP32-6 Inspection and testing of In-service Instrumentation. British
Petroleum Company, Sunbury, UK.

References 245

[27] Bukowski J.A. (2005). Comparison of techniques for computing PFD average. In Proc of the 51st

Annual Reliability and Maintainability Symposium. Alexandria, VA, USA, 2005. p. 590-595.
[28] Bukowski J.V. (2001). Modeling and analyzing the effects of periodic inspection on the performance

of safety-critical systems. IEEE Transactions on Reliability 2001;50(3):321-329.
[29] Bukowski J.V., Goble W.M. (1995). Using Markov models for analysis of programmable electronic

systems. ISA Transactions 1995;34(2); 193-198.
[30] Bukowski J.V., Goble W.M. (2001). Defining mean time to failure in a particular failure state in

multi failure states systems. IEEE Transactions on Reliability 2001;50(2):221-228.
[31] Cantoni M., Marseguerra M., Zio E. (2000). Genetic Algorithms and Monte Carlo Simulation for

Optimal Plant Design. Reliability Engineering and System Safety 2000;68(1):29-38.
[32] CCPS (2000). Guidelines for chemical quantitative risk analysis. 2nd edition. Center for Chemical

Process Safety. Wiley Blackwell. New York, USA.
[33] CCPS (2007). Safe and Reliable Instrumented Protective Systems. Center for Chemical Process

Safety. Wiley Interscience. New Jersey, USA.
[34] Cepin M. (1995). Sequential versus staggered testing towards dynamic PSA. In Procs. of the 2nd

Regional Meeting Nuclear Energy in Central Europe. Portoroz, Slovenia, 1995. p. 184-189.
[35] Cepin M. (2002). Optimization of safety equipment outages improves safety. Reliability Engineering

and System Safety 2002;77(1):71-80.
[36] Cepin M., Kozuh M., Mavko B. (1994). Risk impacts associated with surveillance tests. In: Procs 4th

TUV Workshop on living PSA, 2-3 May, Hamburg, Germany.
[37] Cepin M., Mavko B. (1997). Probabilistic safety assessment improves surveillance requirements in

technical specifications. Reliability Engineering and System Safety 1997;56(1):69-77.
[38] Chari A.A. (1994). Optimal redundancy of K-out-of-n:G system with two kinds of CCFs.

Microelectronics and Reliability 1994;34(6):1137-1139.
[39] Chatterjee P. (1975). Modularization of fault trees: A method to reduce the cost of analysis.

Reliability and fault tree analysis, SIAM, 1975. p. 101-137.
[40] Chipperfield A., Fleming P., Polheim H., Fonseca C. (1994). Genetic Algorithm Toolbox User’s

Guide. Research report 512. University of Sheffield, U.K.
[41] Coello-Coello C.A. (1999). A comprehensive survey of evolutionary-based multiobjective

optimization techniques. Knowledge and Information Systems. An International Journal 1999;1(3):
269–308.

[42] Coello-Coello C.A. (2000). Handling preferences in evolutionary multiobjective optimization: a
survey. In IEEE Neural Networks Council (ed.), Proceedings of the 2000 Congress on Evolutionary
Computation CEC 2000. Vol. 1, IEEE Service Center, Piscataway, NewJersey, USA, pp. 30–37.

[43] Coello-Coello C.A. (2002). Theoretical and numerical constraint-handling techniques used with
evolutionary algorithms: a survey of the state of the art. Computer Methods in Applied Mechanics
and Engineering 2002;191(11):1245 – 1287.

[44] Coello-Coello C.A. (2006). Evolutionary Multi-Objective optimization: A historical view of the
field. IEEE Computational Intelligence Magazine 2006;1(1):28-36.

[45] Coit D.W. (2003). Maximization of system reliability with a choice of redundancy strategies. IIE
Transactions on Reliability 2003;35(6):535-543.

[46] Coit D.W., Liu J. (2000). System reliability optimization with k-out-of-n subsystems. International
Journal of Reliability, Quality and Safety Engineering 2000;7(2):129-142.

[47] Coit D.W., Smith A. (1994). Use of a genetic algorithm to optimize a combinatorial reliability design
problem. In: Procs. Third IIE Research Conference, 1994, p. 467-472.

[48] Coit D.W., Smith A. (1996a). Reliability Optimization of Series-Parallel Systems Using a Genetic
Algorithm. IEEE Transactions on Reliability 1996;45(2):254-260.

[49] Coit D.W., Smith A. (1996b). Penalty guided genetic search for reliability design optimization.
Computers and Industrial Engineering 1996;30(4):895-904.

[50] Coit D.W., Smith A. (1996c). Solving the redundancy allocation problem using a combined neural
network/genetic algorithm approach. Computers and Operations Research 1996;23(6):515-526.

[51] Courtois P.J., Delsarte P. (2006). On the optimal scheduling of periodic tests and maintenance for
reliable redundant components. Reliability Engineering and System Safety 2006;91(1): 66-72.

[52] Damousis I.G., Bakirtzis A.G., Dokopoulos P.S. (2004). A solution to the Unit-Commitment problem
using integer-coded genetic algorithm. IEEE Transactions on Power Systems 2004;19(2):1165-1172.

[53] Deb K. (2001). Multiobjective optimization using evolutionary algorithms. John Wiley and Sons
LTD. Chichester, UK, 2001.

[54] Deb K., Agrawal S., Pratab A., Meyarivan T. (2000). A fast elitist non-dominated sorting genetic
algorithm for multi-objective optimization: NSGA-II. In: Marc Schoenauer et al. (ed), Procs. Parallel

References 246

Problem Solving from Nature VI Conference. Paris, France, 2000. Lecture Notes in Computer
Science No. 1917. London: Springer-Verlag. P. 849-585.

[55] Deb K., Agrawal S., Pratab A., Meyarivan T. (2002). A fast and elitist multiobjective genetic
algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation 2002;6(2):182-197.

[56] Debb K., Goel T. (2001). Controlled elitist non-dominated sorting genetic algorithms for better
convergence. In: Zitzler E. et al. (eds), Procs. First Int. Conf. Evolutionary Multi-Criterion
Optimization 2001. Zurich, Germany, 2001. Lecture Notes in Computer Science No. 1993. London:
Springer-Verlag. P. 67-81.

[57] Dehlinger J., Lutz R.R. (2004). Software Fault Tree Analysis for Product Lines. In Proceedings of
the 8 IEEE International Symposium on High Assurance Systems Engineering, Tampa, FL, USA, p.
12-21.

th

[58] Dehlinger J., Lutz R.R. (2006). PLFaultCAT: A Product-Line Software Fault Tree Analysis Tool.
Automated Software Engineering 2206;13(1):169-193.

[59] Despotou G., McDermid J., Kelly T. (2005). Using scenarios to identify and trade-off dependability
objectives in design. In: Procs. 23rd International System Safety Conference (ISSC), San Diego, CA,
USA, August 2005. Published by the System Safety Society.

[60] Despotou G., Kelly T. (2007). An argument-based approach for assessing design alternatives and
facilitating trade-offs in critical systems. Journal of System Safety 2007;43(2):31-21.

[61] Dhillon B.S. (1989). Life Cycle Costing. Gordon and Breach Science Publishers. Amsterdam,
Netherlands.

[62] Dhillon B.S., Singh C. (1981). Engineering Reliability. New techniques and applications. John Wiley
& Sons, New York, USA.

[63] Duduit Y., Chatelet E., Signoret J-P., Thomas P. (1997). Dependability modelling and evaluation by
using stochastic Petri nets: Application to two test cases. Reliability Engineering and System Safety
1997;55(2):117-124.

[64] Duduit Y., Innal F., Rauzy A., Signoret J-P. (2008). Probabilistic assessments in relationship with
safety integrity levels by using Fault Trees. Reliability Engineering and System Safety
2008;93(12):1867-1876.

[65] Duduit Y., Rauzy A. (1996). A linear-time algorithm to find modules of fault trees. IEEE
Transactions on Reliability 1996;45(3):422-425.

[66] Duduit Y., Rauzy A. (2001). New insights into the assessment of k-out-of-n and related systems.
Reliability Engineering and System Safety 2001;72(3):303-314.

[67] Duduit Y., Rauzy A., Signoret J-P. (2006). Probabilistic assessment in relationship with Safety
Integrity Levels by using fault trees. In: Guede Soares C & Zio E (eds), Procs. European Safety and
Reliability Conference ESREL ’06. Estoril, Portugal 2006, p. 1619-1624.

[68] Dugan J., Bavuso S., Boyd M. (1992). Dynamic fault tree models for fault tolerant computer systems.
IEEE Transactions on Reliability 1992;41(3):363-377.

[69] Elegbede C., Adjallah K. (2003). Availability Allocation to Repairable Systems with Genetic
Algorithms: A Multi-objective Formulation. Reliability Engineering and System Safety
2003;82(3):319-330.

[70] Exida (2008). Safety Equipment Reliability Handbook. 3rd edition. Vol. 1: Sensors. Vol. 2: Logic
Solvers and Interface Modules; Volume 3: Final Elements. Exida LCC, Sellersville, Pennsylnania,
USA.

[71] Exxon (1999). IP-15-7-2 International Practice for Protective Systems. Exxon Research and
Engineering Company, Florham Park, N.J. USA.

[72] Fischer H.D., Piel L. (1999). Diversity in computerized reactor protection systems. Reliability
Engineering and System Safety 1999;63(1):91-97.

[73] Fleming K.N. (1975). A reliability model for common mode failure in redundant safety systems. In:
Procs of the 6th Annual Conference on Modeling and Simulation. General Atomic Report GA-
A13284. 23-25 April 1975.

[74] Fonseca C.M. (1995). Multiobjective Genetic Algorithms with application to control engineering
problems. PhD thesis. University of Sheffield, Sheffield, UK.

[75] Fonseca C.M., Fleming P.J. (1993). Genetic Algorithms for multi-objective optimization:
Formulation, Discussion and Generalisation. In Proc. of 5th Int. Conf. on Genetic Algorithms. San
Mateo, CA, USA 1993. p. 416-423.

[76] Fonseca C.M., Fleming P.J. (1995a). Multiobjective Optimization and Multiple Constraint Handling
with Evolutionary Algorithms I: A Unified Formulation. Research report 564. University of
Sheffield, Sheffield, UK.

References 247

[77] Fonseca C.M., Fleming P.J. (1995b). Multiobjective Genetic Algorithms Made Easy: Selection,
Sharing and Mating Restriction. In Proc. of 1st Int Conf on genetic algorithms in Engineering
Systems: Innovations and Application (GALESIA ’95). Stevenage, UK 1995. p. 45–52.

[78] Fonseca C.M., Fleming P.J. (1998). Multiobjective Optimization and Multiple Constraint Handling
with Evolutionary Algorithms I: A Unified Formulation. IEEE Transactions on Systems, Man and
Cybernetics Part A: Systems and Humans1998;28(1):38-47.

[79] Frederickson A. (1990). Fault tolerant programmable controllers for safety systems. ISA
Transactions, 1990, 29(2), 13-16.

[80] Frederickson T., Beckman L.V. (1991). Comparison of Fault Tolerant Controllers used in safety
applications. ISA transactions 1991;30(4):97-106.

[81] FSC (1991). OpenFTA Release 1.0. Formal Safety construction Limited, Cardiff, UK. Available
online at www.openfta.com. [last accessed 12-October-2008].

[82] Gen M., Ida K., Taguchi T. (1993). Reliability optimization problems: a novel genetic algorithm
approach. Technical report, ISE93-5, Ashikaga Institute of Technology, Ashikaga, Japan.

[83] Gen M., Kim J.R. (1999). GA-based Reliability design: State-of-the-art Survey. Computers and
Industrial Engineering 1999;37(1-2):151-155.

[84] Gen M., Yun Y (2006). Soft Computing Approach for Reliability Optimization; State-of-the-art
Survey. Reliability Engineering and System Safety 2006;91(9):1008-1026.

[85] Giuggioli-Busacca P.G., Marseguerra M., Zio E. (2001). Multiobjective Optimization by Genetic
Algorithms: Application to Safety Systems. Reliability Engineering and System Safety
2001;72(1):59-74.

[86] Goble W.M. (1998) Control Systems Safety Evaluation & Reliability. 1998. The Instrumentation,
Systems and Automation Society. Research Triangle Park, NC, U.S.

[87] Goble W.M., Bukowski J., Brombacher A.C. (1998). How diagnostic coverage improves safety in
programmable electronic systems. ISA Transactions, 1998, 36(4), 345-350.

[88] Goble W.M., Cheddie H. (2005). Safety Instrumented Systems Verification. The Instrumentation,
Systems and Automation Society. Research Triangle Park, NC, US.

[89] Goldberg D.E. (1989). Genetic algorithms in search, optimization and machine learning. Addison
Wesley, Reading MA, USA.

[90] Goldberg D.E., Richardson J. (1987). Genetic algorithms with sharing for multimodal function
optimization. In Grefenstette J.J. (ed.), Procs. Second International Conference on Genetic
Algorithms. Lawrence Erlbaum Associates, New Jersey, USA, pp. 41-49.

[91] Gonzalez L., Garcia D., Galvan B.J. (2004). An intrinsic order criterion to evaluate large, complex
fault trees. IEEE Transactions on Reliability 2004;53(3):297-305.

[92] Gopal K., Aggarwal K.K., Gupta J.S. (1978). A new approach to reliability optimization in General
Modular Redundant Systems. Microelectronics and Reliability 1978;18(5):419-422.

[93] Greiner D., Galvan B., Winter G. (2003). Safety systems optimum design by multicriteria
evolutionary algorithms. In: Fonseca C.M. et al. (eds.); Procs. Evolutionary Multi-criterion
Optimization Conference, Faro, Portugal, 2003. Lecture Notes in Computer Science No. 2632.
London: Springer-Verlag. p. 722-736.

[94] Gruhn P. (1996). The evaluation of safety instrumented systems – tools peer past the hype. ISA
Transactions 1996;35(1):25-32.

[95] Gruhn P., Cheddie H. (1998). Safety Shutdown Systems: Design, Analysis and Justification. The
Instrumentation, Systems and Automation Society. Research Triangle Park, NC, US.

[96] Gruhn P., Cheddie H. (2005). Safety Instrumented Systems: Design, Analysis and Justification (2nd

edn). The Instrumentation, Systems and Automation Society. Research Triangle Park, NC, US.
[97] Gulati R., Dugan J.B. (1997). A modular approach for analyzing static and dynamic fault trees. In:

Procs. Annual Reliability and Maintainability Symposium, Philadelphia, USA, 13-16 January 1997.
[98] Guo H., Yang X. (2007). A simple reliability block diagram method for safety integrity verification.

Reliability Engineering and System Safety 2007;92(9):1267-1273.
[99] Hauge S., Hokstad P., Langseth H., Oien K. (2006a). Reliability Prediction Method for Safety

Instrumented Systems. PDS Data Handbook 2006 edition. SINTEF, Norway.
[100]Hauge S., Langseth H., Onshus T. (2006b). Reliability Data for Safety Instrumented Systems. PDS

Method Handbook 2006 edition. SINTEF, Norway
[101]Haupt R.L., Haupt S.E. (2004). Practical genetic algorithms. Wiley and Sons Inc. New Jersey, USA,

2004.
[102]HID (2003). Guidance on As Low As Reasonably Practicable [ALARP] decisions in Control of

Major Accident Hazards [COMAH]. Health and Safety Executive, Hazardous Installations
Directorate, UK, Available from www.hse-databases.co.uk/hid/spc/perm12.htm, [last accessed 25-
July-2003].

http://www.openfta.com
http://www.hse-databases.co.uk/hid/spc/perm12.htm

References 248

[103]Hokstad P. (1988). A Shock Model for common-cause failures. Reliability Engineering and System
Safety 1988;23(2):127-145.

[104]Hokstad P. (2004). A generalisation of the Beta Factor Model. In Spitzer C., Schmocker U., Dang
V.N. (eds.), Procs. European Safety and Reliability Conference ESREL 2004 and International
Conference on Probabilistic Safety Assessment and management PSAM7. Berlin, Germany, 2004.
p.1363-1368.

[105]Hokstad P. (2005). Probability of Failure on demand (PFD) – the formulas of IEC 61508 with focus
on the 1002D voting. In: Kolowrocki K. (ed.) Proceedings of ESREL 2005. Gdansk, Poland, pp 865-
871

[106]Hokstad P., Corneliussen K. (2004). Loss of safety assessment and the IEC 61508 standard.
Reliability Engineering and System Safety 2004;83(1):111-120.

[107]Hokstad P., Flotten P., Holmstrom S., McKenna F., Onshus T. (1995). A reliability model for
optimization of test schemes for fire and gas detectors. Reliability Engineering and System Safety
1995;47(1):15-25.

[108]Hokstad P., Maria A., Tomis P. (2006). Estimation of common cause factors from systems with
different numbers of channels. IEEE Transactions on Reliability 2006;55(1):18-25.

[109]Holland J. H. (1975). Adaptation in Natural and Artificial Systems. USA:University of Michigan
Press.

[110]Horn J., Nafpliotis N., Goldberg D.E. (1994). A niched Pareto genetic algorithm for multiobjective
optimization. In: Procs. first IEEE Conference on Evolutionary Computation. IEEE World Congress
on Computational Intelligence, vol 1, pp 82-87. Piscataway, New Jersey, USA.

[111]HSE (2001). Reducing risk, protecting people. HSE’s decision-making process. Health and Safety
Executive, Her Majesty Stationery Office, Norwich, UK.

[112]HSE (2002). Principles for Proof Testing of safety Instrumented Systems in the Chemical Industry.
Contract Research Report 428/2002. Health and Safety Executive, Sheffield, UK, 2002.

[113]Hussain A., Todinov M. (2007). Reliability optimization based on minimising the total system cost
using genetic algorithms. In: Bartlett L (ed.) Procs. 17th Advances in Risk and Reliability
Technology Symposium, Loughborough, UK, 2007, p. 66-76.

[114]Ida K., Gen M., Yokota T. (1994). System Reliability Optimization Problems with Several Failure
Modes by Genetic Algorithm. In Procs. 16th International Conference on Computers and Industrial
Engineering, Ashikaga, Japan, 1994. p.349-352.

[115]IEC (1987). Technical Committee No 56: Reliability and Maintainability: Draft – Life cycle costing
– Concepts, procedures and applications. Proposal for International standard for LCC. International
Electrotechnical Commission, Switzerland.

[116]IEC (1991). IEC 1078 Analysis techniques for dependability- Reliability block diagrams.
International Electrotechnical Commission, Switzerland.

[117]IEC (1995). IEC 1165 Application of Markov techniques. International Electrotechnical
Commission, Switzerland.

[118]IEC (1998-2005). IEC 61508 Functional Safety of Electrical/Electronic/Programmable Electronic
Safety-Related Systems. Parts 1-7. International Electrotechnical Commission, Switzerland..

[119]IEC (2003). IEC 61511 Functional Safety – Safety Instrumented Systems for the Process Industry
Sector. Parts 1-3. International Electrotechnical Commission, Switzerland.

[120]ISA (1996). ISA S84.01-1996 Application of Safety Instrumented Systems for the Process Industry.
The Instrumentation, Systems and Automation Society, USA.

[121]ISA (1999). ISA TR84.0.02 Safety Instrumented Systems. Safety Integrity Level evaluation
techniques. Draft Version 5. Parts 1-5. The Instrumentation, Systems and Automation Society, USA.

[122]Jalote P. (1994). “Fault Tolerance in Distributed Systems”. PTR Prentice Hall. New Jersey, USA.
[123]Kawachi Y., Rausand M. (1999). Life cycle cost (LCC) analysis in oil and chemical process

industries. Norwegian University of Science and Technology, Trondheim, Norway. Available at
www.ntnu.no/ross/reports/lcc.pdf [last time accessed 09-July-2008].

[124]Kim I.S., Martorell S., Vesely W.E., Samanta P.K. (1992). Quantitative evaluation of surveillance
test intervals including test-caused risks. NUREG/CR-5775, BNLNUREG-52296. New York, US:
Brookhaven National Laboratory, 1992.

[125]Kim I.S., Martorell S., Vesely W.E., Samanta P.K. (1994). Risk analysis of surveillance requirements
including their adverse effects. Reliability Engineering and System Safety 1994;45(3):225-234.

[126]Knegtering B., Brombacher A. (1999). Application of micro Markov models for quantitative safety
assessment to determine safety integrity levels as defined by IEC 61508 standard for functional
safety. Reliability Engineering and System Safety 1999;66(2):171-175.

[127]Knowles J.D., Corne D.W. (2000). Approximating the nondominated front using the Pareto archived
evolutions strategy. Evolutionary Computation 2000;8(2):149-172.

http://www.ntnu.no/ross/reports/lcc.pdf

References 249

[128]Kohda T., Henley E.J., Inoue K. (1989). Finding modules in fault trees. IEEE Transactions on
Reliability 1989;32(2):165-176.

[129]Konak A., Coit D.W., Smith A.E. (2006). Multi-objective optimization using genetic algorithms: A
tutorial. Reliability Engineering and System Safety 2006;91(9):992-1007.

[130]Kuo E., Rajendra-Prasad V., Tillman F.A., Hwang C.L. (2001). Optimal reliability design.
Fundamentals and applications. Cambridge University Press. Cambridge UK.

[131]Kuo W., Rajendra-Prasad V. (2000). An annotated overview of system-reliability optimization. IEEE
Transactions on Reliability 2000;49(2):176-187.

[132]Kuo W., Zuo M.J. (2003). Optimal reliability modeling. Principles and applications. John wiley &
Sons. New York, USA

[133]Kvam P.H. (1998). A Parametric Mixture-Model for common-cause failure data. IEEE Transactions
on Reliability 1998;47(1):30-34.

[134]Kvam P.H., Martz F.M. (1995). Bayesian inference in a discrete shock model using confounded
common cause data. Reliability Engineering and System Safety 1995;48(1):19-25.

[135]Kvam P.H., Miller F.M. (2002). Common cause failure prediction using data mapping. Reliability
Engineering and System Safety 2002;76(3):273-278.

[136]Lapa C.M.F., Pereira C.M.N.A., Frutuoso e Melo P.F. (2003). Surveillance test policy optimization
through genetic algorithms using non-periodic intervention frequencies and considering seasonal
constraints. Reliability Engineering and System Safety 2003;81(1):103-109.

[137]Laprie J.C. (1985). Dependable computing and fault tolerance: Concepts and terminology. In FTCS-
25, 25th International Symposium on Fault Tolerant Computing. Pasadena, California, USA June
2005. p. 2-11.

[138]Laprie J.C, ed. (1992). Dependability: Basic concepts and terminology. Springer-Verlag, Vienna,
Austria.

[139]Lee J.H., Chang S.H., Yoon W.H., Hong S.Y. (1990). Optimal test interval modeling of the nuclear
safety systems using the inherent unavailability and human error. Nuclear Engineering and Design
1990;122(1-3):339-348.

[140]Lees F.P. (1996). Loss prevention in the process industry. Volume 1. 2nd edition. Butterworth-
Heinemann, Oxford, UK.

[141]Leinum T. (1992). Reliability of heat detector systems on an offshore production plant. Reliability
Engineering and System Safety, 1992, 36(1), 63-66.

[142]Leveson N.G. (1995). Safeware. System safety and computers. Addison-Wesley Publishing
Company, New York, USA.

[143]Levitin G., Lisnianski A., Ben-Haim H., Elmakis D. (1998). Redundancy Optimization for Series-
Parallel Multistate Systems. IEEE Transactions on Reliability 1998;47(2):65-172.

[144]Lewis E.E. (1996) Introduction to reliability engineering. 2nd ed. John Wiley & Sons. New York,
USA.

[145]Li F., Pilgrim J.D., Dabeedin C., Chebbo A., Aggarwal R.K. (2005). Genetic algorithms for optimal
reactive power compensation on the National Grid System. IEEE Transactions on Power Systems
2005;20(1):493-496.

[146]Linsnianski A., Levitin G. (2003). Multi-state system reliability. Assessment, optimization and
applications. World Scientific Publishing, Singapore.

[147]Littlewood B. (1996). The impact of diversity upon common mode failures. Reliability Engineering
and System Safety 1996;51(1):101-113.

[148]Littlewood B., Miller D.R. (1989). Conceptual modelling of coincident failures in multi-version
software. IEEE Transactions on Software Engineering 1989;15(12):1596-1614.

[149]Lu D., Lutz R.R. (2002). Fault Contributions Trees for Product Families. Proceedings of the 13th

International Symposium on Software Reliability Engineering, Annapolis, MD, USA, November
2002, p. 231-242.

[150]Lu L., Jiang J. (2007). Analysis of on-line maintenance strategies for k-out-of-n standby safety
systems. Reliability Engineering and System Safety 2007;92(2):144-155.

[151]Lu L., Lewis G. (2006). Reliability evaluation of standby safety systems due to independent and
common cause failures. In: Procs IEEE International Conference on Automation Science and
Engineering 2006, Shanghai, China, 7-10 October.

[152]Lu L., Lewis G. (2008). Configuration determination for k-out-of-n partially redundant systems.
Reliability Engineering and System Safety 2008;93(11):1594-1604.

[153]Lundteigen M.A. & Rausand M. (2008a). Architectural constraints in IEC 61508: Do they have the
intended effect? Reliability Engineering and System Safety 2008, article in press.

References 250

[154]Lundteigen, M.A. and Rausand M. (2008b). Spurious activation of safety instrumented systems in the
oil and gas industry: Basic concepts and formulas. Reliability Engineering and System Safety
2008;93(8):1208-1217.

[155]Lyndersen S., Aaro R. (1989). Life cycle cost predition handbook; computer-based process safety
systems. SINTEF report STF75 A89024. Trondheim, Norway.

[156]Marseguerra M., Zio E. (2000). Optimizing maintenance and repair policies via a combination of
genetic algorithms and Monte Carlo simulation. Reliability Engineering and System Safety
2000;68(1):69-83.

[157]Marseguerra M., Zio E., Martorell S. (2006). Basics of genetic algorithms optimization for RAMS
applications. Reliability Engineering and System Safety 2006;91(9):977-991.

[158]Marseguerra M., Zio E., Podofillini L. (2004a). Optimal Reliability/Availability of Uncertain
Systems via Multi-Objective Genetic Algorithms. IEEE Transactions on Reliability 2004;53(3):524-
434.

[159]Marseguerra M., Zio E., Podofillini L. (2004b). A Multiobjective Genetic Algorithm Approach to the
Optimization of the Technical Specifications of a Nuclear Safety System. Reliability Engineering and
System Safety 2004;84(1):87-99.

[160]Martorell S., Carlos S., Sanchez A., Serradell V. (2000). Constrained optimization of test intervals
using a steady-state genetic algorithm. Reliability Engineering and System Safety 2000;67(3):215-
232.

[161]Martorell S., Carlos S., Sanchez A., Villanueva J.F. (2007). Genetic Algorithms applications in
surveillance and maintenance optimization. In: Leviti G (ed.) Computational intelligence in
reliability engineering. Spinger-Verlag, Berlin, 2007. Berlin, Germany.

[162]Martorell S., Carlos S., Villanueva J.F., Sanchez A.I., Cepin M. (2005b). Optimization of
surveillance requirements at NPP considering time-dependent scheduling of tests and preventive
maintenance. In Kolowroki K. (ed), Procs. European Safety and Reliability Conference ESREL ’05.
Tri City, Poland, 2005. p.1363-1370.

[163]Martorell S., Carlos S., Villanueva JF., Sanchez A.I., Galvan B., Salazar D., Cepin M. (2006). Use of
multiple objective evolutionary algorithms in optimizing surveillance requirements. Reliability
Engineering and System Safety 2006; 91(9):1027-1038.

[164]Martorell S., Sánchez A., Carlos S., Serradel V. (2004). Alternatives and Challenges in Optimizing
Industrial Safety Using Genetic Algorithms. Reliability Engineering and System Safety
2004;86(1):25-34.

[165]Martorell S., Sanchez A., Carlos S., Serradell V. (2002). Simultaneous and multi-criteria
optimization of TS requirements and maintenance at NPPs. Annals Nuclear Energy 2002;29(2):147-
168.

[166]Martorell S., Sanchez A., Villanueva J.F., Carlos S., Serradell V. (2008a). A multi-objective genetic
algorithm for RAMS+C optimization with uncertain decision variables. Procs. of IMechE Part O,
Journal of Risk and Reliability 2008;222(O2):153-160.

[167]Martorell S., Serradell V., Samanta P.K. (1995). Improving allowed outage time and surveillance test
interval requirements: a study of their interactions using probabilistic methods. Reliability
Engineering and System Safety 1995;47(2): 119-129.

[168]Martorell S., Villanueva J.F., Carlos S., Nebot Y., Sánchez A., Pitchard J.L., Serradell V. (2005a).
RAMS+C Informed Decision-Making with Application to Multi-objective Optimization of Technical
Specifications and Maintenance Using Genetic Algorithms. Reliability Engineering and System
Safety 2005;87(1):65-75.

[169]Martorell S., Villanueva J.F., Carlos S., Sanchez A. (2008b). Maintenance modelling and
optimization applied to safety-related equipment at nuclear power plants. In SAFERELNET project.
Polytechnic University of Valencia, Spain. 2008. In preparation.

[170]Martorell S.A., Melia M.E., Marti S.M., Garcia J.S., Soriano-Melchor F., Verdu-Martin G., Serradel
V. (1988). Análisis del periodo de pruebas optimo en la revisión de especificaciones técnicas de C.N.
relativas a STI’s. Aplicación a un sistema por dos componentes en paralelo. XIV Annual Meeting of
the Spanish Nuclear Society. Marbella, Spain, 1988.

[171]McWilliams T.P., Martz H.F. (1980). Human error considerations in determining the optimum test
interval for periodically inspected standby systems. IEEE Transactions on Reliability 1980;R-
29(4):305-310.

[172]Medoff, M. (2007). IEC 61508 Functional Safety Assessment. Project: 3144P Safety Certified
Temperature Transmitter. Exida.com L.L.C. Sellerville, USA. Available online at:
http://www.exida.com/applications/sael/pdf/emerson/Emerson%2006-09-
33%20R001%20V1R1%20%20IEC%2061508%20Assessment.pdf [last time accessed March 2007].

http://www.exida.com/applications/sael/pdf/emerson/Emerson%2006-09

References 251

[173]Meulen v.d.M. (2003). On the use of smart sensors, common cause failure and the need for diversity.
In: Procs 6th International Symposium of Programmable Electronic Systems in Safety Related
Applications. TUV. Available on-line at www.sipi61580.com/ciks/vandermeulenm1.pdf. [last
accessed 12-October-2008].

[174]Mosleh A. (1991). Common cause failures: An analysis methodology and examples. Reliability
Engineering and System Safety 1991;34 (3):249-292.

[175]Mosleh A., Fleming K.N., Parry G.W., Paula H.M., Worledge D.H., Rasmuson D.M. (1988).
Procedures for Treating Common Cause Failures in Safety and Reliability Studies. Vol. 1: Procedural
framework and examples. Vol. 2: Analytical background and techniques. NUREG/CR-4780 (EPRI
NP-5613). U.SA: Nuclear Regulatory Commission; 1988.

[176]Moustafa M.S. (1996). Transient analysis of reliability with and without repair for K-out-of-N:G
systems with two failure modes. Reliability Engineering and System Safety 1996;53(1):31-35.

[177]Moustafa M.S. (1997). Reliability analysis of K-out-of-N:G systems with dependent failures and
imperfect coverage. Reliability Engineering and System Safety 1997;58(1):15-17.

[178]Mulenbein H., Schlierkamp-Voosen (1993). Predictive models for the Breeder Genetic Algorithm.
Evolutionary Computation 1993;1(1):25-49.

[179]Muñoz A., Martorell S., Serradell V. (1997). Genetic algorithms in optimizing surveillance and
maintenance of components. Reliability Engineering and System Safety 1997;57(2):107-120.

[180]NORSOK (1996). O-CR-001 Life cycle cost for systems and equipment. The Competitive Standing
of the Norwegian Offshore Sector, Norway.

[181]Painton L., Campbell J. (1995). Genetic Algorithms in Optimization of System Reliability. IEEE
Transactions on Reliability 1995;44(2):172-178.

[182]Pattison R.L., Andrews J.D. (1999). Genetic algorithms in optimal safety system design. Procs of
IMechE Part E, Journal of Process Mechanical Engineering 1999;213(E3):187–97.

[183]Pham H. (1992). On the optimal design of k-out-of-n:G subsystems. IEEE Transactions on reliability,
1992, 41(4), 572-575.

[184]Pham H. (1993). Optimal cost-effective design of triple-modular-redundancy-with-spares systems.
IEEE Transactions on Reliability 1993;42(3):369-374.

[185]Pham H., Galyean W.J. (1992). Reliability analysis of nuclear fail-safe redundancy. Reliability Eng.
and System Safety 1992;37(2):109-112.

[186]Podofillini L., Zio E. (2008). Designing a risk-informed balanced system by genetic algorithms:
Comparison of different balancing criteria. Reliability Engineering and System Safety
2008;93(12):1842-1858.

[187]Purshouse R.C. (2003). On the evolutionary optimisation of many objectives. PhD Thesis. The
University of Sheffield. Sheffield, UK.

[188]Rachmawati .L, Srinivasan D. (2006). Preference Incorporation in Multi-objective Evolutionary
Algorithms: A Survey. In Procs. IEEE Congress on Evolutionary Computation CEC 2006,
Vancouver, Canada, pp. 3385--3391.

[189]Ramirez-Marquez J.E., Coit D.W. (2007). Optimization of system reliability in the presence of
common cause failures. Reliability Engineering and System Safety 2007;92(10):1421-1434.

[190]Rao K.D., Gopika V., Kushwaha H.S., Verma A.K., Srividya A. (2007) Test interval optimization of
safety systems of nuclear power plant using fuzzy-genetic approach. Reliability Engineering and
System Safety 2007;92(7):895-901.

[191]Rausand M., Hoyland A. (2004). System Reliability Theory. Models, Statistical methods and
Applications. 2nd ed. Wiley Interscience. New Jersey, USA.

[192]Rechenberg I. (1973). Evolutionsstrategie: Optimierung technischer systeme nach prinzipien der
biologischen evolution. Frommann-Holzboog, Stuttgart, Deutchland.

[193]Reeves C.N., Rowe J.E. (2002). Genetic Algorithms: Principles and perspectives. A guide to Genetic
Algorithms theory. Kluwer Academic Publishers. Norwell, MA, USA.

[194]Riauke J., Bartlet L. (2008). An offshore safety system optimization using an SPEA2-based
approach. Procs. of IMechE Part O, Journal of Risk and Reliability 2008;222(O3):271-282.

[195]Rouvroye J.L., van den Bliek E.G. (2002). Comparing safety analysis techniques. Reliability
Engineering and System Safety 2002;75(3):289-294.

[196]Rouvvroye J., Brombacher A. (1999). New quantitative safety standards; different techniques,
different results? Reliability Engineering and System Safety 1999;66(2):121-125.

[197]Salazar D., Rocco C.M., Galvan B.J. (2006). Optimization of constrained multiple-objective
reliability problems using evolutionary algorithms. Reliability Engineering and System Safety
2006;91(9):1057-1070.

http://www.sipi61580.com/ciks/vandermeulenm1.pdf

References 252

[198]Salazar D.E, Claudio M., Rocco S. (2007). Solving advanced multi-objective robust designs by
means of multiple objective evolutionary algorithms (MOEA): A reliability application. Reliability
Engineering and System Safety 2007;92(6):697-706.

[199]Samanta P., Kim I.S., Mankamo T., Vesely W.E. (1994). Handbook of Methods for Risk-Based
Analyses of Technical Specifications, NUREG/CR-6141. USA, Nuclear Regulatory Commission;
1994.

[200]Schaffer J.D. (1985). Multiple objective optimization with vector evaluated genetic algorithms. In:
Grefenstette JJ (ed.). Proceedings of the First International Conference on Genetic Algorithms.
Lawrence Erlbaum Associates, New Jersey, pp 93-100.

[201]Schneeweiss W.G. (2001). Tutorial: Petri nets as a graphical description medium for many reliability
scenarios. IEEE Transaction on reliability 2001;50(2):159-164.

[202]Schofield S.L. (1993). Optimisation of proof test intervals in fault tree analysis. Reliability
Engineering and System Safety 1993;41(2):127-133.

[203]Schwefel H.P. (2000). Advantages (and disadvantages) of evolutionary computation over other
approaches. In: Back T, Fogel DB, Michalewicz Z (eds.). Evolutionary computation 1. Basic
algorithms and operators. Institute of Physics Publishing. Bristol, UK.

[204]Shooman M.L. (1968). Probabilistic reliability: An engineering Approach. McGraw-Hill Book
Company, New York, USA.

[205]Shooman M.L. (2002). Reliability of Computer Systems and Networks. Wiley Interscience, New
York, USA.

[206]Signoret J-P. (1997). High Integrity Protection Systems (HIPS) – Making SIL calculations effective.
Exploration and production – oil and gas review (OTC edition), p. 14-17.

[207]Signoret J-P., Duduit Y., Rauzy A. (2007). High Integrity Protection Systems (HIPS): Methods and
tools for efficient Safety Integrity Levels (SIL) analysis and calculations. In Aven T. & Vinnem J.E.
(eds.): Procs. European Safety and Reliability Conference ESREL 2007, Stavanger, Norway, 25-27
June 2007. London: Taylor & Francis.

[208]Smith A.E., Tate D.M. (1993). Genetic optimization using a penalty function. In: Forrest S (ed.).
Procs. of the Fifth Conference on Genetic Algorithms, 1993. Morgan Kaufmann Publishers, San
Francisco, CA, USA, p. 499-505.

[209]Smith D.J. (2005). Reliability, maintainability and risk. 7th edition. Elsevier Butterworth-Heinemann,
Massachusetts, USA.

[210]Srinivas N., Deb K. (1994). Multiobjective optimization using nondominated sorting in genetic
algorithms. Evolutionary Computation 1994;2(3):221-248.

[211]Storey N. (1996). Safety-Critical Computer Systems. Addison Wesley Longman. New York, USA.
[212]Suich R.C., Patterson, R.L. (1991). K-out-of-n:G systems: Some cost considerations. IEEE

Transactions on Reliability, 1991, 40(3), 259-264.
[213]Taboada H.A., Baheranwala F., Coit D.W., Wattanapongsakorn N. (2007). Practical solutions for

multi-objective optimization: An application to system reliability design problems. Reliability
Engineering and System Safety 2007;92(3):314-322.

[214]Tao H., Liao G., Wang L. (2003). Integer coded genetic algorithm design of staggered sampling
MTI. In: Proc. IEEE International Conference in Neural Networks and Signal processing 2003.
Nanging, China. Vol 1, p. 558-562.

[215]Tavakkoli-Moghaddam R., Safari J., Sassani F. (2008). Reliability optimization of series-parallel
systems with a choice of redundancy strategies using a genetic algorithm. Reliability Engineering and
System Safety 2008;93(4)550-556.

[216]The Norwegian Industry Association (2004). OLF-070 Application of IEC 61508 and IEC 61511 in
the Norwegian Petroleum Industry. Norway, 2004.

[217]Tian Z., Zuo M.J. (2006). Redundancy Allocation for Multi-state Systems using Physical
Programming and Genetic Algorithms. Reliability Engineering and System Safety 2006;91(9):1049-
1056.

[218]Uryas’ev S., Vallerga H. (1993). Optimization of test strategies: a general approach. Reliability
Engineering and System Safety 1993;41(2):155-165.

[219]Van Veldhuizen D.A. (1999). Multiobjective Evolutionary algorithms: Classifications, analyses and
new innovations. PhD Thesis. Air Force Institute of Technology. Ohio, USA.

[220]Vaurio J.K. (1994). The theory and quantification of common cause shock events for redundant
standby systems. Reliability Engineering and System Safety 1994;43(3):289-305.

[221]Vaurio J.K. (1995a). Optimization of test and maintenance intervals based on risk and cost.
Reliability Engineering and System Safety 1995;49(1):23-26.

[222]Vaurio J.K. (1995b). The probabilistic modelling of external common cause failure shocks in
redundant systems. Reliability Engineering and System Safety 1995;50(1):97-107.

References 253

[223]Vaurio J.K. (1998). An Implicit Method for incorporating common-cause failures in system analysis.
IEEE Transactions on Reliability 1998;47(2):173-180.

[224]Vaurio J.K. (1999). Common-cause failure models, data, quantification. IEEE Transactions on
Reliability 1999;48(3):213-214.

[225]Vaurio J.K. (2002). Treatment of general dependencies in system fault-tree and risk analysis. IEEE
Transactions on Reliability 2002;51(3):278-287.

[226]Vaurio J.K. (2003). Common cause failure probabilities in standby safety system fault tree analysis
with testing-scheme and timing dependencies. Reliability Engineering and System Safety
2003;79(1):43-57.

[227]Vaurio J.K. (2007). Consistent mapping of common cause failure rates and alpha factors. Reliability
Engineering and System Safety 2007;92(5):628-645.

[228]Vesely W.E. (1999). Principles of resource-effectiveness and regulatory effectiveness for risk-
informed applications: Reducing burdens by improving effectiveness. Reliability Engineering and
System Safety 1999;63(3):283-292.

[229]Vesely W.E., Apostolakis G.E. (1999). Editorial. Developments in risk-informed decision-making
for nuclear power plants. Reliability Engineering and System Safety 1999;63(3):223-224.

[230]Vesely W.E., Goldberg F.F., Roberts N.H., Haasl D.F. (1981). NUREG-0492 Fault Tree Handbook.
Nuclear Regulatory Commission. Washington D.C. USA.

[231]Villanueva J.F., Sanchez A.I., Carlos S., Martorell S. (2008). Genetic algorithm-based optimization
of testing and maintenance under uncertain unavailability and cost estimation: A survey of strategies
for harmonizing evolution and accuracy. Reliability Engineering and System Safety
2008;93(12):1830-1841.

[232]Vinod G., Kushwaha H.S., Verma A.K., Srividya A. (2004). Optimization of ISI interval using
genetic algorithms for risk informed in-service inspection. Reliability Engineering and System Safety
2004;86(3):307-316.

[233]Weile D.S., Michielsen E. (1996). Integer coded Pareto genetic algorithm design of constrained
antenna arrays. Electronic Letters 1996;32(1):1744-1745.

[234]Wilton S.R. (1998). Safety system logic solver availability, 1oo2D and TMR. ISA Transactions,
1998, 37(4), 353-358.

[235]Xie L., Zhou J., Wang X. (2005). Data mapping and the prediction of common cause failure
probability. IEEE Transactions on Reliability 2005;54(2):291-296.

[236]Yang J., Hwang M., Sung T., Jin Y (1999). Application of Genetic Algorithm for Reliability
Allocation in Nuclear Power Plants. Reliability Engineering and System Safety 1999;65(3):229-238.

[237]Yoshimura I., Sat Y. (2008). Safety achieved by the Safe Failure Fraction (SFF) in IEC 61580. IEEE
Transactions on Reliability 2008;57(4):662-669.

[238]Yu H., Chu C., Chatelet E., Yalaoui F. (2007). Reliability optimization of a redundant system with
failure dependencies. Reliability Engineering and System Safety 2007;92(12):1627-1634.

[239]Zhang T., Long W., Sato Y. (2003). Availability of systems with self-diagnostics components –
Applying Markov model to IEC 61508-6. Reliability Engineering and System Safety
2003;80(2):133-141.

[240]Zhao J., Chan A.H.C., Roberts C., Madelin K.B. (2007). Reliability evaluation and optimization of
imperfect inspections for a component with multi-defects. Reliability Engineering and System Safety
2007;92(1):65-73.

[241]Zio E., Di Maio F., Martorell S. (2008). Fusion of artificial neural networks and genetic algorithms
for multi-objective system reliability design optimization. Procs. of IMechE Part O, Journal of Risk
and Reliability 2008;222(O2):115-126.

[242]Zio E., Podofillini L. (2007a). Integrated optimization of system design and spare parts allocation by
means of multiobjective genetic algorithms and Monte Carlo simulation. Procs. of IMechE Part O,
Journal of Risk and Reliability 2007;221(O1):67-84.

[243]Zio E., Podofillini L. (2007b). Importance measures and genetic algorithms for designing a risk-
informed optimally balanced system. Reliability Engineering and System Safety 2007;92(10):1435-
1447.

[244]Zitzler E., Deb K., Thiele L. (2000). Comparison of multiobjective evolutionary algorithms:
Empirical results. Evolutionary Computation 2000;8(2):173 – 195.

[245]Zitzler E., Laumanns M., Thiele L. (2002). SPEA2: Improving the strength Pareto evolutionary
algorithm. In: Giannakoglou K. et al. (ed.) Procs. EUROGEN 2001, Evolutionary methods for
design, optimization and control with applications in industrial problems, pp 95-100. Athens, Greece.

[246]Zitztler E., Thiele L. (1999). Multiobjective evolutionary algorithms: A comparative case study and
the strenght Pareto approach. IEEE Transactions on Evolutionary Computation 1999;3(4):257-271.

254

APPENDIX A

Extended topics in reliability and safety

A.1. DETAILED REVIEW OF DEPENDABILITY MODELLING

A.1.1. Modelling methods

The main methods used for dependability measures in safety analysis are:

1. Simplified equations (SE). These are a set of equations, obtained from other methods, for

specific architectures, and simplified for combination and merged for solution of larger

systems (IEC 61508; ISA, 1999; Hauge et al., 2006a)

2. Reliability Block Diagrams (RBD). Representation of the system structure by functional

blocks, showing graphically the conditions for successful operation of the system. (IEC,

1991; Rouvroye & van den Bliek, 2002).

3. Fault Tree Analysis (FTA). A graphical top-down representation of the different

combinations between basic events (e.g. faults) leading to system failure; i.e. top event

(Vesely et al., 1981)

4. Markov Analysis (MA). A method representing the different possible states of the system

components, and the transitions among these states (IEC, 1995)

5. Petri Nets (Duduit et al., 1997; Duduit et al., 2008). Directed graphs composed of two types

of nodes: states and transitions (Schneeweiss, 2001). Tokens are used for indicating the

actual active states, and are moved from state to state to simulate transitions.

6. Hybrid methods. Combination of several techniques, like RBD, FTA and MA for solution

of complex systems. (Knetering & Brombacher, 1999; Signoret et al., 2007; Duduit et al.,

2008).

ISA TR84.0.02 (1999) specifically treats the application of SE, FTA and MA to Safety

Instrumented Systems and makes a comparison of their modelling capability. SE is only able to

handle simple systems. FTA (solved by Boolean algebra) can be used for modelling systems

with more complex relationships. It can handle diverse repair times and diverse redundancy.

Markov analysis (solved by matrix algebra) can do this as well, and in addition is capable of

modelling time dependent requirements and handling sequence dependent failures. A big

advantage of FTA over MA is that the former provides graphics that allow easy visualization of

the failure paths.

Appendix A. Additional topics in reliability and safety 255

Several authors have presented significant descriptions and comparative analysis of the different

modelling techniques. Goble (1998) uses FTA and MA techniques for modelling several MooN

architectures, including details such as CCF quantification and diagnostic coverage. These are

validated and it is concluded that they provide similar results, however the MA approach is

advantageous for including time dependency and the interaction of multiple failure modes.

Goble & Cheddie (2005) examined RBD and FTA. Both techniques provide a graphic

representation of probability combinations. The main difference is that RBD focus on system

success, while FTA focuses on system failure. Since FTA shows clearly the propagation

mechanism of multiple failure modes, Goble & Cheddie express their preference for this in

modelling SIS.

Rouvroye & Brombacher (1999) gave an account of FTA, RBD, MA and hybrid methods and

contrasted them all exposing their advantages and disadvantages. As hybrid techniques they

included the method proposed by IEC 61508-6 and the first edition of the PDS Method (Aaro et

al., 1989). They show that RBD is the least comprehensive method, giving very pessimistic

results. FTA and the two hybrid methods have approximately the same capabilities (inclusion of

CCF, effect of diagnostics, and effects of test and repair, the latter only time-averaged) but FTA

cannot include systematic failures (they do not indicate it, but the IEC method cannot either)

and give practically the same results. For the authors Markov Analysis is the best method,

although they propose to use a new method (hybrid in the author s view) called Enhanced

Markov Analysis (EMA), which is a combination of MA, uncertainty analysis (via Monte Carlo

simulation) and sensitivity analysis. In their results, they obtain a lower PFDavg figure.

Nevertheless, they included the probability of the system being in a safe state (i.e. down), which

is considered by the author is not adequate for PFDavg calculation. The analysis is built upon by

Rouvroye & van den Bliek (2002), reinforcing these conclusions.

Andrews & Ericson (2000) compared FTA and MA for several design complexities (e.g. partial

coverage, standby systems). They concluded that FTA delivers either the same results or very

good approximations to MA results for several cases. Although MA is more exact, it is

frequently necessary to exclude many contributing events in order to simplify the model, which

coverts it into an approximation. To create Markov models for systems that are not very simple

is difficult and error prone, and for big systems solutions can be only obtained by using

numerical methods. FTA in contrast, is powerful for modelling large and complex systems

easily, and their results are very good when small probabilities are involved (as is usual in safety

systems).

Appendix A. Additional topics in reliability and safety 256

Bukowski (2005) recently made a comparative analysis of MA and SE for quantification of

PFDavg. She points out that there is a vivid debate amongst advocates of MA, FTA and SE, some

even arguing that MA models are incorrect. She concludes that SE are much easier to apply, but

for getting rough estimates based on significant implications that may lead to significant errors,

specially with undetected failures. On the contrary, MA when constructed and interpreted

correctly gives the same results as those obtained by classical probability techniques. They do,

however, require more expert understanding for their application.

IEC 61508-6 suggests a PFDavg quantification method based on simplified equations (obtained

from RBD). It presents the disadvantages of SE mentioned by the other authors above, since it

seems to be oversimplified and not adequate for a detailed analysis of systems. Hauge et al.

(2006a) in the PDS Method presents a more refined technique based on calculation formulas,

which is presented with an example with simple RBD. The method aims to include failure

categories and causes excluded by previous techniques. It presents a very novel approach to

quantification of CCF by the factor model, which is incorporated in this thesis. More recently,

Guo & Yang (2007) proposed an RBD based approach, which has an equivalent mathematical

characteristic to FTA, and addresses and improves the approach originally proposed by IEC

61508 Part 6 based on simplified equations derived through RBD for SIL verification.

A.1.2. Modelling PFD for SIL analysis

IEC 61508 Part 6 provides a suggested methodology for quantification of PFDavg detailed in

Section 1.6.2. As mentioned before, it is based on simplified equations derived from RBDs. It

also provides tables for the PFDavg of a few specific architectures for fixed combinations of

failure rate, diagnostic coverage and factor.

Goble (1998) provides an alternative to modelling PFDavg. As mentioned above, it uses either

FTA or MA. The reasons for considering FTA more advantageous have been outlined above.

Goble provided the detailed modelling of several architectures up to three components,

including modelling detail such as safe and dangerous failures, CCF and diagnostic coverage.

This is the base used in this thesis for the fault tree modelling. Goble bases his modelling on

using the failure modes division as presented in Eq. (1.20). He solved the FTs by deriving

simplified equations and obtaining the average value by integration.

The Markov modelling is based on previous work with Bukowski (Bukowski & Goble 1995).

Bukoswki and Goble (2001) and Bukowski (2001) have continued developing the MA method

for safety systems. Zhang et al. (2003) presented a new analysis of MA for systems with self-

diagnostic components.

Appendix A. Additional topics in reliability and safety 257

The methods presented by ISA TR84.0.02 (ISA, 1999) include SE, FTA and MA. They use the

same failure modes taxonomy as Goble (1998), which is also used in this thesis (Eq. (1.20)).

The standard includes terms for quantification of systematic failures. It proposes for FTA the

addition of basic events for systematic failures in the same fashion as for CCF. However, to

obtain statistical data for systematic failure probability or rates is very difficult. The standard

later drops the term for systematic failure rate when presenting the set of equations with further

simplifications. The standard itself recognizes that it is very difficult to quantify systematic

failures contribution due to the diversity of causes of failures (specification, design,

implementation, operation, etc.). Goble (1998) and ISA TR84.0.02 Part 3 are the two main

references for FTA applied to safety systems with two failure modes and with sufficient detail

for application to IEC 61508.

Knegtering & Brombacher (1999), Rouvroye & Brombacher (1999) and Rouvroye and van den

Bliek (2002) proposed the use of hybrid Markov methods for solution of PFDavg: Micro Markov

models, and Enhanced Markov Analysis. The former implies to introduce small Markov models

for sub-divisions of RBDs, which are easier to solve and reduces the necessary operations to

execute for quantifying the PFDavg. It still, however, suffers from some degree of complexity

compared to FTA, although it adds accuracy to RBD. The enhance Markov analysis is a

combination of MA, uncertainty analysis (via Monte Carlo technique) and sensitivity analysis

(Rouvroye & Brombacher, 1999). It seems to be a powerful technique, but with the same

drawbacks of the basic MA plus the complexities of the additional techniques.

SINTEF proposed a new analytic method for quantification of reliability for process safety

systems (Bodsberg & Hokstad, 1995, 1997). It is called the PDS Method (a Norwegian acronym

for reliability and availability of computer-based safety systems). It started to explore the

creation of an alternative failure taxonomy that relates directly failure cause, consequence and

their means of improvement. This started addressing the need of using reliability calculations

results for LCC quantification, in order to find cost-effective designs and operating

philosophies. They proposed to use modified RBDs for development of the system logic model

in order to get analytical expressions. At a later stage (Hokstad & Corneliussen, 2004), they

started to identify the weaknesses in the IEC 61508 methods, proposing their new failure

classification and suggesting an extended and more precise factor model for quantification of

CCF (further developed on Hokstad (2004) and Hokstad et al. (2006)). These developments

gave as a result the final PDS Method, which is now at a second edition (Hauge et al., 2006a).

The PDS Method offers an alternative to quantification of PFD for compliance with IEC 61508.

It aims to follow the IEC 61508 philosophy but with a more sophisticated and precise

Appendix A. Additional topics in reliability and safety 258

dependability quantification methods. It intends to provide a methodology for realistic

quantification of safety system performance in application-specific conditions (opposed to the

laboratory-like environment). It considers three failure modes: dangerous, spurious trip and non-

critical (those that do not affect the system functioning). The PDS method argues that although

IEC 61508 excludes systematic failures from calculations, it implicitly includes a fraction of

them in the random failure data, and in the quantification of CCF by the factor, and a fraction

of the diagnostic coverage.

Figure A.1. Contributions to Critical Safety Unavailability in the PDS Method

The loss of safety measure proposed by SINTEF (Fig. A.9), called the Critical Safety

Unavailability (CSU), includes:

Unavailability due to dangerous undetected failures. This is quantified by the average PFD

in this method.

Systematic test-independent failures PTIF, which are not detected either by the self-

diagnostic mechanism nor the proof test. These are modelled as probabilities.

Unavailability due to test and maintenance downtime DTU. This includes planned

downtime (test and preventive maintenance) and unplanned (repair). These contributions

depend on the operational philosophy. Something no other author had mentioned before.

The PDS method provides a set of simplified formulas for the factors mentioned above, and for

quantification of STR as well.

PDS is largely focussed on modelling of MooN voting systems. PDS modifies the IEC 61508

factor model by introducing a modification factor. This modifies the in order to take into

account the difference in CCF for different voting architectures. This is further discussed in

Chapter 4. The PDS method provides a set of generic simplified equations that can be applied

for any MooN voting configuration. They are three sets, one for each of the factors of CSU

outlined above.

Appendix A. Additional topics in reliability and safety 259

The PDS method is perhaps more comprehensive and generic than the one of IEC 61508-6.

However, there exists the difficulty of having explicit input data for all the parameters. This is

especially difficult for the systematic failure probability PTIF. The PDS method is classified as a

Hybrid method (it uses simple RBDs), but is largely based on SE, and therefore it presents some

of their drawbacks (oversimplification, difficulty to handle test and repair, etc.). However, it

contribution is enormous, especially considering its provision for quantification of CCF and

independent failure rates of different MooN architectures.

Guo & Yang (2007) intend to provide a detailed guidance for application of RBD, deriving

simplified equations, compensating the lack of sufficient detail of IEC61508-6. Their method is

based on the concept of mean down time, the same as IEC 61508, but they obtained a different

expression. It is a great advance when compared with IEC 61508-6, but it still has some of the

same drawbacks of the method provided by the standard.

Signoret et al. (2007) and Duduit et al. (2008) have proposed the use of fault trees for

quantification of PFDavg complemented with more powerful methods so that time-dependencies

can be handled, and test and maintenance properly modelled. This constitutes hybrid methods,

based on fault trees. The idea is to introduce multi-phase Markov models or Petri Nets

substituting sub-modules of the fault tree, included as basic events. In this thesis, a similar idea

has been developed (Chapters 5 and 6), but introducing time-dependent analytical models that

comprises entire sub-systems.

A.1.3. Modelling of STR

Goble (1988) includes quantification of Probability of Failing Safely in the modelling with FTA

and MA. It considers a sufficient level of detail to include diagnostic coverage and CCF. It

presents the models for several architectures with up to three components. The measure actually

is an unavailability by safe failure (·SD, being SD the time to re-establish the process after a

spurious shutdown). The contribution of Goble is significant in the sense that includes the

analysis of safe failures giving them as much importance as dangerous failures, and analyzes

them with the same level of detail. The measure for safe failure included by ISA TR 84.0.02 is

the Mean Time to Spurious Trip (MTTFspurious=1/STR). It actually quantifies the STR by SE,

FTA and MA and then converts them to MMTF. In the quantification of STR by SE, it includes

the dangerous detected failures. Albeit this may be correct, it depends on the operational

philosophy of the system (Hauge et al., 2006a). Also in the SE method, it includes

quantification of systematic failure rates. The same as for PFD quantification, Goble (1988) and

ISA TR84.0.02 use the failure modes classification provided by Eq. (1.20). Notice, however,

Appendix A. Additional topics in reliability and safety 260

that ISA TR84.0.02 drops one level of modelling detail (i.e. separation of detected and

undetected failures) in the Markov examples, in order to avoid the growing complexity problem.

As mentioned above, the PDS Method (Hauge et al., 2006a) presents a quantification alternative

to IEC 61580-6, still intending to comply with the requirements of the standard. The PDS

Method acknowledges the fundamental importance that the quantification of consequences of

safe failures have for SIS, classifying them as critical failures, given that they affect the

basic/main functioning of the system. They conceptualize STR as a measure of the system

ability to maintain production when safe. Therefore, STR is a measure of loss of production.

Different from PFDavg, the method does not include quantification of systematic failures for

STR.

A set of generic equations for evaluation of STR for different architectures is given. The STR

quantification method includes the same benefits as for the loss of safety quantification

approach: The method is oriented to contemplate the different effects of the specific MooN

voting architecture, embedded in the modified factor model.

There is a difference of opinion whether the dangerous detected failures should be treated as

safe, and therefore should contribute to the STR. The PDS method recognizes that this is

possible, but that it cannot be taken for granted, since it depends on the system operation

philosophy. It is worth noting that the method does not include explicitly the dangerous detected

failures in the STR quantification formulas.

The benefits and drawbacks of the PDS method for loss of production are the same as for loss of

safety. Nevertheless, their contribution to the quantification of CCF with the modified factor

model is notable. The method also establishes firmly the necessity of quantifying STR in order

to keep a balance between loss of safety and loss of production, and not only as a secondary

performance metric.

Lu & Lewis (2006, 2008) presented analytical models for probability of spurious operation (and

unavailability) based on the binomial distribution. They made a sensitivity analysis to changing

k and n in k-out-of-n systems, and found graphically feasible regions of design according to

specific requirements. Practical case studies for CANDU NPPs, which use 2oo3 and 2oo4

architectures were presented. This is useful for having an insight into the comparison of MooN

architectures. The study is extended in Lu & Jang (2007) to include the effects of on-line test

and maintenance. The contribution of this work is important because it introduces the evaluation

of the relative time the system spends in normal operation and test and maintenance, during

Appendix A. Additional topics in reliability and safety 261

which its probability of spurious operation changes. This concept is considered in Chapter 6

herein. Apart from that, the level of modelling detail is too basic, not adequate for the study we

intend to develop herein.

The first monothematic study about spurious activation of SIS was presented by Lundteigen &

Rausand (2008b). This article defines and clarifies concepts related to spurious activation of

SIS. It discusses the multiple causes of spurious trips and presents several analytical expressions

for quantification of STR including the following factors: internal failures, dangerous detected

failures, false demand, and loss of utilities. The first two are based on the binomial distribution,

and they include CCF. The last two are important to quantify; however for comparison of

competing architectures they are irrelevant. Notice that the authors clarify that the inclusion of

dangerous detected failures as contributors to STR depends on the system configuration and

operating philosophy. Systematic failure is acknowledged as a contributing factor, but it is not

included in the quantification. They develop a set of simplified equations for a few

architectures, and compare results against the equations given by the PDS method and ISA

TR84.0.02. They conclude that the results are quite similar.

A.1.4. Fault Tree Analysis

A fault tree is a graphic analytical model that represents the interrelationship between a potential

critical event and the combination of events that cause that event. The fault trees are constructed

using symbols. The most important symbols are shown in Figure A.2. There are several other

symbols of less common use. A full reference about the fault tree method and these symbols can

be found in Vesely et al. (1981) and Andrews & Moss (2002). The application of FTA specific

to SIS is well explained in Goble (1988) and ISA TR84.0.02. The steps for execution of a

complete fault tree analysis (Leveson, 1995; Rausand & Hoyland, 2004) are given below:

1. Definition of the problem and boundaries. This requires to define clearly and concisely the

critical event, which becomes the top event of the fault tree. For SIS this is usually system

dangerous failure or system safe failure.

2. Fault tree construction. The fault tree is constructed from the top event down. The

immediate causes of the top events are identified and connected to the top event using logic

gates. The causes of these intermediate events are then identified and structured in the same

way. This process is repeated until the root causes are found. The basic events can be for

example faults or operator actions, and are delimited by the limit of resolution of the problem. It

is fundamental to be able to include in the fault tree all the causes that are necessary and

sufficient for the top event to occur.

Appendix A. Additional topics in reliability and safety 262

Top or intermediate
event

Basic event

AND gate

OR gate

Transfer symbol

House event

Event that occurs as a
combination of other events

Causal events of the lowest
level in the fault tree

The output occurs if all inputs
occurs simultaneously

The output occurs if any one
of the inputs occurs

Indicate a part of the tree that
is developed somewhere else

Logic event that occurs as an
external or trigger event, with

true or false value

Figure A.2. Fault tree symbols

3. Qualitative analysis of the fault tree. The qualitative analysis of the fault tree intends to

visualize paths of propagation of failure, and to identify the most critical events and

weaknesses. When the fault tree is very small and simple this can be done just by direct

analysis. Otherwise, the analysis requires reducing the tree to a logically equivalent form,

showing the specific combinations of basic events sufficient to cause the top event (Leveson,

1995). This is the identification of minimal cut sets (CS). A CS is a set of basic events that

combined ensure the top event occurs. When a cut set cannot be further reduced it is called a

minimal cut set (MCS). The order of a cut set is the number of basic events that compose it.

Identification of the MCS permits visualization of which combinations of basic events lead to

the immediate occurrence of the top events. Therefore, low order cut sets, e.g. first and second

order ones, are the most influential combinations in system failure and risks. MCS reduction for

small fault trees can be practiced by hand, and computer algorithms are available for more

complex situations (see Andrews & Moss, 2002)

4. Quantitative analysis of the fault tree. The quantitative analysis permits calculation of the

likelihood of occurrence of the top event, based on the likelihood of the basic events. This can

be expressed as a probability or frequency. The analysis is usually based on the MCS of the

fault tree.

The basic gates of fault trees, AND and OR have a one-to-one correspondence to the Boolean

Appendix A. Additional topics in reliability and safety 263

operations union and intersection (Andrews and Moss, 2002), and they can be solved using

probability rules.

AND gates. The output of an AND gate is active if all its inputs occur simultaneously, being a

Boolean intersection. If the events in the inputs are independent, the probability of two events

occurring is determined by the multiplication probability law:

P(A B)=P(A) P(B) (A.1)

Notice that the probability figures can be frequencies as well. However, it is a frequent mistake

to multiply frequencies with frequencies, which gives meaningless results.

When the input events are not independent, the conditional probability law applies.

Nevertheless, AND gates do not contemplate this case. In safety system analysis, the

dependencies are quantified with other techniques.

OR gates. The output of an OR gate is active if any one or more of its inputs occur, being a

Boolean union. Mutually exclusive events therefore are quantified by the addition probability

law:

P(A B)=P(A)+P(B) (A.2)

While non-mutually exclusive events are:

P(A B)=P(A)+P(B)-P(A B) (A.3)

For more than two inputs:

P(A B C)=1-[(1-P(A))·(1-P(B))·(1-P(C)] (A.4)

As Goble (1988) points out, in order to simplify and speed up calculations events of fault trees

are frequently assumed to be independent or mutually exclusive events, so that the

multiplication law or the addition law can be applied respectively. These assumptions provide

valid answers when probabilities are low. In the case of mutually exclusive events in OR gates

the approximate results are also in the conservative direction. In the case of AND gates, when

there are significant dependencies that can affect the result (CCF), they are treated as separate

basic events. When quantifying dependability for competing architectures using the same

assumptions, these assumptions can be sufficient to get results to enable valid comparisons.

The top event probability can be quantified using several methods (Andrews & Moss, 2002):

Gate-to-gate quantification. The basic event probabilities can be worked up through the tree

until the top event probability is calculated. This is applicable when the fault tree is not too

big, when the basic events are independent and there are not repeated events.

Appendix A. Additional topics in reliability and safety 264

Minimal cut sets. The MCS obtained in the qualitative analysis are used. This is applicable

when there are repeated events in the fault tree, provided that the basic events are

independent.

Computer codes. When the fault trees are too big or too complex computer codes can be

used. One very popular algorithm is called MOCUS, and several programs have been

developed based on it. MOCUS is applicable when the fault tree does not have mutually

exclusive events.

There are some other developments in fault tree analysis worthy of discussion. The most

relevant to this thesis is the use of house events in the fault tree structure so that changing

conditions can be handled (Andrews, 1994). The second most relevant is the modularization of

fault trees (Chatterjee, 1975; Gulati & Dugan, 1997), which permits the solution of independent

sub-structures of the tree by another method. This can be used for incorporating techniques that

can handle time dependencies. These two techniques are discussed in Chapters 3 and 5

respectively.

Example: System dangerous failure. An example of a SIS is considered to illustrate the

construction of fault trees. The fault tree is shown in Figure A.3, while the system under

analysis is shown in the inset. The sensor subsystem has two redundant sensors. The PLC (logic

solver) and the valve are non-redundant.

The fault tree defines system dangerous failure, which becomes the top event. Notice that

analysis of system safe failure would require a separate fault tree. The failure modes

classification includes diagnostic coverage and CCF (see Eq. (1.20)). The immediate causes of

the top event are the dangerous failures of each subsystem: Sensors, PLC and valve. Thus, three

intermediate events, one for each, are added under the top event. The dangerous failure of any

subsystem would be sufficient to fail the entire system. Any of the three, either the failure of the

sensor to detect a hazardous condition, the failure of the PLC to command an action to prevent

its development, or the failure of the valve to execute the commanded action (close) would be

sufficient to fail the entire system. Therefore, an OR gate is put in place. Observe now the

immediate causes of the PLC s failure. Given by the action of the diagnostic coverage, there are

two causes: a dangerous detected failure and a dangerous undetected failure. These are

considered basic events because this a maximum level of resolution considered convenient for

the analysis, and because this is the lowest level for which failure rate data is available in

databases. Since any of the two failures would fail the PLC, an OR gate is used. It is assumed

that the component can only fail with either a detected failure or an undetected failure, but not

both; i.e. mutually exclusive events. In the same fashion, all eight failure modes in a component

Appendix A. Additional topics in reliability and safety 265

(Eq. (1.20)) are considered to be mutually exclusive events. This is important to remember for

the quantification of the tree. The valve also has only two basic events.

Figure A.3. Example of fault tree construction

The sensor subsystem modelling becomes more complex because it has two components, and

therefore the phenomenon of CCF is present. Thus, the sensor subsystem can fail either by

simultaneous independent failure of both sensors or by CCF. This means that the failure of both

sensors is not independent of one another. The CCF dependency is handled as a separate

intermediate event. This permits quantification of the AND gate using the basic multiplication

law. Again, the action of diagnostic coverage creates two basic events for each sensor and for

the CCF event.

A.2. CCF MODELLING

Common Cause Failure is the term used to define the event of the simultaneous failure of

several components due to the same cause. There is some confusion between the terms CCF a

Common Mode failure (CMF). Smith (2005) clarifies that CMF defines coincident failures of

the same mode; i.e. they have the same appearance or effect. As it has been seen above, CCF is

about simultaneous failures originated by the same cause. CMF are usually originated by a

Appendix A. Additional topics in reliability and safety 266

single cause, although not necessarily. In this case they can be considered a subset of CCF. In

order to avoid confusion, another term used for CCF is dependent failures (Lees, 1996). The

name is self-explanatory.

Several different models have been proposed for modelling CCF. They are classified as

parametric and non-parametric models. Parametric models intend to estimate the probability of

CCF based on one or more parameters. Mosleh et al. (1988) presented an account of the main

parametric methods used for quantification in safety and reliability studies. He categorized the

parametric models as shock or non-shock models. Non-shock models include the best known

models for safety and reliability studies: Factor, Multiple Greek Letter and the Alpha Factor

methods. For shock models, the binomial failure rate model is mentioned.

In brief, shock models take into account the frequency of shocks impacting the system and the

conditional probability of failure subject to those shocks. On the contrary, non-shock models

estimate directly the probability of CCF without attempting to quantify the influence of the

shock events. The Basic Parameter model is intended to estimate directly the probability of

CCF of basic events (for example per component). Given the difficulty to accomplish this, the

other non-shock models rather seek to estimate parameters that permit determination of the ratio

of multiple failures (CCF) to single failures (independent) of a component. The factor model

has been detailed in Section 4.1.2. The description given by Mosleh et al. (1998) about the other

models is summarized as follows:

The Multiple Greek Letter (MGL) model is a multi-parameter model that assumes that the

fraction of failures attributed to a common cause event differs dependent on the number of

components failed. It therefore uses several parameters depending on the size of the group of

components failed. In this fashion, would correspond to the fraction of CCF for two

components, for three components, for four components, and so on.

The Alpha factor model assumes also different parameters 1, 2,... n, depending on the

number of components failed. The difference with the MGL model is that its parameters are

estimated from component failures, while the alpha parameters are estimated from system

failure data.

The Binomial Failure Rate model is a shock model that considers two types of shocks: lethal

and non-lethal. Non-lethal shocks cause each component within the common cause component

group to have a constant and independent probability of failure. The distribution of the number

Appendix A. Additional topics in reliability and safety 267

of failed components is determined by a factor with a binomial distribution (hence the name of

the model). Lethal shocks, in contrast, cause all components in the group to fail (with a

conditional probability of unity). The complete model should include both non-lethal and lethal

shocks. It therefore requires estimates of their frequency of occurrence and the conditional

probability of failure of the components given non-lethal shocks.

Smith (2005) mentions some others models. One is the Boundary model (called the Geometric

model in Lees (1996)), which uses the upper and lower bounds of failures of the system. The

model assumes that the lower bound is related to the fact that all failures are independent (l),

and the upper bound that all failures are CCF (u). Then, the total failure rate of the system is

calculated by the equation:
)1/(1)(n

u
n
l

T (A.5)

The parameter n is chosen according to the degree of diversity of the system, with a value

between 1 and 4. Smith (2005) argues that the parameter n is selected in a very subjective way,

with no sound relation between its value and the real causes of CCF.

There are several other developments in CCF modelling. Hokstad (1988) presented the Random

Probability Shock (RPS) model, which models several different degrees of dependence amongst

components as outcomes of shocks; i.e. the number of components that fail due to a shock. It

requires estimating the shock rate and a dependence parameter. The parameter p (which

determines the number of failed components) follows a beta-binomial distribution. Kvam

(1998) formulated what he called a Parametric Mixture model, that is quite similar to the RPS

model (as argued by Vaurio (1999)).

Recently, the technique of data mapping for estimating CCFs has been receiving significant

attention. As Kvam & Miller (2002) indicate, this involves translating existing CCF data from

one system with a specific size (number of components) into a system of different size. Earlier

studies on mapping algorithms are presented in Mosleh et al. (1998) and Mosleh (1991). Recent

developments include works by Kvam & Miller (2002), Xie et al. (2005) and Vaurio (2007).

Some guidance about how to estimate multiple parameters of the MGL model is for those

provided by CCPS (2000) and for this and other models in Mosleh et al. (1998).

A seminal work presenting a complete methodology for treating CCF in safety and reliability

studies is Mosleh et al. (1988). A summary was presented in Mosleh (1991). Mosleh et al.

Appendix A. Additional topics in reliability and safety 268

(1988) identified the three essential factors to consider when analysing:

The root cause of the failure, which is the event or factor that leads to CCF

The couple mechanism.

The lack of defences against CCF mechanisms.

The generic procedural framework for CCF analysis defined in Mosleh et al. (1988) comprises

the following steps:

1. System logic model development.

2. Identification of common cause component groups.

3. Common cause modelling and data analysis.

Definition of common cause failure events.

Selection of probability models for common cause basic events.

Data classification and screening.

Parameter estimation (this is the step where CCF model is chosen and applied).

4: System quantification and interpretation of results.

A.3. REVIEW OF MooN ARCHITECTURES

A.3.1. Definition of MooN architectures

A MooN system was defined in Section 1.3 as a system with N units (i.e. components, channels,

etc.) in which M out of them are sufficient to initiate the safety function. It requires a minimum

of M units to vote for the execution of the safety function. It also implies that these M units

must be functional for the system to be successful, and that a voting mechanism is provided.

This is equivalent to a k-out-of-n:G with an added voter. There are, however, several diverse

terms to designate the same or similar configurations, which can be confusing. A review of

terms is given on the next.

Billington & Allan (1983) define as partially redundant systems those requiring some

proportion of components between the two extreme of series (non-redundant) and parallel

(fully-redundant) to operate. They mention majority voting and m-out-of-n systems as two other

designations of this category. Although there are several designations for this type of systems,

k-out-of-n is maybe the most used. Dhillon & Singh (1981) mention that these systems require a

specified number of k units to be good for the system to succeed (in performing its intended

function). To differentiate for subsystems that fail when k out of n units do (k-out-of-n:F), they

Appendix A. Additional topics in reliability and safety 269

are called k-out-of-n:G. Notice that k-out-of-n are active (no standby) systems. Other terms used

for the same description are m/N (Lewis, 1996) and r-out-of-n (Shooman, 1968, 2002).

Another term is N-Modular redundancy (NMR) (Storey, 1996), which is a static redundancy

technique that employs fault masking (rather than fault detection). This is widely used for fault

tolerant computer systems. In the framework of IEC 61508, this can be seen as a programmable

electronic system used as a logic solver. Gopal et al. (1978) used the expression general

modular redundant (GMR) subsystems for a group of statistically independent (s-independent)

redundant subsystems, either in series or in a more complex structure. Biernat (1990, 1994)

made a distinctive mention for k-out-of-n:G and NMR systems, where a NMR system is a

particular case of a k-out-of-n:G system, and where n=2k-1 system (e.g. 2oo3). The most basic

NMR structure is the Triple Modular redundant TMR (Shooman, 2002). In addition, Storey

(1996) and Shooman (2002) consider that a NMR architecture includes the use of a majority

voter together with the redundant structure. There has been mention of other hybrid cases such

as Nuclear Fail Safe Redundancy NFSR (Pham & Galyean, 1992), a k-out-of-(n+S), where S is

a pool of spares and k=n-1, and Triple Modular Redundant with spares TMRWS. However, the

NMR is the general and most approached case.

As it can be seen from the discussion above, NMR may be generally treated as an special case

of k-out-of-n:G systems. For computer-based systems reliability this requires the addition of a

voter. Remember also for the case of MooND systems mentioned in Section 1.3 (voting

architectures with added self-diagnostics, included in Gruhn & Cheddie (1998), Goble (1998)

and Goble & Cheddie (2005)). These systems include the diagnostic circuit output as an extra

input to the voting scheme (in substitution of a faulty unit). This would not apply to units that

include automatic built-in diagnostics where the diagnostic circuit does not take any action upon

failure detection other than only to announce the fault. In addition, these references include

cases of redundancies where M=½N (where N is an even integer). For instance, some safety

PLCs present 2oo4 architectures (called quad systems). Therefore, the definition that NMR as a

k-out-of-(2k-1):G system does not perfectly match MooN (and MooND) systems used for SIS.

This was explained by Shooman (2002), who mentions that, although usually an NMR system

has an odd number for N, if additional information about a unit malfunction and a means to lock

it out is available, it is feasible to have an even value for N. It can be inferred that this is the case

for 2oo2D voting architectures in SIS. There are some more advanced complex techniques, a

brief description of which is presented in Appendix B.

Shooman (2002) presents the example of a TMR, which is modelled as a 2-out-of-3 system (k-

out-of-n, where k=2, n=3) based on the assumption that the (digital) elements fail such that they

Appendix A. Additional topics in reliability and safety 270

produce the complement of the correct input (and that the units are independent and identical).

Additionally, notice that a NMR system can have diverse degraded configurations (e.g. 3-2-0 or

3-2-1 for a TMR).

It can be deduced that a NMR system is basically a k-out-of-n system plus a voter. NMR can be

seen as k-out-of-n:G system assuming that:

The voter is perfect (reliability is equal to 1).

The k represents the majority voting number for giving the correct voter output.

The system units fail such that they produce the complement of the correct output.

Concluding, we refer to MooN systems to those which need at least M (out of the N) units to be

good to perform its intended function successfully by M majority voting. Thus, MooN voting

systems are k-out-of-n active standby systems (in series with a voter). When they are referred to

as MooND (e.g. 1oo1D, 1oo2D) this will imply that the diagnostic circuit provides an additional

input to the voter (although they are out of the scope of this thesis).

A.3.2. Advanced voting techniques in NMR systems

The advanced voting techniques (Shooman, 2002) are basically techniques used in software

fault tolerance (some based on McAllister & Vouk (1996)), but can be extrapolated to hardware

or mixture hardware-software:

Adjudicator algorithms. An adjudicator is the generic name for the voter element. An

adjudicator algorithm for majority voting is a specific case where simply n+1 or more out of

N=2n+1 must vote in agreement, where n is an integer and >0 and N is usually an odd

number of elements. However, if N is to be either odd or even and an integer 3, where m

components must vote in agreement, this becomes an m-out-of-N system (see formula for m

presented by McAllister & Vouk (1996) below).

Consensus voting. This is an architecture where even the majority vote fails there can be an

agreement among the rest of the components. This is of course more complex than majority

voting. The value of k can even be equal to one, using a tie-breaking algorithm (e.g. some

internal test). This seems to be the basis for systems different than 2oo3.

Test and switch techniques. This tests the components, so that when one votes in

disagreement the output of the system is decided with only the components whose test is

valid (i.e. an acceptance test). This resembles the 1oo2D and 2oo2D architectures.

Appendix A. Additional topics in reliability and safety 271

Pairwise comparison. A comparison between outputs of modules 2n components, and

where N=2n (and n>1) determines the system output. This seems to be the logic behind

2oo4 systems.

In reality, McAllister & Vouk (1996) designate all the software voting techniques as

adjudication . This can be done by majority voting or consensus voting.

Majority voting. In an m-out-of-N tolerant system, where m is the agreement number,

generally m= (N+1)/2 , where represents the ceiling function. The particular case of 2-

out-of-N is mentioned, where the agreement is always made by two components, assuming

a large output space and statistical independence.

Consensus voting. This a generalization of majority voting, where a more complex

algorithm is used to select the system output if there is not an agreement with m (N+1)/2 .

The first option is to pick a unique agreement < (N+1)/2 . The second one is to employ a

tie-breaking algorithm; specifically, to choose randomly or by acceptance test on

component to decide the vote. It would be congruent to consider this technique as the basis

of MooND systems.

A.3.3. Modelling of 1oo2D systems

The approach given by IEC 61508-6 has caused controversies in the quantification of

dependability of 1oo2D architectures. This is due to the confusion of whether this architecture

really behaves like a 2oo2D or a 1oo2D voting system (the definition provided by IEC 61508

seems to suggest that it actually behaves like a 2oo2D). Zhang et al. (2003) re-analyzed this case

using MA, while Hokstad (2005) re-studied the case of 1oo2 and 2oo2 for comparison with

1oo2D, and redrew the formulas based on RBD. Guo & Yang (2007) reassessed the RBD

method, with focus on clarification of the concept of MDT. The conclusion is that the best

approach is to analyse every specific case, and not to simply stick to the IEC definition.

272

APPENDIX B

Advanced topics in Genetic Algorithms

B.1. GENETIC DRIFT AND NICHING

Genetic drift is the effect of the population evolving towards localized regions of the search

space, promoting the convergence of the search to a small region of the trade-off surface, which

reduces the efficiency of the GA in the search for the global optima. Purshouse (2003) explains

that this happens when multiple identical solutions have similar fitness values, and thus the

algorithm tends to converge prematurely towards one of them. Premature convergence can be

significant issue in a GA effectiveness. The mutation rate can to some extent counteract this

effect when promoting diversity in the population, but it must remain between certain low

boundaries to avoid converting the evolution process into a simple random search. The

undesired phenomenon of genetic drift can be additionally counteracted using mechanisms of

niche formation (Purhouse, 2003), such as proposed by Goldberg (1989). Niche formation

intends to reduce the selection pressure in densely populated areas of the search space, while

promoting the less dense areas (Adra, 2007). Two classic methods are sharing and crowding. In

the crowding approach one parent solution that is very similar to a child solution is replaced

deterministically by this offspring by the reinsertion operator. This scheme is simple but not the

most efficient. Sharing was proposed by Goldberg & Richardson (1987). The main idea behind

sharing is to degrade the fitness of similar solutions. Sharing is further discussed in Appendix A.

B.2. CONSTRAINT HANDLING

Real-world optimization problems involve constraints to be met. They may be constraints in the

decision variables, in the values of the objectives to optimize or both. It was mentioned above

that the imposition of constraints to an optimization problem could be done either as implicit

constraints (a vector of imposed constraints on the objective space) or explicit constraints

(limiting directly the feasible values of the decision variables). This gives rise to several

constraint handling strategies. Konak et al. (2006) mentions four:

Forcing the genetic operators to consistently produce feasible solutions. This is mainly

based on the coding of the chromosomes, limiting the values of the decision variables to

only feasible values (explicit constraints). However, if still infeasible solutions are

produced, a more sophisticated approach must be used: Decoders. This enables the

chromosome to give instructions about how to build feasible solutions (Coello-Coello,

2002)

Appendix B. Advanced topics in Genetic Algorithms 273

Simply discarding infeasible solutions (the death penalty). Some authors consider this

approach as a penalization (Coello-Coello, 2002) where the fitness of the individual is

reduced to zero.

Using a penalty function to reduce the fitness of infeasible solutions. This is a popular

solution. A penalty function reduces the fitness of the individual based on its distance from

being feasible (Purshouse, 2003).

Repairing feasible solutions to transform them into feasible ones. This needs algorithms to

transform the infeasible solution into feasible. The fitness of the solution would be reduced

in relation to the extent of repair applied.

A fifth approach would be to transform the constraints into additional objectives of the

optimization process, and mentioned by Purshouse (2003). A full comprehensive survey of

constraint handling techniques can be found in Coello-Coello (2002).

B.3. MULTI-CRITERIA DECISION-MAKING

The process of solving a multi-objective problem is complete only when the process of

choosing the right solutions is completed. In real-life problems this is usually to pick just one

single solution. This is the task of Multi-Criteria Decision Making (MCDM). This is done by

expressing preferences that allows guidance of the decision making process towards the choice

of the solution that satisfies the requirements. As Coello-Coello (2000) cites, the expression of

preferences can be made handled in three ways:

A priory. The DM has to express the preferences previous to starting the search. This is

what is made in the aggregating methods such as the weighted sum approach.

A posteriory. The DM defines the preferences once the search is over and a pool of potential

solutions (i.e. the Pareto-optimal set) has been obtained as a result. This is perhaps the most

common approach in multi-objective Evolutionary optimization.

Interactively. The DM articulates preferences that guide the search process. Both processes,

the definition of preferences interacts with the search process changing over time as the

search progresses. This is an ongoing subject of research with several propositions being

explored.

The subject of MCDM in evolutionary optimization is a vast field of research being just recently

explored. A comprehensive survey of this field can be found in Coello-Coello (2000) and

Rachmawati & Srinivasan (2006).

Appendix B. Advanced topics in Genetic Algorithms 274

B.4. ADVANCED TOPICS IN THE FONSECA & FLEMING MOGA

B.4.1. Sharing

Sharing was proposed by Goldberg & Richardson (1987). It contributes to counteract the

undesired phenomenon of genetic drift (see Section 2.4.4.4). The main idea behind sharing is to

degrade the fitness of similar solutions. Through fitness sharing, several individuals close to

each other in the objective space have to share resources (i.e. fitness). When sharing the fitness,

similar individuals are practically assigned less probability of reproduction, promoting the

choice of more diverse characteristics. In other words, similar individuals diminish each other s

fitness, and thus their reproducibility. This favours diversification by apportioning the

possibility of reproduction to isolated individuals that are equally fit as others. A sharing

function is used for estimation of the number of solutions belonging to an optimum:

otherwise0

if1)(share
share

dd
dSh (B.1)

The parameter d represents the distance between two solutions. The parameter share is called the

niche size, and it determines the boundaries of the niche within which the residing individuals

would share the available resources (i.e. fitness). The normalized distance between any two

solutions i and j in a rank can be calculated (given by Deb (2001)) by:

M

k kk

j
k

i
k

ij ff
ffd

1

2

minmax

)()(

(B.2)

Where fkmax and fk
min are the maximum and minimum objectives function values of the kth

objective (for every k=1,..., M). As could be inferred from Eq. (B.1), if two solutions are far

apart a distance d share they are considered diverse enough not to have sharing effect on each

other. In the other case they will have some effect. The parameter shapes the function; e.g

=1 the effect of sharing reduces linearly from 1 to 0. Each ith individual in the population

would have a niche count given by:
N

j
iji dShnc

1
)((B.3)

The niche count nci is a number 1. The parameter dij is the distance between the ith and jth

solutions. The fitness of the individual is then recalculated by:

i

i
i nc

ff ' (B.4)

Appendix B. Advanced topics in Genetic Algorithms 275

Where fi is the original fitness value. This means that the fitness of the ith solution is reduced by

the other solutions residing in the neighbourhood defined by share (Purshouse, 2003). The

effectiveness of fitness sharing heavily resides on the correct choice of the niche size share.

Different GAs implements distinct technique to estimate it. This will be discussed in the section

for the MOGA. Niching is usually made in the objective space.

B.4.2. Niching by fitness sharing

MOGA has the specific characteristics of implementing the fitness sharing in the objective

space (which permits application to combinatorial optimization problems, Deb (2001)). The

parameter share (niche size) must be calculated for individuals of only the same rank, dividing

the population up into several niches. The sharing parameter indicates the minimum distance

between two individuals that does not affect each other s fitness. A niche count is assigned to

each individual, set initially to zero and incremented each time another individual meets the

requirement for doing so, established by the sharing function (Fonseca & Fleming, 1993). It is

possible to estimate share solving Eq. (B.5).

0
)(

111

share

i

n

i
sharei

n

in
shareN (B.5)

Where i=Mi-mi, and M and m are the two points that define the parallelogram of the objective

space, N is the number of individuals, and n is the number of objectives. If there are objectives

with different priorities, depending on the compliance of goals in the highest priorities, the

sharing parameter can be calculated for only the remaining objectives in trade-off.

Fonseca & Fleming (1995b) later proposed to simplify sharing by computing the niche count

following statistical kernel density estimation methods (where the kernel function would

become the sharing function). In this way, the niche count and sharing parameter may be based

on the Epanechnikov kernel computation.

B.4.3. Mating restriction

The mating of individuals from different far apart individuals may create offspring known as

lethals: Weak individuals with low fitness that diminish the efficiency of the search process. To

discourage the formation of lethals, mating restriction is introduced based on the distance

between selected parents. This promotes the mating of genotypically similar individuals (those

close to each other in the Pareto-optimal set) in order to create stable niches. The main issue

introduced here is the selection of the parameter mate which indicates the proximity of

Appendix B. Advanced topics in Genetic Algorithms 276

individuals to one another be able to mate. The parameter mate may be computed the same way

as share. In practice, it is sometimes given the same value.

Mating restriction is implemented as follows: After execution of selection, one individual is

chosen, and then another one is picked up whose distance is mate and then mated. If such an

individual does not exist another one is randomly chosen. The size of the population must be big

enough to promote the creation of stable niches, according to the number of decision variables.

Additionally, coding must be tailored conveniently to the application. The use of Gray codes

may be recommendable for its adjacency property (Fonseca & Fleming, 1993).

B.4.4. Articulation of preferences

Fonseca & Fleming (1993) propose the multi-objective genetic optimizer as being composed of

a Decision Maker (DM) plus the proper GA. Thus, it is seen as comprising two main blocks: the

DM which based on preferences executes the fitness assignment process, and the Genetic

Algorithm itself which takes responsibility for the search process (Fig. B.1). The suggested DM

permits the progressive articulation of preferences, initially defined in terms of priorities and

goals. It is applicable when the goals or priorities (but no necessarily strict preferences) of the

optimization can be formulated previous to the search process.

Desicion
Maker

Genetic
Algorithm

A priori
knowledge

Fitness
values

Results

Objective function
values

Figure B.1. The General Multi-objective Optimizer proposed by Fonseca &Fleming (1993)

The DM undertakes the strategy for assignment of utility value (ranking), which in turn

modifies the fitness allocation. In their first formulation (Fonseca & Fleming, 1993), the

approach is based on the goal attainment method. It permits the DM to guide the search towards

specific regions of the Pareto set by updating the formulation of goals on each iteration, and

comparing different individuals based on they compliance with the goals and their relative non-

dominance. This implements the progressive articulation of preferences. In this way, the

decision maker influences the way fitness is allocated and thus the entire evolution process.

A further development of the DM strategy was made in Fonseca (1995) and Fonseca & Fleming

(1995a, 1998), where a relational preference operator represents the preferences of the DM. The

Appendix B. Advanced topics in Genetic Algorithms 277

decision maker structures its choices based on a preferability vector, which defines a utility

function based on priorities and goal values. The preferability operator is based on Pareto

dominance, but it selectively excludes objectives according to their priority and to whether or

not they meet their goals (Fonseca & Fleming, 1995b). The implementation of iterative

progressive articulation of preferences permits the focus of the optimiser s efforts in a trade-off

zone where desired solutions are likely to be, and the DM is provided with this information to

refine the preferences, and thus the requirements, of the search.

The comparison operator compares two individuals u and v in terms of their components with

the highest priority, disregarding those in which u meets the corresponding goals... [if some

components of both individuals] meet all goals with this priority, or if they violate some or all

of them, but in exactly the same way, the next priority level is considered. The process continues

until the lowest priority (1) is reached and satisfied, in which case the result is decided by

comparing the priority 1 components of the two [individuals] in a Pareto fashion (Fonseca &

Fleming, 1995a, 1998). Particular cases are outlined for facilitating the decision making process

for cases where the comparison is less straightforward. Once comparison by priorities is

exhausted the comparison process (preferability operator) is made such that individual u is

considered preferable over v if one condition of the following is met:

1. The violating components of u dominate the corresponding components of v.

2. The violating components of u are equal to the corresponding components of v, but v

violates at least another goal.

3. The violating components of u are equal to the corresponding components of v, but u

dominates v as a whole. (Fonseca & Fleming, 1995b).

Fonseca & Fleming (1995a, 1998) modified the ranking scheme originally proposed. In the new

context of the DM, the ranking is now made:
)(),(t

uu rtxrank (B.6)

Where xu is an individual at generation t with the corresponding objective vector u, and ru
(t) is

the number of individuals that are preferable to it. It ranks the individuals in terms of goals and

priorities, giving the preferred ones the lower rank. This ensures the preferred individuals are

ranked zero. Under this new scheme, not all the non-dominated solutions have the same

ranking, but the rank is given in terms of compliance with the order goal-priority.

Appendix B. Advanced topics in Genetic Algorithms 278

B.5. DETAILED PROCEDURES IN THE NSGA-II

B.5.1. Non-dominated sorting

The NSGA-II is fully explained in Deb et al. (2000, 2002). Non-dominated sorting determines

for each member of the population to which dominance front Fi they belong to. It then assigns

the individual s rank according to the belonging front (i.e. non-domination level). In broad

terms, the non-dominated set of the population is identified and made front F1 (rank=1). It is

then disregarded from the population. A new non-dominated set is identified and assigned front

F2 (rank=2). Then this set is also disregarded. The operation continues iteratively until all

individuals are assigned to a front Fi and ranked (Deb, 2001).

The procedure by which the algorithm is implemented (Deb et al., 2002), goes as follows:

1. The algorithm assigns each member p a dominance count np equal to the number of

individuals by which they are dominated, and identified a set Sp of solutions that p

dominates.

2. It then finds the non-dominated members (those with np=0) and allocates them into the first

front F1 with rank=1.

3. For each individual q in the front F1, the dominance count of the members of its set Sp are

reduced by one (np=np-1).

4. If the dominance count np of any member q, this is assigned to the next Front F2 (and given

a rank=2).

5. This procedure continues iteratively until all members of the population are assigned a front

Fi.

B.5.2. Crowding distance density estimation

The crowding distance di, is a measure of population density around a particular solution i. It is

an estimate of the parameter of the cuboid formed by the vertices fixed by the nearest

neighbours (see Fig. B.2). The measure di represents the space not occupied by any other

solution around i (Deb, 2001). The algorithm sorts the population members in ascending order

of magnitude for each of the objectives m. Solutions in the boundaries (for each objective) are

assigned an infinite distance value . For the other individuals, calculate iteratively the

distance:

Mm
ff
ffdd

mm

i
m

i
mi

m
i
m ,...,1allforminmax

)1()1(

1 (B.7)

Appendix B. Advanced topics in Genetic Algorithms 279

Where fm
max and fmmin are the maximum and minimum limits of the mth objective function. The

fm(i+1)-fm
(i-1) is the difference of objective function values of the two neighbouring individuals.

The crowding distance di represents a measure of population density around i. Therefore, the

smaller di the more crowded its surrounding environment.

Figure B.2. Crowding distance calculation

B.5.3. Controlled elitism

Emphasis over elite solutions is made twice by NSGA-II: one in the tournament selection and

second in selection for survival. This can result in solutions not belonging to non-elitist fronts

being deleted too soon. This compromises the balance of exploitation versus exploration. The

crowding tournament selection will promote diversity along the non-dominated front. However,

lateral diversity will be lost. This is the diversity lateral to the non-dominated fronts. This was

noticed by Deb and Goel (2001). In order to preserve the good balance, it is necessary to ensure

good diversity both along the Pareto-optimal front and also lateral to the front (see Fig. 5.15 in

Chapter 5).

Deb and Goel (2001) conceived a mechanism to maintain lateral diversity. This is made by

restricting the number of individuals in the current best non-dominated front adaptively ,

allowing individuals of diverse non-dominated fronts to be integrated into the new population.

The maximum number of individuals of the ith front (i=1,2,..., K) Ni permitted in the new

population is restricted by:

1

1
1 i

Kpopi r
r
rNn (B.8)

Where Npop is the size of the population and r is the reduction rate (r<1). With this, each front

is allowed an exponentially reducing number of solutions . Notice that the allowable number of

individuals from the first front is the highest, and it decreases progressively with each front.

Nevertheless there may be a number of individuals in the front i different from ni: ni
t ni. This is

Appendix B. Advanced topics in Genetic Algorithms 280

solved by the procedure described below. Figure B.3 shows the flowchart of the controlled

elitism mechanism. Also note that Figure 5.13 (in Chapter 5) indicates which part of the original

NSGA-II algorithm would be replaced with the controlled elitism mechanism.

Figure B.3. Controlled Elitism Algorithm

The procedure that implements the controlled elitism goes as follows:

1. The population R=P+Q is non-dominated sorted. Set P= . Count number of fronts

Fi=1,2,..., K.

2. Calculate the number of individuals permitted for the actual front n1.

3. Count the number of individuals in the first front n1
t.

Appendix B. Advanced topics in Genetic Algorithms 281

4. If n1
t>n1 (there are more individuals than those allowed), then insert only n1 individuals into

the new population (choosing them by crowded tournament selection; Pt+1=Pt+n1). If on the

contrary n1
t<n1 (there are less solutions than needed), then insert all solutions n1

t

(Pt+1=Pt+n1
t) and make a count of the remaining slots 1= n1 - n1

t.

5. If P=Npop, end the procedure. If P<Npop, go back to step 2. Calculate the number of allowed

individuals in the second front n2. Add to it the number of remaining slots: n2=n2+ 1.

Compare n2
t against n2 in the same fashion. Repeat iteratively the procedure with the

remaining fronts until P=Npop.

6. If the case were that after exhausting all K fronts still P<Npop, then go over all the procedure

again from step 1.

Notice that the parameter r is problem-dependent and thus an additional parameter to tune.

