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Abstract 

Reliability is considered the most important attribute of transit service by 

passengers. There are congested transit environments wherein even if a transit 

service is perfectly on schedule it is termed unreliable from a passenger’s 

perspective when they are unable to board the first service of their choice set.  

The phenomenon ‘failure to board’ arises in congested transit networks having 

strict physical capacity constraints wherein the transit service cannot take in 

passengers beyond its capacity. This results in some of the passengers being 

left waiting for the next service at the transit stops.   

 

The existing transit assignment models; be it hyperpath based effective 

frequency models, Bureau of Public Roads (BPR) based route section models  

or aggregate stochastic process models with strict capacity constraints, all 

assume that the passengers have perfect knowledge of the network seldom 

discussing the sources of such information. In the current thesis this 

assumption is renounced and a reliability based disaggregate stochastic 

process model with strict capacity constraints (R-DSPM) using route section 

approach is proposed such that each passenger in the absence of information 

updates his/her route choice based on their individual experience. Though the 

aggregate stochastic process model implements the strict capacity constraint 

for each transit service generated; the model along with the assumption of 

perfect knowledge of the network assumes that the passengers are risk neutral. 

The proposed R-DSPM implements a strict capacity constraint for each transit 

service generated thereby accounting for failure to board situation in 

congested network. The proposed model differs from the existing aggregate 

stochastic process model in its assumption of risk averse passengers. Risk 

aversion in R-DSPM considers variance associated with:- interarrival times of 

transit service at the transit stop; the waiting time of passengers due to the 

‘failure to board’ condition; the in-vehicle travel times of routes comprising of 

route sections containing more than one attractive line section and the variable 

demand generated for each day’s travel. The risk aversion of each passenger is 

accounted for in R-DSPM through the linear combination of mean total travel 

time and total travel variance (mean-variance) and a linear combination of 

mean total travel time and expected lateness (mean-lateness). A generic day to 

day framework is developed with markovian properties such that it enables the 

integration of both mean-variance and mean-lateness costs with ease and 

results in a unique stationary distribution of costs and flows for each route.  
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The proposed R-DSPM thus accounts for: strict capacity constraints of transit 

vehicle, passengers learning process, risk aversion of passengers, differences in 

passenger perceptions, day to day variability in demand and supply of transit 

network. The micro simulation framework shows through implementation on 

example networks that while accounting for passenger’s risk aversion the R-

DSPM is able to arrive at a unique stationary distribution irrespective of its 

initial conditions. The sensitivity of the proposed R-DSPM with strict capacity 

constraint under different parameter assumptions has been carried out . 

A calibration of the parameters involved in the route section based BPR styled 

cost function and the hyperpath based effective frequency cost function using 

the proposed R-DSPM indicates that different congestion function parameters 

are required for different sections of a transit network. It is also shown through 

implementation on an example network that the proposed R-DSPM framework 

enables the passengers to learn about the reliability of routes and strategies. At 

higher dispersion values R-DSPM assign risk averse passengers such that the 

standard deviation of flows and experienced total travel time on various routes 

and strategies are lesser than that obtained by accounting for risk aversion 

using the aggregate stochastic process models.    

 

The impact of accounting for risk aversion on various policy measures that 

could be carried out by the operators to improve the waiting time reliability of 

passengers is also assessed using the proposed R-DSPM with strict capacity 

constraints. It is shown that for certain parameter assumptions and for certain 

policy measures the assumption of risk aversion in transit assignment could 

result in an entirely different reliability profile from that of an assignment 

process assuming risk neutral passengers. The implementation of the proposed 

R-DSPM with strict capacity constraints on a real network has been carried out 

on a section of London underground and several possible policy measures have 

been evaluated. The evaluation of policies has further emphasised the need to 

consider the risk aversion in passengers especially to account for the number of 

passengers preferring to make a transfer (in absence of transfer penalty) at the 

transfer stops to minimise their risk aversion costs. 
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Chapter 1 

Introduction 

Urbanisation around the world has intensified the need to travel. Countries, 

regardless of being developed or developing are faced with the problem of 

increasing number of vehicles. Transport planners have realised that a 

sustainable solution is required to deal with the increasing need for mobility. 

The solution to sustainability is envisioned through the promotion and 

improvement of public transit services.  

The commuting pattern for cities around the world greatly varies from each 

other but all cities find a major part of the commuting population reliant on 

public transit. In India the commuting pattern of Delhi indicates that 36.2% of 

high income households and 31.43 % of the low income households use buses 

and a further 1.79% of low income households use rail as the commuting mode 

(Tiwari, 2002). In London around 27.8% of the low income group and 9.3% of 

high income group use Buses/trams whereas 3.9% of low income group and 

12.2% of the high income group use Underground/DLR for daily commuting 

(TfL 2011). A look at the above percentages leads to a surmise that a growth in 

the transit network fleet size coupled with a growth in their patronage is the 

expected trend for the traffic sector. However historical evidence of the vehicle 

growth over the past years wherein public transit was still a predominant 

mode of travel indicates otherwise with a decreasing share in public transport 

patronage over the years (fig 1.1). 
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Fig 1.1 (a). Registered Vehicles under various categories in India 1 (b).Trends in 
public transport demand in Great Britain 1970-2000 (Source: Balcombe et 
al., 2004)  

Several empirical studies (Balcombe et al., 2004; Peek and van Hagen, 2002; 

Jackson and Jucker, 1982) have tried to assess the attributes that would make 

public transit service attractive to commuters and find reliability the most 

weighed attribute of public transit services. The most common problems 

reported by transit users are overcrowding, particularly during peak hours, and 

the lack of service reliability (Badami and Haider, 2007; Ceder, 2007; Peek and 

van Hagen, 2002).  

The main manifestations of public transport unreliability are excessive waiting 

times due to late arrival of transit services and excessive in-vehicle travel times, 

due to traffic or system problems (Paulley et al., 2006). Iles (2005) describes a 

typical scenario witnessed by public transit commuters in some cities of 

developing countries during peak hours as follows: 

 ’It will be several hours before all passengers reach their homes and many will 

walk for thirty minutes or more after leaving the bus. ….Many passengers have to 

transfer more than once from one bus to another during the course of their 

journeys, suffering yet another long wait and another scramble for a place.’    

The above description fits very well with the peak hour journey of passengers 

in some cities within India. Upon research it was realised that unreliability in 

transit services is a universal problem though of varying intensity from country 

to country.  

 

                                            

1 http://cpcb.nic.in/upload/NewItems/NewItem_157_VPC_REPORT.pdf 1.2 

http://cpcb.nic.in/upload/NewItems/NewItem_157_VPC_REPORT.pdf%201
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It is amply evident that reliability is a feature which needs further investigation 

under public transit context because of the increased total travel times and 

waiting times of passengers associated with unreliable transit services (Paulley 

et al., 2006). However one needs to understand that a congested transit service 

which arrives perfectly as per schedule can also lead to unreliability associated 

with increased waiting times. The relationship between congested transit 

network and reliability is discussed in section 1.3 as it forms one of the key 

aspects of the current research. Ceder (2007) identifies that unreliability is an 

ambiguous term whose definition varies with the context:- as defined by 

operators or as defined by passengers. The key feature that integrates 

passenger reliability attributes and operator reliability attributes are the 

headways. Operators tend to fix the headways of various lines operating in 

system with a trade-off between increasing their revenue and minimising the 

waiting time of passengers (Fernandez and Marcotte, 1992; Li et al., 2008; Li et 

al., 2009; Seshagiri et al., 1969; Furth and Wilson, 1981). Hence the short term 

strategies adopted by operators to improve reliability of the lines serving a 

network predominantly include modification of headways or frequencies. 

Belmonte et al. (2005) describe several strategies an operator adopts to 

improve reliability: 

a. Change from time table to frequency regulation of lines. 

b. Change from frequency to time tabled regulation of lines. 

c. Change the frequency regulation or frequency distribution of the line. 

d. Increase or decrease speed of the individual bus 

e. Jumping of bus stops by buses 

f.  Advance following service (a bus must over take the bus that is 

crowded) 

g. Advanced head service start (the bus at the head of the line should start 

ahead of its schedule. 

h. Time table rotation (each bus in a line adopts the scheduled time table of 

its successor) 

i. An additional bus is included in the line. 

Reliability as defined by operators greatly varies from that defined by the 

passengers. In the current study we shall look upon reliability from passenger’s 

perspective and assess the impact of certain operator implemented policies on 

passenger total travel times. 
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1.1 Modelling Operational Characteristics in transit networks 

The operational characteristics of transit services vary around the world. The 

differences in operational characteristics are such that in some countries there 

are no timetables associated with transit services; in some countries time 

tables exist but are not adhered to and there are countries where services are 

run in accordance with timetable. Pritchard et al. (2014) illustrates that  

‘Before 2009 London’s buses ran to a timetable. Copies were displayed at bus 

stops and on TfL’s website, listing the times a bus was scheduled to arrive at 

named locations. In 2009 the ‘headway’ system was adopted as a corrective 

measure to avoid bus bunching. Instead of publishing a specific time, the headway 

approach uses Location based services (LBS) to measure the distance between 

buses. Instead of a published timetable, notices now state the estimated time 

between services (e.g. ‘services run every 5-7 minutes’).’ 

As a transport planner it is necessary to account for the operational 

characteristics while trying to model the arrival of transit services in the 

network. In networks with absence of timetables the services could be 

modelled based on frequency based (headway based) approach whereas in 

networks wherein a time tabled service exists the modellers could use schedule 

based approach.  

 

The reliability measures often used by transit agencies to measure schedule 

adherence are ‘on-time performance’ and ‘headway regularity’. One of the key 

measures to evaluate headway regularity by transit agencies is the coefficient 

of variation. Hunter-Zaworski (2003) in ‘Transit Capacity and quality of service 

manual’ indicate that different level of service have different coefficient of 

variation of headways. Headway variation is found to propagate delay to 

downstream stops where it is likely that additional passengers have arrived to 

board the bus (Abkowitz and Tozzi, 1987). Since it is found that headway 

variation influence the waiting time of passengers at downstream stops a 

relationship between coefficient of headway variation and passenger waiting 

time has been analytically derived in Osuna and Newell (1972) and utilised in 

several studies (eg: Marguier and Ceder, 1984). Kirnpel (2000) point out that 

while analysing transit service reliability the distinction between high 

frequency services (headways lesser than 10 min) and low frequency services 

needs to be made. Lines characterised by low frequency services should be 

concerned with schedule adherence whereas for lines with high frequency the 

headway variability needs to be the measure of reliability. Another 

characteristic of lines that impacts its reliability are the length of the line and 
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the number of stops in the line itinerary.  The assumptions pertaining to each 

type of approach with respect to modelling reliability in service arrivals is dealt 

with in detail on chapter 2. 

1.3 Congested Transit system and reliability 

Congestion in transit system is associated with the increased waiting time of 

passengers. In the context of transit assignment studies congestion is modelled 

in varying ways as discussed in detail in chapter 2. In real world congestion 

generally occurs due to a passenger being unable to board a service of his/her 

choice when the service is at full capacity (failure to board). Another definition 

of congestion would be the level of service being provided within the transit 

service. Passengers may perceive inability to get a seat as a form of congestion 

whereas some may consider being able to stand without bumping into each 

other as a relatively less congested ride. In these cases congestion then defines 

the level of comfort as perceived by the passengers.  

‘During peak hours, stations can get so crowded that they need to be closed. 

Passengers may not get on the first train and the majority of passengers do not 

find a seat on their trains, some trains having more than four passengers every 

square metre.  When asked, passengers report overcrowding as the aspect of the 

network that they are least satisfied with, and overcrowding has been linked to 

poor productivity and potential poor heart health. Capacity increases have been 

overtaken by increased demand, and peak overcrowding has increased by 16 per 

cent since 2004/5.’ (Wikipedia, the free encyclopedia, 2015) 

A congested network defines reliability of the transit service from the 

passengers perspective. This is especially true in case of transit networks which 

has more demand than the supply during peak hours, such that the passengers 

often experience the ‘failure to board’ condition. In the event of failure to board 

the passenger perceives the system to be unreliable even though it may have 

been totally reliable in terms of its service operations.   

1.4 Variations in transit supply and demand , in passenger 

perceptions and in behaviour 

Transit network is dynamic in nature. Not only do the supply and demand 

variations happen within a day but they also vary from day to day. Apart from 

the day to day variations there are variations within the working days of a 

week, between the weekends and seasonal variations as well. Balcombe et al. 

(2004); Abkowitz and Tozzi (1987); Kirnpel (2000) explicitly indicate these 
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variations in their report. It is hence necessary to capture these dynamics while 

modelling the transit network. Similar to variations associated with the supply 

and demand of transit network, variation in the perceptions of passengers with 

regard to their journey times is encountered. Different people tend to perceive 

their journey times differently than their actual experience- with some over 

estimating while some underestimating their journey times. These perception 

variations also are important in modelling terms, as different notion of 

perception may result in different flow patterns on various available lines in a 

transit network.    

While assessing the impact of reliability on transit passengers, one needs to 

account for the heterogeneous nature of passengers. It would be erroneous to 

believe that all passengers travelling tend to minimise only his/her average 

journey time. There could be passengers who are risk averse and hence 

associate a degree of risk aversion towards variance associated with the total 

travel time experienced by them or passengers who are averse to total travel 

time exceeding a certain acceptable value. The current thesis shall deal with the 

route choices of risk averse as well as risk neutral passengers in a transit 

network.  

1.5 Research Context 

A brief overview of the existing literatures in transit assignment and their 

tackling of the above mentioned problems is dealt with in this section. The 

detailed description of these literatures is given in Chapter 2. The aim of the 

current section is to introduce the level of research already done in the field of 

transit assignment and the existing standing of transit assignment studies in 

the field of reliability.  

Most of the frequency based transit assignment models which follow either 

explicit path enumeration (De Cea  and Fernandez L, 1989; De Cea et al., 1988) 

or implicit assignment of flows on various links (Spiess and Florian, 1989; 

Nguyen and Pallottino, 1988; Wu et al., 1994; Schmoecker, 2006; Cominetti and 

Correa, 2001; Cepeda et al., 2006) assume highly irregular interarrival of 

transit services (exponential interarrivals). Several other literatures (Marguier 

and Ceder, 1984; Bouzaïene-Ayari et al., 2001; Gentile et al., 2005) proposed an 

alternative inter arrival distribution of Erlang which provides the modeller 

with the flexibility of controlling the variance associated with the inter-arrival 

of services. These distributional assumptions hence help to model the service 

unreliability in the transit network at varying levels. 
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A hierarchy of studies on frequency based transit assignment pertain to 

accounting for congestion; a feature arising due to the physical capacity 

constraints of transit services and increased passenger demand. It is known 

that the transit assignment studies derive their complexity from asymmetric 

interaction of link flows in a congested network wherein the upstream flow has 

an influence on the costs/total travel time experienced by the downstream 

flows. It is also known that the flows on a strategy/route can influence the total 

travel time/ costs experienced on the other strategy/route. Hence transit 

assignment deals with cost functions that are not only influenced by its own 

flow but also by the flows on other links/routes. Assignment problems of these 

kind are termed asymmetric and keeping the asymmetric nature of transit 

assignment in context, the early stage models utilised BPR style function to 

model congestion. Spiess and Florian (1989); Nguyen and Pallottino (1988) 

utilised BPR type in-vehicle cost function to account for the ‘discomfort’ 

experienced by the passengers in event of congestion in a hyperpath/strategy 

based optimisation problem, whereas De Cea and Fernández (1993) introduced 

BPR type cost function in the waiting time of passenger’s to depict the 

increased waiting time associated with higher congestion in a route section 

based assignment process.  

Wu et al. (1994) utilised BPR styled cost function in both in-vehicle travel time 

function and in waiting time function. De Cea and Fernández (1993) account for 

the asymmetric interaction between the flows and use a ‘diagonalization’ 

algorithm for solution which they argue has good convergence properties even 

when monotonicity is not satisfied. Spiess and Florian (1989) acknowledge the 

limitations of their model wherein it is assumed that all passengers experience 

the same level of discomfort and waiting time. Similarly Wu et al. (1994) 

acknowledge the inability of their model to transform the hyperpath flows into 

an expression comprising of arc flows and also highlight the limiting 

presumption made that the hyperpath costs are strictly monotone in nature.  

Modelling the effects of congestion was further improved upon by the 

introduction of ‘effective frequencies’. The concept of ‘effective frequency’ was 

first defined in Spiess and Florian (1989) as the frequency of lines which are 

decreasing functions of the total volume aboard the transit service. The 

implementation of ‘effective frequency’ was achieved by De Cea and Fernández 

(1993) through ‘equivalent average waiting time index’ which is a line specific 

index common to all the passengers waiting for a line at the transit stop 

irrespective of the route section used by them. Effective frequency was 

computed as the inverse of ‘equivalent average waiting time index’ and the 
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boarding probability was computed as a function of these effective frequencies. 

The effective frequency was able to depict the decrease in boarding probability 

with the increase in waiting time realistically however at capacities the waiting 

time tends to infinity resulting in effective frequencies tending to zero. In such 

cases an upper limit of frequency was fixed which when reached the demand 

was assigned to strategies consisting of walking arcs, which were arcs with no 

waiting time and with infinite frequencies (Cominetti and Correa, 2001; Cepeda 

et al., 2006).  

The introduction of strict capacity constraint was achieved by Schmoecker 

(2006) who using Bellman’s dynamic equilibrium model proposed an 

alternative network layout consisting of failure arcs which were assigned the 

excess flows at a given time step. These flows were then reintroduced with the 

next time step generated flows to complete their journeys. The hyperpath 

based model of Schmoecker (2006)’s is a versatile within-day dynamic model 

which captures the congestion effects such as failure to board and excess 

waiting time with a great deal of success however as noted by the author it 

requires an experienced modeller to specify the time discretisation required for 

the dynamic framework. Schmoecker (2006) mentions that time interval 

duration should be longer than the time it takes to traverse an arc in the 

network; hence for trips which have longer travel time several arcs of shorter 

durations needs to be specified in the network design to capture the effect of 

congestion realistically. Adopting a dynamic simulation framework Cats et al. 

(2011) assessed the effect of information on the path choice of transit 

passengers. Trozzi et al. (2013) proposes a dynamic model which considers the 

FIFO principle of passengers at the bus stops and proposes a diversion 

probability which is time dependent and models the expected congestion at 

that time step. A day to day learning process model with strict capacity 

constraints with aggregate learning process was initially formulated by Teklu 

(2008a and 2008b) whose model has been furthered in the current study to 

account for reliability in a transit network. 

The frequency based transit assignment models discussed above assumes 

random arrival of transit services coupled with various assumptions to account 

for congestion. The above mentioned models all assume that the passengers are 

risk neutral and hence associate no disutility towards the unreliability assumed 

in their models. To overcome this issue a series of attempts have been made in 

recent years (Yin et al., 2004; Yang and Lam, 2006; Szeto et al., 2011; Szeto et 

al., 2013) to account for reliability in congested transit assignment studies. All 

the existing reliability based transit assignment studies adopts the ‘route 
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section’ approach of  frequency based transit assignment and deal with 

congestion by either assuming an ‘overload delay’ (Yin et al., 2004; Yang and 

Lam, 2006; Szeto et al., 2013) or a BPR styled increase in waiting time (Szeto et 

al., 2011). ‘Overload delay models’ (Lam et al., 1999; Lam et al., 2002; Li et al., 

2009) computes the delay due to overloading of a line endogenously during the 

Stochastic User equilibrium (SUE) assignment.  From the above discussion it 

can be deduced that an approach to modelling the unreliability associated with 

failure to boarding the first service of their choice (strict capacity constraint 

models) has not been dealt with so far in frequency based transit assignment. A 

schedule based approach using mean-variance model to account for 

unreliability based on disruptions was proposed by Hamdouch et al. (2014); 

wherein the disruptions were modelled by randomised in-vehicle travel times. 

1.6 Gap in Literature 

As highlighted in Teklu (2008a) the above mentioned models do not account 

for the impact of strict capacity of the transit services on the waiting time of 

passengers (or the situation of failure to board the first service of their choice 

set) ; - though attempts have been made to address the issue of congestion by 

means of ‘effective frequency’; ‘overload delays’ ; ‘BPR functions’ and ‘dynamic 

models’ (section 1.5). In hyperpath based models the priority of the passengers 

already in a transit service (those who boarded on the upstream transit stop) 

over the passengers boarding the service at the downstream stop is not 

observed. It is also realised that in hyperpath based formulation the decision of 

when to alight and when to continue a journey is as important as line choice 

(Nökel and Wekeck, 2009). Also with the exception of  Trozzi et al. (2013) all 

the other hyperpath based transit assignment approach assume mingling of 

passengers at the transit stops which may not be necessarily true in certain 

transit stop layouts. The accounting for the interaction of passengers with 

different strategy choice ; the ‘learning process’ which a passenger would have 

gone through over his /her repeated travel and transit services having strict 

capacity constraint has been dealt with in Teklu (2008a and 2008b).  Teklu 

(2008a and 2008b) made use of aggregate stochastic process model 

formulation based on day to day traffic assignment proposed by Cascetta 

(1989); Cascetta and Cantarella (1991). Watling (1996) elaborates the advantage 

of using stochastic process model which gives an unique stationary probability 

density function as output, analogous to unique equilibrium solution and can be 

argued as a much more realistic solution to assignment problems.  The 

advantages of stochastic process models and its implementation as a 
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markovian process is dealt with in detail by Watling and Cantarella (2013); 

Watling and Cantarella (2012) through series of examples. 

As mentioned, the implementation of a stochastic process model in transit 

network in order to understand the day-to-day evolution of flows with an 

exponentially distributed interarrival of supply and demand was done by Teklu 

(2008a and 2008b). Teklu (2008a and 2008b)’s work was able to establish a 

simulation framework for assessing the flow distribution as an aggregate 

stochastic process model. The presence of stationary distribution of flows 

irrespective of the initial conditions was proven under a Monte Carlo based 

Markovian framework (MCMC) for a strict capacity constrained network. 

However the assumption of aggregate learning in Teklu (2008a and 2008b) 

implies that the passengers have full ‘information/awareness’ of the network.  

It also assumes that in the aggregate learning process passengers overlook 

their own individual experiences to base their route choice on the predicted 

costs for a route. The predicted cost of the route is computed as the average of 

the experienced cost of all the passengers on the route. These assumptions in 

reality would mean that the passengers have an external information source 

which makes them aware of the experienced travel times of all the other 

passengers. Or that the passengers have full knowledge of the network and the 

expertise to derive the probability density function of the waiting times based 

on the current day’s transit supply demand conditions. Such assumptions seem 

unrealistic and since reliability in itself is an individual’s entity a disaggregate 

stochastic process model is proposed in the current research. 

Though Teklu (2008a and 2008b)‘s stochastic process model had modelled 

variations in transit interarrivals, passenger interarrivals and failure to board; 

it assumed that the passengers were risk neutral. The current research furthers 

the stochastic process model proposed in Teklu (2008a and 2008b)‘s by 

accounting for unreliability associated with  

a. Varying interarrival times of transit service at the transit stop  

b. The variation in the waiting time of passengers due to the 

‘failure to board’ condition. The condition arises as a result of 

strict capacity constraint enforced at disaggregate level which 

results in some passengers not being able to board the first 

transit service of their attractive line set.  

c. The variation associated with the in-vehicle travel times of 

routes comprising of route sections containing more than one 

attractive line section. 

d. The variation associated with the variable demand generated 

for each day’s travel. 



- 11 - 

 

in the cost function of the passengers; thereby assuming that the passengers 

are risk averse. In the absence of ‘information’ the stochastic process model is 

formulated as a disaggregate process wherein each individual bases his/her 

route choice on his/her individual experience.  

1.7 Research Objectives: 

Based on the discussions put forward in section 1.6 the current research aims 

to  

 investigate the route choice variation of public transit users under the 

context of reliability as defined by the passengers. The model developed 

should be at disaggregate level enabling a micro level analysis of the 

impact of unreliability on each commuting passenger. The disaggregate 

aspect of the model is emphasised as in a congested network the 

passengers who are unable to board the first transit service of their 

choice set experience a different level of unreliability from those who 

are able to board the first transit service of their choice set. Also in the 

absence of ‘external information’ (as is the case in many developing 

countries and several smaller transit stops of developed countries) 

assumption of full awareness as proposed in aggregate models seems 

unrealistic.  Thereby the aim is to account for the route choice of 

passengers who are averse to the variation in their total travel times. 

Since variance is associated with several aspects of transit modelling 

framework (section 1.6) a need to develop a holistic model accounting 

for all the aspects of variance arises.  

 Upon understanding the impact of using variance of total travel time in 

the cost function of route choice model there is a need to address the 

issue of disutility associated with variation in the total travel time of 

passengers.  

 Accounting for risk aversion in route choice of passengers ultimately 

needs to feedback to the operators looking to improve the transit service 

reliability. Thus there is a need to evaluate the possible policy measures 

a transit operator could implement to improve the reliability of the 

transit service while accounting for risk averse passengers. 

 

 Implementation of the risk aversion models on a realistic network could 

help assess the actual implications of ignoring of risk aversion (as is 

done in almost all of the existing transit assignment models).  
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To achieve the set aims for the current research a series of objectives have been 

defined as follows: 

1. To formulate a markovian disaggregate stochastic process framework 

which accounts for route choice of each passenger based on linear 

combination of mean total travel time and total travel time variance 

(mean-variance)cost. The route choice is assessed under variable transit 

supply and demand with strict capacity constraints. To test the 

developed framework on an example network and to carry out the 

sensitivity tests.   

2. To implement the mean-variance cost function on existing equilibrium 

based transit assignment models and aggregate stochastic process 

model and compare the performance of these models with proposed 

reliability based disaggregate stochastic process model with strict 

capacity constraints.  

3. To formulate a markovian disaggregate stochastic process framework 

which accounts for route choice of each passenger based on linear 

combination of mean total travel time and expected lateness (mean-

lateness) cost. To test the developed framework on an example network 

along with carrying out various sensitivity tests. 

4. To assess the behaviour of proposed mean-variance and mean-lateness 

models on policy interventions which could be made by network 

operators.  

5. To validate the mean-variance and mean-lateness models with a real 

network data (The open source data on London underground from TfL 

is used) and to study the impact of certain policy interventions on 

waiting time reliability profile. 

1.8 Thesis layout 

The thesis is structured such that chapter 1 deals with the motivation and the 

gaps in existing literature (with a brief introduction of the existing literatures) 

based on which the existing thesis objectives are framed.  

Chapter 2 elaborates the state of art for the present study in terms of 

assumptions involved in frequency based transit assignment; dealing with 

capacity constraints; random utility models used for accounting for passenger 

perception variations and the choice variation of routes based on utility 

functions. The state of art on accounting for reliability of services on route 

choice of transit as well as traffic networks. The state of art on stochastic 
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process models on dealing with problems where the presence of multiple 

solutions cannot be ruled out. 

Chapter 3 gives an overview about the stochastic process models together with 

the formulation of disaggregate stochastic process model used in the current 

study. The application of disaggregate stochastic process model on an example 

network for risk neutral passengers (as is assumed in most of the existing 

transit assignment model) together with various sensitivity tests and the tests 

to prove the markov property are carried out.  

Chapter 4 introduces through some numerical tests the changes in the choice of 

shortest route when a network of risk averse passengers are considered. The 

application of disaggregate stochastic process model using mean-variance cost 

on an example network along with tests to prove its markov property and 

various sensitivity tests are carried out. A comparison of the disaggregate 

stochastic process model with a BPR styled Logit SUE model and an effective 

frequency styled hyperpath based DUE model is carried out. 

Chapter 5 deals with a mean-lateness cost incorporation in disaggregate 

stochastic process models. The analysis is followed by a series of policy 

evaluation tests being carried out to show the impact of accounting for risk 

aversion in the waiting time reliability improvement. 

Chapter 6 shows a case study of the London underground section implementing 

the mean-variance and mean-lateness models. 

Chapter 7  summarises the finding of various chapters together with 

conclusions. Future directions of study are also highlighted. 
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Chapter 2 

Literature Review 

2.1  Introduction 

Reliability studies integrated with assignment process has long been studied. In 

traffic analysis the reliability studies has been embodied in the assignment 

process in order to evaluate the passenger’s varying choices in event of 

unreliable service attributes. In these studies route choice models have 

accordingly been classified as shown in Table 2.1. 

Table 2.1: Chen et al. (2002)’s Classification of route choice models in traffic 
assignment studies 

 Perception Error 

No Yes 

Network 

Uncertainty 

No DN-DUE DN-SUE 

Yes SN-DUE SN-SUE 

Where DN- Deterministic Network 

DUE-deterministic user equilibrium 

SN-Stochastic equilibrium 

SUE- Stochastic user equilibrium 

Similarly almost all transit assignment studies have integrated reliability 

aspects as well. The difference in the integration of reliability between traffic 

assignment studies and transit assignment studies lies in the fact that in transit 

assignment since the supply side of the assignment process is stochastic in 

nature an endogenous accounting for certain reliability issues by assuming 

varying headway distribution and random arrival of passengers results in 

embedded reliability analysis. The so called static approach to transit 

assignment modelling namely, the frequency based transit assignment accounts 

for the network uncertainty endogenously and often tends to minimize the 

average total travel time experienced by passengers thereby assuming that all 

passengers are risk neutral. 

Transit assignment models deals with the route/strategy choice of passengers 

in a transit network and provides an estimate of the number of passengers 

travelling along the various routes/strategies in the network together with the 

estimated cost of travelling on these routes/strategies. In comparison to the 
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traffic networks the assignment problem of transit network is much more 

complex not only due to the presence of several stages (walking to the transit 

stop, waiting for the transit service, transferring to a different service, riding in 

a service etc), interaction between several entities (buses, information system, 

passenger heterogeneity) but also due to several difficulties in formulating it as 

a simple mathematical assignment model.  

A transit network modeller needs to model the waiting time of passengers at a 

downstream transit stop which is affected by the number of passenger opting 

for the service at the upstream stop as the transit may be full when it reaches 

the downstream stop resulting in failure to board situation. Also within the 

transit service the passengers sitting enjoy a better level of comfort than those 

standing. Modelling the increased travel times of passengers due to above 

mentioned factors results in several complexities. When the costs of each 

alternative link/route can be expressed in terms of its own flow then they are 

termed as symmetric problem as they have diagonal jacobians (
 ∂cx

∂vy
⁄ =

0 , ∀x ≠ y) where 𝑐𝑥 is the cost along line segment x and v𝑦 is the flow on the 

competing line segment. Such an assumption is a common practice in traffic 

assignment. However in transit assignment such a symmetric jacobian cannot 

be assumed as the cost experienced by the passengers on one route/strategy is 

influenced by the passengers opting for  routes sharing the same route sections. 

Also the cost experienced by the lower end transit stop passengers is 

influenced by the passengers already present within the transit service who 

have boarded the service at upper end transit stop. 

As mentioned in Chapter 1 a transit modeller needs to understand the 

requirements of the network he/she models. In developed countries one finds 

the transit system evolution is advanced to a level such that the transit services 

run as per the given time tables and the issues of frequent non-availability of 

the scheduled services are minimal. They also have information dissemination 

systems such as ‘signs at bus stops’, ‘online tracking of services’ etc. However 

there are certain developing countries where the presence of time tables is 

negligent and the frequencies of services are completely random; fluctuating 

highly on day to day basis. On the other hand we also have countries where the 

transit network operation in spite of having a time table seldom follows them. 

These variations in supply side reliability are further complicated by each line 

within a transit network being associated with differing levels of unreliability.  



- 16 - 

 

Based on the various network characteristic to be modelled a transport planner 

has the option to choose between ‘frequency based approach’ or ‘schedule 

based approach’ to model a transit network. The following sections shall 

highlight the frequency based transit assignment models in detail as that is the 

approach followed in the current thesis. A discussion on use of Random utility 

models (RUM) for assignment process is also made. A review on reliability 

studies and the various methods of analysis namely, scheduling approach and 

mean-variance approach is also described along with a review of stochastic 

process models.  

2.2  Transit assignment models 

In transit studies the modelling of the route choice decisions of a transit 

passenger can be achieved by two approaches 

 Frequency based approach 

 Schedule based approach  

Transit assignment approaches mostly assume that the passengers have a good 

knowledge of the network in which they are travelling and hence often are 

modelled as passengers that make a ‘pre-trip’ choice. ‘En-route’ choice 

travellers are modelled as the ‘clever’ passengers or as the passengers who are 

provided with ‘information’ to make an en-route clever decision (Lam and Bell, 

2003).  

Earlier transit assignment approaches (Fearnside and Draper, 1971; Le Clercq, 

1972) dealt with route choices similar to that of traffic networks wherein the 

‘strategy’ concept was not implemented and the transit network was defined in 

terms of individual paths. Fearnside and Draper (1971) solve the transit 

assignment problem by associating walking time with the centroid connectors 

in the traffic network, travel time with the link length and the waiting time with 

frequencies that are associated with the turning penalty system. A distance 

dependent linear fare function was also included in the cost function. Le Clercq 

(1972) uses a ‘once through’ algorithm to find the shortest path in the transit 

network. The ‘once through’ algorithm searches for the shortest path by 

starting with the node having the least time and updating the time, if the time 

to reach that node from origin is lesser than the initial set time. Le Clercq 

(1972) also code transit network as traffic network. These studies were able to 

fulfil the transport planner requirements in earlier days as the demand for 

transit services had not exceeded the supply. However in the early 80’s it was 

felt imperative to improve the existing transit assignment models to 
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incorporate the effect of physical capacity constraint of transit services to 

accurately model the total travel time/costs experienced by passengers. 

2.2.1 Common lines problem: 

The important principle which underlines the public transit assignment is the 

presence of multiple lines running between not only the adjacent bus stops and 

also between a pair of transfer stops. The earliest study to address the problem 

of common lines was Chriqui and Robillard (1975). The foundation of 

identifying the ‘attractive line set’ between two consecutive bus stops or 

identifying the attractive line set of route sections is based on the heuristic 

given by Chriqui and Robillard (1975). A route section is defined as a section of 

line which runs between two transit stops which are not necessarily 

consecutive and form a part of the route connecting an OD pair. A route section 

can be part of several routes and a route section can consist of one or more line 

sections. Chriqui and Robillard (1975) address the issue of identifying the line 

or route sections that can be chosen by the passenger as an optimisation 

problem by assuming that a transit user only chooses a subset of available lines 

between the bus stop and gets on the first bus that arrives in this subset of 

lines. The minimisation process derives a set of lines sections which when put 

together minimise the total travel time of the passengers. The algorithm 

defining the process of identifying the set of ‘attractive lines’ is as follows: 

Arrange the common lines in ascending order of their in-vehicle travel times 

Let S̅ = {1,0, … ,0} and S = {1,1,0… ,0} 

Compare Total Travel Time (T.T) of S̅ with total travel time of S 

If T. T(S) > T. T. (S)̅ then S̅ is the solution set 

Else 

S̅ = {1,1, … ,0} and S = {1,1,1… ,0} and compare T.T of S̅ with T.T of S 

Continue till  T. T(S) > T. T. (S)̅  then S̅ is the solution set else till S̅ =

{1,1, . .1}then S̅ is the solution set. 

The above heuristic was applied for uniform and exponential headway 

distributions. The exponential headway assumption results in the following 

minimisation problem which can be solved by the above heuristic 

min
1 + ∑ t𝑖𝑛−𝑣𝑒ℎ

lφl𝔛ll∈L

∑ φl𝔛ll∈L
                                                                                                (2.1) 

  Subject to 𝔛l = 0,1 ∀l ∈ L  
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Wherein t𝑖𝑛−𝑣𝑒ℎ
l- is the in-vehicle travel time of line section l 

φl- is the frequency of line section l 

Chriqui and Robillard (1975) argue that they have not been able to find a 

counter example for the above heuristic solution. However Marguier (1981) 

specify a set of conditions for deterministic headway distribution wherein the 

above heuristic fails. Marguier (1981) also mention that it is very rare that such 

set of conditions are met within the real network. 

It becomes clear from the above paragraphs that the heuristics specified by 

Chriqui and Robillard (1975) works for most situations especially in the case of 

exponential headway distribution and is shown to not work for a specific 

condition of deterministic headway distribution. Gentile et al. (2005) proposed 

a straight forward modification to the existing heuristic wherein the sorting of 

lines currently based on in-vehicle travel time was replaced by sorting of lines 

based on total travel time in order to make the heuristic work for deterministic 

conditions as well.  

2.2.2 Unconstrained transit assignment models: 

Transit assignment models initially assumed that the transit supply network 

was able to cater to the existing demand and hence were formulated as 

unconstrained models. These models were classified into two different 

approaches, namely: 

 Hyperpath/ Strategy approach 

 Route – Section approach. 

The distinction between the approaches being that the route section approach 

enabled explicit enumeration of routes between an OD pair and defines the 

attractive line set between transfer stops where as hyperpath/strategy 

approach was formulated without explicit enumeration and defines attractive 

line set between each node. ‘Strategy’ is defined as the set of rules a passenger 

follows to reach their destination. The graphical representation of a strategy is 

hyperpath. The network structure in route section and hyperpath/strategy 

approaches differs from each other as shown in fig 2.1.  The example network 

given in fig 1a. has several possible set of strategies (set of rules) to travel from 

various origin points in the network (S1 and S2) to the destination (S3). The 

table highlighting all the possible strategies and the possible route sections for 

the network is given in table 2.2. Fig 2.1 (b) gives the graphical (acyclic) 

representation of network in fig 2.1(a) and hence is called the hyperpath 

representation whereas fig 2.1(c) gives the route section representation of 

transit network in fig 2.1(a).   
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The table highlights that the alternatives A10 and A11 are absent in the route 

section approach. These approaches shall be further described in the following 

sections. 

 

Fig 2.1 . Different representations of a transit network (a) transit network (b) 
Hyperpath representation (c) Route section Representation 

Table 2.2: All possible Route Sections and all possible Strategies for the 
network in Fig 2.1 a. 

 

2.2.2.1 Route – Section approach:  

Following the ‘common lines’ concept derived by Chriqui and Robillard (1975); 

De Cea and Fernandez L (1989) proposed a network representation based on 

line sections. This served the purpose of implementation of the ‘common lines’ 

concept onto a larger network. Line sections are defined as the lines joining two 

bus stops which are not necessarily consecutive. The network representation 

𝒢′ = (𝒩, A) consists of 𝒩 as the nodes vector and 𝐴 as the set of all possible 

line sections. ‘Route section’ is defined as a portion of the route between two 

consecutive transfer stops and each route section is associated with the set of 

attractive lines sections or common line sections.  Let ℌ denote the set of 
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transfer stops, 𝑡𝑖𝑛−𝑣𝑒ℎ
𝑙 the in-vehicle travel time on the line section 𝑙, 𝑉𝑖𝑗 is the 

total flow along the route section, 𝑣𝑙  is the flow on line section 𝑙, 𝜑𝑙 is the 

frequency of the line section, 𝔛𝑙  indicates if the line section belongs to 𝑆𝑖𝑗or not,  

𝑑𝑖 is the total demand from origin 𝑖 to destination 𝑗 and 𝑆𝑖𝑗 is the set of line 

sections directly connecting the nodes 𝑖, 𝑗.  The model is formulated as 

minimisation problem wherein trips are assigned from origin to destination via 

route sections as follows: 

min
(𝔛𝑙,𝑉𝑖𝑗)

∑𝑣𝑙𝑡
𝑖𝑛−𝑣𝑒ℎ

𝑙

𝑙∈𝐴

+ ∑
𝑉𝑖𝑗

∑ 𝜑𝑙𝔛𝑙𝑙∈𝑆𝑖𝑗(𝑖,𝑗)∈ℌ

                                                                (2.2) 

Subject to  

∑ 𝑣𝑙 + 𝑑𝑖

𝑙∈𝐴+

= ∑ 𝑣𝑙  

𝑙∈𝐴−

 ∀ 𝑖 ∈ 𝒩 

𝑣𝑙 = 
𝔛𝑙𝜑𝑙𝑉𝑖𝑗

∑ 𝜑𝑙𝔛𝑙𝑙∈𝑆𝑖𝑗

 ∀ (𝑖, 𝑗) ∈ ℌ, 𝑙 ∈ 𝑆𝑖𝑗                                                             (2.3) 

𝑣𝑙 > 0 ∀ 𝑙 ∈ 𝑆𝑖𝑗 

𝔛𝑙 = 0,1 ∀ 𝑙 ∈ 𝑆𝑖𝑗 

The above model does not include capacity constraint. The solution to the 

above problem is achieved by means of a three step process where the first 

step involves the identification of the attractive line set using the heuristic 

provided by Chriqui and Robillard (1975). Since the heuristic algorithm does 

not consider capacity constraints, the attractive line set obtained is for an 

uncongested network. The assignment of flows to the route sections is done 

using all-or-nothing assignment process. From the route sections the flows are 

assigned to the line sections using eq(2.3). 

2.2.2.2 Hyperpath/ Strategy approach: 

(a) Optimal Strategy  

‘Strategy’ is defined as the ‘set of rules which a passenger follows to reach 

his/her destination’. The common lines problem was given a conceptual 

framework by ‘Strategy’ concept first introduced by Spiess and Florian (1989). 

The strategies when represented in graphical format were known as 

hyperpaths (Nguyen and Pallottino, 1988). The strategy/hyperpath based 

assignment assumes each line serving a bus stop as a separate arc. The 

strategy/hyperpath concept eliminates the explicit enumeration and hence 

proves advantageous for analysis of larger networks. In sync with the shortest 

path concept of traffic assignment, strategy/hyperpath approach introduces 

‘optimal strategy/hyperpath’. A detailed description of finding the optimal 
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strategy as given in Spiess and Florian (1989) shall be dealt with in this section. 

Spiess and Florian (1989) highlight that strategies can define several set of 

rules to reach the destination. In absence of information, passengers are 

unaware of the exact arrival of the lines serving a transit stop and when the 

transit services have capacity exceeding the demand, the passengers  invariably 

choose the line which comes first amongst their set of attractive lines (lines 

which minimise the passengers total travel time). This is defined as ‘take the 

first transit service’ strategy and is represented by Spiess and Florian (1989) 

using the following algorithm: 

Step 1: Choose an origin node and fix it as the STOP-NODE 

Step 2: Board the vehicle that arrives first at the STOP-NODE from the 

predetermined set of attractive lines. 

Step 3: Alight at the predetermined node. 

Step 4. If the alighting node is not the destination then set the current node to 

STOP-NODE and return to step 2; else trip is completed. 

From the above algorithm it is amply clear that the passengers choose their 

strategy based on a ‘pre-trip’ choice wherein the attractive line set of the 

passenger to reach his/her destination is defined before the journey. The 

alighting node is also predetermined based on the line boarded by the 

passenger hence the element of ‘en-route’ choice is involved only at the transit 

stops in the above strategy of ‘ take the first transit service’ algorithm. An 

important aspect in the definition of  strategy as mentioned in Spiess and 

Florian (1989) is that the origin node is not a fixed entity hence strategy defines 

the rules that enables a passenger to travel from any node to the destination 

node. A subtle difference between the strategy and hyperpath approaches lies 

in the solution approaches used. In case  of strategy based models the 

minimisation problem is solved based on linear programming  approach 

whereas hyperpath based models use dynamic programming. 

The network 𝒢 = (𝓝,𝓐) representation in Spiess and Florian (1989) 

characterises each arc a ∈ 𝓐  by (t𝑖𝑛−𝑣𝑒ℎ
a, φa) where t𝑖𝑛−𝑣𝑒ℎ

a-travel time 

associated with line segment and φa- frequency of line segment. The arcs which 

do not have in-vehicle travel times associated with it such as the waiting arc, 

boarding arc, alighting arc the value of  t𝑖𝑛−𝑣𝑒ℎ
a is set to zero and for arcs such 

as in-vehicle arcs, alighting arcs, boarding arc the value of φa is set to zero. A 

strategy to reach destination stop j ∈ 𝒩 is represented by partial network 

𝒢j = (𝒩 j, 𝒜j) where 𝒩 j ∈ 𝓝 and 𝒜j ∈ 𝓐 consists of only attractive line set 

used as part of the strategy. Among the links included in the strategy a 
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passenger boards the first transit service that arrives. The attractive lines that 

make up a strategy are represented in terms of 0-1 variables 𝔛a. 

 𝔛𝑎 = {
0, 𝑖𝑓 𝑎 ∉  𝒜𝑗

1, 𝑖𝑓 𝑎 ∈ 𝒜𝑗
 

If the total demand from node i to j is denoted by dj such that dj = ∑ di∀i∉j  

Then the optimisation problem to identify the optimal strategy S∗ is formulated 

as shown in Spiess and Florian (1989)  : 

min ∑ 𝑡𝑖𝑛−𝑣𝑒ℎ
𝑎 𝑣𝑎

𝑎∈𝒜

+ ∑
𝑉𝑖

∑ 𝜑𝑎 𝔛𝑎𝑎∈𝒜
𝑖
𝑗+

𝑖∈𝒩

                                                                2.4 

Subject to  

𝑣𝑎 = 
𝔛𝑎 𝜑𝑎

∑ 𝜑𝑎 𝔛𝑎𝑎∈𝒜𝑖
𝑗+

 

𝑉𝑖 = ∑ 𝑣𝑎

𝑎∈𝒜𝑖
𝑗+

+ 𝑑𝑖 

𝑉𝑖 ≥ 0 

Wherein 𝑣a denotes the volume of passengers on the line segment 𝑎 and 𝑉i 

denotes the volume of passengers accumulated at the node i from various line 

segments preceding it, 𝜑𝑎 denotes the frequency of line segment 𝑎 and 𝑡𝑎 

denotes the in-vehicle travel time of line segment 𝑎. 

The above mentioned problem has a non-linear objective function with non-

linear constraints which are converted into simpler linear programming 

problem and then solved by two step algorithm. The first step involves 

backward labelling of the shortest path algorithm to identify the shortest 

strategy from a destination to all other stops and the second step involves the 

assignment of flows/passengers onto the line–segments. 

Part 1: finding the optimal strategy 

1.1 Initialisation   𝑐𝑖 =  ∞;  𝑖 ∈ (𝓝 − 𝑗); 𝑐𝑗 = 0  

      𝜑𝑖 = 0, 𝑖 𝜖𝓝 

                         𝒮 =  𝓐 ; 𝑆 =  ∅ 

1.2 getting the next link: 

If 𝒮 = ∅  then STOP else find 𝑎 = (𝑖, 𝑟) ∈ 𝒮which satisfies 𝑡𝑖𝑛−𝑣𝑒ℎ
𝑎 + 𝑐𝑟 ≤

𝑡𝑖𝑛−𝑣𝑒ℎ
𝑎′ + 𝑐𝑟′  , 𝑎′ = (𝑖′, 𝑟′) ∈  𝒮  

Where 𝑐𝑟 is the cost associated with node r. 

𝒮 = 𝒮 − {𝑎} 
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1.3 updating node label  

If 𝑐𝑖 ≥ 𝑡𝑖𝑛−𝑣𝑒ℎ
𝑎 + 𝑐𝑟 then 

𝑐𝑖 = 
𝜑𝑖𝑐𝑖 + 𝜑𝑎(𝑡𝑖𝑛−𝑣𝑒ℎ

𝑎 + 𝑐𝑟)

𝜑𝑖 + 𝜑𝑎
 

𝜑𝑖 = 𝜑𝑖 + 𝜑𝑎  and 𝑆 =  𝑆 + {𝑎} 

Go to step 1.2 

Part 2: assignment  

2.2 (initialisation) 𝑉𝑖 = 𝑑𝑖 

2.3 (Loading) for every link 𝑎 ∈ 𝓐, in decreasing order of  𝑡𝑖𝑛−𝑣𝑒ℎ
𝑎 + 𝑐𝑟: 

If 𝑎 ∈ 𝑆 then 

𝑣𝑎 = 
𝜑𝑎

𝜑𝑖
 𝑉𝑖 

Wherein 𝑉𝑖is the volume of flow accumulated at node 𝑖 

𝑉𝑖 = 𝑉𝑟 + 𝑣𝑎  

𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 𝑣𝑎 = 0 

Illustration of the implementation of the above algorithm for the network 

shown in fig 1(a) through the steps involved to get the optimal strategy and 

assign the flows are shown in Appendix A. The strategy formulation as 

proposed by Spiess and Florian (1989) forms the basis of the transit 

assignment software EMME-2 (Constantin and Florian, 1995). 

(b) Hyperpath:  

The ‘strategy’ concept was further enhanced by providing a graphical 

framework to the transit network in Nguyen and Pallottino (1988). The 

graphical approach enabled users to specify the network in a node-arc 

representation. The network therefore was represented as  𝒢 = {𝒩,𝒜} with 

the bus stops ŝ ∈ 𝒩 and the directed boarding arcs a ∈ 𝒜. A hyperpath which 

joins pth OD pair is given as Hp = {𝒩p, 𝒜p, πp} where 𝒩p ⊂ 𝒩 , 𝒜p ⊂ 𝒜 and πp 

is the choice probability of hyperpath Hp. 𝒜p consists of several head and tail 

nodes denoted as {i, j} ∈ 𝒜p such that {i} ∈ 𝒩p and {j} ∈ 𝒩p. Each arc  {i, j} is 

associated with as cost cij and from the tail node {j} there is a set of forward 

star nodes {j+} ∈  Ej. Ej denotes the set of tails nodes which forms the attractive 

line set of travel from the {i} node. From each {i} there is a choice probability 

associated with accessing node {j} ∈ Ej 

ῃ𝑖𝑗
𝑝 =

𝜑𝑗

∑ 𝜑𝑎𝑎∈𝐸𝑗
𝑝

                                                                                                         (2.5) 

Where 𝜑𝑗  is the frequency of the line segment 𝑖𝑗 
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The choice probability of a path ř within the hyperpath 𝑝 is given as  

𝜅ř
𝑝 = ∏ ῃ𝑖𝑗

𝑝

(𝑖,𝑗)∈ŝ

 

Using the above specification the cost of the hyperpath p is computed as the 

sum of the costs of constituent nodes and arcs thereby resulting in the 

following formulation: 

𝐶𝑝 = ∑ 𝜅ř
𝑝

ř∈𝑆𝑝

  ( ∑ 𝑡𝑖𝑛−𝑣𝑒ℎ
𝑖𝑗

(𝑖,𝑗)∈ŝ

+ ∑𝑊𝑖
𝑝

𝑖∈ŝ

)                                                             (2.6) 

Where 𝑊𝑖
𝑝 is the waiting time associated with path 𝑝 at node 𝑖 and 𝑡𝑖𝑛−𝑣𝑒ℎ

𝑖𝑗 is 

the in-vehicle travel time of the arc connecting nodes 𝑖 and 𝑗 and 𝑆𝑝 is the set of 

paths within the hyperpath 𝑝.  The proposed solution algorithm uses bellman’s 

dynamic principle to solve the shortest hyperpath problem recursively from 

destination to the origin. Bellman’s principle states that ‘every node in the 

quickest path will have a unique back node’. Hence if node 𝑖 is on the quickest 

path and node 𝑗 forms its back node on that path; then any other quickest path 

from origin to destination via node 𝑖 shall have node 𝑗 as its back node 

(Bellman, 1956). The optimality principle required for recursive bellman’s 

dynamic principle is further explained by Gentile et al. (2005) as the one where 

all the sub strategies of the optimal strategy are themselves optimal.  

The methods reviewed above are based on several assumptions such as  

(a) Random arrivals of passengers 

(b) Exponential arrival of transit services 

(c) Independence of the lines serving the bus stop. 

(d) The passengers do not have passenger information at bus stops.  

The assumption of exponential arrivals has been criticised by many studies 

such as (Gentile et al., 2005; Marguier and Ceder, 1984) and they have adopted 

Erlang headway distribution. Marguier (1981) was able to show that the 

common lines problem solved by the heuristic algorithm given in Chriqui and 

Robillard (1975) was applicable only in exponential interarrivals. A modified 

algorithm to solve the common lines for deterministic interarrivals was 

proposed by Gentile et al. (2005). Though the application of erlang interarrivals 

and its impact on the waiting time distributions has been dealt with in Gentile 

et al. (2005) and Marguier and Ceder (1984) it has not been explicitly 

understood. The relationship between waiting and interarrival distribution was 
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detailed in Larson and Odoni (1981). Larson and Odoni (1981) show that if Rth 

bus arrives at the bus stop, Hr units of time after the R-1th bus arrival then Hr 

denotes the bus headway and that the probabilistic occurrence of the headway 

will decide the probability distribution of the waiting time of a passenger for 

that line. 

It is assumed that Hr values are identically distributed though they are not 

independent.  It is indicated that the ‘random’ arrival of the passengers at the 

bus stop is of significance as such an assumption indicates that the arrival of the 

next passenger at the bus stop cannot be determined using historical data of 

actual arrival times of the passengers which is obtained through surveys. 

Having assumed that the passengers arrive at the bus stop at random, the 

derivation of probability law for W (waiting time; which is the duration 

between the time of the random incidence of passenger arrival at the bus stop 

and the time of next arrival of bus) is carried out. In order to achieve the 

probability law for W it is necessary to know the probability law on Y (the 

length of the inter arrival gap entered by random incidence). The length of this 

inter arrival gap can be split as (a). The time gap between arrival of the most 

recent bus and the arrival of passenger at the bus stop  (b). The time gap 

between the arrival of the passenger at the bus stop and the arrival of the next 

bus.  

The probability that a gap which a passenger arriving at random at the bus stop 

enters assumes a value between y and y + dy  and is given as 

P(y ≤ Y ≤ y + dy) 

 which is the p.d.f of Y  

𝑓Y(y)dy 

The relationship between the random variables Y and H has to be ascertained 

to determine the probability of a random incidence entering a gap between y 

and y + dy. Given below (fig 2.2) is an example wherein it is assumed that the 

values of y and h are discrete and not continuous in order to explain the 

relationship between Y and H. It is understood that the logic applied to a 

discrete case will also hold true for a continuous case. Assuming that (as given 

in fig 1) the headway H has two values h1 =15min and h2 =60 min 

P(h1)= 8/10 and P(h2)=2/10 

Now assuming that a passenger arrives at uniform intervals of 1 min we have 

15 passengers in the interval of 15 minutes and 60 passengers in the interval of 

60 minutes. Hence in the total time period of 4 hours, 120 passengers have 

entered the gap of 60 minutes width and 120 passengers entered the gap of 15 
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minutes width hence the probability of being incident on a gap of width 15 min 

and the probability of being incident on a gap of width 60 minutes is the same 

though the frequency of occurrence of these gaps varies. 

P (y1=15 min) = 120/240=1/2 

P (y2=60 min) = 120/240=1/2 

 

Fig 2.2: Frequency Relationship between G and H 

Now let us assume that in an interval of 45 minutes, 15 minute headway and 30 

minute headway have equal probability of occurrence as shown in fig 2.3. 

 

Fig 2.3: Width Relationship between G and H 

It can be seen from fig 2 that p(h1 = 15 min)=1/2 and p(h2= 30 min)=1/2, 

however as assumed in the previous example if a passenger arrives at intervals 

of 1 minutes then we have 15 passengers arriving in a 15 min gap and 30 

passengers arriving in 30 minute gap. 

P(y1=15 min) = 15/45=1/3 

P(y2=30 min) = 30/45=2/3 

Hence a passenger arriving at random is twice as likely to enter the gap of 30 

min rather than in the gap of 15 min though the probability of occurrence of 

both the headways are the same. Therefore these examples highlight that the 

probability of a passenger arriving at random and entering a gap of width y and 

y + dy (continuous variable) is dependent on the frequency of occurrence of 

such gaps as well as the width of the gaps. We can also deduce from these 
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examples that Y is the headway as experienced by the passengers whereas H is 

the headway as set by the operator. 

Mathematically  

𝑓Y(y)dy ∝ 𝑓H(y) dy . y 

Where 𝑓H(y) dy denotes the relative frequency of occurrence of gaps with 

length y to y+dy where y – is the length of the gap 

Then the constant of proportionality is 1/E(H) because ∫ 𝑓H(y) dy . y
∞

0
 = E(H) 

hence  

𝑓G(y)dy ∝ E(H) 

 

𝑓G(y)dy = ķE(H) 

where  ∫ 𝑓G(y)dy
∞

0
= 1 

 

Hence ķ (constant of proportionality) = 1/E(H) 

 

Therefore  𝑓Y(y)dy =
y𝑓H(y)

E(H)⁄  

Having found the probability of a passenger entering a gap of size [y ,y+dy] we 

now find the probability of an arriving passenger being on various location 

within the gap. 

Let us assume that based on the p.d.f of Y we identify a gap of length y which is 

the gap in which the passenger is incident upon on random arrival i.e. the 

passenger arrives at the bus stop during the headway gap of Y. There is a 

constant probability of arriving passenger being in any interval § and §+h 

where [§,§+h] is fully contained in y.  

Hence if the value of y is 15 min the probability that the passenger arrives in 1 

min P(1) = P(2)=P(3)…=P(15) where P(1)=1/15 = 1/ y. This example assumes 

y is discrete, if g is continuous then the probability that a passenger arrives 

within an interval [§,§+h] conditional that the value of waiting time W does not 

exceed the value of  gap Y will also  1/ y and is denoted as 

𝑓W|Y(w|y) = 1
y⁄        0 ≤ w ≤ y                                                                      

The joint p.d.f for W and Y: 

𝑓W,Y(w, y) = 𝑓W|Y(w|y)𝑓Y(y) 
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= 1
y⁄  

y𝑓H(y)
E(H)⁄    0 ≤ w ≤ y ≤ ∞      

The marginal for W is formed as  

fW(w) =  ∫
𝑓H(y)dy

E(H)⁄
∞

W

                                                                                      (2.7) 

Or when representing the above equation as the probability density function of 

a line  

 𝑓l(w) =  ∫
ɡl(h)dh

E(h)⁄
∞

w
 

From the generic formulation shown in eq(2.7) it is possible to arrive at the 

p.d.f of the waiting time for various headway distributions.  

For example when the line headway for line ‘l’ is exponentially distributed the 

probability density function for the waiting time of the line can be computed 

from equation (2.7) as 

ɡl(h) = {
φl e

−φlhl ,   hl ≥ 0
0 ,            hl˂0    

 

Wherein φl- frequency of the line l 

And 

E(hl) =  
1

φl
 

𝑓l(w) =  
∫ φl e

−φlhl dh
+∞

w

1
φl

 

Hence 

𝑓l(w) =  φle
−φl w                                                                                                            (2.8) 

In case of erlang distribution  

ɡl(h) =
(e−mlφlh(mlφl)

ml hml−1)

(ml − 1)!
 

Wherein m- is the shape factor of erlang distribution 

𝑓l(w) = ∫

(e−mlφlh(mlφl)
ml  hml−1)

(ml − 1)!

E(h)

∞

w

 dh 

∫
(e−mlφlh(mlφl)

ml  hml−1)

(ml − 1)!

∞

w

 dh =  ∫  
∞

w

mlφl e
−mlφlh(mlφlh)ml−1

(ml − 1)!
dh 
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=
e−mlφlw(mlφlw)ml−1

(ml − 1)!
+ ∫

(mlφl)
ml−1 e−mlφlhhm−2

(ml − 2)!

∞

w

dh 

 

=
e−mlφlw(mlφlw)ml−1

(ml − 1)!
+

e−mlφlw(mlφlw)m−2

(ml − 2)!

+ ∫
(mlφl)

ml−2 e−mlφlhhm−3

(ml − 3)!

∞

w

dh 

 

=
e−mlφlw(mlφlw)ml−1

(ml − 1)!
+

e−mlφlw(mlφlw)m−2

(ml − 2)!
+

e−mlφlw(mlφlw)m−3

(ml − 3)!

+ ∫  
(mlφl)

ml−2e−mlφlhhm−4

(ml − 4)!

∞

w

dh 

 

= e−mlφlw  ∑
(mlφlw)ǩ

ǩ!

m−1

k=0

 

 

𝑓l(w) =
e−mlφlw  ∑

(mlφlw)ǩ

ǩ!
m−1
k=0

E(h)
 

𝑓l(w) =
e−mlφlw  ∑

(mlφlw)ǩ

ǩ!
m−1
k=0

1
φl

 

𝑓l(w) = φle
−mlφlw ∑

(mlφlw)ǩ

ǩ!

m−1

ǩ=0

                                                                                (2.9) 

The assumption of no information at bus stops was overcome by Gentile et al. 

(2005) who showed that ‘signs at bus stops’ resulted in a lesser travel time in 

case of uncongested (demand not exceeding supply) transit networks. The 

choice probability at node 𝑗 for line ℓ within the hyperpath framework with 

information was therefore formulated as in eq 2.10. 

𝜂𝑗,ℓ
𝑝 = ∫ 𝑓ℓ(𝑤)

∞

0

 ∏ 𝑃(𝑤𝑎 ≥ 𝑤ℓ + 𝑡𝑖𝑛−𝑣𝑒ℎ
ℓ

𝑎∈𝐴∗\ℓ

− 𝑡𝑖𝑛−𝑣𝑒ℎ
𝑎)𝑑𝑤                        (2.10) 

Where 𝑓ℓ(𝑤)- waiting time density function of line ℓ (computed as given in eq 

2.9 for erlang distribution and 2.8 for exponential distribution). 
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𝑃(𝑤𝑎 ≥ 𝑤ℓ + 𝑡𝑖𝑛−𝑣𝑒ℎ
ℓ − 𝑡𝑖𝑛−𝑣𝑒ℎ

𝑎)- probability that the waiting time of line 𝑎 

(𝑤𝑎 )(given by the ‘sign at bus stop’) is greater than or equal to the difference 

between the total travel time on line ℓ (𝑤ℓ + 𝑡𝑖𝑛−𝑣𝑒ℎ
ℓ) and the in-vehicle travel 

time of line 𝑎(𝑡𝑖𝑛−𝑣𝑒ℎ
𝑎). 

Appendix B highlights the difference in choice probabilities of a line with ‘signs 

at bus stops’ and without ‘signs at bus stops’ for an example network using 

Gentile et al. (2005) formulation. The application of the information scenario on 

the traffic network can been studied extensively; Henn and Ottomanelli (2006) 

assessed the impact of information when stochastic traffic generation is 

simulated.  

2.2.3 Capacity constrained models: 

The previous section dealt with unconstrained models wherein it was assumed 

that the passenger was successful in boarding the first arriving transit service 

in his/her attractive line set. However several of the existing transit system 

seldom run with its demand being significantly lesser than the supply. Hence 

the need to model capacitated transit services arises.  

2.2.3.1 BPR models 

The earlier models of congestion described congestion by ‘discomfort’ cost. 

‘Discomfort cost’  introduced in seminal paper of Spiess and Florian (1989) was 

meant to model the ‘discomfort’ associated with the exceeding passenger 

demand within the vehicle. The model did not explicitly account for the 

capacity constraints of transit vehicle as the passengers were allowed to board 

the first transit service arriving and queuing delays at the transit stop were not 

dealt with. The discomfort experienced by the passenger within the transit 

vehicle was modelled as a BPR function such that the experienced in-vehicle 

travel time ‘increased’ with the increase in passenger flow on the line.  The 

model was able to propose an algorithm for an objective function which was 

separable by destination and the sub problem for each destination was 

equivalent to the problem with constant link travel times. Spiess and Florian 

(1989) however acknowledge that the proposed model had certain deficiencies 

such as (a) all the passengers suffered from the same degree of discomfort (b) 

the waiting times were not affected and the dwell time associated with the 

number of passengers boarding and alighting was also not considered. De Cea 

and Fernández (1993) introduced the increased waiting time associated with 

congestion by a BPR function. The BPR styled congestion function is then added 

to the in-vehicle travel time and the uncongested waiting time to obtain the 
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cost of the route section.  In the congested model the attractive lines set were 

modified based on ‘effective frequencies’ (described in section 2.2.3.2). The 

network is thus defined initially as 𝒢 = (N, ℒ)where ℒ consists of the set of 

attractive lines associated with uncongested network and the network is 

redefined as 𝒢 = (N, ℒ′) wherein ℒ′ consists of the attractive lines set which 

includes even the slow lines thereby expanding the attractive lines set to 

include all the lines of the network. De Cea and Fernández (1993) note that the 

congested waiting time experienced by a passenger boarding the route section 

s at its origin node 𝑖(𝑠) shall depend on  

a. 𝑣𝑠 the total number of passengers boarding the same route section at 

the origin 

b. 𝑣𝑖𝑠
+ the number of passengers boarding other route sections that use the 

lines contained in route section 𝑠 

c. 𝑣̅𝑖𝑠, the number of passengers boarding the route section 𝑠 before 𝑖(𝑠) 

and alighting after 𝑖(𝑠). 

The above definitions help define the capacity sharing and competition 

between passengers of the upstream transit stop with the downstream transit 

stop and the interaction between passengers trying to board the same line 

shared by different route sections. The congested waiting time formulation was 

thus efficient in capturing the asymmetric interaction of the costs between 

various route users. The waiting time in BPR styled models following the above 

specification is given as in eq 2.11: 

𝐸[𝑊] =
1

𝜑𝑠
+  𝜁 (

𝑣̅𝑖𝑠 + 𝑣𝑠

𝐶𝑎𝑝𝑠
)

𝑏

                                                                           (2.11) 

Where Caps − is the capacity of the route section which is defined as 

Caps = ∑ 𝒸lφllεs  with 𝒸l and φlbeing the capacity and frequency of line l, φs – is 

the frequency of the route section s and ζ, b are the calibration parameters. 

A hyperpath implementation of BPR styled cost function was done by Wu et al. 

(1994) whose waiting arcs had a BPR styled cost function depicting an increase 

in waiting time due to congestion in addition to waiting time experienced in an 

uncongested network , the in-vehicle arcs consisted of the in-vehicle travel 

costs as well as discomfort cost which was again a BPR styled function. The 

waiting arcs had cost function of the form: 

𝑐𝔨(𝑣𝔨, 𝑣𝑑) = 𝛼2 (
𝑣𝔨 + 𝜁2𝑣𝑑

𝜑𝔵𝒸𝔵
)
𝑏1

 , 𝔨 ∈ 𝐸 (𝑤𝑎𝑖𝑡𝑖𝑛𝑔 𝑎𝑟𝑐𝑠)                                 (2.12)  

And the discomfort cost was denoted as  
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𝑐𝔨(𝑣𝔨, 𝑣𝑑) = 𝛼3𝑡
𝑖𝑛−𝑣𝑒ℎ

𝔵 + 𝜁3 (
𝛾3𝑣𝔨 + 𝑣𝑑

𝜑𝔵𝒸𝔵
)

𝑏2

, 𝔵 ∈ 𝐼(𝑖𝑛 − 𝑣𝑒ℎ𝑖𝑐𝑙𝑒 𝑎𝑟𝑐𝑠) (2.13) 

Where 𝔵 is the in-vehicle arc associated with waiting arc 𝔨 , 𝑣𝔨 are the 

passengers waiting to board the transit service, 𝑣𝑏 = 𝑣𝔨 + 𝑣𝑑 , 𝑣𝑑  denotes the 

direct passenger flows, 𝛼1, 𝛼2, 𝑏1, 𝛼3, 𝜁3, 𝑏2, 𝜁2, 𝛾3 are calibration parameters, 

𝑡𝑖𝑛−𝑣𝑒ℎ
𝔵- is the in-vehicle travel time of line 𝔵. 

The equations given in 2.12 and 2.11 are structurally same, however De Cea 

and Fernández (1993) utilize a ‘diagonalization’ algorithm to solve the 

asymmetric problem whereas Wu et al. (1994) utilise the ‘symmetric 

linearization’ method.  

2.2.3.2 ‘Effective frequency’ models 

The notion of ‘effective frequency’ is first mentioned in Spiess and Florian 

(1989) however is mathematically formulated and implemented in De Cea and 

Fernández (1993). De Cea and Fernández (1993) define ‘effective frequency’ as 

inverse of ‘equivalent average waiting time index’ associated with a line section 

and is given as : 

𝑤𝑙
𝑖 = 

𝛼

𝜑𝑙
+ 𝜇𝑙  (

𝑣̅𝑙

𝜑𝑙𝒸𝑙
)                                                                                                (2.14) 

Where 𝑣̅𝑙 is the number of passengers taking the line section before and 

alighting after the transit stop, 𝜇l is a monotonically increasing function of 𝑣̅𝑙  

and takes the BPR formulation as  𝜇𝑙 = ζl (
𝑣̅𝑙

𝜑𝑙𝒸𝑙
)
b

 , 𝒸𝑙 is the capacity of line 

section 𝑙. It is noted that ‘equivalent average waiting time index’ 𝑤𝑙
𝑖  at transfer 

stop 𝑖 is the same for all passengers boarding at stop 𝑖 irrespective of their 

route section choice (provided that the route section consists of line section 𝑙 

within its attractive line set). The boarding probabilities are therefore modified 

with respect to the ‘effective frequency’ over every iteration such that with 

increase in congestion the boarding probability for the line gets reduced. 

Hyperpath based implementation of effective frequency was also carried out 

along with parallel modifications on the waiting time cost function which 

modelled the residual capacities in congested conditions.  Bouzaïene-Ayari et 

al. (2001) mention the modification of distribution models which were initially 

based on the nominal frequency into ‘residual capacity models’ (in case of 

congested networks) by Gendreau (1984). However Bouzaïene-Ayari et al. 

(2001) pointed out that the ‘residual capacity models’ produced better results 

only in congested condition and hence he proposed an ‘adjusted residual 

capacity model’ which were efficient at various levels of congestion. The 

‘adjusted residual capacity model’ is given as follows 
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𝜂1
ℓ
(𝑣ℓ) =

𝐶𝑎𝑝̅̅ ̅̅ ̅
ℓ

𝐶𝑎𝑝ℓ
 𝜑ℓ ∀ ℓ ∈ 𝐴∗                                                                                 (2.15) 

Where 𝐶𝑎𝑝ℓ is the capacity of line ℓ, 𝐶𝑎𝑝̅̅ ̅̅ ̅
ℓ  is the residual capacity (after 

boarding the stop) 𝜑ℓ  is the mean frequency of the line  ℓ, 𝑣ℓ the aggregate 

passenger flow on the line ℓ, 𝜂1
ℓ
(𝑣ℓ) is the distribution model. 

The waiting time model proposed by Bouzaïene-Ayari et al. (2001) are of two 

different types wherein both the models have the following generic 

formulation: 

𝑊𝛿(𝑣𝐴∗) = 𝑤ℓ(𝑣ℓ)
𝜇ℓ(𝑣ℓ)

∑ 𝜇ℓ′(𝑣ℓ′)ℓ′∈𝐴∗
𝛿

                                                            (2.16) 

Where 𝛿 defines a specific strategy, 𝑊𝛿(𝑣𝐴∗)- is the waiting time of passengers 

(which is a function of flow 𝑣𝐴∗)following strategy 𝛿, 𝜇ℓ(𝑣ℓ)- attraction factor of 

line ℓ and 𝜇ℓ(𝑣ℓ) is a strictly decreasing function of (𝑣ℓ). 

The first model with strict capacity constrains assumes that the line capacity 

are strict and therefore the aggregated passenger flows in different lines are 

not allowed to exceed the capacities. The generic equation given in eq 2.16 

above is then reformulated as: 

𝑤ℓ(𝑣ℓ) =
1

2𝜑ℓ
(1 +

1

𝑚ℓ
) +

𝜁4

2𝜑ℓ
(

1

𝑚ℓ
+

𝜑ℓ

𝒸ℓ + 𝜑ℓ
) (

𝑣ℓ

𝒸ℓ − 𝑣ℓ
)                          (2.17) 

Where 𝜁4 is a parameter that can be calibrated using real data or simulation 

results, 𝒸ℓ- capacity of line ℓ , 𝜑ℓ- frequency of line ℓ and 𝑚ℓ- integer shape 

factor of erlang distribution, . The second model was without strict capacity 

constraints and allowed for the aggregate flows to exceed the capacity of the 

line. This resulted in the formulation of the waiting time as follows: 

𝑤ℓ(𝑣ℓ) =
1

2𝜑ℓ
[(1 +

1

𝑚ℓ
) + (𝜁5

𝑣ℓ

𝒸ℓ
)
𝑏3

]                                                              (2.18) 

Wherein 𝜁5 is a parameter that can be calibrated using real data or simulation 

results, 𝒸ℓ- capacity of line ℓ , 𝜑ℓ- frequency of line ℓ and 𝑚ℓ- integer shape 

factor of erlang distribution, 𝑣ℓ- aggregate passenger flow on line ℓ. 

Cominetti and Correa (2001) propose the usage of ‘effective frequency’ for each 

line segment which is differentiable such that the optimal decision of each 

passenger is affected by the choices of others. Hence they reformulate the 

common lines problem as an equilibrium problem. They prove the existences of 

multiple ‘equilibrium cost strategies’ in event of congestion for certain flow 

ranges and argue that an increase in flow during such situations does not 

increase the costs of these equilibrium strategies. 
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Consider the two line example as shown in fig 2.4: 

 

Fig 2.4 : Presence of multiple strategies as shortest hyperpath/strategy 

The computation of shortest strategy between node 1 and node 2 results in {2} 

and {1,2} as candidates for shortest hyperpath/strategy, hence proving the 

presence of multiple solutions for a problem even in case of uncongested 

transit networks. However Cominetti and Correa (2001) did not specify a 

solution algorithm for the congested network with ‘effective frequency’. Cepeda 

et al. (2006) developed a MSA based solution algorithm for the ‘effective 

frequency’ model proposed by Cominetti and Correa (2001). The effective 

frequency formulation proposed by Cepeda et al. (2006) is of the form  

λ′
𝑎(𝑣) = {

𝜑 [1 − (
𝑣𝑎

𝜑𝒸 − 𝑣𝑎
′ + 𝑣𝑎

)
𝒷

]

0             𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

𝑖𝑓 𝑣𝑎
′ < 𝜑𝒸                                    (2.19) 

Where 𝜑 is the ‘nominal frequency’ of line segment a, 𝒸 is the capacity of line 

segment a, 𝑣𝑎  is the flow boarding at stop onto line segment a , 𝑣𝑎
′ is the flow 

immediately after the boarding stop , 𝒷 is parameter.  

2.2.3.3 ‘Strict capacity’ models 

The above mentioned models worked under the surmise that the demand 

doesn’t exceed capacity. ‘Strict capacity Models’ handle cases where the 

demand exceeds capacity. In frequency based assignment models the strict 

capacity was explicitly dealt with by Schmoecker (2006). He proposed a 

dynamic framework to model congested network and introduced a ‘failure arc’ 

(fig 2.5) to account for the passengers who couldn’t board the service of their 

choice in a given time step. The algorithm was formulated such that these 

passengers were added onto the demand generated in the next time step.    



- 35 - 

 

 

Fig 2.5: Introduction on failure node and failure arc in hyperpath 
representation 

2.2.3.4 Dynamic models 

The strict capacity models developed by Kurauchi et al. (2003), Schmöcker et 

al. (2008) are quasi dynamic in nature and assume a discrete division of time 

periods within which the flow assignment is considered static. Schmöcker et al. 

(2011) implemented the dynamic model to assess the route choice based on the 

seat availability at transit stop. Trozzi et al. (2013) proposes a dynamic model 

which considers the FIFO principle of passengers at the transit stops and 

proposes a diversion probability which is time dependent and models the 

expected congestion at that time step. The congestion effect is modelled as a 

‘Bottle neck queue model’ which has a time varying exit capacity. Cats et al. 

(2011) used a simulation based framework to assess the impact of information 

provision in the path choice of Stockholm metro passengers. The model studied 

the effect of information on the total travel time at a microscopic as well as 

aggregate level. 

2.3 Random Utility Models (RUMs):  

Apart from the total journey time (in-vehicle travel time + waiting time) a 

passenger chooses his/her route choice based on several other factors with 

each factor being weighed differently by each passenger. These factors put 

together tend to form the dis-utility/cost associated with each route. Hence 

utility helps identifying the preference of a passenger when faced with several 

alternatives. The various forms of RUMs are discussed in the following sections: 

2.3.1 Probabilistic choice models – Multinomial Logit Model (MNL): 

Once the routes between the OD pair have been defined then based on the 

random utilities associated with each route the choice probability for that route 

can be computed. When routes are defined in terms of utility the passengers 
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tend to choose a route which maximises his/her utility if however the routes 

are defined based on generalised costs the passenger then tends to choose a 

route which minimises his/her generalised cost. As mentioned already in 

probabilistic choice models the utilities are assumed random hence they have a 

deterministic component and a stochastic component as shown in eq (2.20). 

𝑈𝑘
𝑖 = 𝒱𝑘

𝑖 + 𝜀𝑘
𝑖                                                                                                              (2.20) 

Wherein Uk
i denotes the utility of route k for individual i; 𝒱k

i denotes the 

deterministic component and εk
i the stochastic component. It is noted that εk

i 

is independent and identically distributed for each individual i and the joint 

distribution of  εk
i assumed over all k decides the choice probabilistic choice 

model (logit or probit).  

In event of MNL,  εk
i has a gumbel probability distribution with zero mean. The 

independence of εk
i results in covariance between any pair of residuals to be 

zero i.e. 

𝐶𝑜𝑣[𝜀𝑗
𝑖 , 𝜀ℎ

𝑖] = 0 ∀ 𝑗, ℎ ∈ 𝑘 

As described in Cascetta (2001), Sheffi (1985) the multinomial logit suffers 

from ‘independence from irrelevant alternatives (IIA)’ wherein the choice 

probability ratio of two alternatives remains the same irrespective of the 

number and the utility of the other alternatives. A realistic approach to 

overcome this disadvantage is to allow for covariance to exist between the 

random residuals of the alternatives having overlapping links (section 2.3.2). 

Improvements to the MNL to deal with IIA is brought about by introduction of 

C-logit and Path-Size logit models. 

 2.3.2 C-Logit and Path size logit: 

Cascetta et al. (1996) and Ben-Akiva and Bierlaire (1999) overcome the IIA 

problem of MNL by introducing a correction factor which accounts for the 

overlap between the alternatives. Cascetta et al. (1996) define that in C-Logit 

the commonality factor is described in several different ways giving rise to 

different C-Logit specifications. The commonality factor is accounted for by 

subtracting it from the deterministic part of the utility function as shown below 

𝑈𝑟 = 𝒱𝑟 − 𝐶𝐹𝑟 

Wherein 𝒱𝑟- is the deterministic component and 𝐶𝐹𝑟 – is the commonality 

factor for route  . 

One possible way is by using the length of the links common to paths wherein 

the lengths can be either physical or link additive part of the generalised cost 

and is given as specified below: 
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𝐶𝐹𝑟 = 𝛽0 ln ∑ (
𝐿ℎ𝑟

𝐿ℎ
1/2𝐿𝑟

1/2
)

𝛾

ℎ∈𝐼𝑟𝑠

                                                                           (2.21) 

Where Lhr is the length of the links common to paths h and 𝑟; while Lh and Lr 

are the overall length of paths h and 𝑟; γ is a positive parameter and the 

summation is extended to all paths belonging to Irs and 𝛽0 is a parameter. 

Alternative forms of commonality factor as specified in Cascetta et al. (1996) 

are : 

𝐶𝐹𝑟 = 𝛽0 ln∑ 𝑤𝑖𝑟𝔑𝑖

𝑖∈𝑟

                                                                                                   (2.22) 

𝐶𝐹𝑘 = 𝛽0 ∑𝑤𝑖𝑟

𝑖∈𝑟

ln𝔑𝑖                                                                                                   (2.23) 

Wherein the summation is extended over all the links i in path 𝑟, 𝔑i is the 

number of paths and wik is the proportional weight for link i in path 𝑟. 

In case of path size logit a ‘size’ variable is introduced in the utility function as 

shown  

𝑈𝑟 = 𝒱𝑟 + 𝑙𝑛𝑠𝑟 

Wherein 

𝑠𝑟 = ∑
𝑙𝑎
𝐿𝑟

 
1

∑ 𝛿𝑎ℎℎ∈𝑃𝑜𝑑
𝑎∈Г𝑘

                                                                                            (2.24) 

Where Гk is the set of links composing path 𝑟, 𝑙a is the length of link a and δah 

equals 1 if link  a is in the path h or 0 otherwise. 

2.3.3 Probit Models: 

In probit models the random error term is assumed to have a normal 

distribution for each utility. Hence the joint density function of the random 

error term is assumed to follow a multivariate normal function as shown below 

𝑈𝑟~ 𝑀𝑁𝑉[𝒱𝑟 , 𝛴]                                                                                                          (2.25) 

Wherein (𝛴)𝑟𝑟 = 𝑣𝑎𝑟[𝜀𝑟] ∀ 𝑟  and (𝛴)𝑟ℎ = 𝑐𝑜𝑣[𝜀𝑟 , 𝜀ℎ] ∀ 𝑟 ≠ ℎ 

Sheffi (1985) highlights that in case of probit models the choice probability 

cannot be expressed analytically since the cumulative normal distribution of 

the error terms cannot be evaluated in closed form. In case of binary alternative 

the choice probabilities can be computed by referring the cumulative normal 

tables. Sheffi (1985) indicates that in case of more than two alternative the 

choice probability can be computed using Monte carlo simulation or Clarks 

Method.   
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2.4 Reliability from passenger’s perspective: 

In this section the reliability aspect from passenger’s perspective shall be 

focussed. The importance an operator associates to schedule adherence of a 

service percolates onto the reliability issues faced by passengers however the 

correlation between the two reliability issues needs a cautious approach. A 

service which is 2 minutes late everyday implies a deviation from its schedule 

to the operators however from passenger’s perspective since the service is 

always 2 minutes late they associate service arrival time with the modified 

arrival times and hence tend to find the service reliable. Several attitudinal 

surveys (Bates et al., 2001, Jackson and Jucker, 1982, Noland and Polak, 2002) 

help define passenger’s attitude towards reliability attributes. Bates et al. 

(2001) find reliability in a system synonymous to system’s ability to be 

consistent and predictable. The definition put forth by Bates et al. (2001), 

Abkowitz (1978) helps deduce that an ideal measure of reliability could be one 

which measures the deviation of an attribute from its average value 

experienced by the passenger. This deduction is further emphasised by the fact 

that in a system where headway distributions are random, passengers often 

tend to base their journeys on their previous experience of the reliability 

attribute most weighted by them rather than base it on a specified time table.. 

Ceder (2007) define the various attributes of importance to the passengers(fig 

2.6). 

 

 

Fig 2.6: Source: Ceder (2007):  reliability attributes of concern to passengers 
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Bates et al. (2001) identify that reliability has an impact on the route choice of 

passengers because of two reasons; first being that passengers are sensitive in 

consequences associated with travel time variability such as being late, missing 

connection etc. This can be modelled by the planners by assuming that each of 

the route choices available to passengers is associated with a distribution of 

consequences which is represented in terms of utility function and the 

passenger choses a route that maximises his/her utility. The second reason is 

that passengers are sensitive to variability in itself due to the stress it causes 

and hence the route choice is modelled by adding an extra term of travel time 

variability or a dummy variable, to indicate the deviations in headways. 

The first approach to modelling the impact of the consequences of unreliability 

is termed ‘scheduling approach’ whereas the second approach is given the term 

‘mean-variance’ approach. 

2.4.1 Scheduling approach: 

The most important aspect of modelling reliability using schedule based 

approach is the determination of the departure time for various purposes of the 

trip. The central idea behind the optimisation of the departure time was the 

notion that each departure time is associated with a disutility function which 

not only consisted of the disutility from travel time but also the disutility 

associated with the early arrival or late arrival at the destination (Noland and 

Small, 1995; Small, 1982; Bates et al., 2001; Noland and Polak, 2002). The 

concept was formulated by Small (1982) based on earlier works of Vickrey 

(1969). With an assumption that the passengers have a PAT (preferred arrival 

time) associated with each purpose of the journey and departure time D the 

formulation of schedule based reliability approach essentially consists of 

choosing a departure time which maximises the utility: 

𝑀𝑎𝑥 𝑈 (𝐷, 𝑃𝐴𝑇) 

 The above maximisation function is expanded to take the form given in Small 

(1982) 

𝑈(𝐷) = ἂ𝑇. 𝑇 + 𝜂𝑆𝐷𝐸 + 𝛾𝑆𝐷𝐿 + 𝜕𝐷𝑙                                                                        (2.26) 

Where T. T –travel time  

SDE- schedule delay associated with early arrival at the destination 

Max(0, PAT − [D + T. T(D)]) 

 SDL - scheduled delay associated with late arrival Max(0, [𝐷 + T. T(𝐷)] − PAT) 

 Dl - Dummy variable equal to 1 if SDL>0, 0 otherwise 
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ἂ, η, γ, ∂ - Model parameters which is negative and depends on family status, 

occupation, choice of transport mode and employers policy towards work hour 

flexibility in case of journey to work models.  

Equation 2.26 equates the additional costs incurred at destination plus the 

value of additional travel time due to a change in 𝐷 to the value of utility gained 

both directly and indirectly through the additional time period associated with 

changing departure time (Small, 1982).  

Fig (2.7) shows the shape of ‘schedule disutility’(disutility computed without 

considering the disutility associated with travel time variation) as given in 

Small (1982) for work trip with varying flexibility in arrival times at the work 

(destination).  

 

 

Fig 2.7 : Source : Small (1982) Disutility of schedule delay 

In order to represent the stochastic nature of travel times, Noland and Small 

(1995) assume that the travel time has two components namely free flow travel 

time and extra travel time due to recurrent congestion and non-recurrent 

congestion. 

𝑇. 𝑇 = 𝑇𝑓 + 𝑇𝑟𝑐 + 𝑇𝑛𝑟𝑐                                                                                                   (2.27) 

Where Tf – free flow travel time, 

Trc - travel time recurrent congestion  

Tnrc- travel time due to non -recurrent congestion 

Noland and Small (1995) also integrate non-recurrent congestion with the cost 

function specified by Small (1982), by assuming non-recurrent congestion to 

follow distributions, namely,  uniform distribution and exponential 

distribution. Since Tnrc in the above formulation is stochastic in nature the cost 

function also takes a stochastic form as follows: 

𝐸[𝑈(𝐷)] = 𝐸[𝑇. 𝑇] + 𝜂𝐸[𝑆𝐷𝐸] + 𝛾𝐸[𝑆𝐷𝐿] + 𝜕𝐸[𝑃𝑙𝑎𝑡𝑒]                                      (2.28)        
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Where 𝑃𝑙  describes the probability of arriving late. 

𝐸[𝑈(𝐷)]∗ =  ἂ(𝑇𝑓 + 𝑇𝑟𝑐 + 𝐵) + 𝜕𝑃𝑙𝑎𝑡𝑒
∗ + 𝐵 {𝜂 ln [

𝜕+𝐵(𝜂+𝛾)

𝐵(𝜂−ἂ∆)
] −

𝜕(𝜂−ἂ∆)

𝜕+𝐵(𝜂+𝛾)
−  ἂ∆}         

                                                                                                             (2.29)        

B–mean travel time due to non-recurrent congestion 

∆ – the change in profile of recurrent congestion 

Plate
∗the optimal probability of arriving late 

Due to the stochastic nature of the above equation determining optimal 

departure time for passengers having a specified PAT, would require a trade-off 

between the E[SDE] and E[SDL] values. Some of the simplifying assumptions 

made in Noland and Small (1995) in order to arrive at optimal departure time 

is that the distribution of non-recurrent congestion (Tnrc) is fixed with 

departure time and that the rate of change of the profile of recurrent delays is 

less than unity to ensure that the FIFO rule is observed.  

A similar analysis involving the stochastic nature of travel times but including 

only the recurrent congestion within its formulation, Fosgerau and Karlström 

(2010) follow the standard Small (1982) approach to formulate the expected 

utility function assuming that the  travel time associated with the journey and 

the preferred arrival time are both normalised to zero.  The maximum expected 

utility is given as in eq 2.30 

−𝐸[𝑈]∗ = ἂ𝜇 + (𝜂 + 𝛾)𝜎 ∫ 𝛟−1(𝑠)𝑑𝑠
1

𝛾
𝜂+𝛾

                                                          (2.30) 

The optimal departure time associated with the above utility function is 

derived as given in  

𝐷∗ = −𝜇 − 𝜎𝛟−1 (
𝛾

𝜂 + 𝛾
)                                                                                    (2.31) 

Where 𝜇– mean travel time excluding non-recurrent congestion, 𝐷∗- is the 

optimal departure time, 𝛟−1 (
𝛾

𝜂+𝛾
)- inverse of the CDF which is the function of 

scheduled delay early and scheduled delay late parameters and ἂ, 𝜂 and 𝛾 are 

parameters. 

2.4.2 Mean – variance approach:  

The alternative approach to the schedule based approach namely ‘mean-

variance’ approach is based on the proposition that variability in travel time of 

and by itself results in disutility (Noland and Polak, 2002). The mean-variance 

approach ignores the effect of scheduling decisions, such as the selection of a 
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‘safety margin’ (Noland and Polak, 2002). The linear incorporation of variance 

in the utility function while using mean variance approach can be achieved by 

making simplifying assumption such as no lateness penalty and the change in 

recurrent congestion profile is zero to the scheduling approach given in eq 2.17 

(Noland and Polak, 2002). Noland and Polak (2002) also indicate that though 

such simplifying assumptions may seem unrealistic; under certain trip 

conditions (where the transit services are not influenced by recurrent 

congestion, ∆ = 0) or trips where arriving late doesnot result in a penalty 

(∂ = 0) may justify a linear incorporation for variability leading to eq(2.32).  

𝐸[𝐶]∗ =  ἂ𝐸[Ṱ] + 𝑏1𝜂 ln (1 +
𝛾

𝜂
)                                                                         (2.32) 

Where Ṱ- travel time without non-recurrent congestion; ἂ, 𝑏1, 𝜂, 𝛾 parameter 

values. 

Empirical studies such as that by Jackson and Jucker (1982) reiterates the 

importance of inclusion of variability in cost function and specify a model 

where the passenger seeks to trade-off between travel time and travel time 

variance explicitly eq(2.33).  

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝐸[𝑇. 𝑇] + 𝛽𝑝𝑣𝑎𝑟[𝑇. 𝑇]                                                                                (2.33) 

Where βp is a non-negative parameter which represents the degree to which 

the variance of travel time is undesirable to traveller on path p. 

The empirical study by Jackson and Jucker (1982) involved paired comparison 

wherein the participants are given the options between the expected travel 

time with no delays versus a shorter travel time with once a week delay 

ranging from 5 to 20 min.  

The mean-variance model was furthered into the mean-lateness model to 

account for the penalty associated with arriving late. A LAPUE (Lateness Arrival 

Penalty User Equilibrium) model was proposed by Watling (1996) which 

followed the schedule delay approach proposed by Vickrey (1969) such that an 

individual considering to travel between an OD pair is associated with an 

acceptable total travel time beyond which he/she incur a penalty. The LAPUE 

model had a cost function as follows: 

𝑢𝑟 = 𝜃0𝑣𝑜𝑐𝑟 + 𝜃1𝑡𝑟 + 𝜃2max (0, 𝑡𝑟 − 𝓣𝑟 )                                                       (2.34)      
 
Where 𝓣r - is the acceptable total travel time for route r 

tr -  Total travel time experienced for route r 

𝑣𝑜𝑐r-  Composite of attributes independent of time (such as distance) 

θ0 – Value of attributes 
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θ1- Value of travel time 

θ2 – Value of being one unit latter than acceptable. 

Furth and Muller (2006) indirectly derive the importance of waiting time as a 

measure of reliability and as a measure of quality experienced by passengers 

and splits the waiting time of passengers into different components. They argue 

that the perceptions of passengers are based on the extreme values of waiting 

time and that variation in service reliability has a greater impact on the 

extreme values (90th or 95th percentiles) of waiting time than the expected 

value of waiting time. The 95th percentile is indicated as ‘budgeted waiting time’ 

wherein a passenger is aware that he/she shall have to face a maximum of 95th 

percentile waiting time and hence they often incorporate this waiting time by 

starting early from home and thereby reaching their destination earlier. This 

excess waiting time is called the ‘potential waiting time’. The use of ‘budgeted 

and potential’ waiting time in cost formulations could also be tried in future 

analysis. 

Integration of reliability studies in transit assignment has been achieved in 

recent years. Frequency based transit assignment studies have studied 

reliability in transit network through varying approaches (Yin et al., 2004; Yang 

and Lam, 2006; Szeto et al., 2013; Szeto et al., 2011; Zhang et al., 2009; Zhang et 

al., 2010) adopted to deal with congestion. Of particular distinction is the use of 

BPR styled congestion function in computing the cost of a route section by 

Szeto et al., 2011. Other studies (Yin et al., 2004; Yang and Lam, 2006; Szeto et 

al., 2013; Zhang et al., 2009; Zhang et al., 2010) utilise the overload delay to 

account for congestion.  

2.5 Stochastic process models (SPMs): 

Stochastic process models excepting for the study by Teklu (2008a) has not 

been dealt with in transit assignment. However its application in traffic 

assignment studies has been immense. SPMs differ from the conventional 

equilibrium models (detailed in above sections)as it studies the evolution of the 

system on a sequence of time frame. The most common context under which 

SPMs are studied is day-to-day dynamics (Davis and Nihan, 1993; Cascetta, 

1989; Cantarella and Cascetta, 1995). Some within-day stochastic process 

models have also been developed (Cascetta and Cantarella, 1991; Balijepalli et 

al., 2007). The advantage of using stochastic process models lies in its ability to 

be used to solve an asymmetric assignment problem for which solution 

uniqueness is not guaranteed. The study by Cascetta and Cantarella (1991) 

establish that unlike equilibrium models SPMs do not rely on the system 
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converging quickly to an equilibrium solution or the solution being unique and 

stable. SPMs also allows the model to capture the heterogeneity of traveller’s 

behaviour in terms of their route choice, learning and perception differences 

along with the possibility of assessing the day-to-day and within-day variations 

in demand and supply. The use of Markov (memory less) property wherein the 

route choice at a given time period is based on the costs experienced in the 

previous time period has evolved since 1977 as quoted in Cascetta (1989). This 

memory less property is exploited in design of various learning process models 

which is based on the behavioural assumption that passengers tend to have a 

finite memory.     

 Cascetta (1989) showed that the mean route flows and link flows in case of 

SPMs are similar to the SUE flows for constant or separable linear link-cost 

function. Cascetta (1989) indicate that in systems where multiple equilibrium 

exists the SPMs and SUE values are significantly diverse. Watling (1996) 

emphasise that the use of SPMs for asymmetric problem requires that the 

system be tested for a range of initial conditions, random seed numbers and at 

least one extremely long simulation should be performed.  The exhibition of 

markov property through the presence of stationary distribution and ergodicity 

of SPMs  has been shown in Cascetta (1989). The conditions specified in 

Cascetta (1989) ensured that the SPM was m-dependent Markov chain with a 

time-homogeneous transition probability matrix. The necessary requirement 

for stationary and ergodic SPM is irreducibility and aperiodicity of the Markov 

chain. This is achieved when the route choice probabilities on each day are: 

1. Time homogeneous i.e. the probabilities of transition from one state to 

another remained invariant given the set of previous states. 

2. Positive on all the available routes 

3. Depend on a finite memory length of the previous states. 

Watling and Cantarella (2012) and Watling and Cantarella (2013) gives a 

detailed description of the various components involved in a SPM and their 

interactions through a series of illustrative examples.  An implementation of 

their formulations for the current study is specified in Chapter 3.  

An important feature of the SPMs is the ability of passengers to assimilate their 

experience and base their route choice on these experiences. The assimilation 

of experience is done over a fixed finite memory length. A learning process 

model is introduced to model the assimilation of experiences of the passengers. 

Different learning process models are available in literature and as quoted in 

Teklu (2008a) can be classified as  

1. Weighted average approaches 
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2. Adaptive expectation approach 

3. Bayesian approach 

Weighted average approach used in traffic network assumes that the drivers 

tend to remember experiences over finite number of days and assign more 

weightage to their most recent experience. Thus at beginning of day Ω the 

drivers update the route cost for each route based on a linear combination of 

the weighed experienced costs. The weights are determined by an appropriate 

weighing system. Since the assumption is that the drivers remember the recent 

experiences the most they are assigned a higher weightage thus the weighted 

average approach can be expressed as: 

ČΩ = ω1G
Ω−1 + ω2G

Ω−2 + ⋯………… .+ωℶG
Ω−ℶ                                          (2.35) 

Where CΩ is the mean perceived cost, GΩ−1 is the cost experienced on day Ω − 1, 

ω = {ω𝑟} vector of weights  such that ∑ ω𝑟
ℶ
r=1 = 1 and ℶ is the driver’s memory 

length. This approach has been widely used (eg: Cascetta, 1989; Horowitz, 

1984;  Teklu, 2008a and 2008b).  

Adaptive expectation approach was introduced due to wide criticism of 

weighted average approach for its inability to account for the ‘regret’ in the 

passengers’ past decisions which could be an important parameter in the route 

choice decision (Iida et al., 1992). The adaptive expectation approach combines 

the perceived and actual costs from previous time period. The model in its 

simplest form is expressed as : 

ČΩ =  ωGΩ−1 + (1 − ω)ČΩ−1                                                                                  (2.36) 

Where 0 ≤ ω ≤ 1and has been used in studies by Cascetta and Cantarella 

(1991), Iida et al. (1992). 

The third approach namely the Bayesian approach was proposed by Jha et al. 

(1998) wherein the travellers cost perception were updated based on the 

previous experiences and information obtained from ATIS. The travellers chose 

the routes based on the probability distribution of the perceived travel time. 

This model assumes that the mean travel time doesn’t change significantly 

during the simulation period and hence cannot model disruptions.  Chen and 

Mahmassani (2004) apply a similar approach wherein the perception updating 

is done only when a certain amount of defined period is elapsed or after an 

experience very different from prior experiences has occurred. 

In order to account for the varying perceptions of reliability amongst the 

travellers, stochastic cost/utility functions are introduced. A real life simulation 

was carried out on participants residing beside a four lane urban corridor for 

24 days by Chang and Mahmassani (1988) in order to determine the day to day 
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departure time decisions of passengers. The results found were consistent with 

the fact that the most recent experience of passengers in terms of travel time 

and scheduled delay has a greater influence on the current perception of travel 

time than past experiences of these attributes which diminish over time due to 

factors such as memory loss and natural discounting. Iida et al. (1992); 

Mahmassani (1990) found that travellers with lesser information tend to 

choose suboptimal routes whereas travellers with more information 

(accumulation of information over all experiences) results in smaller variation. 

2.6 Summary  

The chapter dealt with a brief description of various models existing in transit 

assignment and how these models were formulated to capture the real world 

transit network details. The literature review on reliability based models from 

passengers perspective is also presented along with description of benefits and 

uses of stochastic process models.  The chapter was able to emphasise that a 

challenge still remains in dealing with reliability issues arising due to the 

failure to board conditions faced by transit service users in the congested 

environment. The chapter also emphasised that an equilibrium based approach 

in congested transit networks doesn’t  guarantee a unique solution. The 

following chapter aims to utilise the benefits of stochastic process models in 

assessing the route choice of passengers in a strict capacity constrained 

congested transit environment.      
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Chapter 3 

Disaggregate Stochastic Process Model formulation and 

implementation on risk neutral passengers 

The chapter shall introduce the concepts which shall form the background on 

which the reliability analysis will be carried out. The chapter begins with an 

introduction to the concepts involved in stochastic process modelling and shall 

further progress into the experimental setup for the current research. The 

chapter shall then test the experimental setup on an example network and the 

results obtained shall then be discussed. 

3.1 Introduction to stochastic process models 

A stochastic process model is adopted in networks which are under constant 

change over successive time periods due to several factors such as varying 

demand/supply, fluctuations in costs and of user’s choices (Cascetta, 1989). 

Since transit network involves supply and demand aspects which are stochastic 

in nature not only within the day but on day to day basis; application of 

stochastic process model to simulate the same seems a natural way forward. A 

stochastic process in probability theory is defined as the evolution of system 

over time (considered discrete in the current model) wherein the system is a 

collection of random variables. Stochastic process models help define the high 

dimensional space from which the probability distributions which depict the 

simulated system can be sampled. Since transit assignment process involves 

interaction of many attributes (passenger arrivals and transit service arrivals) 

there is a high dimensional interaction of more than one probability 

distribution.  

The Markov property is defined as the memory-less property which shows that 

the conditional probability distribution of the future states of the system 

depends on only the present state (or a finite number of pervious states) 

(Watling and Cantarella, 2013).  

In simpler words a markov based stochastic process model can be defined as a 

system wherein stochastic process models are used to model evolutionary 

interaction between several random variables; the results of which can be 

sampled to obtain a series of correlated random variables which obey the 

‘memory less’ markovian property.   
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Frequency based transit assignment represent interaction of several stochastic 

variables wherein the transit headway and passenger arrival are assumed to 

have a predefined distribution and are often characterised by the mean value of 

the assumed distribution in transit assignment studies (chapter 2). These 

studies do not consider the evolution of the predefined distributions in day to 

day time frame and limit themselves to the within day interaction of transit 

supply and demand as highlighted in Chapter 2 excepting for the study done by 

Teklu (2008a and 2008b).  The current study takes advantage of the inherent 

stochastic nature of transit network to model a day-to-day stochastic process 

framework which exhibits the memory-less markov property.  The chapter 

shall describe the concept behind aggregate and disaggregate learning process 

for example networks followed by an implementation of the proposed 

disaggregate stochastic process assuming risk neutral passengers.  

3.1.1 Overview of aggregate stochastic process model in 

uncongested network 

Watling and Cantarella (2013) and Watling and Cantarella (2012) define that 

the representation of time in a stochastic process can be discrete ‘epochs’ 

which could be individual days, weeks or years. These discrete time epochs are 

denoted by letter Ω and the state vector describing the epoch Ω is given as Ӽ(Ω) .  

In the current model the time epoch is individual day and henceforth shall be 

referred to as the same.  The state vector Ӽ(Ω) describes the state of the system 

at day (Ω) and the state Ӽ(Ω) for a particular day Ω is the resultant of 

combination of various attributes which define the system. The attributes 

which define the system in an aggregate model consists of; the parameters (λ) 

assumed for the distribution of supply and demand and the logit dispersion 

parameter () assumed. 

Hence Ӽ(Ω) essentially consists of all information required for design for the 

markov process. In the aggregate stochastic process model Ӽ(Ω) is a vector 

which consists of the predicted total travel time over the specified memory 

period of ℶ days for each individual route/strategy. In event of risk averse 

passengers they consist of the predicted mean-variance or mean-lateness cost.  

The day to day evolution of the supply and demand probability densities results 

in a correlated joint probability distribution  

qΩ(Ӽ) ∶  Ӽ ∈ Ẑ  of the travel cost and flows for each route/strategy where Ẑ 

defines all possible combinations (states) that Ӽ can possibly take . The system 

evolves based on the notion that the passengers ‘learn’ from a sequence of past 

days wherein the sequence is over a finite history (denoted as memory length 

ℶ) thereby satisfying the Markov property. This evolutionary rule wherein the 
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state of the system is defined by a finite history of states for a specific set of 

attributes is termed ‘transition function’ and is denoted as  

∅(Ӽ, Y;  λ) ∶  Ӽ, Y ∈ Ẑ 

Where Y defines the state vector on  Ω − 1 if  ℶ = 1 and λ defines the 

parameters. 

The above highlighted concepts of markov property shall now be explained by 

means of a simple example. The example consists of a single OD pair having two 

transit lines and the choice of moving from one stop to the other is only using 

either one of the lines in an uncongested network. Fig 3.1 describes a simplistic 

network.  

 

Fig 3.1 Simplistic Network 

 The average total travel time experienced along each of the route is the 

average of the sum of the waiting time as well as the in-vehicle travel time of 

passengers travelling along the routes. Assuming that the interarrival time 

(headway) of both the red and the green line is exponentially distributed the 

waiting time along each line for an uncongested network at stop 1 can be 

worked out as given in eq 3.1: 

E[WA] =
1

φA
=

1

6
= 6 min 

E[WB] =
1

φB
=

1

10
= 10 min 

Wherein φA 𝑎𝑛𝑑 φB are frequency of red and green line, E[WA] and E[WB] are 

the expected waiting times of strategy A and B . 

As explained in chapter 2 the probability density function for the waiting time 

of randomly arriving passengers for exponential inter arriving transit services 

along the routes A and B is given as  

fA(w) =  φAe−φAw                                                                                                            (3.1) 
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fB(w) =  φBe−φBw                                                                                                            (3.2) 

 The average total travel time /cost on routes A and B is given as 

E[𝒢A] =  6 + 6 = 12 

E[𝒢B] =  10 + 3 = 13 

A logit choice formulation for the route selection on any particular day Ω based 

on the above costs is given as below  

P(A) =  
e−𝒢A

e−𝒢A + e−𝒢B
 

And  

P(B) =  
e−𝒢B

e−𝒢A + e−𝒢B
 

For a  = 4 the probability of choosing A would be  

P(A) = 0.9820 

Assuming no random draw for the current example, on day 1 all the passengers 

choose to travel along route A. Drawing the waiting time for the 10 passengers 

travelling from the probability density function of the waiting time given in eq 

3.1 the average waiting time for day 1 along route A is computed2. 

Table 3.1 Waiting time realisations on Day 1 for route A 

S.No Waiting time 
Total Travel time/cost 

experienced 

1 3.9 9.9 

2 4 10 

3 18.5 24.5 

4 6.3 12.3 

5 5.7 11.7 

6 2.2 8.2 

7 4.4 10.4 

8 1.3 7.3 

9 0.06 6.06 

10 7.6 13.6 

Average 5.4 11.4 

                                            

2 For explanation purposes the waiting time is drawn from the waiting time distribution given 
in eq 3.1. In disaggregate stochastic process model the waiting time is computed from 
interaction of transit supply and demand distribution. 
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Table 3.1 indicates that on day one the average experienced cost along route A 

is 11.4. Based on the cost experienced on day 1 the probability of passengers 

choosing route A between routes A and B is computed as 

P(A) = 0.9983 

Since all the passengers choose route A on day 2 the waiting time for each 

passenger is as shown in table 3.2. 

Table 3.2 Waiting time realisations on Day 2 for route A 

S.No Waiting time Total Travel time/cost experienced 

1 12.7 18.7 

2 23.4 29.4 

3 5.8 11.8 

4 1.3 7.3 

5 1.7 7.7 

6 7.4 13.4 

7 7.6 13.6 

8 0.53 6.53 

9 0.53 6.53 

10 23.2 29.2 

Average 8.4 14.4 

Similarly the choice probability of route A on day 3 is computed as  

P(A) = 0.0037 

Hence on day 3 none of the 10 passengers choose to travel along route A and all 

of the passengers travel on route B. The experienced waiting time along route B 

is as shown in Table 3.3. 

Using the average cost experienced along route B the probability of choosing 

route A on day 4 is computed as 

P(A) = 0.0000 

Hence on Day 4 as well all the passengers travel on route B and the experienced 

waiting time is given as in Table 3.4. 
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Table 3.3 Waiting time realisations on Day 3 for route B 

S.No Waiting time Total Travel time/cost experienced 

1 0.59 3.6 

2 13.2 16.2 

3 2.0 5.0 

4 0.4 3.4 

5 16.3 19.3 

6 4 7 

7 13.9 16.9 

8 3.8 6.8 

9 6.5 9.5 

10 2.3 5.3 

Average 6.3 9.3 

Table 3.4 Waiting time realisations on Day 4 on route B 

S.No Waiting time 
Total Travel time/cost 

experienced 

1 2.9 5.9 

2 5.8 8.8 

3 0.8 3.8 

4 22.9 25.9 

5 5 8 

6 20.1 23.1 

7 0.6 3.6 

8 3.22 6.22 

9 23.0 26.0 

10 8.2 11.2 

Average 9.2 12.2 

 

The experienced cost at end of day 4 is 12.2; based on which the probability of 

choosing route A on day 5 is given as  

P(A) = 0.690 

Hence on day 5, 7 of the passengers shall choose route A and remaining shall 

choose route B.  
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From the above example it becomes clear that in an uncongested network the 

transition state of the flows on a route/strategy depends on  

1. The waiting time experienced by the flows. This waiting time is in-turn 

dependent on the assumed headway distribution and the passenger 

arrival distribution.  

2. The dispersion parameter () value assumed for the choice of route 

which determines the level of ‘belief’ a passenger possess on the average 

travel costs computed. Hence a high  would imply a passenger’s total 

belief in the average travel cost. This would result in almost all the 

passengers routing themselves in a similar manner. On the other hand a 

lower  value implies that the passengers perceive the average travel 

cost to be not very true to the actual value and hence route themselves 

more equally on the various available options. 

Unlike the deterministic/stochastic equilibrium approach wherein a single 

unique solution defines equilibrium state; stochastic process model result is 

correlated joint probability distribution of the flows and costs on each 

route/strategy. A stochastic process model is said to be stationary if there is at 

least one stationary distribution. It is said to ergodic if the stationary 

distribution exhibited is the only one stationary distribution and it is regular if 

the stationary distribution converges to the same irrespective of its initial 

conditions.    

3.1.2 Disaggregate stochastic process model 

The above formulation saw the evolution of system based on average costs 

experienced by all the passengers at end of each ‘day’. However in disaggregate 

stochastic process model the evolution of the system is based on each 

individual passenger’s travel experience. 

Consider a network such that the OD demand is randomly varying from day-to-

day, but that there is a fixed number of potential travellers dZ for each OD 

movement where Z = {1,2,….,N}; N being the total number of ODs in the 

network. The simulation framework uses as input a rate for passenger arrivals 

from which the OD demand for each OD pair on any one day is generated. Let nZ 

be the number of routes within the OD pair Z.  

Based on the specified passenger generation rates for each OD pair the number 

of passengers generated on each day varies. On each day, there are two 

important ‘decision’ elements for each passenger in an OD pair: whether they 

travel at all, and if they do travel which route they choose. Since the number of 
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passengers generated between each OD pair for travel on each day is random 

the difference between dZ and the generated number of passengers are 

assumed to have not travelled.  

The indicator variable δi𝑧
𝑧 takes the value 1 if individual i𝑧of OD pair Z travels 

on a given day, and takes the value 0 otherwise. For those that travel, fi𝑧
𝑍 

denotes the route selected by individual i𝑧 where fi𝑧
𝑍 ∈ {1𝑧 , 2𝑧 , … . . n𝑧}, nZ being 

the total number of routes between the OD pair denoted by Z. Collecting these 

two pieces of information together across all individuals between each OD pair 

Z, we have the pair of nZ-vectors (δ𝑧 , f 𝑧). For the network with N OD pairs (δ, f) 

shall be a large vector having a collection of vectors across all OD pairs within 

the network, that is (δ, f) = ( δ1, δ2, … . δ𝑁 , f1, f2, … f𝑁). 

Once the distributions and parameters are specified for the supply and (δ, f) of 

the demand model is drawn randomly for all N OD pairs, then an interaction 

with the ‘supply model’ results in the corresponding OD travel times that each 

individual will experience on their chosen alternative. In transit network since 

transit supply is characterised by capacity constraints and since passengers 

from different OD pairs may find the same route attractive, a non-separable 

problem arises. This results in passengers of an OD pair influencing the 

experienced travel times tf𝑧(𝑖
𝑧)𝑧 of another OD pair. Consider passenger 𝑖1 of 

OD pair 1 choosing a route f𝑖1
1 ∈ {11, 21, … 𝑛1} such that f𝑖1

1 comprises of route 

section ƙ. Let us assume that route section ƙ forms route f𝑖2
2 in OD pair 2 

chosen by passenger 𝑖2 of OD pair 2 to travel on the same day as passenger 𝑖1 of 

OD pair 1. Since both the OD pair passengers find route section ƙ attractive they 

compete for the space within the transit services of route section ƙ thereby 

influencing each other’s experienced total travel time3. The step wise 

procedures involved in the current markovian framework for risk neutral 

passengers are specified in section 3.3. 

The output of the supply and demand model interaction is a random variable of 

experienced travel time, and is used to determine the routes choice f𝑖𝑧
𝑧 of each 

individual on subsequent day for each OD pair Z. The relationship between the 

output random variables (representing individuals’ OD total travel times) and 

(𝑧 , f 𝑧) is rather complex; hence the objective will be to make a Monte Carlo 

draw of the supply and demand distribution and allow for their interaction. It is 

                                            

3 The experienced travel time tf𝑧(𝑖
𝑧)𝑧 should be written as a function of (δ, f) however in the 

current formulation tf𝑧(𝑖
𝑧)𝑧 has not been mentioned as a function in order to avoid 

complex mathematical formulation which would make the current mathematical process 
difficult to understand. 
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more informative to understand the interaction by a ‘procedural’ definition (i.e. 

how to simulate from the supply, demand distribution) rather than through a 

definition in terms of compositions of probability distributions. Section 3.3 

highlights the demand side distributions and parameters assumed in the 

current model and shows the process for determining (𝑧 , f 𝑧) of the current 

model. Section 3.2 highlights various components involved in the current 

simulation process. 

Since each individual i𝑧 has an experienced travel time tf𝑧(𝑖
𝑧)𝑧 for a chosen 

route f𝑖𝑧
𝑧 and the uncongested travel time for non-chosen routes 

t̅𝑛𝑧(𝑖𝑧)𝑧∀ 𝑛𝑧 ≠ f𝑖𝑧
𝑧, these together could be represented by a random 

variable T(𝑖𝑧)𝑧 = (𝑡1𝑧(𝑖𝑧)𝑧, 𝑡2̅𝑧(𝑖𝑧)𝑧, … . 𝑡𝑛̅𝑧(𝑖𝑧)𝑧) where T(𝑖𝑧)𝑧 is a vector 

containing all the travel times associated with passenger i𝑧 on all routes 

between OD pair Z and T𝑘𝑧(𝑖𝑧)𝑧 forms the updated travel time for passenger 𝑖𝑧 

on route 𝑘𝑧 ∈ 𝑛𝑧 for the OD pair Z. A collection of these random variables is 

given together in a random vector T𝑧 = (T(1𝑧)𝑧, T(2𝑧)𝑧, . . . , T(𝑑𝑍)𝑧). This 

random vector is used to determine the average predicted total travel time for 

each route at the end of a day. The vector of average experienced travel times 

on all routes between the OD pair Z (𝑡𝑍) will be continuous, and correlated. The 

joint pdf of 𝑡𝑧 depends on (𝑧 , f 𝑧), on the form of the distributions assumed for 

passenger/transit headways, and on the parameters assumed for these 

distributions. Suppose that the parameters are collected together in a vector 𝑧, 

then it is possible to reflect this dependence by saying that the joint pdf of t𝑧, 

where t𝑧 denotes the vector consisting of average experienced total travel time, 

obtained by averaging the experienced total travel of all passengers on a route 

at end of each day, over all routes between the OD pair Z,  is given by: 

(𝑡𝑧;  𝑧 , f 𝑧 , 𝑧)   (t𝑧  0) 

where 𝑧 and 𝑧  are ‘parameters’ specific to OD pair Z.  

An important aspect of the disaggregate model is that (in the absence of 

communicating with others or receiving information) when travellers learn, 

they learn only of the travel time for the route4 they actually followed, whereas 

for the unchosen routes they assume an uncongested total travel time on the 

same. The assumption of uncongested total travel time for updating of non-

                                            

4 This assumption might be questionable as when a passenger has an experience of a route 
“choose first of line A or B” then they learn the waiting+in-vehicle time associated with 
such a route, but learn nothing about the waiting+in-vehicle time associated with the 
route “choose line A” or “choose line B”. But it is not easy to represent this kind of cross-
route information transfer under no-information scenario, so on that basis it seems 
reasonable to assume that travellers only learn a route by actually following it themselves.  
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travelled route costs is based on the surmise that in the absence of external 

‘information’ the passengers believe they will be able to board the first service 

of his/her choice set and hence update their experience matrix for that route 

based on the uncongested cost. Mathematically it also suits the weighted 

average formulation adopted for the study. If instead an assumption of the 

passengers updating their experience matrix with only their experience is 

adopted it would result in a breach of the implementation of the weighted 

average method adopted in the current model. The fact that individuals learn 

individually means that we must separately record/update the predicted and 

experienced travel time for each route, for each individual. The route choice of 

individual iz is based on the cost predicted by individual iz for various routes 

between the OD pair before the start of the trip/journey. It is to be noted that in 

mean–variance cost formulation the variance associated with only the 

experienced travel time is accounted for. Hence if a route is travelled only once 

within its memory length the variance associated with the route is assumed 

zero in spite of updating the experienced cost matrix with uncongested total 

travel time on the non–travelled days. In such situation the weighted average 

cost for the route will be computed based on the average of the uncongested 

travel cost and a single day’s experienced cost whereas the variance for the 

route as assumed by the passenger will be zero. 

Suppose that the predicted OD travel times/costs of individual iz for all routes 

in OD pair Z, prior to travelling on the given day, are contained in the 

vector 𝐠(𝐢𝒛) 𝒛 = (g1𝑧(i𝑧)𝑧, g2𝑧(i𝑧)𝑧, … . . gn𝑧(i𝑧)𝑧) for risk neutral or 𝐠̂(𝐢𝒛) 𝒛 =

(ĝ1𝑧(i𝑧)𝑧, ĝ2𝑧(i𝑧)𝑧, … . . ĝn𝑧(i𝑧)𝑧) for risk averse wherein gn𝑧(i𝑧)𝑧 is the predicted 

travel time for route n𝑧 by risk neutral passenger i𝑧 travelling between OD pair 

Z for the day and ĝn𝑧(i𝑧)𝑧 is the predicted travel cost for route n𝑧 by risk averse 

passenger i𝑧 travelling between OD pair Z for the day. Based on the notation 

already given, i𝑧
𝑧 denotes whether individual i𝑧 travels between the OD pair Z 

and fi𝑧
𝑧 the route chosen between OD pair Z if travelling. We denote by tf𝑧(𝑖

𝑧)𝑧 

the experienced travel time on route f 𝑖𝑧
𝑧 and the updated OD travel time for 

individual i𝑧 for that day is given as T(𝑖𝑧)𝑧 = (𝑡1𝑧(𝑖𝑧)𝑧, 𝑡2̅𝑧(𝑖𝑧)𝑧, … . 𝑡𝑛̅𝑧(𝑖𝑧)𝑧) . 

The memory length over which the individual i𝑧 bases the predicted cost of a 

route is given by ℶ and is assumed the same between for all N OD pairs in the 

network. The learning process model then weighs the experienced and updated 

random travel times by a weighed averaging process for various assumed 

behaviour of passengers as follows: 

g𝑛𝑧(i𝑧)𝑧 = ∑ ωjT𝑛𝑧(i𝑧)𝑧Ω−j

ℶ

j=1

   ∀ n𝑧    risk neutral                                                 (3.3) 
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It is to be noted that when a passenger 𝑖 travels more than once along the route 

kz within his/her memory length ℶ then equation 3.4a is applicable. In case the 

passenger travels the route only once or never within his/her memory length ℶ 

then equation 3.4b is applicable.   

ĝ𝑘𝑧(i𝑧)𝑧 = g𝑘𝑧(i𝑧)𝑧 + βvar

(

 
 
 
 

tk𝑧(i𝑧)𝑧Ω−1

.

.

.

tk𝑧(i𝑧)𝑧Ω−ℶ

)

 
 
 
 

∀ k𝑧 = f𝑖𝑧
𝑧, k𝑧 ∈ n𝑧(mean − variance)(3.4𝑎) 

Else 

ĝ𝑘𝑧(i𝑧)𝑧 = g𝑘𝑧(i𝑧)𝑧 ∀ k𝑧 ≠ f𝑖𝑧
𝑧  , k𝑧 ∈ n𝑧    (mean − variance)                       (3.4𝑏) 

 

ĝ𝑘𝑧(i𝑧)𝑧 = θ1g𝑘𝑧(i𝑧)𝑧 + θ2ck𝑧
i𝑧𝑧

 ∀ k𝑧 = f𝑖𝑧
𝑧 , k𝑧 ∈ n𝑧 (mean − lateness)   (3.5𝑎) 

Else 

ĝ𝑘𝑧(i𝑧)𝑧 = θ1g𝑘𝑧(i𝑧)𝑧 ∀ k𝑧 ≠ f𝑖𝑧
𝑧  , k𝑧 ∈ n𝑧   (mean − lateness)                      (3.5𝑏) 

Where the weights can take a geometric progression of the form: 

ωj =
ρj−1

∑ ρb−1ℶ
b=1

      ∀ j                                                                                                   (3.6) 

ck𝑧
i𝑧𝑧

= ∑ωj 

ℶ

j=1

max (0, tk𝑧(i𝑧)𝑧 − 𝒯k𝑧(z))Ω−j  ∀ k𝑧 = f𝑖𝑧
𝑧 , k𝑧 ∈ n𝑧                   (3.7)  

Ω- denotes the current simulation day 

ck𝑧
i𝑧𝑧

 -  weighed average lateness penalty associated with each individual i𝑧 

along route k𝑧 between OD pair Z. 

𝒯k𝑧(𝑧) -‘Acceptable total travel time’ for route k𝑧 between OD pair Z. 

β- non-negative parameter which represents the degree to which the variance 

is undesirable to passengers (Jackson and Jucker, 1982) (kept constant for all N 

OD pairs in the network). 

And θ1 indicates the value of total travel time and  θ2 reflects the value of being 

one time unit later than expected (Watling, 2006). In the current study the 

value of θ2/θ1 is assumed to be 5. 

The learning model takes g𝑛𝑧(i𝑧)𝑧, i𝑧
𝑧, fi𝑧

𝑧, ℶ and tf𝑧(i
𝑧) 𝑧 and produces an 

updated vector of OD predicted travel times/costs for the nZ routes between OD 

pair Z for each individual i𝑧, for k𝑧  =  1𝑧 , 2𝑧 , … , n𝑧 ; ĝ𝑘𝑧(i𝑧
𝑧 , fi𝑧

𝑧 , tf𝑧(i
𝑧)𝑧)𝑧 =

ĝ𝑘𝑧(i𝑧)𝑧 predicted travel cost of individual i𝑧for route k𝑧 between OD pair Z for 
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the day and 𝐠̂(i𝑧
𝑧, fi𝑧

𝑧, tf𝑧(i
𝑧)𝑧)𝒛 = 𝐠̂(𝑖𝑧)𝒛 is the vector of these updated 

predicted travel times across all routes for individual i𝑧 . 

Based on these predicted costs, each passenger independently and 

probabilistically chooses a route between each OD pair based on a random 

utility model.  

The probabilities p(𝐠̂(i𝑧)𝑧)  = (p1𝑧(ĝ1𝑧(i𝑧)𝑧), p2𝑧(ĝ2𝑧(i𝑧)𝑧), . . . , pn𝑧(ĝ𝑛𝑧(i𝑧))𝑧) 

for the nZ routes between OD pair Z , are thus a function of the predicted OD 

travel times 𝐠̂(i𝑧) 𝒛of individual iz.  A multinomial logit model, for example, 

would be a particular choice for these probability relationships, with: 

pk𝑧(ĝ𝑘𝑧(i𝑧)𝑧) =
exp−ĝ𝑘𝑧(𝑖𝑧)𝑧

∑ exp−ĝ𝑗(𝑖
𝑧)𝑧𝑛𝑍

𝑗=1

 (∀k𝑧  =  1𝑧 , 2𝑧 , … , n𝑍)                                    (3.8) 

where  > 0 is a parameter of dispersion. 

Assuming that the total number of OD pairs in the network is 1 i.e N = 1, then 

Z=1 and passengers i of OD pair 1 is i1 . The above described modelling 

framework implies that in order to represent the dynamics of this model for a 

single OD pair network we need a state variable x  𝒮 where:  

𝒮 =  ({0,1}{11, 21, … , 𝑛1}ℝ2) 𝑑
1
 

and where x is stacked by individual (with the ‘yesterday’ state denoted by a 

tilde): 

 x =

(

 
 
 
 
 
 
 
 

11
1

f11
1

tf1(1
1)1

𝐠̂(11)1

⋮
𝑑1

1

fd1
1

tf1(d
1)1

𝐠̂(𝑑1)1 )

 
 
 
 
 
 
 
 

             x̃ =

(

 
 
 
 
 
 
 
 
 

̃11
1

f̃11
1

t̃f1(1
1)1

𝐠̃̂(11)1

⋮

̃𝑑1
1

f̃𝑑1
1

t̃f1(𝑑
1)1

𝐠̃̂(𝑑1)1 )

 
 
 
 
 
 
 
 
 

   

If there are two routes between an OD pair (𝑛𝑍 = 2) and the memory length is 

assumed to be ℶ=1 then based on the above stated assumptions, the transition 

function follows the joint probability/probability-density function given by: 



- 59 - 

 

(x, x̃) = 

(

 
 
 
 
 
 
 
 
 

(

 
 
 
 
 
 
 
 

11
1

f11
1

tf1(1
1)1

𝐠̂(11)1

⋮
d1

1

fd1
1

𝑡f1(𝑑
1)1

𝐠̂(𝑑1)1 )

 
 
 
 
 
 
 
 

,

(

 
 
 
 
 
 
 
 
 

̃11
1

f̃11
1

t̃f1(1
1)1

𝐠̃̂(11)1

⋮

̃d1
1

f̃d1
1

t̃f1(𝑑
1)1

𝐠̃̂(𝑑1)1 )

 
 
 
 
 
 
 
 
 

)

 
 
 
 
 
 
 
 
 

 

= ∏ (∏ pk1(ĝ𝑘1(𝑖1)1)(k1,f
i1

1)(1 − pk1(ĝ𝑘1(𝑖1)1))
1−(k1,f

i1
1)

2

𝑘1=1

)

𝑖1∈{1,2,…𝑑1}

 

 ∏ ∏ (ĝ𝑘1(̃i1
1
, f̃i1

1
, t̃𝑘1(𝑖1)1)1)

2

𝑘1=1𝑖1∈{1,2,…𝑑1}

  (t1;  1, f1, 1)                                              (3.9) 

where the function (a, b) = 0 unless a = b.                                                        

∏ (pk1(ĝ𝑘1(𝑖1)1))
(k1,f

i1
1)

(1 − pk1(ĝ𝑘1(𝑖1)1))
1−(k1,f

i1
1)2

𝑘1=1  describes the 

probability of choosing route 1 or 2 (assuming only two routes are available 

between the OD pair Z which is equal to 1).  

 ∏ ∏ (ĝ𝑘1(̃i1
1
, f̃i1

1
, t̃𝑘1(𝑖1)1)1)2

𝑘1=1𝑖1∈{1,2,…𝑑1}  gives the conditional probability 

density function of the predicted total travel costs on each route based on the 

learning process adopted for the experienced travel time on the two routes 

between the single OD pair, Z=1. 

(t1;  1, f1, 1) gives the probability density function of experienced travel 

times based on the individual specific systematic component for the single OD 

pair network where Z=1. 

3.2 Model description 

As per the mathematical model discussed in section 3.1 the current section 

shall detail the distributions and parameters assumed in the current study. In 

order to fulfil the set of objectives the model uses Monte carlo simulation for 

generation of distributions and the interaction between the distributions is set 

such that the strict capacity constraint is respected. The stochastic nature of 

demand is captured by varying rate of passenger arrivals and similarly the 

stochastic nature of supply is captured by line headway variation in the day-to-

day micro simulation model.  The ‘service reliability’ of a transit line shall be 

achieved by controlling the amount of variance in the interarrival time of the 
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services reaching the transit stop. It shall be denoted by the shape factor m. The 

detailed description of the various input components of the base model are 

described in the following section. All sections of the model are coded in 

Matlab. 

3.2.1 Model Inputs  

This subsection describes the demand and supply specific inputs. The proposed 

model - Reliability based disaggregate stochastic process model- referred to 

from hereon as R-DSPM with strict capacity constraint is discussed in the 

following sections. 

3.2.1.1 Network Supply 

The network supply (i.e transit services, lines) are considered stochastic in 

nature as per the assumptions of frequency based assignment. The structure of 

the network consists of transit stops, and the arcs represent the line sections 

between the stops. A De Cea and Fernández (1993) based route section 

approach is adopted to model the enumeration of routes. In-vehicle travel 

times between transfer stops are assumed to be given.  The in-vehicle travel 

time given for each line section is kept constant in the current study.  

3.2.1.2 Transit Services 

A transit service is characterised by the fixed subset of stop that the passenger 

encounters in his/ her trip and for every transit line the alighting stop is 

predefined. Each vehicle is characterised by the vehicle capacity and passenger 

volume dependent dwell time.  The capacity of each transit vehicle is strict 

capacity beyond which the passengers are not allowed to board. As frequency 

based assignment approach is used each line is defined on line headways.  As 

an input to the model average arrival rate of transit vehicles along with the 

shape factor associated with erlang distribution are given.  

Each passenger in the network is characterised by the set of attractive lines 

which defines his/her transfer stop based on his/her chosen route. In case of 

risk averse passengers it is assumed that all the passengers in a simulation run 

are homogeneous in their choice of β , 𝒯(Z) values and hence have the same 

degree of aversion associated with the variance of total travel time for all OD 

pairs and the acceptable total travel time for each OD pair.  In the micro 

simulation model, for the specified headway rates the transit vehicles are 

generated. The arrival of the transit vehicles at the subsequent stops is derived 

by adding the average in-vehicle travel time to the departure time of the transit 

service. The departure times at subsequent stops are formulated by adding the 

dwell time to the in-vehicle travel time. The importance of dwell time at system, 
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route and point level has been emphasized indicating that excess dwell time 

forms one of the main reasons for non-adherence of schedule in transit services 

(Bertini and El-Geneidy, 2003). 

The dwell time is taken as a function of number of passengers boarding and 

alighting at a transit stop and varies between different types of vehicle 

operated in each line. The dwell time function for the current model is given as 

follows: 

DW(xalighting, xboarding   ) = Ɓ + ∆boardingBoarding + ∆alightingAlighting    (3.10) 

Where, Ɓ=7; ∆boarding= 5 sec and ∆alighting= 3 sec , Boarding – number of 

passengers boarding ; Alighting – number of passenger alighting from the bus 

(Ceder, 2007). 

The variance associated with the interarrival times of each line can be modelled 

using the shape factor m of Erlang distribution which tends to reflect highly 

unreliable service arrivals (exponential) with a value of 1 and highly reliable 

service arrivals (deterministic) with a shape factor tending to infinity. The 

pseudo code utilized for generation of transit arrivals is as follows: 

Step 1: Generate U1, U2, …… . Um as IID U(0,1) 

Step 2: Return Y =  
−h

m
 ln(∏ Ui

m
i=1 )  Law and Kelton (1991) 

Wherein h denotes the headway assumed for the transit service. The drawback 

of the above algorithm is pointed out that at large shape factors (m) the value of 

(∏ Ui
m
i=1 )  tends to zero which makes computation of logarithm difficult.  

The difference in reliability associated with arrival times can be seen from fig 

3.2 which shows the inter arrival distribution of transit services at a transit 

stop for a mean frequency of 10 services/hr. A line having a specified average 

headway of 6 minutes, when modelled with a line shape factor of m = 1 results 

in higher variability of interarrival times (Fig 3.2) and shall be classified as ‘less 

reliable’ than the same line when modelled with a shape factor of m = 300 

wherein the variability between the inter arrivals is reduced. In order to assess 

the varying behaviour of route choice between passengers who are highly risk 

averse to those who are risk neutral the model shall be run with passengers 

having varying β, 𝒯(Z)  values. 
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Fig 3.2 The probability distribution of erlang headway of 10 services per hour 
for varying shape factors 

3.2.1.3 Passenger demand  

Passenger demands across all OD pairs are simulated in the model through 

specified arrival rates. As described in section 3.1.2 each OD pair Z is assumed 

to have a population size of passengers dZ. In order to simulate passenger 

arrivals; a fixed rate of passengers is fed as input for each OD pair. The number 

of passengers generated using the assumed rate of passenger arrivals for each 

OD pair Z are considered to be the passengers travelling for the day between 

the OD pair Z. The difference between the number of generated passengers and 

the population size dZ are assumed to be not travelling for the day. The day to 

day passenger demand between OD pairs is assumed to be varying and there 

exists an indicator variable δi𝑧
𝑧 which takes the value 1 if individual i𝑧 travels 

on a given day, and takes the value 0 otherwise . 

The portion of travel time which involves the walk from origin to the transit 

stop and the walk from the transit stop to destination is excluded. Passengers 

arrival is modelled as poisson arrivals with exponential inter arrival times. 

Passenger behaviour is constrained to changing of lines only at the predefined 

alighting stops decided upon by the passenger before boarding a line.  

3.2.1.4 Learning process Model: 

The route choice of the passengers is based on the costs experienced by the 

passengers over the memory length fed as input to the model. As indicated in 

Horowitz (1984) the weighted average learning process model is used. The 
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disaggregate modelling of route choice using weighed average learning process 

assumes that a passenger assigns weight to his/her experience over the 

memory length to predict the travel time. Similar to model 3 of Horowitz 

(1984) the disaggregate learning process model is formulated as shown below: 

g𝑛𝑧(i𝑧)𝑧 = ∑ωjT𝑛𝑧(i𝑧)𝑧Ω−j

ℶ

j=1

   ∀ n𝑧    risk neutral                                              (3.11) 

ĝ𝑘𝑧(i𝑧)𝑧 = g𝑘𝑧(i𝑧)𝑧 + βvar

(

 
 
 
 

tk𝑧(i𝑧)𝑧Ω−1

.

.

.

tk𝑧(i𝑧)𝑧Ω−ℶ

)

 
 
 
 

 ∀ k𝑧 = f𝑖𝑧
𝑧 , k𝑧 ∈ n𝑧(mean − variance)              (3.12𝑎) 

Else 

ĝ𝑘𝑧(i𝑧)𝑧 = g𝑘𝑧(i𝑧)𝑧 ∀ k𝑧 ≠ f𝑖𝑧
𝑧 , k𝑧 ∈ n𝑧 (mean − variance)                         (3.12𝑏) 

 

ĝ𝑘𝑧(i𝑧)𝑧 = θ1g𝑘𝑧(i𝑧)𝑧 + θ2ck𝑧
i𝑧𝑧

 ∀ k𝑧 = f𝑖𝑧
𝑧 , k𝑧 ∈ n𝑧      (mean − lateness)         (3.13𝑎) 

Else 

ĝ𝑘𝑧(i𝑧)𝑧 = θ1g𝑘𝑧(i𝑧)𝑧∀ k𝑧 ≠ f𝑖𝑧
𝑧  , k𝑧 ∈ n𝑧 (mean − lateness)                      (3.13𝑏) 

Where the weights can take a geometric progression of the form: 

ωj =
ρj−1

∑ ρb−1ℶ
b=1

      ∀ j                                                                                                   (3.14) 

ck𝑧
i𝑧𝑧

= ∑ωj 

ℶ

j=1

max (0, tk𝑧(i𝑧)𝑧 − 𝒯k𝑧(z))Ω−j ∀ k𝑧 = f𝑖𝑧
𝑧 , k𝑧 ∈ n𝑧                  (3.15)  

Ω- denotes the current simulation day 

ck𝑧
i𝑧𝑧

 -  weighed average lateness penalty associated with each individual i𝑧 

along route k𝑧 between OD pair Z 

𝒯k𝑧(𝑧) -‘Acceptable total travel time’ for route k𝑧 between OD pair Z 

β- non-negative parameter which represents the degree to which the variance 

is undesirable to passengers (Jackson and Jucker, 1982). 

And θ1 indicates the value of total travel time and  θ2 reflects the value of being 

one time unit later than expected (Watling, 2006). In the current study the 

value of θ2/θ1 is assumed to be 5. 

In aggregate model (eg: Teklu, 2008b) transit assignment model it is assumed 

that the cost experienced by passengers travelling along various routes is 
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available to all the other passengers embarking on the journey the next day. It 

is assumed that passengers in spite of having travelled along different routes 

are fully aware (informed) of the costs associated with all the other routes 

enumerated for the OD pair. In disaggregate model this assumption is not 

applicable as the passengers route choice is solely based on his/her 

experienced costs on the routes in the network. The awareness of other 

passengers experience results in ‘information’ sharing model which is not dealt 

with in the current chapter.  

3.2.1.5 Route Choice formulation: 

The route choice is formulated as multinomial logit. The choice between the 

various routes is associated with the probability of a route having the total 

travel time/ cost lesser than the total travel time/ costs of other routes 

available for commuting between an OD pair. The logit choice model between 

routes is specified as shown below: 

pk𝑧(ĝ𝑘𝑧(𝑖𝑧)𝑧) =
exp−ĝ𝑘𝑧(𝑖𝑧)𝑧

∑ exp−ĝ𝑗(𝑖
𝑧)𝑧𝑛𝑍

𝑗=1

 (k𝑧  =  1𝑧 , 2𝑧 , … , n𝑧)                                   (3.16)  

Where  − is the dispersion parameter ; ĝ𝑘𝑧(𝑖𝑧)𝑧 -  is the cost of route kz 

between OD pair Z obtained from the learning process for individual iz ; nZ-  is 

the total number of routes between the OD pair Z. 

3.3. Methodological framework: 

The combination of the above mentioned model inputs results in the 

framework for R-DSPM. The interaction of various highlighted components 

within the R-DSPM framework is shown in Fig 3.3 (a) and 3.3 (b).  
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Fig 3.3 (a) : R-DSPM:-passenger generation module 
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Fig 3.3 (b) : R-DSPM for risk neutral passengers
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3.4 Example Network 1 

Consider the network shown in fig 3.4. 

 

Fig 3.4: Example Network 1 

Following De Cea and Fernández (1993) there are 12 different routes possible 

for travelling within the network. The routes for the network shown in the fig 

3.5 are enumerated in table 3.5.   

 

 

Fig 3.5 : Possible route sections in the network 
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Table 3.5: The enumerated ‘sensible’ routes5 

 

3.4.1 Uncongested network: 

The test network was simulated using the framework given in fig 3.3(b). Having 

enumerated the routes the headway distribution is assumed to be 

exponential m = 1 , the ℶ was kept as 5 days,  = 0.05 unless otherwise 

specified and the simulation was run for a period of 4 hours over 700 days, 

without dwell time. The population size (population sampled from) as 

mentioned in fig 3.4 is for 4 hours between each OD pair. The demand 

(population size) in Fig 3.4 is such that for OD 1 it is taken as 59 passengers for 

4 hours with an arrival rate of 10 passengers per hour, OD 2 is 67 passengers 

for 4 hours with an arrival rate of 11 passengers per hour and OD 3 is 110 

passengers for 4 hours with an arrival rate of 20 passengers per hour. It is to be 

noted that the terms ‘population size’ and ‘constant demand/demand’ shall be 

used interchangeably throughout the thesis and shall denote the population 

size the rate of passenger arrivals is being sampled from.  These assumptions 

                                            

5 Route C+D, A+F and A+D has not been enumerated as a possible route because it involves 
getting down from red line and boarding the same red line. In case of uncongested 
network this would not be sensible. With congested network if there are passengers 
queued for the transit service before the arrival of the same at stop 2 a FIFO rule would 
ensure that these passengers are boarded first on to the transit service. Those who got 
down from the transit service would be allowed to board only if there is any capacity left 
within the service. In a realistic network such a possibility of alighting and boarding the 
same transit service is rare and has not been considered in example network 1. Example 
network 2 however looks at a scenario wherein routes consisting of route sections having 
same lines make alighting and boarding the same service possible.    



- 69 - 

 

have been used to run the uncongested R-DSPM. However it is to be noted here 

that on days that the passenger do not travel they update their costs based on 

the uncongested costs. The uncongested costs for the days not travelled is 

derived from De Cea  and Fernandez L (1989) formulation. Table 3.6 shows the 

results obtained using the R-DSPM in uncongested condition and Table 3.7 

shows the results obtained using De Cea  and Fernandez L (1989). 

Table 3.6: Total Travel time obtained using a single realisation of micro 
simulation model for various routes over the simulation period of 700 
days with 𝑚 = 1, ℶ = 5 and  = 0.05 

OD Node 1 – Node 2 

(Z=1) 

Node 2 – Node 3 

(Z=3) 

Node 1 - Node 3 (Z=2) 

Route 1 2 3 10 11 12 4 5 6 7 8 9 

𝑬(𝗴𝒌) 12.58 15.1 10.7 16.1 15.1 12.6 24 29.1 27.5 25.1 26.7 31.2 

Std6 1.25 0.9 0.5 1.4 1.1 0.47 1.3 3 2.6 2.0 2.1 2.7 

Table 3.7: Total Travel time obtained using  De Cea  and Fernandez L (1989) 

OD Node 1 – Node 2 (Z=1) Node 2 – Node 3(Z=3) Node 1 - Node 3 (Z=2) 

Route 1 2 3 10 11 12 4 5 6 7 8 9 

𝑬(𝗴𝒌) 12.7 15 10.7 16 15 12.5 24 28.7 27.7 25.2 26.7 31 

 

Tables 3.6 indicate that R-DSPM provides total travel time similar to that 

computed using De Cea  and Fernandez L (1989) differing only by the fact that 

the current model uses a dynamic framework whereas De Cea  and Fernandez L 

(1989) utilises static framework.  

3.4.2 Congested Network: 

The congested scenario of the test network is very similar in its input data and 

formulation to the uncongested scenario explained in the section 3.3.1., with 

almost the same input parameters excepting for the arrival rate of passengers 

and the population size between various OD pairs which was modified as given 

in fig 3.4. The modified population size between each OD pair is given for 4 

hours such that the demand for Z=1 is 846 passengers for 4 hours with an 

arrival rate of 190 passengers per hour; Z=2 is 1304 passengers for 4 hours 

                                            

6 The standard deviation  is between the expectation of predicted costs obtained as a result of 
weighted average learning process 
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with an arrival rate of 300 passengers per hour and Z=3 is 1086 passengers for 

4 hours with an arrival rate of 250 passengers per hour. Differing from the 

uncongested model is the introduction of dwell time function as given in 

section 3.2.1.2. and the introduction of strict capacity constraint in each transit 

service (assuming a capacity of 20 passengers/transit service). The strict 

capacity constraint ensures that each transit service at disaggregate level takes 

in a maximum of 20 passengers beyond which the passenger experiences 

failure to board. The memory length, ℶ, was kept as 5 days,  = 0.05 unless 

otherwise specified and the simulation was run for a period of 4 hours over 700 

days out of which the first 200 days were discarded as burn in period. It is 

noted that in a congested network passengers generated within the simulation 

duration are unable to reach their destination within the specified simulation 

period. Hence a buffer time is given at the end of the simulation period wherein 

the transit services are generated to enable the passengers queued up at the 

transit stops to reach their destination. It is brought to the attention of  the 

readers that though transit services are generated during the buffer time 

passengers are not generated. It is also mentioned that the buffer time is kept 

for as long as the last passenger generated within the simulation period reaches 

their destination. 

As mentioned in section 1.6 the distinction between the aggregate model in 

Teklu (2008b) and the current R-DSPM lies in the prediction of costs for 

propagation of flows in absence of non-selection of a route and the process 

involved in the prediction of the cost itself. In aggregate models the learning 

process of passengers is kept continuous during the non-selection of routes by 

assuming that the cost of the non-selected route (combination of route 

sections) is equal to cost experienced along the component route-section which 

now forms the part of the an used route. For eg if on a particular Ωth day route 

5 doesn’t get chosen then the waiting time associated with the route 5 at stop 1 

is assumed to be equal to the waiting time experienced by users of route 1 and 

the waiting time at stop 2 is assumed to be equal to the waiting time for 

associated with the users of route 11. Also in aggregate process the predicted 

cost for each route is based on the average of the experienced cost of all 

passengers at end of each day. In the current R-DSPM the absence of external 

‘information’ results in the costs of non-selected routes to be equivalent to the 

uncongested cost for the same and the predicted cost for each individual for 

each route is based on only his/her experience.  

The R-DSPM was run for the passengers arrival rates, population size specified 

in Fig 3.4 and with strict capacity constraints for erlang shape factors of 
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both m = 1 and m = 300. The results for m=1 are tabulated in Table 3.8. From 

the table it can be deduced that the flow distribution on the routes between an 

OD pair are almost equal to each other especially between ODs Z=1 and Z=3. 

This is due to the usage of  = 0.05. It is brought to the attention of the readers 

that in logit choice model a  value of zero would result in equal distribution of 

flows between the routes irrespective of the cost of the routes. Hence a value 

closer to zero for the current values of travel costs results in almost equal 

distribution of flows in the example network. The behavioural assumption is 

that as the  value tends to zero the passengers do not consider the costs 

experienced by them as the true values of the journey. They believe that the 

costs experienced by them have several unaccounted variance associated with 

it and base their route choice randomly. 

Table 3.8: The congested costs for risk neutral passengers in network with 
shape factor 𝑚 = 1, ℶ = 5 and  = 0.05 

OD 
Node 1 – Node 2 

(Z=1) 
Node 2 – Node 3 (Z=3) Node 1 - Node 3 (Z=2) 

Route 1 2 3 10 11 12 4 5 6 7 8 9 

𝑬(𝒈𝒌) 25.7 25.3 22.6 25.4 24.7 22.4 31.3 40.2 39.2 37.3 37.9 40.6 

Std 2.4 2.1 2.3 2 2.0 2.1 1.4 1.4 1.5 1.5 1.5 1.4 

Route 1 2 3 10 11 12 4 5 6 7 8 9 

𝑬(𝑿𝒌) 242.5 243 275.5 312.6 323.4 359.9 254.3 178 189 206.5 199.5 171 

Std 18.6 17 18.2 18.8 19.5 21.0 17 13.9 14.8 14.9 14.2 13.5 

It is observed that irrespective of the network reliability the expectation of  

predicted costs for each route and the expectation of experienced costs on the 

same route are significantly different from each other (fig 3.6). This is because 

the predicted costs are obtained by averaging over the memory length the 

experienced costs when a passenger travels on a route as well as the 

uncongested route cost when a passenger doesn’t travel on the same.  



- 72 - 

 

 

Fig 3.6: The variation in the expectation of predicted costs of risk neutral 
passengers and the expectation of experienced costs in example network 

with 𝑚 = 1 & 300 (Route 4). 

One needs to note that in the current R-DSPM the evolution of flows on routes  

for either m=1 or m=300 does not depend on the expectation of predicted costs 

of the entire route but on individual’s predicted costs for each route. 

As explained in section 3.1.2 the current R-DSPM applies the Markov principles. 

One of the necessary condition but not a sufficient condition for stability of 

markov process is the stationary evolution of route flows and costs. It is 

expected that in a markov process the costs/total travel time or flows of the 

routes after the ‘burn-in’ period shall result in a stationary distribution 

independent of its initial condition. Fig 3.7 shows the histogram of flows on 

various routes for network with m = 1. The visual inspection of the histograms 

reveal that the distribution of flows along various routes for the time period 

between 201 to 401 and 402 to 602 are almost similar to each other. The mean 

and the standard deviation of the flows are almost identical indicating that the 

stochastic process being considered is stationary. 
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Fig 3.7: Histogram of risk neutral passenger flows along routes 4,6,8  (a)201-
400 (b) 401-600 for m=1  ℶ = 5 and  = 0.05 

3.4.2.1 Autocorrelation 

Another approach to prove that the markov process is stationary can be by 

computing the ‘large lag standard error’ for the autocorrelograms of flows 

along various routes and assessing if the autocorrelations die down after a 

hypothesised lag of K days (Balijepalli et al., 2007). It is understood that an 

important measure to assess the persistence or the memory property of time 

series is autocorrelation. Autocorrelation measures the correlation between the 

observations at different times. The autocorrelation of observations separated 

by K time steps is given by 

 

𝜚𝐾 =
∑ (𝑥𝑗 − 𝑥̅)(𝑥𝑗+𝐾 − 𝑥̅)𝕐−𝐾

𝑗=1

∑ (𝑥𝑗 − 𝑥̅)2𝕐
𝑗=1

                                                                                  (3.17) 

 

Where 

𝑥𝑗- observations  such as average flow on each route and average experienced 

travel time on each route 

𝑥̅- average of observations 

K- lag days 
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The ‘large lag standard error’ is given as follows: 

var(ϱ̂K) ≈
1

𝕐
(1 + 2∑ ϱi

2K
j=1 )                                                                                     (3.18)                                                                  

Where 

 ϱ̂K is an estimator of autocorrelation at lag K 

ϱ𝑗  is the true theoretical autocorrelation at lag 𝑗 

𝕐 is the length of the time series. 

Figure 3.8 gives the auto-correlogram for various routes for passengers under 

congested condition and with an erlang shape factor of m = 1, ℶ = 5 and 

 = 0.05. The autocorrelation of flows with themselves at lag=0 is 1. From then 

on there is a decreasing positive correlation for route 4 flows. Beyond the 

memory length of 5 days the correlations die down with an isolated positive 

correlation happening on 14th day indicating that the samples are more 

independent beyond ℶ days.   

 

Fig 3.8: Autocorrelogram of flows in congested network with error bounds 
calculated using equation 3.18 along routes 4,6,8 and 10 for 𝑚 = 1 , ℶ = 5 
and  = 0.05.  

Fig 3.8 also shows the error bounds as computed using eq 3.18 for a 

hypothesised lag of 6 days; beyond which it is assumed that the auto-

correlation dies down. The error bounds are indicative of the significance of the 

correlation. It is seen that most of the correlations are insignificant as they lie 
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below the error bounds. In case of route 6,8,10 there is a presence of negative 

correlation within the memory period of 5 days however these correlations are 

seen to lie below the error bounds indicating that the correlations are not 

significant. Fig 3.8 indicates insignificant correlation of flows for routes 6,8 and 

10 even within the memory period of 5 days. This could be due to the high 

stochasticity brought about by the random distribution of supply and demand; 

failure to board along with the perception error assumptions associated with 

the cost. The high level of stochasticity ultimately also results in the 

autocorrelations dying down at large lags. A detailed analysis of the 

autocorrelation and partial autocorrelation under varying 𝑚, and  is given in 

section 3.6. 

Following the assumption of erlang shape factor m = 1 the erlang shape factor 

is changed to m = 300. As explained in section 3.2.1.2 a shape factor of 

m = 300 results in a reduced variability between the interarrival times of the 

transit line. 

Table 3.9 shows a reduction in standard deviation of expectation of predicted 

costs E(gk) between stops 1 and stop 3 for m = 300 network when compared 

with the m = 1 network. One could conclude that the reduction in cost’s 

standard deviation is a reflection of a more stable evolution of the network.  

Table 3.9: The congested costs for risk neutral passengers in network with 
shape factor  𝑚 = 300, ℶ = 5 and  = 0.05 

 

 

Similar to m = 1 network, the tests to prove that the markov process is 

stationary using auto correlogram and histograms are shown in Fig 3.9 and Fig 

3.10. From table 3.9 it can be seen that in a congested network the expectation 

Route 
Node 1 – Node 2 (Z=1) Node 2- Node 3 (Z=3) Node 1 – Node 3 (Z=2) 

1 2 3 10 11 12 4 5 6 7 8 9 

𝑬(𝒈𝒌) 20.5 21.6 20.4 21.1 20.5 20 27.4 32.3 31.8 31.2 32.4 33.6 

Std 0.74 0.72 0.73 0.66 0.68 0.67 0.44 0.65 0.6 0.58 0.59 0.56 

Route 1 2 3 10 11 12 4 5 6 7 8 9 

𝑬(𝑿𝒌) 258.4 244.2 258.4 321.8 332.5 341.5 232.6 192.9 199.1 203.5 192.7 177.5 

Std 16.4 15.8 16 18.3 18.9 19.2 15.1 14.7 13.4 13.9 13.8 14.1 



- 76 - 

 

of predicted costs of a more reliable network service modelled here with erlang 

shape factor of m = 300 are lesser than the expectation of predicted costs in an 

unreliable network which is modelled with shape factor of = 1 . This is 

anticipated as the inter arrival of the services in a reliable network are more 

closer to the specified average headways thereby reducing the waiting times of 

passengers who could otherwise have experienced a larger inter arrival time. 

Since, in case of non-travelled routes the R-DSPM will use the uncongested 

costs of m=300 to determine the prediction costs of each passenger the  

𝑬(𝒈𝒌) values are lesser in table 3.9 than those shown in table 3.8.   

The histograms of flows shown in fig 3.9 indicate that between days 201 to 401 

and 402 to 602 the flow distribution is almost similar. The mean and standard 

deviation of the two periods are also found to be almost same. As the stationary 

distribution between the two time intervals are similar it can be claimed that 

there is only one probability distribution of the flows for each route under the 

assumed conditions and hence the stochastic process is ergodic (Watling and 

Cantarella, 2012). 

 

Fig 3.9: Histogram of risk neutral passenger flows along routes 4, 6, 8 for (a) 
201-400 days (b) 401-600 days m=300,  ℶ = 5 and  = 0.05 

 

The presence of insignificant autocorrelograms of the flows beyond the 

standard error bars computed for some hypothetical Kth day as shown in fig 
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3.10 is an indication that the flow on the routes do not depend on the flows on 

the same route beyond K days thereby implying that the process is stationary.  

 

 

Fig 3.10: Autocorrelogram of risk neutral passenger flows in congested 
network for routes 4,6,8 and 10 with error bounds computed using 
equation 3.18, for m= 300 , ℶ = 5 and  = 0.05  

 

3.5 Initial conditions: 

Another essential condition to prove Markov property of the model is to see if 

the system converges to the same probability distribution irrespective of its 

initial conditions. To study the convergence different initial conditions were 

simulated. Initial condition was varied by changing the random number seed 

values of the R-DSPM framework and by varying the rate of Poisson passenger 

arrivals along with the population size between OD pairs for the first 80 days 

(Z=1- poisson rate of passenger arrivals-60/3600, population size (constant 

demand)-302; Z=2- poisson rate of passenger arrivals-60/3600, population 

size (constant demand)-298; Z=3- poisson rate of passenger arrivals-20/3600, 

population size (constant demand)-110). These two different initial condition 

results were compared with the model results specified earlier. It is expected 

that irrespective of the initial conditions the model shall converge to a 

stationary distribution as per the ergodic markovian property.   
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Table 3.10 : route costs and flow distributions and sensitivity to initial 
conditions 𝑚 = 1, ℶ = 5 and  = 0.05 

In
it

ia
l c

o
n

d
it

io
n

 2
 

Route Node 1- Node 2 (Z=1) Node 2 – Node 3 (Z=3) Node 1 – Node 3 (Z=2) 

1 2 3 10 11 12 4 5 6 7 8 9 

𝐸(𝒕𝑘) 25.9 25.4 22.7 25.3 24.5 22.2 21.4 40.3 39.2 37.4 37.9 40.7 

Std 2.9 2.6 2.8 2.2 2.3 2.4 1.7 1.9 2 2 2.1 1.9 

𝐸(𝑋𝑘) 240.4 243.1 277.5 311.6 323.8 360.4 254.4 178.7 188.1 206.4 199.2 171.5 

Std 18.0 16.9 17.8 18.8 19 19.4 17 13.3 14 14.3 15.4 13.8 

In
it

ia
l c

o
n

d
it

io
n

 3
 𝐸(𝒕𝑘) 25.7 25.3 22.5 25.4 24.7 22.4 31.4 40.3 39.1 37.3 37.9 40.7 

Std 2.3 2.1 2.3 2 2.1 2.1 1.5 1.4 1.4 1.5 1.6 1.4 

𝐸(𝑋𝑘) 241.6 242.4 277 312.2 323.2 360.4 255.4 179 188.2 206.2 198.4 171.4 

Std 17.8 17.7 16.7 19.6 20.4 19.3 17.1 13.6 13.7 14.4 14.3 12.8 

 

From table 3.10 and table 3.11 we can see that for both the assumed shape 

factors the system converges to a stationary distribution irrespective of their 

initial conditions. The mean and standard deviation values of the average 

experienced costs and flows are similar irrespective of the initial conditions 

assumed for both m = 1 & m = 300. Fig 3.11 and 3.12 shows the histogram of 

stationary distribution of flows on various routes which again are almost 

similar irrespective of the initial conditions.   
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Table 3.11 : route costs and flow distributions and sensitivity to initial 
conditions 𝑚 = 300, ℶ = 5 and  = 0.05 

In
it

ia
l c

o
n

d
it

io
n

 2
 

Route Node 1 – Node 2 (Z=1) Node 2- Node 3 (Z=3) Node 1- Node 3 (Z=2) 

1 2 3 10 11 12 4 5 6 7 8 9 

𝐸(𝑡𝑘) 20.4 21.6 20.4 21.1 20.5 19.9 27.4 32.3 31.8 31.2 32.4 33.7 

Std 0.7 0.7 0.7 0.62 0.69 0.68 0.4 0.6 0.6 0.6 0.6 .6 

𝐸(𝑋𝑘) 258.6 243.4 259.0 321.8 332.3 341.8 231.7 193.5 199 203.8 191.6 178.6 

Std 15.9 16.7 17.1 17.8 19 18.8 15.2 13.8 14.4 14.6 14.0 13.7 

In
it

ia
l c

o
n

d
it

io
n

 3
 𝐸(𝑡𝑘) 20.5 21.6 20.4 21.2 20.5 19.9 27.4 32.3 31.8 31.2 32.4 33.7 

Std 0.7 0.7 0.75 0.66 0.67 0.67 0.45 0.6 0.64 0.61 0.55 0.54 

𝐸(𝑋𝑘) 258.6 243.2 259.1 321.7 333.1 341 231.4 193.3 198.0 203.8 192.6 179.1 

Std 16.3 15.4 16.0 18.0 18.4 19.2 15.2 13.1 14.9 14.4 13.5 12.9 

 

 

 

Fig 3.11 The stationary distribution of flows on routes 4, 6 and 8 under (a) 
initial condition 1 (b) initial condition 2 and (c) initial condition 3 for 
𝑚 = 1, ℶ = 5 and  = 0.05. 



- 80 - 

 

 

Fig 3.12 The stationary distribution of flows on routes 4, 6 and 8 under (a) 
initial condition 1 (b) initial condition 2 and (c) initial condition 3 for 
𝑚 = 300, ℶ = 5 and  = 0.05 

Statistical testing of whether the markov process has converged irrespective of 

its initial conditions is done using Wilcoxon rank sum test and two-sample 

Kolmogorov-Smirnov test. These are non-parametric test for assessing if two 

samples of the observation come from the same continuous distribution. In 

case of Wilcoxon rank sum test the null hypothesis is that the two samples are 

independent samples from identical continuous distribution, with equal 

medians. The alternative hypothesis is that they do not have equal medians.  

As can be seen from the autocorrelograms (fig 3.8 and 3.10) the route flows for 

each route are correlated as the evolution of the flows within the R-DSPM 

framework involves dependence of the current flow state on a finite memory 

period. Hence the correlation of the costs and the flows are expected to remain 

for a period of 5 days which is the memory length ℶ assumed for the current 

test run. From the correlogram it can also be seen that beyond 10 days 

(arbitrarily chosen) the correlations die down hence a process of subsampling 

was carried out to perform the statistical test. In the process of subsampling 

every 10th element of E(g𝑘)  and E(X𝑘) was used to derive a new set of 

elements to perform the statistical test. The necessary conditions for the 

Wilcoxon rank sum tests are that the two samples being tested are independent 

of each other and that the two samples have the similar distributions. The 

Wilcoxon rank sum test was carried out using Matlab. The results of the 

statistical test are as shown in Table 3.12 and Table 3.13. 
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Table 3.12: Wilcoxon Rank sum test results for different initial conditions for 
𝑚 = 1, ℶ = 5 and  = 0.05 

Routes 

Node 1- Node 2 

(Z=1) 
Node 1 – Node 3 (Z=2) 

Node 2 – Node 3 

(Z=3) 

1 2 3 4 5 6 7 8 9 10 11 12 

𝑬(𝒈𝒌) 

1
 v

s 
2

 

0.03 0.59 0.47 0.57 0.35 0.56 0.46 0.67 0.69 0.55 0.10 0.11 

2
 v

s 
3

 

0.07 0.6 0.37 0.59 0.51 0.68 0.51 0.6 0.97 0.48 0.09 0.09 

1
 v

s 
3

 

0.83 0.99 0.84 0.96 0.75 0.91 0.9 0.97 0.41 0.89 0.93 0.96 

𝑿𝒌  

1
 v

s 
2

 

0.02 0.07 0.2 0.89 0.99 0.25 0.88 0.73 0.56 0.03 0.1 0.4 

2
 v

s 
3

 

0.02 0.05 0.75 0.33 0.35 0.94 0.33 0.22 0.8 0.83 1 0.7 

1
 v

s 
3

 

0.7 0.7 0.29 0.28 0.25 0.24 0.43 0.34 0.75 0.05 0.09 0.86 

Table 3.13: Wilcoxon Rank sum test results for different initial conditions for 
𝑚 = 300, ℶ = 5 and  = 0.05 

Routes 

Node 1 – Node 2 

(Z=1) 
Node 1 – Node 3 (Z=2) 

Node 2- Node 3 

(Z=3) 

1 2 3 4 5 6 7 8 9 10 11 12 

𝑬(𝒈𝒌) 

1
 v

s 
2

 

0.84 0.61 0.73 0.81 0.79 0.84 0.80 0.89 0.83 0.95 0.93 0.74 

2
 v

s 
3

 

0.96 0.65 0.91 0.85 0.92 0.65 0.67 0.61 0.59 0.94 0.82 0.9 

1
 v

s 
3

 

0.99 0.82 0.61 0.99 0.73 0.42 0.99 0.54 0.67 0.83 0.97 0.57 

𝑿𝒌  

1
 v

s 
2

 

0.77 0.89 0.67 0.45 0.61 0.31 0.8 0.89 0.48 0.9 0.87 0.72 

2
 v

s 
3

 

0.37 0.52 0.63 0.65 0.92 0.59 0.64 0.52 0.46 0.07 0.31 0.38 

1
 v

s 
3

 

0.61 0.58 0.79 0.88 0.69 0.13 0.68 0.48 0.84 0.1 0.48 0.63 

 

The tables 3.12 and 3.13 results show that the null hypothesis cannot be 

rejected at the 5% significance level as the p-values are greater than 0.05 in 
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most of the cases for m = 1  and for all in m = 300. This shows that there is not 

sufficient evidence to show that the samples from the three realisations do not 

come from the same stationary distribution and do not have the same median.  

Similar to Wilcoxon rank sum test the two-sample Kolmogorov- Smirnov test 

has a null hypothesis which specifies that the two samples are independent 

samples from same identical continuous distribution. As in Wilcoxon rank sum 

test for the Two-sample Kolmogorov-Smirnov test every 10th element of E(g𝑘)  

and E(X𝑘) was used to derive a new set of elements to perform the statistical 

test. The two-sample Kolmogorov test was carried out using the matlab 

function ‘kstest2’. The test results are given as either 1 or 0 wherein 0 results in 

acceptance of null hypothesis and 1 indicates rejection of null hypothesis. Table 

3.14 and 3.15 give the results of Two-sample Kolmogorov-Smirnov test. It can 

be seen from the tables that the results are almost similar to that of Wilcoxon 

rank sum test. If one notes the bold values in table 3.12 and table 3.14 one sees 

that the null hypothesis gets rejected for similar routes irrespective of the 

statistical method used. The results of both the statistical tests thereby 

indicates that the samples from the three realisations do come from the same 

stationary distribution. 

 Table 3.14: Two-sample Kolmogorov-Smirnov test results for different initial 
conditions for 𝑚 = 1, ℶ = 5 and  = 0.05 

Routes 

Node 1- Node 2 

(Z=1) 
Node 1 – Node 3 (Z=2) 

Node 2 – Node 3 

(Z=3) 

1 2 3 4 5 6 7 8 9 10 11 12 

𝑬(𝒈𝒌) 

1
 v

s 
2

 

1 0 0 0 0 0 0 0 0 0 1 0 

2
 v

s 
3

 

1 0 0 0 0 0 0 0 0 0 0 0 

1
 v

s 
3

 

0 0 0 0 0 0 0 0 0 0 0 0 

𝑿𝒌  

1
 v

s 
2

 

1 0 0 0 0 0 0 0 0 0 0 0 

2
 v

s 
3

 

1 0 0 0 0 0 0 0 0 0 0 0 

1
 v

s 
3

 

0 0 0 0 0 0 0 0 0 0 0 0 
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Table 3.15: Two-sample Kolmogorov-Smirnov test results for different initial 
conditions for 𝑚 = 300, ℶ = 5 and  = 0.05 

Routes 

Node 1- Node 2 

(Z=1) 
Node 1 – Node 3 (Z=2) 

Node 2 – Node 3 

(Z=3) 

1 2 3 4 5 6 7 8 9 10 11 12 

𝑬(𝒈𝒌) 

1
 v

s 
2

 

0 0 0 0 0 0 0 0 0 0 0 0 

2
 v

s 
3

 

0 0 0 0 0 0 0 0 0 0 0 0 

1
 v

s 
3

 

0 0 0 0 0 0 0 0 0 0 0 0 

𝑿𝒌  

1
 v

s 
2

 

0 0 0 0 0 0 0 0 0 0 0 0 

2
 v

s 
3

 

0 0 0 0 0 0 0 0 0 0 0 0 

1
 v

s 
3

 

0 0 0 0 0 0 0 0 0 0 0 0 

3.6 Sensitivity Analysis: 

3.6.1 Autocorrelation  

The sensitivity of the model to various   values is shown in fig 3.13 and fig 

3.14. The anticipation is that as the   value increases the passengers become 

more sensitive to changes in the costs of the competing routes between an OD 

pair. In other words as   increases the random term in the predicted cost  𝗀k is 

assumed to be fully explained and the cost value is assumed to reflect the true 

value of the journey. At higher   values the cost value becomes reflective of the 

actual travel costs and hence the passengers ‘believe’ the costs experienced by 

him/her. This results in all passengers formulating the same opinion about the 

route costs and thereby think alike or homogenously.  
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𝒎 = 𝟏 

 

Fig 3.13 The autocorrelogram of flows along routes 4, 6 and 8 for 𝑚 = 1 and 
ℶ = 5 (a)  = 0.05 (b)  = 1.8 (c)  = 4  

The behaviour of flows when the logit dispersion parameter   is increased is 

assessed and is shown in fig 3.13 and fig 3.14. A  value closer to zero would 

result in equal distribution of flows between all the routes serving an OD pair. It 

would then mean that the passengers are not sensitive to the difference in costs 

of the routes due to the assumption that the component involving the 

unexplained factors of the journey are much more. The passengers make 

similar route choice decisions at higher  as they ‘believe’ the expected costs to 

be the true value of the journey. Hence on a given day almost all passengers 

choose the same route and since they experience higher costs on that day along 

their chosen route all the passengers end up choosing a different route the next 

day. Hence the route flows tend to be more negatively correlated as shown in 

fig 3.13 and 3.14. The periodic attractors are more visible at higher  values as 

can be seen from Fig 3.13 wherein strong negative correlations are observed 

within the memory period of 5 days punctuated with a high positive correlation 

at end of the memory period duration. The presence of periodic attractors is 

much more distinctly visible in case of higher reliable interarrival (fig 3.14) as 

the stochasticity associated with transit service interarrivals is reduced. 
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𝒎 = 𝟑𝟎𝟎 

 

Fig 3.14 The autocorrelogram of flows along routes 4, 6 and 8 for 𝑚 = 300 and 
ℶ = 5 (a)  = 0.05 (b)  = 1.8 (c)  = 4 

3.6.2 Partial Autocorrelation 

Partial autocorrelation gives the autocorrelation between 𝑥𝛺, 𝑥𝛺−𝐾 after 

removing the linear dependence between 𝑥1, 𝑥2, ……𝑥𝛺−𝐾+1wherein 𝑥𝛺 is the 

average total travel time or average flow on a route at simulation day 𝛺 and K is 

the lag in days. In other words partial autocorrelation gives the partial 

correlation of the time series with its own lag values, controlling for the lag 

values of the time series at all shorter lags (Lee and Fambro, 1999). Partial 

autocorrelation helps to identify the possible order of auto regressive moving 

average (ARMA) time series models. The ARMA models are used for predicting 

the behaviour of time series through generation of similar time series having 

the same persistence structure which could be used for future policy evaluation 

in transport network.  Fig 3.15 and 3.16 show the partial autocorrelogram of 

flows with 95% confidence band. Fig 3.15 indicates that at  = 0.05 the partial 

correlation plot doesn’t show a clear statistical significance beyond lag 1 (lag 0 

is always 1). The next few lags are at border line statistical significance.  As the 

 value is increased the partial autocorrelogram of flows shows clear statistical 

significance upto interval of ℶ = 5 days and next few lags at border line 

statistical significance. This clear show of statistical significance within the 

interval of memory length is indicative of the already mentioned fact that at 

higher  periodic attractors are observed in the network. 
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Fig 3.15 The partial - autocorrelogram of flows along routes 4, 6 and 8 with 
95% confidence bounds for 𝑚 = 1 and ℶ = 5 (a)  = 0.05 (b)  = 1.8 (c) 
 = 4 

 

Fig 3.16 The partial autocorrelogram of flows along routes 4, 6 and 8 with 95% 
confidence bounds for 𝑚 = 300 and ℶ = 5 (a)  = 0.05 (b)  = 1.8 (c) 
 = 4 

A similar trend is observed with 𝑚 = 300 and as can be seen from fig 3.16 the 

negative partial correlations within the memory period of 5 days  is much more 

pronounced in comparison with 𝑚 = 1 for higher  values. 

3.6.3 Varying memory lengths 

The sensitivity of risk neutral passengers to varying memory lengths (ℶ) was 

tested. Memory lengths (ℶ) of 5 days, 15 days and 30 days were used to test the 

difference in the flow and total experienced travel time distribution between 

risk neutral and risk averse passengers. 
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Table 3.16: The average experienced travel time and the average flow on 
various routes for varying memory lengths when m = 1 and  = 4. 

  Z=1 Z=2 Z=3 

 Route 2 3 4 5 9 11 

ℶ=5 

𝐸(𝑡𝑠) 49.6 46.4 60.4 110.3 100.5 51.3 

Std 17.4 16.3 17.2 22.7 25.6 18.4 

𝐸(𝑋𝑠) 231.7 301.9 310.3 164.8 70.5 299.3 

Std 30.9 37.3 76.8 40.0 34.7 52.0 

ℶ=15 

𝐸(𝑡𝑠) 52.1 47.3 62.8 108.3 104.6 52.5 

Std 17.3 15.9 17.2 22.3 26.0 18.8 

𝐸(𝑋𝑠) 220.5 304.5 360.1 151.4 111.1 294.5 

Std 32.8 39.8 83.0 24.1 27.7 40.3 

ℶ=30 

𝐸(𝑡𝑠) 52.2 47.2 62.9 108.5 104.7 52.6 

Std 17.2 15.9 17.3 22.6 25.8 18.6 

𝐸(𝑋𝑠) 220.1 305.8 362.5 150.6 111.0 293.5 

Std 31.2 41.1 82.6 24.1 27.7 39.3 

Table 3.16 indicates that for a change in memory length from 5 days to 15 days 

there is a slight difference in the flow values and the experienced travel time 

values. The change in flow and experienced travel times between the memory 

length values of 15 and 30 days is almost negligible indicating that for a set of 

stochastic demand and supply parameters of a network the evolution of 

passenger flow stabilises beyond a certain memory length for a given  value. 

This is expected as with lower memory length passenger’s base their route 

choice on lesser past experiences. In higher memory lengths the passengers 

have a larger experience pool to base their route choice on. In a small network 

as with example network 1, for the current rate of passengers and the current 

number of potential passengers, it can be summarised that passengers 

travelling between an OD pair would have experienced most of the routes 

within the memory period of 15 days resulting in the flow distribution 

stabilising beyond a memory length of 15 days. The influence of larger number 

of potential passengers on the results of the model is dealt with section 5.4. 

Larger network with most of the passengers travelling on daily basis would 

require a higher memory length beyond which the route flow distribution 

would remain the same. The above results, apart from the influence of the 

supply parameters, are also influenced by the parameters assumed for the 

learning process. As mentioned in Teklu (2008b) a relationship between the 

rate of progression ρ and memory length ℶ is present. The relationship is such 
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that a lower value of ρ results in higher weightage to recent experience. A ρ 

value of 1 results in equal weightage to the past experiences within the memory 

length resulting in a weightage of 0.5 for each day if the memory length ℶ is 

chosen as 2 days. A smaller ρ value with higher memory length would result in 

older experiences having almost negligible weights.  

3.7 Summary 

The chapter proposes a R-DSPM which is run under various reliability 

scenarios of interarrival of services on an example network. The highly 

disruptive scenario is modelled with exponential interarrivals and a more 

‘normal’ service is modelled using higher shape factor of erlang distribution. 

The current chapter dealt with the behavioural analysis of risk neutral 

passengers who minimise only their average travel costs. It is seen that the 

passengers tend to have a higher average expected costs in an unreliable 

network than a reliable network.  It is shown that the proposed stochastic 

process model has a stationary distribution and exhibits the markovian 

property which enables the system to converge to the same stationary 

distribution irrespective of the initial conditions. The R-DSPM has been 

successful in considering the interaction between the passengers assigned to 

different routes but having the same attractive line set. The FIFO arrangement 

of passengers in queue for a line at the transit stop ensures that the passenger 

who arrive first get the first opportunity to board the transit vehicle if the 

arriving vehicle is of his/her attractive line set. The passengers who have 

already boarded the transit service and are continuing the journey beyond the 

current transit stop remain inside the transit vehicle thereby ensuring that 

those boarding the line before have a priority over the passengers boarding 

latter at the transit stop. The strict capacity constraint of the transit vehicles 

ensures that a transit service is not loaded beyond its capacity.   

Aggregate stochastic process model is based on the assumption that the flows 

at end of each day revise their routes for the next day based on the predicted 

costs which are the weighted average of the experienced travel times over the 

demand generated for the day. This however is counterintuitive as more often 

in the absence of any external information source the knowledge of the costs 

experienced by other passengers is not known to an individual while revising 

his/her route choice. The R-DSPM therefore provides a more realistic 

framework while evaluating the passenger route choice.  
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Chapter 4 

R-DSPM formulation for Mean – Variance and comparison with 

existing models 

A transit service experiences unreliability due to several factors as highlighted 

in chapter 2. A passenger travelling in a transit service apart from experiencing 

unreliability associated with the supply side of the network also experiences 

unreliability due to demand wherein a strict capacity constrained network 

would result in passengers often being unable to board the first transit service 

of their chosen attractive line set. In event of the inability to board the first 

transit service of their choice set the passengers inherently experience an 

unreliable service though the service may have been reliable from operator’s 

perspective. The current chapter includes the variance experienced by the 

passengers due to the stochastic nature of demand and supply, in the cost of the 

passengers. The following sections shall examine the impact of considering the 

variance associated with the individual’s total travel time on their route choice. 

As highlighted in chapter 2 the existing stochastic process models (Teklu, 

2008b) and equilibrium based models (De Cea and Fernández, 1993; Cominetti 

and Correa, 2001; Cepeda et al., 2006) are aggregate in nature and these 

models mostly assume that passengers are risk neutral. The aggregate models 

assume that the passengers are aware of the total travel time experienced by 

the others. As mentioned in chapter 1 in reality such an aggregate information 

wherein the total travel time experienced by others is known is not easily 

available and hence passengers tend to rely on individual experiences. 

Furthering the disaggregate model derived in chapter 3 (wherein a stochastic 

process model for risk neutral passengers was implemented) a risk averse 

learning process model is developed in the current chapter which essentially 

models variance as an individual 𝑖’s  attribute.  

Transit assignment models based on mean-variance approach has been, to the 

authors knowledge, dealt by Szeto et al. (2011) and Szeto et al. (2013). Szeto et 

al. (2011) developed a BPR congestion function based SUE model and Szeto et 

al. (2013) an overload delay based SUE model accounting for the variance 

associated with the in-vehicle travel time; the uncongested waiting time and 

the increased waiting time due to the congestion; using the route section 

approach. However Szeto et al. (2011) and Szeto et al. (2013) model reliability 

in transit network without considering the strict capacity constraints; day to 
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day evolution of supply and demand in the transit network or the effect of 

learning process on passengers route choices. 

Chapter 3 saw the implementation of R-DSPM on example network 1. The 

mean-variance analysis was carried out for example network 1 and example 

network 2 (a network given in Teklu (2008a)). However only example network 

2 results are discussed in the current chapter. It is noted that the interpretation 

of results for various parameters in both the networks remain the same. 

The aim of the chapter is to show the need to consider the risk averseness of 

passengers while modelling the route flows in a transit network and the need 

to use stochastic process model to do the same. The chapter is organised such 

that initially uncongested transit network wherein the unreliability is only due 

to supply variations is considered. The change in the shortest route between 

risk neutral and risk averse passengers in an uncongested network is assessed 

in Section 4.1. The section establishes the shift in the shortest route for risk 

averse passengers in comparison with risk neutral passengers thereby 

asserting the difference in passengers route choice while considering risk 

aversion. Section 4.2 shall implement R-DSPM for risk averse passenger on a 

congested transit network (example network 2) with strict capacity constraint.  

The results obtained are discussed and several sensitivity tests are carried out 

to assess the performance of the model.  

Section 4.3 shall implement a BPR congestion function for an SUE based 

assignment of risk averse flows on example network 2 followed by the 

‘effective frequency’ congestion function based DUE on hyperpath 

representation of  example network 2. The parameters of effective frequency 

and the BPR waiting time function shall be calibrated to make a comparison 

with R-DSPM possible.  

4.1 Risk Averse vs Risk Neutral passengers (uncongested 

transit network):  

Spiess and Florian (1989) and De Cea et al. (1988) define the strategy/route 

chosen by risk neutral passengers in an uncongested network as optimal 

strategy or optimal route. The optimal strategy/route essentially consists of 

line segments/sections which minimise the average costs experienced by 

passengers. The aim of the current section is to assess: 

1. If the shortest strategy/route of risk averse passengers differs from that 

of risk neutral passengers.   
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2. If the interarrival reliability of lines (modelled using shape factor 𝑚; 

which when equal to 1 depicts exponential interarrivals and when equal 

to 300 depicts a more reliable service) serving a transit stop has an 

influence on the shortest strategy/route of risk averse passengers.  

The answers to these questions shall be explained through a series of 

simulation tests run on example network 1. The example network given in 

chapter 3 is modified to suite the current requirement with revised in-vehicle 

times and frequencies as shown in table 4.1. 

Table 4.1: Revised frequency for example network 1 

 

As explained earlier a risk neutral passenger is defined as a person who ignores 

the variance associated with his/her journey and minimises only his/her 

average costs. Whereas risk averse passengers assign a non-negative 

parameter to the variance ; which represents the degree to which the variance 

is undesirable to passengers (Jackson and Jucker, 1982). The weightage 

associated with the variance as given by risk averse passengers is symbolised 

by beta (β) in the current model, which then means that a risk neutral 

passenger has a β value of 0 and passengers having β > 0 are risk averse. 

 

4.1.1 Change in the shortest route for risk averse passengers: 

The results obtained by running a monte-carlo simulation model of modified 

example network 1 in uncongested scenario shows that there is a change in 

shortest route between risk averse and risk neutral passengers.  From Table 4.2 

it is found that in a network with m = 1 (exponential inter arrival of transit 

services) the shortest cost route at β = 0 (risk neutral) is route 4 whereas at 

β ≥ 0.094 the shortest route shifts to route 8.  

 

 

 

 



- 92 - 

 

Table 4.2: The mean cost for routes between various OD pairs for modified 
example network 1 (table 4.1) with 𝑚 = 1 

R
o

u
te

s Z = 1 Z = 2  Z = 3 

1 2 3 4 5 6 7 8 9 10 11 12 
B

et
a 

V
al

u
e 

 12.1 14.0 9.0 18 25 26.1 23.0 22.0 27 13 14 10.9 

0.028 13.1 16.7 9.5 20.7 23.3 30 24.4 22.7 30 13.2 16.7 11.2 

0.05 14 18.9 9.8 22.9 27.3 33.1 25.5 23.2 32.2 13.4 18.8 11.5 

0.094 15.6 23.1 10.5 27.1 29.4 39.2 27.7 24.3 36.9 13.8 23.1 12.0 

0.194 19.4 32.8 12 36.8 34 53.1 32.6 26.7 47.4 14.7 32.8 13.2 

0.5 31.1 62.5 16.6 66.5 48.1 95.7 47.7 33.9 79.6 17.4 62.4 16.7 

2.25 97.7 232.1 43 236.1 129.0 339.2 134.3 75.6 263.8 32.8 231.7 36.8 

 

From table 4.2 it can be concluded that for certain values of aversion the risk 

averse passengers have the same shortest route as risk neutral passengers. 

After a certain threshold value of risk aversion a shift in the shortest route is 

observed in the network.  This outcome can be explained as the insensitivity of 

risk neutral passengers towards variance values hence the shortest route for a 

risk neutral passengers ( β = 0)  has lower mean and higher variance whereas 

the shortest route for a risk averse passenger (β ≥ 0.094) has a higher mean 

and lower variance. This notion is emphasised by fig 4.1 wherein at β = 0 one 

can see the mean value being lesser than the variance value and at β ≥ 0.094 a 

shift is observed such that the shortest cost route is now the route having 

higher mean but lower variance. 

 

Fig 4.1: The mean vs variances of shortest routes between Node 1 and Node 3 
for modified example network 1 (table 4.1) with 𝑚 = 1. 
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4.1.2 Influence of interarrival reliability in the shortest route for 

risk averse passengers: 

Continuing with the uncongested network example given in section 4.1.1 here 

we shall look at, whether an improvement on the interarrival times of the 

transit services, the shortest route for risk averse passengers changes. The 

interarrival times are improved by using m = 300. The results of the analysis is 

shown in table 4.3. 

Table 4.3: The mean cost for the routes between various OD pairs for modified 
example network 1 (table 4.1) with 𝑚 = 300 

Routes Z = 1 Z = 2 Z = 3 

Beta 

Value 
1 2 3 4 5 6 7 8 9 10 11 12 

0 9 9.0 7.8 13.0 20.5 18.0 19.5 19.3 20.5 11.5 9.0 10.4 

0.028 9.1 9.3 7.9 13.3 20.6 18.4 19.7 19.5 20.8 11.5 9.3 10.6 

0.05 9.2 9.5 8.0 13.5 20.7 18.6 19.9 19.6 21 11.5 9.4 10.7 

0.094 9.3 9.8 8.2 13.8 20.9 19.1 20.3 19.8 21.4 11.6 9.8 11.0 

0.194 9.6 10.7 8.6 14.7 21.3 20.3 21.3 20.2 22.3 11.7 10.7 11.6 

0.5 10.5 13.3 9.8 17.3 22.4 23.9 24.0 21.7 25.2 11.9 13.3 13.5 

2.25 15.9 28.3 16.7 32.3 29.2 44.3 40 30.0 41.6 13.2 28.2 24.0 

5 24.3 51.8 27.7 55.8 39.7 76.3 64.8 43.1 67.4 15.3 51.7 40.6 

10 39.6 94.5 47.5 98.5 58.9 134.6 110.1 66.9 114.2 19.1 94.3 70.7 

 

Table 4.3 shows a similar shift in shortest cost route between risk neutral and 

risk averse passengers when the network runs transit services with a more 

reliable interarrival times (modelled with  m = 300). It is observed from the 

results that in a reliable network the variance associated with the inter arrival 

of services is not very large and hence the shift of shortest cost route takes 

place at a larger β value. Hence route 4 remains shortest uptill a β value of 0.5. 

At a β value of 2.25 the shortest route shifts to route 5. Fig 4.2 shows that the 

reliable network also exhibit the trend of the shortest route remaining the same 

beyond a certain β value.  
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Fig 4.2: The mean vs variances of optimal routes between Node 1 and Node 3 
for example network 1 (table 4.1) with 𝑚 = 300. 

The above analysis indicates that in uncongested reliable transit networks the 

passengers need to have a higher β value of risk aversion to have a significantly 

different route choice from that of risk neutral passengers. 

4.1.3 Need for a stochastic process model to analyse risk averse 

transit network 

The previous sections highlighted that the route flow distribution for risk 

averse and risk neutral passengers would be considerably different if AON 

assignment rule is followed in an uncongested network. This distinction was 

only observed for certain values of aversion to variance of experienced total 

travel time. In the current section a look at the need to consider stochastic 

process model to assess the route choice of transit network passengers shall be 

explored. The transit assignment problem being asymmetric in nature is 

highlighted in De Cea and Fernández (1993) example network wherein the 

jacobian of the network is as shown below 

[
 
 
 
 
 
1/10 0 0 0 0 0

0 1/10 0 0 1/10 0
0 0 1/14 0 𝟏/𝟏𝟒 1/14
0 0 0 1/24 0 𝟏/𝟐𝟒
0 1/10 𝟎 0 1/10 0
0 0 1/14 𝟎 0 1/4 ]

 
 
 
 
 

 

The asymmetric flows are highlighted in bold wherein 

𝜕𝑐3(𝑥)

𝜕(𝑥5)
≠

𝜕𝑐5(𝑥)

𝜕(𝑥3)
 

And 

𝜕𝑐4(𝑥)

𝜕(𝑥6)
≠

𝜕𝑐6(𝑥)

𝜕(𝑥4)
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This is as the result of the flow boarding at the higher end transit stops 

influencing the cost functions of the flow boarding at lower end transit stops. 

The presence of unique solution is possible when the jacobian is positive 

definite (Sheffi 1985). In situations such as that of multiuser class networks the 

dominance of one user class group over the other user class results in the 

positive definite condition being violated (Watling, 1996). In case of 

asymmetric jacobian the positive definite is assessed by finding the positive 

definite of a new matrix B which is equal the existing matrix (A+AT)/2. The 

advantages of stochastic process models in presence of multiple solutions is 

highlighted in Watling (1996). The advantages are enumerated as: 

 The need for a unique solution is overridden by the presence of a unique 

stationary distribution of flows on the various routes.  

 It is mentioned that in case of strictly convex functions the user 

equilibrium overestimates the costs in comparisons with the costs 

computed by the day-day models. 

4.2 R-DSPM :- Mean –Variance cost for congested network: 

In the current section, R-DSPM with strict capacity constraint as described in 

Chapter 3 is used for assessing the route choice in risk averse passengers. The 

learning process model is modified such that each individual in the 

disaggregate model makes his/her route choice based on not only the average 

costs experienced by them but also on the variance experienced on the route 

over the memory length period ℶ. It is to be noted that when a passenger 𝑖 

travels more than once along the route kz within his/her memory length ℶ then 

equation 4.1a is applicable. In case the passenger travels the route only once or 

never within his/her memory length ℶ then equation 4.1b is applicable.  Hence 

the cost of each risk averse passenger i𝑧 travelling between OD pair Z is given 

as  

ĝ𝑘𝑧(i𝑧)𝑧 = g𝑘𝑧(i𝑧)𝑧 + βvar

(

 
 
 
 

tk𝑧(i𝑧)𝑧Ω−1

.

.

.

tk𝑧(i𝑧)𝑧Ω−ℶ

)

 
 
 
 

 ∀ k𝑧 = f𝑖𝑧  
𝑧   , k𝑧 ∈ n𝑧                  (4.1𝑎) 

Else 

ĝ𝑘𝑧(i𝑧)𝑧 = g𝑘𝑧(i𝑧)𝑧 ∀ k𝑧 ≠ f𝑖𝑧
𝑧  , k𝑧 ∈ n𝑧                                                                (4.1𝑏) 
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Where  

g𝑘𝑧(i𝑧)𝑧 = ∑ ωjT𝑘𝑧(i𝑧)𝑧Ω−j

ℶ

j=1

   ∀ k𝑧 = {1𝑧 , 2𝑧 , … n𝑧}                                              (4.2) 

Where β- non-negative parameter which represents the degree to which the 

variance is undesirable to passengers (Jackson and Jucker, 1982). 

tk𝑧(i𝑧)𝑧- experienced travel time along route 𝑘𝑧 by passenger 𝑖𝑧 between OD 

pair Z 

𝜔 –weight associated with each day of the memory length  ℶ. 

T𝑘𝑧(i𝑧)𝑍- updated travel time for passenger 𝑖𝑧 on route 𝑘𝑧 between OD pair Z. 

𝛺- current simulation day. 

nZ-total number of routes between OD pair Z. 

It is to be noted that the obtained variance is only the variance of experienced 

travel cost of each individual. Hence if in a memory length ℶ of 2 days a 

passengers iz travels a route on day 1 and doesn’t travel the same route on day 

2 the variance is considered as zero in-spite of the passenger updating his/her 

experience cost matrix for the untraveled route on day 2 with the uncongested 

cost of that route. With the above mentioned modification the R-DSPM with 

strict capacity constraints is run for risk averse passengers under congested 

condition.  

4.2.1 Implementation on example networks: 

The R-DSPM was run for example network 2 (Fig 4.3) under the congested 

demand given in fig 4.3. A ℶ value of 15 days, β = 2.5 was chosen and the 

simulation was run for 700 days. The initial 200 days were discarded as the 

burn-in period.  

The network in-vehicle travel time and their frequencies are set as shown in fig 

4.3. The demand matrix shown in the figure is that for the congested network.  
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Fig 4.3 Example network 2 (Teklu, 2008b) 

The route sections and routes available for travel between the OD pairs in 

example network 2 are shown in Fig 4.4. 

 

 

Fig 4.4 (a) All the route sections for example network 2 and (b) possible routes 

The De Cea and Fernández (1993)’s route section approach assumes  that the 

common lines exist between transfer stops, hence for example network 2, stop 

2 is a transfer stop. In such a situation for routes 5,6,7 the passengers have to 

transfer at stop 2 though such a transfer on these routes would imply getting 

down from a transit service line and getting on another or possibly the same 

line. In real world alighting and boarding the same line may not seem realistic 

hence in this chapter an analysis is made with two possible scenarios.  
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Scenario 1: all the passengers on route 5,6,7 make a transfer at transit stop 2. 

Scenario 2: the passengers on 6 and 7  do not alight at stop 2 if the line they 

choose to board at stop 1 continues till stop 4 and route 5 passengers who 

choose line 1 at stop 1 alight to board line 2 and vice versa at the transfer stop 

2.  

From Table 4.4 and table 4.5 one can see that at lower  the passengers route 

themselves such that in both the scenarios the average total travel time 

experienced on each route remains similar irrespective of the network being 

risk neutral or risk averse. Table 4.6 and table 4.7 shows the results for =4 and 

it is seen that at higher  values all risk neutral passengers find a particular 

route attractive and route themselves onto that route (as already discussed in 

chapter 3). The increased flow on a route results in higher experienced total 

travel time and due to this almost all the passengers on the subsequent day end 

up choosing a different route. This generalises the result obtained in chapter 3 

for example network 1 wherein it was shown that at higher  values a network 

with risk neutral passengers sees periodic attractors and the flow distribution 

on attractive routes has higher variance. On some of the routes (scenario 1- 

routes 1,4,6,8 (table 4.7)  and scenario 2 – routes 1,8 (table 4.6)) risk neutral 

passengers find the uncongested costs to be higher than the experienced costs 

on the attractive routes for a particular day and hence these routes are not 

assigned any flows though the transition probability for these routes are 

greater than zero.  

In both scenarios it is observed that the risk averse passengers at higher  

values learn from the higher variance associated with all flows choosing the 

same route. Due to this learning process they tend to route themselves such 

that the flows are now assigned onto the routes which were found to be 

unattractive by risk neutral passengers. Fig 4.5 asserts this finding by showing 

the evolution of costs during burn-in period and the stationary probability 

distribution of flows along routes 9, 10 and 11 for risk neutral and risk averse 

passengers for a  value of 4 (scenario 2).  In fig 4.5 it is seen that during the 

burn-in period the risk averse passengers learn from experiencing higher 

variance in initial days and after day 150 have almost stable evolution of costs. 

This phenomenon is absent in risk neutral passengers as the oscillations in the 

costs are observed to be still higher in comparison to risk averse costs.  
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Table 4.4 The experienced total travel time and flow values on various routes 
for risk neutral and risk averse passengers at 𝑚 = 1,  =0.05 , 𝛽 = 2.5 and 

ℶ=15 days (scenario 2) 

Route 
Node 1 – Node 4  (Z=1) 

Node 2 – Node 4 

(Z=2)  

1 2 3 4 5 6 7 8 9 10 11 

R
is

k
 N

eu
tr

al
 

𝐸(𝑡𝑘) 52.3 38.2 40.9 92.8 93.8 73 62.4 94.4 63.8 56.8 53.2 

Std 8.8 8.5 7.6 20.4 19.4 19 18.4 21.5 14.9 13.8 12.6 

𝐸(𝑋𝑘) 39.5 77.8 67.1 37.3 40.1 41.3 62.2 33 68.3 91.8 90.8 

Std 6.3 8.4 8.0 5.9 6.1 6.7 8 6.2 8.4 10.3 9.7 

R
is

k
 A

v
er

se
 

𝐸(𝑡𝑘) 53.0 37.7 40.3 87.8 93.2 76.7 57.7 95.8 64.3 50.3 48.9 

Std 9.1 8.3 7.5 19.9 19.8 20.5 17.5 22 14.7 12.8 12 

𝐸(𝑋𝑘) 48.4 57.8 55.3 46.3 46.9 46.9 52.6 44.1 71.6 85.5 93.9 

Std 7.1 7.9 7.1 6.2 6.8 6.8 7.3 6.4 15.1 13.4 13.4 

 

 

Table 4.5 The experienced total travel time and flow values on various routes 
for risk neutral and risk averse passengers at 𝑚 = 1,  =0.05, 𝛽 = 2.5 and 

ℶ=15 days (scenario 1) 

Route 
Node 1 – Node 4 (Z=1) 

Node 2 – Node 4 

(Z=2) 

1 2 3 4 5 6 7 8 9 10 11 

R
is

k
 N

eu
tr

al
 

𝐸(𝑡𝑘) 52.3 38.4 41.2 91.7 80.9 90.7 85.2 91.2 59.5 52.7 49.7 

Std 8.8 8.5 7.4 19.9 18.4 19.6 19.5 20.5 13.2 12.6 11 

𝐸(𝑋𝑘) 40 84.9 74.1 34.5 40.0 35.4 57.7 31.6 66.1 92.8 92.0 

Std 6.2 8.9 8.4 6.2 6.0 5.9 7.8 5.8 8.2 10.7 9.9 

R
is

k
 A

v
er

se
 

𝐸(𝑡𝑘) 53.1 38 40.5 86.5 76.6 92 78.6 91.7 59.4 46.4 45.3 

Std 9.1 8.3 7.6 19.3 17.9 20.2 18.5 20.8 13.0 11.1 10 

𝐸(𝑋𝑘) 49 59.4 56.6 45.2 47.2 45.3 51.7 43.8 72.2 84.3 94.4 

Std 7.2 8.3 7.5 6.8 6.6 6.6 7.5 6.8 15.3 14.7 12.5 
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Table 4.6 The experienced total travel times and flow values on various routes 
for risk neutral and risk averse passengers at 𝑚 = 1,  =4 , 𝛽 = 2.5and 
ℶ=15 days (scenario 2) 

Route 
Node 1 - Node 4 (Z=1) Node 2 - Node 4 (Z=2) 

1 2 3 4 5 6 7 8 9 10 11 

R
is

k
 N

eu
tr

al
 

𝐸(𝑡𝑘) 0 42.3 42.5 0.21 19.5 1.45 89.1 0 70 92.9 67.2 

Std 0 10.7 6.5 4.7 42.6 10.1 24.4 0 20.6 21.1 19.3 

𝐸(𝑋𝑘) 0 197.3 133.2 0.002 0.716 0.034 67.0 0 67.4 80.5 103.03 

Std 0 48.0 34 0.04 2.9 0.25 24.1 0 20.0 22.7 23.5 

R
is

k
 A

v
er

se
 

𝐸(𝑡𝑘) 53.1 37.6 40.1 90.2 93.2 76.6 57.9 94.7 64.5 53.1 50.9 

Std 9.1 8.2 7.5 19.8 19.8 20.1 17.3 22.3 14.7 13.2 12 

𝐸(𝑋𝑘) 43.2 63.2 61.1 45.4 52.2 51.4 59.0 22.7 75.0 82 94 

Std 8.6 13.1 15.4 8.4 9.5 8.9 78 7.4 14.8 14.5 12.3 

 

 

Table 4.7 The experienced total travel times and flow values on various routes 
for risk neutral and risk averse passengers at 𝑚 = 1,  =4, 𝛽 = 2.5 and 
ℶ=15 days (scenario 1) 

Route 
Node 1 – Node 4 (Z=1) 

Node 2 – Node 4 

(Z=2)  

1 2 3 4 5 6 7 8 9 10 11 

R
is

k
 N

eu
tr

al
 

𝐸(𝑡𝑘) 0 42.9 42.4 0 1.8 0 108.7 0 72.0 88.7 68.3 

Std 0 11.0 6.6 0 13.4 0 22.8 0 20.8 22.2 19.3 

𝐸(𝑋𝑘) 0 203.8 149.8 0 0.028 0 44.7 0 61.9 84.8 104.3 

Std 0 51.8 38.1 0 0.23 0 26.9 0 23.2 22.0 22.9 

R
is

k
 A

v
er

se
 

𝐸(𝑡𝑘) 53.2 37.8 40.2 88.9 78.4 91.7 80.9 91.3 60.4 48.3 46.8 

Std 9.2 8.3 7.4 19.6 18.1 20 19.2 20.9 13.6 11.8 10.2 

𝐸(𝑋𝑘) 53.2 64.1 62 40 54.1 43.3 57.6 24.0 74.4 82.9 93.6 

Std 7.9 13.3 8.8 7.8 9.7 7.8 11.6 7.2 15.1 14.7 13.8 
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Fig 4.5: Evolution of costs during burn in period and stationary distribution of 
flows on routes 9,10,11 for risk neutral and risk averse passengers at 
𝑚 = 1,  =4, 𝛽 = 2.5 and ℶ=15  (scenario 2) 

The stationary distribution of flows (fig 4.5) also indicate that standard 

deviation of risk neutral flows on these routes is much higher than the standard 

deviation of risk averse flows. 

4.2.2 Presence of stationary distribution: 

As discussed in Chapter 3 if the current disaggregate framework obeys the 

markovian property and results in a ergodic and regular distribution of flows it 

should fulfil the following conditions: 

 The presence of a unique stationary distribution 

 The convergence of the system to the same stationary distribution 

irrespective of its initial condition 

In accordance with the markovian property’s requirement the example 

network-2 was tested for the presence of a unique stationary distribution at 

higher  values for risk averse passengers. Fig 4.6 shows the distribution of 

flows between different days and indicates the presence of stationary 

distribution as noted by the similar mean and standard deviation of the flows 

for scenario 2. A similar analysis for scenario 1 shows the presence of almost 

the same stationary distribution of flows (fig 4.7) on routes 9,10,11.  
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Fig 4.6 Stationary distribution for routes 9,10 and 11 (a) between days 201-400 
(b) between days 401-600 at 𝑚 = 1,  =4 , 𝛽 = 2.5, ℶ=15 days (Scenario 2) 

 

Fig 4.7 Stationary distribution for routes 9,10 and 11, (a) between days 201-
400 (b) between days 401-600 at 𝑚 = 1,  =4 , 𝛽 = 2.5, ℶ=15 days 
(Scenario 1) 

 

4.2.3 Initial Conditions 

Similar to the analysis of risk neutral passengers in chapter 3 the convergence 

to the same distribution irrespective of its initial condition is checked for risk 

averse passengers (example network 2). The initial conditions were varied by 

varying the random number seed values of the R-DSPM framework (initial 

condition II) and by varying the rate of poisson arrivals and the population size 

between OD pairs for the first 80 days (Z=1- poisson rate of passenger arrivals-
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400/3600, population size (constant demand)-83; Z=2-poisson rate of 

passenger arrivals-250/3600, population size (constant demand)-88) (Initial 

condition III). Table 4.8 shows the result of different initial conditions for 

scenario 2 and table 4.9 shows the result for scenario 1.  

Table 4.8: Convergence to same distribution irrespective of its initial condition 
for risk averse passengers (example network 2) at 𝑚 = 1,  =4 , 𝛽 = 2.5, 
ℶ=15 days (scenario 2) 

  Node 1 – Node 4 (Z=1) 
Node 2 – Node 4 

(Z=2) 

 Route 1 2 3 4 5 6 7 8 9 10 11 

Initial 

condition 

II 

𝐸(𝑡𝑘) 54.3 38.2 40.7 90.6 94.8 78.1 58.3 96.7 65.3 53.0 51.3 

Std 9.7 8.5 7.9 20.3 20.5 20.9 17.1 22.4 14.6 14.1 13 

𝐸(𝑋𝑘) 43.2 63.1 60.8 45.5 52.2 51.3 59 23.1 76.9 83.6 90.4 

Std 8.9 12.1 14.4 8.4 9.1 8.3 8.7 7.2 16.4 14 12.7 

Initial 

condition 

III 

𝐸(𝑡𝑘) 53.2 37.5 40.2 90.6 93.5 76.7 58 94.7 64.2 53.1 50.7 

Std 9.3 8.3 7.4 20 20 20.7 18 22.5 14.9 13.6 12.1 

𝐸(𝑋𝑘) 43.3 63.1 61 45.3 52.2 51.5 59.1 22.9 73.4 81.4 96.1 

Std 10.5 15.5 14.6 8.9 9.4 9.4 11.2 7.8 15.7 14.6 13.9 

Table 4.9: Convergence to same distribution irrespective of its initial condition 
for risk averse passengers (example network 2) at 𝑚 = 1,  =4, 𝛽 = 2.5 
and ℶ=15 days (scenario 1). 

Route 
Node 1 – Node 4 (Z=1) 

Node 2 – Node 4 

(Z=2) 

1 2 3 4 5 6 7 8 9 10 11 

Initial 

condition 

II 

𝐸(𝑡𝑘) 54.3 38.2 40.9 89.8 79.1 93.3 81.5 92.7 60.7 48.4 47.2 

Std 9.6 8.3 8 19.7 19 20.3 19.6 20.7 13.1 12.0 10.9 

𝐸(𝑋𝑘) 53.1 63.8 61.7 40.3 54.1 43.1 57.7 24.5 75.7 84.1 91.1 

Std 8.1 12.9 8.7 8 8.7 7.9 11 7.1 15.7 13.3 12.7 

Initial 

condition 

III 

𝐸(𝑡𝑘) 53.3 37.7 40.3 88.9 78.2 91.8 80.8 91.1 60.2 48.3 46.8 

Std 9.2 8.2 7.5 19.5 18.1 20.1 19.1 20.8 13.6 11.6 10.3 

𝐸(𝑋𝑘) 53.1 64.1 62.1 39.9 54 43.2 57.9 23.9 74.6 82.6 93.7 

Std 9 14.4 8.5 7.6 9.3 8.3 12.5 7.3 16.2 15.4 13.7 

 

The results of statistical test (Wilcoxon rank sum test) to check if the stationary 

distribution is from same distribution or not are shown in table 4.10 (scenario 
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2) and table 4.11 (scenario 1). Since the memory length is 15 days the sample 

for statistical tests contains every 20th element of 𝑬(𝒕𝒌) and 𝑬(𝑿𝒌). 

Table 4.10 Wilcoxon rank sum test for risk averse passenger (example network 
2) at 𝑚 = 1, =4 , 𝛽 = 2.5 and ℶ=15 (scenario 2) 

Route 
Node 1 – Node 4 (Z=1) 

Node 2 – Node 4 

(Z=2) 

1 2 3 4 5 6 7 8 9 10 11 

𝑬(𝒕𝒌) 

1
 v

s 
2

 

0.13 0.3 0.4 0.99 0.79 0.68 0.55 0.83 0.38 0.98 0.55 

2
 v

s 
3

 

0.18 0.36 0.44 0.6 0.61 0.64 0.47 0.7 0.4 0.98 0.64 

1
 v

s 
3

 

0.9 0.99 0.98 0.55 0.83 0.88 0.91 0.92 0.98 0.83 0.92 

𝑬(𝑿𝒌) 

1
 v

s 
2

 

0.11 0.83 0.86 0.37 0.95 0.02 0.09 0.23 0.82 0.53 0.54 

2
 v

s 
3

 

0.17 0.99 0.46 0.21 0.92 0.22 0.88 0.48 0.93 0.21 0.24 

1
 v

s 
3

 

0.99 0.95 0.38 0.72 0.78 0.49 0.13 0.53 0.73 0.79 0.72 

Table 4.11 Wilcoxon rank sum test for risk averse passenger (example network 
2) at 𝑚 = 1,  =4 , 𝛽 = 2.5 and ℶ=15  (scenario 1) 

Route 
Node 1 – Node 4 (Z=1) 

Node 2 – Node 4 

(Z=2) 

1 2 3 4 5 6 7 8 9 10 11 

𝑬(𝒕𝒌) 

1
 v

s 
2

 

0.13 0.31 0.17 0.98 0.88 0.34 0.94 0.34 0.19 0.83 0.74 

2
 v

s 
3

 

0.09 0.24 0.13 0.85 0.92 0.45 0.98 0.36 0.24 0.91 1 

1
 v

s 
3

 

0.85 0.83 0.89 0.97 0.97 0.82 0.91 0.92 0.97 0.95 0.76 

𝑬(𝑿𝒌) 

1
 v

s 
2

 

0.51 0.86 0.87 0.17 0.66 0.55 0.71 0.23 0.2 0.59 0.4 

2
 v

s 
3

 

0.78 0.92 0.82 0.16 0.72 0.76 0.95 0.38 0.3 0.31 0.68 

1
 v

s 
3

 

0.59 0.82 0.91 0.85 0.82 0.72 0.61 0.71 0.92 0.6 0.72 
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The table 4.10 and table 4.11 results show that the null hypothesis cannot be 

rejected at the 5% significance level as all the p-values are greater than 0.05 in 

all cases for m = 1. This shows that there is not sufficient evidence to show that 

the samples from the three realisations do not come from the same stationary 

distribution and do not have the same median.  

Similar to Chapter 3 a two sample Kolmogorov-Smirnov test is carried out to 

assess if the two independent samples obtained by running different initial 

conditions are from same distribution or not. As indicated in chapter 3 the test 

is carried out using the ‘kstest2’ function in matlab wherein 0 indicates that the 

null hypothesis is true and 1 indicates that null hypothesis is rejected. The 

output of the test is given in table 4.12.    

Table 4.12 Two sample Kolmogorov-Smirnov test for risk averse passenger 
(example network 2) at 𝑚 = 1, =4 , 𝛽 = 2.5 and ℶ=15 (scenario 2) 

Route 
Node 1 – Node 4 (Z=1) 

Node 2 – Node 4 

(Z=2) 

1 2 3 4 5 6 7 8 9 10 11 

𝑬(𝒕𝒌) 

1
 v

s 
2

 

0 0 0 0 0 0 0 0 0 0 0 

2
 v

s 
3

 

0 0 0 0 0 0 0 0 0 0 0 

1
 v

s 
3

 

0 0 0 0 0 0 0 0 0 0 0 

𝑬(𝑿𝒌) 

1
 v

s 
2

 

0 0 0 0 0 0 0 0 0 0 0 

2
 v

s 
3

 

0 0 0 0 0 0 0 0 0 0 0 

1
 v

s 
3

 

0 0 0 0 0 0 0 0 0 0 0 

Table 4.12 shows that the results of Wilcoxon rank sum test and the two-

sample Kolmogorov-Smirnov test are almost similar with the implication that 

all the samples are from the same distribution. 

 

4.2.4 Randomness test  

4.2.4.1 Autocorrelation  

The autocorrelation of the time series data are plotted to check the randomness 

of the generated data. As the correlation dies down with the lag in days it can be 
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said that the time series is indeed random. Fig 4.8 and fig 4.9 shows the 

autocorrelation diagram for the risk averse passengers and risk neutral 

passengers. It is observed that the autocorrelation dies down for  =  4 at 

larger lag days for risk neutral passengers. At higher  the tendency to move 

towards periodic attractors is observed in risk – averse passengers as can be 

seen from the alternating negative and positive autocorrelations occurring over 

every 15 day memory length cycle. In case of route 2 (fig 4.8)in scenario 2 and 

routes 2 and 7 in scenario 1(fig 4.9) the periodic oscillations between the 

negative and positive autocorrelation decay down very slowly thereby 

indicating that a larger run time is required to get a random sample of flows for 

these routes. 

 

Fig 4.8 Autocorrelation of flows on routes 2,7,9(a) risk neutral (b) risk averse 
(scenario 2) at 𝑚 = 1,  =  4, β = 2.5 and ℶ = 15 
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Fig 4.9 Autocorrelation of flows on routes 2,7,9(a) risk neutral (b) risk averse 
(scenario 1) at 𝑚 = 1,  =  4, β = 2.5 and ℶ = 15  

 

Fig 4.10 Autocorrelation of flows on routes 2,7,9(a) risk neutral (b) risk averse 
(scenario 2) at 𝑚 = 1,  =  0.05, β = 2.5 and ℶ = 15  

At lower  =  0.05 (fig 4.10) one finds that again the risk averse passengers 

have the tendency to move towards periodic attractors especially on route 9 

which caters to OD pair at the lower end transit stop of the example network 2. 

This is expected as at the lower end transit stop the transit services may 

already be full resulting in the lower end OD movement competing for space in 

the two line network. Due to this a larger number of passengers experience 

variance in travel times due to failure to board condition at the lower end 

transit stop (stop 2). Over larger lags the periodicity for risk averse passengers 
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appears to die down for routes 2 and 7 but decay at a slower rate for route 9. 

The results of the autocorrelation of flows for risk averse network indicate the 

presence of more than one attractor irrespective of the  value assumed for a β 

value of 2.5.  

4.2.4.2 Partial Autocorrelation  

 

Fig 4.11 Partial Autocorrelation of flows on routes 2,7,9 with 95% confidence 
bounds (a) 𝑚 = 1(b) 𝑚 = 300 (scenario 2) at  = 4, β = 2.5 and ℶ = 15.  

As highlighted in section 3.6.2 partial autocorrelation help identify the order of 

ARMA time series models. The partial autocorrelation of flows on routes 2,7, 

and 9 show a strong statistical significance within the memory period of ℶ = 15 

days. There is a strong significance on the 16th day after which the correlation 

are at borderline of statistical significance. The intermittent peaking of the 

positive correlation followed by negative correlations indicates the tendency of 

the model to move towards periodic attractors. Fig 4.11 indicate that the model 

exhibits persistent correlation within the memory period 

4.2.5 Failure to board: 

The strict capacity constraint of the R-DSPM results in several passengers not 

being able to board the first arriving transit service of their choice set. This 

phenomenon is referred to as failure to board. Fig 4.12 indicates the number of 

passengers failing to board at various stops of the example network 2 on a 

randomly chosen day.  
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Fig 4.12: Number of passengers experiencing failure to board on day 450 at 
𝑚 = 1,  = 4, β = 2.5 and ℶ = 15.  (example 2 - scenario 2). 

Figure 4.12 is generated by running the simulation for the duration of 1 hour 

and a buffer time till the last generated passenger reaches destination. On the 

departure of each transit service from a transit stop the number of passengers 

who find the exiting service attractive but are unable to board is counted. The 

count only includes the passengers who had arrived before the arrival of transit 

service of their choice. Hence if transit service 1 is the attractive service for 21st 

passenger in the queue at the transit stop; who happens to have arrived before 

the arrival of transit service 1; the passenger is counted as failure to board if all 

the previous 20 passengers fill the capacity of the transit service. If the 

passenger finds the next arriving transit service of his/her attractive line set to 

be full as well, the passenger is again counted as ‘failure to board’ and is 

included in the queue count for the arrived transit service. Figure 4.12 gives the 

arrival time of the transit service at the transit stop and the number of 

passengers failing to board the arrived service. Figure 4.12 indicates that 

within the simulation period several passengers are unable to board the transit 

service of their attractive line set. The built up of passengers at the transit stops 

indirectly implies these passenger experience an increased waiting time as a 

result of failure to board condition and hence find the service unreliable. As is 

expected the lower end transit stop (stop 2) has more number of passengers 

experiencing failure to board condition due to the transit services arriving 

almost full/full at stop 2. This results in OD movement 2 competing for space in 

the two lined network and hence experiencing more number of failure to board 

phenomenon.  
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4.2.6 Sensitivity tests: 

Since the conclusions derived from the results of both scenario 1 and scenario 2 

are similar the following sections show only the sensitivity test results for 

scenario 2.  

4.2.6.1 Sensitivity analysis with Different shape factors: 

As discussed in section 4.1.2 a shape factor of m = 300 would result in a more 

reliable interarrivals. The current section shall compare the behaviour of risk 

averse and risk neutral passengers in a congested network with shape factor 

m = 300. It is found that similar to m = 1 the lower  results in similar flow 

and experienced travel times between risk neutral and risk averse passengers. 

At higher  value the distribution of risk averse flows onto the routes found 

unattractive by risk neutral passengers is also observed. Only the result of  

 = 4  is presented in Fig 4.13 which shows a comparison of experienced total 

travel time and flows on routes 2,7 and 9 for risk neutral and risk averse 

passengers. From the figure it can be observed that the risk neutral passengers 

find route 2 attractive and predominantly route themselves onto that route. 

Even though a large number of passengers choose route 2 the expectation of 

the experienced total travel time is lesser than the expectation of the 

experienced total travel time on route 7 which has comparatively lesser flows. 

In case of risk averse passengers we find that the flows assign themselves in 

such a way that the routes found unattractive by risk neutral passengers are 

also utilised and the standard deviation of the experienced total travel times 

and flows on various routes are lesser than those of risk neutral passengers. 

 

Fig 4.13: Risk neutral vs risk averse – shape factor 𝑚 = 300 at  = 4  and ℶ=15 
days (a) experienced route total travel times (b) flows on the route 
(scenario 2) 
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4.2.6.2 Sensitivity analysis with different memory lengths 

The sensitivity of the model to varying memory lengths (ℶ) was tested. Memory 

lengths (ℶ) of 5 days, 15 days and 30 days were used to test the difference in 

the flow and total experienced travel time distribution between risk neutral 

and risk averse passengers. Fig 4.14 shows the result of the comparison of total 

experienced total travel time between the risk neutral and risk averse 

passengers assuming  = 4. It is observed that as the memory length increases 

the standard deviation of the total experienced travel times of risk averse 

passengers reduces (Table 4.13). On the other hand the standard deviation of 

risk neutral passengers remains almost similar. This is because at higher  

almost all the risk neutral passengers travel on the same route on a particular 

day leading to high average experienced total travel times. However this 

phenomenon is absent in risk averse passengers as when the memory length 

increases they learn about the variance associated with all possible routes and 

hence assign themselves such that the routes found unattractive by risk neutral 

passengers becomes attractive to risk averse passengers.   

 

 

Fig 4.14: Risk neutral vs risk averse (β =2.5) – shape factor 𝑚 = 1 at  = 4  total 
experienced travel time distribution for various memory lengths on route 
2, 7, 9 (scenario 2) 
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Table 4.13 : Experienced total travel time and flows along routes 2, 7,9 for 
various memory length (scenario 2) 𝑚 = 1 at  = 4   

 Risk Averse (β =2.5) Risk Neutral (β =0) 

 Route 2 7 9 2 7 9 

ℶ=5 

𝐸(𝑡𝑘) 39.7 82.3 64.5 41.6 88.1 66.0 

Std 9.1 21.8 18 10.2 24.1 19.8 

𝐸(𝑋𝑘) 147.6 94.3 73.2 187.6 89.2 67.9 

Std 18 18.1 13.3 39.0 17.6 18.1 

ℶ=15 

𝐸(𝑡𝑘) 37.6 57.9 64.5 42.3 89.1 70 

Std 8.2 17.3 14.7 10.7 24.4 20.6 

𝐸(𝑋𝑘) 63.2 59.0 75.0 197.3 67 67.4 

Std 13.1 8.8 14.8 48.0 24.1 20 

ℶ=30 

𝐸(𝑡𝑘) 37.6 59.8 68.5 42.3 88.9 70.2 

Std 8.4 19.6 15.8 10.7 24.1 20.6 

𝐸(𝑋𝑘) 81.7 36.3 63.3 197.5 66 66.9 

Std 14.1 15.0 14.2 47.8 23.4 20.2 

 

 

Fig 4.15: Risk neutral (β =0)vs risk averse (β =2.5) – shape factor 𝑚 = 1 at 
 = 4  flow distribution for various memory lengths on route 2, 7, 9 
(scenario 1) 

A similar observation of an increase in the memory length resulting in risk 

averse passengers routing themselves such that the standard deviation of the 

flows on the routes are lesser than that of risk neutral passengers (fig 4.15) is 
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observed for scenario 1. It is also seen that irrespective of the scenario adopted 

at higher memory lengths the routes found unattractive by risk neutral 

passengers are found attractive by risk averse passengers (section 4.2.1).  

4.2.6.3 Sensitivity analysis with different 𝜷 values 

 

Fig 4.16 The sensitivity of route experienced total travel times and flows to 
various β values for  = 4,𝑚 = 1, ℶ = 15 (scenario 2) 

Table 4.14: The sensitivity of route experienced total travel times and flows to 
various β values for  = 4,𝑚 = 1, ℶ = 15  (scenario 2) 

β Values Route 2 Route 7 

Mean Std Mean Std 

Experienced 

total travel 

time 

0.5 37.7 8.4 60.9 18.7 

0.194 38.1 8.6 65.3 20.7 

0.05 39.7 9.2 77.9 22.6 

Flow 0.5 75 18.4 61.3 9.3 

0.194 93.4 29.9 62.4 10.5 

0.05 145.6 41.2 60.9 10.8 

Fig 4.16 (table 4.14) shows the sensitivity of various β values for  = 4 and 

ℶ=15 days. The fig and table indicates that as the β values increase the standard 

deviation of the experienced total travel times and the flows along various 

routes decrease. A similar trend is visible at lower  values. However the 

distinction in the mean values of the flows (fig 4.17 and table 4.15) between 

various β values happens only when the β values are significantly different 

from each other.   Another aspect to be noted at lower  values is that there is 
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still a difference in the route flow distribution between risk averse and risk 

neutral passengers at higher β values. 

 

Fig 4.17 The sensitivity of route flows to various β values for  = 0.05,𝑚 =
1, ℶ = 15  (scenario 2) 

Table 4.15: The sensitivity of route flows to various β values for 
 = 0.05,𝑚 = 1, ℶ = 15  (scenario 2) 

β Value Route 2 Route 7 

Mean Std Mean Std 

0 77.8 8.4 62.2 8 

2.5 57.8 7.9 52.6 7.3 

5 56.4 7.8 52.5 7.2 

 

4.2.7 Implications for general networks 

The above analysis indicates that the behaviour of risk averse network will vary 

from risk neutral network under several conditions. At lower , β and ℶ values 

the distinction in the flow distribution between risk neutral passengers and 

risk averse passengers is not significant and can be said to be almost similar. At 

higher β values with lower , ℶ values, the difference becomes more 

pronounced. Determining if a  β value is high enough to be able to observe a 

significant difference in route flows is an aspect which requires further 

research. It may be deduced that a high enough value of β depends on the 

network characteristics namely the number of available routes between an OD 

pair; the amount of variance associated with the network; the transfer penalty 

if any assumed for each transfer in the network; the socio-economic 

background of the transit users.  The current study indicates that under certain 
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assumed parameter for the considered example network a significant 

difference in the risk averse and risk neutral flows is observed for higher  

, β and ℶ values.  

4.3 Risk aversion models using BPR cost function, effective 

frequency cost function to account for congestion and 

mean-variance based aggregate stochastic process model. 

Section 4.2 dealt with the mean-variance analysis using R-DSPM with strict 

capacity constraints. The mean-variance cost used in section 4.2 was a linear 

combination of mean total travel time and variance associated with the 

experienced total travel time. In the current section an equilibrium based 

approach using route section based BPR cost function; hyperpath based 

effective frequency formulation; and aggregate stochastic model formulation 

shall be explored which will help establish the advantages of using R-DSPM 

with strict capacity constraint over the existing theoretical models. Sub section 

4.3.1 shall implement a logit SUE to obtain the flows along various routes 

wherein the components of arc cost function are detailed and are similar to the 

ones proposed by Szeto et al. (2011). Sub section 4.3.2 shall implement a DUE 

based hyperpath formulation wherein the concept of effective frequency is 

used to deal with congested transit network. It is however noted that the non –

additive nature of the mean-variance cost function (using standard deviation) 

makes a hyperpath based approach complex and shall require a separate study 

to make the cost function additive or may require a solution algorithm which 

solves for non-additive cost function. Example network 2 in the current thesis 

proves an ideal example to implement the mean-variance cost function as the 

current cost function uses variance instead of standard deviation and variance 

remains additive.   

4.3.1 Stochastic equilibrium model with BPR – type congestion 

function-Route section approach: 

In this section an insight into a BPR cost function based mean-variance logit 

SUE is given. The initial step involves computation of the cost function. The cost 

function of each route section comprises of various components and is 

highlighted below. The variance calculation for various components of cost 

function is similar to Szeto et al. (2011) excepting the in-vehicle travel time . 

1. In-vehicle travel time: 

Unlike Szeto et al. (2011) the in-vehicle travel time in the current research is 

considered constant. The variance of in-vehicle travel time arises in case of 
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route sections which consist of more than one line in their attractive line set. In 

such a case the variance is the result of the probability associated with which of 

these lines serves the transit stop first. Analytically the expected in-vehicle 
travel time for route section s (E[T𝑖𝑛−𝑣𝑒ℎ]

𝑠
) is given as in eq(4.3). 

E[T𝑖𝑛−𝑣𝑒ℎ]
𝑠
= ∫ ∑ al

l∈A∗

pl(w)∏P̅i(w)dw
i∈A∗

i≠l

                                                           (4.3)
∞

0

 

Where al- is the in-vehicle travel time of line section l; P̅i(w)- complementary 

cumulative distribution of the waiting time associated with transit services 

forming the attractive line set; pl(w)- probability density function of the line 

arriving first at the transit stop; A∗- attractive line set; T𝑖𝑛−𝑣𝑒ℎ- in-vehicle travel 

time. 

In case of exponential inter-arrivals the above equation reduces to  

E[T𝑖𝑛−𝑣𝑒ℎ]
𝑠
= ∑ alΥjp

l

l∈A∗

                                                                                                 (4.4) 

Where  

Υjp
l =

φj

∑ φll∈A∗
                                                                                                                   (4.5) 

Wherein φl- frequency of the line section l and  Υjp
l- choice probability of line 

section l amongst the attractive line set between nodes j and p. It is known that  

Var[T𝑖𝑛−𝑣𝑒ℎ]
𝑠
= E [T𝑖𝑛−𝑣𝑒ℎ2

]
𝑠
− E[T𝑖𝑛−𝑣𝑒ℎ]

𝑠

2
                                                         (4.6) 

Hence for exponential inter-arrivals: 

var[T𝑖𝑛−𝑣𝑒ℎ]
𝑠
= ∑

φl

∑ φll∈A∗
(al − ∑ al

l∈A∗

φl

∑ φll∈A∗
)

2

l∈A∗

                                            (4.7) 

2. The uncongested waiting time: 

The average waiting time associated with being able to board the first arriving 

transit service in his/her attractive line set is derived in Chapter 2. Furthering 

the derivation of average waiting time, the variance of the waiting time is 

computed as given in eq 4.2: 

E[W]𝑠 =
1

∑ φll∈A∗
                                                                                                              (4.8) 

var[W]𝑠 = (
1

∑ φll∈A∗
)

2

                                                                                                    (4.9) 
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3. The congested waiting time : 

The BPR function given in De Cea and Fernández (1993) and discussed in 

chapter 2 gives the excess waiting time due to congested condition. Eq (4.3) 

gives the formulation specified in Chapter 2 

𝓌𝑠 = ζs  (
v̅ps + vs

Caps
)

b

                                                                                                    (4.10) 

Where Caps − is the capacity of the route section which is defined as 

Caps = ∑ 𝒸lφllεs  with 𝒸l and φl being the capacity and frequency of line section 

l, φs – is the frequency of the route section s and ζ, b are the calibration 

parameters, vs the total number of passengers boarding the same route section 

s at the origin, v̅ps the number of passengers boarding the route section 𝑠 

before node ἲ(𝑠) and alighting after ἲ(𝑠). 

As already described φl is a random variable as the headway Hl associated with 

each line is a random variable. This makes Caps a random variable. Assuming 

that 𝒸l is the same for all line sections i.e 𝒸l = 𝒸 the expected value of the BPR 

function given in eq(4.10) becomes 

E[𝓌]𝑠 = ζs  (
v̅ps + vs

𝒸κ
)

b

 E[(hs)
b]                                                                            (4.11) 

E[𝓌]𝑠 = ζs b! (
ά(v̅ps + vs)

𝒸κφs
)

b

                                                                                   (4.12) 

Where ά and κ are unit conversion factors. hs is the combined headway of all 

the line sections within the route section s. 

The variance associated with BPR function of excess waiting time is as given as 

Szeto et al. (2011): 

Var[𝓌]𝑠 = ζs
2((2b)! − (b!)2) (

ά(v̅ps + vs)

𝒸κφs
)

2b

                                                    (4.13) 

Using the above mentioned components the cost of each route section was 

computed as follows. 

Cs = E[T𝑖𝑛−𝑣𝑒ℎ]
s
+ E[W]s + E[𝓌]s

+ β(var[T𝑖𝑛−𝑣𝑒ℎ]
s
+ var[W]s + Var[𝓌]s)                                 (4.14) 

The parameters 𝜁s, E[W]𝑠and b were calibrated by running the R-DSPM. The 

calibration was done by running the model at various demand levels for which 

different demand rates were specified. The rates were chosen such that there is 



- 118 - 

 

at least one day within the simulation period when all the demand between 

each OD pair choses to travel. Each simulation run is made for 700 days of 

which the first 200 days are discarded as the burn-in period and the average 

waiting times associated with each route section at the end of each day is 

obtained and plotted. After each simulation run we get 500 days (500 data 

points) of average waiting times for each route section. The volume was 

determined by ascertaining the flow utilising a route section (including the 

passengers who complete their journeys in the buffer time) and the capacity 

was determined by counting the number of transit services that arrive at the 

transit stop within the simulation period of 4 hours.   

The passengers are allowed to complete the journey during the buffer time. 

Buffer time is defined as the time period wherein the transit services get 

generated but the passengers are not generated.  The capacity of the route 

section consists of only the transit services generated within the specified 

simulation period (in the current case 4 hours). These criteria for obtaining  the 

volume and capacity  results in the volume/capacity ratio exceeding 1 as shown 

in Fig 4.18. However it is to be noted that each transit service generated has a 

strict capacity constraint of 20 passengers. Fig 4.18 shows the calibrated 

function fitted onto the simulated data for example network 2. The route 

sections originating at the lower end transit stops see a slightly steeper curve 

indicating that the waiting time required for a flow by capacity ratio is higher 

than at the transit stop where line originates. It also implies the need to use 

different parameters for different sections of the same line. 

 

Fig 4.18 : Calibration of the parameters of the route sections of example 
network 2. 
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Table 4.16 : The calibration values of the parameters of  various route sections 
of example network 2 

Parameters B D L E J A K C F 

𝑬[𝑾]𝒔 
6.979 

(0.054) 

5.755 

(0.04) 

3.403 

(0.015) 

3.456 

(0.056) 

5.987 

(0.036) 

7.463 

(0.035) 

6.056 

(0.021) 

3.415 

(0.009) 

7.928 

(0.045) 

𝜁 
8.853 

(0.222) 

9.098 

(0.225) 

12.663 

(0.414) 

17.036 

(0.093) 

21.393 

(0.33) 

9.032 

(0.442) 

8.419 

(0.485) 

12.088 

(0.255) 

21.101 

(0.549) 

𝑏 
1.837 

(0.055) 

2.588 

(0.073) 

3.617 

(0.074) 

2.582 

(0.014) 

2.775 

(0.042) 

2.567 

(0.123) 

3.102 

(0.087) 

4.479 

(0.073) 

2.545 

(0.055) 

 

The parameters calibrated as given in table 4.16 are used in the BPR styled logit 

stochastic equilibrium model. The logit-SUE algorithm using BPR cost function 

specified above is as follows: 

1. Initialisation: assume initial route section costs 𝐶0 route flows 𝐹0 and 

𝒾 = 1. 

2. Route Choice : For each OD pair, find the auxiliary route flows vector 𝐹̂𝒾 

by using the logit function 

𝑒−(𝐶𝑠)

∑ 𝑒−(𝐶𝑟)𝑺
𝑟=1

 

3. MSA: set the route flows for iteration 𝒾 and update the flows 

𝐹𝒾 = 𝐹𝒾−1 +
(𝐹̂𝒾 − 𝐹𝒾−1)

𝒾
 

4. Update Costs: Obtain the revised route section costs  and set 𝐶𝒾+1 

5. Set counter 𝒾 = 𝒾 + 1, if 𝒾 > Г′, the maximum number of iterations, 

STOP , otherwise go to 2. 

The equilibrium model was run for 3000 iterations. Table 4.17 shows the 

proportion of flows between each OD pair for the logit-SUE model with 

=0.5*10-8 and 4 and β= 2.5, a demand of OD1 =400 and OD2=250. The results 

show that most of the flows in case of risk neutral passengers at a low  value 

are split equally between the available routes. In case of risk averse passengers 

the flow is split between route 1 and 2 for OD1 and between 9 and 10 for OD 2. 

A similar analysis with a   value of 4 was carried out. At a higher  of value 4 

there is not much difference in the proportion of flows on route be it risk averse 

or risk neutral passenger. 
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Table 4.17: Logit –SUE results for example network 2 using BPR –styled cost 
function for OD 1 – 400 and OD 2- 250. 

  Node 1 – Node 4 (Z=1) 
Node 2 – Node 4 

(Z=2) 

 Route 1 2 3 4 5 6 7 8 9 10 11 

0.5*10-8 
β=0 0.13 0.13 0.13 0.13 0.12 0.12 0.12 0.12 0.34 0.33 0.33 

β=2.5 0.5 0.49 0 0.01 0 0 0 0 0.63 0.37 0 

0.001 
β=0 0.44 0.41 0 0.07 0 0 0 0.08 0.58 0.42 0 

β=2.5 0.55 0.45 0 0 0 0 0 0 0.56 0.44 0 

4 
β=0 0.54 0.46 0 0 0 0 0 0 0.58 0.42 0 

β=2.5 0.55 0.45 0 0 0 0 0 0 0.56 0.44 0 

 

An intermediate  value of 0.001 shows a slight distinction in the proportion of 

risk neutral and risk averse flows choosing each route. The above analysis 

indicates that since a logit-SUE doesn’t comprise of a learning process the risk 

averse passengers route themselves similar to risk neutral passengers at higher 

 values however in R-DSPM (section 4.2) the risk averse passengers learn from 

their experiences of higher variance and thereby route themselves onto the 

routes which were found to be less attractive to the risk neutral passengers. 

4.3.2 Deterministic user equilibrium with ‘effective frequency’ 

function - hyperpath approach: 

Example network 2 is tested for hyperpath based ‘effective frequency’ type 

modelling of congested transit network.  As described in chapter 2 effective 

frequency concept was utilised in hyperpath context by Cepeda et al. (2006). 

The ‘effective frequency’ of each line segment is given as shown in eq 4.15: 

λ′
a(v) = {

φa [1 − (
va

φa𝒸 − va
′ + va

)
𝒷

]

0                       otherwise

 if va
′ < φa𝒸                                          (4.15) 

Where va −is the flow boarding the line segment a at the transit stop and va
′ is 

the flow immediately after the transit service leaves the transit stop. φa – 

nominal frequency of the line  segment a 𝒸- capacity of each transit service of 

line segment a  λ′
a – effective frequency of the line segment a. Waiting time of 

the line segments are considered as inverse of ‘effective frequencies’.  

Similar to the previous section the parameter 𝒷 is calibrated by running R-

DSPM for several demand values and finding the corresponding waiting time of 

each line segment at the origin stop. The calibration results are shown in Table 
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4.18 and the fit of the calibrated values with the simulated data is shown in fig 

4.19. 

The calibrated values indicate that the 𝒷 values cannot be kept constant for a 

particular line and that for the same line it varies at different segments. The 

calibrated values were used to solve the deterministic equilibrium model using 

the hyperpath approach for the example network 2.  

 

Fig 4.19: Calibration of line segments for the example network 2 

Table 4.18: Calibration values of the parameters associated with example 
network 2. 

Line 

segment 
1 2 3 4 

𝒷 6.678 10.222 2.32 2.406 

(standard 

error) 
0.213 0.341 0.04 0.067 

The deterministic hyperpath based user equilibrium for risk neutral and risk 

averse passengers  

1. Initialisation: assume initial line segment flows 𝐹0 and 𝒾 = 1. 

2. Compute the line-segment effective frequency 

3. Determine the shortest hyperpath. 

4. Find the auxiliary line segment flows vector 𝐹̂𝒾 by AON on the shortest 

hyperpath. 

5. MSA: set the line segment flows for iteration 𝒾 and update the flows 

𝐹𝒾 = 𝐹𝒾−1 +
(𝐹̂𝒾 − 𝐹𝒾−1)

𝒾
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6. Set counter 𝒾 = 𝒾 + 1, if 𝒾 > Г′, the maximum number of iterations, 

STOP , otherwise go to 2. 

Table 4.19 : Distribution of risk neutral passenger flows 

OD 
Line 

segment 
1 2 3 4 

OD1-150 

OD2-100 
Flows 66.74 83.26 84 166 

OD1-400 

OD2-250 
Flows 200 200 325 325 

The deterministic hyper path model is run in case of risk averse passengers and 

resulted in the flow distribution as given in Table 4.20. The risk aversion in 

passengers is accounted for by adding the variance associated with the waiting 

time (inverse of effective frequency) and the variance associated with in-

vehicle travel time at each node. 

Table 4.20 : Distribution of risk averse passenger flows 

OD Line segment 1 2 3 4 

OD1-150 

OD2-100 

Flows 66.74 83.26 112.26 137.74 

OD1-400 

OD2-250 

Flows 200 200 325 325 

Table 4.19 and 4.20 indicate a difference in the distribution of flows for risk 

averse and risk neutral passengers at the lower line segments of the network 

when the OD demand is lesser than the capacity of the lines serving the 

network. For higher OD demand the distribution of flows for risk averse and 

risk neutral passengers remains the same.  

4.3.3 Aggregate stochastic process model 

The aggregate stochastic process model assumes that the passengers revise 

their route choice based on the average of costs experienced by the total flow 

on a route. As explained in section 3.4.2 if a particular route is not chosen on a 

day the cost of the route is computed by adding the cost of the route sections 

(when the route section is shared by more than one route). Based on the above 

surmise the aggregate stochastic process model was run for the mean-variance 

cost assuming an OD demand given in fig 4.3. Since at the end of a day each 

route has a cost associated with it even when no passenger has chosen the 

particular route and since all passengers are aware of the costs associated with 

all the routes in the network, the mean-variance cost for aggregate stochastic 

process model is given as below  
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ĝ𝑘𝑧
𝑧 = ∑𝜔𝑗

(

 
 
 
 

𝐸

[
 
 
 
 
𝑡𝑘𝑧(1𝑧)𝑧

.

.

.
𝑡𝑘𝑧(𝑑𝑧)𝑧]

 
 
 
 

+ 𝛽 𝑣𝑎𝑟

(

 
 
 

𝑡𝑘𝑧(1𝑧)𝑧

.

.

.
𝑡𝑘𝑧(𝑑𝑧)𝑧

)

 
 
 

)

 
 
 
 

𝛺−𝑗

                                     (4.16)

ℶ

𝑗=1

 

Where 𝑡𝑘𝑧(𝑖𝑧)𝑧- is the experienced total travel time along route 𝑘𝑧 by 

passenger 𝑖𝑧 between OD pair Z 

ĝ𝑘𝑧
𝑧- the predicted total travel time for route kz between OD pair Z. 

𝛺-current simulation day 

𝜔-weight associated with the memory length 

β- non-negative parameter which represents the degree to which the variance 

is undesirable to passengers (Jackson and Jucker, 1982). 

Table 4.21: Experienced total travel time and flows along various routes using 
aggregate stochastic process model with mean-variance cost (scenario 2) 

𝛽 = 2.5,  = 4, and ℶ = 15 

  Node 1 – Node 4 (Z=1) 
Node 2 – Node 4 

(Z=2) 

 Route 1 2 3 4 5 6 7 8 9 10 11 

ξ=0.05 

𝐸(𝑡𝑘) 51.1 38.5 40.5 101.8 103.8 74.3 68.6 107.2 91.6 84 80 

Std 8.6 9 7.3 23.5 22.8 26.1 27.4 29.3 21.7 19.7 20.1 

𝐸(𝑋𝑘) 84.7 146.4 148.5 3.5 3.5 4.4 4.3 3.2 60.9 89.8 100.1 

Std 13.9 12.1 11.1 1.7 1.7 3.1 2.7 1.4 11.1 13.8 10.4 

ξ=1.5 

𝐸(𝑡𝑘) 0 32.7 4.6 0 0 0 0 0 45.6 49.1 54.9 

Std 0 20.5 7.2 0 0 0 0 0 56.7 52.6 40.9 

𝐸(𝑋𝑘) 0 117.4 280.9 0 0 0 0 0 64.2 61.2 125.5 

Std 0 129.0 130.1 0 0 0 0 0 105.1 93.2 110.1 

Table 4.21 shows the results of implementing the mean-variance cost as an 

aggregate stochastic process model. It can be seen that a network consisting of 

fully aware passengers; as assumed in the aggregate stochastic process models, 

find route 2 and 3 attractive such that all passengers alternate between these 

routes for Z=1. The distinction between R-DSPM and the aggregate stochastic 

process model lies in the distribution of flows and thereby experienced total 

travel time on each route. The flows and the experienced total travel times have 

a large standard deviation at higher ξ values in aggregate stochastic process 
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models whereas the standard deviation of flows and experienced travel time is 

much lesser when adopting a disaggregate approach.  

4.4 Summary 

The current chapter dealt with the formulation of R-DSPM for risk neutral 

passengers. Numerical tests were carried out to show the changes observed in 

the route choice behaviour of risk averse passengers in comparison with risk 

neutral passengers. It is observed that the differences in the route choice 

behaviour of are not very pronounced at lower ξ β and ℶ values. It is only for 

higher ξ and β values that a marked difference is noticed. At a higher β value 

with a lower ξ there was a difference between risk averse and risk neutral 

passenger flow distribution, similarly a higher β value for a lower ℶ values 

resulted in a difference between risk neutral and risk averse passengers flow 

distribution. The determination if a β value is high enough to result in a marked 

difference between risk neutral and risk averse passenger flows is dependent 

on the network characteristics assumed such as the number of available routes 

between an OD pair; the amount of variance associated with the network; the 

transfer penalty if any assumed for each transfer in the network; the socio-

economic background of the transit users. It is also shown that the variance at 

the lower end transit stops is comparatively higher to the variance at the 

transit service starting stops as the lower end stops experience more number of 

failure to board passengers. 

It is also shown that the markovian properties of the mean-variance model are 

satisfied and hence a unique stationary distribution is present. A comparative 

study was also carried out between the existing transit assignment models and 

R-DSPM for risk averse passengers. The Chapter was able to note that the 

existing models excepting for the aggregate stochastic process model don’t 

account for the learning process of an individual and hence are not able to 

route the passengers realistically as in a day to day framework. The aggregate 

stochastic process model on the other hand resulted in flow distribution 

observing periodic oscillations between a pair of routes at higher ξ values. 

Though similar periodic oscillations at higher ξ values were also observed in R-

DSPM, the distribution of flow between the various available routes was such 

that the standard deviation of flows and experienced total travel times was 

significantly lesser. It was found that in R-DSPM the risk averse passengers 

route themselves even on those routes which were found unattractive by risk 

neutral passengers. 
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Chapter 5 

R-DSPM formulation for Mean – Lateness cost and Policy 

Evaluation 

Chapter 3 and Chapter 4 saw R-DSPM with mean-variance cost being 

formulated and implemented on various example networks along with the 

discussion of the results. The mean – variance model measures irregularity 

through dispersion of travel times and does not explicitly enumerate as to 

where the disutility associated with irregularity affects the passengers. One of 

the key assumptions associated with the mean-variance model is that the 

passengers are not affected by the time they arrive at the destination or the 

duration of the journey. In reality such an assumption may not be realistic 

especially for work based trips. In the current chapter a mean-lateness model 

which measures irregularity through the delay associated with the total travel 

time experienced by passengers exceeding their acceptable total travel time to 

the destination is proposed.  

Adopting the ‘scheduling’ concept proposed by Small (1982) several studies 

such as Watling (2006), Noland et al. (1998) Arnott et al. (1990) have studied 

the mean-lateness model in a traffic network.  Watling (2006) studied the effect 

of route choice under variable demand and supply conditions by solving the 

assignment problem as late arrival penalised user equilibrium (LAPUE). LAPUE 

used a modified cost function which considered only the lateness penalty 

associated with a total travel time exceeding beyond a predefined desired total 

travel time.  A desired total travel time when exceeded mimics late arrival at 

the destination thereby resulting in a disutility. Most of these studies (Noland et 

al., 1998; Arnott et al., 1990; Watling, 2006) assume an identical desired total 

travel times for all commuters. 

The current chapter follows the modified cost function proposed in Watling 

(2006) accounting for disutility associated with a passenger experiencing a 

total travel time being beyond his/her desired total travel time. The chapter is 

organised such that section 5.1 discusses the integration of the mean-lateness 

cost formulation with R-DSPM. Section 5.2 looks at the implementation of the 

mean-lateness model on a test network. Section 5.3 evaluates the policy 

measures that could be undertaken by the operating agencies and compares the 

performance of various cost assumptions on the line loads of the network. 
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5.1 R-DSPM with strict capacity constraints using mean-

lateness cost  

The current chapter introduces the mean-lateness cost for R-DSPM. As there is 

sufficient literature on  the relationship between mean-standard deviation and 

mean-lateness it was felt imperative to study mean-lateness cost as a part of R-

DSPM. ‘Lateness’ is modelled in several different ways in traffic assignment. 

The following section highlights some of the different ways in which lateness 

could be modelled. One way of modelling lateness is through the mean lateness 

factor, H’. A comprehensive description of the relationship between mean-

standard deviation and mean lateness factor can be found in Franklin and 

Karlstrom (2008). In Franklin and Karlstrom (2008) the relationship between 

the mean-standard deviation approach and scheduling approach is first 

explored and eventually the relationship between mean-standard deviation and 

a ‘mean lateness factor’ is established. Franklin and Karlstrom (2008) highlight 

that the mean-standard deviation approach and the scheduling approach are 

the same when exponential distribution of travel time, together with no 

lateness penalty and travel time being independent of departure time is 

assumed. Bates et al. (2001) found that the expected scheduled lateness (eq 

2.26) and expected scheduled early (eq 2.26) of the scheduling approach can be 

approximated by a constant H’.  Hence  

𝜂𝑆𝐷𝐸 + 𝛾𝑆𝐷𝐿 = 𝐻’(𝜂, 𝛾)                                                                                                (5.1) 

Wherein 𝐻’(𝜂, 𝛾) – is the mean lateness factor, 𝑆𝐷𝐸- schedule delay early, 𝑆𝐷𝐿- 

schedule delay late, 𝜂, 𝛾 are parameters. This relationship acts as a bridge 

between mean-standard deviation and mean lateness factor. 

Fosgerau and Karlstrom (2010) and Fosgerau and Engelson (2011) derive the 

relationship for any assumed distribution of travel time by defining the travel 

time into a deterministic and stochastic component.  

 Ṱ is the travel time such that  Ṱ = 𝜇 + 𝜎Ẍ                                                              (5.2) 

Where Ẍ is standardised random variable with mean 0 and variance 1 with 

cumulative density  . 

𝜇- mean travel time  

𝜎- standard deviation of travel time 

Assuming that the preferred arrival time is 0 such that the departure time is –D; 

the utility function given in eq 2.26 (scheduling approach) is rewritten as eq 5.3  

𝑈 = ἂṰ + 𝜂(Ṱ − 𝐷)− + 𝛾(Ṱ − 𝐷)+                                                                              (5.3) 
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Wherein ἂ, 𝜂 𝑎𝑛𝑑 𝛾 are parameters  

Wherein (Ṱ − 𝐷)+ is the scheduled delay. 

By substituting eq (5.2) in eq(5.3) the optimal departure time is worked out as 

𝐷∗ = 𝜇 + 𝜎𝛟−1 (
γ

η + γ
)                                                                                               (5.4) 

It is shown in Fosgerau and Karlstrom (2010) that the mean lateness factor 

𝐻’(𝜂, 𝛾) is equal to ∫ 𝛟−1(𝑠)𝑑𝑠
1
𝛾

𝜂+𝛾

 where 𝛟 cumulative distribution of Ẍ. The 

mean lateness factor hence denotes the average lateness associated with 

optimal departure time and can be derived for any assumed distribution of 

travel time.  

The mean-lateness cost used in current R-DSPM follows the concept of 

‘acceptable total travel time’ put forward by Watling (2006).  The ‘mean 

lateness factor’ as derived by Fosgerau and Karlstrom (2010) differs from the 

mean-lateness model as defined by Watling (2006) wherein lateness is 

associated with exceeding an ‘acceptable travel time’ for a specific route within 

an OD pair.  Hence in Watling (2006), lateness is modelled as a penalty which a 

traveller incurs when the total travel time experienced by them exceeds their 

acceptable travel time. Watling (2006) adopts the ‘schedule delay’ approach 

proposed by Small (1982) and illustrates that for normal distribution of travel 

time the generalised cost for user 𝑖 could be written as 

𝑢𝑖 = 𝜃0𝑣𝑜𝑐𝑖 + 𝜃1𝜇𝑖 + 𝜃2𝜎𝑖𝐿 (
𝒯𝑖 − 𝜇𝑖

𝜎𝑖
)                                                                  (5.5)     

Wherein θ1 indicates the value of total travel time,  θ2 reflects the value of 

being one time  unit later than expected, 𝑣𝑜𝑐𝑖- is the vehicle operation cost for 

user 𝑖, 𝜇𝑖- mean of total travel time of user 𝑖, 𝜎𝑖- standard deviation of the total 

travel time of user 𝑖, 𝒯𝑖- total acceptable travel time of user 𝑖. Watling (2006) 

further describes that the term 𝜃2𝐿 (
𝒯𝑖− 𝜇𝑖

𝜎𝑖
) could be separated out as it acts in 

place of the ‘reliability ratio’ used in mean-standard deviation formulation. 

Wherein ‘reliability ratio’ is defined as the ratio of the value of standard 

deviation of travel time to the value of time.  Hence in case of normal 

distribution a direct relationship between mean-lateness model and the mean-

standard deviation model is established. It therefore seems a natural extention 

to test the implementation of  R-DSPM using mean-lateness cost. 

Similar to the formulation in chapter 3 consider a single OD pair such that there 

are n𝑧 routes to choose between the OD pair Z. The OD demand is randomly 

varying from day-to-day, but that there is a fixed rate of potential travellers for 
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each OD movement, from which the demand for any particular day is derived. 

Let the number of potential travellers on each OD movement be denoted by an 

integer dZ. On each day, there are two important ‘decision’ elements for each 

traveller: whether they travel at all, and if they do travel which route they 

choose. Supposing that the indicator variable δi𝑧
𝑍 takes the value 1 if individual 

 i𝑧 travels on a given day, and takes the value 0 otherwise. For those that travel, 

fi𝑧
𝑍 denotes the route selected by individual iz between the OD pair Z 

where fi𝑧
𝑍 ∈ {1𝑧 , 2𝑧 , … . . n𝑧}, nZ describing the total number of routes between 

the OD pair Z. Each of the passenger i𝑧 there exists a ‘acceptable total travel 

time’ 𝒯i𝑧(𝑧) which is OD pair specific.  

For ease in the inference of the results the ‘acceptable total travel time’ is 

chosen such that it exceeds the longest route total travel time between an OD 

pair and is kept the same for all passengers. Hence for each O–D movement, 

there is assumed to be a dZ number of ‘acceptable total travel time’ i.e 

𝒯(Z) =

(

 
 𝒯1𝑧

𝒯2𝑧
.....

𝒯d𝑍
)

 
 

 wherein 𝒯1𝑧
= 𝒯2𝑧

= ⋯ . . = 𝒯d𝑧
.  

Where 𝒯(Z)- is the ‘acceptable total travel time’ for OD pair Z 𝒯1𝑧
- is the 

acceptable total travel time for passenger 1 of OD pair Z. 

Keeping the remaining formulation similar to that given in chapter 3 we define 

the cost used for mean-lateness model. The approach is based on Noland et al. 

(1998), Arnott et al. (1990), Watling (2006). In this a passenger i𝑧  considering 

route 𝑘𝑧 (k𝑧  =  1𝑧 , 2𝑧 , … , n𝑧) perceives a route cost ĝ𝑘𝑧(𝑖𝑧)𝑧 represented as 

ĝ𝑘𝑧(i𝑧)𝑧 = θ1g𝑘𝑧(i𝑧)𝑧 + θ2ck𝑧
i𝑧𝑧

 ∀ k𝑧 = f𝑖𝑧
𝑧                                                          (5.6𝑎) 

Else 

ĝ𝑘𝑧(i𝑧)𝑧 = θ1g𝑘𝑧(i𝑧)𝑧∀ k𝑧 ≠ f𝑖𝑧
𝑧                                                                               (5.6𝑏) 

Where 

g𝑘𝑧(i𝑧)𝑧 =  ∑ω𝑗T𝑘𝑧(𝑖𝑧)𝑧𝛺−𝑗

ℶ

𝑗=1

                                                                                      (5.7) 

g𝑘𝑧(i𝑧)𝑧– weighted average total travel time of individual (predicted) 𝑖𝑧 along 

route 𝑘𝑧 

ck𝑧
i𝑧𝑧

= ∑ωj 

ℶ

j=1

max (0, tk𝑧(i𝑧)𝑧 − 𝒯k𝑧(z))Ω−j ∀ k𝑧 = f𝑖𝑧
𝑧                                       (5.8) 
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c𝑘𝑧
𝑖𝑧 𝑧

 -  weighted average lateness penalty associated with each individual 𝑖𝑧 

along route 𝑘𝑧 between the OD pair Z 

𝜔𝑗- weights associated with the memory length as specified in Chapter 3. 

And θ1 indicates the value of total travel time and  θ2 reflects the value of being 

one time  unit later than expected (Watling, 2006); tk𝑧(i𝑧)𝑧- is the experienced 

travel time on route 𝑘𝑧 by passenger 𝑖𝑧 on OD pair Z; 𝒯k𝑧(𝑧) -‘acceptable total 

travel time’ for all passengers on route 𝑘𝑧 between OD pair Z; Ω- current 

simulation day and T𝑘𝑧(𝑖𝑧)𝑧- updated travel time for route 𝑘𝑧 by passenger 𝑖𝑧 

on OD pair Z. In the current study the value of θ2/θ1 is assumed to be 5. 

5.2 Implementation on example network 2 

The R-DSPM was run for example network 2 under the congested demand 

given in Chapter 4. A ℶ value of 15 day is chosen. Watling (2006)indicates that 

the value of θ1, θ2 should be greater than 0. In transit network the value of 

waiting time is considered to be higher than the value of in-vehicle travel time 

(Benezech and Coulombel, 2013) however such a distinction is not explored in 

the current study. The value of θ2/θ1 is chosen to be 5. The sensitivity of the 

model to various assumed parameter values (ℶ, θ2/θ1) is tested and results are 

shown in appendix c. The simulation was run for 700 days and the initial 200 

days were discarded as the burn-in period. 

It is expected that as the value of  𝒯(Z) is increased the passengers tend to be 

more flexible with respect to the total travel time needed to reach the 

destination and hence essentially become risk neutral as the lateness penalty 

incurred in most cases would be zero. On the other hand a lower 𝒯(Z) value 

implies a shorter desired total travel time preference resulting in a significantly 

varying flow distribution. In order to test the expectation it is assumed that all 

passengers have the same desired total travel time for an OD pair.  

Fig 5.1 shows the distribution of flows when the ‘acceptable total travel time’ of 

all the passengers are the same with a low value of 

𝒯(Z = 1) = (48.51𝑧
, 48.52𝑧

, ……48.5d𝑍
) (5 minutes more than the largest 

uncongested total travel time associated with OD1) and 𝒯(Z = 2) =

(32.51𝑧
, 32.52𝑧

, ……32.5d𝑍
) (5 minutes more than the largest uncongested total 

travel time associated with OD2). A low acceptable total travel time results in a 

shift in the probability distribution of passengers associated with a mean-

lateness cost when compared with the probability density function of risk 

neutral passengers. Similar to the mean-variance model in chapter 4 it is 

observed that at higher  values the routes which are found to be unattractive 
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by risk neutral passengers due to its high cost may become attractive to 

passengers having a low acceptable total travel time as travelling on these 

routes may reduce the penalty associated with delay.  

Fig 5.2 shows the distribution of passenger flows when all the passengers have 

the same higher acceptable total travel time 

𝒯(Z = 1) = (123.51𝑧
, 123.52𝑧

, ……123.5d𝑍
) (80 minutes more than the largest 

uncongested total travel time associated with OD1) 

𝒯(Z = 2) = (107.51𝑧
, 107.52𝑧

, ……107.5d𝑍
) (80 minutes more than the largest 

uncongested total travel time associated with OD2) . In such a scenario in spite 

of experiencing longer travel times the passengers minimise only their average 

total travel times as they have higher tolerance to delay. The distribution of 

flows being almost similar to that of risk neutral flows on all routes is an 

indication of such a phenomenon. A minor shift observed in some density 

functions is due to some passengers experiencing journey times greater than 

123.5 minutes for OD1 and 107.5 minutes for OD2 in the considered example 

network. 

 

Fig 5.1: The distribution of flows when the ‘acceptable total travel time’ 𝓣(𝑍 =

1) = 48.5 and 𝓣(𝑍 = 2) = 32.5, 𝜉 = 4, ℶ = 15,
θ2

θ1
= 5 (scenario 2) 
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Fig 5.2: The distribution of flows when the ‘acceptable total travel time’ 𝓣(𝑍 =

1) = 123.5 and 𝓣(𝑍 = 2) = 107.5, 𝜉 = 4, ℶ = 15,
θ2

θ1
= 5 (scenario 2) 

The above analysis provides sufficient evidence that behaviour of passengers is 

similar to the expected results. The proposed model is able to capture the 

significant shift in the distribution of flows using the mean-lateness cost and 

provides sufficient evidence for further exploration of the same. The 

satisfaction of the markovian properties to prove that the mean-lateness R-

DSPM is ergodic and regular are given in Appendix C. 

5.3 Policy Interventions: 

The performances of various R-DSPM considered in the thesis on policy 

interventions which a transit agency would carry out in a network is assessed 

in this section. The impact is tested on the example network 2 and the tests are 

carried out for various input parameters (the test results of  =0.05 are given in 

appendix C). 

Similar to the policy evaluations made in Yin et al. (2004) four policy 

alternatives are considered to evaluate waiting time reliability. In addition to 

the policy initiatives specified by Yin et al. (2004) an additional policy on 

providing information to the passengers is being considered in the current 

section.  Yin et al. (2004) presents a waiting time reliability measure for each 

line as  

𝑊𝑇𝑅𝑙
𝑗
= Pr(𝑤𝑙

𝑗
≤ 𝛼𝑤𝑙0

𝑗
) ∀𝑙 ∈ 𝐿∀𝑗 ∈ 𝑁(𝑙)                                                                (5.9) 



- 132 - 

 

Wherein 

WTRl
j
-waiting time reliability of line l at stop j;  

wl
𝑗
 the actual waiting time at stop j for line l; 

 wl0
𝑗

 - the average waiting time for passengers boarding on line l at station j 

according to the nominal schedule under free-flow conditions.  

α ≥ 1- a predefined threshold value N(l)- the number of stops on line l.  The 

value of wl0
𝑗

 is chosen to be 
1

λl
 in accordance with the assumption that the 

example network before implementation of policies has interarrival times 

which are exponentially distributed.  

The policies to be tested are  

1. Increasing the shape factor 𝑚 of line 2 to make the interarrival times of 

the transit service on line 2 more reliable. This improves the service 

reliability of the line by reducing the variance in the interarrival times. 

2. Increasing the capacity of transit service from 20 pass/hr to 25 pass/hr 

of line 2. 

3. The frequency for line 1 is increased from 8 to 15. 

4. Changing the dwell time constant to from 7 sec to 20 sec for line 2. 

5. Giving information to the passengers. 

Before looking at the waiting time reliability improvement under various policy 

implementations Fig 5.3 and fig 5.4 shows the waiting time reliability profile for 

example network 2 without any policy implementations. From Fig 5.3 and fig 

5.4 it can be discerned that the reliability profile for various cost evolves in a 

different manner.  
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Fig 5.3 Waiting Time reliability for various cost without any policy 

implementation at ξ=0.05, ℶ=15 ,𝛽 = 2.5, 
𝜃1

𝜃2
= 5,  𝓣(𝑍 = 1) =

48.5 and 𝓣(𝑍 = 2) = 32.5  

 

Fig 5.4 Waiting Time reliability for various cost without any policy 

implementation at ξ=4, ℶ=15, 𝛽 = 2.5, 
𝜃1

𝜃2
= 5,  𝓣(𝑍 = 1) = 48.5 and 𝓣(𝑍 =

2) = 32.5 

The distribution of boarding flows at various stops and on various lines for ξ=4 

are shown in Table 5.1.  As is expected table 5.1 indicates that the boarding 

flow distribution is quite varied for different cost assumed. 
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Table 5.1 Boarding Line loads on all lines without any policy implementation at 

ξ=4, ℶ=15 ,𝛽 = 2.5, 
𝜃1

𝜃2
= 5, 𝓣(𝑍 = 1) = 48.5 and 𝓣(𝑍 = 2) = 32.5 

 Cost  Line 1 Line 2 

Mean Std Mean Std 
St

o
p

 1
 

Risk Neutral 142.8 39.8 255.5 39.2 

Mean-Variance 182.2 40.9 216.1 41.1 

Mean-Lateness 150.6 42.2 247.7 41.7 

St
o

p
 2

 

Risk Neutral 248.6 40.5 400.6 41 

Mean-Variance 216.1 22.9 248.2 20.8 

Mean-Lateness 266.0 42 383.2 42.2 

 

The policy initiatives described above shall now be tested one by one and the 

results will be compared with the non-policy network results given in figure 5.4 

and table 5.1.  

Fig 5.5 shows the waiting time reliability profile for various threshold values 

when the inter-arrival reliability of line 2 is improved. From Fig 5.5 one can see 

that the improvement of reliability in inter-arrival times of line 2 sees a change 

in the profile of mean-variance cost at stop 1 for both lines 1 and line 2. It is 

seen that there is an increase in the probability of passengers being able to 

experience a waiting time lesser than the nominal waiting time at a threshold 

value of 1 (α=1). However for the mean-lateness cost and risk neutral cost, at 

stop 1, a drop in probability of passengers being able to experience a waiting 

time lesser than the nominal waiting time is observed for line 2.  
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Fig 5.5 : Waiting Time reliability for various cost Line 2 m=300 at ξ=4, ℶ=15, 

𝛽 = 2.5, 
𝜃1

𝜃2
= 5, 𝓣(𝑍 = 1) = 48.5 and 𝓣(𝑍 = 2) = 32.5 

No such distinction between policy implementation and without 

implementation is visible at stop 2 on line 1. In line 2 (Stop 2) one sees a drop 

in the probability of passengers experiencing waiting time lesser than various 

threshold values while assuming risk neutral or mean-lateness costs. In case of 

mean-variance cost assumption the probability of passengers experiencing 

waiting time lesser than a value of twice the nominal waiting time is 

significantly different from that of no policy network. 

Table 5.2: Boarding Line loads at ξ=4 for increased reliability of line 2, ℶ=15 

,𝛽 = 2.5, 
𝜃1

𝜃2
= 5, 𝓣(𝑍 = 1) = 48.5 and 𝓣(𝑍 = 2) = 32.5 

 Cost  Line 1 Line 2 

Mean Std Mean Std 

St
o

p
 1

 

Risk Neutral 131.8 26 266.5 25.4 

Mean-Variance 165.8 29.2 232.4 28.3 

Mean-Lateness 129.2 26.1 269.1 25.0 

St
o

p
 2

 

Risk Neutral 239.2 28.4 410 30 

Mean-Variance 206.5 19.5 246.5 22.1 

Mean-Lateness 257.0 31.8 392.1 32.4 
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Though  the waiting time reliability profile do not seem to project a major 

difference for mean-lateness and risk neutral cost after the improving the 

reliability of transit services on line 2 a look at the distribution of the boarding 

line loads on various lines given in Table 5.2 and comparing them with those on 

Table 5.1 indicate a difference in the standard deviation of flows.  From the 

above results one can conclude that the profile variation would largely depend 

on the order in which a transit stop is visited between the OD pairs; with the 

origin stops (terminal stops) wherein the transit services are assumed empty 

experiencing a different reliability profile from that of transit stops at lower 

end of the journey. The profile variations are more pronounced for different 

costs at lower end transit stops of the network emphasising the need to 

consider the risk averseness of the passengers travelling in the network. 

Similar to improving the interarrival reliability of line 2 the second policy of 

increasing the capacity of line 2 from 20 to 25 passengers is considered and the 

results are shown in Fig 5.6. Increasing the capacity of line 2 shows an 

improvement in reliability profile at both stop 1 and stop 2.  

 

 

Fig 5.6: Waiting Time reliability for various cost l2 cap=25 at ξ=4, ℶ = 15, 𝛽 = 5 

(mean-variance), 
𝜃1

𝜃2
= 5, ℶ=15 ,𝛽 = 2.5,  𝓣(𝑍 = 1) = 48.5 and 𝓣(𝑍 = 2) =

32.5   
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Table 5.3: Boarding Line loads at ξ=4 for increased capacity on line 2, ℶ=15 

,𝛽 = 2.5, 
𝜃1

𝜃2
= 5, 𝓣(𝑍 = 1)and 𝓣(𝑍 = 2) = 32.5 

 Cost 
Line 1 Line 2 

Mean Std Mean Std 

St
o

p
 1

 
Risk Neutral 119.6 42 278.7 41.9 

Mean-Variance 168.6 40.9 229.6 41.7 

Mean-Lateness 125.0 42.6 273.3 42.9 

St
o

p
 2

 

Risk Neutral 216.0 41.7 433.1 43.6 

Mean-Variance 203.9 23.2 254.8 22.4 

Mean-Lateness 233.1 44.6 415.3 46.4 

 

A capacity increase of merely 5 passengers per transit service has provided a 

slight improvement in the reliability profile of the network for different cost at 

various transit stops. A look at the boarding loads given in Table 5.3 shows an 

increase in the loads on line 2. In spite of the increase there is a marginal 

improvement in the reliability profile of line 2 at various stops. Hence a 

capacity increase assuming that the OD demand rate remains the same could 

improve the waiting time reliability profile of the network in the long run.  

A frequency increase of line 1 shown in fig 5.7 has a marked effect on the 

waiting time reliability. An improvement in the reliability profile of all the cost 

is seen across all the stops and lines of the network. A change in dwell times of 

line 2 (fig 5.8)indicates no change in the waiting time reliability profile from 

that of the reliability profile without policy improvements. 
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 Fig 5.7 Waiting Time reliability at ξ=4 for increased frequency of line 1, 

ℶ=15 ,𝛽 = 2.5, 
𝜃1

𝜃2
= 5, 𝓣(𝑍 = 1) = 48.5 and 𝓣(𝑍 = 2) = 32.5 

 

 

Fig 5.8 Waiting Time reliability at ξ=4 changed dwell time line 2, ℶ=15 ,𝛽 = 2.5, 
𝜃1

𝜃2
= 5, 𝓣(𝑍 = 1) = 48.5 and 𝓣(𝑍 = 2) = 32.5 
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5.3.1 Giving information to the passengers: 

The above policy measures are quite straight forward in their integration with 

the existing R-DSPM with strict capacity constraints. In this section we shall 

look upon the impact of possible provision of information to the passengers. As 

is mentioned in Chapter 3 the current R-DSPM assumes that the passengers 

revise their route choice based on his/her experience alone. In the ‘information’ 

scenario we shall assume that at the end of each day the passengers are aware 

of the average total travel times experienced by all the passengers on a 

particular route and the standard deviation of the same.  

Based on this surmise at the end of each day each passenger will base his/her 

route choice for the next day using the formulation given in Jha et al. (1998) 

and shown below: 

tk
1,i𝑧,Ω−1mean perceived travel cost by individual iz on day Ω-1 before receiving 

information and before the trip for kth  route between his/her origin and 

destination. In event of passenger not having travelled on the kth  route 

throughout his/her memory length then the term is assumed to have a value 

equal to mean informed total travel time of kth  route and the variance 

associated with the informed total travel time for the route. 

Tk
2,i𝑧,Ω Updated distribution of tk

1,i𝑧,Ω−1in light of information (i.e. after pre-trip 

updating). 

Similar to (Jha et al., 1998) updating the  pre -trip travel time is done as follows: 

Let the travel time provided to the passengers as information on day Ω for kth 

route  be t̂k
i𝑧,Ω wherein t̂k

i𝑧,Ω is the average experienced total travel time for 

route k on day Ω-1 . Without loss of generality, it is assumed that the average 

total travel times provided by information do not vary across individuals. It is 

hypothesized that when users receive information, they modify it based on 

their perceptions of information. The modified information travel time can be 

expressed as: 

𝑡̂𝑝𝑘
𝑖𝑧𝛺 = 𝑡̂𝑘

𝑖𝑧 ,𝛺−1 + 𝜖𝑘
𝑖𝑧,𝛺−1                                                                                                  (5.10) 

Where t̂pk
i𝑧,Ω  is the perceived value of information total travel time by individual 

iz for kth route. ϵk
i𝑧,Ω−1is the perception error, which is due to the user's past 

experience with information, his/her attitude towards the information system, 

etc. The distribution of ϵk
i𝑧,Ω−1is assumed N(0,σk

Ω−1) wherein σk
Ω−1 is also known 

to the passengers and is equal to the standard deviation of total travel times 

experienced on route k at end of day Ω-1.  

The updated best estimate is given by the following Ang and Tang (1975): 
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E[Tk
2,i𝑧,Ṋ

] =  
𝐸(𝑡̂𝑝𝑘

𝑖𝑧 ) 𝑣𝑎𝑟(𝑡𝑘
1,𝑖𝑧) + 𝐸(𝑡𝑘

1,𝑖𝑧)𝑣𝑎𝑟(𝑡̂𝑝𝑘
𝑖𝑧 )

𝑣𝑎𝑟(𝑡𝑘
1,𝑖𝑧) + 𝑣𝑎𝑟(𝑡̂𝑝𝑘

𝑖𝑧 )
                                               (5.11) 

Where the values of 𝑣𝑎𝑟(𝑡𝑘
1,𝑖𝑧) = 𝑣𝑎𝑟

(

 
 𝑡𝑘

1,𝑖𝑧𝛺−1

𝑡𝑘
1,𝑖𝑧𝛺−2

...

𝑡𝑘
1,𝑖𝑧𝛺−ℶ

)

 
 

 and 𝑣𝑎𝑟(𝑡̂𝑝𝑘
𝑖𝑧 ) = 𝑣𝑎𝑟

(

 
 𝑡̂𝑝𝑘

𝑖𝑧𝛺

𝑡̂𝑝𝑘
𝑖𝑧𝛺−1

...

𝑡̂𝑝𝑘
𝑖𝑧𝛺−ℶ)

 
 

 

are obtained over the memory length of ℶ days. 

The updated variance of the mean perceived total travel time is given by 

Var[Tk
2,i,Ṋ

] =
𝑣𝑎𝑟(𝑡𝑘

1,𝑖𝑧). 𝑣𝑎𝑟(𝑡̂𝑝𝑘
𝑖𝑧 )

𝑣𝑎𝑟(𝑡̂𝑝𝑘
𝑖𝑧 ) + 𝑣𝑎𝑟(𝑡𝑘

1,𝑖𝑧)
                                                                         (5.12) 

Fig 5.9 and Fig 5.10 shows the results of implementation of information 

scenario on the reliability profile of waiting times at various stops in the 

example network 2. From the figure 5.9 it is seen that the information provision 

reduce the reliability of waiting times at the origin stop for line 1 wherein the 

transit services are assumed to empty however it has improved for line 2. At 

stop 2 the reliability profile is greatly improved for both the lines with 

information provision (fig 5.10). 

 

Fig 5.9: Waiting time reliability with and without information for various costs 

at stop 1 of example network 2, ξ=4, ℶ=15 ,𝛽 = 2.5, 
𝜃1

𝜃2
= 5, 𝓣(𝑍 = 1) =

48.5 and 𝓣(𝑍 = 2) = 32.5 
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Fig 5.10: Waiting time reliability with and without information for various costs 

at stop 2 of example network 2, ξ=4, ℶ=15 ,𝛽 = 2.5, 
𝜃1

𝜃2
= 5, 𝓣(𝑍 = 1) =

48.5 and 𝓣(𝑍 = 2) = 32.5 

The above analysis has shown that information provision which accounts for 

the variance in total travel times experienced along the routes of the transit 

network could yield a significant improvement in the waiting time reliability 

profile of the network at lower end stops. This could be because the maximum 

variation is observed at stop 2 for the current network wherein apart from the 

service unreliability the passengers of the second OD pair are competing for 

space in the transit service at stop 2. The true impact of the information 

scenario however can be assessed only if it is implemented on a larger network.  

  

5.4 Impact of assumptions made in R-DSPM on the outcome: 

To get the results as shown in the current chapter and in the previous chapters 

the R-DSPM is run on certain specific conditions. One of the main condition to 

achieve the above set of results is that the R-DSPM has a demand (𝑑𝑧) such that 

there is at-least a day within the simulation period when all the passengers 

between the OD pairs make their journey and that most of the passengers 

between each OD pair choose to travel on any given day.  

In event of the population size (demand (𝑑𝑍) between each OD pair) being high 

but the rate of arrival of passengers remaining the same; that is when the 
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sample population from which the daily passengers are drawn is increased; it 

would result in the number of passengers making the journey on a given day 

becoming lesser than those not making the journey for the same day.  In such a 

network most of passengers would assume uncongested total travel time for 

the untraveled routes. They would therefore base their route choice on the 

uncongested cost as most wouldn’t have travelled within their memory period. 

This would result in risk averse passengers being unaware of the variance or 

lateness associated with their travel times. A suitable population size to be 

chosen for the current model to replicate the findings in chapter 4 and the 

findings in section 5.1 should be such that the number of passengers travelling 

on a particular day be closer to the rate of arrival of passengers assumed 

between each OD pair. For eg the poisson rate of passenger arrival in example 

network 2 for OD 1 is 400 passengers/hr (6.67 passengers/minute) and the 

population size is taken as 465 passengers/hr (7.75 passengers/minute). 

Therefore with the current rate the probability of the chosen population size of 

7.75 passengers/minute arriving in one minute at the transit stop works out to 

be 0.61. On the other hand if the population size was increased to 1000 

passengers/hour (16.67 passengers/minute) the probability works out as 

0.003 which implies that almost on all days the number of passengers arriving 

may be much lesser resulting in most of the passengers deciding ‘not to travel’. 

The situation of having a large population size to sample from; often arises in 

developed countries wherein in case of work trips the option to ‘work from 

home’ is feasible. ‘Work from home’ concept would result in the number of 

potential travellers between an OD pair being high without all the passengers 

travelling on each day. Such type of ‘work from home’ concept is still at its 

infancy in developing countries like India. Nevertheless R-DSPM model still 

could be applicable for large population size if the memory length of individual 

traveller is proportionately increased. Hence for the numeric example cited 

above if a population size of 1000 passengers between an OD pair exists then 

for each passenger to travel a route between the OD pair more than once 

requires a memory size larger than 15 days. A large memory length would 

ensure that the passenger remembers the experiences on the routes travelled 

more than once. Also a large memory length would increase the simulation 

period to arrive at a unique stationary distribution thereby increasing the 

probability of capturing a passenger having travelled more than once in a route. 

A large memory length would also let the passengers arrive at the variability 

associated with the experienced travel times for a route or to associate a 

lateness penalty with respect to an acceptable total travel time.  
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Table 5.4: Flow and experienced travel time distributions using mean-variance 

cost β=2.5 and mean-lateness 
θ2

θ1
 = 5 at ξ=4, ℶ = 15  ,m = 1, dZ=1 = 1465 and 

 dZ=2 = 1307, 𝓣(𝑍 = 1) = 48.5 and 𝓣(𝑍 = 2) = 32.5 

 Route 
Z=1 Z=2 

1 2 3 4 5 6 7 8 9 10 11 

Mean-

variance 

𝐸(𝑡𝑠) 11.4 39.9 42.9 105.1 13.5 59.8 87.8 1.3 56.1 57.8 54.8 

Std 22.3 9.3 7.4 38.5 21.4 15.8 23.9 10.9 17.2 18.8 16.5 

𝐸(𝑋𝑠) 0.24 155.6 100.2 2.6 20.9 11.5 107.2 0.02 39.8 114.0 97.1 

Std 0.47 14.1 10.8 1.6 5.2 3.5 10.8 0.15 6.8 10.9 10.3 

Mean-

lateness 

𝐸(𝑡𝑠) 0.1 43.7 42.5 4.9 61.8 15.1 96.5 0 62 96.8 60.8 

Std 2.2 11.6 6.3 21.7 55.5 28.2 26.5 0 19.1 21.7 18.5 

𝐸(𝑋𝑠) .002 223.2 96.2 0.06 2.23 0.48 76.1 0 44.9 88.8 117.2 

Std 0.04 35.3 21.8 0.25 3.3 1.1 14.3 0 12.3 11.5 15 

 

Table 5.4 shows the result of risk averse passengers being sampled from a large 

population. From table 5.4 it is observed that as the population size increases 

for a fixed rate of passenger inter-arrivals most of the passengers do not travel 

on a particular day. The likelihood of the same passenger deciding to travel on 

subsequent day also gets considerably reduced. Most of the passengers base 

their route choice on the uncongested travel times. The phenomenon observed 

in chapter 4 (table 4.6) of risk averse passengers finding the routes unattractive 

to risk neutral passengers attractive at higher ξ values becomes absent. It is 

found that with increased population size the routes which had lower 

uncongested total travel times became the attractive routes and those having 

higher uncongested travel times became less attractive. Similarly in case of 

mean-lateness when the acceptable total travel time for the passengers is kept 

𝓣(𝑍 = 1) = 48.5 and 𝓣(𝑍 = 2) = 32.5 at ξ=4 and 
θ2

θ1
 = 5  the routes with lesser 

uncongested travel time become attractive. As is observed in mean-variance 

cost with a large population to be sampled from, there is an absence of finding 

the risk neutral passenger’s unattractive routes attractive (fig 5.1) in mean-

lateness cost for a fixed rate of passenger arrivals. 

5.5 Summary 

The current chapter discussed the integration of the mean-lateness model in R-

DSPM. The model was then implemented on the example network 2 and the 

results discussed. The markovian properties of the model have been proved. 
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The chapter also dealt with the waiting time reliability changes in a network 

without policy implementations and with policy implementation.  It was shown 

that the boarding loads varied with the costs assumed reiterating the need to 

consider risk aversion in traffic assignment models. It is to be noted that the 

loads mentioned in tables 5.1, 5.2 and 5.3 are boarding loads and hence will not 

add up to form the demand between OD pairs. 

The information scenario proposed in the current chapter assumes that the 

information provides the passengers with the average travel times experienced 

on all the routes between an OD pair at the end of the day and it is assumed that 

the passengers perceive the information such that the perception error is 

normally distributed with a standard deviation equal to the standard deviation 

of the total travel time distribution of the route at the end of the day. Such an 

assumption seems unrealistic but the operators could conceive a way of 

introducing such a system for better utilisation of the existing supply demand 

ratio.  
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Chapter 6 

London Underground – Case Study 

6.1 Introduction 

The previous chapters illustrated the principles of R-DSPM on small example 

networks. In this chapter the assignment model is applied onto a section of 

larger network namely the London Underground. The main objective of the 

chapter is to show the practical implementation of the proposed model. The 

implications of ignoring the risk aversion of transit network passengers and its 

effect on policy decisions will be assessed.  

The chapter is organised such that the first section introduces the London 

underground open source data base. The next section deals with the simulation 

being run under various parameter assumptions for the mean-variance R-

DSPM with strict capacity constraint followed by the mean-lateness model with 

strict capacity constraint and risk neutral passenger model with strict capacity 

constraint. The simulation results are then tested using a non-parametric test - 

Wilcoxon rank sum test – to check if the chosen parameters result in a total 

travel time distribution similar to the existing observed total travel time 

distribution. Having assessed the best fitting parameters certain policy 

evaluations are carried out to check the performance of the section under these 

policy scenarios. 

6.2 Data Description 

London underground is considered the oldest rapid transit system in the world 

and the system serves 270 stations and has 402 kilometres of track. Of the 

several sections within London underground the following section which does 

not fall within zone 1 of London underground was chosen mainly because the 

inner zone (zone 1) of London underground is so well connected that though 

there may be only two direct lines between the origin and destination stations 

it is always possible to reach any destination within zone 1 through several 

possible ways. For example if we consider the section between Edware road 

and Notting Hill gate though the direct lines are only the Circle line and the 

district line it is possible to reach Notting Hill from Edware road by travelling 

on either circle line or Hammersmith and City line getting down at Baker street 

and taking either Jubilee line or Bakerloo line then taking the Central line to 

reach Notting Hill. Though such a huge diversion does not seem reasonable it 



- 146 - 

 

however cannot be overlooked in the absence of data confirming the same.  

Another reason is that the oyster card data from the open source of TfL for the 

year 2009 has lesser number of entries for zone 1 ODs than for the currently 

considered section of London Underground. Fig 6.1 shows the section of 

London underground which is used as case study.  

 

Fig 6.1 OD pair 1 from Baker Street to Wembley park (a section of London 
Underground) OD pair 2 from Finchley Road to Wembley Park. (Line 1 – 
Jubilee line and Line 2 – Metropolitan Line). 

MySociety (2008) shows the in-vehicle travel time (without disruptions) 

between the stations on the Metropolitan line and the Jubilee line (table 6.1). 

Table 6.1 the in-vehicle travel time between the stations in the chosen case 
study section 

 



- 147 - 

 

The capacity of service is difficult to ascertain as the train characteristics for 

each line is different however the Train Service Model  (TSM – the simulation 

model of TfL) output given for Victoria Line indicates that the train along the 

line has a capacity of 1004. It is currently assumed that the Jubilee line and the 

Metropolitan Line all have a similar capacity of 1004 passengers per train.  

6.3 Demand and Supply Data: 

The open data link on TfL website consists of several files such as a file on 

oyster card information; a file on the line section flows; a file on number of 

boarding and alighting passengers on each line; the rolling origin and 

destination survey results, demand profile at various stations. The oyster card 

data consists of details pertaining to weekdays and weekends for Nov 2009. 

The website mentions that the data represents 5% data of the total oyster card 

journey made in the said week. The Oyster card data from Open data source on 

TfL website consists of details such as entry time at the origin as well as the exit 

time at the destination of the passengers entering the station.  

The current study utilises only the week day’s data (taken from Monday to 

Friday). Upon filtering the oyster card data there were 77 passengers traveling 

from Baker Street to Wembley Park and 39 passengers travelling from Finchley 

Road to Wembley Park on weekdays. The interarrival times of passengers 

(derived from the entry times of the passengers given in oyster card data) for 

each day within the said week was plotted to assess the distribution of 

passenger arrivals. The plot of the interarrivals indicate exponential 

distribution (fig 6.2) for both the OD pairs. A chi-square goodness of fit test was 

carried out with  

H0 : The random variable follows exponential distribution 

H1: The random variable does not follow exponential distribution (Washington 
et al., 2003) 

The chi-square goodness of fit test using matlab’s ‘chi2gof’ resulted in a value of 

0 which indicates that the goodness of fit test does not reject the null 

hypothesis at 5% significance level for both the OD pairs. This indicates that the 

passenger arrival at both Baker street and Finchley Road follow exponential 

distribution. 

The frequency of Jubilee line services is taken as 23 trains per hour whereas for 

the Metropolitan line it is taken as 21 trains per hour (taken from the current 

timetable of the lines). Since the chosen London Underground section is similar 

to example network 2 given in Chapter 4 the route sections and all the routes 



- 148 - 

 

enumerated for example network 2 are applicable for the current section of 

London Underground case study. Though the platforms are not shared between 

the metropolitan line and the jubilee line at Baker Street it is assumed that the 

passengers that make a route choice of 3,5,6,7 choose between the lines, just 

before starting their journey, based on the display boards at the entrance of the 

station. At Finchley road the platforms are shared and hence the passengers 

can choose between Metropolitan Line and Jubilee line.     

 

Fig 6.2 Interval distribution of Passengers (a)Baker street for OD1 (b) Finchley 
Road 

The journey time distribution as obtained from the oyster card data for the two 

OD pairs of case study are shown in Fig 6.3. The Oyster card data showed a total 

of 3869 passengers entering the Baker street in a week of which 77 travelled to 

Wembley Park making a ratio of 0.02. The ‘entry file’ available on the TfL open 

source data- for the month of November 2012 -indicates a total of 15672 

passengers entering Baker Street. The entry details also indicate that the P.M. 

peak is between 5:00 P.M to 10 P.M. Assuming the same ratio of passengers 

travelling from Baker street to Wembley Park as in Oyster card data we get an 

OD demand of 312 passengers during the peak evening hours (5 hours). 

Similarly the ratio of passengers travelling from Finchley Road to Wembley 

Park to the total number of passengers entering Finchley Road is 0.04 

(according to the oyster card data). Similar to Baker Street the OD demand 

from Finchley Road is therefore computed as 131 passengers during the peak 

evening hours. 

Ascertaining the OD demand from the ‘entry file’ as above gives an indication of 

the rate of passengers arriving at the origins. For the current study the rate of 
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passengers has been calculated as 60 passengers per hour from Baker street 

and 20 passengers per hour from Finchley Road.  

 

Fig 6.3 Journey time distribution (a) From Baker Street to Wembley Park (b) 
From Finchley Road to Wembley Park 

6.4 Calibration:  

The R-DSPM was calibrated using the oyster card journey times of OD1 (Baker 

Street – Wembley Park). The calibration was done for the number of on-board 

passengers, the dispersion parameters and the interarrival distribution shape 

factor. The calibration was carried out firstly assuming that all passengers are 

risk neutral; then it is assumed that all are risk averse to variance and finally 

the mean-lateness model is calibrated. 

6.4.1 Risk neutral: 

A value of 0.05 was initially chosen for the logit dispersion parameter ξ. A series 

of runs were carried out for various combinations of line interarrivals shape 

factors m in order to best simulate the observed total travel times of the case 

study. It was found that a shape factor of m = 150 for Jubilee line and a shape 

factor of m = 1 for the metropolitan line were unable to reject the null 

hypothesis using Wilcoxon rank sum test. Hence these shape factors were 

assumed to be the representative shape factor for line interarrival 

distributions. These values can be corroborated from the online information 

obtained that the new signalling system was installed on Jubilee line only in 

2011 and since the data is of 2009 the reliability of the line could be reasonably 

assumed as m = 150 and since Metropolitan line is still undergoing installation 
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of new signalling system and since it is one of the oldest lines it seems 

reasonable to assume a less reliable service than Jubilee line with m = 1.  

Based on the in-vehicle travel times (table 6.1), the frequencies assumed for the 

lines (section 6.3) and a risk neutral passenger cost, table 6.2 shows the 

simulated uncongested travel time for the various enumerated routes (chapter 

4) using the aggregate stochastic process model. Comparing the total travel 

times from the oyster card data (Fig 6.3) with the simulated uncongested travel 

times shown in Table 6.2 it is found that 22.1% of the total passenger records in 

the current oyster card data experience congested total travel time between 

Baker Street and Wembley Park whereas 23.1% of the total records between 

Finchley Road to Wembley Park experience congested travel time. 

Table 6.2 Uncongested travel time assuming risk neutral passengers - Case 
study 1 

R
is

k
 N

e
u

tr
a

l 

OD 
Between Baker Street and Wembley Park 

Between Finchley Road and 

Wembley Park 

Route 1 2 3 4 5 6 7 8 9 10 11 

𝐸(𝑡𝑠) 17.4 15.5 15.9 17.1 17.4 17.5 15.8 20.5 12.0 10.2 10.5 

Std 0.3 1.4 0.8 1.4 1.3 0.3 1.4 1.4 0.6 1.3 0.8 

 

The distribution of journey times indicates that the section is not very 

congested with only a few passengers experiencing congestion during evening 

peak hours. In order to mimic the congested journey times experienced by a 

few passengers it is assumed that the arriving transit service at the origin stops 

already carry a certain number of passengers from the stations further up from 

Baker street such that a certain number of passengers boarding at Baker street 

experience failure to board and thereby an increased total travel time.  

The stochastic process model was run for various on–board passenger 

assumptions and the probability density function of the total travel times as 

experienced by the risk neutral passengers was visually compared with the 

total travel time obtained for the passengers travelling from Baker Street to 

Wembley Park (Oyster Card data). A wilcoxon-ranksum test was conducted to 

determine if the simulated total travel times showed similar distribution and 

equal median values as the observed total travel times. Fig 6.4 shows the 

probability density function of the total travel time simulated using various on-

board passengers with that of the oyster card journey times. 
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Fig 6.4 Calibration of the on-board loading already present within the transit 
service assuming risk neutral passengers at Baker street. 

The probability distribution of the total travel time experienced by risk neutral 

passengers as simulated using R-DSPM is statistically compared with 

probability distribution of the total travel time from oyster card data.  The 

‘ranksum’ function of matlab works such that a value lesser than 0.05 rejects 

the null hypothesis at 5% significance level. The null hypothesis is that the 

probability distributions are from the same continuous distribution with equal 

medians.  

Table 6.3: The calibration of on-board passengers in the transit service along 
the Jubilee and Metropolitan Line  

Description p-value inference 
Unif (950,1004) 6.02e-11 Rejects null hypothesis 
Unif(970,1004) 6.2e-10 Rejects null hypothesis 
Unif(995,1004) 1.1e-08 Rejects null hypothesis 
Unif(1000,1004) 0.06 Null hypothesis cannot 

be rejected 
 

Since the on-board passenger distribution of Unif(1000,1004) is unable to 

reject the null hypothesis it is assumed that the distribution best simulates the 

congestion already on board when reaching Baker street of the case study 

section. With the fixed set of on board passengers the simulation was again run 

for several logit dispersion parameters ξ and a value of 0.75 was chosen for risk 

neutral cost following the results of Wilcoxon rank sum test. For higher 

dispersion parameters the Wilcoxon rank test rejected the null hypothesis. For 

brevity the results are not included in the thesis. 



- 152 - 

 

6.4.2 Risk averse: 

The mean-variance passenger model was run for different β values which 

represent the degree to which the variance of the total journey time is 

undesirable to passenger i and a mean lateness model was run for different  

𝒯 value which indicates the acceptable total travel time of passenger between 

an OD pair. As in the previous section the transit services arriving at Bakers 

street were assumed to have on-board passengers which uniformly varied 

between 1000 and 1004.  

Table 6.4 Mean Variance and Mean-lateness hypothesis testing for calibration 

Mean - Variance 
logit dispersion parameter of ξ = 4 

𝛽 p-value Inference 
2.25 0.17 Null hypothesis cannot be 

rejected 
Mean –Lateness 

logit dispersion parameter of ξ = 0.75  
𝒯 p-value Inference 

40.5 and 30.5 0.06 Null hypothesis cannot be 
rejected 

logit dispersion parameter of ξ = 0.75 
25.5 and 15.5 0.06 Null hypothesis cannot be 

rejected 
 

In case of mean-variance cost for dispersion parameters higher than 4 also the 

Wilcoxon rank test could not reject the null hypothesis. However it is assumed 

that a value of 4 is sufficient enough to account for perception error in the 

experienced travel times and a risk aversion value of 2.25 is enough to exhibit 

the averseness of the passengers to travel time variations for the current 

section of London Underground. The results of the successful tests are shown in 

Table 6.4. 

6.5 Validation: 

The validation of risk neutral passengers travel time distribution is carried out 

using the total travel times observed between Finchley Road and Wembley 

Park. Assuming that at Finchley road 0.2% of the passengers alight, the 

simulation is run for the various parameters satisfying the necessary condition 

in the calibration section (section 6.4). The results obtained for validation are 

as shown below: 
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Fig 6.5 Validation of the R-DSPM assuming various cost passengers and using 
oyster card data between Finchley Road and Wembley Park 

The Wilcoxon ranksum test yielded a value of 0.55 which is greater than 0.05 

thereby not rejecting the null hypothesis at 5% significance level. This indicates 

that the model is able to simulate the total travel time of the risk neutral 

passengers to accuracy. For mean –lateness and mean-variance models the 

results are tabulated in 6.5. 

Table 6.5 Mean-Variance and Mean –lateness hypothesis testing for validation  

Mean - Variance 
logit dispersion parameter of ξ = 4 

𝛽 p-value Inference 
2.25 0.65 Null hypothesis cannot be 

rejected 
Mean –Lateness 

logit dispersion parameter of ξ = 0.75 
40.5 and 30.5 0.53 Null hypothesis cannot be 

rejected 
logit dispersion parameter of ξ = 0.75 
25.5 and 15.5 0.48 Null hypothesis cannot be 

rejected 

6.6 Result discussion 

Tables 6.4 and 6.5 indicate that the simulation results fit the observed journey 

time distribution the best at logit dispersion parameter of ξ = 0.75 for risk 

neutral passengers; at logit dispersion parameter of ξ = 4  β = 2.25 for mean-

variance cost; a logit dispersion of ξ = 0.75 with mean-lateness acceptable total 

travel time between OD1 as 40.5 and OD2 as 30.5 and a logit dispersion of ξ = 
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0.75 with mean-lateness acceptable total travel time between OD1 as 25.5 and 

OD2 as 15.5. Since such a wide range of measures are able to simulate the total 

travel time of case study; it would be erroneous to assume that all passengers 

are risk neutral (as is generally done in current transit assignment models). 

Such an assumption could lead to the policy measures being undertaken for the 

section giving an entirely different reliability profile from the models than the 

actual experienced reliability profile in the network. In the absence of empirical 

evidence of the degree of risk aversion of passengers or the possible number of 

risk averse passengers it is assumed that all passengers are risk averse to the 

same degree. Though the assumption is extreme the current aim is to 

understand the difference in the passenger loadings as a result of such risk 

averseness and since the simulation is done for evening peak of 1 hr one 

assumes on weekdays all passengers would be equally risk averse.  Table 6.6 

shows the variations in the number of passengers boarding the Jubliee line and 

Metropolitan line from Baker Street and Finchley Road using the current 

simulation parameters (ξ = 0.75 for risk neutral passengers; at logit dispersion 

parameter of ξ = 4  β = 2.25 for mean-variance cost; a logit dispersion of ξ = 0.75 

with mean-lateness acceptable total travel time between OD1 as 25.5 and OD2 

as 15.5). 

Table 6.6 Variation in number of passengers boarding Baker Street and 
Finchley Road for the observed total travel time distribution (ξ = 0.75 for 
risk neutral passengers; at logit dispersion parameter of ξ = 4  β = 2.25 for 
mean-variance cost; a logit dispersion of ξ = 0.75 with mean-lateness 
acceptable total travel time between OD1 as 25.5 and OD2 as 15.5 and 

ℶ = 15,
θ2

θ1
= 5) 

Cost Transit stop Jubilee Line Metropolitan Line 

Mean Std Mean Std 

Risk Neutral Baker Street 31.7 6.2 28.4 6 

Finchley Road 12.8 3.6 26.9 5.1 

Mean-

variance 

Baker Street 34.5 6.1 25.6 6 

Finchley Road 18.6 4.7 24.5 4.8 

Mean-

Lateness 

Baker Street 31.9 6.2 28.2 5.9 

Finchley Road 12.9 3.6 26.4 4.9 
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From table 6.6 one can see that the number of passengers boarding the jubilee 

line and the metropolitan line vary slightly based on the cost assumed by the 

passengers. Though the variation between mean-lateness and risk neutral cost 

is not much a slightly greater variation can be observed between risk neutral 

and mean-variance costs. 

A study of the impact of various policy implementations on the number of 

passengers boarding at each station is carried out. The various policy 

evaluations to be undertaken are similar to those carried out in chapter 5 and 

are as shown below: 

1. Changing the reliability of both Jubilee line as well as metropolitan line 

2. Changing the frequency of the Metropolitan line 

3. Increasing the capacity of Jubilee line 

Fig 6.6, 6.7, 6.8 indicates the probability of number of passengers being able to 

experience a waiting time lesser than or equal to the threshold times of 

uncongested waiting time (assumed to be the inverse of frequency of the line 

per minute) under various policy measures. The waiting time reliability profile 

is computed using eq 5.4 in chapter 5.  Fig 6.6 shows that the profiles of waiting 

time reliability for mean-lateness and risk neutral passengers are similar. 

However the profile of waiting time reliability assuming mean-variance cost is 

different from that of risk neutral and mean-lateness costs. A look at the 

number of passengers boarding at each station while considering mean-

variance and risk neutral cost (Table 6.7) shows a significant difference in the 

number of passengers boarding from each transit stop on to each serving line.  
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Fig 6.6: waiting time reliability along Jubilee and Metropolitan Line when the 
reliability of transit service is improved in both lines. (ξ = 0.75 for risk 
neutral passengers; at logit dispersion parameter of ξ = 4  𝛽 = 2.25 for 
mean-variance cost; a logit dispersion of ξ = 0.75 with mean-lateness 
acceptable total travel time between OD1 as 25.5 and OD2 as 15.5 and 

ℶ = 15,
θ2

θ1
= 5) 

Table 6.7 Variation in number of passengers boarding at various stations on 
Jubilee and Metropolitan line for network with both lines having 
improved interarrival service reliability (ξ = 0.75 for risk neutral 
passengers; at logit dispersion parameter of ξ = 4  β = 2.25 for mean-
variance cost) 

Cost Transit stop Jubilee Line Metropolitan Line 

Mean Std Mean Std 

Risk Neutral Baker Street 28.7 5.5 31.4 5.7 

Finchley Road 8.5 2.8 34.6 5.9 

Mean-

variance 

Baker Street 31.7 5.6 28.4 5.8 

Finchley Road 14.7 4.1 31.5 5.8 

 

A differing trend from that seen in Fig 6.6 is seen in Fig 6.7 which shows the 

profile of waiting time reliability when the capacity of jubilee line is increased. 

Fig 6.7 indicates that the risk averse passengers experience a very high waiting 

time reliability at Baker Street when commuting on the jubilee line. 
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Fig 6.7: Waiting time reliability along Jubilee and Metropolitan Line when the 
capacity of Jubilee line is increased. (ξ = 0.75 for risk neutral passengers; 
at logit dispersion parameter of ξ = 4  𝛽 = 2.25 for mean-variance cost; a 
logit dispersion of ξ = 0.75 with mean-lateness acceptable total travel time 

between OD1 as 25.5 and OD2 as 15.5 and ℶ = 15,
θ2

θ1
= 5) 

From the reliability profile given in Fig 6.7 it is expected that the number of 

passengers boarding would be slightly different for differing costs on 

metropolitan line at both the stops. From Table 6.8 it is found that there is a 

slight difference in the boarding passengers on these lines. Also one would 

expect that the boarding flow on Jubilee line would be similar for mean-

variance and mean-lateness cost at both the transit stops given that the 

reliability profiles are similar. However table 6.8 indicates a slight difference in 

the number of passengers boarding jubilee line.   
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Table 6.8 Variation in number of passengers boarding at various stations on 
Jubilee and Metropolitan line for network with jubilee line having 
increased capacity (ξ = 0.75 for risk neutral passengers; at logit dispersion 
parameter of ξ = 4  β = 2.25 for mean-variance cost; a logit dispersion of ξ 
= 0.75 with mean-lateness acceptable total travel time between OD1 as 

25.5 and OD2 as 15.5 and ℶ = 15,
θ2

θ1
= 5) 

Cost Transit stop Jubilee Line Metropolitan Line 

Mean Std Mean Std 

Risk Neutral Baker Street 34.8 5.9 25.2 5.6 

Finchley Road 19.9 4.7 23.5 4.6 

Mean-

variance 

Baker Street 39.7 7.1 20.3 4.6 

Finchley Road 16 3.9 25.9 5.5 

Mean-

Lateness 

Baker Street 36.0 6.7 24.03 4.9 

Finchley Road 11.9 3.4 27.8 5.5 

Upon increase of frequency in Metropolitan line (fig 6.8) the profile of waiting 

time reliability is almost similar for all the cost; at all stations and along all 

lines. However as shown in table 6.9 the routing options chosen and thereby 

the number of passengers boarding at each station vary slightly with the cost 

assumed. 

 

Fig 6.8: Waiting time reliability along Jubilee and Metropolitan Line when the 
frequency of Metropolitan line is increased. (ξ = 0.75 for risk neutral 
passengers; at logit dispersion parameter of ξ = 4  β = 2.25 for mean-
variance cost; a logit dispersion of ξ = 0.75 with mean-lateness acceptable 

total travel time between OD1 as 25.5 and OD2 as 15.5 and ℶ = 15,
θ2

θ1
= 5 
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Table 6.9 Variation in number of passengers boarding at various stations on 
Jubilee and Metropolitan line for increased frequency of metropolitan line 
(ξ = 0.75 for risk neutral passengers; at logit dispersion parameter of ξ = 4  
β = 2.25 for mean-variance cost; a logit dispersion of ξ = 0.75 with mean-
lateness acceptable total travel time between OD1 as 25.5 and OD2 as 15.5 

and ℶ = 15,
θ2

θ1
= 5) 

Cost Transit stop Jubilee Line Metropolitan Line 

Mean Std Mean Std 

Risk Neutral Baker Street 30.7 5.7 29.4 6 

Finchley Road 19.5 4.8 23.9 4.7 

Mean-

variance 

Baker Street 30.5 5.7 29.5 6.1 

Finchley Road 17.3 4.6 24.7 4.8 

Mean-

Lateness 

Baker Street 27.6 5.7 32.5 6.1 

Finchley Road 11.2 3.4 27.3 5.4 

6.7 Summary 

The above analysis has indicated that modelling the flows as risk neutral 

passenger (as is currently done in most of the transit assignment studies) 

would yield a different set of route choices for a section from that of 

considering risk averse passengers. The boarding loads therefore vary based on 

the cost used. The above analysis shows that the number of passengers 

boarding jubilee line at Finchley Road were significantly different especially 

when the interarrival reliability of both the lines was improved for different 

cost confirming the expectation that risk averse passengers would be willing to 

make a transfer (in absence of transfer penalty) to avoid variations in their 

total travel time or to reach their destination within their accepted total travel 

time. Hence a policy decision to incentivise transfer options could be envisaged 

as a much more productive option for the current section if the considered level 

of risk aversion for the passengers is indeed true.    

However with the current sample size of London Underground case study it is 

not possible to make any generic or concrete conclusions. It can only be 

deduced that there is an impact on the route choice based on the cost assumed 

as well as on the number of flows opting for a transfer at each transfer point in 

the network. It is also noted that other sources of variance such as the variation 

in walking times of the passengers within the transit station as well as the in-
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vehicle travel time variations have not been considered in the current study. 

The current analysis shows almost similar trends on waiting time reliability 

values for various policy measures and only a slight variation in boarding flows, 

it could be because of capacity constraint not being realised in an extreme way 

(with just 22% of the passengers experiencing increased total travel time).  As 

is seen in chapter 5 the impact of knowing the correct risk aversion coefficients 

(mean-variance or mean-lateness) on a highly congested network would 

definitely impact the results on route choice from that of assuming risk neural 

passengers.   
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Chapter 7 

Summary, Conclusion and Further Studies 

7.1 Summary: 

In this study a wide range of issues pertaining to reliability analysis in transit 

network have been addressed. Care has been taken to ensure that the 

disadvantages of using the existing theoretical models are overcome and a 

holistic framework flexible enough to run under varying cost assumptions is 

developed. The study was motivated by the unreliability associated not only 

with the transit service arrivals at transit stops but also the unreliability 

associated with failure to board situations of passengers – a common 

phenomenon in congested transit network. The aim of the study given in 

chapter 1 was: 

a. to specify the framework of strict capacity constrained frequency based 

transit assignment model which could assess the route choice variation 

of passengers in an unreliable transit network;  

b. to run numerical experiments on example networks to test the 

sensitivity of the model to various input parameters and assumptions;  

c. to study the impact of assessing unreliability using various costs on the 

possible policy decisions made by the operators.  

Chapter 2 saw a general review of the literature associated with the various 

aspects of the current study namely; transit assignment models accounting for 

congestion; models accounting for reliability; stochastic process models dealing 

with day to day variations.  

Based on the gaps identified from the literature review and highlighted in 

chapter 1, chapter 3 had successfully formulated R-DSPM with the following 

properties: 

1. A strict capacity constraint at disaggregate level such that each transit 

service is not loaded beyond its capacity. 

2. A disaggregate model at demand level wherein each passengers route 

choice is based on his/her own experience and not on the aggregate 

experiences of all the users on a particular route. 

3. A day to day variation of demand and supply with the demand having 

the flexibility of choosing not to travel on a particular day. 

4. Difference in passengers cost perceptions. 

5. A weighed average learning process model which results in a more 

realistic evolution of flows. 
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6. Accounting for unreliability associated with  

a. Varying interarrival times of transit service at the transit stop  

b. The variation in the waiting time of passengers due to the 

‘failure to board’ condition. The condition arises as a result of 

strict capacity constraint enforced at disaggregate level which 

results in some passengers being not able to board the first 

transit service of their attractive line set.  

c. The variation associated with the in-vehicle travel times of 

routes comprising of route sections containing more than one 

attractive line section. 

d. The variation associated with the variable demand generated 

for each day’s travel. 

The framework in Chapter 3 is run under passenger behaviour attribute 

assuming a risk neutral behaviour. The sensitivity of the model to various 

parameter values and the tests to show that the model obeys markovian 

properties is also discussed in chapter 3. 

Chapter 4 shows the shift in the passenger’s route choice behaviour when risk 

aversion in form of mean-variance cost is accounted for in both uncongested 

and congested networks. The chapter also establishes through numerical 

examples the need to use stochastic process model in assessing reliability of 

transit networks. Numerical tests were carried out on a simple example 

network and the sensitivity of the model to various input parameters is also 

carried out. 

 Chapter 5 applies the mean-lateness cost formulation in R-DSPM and runs it on 

an example network. The chapter also assesses the impact of using varying cost 

on the reliability profile of waiting time at various stops in the example 

network. The chapter also makes an assessment of the variation in reliability 

profile under various policy implementations which could be carried out by the 

operators. 

Chapter 6 then deals with a small case study of a section in London 

underground to understand the practical implementation of the proposed R-

DSPM with strict capacity constraints. 

7.2 Conclusions: 

Based on the objectives and aims set out in chapter 1 and the analysis carried 

out in chapter 3,4 5, and 6 the following conclusions have been drawn: 

 A generic R-DSPM framework was developed in chapter 3 which enabled 

the implementation of various cost accounting for risk aversion in route 
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choice of passengers in a transit network. Chapter 3 showed that the 

proposed framework produced a unique stationary distribution with 

ergodic and regular markovian properties for risk neutral passengers. 

The sensitivity of model to various parameters assumed in the 

framework was assessed with risk neutral cost. It was seen that at 

higher ξ values the risk neutral passengers tend to think alike and hence 

choose the same route to travel between an OD pair on a particular day.  

 The generic framework provided in chapter 3 was used to assess the 

route choice of risk averse passengers in chapter 4. The risk aversion 

was accounted for in the cost of the passengers by introducing a non-

negative parameter ,β, which denoted the degree to which the variance 

of total travel time is undesirable to the passenger (Jackson and Jucker, 

1982). The implementation of the model on an example network 

showed that the parameter, β associated with the variance plays an 

important role is determining the route choice of passengers together 

with the memory length ℶ and the dispersion parameter, ξ adopted in 

the study.  It was seen that for lower values of the mentioned 

parameters there was not a significant difference in the flow distribution 

on the various routes between a network with all risk neutral and all 

risk averse passengers. At higher values of the said parameters a marked 

difference could be observed between the network of all risk neutral and 

all risk averse passenger flows on various routes. The all risk averse  

network passengers ,at higher ξ values ,assigned themselves onto routes 

found unattractive by all risk neutral network passengers. 

 The existing transit assignment models such as the BPR based, effective 

frequency based and the aggregate stochastic process model were 

discussed in chapter 4 with a mean-variance cost function. It was noted 

that all the existing transit assignment models did not assign flows onto 

routes found unattractive by all risk neutral network which was a 

noticeable phenomenon in the proposed R-DSPM with strict capacity 

constraints.  

 Though mean-variance cost deals with the risk aversion by introducing a 

non-negative parameter β in the cost it does not account for how exactly 

this variance would affect the passengers in day to day context. In order 

to assess the disutility associated with the increased total travel time a 

mean-lateness cost is proposed in chapter 5. The cost includes a lateness 

penalty for passengers experiencing total travel times greater than the 

acceptable total travel time between an OD pair.  The analysis on an 

example network showed that when the acceptable total travel time 
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value is large then the flow distribution is similar to that of assuming all 

risk neutral passengers. It is shown that the value of lateness θ1/θ2 

assumed plays a major role in determining the difference in flow 

distribution between all risk neutral and all mean-lateness passengers. 

When the acceptable total travel time is small and the value of lateness is 

large then the distribution of the flows between the all mean-lateness 

network and all risk neutral network is different.  

 The policy implementation on the example network has varying effects 

on the reliability of waiting times (chapter 5). It is seen that some of the 

policy measures do not have any impact on the reliability profile 

whereas some have an impact at the lower end transit stops. Overall it is 

seen that the distinction in reliability profiles using various cost is more 

pronounced in higher ξ values. 

 The essence of utilising reliability based cost to route the passengers in a 

realistic network is captured by implementing the framework in a 

section of London Underground (chapter 6). The results have shown 

that certain policy measures may result in a distinctly different 

performance profile for various cost in terms of waiting time reliability. 

It can successfully be concluded that not only the distribution of flows 

on various lines but also the number of passengers making transfer at 

various transfer stops (in the absence of transfer penalty) greatly varies 

between the cost chosen.  

 In general it can be concluded that the current thesis is successful in the 

implementation of a holistic R-DSPM with strict capacity constraint. The 

model has successfully overcome the disadvantages of existing transit 

assignment models by: 
1. Maintaining passenger priority, 

2. the non-separable problem not being able to guarantee a unique 

solution is accounted for by the presence of a single unique stationary 

distribution for various reliability based cost  

3. The R-DSPM framework allows for strict capacity constraint being 

observed at each transit vehicle level. 

4. The R-DSPM framework enables the assessment of unreliability 

associated with failure to board the first service of a passengers choice 

set. 

5. The assumption of passengers being fully aware of the network is 

overcome by assuming that the passengers revise their route choice 

based only on their experienced costs. The knowledge of uncongested 

total travel times on various routes in the event of not travelling on a 

particular route seems realistic enough as such a knowledge can easily 
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be worked out from the assumption of waiting time being inverse of 

frequency of the lines within the attractive line set. 

It is seen from the above paragraphs that the current reliability based 

stochastic process models with strict capacity constraint provides a framework  

bettering the existing transit assignment models at several levels (shown in Fig 

7.1). The various models tested in the thesis through its implementation on 

various example networks is summarised in Fig 7.2. Fig 7.2 helps to compare 

the models with ease based on the assumptions made in each of these models.  

It is also shown in the thesis that the risk aversion of passengers needs to be 

accounted for, as this would give a significantly different set of flows under 

certain conditions on each route from the conventional assumption of risk 

neutral passengers. This implies that the passengers willing to make transfers, 

in the absence of transfer penalties, would be significantly different while 

assuming risk averse than when assuming risk neutral passengers. This has a 

direct implication on the transit station design as well as policy settings 

adopted for the network. The stationary, ergodic and regular markovian 

framework provided in the thesis makes it possible to consider its integration 

with transit network design problems and problems wherein frequency 

optimisation is carried out by operators for the transit network. 



- 166 - 

 

 

Fig 7.1 Comparison of the salient features of the current R-DSPM with existing models available in literature. 
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Fig 7.2 Comparison of the salient features of various models tested in the thesis. 
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7.3 Further research: 

The current thesis has shown through various example implementation the 

need to account for risk averseness while assigning passengers on the transit 

lines. The current R-DSPM has accounted for several variations possible in a 

transit network  (as highlighted in section 7.1) however there are several other 

sources of variation which has been unaccounted for in the current study and 

could be accounted for in future research. These include the variations brought 

about by differing walking speeds from the ticketing kiosks to the platforms 

and the variation in the in-vehicle travel times. Accounting for these additional 

variations could have possibly resulted in the shift to unattractive routes at a 

lower ξ value for the given ℶ length.  

There are several aspects of the current research which can be further 

investigated such as: 

 The current R-DSPM with strict capacity constraints only considers the 

numerical experiments on small networks. The possibility of extending 

it to much larger network needs to be explored. The challenge 

associated with a larger network lies in the possibility of several 

probable transfer stops between an OD pair. The presence of several 

transfer stops makes it necessary for a choice model between these 

transfer stops to ascertain the best alternative (Guo and Wilson, 2004; 

Liu et al., 1997; Shafahi and Khani, 2010). It is also to be noted that the 

current thesis does not consider any transfer penalty at the transfer 

stops and hence there is a need to account for such a penalty for realistic 

modelling of transit network. Guo and Wilson (2004) highlight the 

importance of transfer penalties and indicate that absence of accurate 

assessment of transfer penalties could result in over estimation or under 

estimation of travel costs. Liu et al. (1997) carry out a stated preference 

survey to assess the transfer penalty values in terms of in-vehicle travel 

times whereas Shafahi and Khani (2010) develop a model to minimise 

the transfer time of passengers.  

 

 The current model assumes that the passenger learns from their own 

travel experiences on a route. Each route however comprises of route 

sections. The current study ignores the fact that a passenger travelling 

on a route learns not only the total travel time of the route but also the 

total travel time of the route section comprising it. Hence in example 

network 2 a passenger experiencing the waiting time for route 8 
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experiences the waiting time for route section D which is similar to the 

waiting time associated with route section K. This information can be 

used by the passenger while updating their experience matrix for route 

2. This phenomenon of acquiring indirect information is called ‘cross 

learning’. The process of accounting for cross learning is straight 

forward for the current model wherein the in-vehicle travel time is 

assumed to be constant. The cross learning is however ignored in the 

current study. The assumption of in-vehicle travel time being constant is 

a limiting assumption. Though the current R-DSPM with strict capacity 

constraints accounts for in-vehicle travel time variance when a 

particular route section has more than one attractive line section; there 

is a need to account for the random in-vehicle travel times on each line 

segment especially while considering bus networks. In absence of a 

dedicated right of way for bus transit the in-vehicle travel time of each 

line segment of the network is randomised due to the interaction with 

other traffic in the network. In event of assuming random in-vehicle 

travel times, the waiting time associated with route section K would only 

give partial information on the total travel time of route 2. The modeller 

would then have to make a learned guess to model the in-vehicle travel 

time while accounting for cross learning. While using the model to 

assess the train networks apart from considering the variance 

associated with the in-vehicle travel time it is to be noted that the 

variance associated with walking to the platform; ticketing process also 

needs to accounted for.  

 

 The generalised cost function used in R-DSPM can be easily modified to 

account for approaches such as the ‘regret theory’ and the ‘prospect 

theory’. ‘Regret theory’ works on the principle that a passenger is 

interested in reducing the likelihood of something bad from happening 

(Chorus et al., 2008; Chorus, 2012). Prospect theory works on the 

principle that the route choice is made based on the gains or losses made 

with respect to a reference point (de Moraes Ramos et al., 2011; Gao et 

al., 2010; Ben-Elia and Shiftan, 2010). de Moraes Ramos et al. (2011), 

compared the expected utility maximisation concept with regret theory 

and prospect theory and found that both the prospect theory and regret 

theory under-perform for reliability based route choice. Ben-Elia and 

Shiftan (2010) highlight that the prospect theory is difficult to apply 

analytically due to its ability to describe the outcomes in short number 

with particular probabilities instead of probability density function as is 
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obtained in the current R-DSPM.  The ability of passengers to remember 

extreme negative incidences should be reflected in the weighed learning 

process model wherein an experienced travel time exceeding certain 

permissible limit of each individual could be provided a higher 

weightage within the memory length. The possibility of such a weighed 

learning process implementation could be explored. 
 

 Another extension would be to consider the departure time of 

passengers within the day so as to follow a ‘scheduling based approach’ 

to account for the disutility associated with arriving early or late at the 

destination. This would require an actual time table for the network 

which is being modelled in order to associate a specific arrival time for 

the passengers. The specific arrival times would enable the modeller to 

associated a schedule delay late or early penalty at the origin and 

destination. 

   

 The burn-in time of the current R-DSPM with strict capacity constraints 

and the number of days for which the simulation is run to obtain a 

stationary distribution has been chosen arbitrarily. A more detailed 

study into the determination of burn-in periods and the determination 

of the stopping time needs to be explored. A look into Gilks et al. (1996) 

could provide several possible ways of doing the same.  

 

 Though a section of London Underground has been explored in the 

current thesis a need to calibrate the numerous parameters assumed in 

the model for a real world network is required thereby emphasising the 

need for an empirical study on a real world transit network to assess the 

risk averseness of transit passengers. 
 

 The present R-DSPM with strict capacity constraints can be extended to 

consider multiple user class who would define their attractive line set 

based on their economic welfare. The degree to which variance of total 

travel time is considered undesirable to the passengers in the mean-

variance model and the value of mean lateness in mean-lateness model 

shall be different for each economic group, purpose of trip etc. 
 

 The current R-DSPM with strict capacity constraints utilises logit choice 

for route choice identification. The logit choice model suffers from the 

inherent drawback of ignoring the overlaps in between different route 
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sharing the same route section.  The R-DSPM could be extended to 

include the probit based models; c logit or path size logit models which 

account for the overlapping route sections in different routes of the 

network (Nielsen, 2000; Teklu, 2008a; Teklu, 2008b; Vovsha and 

Bekhor, 1998; Zhou et al., 2012). Teklu (2008a and 2008b) use probit 

based transit assignment model in the day to day framework and  

Nielsen (2000) show the implementation of probit models in SUE. Zhou 

et al. (2012) utilise C-logit in SUE based traffic assignment whereas 

Vovsha and Bekhor (1998) indicate the drawback of using C-logit.  
 

 The current R-DSPM assumes a linear learning process models for the 

passengers which could be modified to account for habits wherein the 

route choice of the passengers is not altered on a day to day basis. A 

possible way to do that would be by using continuous markov process 

model wherein each passenger would have an exponentially distributed 

time interval on a particular route before they decide to update their 

route choice. 
 

 Transit system around the world doesn’t work in isolation and has 

several feeder services and ‘intermediate public transport’ systems 

acting as arteries and providing access to the public transit network. A 

need to look at the possible integration of such modes to develop a 

framework with multimodal route choice assessment is needed. Verma 

and Dhingra (2006) develop a combinatorial optimisation problem with 

a train scheduling sub-model and a schedule coordination sub-model to 

integrate the train services with the feeder bus services. Shrivastava and 

O’Mahony (2006) use genetic algorithm to integrate the main transit 

service with feeder buses leading to an improved patronage of transit 

services. 

 

 The integration of R-DSPM with strict capacity constraints as an initial 

planning tool for transit network design development or transit network 

frequency modifications needs to be explored. The use of bi-level 

optimisation process could be considered as one of the possibilities for 

such an exploration. 
 

 The current R-DSPM with strict capacity constraints does not consider 

fare of the transit system as one of possible disutility’s in the generalised 

cost function. Hence the impact of fare on the route choice of risk averse 
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passengers needs to be explored. The exploration should be such that 

elasticity of the demand with variations in fare structure is accounted 

for in the model. 
 

 The current thesis assumes a FIFO principle of queuing being followed at 

each transit stop which in reality is not the case. Hence the need to 

explore the mingling of the passengers at the transit stops needs to be 

modelled This could be done by not sorting the passengers at the transit 

stop by their arrival times. Instead those in the queue for the arriving 

transit service could have a probability associated with their boarding 

resulting in the boarding process being randomised.   
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Appendix A 

Formulation of Optimal strategy and assignment of flows on a 

test network as in Spiess and Florian, (1989) 

(Spiess and Florian, 1989) formulate an optimisation problem to arrive at a 

routing policy which produces the least generalised cost route. Optimal 

strategy is based on the minimisation of the travel time (generalised cost) and 

works on the concept that traveller chooses the first vehicle that arrives from 

the attractive lines set at each bus stop. 

 

                                              Fig A.1: Test network 

For the test network in figure A.1, the alternative ways of travelling along the 

network are as shown in table A.1. A user is faced with these alternatives before 

or during his/her journey. These alternatives can be also called strategies. 

According to (Spiess and Florian, 1989) the optimum strategy is the strategy 

which the user perceives gives him/her the minimum generalised cost. Since it 

is assumed in  (Spiess and Florian, 1989) that users have full knowledge of the 

frequency of services in a line and also have knowledge of the travel time 

involved, the ‘optimal strategy’ arrived by the algorithm in (Spiess and Florian, 

1989) gives the path of minimum generalised cost of the network. 

Table A.1: Possible Alternatives for travelling within the example network 
along with their costs 

Stops S1-S2 S2-S3 S1-S3 
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travel time + 
waiting time (min) 30 30 30 17.15 45 55 38.33 39.65 

 
The ‘optimal strategy’ Ā* to travel from the origin to destination for the example network 
based on the optimisation algorithm and assignment algorithm defined by (Spiess and 
Florian, 1989) shall be obtained by minimising the following function  
 

𝑚𝑖𝑛 ∑ 𝐶𝑙𝑣𝑙 + ∑
𝑣𝑖

∑ 𝜑𝑙𝑥𝑙𝑙∈𝐿𝑖+
𝑖∈𝐼𝑙∈𝐿                      (A.1) 
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  Subject to the conditions 

𝑣𝑙 = 
𝑥𝑙𝜑𝑙

∑ 𝜑𝑛𝑥𝑛𝑛∈𝐿𝑖+

 𝑣𝑖 

𝑣𝑖 = ∑ 𝑣𝑙 + 𝑔𝑖

𝑙∈𝐿𝑖−

 

𝑣𝑖 ≥ 0 and 𝑥𝑙 = 0 𝑜𝑟 1 for 𝑖 ∈ 𝐼 and 𝑙 ∈ 𝐿̅.  
 
In order to analyse the test network we shall simplify the network representation as in 
(Spiess and Florian, 1989) and the simplified network is given in fig A.2. 

 

Fig A.2: Simplified Test network as in (Spiess and Florian, 1989) 

The optimal strategy for the test network is given in table A.2 and the assignment of a unit 
flow from node 1 to node 4 or S1 to S3 is given in table A.3.  

Table A.2: Finding Optimal Strategy for the Test Network 

Iteration 
No: 

Node Labels (ui, 𝜑𝑖) Link with min um+Cl 

1 2 3 4 
𝑙 

=(i,m) 𝜑𝑙  uj+Cl 𝑙 ∈ 𝐿̅ 
1 ∞,0 ∞,0 ∞,0 0,0 (3,4)   1/20 10 yes 
2  -do-  -do- 30,1/20  -do- (2,4) ∞ 15 yes 
3  -do- 15,∞  -do-  -do- (3,2)  1/15 15 yes 
4  -do-  -do- 21.4,0.117  -do- (2,3) ∞ 21.4 no 
5  -do-  -do-  -do-  -do- (1,4)  1/30 25 yes 
6 55,1/30  -do-  -do-  -do- (1,2)  1/15 30 yes 

  38.33,1/10 15,∞ 21.4,0.117 0,0   

Table A.3: Assign Demand on Test Network 

Iteration No: 

Link 

(i,m) Volume (𝑣𝑙) 

6 (1,2) 0.667 
5 (1,4) 0.33 
4 (2,3) 0.667 
3 (3,2) 0.38 
2 (2,4) 0.38 
1 (3,4) 0.29 

 
The step wise iterative process to arrive at the optimal strategy and the assignment of 
flows is as follows: 
1st Iteration: 

[(0  +  10),   (0  +  15),  (0  +  25)], (∞  +  0), ( ∞  +    15), (∞  +  0)            𝑢𝑚 + 𝐶𝑙 = 10 

 

4 (4, 3) 4 (4, 2) 2 4 3 2 (4, 1) (3, 2) (2, 1) (2, 3) 
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Start @ (4, 3) 

Update 𝑢3   𝑢3 = 
1 + (

10

20
)

1

20

⁄  = 30 

𝜑3 = 1/20 

Node 3 (30, 1/20)  --- included in strategy - yes 

2nd Iteration: 

[(0  +  15) ,  (0  +  25) , (30  +  0)], ( ∞  +    15), (∞  +  0)         𝑢𝑚 + 𝐶𝑙 = 15     

 

 

Start @ (4, 2) 

Update 𝑢2   𝑢2 = 15 

𝜑3 = ∞ 

Node 2 (15, ∞)   ----- included in strategy - yes 

3rd Iteration: 

[(0  +  25), (30  +  0), ( 15  +    15), (15  +  0)]         𝑢𝑚 + 𝐶𝑙 = 15     

 

 

Start @ (2, 3) 

𝑢3 = 30 From 1st iteration ≥15 

Hence, Update 𝑢3   𝑢3 =

30

20
+

15

15
1

15
+

1

20

⁄ = 21.4 

 𝜑3 =
1

15
+

1

20
= 0.117 

Node 3 (21.4, 0.117)   ----- included in strategy - yes 

4th Iteration: 

[(0  +  25), (21.4  +  0), ( 15  +    15),]         𝑢𝑚 + 𝐶𝑙 = 21.4    

 

 

4 (4, 2) 2 4 3 2 (4, 1) (3, 2) (2, 1) (2, 3) 

2 4 3 2 (4, 1) (3, 2) (2, 1) (2, 3) 

2 4 3 (4, 1) (3, 2) (2, 1) 
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Start @ (3, 2) 

𝑢2 = 15 From 2nd iteration < 21.4 

Hence, ----- included in strategy – no 

5th Iteration 

[(0  +  25), ( 15  +    15),]         𝑢𝑚 + 𝐶𝑙 = 25     

 

 

Start @ (4,1) 

Update 𝑢1   𝑢1 =
1 +

25

30
1

30

⁄ = 55 

 𝜑1 = 0 +
1

30
=

1

30
 

Node 1 (55, 1/30)   ----- included in strategy - yes 

6th Iteration 

[( 15  +    15),]         𝑢𝑚 + 𝐶𝑙 = 30     

 

 

Start @ (2, 1), 𝑢1 = 55 From 5th iteration ≥30 

Hence , Update 𝑢1   𝑢1 =

55

30
+

25

30
1

30
+

1

15

⁄ = 38.33,  𝜑1 =
1

15
+

1

30
=

1

10
 

Node 1 (38.33, 1/10)   ----- included in strategy – yes 

 

 

 

 

 

 

 

2 4 (4, 1) (2, 1) 

2 (2, 1) 
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Assignment: 

Arrange the links in decreasing order of 𝑢𝑚 + 𝐶𝑙 

(1,2)           𝑣𝑙 =
𝜑𝑙

𝜑𝑖
⁄ 𝑣𝑖 = 

1

15
1

10

⁄  (1) = 0.667 

(1,4)          

1

30
1

10

⁄  (1) = 0.33 

(2,3)           0.667 

(3,2)           

1

15
0.117

⁄  (0.667) = 0.38 

(2,4)           0.38 

(3,4)           

1

20
0.117

⁄  (0.667) = 0.29 
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Appendix B 

Route Choice of passengers at Transit stop with and without 

signs at stop information 

Consider the test network given in Fig B.1. At bus stop S2 we have two lines 

(blue and purple) with the blue line having a frequency of 4 bus/hr and a travel 

time of 20 min whereas the purple line has a frequency of 3 bus/hr and a travel 

time of 10 min.  

 

 

Fig B.1: Test Network 

Assuming that the headway distribution is deterministic we get the probability 

of choosing a line that arrives first at bus stop S2 (in the absence of 

information) as given in equation below. 

𝜂𝑙,𝑗 = ∫ 𝑓𝑙(𝜕′) ∏ 𝐹̅𝑛(𝜕′)𝑑𝜕′

𝑛∈𝐿∗\{𝑙}

∞

0

 

The p.d.f of waiting time of line given that the line has deterministic headway 

distribution can be formulated as   

𝑓𝑙(𝜕)′ = {
𝜑𝑙  𝑖𝑓 0 ≤ 𝜕′ ≤ 1 𝜑𝑙⁄

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 
 

If u̅ = min{un|n} = 1,2, …… , L then for deterministic headways  

   

𝜂𝑙,𝑗 = ∫ 𝜑𝑙 ∏ (1 − 𝜑𝑛𝜕′)𝑑𝜕′

𝑛∈𝐿∗\{𝑙}

𝑢̅

0

 

Hence for the example network in fig B.1 the conditional probability of 

choosing line 1 (purple) line is given as 

𝜂𝑝𝑢𝑟𝑝𝑙𝑒,𝑗 = ∫
1

20
∗ (1 −

15

0

1
15⁄ 𝑥)𝑑𝑥 

 
𝜂𝑝𝑢𝑟𝑝𝑙𝑒,𝑗 = 0.375 

 

𝜂𝑏𝑙𝑢𝑒,𝑗 = ∫
1

15
∗ (1 −

15

0

1
20⁄ 𝑥)𝑑𝑥 

𝜂𝑏𝑙𝑢𝑒,𝑗 = 0.625 
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With information the conditional probability if choosing a line is given as  

𝜂𝑝𝑢𝑟𝑝𝑙𝑒,𝑗 = ∫
1

20
∗

20

0

 𝐹2|1
̅̅ ̅̅ ̅ (𝜕′ − 10)𝑑𝑤 

 

= ∫ 1/20
10

0

𝑑𝑥 + ∫
1

20
∗ (

(25 − 𝑥)
15

⁄ )
15

10

 𝑑𝑥 + ∫ 1/20
20

15

∗ (
(25 − 𝑥)

15
⁄ )  𝑑𝑥 

 
𝜂𝑝𝑢𝑟𝑝𝑙𝑒,𝑗 = 0.833 

𝜂1,𝑗 =
3

7
= 0.4286 

𝜂2,𝑗 =
4

7
= 0.4286 

 

𝜂𝑏𝑙𝑢𝑒,𝑗 = ∫
1

15
∗

10

0

 𝐹1|2
̅̅ ̅̅ ̅ (𝜕′ + 10)𝑑𝑤 

 

= ∫ 1/15
5

0

∗  (
(10 − 𝑥)

20
⁄ )𝑑𝑥 + ∫

1

15
∗ (

(10 − 𝑥)
20

⁄ )
10

5

 𝑑𝑥 

 
𝜂𝑏𝑙𝑢𝑒,𝑗 = 0.167 

Table B.1: Deterministic headway: on-line information vs no information 

Information Scenario 𝜂𝑝𝑢𝑟𝑝𝑙𝑒,𝑗 = 

 

𝜂𝑏𝑙𝑢𝑒,𝑗 = 

Sign at stop 0.833 0.167 
Without sign at stop 0.375 0.625 
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Appendix C 

Markovian property Check for Mean-lateness model 

The presence of single stationary distribution for the mean lateness model to 

prove the ergodic nature of the R-DSPM is shown in Fig C.1. From the visual 

inspection and from comparison of the mean and standard deviation of the 

flows between various day intervals it can be concluded that there exists a 

single stationary distribution. The presence of single stationary distribution 

implies that the R-DSPM for mean-lateness is ergodic. 

 

Fig C.1: Stationary Distribution on routes 2,3 and 9 between days 201-400 and 
days 401-600 for 𝜉 = 0.05, 𝓣(𝑍 = 1) = 48.5 and 𝓣(𝑍 = 2) = 32.5, ℶ =

15,
θ2

θ1
= 5 

C.1 Converging irrespective of initial condition: 

The convergence of the R-DSPM irrespective of its initial conditions to the same 

stationary distribution is a proof of that the current stochastic process is 

regular. To prove that the mean-lateness R-DSPM is regular different initial 

conditions were tested similar to those done in earlier chapters (Z=1- poisson 

rate of passenger arrivals-400/3600, population size (constant demand)-83; 

Z=2-poisson rate of passenger arrivals-250/3600, population size (constant 

demand)-88). The comparison of mean and standard deviation (Table C.1) 

indicates convergence to the same distribution. 
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Table C.1: The convergence of mean-lateness model irrespective of its initial 

condition 𝓣(𝑍 = 1) = 48.5 and 𝓣(𝑍 = 2) = 32.5, 𝜉 = 4, ℶ = 15,
θ2

θ1
= 5 

 Route 1 2 3 4 5 6 7 8 9 10 11 

Initial 

condition 

II 

𝐸(𝑡𝑠) 22.6 41.9 43.4 73.3 95.7 57.1 83.7 12.9 74.6 84.5 69.5 

Std 26.4 10 7.7 50.3 34.5 27.8 23.5 37.8 20.3 21.0 19.0 

𝐸(𝑋𝑠) 1.7 175.6 139.9 5.4 14.9 13.1 50.1 0.2 78.6 73.8 96.3 

Std 3.2 49.3 31.7 7.6 15.4 14.3 18.8 0.7 13.9 19 16.7 

Initial 

condition 

III 

𝐸(𝑡𝑠) 15.7 41.3 42.5 65.8 90.6 55 83.3 10.2 73.8 84.8 68.9 

Std 23.5 102 7 52.3 38.1 29.6 22.7 31.6 20 20.5 18.1 

𝐸(𝑋𝑠) 1.1 177.3 142.8 4.1 13.3 10.8 48.6 0.2 79.6 73.7 97.6 

Std 2.6 51.3 35 6.8 16 12.8 18.0 0.57 15.1 20.2 17.2 

A statistical test of Wilcoxon rank sum test was carried out to check if the 

distributions obtained from various initial conditions were indeed similar and 

having the same mean or not. The test results are shown in Table C.2. The table 

C.2 results show that the null hypothesis cannot be rejected at the 5% 

significance level as all the p-values are greater than 0.05 in all cases for m = 1 . 

This shows that there is not sufficient evidence to show that the samples from 

the three realisations do not come from the same stationary distribution and do 

not have the same median.  

Table C.2: Wilcoxon rank sum test 𝓣(𝑍 = 1) = 48.5 and𝓣(𝑍 = 2) = 32.5, 𝜉 =

4, ℶ = 15,
θ2

θ1
= 5 

 Route 1 2 3 4 5 6 7 8 9 10 11 

𝑬(𝒕𝒔) 

1
 v

s 
2

 

0.15 0.85 0.83 0.1 0.53 0.45 0.79 0.15 0.48 0.86 0.3 

2
 v

s 
3

 

0.01 0.66 0.68 0.21 0.71 0.76 0.79 0.14 0.44 0.94 0.36 

1
 v

s 
3

 

0.38 0.86 0.79 0.66 0.76 0.35 0.99 1 0.92 0.97 1 

𝑬(𝑿𝒔) 

1
 v

s 
2

 

0.03 0.92 0.33 0.04 0.33 0.03 0.39 0.16 0.71 0.55 0.12 

2
 v

s 
3

 

0.01 0.69 0.83 0.07 0.44 0.07 0.42 0.16 0.89 0.38 0.06 

1
 v

s 
3

 

0.55 0.9 0.62 0.7 0.72 0.64 0.95 1 0.82 0.88 0.65 
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Table C.3: Two-sample Kolmogorov-Smirnov test 𝓣(𝑍 = 1) = 48.5 and 𝓣(𝑍 =

2) = 32.5, 𝜉 = 4, ℶ = 15,
θ2

θ1
= 5 

 Route 1 2 3 4 5 6 7 8 9 10 11 

𝑬(𝒕𝒔) 
1

 v
s 

2
 

0 0 0 0 0 0 0 0 0 0 0 

2
 v

s 
3

 

1 0 0 0 0 0 0 0 0 0 0 
1

 v
s 

3
 

0 0 0 0 0 0 0 0 0 0 0 

𝑬(𝑿𝒔) 

1
 v

s 
2

 

0 0 0 0 0 0 0 0 0 0 0 

2
 v

s 
3

 

0 0 0 0 0 0 0 0 0 0 1 

1
 v

s 
3

 

0 0 0 0 0 0 0 0 0 0 0 

The two sample Kolmogorov-Smirnov test gives the same result as wilcoxon 

rank sum test whereby it is observed that the samples are from the same 

distribution. 

C.2 Sensitivity analysis : 

C.2.1 Differing shape factors 

 

Fig C.2 the sensitivity of route flows to various shape factors for risk neutral 
and mean-lateness cost functions at 𝜉 = 0.05 𝓣(𝑍 = 1) = 48.5 and 𝓣(𝑍 =

2) = 32.5, ℶ = 15,
θ2

θ1
= 5 
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Figure C.2 indicates that at routes originating at transit stop 1 the flows 

distribution between the risk neutral and mean-lateness cost function is 

different however at the  lower end transit stop 2 the distribution is almost 

similar. The distribution of route flows for various shape factor values at 

𝜉 = 0.05 for mean-lateness cost function is also almost similar to each other.  

C.2.2 Differing value of lateness  

 

Fig C.3 Flow and experienced total travel distribution on various routes for 
varying value of lateness at 𝜉 = 0.05, 𝓣(𝑍 = 1) = 48.5 and 𝓣(𝑍 = 2) =
32.5, ℶ = 15 

 

Fig C.4 Flow and experienced total travel distribution on various routes for 
varying value of lateness at 𝜉 = 4,𝓣(𝑍 = 1) = 48.5 and 𝓣(𝑍 = 2) =

32.5, ℶ = 15 
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The flow distribution and its standard deviation vary significantly on various 

routes for both at ξ = 0.05 and ξ = 4.  However a decreasing trend in the mean 

values of the flows with increasing value of lateness is observed at higher ξ 

value. 

C.2.3 Differing memory lengths  

Table C.4: sensitivity of experienced travel times and flows for differing 

memory lengths  𝓣(𝑍 = 1) = 48.5 and 𝓣(𝑍 = 2) = 32.5, ξ = 4,
θ2

θ1
= 5 

 Risk Averse Risk Neutral 

 Route 2 7 9 2 7 9 

ℶ=5 

𝐸(𝑡𝑠) 40.9 84 67.2 41.6 88.1 66.0 

Std 9.7 23.2 19 10.2 24.1 19.8 

𝐸(𝑋𝑠) 169.6 89.2 82.8 187.6 89.2 67.9 

Std 48.6 16.5 17.5 39.0 17.6 18.1 

ℶ=15 

𝐸(𝑡𝑠) 41.3 83.4 73.9 42.3 89.1 70 

Std 10.1 22.8 19.6 10.7 24.4 20.6 

𝐸(𝑋𝑠) 177.0 48.6 79.8 197.3 67 67.4 

Std 50.8 19.0 15 48.0 24.1 20 

ℶ=30 

𝐸(𝑡𝑠) 41.3 83.7 74.3 42.3 88.9 70.2 

Std 10.1 22.8 19.7 10.7 24.1 20.6 

𝐸(𝑋𝑠) 178.6 47.6 80.2 197.5 66 66.9 

Std 51.0 18.7 14.6 47.8 23.4 20.2 

At lower memory lengths the distinction between risk neutral and risk averse 

passengers is still obvious for higher ξ values but the shift to routes found 

unattractive by risk neutral passengers by the risk averse passengers happens 

only at higher memory values. It is again seen that after certain memory length 

the expected travel time and flow values long the routes stabilises as 

passengers become aware of the complete network and hence there is not 

much of a distinction in these values between the memory length of 15 days 

and 30 days.  
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C.3 Policy Interventions  

C.3.1 Increasing capacity of line 2: 

 

 

Fig C.5 : Waiting Time reliability for various cost functions  l2 cap=25 at ξ=0.05 

𝓣(𝑍 = 1) = 48.5 and 𝓣(𝑍 = 2) = 32.5, ℶ = 15,
θ2

θ1
= 5, 𝛽 = 2.5 

 

Fig C.6 : Line loads at ξ=0.05 for increased capacity 𝓣(𝑍 = 1) = 48.5 and 𝓣(𝑍 =

2) = 32.5, 𝜉 = 4, ℶ = 15,
θ2

θ1
= 5 
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Fig C.7 Waiting Time reliability at ξ=0.05 for increased frequency of line 

1𝓣(𝑍 = 1) = 48.5 and 𝓣(𝑍 = 2) = 32.5, ℶ = 15,
θ2

θ1
= 5 

 

Fig C.8: Line loads at ξ=0.05 for changed frequency 𝓣(𝑍 = 1) = 48.5 and 𝓣(𝑍 =

2) = 32.5, ℶ = 15,
θ2

θ1
= 5 
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Fig C.9 Waiting Time reliability at ξ=0.05 changed dwell time line 2 

𝓣(𝑍 = 1) = 48.5 and 𝓣(𝑍 = 2) = 32.5, ℶ = 15,
θ2

θ1
= 5 

 

Fig C.10 : Line loads at ξ=0.05 for changed dwell time 

𝓣(𝑍 = 1) = 48.5  and 𝓣(𝑍 = 2) = 32.5, ℶ = 15,
θ2

θ1
= 5 

The policy interventions at ξ=0.05 indicate that there is very slight difference in 

the waiting time reliability profile of the cost functions at various stops of 

example network 2.  This indicates that if the passengers perception error in 

the cost function is assumed large then the impact of policy interventions may 

seem almost nil.  
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