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Abstract 

Faults can have significant impact on reservoir productivity. Understanding the factors 

that controls the fluid flow properties of fault rocks provides a sound basis to assess the 

impact of faults on reservoirs productivity. So, different aspects that affect the fluid 

flow within siliciclastic fault formations were investigated in this research project. Fault 

rock samples from a number of locations were analysed including: (i) core samples 

from central and southern North Sea fields; (ii) and outcrop samples from the 90 

Fathom fault, Northumberland, UK and Miri airport road exposure, Malaysia as well as 

the Hopeman fault from Invernesshire, UK. The impact of faults on fluid flow was 

assessed by integrating the data from QXRD analysis, microstructural examination, X-

ray tomography, mercury porosimetry for pore size distribution, absolute and relative 

permeability measurements as well as capillary pressure tests. Single phase and 

multiphase flow properties which were conducted at a range of stresses are the most 

comprehensive collection of high quality fault rock data. 

The permeability measurements made using gas gave higher values than with brine, 

which in turn gave higher values that when measured using distilled water permeability. 

The differences in permeability could be the results of clay particles swelling; 

mobilisation and retaining within the confined pore throats, although these effects 

depend on the rock mineralogy and pore fluid composition. Moreover, the permeability 

stress sensitivity was investigated. The results showed that at low confining stresses the 

permeability of the fault rock core samples showed high sensitivity to stress, whereas at 

higher confining stresses the permeability was less pronounced to stress. This might be 

due to the core damage effects and the microfractures formed due to stress release, 

which were observed from SEM images. The pore radius calculated from gas slippage 

parameters at low confining pressures was in the same order of magnitude as the micro 

fracture width. The micro cracks could be easily closed due to stress increase hence 

resulted in reduction of permeability. Overall, the stress sensitivity of fault rocks from 

outcrop is less than that from core. This is consistent with the idea that stress sensitivity 

is mainly the result of the presence of grain boundary microfractures formed as core is 

brought to the surface. This indicates that permeability measurements made on outcrop 

samples may be more reliable. Another key finding was that the published permeability 

http://www.google.co.uk/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&uact=8&ved=0CCMQFjAA&url=http%3A%2F%2Fwww.hotellocally.co.uk%2Fscotland%2Finverness-shire%2Fhopeman.htm&ei=FMz5VPzNIsTd7gbFy4HgDw&usg=AFQjCNHpy3FP6ZAIIoPm6qPO4eYslvXzYg&sig2=FicspbGQTL56JjHkgqRgXg&bvm=bv.87611401,d.ZGU
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data (e.g. Fisher and Knipe, 2001) compared with present study data which is obtained 

at in-situ stress using formation compatible brines showed that the published data may 

not be inaccurate as the use of distilled water gives lower permeability than brines and 

low stresses resulted in higher permeability than in-situ stress measurements. Therefore, 

the results indicate that two different laboratory practices used in previous studies 

partially cancel each other out so that the existing data is yet valuable.  

The effective gas permeability were also measured at a range of stresses and it was 

observed that the samples with lower absolute permeabilities were more stress sensitive 

to stress than high permeable samples. The relative permeability results obtained were 

incorporated into a specific example of synthetic reservoir model. These suggested that 

faults formed within low permeability sands might act as a barrier to fluid flow.  
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1 INTRODUCTION 

 

 

 

1.1 Introduction  

Faults can act as fluid flow barriers dividing petroleum reservoirs into different 

compartments that might severely affect the distribution and the productivity of 

hydrocarbons within subsurface reservoirs (e.g. Gibson, 1998; Elleveset et al., 1998; 

Fowles and Burley, 1994; Knai and Knipe, 1998; Manzocchi et al.,1999; Fisher and 

Knipe, 1998, 2001; Faulkner and Rutter, 2000;  Sperrevik et al., 2002; Crawford et al., 

2002; Shipton et al., 2002; Manzocchi et al., 2002; Al-Hinai et al., 2008; Manzocchi et 

al., 2010; Tueckmantel et al., 2010 and 2012). As stated by Manzocchi et al. (2010) that 

fault rocks affect fluid flow in three different ways. First, they act as a complete barrier 

to fluid flow by juxtaposing permeable layers against impermeable layers. Second, fault 

rocks may have lower permeability than the host rock, resulting in a reduction in the 

rate of flow across the fault. Third, they could create fault-parallel pathways for fluid 

flow. The petroleum industry has long since argued that faults can act as barriers (e.g. 

Smith, 1966, 1980; Berg, 1975; Watts, 1987; Alexander and Handschy, 1998; Fisher et 

al., 2001) to fluid flow. Examples of fields containing such barriers have been presented 

by many authors (e.g. Jolley et al., 2007; Zijlstra et al., 2007; Al-Hinai et al., 2007). 

Understanding the impact of faults on fluid flow is important for predicting reservoir 

performance also planning and development strategies (Fisher and Jolley, 2007). For 

example, unexpected fault-related compartmentalization can lead to dramatic reserve 

write-downs or even project abandonment. On the other hand, un-swept compartments 

can be very profitable targets for in-fill drilling (Professor Fisher, pers. Com.).  

The main focus of the current study is to obtain data on petrophysical properties of fault 

rocks found within the siliciclastic sediments. The impact of faults on cross-fault flow 

was analysed by integrating the microstructural examination, X-ray tomography and 

http://www.google.co.uk/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&uact=8&ved=0CCEQFjAA&url=http%3A%2F%2Fwww.fault-analysis-group.ucd.ie%2FPublications%2F53TransMult.html&ei=O7siVNGiDMLgsATmz4GIAg&usg=AFQjCNEIrIFQKKS8vH3I0HHEm3SpuoGRMw&sig2=4om9GC2f6W8SZal9zCCDjw&bvm=bv.75775273,d.cWc
http://www.google.co.uk/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&uact=8&ved=0CCEQFjAA&url=http%3A%2F%2Fwww.fault-analysis-group.ucd.ie%2FPublications%2F53TransMult.html&ei=O7siVNGiDMLgsATmz4GIAg&usg=AFQjCNEIrIFQKKS8vH3I0HHEm3SpuoGRMw&sig2=4om9GC2f6W8SZal9zCCDjw&bvm=bv.75775273,d.cWc
http://www.google.co.uk/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&uact=8&ved=0CCEQFjAA&url=http%3A%2F%2Fwww.fault-analysis-group.ucd.ie%2FPublications%2F53TransMult.html&ei=O7siVNGiDMLgsATmz4GIAg&usg=AFQjCNEIrIFQKKS8vH3I0HHEm3SpuoGRMw&sig2=4om9GC2f6W8SZal9zCCDjw&bvm=bv.75775273,d.cWc
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laboratory measurements of single- and multi-phase properties of fluid flow that are 

necessary for accurate modelling of reservoirs so that the uncertainties can be 

minimized. The first part of this chapter gives a theoretical background about the effect 

of faults on fluid flow. The second part of this chapter provides the issues related to the 

current fault rock petrophysical properties that have been investigated and the objectives 

of the study. The chapter then ends with a brief overview of the outline of this thesis. 

1.2 Impact of faults on fluid flow: an overview 

Fault compartmentalization due to sedimentary heterogeneity plays significant role in 

hydrocarbon reservoirs by acting as a barrier (Manzocchi et al. 1999; Caine et al., 

1996). Faults within hydrocarbon reservoirs might act as a potential seal by juxtaposing 

the reservoirs against non-reservoir formations as shown in Figure 1.1, such faults are 

usually called as juxtaposition seals (Watts, 1987). Juxtaposition seals are extensively 

recognized as these provide an important barrier for fluid flow on geological and 

production time-scales (e.g. Knipe, 1997; James et al., 2004). There is no such evidence 

that show about juxtaposition seals, that have formed conduits for fluid flow or after 

self-sealing, would have never acted as a conduits for fluid flow (Watts, 1987). The 

process of faulting might result in producing a fault gouge (here referred to as the fault 

rock) that also potentially restricts the fluid flow; such faults are reported as fault seals 

sensu stricto (Watts, 1987). The impact of fault rocks on fluid flow is yet debatable, few 

studies argue that fault rocks are the main reason to trap hydrocarbons on both 

geological and production time-scales (e.g. Knipe et al., 1997). Others studies have 

reported that faults are most likely are very thin and are not continuous to behave as a 

major barrier to fluid flow on geological time-scales. So, it is not necessary to be 

considered when predicting the petroleum traps (e.g. James et al., 2004). However, there 

is more agreement that fault rocks could act as a barrier.  
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Figure 1.1 Schematic diagram showing the difference between a juxtaposition seal (top) and a fault rock 

seal (bottom) (from Fisher, pers. com.2012). 

Moreover, the authors have reported that compartmentalization due to fault sealing 

could affect reservoir productivity and is important to take account of these effects into 

simulation and modelling (e.g. Jolley et al., 2007). There is evidence from many oil and 

gas fields currently being produced that have experienced significant productivity 

problems as a result of fault compartmentalization. Examples of such fields are 

Rotliegend reservoirs in the southern North Sea (e.g. Hulten et al., 2010). Apart from 

that van der Molen et al., (2003) showed that a 280 bar pressure difference generated 

across a fault during production from a Rotliegend reservoir of offshore Netherlands 

(Figure 1.2). Al-Hinai et al. (2008) investigated the similar field which was reported by 

van der Molen et al. (2003) and found that the large pressure difference might not be 

explained based on the information of absolute permeability of fault rocks. However, 

they argued that the behavior of such compartmentalized reservoir could be explained 

by considering the two phase flow properties of the fault rocks by incorporating into 

simulation model. Moreover, Zijlstra et al. (2007) also conducted simulation and 

modelling studies of fault compartmentalized reservoir from Rotliegend reservoirs and 

he found that the fault were acting as barriers to production. Another example of fault 

modelling and history matching of the fault related reservoir comes from the work of 

Jolley et al. (2007). This thesis aims to investigate the extent to which fault rock impacts 

the fluid flow within petroleum reservoirs.    
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Figure 1.2 The above diagram is showing a 280 bar pressure difference that built up across faults in the 

Rotliegend reservoir from southern North Sea field as a result of petroleum production (from 

van der Molen et al., 2003). 

1.3 Issues related to current fault rock petrophysical 

properties data  

Faults act as major barriers to fluid flow within the compartmentalized reservoirs (e.g. 

Fisher and Jolley, 2007) therefore, it is necessary to accurately model the impact of 

faults on fluid flow. For accurate modelling behavior of such reservoirs it is necessary 

to have accurate fluid flow properties. The following section outlines the impact of 

confining stress as well as the impact of brine composition on fault rock flow properties 

that will be addressed in this thesis.  

1.3.1 Effect of stress on petrophysical properties of fault rocks 

An important aspect investigated in this thesis was the stress sensitivity of permeability 

of fault rock. The fault rock permeability measured at ambient stress conditions are well 

documented (e.g. Gibson et al., 1998; Ellevset et al., 1998; Knai and Knipe, 1998; 

Fisher and Knipe, 1998; 2001; Sperrevik et al., 2002; Tueckmantel et al., 2011, 2012).  

However, it is well known that laboratory measurements of the permeability of tight 

rocks are very stress sensitive (e.g. Morrow and Brower, 1986; Byrnes and Castle, 

2000). For example, routine core analysis permeability measurements made on tight gas 

sandstones may be several orders of magnitude lower than measurements made at in 

situ stress conditions (e.g. Byrnes et al., 2010). If this is the case for fault rocks, the 
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most commonly used workflow (e.g. Fisher and Knipe, 2001) to calculate fault 

transmissibility multipliers to incorporate fault rock properties into simulations models 

could be based on measurements that underestimate fault permeability. The single-

phase permeability values are routinely used by industry to calculate transmissibility 

multipliers that are incorporated into production simulation models to account for the 

impact of faults on fluid flow (e.g. Fisher and Jolley, 2007). To assess the extent to 

which the measurements conducted at low stresses might affect the results of fault seal 

analysis. The present study has conducted experiments to examine the stress sensitivity 

of the absolute permeability of fault rock samples obtained from reservoir core samples 

from North Sea fields and outcrops samples supplied from 90 Fathom fault and from 

Mirri airport road exposure Malaysia.  

1.3.2 Fluid-rock chemical interactions 

The permeability of sandstone samples containing clays is sensitive to brine 

composition (e.g. Khilar and Fogler, 1984; Lever and Dawe, 1987). The clays minerals 

are the main reason to influence the permeability of sandstones reservoirs when exposed 

to water (e.g. Wilson and Pittman, 1977). As a result understanding the influence of 

clay mineralogy and pore fluid sensitivity on permeability is necessary to investigate the 

extent to which it affects the fault rock permeability. The physiochemical interactions 

between water and clay minerals severely impact the sample permeability (e.g. Byerlee, 

1999). Israelachvili et al. (1992) demonstrated that the influence of water interacting 

with rock surfaces might result in formation of layer of bound water on mineral 

surfaces. Fault rock samples if they contain clay mineral fractions such as those 

generated within the clay bearing fault gouges or phyllosilicate framework, fine grained 

clays might exist in between pore spaces of such faults (e.g Rutter et al. 1986). If 

permeability of such samples measured with distilled water might be affected due to 

swelling clay minerals and fine particles mobilization, as a result the effective pore 

throat size of rock can be reduced due to swelling clay minerals or by creating a layer of 

immobile bound water which coats the mineral surfaces (e.g. Faulkner, 2004).  

The impact of faults on fluid flow within production simulation could be modelled by 

applying transmissibility multipliers to the face of grid blocks adjacent to faults that has 

become a routine in industry (e.g. Manzocchi et al., 2002). Actually, there are several 

software packages that allow transmissibility multipliers to be easily calculated for 
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gridblocks adjacent to faults. Unfortunately, much of the fault permeability data used in 

TMs calculations is of questionable quality having been measured under inappropriate 

experimental conditions (e.g. using distilled water (Fisher and Knipe, 2001) instead of 

the reservoir brines. The experiments were conducted to measure the sensitivity of the 

absolute gas and liquid permeability of fault rocks. The experiments were performed 

using brine of different compositions to assess the extent to which the measurements 

conducted using different brine composition could affect the results for fault seal 

analysis. In addition, distilled water permeability was also measured that could be used 

to compare and correct the existing fault rock permeability data (e.g. Fisher and Knipe, 

2001) though the data can be used with confidence for fault modelling.  

1.4 Faults treatment in simulation and modelling 

Fault rocks often impact the reservoir productivity by reducing the rate of fluid flow, the 

rate of reduction of fluid flow across fault could be modelled by the use of simulations. 

Reservoir simulation is a well-established tool to analyze the productivity of petroleum 

reservoirs and to estimate the reservoir’s capacity (e.g. Durlofsky, 2004). Authors have 

argued that the impact of fault rock would not only be described based on their absolute 

permeability but it is essential to take account of their relative permeability and 

capillary pressures of fault rock (Manzocchi et al., 2002).  There are many papers on 

single phase (e.g. Fisher and Knipe, 1998, 2001; Sperrevik et al., 2002) but far less on 

fault rock two-phase (e.g. Al-Hinai et al., 2008; Tueckmantel et al., 2011) flow 

properties (e.g. capillary pressure and relative permeability) have been published. 

Therefore, an important aspect investigated in this thesis was the two-phase flow 

(relative permeability and capillary pressure) behavior of fault rocks. The two phase 

flow properties were measured in the laboratory was used for simulation and modelling 

to analyse the cross fault flow behaviour.  

In literature, there are many examples that have been published to demonstrate the 

production history match by simulation modelling that were achieved using absolute 

permeability of fault rocks (e.g. Knai and Knipe, 1998; Jolley et al., 2007). In some 

cases the history match was improved by reducing the transmissibility multipliers below 

the calculated values (Fisher, 2005). To reduce transmissibility multipliers by several 

orders of magnitude might not be justifiable, however the possible explanation of 
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aforementioned approach of reducing transmissibility multipliers those based on 

absolute permeability values could be the ignoring of two-phase flow that should be 

considered for fault rock flow modelling. Authors, such as Manzocchi et al. (2002) have 

explained potential importance of incorporate the two-phase flow (relative permeability 

and capillary pressure) properties into simulation models. In addition, few recent 

publications has also provided that history matching could be significantly improved by 

incorporating the two-phase flow instead the predictions made using the transmissibility 

multipliers that were calculated based on single phase permeability values (e.g. Al-

Hinai et al., 2007; Zijlstra et al., 2007).  

A complete fault seal analysis workflow to build fault reservoir model from mapping to 

dynamic modelling is presented in Figure 1.3. It should be noted that mapping of faults 

is easy; however, the measurements of petrophysical properties of fault rocks within 

laboratory are difficult, due to many reasons such as the friable nature of many fault-

related rocks within field and the difficulty of drilling and retrieving core samples from 

fault section. Petroleum industry avoids drilling and coring fault sections due to 

complications (i.e. drilling hazards). Drilling in fault sections might result in mud losses 

and there might be over pressured reservoir formations. Moreover, the measurements 

within laboratory are time consuming and difficult because of the most of the fault 

rocks exhibits low permeability, which needs longer time to be performed.    

The data from cataclastic and phyllosilicate-framework fault were obtained from cores 

samples of different fields from North Sea and Hopeman outcrop faults. These data sets 

of two-phase flow (relative permeability and capillary pressure) were incorporated into 

Eclipse2013.1 simulation software to model the impact of faults on fluid flow. The flow 

across fault was modelled by based on the (TMs) multipliers calculated from single 

phase permeability and using LGR by assigning fault rock their own relative 

permeability and capillary pressure curves.  
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Figure 1.3 Workflow to build fault reservoir models incorporating fault rock properties. Input data 

comprises mapping of faults, outcrop analogues, seismic interpretation, estimating and 

measuring fault rock properties in laboratory (from Fisher, pers. com.2013). 

1.5 Research objectives  

This study aims to explore the impact of brine composition on permeability of fault 

rock, stress sensitivity of fault rocks and to examine the factors that affect the fault rock 

permeability stress sensitivity.  There is evidence from the laboratory experiments that 

the permeability of tight rocks is sensitive to stress than high permeable samples 

(Byrnes et al. 2010). If this is the case for fault rocks, the permeability of fault rock 

might be lower by many orders of magnitude at in-situ conditions. Although, this might 

be due to experimental artefact or core damage effects as core is brought to surface, that 

might show different stress sensitivities than the in-situ reservoir conditions (Holt and 

Kenter, 1992). To investigate the extent to which permeability changes due to increase 

in stress, the measurements were made at a range of stress conditions from ambient to 

in-situ stress. This will help to accurately predict fluid flow behavior across fault rock 

and to reduce the uncertainty in modelling fluid flow within fault compartmentalized 

reservoirs. In addition, a key aim was to assess the implications of these properties for 

petroleum production. In terms of the former aims, the project aims to assess both the 
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accuracy of data currently available on fault rock permeability (e.g. Fisher and Knipe, 

2001). 

Another aim was to obtain data on relative permeability and capillary pressure of fault 

rocks because the fault rock two-phase flow data is in sparse. The large amount of time 

was spent on running experiments, collecting and analysing the data, in addition to that 

attempts were also made to model the data by simple synthetic reservoir simulation 

model to investigate the implications of the results.    

1.6 Thesis outline  

Chapter 2 is aimed at introducing the reader to the relevant literature covering the 

subject of fault rock petrophysical properties by presenting a review of these properties 

(single phase and multiphase flow) of faults. The fault rock properties reviewed based 

on the knowledge of outcrop and reservoir cores studied during the exploration and 

appraisal of petroleum reservoirs. In addition, few examples from North Sea fields 

observations are presented to increase understanding that how faults affect the fluid 

flow.  

Chapter 3 describes the materials studied and the methodologies adopted during this 

research. Firstly, it provides a gives an overview of the fields studied then provides 

detailed description of the single phase flow experimental setup used during this 

research work. In addition to single phase flow experiments, multi-phase flow 

experiments were conducted, the experimental procedures are also described in this 

chapter.  

Chapter 4 presents experimental results (e.g. single phase Klinkenberg corrected gas, 

brine and distilled water permeability and mercury air threshold pressures). The 

mineralogy and microstructural properties of samples studied during this research are 

also presented in this chapter.  In, particular this chapter provides the gas and liquid 

permeability differences, controls and the impact of brine composition on fault rock 

permeability.  

Chapter 5 provides the details about the stress sensitivity results of fault rock 

permeability (single-phase gas, brine and distilled water permeability). The results 

obtained on stress sensitivity were also analysed and discussed in this chapter. This 
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chapter analyzes and explores the combined effects of changing confining stress and 

pore pressure on slippage parameters and absolute permeability. The samples were 

obtained from North Sea reservoirs cores and outcrops were collected from Miri airport 

road exposure Malaysia as well as 90 Fathom fault.   

Chapter 6 presents laboratory results on two-phase flow properties (gas relative 

permeability and capillary pressure) of fault rocks. The effective gas permeability stress 

sensitivity is also discussed in this chapter. The relative permeability data obtained were 

compared with published data sets of fault rock.   

In Chapter 7 laboratory results provided in Chapter 6 are incorporated into the 

industry standard Eclipse 2013.1 simulation software to model the flow across faults to 

investigate the implications of the results.   

Chapter 8 summarizes the conclusions derived from each chapter that form the main 

findings from this thesis. Furthermore, aspects in which the results of this thesis could 

be applied have been identified and presented.  The chapter concludes with 

recommendations on possible further work. 



 

Petrophysical Properties of fault rock-implications for petroleum production  Page 11 

 Petrophysical properties of fault 2
rock: a literature review 

 

 

2.1 Introduction  

This thesis assesses the key controls on the fluid flow properties of fault rock found 

within the subsurface reservoirs by integrating microstructural and petrophysical 

property analysis. In the following chapter, previous work on these aspects is 

reviewed. The chapter begins by providing a classification of fault rocks found 

within siliciclastic sediments. The chapter then reviews previous studies on the 

petrophysical properties of fault rocks. Finally, some examples are provided on how 

faults impact fluid flow in the petroleum reservoirs from the North Sea.  

2.2 Faults and their classification based on siliciclastic 

sediments  

Several studies have shown that faults can have a significant impact on fluid flow 

within petroleum reservoirs acting either as barriers or conduits (e.g. Fisher and 

Knipe, 1998; Fisher and Jolley, 2007). The microstructure and petrophysical 

properties of fault rocks are controlled by a number of deformation and diagenetic 

processes including: grain fracturing, grain contact quartz dissolution, cementation 

as well as the mixing and smearing of clay minerals along the fault (Fisher and 

Knipe, 2001). There are generally three ways by which faults are thought to 

compartmentalize or affect the reservoir behavior (e.g. Manzocchi et al., 2010). First; 

they may juxtapose permeable and impermeable layers. Second, fault rocks may 

have lower permeability than the host rock, resulting in a reduction in the rate of 

flow across the fault. Third, they can act fault-parallel pathways for fluid flow. In 

fact; fault rock architecture is highly variable; therefore there is no simple way to 
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predict the fluid flow behavior of such reservoirs with explicit models (e.g. 

Manzocchi et al., 2010). Faulting of rocks might result in several different 

components that include a core where most of the stress is accommodated (Figure 

2.1) that is associated with damage zone and supposed to be interrelated to the other 

different fault entities such as fractures and small displacement faults. The fault 

formed due to rock deformation exhibits thickness of few meters to centimetres that 

result into reduction in porosity and permeability due to cataclasis (e.g. Shipton et 

al., 1998).  

Over the past two decades significant amounts of research has focused on assessing 

the microstructure and measuring the petrophysical properties of fault rocks at low 

stress conditions that have been found within surface outcrops or the core recovered 

from petroleum reservoirs (Antonellini and Aydin, 1994; Gibson, 1998; Ellevset et 

al., 1998; Knai and Knipe, 1998; Fisher and Knipe, 1998,2001; Sperrevik et al., 

2002; Al-Hinai et al., 2007; Tueckmantel et al., 2010). 

 

Figure 2.1 Conceptual illustrations of the faults formed within poorly lithified sediments and it 

components shows how they might affect the fluid flow (taken from Caine et al.,1996 and 

2007). 

In general, the petroleum industry has been quite successful at avoiding drilling, or at 

least coring, major seismic-scale faults. Faults that are present in core, therefore, tend 

to have a relatively small throw (usually <10 cm) (e.g. Fisher and Knipe, 1998). So 

the analysis of fault rocks collected from outcrop provides the method of directly 

investigating the microstructural and petrophysical properties of fault rocks along 

seismic-scale faults. According to Fisher and Knipe (1998, 2001) the petrophysical 

properties of faults are controlled by various processes such as:- 
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 The amount of clay minerals present within the sediment during faulting; 

 Stress  and temperature history during pre-, syn- and post deformation; 

 The porosity due to cataclasis at the time of faulting; 

 The sediments grain size and sorting. 

Faults found within hydrocarbon reservoirs and surface outcrops based on their clay 

content and amount of cements can be classified into different types such as 

disaggregation zones, phyllosilicate-framework fault rocks, cataclasites, clay smears, 

and cemented faults (Figure 2.2) (e.g. Fisher and Knipe, 1998, 2001). 

Aforementioned types of fault rocks are discussed below. 

 

Figure 2.2 Illustration is the fault rock classification based on clay/phyllosilicate content shows 

important control of fault rock development (from Fisher and Knipe, 1998,2001) 

 

2.2.1 Disaggregation zones 

Disaggregation zones (Figure 2.3) are formed at poorly lithified clean sands (<15% 

clay) at low stresses. Faulting occurs by independent particulate flow without grain 

fracturing (e.g. Knipe et al. 1997, Fisher and Knipe 1998; Ottesen and Ellevest, 

1998). The lack of grain fracturing and the low clay content means that these faults 

rocks do not act as barriers to fluid flow (Fisher and Knipe, 2001).  
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Figure 2.3 BSEM images of (A) a disaggregation zone and (B) the adjacent undeformed sandstone. 

C) Hand specimen containing two disaggregation zones – arrows (from Fisher, 2005). 

2.2.2 Cataclastic faults 

Cataclastic faults (Figure 2.4) form under higher effective stress, which in porous, 

clean (<15% clay) sandstone results in grain fracturing and porosity collapse. 

Cataclastic fault rocks have been extensively studied by various researchers (e.g. 

Engelder, 1974; Knipe et al., 1989; Antonellini and Aydin, 1994, 1995). Cataclastic 

faults in clean sandstones usually have reduced permeability and increased capillary 

threshold pressure compared to their associated host sediments (Fisher and Knipe, 

1998). The reduction in permeability occurs because:  

i. The size of grains reduces during the deformation resulting in a collapse of 

macroporosity. In addition, grain sorting gets worse allowing the grains 

fragments to be compacted in an efficient way (e.g. Antonellini and Aydin, 

1994, 1995).  

ii. Quartz cementation is often enhanced within the fault following deformation. 

This occurs because of two reasons. Firstly, the rate of quartz cementation is 

proportional to the surface area and the cataclastic faults usually have large 

surface area than the surrounding host sandstone (Fisher and Knipe, 1998). 

Secondly, faulting removes clays coats the surface of quartz grains (Fisher et al., 

1999).  

The research done on this type of faults suggests that the permeability, porosity and 

capillary threshold pressure varies significantly depending on factors such as the 
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stress, porosity and grain size at the time of faulting and the post deformation 

thermal history (Knipe et al. 1997; Fisher and Knipe, 1998).  

 

Figure 2.4 BSEM images of (A) an undeformed Rotliegend sandstone and (B) the adjacent cataclastic 

fault. C) Hand specimen containing a zone of cataclastic faults (from Fisher, 2005) 

2.2.3 Phyllosilicate-framework fault rocks  

Phyllosilicate-framework fault rocks (Figure 2.5) are developed in impure sands (15 

to 40% clay) (Fisher and Knipe, 1998). These faults have lower permeability and 

increased threshold pressures compared to their undeformed sands because of two 

processes. First, clay becomes mixed with framework grains resulting in replacement 

of macrospores with the clay and micro-porosity. Second, following faulting, these 

fault rocks experience enhanced grain-contact quartz dissolution if the reservoir 

temperature rises above >90
o
C (Fisher and Knipe, 1998). Fisher and Knipe (2001) 

published data that indicates that phyllosilicate-framework fault rocks act as 

significant barriers with permeabilities in range from <0.1 to <0.0001 mD having 

Hg-threshold pressures of 50 to 3000 psi (0.345-20.68 MPa).  

 

Figure 2.5 BSEM images of (A) an undeformed impure Brent sandstone and (B) the adjacent 

phyllosilicate-framework fault rock. (C) Hand specimen containing a several 

phyllosilicate-framework fault rocks (from Fisher, 2005). 
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2.2.4 Clay smears 

Faulting of clay-rich sediments (>40%) results in the smearing of clay along the fault 

plane resulting in clay smears faults as shown in Figure 2.6, which are extremely 

effective barriers to fluid flow (Knipe et al., 1997; Fisher and Knipe, 2001). Several 

other studies have described the processes of  faulting of mudstones and shale layers 

resulting as clay smears (e.g. Bouvier et al., 1989; Yielding et al., 1997 ,2002; , Jolly 

et al., 2007 ; Solum et al., 2009).  

 

Figure 2.6 (a) A field example of a clay smear (arrow) from near Miri, Sarawak, Malaysia (b) BSEM 

of typical clay smear fault rock (SEM image taken from Yang Pie, 2013 PhD thesis) 

2.2.5 Cemented fault rocks 

In addition to the fault rock types discussed above, some faults that experience 

dilation during faulting become cemented (Figure 2.7). Cemented fault rocks are 

particularly common along faults that have experienced movement after they have 

been uplifted significantly above their maximum burial depth (e.g. Rotliegend 

reservoirs). Common cements include anhydrite, barite, ferroan dolomite, 

microcrystalline quartz and siderite. (Fisher and Knipe, 1998) 

 

Figure 2.7 BSE micrographs showing: (A) a calcite vein in a calcite cemented sandstones; (B) a 

dolomite and anhydrite vein in a lithified sandstones; (C) an anhydrite cemented 

reactivated cataclastic fault; d) a microcrystalline quartz-cemented water-escape 

structure,(Fisher and Knipe, 1998). 
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2.3 Petrophysical properties of fault rocks: a review 

To accurately model the impact of faults on fluid flow within petroleum reservoirs 

information is needed on their absolute permeability, relative permeability and 

capillary pressure (e.g. Manzocchi et al. 2002). In this section a review is provided 

on published (single phase and two phase properties) petrophysical properties of 

fault rock. A large amount of data is available on the single phase permeability of 

fault rocks (e.g. Antonellini and Aydin, 1994; Gibson, 1998; Ellevset et al., 1998; 

Knai and Knipe, 1998; Fisher and Knipe, 1998, 2001; Sperrevik et al., 2002; Al-

Hinai et al., 2007; Tueckmantel et al., 2011). However; there are only few studies 

found in literature about fault rock relative permeability (e.g. Al-Hinai et al., 2008; 

Tueckmantel et al., 2011). In the following sections, all three properties were 

reviewed to increase understanding about the fault rock properties and their impact 

on fluid flow within fault compartmentalized reservoirs. In particular, this section 

provides the description of experimental procedures adapted during fault rock 

permeabilities measurements and discusses how experimental design can bias 

measurements and hence bias the fault rock permeabilities. The majority of 

experiments on fault rocks permeability measurements have solely focused single 

phase measurements at ambient stress, although very few attempts were made to 

measure the relative permeability and capillary pressure of because the relative 

permeability measurements adds  the complexity, time and cost to experiments. 

Experiments are typically carried out on cylindrical and rectangular samples of 

reservoir cores and outcrops. The pore fluids were typically constitutes of distilled 

water and gas (Fisher and Knipe, 2001; Faulkner and Rutter, 2000). The issues and 

the conditions under which measurements were made are described below.  

2.3.1 Single phase flow properties 

The fault rock petrophysical properties, which have been found in literature comes 

from a number of sources including measurements made: (i) on faults present in 

cores recovered from petroleum reservoirs (e.g. Fisher and Knipe,1998,2001; 

Ogilvie and Glover, 2001; Sperrevik et al., 2002) (ii) on fault rocks collected from 

outcrops (e.g. Antonellini and Aydin, 1994; Gibson, 1998; Evans et al., 1997; 

Faulkner and Rutter, 1998; Shipton et al., 2002; Flodin et al., 2005; Al-Hinai et al., 

2007; Fossen and Torabi, 2009; Tuekmantel et al., 2011 ) (iii) on fault rocks 
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generated during rock deformation experiments (e.g. Englander, 1974; Zoback and 

Byerlee, 1976; Crawford, 1998; Bernard et al.,1998) and (iv) sand-clay mixtures 

produced as analogues to clay-rich fault gouges (Crawford et al., 2002; Al-Hinai et 

al., 2007). The measurements vary significantly in terms of fluid, stress conditions 

under which they were made and type of the fault rock.  

 Permeability of fault rocks obtained from reservoir core 2.3.1.1

The most extensive number of fault rock properties published is based on 

measurements conducted by (Fisher and Knipe; 1998, 2001; Sperrevik et al., 2002). 

The analyses were made on cores which were obtained from a wide range of 

reservoirs in the North Sea and Norwegian Continental Shelf. The difficulty in 

drilling core plugs containing faults meant that the rectilinear blocks containing the 

faults were cut. These were placed in a core-holder at a confining pressure of ~70psi 

and permeability measured using the steady-state method with deionised water as the 

permeant. A summary of the absolute permeability data in relation to clay content is 

presented (Figure 2.8). 

 

Figure 2.8 Summary of the fault rock permeability data from the North Sea and Norwegian 

Continental Shelf Permeability is plotted against clay content for the various fault rock 

types. (from Fisher and Knipe 1998).  

Based on the fault rock classification presented in Section 2.2, Fisher and Knipe 

(1998) suggested that the disaggregation zones typically have similar flow properties 

to the un-deformed reservoir and do not significantly affect fluid flow. Cataclastic 

faults have permeability of >1 to <0.0001 mD and Hg-threshold pressures of 10 to 
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2000 psi. Phyllosilicate-framework fault rocks that have been analysed and reported 

have permeability in range of <0.1 to <0.0001 mD and Hg-threshold pressures of 50 

to 3000 psi and the clay smears have permeability of <0.0001 mD and Hg-threshold 

pressures of >3000 psi. 

 Fault rocks from outcrop 2.3.1.2

Due to difficulty in drilling and coring subsurface fault structures, surface outcrops 

of deformation bands have received considerable attention by various investigators 

to delineate the fault rock fluid flow properties. Antonellini and Ayadin (1994) 

obtained cataclastic deformed fault rock samples of low clay content from Navajo 

Entranda sandstone of National park Utah USA. The permeability at ambient stress 

measured under mini-permeameter using gas as a pore fluid. The measured values 

for fault were ranging from 0.10mD to 100mD and the host sandstones permeability 

was 600mD. The deformation band permeability on average was three orders of 

magnitude lower than the host sandstones.  

Morrow et al. (1984) made permeability measurements on clay-rich fault gouge from 

the San Andreas Fault. The measurements were made under confining stress 

conditions of 800 to 29000psi (5MPa to 200MPa). The permeability results obtained 

ranges from 0.1nd to 1 Darcy. It appears that the values presented were representing 

the entire plug, the plugs were composed of both fault rock and undeformed 

sandstone. So any permeability measurements on such samples will represent an 

average permeability of the fault rock and host sandstone. It is, however, possible to 

de-convolve the fault rock permeability by assuming that the measured value is the 

thickness-weighted harmonic mean of the fault rock and the host sediment 

permeability (Cardwell and Parsons, 1945).  

Fowles and Burley (1994) presented the permeability of cataclastic deformation 

bands collected from the Penrith sandstone in NW England and SW Scotland. The 

samples permeability was measured with gas and was corrected for Klinkenberg gas 

slippage effects. The measurements were made at a confining pressure of 220 psi. 

The permeability of deformation bands ranged from 0.04mD to 2000mD. The 

helium porosity was also measured on these samples that were in range of 0.045 to 

0.31. The permeability results obtained for whole plugs and were not deconvolved to 

get true value of fault rock permeability. Many measurements were also made 
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parallel to the fault structure and are therefore dominated by the host sandstone 

permeability. 

Evans et al. (1997) collected two types of outcrop fault samples (i.e. clay rich gouge 

and damage zone of fine grained cataclastic rock) of East fort thrust fault in Woming 

USA. Nitrogen gas was used as the permeant for the permeability measurements and 

the steady state method employed. The rectangular blocks were prepared for 

measurements. The permeability of rectangular blocks was measured at ambient 

temperature and single confining stress of 3.5MPa (~500psi) and the plugs were 

subjected to different confining stress ranging from 3 to 50 MPa (~400 to 7000psi). 

The damage zone permeability measured was in range of 10mD and 0.1mD. Evans 

et al. (1997) concluded that damage zone permeability of usually affected by 

fractures faults yielded a value 10
4
 times greater in comparison to fault core and 

protolith. The reported permeability of fault samples were representing to the entire 

plug permeability and was not deconvolved for true fault rock permeability as 

discussed above faults are thin volumes of deformation bands and are mixture of 

host sediments.  

Faulkner and Rutter (1998) reported permeability of clay-bearing fault gouge 

samples, which were collected from an outcrop of the Carboneras fault zone SE 

Spain. The measurement methods employed were transient and pore pressure 

oscillation using pore pressure of 4MPa (~500psi) and effective pressure of 160 MPa 

(~23000psi). The reported permeability was measured by applying different pressure 

cycles and keeping pore pressure constant to 40MPa (~5000psi). Later, Faulkner and 

Rutter (2000) measured permeability of the samples which were collected from same 

location as discussed above using two different pore fluids, the argon gas and water. 

The measurements were made by applying confining stress of 200MPa. The pore 

pressure oscillation technique was used to measure the permeability. They reported 

one order of magnitude reduction in permeability when they changed pore fluid from 

argon gas to water. The fault sample analysed were composed of clay bearing gouge 

which they argued that did not react with gas as a pore fluid. On the other hand, 

water may react with the clayey sands and reduces rock permeability due to clay 

swelling or movement of fines (e.g Khilar and Fogler, 1984).  The measured 

permeability results were corrected for Klinkenberg slip effects but no attempt was 

made to de-convolve to get true value of fault rock permeability.  
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Ogilvie and Glover (2001) studied the petrophysical properties of cemented and un-

cemented cataclastic faults from the Hopeman sandstone NE Scotland and Southern 

North Sea reservoir core. The permeability was measured with probe permeametery 

as well as pressure decay and was corrected for gas slippage effects. The porosity 

was estimated through volumetric measurements of core samples using two different 

techniques helium pycnometry and image analysis. The measured fault rock 

permeability values were in range of 0.009mD to 6.7mD. They reported reduction in 

permeability of four orders of magnitude in cataclastic deformation relative to their 

host sandstones and noted a less severe reduction of two orders of magnitude for 

faults in clay-rich sandstone. The reported permeability reduction values vary from 

sample to sample, and the values were not de-convolved for fault rock, represents the 

entire plug permeability.  

Flodin et al. (2005) measured the permeability of cataclastic deformed fault rocks 

from the Aztec sandstone in Nevada. Most measurements were steady-state 

measurements conducted in a Hassler-type core holder at ~400 psi using helium gas. 

Six samples were measured at higher pressures (up to 60 MPa – 8700 psi). The 

porosity measured for host samples was in range of 16.6 and 24.4%. By increasing 

confining stress up to (60MPa-8700psi), the reduction range in porosity was around 

1.7% and 3.2%. The measured permeability of deformed rock was ranging from 

~0.28mD to 38.6mD. The measurements were not Klinkenberg corrected and no 

attempt was made to de-convolve the values for fault rock permeability. The samples 

ran at higher stresses showed remarkably stress sensitivity (permeability reduction 

ratios of 0.26 to 0.7). 

Shipton et al. (2002) reported permeability of of cataclastic deformation bands 

recovered from ~60m depth of Navajo sandstones central Utah outcrop. They 

measured permeability at three different scales, the probe permeametry, whole core 

and permeability at confining stress levels. The values were in range of 0.4mD to 

about 3000 mD. The reported permeability values were based solely on the whole 

plug no attempt was made to deconvolve the permeability.  

Al-Hinai et al. (2008) reported permeability data for seven fault plugs from the 

Clashach fault, Scotland. The fault was 20m minimum displacement and its host 

rock was medium-grained sandstone. Fault and host rock both were affected by 
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quartz cementation. The absolute gas permeability reported by Al-Hinai et al. (2008) 

for the seven plugs were in range of 0.001mD and 0.006mD with its associated host 

sandstone permeability in range of 10mD to 700mD.   

Rotevatn et al. (2008) also reported permeability data on cataclastic deformation 

bands while investigating a sub-type of deformation band from outcrop of western 

Sinai, Suez rift, Egypt. The reduction in permeability reported was 2 to 4.5 orders of 

magnitude to its associated host sandstone. Rotevatn et al. (2013) stated that there is 

a less significance of deformation band thickness on fluid flow through faulted 

reservoirs and aquifers. The studied area was an outcrop from Orange, France, and 

the conclusion was based on number of simulations ran. 

Torabi and Fossen (2009) estimated permeability from image processing technique 

based on the cataclastic and phyllosilicate deformation bands recovered from few 

core samples of Central North Sea fields and various outcrops of different localities 

around the globe. As their analysis was based on different deformed bands of 

cataclastic and phyllosilicate-framework fault rocks from different outcrops therefore 

they found large variation in estimated values of permeability as a result of large 

reduction in grain size and were deformed. Although, the grain size reduction was 

varying along the deformation bands compared to host sands. For example, in one 

phyllosilicate sample the estimated porosity and permeability was 11% and 0.46mD 

respectively. Furthermore they estimated host sandstone permeability of 210mD 

with low clay content and coarse grained sediments. The deformed band 

permeability was around four orders of magnitude lower than host rock permeability.   

Tuekmantel et al. (2011) extensively studied seismic and small scale cataclastic 

faults. The faults for petrophysical properties analysis were collected from outcrop 

sandstones in Suez rift Egypt and 90 Fathom UK. The studied faults were of 

different categories consisting the single deformation band, deformation band zone 

and slip-surface cataclasite. The permeability measurements were made with steady 

state (slip corrected) as well as with pulse decay methods using helium gas. The 

permeability was also deconvolved to get true fault rock permeability value. 

Tuekmantel et al. (2011) reported that the arithmetic mean of permeability for 

deformation band is 20mD and 3mD for slip surface cataclasites. Tuekmantel et al. 
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(2010, 2011) reported only gas permeability; no attempt was made to measure liquid 

permeability.  

 Fault rocks formed during experiments 2.3.1.3

Crawford (1998) measured permeability in the laboratory conducting experiments 

using tri-axial cell to create cataclastic shear bands in the Hopeman sandstone from 

the Clashach Quarry, NE Scotland. Permeability was measured using a pulse decay 

transient technique with mineral oil as a pore fluid. The experiments were conducted 

at confining pressures of up to around 60 MPa. The permeability of cataclastic fault 

measured was in range of 0.43mD to 2.50mD. The reported permeability was 2.5 to 

3.5 orders lower than host rock due to cataclasis. Bernard et al. (1998) measured the 

permeability on deformation experiments from the Still Water fault zone Neveda 

USA; the measurements were made with pulse decay and the maximum effective 

stress applied was 90 MPa (~13050 psi). They reported two orders of magnitude 

difference in permeability of fault cores at effective stress of 90MPa. The results 

represent the entire plug permeability and were not deconvolved for true fault rock 

permeability. Takahashi (2003) measured permeability on fault rocks generated in 

laboratory using triaxial cell by creating artificial deformation band of clay smeared 

category fault. The permeability measured by oscillation techniques. The samples 

used for measurements were interlayered siltstone and sandstone with permeability 

values of 0.000001 mD and 0.001mD respectively.  

Cuisiat and Skurtveit (2010) reported permeability on artificially generated fault 

samples comprising a sand-clay sequence under different stress conditions. The 

experiments were performed and results reported on multilayered sand-clay 

mixtures. The permeability measurements were made at different stresses, the initial 

sand permeability reported at 500psi effective stress was 3350mD.    

 Analogue fault rocks 2.3.1.4

Crawford et al. (2008) measured permeability on producing sand-clay (kaolinite-

quartz) mixtures as an analogue fault gouge. The permeability measurement made by 

pore pressure oscillation technique by continuous increase in confining pressure 

from 10 to 55 MPa. The reported permeability in between two extremes of mixtures 

of sand-clay was ranging from 0.001mD to 1000mD, which was varying over six 
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orders of magnitude depending on the composition of sand–clays mixture and 

applied stress range. The reported permeability data were not de-convolved and were 

measured through the entire plug.  

 

Figure 2.9 Summary of published fault rock permeability data on variety of different fault rock types 

collected. 

The fault rock properties discussed above are now widely used to predict and model 

the impact of faults on fluid flow. This does not, however, mean that the properties 

are accurate. Indeed, close inspection of the analytical methods used to collect the 

fault rock petrophysical data as well as the values themselves give reasons to suspect 

that the published values could be in error. In particular, 

 Most measurements of fault rock permeability (e.g. Fisher and Knipe, 1998, 

2001) were made at ambient stress (~70 psi). However, recent measurements 

have shown that the permeability of fault rocks and tight gas sandstones (e.g. 

Al-Hinai et al., 2007) are highly sensitive to stress. 

 Most measurements of fault rock permeability (e.g. Fisher and Knipe, 1998, 

2001) were conducted using de-ionised water despite the fact that the rocks 

usually contain clay and that makes their permeability very sensitive to brine 

composition. 

 The clay smears are often quoted as having a permeability of <0.0001 mD 

(e.g. Fisher and Knipe, 2001). This value is far higher than often quoted for 

shales.  

To better parameterise fault sealing behaviours by performing simulation studies and 

increase confidence in evaluating the cross fault fluid flow behaviour the 
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experimental work is needed to be conducted under realistic reservoir stress 

conditions. Emphasis should be given to conduct measurements on samples 

representative of the subsurface reservoirs and usage of the formation compatible 

fluids, as these have been selected for present study. Therefore, these results could be 

used with confidence for evaluating cross fault flow behaviour within fault 

compartmentalized reservoirs.  
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Table 2.1 Summary of published permeability and capillary threshold pressure data of variety of fault rock types. It should be noted that  (Table 2.1) gives only the ranges of 

values, but the collected data from each listed author is provided in Figure 2.8.    

Author       Fault rock type 

     

Core/Outcrop/

synthetic   

Permeability Fault 

(mD) 

Permeability 

Host (mD) 

Clay 

content 

(%)   

Threshold 

pressure 

(psi)    

Pore 

fluid   

 Max: Conf. 

stress(psi) 
Method 

Ayadin (1994) Cataclastic  Outcrop 0.001—2.5  1000  2-3  —  Gas    SS 

Morrow et al.,(1981) Clay fault gouge  Core 0.0002-0.000002 —      water  7255  PDP 

Gibson (1989) Cataclastic  Outcrop 0.0002—8.02  2—3175  5—41  —    3000  SS 

Antonellini and Aydin (1994) Cataclastic  Outcrop 

 

     —  Gas     

James et al. (1997) Cataclastic  Core 0.0001—3.0    —  —  Gas  7250  PDP 

Fowles, and Burley (1994)  Cataclastic  Outcrop 0.1—1158    —  —  Gas     

Gibson (1998) Cataclastic  Outcrop 0.0002—7.20  0.3—3362  —  —      SS/PDP 

Fisher and Knipe (1998) Cataclastic/PFR1/ Clay 

smear 
Outcrop 0.0002—0.05   4—46    Water 70  SS 

Crawford (1998) Sand-clay  Synthetic 0.43—2.50 234—473      Oil  14993  PDP 

Faulkner and Rutter (1998) Cataclastic  Outcrop 4-1.6x10^-6 —  60—80  —  Gas  5800  PDP 

Ogilvie and Glover (2001) cataclastic Core/Outcrop 0.009—6.7 —      Gas    PDP/ SS 

Fisher and Knipe (2001) 
Cataclastic/ PFR1 / Clay 

smear  Core 0.0001—41 —  4—60    Water 70  SS 

Faulkner and Rutter(2001) Cataclastic  Outcrop 0.00003—0.0001    60—80    G/W 24000  PDP 

Shipton (2002) Cataclastic  Outcrop 0.3—1.44  168—620       2900  SS 

Sperrevik et al (2002) 
Cataclastic/ PFR1 / Clay 
smear  Core 0.00001—2109    2—36   Water —  SS 

Childs et al. (2007) Phyllosilicate  Core 0.0002—2.6  0.002—489  4—79         

Al-Hinai et al. (2007) Cataclastic  Outcrop 0.0012—0.20    4—12  —  Gas    SS/PDP 

Fossen and Torabi (2009) 
Cataclastic  Outcrop/core 0.65—654    6—22  — 

 Image 
analysis   

 Image 
analysis 

Rotevan et al (2008) 
Cataclastic  Outcrop 0.001—575  —  —   

 Image 

analysis   

 Image 

analysis 

Tueckmantel et al.(2010 , 2012) Cataclastic  Outcrop 0.001—10.50 

 

 2—17  15—13000  Gas 

 

 SS/PDP 

                                                 
1
 Phyllosilicate-framework fault rock 
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2.3.2 Multiphase flow properties  

Since the early twentieth century much has been written about multiphase flow 

through porous media (e.g. Muskat and Meres, 1936; Dullien, 1992; Pinder and 

Gray, 2008). Here we highlight some of the important issues and understanding that 

are relevant to the discussion about fault rock relative permeability and capillary 

pressure. The flow of a single phase fluid in a porous media (Figure 2.10) is 

generally obtained using Darcy’s Law: 

 

Figure 2.10 illustration of the steady state flow condition  

𝑞 = − (
𝐾

𝜇
) (

𝐴

𝐿
) (∆𝑃)      (2 −  1)   

Where: 𝑞 = rate of fluid flow through porous media (cm
3
/s)  

 𝐴 = flow area perpendicular to flow (cm
2
) 

 𝜇 = Dynamic viscosity of fluid flowing through porous medium (cp)  

 ∆𝑃 = pressure drop across the porous media (atm)  

 L = flow path length (cm) 

 𝐾 = Permeability (D) 

The "−" sign shows that the direction of fluid flow is from higher pressure to low 

pressure. When there are two or more fluids flowing through the porous medium, capillary 

pressures also plays a significant role and an impact on fluid flow. 

In reservoir simulation, petroleum engineers are concerned with simultaneous flow 

of more than one phase. In reservoirs, where there is a two phase system the fluids 

present will be in immiscible and there will be no mass transfer among phases. One 

phase will be wetting phase, other will be non-wetting depending the rock wetting 

conditions.  Multiphase flow from reservoir engineering point is the movement of 

immiscible fluids (oil, water and gas) through porous medium (reservoir). The fluid 

phases are non-reactive. In this type of fluid flow system, the fluids moves together, 
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leading to a distinct interfaces. As an example, during enhanced oil recovery process, 

the gas or water is injected into petroleum reservoir to displace the oil in which one 

phase is immiscible that is displaced from reservoir pores by another fluid phase. 

That is the objective of reservoir engineer to study and understand fluid 

movement/transport within the reservoir and to acquire information to predict, 

control and mange hydrocarbon production. Such type of study involves building a 

reservoir simulation model that could provide actual reservoir flow behaviour.     

Darcy’s law could be extended  to multiphase flow, it relates to the total volumetric 

flow rate of each phase through a porous rock to its pressure gradient, the properties 

of fluid viscosity and the rock effective permeability,  

𝑞𝑤 = −𝑘𝑤 𝐴∆𝑝𝑤/𝜇𝑤∆𝑥1 

𝑞𝑜 = −𝑘𝑜 𝐴∆𝑝𝑜/𝜇𝑜∆𝑥1 

In terms of Darcy’s velocity to phases,  

µ𝑤 = −𝑘𝑤 ∆𝑝𝑤/𝜇𝑤∆𝑥1 

ủ𝑜 = −𝑘𝑜 ∆𝑝𝑜/𝜇𝑜∆𝑥1 

In terms of 3D two-phase flow the differential form of Darcy’s law could be 

presented as,  

𝑢𝑎 = −
1

𝑢𝑎
𝑘𝑎(∇𝑝𝑎 − 𝜌𝑎∇𝑧)   a=w, o, equation 2.5 

Where, 𝐾𝑎, 𝑝𝑎, 𝑎𝑛𝑑 𝑢𝑎 are the effective permeability, pressure and viscosity of phase 

𝑎.  In reservoirs the two-phase flow could interfere with each other, therefore the 

effective permeability of phase in presence of other immiscible fluid will always be 

less than absolute permeability. The relative permeability is widely considered in 

reservoir simulation and is expressed as,    

𝐾𝑎 = 𝐾𝑟𝑎𝐾,  a=w, o 

Formulations in terms of phase pressure and saturations:- 

using po and Sw as a main variables, equation 2.5 can be written as,  
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∇ (
𝜌𝑤

𝜇𝑤
𝑘𝑤(∇𝑝𝑜 −

𝑑𝑝𝑐
𝑑𝑆𝑤

⁄ ∇𝑆𝑤 − 𝜌𝑤∆𝑧) = 𝜕(∅𝜌𝑤𝑆𝑤)/𝜕𝑡-𝑞𝑤, 

∇ (
𝜌𝑜

𝜇𝑜
𝑘𝑜(∇𝑝𝑜 − 𝜌𝑜∇∆𝑧) = 𝜕(∅𝜌𝑜(1 − 𝑆𝑤)/𝜕𝑡-𝑞𝑜 , 

Carrying out the time differentiation, in equation above (2.5), and diving with 𝜌𝑜and 

𝜌𝑤, adding the resulting equation final result would be, 

 
1

𝜌𝑤
∇ (

𝜌𝑤

𝜇𝑤
𝑘𝑤(∇𝑝𝑜 −

𝑑𝑝𝑐
𝑑𝑆𝑤

⁄ ∇𝑆𝑤 − 𝜌𝑤∆𝑧) +
1

𝜌𝑜
 ∇ (

𝜌𝑜

𝜇𝑜
𝑘𝑜(∇𝑝𝑜 − 𝜌𝑜∇∆𝑧) 

=
𝑆𝑤

𝜌𝑤
 𝜕(∅𝜌𝑤)/𝜕𝑡 + 𝜕(∅

𝜌𝑜(1−𝑆𝑤)

𝜕𝑡
.

1

𝜌𝑜
-

𝑞𝑤

𝜌𝑤
−

𝑞𝑜

𝜌𝑜
 

Note if the satruration is explicility evaluated than this equation could be used to 

solve for p.   this is IMPES scheme and is mostly used to expolit reservoir two phase 

flow system.  

Capillary pressure plays a significant role if there is two-phase system. The capillary 

pressure, Pc is the difference of pressures among two immiscible fluids which are in 

contact with each other in porous rocks. So, the pressure difference between wetting 

and non-wetting fluid is the result of the interfacial tension which exists across the 

interface separating two immiscible fluids. The difference due to capillary pressure 

could be represented by,  

Pc= Pnw-Pw 

In equation above the Pnw, is the pressure of the non-wetting phase and Pw, is pressure 

of wetting phase.  

The difference of pressure in case of two immiscible fluids such as oil and water 

could be,   

Pc= Po-Pw 

The Figure 2.11 shows the typical capillary pressure curve that is the example of 

drainage and imbibition capillary pressure as a function of phase saturation obtained 

on water- wet samples. The point A on curve represents that the sample is initaillay 

fully saturated with water as a wetting fluid, if oil (no-wetting fluid) is injected to 
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displace water that process would result in a draining process. Furthermore, it would 

be observed from curve that at point B, there will be no more fluid displaced, and the 

saturation of wetting phase (water) at this point will be irreducible saturation. 

Conversely, if wetting phase is displaced by injecting non-wetting (oil) that will 

result in imbibition curve. When the wetting fluid phase that injected to displace 

non-wetting phase, when it reaches to its maximum value (Sw=1-Snw), at that 

saturation point, there will be zero capillary pressure(C point on the curve).  

 

Figure 2.11The illustration shows the drainage and imbibition capillary pressure curves.(taken from 

Tiab and Donaldson, 2011)  

In fault sealing system, the main parameter that controls the flow of two-phases is 

the capillary entry pressure (e.g. Shipton et al., 2005). In a two phase system, for a 

non-wetting fluid to flow through a porous rock pore throat, it is important that its 

phase pressure must exceed than the phase pressure of the wetting fluid phase by at 

least its capillary threshold pressure. The capillary flow (i.e. capillary leakage) across 

fault rock takes place when the net pressure applied by the wetting phase overcomes 

the threshold pressure or capillary entry pressure that is explained as the minimum 

pressure which is required to initiate the displacement of brine present within the 

fault rock acting as seal. Washburn’s (1921) equation could be used to estimate the 

capillary entry pressure Pc, from the knowledge of rock pore throat size and the 

interfacial tension between wetting and non-wetting fluids as given below,  
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𝑃𝑐 =
2𝜎cos𝜃 

𝑟
              (2 − 2) 

where: Pc is the capillary pressure and is in dynes/cm
2
;   is the interfacial tension 

between wetting and no-wetting fluid as hydrocarbon and water (dynes/cm); θ is the 

contact angle between the fluids and rock surface, and r is pore throat radius (μm). 

According to Berg (1975) the contact angle is a measure of the wettability of fluids 

and the wettability is the preferential adherence/spreading on solid surface of one 

fluid in presence of two immiscible fluids (e.g. Mercer and Cohen, 1990). In case of 

strongly water-wet rock contact angle is equals 0°, for a strongly oil-wet rock that 

would be 180°. The rocks with intermediate wettability have contact angles of 

between 0° and 180°.  

A porous sedimentary rock consists of a variety of different sizes of pore throats, the 

minimum pressure that is needed for a non-wetting fluid such as oil or gas to 

entirely/completely flow through the pore system is controlled by the smallest pore 

throat radius across the path that is connecting to the largest pore throats. This 

pressure is usually called as the entry pressure or threshold pressure, Pth (Katz and 

Thompson, 1986, 1987). The capillary entry pressures are dependent on the pore 

throat radius and at corresponding capillary entry pressure the pore throat radius 

could be obtained by empirical relations provided by Pittman (1992). Moreover, the 

pressure difference between wetting and non-wetting phases could be generated due 

to buoyancy effects. These effects occur due to the density difference of two 

immiscible fluids such as hydrocarbons fluid has a lower density than water/brines. 

The difference in pressure because of the buoyancy forces, Pb, exerted by a 

hydrocarbon column can be linked to the density of hydrocarbon column, ρh, and the 

density of water phase ρw, therefore, the height exerted by hydrocarbon column, h, 

and the acceleration due to its gravity, g, that could be represented by the following 

equation: 

𝑃𝑏 = 𝑔𝐻(𝜌𝑤 − 𝜌ℎ)               ( 2 − 3) 

or, in terms of field units: 

𝑃𝑏 = 0.433𝐻(𝜌𝑤 − 𝜌ℎ)           (2 − 4) 

In above equation, the constant 0.433 is a unit conversion, which takes into account 

the effect of gravity, densities have unit in g/cm
3
, and H measured in feet 
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(Schowalter, 1979; Watts, 1987). In water-wet reservoirs, hydrocarbon fluids can 

only flow if buoyancy forces Pb exceeds the threshold pressure Pth. The maximum 

column height of petroleum fluids that could hold under a seal supported by 

combining Equations 2−2 and 2−4 in the situation for which Pb = Pth  there will be 

balance between two forces to hold the fluids. Thus, 

)(443.0 hw

c
cp

P
H

 
         (2 − 5) 

Several authors have attempted to calculate the pore radius corresponding to entry 

pressures. Such as, Gibson (1998) reported that pore radius of 13.3µm which 

corresponds to the height of only 2m hydrocarbon column. The pore radius of 

0.18µm corresponding to petroleum reservoir coloum of 137m has been reported by 

Ogilvie and Glover (2001). These data suggested that fault rocks could be barrier to 

hydrocarbons flow. Moreover, Shipton et al. (2005) argued that poorly sorted fine 

grained smaller pore throat fault could be capillary barrier to two phase flow but to 

fully quantify more work is required to understand in what situations it could be 

barrier. Therefore, for fault rock sealing potential evaluation, it is essential to 

investigate the two phase flow of fault rocks by collecting the more data that could 

be calibrated with known hydrocarbon columns/heights found within the 

hydrocarbon reservoirs (e.g. Fisher and Knipe, 2001).  

If fault seal breaches and the threshold pressure of a fault rock exceeds, then the rate 

of the fluids transfer through the rock would be explained/determined based on an 

alternative derivatives of Darcy’s law. After seal breaches, two or more fluids start flowing 

through the porous medium, each individual phase has its own relative permeability which 

depends upon the number of factors. Such as pore structure and pore throat radius, rock 

wettability and fluid phases present within the reservoirs (e.g. Dandekar, 2006).  The 

following Darcy’s flow equation can be used in case of presence of more than one phase 

flowing through the porous media,  

 𝑞𝑓 = − (
𝐾𝐾𝑟𝑓

𝜇𝑓
) (

𝐴

𝐿
) (∆𝑃𝑓)               (2 −  6)   

where the subscript 𝑓 represent a fluid phase flowing through the porous medium; Kr 

represents the fluid relative permeability (i.e. the ratio of the effective permeability 

to absolute permeability of the porous medium).  
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In case of two-phase flow, the relative permeability of the system would be plotted 

as function of water saturation (Figure 2.12). It can be inferred from Figure 2.12 

that each phase at some stage reaches a point where it becomes immobile and cannot 

flow. The point at which water flow ceases is called irreducible water saturation. The 

point where oil becomes immobile is called residual oil saturation. Although, 

initially it was thought that relative permeability is a unique function of saturations 

of the fluids flowing through the porous medium, later research showed that there are 

lots of other factors affecting this. Such traditional relative permeability experiments 

are difficult to conduct and interpret even for high permeability samples. However, 

the low permeability experiments are even more difficult to be undertaken. There are 

not many published data on such measurements of low permeability fault rock 

samples. Several authors has argued that the tight-rocks within low permeability 

reservoirs have very complex nature of pore system that is dominated by different 

shapes of pores such as slotted pores and sheet-like pore throats and higher 

overburden stresses could result to specific issues concerning multiphase flow. The 

existence of such a complex pore structure might result in reduced rate of effluent 

production, such as phase trapping. The explanations about favourable and 

unfavourable pore structures related to the phase trapping could be found in (e.g. 

Bachu and Bennion, 2008). Who demonstrates that a pore structure in which the 

majority of the effective permeability is controlled in a moderately small size of the 

pore space, which comprises of interconnected meso- or macropores or little cracks 

and would not be sensitive to water-based trapping. These might be slightly more 

able to store the water without obstructing the major pores. A pore structure of a 

more uniformly distributed of micro-pores (1-10 μd) could be by a slight increment 

in water saturation might stop flow by clogging the pores with water and in this 

manner a reduction in effective gas permeability occurs through the entire pore 

structure. Further he argues that this phenomenon of phase trapping might occurs in 

pore structures which are very small with narrow pore throats.  
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Figure 2.12 A typical relative permeability curve for high permeability rock (from Fekete-2014).  

Apart from tapping of phase within confined pore throats, relative permeability could 

be severely affected by overburden stress. There will be significant difference in 

behaviour of high relative permeability rock to low permeability and the classical 

methods and theories of relative permeability analysis might not be applicable. 

Shanley et al. (2004) used the term ‘permeability jail’ to describe a saturation range 

within low permeability rocks in which the relative permeability to both the wetting 

and non-wetting phases were essentially zero (Figure 2.13). This contrasts with 

results from higher permeability rocks in which the relative permeability of one of 

the phases is always significant (e.g. Figure 2.13). However, in low quality rock 

having very low absolute permeabilities could result in poor relative permeability 

which is called ‘relative permeability jail’ and it could not be thought as a typical 

drainage relative permeability functions such as those found within the conventional 

relative permeability curves. However, several authors have agreed that the 

permeability jail is an extremely important for reservoir and petrophysical 

assessment of quality of hydrocarbon resources (e.g. Britt and Schoeffler, 2009). 

Blasingame (2008) mentioned that aspect as a challenging study with respect to the 

concept of capillarity controlled flow through porous media. The significance of the 

“permeability jail” is that rocks with even moderately low permeable (i.e. 0.1mD) 

may act as efficient barriers to fluid flow (e.g. Fisher et al., pers. comm.). This 

concept also holds significance regarding fault rock sealing behaviour within 

multiphase flow systems. As in water-wet reservoirs the cross fault flow of 
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hydrocarbons occurs when capillary pressure goes beyond the capillary threshold 

pressure, or when the capillary threshold pressure exceeds (e.g. Manzocchi et al., 

2010).  

 

Figure 2.13 Relative permeability curves for high and low permeability rock samples (taken from 

Shanley et al., 2004) 

2.3.3 Two-phase flow properties (Relative permeability and 

capillary pressure) of fault rock 

Conventionally, the fault rock simulations and modelling were performed by 

calculating the fault transmissibility which were solely based on single phase 

permeability of fault rocks (Manzocchi et al., 1999). However, recently several 

authors have highlighted the potential importance of incorporating the multiphase 

flow properties (relative permeability and capillary pressure) of fault rocks into 

production simulation models (e.g. Fisher and Knipe, 2001; Manzocchi et al., 2002; 

Al-Busafi et al., 2005; Zijlstra et al., 2007; Al-Hinai et al., 2008; Tueckmantel et al., 

2011). Far less data is available on the relative permeability and capillary pressure of 

fault rock (e.g. Al-Hinai et al., 2008; Tuekmantel et al., 2011) but the data on two-

phase flow is small that need to be increased so the data could be used with 

confidence for modelling the fault compartmentalized reservoir beheaviour.  
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Al-Hinai et al. (2008) published the first data on the gas relative permeability and 

capillary pressure of the Hopeman fault found in the Clashach Quarry, Hopeman, 

Invernesshire (Figure 2.14). The fault analysed was quartz cemented cataclastic. 

This increased the importance of the fault related reservoir flow beheaviour in 

dynamic modelling. This measured data were used for modelling of southern North 

Sea field Rotliegends reservoir. Al-Hinai et al. (2008) found that neglecting relative 

permeability and capillary of fault rock can lead to an overestimation of flow though 

fault by several orders of magnitude.  

 

Figure 2.14 Gas relative permeability (left) and capillary pressure (right) of the Hopeman fault rock 

(from Al-Hinai et al. 2008). 

In addition to above, the gas relative permeability on cataclastic fault rock from 90 

Fathom Fault was published by Tueckmantel et al. (2011). The reported data were 

measured on a slip surface cataclasite, deformation band zones, and a single 

deformation band as well as host rocks (Figure 2.15). Tueckmantel et al. (2011) 

pointed out that there is significant difference in fluid flow properties of fault rocks 

along small and large scale faults. In particular, the grain size reductions are 

noticeable in the slip surface cataclasites and the cataclastic porosity variations also 

influence the cross-fault fluid flow.  
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Figure 2.15 Gas relative permeability (left) and capillary pressure (right) from 90 Fathom Fault 

(from Tueckmantel et al. (2012) 

 

Tueckmantel et al. (2012) attempted to model fault rock relative permeability 

(Figure 2.15) using the equation of Cluff and Byrnes (2010) to assess whether there 

is any similarity with the two phase flow behavior of tight gas sandstone and 

cataclastic faults. Zijlstra et al. (2007) model the fluid flow behavior of fault rock 

reservoirs in Rotliegend sandstones by using the tight gas sandstone data as 

analogue. In fact, there is a large amount of data exists within the published database 

on tight gas reservoirs (e.g. Thomas and Ward 1972; Byrnes et al., 1979 and Cluff 

and Byrnes 2010). Cluff and Byrnes (2010) used a Corey type equation on tight gas 

sandstone to fit relative permeability curves on his data. As seen in Figure 2.16, 

using Cluff and Byrnes (2010) equation fault rock relative permeability was modeled 

by Tueckmantel et al. (2012). They modelled fault rock relative permeability by 

considering two different ranges of absolute permeabilities to fit the curves based on 

Cluff and Byrnes (2010) equation. The upper absolute gas permeability value was 

considered 10mD and lower was 0.001mD. The two dashed curves as can be seen in 

Figure 2.16 highlights that the tight gas sands exhibits higher relative permeability 

very few fault rock relative permeability data points are falling under the curves 

generated. The solid line shows the exponents were increased from its original value 

of 1.7 to 3 to the fit the experimental data. As the exponent was modified then the 

more experimental data came under the curve generated shown as solid line in 

Figure 2.16. Tueckmantel et al. (2012) concluded the data does not fit well with 

model based on tight gas could possibly be due to fault rock heterogeneity. The fault 

rock is composed of variety of grain sizes, because of this tight gas relative 
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permeability as an analogue to fault rock relative permeability is less applicable in 

predicting the behavior of fault compartmentalized reservoir rocks. It should also be 

noted that the previous measurements of fault rock relative permeability are often 

derived from outcrops samples (e.g. Tueckmantel et al., 2012; Al-Hinai et al., 2008). 

However, the question remains that the reservoir cores samples could be appropriate 

to measure the multiphase phase flow properties and analyze the impact on fault 

compartmentalized reservoirs. For comparison purpose the samples from fault 

outcrops of different locations were also used for petrophysical property 

measurement.  

 

Figure 2.16 Gas relative permeability from The data left side is presented on linear scale and right 

side present on logarithmic scale. (Cluff and Byrnes, 2010) equations used to construct 

the relative permeability curve. (after Tueckmantel et al., 2012). 

Furthermore, it has been argued that there is a lack of data on fault rock relative 

permeability various authors used relative permeability of tight rock samples as an 

analogue (e.g. Zijlistra et al. 2007). The data on relative permeability of tight gas 

sands are summarized in Figure 2.17 and is collected from various published 

sources by Byrnes et al. (2009). This is presented here to increase the understanding 

about the low permeability homogenous sands two-phase flow properties. 

Furthermore, in subsequent chapters the petrophysical data of tight gas sands will be 

compared with the fault rock data collected during present study to see whether there 

is similarity with tight rocks petrophysical property trends.  
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Figure 2.17 Gas relative permeability and water saturation data from published sources on tight gas 

sandstones (from Byrnes et al. 2009.)  

 

2.4 Empirical estimation of fault rock properties  

The link between fault rock types and clay content has led to the development of 

several algorithms to predict the clay content along faults and estimate permeability. 

Many authors attempted to predict the amount of clay content present within host 

sediments and developed algorithms to relate with permeability of fault rock in order 

to assess the fault seal. On the basis of clay content information many studies have 

also attempted to provide with fault rock permeability estimation by use of 

algorithms (e.g. Manzocchi et al., 1999; Sperrevik et al., 2002; Bense and Person, 

2006; Childs et al., 2007). In this section the review of estimation of SGR using 

algorithm for fault seal assessment is provided.  

2.4.1 Shale gouge ratio estimation  

The fault rock permeability is partly controlled by clay content (Fisher and Knipe, 

2001). The literature contains number of algorithms to predict clay content along 

fault rock. For example, algorithms such as Shale Gouge Ratio (SGR) from Yielding 

et al. (1997) Clay Smear Factor (CSF) from Lindsay et al.(1993) effective shale 

gouge ratio (ESGR) from Knipe et al. (2004) Clay Smear Potential (CSP) from 

Bouvier et al. (1989) all aim to predict the clay distribution along faults. Outcrop and 

core observations from faults have shown that the main fault zone or ‘core’ contains 

a highly variable distribution of rock types rather than a uniformly mixed rock type, 

as modelled using the SGR algorithm (e.g. Child et al., 2007). Often sand and shale 
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units within the faults are not well mixed. Parts of the sand units are entrained within 

the fault and preserved as floating blocks, clasts or large intact lenses of stratigraphy, 

whereas the majority of the more clay rich lithology tend to be more mixed. 

Therefore, the algorithm may not be the effective way for estimation of properties 

for such a heterogeneous fault rock. The SGR estimation algorithms used are listed 

below: 

SGR =
∑(Vcl ∙ ∆Z)

throw
× 100%          (2 − 7) 

Clay smear potential can be estimated by: (Bouvier et al., 1989) 

CSP = ∑
thickness2

distance
              (2 − 8) 

 Shale smear factor empirical equation is given by: (Lindsay et al., 1993) 

SSF =
throw 

thickness
              (2 − 9) 

where SGR is the shale gouge ratio, Vcl is clay volume fraction in the zone and ∆𝑍 is 

the thickness of each bed , as seen in Figure 2.18. The discussion about the shale 

gouge ratio is kept limited in here, as it is beyond the scope of this research.  

 

Figure 2.18 Shale gouge ratio (SGR) algorithm commonly applied: (a) SGR from Yielding et al. 

(1997) (b) Clay Smear Potential from Fulljames et al. (1997) (c) Shale Smear Factor 

(Lindsay et al.,1993) (from Jolley et al., 2007). 

 

2.4.2 Empirical estimate of single phase fluid flow properties of 

fault rock 

The significance of predicting fault rock permeability has been highlighted in earlier 

discussion of this chapter. Manzocchi et al. (1999) established an empirical relation 
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of fault rock permeability estimation as a function of clay fractions and fault 

displacement based on published data of plugs and probe permeametry 

measurements which they collected from various sources of reservoir and outcrop 

fault rock data (e.g. Antonellini and Aydin, 1994; Gibson, 1998; Ottesen Ellevset et 

al., 1998; Knai and Knipe, 1998). Although, the empirical relation did not take 

account of the various clay mineral types those might be associated within rock 

formations, such as swelling and non-swelling clays minerals (Crawford et al., 

2008). Therefore, the empirical equation might not be appropriate for accurate fault 

rock permeability predictions. Figure 2.19 shows the permeability data from plugs 

and probe permeametry obtained from several reservoirs and outcrops. Manzocchi et 

al. (1999) based on the knowledge of (SGR) shale gouge ratio and fault 

displacement, attempted to estimate the permeability kf (in mD) of the fault rocks 

providing an empirical equation; 

𝑘𝑓 = −4𝑆𝐺𝑅 −
1

4
log(𝐷) (1 − 𝑆𝐺𝑅)5           (2 − 10) 

where 𝐾𝑓 = the fault permeability in (mD) 

 𝐷 = fault displacement in (m), 

 𝑆𝐺𝑅 = shale gouge ratio 

This data set shows a decreasing trend of fault permeability with increasing clay 

content; however; it does not specify the clay types. The main drawback of this 

empirical equation is that it does not take into account of the multiphase flow 

properties of fault rocks which could result in an overestimation of the rate of cross-

fault flow; particularly if low permeability (<0.1 mD) fault rocks (i.e. SGR>0.2) are 

dominant (Fisher et al. 2001). Another consequence of the model estimates is that it 

does not account for the cementation effects of fault rock permeability. It was also 

pointed out by Manzocchi et al. (1999) that this method does not provide any reliable 

fault rock permeability estimates at low values of SGR. Walsh et al. (2008) argues 

that apart from clay fractions, the permeability of fault rock could be affected by 

various other factors, such as burial depth and types of the various clay minerals. 

Fisher and Knipe (2001) demonstrated that the correlation in between clay content 

and fault rock permeability is scattered that could be due to variations in diagenesis 

between different sandstones. Fault rocks formed in impure sandstones, whose clay 
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content ranges between ~15-25%, could be affected by quartz dissolution and those 

having >25% clays could be more affected by mechanical compaction. Chemical 

compaction in the latter could be suppressed by the presence of phyllosilicates on 

quartz surfaces reducing the rate of quartz cementation (Fisher and Knipe, 1998). 

Therefore, in predicting fault rock permeability from clay fractions all other aspects 

related to faulting should be considered to evaluate fault seal behavior accurately.   

 

Figure 2.19 Relationships between shale versus log of permeability (mD). The large data points are 

plug permeability from core and outcrop of different locations (Gibbson1998). Filled 

circles cataclastic deformation bands; open circles are solution deformation band and the 

filled squares are clay gouge.Small data points are probe permeability measurements of 

deformation bands(open circles) and slip-surface(crosses) (Antonellini and Ayadin, 

1994). The large boxes of gray colour are summaries of the data from Sleipner Field 

(Ellevset et al., 1998):(i)Cataclastic deformation bands, (ii) Phyllosilicate-framework 

fault rocks, (iii) Clay smear. The line labeled with K represents the average values based 

on core samples from Heidrun field,(Knai,1996). The curves given represent d=1 

mm(dashed line), d=10cm, d=1 m, d=10m and d= 1km (thickest line). After Manzocchi et 

al. (1999). 

More quantitative assessments have attempted to relate the permeability of fault 

rocks to the clay content of the host sediment at the time of faulting. For example, 

(Figure 2.20) shows typical permeability values of fault rocks from the Middle 

Jurassic and Rotliegend reservoirs of the UK North Sea. Sperrevik et al. (2002) 

provided an even more quantitative, but empirical, approach by conducting multiple 

regression analysis on clay-permeability-burial depth -depth of deformation data, the 

resulting regression was: 

𝑘𝑓 = 𝑎1exp{−[𝑎2𝑉𝑓 + 𝑎3𝑧max + (𝑎4𝑧𝑓 − 𝑎5)(1 − 𝑉𝑓)7]}       (2 − 9) 

where, kf is the fault permeability, Vf is the fault zone clay content (fraction) zmax is 

the maximum burial depth (m), zf is the depth at the time of deformation (m) and the 

constants are: a1 = 80000, a2 = 19.4, a3 = 0.00403, a4 = 0.0055, a5 = 12.5. Although 
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this model is widely used in industry, the correlation coefficients using this model 

are quite poor.  

 

Figure 2.20 Showing fault rock permeability against fault rock clay content measured on faults in 

cores. The data are grouped according to maximum burial depth. Exponential least-

squares regression lines are shown for each group of data, showing a systematic decrease 

in permeability both with fault rock clay content and with depth (from Sperrevik et al., 

2002). 

Also, great care must be taken applying the model to reservoirs other than those on 

which the regression analysis is based because: (i) the permeability of fault rocks is 

controlled by chemical processes (e.g. quartz cementation and grain-contact quartz 

dissolution) once mechanical compaction has finished (i.e. 1000-2000 m) and these 

processes are controlled by temperature history and not effective stress; (ii) kaolin is 

the main clay mineral in many of the reservoirs which this correlation is based and 

this may not be the case in other areas. A way to partially overcome the first problem 

in areas with differing geothermal gradients to the North Sea is by substituting zmax 

for a depth value that has the same temperature as the North Sea (Fisher and Knipe, 

2001). 

Bense and Person (2006) provided an algorithm for siliciclastic type sedimentary 

rock to assess whether the fault present in hydraulic zone acts as a conduit or barrier. 

The estimation of the fault zone permeability was based on clay content and fault 

throw. Basically, the Bense and Person (2006) approach was based on the empirical 

relation of Bethke (1985) used a linear regression of the form of equation, 

𝑙𝑜𝑔𝐾 = 𝑎∅ − 𝑏         (2 − 10) 
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Where 𝑎 and 𝑏 are empirical coefficient of equation. After fitting data it was found 

that a= 16.3, and b=-16.3 for sandstone, but for shales the coefficients were a=9.1, 

and b=-22.1. Bense and Person (2006) stated that if sandstone is 5% and shale are 

70%, and then Equation (2-10) can be interpolated in between two end members for 

constructing the permeability and porosity relation for clay rich sandstones. To 

consider the clay content of fault rock the Equation (2-10) was modified by Bense 

and Person (2006) to provide permeability estimation of siliciclastic fault rock (Kf  in 

mD) 

log 𝐾𝑓 = (𝑎∅ − 𝑏 − 𝑐𝑧 ∙ 𝑒−𝑑.𝑣𝑐𝑙𝑎𝑦)   (2 − 11) 

Where 𝑐 and 𝑑 are emprical coefficients and 𝑧 is depth of burial at the time of 

faulting. The parameters c and d were set to 3.1 × 10−3 and 3.1 × 10−2 respectively. 

The two parametres (c and d) were approximately fitted with field data (Figure 2.21) 

from Sigda et al. (1999); Rawling et al. (2001) and Sperrevik et al. (2002). The 

equation (2-10) used for host sediments permeability estimation and fault rock 

permeability 𝐾𝑓 (m
2
) were estimated using Equation (2-11). This emprical relation 

does not take account of two-phase flow through fault rock andis less applicable to 

modelling petroleum reservois, because the fault rocks are heterogeneous, consisting 

of distinct amount of clay and sands and more than one fluid flowing. 

 

Figure 2.21 The relation between permeability versus clay content, the host rock permeability is 

represented by symbols and permeability of fault rock with solid lines as a function of 

clay content and burial depth. (From Bense and Person 2006) 

2.4.3 Empirical estimates of two phase flow properties of fault rock  

It is generally believed that fault rock properties have a strong influence on the 

dynamic behaviour of the fault compartmentalized reservoirs. The measurement of 

the two-phase flow properties (relative permeability and capillary pressure) of fault 
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rock is technically challenging. At present a limited amount of data on two-phase 

flow of fault rock is available (e.g. Al-Hinai et al., 2008; Tueckmantel et al., 2011). 

It would be highly desirable to provide with empirical relationships to predict these 

properties based on single phase flow properties, (e.g. absolute permeability and 

mercury injection data. In fact significant effort is required to establish reliable 

empirical relations to predict these properties. Manzocchi et al. (2002) provided with 

empirical relations to model multiphase flow based upon Ringrose et al. (1993) 

approach: 

𝑃𝑐 = 𝐶𝑆𝑒
−2/3(∅ 𝐾⁄ )0.5          (2 − 12) 

where 𝑃𝑐 is capillary pressure in bars, 𝐶 = 3; ∅ is the porosity, 𝐾 is absolute 

permeability in mD and 𝑆𝑒 is an effective wetting phase saturation which is defined 

as: 

𝑆𝑒 =
(𝑆w − 𝑆wc)

(𝑆wor − 𝑆wc)⁄          (2 − 13) 

where Sw is water saturation, Swc denotes the connate water saturation, and Swor 

denotes the water saturation at irreducible oil. 

Fault rock porosity was determined using an empirical equation: 

∅ = 0.5𝐾0.25                   (2 − 14) 

Manzocchi et al. (2002) did some modifications to the above defined relations for 

modelling purposes; they derived fault rock porosity as function of the single phase 

permeability, and then attempted to modify 𝑆wor values from 0.6 to 0.85, they also 

changed the connate water saturation functions to 

𝑆wc = 0.85 − 10(−0.6 exp( −0.5 log(k)))       (2 − 15) 

In addition to above the drainage capillary pressure curve could be defined by 

providing empirical estimates using the following relationship: 

𝑃𝑐 = 𝐶(1 − 𝑆𝑒
5)𝑆𝑒

−2
3⁄

(∅
𝑘⁄ )

0.5

   (2 − 16)  
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The relative permeability and oil relative permeabilities empirical relation were also 

defined similar to the Ringrose et al. (1997) approach, namely: 

𝐾rw = 0.3𝑆𝑒
3              (2 − 17) 

𝐾ro = 0.85(1 − 𝑆𝑒)3          (2 − 18)     

They generated a synthetic capillary pressure and relative permeability curves 

(Figure 2.22) for absolute permeability values of 0.01 mD and 10 mD. 

 

Figure 2.22 (a) Relative permeability and (b) capillary pressure for 0.01 mD dashed lines and 10mD 

solid lines fault rock. On graph of the Pc curve, the dark circles are the threshold 

pressure on drainage capillary pressure curve.( from Manzocchi et al,. 2002)  

 

2.5 Significance of fault rock flow properties to model 

cross-fault flow  

Conventionally, the numerical modelling and simulation of hydrocarbon reservoirs 

was based on discretizing the domain on coarse grid scale typically of hundreds of 

meters. The fault rocks are variable in thickness. The thickness of faults varies from 

meter to cm scale. The modelling based on conventional techniques was not 

effective to capture the fault properties accurately. Recently lot of effort has been 

made to develop appropriate algorithms for transmissibility calculations to model 

fault compartmentalized reservoirs performance (e.g. Manzocchi et al., 1999, 2002, 

and 2010). The transmissibility is “the volume weighted average of the permeability 

of two grid cells connected in a simulation model” (e.g. Myers et al., 2007). In 

Figure 2.23 the examples are presented that has been adopted in previous studies to 

model fault rock properties. Several authors attempted different approaches to 
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include fault rock flow properties in flow simulation models (e.g. Ringrose and 

Corbett 1994; Manzocchi et al., 1998, 2002; Rivenæs and Dart 2002; Al-Busafi et 

al., 2005a; Bergand Øian 2007). For details about the methods to incorporate faults 

in simulation models the reader is referred to Manzocchi et al. (1999, 2002, and 

2010).  

There are several published examples that have been adapted to history match the 

data by use of simulation modelling that were achieved using absolute permeability 

of fault rocks (e.g. Knai and Knipe, 1998; Jolley et al., 2007). However, some 

studies have found that to yield a history match of data of Brage and Oseberg Fields, 

it is required to reduce the transmissibility multipliers by several orders of magnitude 

(e.g. Rivenæs and Dart, 2002). Nonetheless, the reduction in TMs without any strong 

justification is not recommended because history matches are inherently non-unique 

and by arbitrarily changing a property to achieve a history match may mean that one 

is not correctly modelling another important control on production. For example, 

Sverdrup et al. (2003) achieved history match to data of oil reservoir using TM, 

which were calculated based on single phase flow properties of fault but did not to 

succeed in history matching of gas reservoir. They argued that two phase flow 

should be considered for modelling of gas reservoirs. Zijlstra et al. (2007) initially 

attempted to history match data by assigning transmissibility multipliers but did not 

achieve a matching of the data. However, they achieved history matching of data by 

incorporating two-phase flow that lead to the better results. It is also important to 

have correct fault rock thickness and permeability information based on the realistic 

geology interpretations, so the transmissibility multiplier must be accurately 

calculated and assigned for input to reservoir simulations for accurate predictions 

(e.g. Al-Busafi et al., 2005a).  

A conceptual model based on work of Fisher et al. (2001) to model multi-phase flow 

across a fault reservoir presented in Figure 2.24 that demonstrates the case in which 

the fault has a high capillary threshold pressure than the reservoir. Close to the Free 

Water Level (FWL) (Figure 2.24 points 1 and 2) the buoyancy pressure in the 

petroleum column is not adequate to exceed the capillary thershold pressure of the 

fault rock. This shows that at this point hydrocarbon has zero relative permeability, 

which was not accounted in conventional simulation and modelling (Fisher et al., 
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2001). Therefore, this concept suggests that fault rock relative permeability must be 

considered when modelling compartmentalized reservoirs.  

 

Figure 2.23 The diagram shows the properties of the fault rock used for simulation model (a) is the 

example of fault rock thickness relationship used for successful history matching (b)Fault 

rock permeability used for history matching in simulation model (taken from Manzocchi 

et al. 2010).  

 

Figure 2.24 The above conceptual model of multi-phase flow in a petroleum reservoir shows. (a) The 

saturation within fault and reservoir (red for hydrocarbon, blue for water). (b) The 

capillary pressure curve. (c) The directional water-wet relative permeability curves for 

the fault rock. The fault has a higher capillary entry pressure than the reservoir (from 

Fisher et al.,2001). 

 

2.6 Factors affecting fluid flow properties of fault rocks 

Faults are one of the main causes of reservoir compartmentalization (e.g. Jolley et al., 

2007). Understanding their impact on fluid flow is important for predicting reservoir 

performance and planning strategies. The fluid flow properties of fault rocks are mainly 

affected by pore fluid, amount of clay content, the overburden stress and the amount of 
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cements present within the rock (e.g. Fisher and Knipe, 2001). In following section each 

of these are discussed.  

2.6.1 Effect of pore fluid salinity on fault rock permeability 

This section provides the discussion about the combined effect of particles retention and 

movement during permeability measurement in association with the pore morphology. 

In rocks containing clay such as fault rocks, the permeability can be dependent upon 

fluid salinity, (e.g. Figure 2.25). Numerous studies have been conducted in understating 

the effect of pore fluids, fines particles mobilization and their impact on rock 

permeability alteration (Khilar and Fogler, 1948; Lever and Dawe, 1987), since these 

effects will be investigated for fault rock permeability by changing brine compositions. 

The clay is one of the causes of permeability reduction (e.g. Verwey and Overbeek, 

1948) and authors have provided with theories to predict these effects related to particle 

mobilization (e.g. Khilar and Fogler, 1948; Kia et al., 1987; Rosenbrand et al., 2014). 

Most of the fault rock formed within the clayey sands or phyllosilicate environment 

requires knowledge of the amount of shales or clays present within these formations and 

to know the extent how they affect the fault rock permeability measurements. The most 

common types of clay minerals found in sedimentary rocks are kaolinite, chlorite, illite 

and smectite (e.g. Nesham, 1977). The major effects of clays on fault reservoirs are the 

reduction of pore size and permeability; fine particles migrations when there is loose 

clay mineral present within sands; these have tendency to migrate and plug the pore 

throats that could be the potential reason of reduction in permeability and clays are 

sensitive to distilled that hydrate after contacting with water which in turn causes 

reduction in rock permeability (Richard and Dawve, 1984, Khilar and Fogler, 1948).  

Clay minerals of fine grained particles deposited in sandstones, particularly it is 

associated in phyllosilicate and clay rich fault sequences. As reported by Nesham 

(1977) clays could be found within the sandstone in three different ways; (1) laminar 

clay, where it could be found in form of laminae between layers of clean sands; (2) 

structural clays, where it could be associated with sand grains or nodules within the 

sandstones and the third is the dispersed clay minerals, where clay might be dispersed 

throughout the sand, to some extent exist in between the intergranulars or possibly be 

coating the sand grains. Each of these have tendency to affect the fault rock 

permeability either by creating a layer of bound water or by movement of fine particles 
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and these fine particles might get trapped within the confined pore throats. The fine 

particles are supposed to be the loosely attached particles surrounded with quartz grains 

(Khilar and Fogler, 1984; Kia et al. 1987) and depends upon the mineral compositions, 

also upon the permeability of the rock and pore network (Hibbeler, 2003). The way the 

fine particles impair permeability is: when loosely attached particles within porous 

medium starts flowing, moving towards the pore throat locations where these fine 

particles might get trapped and reduces the flow paths (Muecke et al. 1979) 

consequently the reduction in permeability could be observed. 

Authors have argues that the differences in gas permeability to brine and water could be 

the result of layer of bound water on the mineral surface that reduces the pore throat 

radius (Heid et al. 1950; Luffel et al. 1993; Solymar et al. 2003; Andreassen & 

Fabricius 2010). Therefore, in this thesis attempts will be made to investigate the extent 

to which the gas and liquid permeability of fault rocks affected due to changing brine 

composition. This will be performed by conducting laboratory experiments and the 

results would be integrated with microstructural analysis.  

 

Figure 2.25 Water-sensitivity of the Spiney sandstone, Moray Firth Basin, Note the large decrease in 

permeability when the brine is changed to 1% NaCl (from Lever and Dawe, 1987). 

2.6.2 Stress sensitivity of rock permeability 

It is generally well understood that the properties of porous sedimentary rock can alter 

with change in the depth and change in the subsurface overburden stress. Since, the 

early 1950s, there has been a continuous debate over the influence of stress on 

permeability of porous sandstones. The permeability of tight sandstones are often 

sensitive to the stress and pore pressure under which these are measured (e.g. Jones and 

Owens, 1980; Sampath and Keighin, 1982; Brower and Morrow, 1985; Warpinski and 

Teufel, 1992; Rushing et al., 2003). Several other researchers (e.g. Thomas and Ward, 
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1972; Sampath and Keighin, 1982; Walls et al., 1982) performed number of laboratory 

experiments on permeability of sandstone. These studies concluded that the absolute 

permeability of samples reduced significantly with the increase in confining stress. On 

the other hand, the relative permeability did not show any significant reduction with the 

application of overburden stress. Others (e.g. Al-Qureshi and Khairy, 2005; Chierici et 

al., 1967; Davis and Davis, 1999; and Jones et al., 2001) concluded that permeability 

can significantly be altered with impact of overburden or net stress due to the fact that 

pore network, pore geometries and pore throats changes by applying overburden stress, 

even if there is more than one phase is flowing. The absolute permeability generally 

decreases with increasing confining stress c  and decreasing pore pressure Pp ,it can be 

expressed as a function, of the effective stress, (e.g. Warpinski and Teufel, 1992; 

Zoback and Byerlee, 1975; Al-Wardy and Zimmerman, 2004; Li et al., 2009):   

 
' c k pn P  

             (2.19) 

where kn
 is the effective stress coefficient for permeability, which measures the effect 

of a pore pressure change on the effective stress. 𝜎𝑐 ,is confining stress and Pp is the 

pore pressure applied for permeability measurement. 

Authors have reported that the reduction in permeability at higher stresses, in particular 

the low permeability sandstones might be affected due to grain boundary micro cracks 

formation as a result of stress release, but not by intergranular pores of the rock (e.g. 

Ostensen, 1983; Brower and Morrow, 1985, Farrell et al., 2014). The laboratory 

experiments might show permeability stress sensitivity by increase in confining stress 

due to closing of micro-cracks that could be possible reason of the permeability stress 

sensitivity in low permeability sandstones (e.g. Ostensen, 1983). The effect of changing 

stress on permeability could be modelled by simple relation of power law as given 

below (e.g. Keaney et al., 2004). 

𝑘 = 𝑘∞[𝜎𝑐 − 𝑛𝑘�̅�]−𝛾      (2.20) 

where, in above equation (2.20) K∞ is the permeability of the samples extrapolated to 

zero stress and 𝛾 is the stress exponent. This equation will be used in chapter five to 

model the fault rock permeability stress sensitivity.   



 

 

Petrophysical Properties of fault rock-implications for petroleum production  Page 52 

Figure 2.26 shows how stress impacts on the rock pores structure. When stress acts on 

porous rock the grain to grain contact gets closer to each other, due to this effective size 

of the pore throats decreases eventually the movement of fluids is restricted 

consequently the permeability (e.g. Walls, 1982; Davis and Davis 1999). A summary of 

the tight gas data shown in Figure 2.28, which shows that as permeability decreases it 

becomes more sensitive to stress. Similarly the fault rocks are low permeability their 

permeability might be sensitive to stress.  

 

Figure 2.26 The conceptual cartoon shows the stress impact on rock fabrics.  

In past, a lot of research has been done on different fault rock types, most of the data 

collected was measured at ambient stress conditions of 70 psi (e.g. Antonellini and 

Aydin, 1994 Gibson, 1998; Fisher and Knipe 2001, Teuckmantel et al., 2010). There is 

very little experimental work has previously been undertaken on the stress sensitivity of 

fault rock petrophysical properties (e.g. Al-Hinai et al., 2007). The fault rock relative 

permeability is also stress sensitive and it could be lower several orders of magnitude 

(e.g. Al-Hinai et al., 2007). 

 

Figure 2.27 Stress dependence of the absolute gas permeability (left) and relative permeability (right) of 

a tight gas sandstone (from Al-Hinai, 2007). Note that the relative permeability is far more 

stress sensitive – especially at high water saturations. 
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It has become industry standard to calculate transmissibility multipliers to incorporate 

into production simulation models to account for the impact of faults on fluid flow 

(Fisher et al., 2005; Jolley et al., 2007). In majority of cases, transmissibility multipliers 

are calculated using permeability of fault rocks were measured under low confining 

pressures <70psi, if this is the case then calculation of the fault rock transmissibility and 

incorporating into simulations models could be based on measurements that 

underestimate fault permeability. Therefore the stress sensitivity of fault rock 

permeability is still not well understood, far less data on fault rock stress senstivity is 

available (Figure 2.27); so significant effort is required to conduct experiments at in-

situ stress conditions to understand and evaluate the fault flow properties at various 

stress conditions. Data is required on variety of fault rock particularly the poorly 

lithified cataclastic faults that are quite common in deep water reservoirs (e.g. as seen in 

Gulf of Mexico) and phyllosilicate-framework fault rocks with differing degrees of 

sediment lithification; so the impact of fluid flow on fault compartmentalized reservoirs 

can be delineated.  

 

Figure 2.28 Stress dependence of the absolute gas permeability of tight gas sands. Note that the low 

permeability samples can have up to two orders of magnitude lower permeability when 

measured at reservoir stress conditions compared to 100 psi, (from Cluff and Byrnes, 2010). 

2.7 Examples of faults found within the petroleum reservoirs 

Here a review of fault-related barriers in petroleum reservoirs is presented by providing 

the evidence from published papers.  
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2.7.1 Faults as a barrier in petroleum reservoirs 

The main evidence on fault sealing provided here comes from the Brent Province, UK 

and Norwegian North Sea, and Rotliegend, UK and Dutch North Sea.  

 Brent Province: UK and Norwegian North Sea 2.7.1.1

The most productive reservoir unit in the North Sea is Middle Jurassic, Brent Group, of 

the UK and Norwegian North Sea that is sand-dominated and is largely deltaic sequence 

(e.g. Fisher et al., 2013; Leveille et al., 1997). In reality, the Brent Group was key 

producing province because of its exploration and development history means that huge 

amount of data have been collected over the past 45 years, that has become an important 

area to investigate the impact of faults on fluid flow based on geological and production 

time-scales (Fisher et al., 2013). Fisher and Knipe (1998, 2001) have gathered 

petrophysical a large amount of data, comprises the microstructural and petrophysical 

property analysis studies on these faults, which were found in the Brent Group. The 

studies conducted on these fault such as, microstructural examination which has 

suggested that the faulting occurred at a shallow depths, the main deformations 

processes involve are the particulate flow( movement and sliding of grain particles 

without grain fracturing ) and sometimes a minor amount of cataclasis is observed (e.g. 

Fisher and Knipe, 1998). The investigation made by Fisher and Knipe (1998 and 2001) 

on these reservoirs has suggested that the main fault types occurs includes, the 

disaggregation zones those formed in clean sandstones where these is less than 5% of 

clay; the phyllosilicate-framework fault rocks which were formed in impure sandstones, 

in which the clay content ranges from 15% to 40% and the third type of fault are the 

clays smears formed due to the faulting of shale-rich sediments having greater than 40% 

clay. There was no evidence for cemented faults and no any indication of the later fault 

reactivation has been reported from any of the samples analysed (e.g. Fisher and Knipe, 

2001).  

Harris et al. (2002) provided evidence about the fault and reported that there is lack of 

communication across fault between the upper and lower Brent Group. The study 

presented by Harris et al. (2002) showed that up to 650 psi (4.48 MPa) pressure 

difference built up across a fault separating the Upper and Lower Brent Group in the 

Strathspey Field. Another example comes from work of Jolley et al. (2007) they 



 

 

Petrophysical Properties of fault rock-implications for petroleum production  Page 55 

presented fault seal analysis studies on many of the fields from the Brent Province also 

from the Brent and North Cormorant Fields. The study demonstrated that how faults act 

as barriers on a production time-scale and the study also demonstrated that production 

history matches to simulation models could be achieved by incorporating realistic fault 

rock properties (i.e. permeability values). 

Generally, it seems that in Brent Group fields where there is juxtaposition of clean sand 

(no any clays) against clean sand (within high permeable faults) in these conditions fault 

have less impact on fluid flow (e.g. Fisher and Jolley, 2007). Because, these fault rock 

formed in disaggregation zones (Fisher and Knipe, 2001) and these faults have same 

fluid flow properties (permeability and capillary threshold pressures) to their associated 

undeformed sandstone. In contrast, the faults that were formed in sediments within the 

clay rich sequences appears to act as a major barriers to fluid flow over production time-

scales. This shows that the fault exist are the clay smears or phyllosilicate-framework 

fault rocks (Fisher and Knipe, 2001). 

 Rotliegend UK and Dutch North Sea 2.7.1.2

The significant production of gas that is coming from the Rotliegend reservoir of the 

UK and the Dutch southern North Sea and is the most important source of natural gas 

for United Kingdom which is producing over the last 40 years (Fisher et al., 2013). The 

reservoirs are composed of mostly the aeolian, fluvial, sabkha and lacustrine sediments, 

and most likely have a high net to gross ratio and lower clay content. The faulting of 

reservoirs occurred due to two periods, the Jurassic and Early Cretaceous as a result of 

basin extension (e.g. Arthur, 1993) and  the Late Cretaceous due to basin inversion (e.g. 

Arthur, 1993). Fisher and Knipe (1998, 2001) had gathered a large amount of data on 

microstructural and petrophysical properties of fault rocks from Rotliegend reservoirs in 

the southern North Sea. They suggested within these reservoirs two types of fault rocks 

are dominating. The first types of faults are the cataclastic faults that have been 

generated due to the grain-fracturing, post-deformation and quartz cementation. The 

permeability of these fault rocks reported by Fisher and Knipe (2001) ranges from 

~0.1mD to <0.0001 mD. Other types of fault formed include the cemented 

faults/fractures that resulted after wide range of mesodiagenetic alteration such as quartz 

and illite precipitation. The most common cements found within this type of faults 

include anhydrite, ankerite, siderite and barite (e.g. Fisher and Knipe, 1998, 2001). Most 
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likely the cataclastic faults formed at a depth of one to three kilometres during Jurassic 

to Early Cretaceous, these latter become cemented faults during basin inversion, due to 

the uplifting of a sedimentary basin. (e.g. Leveille et al., 1997). 

There is significant indication about the influence of fault rock that has impacted 

reservoirs productivity within the Rotliegend reservoirs of the southern North Sea. Van 

der Molen et al. (2003) presented that there is a 250 bar (~3627 psi) difference of 

pressure which was generated across a fault for the period of production from a 

Rotliegend reservoir of offshore Netherlands. Another example comes from Al-Hinai et 

al. (2007) who investigated similar field as described by van der Molen and proposed 

that the large pressure difference within the reservoir studied might not be described 

based simply on the information of absolute permeability of fault rocks. Although, they 

claimed that the pressure difference could be explained if the two phase flow properties 

of the fault rocks considered for incorporation into the simulation model. Al-Hinai et al. 

(2007) in their study stated that it is necessary to incorporate the relative permeability 

characteristics of faults rocks in the production simulation models to history match the 

production data; ignoring the two phase flow properties into account can overestimate 

cross fault flow. Moreover, Zijlstra et al. (2007) also reported that fault rocks in 

Rotliegend reservoirs were acting as barriers to fluid flow during production.  

2.8 Summary  

This chapter has attempted to review the current knowledge regarding the impact of 

faults on fluid flow within fault compartmentalized reservoirs. It was also attempted to 

present with few field examples from fault compartmentalized reservoirs that were 

reported within North Sea fields. The review has paid particular attention by describing 

the evidence that is used by the petroleum industry to assess how faults have affected 

fluid flow. Even though there is a large amount of data on deformed rock are present 

within the published data base, achieving economic flow rates through such 

compartmentalised reservoir is a challenge. Despite the concern about the permeability, 

deformed rocks has a large effect on estimates of productivity of reserves. Within 

laboratory measurements the permeability stress-sensitivity of fault rock samples were 

often overlooked however it is essential during compartmentalized reservoirs analysis 

as well as during calculation of transmissibility multipliers to input into reservoir 

simulation and modelling. Current study has attempted to measure and gather 
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petrophysical properties of fault rocks at ambient and in-situ stress conditions. In 

addition, the measured petrophysical properties data were integrated with mineralogical 

and microstructural examination to delineate the controls and differences of fault rock 

properties. Obviously, a better understanding of the processes that control the fault rock 

petrophysical properties would improve the value of fault-seal predictions. 
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3   Materials and Methods 

 

 

3.1 Introduction  

The research presented in this thesis is mainly based on the measurement of the 

microstructural and fluid flow properties of fault rocks. Fluid flow through homogenous 

conduits, such as pipes, is easy to model. However, fine grained heterogeneous porous 

media, such as fault rocks have a complex pore structure that cannot be described 

explicitly, which makes modelling very difficult. The work conducted in this thesis 

therefore attempts to integrate data from laboratory experiments of the fluid flow 

properties of fault rocks (e.g. permeability, relative permeability etc.) with 

microstructural and mineralogical information obtained from scanning electron 

microscopy (SEM), quantitative X-ray diffraction (QXRD) and X-ray tomography.  

This chapter describes the materials studies and the experiments conducted during the 

research project. Apart from this introductory section this chapter is divided into six 

sections. Section 3.2 provides the overview about the fields and outcrops from where 

the samples were obtained. The next section (Section 3.3) provides details about the 

sampling, coring and cleaning techniques. The following section (Section 3.4) describes 

the techniques used to study and analyze the structure and mineralogy of the samples 

such as scanning electron microscopy (SEM), quantitative X-ray diffraction (QXRD) 

and X-ray tomography. Section 3.5 starts with details about the experimental 

procedures and material (core samples and pore fluids) used during experiments In 

addition to this, the two phase flow properties (capillary pressure and relative 

permeability) experimental methods are described in Section 3.6. At the end of this 

chapter issues and uncertainties related to measurements are discussed (Section 3.7).   

3.2 Material studied  

This section provides an overview about the fields studied. It mainly concentrates on the 

background information about the fields studied. A total of fifteen core sections were 
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provided by sponsor from Central and Southern North Sea reservoirs. The depth of 

Central North Sea core sections were 11724.0 to 13115.2 m. The Southern North Sea 

section was cored at a depth of 3111 to 3133.55 m. Apart from reservoir cores large 

blocks of outcrop from different fault structures were also provided during this study for 

the above mentioned properties analysis. The summary of the fields and number of the 

samples that have been obtained and analyzed during this study are given in Table 3.1. 

The reservoir cores supplied and outcrops collected are categorized as mainly 

cataclastic and phyllosilicate-framework fault rocks, but some disaggregation zones 

were also analyzed and are discussed in following sections. The samples from Mirri 

airport road Malaysia outcrop could be analogous to Miri oil field, Miri outcrop is 

located in the similar structure as the Miri oilfield that was producing from 1910 to 

1979 (Van der Zee and Urai, 2005). The samples from Hopeman fault rock UK studied 

could be analogue to North Sea reservoirs.  

 

Table 3.1 Summary of the samples that have been obtained and analysed during present study 

 

3.2.1 Central North Sea  

The area studied is indicated by an arrow in Figure 3.1 and is part of NW–SE trending 

extension of the Forties–Montrose High, which is separating the eastern and western 

arms of the Central Graben (Keller et al., 2005). This has a NW-plunging structure 

surrounded by major NNW–SSE and WNW–ESE extensional fault with throws are 

more than 600 m and bounded by WNW- and NNW-striking faults which are linked to 

the Permian structures (e.g. Keller et al., 2005). The Central North Sea area contains a 

thick sequence of Triassic and Jurassic sediments and is underlain by a thin layer of salt 

(e.g. Fraser et al., 1993). The seismic information has shown the movement of 
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Zechstein salt from Early Triassic time and the pre-Triassic section is highly variable 

(Keller et al., 2005). According to Zenella and Coward (2003) the structural 

configuration of the central North Sea is basically the result of a Late Jurassic to Early 

Cretaceous rifting event, the rift alignment for the Permo-Triassic rift is thought to lie 

underneath the current Horda Platform.  

The salt mobilization continued during the Triassic period but the influence was 

decreasing on the depositional architecture. As stated by Smith et al. (1993) the 

resulting structure consists of rotated grounded pods of Triassic age above salt where 

the Zechstein salt has been entirely evacuated. The main control on sedimentation of the 

Smith Bank and Skagerrak formations appears to be a combined effect of halokinesis 

(movement of salt and salt bodies in the sub-surface or flow of salts as well as the 

emplacement, structure and tectonic influence of salt bodies) and indirect basement fault 

movement (e.g.Hoiland et al., 1993). The reservoirs discovered in this area consist of 

different formations such as, the Triassic Skagerrak formation , the Upper Jurassic 

Fulmar Formation, the Upper Cretaceous chalk and Paleocene sandstone and is 

structurally complex (e.g. Archer et al., 2010). The compartmentalization of reservoirs 

plays a significant role which is demonstrated by differences in pressure between the 

West Limb and the Northern Terrace (Archer et al., 2010) 

 

Figure 3.1 Sketch map of the central North Sea field location. The study area is shown by arrow on map 

(after Keller et al. 2005). 

3.2.2 Southern North Sea  

The southern North Sea field studied is shown in Figure 3.2 that is yet an important 

petroleum province, and is producing since 40 years after production (Norwegian 
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petroleum directorate report). According to the report published by Norwegian 

petroleum ministry that fields from southern North Sea will be producing for another 40 

years and around thirteen fields are producing in this part of the North Sea. The 

southern North Sea reservoirs are significantly compartmentalized and are linked to the 

structural development of the area and are also related to the tectonic activity; around 

100m of fault throws are present and this might be the major reason of sealing capacity 

of several fields (e.g. Leveille et al., 1997). According to Gupta (2013) there is very 

limited pressure communication between these reservoirs. 

A diagenetic process in these sandstones samples consists of an early shallow 

diagenesis, intermediate diagenesis, which includes burial and local uplift, and deep 

burial (e.g. Gaupp and Okkerman, 2011). The authigenic minerals that are found 

throughout the basin comprise quartz, carbonates, iron oxides, kaolin, illite and chlorite 

(e.g. Gaupp & Okkerman 2011). Most of the samples were in red colour which reflects 

the presence of hematite Torrent & Schwertmann (1987). According to Desbois et al. 

(2011) hematite and iron oxides could still be found in the form of small grains among 

clay minerals.  

 

Figure 3.2 The southern North Sea area studied (source: Norwegian Petroleum directorate)  

3.2.3 90 Fathom Fault, Northumberland, UK 

According to Kimbell et al. (1989) the 90 Fathom fault commenced as E-W trending 

normal fault because of the early Carboniferous N-S extension and is part of E-W to 

ENE-WSW trending stublick normal fault. This has been previously be studied ( e.g. 

Jones and Dearman, 1967; Collier, 1989; De Paola et al., 2005; Tueckmantel et al., 
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2011; Al-Hinai et al., 2008). The 90 Fathom fault system is down towards the north and 

southern part of the carboniferous Solway Basin, which covers area around 6500km
2 

north England and southern part of Scotland (Chadwick et al., 1993). The fault is an 

extensional fault dipping to the north, and consists of three EW trending faults with an 

offset of around 15m in the Whitely Bay area (Jones, 1968). The fault can be traced 

inland as a linked segmented fault zone for more than 30 km and has a maximum throw 

of 260m.  

The 90 Fathom fault collected from coastal section of Cullercoats Bay and Whitley Bay 

NE of Newcastle upon Tyne (Figure 3.3) the red square indicates the position of area 

studied. The fault at this location trends to E-W and juxtaposes Permian Yellow Sand 

against a footwall sequence of Carboniferous shale and mudstone to the south (Collier, 

1989). As stated by Jones (1967) the fault throw at Cullercoats Bay is around 120m, the 

main fault constitutes of slip surface which is dipping with 40
0 

towards NNE. 

Tueckmantel et al. (2011) stated that the slip surface contains 15 cm thick cataclasite 

without any interspersed host sediments. The sediments exposed to hanging wall 

consists of medium to fine grained with complex pattern of deformation bands. 

According to Collier (1989) and Knott et al. (1996) most of the deformation bands are 

trending towards E-W parallel to the main fault. The fault rock obtained for analysis 

consists of single deformation bands, deformation band zone thosed exposed into 

damaged zones; in additon to these the slip surface cataclasites fault present within the 

main fault also analsyed.  
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Figure 3.3 The Great Britain map with location highlighted with the black square indicates the position 

of 90 Fathom fault outcrop area (taken from GoogleMaps-2014). 

3.2.4 Fault rock from Miri airport road exposure Malaysia 

The Miri Airport Road outcrop in Miri, Sarawak, Malaysia (Figure 3.4) has previously 

have been studied by (e.g. Burhannudinnur and Morley 1997; van der Zee and Urai 

2005; Sorkhabi and Hasegawa, 2005). The Miri airport exposure outcrop had a 

combination of clay smear and deformation band (e.g. Sorkhabi and Tsuji, 2005). The 

exposure contains cyclic deltaic deposits composed of around 85% sand and 15% shale. 

The structure of the outcrop belongs to the Miocene Sands of the Miri formation. The 

thickness of the clay layers is 10 to 50 cm, most of these layers are very thin less than 

10 cm forming a thin-bedded fault sequence with throw which is ten times the thickness 

of the sand layer (van der Zee and Urai, 2005). Previous studies have focused on 

describing the structural characteristics of the fault zone. A key exception is the study of 

Sorkhabi and Hasegawa (2005) is that who used a probe permeameter to suggest that 

deformation bands have unconfined gas permeabilities of 5 to 20mD compared to 10 to 

300mD measured for the host sandstones. The current study differs in that it assesses 

fault rock permeability at a range of confining stress measured and analysed. It should 

be noted that no attempt was made to deconvolve the permeability; the reported 

permeability were an average of fault and its associated un-deformed rock.  

 

Figure 3.4 The Location map of the fault rock from Miri airport road exposure Malaysia with inserted 

map detailing the location of the study area (GoogleMaps-2014).   
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3.2.5 Fault rock from Clashach Quarry, Hopeman, Invernesshire 

The samples used for study from Clashach fault within the Hopeman sandstones is 

located on the south part of the Moray Firth, the outcrops is on the shore about one 

kilometre to the east. The fault location map below shows area where from these were 

obtained (Figure 3.5). The Hopeman sandstone is clean with yellow-brown sandstone 

of mainly the aeolian origin, which lies unconformably on Devonian sediments of the 

Orcadian Basin of Hopeman. As reported by Bentonet al. (2002) the Permo-Triassic 

basins of United Kingdom (UK) that follows the north-south linear rift system, which 

was strongly impacted through the underlying structure. Furthermore, they reported that 

different rift systems can be recognized those contain a large number of separate basins, 

those basins are filled 1 to 4 km of mostly continental red beds and evaporates.  The 

tectonic plate movement was continuous from Late Carboniferous into Early Permian 

times (Bentonet al., 2002). 

 

 

Figure 3.5the location map of the fault rock from Clashach Quarry, Hopeman, Invernesshir United 

Kingdom. 

3.3 Methodology  

To characterize the sealing potential of fault compartmentalized reservoirs, it is essential 

to have an integrated understanding of their microstructural analysis and petrophysical 

properties. The methods and techniques used to provide wide-range of petrophysical 
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description of fault rock samples such as microstructural analysis, porosity, 

permeability, fluid saturations, relative permeabilities, centrifuge, relative humidity 

chambers and mercury capillary pressures are presented in this chapter. To achieve the 

research objectives various types of experiments were carried out and attempt were also 

made to design some experiments. The work conducted, includes the preparation, 

cleaning, photographing and scanning of samples, followed by aforementioned 

petrophysical properties measurements at ambient and in-situ stress conditions as shown 

in Figure 3.6. Apart from experimental work, attempts were also made to a model the 

results using industry standard software.  

 

Figure 3.6 The workflow adopted during this study.  

 

3.3.1 Sample preparation, cleaning and preliminary measurements  

Once the samples were available for the study, the sampling of core was carried out. 

This was done by the available facilities in the laboratory. Two sizes of core holders 
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were available (1 inch and 1.5 inch) to accommodate the core plug. Therefore, both 

sizes of plugs were taken. The reservoir cores were taken by using 1 inch coring bit in 

order to avoid the full utilization of core section and the rest of the core section was 

used for mercury injection and SEM analysis. The outcrop plugs were taken with 1.5 

inch size. Usually, water causes permeability alteration and clay swelling or 

contamination to core plugs, therefore air was used as a coring fluid. The deformation 

band plugs were taken perpendicular to the bedding and the host plugs were taken in 

horizontal direction.  Once the core plugs were taken, it was necessary to trim and 

smooth them to give them a cylindrical shape to fit into the core holder. Therefore, these 

were trimmed and smoothed in order to place in core holder for permeability 

measurement. The plugs taken had an average diameter of 2.50 cm and lengths varying 

from 3 cm to 6 cm. It is worth noting that the total number of plugs taken was 47 and 

the same number of rectilinear blocks of host and faults were also carefully taken from 

the same core sections to generate quality data.  

The core plugs were then cleaned with using Dean-stark apparatus (Figure 3.7) to 

remove any residual fluids and salts. After cleaning, the core samples were placed in 

oven at 60 
0
C to dry for about 24 hours. Once the plugs dried, these were taken out of 

the oven and their weights were recorded until their stabilization and were kept in a 

vacuum dessicator at room temperature for further measurements.  

The rectilinear blocks were given cylindrical shape by putting them into ceramics in 

order to place them into core holders for permeability measurements. It should be 

emphasized that all host and fault core plugs permeability was measured at room 

temperature and at a range of confining stress conditions; the confining stress was 

increased in incremental steps up to maximum of 5000 psi. The permeability of 

rectilinear samples was measured at ambient conditions. The flow direction during 

permeability measurement was perpendicular to fault orientation in all fault plugs and 

was parallel to host plugs.  

In total three different pore fluids were used to run the experiments. These include gas, 

brine and demineralized water. The brine flooded during experiments was dead brine 

i.e. with no dissolved gas and was prepared using an appropriate amount of 99.6% NaCl 

in the laboratory, using deionized water. Initially, gas was used as a pore fluid to 

measure the permeability of all faults and host rock samples. The reason for flooding 
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first with gas was that the gas cannot damage the pore fabrics of the rock, and then de-

aerated brine permeability was measured using (NaCl) of different salinities. Finally the 

plugs permeability was measured by flooding with deionized water.  

 

Figure 3.7 The Dean stark distillation apparatus for sample cleaning (taken from vinci Tech catalogue). 

3.4 Microstructural structure examination 

The microstructure of all samples was examined to determine their overall structure, 

mineralogy, diagenetic history, fault rock types and the faulting relative to the 

diagenetic history and the deformation mechanisms. The rock internal structure was 

examined using X-Ray tomography, prior to SEM analysis. The mineralogy and 

diagenetic history of the rock were examined with a secondary electron microscope. 

The mineralogy of the rock was also examined by QXRD that provides samples 

quantitative assessments. The details about each of these techniques used during the 

study are described below.    

3.4.1 X-ray tomography 

The internal structure of all cores was examined by a Picker PQ2000 dual energy 

computed tomography (CT) scanner system. This consists of an X-ray tube-system, a 
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core sample placing table, and a computer controlling system. A CT system produces 

thin cross-sectional images of the core samples. During this study, images were taken at 

a 1 cm interval through the samples prior to coring as well as the individual core plugs. 

The images recorded by X-ray tomography can be visualized with differences in 

material density; the differences in density are due to the degree of X-ray attenuation, 

and are dependent of material and energy. The key aims of collecting data on this were: 

to identify the best position to take the core plugs, to see whether the core is damaged 

and to identify the structural heterogeneities in the samples. The difference in fault and 

host material can be differentiable because of their density differences.  Furthermore, 

fractures, heavy minerals and cemented surfaces can be recognized due to their density 

differences. 

3.4.2 SEM examination 

The microstructure of deformed and their associated host rock were examined using 

scanning electron microscope (SEM). For SEM analysis the samples were first polished, 

resin impregnated and carbon coated. CAMSCAN CS44 SEM is used; this includes the 

secondary electron (SE) detector, a backscattered detector (BSE), a 

cathodoluminescence (CL) detector and an energy dispersive X-ray spectrometer 

(EDS). A view of the scanning electron microscope used is shown in Figure 3.8.   

The secondary electron (SE) signal provides topographic information and is therefore 

extremely useful for investigating the relationship between detrital and  authingenic 

components and establishing their relative timing. The backscattered electron (BSE) 

signal is directly proportional to the mean atomic number of the mineral; so phases of 

different mass have different brightness levels, therefore the heavy minerals appeared as 

a brighter and pores are as a dark area on the images. The CL detector is used to 

differentiate between minerals, and is sensitive to abundances of traces, such as quartz 

overgrowth is difficult to observe with BSE image, but it could be detected by using CL 

image. The images were stored as 8 bit TIFF files so that they could be loaded into the 

ImageJ for an image analysis. In particular, ImageJ was used to threshold the BSE 

images to provide estimates of porosity and mineral presence.   
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Figure 3.8 Illustration of the Scanning Electronic Microscope used for samples microstructural 

observation (a) an outside view (b) inside view.  

3.4.3 Quantitative X-Ray diffraction (Q-XRD) 

The Phillips PW-1050 X-Ray diffractometer was used for the data collection, which 

consists of an X-ray tube, a sample holder and an X-ray detector. The Hilton Brooks 

HBX software package was used for the data analysis. A spray drier technique was used 

to produce samples for QXRD analysis that do not contain a significant preferred 

orientation even if there is significant amount of clay (Hillier, 1999). Each mineral have 

a distinct X-ray diffraction pattern based on their crystal structure. For mineral 

identification the QXRD can be used in both situations to either qualitatively or 

quantitatively analyse the sample sediments. However, during present study the 

mineralogy was identified by quantitative method to determine relative fractions of 

minerals. The samples were prepared by grinding and mixing with a standard (20 

weight % corundum) and then spraying of slurry of the mixture through an air brush 
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into a tube furnace. The sphere-shaped aggregates were produced, which were about 25 

to 30µm wide; these produced minerals have random orientation (Hillier, 1999). The 

samples were then loaded into a circular holder with a 20 mm diameter cavity. The 

holder was gently tapped to pack the sample without applying any pressure on the 

powder and the excessed amount of powder was scrapped. The data was then collected 

and analysed; based on the technique mentioned by Hillier (1999), these results are 

accurate at 95% confidence level to ±X0.35, where X is the concentration in weight %. 

3.5 Petrophysical analysis: single-phase properties 

The samples were analysed using standard experimental procedures and protocols. In 

particular, helium pycnometry, steady state gas permeability, steady state liquid 

permeability, gas pulse decay and liquid pulse decay permeametry were all sued.  All 

permeability tests were performed on a Hassler-type core-holder. For low permeability 

samples (<0.1 mD) the pulse decay technique has been used to measure permeability. 

For high permeability samples (>0.1 mD), permeability measurements were made using 

the steady-state method.   

3.5.1  Porosity  

The porosity of rock is expressed as either absolute or effective, and is a measure of the 

storage capacity which retains the volume of fluids. Effective porosity is expressed as 

the ratio of interconnected pores to the bulk volume, while the absolute porosity is the 

ratio of total pore volume to bulk volume. The total, absolute porosity of the sample can 

be calculated with the following equation: 

 ∅ =
𝑉𝑏 − 𝑉𝑔

𝑉𝑏
       ( 3 − 1) 

where; ∅ is porosity; Vb is bulk volume and Vg is grain volume. 

Helium porosimeter was used to measure the grain volume, which basically consists of 

two chambers based on the principle of Boyle’s law (Figure 3.9). Helium gas was 

admitted for porosity measurement, which penetrates into small pores quickly, which is 

an inert gas does not react with sample surfaces (Dandekar, 2006). In order to obtain 

grain volume two steps were followed. The first step was to calibrate the system to 

know the volume of reference chamber V1 and sample chamber V2 by injecting helium 
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gas. After calibration the second step was to place a core plug into the sample chamber 

at a pressure P1, and this was isolated from the second chamber (reference chamber). 

The helium gas was admitted to the second chamber at pressure P2, after that valve was 

opened to flow helium into sample chamber which reaches pressure stabilization, this 

was read as final pressure Pf. A few minutes were allowed for pressure stabilization, 

usually 3 minutes or more, depending on how tight the sample is. The pore space of the 

core plug was penetrated by helium gas; therefore the difference of volumes between 

two tests is the grain volume. According to Boyle’s law principle,     

𝑃𝑓𝑉𝑓 = 𝑃1𝑉1 + 𝑃2𝑉2                                        (3 − 2) 

Substituting the volumes for calculation of grain volume,  

𝑃𝑓(𝑉1 + 𝑉2 − 𝑉𝑔) =  𝑃1(𝑉1 − 𝑉𝑔) + 𝑃2𝑉2       (3 − 3) 

Rearranging equation to grain volume,  

𝑉𝑔 =
𝑉1(𝑃𝑓 − 𝑃1) +  𝑉2(𝑃𝑓 − 𝑃2)

𝑃𝑓 − 𝑃1
                (3 − 4)  

where V1 and V2 are calibrated volume of two chambers respectively.  

The bulk volume of cylindrical plug was determined by 𝜋 𝑟2𝐿, where L is the length of 

the sample and r is the sample radius. The pore volume is the difference in grain volume 

and bulk volume. The procedure was repeated to get the porosity of each plug.   

The porosity was measured for all fault and host samples; the measured porosity was 

the average porosity of the plugs. It should be noted that the fault porosity is not 

possible to measure because the fault has a small volume compared to the associated un-

deformed rock. Therefore the deformation band porosity was determined by image 

analysis technique. 

It is important to know the precision of measured value (how much it deviates from the 

true value) of porosity with helium porosimeter. The porosity of 10 core plugs from 

Central North Sea UK was measured. The average porosity was determined 23.71%, the 

minimum was 20.9%, and the maximum was 26% with standard deviation of 1.73%. It 

should be noted that the values could be viewed as minimum level of precision. In fact 
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the plugs studied   were heterogeneous. The overall error estimates could be within one 

to two porosity units.       

 

Figure 3.9 Schematic diagram of the helium porosimeter setup  

3.5.2   Steady-state gas permeability analysis 

The experimental arrangement consists of a cylindrical sample mounted in a high 

pressure core holder connected with gas supply and differential transducers of apparatus 

connected with computers for appropriate data logging and monitoring, as outlined in 

Figure 3.10. The maximum confining pressures that could be safely used were 5,000 

psi for 1 inch samples and 10,000 psi for 1.5 inch samples. The confining pressure was 

safely applied with hand pump at the desired pressure level. Helium and nitrogen gas 

were used as flowing fluids. The permeability of the samples was measured by injecting 

gas through the core sample at a constant flow rate. The pressure drop across the sample 

was measured using a differential pressure transducers and the gas flow rate was 

measured by an Omega precision flow meter. Gases are compressible fluids; therefore 

their densities need to be considered while measuring the permeability. The 

permeability was obtained by using Darcy’s equation:  

𝐾 =
2𝜇𝑄𝐿

𝐴(𝑃2
2 − 𝑃1

2)
                  (3 − 5) 

where: µ= gas viscosity, (cp) 

  𝐿 =   sample length, (cm) 

 𝑄 =  rate of fluid flow at ambient temprature conditions, (cm3/𝑠) 
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 𝐴 =  cross sectional area of the sample  (cm
2
) 

  P1= upstream pressure (atm)  

             P2= downstream pressure (atm) 

 

 

Figure 3.10  The schematic diagram of steady state gas permeametry. 

3.5.2.1 Klinkenberg procedure 

 A key issue of using gas to measure permeability is the “gas slippage” effect, which 

creates a deviation from the actual permeability of the rock. If the mean pressure is 

increased, the mean free path for molecules of gas become smaller and the proportion of 

molecules colliding with each other increases in comparison to elastic collisions with 

the pore wall, which results in friction losses. Overall, the permeability measured at low 

pressures will be higher than at high pressures.  Therefore, the gas slippage can becomes 

more important in low permeability rocks (Klinkenberg, 1941), so permeability 

measurements conducted at low pore pressures need to be corrected to obtain absolute 

permeability values. Gas relative permeability (krg) measurements are also often made at 

low pore pressures so these too may need correcting to take into account of gas slippage 

effects. The effect of pore pressure correction is made based on the following formula 

from Klinkenberg (1941); 

𝐾𝑔 = 𝐾𝑙 (1 +
𝑏

�̅�
)                                  (4 − 1)  
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Where kap is the apparent gas permeability, kab is absolute gas permeability; b is the 

Klinkenberg b-value and �̅� is the average pressure. Flow tests are conducted at a range 

of pore pressures and then a plot of kap vs 1/p is then be extrapolated to 1/p = 0. 

   

Figure 3.11 Diagrams showing the principle behind Klinkenberg corrections. 

Klinkenberg (1941) was interested in obtaining liquid permeability from gas 

permeability measurements by plotting the results as a function of inverse of mean pore 

pressures. In the context of fault rock gas permeability the slippage factor gives the 

extent to which permeability will deviate as a function of pressure due to gas slippage 

effects.     

3.5.3 Steady-state liquid permeability analysis 

The experimental setup used during steady state permeability measurement consists of a 

core holder, two GDS (standard level pressure and volume controller) pumps, which 

pump fluid at constant rate and constant pressure, hydraulic pump to apply confining 

pressure and the data logging and monitoring computer. The experimental setup is 

outlined in Figure 3.12. Core holders were available for 1in and 1.5in diameter core 

plugs, a confining stress of 5000psi can be applied to 1 in core holder and up to 10,000 

psi to 1.5in core holder; the experiments during this study were run up to maximum 

confining stress of up to 5000 psi. This setup measures the permeability down to 

0.01mD. 

The fully saturated samples were placed into a core holder to measure the permeability 

by allowing the constant flow rate of liquid to flow at room temperature. The fluid was 

pumped by GDS pumps with high accuracy. The pressure gradient across the sample 

𝑏 =
𝑚

𝑘𝑎𝑏
 

Slope = m 
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was recorded by the differential pressure transducers once it was observed that the inlet 

and outlet pressure through the core are invariant with time (i.e. the steady sate flow has 

established). The permeability was then obtained by using Darcy’s Law:  

𝑄 = − (
𝐾

𝜇
) (

𝐴

𝐿
) (∆𝑃)        (3 − 10)      

Where: 𝑄 = Rate of fluid flow through porous media (cm3/s)  

 𝐴 = Crosection of the sample (cm2) 

 𝜇 = Dynamic viscosity of fluid flowing through porous medium (cp)  

 ∆𝑝 = Pressure drop across the porous media (atm) 

 𝐾= Permeability of the sample (D) 

 𝐿= Length of the sample (cm) 

 

Figure 3.12 Simplified schematic diagram for steady-state flow tests. 

3.5.4 Gas pulse-decay permeametry  

It is difficult to apply conventional techniques to run experiments on very low 

permeable samples; these conventional methods of measurement are impractical and 

difficult to apply, as long periods of time are required to establish steady state flow. 

Brace et al. (1968) established a transient technique for permeability measurement. This 

technique was designed based on the concept of pressure transient method for 

measuring the permeability of granite which has a permeability down to 1 nD (Brace et 

al., 1968). This method of Brace et al., (1968) has been discussed by various 

researchers. Several mathematical models have been suggested for the transient pulse 
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test (e.g. Lin, 1982; Hsieh et al., 1981; Amaefule et al., 1986; Dicker and Smith, 1988; 

Jones, 1997).  

The pulse decay experimental setup consists of cylindrical sample that is connected 

with two large fluid reservoirs, the volumes are V0and V1, a downstream volume V2 and 

V3 and a pressure differential transducer. It should be noted that these all valves have 

fixed volume. At the start of the experiment the pressure in upstream reservoir is 

suddenly increased, and a few minutes are allowed to achieve the thermal stability, then 

the upstream valve is suddenly opened to initiate the pressure pulse. As the upstream 

pressure has decayed, fluid starts flowing from upstream side to downstream side across 

the core sample. The data collection starts and is automatically recorded. In the Brace et 

al., (1968) procedure, the permeability of the sample is measured from upstream 

pressure decay curve. The permeability of the sample was calculated by mathematical 

solution of set of equations given in Brace et al., (1968). The experimental setup used 

consists of CoreLab200 PDP pulse decay permeameter. The layout of the setup is 

shown in Figure 3.13, which is an adaptation of Brace et al., (1968) design. This 

calculates the permeability of samples automatically. The measurements were made by 

applying a pore pressure of 1000 psi. The pore pressure for permeability measurement 

used was high, therefore the Klinkenberg effect was negligible; but this was done on all 

samples by changing mean pore pressure, in similar way for steady-state experiments. 

The confining stress applied was in range of 500 to 5000 psi.  

 

Figure 3.13 Outline of gas pulse decay permeametry 
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3.5.5 Liquid pulse decay permeametry 

Recent research studies on low permeability rocks have argued that the gas permeability 

is lower than liquid permeability, slip corrected gas permeability could not be used as a 

substitute to liquid (Byrnes, 1997). Another consequence of measuring low permeability 

cores is that a high pore pressure and long-time for stabilization is required, this may 

change the pore network by fine particles migration (Soeder, 1988). Therefore brine 

permeability measured  by liquid pulse decay setup, which basically based on the 

concept of Amaefule et al. (1986). The experimental set-up consists of a core holder, a 

confining pump and a GDS pump for upstream pressure application and a computer 

data logging and monitoring; the schematic diagram is shown in Figure 3.14. The core 

holder is connected with high pressure pump on its upstream side and the downside was 

connected with a large liquid vessel; this large size vessel is in fact considered as an 

infinite volume during the experiment with respect to upstream pressure.  

 

 Figure 3.14 Diagram for liquid pulse decay apparatus. 

A core plug of fully liquid saturated was place in a core holder at a confining stress to 

prevent the leakage through the rubber sleeve. Before starting the experiment, the pump 

started to pressurize the system to dissolve any trapped air in the system. If there is 

small volume of gas present in the system, it may flow through the core sample and may 

be trapped in the pore throat, which may affect the results. Therefore it becomes 

necessary to pressurize the system, to dissolve and remove any of the gas present. The 

compressibility measurement of the pore fluid is also important before analysing the 

data. During experiments the compressibility of pore fluid was measured independently 

and incorporated in equations for permeability calculations.  
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At the start of the experiment, the pressure in upstream side is increased; the upstream 

valve is suddenly opened to create a pressure pulse. As pressure pulse is generated, the 

liquid starts flowing across the sample and the pressure differential starts to decay. The 

upstream pressure, temperature and differential pressure are then automatically 

recorded. Then the data obtained was analysed from the solution of diffusivity equation, 

its derivation is based upon the combination of differential form of Darcy’s equation 

together with continuity equation of Brace et al. (1968) and is given below: 
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Where,   β is the fluid compressibility and βs is the rock compressibility,   is the 

viscosity of fluid 𝐾 is the permeability and ϕ is the porosity, p is pressure and t is time. 

On the basis of assumption that βs<< β , Equation (3-9) was modified by Amaefule et 

al. (1986) to give the following relation:  
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The pressure decay Equation (3-11), together with the corresponding initial and 

boundary conditions results in following Fourier series solution: 
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and  αn are the roots of the transcendental equation (e.g. Amaefule et al. 1986): 
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The permeability of sample was obtained by using the following form of equation 

derived by Amaefule et al. (1986): 
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Where, 𝑚 is the slope of ln∆p versus time. 

To determine the precision level of permeability measurements the permeability of 10 

core plugs was measured from Central North Sea reservoir samples. The average 

permeability measured was 1.1mD, the minimum 0.282 mD and maximum 2.77 mD, 

with standard deviation of 0.834mD. The results could be viewed as minimum level of 

precision, there might be uncertainty in measuring length and diameter of core plugs.      

3.5.6 Deconvolution of fault rock permeability  

 It is not usually possible to obtain samples consisting solely of fault rock; instead all 

core plugs contain a mixture of fault rock un-deformed sandstone. So any permeability 

measurements on such samples will represent an average permeability of the fault rock 

and host sandstone. It is, however, possible to deconvolve the fault rock permeability by 

assuming that the measured value is the thickness-weighted harmonic mean of the fault 

rock and the host sediment permeability (e.g.Cardwell and Parsons, 1945). In which 

case the fault permeability, kf, can be calculated using, 

𝐾𝑓 =
𝑙𝑓

𝑙
𝐾𝑎𝑣𝑔

 −  
(𝑙 − 𝑙𝑓)

𝐾ℎ

                                (3 − 17) 

Where, 

𝐾𝑓  =Fault rock permeability (mD)  

𝐾𝑎𝑣𝑔  = Average permeability of the plug containing host and fault rock (mD) 

  𝑙𝑓       = Fault rock width (cm)  

𝑙         = Sample length (cm)   

kh      = Host rock permeability (mD)  

All fault rock permeability results calculated with above methods are analysed and 

discussed in subsequent chapters.  

3.6 Petrophysical analysis: two-phase flow properties  

The two-phase flow properties were measured for reservoir fault and host cores. The 

properties measured include gas-water relative permeability, air-brine capillary pressure 
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and saturations. Two techniques (imbibition and drainage) were used for measuring air-

brine capillary pressure and brine saturation; each method has some limitation, therefore 

both were used to alter the saturation and to obtain capillary pressure.  

The water saturation was altered by centrifuge and relative humidity chambers; once the 

equilibrium between capillary pressure and saturation was established, the effective gas 

permeability was measured using either steady state or pulse decay method (Section 

3.5). The stress dependence of gas relative permeability of partially water saturated 

samples was also measured on these samples. In addition to above methods of effective 

gas permeability measurements, gas breakthrough experiments were run by putting 

samples in core holder at higher stresses,  the experimental procedure is described in 

Section 3.6.4.      

3.6.1 Pore size measurement and threshold pressure determination 

Mercury injection curves were measured for all fault and host rock samples using a 

Micromeretics mercury injection porosimeter. The rectangular samples were first 

cleaned and prepared with the maximum dimension of 12 mm x 12 mm x 10 mm for 

mercury analysis. The samples were sealed by araldite on five sides for fault specimen 

prior to inject the mercury; the reason for sealing the five sides and keeping one side 

open is that when mercury is intruded it should flow across the fault rock so that a 

threshold pressure can be identified.  

Purcell (1949) was the first who introduced this technique. The mercury is a non-

wetting fluid, it cannot invade spontaneously into the specimen; therefore it must be 

forced by applying pressure to invade into the specimen. The mercury was injected in 

cleaned samples at a pressure up to 60,000 psi. The equilibrated pressure required is 

inversely proportional to the pore size (Washburn, 1921); therefore, a small pressure is 

required to invade mercury into large pores, higher pressures are needed to force the 

mercury if the pore size is small. The injection pressure is then plotted against the 

mercury saturation to produce a curve for analysis. From the pressure versus mercury 

intrusion data the instrument generates the volume and pore size distributions using the 

expression given by the (Washburn, 1921); 

𝐷 = −
1

𝑝
4𝜎𝐶𝑜𝑠 (𝜃)               (3 − 18) 
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where   

𝐷  = Pore diameter (µm) 

𝑝 = Applied pressure (psi), 

σ  = Surface tension (dyne/cm) 

θ   = Contact angle  (Degree) 

The surface tension of mercury varies with purity. The usually accepted value is 

484dyne/cm.  The contact angle between mercury and solid containing the pores varies 

with solid composition.    

As stated by Katz and Thompson (1987), the threshold pressure is the pressure at which 

mercury forms inter-connected pathways throughout the samples; this is the threshold 

pressure and corresponds to an inflection point on the mercury injection curve. It should 

be noted that the inflection point may not be defined clearly on mercury injection 

curves, therefore it becomes tedious to pick the threshold pressure as its interpretation 

varies and depends upon the interpreter. Quantification of errors related to threshold 

pressure picking from mercury injection curves is difficult.  

3.6.2 Relative Humidity chambers  

This method is based on the observation that if wetting and non-wetting fluids are 

present in a porous medium, they make a curvature due to their surface and interfacial 

forces (e.g. Kelvin 1871; Newsham et al., 2003). This method of capillary pressure 

measurement also reported by ( e.g. Calhoun Jr et al. 1949; Melrose 1987;  Newsham et 

al., 2004) . A mathematical relation of capillary pressure to vapour pressure in a porous 

medium containing water in equilibrium with its vapours can be calculated using the 

following equation (Newsham et al., 2004); 

𝑃𝑐 = −
𝑅𝑇

𝑉𝑚
𝑙𝑛 (

𝑅𝐻

100
)          (3 − 19) 

Where;  𝑃𝑐  = Capillary pressure  

𝑅  = Universal gas constant,  

𝑅𝐻  = Relative humidity,   

 𝑇 = Absolute temperature,  
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𝑉𝑚  = Molar volume of water,  

Newsham et al. (2004) reported that the work of Melrose (1987) has established the 

validity of using the above equation for the calculation of capillary pressure at lower 

water saturations. Therefore the main advantage of using this method was to achieve 

lower saturation and higher capillary pressure.  Newsham et al. (2004) reported that 

with the humidity chamber the water saturation of 5% can be achieved at a capillary 

pressure of 10,000 psi.   

During the present study salt solutions as indicated in Table 3.2 were used to measure 

the air-brine capillary pressure. The cleaned and dried samples were placed in humidity 

chambers. Initially these were put at highest capillary pressure to achieve the lowest 

saturation. The saturation of plugs was checked by weighing the sample with precision 

balance every three days. When sample weight was uniform, there was no change in 

sample weight for more than a week, it was assumed that the equilibrium between 

capillary pressure and saturation has been achieved. For some samples this took several 

days and even weeks to reach equilibrium. Once the equilibrium between capillary 

pressure and saturations was reached, the plugs were then taken out of the chambers and 

their effective gas permeability was measured. The equation for saturation calculations 

was obtained by using following equation,  

𝑆𝑤 =
(𝑤𝑡 𝑜𝑓 𝑐𝑜𝑟𝑒 − 𝑤𝑡 𝑜𝑓 𝑑𝑟𝑦 𝑐𝑜𝑟𝑒)

𝑃𝑜𝑟𝑒 𝑣𝑜𝑙𝑢𝑚𝑒 
         (3 − 20) 

Where, 𝑆w is the water saturation in percent or it could be in fractions and 𝑤𝑡 is the 

weight of the core sample in gm. It should be noted that the pore volume of the sample 

was determined using helium porosimetry.  

 

 Table 3.2 Capillary pressure and relative humidity generated by different salt solutions.  

Salt Type 

Relative humidity at 

25 
0
C (%)

Equivalent capillary 

Pressure (psi) 

Potassium sulphate 97 606

Potassium nitrate 92 1660

Potassium chloride 85 3236

Ammonium sulphate 80 4443

Sodium chloride 75 5728
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3.6.3 Ultracentrifuge  

During this study the Optima L-100 XP ultracentrifuge was used to conduct drainage 

experiments. The principle of this method is based upon a centrifugal force (Figure 

3.15) which is applied at certain revolving speed to expel the mobile fluids out of the 

sample (e.g. Slobod et al., 1951) 

Brine saturated plugs were placed in centrifuge pre-calibrated cups, without applying 

confining pressure and were run at an initial speed of 1000 rpm. During centrifuge 

rotation the plug in-situ fluids displaced and the rate of fluid production with time at an 

assigned rotation speed were measured in calibrated cups. Sometime was allowed to 

established equilibrium at corresponding rotational speed of centrifuge.  After a couple 

of days if there was no fluid displaced from any of the plugs, this shows that the 

equilibrium has been established; then samples were taken out of the centrifuge. 

Saturation was determined from the weight of the samples. The effective gas 

permeability was then measured at corresponding saturation by either the steady state or 

pulse decay method. Once the measurements on effective gas permeability were made, 

then the samples were replaced and the centrifuge was set at the next higher rotational 

speeds. The samples used took about six to seven days to reach equilibrium; the speed 

was then gradually increased to the next higher speed. The time required for 

establishing equilibration varies and depends upon sample. During this study the highest 

speed of rotation used was 8000 rpm. A mathematical model (Forbes, 1997) used to 

generate a capillary pressure curve.  

 

Figure 3.15 The illustration is the drainage experiment with centrifuge.  



 

Petrophysical Properties of fault rock-implications for petroleum production  Page 84 

3.6.4   Breakthrough Experiments 

The breakthrough experiments in this study were performed by imposing the constant 

flow rate of high pressure gas across the samples. The procedure is outlined in Figure 

3.16. It consist of a gas supply, hassle-type core holder of 1inch, a hydraulic pump for 

applying confining pressure of maximum 5000 psi and a flow meter with high precision 

differential pressure transducers. The procedure follows by placing a partially brine 

NaCl saturated sample into core-holder, the gas injected at a constant rate upon the 

upstream side of the core and monitoring the pressure of the non-wetting fluid until 

breakthrough occurs. This method took a long period of time (almost two to three 

weeks) to result in gas breakthrough. The effective gas permeability was obtained using 

the Darcy’s equation.  

 
Figure 3.16 the experimental setup used in this study by introducing constant gas into upstream side.  

3.7 Uncertainties and issues related to experimental work 

To achieve the objectives of this research, experiments with different pore fluids were 

conducted. The basic concepts of permeability measurements were the same as 

mentioned earlier; the difference was changing the pore fluid and confining stress 

employed to investigate the consequences upon the fault rock permeability. The 

methodologies and experimental techniques are discussed in previous sections of this 

chapter, while in this section the issues and uncertainties related to experiments are 

discussed.    

The importance of the experimental data has increased with the advancement of 

computing technology. Simulators are now available to incorporate the data into 

simulation for modelling purpose to analyse the dynamic behaviour of reservoirs. A lot 

of effort was also made to reduce uncertainties during conduct of experiments. 
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However, there are still a few doubts regarding the data measured in laboratory; the 

measurements made by instruments have a certain degree of uncertainty that must be 

accounted for precision. Therefore, it is important to understand, investigate and admit 

the uncertainties involved before conducting any experiment. Each of these is discussed 

below and maximum effort was put to pay proper attention in avoiding them.  

For instance, one of the objectives of this research is to measure the petrophysical 

properties of the fault rocks, it is essential to have appropriate samples before doing any 

experiment. The next main thing in taking fault core plug is to consider its orientation 

towards the deformation band; fault plugs must be taken perpendicular to bedding. The 

plugs diameter and length may not parallel to their axis, so a single measurement can 

give an error. Therefore at least five measurements should be taken and an average of 

these could be used in calculations to minimize the error.     

As the permeability setup is designed for very low permeability measurements, leak 

tightness for the apparatus is very important. Calibration for the leak test was conducted 

by put putting a steel plug into the core holder and allowed for 24 hours to check 

pressure stability of the setup. For pressure tests, if there was no change in upstream 

pressure observed over the period of time then the setup is said to be leak free. The 

measurements were temperature sensitive, so the experiments must be conducted in the 

controlled temperature environment.  

The experiments were conducted at high confining pressures to evaluate the 

permeability at reservoir stress state. The compressibility measurement of the pore fluid 

and the experimental setup is also important before analysing the data. The 

compressibility of the setup and pore fluid is measured independently and incorporated 

in analysis. Moreover, the experiments were also conducted at higher NaCl saturation, 

of 20 to 30%; therefore care must be taken in handling of the brine saturated samples, 

they must be left in vacuum chambers, and should not be left in an open environment, 

due to the fact that water in open space starts evaporating and NaCl brine will start 

precipitating, which may alter the pore structure of plug and eventually damage the pore 

network and may impair permeability of the rock.    

Before start of experiments, when sample loaded into a core holder, one must ensure 

that the core plug fits perfectly between the two ends and then screw the end caps and 
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tight the threads, otherwise there might be chance of fluid leakage and damage to rubber 

sleeve of the core holder while applying confining stress.  

In order to avoid aforementioned complications and uncertainties and to achieve the 

desired accuracy in the final results, care must be taken prior to conduct experiments 

and the standard procedures and protocols must be followed. 
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4 Absolute permeability of fault 

rocks: impact of clay and pore fluid 

type 

 

 

4.1 Introduction  

Permeability is a fundamental property of any reservoir rock that controls fluid flow 

and is essential for modelling reservoir production (e.g. Fisher & Knipe 2001). The 

permeability data of fault rocks available within the public domain were measured 

using gas or distilled water as a pore fluid (e.g. Fisher and Knipe, 1998, 2001; 

Gibson, 1998; Fowels and Burley, 1998; Shipton, et al., 2002; Tueckmantel et al., 

2010). However, hydrocarbon reservoirs also contain brines. Researchers have 

argued that permeability measured with gas could be up to several orders of 

magnitude higher than when measured with water for the same sample, especially 

for low permeability samples (e.g. Faulkner and Rutter, 2000; Tanikawa and 

Shimamoto, 2006; Byrnes et al., 2010). Other studies have found that gas and brine 

permeabilities are nearly identical (e.g. Chowdiah, 1987; Rushing et al., 2004). 

There is virtually no data available to indicate the impact that the composition of the 

permeant has on fault rock permeability. The following chapter aims to fill this 

knowledge gap. In particular, it aims to assess whether the fault rock permeability 

data presented in Fisher and Knipe (2001) could be in error due to the fact that 

measurements were made using distilled water as the permeant rather than formation 

compatible brines. To achieve the objectives, this research has focussed on 

integrating laboratory experiments on fluid flow properties of fault rocks with 

microstructural data obtained from SEM analysis. It is also essential to have an 
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integrated understanding of their microstructural analysis and petrophysical 

properties to characterize the sealing potential of faults.  

The chapter starts by describing the microstructure and mineralogy of fault rock 

samples and their associated undeformed sandstone (Section 4.2); this is followed by 

the X-ray tomography of samples. The chapter then presents the results from 

experiments conducted to assess the impact of brine composition on fault rock 

permeability; the permeability to gas is also included for comparison (Section 4.3). 

Permeability of rock is often controlled by pore size, for this reason mercury (Hg) 

porosimetry tests were also conducted to examine the pore throat size distribution. In 

addition to derive pore size information from mercury porosimetry, it is also 

theoretically possible to estimate pore size from the Klinkenberg slip parameters that 

is often measured during steady-state gas permeability experiments. The following 

chapter presents such estimates as a comparison with the values obtained from Hg 

injection and also to provide potential information that could help explain the 

differences in permeability to brine, distilled water and gas. To the author’s 

knowledge, no other study has attempted such a comparison on fault rock samples. 

Furthermore the implications of the results, as well as the significance of 

permeability measurement and proper utilization of measured data for fault rock 

transmissibility calculation to evaluate the cross fault fluid flow behaviour are 

discussed in Section 4.4. The main findings from results of this chapter are presented 

in Section 4.5. 

4.2 Mineralogy and Microstructural properties  

Information on the mineralogical properties/composition and microstructure of 

samples is necessary to help understand laboratory flow experiments. In this study 

two techniques were used to obtain such information: QXRD analysis and SEM 

(these techniques are described in detail in Section 3.3). The fault rock 

microstructural properties were defined and classified based on their clay content 

following the classification introduced by Fisher and Knipe (2001).   

4.2.1 Central North Sea reservoir cores 

The overview and geological settings of the field studied is provided in Section 3.2. 

The reservoir core samples studied were categorized into two groups, A and B, and 
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are discussed below separately. The host and fault rock of ten samples from group A 

and eleven from group B were analysed.  

4.2.1.1 Microstructure and mineralogy of the host sandstone  

The host sandstones from group A is medium to fine grained and is moderate to 

well-sorted (Figure 4.1B). The QXRD results (Table 4.1) indicate that these are 

composed of: quartz (38.1 to 25.9 %), microcline (22 % to 33%), chlorite (7.6 % to 

31.7%), albite (9.9% to 16.3 %), pyrite (0.60% to 2.3%), mica (5.1% to 11%), illite-

smectite (2.5% to 6.6%), and kaolin (0.3% to 6.5%) and has a porosity of 23.7% to 

28%.  

The main diagenetic processes to affect the sample were the precipitation of K-

feldspar, chlorite, and quartz as well as the partial dissolution of feldspar. The K-

feldspar occurs as up to 50 μm wide overgrowths on detrital K-feldspar. The chlorite 

occurs as a grain coating clay. It is possible that it formed as a result of the 

recrystallization of early smectitic clay. Secondary pores, surrounded by K-feldspar 

overgrowths, are present. These probably formed as a result of feldspar dissolution. 

The authigenic quartz occurs as both overgrowths and outgrowths.  

Group B sandstones (Table 4.2) are fine to medium grained, moderate to well 

sorted; a typical BSEM image is shown in Figure 4.1D. These samples are 

composed of quartz (26% to 49.4 %), albite (9 to 23%), illite-smectite (2.7 to 7.7%), 

dolomite (2.4% to 6.7%), mica (2.1% to 8.4%), chlorite (2.5% to 12%), and pyrite 

(0% to 2.4%). The porosity of these samples ranges from 12% to 22.0%. The main 

diagenetic processes to affect the sample were mechanical compaction, precipitation 

of dolomite, chlorite and small amounts of quartz and albite. The dolomite occurs as 

50μm rhombs that are compositionally zoned with dolomite cores and thin ankerite 

rims. The chlorite occurs as a grain coating clay. It is possible that it formed as a 

result of the recrystallization of early smectitic clay. The authigenic quartz and albite 

occurs as outgrowths on detrital quartz and plagioclase respectively. 

4.2.1.2 Microstructure of the fault rocks   

The most common type of fault rock within these cores of “group A” are cataclastic 

faults (Figure 4.1A). These have a porosity of around ~5 to 9%, which is ~ 25 to 
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~30% that of the host sandstone. This reduction in porosity has occurred mainly as a 

result of deformation-induced grain-fracturing, which enhanced mechanical 

compaction. Faulting occurred after the precipitation of K-feldspar overgrowths and 

chlorite (or its precursor) but before quartz. The extent of the grain reduction 

experienced by these fault rocks varies, details about each individual sample are 

provided in Appendix A. 

Group B fault rocks fall in between two categories: cataclastic and phyllosilicate-

framework faults; the majority of faults formed within this were recognized as 

phyllosilicate framework faults (Figure 4.1C). The faults formed within this group 

reveal a heterogeneous microstructure. In some places, they have a very similar 

microstructure to that of the host sandstone. Other samples studied experienced a 

slight reduction in porosity due to the deformation-induced mixing of clays with 

framework grains leading to a replacement of macroporosity with clays and 

microporosity. Just like for group A, the extent of the grain-size reduction 

experienced by the fault rocks in group B varies; details about each individual 

sample are provided in Appendix A. 
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Table 4.1  Summary of mineralogy from QXRD results of host sandstone composition (wt. %) for specimen from group-A Central North Sea reservoir samples.  

 
Table 4.2 Mineralogy from QXRD results of host sandstone composition in (wt. %), for the specimen from group-B Central North Sea reservoir samples. 

 Mineralogy from QXRD analysis for Central North Sea reservoir -Group A samples 
Sample 
Name 

Quartz Albite Microcline Mica Illite-
smectite 

Kaolinite Chlorite Pyrite Porosity Clay 

CP1A 19.2 7.3 16.3 3.8 0.0 4.8 23.5 0.0 25.2 32.1 

CP1B 24.5 8.7 20.8 7.0 2.2 2.9 11.0 0.0 22.9 23.1 

CP1C 28.9 8.3 16.9 4.5 2.5 1.2 14.0 0.0 23.7 22.3 

CP1D 28.7 10.9 20.0 4.7 5.3 2.6 6.8 0.0 21.0 19.4 

CP2A 25.5 9.7 20.4 4.4 4.3 0.0 8.7 1.7 24.4 17.4 

CP2B 23.9 8.2 21.6 6.9 2.0 0.8 7.7 0.5 28.4 17.5 

CP2C 24.2 8.1 22.7 4.8 3.2 0.8 7.2 0.4 25.7 16.0 

CP2D 27.2 8.2 25.9 6.2 0.0 0.2 7.5 0.5 23.4 14.0 

CP2E 26.4 12.6 17.6 6.5 3.9 2.9 5.9 0.0 24.1 19.2 

CP2F 24.5 10.7 22.4 8.8 1.7 2.7 8.1 0.0 21.1 21.3 

 

 Mineralogy from QXRD analysis for Central North Sea -Group B samples 

Sample 
Name 

Quartz Albite Microcline Calcite Dolomite Mica Illite-
smectite 

Chlorite Pyrite Porosity Clay 

5AF1 41.7 16.8 0.0 0.0 3.3 6.4 5.4 4.4 1.1 21.0 16.2 

5BF1 40.5 17.0 0.0 0.0 4.1 8.4 7.5 4.7 1.8 16.0 20.6 

5DF1 42.1 17.5 0.0 0.0 2.4 5.8 2.7 2.5 4.9 22.0 11.0 

5EF1 42.2 19.1 0.0 0.0 3.5 3.9 6.0 3.1 0.1 22.0 13.1 

7AF1 40.2 14.7 8.9 0.7 6.2 4.6 3.0 5.6 0.0 16.0 13.2 

7BF1 37.4 13.7 10.0 0.5 6.7 4.2 6.1 4.4 0.0 17.0 14.7 

7CF1 32.8 18.2 11.7 0.7 2.8 5.7 6.4 7.7 0.0 14.0 19.8 

7DF1 32.0 23.5 7.8 0.5 5.4 2.3 7.7 8.9 0.0 12.0 18.9 

7EF1 36.2 16.7 6.6 0.0 4.0 4.5 7.4 9.5 0.0 15.0 21.4 

7FF1 31.0 21.8 6.2 0.4 4.8 3.4 4.0 12.5 0.0 16.0 19.8 

3AF1 26.4 11.6 19.0 0.0 3.4 6.9 2.9 12.0 0.0 18.0 21.7 

10/3A 49.4 15.8 7.4 0.0 2.7 2.7 3.7 6.3 0.0 12.0 12.8 
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BSEM Fault  BSEM Host 

Group-A 

  

Group-B 

  
Figure 4.1 Photomicrograph (A) BSEM image of cataclastic rock formed in a clean sandstone with 

relatively small clay content; (B) BSEM image of host sandstone; (C) BSEM image of 

phyllosilicate framework fault; (D) BSEM image of host sandstone. All these samples 

were from the Central North Sea reservoir samples group.  

4.2.2 Southern North Sea reservoirs 

Three cores samples were supplied from a Triassic reservoir in the Dutch sector of 

the Southern North Sea. 

4.2.2.1 Microstructure and mineralogy of the host sandstone  

The undeformed sandstone is medium to fine grained, well sorted with a porosity of 

9% to ~23% (Figure 4.2B and D). The QXRD analysis is reported in Table 4.3. 

This indicates that  the samples are composed of quartz (28.2% to 63.4%), albite 

(4.2% to 7.5%), calcite (0.3% to 39.3%), dolomite (1.4% to 19.8%), mica (2.9% to 

9.0%), illite-smectite (0.30% to 4.0%), kaolinite (13.9% to 29.6%), siderite (1.3% to 

4.0%), anhydrite (1.7% to 3.4%) and barite (1.4% to 2.1%). The main diagenetic 

processes to affect the samples were the precipitation of kaolin and quartz; there are 

also the occasional secondary pores. The kaolin occurs as ~50μm booklets and 

appears to have precipitated during early burial but may have recrystallized. The 
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authigenic quartz occurs as outgrowths and can occasionally be observed 

overgrowing the kaolin. 

4.2.2.2 Microstructure of the fault rock  

Examination of the hand specimen revealed the microstructure could be extremely 

heterogeneous so several samples were taken for SEM analysis. The faults have a 

porosity of ~4% to ~8%, which is <50% that of the host sandstone. This reduction in 

porosity has occurred mainly as a result of cataclastic deformation, which enhanced 

mechanical compaction (Figure 4.2A and C). Faulting occurred after the 

precipitation of kaolin and dolomite but before the quartz. Among three faults two 

were cataclastic and one was juxtaposition fault that had experienced dilation and 

had been cemented by anhydrite. It is possible that the fault formed relatively early 

and that the dilation occurred due to late stage reactivation. The extent of the grain 

reduction experienced by these fault rocks varies and details of each individual 

sample are provided in Appendix A. 

BSEM Fault BSEM Host 

  

  
Figure 4.2 Photomicrographs of (A) BSEM image of Cataclastic fault with small grain size reduction; 

(B) BSEM image of adjacent host sandstone; (C) BSEM image of cataclastic fault from 

same field with large grain size reductions; (D) BSEM image of adjacent host sandstone 

all are from same field of southern North Sea reservoir core. 
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Table 4.3 The summary of the QXRD results of host sandstone, composition in (wt. %) of the 

specimen from Southern North Sea reservoirs.  

 

4.2.3 90 Fathom Fault, Northumberland 

The host rock, single deformation band and slip-surface cataclasite were sampled 

from the hanging wall of the 90 Fathom Fault UK. In total, six samples were 

prepared from slip-surface cataclasite, four from single deformed zone for 

petrophysical properties analysis.  

4.2.3.1 Microstructure and mineralogy of the undeformed sandstone  

The samples from undeformed sandstones are well sorted, fine to medium grained, 

containing well rounded grains. From image analysis the rock is composed of quartz 

(~56% to 65%), K-feldspar (7% to 10%), kaolin (~4%to 17%), calcite (0% to 1%), 

with detrital clay of ~3% and a porosity of 10% to 20% (Figure 4.3). The host 

sandstone has a simple diagenetic history involving the precipitation of kaolin, 

anhydrite and partial dissolution of K-feldspar. The K-feldspar exhibits in various 

dissolution textures; the kaolin occurs in clusters composed of 10µm pseudo 

hexagonal plates.  

4.2.3.2 Microstructure of the fault rocks 

Microstructural and petrophysical property analysis was conducted on two types of 

fault rocks - slip-surface cataclasites and single deformation bands. Image analysis of 

BSE images suggests that the slip-surface cataclasites are composed of 60-75% 

quartz, 12 to 17% kaolin, and 9-12% K-feldspar. The fault rocks experienced 

cataclastic deformation, which reduced their porosity to ~ 5-7%, which is ~50% that 

of host sandstone. The single deformation band also experienced a grain size 

reduction and porosity collapse due to grain fracturing.  

  Mineralogy from QXRD for Southern North Sea reservoir  samples 

Sample 
Name 

Quartz Albite Calcite Dolomite Mica Illite-smectite Kaolinite Porosity Clay 

WIN1A 49 5.8 1.1 0 5.6 1.5 21.2 15.8 28.3 

WIN2A 46 6.2 0.4 0 7.4 0.9 21.2 17.6 29.6 

WIN1B 29 5.2 11.8 19.3 2.8 3.9 16.9 11 23.6 

WIN2B 31 6.3 12.9 17.8 5.1 2.1 13.7 11.3 20.9 

WIN1C 26 3.8 35.3 1.3 5.1 0 17.2 11.5 22.4 
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BSEM Host   BSEM Fault 

  

  
Figure 4.3 BSEM images of typical single deformation band zone host sandstone and its  associated 

host sandstone (top) and slip-surface cataclasite and host sandstone it contains (bottom) 

from the 90 Fathom Fault. 

4.2.4 Miri airport road outcrop exposure Malaysia  

Two samples were analysed from this outcrop, and their microstructure is discussed 

below. The permeability measured on these fault rock samples is discussed in 

Chapter 5.    

4.2.4.1 Microstructure and mineralogy of the undeformed sandstone  

The samples from undeformed sandstones are moderately sorted, fine to medium 

grained. The image analysis shows that the rock contains mainly quartz and clay 

minerals. The only diagenetic processes that have affected the samples were the 

mechanical compaction.   

4.2.4.2 Microstructure of fault  

The deformed rock examined has a variable microstructure; overall it appears to be a 

phyllosilicate-framework fault rock (Figure 4.4). The quartz grains within the 

samples have clearly undergone a small amount of cataclasis during faulting. The 
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extent of cataclasis would be consistent with deformation occurring at < 1km burial 

depth. A porosity of 16.1% was obtained from the samples analysed but it should be 

noted that the sample was composed of both fault rock and undeformed sediments.  

BSEM Host BSEM of Fault 

  
Figure 4.4 The phyllosilicate-framework-fault and the host sandstone it contains from Miri exposure 

Malaysia.  

4.2.5 Summary of microstructural analysis 

Microstructural and QXRD analysis showed that the fault rocks can be subdivided 

depending on the clay content of their host sediment at the time of faulting and the 

stress during faulting (Fisher and Knipe, 2001). The majority of faults examined 

from the Triassic reservoirs of the central North Sea were categorized as cataclastic 

faults and few were recognized as phyllosilicate-framework faults. The faults from 

the southern North Sea were classified as cataclastic and cemented faults; anhydrite 

was the main cementing material found within these samples. QXRD analysis shows 

that kaolinite is the dominant clay mineral within southern North Sea core samples. 

On the other hand, QXRD analysis shows that chlorite is the dominant clay mineral 

within the central North Sea core samples.   

4.2.6 X-ray tomography analysis  

The internal structure of all samples provided was determined using a Picker 

PQ2000 dual energy CT-scanner. The description of experimental technique used is 

provided in Section 3.3.2. The key aim of obtaining CT images was to identify 

whether the core is damaged prior to petrophysical properties measurement and the 

presence of open fractures and heavy mineral cements within the samples. This also 

permits us for recognition of different mineral components via their gray-dark scale 
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representation in a CT image. In general, the quartz and feldspars appears dark gray 

as in Figure 4.5 one of the typical CT image taken from central North Sea core 

appeared as dark-gray colour that shows the quartz mineral. The quartz was the 

dominating mineral within the studied samples. The darker images on CT reveal that 

these are more porous than the brighter, the bright images reflects heavy minerals 

such as pyrites. Figure 4.5 the bright colour streaks on both samples appears that 

these are very tightly packed and are low porous as well as low permeable. The 

white spots on CT image Figure 4.5 appears to be cementing material such as pyrite, 

which has very high density and it has a high attenuation.  Light gray colour on CT 

images represents medium density minerals such as illite-smectite. It is however very 

difficult to differentiate these clay minerals because the percentages of these 

minerals, as analysed by QXRD, were very low. 

                          

Figure 4.5 CT images taken on central North Sea reservoir core samples containing deformation 

bands.  

In Figure 4.6, CT images taken from outcrop samples of a slip-surface cataclasite 

are shown. The CT image appears to be dark gray color which indicates that the 

sample contains higher quartz minerals. The homogenous density of host sample is 

evident from Figure 4.6. The slip-surface cataclasite sample indicates white color 

patches, which are evidence of iron minerals; these minerals have very high 

densities.  

X-ray imaging is particularly useful for recognizing that how heterogeneous the 

samples are, identifying the deformed and undeformed rocks and differentiating 

heavy minerals such as calcite, pyrite, hematite or iron from other dominant minerals 

such as quartz was the dominant mineral in all of the samples studied. Subsequently, 
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the X-ray tomography enhances the understanding about lateral and horizontal 

changes in rock properties. However, the main use of CT-tomography within present 

study was to what position would be better to take fault and their associated host 

samples.  

 

Figure 4.6 CT image of one of the typical 90 Fathom fault sample from slip-surface cataclasite. The 

white patches are the heavy minerals with high densities.   

4.3 Experimental overview: Single phase gas and liquid 

permeability  

The Klinkenberg corrected single phase gas permeability as well as the 

permeabilities to brine and demineralized water was measured using steady-state and 

pulse decay methods. Details about the samples preparation and measurement 

methods are presented in Section 3.3 and Section 3.5 respectively.  

Initially, gas permeability measurements were made on both host and fault rock at 

ambient conditions by flowing nitrogen or helium gas through the samples. After gas 

permeability measurements, all samples from the central North Sea were fully 

saturated with 30% NaCl brine and the permeability measured. The samples were 

then cleaned, dried and then saturated with 3.5% NaCl solution and then their 

permeability was measured. For all other samples following gas permeability 

measurements, permeability was measured using 20% NaCl brine (200,000 ppm) 

and distilled water. It should be noted that all samples liquid permeability 

measurements were made by decreasing brine concentrations. Initially the 
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measurements were made with higher brine (NaCl) concentrations then decreased to 

next lower (NaCl) concentration and then finally the permeability was measured 

using distilled water as a pore fluid.   

In this study, a range of breakthrough pressures for each sample was estimated by 

collecting the mercury-injection capillary pressure data. In addition to that pore size 

distributions of all samples were derived from mercury porosimetry and the 

experimental details are given in Section 3.5.2.  

All permeability measurements for fault rock samples were made perpendicular to 

the fabric as the study focuses on investigating the influence of cross-fault fluid flow. 

It should be noted that all deformation bands and slip-surface cataclasites studied 

contain host and fault rock; the measured permeability for these samples is therefore 

an average of host and fault. The true fault rock permeability (𝐾𝑓) values were de-

convolved using the technique outlined in Section 3.5.6. All fault rock permeability 

results reported are deconvolved and the undeformed samples permeabilities are also 

presented for comparison.  

The arithmetic mean permeability of fault samples is also reported, based on the 

approach provided by Manzocchi et al. (1999) who stated that the flow through 

heterogeneous rocks such as faults can be approximated as a function of harmonic 

mean of fault thickness and arithmetic-mean of fault rock permeability. The 

averaging of fault rock permeability basically comes from the concept that fault rock 

is heterogeneous, therefore the permeability varies significantly along the length of 

deformed zone.    

4.3.1 Central North Sea reservoir samples 

The permeability measurements were made on host and fault of ten samples from 

group A and eleven from group B. The experimental results for all tests conducted 

are summarized in Tables 4.4 and 4.5.  

4.3.1.1 Host sandstones  

The group A host rock samples have the highest gas permeability values in the range 

from 49mD to 1820mD. The brine permeability ranges from 28mD to 1230mD. The 

average permeability to gas and 30% NaCl brine are 430mD and 280mD 
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respectively. The permeability to 3.5% NaCl brine ranged from 20mD to 850mD, 

with arithmetic mean of 178mD. The permeability to distilled water is the lowest 

ranging from to 10mD to 397mD with an average of 97mD. The average ratio of 

30% NaCl brine permeability to distilled water is a factor of two; which is lower 

than the deformed samples. 

The peak pore diameter obtained using Hg-injection porosimetry that ranges from 

8.7µm to 27µm and the threshold pressure ranges from 8psi to maximum of 25psi 

with an arithmetic-mean of 12psi (Table 4.3), for each individual sample’s mercury 

curves refer to Appendix A. 

The group B host sandstone samples permeability results are reported in Table 4.5; 

the gas permeability for the undeformed sandstones range from 29mD to 0.62mD 

with arithmetic-mean of 13mD. The brine permeability has values from 0.37mD to 

22mD with an arithmetic average of 6mD. The permeability to distilled water is the 

lowest ranging from to 0.19mD to 8.3mD with an average of 2.9mD. The gas 

permeability measurement was repeated on these samples after the distilled water 

permeability; it was same in both cases.   

The peak pore diameter obtained from Hg-injection ranges from 2.2µm to 12.5µm 

and the threshold pressure ranges from 15psi to a maximum of 150 psi, with an 

arithmetic mean of 41 psi (Table 4.3). 

4.3.1.2 Fault rock 

The fault rock samples of group A have gas permeabilities that range from 0.28mD 

to 6.4mD with an arithmetic-mean of 1.6mD. The permeability to 30% NaCl brine 

was slightly lower than the permeability to gas, with an average value of 1.1mD, 

ranging from 0.054mD to 4.4mD. The permeability of these samples to 3.5% NaCl 

ranges from 0.005mD to 2.5mD with an arithmetic mean of 0.5mD. The distilled 

water permeability was the lowest, ranging from 0.003mD to 1.3mD, with an 

average of 0.26mD. This was around 10 fold lower than the gas permeability. 

 In addition to permeability measurements, the slippage factor was also calculated, 

the calculated b-factor values ranges from 3 to 18 psi. These calculations were 
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performed by fitting straight line on Klinkenberg tests.  The results for each sample 

calculated are reported in Table 4.4  

The peak pore size measured using Hg injection porosimetry ranges from 1.5µm to 

21µm with arithmetic mean of 8.8µm. The threshold pressure ranges from 15psi to 

300psi, with arithmetic mean of 63psi (Table 4.4). Only CP2D samples resulted in a 

higher threshold pressure of 300psi, whereas the other samples are in between 15 and 

100psi. The highest threshold pressure could be the result of mica and chlorite 

observed from microstructural analysis and quantitative XRD.   

The group B fault samples exhibited the lowest permeabilities; results are reported in 

Table 4.4 together with the host samples. The gas permeability ranges from 

0.002mD to 0.79mD with arithmetic mean of 0.12mD. The brine permeability has 

values from 0.001mD to 0.094mD with an arithmetic average of 0.016mD. The 

distilled water permeability on average is 0.007mD; it ranges from to 0.00012mD to 

0.057mD. The repeat of gas permeability was also performed, which on average was 

slightly higher than the initial value. The repeat of gas permeability ranges from 

0.0014mD to 1.3mD with an average of 0.19mD. The slippage factor was also 

calculated, the calculated b-factor values ranges from 32 to 273psi and are reported 

in Table 4.5. 

Group B fault samples have peak pore size ranges of 0.27µm to 8.7µm with 

arithmetic mean of 3.3µm, as determined by Hg-injection porosimetry. The 

threshold pressure ranges from 20 psi to 500psi with an arithmetic mean of 111psi 

(Table 4.5). The highest threshold pressure could be the result of mica and chlorite 

observed from microstructural analysis and Quantitative XRD.  
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Table 4.4 Summary of the permeability results (gas, brine and distilled water measured at ambient stress) and mercury threshold pressure from central North Sea reservoir 

cores. The fault rock was recognized as cataclastic fault.   

 

 

 

Host Fault Host Fault Host Fault Host Fault Host Fault Fault

CP1A 3.0 0.10 123 1.88 83 1.35 23 0.72 14 0.30 10 40 4

CP1B 2.4 0.40 110 1.59 102 1.35 90 0.74 29 0.27 25 40 3

CP1C 2.6 0.55 231 1.19 154 0.75 56 0.19 20 0.14 20 40 12

CP1D 2.1 0.30 243 6.42 142 4.38 68 2.5 41 1.34 15 15 10

CP2A 4.3 0.95 91 0.42 43 0.26 29 0.04 25 0.02 8 15 18

CP2B 3.4 0.49 290 2.78 91 2.30 86 0.82 71 0.38 10 20 3

CP2C 3.9 0.63 1823 0.54 1230 0.33 522 0.27 346 0.095 10 40 13

CP2D 2.6 0.85 1108 0.69 878 0.19 850 0.11 397 0.039 8 300 12

CP2E 2.2 0.20 171 0.28 57 0.054 35 0.005 20 0.003 10 20 18

CP2F 4.3 0.50 49.6 0.54 28 0.21 20 0.05 10 0.011 10 100 6

0.5 424 1.6 281 1.1 178 0.5 97.2 0.26 12.6 63.0Arithmetic-mean

Mercury -air 

threshold pressure 

(psi)

b-factor 

(psi)Gas Brine ( NaCl 30%) Brine (NaCl 3.5%)        DI water               

Central North Sea reservoir permeability (mD)-Group-AFault 

thickness 

(cm)

Sample 

Length 

(cm)

Sample 

Name
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Table 4.5 Summary of the permeability results (gas, brine and distilled water measured at ambient stress) and mercury threshold pressure from central North Sea reservoir 

cores. 

 

 

 

Host Fault Host Fault Host Fault Host Fault Host Fault (psi)

5AF1 2.2 0.5 3.6 0.004 1.0 0.045 0.5 0.0005 3.6 0.011 20 500 273

5BF1 2.5 0.8 0.6 0.056 0.4 0.004 0.2 0.0024 0.6 0.08 150 300 141

5EF1 2.2 0.3 29.2 0.20 16.7 0.023 8.3 0.016 29.2 0.41 15 40 153

5FF1 2.2 0.2 37.0 0.79 22.0 0.094 11.0 0.057 37.0 1.34 15 40 32

7AF1 2.3 0.5 16.0 0.09 9.0 0.0029 4.5 0.0011 16.0 0.04 8 20 69

7BF1 2.0 0.3 15.0 0.002 5.4 0.0017 2.2 0.0002 15.0 0.0014 20 45 137

7CF1 2.5 0.3 3.8 0.07 0.8 0.0015 0.4 0.0003 3.8 0.03 15 145 45

7EF1 2.1 0.2 2.5 0.07 0.6 0.0010 0.3 0.00012 2.5 0.10 40 40 82

7FF1 2.3 0.4 4.8 0.03 0.9 0.0021 0.5 0.0015 4.8 0.03 15 40 67

3AF1 2.1 0.7 22.0 0.02 7.7 0.0024 3.7 0.0014 22.0 0.02 75 25 138

10/3A 2.8 0.9 4.4 0.04 1.3 0.0014 0.7 0.0012 19.0 0.02 75 25 68

13 0.12 6.0 0.016 2.9 0.007 14 0.19 41 111Arithmetic  mean

b-factor 
Hg-air threshold 

pressureGas Brine 20% DI Water Gas

Central North Sea  Permeability (mD)-Group-BFault 

thickness 

(cm)

Length 

(cm)
Sample ID
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4.3.2 Southern North Sea reservoir samples 

The permeability measurements were made on 6 samples of host and fault rock; the 

details of all experimental results are summarized in Table 4.6.  

4.3.2.1 Host sandstone  

The permeability to gas ranges from 0.054mD to 7.8mD with an arithmetic-mean of 

3.1mD. The brine permeability ranges from 0.0052mD to 1.1mD with an arithmetic 

mean of 0.42mD. The brine permeability on average was 7 factors lower than gas 

permeability. The permeability to distilled water was around 10 fold lower than gas, 

with an average value of 0.31mD; its values range from 0.0039mD to 1.02mD.  

The peak pore size measured using Hg injection porosimetry ranges from 3.1µm to 

14.5µm with arithmetic-mean of 4.8µm. The threshold pressure ranges from 15psi to 

150psi, with arithmetic mean of 87psi (Table 4.6). 

4.3.2.2 Fault rock   

The gas permeabilities to these fault rocks vary from 0.00071mD to 0.075mD with 

an arithmetic average of 0.026mD. The brine permeability ranges from 0.0002mD to 

0.031mD with arithmetic mean of 0.0087mD, which on average was about three 

factors lower than gas permeability. The permeability to demineralized water was the 

lowest, ranging from 0.011mD to 0.00011mD with an arithmetic average of 

0.0039mD, which on average was around an order magnitude lower than the gas 

permeability. Overall there was a large difference in permeability found within these 

samples, which reveals that these were highly heterogonous.  

Furthermore, the b-factor values were also calculated from these samples 

permeability tests and are reported in Table 4.6. These were estimated from 

Klinkenberg tests where the straight line gave correlation coefficient of 0.95 or more 

for four data points.  

The peak pore size measured using Hg injection porosimetry ranges from 0.7µm to 

10.9µm with arithmetic mean of 4.8µm. The threshold pressure ranges from 40psi to 

300psi with arithmetic mean of 155psi (Table 4.6). 
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Table 4.6 Summary of the rectilinear blocks permeability results from Southern North Sea reservoirs 

samples (gas, brine and distilled water permeability measured at ambient stress). 

 

4.3.3 90 Fathom Northumberland, UK samples  

The permeability measurements have been made from main slip surface and single 

deformation band of the 90 Fathom Fault, Northumberland, UK.  

4.3.3.1 Fault rock  

The results show that slip-surface cataclasite fault rock samples have a lower 

permeability than the single deformation band. The gas permeability to slip-surface 

cataclasites samples ranges between 0.035mD and 0.0042mD with an arithmetic 

average of 0.018mD (Table 4.7). The brine permeability ranges from 0.0063mD to 

0.0032mD with arithmetic mean of 0.004mD. The brine permeability was 4 factors 

lower than gas permeability. The permeability to distilled water was the lowest with 

arithmetic mean of 0.0028mD. The distilled water permeability of fault samples was 

around 5 fold lower than the gas permeability.  

The single deformation band has a gas permeability ranging between 2mD and 

13mD, with arithmetic mean of 8.2mD. The brine permeability ranges from 3.8mD 

to 7mD with arithmetic-mean of 4.5mD. The distilled water permeability was the 

lowest, ranging from 1.8mD to 0.20mD, with arithmetic mean of 0.66mD. The b-

factor values were obtained from permeability measurements and are reported in 

Table 4.7 together with other petrophysical properties.  

The slip-surface cataclasite showed the largest threshold pressure ranging from 650 

to 5000psi with arithmetic mean of 6164psi. The single deformed band samples have 

threshold pressures of 15 to 75psi and peak pore diameters is of 0.12µm to 8.50µm.  

Host Fault Host Fault Host Fault Host Fault Fault

Win1A 3.5 0.1 7.2 0.028 0.90 0.0058 0.53 0.005 68 97 59

Win2A 3.4 0.1 7.8 0.075 1.1 0.031 1.02 0.011 68 97 25

Win3A 3.1 0.1 3.4 0.053 0.47 0.015 0.29 0.006 68 97 14

Win1B 2.7 0.1 0.03 0.001 0.024 0.0004 0.0096 0.0002 150 300 94

Win2B 2.4 0.1 0.09 0.001 0.009 0.0002 0.0095 0.0001 150 300 82

Win1C 2.6 0.3 0.05 0.002 0.005 0.0002 0.0039 0.0002 15 40 48

3.1 0.027 0.42 0.009 0.31 0.004 87 155 54

b-factor 

(psi)Gas                          Kg 

Brine (NaCl 20%)              

Kb               

DI water                 Kd 

K_arithematic mean

Hg-threshold 

pressure(psi)Sample ID

Sample 

Length 

(cm)

Fault 

thickness 

(cm)

Permeability (mD)
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4.3.3.2 Host sandstones  

The permeability to gas ranges from 0.2mD to 175mD, with mean value of 55mD. 

The brine permeability ranges from 0.01mD to 77mD with an arithmetic average is 

29mD, which is around 10 fold lower than gas permeability. The distilled water 

permeability is the lowest permeability, ranging from 0.015mD to 19mD with 

arithmetic-mean of 7mD.  

Hg injection results suggest the host sandstones have pore diameters of 10µm pores 

and the threshold pressure ranges from 8 to 15psi with an arithmetic mean of 11 psi 

(Table 4.7). 

 

Table 4.7 Basic properties, gas, brine and distilled water permeability, b-factor and mercury-air 

threshold pressures from 90 Fathom fault and host rock samples. a reflects the 

sealed/unsealed samples for mercury injection.  

Host Fault Host Fault Host Fault Fault Fault

90FM1 F 2.6 1.2 0.3 0.012 0.05 0.003 0.03 0.002 1000.0 68

90FM4 F 2.9 1.3 0.7 0.017 0.05 0.004 0.02 0.003 3000 / 650a 48

90FM6 F 3.2 1.5 0.2 0.004 0.02 0.003 0.01 0.002 13000.0 63

90FM7 F 3.3 2.0 1.0 0.031 0.10 0.004 0.06 0.003 3250.0 94

90FM9 F 3.1 1.5 0.3 0.011 0.01 0.003 0.02 0.003 5000.0 76

90FM10 F 3.1 1.2 1.2 0.035 0.13 0.006 0.09 0.003 400 / 200a 72

1.4 0.6 0.018 0.061 0.004 0.037 0.003

90FZB1 2.7 0.1 99 10 71 6.2 17 0.3 20 3.8

90FZB3 3.2 0.1 99 13 71 7.1 17 0.4 40 8.6

90FZ-5 2.9 0.1 175 2 77 1.0 19 0.2 15 5.9

90FZ-2 2.1 0.1 175 7 77 3.8 19 1.8 20 8.9

0.1 136.8 8.2 73.9 4.5 17.6 0.7 24Arithmetic mean

(b) Single defomation band

Arithmetic mean

DI water                                         Gas                                     Brine (NaCl 20%)                                  

90 Fathom fault permeability (mD)

(a) Slip-surface cataclasite   

Hg-threshold 

pressure (psi)

b-factor 

(psi)
Sample ID 

Sample 

Length (cm)

Fault 

thickness 

(cm)
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4.4 Discussion 

This section starts by discussing the results from fault rock permeability 

measurements, such as the impact of pore fluid salinity on permeability and the 

relation between permeability and pore size. The section then discusses the 

interdependence between clay content and fault rock permeability. Moreover, the 

section provides a comparison of permeability and clay content results with 

empirical models. Finally the section provides with main implications from results.  

4.4.1 Fault rock permeability: impact of fluid chemistry 

The permeability of fault rocks was measured with three different pore fluids i.e. gas, 

brine and distilled water to assess the sensitivity of the absolute permeability of fault 

rocks to the composition of the permeant. This then provides an indication to the 

inaccuracies that could occur in fault seal analysis studies by applying published 

fault permeability data (e.g. Fisher and Knipe, 2001) in which distilled water was 

used as a permeant. It is often believed that the Klinkenberg corrected gas 

permeability should be the same as that of the liquid permeability (e.g. Rushing et 

al., 2004; Chowdiah, 1987). However, the permeability results obtained during the 

current study showed that the permeability measurements made using gas gave 

higher values than with brine, which in turn gave higher values that when measured 

using distilled water permeability (Figure 4.7 and Figure 4.8). The deionized water 

permeability was lower than the gas permeability in all samples (Figure 4.7). The 

brine permeability on average was reduced by 35% and the distilled water 

permeability was around an order of magnitude lower than gas. Similar differences 

in permeability between gas and water have also been observed by other authors 

(e.g. Lovelock, 1977; Sampath and Keighin, 1982; Faulkner et al., 2000; Baraka-

Lokmane, 2002). To assess the differences in gas, brine and distilled water 

permeability are important to consider as these provides the relative control of fluid 

flows within fault compartmentalized reservoirs. Crawford et al. (2008) reported 

differences in argon gas and water permeability of artificial kaolinite-quartz mixtures 

as an analogue to fault gouges. The differences in gas and distilled water 

permeability of sandstones might be due to the physiochemical interactions between 

distilled water and clay mineralogy (e.g. Lever and Dawe, 1987; Byerlee, 1999). 

Rutter et al. (1986) demonstrated that if sandstone samples contains the clay mineral 
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fractions which are very fine grained if surrounded within the pores spaces their 

interaction with water might significantly affect the effective pore throat size 

consequently the permeability of the rock samples (e.g. Faulkner, 2004).  

The major effects of clay minerals on permeability could be: 1) the reduction of 

effective pore size; 2) fine particles migrations and plugging of the pore throats that 

could be the potential reason of reduction in permeability; 3) clays are sensitive to 

distilled water when they come into contact with water starts to hydrate and swell 

which in turn reduces the sample permeability (e.g. Richard and Dawe, 1984). 

Therefore, these mechanisms of permeability reduction suggests that if clay minerals 

exist within the samples studied, liquid permeability would be lower than the slip 

corrected gas permeabilities. Clay minerals are fine grained particles could be 

deposited within pore surface of sandstones (Baraka-Lokmane, 2002). Probably 

these clays might exist simultaneously in all different forms within the same rock 

formation (e.g. Khilar and Fogler, 1984). Each clay mineral have tendency to affect 

the fault rock permeability in some form either by swelling to reduce the pore throat 

size, or creating a layer of bound surface water or by movement and retention of fine 

particles within confined pores (e.g. Khilar et al., 1990). The authors attempted to 

provide with some conceptual models of fine particles retention that accumulate 

within the confined pores such as: particles deposition on the framework grains; 

formation of bridging; draining of larger grain particles towards confined pore 

throats resulting in blockage of smaller size pore throats (e.g. McDowell-Boyer et 

al., 1986; Sen and Khilar, 2006). 

Most of the fault rock samples studied were from phyllosilicate framework and 

cataclastic fault category and these on some extent were associated with the clayey 

sands. Therefore, it was necessary to have knowledge of the quantities of these 

minerals (clays) present within the rock samples, so the controls on fault rock 

permeability could be quantified. The relative amounts of minerals were determined 

by performing QXRD experiments, results showed that the samples were containing 

variety of clay minerals such as kaolinite, illite-smectite and chlorite (Table 4.1 and 

Table 4.3). However, among all analysed samples few samples were not containing 

all different types of clay minerals. The existence of clay minerals could affect the 

permeability in different ways, such as kaolinites are not swelling minerals, fine 

particles migration and entrapment could block the smaller pore throats, (e.g. Mohan 
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and Fogler, 1997). On the other hand smectite could act as swelling clay mineral 

while interacting with distilled water (Lever and Dawe, 1987). Therefore, the 

reduction in liquid permeability observed could be due to two processes. Firstly, the 

clay particles surrounded within pore throats can swell reducing the effective size of 

the pore throats (e.g. Khilar and Fogler, 1984; Sampath and Keighin, 1982; Moore et 

al., 1982; Lever and Dawe, 1987).  Secondly, the reduction in liquid permeability 

could be due to the detachment of authigenic clay minerals fine particles from pore 

walls and migration and entrapment of these fine particles, (e.g. Khilar et al., 1983; 

Baraka-Lokmane, 2002). Mesri and Olson (1971) reported higher permeability 

values for pure clays with non-reactive fluids than reactive fluids, which also 

indicated the importance of clay-water interactions particularly for low permeability 

formations. 

 

Figure 4.7 Cross plot showing the relationship between gas, brine and distilled water permeability of 

fault rock (log-log plot). Note that in the figure legend Kg, Kb, and Kd refer to gas, brine 

and distilled water permeabilities respectively.    
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Figure 4.8 Cross plot of the distilled water permeability against brine permeability for fault rocks 

(log-log plot) 

Furthermore, the permeability ratio and clay content plotted in Figure 4.9 appears to 

be scattered. The Figure 4.9 demonstrates that there is no relation between the 

permeability contrast (i.e. the ratio of gas to brine permeability, and brine to distilled 

permeability) and the clay content. Likewise the clay content and gas to distilled 

water permeability ratio did not show any trend. Although, the results plotted are in 

significant scatter. The scatter of permeability with clay content reflects the samples 

heterogeneity and another the possibility could be percentages of clay minerals 

varies from sample to sample. Few of the samples were not containing all different 

types of clay minerals and in other samples there were not all clay minerals.  

 

Figure 4.9 The relationship of gas permeability to brine permeability ratio versus clay content of the 

host sediments (semi-log plot). In the figure legend Kg, Kb, and Kd refer to gas, brine and 

distilled water permeability respectively.  
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In Figure 4.9 the permeability ratio is plotted against total clay content; which is the 

sum of all different clay mineral types. Observing the scatter in correlating 

permeability with the total amount of clay content, the permeability ratio plotted 

against each clay mineral separately (Figure 4.11) that also resulted in significant 

scatter. There is no relation in between fault rock permeability with any of the single 

clay mineral. The reason for this is not clear but this could be the result of clay 

minerals presence in variable quantities such as, few samples were not containing all 

different types of clay minerals while others were containing.  

The clay minerals occur in variety of different forms within the rock pore spaces; 

such as grain coating and pore lining clays (e.g. Neasham, 1977).  For example, 

kaolinite occurs as stacks of ‘booklets’ or as loose plates (Wilson and Pittman, 

1977). SEM analysis (Figure 4.10) confirms the presence of kaolinite clay mineral 

that is the dominant clay mineral in sandstone. The Kaolinite has a tendency to 

detach from pore surface and migrate with fluid injected, possibly these fine particles 

could be trapped within the smaller size pore throats (e.g. Lever and Dawe, 1987; 

Khilar et al., 1990; Revil and Glover, 1998; Rosenbrand et al., 2013). The effect of 

fine particles movement on permeability has been investigated by several authors by 

conducting the filtration experiments (e.g. McDowell-Boyer et al., 1986; Sen and 

Khilar, 2006; Yuan and Shapiro, 2011). The fluid injected for permeability 

measurement, the fine clay minerals such as kaolinite and other fine particles could 

possibly be retained within the confined pore throats because of low permeable 

nature of samples. This might happen when particles that have mobilized along with 

pore fluid towards the pore constrictions and if pores have a smaller size than 

mobilized particles size; these will be then retained at the confined pore throats 

resulting in blocking of the pore throats. In contrast, if the size of pores is large 

enough and pressure gradient is higher than fine particles would be transported and 

possibly enhance the permeability (e.g. Candela et al., 2014).  

Recently, Rosenbrand et al. (2013) has reported that fine particles that migrate 

through samples could be collected together with effluents produced during 

laboratory experiments (e.g.). Similarly, during present study, effluents were also 

collected and filtered through the 0.2µm filter paper however there was no indication 

of any of the fine particles production. This could be used as evidence that fines 

migration is not important mechanism in these samples to reduce permeability. 



 

Petrophysical properties of fault rock-Implications for petroleum production                Page 112 

However, the clay swelling and fine particles entrapment within the confined pore 

throats could be the possible reason of reduction in liquid permeability of the fault 

rock samples studied (e.g. Lever and Dawe, 1987).   

Apart from kaolinite clay minerals, the illite-smectite clay minerals were also 

observed from QXRD analysis. The illite-smectite appears like a thin hair, which 

usually occurs in between grain boundaries these clay minerals, could reduce the 

pore connectivity (e.g. Mondol et al. 2008; Bjorlykke, 2010). During fluid flow 

experiments, if low concentrated brines or distilled water as a pore fluid is injected 

for permeability measurement, the illite-smectite clay minerals possibly swell and 

might result in reduction of pore throat size because that have swelling tendency 

(e.g. Lever and Dawe, 1987) this could be the possible mechanism of permeability 

reduction especially in low permeability fine grained rocks. On the other hand, those 

samples which they were not containing clay minerals having higher absolute 

permeability would not be affected if their permeability measured using distilled 

water as a pore fluid. 

The results of fault rock permeability examined showed that the clay minerals are 

not the only reason to show an obvious relationship. Although, these provides 

possible reasons of reduction of fault rock permeability due to their interaction with 

reactive pore fluids. The permeability reduction mechanisms discussed above might 

not be the exclusive due to the different fault rock types and the range of the 

existence of different minerals and mineral particle sizes.  

 

Figure 4.10 Photomicrograph of a typical SEM image from one of the Sothern North Sea reservoir 

core sample, showing the presence of kaolin and backscattered image of one of the 
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central North Sea core sample shows the presence of illite clay mineral within the pore 

spaces. 
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Figure 4.11 Plots showing effects of clay minerals (Mica, Kaolinite, Illite-smectite and chlorite) on fault rock gas, brine and distilled water permeability ratio. In this figure 

Kg, Kb, and Kd  refer to gas, brine and distilled water permeability of fault rock, respectively.  
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Apart from rock surface interactions with fluids, various investigations have 

suggested that the permeability of fine grained rocks could be controlled by more 

important factors such as pore geometry, pore size distribution and clay mineral 

distribution (Dewhurst et al., 1998). The pore throat size is often measured by 

mercury porosimetry. It is also theoretically possible to estimate pore size from the 

results of gas permeability experiments following Klinkenberg procedure. In 

particular, gas slippage becomes an increasingly important flow mechanism when 

the mean free path of a gas molecule approaches the pore throat radius (e.g. Loeb, 

1927) (equation 4.1).  

 
2

gR T

P M


                        (4.1)  

where λ is the mean free path of the gas at mean pressure, 𝜇 is the gas viscosity, 𝑃 is 

the mean pore pressure, 𝑅𝑔 is the gas constant, 𝑇 is temperature and 𝑀 is the molar 

mass of the gas. The pore radius can be estimated from the b-value obtained during 

steady-state gas permeability tests using the formula,  
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    𝑟𝑒𝑓𝑓 = 4𝑐𝜆𝑃/𝑏𝑠𝑙𝑖𝑝                     (4.3) 

where b is a gas slippage factor, c is constant and is equal to one. reff, is the effective 

pore radius.  

The slippage radius obtained from gas slip parameters using Equation (4.3) and Hg-

radius derived from mercury porosimetry are plotted in Figure 4.12 resulted in a 

scatter. The slippage derived radius was around an order of magnitude lower than 

mercury radius. Bloomfield and Williams (1995) measured permeability on number 

of tight sandstone sample of North sea reservoirs also reported one to two orders of 

magnitude lower slippage radius than mercury porosimetry derived pore radius. The 

reason for the difference in between two pore radius could be the presence of clay 

minerals within the pore space. Particularly the pore structure from mercury injection 

data could be controlled by various other factors such as the presence of deformed 

clay minerals. The rock pore structure could be altered by injection of mercury due 

to presence of delicate clay minerals, which in fact does not represent the true value 
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of pore size. In contrast, the gas injected through the sample during steady state 

experiments follow those pathways which only contribute gas flow. Therefore, the 

pore throats during gas permeability measurement could not be altered; rather 

mercury injection could be the possibility to alter pore size and result in higher 

values than slip radius.  

 

Figure 4.12 Plot showing the relationship between the pore radius derived from Hg-injection data 

and from gas slip-radius followed Klinkenberg procedures (log-log plot) 

Furthermore, the permeability data plotted against mercury derived pore radius 

(Figure 4.13a) also resulted in a large scatter. The permeability of fine grained 

mudstone has been studied by Dewhurst et al. (1998, 1999). They proposed that 

scatter in permeability data with pore radius could be the result of variations in pore 

throat size due to sedimentary heterogeneity.  Other authors have also argued that the 

scatter in permeability and pore throat radius could be experimental error (e.g. Heid 

et al., 1951; McPhee and Arthur, 1999). Recently, Armitage et al. (2011) measured 

the permeabilities on caprocks from the Krechba field, Algeria. The permeability 

results and pore radius from mercury porosimetry reported by Armitage et al. (2011) 

plotted together with the present study also resulted in scatter (Figure 4.13a). It 

should be noted that the permeability results from Armitage et al. (2011) appear 

lower than those of the present study shown in Figure 4.13a, as these were measured 

at effective stress of 60Mpa ~8000psi. Although the present study measurements are 

made at ambient stress condition. The findings of the current study based on relation 

of permeability and mercury derived pore radius are consistent with those previous 

studies reported by Armitage et al. (2011). They all reported that there is a scatter in 
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relating permeability and mercury porosimetry radius. Given the scatter of 

permeability data relating with mercury injection derived radius, the present study 

attempted to relate the permeability with gas slippage derived pore radius; apparently 

this resulted in a reasonable relation with slippage radius (Figure 4.13b). Therefore, 

this suggests that the slippage radius could be better to relate permeability than 

mercury porosimetry radius, because this provides the effective pore size of a rock. 

In other words, this gives the information of those pores which are connected to 

contribute gas flow through circular pores.    

 

 

Figure 4.13 Plots showing the relationship between fault rock gas, brine and distilled water 

permeability with Hg-pore throat radius (upper) and the slip-radius (lower).Note that the 

data from Armitage et al. (2011) was measured at 60MPa effective stress on cap rock 

samples.(log-log plot)   

The Klinkenberg corrected gas permeability is often higher in sandstone samples 

than brine or water permeabilities (e.g. Heid et al., 1950; Luffel et al., 1993; Solymar 

et al. 2003; Pinder and Celia, 2006) which suggest that different factors could affect 

this difference. The key parameter is the layer of immobile fluid on the solid-fluid 

(a) 

(b) 
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interface (e.g. Heid et al., 1950; Jones and Owens, 1980; Rutter, 1983; Faulkner and 

Rutter, 2000, 2003; Andreassen and Fabricius, 2010) which reduces the pore throat 

size available to liquid to flow (Figure 4.14). In samples which are very fine grained 

containing clay minerals are surrounded by the layer of clay bound water that affects 

the permeability of fault rock samples. That clay bound water itself could not be able 

to move when fluid is flowing through the rock hence this bounded water also 

reduces the pore throat size by coating the mineral surfaces (Figure 4.14). As the 

pore size reduces consequently the reduction in liquid permeability of samples will 

occur. Immobile bound water holds significance in the permeability of fine grained 

rocks such as fault rocks resulting in a thin layer of brines coating on pore surfaces. 

However, this assumption would not hold significance in high permeability 

sandstones (Grattoni pers. Comm.). The effect of clay bound water on permeability 

could be estimated by considering the reduction in effective size of the pore. The 

pore size could be obtained from gas slip parameter or from mercury injection data, 

although the reduction consideration could be done based on the information of 

thickness of immobile water layer. Several authors have attempted to estimate the 

size of the thickness of immobile water layer, Grim (1953) suggested that the layer 

thickness could range from 0.8nm to 4nm. It should be noted that the thickness of 

this layer increases as brine salinity decreases (Solymar et al. 2003). Behnsen and 

Faulkner (2011) found that the adsorption of water on clays might result in 

exaggeration of clay minerals within the pores of sandstones and this might cause the 

intergranular pore spaces reduction for liquid flow. Authors also argued that the 

layer of immobile water could also exist on the surfaces of other minerals such as 

quartz (e.g. Esther, 2014). The stern layer thickness is also considered as bound 

water layer thickness, which varies from 0.5nm to 2.5nm based on the work of 

Israelachvili and Adams (1978).    
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Figure 4.14 Sketch of an example of adsorbed water-layer on the solid grain surfaces (taken from 

schlumberger course notes and Fekete, 2014). 

Based on the observations of impact of bound water layer and its impact on rock 

permeability, an attempt was made to estimate the difference in permeability due to 

the immobile fluid layer thickness on fault rock samples. This was performed by 

considering two scenarios of pores throats size the first was considered with clay 

bound layer thickness and second was without clay bound layer thickness. For this 

reason, to assess the impact due to immobile fluid layer on samples permeability, an 

assumption was made to consider an effective pore throat radius derived from 

Klinkenberg parameters. The calculations were performed by adding the thickness 

value that caused due to immobile layer thickness that resulted in reduction of pore 

throat size. The calculations were based on the principle of Poiseuilles’ equation that 

gives the flow through bundle of cylindrical pores. Assuming that there is no-slip 

flow at the boundary of the pore wall, flow through cylindrical tube is laminar flow 

that would lead to following Hagen-Poiseuille equation:   

𝑞 = 𝑄/𝐴 =
𝑛𝜋𝑟𝑝

4

8
×

1

𝑢
∆𝑝                  (4.4) 
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Where, q is the flow rate , n is the number of capillaries rp is the pore size and µ is 

the viscosity of sample, Δp is the pressure drop through capillary. If sample porosity 

is the volume of the cylindrical capillaries normalised by bulk volume Vb,  

∅ =
𝑛𝜋𝑟𝑝

2

𝑣𝑏
 = 𝑛𝜋𝑟𝑝

2                         (4.5) 

The permeability in terms of the size of the pore throats and the porosity can be 

expressed by combining above equations, 

𝑘 =
1

8
𝑟𝑝

2∅                                (4.6) 

The flow through thin quartz capillaries indicates a bound water layer thickness of 

0.40nm to 80nm (e.g. Newman, 1987; Solymar et al., 2003). The value of bound-

water thickness of 80nm was assumed for permeability estimation using Poiseuilles’ 

equation during this study. The permeability calculated with layer of bound water 

resulted in a difference of about 50%, compared to the permeability calculated 

without layer of bound water.  

The permeability ratio of gas to brine and gas to distilled water was also plotted with 

pore radius derived from gas slippage parameters and with mercury injection derived 

pore radius to see the whether these results in a relation but the data resulted into 

scatter (Figure 4.16 and 4.17). This might be the result of differences in gas and 

liquid permeabilities due to aforementioned mechanisms such that there was not 

unique mineral composition of samples. In some samples the relative proportions of 

higher clay minerals existing and in other it was not found.   
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Figure 4.15 Plot is showing the fault rock permeability ratio of gas to brine and water permeability 

versus the slip-radius. 

 
Figure 4.16 The plot of fault rock permeability ratio of gas permeability to brine and distilled water 

permeability against Hg-pore radius (log-log plot). 

Experimental errors could be the cause of discrepancies in between gas and liquid 

permeability. Moreover, the presence of trapped gas during liquid permeability 

experiments possibly reduces the liquid permeability (e.g. Faulkner and Rutther, 

2000). Although this should not be the case with the samples studied during present 

study, as before running liquid permeability experiments all samples were 

pressurized at 1500psi, the gas becomes dissolved into water at such a high pressure. 

The discussion presented above indicates that the differences in gas and liquid 

permeability observed during laboratory experiments could possibly be explained by 

the interaction of water as a pore fluid with clay minerals (e.g. Faulkner and Rutter, 

2000). The water adsorbed by the clay minerals surfaces possibly reduces the pore 

throat size due to interaction with swelling clays, hence reduces the permeability. 

Furthermore, it was thought that the differences in gas and liquid permeability could 

be due to layer of immobile fluid on mineral surfaces due to fluid mineral 

interaction. It is possible that permeability of fault rock is controlled by several 

factors including fines migration, the presence of micro-cracks and the complex 

interaction between these factors means that there is no simple way to predict 

relative controls to gas and liquid permeability. The differences and controls related 

to fault rock permeability discussed above might not be exclusive due to other 

reasons, as there are different fault rock types such as those formed within the clay-

rich sediment sequences and their range of the minerals composition and their 

sensitivity to pore fluid might be different than cataclastic and phyllosilicates-
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framework faults. The distributions of clay minerals within the pore spaces and the 

range of pore throat sizes might be different and the permeability could be different 

within different fault rock types. Therefore, these results of fault rock permeability 

reported cannot be directly generalized to all types of faults in different fields. 

4.4.2 Impact of clay content on fault rock permeability  

The results from fault rock permeability and clay content are plotted in Figure 4.17; 

these indicate that there is a large scatter in the permeability and clay content. The 

scatter between these two properties could be the fault rock heterogeneity and this 

has resulted into a poor relation between permeability and clay content. One reason 

of scatter could be the clays and sand grains are not well mixed at the time of 

faulting, the fractions of clays and sands could be in random proportions within the 

rocks. Faulting causes the crushing and reduction of grain particle sizes as a result of 

cataclasis which has been observed in most of the present study samples, these 

processes resulted in permeability reduction by several orders of magnitude which is 

lower than its associated host rocks (e.g. Fisher and Knipe, 1998). However, the 

most common feature found within the fault rock sequences is the phyllosilicates, 

hence these are main causes of reduction of fault rock permeability (Childs et al. 

2002).  Therefore, the differences in permeability of fault formed within different 

lithologies of fine grained clays sequences could be several orders of magnitude 

lower than the differences in permeability of fault rock in coarse sediments (e.g. 

Childs et al., 2002). The effect of phyllosilicates and clay smearing into faults are 

significant and these have a large impact in reducing the fault rock permeability than 

compared to other mechanism such as (i.e. cataclasis, porosity collapse (e.g. Fisher 

and Knipe, 2001). Although, these mechanisms provides the evidence about the 

causes of reduction of fault rock permeability, however it was attempted to find a 

link in between fault rock permeability and clay fractions but no relationship exist. 

Similarly, the scatter in permeability and clay content was also reported by Fisher 

and Knipe (2001).  They argued that the poor relation in clay content and fault rock 

permeability could be the variations in diagenesis between different sandstones. 

Furthermore they reported that fault rocks formed in impure sandstones, whose clay 

content ranges between ~15-25%, could be affected by quartz dissolution and those 

having >25% clays could be more affected by mechanical compaction.  
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Figure 4.17 Plot of the fault rock permeability of gas, brine and distilled water versus clay content of 

the host sediment (semi-log plot).   

In addition, to relate fault rock permeability with total clay content, an attempt have 

also been made to relate the permeability to each clay mineral separately, to see if 

there is any relationship exists between these minerals. Fault rock gas, brine and 

distilled water permeability were plotted against each clay mineral; however this also 

resulted in a poor relationship with each clay mineral (Figure 4.18). Overall, no 

correlation was found between permeability and any of the clay mineral. This could 

be due to the few samples were containing all different clay minerals and others were 

not, another reason could be the microfractures due to stress release resulted in 

higher permeability. The lack of correlation probably reflects the fact that each 

property is controlled by combination of different microstructural elements, 

diagenesis and burial depths. These results show that it is unsafe to correlate fault 

rock permeability with only clay fractions.  There are several other factors which 

might affect the permeability of fault rocks such as the burial depths and clay 

minerals and their distributions within the pore spaces (e.g. Walsh et al., 2008). The 

fault rock permeability could be controlled by grain size and sorting (e.g. Morrow et 

al. 1984). The porosity and permeability of sand-clay mixtures (i.e. fault gouge) are 

often controlled by far more other factors than simply the clay content (e.g. Revil 

and Cathles, 1999; Revil et al., 2002).   

Revil and Cathles (1999) presented a model for permeability of sand-clay mixtures; 

this model seems ideal for understanding potential controls on the permeability of 
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fault gouge.  The model for the permeability of clay-sandstone mixtures km, 

presented by Revil and Cathles (1999) is given below: 

𝐾𝑚 = 𝐾𝑠𝑑

1−
𝑉𝑐𝑙
∅𝑠𝑑 × 𝐾𝐶𝑓𝑠

𝑉𝑐𝑙/∅𝑠𝑑 ,     0 ≤ 𝑉𝑐𝑙 ≤ ∅𝑠𝑑             (4.3) 

   𝐾𝑚 = 𝐾𝑠ℎ𝑉𝑐𝑙
3/2

,         ∅𝑠𝑑 ≤ 𝑉𝑐𝑙 ≤ 1                        (4.4) 

where Km is the permeability of sand clay mixtures,  Vcl is the clay volume, ø𝑠𝑑  and 

𝐾𝑠𝑑 are the porosity and permeability of the sand end-member, 𝐾𝑠ℎ is the 

permeability of the shale end-member and permeability of the clay-free sand is, 

                   𝐾𝐶𝑓𝑠 = 𝐾𝑠ℎ∅𝑠𝑑
3/2

                                 (4.5)     

In Revil et al. (2002) model, the permeability and porosity of a sand-clay mixture 

(i.e. fault gouge) could be controlled by the porosity and permeability of the clay and 

sand matrix, (i.e. both the porosity of the sand, as well as the permeability of the 

sand and clay). Moreover, the critical porosity of the sand is controlled by grain 

sorting and its permeability is also controlled by both grain-sorting and grain-size. 
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Figure 4.18 Plot showing effects of clay minerals (Mica, Kaolinite, Illite-smectite and chlorite) content on fault rock gas, brine and distilled water permeability. (semi-log 

plots) 
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To assess the implications of this model for fault rock permeability, the gas, brine and 

water permeability data of fault rock collected during present study was combined to 

compare with the model of Revil and Cathles (1999). For this purpose, three different 

ranges of sand-clay mixtures model estimations were made to capture the full range of 

data. The first sand considered coarse grained and well sorted sand, with a porosity of 

42% and a permeability of 1000mD and with a clay end-member permeability of 

0.0028mD. The second sand is fine-grained, poorly sorted sand with a porosity of 29% 

and permeability of 100mD, with clay end-member permeability of 0.01mD. The third 

sand was very poorly sorted, with a porosity of 15% and permeability of 0.01mD and 

the permeability of the clay end member of 0.0055mD. The results show that for given 

clay content the mixtures can have up to four orders of magnitude difference in 

permeability (Figure 4.19). These estimates provided with a reasonable agreement to 

the measured permeability values. Although few outliers is the reflection that the 

measure of clay content from QXRD analysis gives the total amount of clay content 

rather the clay might be distributed within the pore spaces. The permeability is also 

controlled by the distribution of clay content within the pore bodies not only the amount 

of clay.   

 

Figure 4.19  Plot of permeability of a sand-clay mixture as a function of clay content where the initial 

sands have different grain-sizes and grain-sorting, hence porosity and permeability (semi-log 

plot)   
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4.4.3 Comparison of the fault rock permeability data with existing 

empirical models 

The sealing capacity of fault rocks could be assessed with empirical relations developed 

by (e.g. Sperrevik et al., 2002; Manzocchi et al., 1999). The empirical relations of 

Manzocchi et al. (1999) and Sperrevik et al. (2002) demonstrates that fault rock 

permeabilities decreases with increasing clay percentages (Figure. 4.20) and provide a 

direct relationships with clay fractions to predict fault rock permeabilities. It has been 

argued that the clay contents within the fault rocks are thought to be the same to the clay 

fraction of the sequence which has moved past a point on a fault (e.g. Walsh et al., 

2008). Based on the assumptions of Manzocchi et al. (1999) if fault rock permeability 

estimated that might result in discrepancies due to various other factors, such as burial 

depth, diagenesis and types of the clay minerals and the extent of cementing materials 

present. Due to that reason, the model introduced by Revil and Cathles (1999) discussed 

above was applied to the data obtained during the present study for comparison with 

other two model of fault rock permeability estimation i.e. Manzocchi et al. (1999) and 

Sperrevik et al. (2002). It should be noted that fault rock permeability estimated using 

empirical equation of Sperrevik et al. (2002) considering the maximum depth of 3000m, 

which is similar to depth of the cores analyzed during the current study. The trend line 

generated based on Sperrevik et al. (2002) correlation plotted together with data 

obtained during present study of fault rock appears to be higher than measured data at 

lower clay content. However, most of the experimental data on fault rock permeability 

appears below the curve generated by Sperrevik et al. (2002) correlation (Figure 4.20). 

In addition to Sperrevik et al. (2002) permeability estimation relation, the fault rock 

permeability was also estimated by using empirical equation of Manzocchi et al. (1999). 

The equation developed was based on the experimental data of Antonellini and Aydin 

(1994) and number of other fault rock data sets. Manzocchi et al. (1999) model uses 

fault displacement term (D) that takes into account of the effect of deformation 

thickness similar thickness of fault displacement reported by Antonellini and Aydin 

(1994). The fault displacement thickness of 1mm used in Manzocchi et al. (1999) 

equation for fault rock permeability estimation. The reason of selecting 1mm fault 

displacement thickness is that the most of the studied deformation bands were in range 

of 1 to 2 mm.  The estimated permeability appears higher than measured permeability at 
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even low clay content (Figure 4.21). Manzocchi et al. (1999) model is overestimating 

fault rock permeability at even lower clay fractions. The difference in estimated and 

measured permeability is around 3 orders of magnitude (Figure 4.21). The model 

estimates about 3 to 4 orders lower permeability particularly at low clay content than 

measured. Therefore, it could be argued that these empirical equations provide a poor 

representation of the fault rock permeability estimates based on the present study data..   

 

Figure 4.20  Comparison of the permeability of fault rocks as a function of clay content obtained during 

the present study using the fault rock empirical relations of Sperrevik et al. (2002) and 

Manzocchi et al. (1999) (semi-log plot). 

The empirical relation reported Revil and Cathles (1999) and Revil et al. (2002) were 

applied to the present study data and the results of the measured fault rock permeability 

were plotted versus clay content and are shown in Figure 4.21.  Figure 4.21  presents 

that at higher permeability range the Revil and Cathles (1999) model results are very 

similar to those of Sperrevik et al. (2002) particularly at clay contents of <40%. This 

seems to be in contradiction with the concerns expressed above regarding the quality of 

the data on which the Sperrevik et al. (2002) paper was based. A potential reason for the 

results being similar to the Revil and Cathles (1999) model at higher range of 

permeabilities is that the laboratory measurements used in the Sperrevik et al. (2002) 

calculation were conducted at very low confining pressures using distilled water as 

permeant. A higher confining pressure would probably have reduced the permeability 

by several orders of magnitude for samples whereas the use of distilled water is likely to 

have given permeability values far lower than if formation-compatible brine had been 

used. In other words, the effects of using low stress and incompatible formation water 
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for measuring the fault rock permeability may have cancelled each other out. The 

Sperrevik et al. (2002) model predicts that  permeabilities continues to decrease as the 

percentage of clay increases, whereas, the model of Revil et al. (2002) does not show 

any reduction at  higher clay contents. It could be argued, that the Revil et al. (2002)  

model of permeability estimates could be more appropriate than that of Sperrevik et al. 

(2002) at higher clay contents because: (i) the data used by Sperrevik et al. (2002) for 

samples with very high clay contents was far lower, the predicted permeabilities by 

Sperrevik et al. (2002) was 0.001 nD.  However, to the best of author’s knowledge, no 

any laboratory technique has yet published such low permeability (i.e. 0.001nD) on core 

plugs. Therefore, the fault seal algorithms based on Manzocchi et al. (1999) and 

Sperrevik et al. (2002) empirical estimates does not take account of mixture of sand-

clay rather they provide a direct relation in between two properties. However, apart 

from clay fractions, the fault rock permeability could be affected by various other 

factors, such as burial depth and types of the clay minerals (e.g. Walsh et al., 2008).  

It is found that the data is totally consistent with the Revil et al. (2002) models and that 

a massive amount of scatter exists because of the differences in permeability of the sand 

and clay endmembers that are mixed in the fault. The sand endmember could vary 

between 10D and 0.001 mD depending on original grain size and sorting and the extent 

of diagenesis. The clay endmember could vary by orders of magnitude depending on 

clay type and level of compaction, therefore, it is probably the published empirical 

relationships that are too simplistic and that the clay vs permeability that have measured 

in the laboratory is more realistic and fits in better with theory. 
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Figure 4.21  Comparison of the permeability of fault rock as a function of clay content using the model of 

Revil and Cathles (1999) and empirical model proposed by Sperrevik et al. (2002) and 

Manzocchi et al. (1999)  

4.4.4 Implications of results for fault seal analysis 

4.4.4.1 Estimation of fault permeability from clay content 

The fault rock permeabilities are usually incorporated in reservoir simulation for 

modelling reservoir behaviour using transmissibility multipliers (Manzocchi et al., 

1999, 2010). Most of these are derived from distilled water permeability based on work 

related to Fisher and Knipe (1998, 2001). However, many of the gas reservoirs are also 

compartmentalized due to fault processes (e.g. Zijlistra et al., 2007). The results of the 

present study suggest that permeability measured with distilled water permeability on 

average reduced by an order of magnitude than gas permeability. If the distilled water 

permeability is used in the place of gas permeability for transmissibility calculation that 

might result in underestimation of cross fault transmissibility (e.g. Fisher and Knipe 

1998, 2001). Therefore, care must be taken in assigning proper value of fault 

transmissibility for predicting the gas recovery and analysing gas reservoir behaviour.   

In addition, the oil and gas reservoirs are usually surrounded by aquifers. Aquifer 

permeability is important to control the rate of aquifer encroachment, which in turn 

impacts on gas trapping (i.e. ultimate recovery) and brine production. Therefore, it 

becomes important to determine the rate of aquifer encroachment so that gas and brine 

production can be modelled and production could be optimized (e.g. Hower et al., 

1992). If this is the case then the brine permeability measured during present study will 

help to model aquifer encroachment. This could be better performed by assigning 
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transmissibility multipliers based on brine permeabilities rather than distilled water 

permeabilities to model accurately the aquifer encroachment. The fault rocks studied are 

based on cataclastic type and phyllosilicate-framework; although the clay rich 

sequences fault or clay smears type of fault rock permeability might affect in different 

way that needs to be investigated.    

4.4.4.2 Implications for estimation of fault rock permeabilities 

There is lack of data on two-phase fault rock properties authors used tight gas sandstone   

as an analogue for the fault compartmentalized reservoirs modelling (e.g. Zijlstra et al., 

2007). Similarly, present study assessed the controls on gas slippage effects within fault 

rock samples, the slippage factor data obtained plotted together from Byrnes et al. 

(2009) data of the tight gas sandstone, which resulted in a large scatter (Figure 4.22). 

The large amount of scatter in the b-value-permeability data means that either the b-

values are calculated for each sample or the measurements should be made at very high 

pore pressure (>1000 psi) to reduce the magnitude of the slippage correction that needs 

to be applied. 

 

Figure 4.22  Plot of fault rock gas permeability against gas slippage factor. Data collected during 

present study are compared to those presented by the Discovery group data from Byrens et 

al. 2000.  

The brine permeability can be estimated from gas permeability based on empirical 

correlations (e.g. Jones and Owens, 1980; Chowdiah, 1987). In an attempt present study 

using above mentioned correlations estimated brine permeability. The estimated values 

of fault rock brine permeability based on empirical relations differ from the data 
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measured in laboratory (Figure 4.23). As, these estimated values using empirical 

relations and were compared with present study data of fault rock permeability 

suggested that the measured liquid permeability stays less than gas permeability even at 

higher >1mD gas permeability. Therefore, the estimated results based on above 

empirical correlations may result in overestimation of liquid permeability consequently 

the transmissibility multipliers for fluid flow modelling.   

 

Figure 4.23  Comparison of gas permeability Kg and brine permeability kb data measured during this 

study with published correlations. 

4.5 Conclusions  

This chapter integrates the results from microstructural analysis and experimental 

investigations to delineate the cross fault flow behaviour. The conclusions made from 

results are summarized below:   

 Fault rock samples permeability was initially measured with gas as a pore fluid 

that reduced by one order of magnitude when measured with distilled water. The 

permeability to gas is around 30% that of NaCl brine, most of the fault rock gas 

permeability results were close to 20% NaCl brine permeability. The findings 

suggest that if gas permeability is used to calculate transmissibility multipliers 

instead of formation compatible fluids that could lead to an overestimation of 

cross fault fluid flow. 

 The characteristic pore throat size of samples was estimated based on the 

Klinkenberg (1941) procedure and from mercury porosimetry data. Around an 

order of magnitude difference was observed in pore sizes. The pore throat size 
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from mercury injection data was higher than those estimated from Klinkenberg 

slip parameters because of the existence of delicate clay minerals. However, the 

effective pore size estimated following Klinkenberg procedure reflects that the 

gas only follows those paths which are open to flow without obstructing the 

pores.      

 The microstructural observations from polished thin sections were studied to 

relate fault rock permeability to samples texture. In addition to that QXRD 

analyses of samples conducted which showed range of clay minerals, illite-

smectitie, kaolinite and chlorite. A lower permeability to distilled water was 

observed than brine and gas that might be due to interactions of water with clay 

mineral.  

 It was attempted to evaluate the relation of gas slippage to permeability of fault 

rock samples. The results showed that there is a broad negative power-law 

correlation between b-value and permeability. Overall, there was a large amount 

of scatter in the b-value and permeability data which suggests that such 

correlations should not be used where accurate absolute permeability values of 

low permeability fault rock are needed. Instead, the b-value should be obtained 

for each sample or experiments should be conducted using high pore pressures 

to minimize the correction. 

 An attempt was made to identify correlation between permeability and clay 

content. Overall, no relation was identified between fault rock permeability and 

clay content. The lack of correlation probably reflects the fact that clay minerals 

with different proportions exists within different samples. Fault rock 

permeability might be controlled by a combination of different microstructural 

elements. Results reported suggest that it is unsafe to correlate permeability 

simply with clay content. 

 The comparisons of existing empirical estimates of permeability of fault rock 

samples were performed such as those of the Manzocchi et al. (1999); Sperrevik 

et al. (2002) and of Revil et al. (2002). It was observed that the model of Revil 

and Cathles (1999) resulted in scatter due to heterogeneity and other reasons 

such as microfractures. However, the Revil and Cathles (1999) model provides 
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reasonable estimates of permeability compared to above mentioned empirical 

relations. Although it also depends on the information of sand-clay fractions.    
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5 Fault rock gas and liquid 

permeability stress sensitivity  

 

5.1 Introduction  

Fault rock permeability measurements made at ambient stress conditions are well 

documented (e.g. Fisher and Knipe, 2001; Fowles and Burley, 1994; Gibson, 1998; 

Sperrevik et al., 2002; Tueckmantel et al., 2011, 2012). There is however very few 

published data on the permeability of fault rocks, that has been attempted to obtain 

data at in situ stress conditions (e.g. Al-Hinai et al., 2007). This could be a serious 

omission as laboratory measurements of the permeability of tight rocks are very 

sensitive to the confining stress (e.g. Thomas and Ward, 1972; Brower and Morrow, 

1985; Byrnes et al., 2000). In particular, routine core analysis permeability 

measurements made at ambient low stress (~400 psi confining pressure) on tight 

sandstones may be several orders of magnitude lower than those made at in situ 

stress conditions (e.g. Byrnes et al., 2000). If this is the case for fault rocks, the most 

commonly used data (e.g. Fisher and Knipe, 2001) for calculating transmissibility 

multipliers to take into account the impact of faults on fluid flow in production 

simulations models could be wrong by several orders of magnitude because the 

measurements were made at ambient stress rather than the in- situ stress conditions. 

The present study attempts to assess the extent to which measurements conducted at 

low stresses could affect the results of fault seal analysis.  

Fault rock samples obtained from outcrops are also commonly used to assess the 

impact of faults on fluid flow (e.g. Morrow et al., 1984; Fowles and Burley, 1994; 

Gibson, 1998; Al-Hinai et al., 2006). There are, however, concerns that weathering 

may have altered the properties of these samples relative to their subsurface values. 

So the question remains whether samples from reservoir cores could be more 
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appropriate for the derivation of fluid flow properties for fault rocks than those from 

the subsurface. Although, the stress relaxation may result in micro-fracturing, which 

could be observed in both outcrop samples and reservoir cores (e.g. Dong et al., 

2010).  

This chapter comprises five main sections. The chapter starts by reviewing the basic 

theory on low permeability tight rock samples in Section 5.2. The overview of 

experimental procedures is presented in Section 5.3. The experimental results of 

absolute gas and brine permeabilities measured at different levels of stress are 

presented in Section 5.4. The discussion about the permeability stress sensitivity of 

fault rock data is presented in Section 5.5. Klinkenberg procedures were performed 

on all samples at different net confining stresses to determine the gas slip parameters 

and thus enable a better comparative analysis of the stress sensitivity of the gas and 

brine permeability of fault rocks. The impact of brine composition on fault rock 

permeability is also discussed. The results from tight gas sandstones permeability 

and present study data on fault rock are compared and discussed. The implications of 

these results on fault seal workflow are then presented. Finally, the conclusions made 

based on the results, are summarized in Section 5.6.  

5.2 Gas flow mechanisms  

Gas flow in tight rocks has remained of interest of many researchers and is 

extensively investigated because it plays a major role in gas reservoir engineering 

and it also has considerable importance for risking the flow properties of seals above 

gas storage sites. Permeability is a property of the porous medium and is often 

thought to be independent of the type of pore fluid present in the pore space. 

However, in a porous medium in which the pores with diameters similar to those of 

the mean free path of the gas molecules, the additional flux due to gas flow at the 

pore walls (i.e. the slippage flow of gas molecules) increases the flow rate of gas and 

hence the apparent permeability. In the following section the phenomenon of slip 

flow is discussed.  
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5.2.1 Slip flow (Klinkenberg model) 

Klinkenberg (1941) presented a model representing a direct relationship between the 

measured gas permeability (Kg) and the intrinsic permeability, with the inverse of the 

mean pressure ( �̅�) and the Klinkenberg b-factor, given by:  

𝐾𝑔 = 𝐾𝑙 (1 +
𝑏

�̅�
)                      Eq. (5 − 1)  

Where, Kg is the apparent gas permeability, Kl is the true absolute permeability of 

rock; b is the Klinkenberg b-value and �̅� is the average pressure. Flow tests are 

conducted at a range of pore pressures and then a plot of apparent gas permeability 

vs 1/𝑃 ̅is then be extrapolated to 1/𝑃 ̅  = 0. The permeability measurements from 

the Klinkenberg tests were fitted using a straight line to estimate the b factor. As 

recommended by the API (1998), only tests where the data can be fitted to a straight 

line with a correlation coefficient greater than 0.98 for 4 or more data points should 

be considered (Figure 5.1). In Figure 5.1 three shows that the permeability 

measurements were taken at a 3 ranges of stress conditions and were corrected for 

slippage effects. The higher the stress lower permeability would be expected and 

higher slippage factor.  

It is also theoretically possible to get the pore radius from b-factor values using 

following equation (Klinkenberg 1941): 

4

eff

c P
b

r


                 Eq. (5-2) 

where, c is dimensionless parameter that depends on the geometry but is in the order 

of one,  (Klinkenberg, 1941) and reff is the pore radius. The b factor is constant with 

pore pressure (Klinkenberg, 1941), when   is expressed as: (Loeb, 1934) 

2p

RT

P M

 
            Eq. (5-3) 

where μ is the gas viscosity, R the gas constant, T absolute temperature and M the 

molar mass of the gas.  
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Figure 5.1 Diagrams showing the principle behind Klinkenberg corrections. 

The gas slippage-factor is a function of the pore size, which is why the value varies 

with the type of rock. The b-factor has been the focus of various studies, that is used 

to relate with Klinkenberg gas permeability to estimate absolute gas permeability 

(e.g. Tanikawa and Shimamoto, 2006; McPhee and Arthur, 1991; Sampath and 

Keighin, 1982; Florence et al., 2007). A summary of the existing Klinkenberg factor 

correlations are provided in Table 5.1. 

The Klinkenberg plots are usually constructed to derive accurate values of the gas 

slippage factor and apparent gas permeability. However, in petroleum industry it is 

common to make a single permeability measurement at a low gas pressure and then 

apply a Klinkenberg correction based on empirical relationships between the gas 

slippage factor and permeability, or gas slippage factor and porosity and 

permeability (e.g. Heid et al. 1951; Jones and Owens, 1980; Sampath and Keighin, 

1982). Sampath and Keighin (1982) model the rock as a collection of cylindrical 

pores, where 4k r  , so that slippage radius  
1/2

/slipr k   and 𝑏 ∝  (𝐾∞/∅−0.5)  

(Sampath and Keighin, 1982). As the b factor depends on the gas, correlations would 

have to be corrected for the gas used (e.g. Florence et al., 2007). However, 

permeability measured with the same gas (Byrnes et al., 2009) resulted in a scatter. 

This has increased uncertainty when using such correlations to deduce to subsurface 

conditions. Therefore to save the time, and hence the operational costs to analyze the 

permeability of low permeability tight rock samples under in situ conditions transient 
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techniques such as pulse decay permeametry (e.g. Brace et al., 1968; Jones, 1997) 

are increasingly being used (e.g. Rushing et al., 2003). The pulse-decay experiments 

are conducted using gas at high pore pressures of up to 2000 psi (e.g. Jones, 1997) 

because the higher pore pressures reduce the gas slippage. Although, low 

permeability samples have small pore throat sizes, so it may still be necessary to 

perform Klinkenberg corrections to obtain accurate absolute permeability (e.g. Jones, 

1997). This chapter, in addition to liquid permeability stress sensitivity presents 

experimental data on gas permeability stress sensitivity of fault rocks obtained under 

a range of pore pressure and confining stresses. The results will be used to analyze 

and to explore the combined effects of changing pore pressure on slippage and 

absolute permeability of fault rock. 

Table 5.1 Overview of the existing Klinkenberg correlation factors; Kap is apparent permeability and 

ϕ is porosity. 

S.N.o Author Sample Equations 

1 Heid et al. (1950) 

Oil-field cores with 

permeability values of about 

0.1 – 1000mD 

𝑏 =  11.419 (𝐾𝑔)−0.39 

2 
Jones and Owens 

(1979) 

Core samples (>100) ranging 

from 0.01 to 2500mD 
     b =12.639 (𝐾𝑔)−0.33 

3 Jones (1972) 
Tight gas sand samples ranging 

from 0.10 – 100mD 
𝑏 =  6.9(𝐾𝑔)−0.36 

4 
Sampath and Keighin 

(1981) 

Cores obtained from North sea 

gas reservoir. (0.01 – 10mD) 
𝑏 =  13.851(𝐾𝑔)−0.53 

5 
McPhee and Arthur 

(1991)  

Ten core samples from tight 

gas sand field (10
-15

 – 10
-17

 m
2
) 

𝑏 = 0.0955(𝐾𝑔/𝜙)−0.53 

6 
Tanikawa and 

Shimamoto (2006) 

Sedimentary rocks with 

permeability 0.001 – 10mD 
𝑏 =  11.2(𝐾𝑔)−0.37 

7 Florence et al. (2007) 

Data in the literature and from 

industrial sources (0.01 -

0.01mD. 

𝑏 = 43.345(𝐾𝑔 /𝜙)−0.5 

 

5.3 Methodology  

A rigorous investigation has been made on the stress dependent petrophysical 

properties of a variety of fault rocks. The samples were obtained from central and 

southern North Sea reservoir cores, and collected from different outcrops of 90 



 

Petrophysical properties of fault rock-Implications for petroleum production                Page 
140 

 

Fathom fault and Miri airport road fault rock exposure Malaysia. The permeability to 

gas, brine and distilled water has been determined for all of the aforementioned 

samples. Prior to permeability measurements all samples were cored and cleaned, in 

addition preliminary measurements were made on these samples such as their 

dimensions i.e. diameter and length were measured using a calliper. The details 

about how plugs were cored and cleaned are presented in Chapter 3.   

The permeability of 47 fault rock rectilinear samples has been measured at ambient 

stress by changing pore fluids from gas to brine (20% NaCl), and finally measured 

with distilled water. In addition to ambient stress measurements the permeability of 

10 fault plugs have been measured as a function of stress using 30% NaCl brine, 

3.5% NaCl brine, distilled water and gas. A summary of the number of samples 

analysed under different experimental conditions is given in Table 5.2. Detailed 

microstructural results and petrophysical properties of these samples were presented 

in Chapter 4. All permeability tests were performed using a Hassler-type core-

holder. The pulse decay technique has been used to measure permeability of tight 

samples (<0.1 mD). For high permeability samples (>0.1 mD), permeability 

measurements were made using the steady-state method. The experimental 

procedures adopted and measurement techniques employed are described in detailed 

in Chapter 3.  

Helium gas and synthetic brines (NaCl) of different composition prepared in the 

laboratory were used for permeability stress sensitivity experiments. Initially, gas 

permeability measurements were made on all plugs at various stress conditions by 

flowing nitrogen and helium gas. After gas permeability measurements all samples 

of the central North Sea were fully saturated with 30% NaCl brine and the 

permeability was then measured. For all other samples, following gas permeability 

measurements, permeability was measured using 20% NaCl brine. Finally, the 

permeability of 10 plug samples from Central North Sea was measured with 3.5% 

NaCl and with distilled water. All brine 3.5%NaCl and distilled water permeability 

results are presented in Appendix A. It should be noted that permeability 

measurements were made at different levels of stress. Initially the experiments were 

conducted at lower stress of 500psi then this was gradually increased up to 5000psi. 

The experiments on Central North Sea group-A core samples were conducted at a 
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maximum confining stress of 2500psi, due to friable nature of samples. However, all 

other measurements were made at maximum net confining stress of 5000 psi.  

The fault rock permeability values reported were deconvolved to get true fault rock 

permeability (𝐾𝑓) using the techniques provided in Section 3.5.6. The permeability 

measured at each confining stress was deconvolved. The arithmetic mean of the gas 

and brine permeability of plugs at each stress is also reported, which is based on the 

concept that the samples are heterogeneous (e.g. Manzocchi et al., 1999). 

 

Table 5.2 Summary of the number of samples analysed under different experimental conditions. 

 

5.4 Results 

In the following section, the stress dependent petrophysical properties of central and 

southern North Sea reservoir core samples as well as the petrophysical properties 

obtained on outcrop samples collected from the 90 Fathom fault United Kingdom 

and Miri airport road Malaysia fault exposure are reported. The total number of 

samples analysed under different conditions are summarized in Table 5.3. The 

results of SEM and QXRD for studied samples are presented in Appendix A and are 

discussed in Chapter 3.  

The absolute permeability of sandstone samples can be expressed as a function, F  of 

the effective stress i.e., ( ')k F   , where '  can be represented as, ' c k pn P   , 
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where σ’ is the effective stress PP  is the pore pressure  and c is confining stress 

(e.g. Warpinski and Teufel, 1992; Al-Wardy and Zimmerman 2004; Li et al., 2009). 

The absolute permeability drops as the stress is increased, and is fitted with a power 

law relationship (Ghabezloo et al., 2008)  

      c k pk K n P





                   Eq.  (5-4) 

Where, σc is the net stress or  confining stress, Pp is the pore pressure, nk, is the 

effective stress coefficient for permeability, assumed to be equal to one, K is the 

permeability extrapolated to zero net stress, and  is the stress exponent. In addition, 

the reduction in permeability due to stress increase was calculated using the 

following equation,  

𝐷𝐾(%) =  [(𝐾@500 − 𝐾𝑖𝑛−𝑠𝑖𝑡𝑢)/𝐾@500] × 100         Eq.   (5-5) 

where Dk is the permeability loss in percentage, K@500 (mD) is permeability 

measured at low stress of 500 psi confining stress, and Kin-situ (mD) is permeability 

measured at in-situ stress conditions.  

5.4.1 Central North Sea reservoir, UK  

The following section provides details about the results obtained on stress dependent 

gas and brine permeability of fault rock samples.  

 Stress dependent single phase gas permeability  2.8.1.1

The gas permeability measured at 500 psi confining stress ranges from 0.08mD to 

5.2mD, with an arithmetic mean of 1.2mD. The permeability measured at 2500psi 

confining stress ranges from 0.06mD to 4.3mD, with an arithmetic mean of 0.93mD. 

The data on permeability obtained is reported in Table 5.3. The relationship between 

normalized gas permeability and confining stress is reported in Figure 5.2, which 

shows that the permeability of these samples are stress dependent over the range 

used. On average, the reduction in permeability falls around 22.5% as stress 

increased from 500psi to 2500psi. Overall, the stress sensitivity of permeability 

measurements increases with decreasing permeability.  
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The gas permeability results follow a power-law relationship to the stress (Figure 

5.3), the data was fitted using Equation 5-4. The fitting parameters obtained from 

applying a power-law model to the stress dependent permeability data and are 

provided in Table 5.4. The slippage factor values were then used to estimate the pore 

radius using Equation 5-2. The results obtained on gas slippage factor are reported in 

Table 5.4. 

1.6.1.1 Stress dependent brine permeability  

The results show that the brine permeability ranges from 0.04mD to 3.52mD at net 

confining stress of 500psi, with an arithmetic average of 0.63mD (Table 5.3). 

Similarly, the brine permeability at confining stress of 2500psi ranges from 0.002mD 

to 2mD, with an arithmetic mean of 0.40mD. In other words, the permeability is on 

average reduced by 35% as stress is increased from 500 to 2500psi. This reduction in 

permeability can be classified as a moderate reduction (>35%) in comparison with 

the reduction that is experienced in the gas permeability of these samples. The power 

law trend line was also fitted with brine permeability results and the exponent for 

each sample is reported in Table 5.4. 

 

Figure 5.2 Plot of the fault rock normalized gas permeability versus net confining stress; data are 

from Central North Sea reservoir core samples. 



 

Petrophysical properties of fault rock-Implications for petroleum production                Page 
144 

 

 

Figure 5.3 Plot of the fault rock gas permeability versus net stress; data are from Central North Sea 

reservoir core samples. 
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Table 5.3 Stress dependent gas and brine permeability of cataclastic fault core samples from Central North Sea reservoirs. 

 

Table 5.4 Petrophysical properties of fault rock, slip factor, slip radius and gas, brine power law exponents from central North Sea data. 

  

Sample ID Gas Brine
bk       

(psi)

Slip- 

radius 

(μm) 

bk       

(psi)

Slip- 

radius 

(μm) 

bk       

(psi)

Slip- 

radius 

(μm) 

bk       

(psi)

Slip- 

radius 

(μm) 

bk       

(psi)

Slip- 

radius 

(μm) 

CP1A -0.2 -0.2 4 1.8 5 1.48 4 1.7 5 1.5 5.3 1.5

CP1B -0.1 -0.2 4 1.9 4 1.97 4 2.1 3 2.2 3.5 2.2

CP1C -0.6 -0.1 12 0.7 22 0.36 24 0.2 - - - -

CP1D -0.2 -0.3 10 0.7 12 0.65 5 1.7 3 2.8 - -

CP2A -0.3 -0.1 18 0.4 19 0.40 21 0.4 22 0.3 - -

CP2B -0.04 -0.05 3 2.7 3 2.43 4 2.1 4 1.8 - -

CP2C -0.4 -0.2 16 0.5 20 0.39 23 0.3 24 0.3 25.5 0.30

CP2D -1.4 -0.5 37 0.2 148 0.05 259 0.03 290 0.1 320.0 0.10

CP2E -1.5 -1.0 18 0.4 34 0.23 48 0.2 64 0.2 77.7 0.15

CP2F -0.55 -0.2 23 0.3 27 0.28 31 0.2 32 0.2 34.1 0.21

Power law 

exponent
500 (psi) 1000 (psi) 1500(psi) 2000 (psi) 2500 (psi)
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5.4.2 Southern North Sea reservoir  

Three cores samples were supplied from a Triassic reservoir in the Dutch sector of 

the Southern North Sea. A total of five plugs were taken for measurement, the gas 

and brine permeability results are reported in Table 5.5.  

 Stress dependent gas permeability  2.8.1.2

Single-phase gas permeability measured on these plugs at confining stress of 1000psi 

ranges from 0.00059mD to 0.14mD with an arithmetic average of 0.032mD. The gas 

permeability at confining stress of 5000psi ranges from 0.00020mD to 0.11mD, with 

arithmetic average of 0.025mD. So overall, the arithmetic average reduction in 

permeability was 22%, similar to that experienced in gas permeability of Central 

North Sea reservoir core samples. The relationship between normalized gas 

permeability versus confining stress was plotted and is shown in Figure 5.4.  

 Stress dependent brine permeability  2.8.1.3

The results show that the arithmetic average brine permeability reduced from 

0.012mD to 0.009mD as the effective stress was increased from 1000 to 5000psi. 

The permeability at confining stress of 1000psi ranges from 0.00009mD to 

0.042mD. These samples have shown less stress sensitivity to brine permeability as 

compared to gas permeability stress sensitivity (Table 5.5). The permeability at 

5000psi stress ranges from 0.000036mD to 0.035mD. The average reduction in brine 

permeability is ~25%, which is similar to that experienced in the gas permeability of 

these samples. The permeability results plotted versus stress are reported in 

Appendix A.  
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Table 5.5 Basic properties and stress dependent single phase gas and brine permeability (mD) from southern North Sea reservoir cores. 

 
Figure 5.4 Normalized single phase gas permeability versus confining stress, and gas permeability versus confining stress the samples are from southern North Sea reservoir 

core samples. 
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5.4.3 Fault samples from 90 Fathom Fault, UK and Miri exposure, 

Malaysia  

The stress dependence of gas and brine permeability of six plugs from the main slip 

surface cataclasite, four plugs from single deformed zone and two samples from Miri 

fault exposure were measured. The normalized gas permeability results from all 

samples are plotted in Figure 5.5.  The gas permeability versus confining stress 

results are provided in Figure 5.6.  

 Stress dependent gas permeability  2.8.1.4

The gas permeability measured on slip-surface cataclasite plugs at confining stress of 

1000psi ranges from 0.0080mD to 0.08mD, with an arithmetic average permeability 

of 0.044mD (Table 5.6). The permeability measured at 5000psi ranges from 

0.071mD to 0.005mD with an arithmetic average of 0.034mD. So, the average 

reduction in permeability experienced by these samples is 22.7% by increasing the 

confining stress from 1000psi to 5000psi. These samples have shown less stress 

dependency compared to reservoir core plugs permeability. The gas permeability of 

single deformation band plugs are also reported in Table 5.6, which shows that on 

average permeability reduces from 3.9mD to 2.6mD as stress changes from 1000psi 

to 5000psi. This reduction in permeability by increasing confining stress from 1000 

to 5000psi is ~ 30%.  

Miri exposure Malaysia fault samples were classified as moderately stress dependent 

(>60%) as compared to other outcrop samples from 90 Fathom fault. The 

permeability of these samples on average reduced from 0.5mD to 0.18mD as 

confining stress increases from 1000psi to 5000psi. The permeability results of these 

samples are also reported in Table 5.6. The Klinkenberg procedure followed on 

these measurements to obtain the slippage factor values. The pore size estimated 

from gas slippage factor using Equation (5-2) was also obtained and results are 

reported in Table 5.7.  



 

Petrophysical properties of fault rock-Implications for petroleum production                Page 
149 

 

 Stress dependent brine permeability results 2.8.1.5

Laboratory measured results show that the slip-surface cataclastic permeability 

ranges from 0.011mD to 0.0014mD with the arithmetic mean of 0.051mD at 5000psi 

confining stress. These results suggest that the brine permeability is only slightly 

stress dependent. Whereas the Miri samples have shown more reduction than 90 

Fathom samples when increasing confining stress from 500 psi to 5000 psi. The 

permeability measured at stress of 1000psi to 5000 psi, on average ranges from 

0.01mD to 0.005mD.  

 

Figure 5.5 Plot showing the relationship between normalized single phase gas permeability and net 

confining stress; the data are from 90 Fathom fault plugs and Miri exposure Malaysia 

fault samples.  

 

Figure 5.6 Plot of the 90 Fathom fault, UK and Miri exposure Malaysia fault plugs gas permeability 

(mD) versus net confining stress (psi). 

 



 

Petrophysical properties of fault rock-Implications for petroleum production                Page 150 

 

Table 5.6 Stress dependent gas and brine permeability of 90 Fathom fault rock samples and Miri exposure fault rocks, Malaysia. 
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Table 5.7 Petrophysical properties of fault rock, gas slippage factor, slip radius and gas, brine power law exponents from outcrop samples. 

 

 

Sample ID Gas Brine  
bk       

(psi)

Slip- 

radius 

(μm) 

bk       

(psi)

Slip- 

radius 

(μm) 

bk       

(psi)

Slip- 

radius 

(μm) 

bk       

(psi)

Slip- 

radius 

(μm) 

bk       

(psi)

Slip- 

radius 

(μm) 

90FM1 F -0.17 -0.40 230 0.10 202 0.11 206 0.11 209 0.11 219 0.10

90FM4 F -0.37 -0.38 47 0.49 68 0.28 129 0.18 131 0.17 112 0.20

90FM6 F -0.16 -0.21 239 0.09 242 0.09 245 0.09 211 0.11 176 0.13

90FM7 F -0.15 -0.23 82 0.27 140 0.16 164 0.14 188 0.12 181 0.12

90FM9 F -0.27 -0.30 - - - - - - - - - -

90FM10 F -0.09 -0.20 - - - - - - - - - -

90FZB1 -0.27 -0.23 8 2.94 17 1.30 14.44 1.56 26.33 0.86 35.73 0.63

90FZB3 -0.31 - 16 1.4 70 0.32 68 0.3 62 0.36 65 0.34

90FZ-5 -0.36 -0.18 7 3.09 14 1.67 12.50 1.52 9.63 2.35 16.03 1.41

90FZ-2 -0.02 -0.19 42 0.54 38 0.60 37.38 0.60 35.49 0.64 28.44 0.79

Slip parameters at different  confining stress

Power law exponent 1000 (psi) 2000 (psi) 3000(psi) 4000 (psi) 5000 (psi)
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5.5 Discussion  

This section starts with discussing the significance of stress on permeability of fault 

rocks. Then effects of confining stress on fault rock gas and liquid permeability are 

discussed. The section then provides a comparison in between published data on tight 

gas permeability and the fault rock permeability data collected during the present study. 

Moreover, the section integrates the permeability data measured at ambient stress and 

in-situ stress conditions. Finally, the section provides with main implications from 

results. 

5.5.1 Influence of confining pressure on fault rock gas permeability   

The stress sensitivity results of fault rock permeability are shown in Figures 5.2 to 5.6. 

These results indicates that the permeability decreases as the stress increases, the effect 

of changing confining stress on permeability is greater at lower confining stresses. A 

lower reduction in permeability is observed as the stress is increased to a higher stress 

level. This reduction in permeability is similar to that reported for tight sandstones (e.g. 

Brower and Morrow, 1985; Warpinski and Teufel, 1992; McPhee and Arthur, 1991; 

Evans et al., 1997; Rushing et al., 2003; Wibberley and Shimamoto, 2003; Byrnes et al., 

2010). Ostensen (1983) investigated the tight rocks permeability and he argued that the 

reduction in permeability due to increase in confining stress is dominated by micro-

fractures. Unloading of the samples could result in a widening of connected network of 

micro-fractures or the grain boundaries that provide a high permeability network. The 

higher stress sensitivity is observed at lower confining stresses (Figure 5.7) that could 

be the result of core damage effects due to stress relief following coring.  

 

Figure 5.7 Plot showing the influence of confining stress on plugs permeability. 
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Core damage effects, where core samples are physically altered due to stress release 

during coring, has been reported by several authors (e.g. Holt and Kenter, 1992; Holt et 

al., 1992, 1994, 1998; Furre et al., 2007; Dong et al., 2010). The core samples alteration 

is possibly be the result of various processes such as overburden stress and pore 

pressure release, temperature decrease, exposure to drilling fluids, core plugs cutting 

and cleaning before performing laboratory experiments (e.g. Holt and Kenter, 1992). 

Holt and Kenter (1992) attempted to quantify core damage due to stress release by 

performing a number of experiments. Holt and Kenter (1992) created synthetic 

sandstone samples under stress in a tri-axial cell similar to reservoir stress. The 

specimen created was composed of similar grain size of reservoir sands. Holt and 

Kenter (1992) performed loading and unloading experiments and found that the pore 

volume decreases due to cement bond within the grains breaks during coring then grains 

reorientation occurs and micro cracks forms.  This suggests that unloading of samples 

could result in changes to pore throat sizes and development of micro-cracks along the 

grain boundaries.   

Some other studies, such as Carlson et al. (2011) also found that the decrease in 

permeability is higher at lower confining stresses, which could be the results of closure 

of micro-fractures. They also argued that one of the main causes of the micro-fracturing 

is stress-relief during coring and core sampling. Zoback and Byerlee (1974) reported 

that the effect of changing stress on permeability reduction in granite samples was due 

to the closure of micro-cracks. Moreover, Bai et al. (1997) found that the permeability 

of porous sedimentary rock is mainly related to the geometric dimensioning of grain 

particles and their arrangements.   

The stress sensitivity of permeability could be characterized by stress exponents. The 

stress exponents calculated for each sample are summarized in Table 5.4 and Table5.7. 

Figure 5.8 shows the relationship between stress exponent and absolute gas 

permeability plotted on log-normal plot. This shows that the highest stress sensitivity of 

permeability refers to the highest stress exponent . For example the sample CP2E 

(Table 5.3) showed the highest stress exponent, micro fractures can be observed 

between grain boundaries of this sample, which resulted in large decrease in 

permeability due to stress increase samples. For this reason an unstressed thin sections 

of this sample was prepared for micro-fractures observation. The SEM images (Figure 
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5.9) showed the presence of grain-boundary micro-fractures. Therefore, the idea of 

effect of micro-fractures on rock permeability stress sensitivity is supported by the SEM 

image analysis.  

Authors have also reported that the larger values of stress exponent correspond to the 

large decrease in permeability (e.g. David et al., 1994). Evans et al. (1997) performed 

laboratory experiments on outcrop fault from East Fork thrust fault Wyoming USA. 

They compiled stress exponents by curve fitting on permeability-stress data from the 

protolith, damaged zone, fault core and from clay-rich fault gouge permeability data 

(i.e. of those from Morrow et al., 1984). Evans et al. (1997) reported that exponents for 

damage zone and fault core were similar, while protolith resulted in larger stress 

exponent values, the samples which were observed with larger stress exponents were 

more likely sensitive to stress.  These studies suggested that the permeability reduction 

that occurs in samples with large values of stress exponents might be the result of micro 

crack closure (e.g. David et al., 1994).  Similarly the present study observed the micro-

cracks formed within the grain boundaries which were in range of 0.1 to 2 µm (Figure 

5.9). The grain boundary micro cracks could easily be closed when stress is applied 

which is why these samples are more stress sensitive. It should be noted that different 

samples follow different stress sensitivity behaviour. The data plotted is derived from 

both reservoir cores from North Sea fields and samples from 90Fathom outcrop fault. It 

was observed (Figure 5.8) that the reservoir cores have a large negative exponent 

values than outcrop samples. This potentially reflects that reservoir cores are more 

sensitive to stress than outcrop samples possibly due to the core damage effects and 

formation of grain boundary microfractures.  
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Figure 5.8 Plot showing the relationship between gas permeability measured at lowest stress (i.e. 500psi) 

and power law exponent. 

 

 
 

Figure 5.9 Typical BSEM images showing the micro-cracks observed within the fault rock core samples. 

The permeability of rock samples depends upon the pore geometries, pore dimensions, 

flow conduits or cracks, connected pore networks (e.g. Gangi, 1976; Walsh and Brace, 

1978; Ostensen, 1983; Yale, 1984; Thompson et al., 1987; Kwon et al., 2001). 

Relationships between permeability and effective stress have been developed based on 

flow through micro-cracks and cubic law of flow through fractures (e.g. Gangi, 1978; 

Walsh and Brace, 1978; Ostensen, 1983; David, 1993; David et al., 1994). A summary 

of selected models from literature are presented in Table 5.8. The differences in 

permeability stress sensitivity models (Table 5.8) are probably the difference in 

assumed shape of the cracks (e.g. Kwon et al., 2001). For example, Gangi (1978) model 

most likely fits well with nail-like crack shape and follow the power law trend with 

permeability and effective stress.  Walsh (1981), as well as Brower and Morrow (1983), 

found that permeability stress sensitivity follows the exponential decline because the 

samples contain flat-cracks. Walls (1981) found that permeability decreases due to 

stress increase as a result of flat cracks closure. Sampath and Keighin (1982) reported 

that permeability is sensitive to stress because of presence of thin–film inter-granular 

cracks with an aperture in the order of μm. The micro cracks were observed from SEM 

image analysis and these micro fractures could easily be closed due to effective stress. 

Ostensen (1983) extensively studied permeability stress senstivity of low permeablity 

samples and believed that permeability could be controlled by micro cracks. He 

analysed SEM images and found small cracks separating the grain boundaries. Similarly 

the present study permeability reduces significantly due to the application of stress 

which suggests that flow was dominated by micro cracks.  Davies and Davies (1999) 



 

Petrophysical properties of fault rock-Implications for petroleum production                Page 156 

 

also found that the reduction in permeability due to increasing overburden stress is 

influenced to rocks with slotted pores. Although, the different microcrack shapes might 

explain the different stress sensitivities of sandstone samples (e.g. Tanikawa and 

Shimamoto, 2008).The fault rock permeability might be the more sensitive to stress due 

to grain boundary microfractures than the rock inter-granular pore volume.  

Table 5.8 Table summarizes the selected permeability stress sensitivity models of low permeability tight 

rocks from literatures.  

 

 

Moreover, to understand the effect of micro-fractures and overburden stress on 

permeability of fault rocks, it is essential to describe the equations and the changes of 

the parameters under different conditions. Figure 5.10 shows an idealized diagram of 

parallel plate fracture model.  The permeability relationship was generated based on a 

dual porosity-permeability model. In particular, it is assumed that the rock is composed 

of matrix porosity and fracture porosity. The total permeability from both fracture and 

matrix can be represented as:  

𝑘𝑇 =
𝑘𝑚∅𝑚+𝑘𝑓∅𝑓

∅𝑚+∅𝑓
        Eq. (5-6) 

where, km, and kf are the matrix and fracture permeabilities respectively, ∅𝑚 and ∅𝑓 are 

the matrix and fracture porosities respectively.  

The permeability of a set of fractures, kfs, can be calculated using the cubic flow law: 
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   𝑘𝑓𝑠 =
𝑓𝑛×𝑓𝑤

2

12
              Eq. (5-7) 

where fw is the fracture width and fn is the number of fractures. If fracture width is 

incorporated in m, kfs will be in 10
-12

 m
2
 or 1 Darcy and fn is: 

𝑓𝑤 =
𝐴0.5∅𝑓

𝑓𝑛
            Eq. (5-8) 

where A is the cross sectional area of the sample. In addition to Equation (5-8) the fracture permeability 

could be obtained by using the following equation,  

𝐾𝑓 =
𝐾𝑎𝑣𝐴−𝐾𝑚(𝐴−𝑤)

𝑤𝑙
    Eq. (5-9) 

where Kav is the average permeability of fracture and matrix that was obtained during 

flow experiments in the laboratory using fractured and un-fractured core samples, A is 

the crossectional area, 𝐾𝑚 is the matrix permeability and w is the width of fracture. The 

fracture permeability could be obtained by combining Darcy’s flow equation and 

viscous foces assuming a parallel plate model,  

𝐾𝑓 = 8.45𝑋109𝑤2     Eq. (5-10) 

Combining above Equations (5-10) and Equation (5-11) to determine w: 

8.45𝑋109𝑤3𝑙 − 𝐾𝑎𝑣𝐴 + 𝐾𝑚(𝐴 − 𝑤) = 0       Eq. (5-11) 

It is also important to find out the contribution of rate of flow from matrix as well as 

from fractures separately. The contribution of flow from matrix and fracture systems 

could be described based on the Darcys’s Law, 

𝑞𝑚 =
𝐾𝑚𝐴∆𝑝

𝜇𝐿
           Eq. (5-12) 

Where 𝑞𝑚, is the matrix flow rate, A is the crossectional area, ∆𝑝 is the pressure drop, 𝜇 

is the viscosity of flowing fluid and L is the length of the sample.   

𝑞𝑓 = 9.86𝑋10−9 𝑤3𝑙∆𝑝

12𝜇𝐿
       Eq. (5-13) 

In above equation (5-13) 𝑞𝑓 is the flow rate through fractures.  
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Figure 5.10 Diagram is the illustration of rock sample representing parallel plate fracture and matrix 

system. 

 

Based on the above discussion, the permeability was modelled by considering number 

of fractures present within the samples. Two different cases were considered for 

permeability estimation, in which one sample contains the fractures width of 1 µm and 

second sample contains 0.5 µm wide fractures. The fracture spacing estimated from 

SEM micrograph was after every 200 µm, which is the average grain-size. It was 

considered that the fracture is open at ambient stress measurements and closed at in situ 

stresses. The permeability in both cases of open and closed fractures were modelled 

using the equations presented above and are plotted as a function of stress. The 

experimental results are also plotted together with the modelled data. The model results 

at ambient stress are nearly identical to the experimental results (Figure 5.11), which 

supports the idea that samples with microfractures could result in dominant part of flow 

of fluid at low stress, consequently the higher permeability values could be obtained at 

lower stress conditions. As the stress increased, micro-fractures become closed resulting 

in decreased permeability. The flow of fluid at higher stress of up to in-situ then will be 

only expected from intergranular pores, which might be equivalent to theoretically 

derived pores size from slip parameters. It was also observed from the experimental 

results that permeability at in-situ stress of 5000 psi is much lower (Figure 5.11) due to 

closing of the microfractures. These results suggest that the permeability and fracture 

width has a significant effect by changing stresses. 
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Figure 5.11 Plot is the permeability of sample based on experimental results. Micro fractures were 

observed within the thin section of samples. Permeability largely decreases as stress 

increases.  

Much of the stress sensitivity observed in the laboratory is likely due to the core 

damage. However, experiments were conducted in which samples were placed under 

reservoir stress and pore pressure conditions. The results presented in Figure 5.12a are 

without corrected for slippage effects and Figure 5.12b are corrected for gas slippage 

effects. The measured permeability increases when the pore pressure was reduced at in 

situ confining stress, due to increased gas slippage (Figure 5.12a). In other words, the 

increase in gas slippage due to the pore pressure reduction at in-situ stress increases the 

apparent permeability for high net confining stress. Conversely, the Klinkenberg 

corrected permeability was reduced by the increasing net stress. The net effect is 

reduction in measured permeability with increasing net stress at low net stress levels, 

where slippage is low due to the high pore pressure, due to the reduction of slip 

corrected permeability. At lower pore pressures, higher net stresses, the increased flow 

due to slippage compensates the reduction of Klinkenberg corrected permeability and 

measured permeabilities increases. 
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Figure 5.12 Illustration is the stress-dependent permeability of fault rock, (a) absolute gas permeability 

without Klinkenberg correction (b) is the gas permeability corrected for Klinkenberg effects. 

Figure 5.13 shows the permeability of outcrop samples from 90 Fathom Fault and Miri 

airport road fault samples plotted together with North Sea reservoir core samples. 

Measurements made at low stress i.e. 500 psi and high stress up to in-situ stress of 5000 

psi. The permeability of the outcrop samples appears to be less stress sensitive than that 

of the reservoir core samples. This indicates that the stress sensitivity observed in the 

laboratory is likely due to the core damage effects.  In general, the permeability to gas 

measured at 500psi is around double to that measured at 5000psi. These the results 

indicate that permeability derived from outcrop samples could still be reliable to use for 

reservoir modelling and analysis.  

(a) 

(b) 
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Figure 5.13 Crossplot of gas permeability of fault rocks measured at 500 psi confining stress against 

permeability measured at 5000psi confining stress. 

Figure 5.14 shows the rock mineralogy and permeability stress sensitivity, which 

indicates that there is no relation in between rock mineralogy and the fault rock 

permeability stress sensitivity. The samples even with similar amount of quartz and 

clays have shown different stress dependency behavior. Similar observations were also 

made by Pathi (2008) who investigated samples of organic-rich Woodford shale from 

western Canada and showed that there is no significant role of mineralogy in controlling 

the stress sensitive of the permeability. he. They also observed that the samples even 

with similar percentages of clay and quartz showed different stress sensitivity. Chalmers 

et al. (2012) suggested that the stress sensitivity to permeability could be related to rock 

heterogeneity. They found that the more the rock heterogeneous more will be the 

sensitive to stress. Therefore, it is clear from the results obtained that the mineralogy is 

not the only reason to describe the fault rock permeability stress sensitivity.   
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Figure 5.14 The plot is showing the rock mineralogy and absolute gas permeability stress sensitivity from 

Central North Sea. 

Overall, the results suggests that the core samples permeability under in-situ stress 

conditions might be less sensitive to stress  potentially due to the presence of 

microfractures formed as a result of stress release. Samples from outcrop are less stress 

sensitive than those from reservoir core potentially due to the presence of microfractures 

formed. An implication of this result is that the permeability of fault rocks is not likely 

to be significantly stress sensitive in the subsurface unless reactivated. It was observed 

that low permeability samples could be affected more due to core damage effects than 

high permeability samples. To reduce uncertainties related to laboratory measurements 

of permeability stress sensitivity core damage effects must be taken into account in 

interpreting the results. For example, the permeability measurements conducted in 

laboratory might be different than sub-surface (in-situ) reservoir conditions that may 

overestimate the actual permeability of reservoir at subsurface conditions. It should also 

be noted that every fault rock might experiences different damage and stress effects so 

each sample should be investigated separately.  

5.5.2 Klinkenberg slip factor  

The stress sensitivity of fault rock permeability could be related to the slip radius. Slip 

radius is an indication of pore dimension, as the gas flow model is based on flow in a 

rectangular duct with smooth walls (e.g. Beskok and Karniadakis, 1999).  Figure 5.15 

shows the two different scenarios of slip factor at low and at high confining stress. This 

shows that as the confining stress increases gas slip factor increases which results in 

reduced size of the slippage-radius (e.g. Klinkenberg, 1941). In some cases, gas 
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slippage factor showed an unexpected increase with increasing stress. For example, the 

b factor of 90FBZ1 sample increased by 4 fold between 1000psi and 5000 psi. Whereas, 

the b factor of the sample 90FM4 increased by a 3 factors between 1000psi and 

5000psi. This increase in gas slip factor is due to stress increase could be the 

experimental error.  

The slippage radius was estimated from gas slip parameters at each confining stress. 

The calculated slip radius obtained from gas slippage parameters are plotted in Figure 

5.16. The results show that as the confining stress increases the slippage radius 

decreases and is evident from Figure 5.16. The reduction in slippage radius due to 

stress could be the result of closing off the flow paths or flow channels (e.g. Sampath 

and Keighin, 1982). The values of slippage radius at low confining stress are similar in 

dimensions to the width of the micro-cracks found along the grain boundaries from 

SEM images Figure 5.15. At higher confining stress it is assumed that micro-fractures 

are completely closed consequently the rock pore size decreases. Therefore, the fluid 

flow thorough these pores reduces at in-situ stress resulting in permeability reduction. 

  

Figure 5.15 Effect of confining stress on gas slippage factor during gas permeability experiments.  
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Figure 5.16 Plot of gas slippage radius vs confining stress for fault rock samples, derived from gas 

permeability results of central North Sea reservoir core samples (left-side). The Plot of slip- 

radius versus confining stress data is from90 Fathom fault samples (right-side). 

 

Figure 5.17 SEM thin section images show the sample contains small scale (0.1 to 0.5 µm) wide fractures 

at grain boundaries. 

 

Figure 5.18 shows the relationship between gas slippage factor and gas permeability – a 

general trend of decreasing gas slippage values with increasing gas permeability can be 

seen for fault rock data but there is a great deal of spread in the data, rendering it 

impractical for predictive purposes. The gas slippage factor data obtained during the 

present study were compared with those estimated from published models. The 

estimated slippage factor values from empirical models suggest that only few model 

predictions are consistent with experimental data (Figure 5.18). Therefore, it is clear 

that the models used for tight rocks predictions could not be applied for fault rocks one 

reason could be the fault rock heterogeneity.  
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Furthermore, there were some improved models published on gas slippage parameter 

estimation, such as McPhee and Arthur (1991) provided a model by incorporating 

porosity term.  McPhee and Arthur (1991) correlation uses an exponent value (-0.53) 

which is close to that of theoretically derived correlation of Florence et al. (2007) which 

has an exponent value of (-0.50). Hence, the introduction of porosity term in model of 

McPhee and Arthur (1991) has not provided reproduction of experimental gas slippage 

factor for fault rock samples. The two empirical models of tight sands (e.g. Heid et al., 

1952; Jones and Owens, 1980) provided estimations of the b-factor which are slightly 

close to the experimental data compared to the other empirical models. The scatter in 

empirical relationships between slippage factor and permeability (Figure 5.18) indicates 

that it is unsafe to use such correlations to correct permeability measurements conducted 

on low permeability fault sample at low pore pressures. It is therefore recommended 

that either b-values should be calculated for each sample at each stress point (ambient or 

in-situ stress in permeability experiments) or a very high gas pressure (>1000 psi) is 

used to reduce the magnitude of the slippage correction that needs to be applied.  

The gas permeability of the fault rock was plotted against the slippage radius that 

follows a declining trend with decreasing pore radius as highlighted with shaded area. 

The data plotted also has shown some scatter (Figure 5.19). The scatter in data might 

reflect the permeability heterogeneity. Some authors (e.g. Heid et al., 1951; McPhee and 

Arthur, 1991) have suggested that the scatter in the relation between pore size and 

permeability could be the experimental errors. In carbonate rock samples having high 

permeability and high b-factor values, smaller pore radius has also been observed by 

Funk et al. (1989). They believed that high b factor was related to the presence pores 

with greater than average pore size in those samples. Similarly, the fault rocks are also 

heterogeneous and their permeability values could be scattered once plotted against 

their slip radius.  
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Figure 5.18 Comparison between gas slippage factors (b-factor) of fault rock samples calculated and 

estimated using different published correlations. The estimated slip factor and slip factor 

obtained from experimental data are both plotted against measured absolute gas 

permeability.  

 

 

Figure 5.19 Cross plot of the fault rock in-situ absolute gas permeability and pore radius derived from 

gas-slippage.  

5.5.3 Comparison between fault rock and tight gas sand permeability 

stress sensitivity 

Moreover, the fault rock permeability stress sensitivity was compared to that of the 

permeability results of tight gas sandstones published by Byrnes et al. (2009). As 

discussed above, there is very small amount of data on stress dependent permeability of 

fault rocks, therefore the tight gas sandstones properties have been used as an analogue 

(e.g. Zijlstra et al., 2007).  
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The permeability of all samples tested reduced as confining pressure was increased. The 

permeability measured at in situ stress (~5000psi) was up to a factor of 10 lower than 

when measured at typical pressures (i.e. 500psi) (Figure 5.20). Measurements 

undertaken during the present study were conducted at high pore pressures or corrected 

for Klinkenberg slippage effects. So the present study data appears to show less 

sensitive to stress than the Byrnes et al. (2009) data (Figure 5.20) but this simply 

reflects that the low stress measurements performed by Byrnes et al. (2009) were not 

Klinkenberg corrected. The stress dependence of the permeability increases with 

decreasing absolute permeability of samples. Overall, it appears that the extent of stress 

dependence of fault rock permeability is slightly less than to that of the tight gas 

sandstone reservoirs.  

 

Figure 5.20 Plot of the gas permeability of fault rocks at 500psi confining pressure against the 

permeability at 5000psi confining pressure for fault rock and tight gas sandstone samples, 

tight gas data is taken from Byrnes et al. (2009). 
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5.5.4 Influence of confining pressure on liquid permeability  

Brine and distilled water permeability were conducted on the same samples as these 

were used previously for gas permeability measurements. Figure 5.21 provides the 

liquid permeability decreases by increasing stress from samples analysed. The results 

showed that the liquid permeability for all fault rock samples decreases with increase of 

confining stress. The liquid permeability is lower than gas permeability for all studied 

fault rock samples (Figure.5.22). On average the liquid permeability reduced by an 

order of magnitude.  The reduction in liquid permeability due to stress increase was also 

observed by other authors in tight rocks (e.g.Wei et al., 1986; Morrow et al. 1981, 1984; 

Jones, 1988; Jones et al., 2001). Similar to gas permeability stress sensitivity, most of 

the reduction in brine and distilled water permeability took place over the initial 

increase of stress (Figure 5.21). However, the characteristic nature of gas and liquid 

permeability stress sensitivity are different. This could be due to experimental errors or 

experiments on liquid permeability may require longer equilibration times (Grattoni, 

pers.com.). Morrow et al. (1981) conducted experiments on fault gouge also found that 

permeability of fault rocks reduced by increasing stress. The permeability studies 

previously been conducted on clay-bearing fault gouges from a borehole on the San 

Andreas Fault in California by Morrow et al. (1981). The mineralogy of the samples 

consists of montmorillonite, mixed-layer clays, illite, kaolinite and chlorite. The 

samples studied were crushed up and mixed into slurry with distilled water, due to 

mixing of slurry with water, samples did not retain original fabrics. Although, they 

performed measurements on a wide range of fault rock such as phyllosilicate-rich and 

non-phyllosilicate clastic samples as a function of effective pressure. The results 

reported showed that these were sensitive to stress under the stress applied for 

measurement.  

The liquid permeability measured has shown decrease by changing NaCL 

concentrations (Figure 5.21). A part from stress sensitivity differences in gas and liquid 

permeability there were few other mechanisms by which permeability of samples 

differs. One reason for the difference in gas and brine permeability could be a layer of 

bound water on the mineral surface that reduces the pore throat size (e.g. Heid et al. 

1950; Luffel et al.1993; Andreassen & Fabricius 2010). The reduction in distilled water 

permeability observed is more likely be due to physicochemical interactions of the 
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water with swelling clay minerals and dispersion of fine particles (e.g. Khilar and 

Fogler 1983; Wei et al., 1986). Generally, the flow of water through rock pore spaces 

exhibits Newtonian behaviour (Tanikawa and Shimamoto, 2008).  However, if pore 

spaces are very small gas does not adhere to the pore walls as liquid does, due to this it 

causes additional pressure drop and lower flow rate as well as lower permeability (e.g. 

Tanikawa and Shimamoto, 2008).  Faulkner and Rutter (2000) measured argon gas and 

water permeability on clay rich fault gouge and suggested that the permeability 

measured with gas is about one order of magnitude larger than water permeability. The 

present study data on fault rock samples in general is also consistent with that of the 

Faulkner and Rutter (2000) and Tanikawa and Shimamoto (2008).  Faulkner and Rutter 

(2000) argued that the difference in liquid and gas permeability is due to reactions of 

distilled water with clay minerals caused adhesion of water molecules to the rock 

surfaces. There are several other reasons to describe the discrepancies between gas and 

brine permeability. As authors suggests that differences could be the results of quartz 

precipitation within narrow pores along cracks (e.g. Vaughan et al., 1986).  

 

Figure 5.21 The change in liquid permeability caused by changing pore fluids and stress. 
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Figure 5.22 Gas and brine permeability of fault rock samples studied. 

 

As discussed, the stress sensitivity of gas permeability could be characterized by stress 

exponent, similarly the brine permeability stress sensitivity could be related to stress 

exponent. The higher the stress exponent, larger will be the decrease in permeability due 

to increasing stress. The stress exponents plotted against brine permeability (Figure 

5.23) the stress exponents are higher for reservoir core samples from central North Sea. 

Other the other hand samples from 90 Fathom fault outcrop are less stress sensitive than 

those from core potentially due to the presence of microfractures formed as a result of 

stress release (e.g. Holt and Kenter, 1992; Holt et al.,1998; Furre et al., 2007). The 

microfractures from SEM image analysis were observed in few samples that’s why 

these samples appear to be more sensitive to stress and resulted in lager stress 

exponents. It has been argued that samples collected from outcrop may result in higher 

permeabilities than samples with same lithology collected from the subsurface 

reservoirs (Morrow and Lockner 1994). 
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 Figure 5.23 Plot showing the relationship between brine permeability measured at lowest stress (i.e. 

500psi) and power law exponent. 

The brine permeability measured at 500 psi stress plotted against the permeability 

measured at in-situ stress of 5000 psi appears to be stress sensitive (Figure 5.24). 

Similar to gas permeability, the brine permeability of reservoir core samples from 

central North Sea have shown slightly more stress sensitivity than outcrop samples of 

90 Fathom fault UK, which reflects that core samples might have affected by core 

damage effects.  

 

Figure 5.24 Plot of the brine permeability of fault rocks at 500psi confining pressure against the 

permeability at 5000psi confining pressure for fault rock. The data plotted is from 90 Fathom 

fault UK, Mirri airport road fault exposure and reservoir core samples from Central North 

Sea. 

 

Gas and brine permeability stress exponents are plotted in Figure 5.25 against their 

permeability at low stress of i.e. 500psi to see the difference in stress sensitivity. Figure 
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5.25 shows that gas permeability is slightly more sensitive to stress than liquid 

permeability because of the stress sensitivity exponents in gas permeability appears to 

be higher than liquid permeability.   

  

Figure 5.25 Illustration shows the relationship between power law exponent and fault rock gas and brine 

permeability data from both reservoir core samples and 90 Fathom fault UK, Mirri airport 

road outcrop fault. 

 

5.5.5 Integration of ambient and in-situ stress permeability  

This section incorporates the laboratory permeability results from this chapter and those 

presented in Chapter 4 of fault rocks using two different types of samples i.e. 

rectangular blocks and plugs. The primary objective of this was to investigate the 

accuracy of the traditional technique of permeability measurements. This was 

performed by comparing results from plugs made at different stress levels and 

rectangular block samples permeability measured at ambient stress conditions.  

The permeability of  samples were measured on two different types of samples, the 

plugs permeability was measured at different levels of stress and fault rectilinear 

samples were  permeability measured at ambient stress. The permeability of all samples 

were measured first with gas then gradually changing with brine of composition from 

30% to 3.5% (NaCl). Finally, the distilled water was used to measure the permeability.  

The gas, brine and distilled water permeability results are presented in Figure 5.26 from 

two different types of samples. These permeability results show that at lower stress, the 

permeability is higher, as stress increases the permeability has shown gradual reduction, 
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this is obvious and it was expected. However, in some case (Figure 5.27), it should be 

noted that permeability measurements conducted at very low stress (70 psi) were 

sometimes lower than those conducted at higher confining pressure (>500 psi). The 

reason for this counterintuitive result is that different samples were used for the very 

low permeability measurements so the differences probably reflect the heterogeneity of 

the structure of the fault rocks.  

Figure 5.28 shows the relationship between ambient stress distilled water permeability 

of fault rock against the in-situ stress brine permeability. The comparisons between 

distilled water permeability measurements made at ambient stress conditions and the 

formation compatible (NaCl) brine permeability measured at in-situ stress, these results 

suggests that permeability in both cases are nearly identical. The two bad laboratory 

practices partially cancel the effects of each other. Therefore the permeability data 

reported by Fisher and Knipe (2001) measured using distilled water as permeant and 

measured at ambient stress present within the published data base on fault rock is still 

useful for fault seal analysis. 

 

Figure 5.26 Permeability of rectilinear fault samples measured at (70psi stress) and fault plug samples 

measured at different stress conditions. 
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Figure 5.27  Plot of gas permeability vs confining pressure for a fault rock sample. Note that the low 

pressure measurement has the lowest permeability. This is rare and is an artefact resulting 

from using a different sample for the ultralow permeability measurement. The lower kg value 

reflects sample heterogeneity. 

 

 

Figure 5.28 Plot of the permeability measured to distilled water for fault rock at ambient stress against 

brine permeability measurements made at maximum stress. 

 

5.5.6 Implications of the results  

The experiments conducted on fault rock permeability shows that the absolute 

permeability of fault rock samples is very stress dependent so care must be taken when 

applying results for simulation modelling purposes. The liquid permeability data 

obtained at low stress on average is ten times higher than measurements made at in-situ 

stress condition of reservoir. In contrast the gas permeability measured at ambient 
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conditions is on average 15 times greater than that measured at in situ stress for fault 

rock samples taken from reservoir cores. Moreover, the stress dependency of fault rocks 

samples taken from outcrop is less than those obtained from reservoir core samples. 

This suggests that the stress dependence of the permeability of faults from core is an 

artefact result of cooling or stress relaxation. This observation shows that outcrop data 

could still be reliable to use for reservoir modelling.  

 Implications for the use of published data  2.8.1.6

A key aim of this chapter was to test how fault permeability measurements differ from 

those which are generally present within the published data (e.g. Fisher and Knipe, 

2001) because these were measured under inappropriate experimental conditions i.e. 

measured at low stresses using distilled water as permeant. Therefore, the results 

obtained during present study were compared with those previously published by Fisher 

and Knipe (2001) (Figure 5.29). From Figure 5.29, it is observed that  the permeability 

measured at ambient stress using distilled water gives lower permeability values, 

whereas the permeability measured at in-situ stress with formation compatible fluid i.e. 

brine NaCl also gives lower values, therefore the effect of low stress distilled water 

measurements and high stress brine permeability measurements partially cancel each 

other out. Consequently, it is observed from the present study analysis that the data 

reported by Fisher and Knipe (2001) still could be reliable to use for analysis of fault 

seal.  

 

Figure 5.29 Plot of permeability vs clay content for distilled water permeability from Fisher and Knipe 

(2001) at ambient stress and brine permeabilities from this study at in-situ stress. 
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5.6 Conclusion 

Experiments have been conducted to investigate the stress sensitivity of fault rock gas 

and liquid permeability; Klinkenberg corrections were applied to all gas permeability 

measurements.  The combined effect of gas slippage and permeability reduction due to 

stress was analysed and following conclusions were drawn.  

 At low confining stresses, the permeability of the fault rock core samples 

showed high stress sensitivity, whereas at higher confining stresses the 

permeability was less pronounced to stress. This might be due to the core 

damage effects, and the micro fractures formed due to stress release and were 

observed from SEM images of the samples. The pore radius calculated from gas 

slippage parameters at low confining pressures was in the same order of 

magnitude as the micro fracture width. The pore radius was reduced at higher 

confining stresses which reflect that micro fractures are closed due to stress 

application. The permeability estimated from simple fracture model also 

supported the idea that at ambient stress there was high flow as well as higher 

permeability due to microfractures.    

 The absolute gas and liquid permeability of fault rocks obtained from core and 

outcrop is sensitive to the stress conditions under which it is measured. Overall, 

the stress sensitivity of fault rocks is similar to tight gas data of Byrnes et al. 

(2009). Although, some fault rocks have shown less stress sensitivity than tight 

gas sandstones.   

 Samples from outcrop shown less stress sensitivity than those from reservoir 

core samples this potentially reflects the presence of microfractures formed as a 

result of stress release. The micro-fractures were also observed from thin 

sections of core samples.  

 The published fault rock permeability data (e.g. Fisher and Knipe, 2001) may 

not be as wildly inaccurate because the use of distilled water (which gives lower 

permeability than formation water) and low stresses (which give higher 

permeability than high stress measurements) partially cancel one another out. 

Therefore it is still safe to use the data sets reported by Fisher and Knipe (2001) 

for modelling and making predictions for fault seal analysis.  
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 At in situ stress, the pore pressure reduction initially reduced the measured 

permeability by increasing the net stress and thus reducing the absolute 

permeability. As the pore pressure was reduced further, the increased 

contribution of gas slippage increased the measured permeability. This indicates 

that large drawdowns would enhance the rate of gas production within these 

reservoirs. 

 It was attempted to discover the relation between permeability stress sensitivity 

and rock mineralogy. Although it was found that mineral composition is not the 

primary reason to control the permeability stress sensitivity, the samples even 

with similar mineral composition have shown different stress sensitivity.  

 The scatter in permeability and slippage factor indicated that it is unsafe to use 

empirical correlations to correct permeability measurements conducted on low 

permeability fault sample at low pore pressures.  
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6 Multi-phase flow properties of 

fault rocks 

 

 

6.1 Introduction 

There is an increasing need to predict, quantify and model the impact of faults on 

fluid flow within fault compartmentalized reservoirs (e.g. Fisher and Jolley, 2007). 

In subsurface reservoirs, where there is more than one phase is present relative 

permeability plays significant part in controlling fluids movement and distribution 

(e.g. Dandekar, 2006). The effective and relative permeability as a function of water 

saturation and stress is required to understand the performance and productivity of 

reservoirs. There is very limited published data available on two-phase flow (relative 

permeability and capillary pressure) properties of fault rocks. There is far less data 

that have examined the stress sensitivity of relative permeability of fault rocks (e.g. 

Al-Hinai et al., 2006). Clearly, this dataset needs to be increased for accurate 

modelling of fault compartmentalized reservoir behavior. The main aim of this 

chapter is to establish a database on fault rock two-phase flow properties e.g. relative 

permeability and capillary pressure such that the fluid flow behavior within fault 

compartmentalized reservoirs can be accurately modelled.  

Apart from this introductory section, this chapter comprises five sections. Section 

6.2 provides an overview of experiments conducted and the total number of samples 

used for two-phase flow measurement. In Section 6.3 results obtained on effective 

and relative gas permeability data as well as the data from capillary pressure 

measurements using centrifuge, relative humidity chambers are reported. In addition, 

the mercury-air capillary pressure data was obtained using mercury injection 

measurements and were converted to air-brine capillary pressures, are also reported 

in Section 6.3.  Section 6.4 provides the discussion about the effective and relative 
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gas permeability stress sensitivity; also the relative permeability controls and 

differences are also discussed in this section. Finally, the main findings from the 

results presented in this chapter are summarized in Section 6.6. In chapter 7 the 

results of relative permeability are incorporated into synthetic reservoir model to 

show the effect of faults on cross fault flow.  

6.2 Experimental overview: two-phase flow properties  

A full description of microstructural and basic petrophysical properties of the 

samples used is provided in Chapter 4 Section 4.2. Here a brief description about 

two-phase flow experiments conducted to obtain relative permeability and capillary 

pressure data is provided. A summary of the samples studied is provided in Table 

6.1.  Two different techniques for capillary pressure measurement were used: 

centrifuge and relative humidity chambers. In addition to above methods of capillary 

pressure measurement, the air-mercury capillary pressures data for each sample was 

obtained by mercury injection; the procedure is described in chapter 3 Section 3.6.1.  

Detail about the two phase flow experiments is given in Section 3.6.  

The effective gas permeability was measured on samples that had their water 

saturation changed prior to experiments. The water saturations were changed by 

using humidity chambers and ultra-centrifuge as described in Section 3.6. Each 

technique provides a specific range of capillary pressures; combinations of 

techniques were used so that relative permeability measurements could be obtained 

over a wide saturation range. Initially, the samples were placed into relative humidity 

chambers for changing the water saturation. The plugs were then resaturated with 

brine NaCl and placed into an ultra-centrifuge to change the brine saturation of the 

sample. The aim of placing them into an ultra-centrifuge was to decrease the water 

saturation and to measure the capillary pressures. Once the equilibrium between 

water saturation and capillary pressures was established, the samples were taken for 

effective gas permeability measurement. The effective gas permeability of samples 

was measured using either steady state or pulse decay techniques described in 

Section 3.3. The relative permeability to gas was calculated by dividing the effective 

permeability by absolute permeability at the same stress conditions. In addition, at 

higher stress conditions of 4000psi, few of the partially saturated samples were used 
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to measure their effective gas permeability. This was performed by placing sample 

into a core holder for longer period of about five to six days to achieve steady state 

flow and the methodology employed is described in Section 3.6. It should be noted 

that the gas relative permeability results are reported are average of the fault and host 

plug for all samples from reservoir core plugs. However, the samples from Hopeman 

fault rock are all comprises as a deformed band sections, their relative permeability 

values corresponding to their saturation calculations are more appropriate.  In this 

chapter, the term water saturation is used in place of brine saturation for 

simplification when presenting and discussing the results. Generally, the relative 

permeability is a concept that is used to express the decrease of the flow in the 

presence of other mobile fluids within the porous media (e.g. Honarpour and 

Mahmood, 1988). Several authors have highlighted that the permeability of core 

samples depends on brine composition; permeability decreases as salinity is reduced 

(e.g. Lever and Dawve, 1987). This might be the case for relative permeability and if 

so it would be more likely be affected because of the presence of fine grained clay 

minerals under varying proportions and their interactions with water (Faulkner, 

2004). Therefore, prior to measurements the samples were saturated using NaCl 

brines to minimize the physiochemical reactions that might affect relative 

permeability. The results of capillary pressure and relative permeability are 

presented on two different types of plots i.e. Cartesian and semi-log plots.  

Table 6.1 List of the total number of samples analysed and the conditions under which measurements 

conducted. 
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6.3 Results  

This section presents the fault rock two-phase flow properties (capillary pressure and 

relative permeability) results. The results from central North Sea fields studied are 

reported into two groups Group-A and Group-B.  

The relative permeability results presented were obtained by diving effective gas 

permeability to absolute permeability at their corresponding confining stresses.  

The Hg-air capillary pressures were related to gas brine capillary pressures by taking 

account of their contact angle and interfacial tension based on the work of Purcell 

(1949). Hg-injection capillary pressures have been converted to air-brine values 

assuming interfacial tension of 70 dynes/cm and 480 dynes/cm for air- water and 

Hg-vacuum respectively and the contact angles of 0
0
 and 140

0
 were considered for 

air-water and Hg-vacuum respectively. Following relation of Purcell (1949) used,  

𝑃𝑐𝐻𝑔

𝑃𝑐,𝑎−𝑏
=

𝜎𝐻𝑔𝑐𝑜𝑠𝜃𝐻𝑔

𝜎𝑎−𝑏𝑐𝑜𝑠𝜃𝑎−𝑏
                      (6-1) 

Where, PcHg, is a mercury capillary pressure, Pc,a-b air-brine capillary pressure. Cos𝜃 

is angle between gas mercury and brine, 𝜎 is the interfacial between fluids.  

The aforementioned equation for converting mercury injection capillary pressure to 

air-brine capillary was based on the higher ranges of absolute permeabilities 

(>10mD) by Purcell (1949). However, Wells and Amaefule (1985) conducted tests 

on core samples of Creteceous tight sandstone of Western Alberta, Canada based on 

the method described by Purcell (1949) and showed a concern that there might be 

differences in converting mercury capillary pressures to air-brine in low permeability 

samples. They found that mercury capillary pressures above 50% of water 

saturations are about 10 factors larger than air-brine capillary pressure measured by 

centrifuge. This contradicts the previously reported difference of 5 factors by 

Purcells (1949). However, Wells and Amaefule (1985) did not provide reason about 

the difference between air-brine capillary pressure and mercury injection capillary 

data. They thought that air brine contact angles might be different in tight rocks and 

in high permeability sands. Though, this is not the case related to data reported in 
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this thesis as the most of data used for comparison was below 50% saturations. 

However, that might be taken into account while converting air-mercury capillary 

pressures to air-brine above 50% of saturations.   

In addition to mercury injection, the capillary pressure was obtained by the 

centrifuge method. It is often required to have good estimates of fluid equilibrium 

during centrifuging to obtain the capillary pressure curve without any error at each 

rotational speed.  The capillary pressure curve was calculated from the average 

production measurements and rotational speed of centrifuge by applying known 

approximate mathematical solutions (e.g. Forbes, 1997).   

It should be emphasized that fault rock often comprises of small thickness as 

compared to its associated host sandstone therefore, the saturations calculations are 

inappropriate in terms of volumetric calculations. The saturation values throughout 

the chapter should be considered as an average of the rock samples. 

6.3.1 Central North Sea Group-A fault rocks  

A total of ten samples were analysed to obtain relative permeability and capillary 

pressure data. The results obtained are presented in Table 6.2 and Figure 6.1. It 

should be emphasized that there is a large variation of both the absolute and effective 

gas permeability as well as the level of heterogeneity of the samples examined. In 

particular, the cataclastic faults are highly heterogeneous being composed of bands 

of low permeability faults separated by regions of relatively high permeability 

undeformed sandstone.   

6.3.1.1 Relative permeability  

The relative gas permeabilities were measured at stresses from 500 psi to 2500 psi. 

The minimum water saturation value obtained by humidity chambers is 0.06 and the 

corresponding relative permeability value is 0.95. The maximum water saturation of 

0.53 was achieved by employing centrifuge technique and the relative permeability 

to gas is 0.0092.  
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6.3.1.2 Capillary pressure  

 A combined capillary curve defined by several saturation points was obtained using 

three different techniques i.e. Ultracentrifuge, mercury injection and humidity 

chambers (Figure 6.1). Plug CP2B was cut to fit into the centrifuge. The capillary 

pressure obtained using relative humidity chamber varied between 9000 psi and 

1660 psi. The water saturations ranged from 0.06 to 0.17. The maximum water 

saturation and lowest capillary pressure were achieved by using the ultracentrifuge; 

the capillary pressure obtained ranged from 50 psi to 210 psi. 
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Figure 6.1 Two-phase flow data from central North Sea Group-A reservoir sample. The data presented comes 

from variety of techniques used, such as the centrifuge, relative humidity and mercury injection 

method, different colors represent the different methods used for changing water saturations. For 

the comparison purpose all Hg-injection capillary pressure have been converted to air-water values 

assuming interfacial tension of 70 dynes/cm and 480 dynes/cm for air- water and Hg-vacuum 

respectively. Contact angles of 00 and 1400 were considered for air-water and Hg-vacuum 

respectively. Data in the right-hand side graphs are plotted using semi-log scales. Graphs on the 

left-hand side present the same data in linear scale to visualize the results. 
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Table 6.2 Stress sensitivity of effectiveand relative gas permeability krg of Group-A central North Sea reservoir 

samples. The effective permeability equals the absolute permeability at zero percent water 

saturation. The plugs water saturations were altered by humidity chambers and centrifuge 

technique. The effective and relative gas permeability as well water saturations presented here are 

average of the host and fault.   
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6.3.2 Central North Sea Group-B fault rock  

A total of fifteen fault plug samples were used for relative permeability and capillary 

pressure measurement. The results obtained are summarized in in Table 6.3 and 

Figure 6.2. Compared to Group-A fault samples, fault rock samples of Group-B are 

highly heterogeneous, being composed of bands of low permeability deformation 

bands separated by regions of relatively high permeability undeformed sandstone. 

These samples were also observed with very low absolute gas permeabilities.  

6.3.2.1 Relative gas permeability  

The effective and relative gas permeability was obtained at different stress 

conditions. The gas relative permeability measured varies largely from sample to 

sample and ranges from 0.00001 to 0.89. The maximum water saturation of 53% was 

obtained by the centrifuge technique and the minimum water saturation of 8% was 

achieved by employing the relative humidity chambers. The results of effective and 

relative permeability at corresponding water saturations are summarized in Table 

6.3.   

6.3.2.2 Capillary pressure  

The capillary pressure was obtained by the techniques discussed above same 

techniques were applied for all samples capillary pressure determinations. The 

saturation of these samples are also average of both deformed and host sands. The 

calculations from centrifuge rotational speeds of were performed after reaching good 

estimation of equilibrium, using the Forbes (1997) method. 

The highest capillary pressure of 9000 psi at the minimum water saturation of 8% 

was achieved by humidity chambers method and the lowest capillary pressure 20 psi 

was obtained by centrifuge at about 50% water saturations. The centrifuge method 

gave higher water saturation of 50% and higher capillary pressure of 112 psi. All 

capillary pressure measurement results are summarized in Table 6.3. 
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Figure 6.2 The two phase fluid flow properties of all measured samples from central North Sea 

group-B reservoir core samples. The colour of symbols indicates the different methods 

used for changing saturations (see legends in graphs presented). For the comparison 

purpose, all Hg-injection capillary pressure has been converted to air-water values 

assuming interfacial tension of 70 dynes/cm and 480 dynes/cm for air- water and Hg-

vacuum respectively. Contact angles of 0
0
 and 140

0
 were considered for air-water and 

Hg-vacuum respectively. Data in the right-hand side graphs are plotted using semi-log 

scales. Graphs on the left-hand side present the same data in linear scale to visualize the 

results. 
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Table 6.3 The stress sensitivity of effective gas permeability and relative gas permeability, krg of 

Group-B central North Sea samples. The effective permeability equals the absolute 

permeability at zero water saturation. The water saturation of samples was altered by 

centrifuge technique and by relative humidity chambers. The capillary pressure data and 

water saturation shown in red color were obtained using humidity chambers, all other 

saturations were changed by centrifuge method.      
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6.3.3 Central North Sea host sandstone  

A total of eleven host rock samples were used from central North Sea group-B field 

to measure their relative permeability and capillary pressure at different stress 

conditions. The results obtained on relative permeability and capillary at 

corresponding water saturation obtained are summarized in Table 6.4 and plotted in 

Figure 6.3. The capillary pressure for all these samples were obtained using only the 

centrifuge method. The minimum water saturation achieved was 0.26, with a 

corresponding relative permeability of 0.86. The capillary pressure ranges from 10 

psi to 32.2psi.   

Table 6.4 Stress sensitivity of absolute, effective and relative gas permeability krg of Central North 

Sea host reservoir samples. The effective permeability equals the absolute permeability at 

zero water saturation. The saturation of samples was altered by using only centrifuge 

technique.  
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Figure 6.3 Data of host rock samples capillary pressure and gas relative permeability from central 

North Sea Group-B. The centrifuge technique was employed to alter the water saturation 

and to obtain capillary pressure data. The data is presented on linear (left-side) and 

semi-log (right side) graphs.  

6.3.4 Southern North Sea  

A total of three core samples were supplied, from these five plugs were taken for 

permeability and capillary pressure measurements. The results obtained on capillary 

pressure and relative permeabilities are reported in the following section.  
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6.3.4.1 Gas relative permeability 

The relative permeability measured varies from sample to sample. The relative 

permeabilities at corresponding water saturations are summarized in Table 6.5 and 

Figure 6.4. The minimum water saturation of 0.010 is achieved by employing the 

humidity chambers method. The corresponding relative permeability obtained for 

this minimum water saturation value and a confining stress of 1000 psi is 0.89.  

6.3.4.2 Capillary pressure  

The capillary pressure measurements were made by three different techniques, 

namely centrifuge, relative humidity chambers and mercury injection method. The 

combined capillary pressure results are summarized in Table 6.5 for all samples. The 

highest capillary pressure and lowest water saturation are obtained by humidity 

chambers. The saturations obtained by humidity chambers technique ranges from 

0.010 to 0.27 and capillary pressure ranges from 5728 psi to 9000 psi. The lowest 

capillary pressure and highest water saturations were achieved by employing the 

centrifuge technique. The measured capillary pressure by the centrifuge method 

ranges from 22 psi to 158 psi at corresponding saturations values of 0.39 to 0.52 

respectively. 
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Table 6.5 Two-phase flow properties (capillary pressure and relative permeability) from southern 

North Sea core samples. The effective permeability equals the absolute permeability at 

zero water saturation. The saturation was altered by using centrifuge technique and 

relative humidity chambers. The data presented with blue coloured rows were obtained 

by using relative humidity chambers. All other data was obtained using centrifuge 

techniques. 

 

 

Sample

ID 
Pc      (psi) Avg Sw

K_eff Krg K_eff Krg K_eff Krg K_eff Krg K_eff Krg

WinA1F .- 0 3.9 1 3.6 1 3.5 1 3.4 1 3.3 1

22.2 39 1.4 0.37 1.3 0.36 .- .- .- .- .- .-

52 32 2.6 0.7 2.7 0.74 - - - - - -

9000 10 3.4 0.89 3.1 0.88 3.1 0.87 - - - -

WinA3F - 0 9.6 1 9.2 1 8.7 1 8.5 1 8.4 1

35 37 6.0 0.6 7.7 0.8 7.4 0.9 7.3 0.9 7.1 0.8

34 31 4.2 0.44 3.3 0.35 3.1 0.35 2.9 0.33 2.6 0.3

9000 12 8.16 0.85 7.56 0.82 7.16 0.82 7.00 0.82 - -

win1BF - 0 0.07 1 0.03 1 0.02 1 0.02 1 0.01 1

136 52 0.0045 0.067 0.0018 0.06 0.0012 0.06 - - -

6000 27 0.031 0.470 0.014 0.46 0.009 0.44 - - - -

9000 15 0.051 0.760 0.023 0.77 - - - - - -

Win2BF - 0 0.05 1.00 0.02 1.00 0.02 1 0.01 1 0.01 1

136 54 0.0004 0.01 0.0002 0.0087 0.0001 0.0087 - - - -

164 47 0.0015 0.03 0.0002 0.01 0.0001 0.0083 - - - -

6000 23 0.020 0.41 0.0092 0.40 0.0062 0.41 - - - -

win1C - 0 0.05 1 0.03 1 0.020 1 0.02 1 0.01 1

158 52 0.0045 0.08 0.0024 0.08 0.002 0.08 0.0013 0.08 - -

5728 22 0.03 0.55 0.016 0.54 - - - - - -

9000 12 0.043 0.79 0.023 0.78 0.015 0.77 - - - -

1000 

(psi)

2000

 (psi)

3000

 (psi)

4000

 (psi)

5000

 (psi)
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Figure 6.4 The two phase fluid flow properties of all measured samples from southern North Sea 

reservoir core samples. The colour of symbols indicates the different plugs properties and 

the methods used for changing saturations (see legends in graphs presented). For the 

comparison purpose, all Hg-injection from capillary pressure have been converted to air-

water values assuming interfacial tension of 70 dynes/cm and 480dynes/cm for air- water 

and Hg-vacuum respectively. Contact angles of 0
0
 and 140

0
 were considered for air-

water and Hg-vacuum respectively. Data in the right-hand side graphs are plotted using 

semi-log scales. Graphs on the left-hand side present the same data in linear scale to 

visualise the results. 
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6.3.5 Fault rock from Hopeman outcrop UK 

A total of 5 samples were analysed to obtain effective gas permeability and capillary 

pressure data at different water saturations. The saturations of these samples were 

altered by using centrifuge technique and humidity chambers. The results obtained are 

presented in Table 6.6 and are also presented as shown in Figure 6.5 and Figure 6.7  

6.3.5.1 Gas relative permeability  

The relative gas permeabilities of these samples were conducted at stress of 1500 psi. 

The minimum water saturation value obtained was 0.09 and the corresponding relative 

permeability value is 0.60. The maximum water saturation of 0.35 was achieved by 

employing centrifuge technique and the relative permeability to gas measured was 

0.0195.  

6.3.5.2 Capillary pressure  

 A capillary curve defined by several saturation points was obtained using different 

measurement techniques. The capillary pressure obtained ranges from 189psi to 

maximum of 840psi. The maximum water saturation and lowest capillary pressure were 

obtained ranged from 0.35 to 189 psi respectively. 

 

Table 6.6 Summary of the effective and relative permeability and capillary pressure data data from 

Hopeman fault rock samples obtained during present study. 

 

 

 

 

Sample ID Pc (psi)     Avg Sw      L (cm) D (cm) Kabs   (mD) Keff    (mD) Krg 

HPB3 189 0.35 5.1 2.04 0.0033 0.00008 0.0195

HPB4 380 0.30 4.78 3.28 0.0048 0.00011 0.023

HPB8 520 0.26 4.06 3.72 0.0112 0.0004 0.037

HPX6 640 0.19 3.16 3.56 0.0041 0.0004 0.086

HPB2 750 0.13 4.79 3.72 0.0029 0.0006 0.191

HPX5 840 0.09 4.90 3.72 0.0012 0.0007 0.600

HPB8 840 0.11 4.06 3.72 0.0112 0.0088 0.783
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Figure 6.5 Gas relative permeability as a function of water saturation obtained from Hopeman fault rock 

samples. 

 

 

Figure 6.6 The illustration shows the capillary pressure data corresponding to water saturation obtained 

from Hopeman fault rock. 
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6.4 Discussion 

This section starts by discussing the stress sensitivity of the effective and relative gas 

permeability. The section then discusses about the key controls on relative gas 

permeability of the samples. Moreover, the section compares the present study data on 

relative permeability and capillary pressure with the data collected from published 

studies. Finally the section addresses the main implications of the results presented for 

fault seal analysis.     

6.4.1 Stress sensitivity of effective and relative gas permeability  

It is often argued that the fault rock relative permeability is far more sensitive to stress 

(e.g. Al-Hinai et al., 2006). Much of the work is devoted to investigate the stress 

sensitivity of tight rocks (i.e. tight gas sands) relative permeability (e.g. Thomas and 

Ward, 1972; Shanley et al., 2004; Byrnes et al., 2001). However, far less data exists on 

the effective gas permeability stress sensitivity of fault rock and is essential for accurate 

modelling and analyses of stress sensitive reservoirs. Several authors have reported that 

the lower absolute permeability exhibits more stress sensitivity to relative permeability 

at a given water saturation (e.g. Cluff and Byrens, 2010). The laboratory experiments 

conducted by Hildenbrand et al. (2002) reported that gas relative permeabilities at 

irreducible water saturation within very fine-grained porous media exhibits several 

orders of magnitude lower relative permeabilities than the coarse sandstones. The low-

permeability sandstones samples pore throats might decrease up to 50–70% due to 

increase in overburden stress subsequently the permeability of these samples would be 

affected (e.g. Byrnes and Keighin, 1993, 1997).  

The results from present study suggests that the stress sensitivity of the effective gas 

permeability of samples increases as the percentage of water saturations increases and 

the absolute permeability decreases (Figures 6.7). For example, the absolute 

permeability of dry cores at 1000psi of confining pressure is >2000 times larger than 

that of the cores with partially water saturated at 4000psi confining pressure. To better 

understand the changes in effective gas permeability magnitude due to stress increase, 

the results were normalized and are presented in Figure 6.8. This reduction in effective 

gas permeability is similar to that reported for tight gas sandstone samples (e.g. Cluff 

and Byrnes, 2010; Shanley et al., 2004). These results show that as the stress increases 
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the effective gas permeability reduces more than compared to dry gas permeability. 

However, this opposes to the study of tight rock samples reported by Thomas and Ward 

(1972) they stated that the absolute gas permeability is more sensitive to stress than 

relative permeability. Although, the results from the present study also contradict the 

findings of Fatt (1953) who suggested that the relative permeability of sandstones does 

not change by the application of overburden stress. 

 

Figure 6.7 The plot shows the stress sensitivity of effective gas permeability versus stress from present 

study samples. The higher the water saturation of samples more is the stress sensitive. Not 

that the sample which shows higher reduction of effective gas permeability has lower 

absolute permeability value.  

 

Figure 6.8 Plot shows the normalized effective gas permeability versus confining stress from reservoir 

core samples obtained at various saturations. The saturations were altered by two different 

techniques i.e. the relative humidity chambers and centrifuge technique.  
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Moreover, Wilson (1956) conducted drainage and imbibition experiments to obtain the 

relative-permeability of sandstone samples at confining pressures of up to 5000psi. 

They observed that the changes in effective permeability of oil at irreducible water 

saturations were very close to the single-phase permeability. Although, the author 

reported that the data showed slight stress effects on relative permeability and 

concluded that there was very less stress effect but is noticeable in terms of relative 

permeability, their findings of relative permeability stress sensitivity on some extent 

supports present study findings.   

Dacy (2010) argued that gas relative permeability could not be sensitive to stress if 

relative permeability calculated from the effective gas and absolute gas permeabilities 

that were measured at the same stress conditions. Similar to that, present study 

calculated gas relative permeabilities using absolute gas permeability data points that 

were measured at the same confining pressure as the effective gas permeability 

measurements were made. However, two important observations were made from the 

relative permeability calculations. The first shows that (Figure 6.9) there is no 

significant decrease in relative permeability with stress increase. Although, the second 

observation appears that (Figure 6.10) that the stress sensitivity of gas relative 

permeability increases with both decreasing absolute permeability and increasing water 

saturations. The stress sensitivity of effective gas permeability observed within low 

permeability core samples could be the result of core damage effects. The core damage 

might be the result of grain boundary micro-cracks and are being more pronounced in 

low permeability samples than high permeability samples (Ostensen, 1983). Although, 

retrieving core samples from sub-surface reservoirs might cause core damage due to 

stress release (Holt and Kenter, 1992; Holt et al., 1994). At low stress conditions, the 

contribution of high flow rates might be expected from micro-cracks often this leads to 

higher permeabilities. As stress is increased grain boundary cracks are easily closed 

resulting in reduced effective permeability. Therefore, the effective gas permeability of 

samples is even more sensitive due to grain boundary micro-cracks than intergranular 

pores. Authors have reported that the different types of cracks exhibits different 

permeability stress sensitivity (e.g. Ostensen, 1983; Kwon et al., 2001). As a result, the 

stress release different shapes of cracks might generate and samples partially saturated 

with water might exhibit different stress sensitivity. Because of this the effective gas 

and relative gas permeability of some samples were more sensitive to stress, however 
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some sample are not so stress sensitive. Presumably, the water accumulations in the 

micro-cracks might exhibits varying proportions/ water fractions depending on micro-

cracks shape. Some cracks are nail like some are thin sheet tubular like and slotted pores 

as reported within Ostensen (1983). So, due to this, different samples experiences 

different stress sensitivity behavior and permeability sensitivity follows different 

decline trends with increase in confining stress.   

Several other authors have reported that the highest reduction in permeability due to 

increasing overburden stress takes place in those samples which are dominated by 

micro-cracks (e.g. Shanley et al., 2004).  Jones and Owens (1980) supported the 

observation made by Thomas and Ward (1972) about the impact of stress on sandstone 

rock permeability. They reported that the influence of stress could be explained by the 

pore structure of rock such as thin tabular like pore throats might be closed due to stress 

increase hence the reduction in permeability could be observed. Byrnes et al. (2001) 

found that permeability decreases due to the closing of pore throats due to increase in 

confining stress. They linked this concept of reduction in permeability with the 

Klinkenberg slippage factors and reported that as the confining stress increases the gas 

slippage factor increases, which decrease the permeability due to the decrease of the 

cross-sectional area of the thin tabular pores. In these, situations it would be expected 

that the variances between laboratory permeability and the permeability at in-situ 

conditions of reservoirs at higher stress levels could be the result of closing of 

microfractures as a result of stress.  
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Figure 6.9  Stress sensitivity of relative permeability of samples with absolute gas permeability kg =>0.2 

mD. 

 

Figure 6.10 Stress sensitivity of relative permeability of a samples with absolute gas permeability kg = 

<0.02mD. 

Furthermore, the gas relative permeability was compared with low stress measurements 

at 1000psi and high stress gas relative permeabilities of samples which were obtained at 

confining stress of 4000psi. The high stress measurements were performed by the 

steady state permeability method by placing the samples into core holder at confining 

stress up to 4000psi. The gas was injected for longer period of time to measure the 

effective gas permeability. Although, the method was difficult as it was requiring longer 

stabilization time to reach steady state.  

The effective gas permeability of samples is largely controlled by pore pressures (e.g. 

Walls, 1982). Water tends to accumulate in larger pores as a result of stress, which 
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restricts the flow of gas until unless there is a pressure gradient to displace water out of 

those pore spaces (e.g. Walls, 1982). Jones and Owens (1980) performed experiments 

on samples from Sprit River cores showed that to decrease water saturation from 100% 

to 40% experiments requires a pressure gradient of 391psi/cm. The present study 

experiments were about 20psi/cm therefore, water movement would not be expected 

within the studied samples. The higher pressures have also disadvantages that might 

alter the rock internal pore structure due to the small samples size that is why smaller 

pressures were applied. The relative permeability data analysed is summarized in 

Figure 6.11. The large difference can be seen in relative permeability data at low and 

high confining stress at similar saturations. The results shows that there is a downward 

shift in the samples relative permeability curve at higher stress compared to low stress 

relative permeability at similar saturations. There are several reasons that led to 

differences at high stress and low stress relative permeability. Authors have noticed that 

within tight rock samples the effect of redistribution of water by changing stress could 

further decrease effective permeability (e.g. Al-Hinai et al., 2007). 

 

Figure 6.11 Diagram showing gas relative permeability results. The relative permeability measurements 

made at different stress conditions for sample sections of core samples.  

The flow of gas as a non-wetting fluid more likely be blocked due to water 

redistribution as it can be seen from Figure 6.12. It should also be emphasized that the 

Figure 6.12 is very simplified and might not reflect the actual grain particles 

deformation and brine redistribution. Although, during laboratory permeability 

measurements, as effective stress increases the pore diameter becomes smaller which 

forces grains to get closer hence a shift in pore throat diameter could occur that might be 
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expected resulting in smaller pore throat size. Therefore, it was thought that brine starts 

redistributing and occupies more pores potentially blocking some pore throats for gas 

flow resulting in lower gas relative permeability. Similar observations were also 

reported by Al-Hinai et al. (2008) who reported the effective permeability of partially 

saturated fault rock samples from the Clashach Quarry, Invernesshire UK and the Vale 

of Eden, Cumbria UK as well as tight rock samples. They thought that by increasing 

overburden stress the grain particles forced and were packed together, which resulted in 

reduction of the pore throat size and redistribution of water. The redistribution of water 

towards larger pores reduces the non-wetting fluid flow. Ali et al. (1987) conducted 

experiments of the effective permeability of partially saturated Berea sandstone cores at 

stresses of up to 6000psi. They reported decrease in oil relative permeability due to 

overburden stress. On theoretical grounds, they speculated that when stress increases the 

pore throats size decreases. Then, the wetting phase moves and occupies more pore 

spaces which disrupt the pore connectivity and tends to trap the no-wetting phase flow. 

Similarly the present study shows that permeability reduced at higher stresses because 

of water redistribution led to poor connectivity of pore throats.  

 

Figure 6.12 The illustration is the representation of water redistribution with increasing applied stress 

(taken from Al-Hinai et al. 2008).  

In summary, the effective and relative gas permeabilities are very sensitive to stress in 

the laboratory. The gas relative permeabilities are sensitive to stress particularly to those 

samples which have lower absolute permeability. In low permeable samples there are 

more chances to form grain boundary micro-cracks due to stress relief during core 



 

Petrophysical properties of fault rock-Implications for petroleum production                Page 203 

 

recovery process which were observed from polished thin sections within few samples 

that is why low permeable sample resulted in large decrease in effective and relative gas 

permeability at higher confining stress. The water redistribution due to stress increase 

presumably occupies more space which tended to block the flow of gas hence reduce 

the permeability. The effective gas permeability stress sensitivity discussed might not 

be exclusive however there might be other reasons that may impact need to be 

investigated. However, these results suggest that it is essential to understand both the 

relative permeability and its sensitivity to stress when assessing the quality of resources 

and their production performance.  

6.4.2 Gas relative permeability controls and differences  

Figure 6.13 provides the gas relative permeability results from the samples analysed. 

The samples from North Sea group-B and Hopeman fault rock samples have lower 

absolute permeability than North Sea Group-A, therefore the lower absolute 

permeability samples appears to have lower relative permeability (Figure 6.13). The 

relative permeability plotted has shown scatter, the reason for such scatter in data is 

likely due to the problems with obtaining the water saturations within heterogeneous 

samples.   

 

Figure 6.13 Illustration is the combined gas relative permeability of samples versus water saturation 

from present study. 

The fault rocks itself occupy such a small volume compared to the host such that their 

water saturations are irrelevant in terms of volumetric calculations. Most likely the 

water saturation within the deformed bands might be higher than its associated 

undeformed host sandstones because the deformed band has smaller size pores that 
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might retain more fractions of water than its associated coarse grained host sediments. 

This might occur within faults rocks, because fault rocks have very small pore size 

which leads to high capillary attraction forces than its associated host sediments at 

similar capillary pressure. The gas relative permeability and capillary pressure data is 

plotted in Figure 6.14 shows that samples with the higher absolute permeability appears 

to have higher gas relative permeability values at a given capillary pressures. 

 

Figure 6.14 The illustration is the semi-log plot of gas relative permeability versus capillary pressure for 

all samples. Data subdivided based on the range of measured absolute gas permeabilities is 

given in brackets. 

Furthermore, the geometry of the pore throats and their connectivity plays a significant 

role in controlling the permeability (e.g. Fetter, 1993; Motealleh and Bryant, 2009; Tiab 

and Donaldson, 2011). In Figure 6.15 the data is subdivided into five groups based on 

the pore size of the samples studied, which shows that samples with lower relative 

permeability have smaller pore throat size, essentially the permeability is controlled by 

pore throat size. The relative permeability is more likely be affected by combination of 

factors such as pore geometry, interconnectivity of pores system, distribution of pore 

throat size and occurrence of clay minerals and other infilling minerals if they exists 

(e.g. Bennion et al., 2002). Authors have argued that the pore throat size and the number 

of pores occupied by phases depend on the distribution of pore size and the wetting 

tendency of the phase. If the interconnection of pores to pass the non-wetting phase is 

negligible, that shows that the hydraulic conductivity is lost and the relative 

permeability to that phase becomes negligible (e.g. Bachu and Bennion, 2008). 
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 Several other authors have argued that the tight-rocks have very complex pore system 

that is dominated by different shapes of pores these might result in specific issues 

relating to multiphase flow. The existence of such a complex pore structure might result 

in reduced rate of effluent flow such as phase trapping. The explanations about 

favourable and unfavourable pore structures related to the phase trapping could be 

found in Bennion (2009) who demonstrated that a pore structure in which the effective 

permeability is controlled by moderately smaller fractions of the pore space, which 

comprises of interconnected meso- or macropores or little cracks and would not be 

sensitive to water-based trapping. These might be slightly more able to store the water 

without obstructing the major pores. A pore structure of a more uniformly distributed of 

micro-pores (1-10 μd) might be by a slight increment in water saturation result in 

stopping the flow by clogging the pores and in this manner a reduction in effective gas 

permeability occurs through the entire pore structure. Furthermore, he argues that this 

phenomenon of phase trapping might occurs in pore spaces which are very small with 

narrow pore throats openings. Similarly, the fault samples studied were phyllosilicate-

framework faults with higher clay contents may have smaller size pore throats could be 

severely affected. Therefore, within narrow pore openings of rocks which are partially 

saturated with water may retain more water and trapping of water may occur (e.g. Lake, 

2005) that will more likely result in reduction of sample permeability. It was also 

argued by Shanely et al. (2004) that within low permeability rock samples, water 

occupies more spaces and reduces the connection between pores, so the degree of 

connection between pore throats becomes less significant, which leads to the reduced 

flow of non-wetting phase. Hence, in water-wet rocks, water may have imbibed into the 

smallest pore-throats disrupting the continuity of the gas throughout the pore network. 

Most likely, water as a wetting phase occupies the smaller pore throats of the porous 

rock and the non-wetting fluid preferentially flow through larger size pore (e.g. Shanely 

et al., 2004). If pore spaces occupied by higher fractions of water covering the larger 

pores will disrupt the non-wetting fluid flow hence leads to lower relative permeability 

to gas. Similarly, within tight gas sandstones at  higher water saturations a phenomenon 

might occur which is called permeability “jail”, at this saturation no any flow of wetting 

and non-wetting occurs (e.g. Cluff and Byrnes, 2010).  Existence of “jail” phenomena 

depends upon the rock geometry and the saturations percentages, in some tight rock that 

occurs within the range of 55% to 80%, the tighter are the rocks wider saturation range 
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of Jail could be expected (e.g. Cluff and Byrnes, 2010). The fault rocks are 

heterogeneous, so it is very difficult to define the saturation percentages at which the 

“jail” phenomenon occurs. The “jail” permeability could not be specified for the fault 

rock samples as fault rocks are having variable microstructure so the idea of 

permeability “Jail” could not be defined for the samples studied. This should be further 

investigated by collecting more data on different fault rock types.         

 

Figure 6.15 Plot of the gas relative permeability versus water saturations of fault rock samples based on 

pore radius data. The data plotted is from this study and collected from published studies of 

Al-Hinai et al. (2008) and Tueckmantel et al. (2012) respectively; the data were plotted on 

linear graph (left side) and semi-log graph (right-side).  

In Figure 6.16 the relative permeability data is subdivided into four groups based on 

absolute permeability which shows that the lower absolute permeability samples 

appears to have lower relative permeability at given water saturations. This shows that 

relative permeability of low permeable samples may not have a continuous 

interconnected pore network so these pores might not significantly contribute to gas 

flow (e.g. Benion et al., 2002). Similar observations have been reported within tight 

rocks gas relative permeability data based on range of absolute permeability values by 

Cluff and Byrnes (2010). Figure 6.17 shows that at given saturation samples with lower 

absolute permeability have shown a downward shift in relative permeability curve. 
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Figure 6.16 Illustration is the gas relative permeability of fault rock samples versus water saturation; the 

different colours indicate different ranges of absolute gas permeability. The data plotted on 

linear graph (left side) and semi-log graph (right-side).  

 

Figure 6.17 Gas relative permeability as a function of water saturation. The data represented with 

symbols are measured data and curves represent the predicted data (taken from Cluff and 

Byrnes, 2010) 

Clay minerals has a major impact on permeability of samples, permeability could be 

controlled by the amount of clays present within samples (e.g. Khilar and Fogler, 1984). 

The cores samples might went under different processes of cementation or presence of 

authigenic clay minerals resulting in narrow pore throats, such rocks will certainly lead 

to lower permeabilities (e.g. Al-Hinai et al., 2006; Armitage et al., 2011). Sample 

containing clay mineral fractions, if interact with low salinity brines might result in pore 

size decrease due to creation of immobile bound water layer, hence that causes the 

reduction in permeability (e.g. Faulkner, 2004). Similar observations were made from 

present study data that higher the clay fractions lower will be the sample relative 

permeability (Figure 6.18). Land and Baptist (1965) reported that if sandstone samples 

containing different types of clay minerals their permeability might be sensitive if 
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exposed to water as a result of hydration. However, this should not be the case for the 

sample used in present study as these were saturated with (NaCL) brines.  Land and 

Baptist (1965) also argued that in some situations the sandstone samples contains very 

small amounts of clays which might be found in traces, so this concept might not be 

generalized to all sandstone samples. The relative permeability of the samples studied 

does not show a simple relationship with clay fractions. Even though, few samples 

having higher percentages of clays appear to have higher relative permeability than 

those with lower clay contents. The samples with higher clay content and higher relative 

permeability appearing on the curve might have higher absolute permeability values. 

Therefore, the relative permeability could not necessarily be controlled simply with clay 

content. There might be several other factors that control the relative permeability such 

as the degree of cementation and cataclasis that need to be investigated by collecting 

more data on different fault rock types from different field locations, in particular, the 

faults formed in clay-rich sequences.   

 

Figure 6.18 Plot of the gas relative permeability and water saturation relationship on linear and semi-log 

graph, the different colours indicate different ranges of clay content of host sediments. 

As mentioned previously, the fault a rock comprises of small volume so the saturations 

calculations are irrelevant in terms of volumetric calculations. The highly heterogonous 

nature of fault rock samples means that their relative permeability relation with water 

saturation varies from sample to sample. Therefore, it would be more sensible to relate 

their relative permeability to capillary pressure. For this reason gas relative permeability 

of samples are plotted versus capillary pressure (Figure 6.19). It was observed that 

samples with higher gas relative permeability have higher capillary pressure. Similar 

observations from 90 Fathom faults two-phase flow measurements were also made by 
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Tueckmantel et al. (2011). The scatter in relative permeability and capillary pressure 

could be the samples heterogeneity. 

Moreover, the two-phase flow has importance to control flow across faults. Suppose 

that fault is sealing to the columns of hydrocarbon height that could be supported by 

height of fault and that is related to the fault rock pore throat radius (e.g. Schowalter, 

1987). Based on the empirical relations of Pitman (1992) pore throat radius could be 

obtained corresponding to (capillary) entry or threshold pressures of faults. The values 

of pore throat radius of 0.18 µm and 13.3µm has been reported by Gibson (1998) and 

Ogilvie and Glover (2001) which were corresponding to the heights of 137 and 2m 

respectively. Knott (1993) demonstrated that within the North Sea reservoirs 30% of 

seals are formed due to the sand to sand juxtapositions. Gibson (1994) found that 

hydrocarbon column heights that were closely related to the fault throw for sand-sand 

juxtapositions and the throws were around 75 m (246 ft) based on his observations he 

found that these faults were potentially sealing faults. These studies suggest that fault 

formed in these situations could be potential barrier to fluid flow in case of two phase 

hydrocarbon flow. Similar to these studies, present study data showed that the Central 

North Sea group-B samples and samples from Hopeman cataclastic faults having low 

permeabilities and poorly sorted fine-grained sands with small pore-throat size could be 

able to act as a capillary seal in two-phase flow situations. This might be the reason to 

history match the production data of fault compartmentalized reservoirs by 

incorporating the two-phase flow properties of fault rocks. As an example, Zijlstra et al. 

(2007) showed a good history match of Rotliegend reservoirs, as the faults identified 

within these reservoirs were formed in low permeability cataclastic faults and were 

modelled by taking account of multiphase flow properties of fault rocks.  
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Figure.6.19 The relative gas permeability versus capillary pressure plotted on (a) linear graph (b) semi-

log graph. The data presented is obtained during this study from North Sea fields core 

samples.  The different colours indicate different techniques used for saturation alterations.  

6.4.3 Capillary pressure 

The capillary pressure curves of all plugs were experimentally obtained using the 

different techniques discussed in section 3.5. The capillary pressure versus saturation 

graph shows that data obtained using the ultracentrifuge technique does not follow the 

trend with the data obtained from humidity chambers and Hg injection methods (Figure 

6.20). It was observed that capillary pressure data from different rock samples follows 

the different trends at given water saturation. Even though exceptional estimates of 

equilibriums at each rotational speed were obtained and that is required for calculations 

to obtain the capillary pressure curve. From production measurements the capillary 

pressures were obtained by applying known mathematical solutions (Forbes, 1997). The 

mismatches were observed in plotting capillary pressures for different samples. These 

mismatches could be the results of the samples heterogeneity as samples used were 

composed of deformed and undeformed sediments of varying microstructure. Another 
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possibility was the different saturation monitoring techniques used to achieve saturation 

equilibrium. The centrifuge methods results in irregular changes in water saturation 

along the core sample length because the centrifugal force gradually increases with 

distance from the centre of rotation (Hagroot, 1980). 

In conducting centrifuge capillary pressure measurements there is a common error that 

is not to achieve good calculations of the average saturation at equilibrium in each 

rotational speed (O’Meara Jr.et al., 1992). In centrifuges tests the equilibrium at a 

certain rotation speed is defined the condition where there is no more any further 

production of fluid was noticed (e.g. Fernø, 2008).  Although, many authors have 

discussed about the concern in attaining time to reach equilibration within the centrifuge 

experiments (e.g. Hoffman, 1963, Slobod and Prehn, 1951, Ward and Morrow, 1987). 

In general the high permeable samples greater than five mD to several hundreds of mD 

could reach equilibrium in 1 to 2 hrs of rotation, hence within the low permeability 

samples fluid production could be observed for longer periods and with slow decrease 

in saturation. Slobod and Prehn Jr. (1951) reported about the equilibrium times for 

samples with 2mD permeabilities to hundreds of mD. They achieved equilibrium very 

quickly in high permeability samples in few hours; on the other hand the low 

permeability samples after 20hrs at speed of 18000rpm showed that the saturations were 

still decreasing. Several others authors have also attempted monitor saturation and 

obtain the capillary pressure curve. Such as, Hoffman (1963) using centrifuge method 

attempted to measure capillary pressure of the sample which were more than 60mD 

permeability. The criterion set by Hoffman (1963) to achieve equilibrium for samples 

used for capillary pressure measurement was that if there is no further production occurs 

after at least one hour from the last noted production. Fernø (2008) argued that there is 

no such case in which samples reach equilibrium in less than 24 hour.    

The likely explanation about variable time to reach equilibrium and the possible reason 

of difficulties in reaching equilibrium could be found in Ward and Morrow (1987). 

Ward and Morrow (1987) from experimental observations reported that possible reason 

is the high degree of fluid discontinuity within the rock pores and fluid retained within 

the edges of pore spaces. Another possible reason could be the lack of pore network 

connectivity which causes the lack of capillary equilibrium (Morrow, 1970). Similarly, 

the fault rocks are composed of different zone of deformed and undeformed formations 
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having variable pore structure and pore connectivity between host and fault formations 

could be the possible reason of the scatter in data. In Figure 6.20 there were few data 

points which were not fitting well on curve generated were removed. 

A part from discussion about the capillary pressure measurement and its interpretation 

issues, capillary pressure plays a significant role in trapping oil and water within narrow 

pore spaces of rock (e.g. Berg, 1975). The factors responsible for trapping hydrocarbons 

includes the radius of the pore throats, oil and water interfacial tension and wettability 

and is quantified by the relationship of flow through rock pores (Purcell, 1948). 

Detailed discussions about capillary pressures and could be found in Berg (1975) and 

Schowalter (1987).  

 

 

Figure 6.20 Plot is the capillary pressure versus water saturation. (a) The plotted data is on linear chart 

and (b)semi-log plot. The capillary pressure was obtained with three different techniques.   
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6.4.4 Comparison of result with published two-phase flow properties 

of fault rock 

The reason for collecting and comparing data on fault rock relative permeability is 

twofold: 1) the interest in modelling fault rock two-phase flow behaviour has only 

evolved after it was recognized by several authors that it is essential to incorporate the 

multiphase flow properties (relative permeability and capillary pressure) of fault rocks 

into simulations models (e.g. Fisher and Knipe, 2001; Fisher et al., 2001; Manzocchi et 

al., 2002 and 2010; Al-Busafi et al., 2005; Zijlstra et al., 2007).  2) The workers in 

simulation have almost resorted to use pseudo-properties (relative permeabilities and 

capillary pressures) when actual core data were unavailable (Manzocchi et al., 2002, 

2008). Another reason was that due to lack of fault rock multiphase flow data authors 

also attempted to model fault rocks by using tight gas sands data as an analogue (e.g. 

Ziljistra et al., 2007).  However, as per author’s knowledge, there are two published 

experimental data on fault rock relative permeability and capillary pressure (e.g. Al-

Hinai et al., 2008; Tueckmantel et al., 2012) have provided a sound basis for using 

relative permeabilities and capillary pressures for fluid flow simulations and modelling 

of fault compartmentalized reservoirs. The availability of fault rock relative 

permeability is yet in scarcity because measurements of such a low permeable samples 

are very difficult to obtain and are time consuming. However, the availability of data on 

relative permeability has provided a foundation of evidence base and that can be used to 

quantify the fault sealing behavior.  

The gas relative permeability and capillary pressure results from present study and those 

collected from published sources are summarized in Figure 6.21. Al-Hinai et al. (2008) 

was the first who had reported the cataclastic fault rock relative permeability capillary 

pressure. The absolute permeability of their studied samples ranges from 0.01md to 

0.2mD for Vale of Eden samples and from 0.001mD to 0.005mD for the Clashach fault 

samples. The second data set on two phase flow properties of fault rock comes from the 

work of Tueckmantel et al. (2012) who published two phase flow properties on small 

and large scale faults of 90 Fathom fault. The relative permeability data plotted together 

with other published fault rock data sets, the data from central North Sea group-B 

samples appears to be the lowest and follows the similar trend as of the 90 Fathom fault 

samples from Tueckmantel et al. (2012). The relative permeability data from central 
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North Sea group-A samples and the data from Al-Hinai et al. (2008) appear to follow 

the same declining trend. On the other hand the central North Sea group-B samples data 

and the data from Tueckmantel et al. (2012) appears to be lower than Al-Hinai et al. 

(2008) relative permeability data. This reflects that samples with lower absolute 

permeability have lower relative permeabilities at the similar saturations. The data 

presented here and that reported by Byrnes et al. (2003) have shown similar beheaviour 

as the tight gas samples considered as an undeformed low permeability sandstone 

samples. The slip-surface cataclasite fault rocks from 90 Fathom and samples from 

Hopeman fault rock virtually consists of major part of faults resulted in low 

permeability and these might have resemblance with undeformed tight gas sands (e.g. 

Tueckmantel et al. (2012).   

It should also be noted that there is a large variation in data, which reflects the samples 

heterogeneity. Another concern is that the different studies have conducted effective 

permeability measurements at different stress conditions. Tueckmantel et al. (2012) 

conducted experiments at an effective stress of 1500psi, while the data from Al-Hinai et 

al. (2008) measured using an effective stress of 500psi. The present study relative 

permeability data points of 1000psi confining stress used for comparison with the Al-

Hinai et al. (2008) and Tueckmantel et al. (2012). To better understand the controls and 

difference of the different data sets it is essential to consider the conditions under which 

these properties were measured. The stress differences must be taken into account while 

comparing the relative permeability data of fault rock samples for assessment to use for 

fault sealing behavior.  

  

Figure 6.21 Plot of the fault rock gas relative permeability versus water saturation for all samples used 

during the present study as well as that obtained in the studies of Al-Hinai et al. (2008) and 
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Tueckmantel et al. (2012) respectively (left side data are on linear graph). The same data of 

relative permeability versus water saturation are plotted on semi-log graphs (right-side plot). 

 

 
Figure 6.22 Plot showing the relationship between relative permeability and capillary pressure from this 

study, and collected from Al-Hinai et al. (2008) and Tueckmantel et al. (2012).The  data is 

presented (a) linear graph and (b) semi-log graph. 

 

6.4.5 Implications  

The laboratory results on fault rock two phase flow properties presented here are 

incorporated into a specific example of simulation model into chapter 7 to evaluate 

effects across fault. Considering the impact of faults on subsurface flow, here a general 

discussion is provided.   

Samples effective and relative gas permeability measurements demonstrated more 

sensitivity to the stress than the single phase gas permeability values, particularly at 

higher stress conditions. Samples with low absolute permeabilities were observed that 

their relative permeabilities were likely to be more sensitive to stress.  The reduction in 

rock permeability at lower stress may not reflect the in-situ reservoir conditions due to 

core damage effects.  So the permeability reduction effects should be taken into account 
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at higher levels of stress around 2000psi up to 5000psi, this might vary and depends 

upon the type of fault rock and diagenesis.  

Cataclastic fault rock having absolute permeabilities <0.12mD have gas relative 

permeabilities values in range of 0.40 down to 0.02 at a capillary pressures >606 psi. 

The capillary pressure of 606 psi measured under laboratory conditions is equivalent to 

~380 psi at reservoir conditions based on gas-water interfacial tension of 72mN/m at 

ambient conditions and 45mN/m at reservoir conditions of 100 
0
C and 3000 psi pressure 

(e.g. Firoozabadi and Ramey, 1988). McCrone et al. (2003) reported a large gas column 

of 400m within one of the North Sea field (Indefatigable field) which would generate 

buoyancy force of only 540 psi even though it has large gas column. Therefore, if the 

fault rocks were present there would be expected to have relative permeability to gas of 

<0.02. Essentially the transmissibility multipliers calculated based on the single phase 

gas permeability values would overestimate cross-fault transmissibility multipliers by 

many orders of magnitude.  

On the other hand, mercury injection data suggests that few samples from central North 

Sea at 20% water saturation have capillary pressure of around 10psi. The relative 

permeability indicates that the samples at that saturation would have a gas relative 

permeability krg of around 0.50. Assuming the water wet rock an oil water interfacial 

tension of 25dynes/cm, brine and water densities of 1.0 and 0.7 respectively, at this 

water saturation Sw can only generate oil column of 15m.  

The transmissibility multipliers calculated for fault rock based on their single phase 

permeability could be high just by factors of 2 for the segments of fault that is 15m 

above the water-oil contact. This implies that it may be essential to take into account of 

multiphase flow properties where there is very low absolute permeability fault rocks 

(<0.01mD) are present within the central North Sea reservoirs. On the other hand it 

might not be so important to consider the multiphase flow properties where there is fault 

rocks with high absolute permeability (>0.1mD) and low capillary threshold pressure 

are present. Interestingly, few recent publications have shown different concepts about 

the success of production history matching using single- and two-phase fault rock fault 

properties into production simulation models. For example, Zijlstra et al. (2007) showed 

how history match of Rotliegend reservoirs, which contain low permeability cataclastic 

faults similar to those analysed during this study were improved by incorporation 
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multiphase flow properties of fault rocks. On the other hand, Jolley et al. (2007) showed 

that good history matches of a Brent-type reservoir, in that low permeability fault rocks 

are not likely to be as continuous as in the Rotliegend. The history matching in such 

reservoirs could be achieved by calculating transmissibility multipliers based on their 

single phase permeability values without taking into account multi-phase flow 

behaviour. Therefore, these shows that fault rock should be carefully modelled by 

assigning appropriate flow properties.   

6.5 Conclusion 

This chapter has presented the first ever measurements of the relative permeability and 

air-brine capillary pressures of fault rocks from North Sea reservoirs. The main findings 

from work are: 

 The stress sensitivity of effective gas permeability increases with decreasing 

absolute permeability. The effective gas permeability measured at different 

stress conditions is far more stress sensitive than is the absolute gas permeability 

under the similar stress conditions. 

 The effective gas permeability from cataclastic faults and many of the 

phyllosilicate framework faults showed a significant reduction at higher stress of 

4000psi and there was hardly any flow to gas at 5000psi effective stress. This 

indicates that fault rocks may act as effective barriers within southern North Sea.  

 The gas relative permeability values of low permeability (<0.01mD) fault rocks 

are most likely to be <0.012. Therefore, if low permeability cataclastic faults are 

present within the reservoirs it may be necessary to take account of multiphase 

flow for simulation and modelling. Otherwise, transmissibility multipliers 

calculated based on the single phase gas permeability values would overestimate 

cross-fault flow in such reservoirs. 

 Clay contents content has shown effect on permeabilities (effective and relative 

permeability). As clay percentages increases the effective permeability as well 

as relative permeability both decreases. This also depends on the samples 

absolute permeability.  
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7 Modelling the influence of fluid flow 

across fault   

 

 

7.1 Introduction  

Reservoirs often behave in rather unexpected ways during production. For example, 

Zijlstra et al. (2007) described a situation from the southern North Sea where the 

gas-water contact rose in a producing compartment relative to one that was not under 

production. In this case, it was interpreted that the fault was sealing to gas but not 

water. In another example, van der Molen et al. (2003) described a reservoir in 

which p/z vs cumulative production fell far more dramatically than expected. The 

authors interpreted this to be a result of fault compartmentalization. Several studies 

have claimed that reservoir simulations in which the impact of faults on fluid flow 

have been incorporated into the simulation models based on the absolute 

permeability of fault rocks have provided a good history match to production data 

(e.g. Knai and Knipe, 1998; Sverdrup et al., 2003; Jolley et al., 2007; Zijlstra et al., 

2007; Irving et al., 2010). Other studies have suggested that fault permeabilities need 

to be reduced by several orders of magnitude to acheive a history match of 

production data (e.g. Sperrevik et al., 2002; and Fisher et al., 2005). However, 

changing properties without any strong justification is not recommended because 

history matches are inherently non-unique and by arbitrarily changing a property to 

achieve a history match may mean that one is not correctly modelling another 

important control on production. This situation is eloquently described by Dake 

(1994): “Reservoir engineering is a complex subject for two reasons. In the first 

place, we never see enough of the reservoir we are trying to describe. Therefore, it is 

difficult to define the physics of the system and, therefore, select the correct 

mathematics to describe the physics with any degree of certainty. The second 
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problem is that even having selected a sensible mathematical model there are never 

enough equations to solve the number of unknowns”. Essentially, great care must be 

taken when drawing conclusions from different case studies, no matter how 

confidently the argument is reported.  

Jolley et al. (2007) presented fault seal analysis studies on several fields from the 

Brent Province (including the Brent and North Cormorant Fields), which showed 

how faults could act as barriers on a production time-scale and that history matches 

to simulation models could be improved by incorporating realistic fault permeability 

values. It appears that in Brent Group fields fault-related compartmentalisation is not 

a major issue where there is clear juxtaposition of clean sand against clean sand (e.g. 

self juxtaposition of the Etive Formation in the Brent, Gullfaks and Ninian fields).. 

This is consistent with the dominant fault rock type being disaggregation zones, 

which have very similar petrophysical properties to their host sandstone. On the 

other hand, faults that deform sediments within higher clay content tend to act as 

barriers to fluid flow over production time-scales. This is consistent with presence of 

clay smears or phyllosilicate-framework fault rocks (e.g. Fisher and Knipe, 2001). In 

those situations, however it might not be justifiable to dramatically reduce cross-fault 

transmissibility below that calculated from single phase permeability values. For 

example, Al Hinai et al. (2008) produced a simple simulation model of the reservoir 

described by van der Molen et al. (2003) and showed that production could not be 

matched using a traditional fault seal analysis in which only the single phase 

permeability of the fault rock was incorporated into the model. A good match of the 

production data was, however, achieved when the multiphase flow behaviour of the 

fault rock was incorporated into the simulation model. The failure to take into 

account multiphase flow properties of fault rocks is a not the only reason why cross-

fault transmissibility might need to be reduced far more than would be expected 

based on published values of single phase fault permeability. In particular, as shown 

in the previous chapters, fault permeabilities maybe stress sensitive so permeabilities 

in the reservoir could be orders of magnitude lower than measured in laboratory 

conditions. Incorporating multiphase flow properties of faults into simulations 

models is not straightforward (Manzocchi et al. 2008). So in reality engineers 

generally model faults in a fairly simple manner. This might change if simple rules-



 

Petrophysical properties of fault rock-Implications for petroleum production                Page 

220 

 

of-thumb could be provided that would provide a guide as to when it is worth 

investing the time into incorporating multiphase flow and single phase flow 

properties into simulation models. Conducting sensitivity studies is a potentially 

valuable way to construct such guidelines. This chapter attempts to fill some of these 

knowledge gaps, by incorporating the results reported in chapter 6 obtained on fault 

rock two-phase flow properties (i.e. relative permeability and capillary pressures) 

into simulation to model cross fault flow behavior. 

The chapter starts by describing the existing methods of fault rock flow modelling 

and also discusses the importance and impact of two-phase flow properties for fault 

modelling (Section7.2). The new data sets obtained on single and two-phase flow 

properties of fault rock to model flow across the fault are presented in Section 7.3. 

Then model input parameters and geometry is described in detail in Section 7.4. The 

results from different cases of simulations run by assigning fault rock properties 

derived from laboratory data of single and two-phase flow are presented in Section 

7.5. Finally, the results are discussed and main findings are summarized in the 

sections 7.6 and section 7.7 of this chapter. 

7.2 Methods of fault modelling  

The influence of flow across fault considering the two compartments of reservoir has 

been modelled using the Eclipse software. In simulation model the fluid flow 

between neighbour cells is controlled by the cell-cell transmissibility as a 

function of the cell properties and cell geometry. Although, if there is fault rock 

that would have smaller permeability than its associated host sands and will 

impede the fluid flow across juxtaposed sands. The influence of reduction rate of 

flow due to fault would be taken into consideration using fault transmissibility 

multipliers, that would be calculated from fault rock permeability and thickness 

(Figure 7.1). Modelling the faults in the simulation involves the calculation of 

transmissibility multipliers by modifying the flow between juxtaposed cells (Knai 

and Knipe, 1998; Manzocchi et al., 1999). After the work of Manzocchi et al. (1999), 

if there is no fault, then transmissibility separated by two grid blocks can be 

calculated using following relation, 
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Transi,j =
2

Li
Ki

+
Lj

Kj

                                (7-1) 

where, Li and Lj are the cell lengths, ki and kj are the permeabilities of the 

undeformed cells. If there is fault present, then the transmissibility between two grid-

block centers, TransFi,j, separating fault of thickness tf can be calculated using 

following equation: 

TranFi,j = (
2

Li−tf
ki

+
2tf
kf

+
Lj−tf

kj

)                           (7-2) 

where and kf is the fault rock permeability, tf is the fault rock thickness. To account 

for the effect of fault rock in the Eclipse simulation a TM was applied to the face of 

grid-blocks adjacent to the fault; the TM is calculated using, 

𝑇𝑀 =
𝑇𝑟𝑎𝑛𝑠𝐹𝑖,𝑗

𝑇𝑟𝑎𝑛𝑠𝑖,𝑗
 

The following equation was used to calculate the fault transmissibility multipliers 

(Manzocchi et al., 1999). 

𝑇𝑀𝑎𝑏𝑠 = (1 +
𝑡𝑓(

2

𝐾𝑓
−

1

𝐾1
−

1

𝐾2
)

𝐿1
𝐾1

+
𝐿2
𝐾2

)

−1

                (7 − 3)                

 

Figure 7.1 illustrations is the methods of representing the transmissibility multipliers within within 

faulted and unfluted cells of the reservoirs (taken from Zjilstra et al. 2007) 

The shortcoming of the above methods of fault modelling is that it does not capture 

the multiphase flow properties of fault rocks. In the past, authors have adopted 

different methods of fault modelling to take into account of two-phase flow 
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properties. According to Manzocchi et al. (2010) two phase flow properties of fault 

rocks could be assigned in two distinct ways. One simple method of fault modelling 

is the local grid refinements, in this method the two-phase flow properties (i.e. 

relative permeability and capillary pressure) of the fault rocks can be assigned 

explicitly in the simulation models (e.g. Manzocchi et al., 1998, 2002; Al-Busafi et 

al., 2005; Berg and Øian 2007, Al-Hinai et al., 2008, Teuckmantel et al., 2012). 

Alternatively, a method of fault modelling called the ‘capillary entry height model’, 

to incorporate the multi-phase flow properties of faults in Rotliegend reservoirs in 

the southern North Sea was proposed by Zijlstra et al. (2007). This method of 

reservoir modelling divides the fault into three regions in accordance to the free 

water level. In this the fault is divided into three different regions. In first region 

where only the water is present whose transmissibility multipliers will be calculated 

using equation7.3 presented above. However, in second region as shown in Figure 

7.2, the hydrocarbons immediately above the free water level, where the buoyant 

force in hydrocarbon column is not enough to exceed the fault rock threshold entry 

pressure, therefore the relative permeability to hydrocarbon is zero and the fault will 

be acting as a sealing fault that would be treated with transmissibility multiplier of 

TM=0, to height above free water level relative to fault entry pressure. The data from 

mercury injection was used to calculate the fault sealing height and buoyancy forces.   
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Figure 7.2  A reservoir model representing hydrocarbon saturation within fault zones.   In this model 

the fault is divided into three different zones, below free water level the fault will be assigned TMs, 

which will be determined from fault rock and host rock single phase permeabilities. within the zone 2, 

fault is immediately above the free water level, where capillary threshold pressure could not be 

exceeded by hydrocarbon, that would be considered as sealing fault for hydrocarbon (TMs=0). The 

zone 3 represents that the fault rock entry pressure has been exceeded so it is essential to calculate 

the TMs to consider the relative permeability of the fault rock (taken from Al-Hinai PhD thesis).    

In third region (Figure 7.2) in case of the height above free water level (FWL), 

where the buoyancy force in the hydrocarbon column goes above the capillary entry 

pressure of the fault rock. In that situation, the fault rock will be permeable to 

hydrocarbon which will be associated to fault rock capillary entry pressure and its 

relative permeability. Hence, in that case, the relative transmissibility multipliers will 

be required to model the fault rock by taking into account multi-phase flow 

behaviour. Therefore, the modified transmissibility between gridblocks will be 

obtained using following relation: 

𝑇𝑀𝑎𝑏𝑠 = (1 +
𝑡𝑓(

2

𝐾𝑓(𝐾𝑟𝑔)
−

1

𝐾1
−

1

𝐾2
)

𝐿1
𝐾1

+
𝐿2
𝐾2

)

−1

                (7 − 4)                
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In above equation the krg is the gas relative permeability required for calculation of 

modified transmissibility multipliers.  

7.3 Incorporating host and fault rock properties into flow simulation model 

The fault rock properties incorporated into Eclipse2013 simulation software and the 

flow properties (single and two-phase flow) were measured in the laboratory during 

the present study and are presented in previous chapters. The transmissibility 

multipliers were calculated based on arithmetic averages of fault rock absolute 

permeability (Table 7.1).  The arithmetic average permeability and porosity from 

host and fault rock were assigned during fluid flow modelling and are given in Table 

7.1.  

Table 7.1 The absolute fault and host permeabilities and porosities assigned to simulation models that 

based on data presented in chapter 5 

 

The relative permeability data before use into simulations were fitted with Brooks 

and Corey equations to generate the relative permeability and capillary pressure 

curves to use for simulation. The water relative permeability and relative gas 

permeability was expressed as a function of water saturation, Sw. The following 

equations of Brooks and Corey (1964, 1966) were used,  

Krw(sw) = Krw,gr (
Sw − Scw

1 − Swc−Sgr

)

nw

                             (7— 3) 

  

  Krg(sw) = Krg,wc (
1 − Sw − Sgr

1 − Swc−Sgr

)

ng

                            (7— 4)        

where nw and ng are the Corey exponents for water and gas respectively. The 

capillary pressure function is written in the following form, 

Low Average High

Host rock absolute permeability (mD)
120

120 500

Fault from central North Sea reservoirs absolute permeability  (mD) 0.0053 0.0087 0.0125

Fault from southern North Sea reservoirs  absolute permeability (mD) 0.0015 0.0015 0.0015

Porosity (%) central North sea reservoir 5 7 12

Porosity (%) Host 12 15 20
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            Pc = Pe (
Sw − Swc

1 − Swc − Sgr
)

−1/λ

                         (7— 5) 

Where, Pe is the entry pressure and λ is an exponent, which is used to fit the curve on 

data. The exponents nw and no control the shape of the relative permeability curves 

once the end points have been fixed. The exponents and other different parameters 

fitted on the laboratory data are presented in Table 7.2. The relative permeability 

and capillary pressure curves generated for incorporation into simulation model are 

graphically presented in Figure 7.3. and Figure 7.4. The water relative permeability 

data was assigned using Tueckmantel et al. (2012) because the fault rocks analyzed 

in the present study had similar absolute permeability as reported by Tueckmantel et 

al. (2012). Only gas relative permeability data of host rock sample were measured in 

the laboratory. The gas-water relative permeability of the host rock samples can be 

obtained on typical homogenous porous sandstone samples (C. Grattoni, pers. 

communication) and the curves can be generated using Brooks and Corey equations. 

Therefore, the water relative permeability curves used for host sandstones were 

generated using Brooks and Corey equation with similar range of absolute 

permeability of the host sandstones.  It should be noted that the gas-water 

permeability was considered to model oil water system the samples used for 

measurement were strong water-wet. Therefore, the oil relative permeability could 

be treated as a non-wetting similar to gas and water remains as wetting phase. 

Simulation run for different cases for explicit fault modelling were given same 

relative permeability curves, which are shown in Figure 7.3. 

It should be noted that laboratory capillary pressure data generated by centrifuge or 

by mercury injection techniques cannot be compared directly to each other or to 

reservoir conditions. Therefore the laboratory data was converted to reservoir 

conditions prior to incorporation into simulation modelling. The equations used for 

converting the laboratory data to reservoir is, (e.g. Schowalter, 1979) 

Pc res = Pc lab (
γCosθres

γCosθlab
)           (7 − 6) 
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The conversion of the data from laboratory to subsurface reservoirs requires values 

for the contact angle, θ, of the fluids and interfacial tension (γ) between the two 

fluids; θ is a reflection of wettability. This information is often needed to calculate 

an equivalent buoyancy pressure in the reservoir. Therefore, the Hg-injection data 

for capillary pressure has been converted to air-water values assuming interfacial 

tension of 70 dynes/cm and 480 dynes/cm for air- water and Hg-injection 

respectively. Contact angles of 0
0
 and 140

0
 were considered for air-water and Hg-

injection respectively. The LGR assigned with threshold pressure of fault rock was 

77psi considered based on the laboratory air-water measurements.   

Table 7.2 The table below shows the input variables for generating fault and host rock relative 

permeability and capillary pressure curves using equation of Brooks and Corey (1964). 

 

 

 

Input parameters Low Average High

Sgr 0 0.09 0.12

Scw 0.08 0.06 0.11

Krg 0.79 0.82 0.89

Krw 1 1 1

ng 2 6.5 8.5

nw 12 16 20

Pt 1.2 177 200

λ 0.63 0.69 0.84

Fault rock

Input parameters Low Average High

Sgr 0 0.12 0.15

Scw 0.12 0.06 0.08

Krg 0.89 0.82 0.68

Krw 1 1 1

ng 2.5 4.2 5.5

nw 3.5 4.8 5.6

Pt 2 10 22

λ 0.79 0.69 0.62

Host rock

http://wiki.aapg.org/Wettability
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Figure 7.3 Illustration is the relative permeability data used for reservoir modelling. 

 

Figure 7.4 Capillary pressure curves from mercury injection data used for simulation models and was 

fitted with Brooks and Corey empirical equation. The data was converted from laboratory to 

reservoir water-oil capillary pressure and is from central North Sea reservoir core samples.  

7.4 Model set-up  

To quantify the effect of flow across faults and to make predictions for hydrocarbon 

reservoirs, synthetic reservoir models were generated and simulations of different 

cases were run on reservoir scale. A synthetic model of fault reservoir was created 
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using ECLIPSE™2013. The model consisted of 71 x 25 x 3 cells and was 1020ft in 

length, 500ft wide and 150ft in thickness. The fault thickness of 2.02 feet (0.615m) 

was assumed which is accommodated by 9 grid cells and the cells are 

logarithmically increasing from centre of fault towards left and right. Fault is located 

at the centre of reservoir and is dividing reservoir into two segments (Figure 7.5). 

The grid cells accommodating fault were assigned similar absolute permeability 

values as used to determine the TMs described in section 7.2 above.  The fault 

thickness assumed is also consistent with Hull (1989) correlation. The geometry of 

the model is shown in Figure 7.5 for two model cases run. The drive mechanism is 

the depletion drive where there is no injector and no aquifer support - reservoir has 

its own energy.  

To investigate the effect of fault cross flow within gas reservoir, similar fault rock 

multi-phase flow properties were used that were measured in the laboratory as shown 

in Figure 7.3. The modelling of oil-water and gas-water reservoirs were performed 

by assigning with different ranges of capillary pressure curves that were obtained 

from mercury injection data to quantify the impact of having high and low threshold 

pressures. The models run for oil-water and gas- water system are summarized in 

Table 7.3 and Table 7.4 respectively. Production in the oil reservoir was controlled 

by oil rate, while for the gas reservoir; the production of the reservoir was controlled 

by bottom hole pressure limit (BHP) that was set to 500psi. In the case of water 

injection, the injection rate was controlled by the same rate as the production for the 

oil reservoir. The initial pressure of the reservoir was set as 4000psi.  

The model containing oil and water two-phase system was idealised as a black oil 

system with dissolved gas which produces below the bubble point. In oil-water 

model water properties used in a numerical simulation consist of brine with brine 

compressibility of 2.6E-6 psi
-1

 and the viscosity of water was 0.47 cp. The reservoir 

temperature was 60 °C. The producing period of reservoir was 30 years, where the 

well was producing at a constant rate of 15stb/day per producing well and was 

perforated throughout the entire formation. 

Two types of the model geometries were adapted for grid construction, which vary 

only the way the properties were incorporated.  In the first simulation model the 

impact of fault rock flow properties was taken into account by assigning (TMs) 
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transmissibility multipliers to the faces of grid-blocks (Figure 7.5a). The base case 

was considered such that it was assigned with transmissibility multiplier of (TM=1).  

The second model was fine grid model geometry using (LGR) local grid refinement 

approach as shown in Figure 7.5b. The cell thicknesses in LGR models were set 

such that it was logarithmically increasing away from fault. The fault transmissibility 

multipliers were calculated using the procedure described by Manzocchi et al. 

(1999), in which the relative permeability or capillary pressure were not taken into 

account. In the later case, faults were modelled explicitly by assigning two phase 

flow properties (relative permeability and capillary pressure curves) (Figure 7.5) 

using LGR.  The LGR used were tested for any numerical dispersion and instability 

due to the changing properties between the fault and its associated host rocks. 

Several simulation models were also run to make sure that the results obtained might 

not be the artefacts effect from the gridding used. Their output was then compared 

with LGR model results by assigning similar properties both showed identical result 

which implies that there was no any numerical instability.  

5) TM 

 

6) LGR 

 

Figure 7.5  The flow simulation model geometries and their configuration adapted during modelling. 

(a) Fault modelled by assigning TMs between juxtaposed faults (b) the fault modelling was performed 

discretely by assigning its own cells and properties as (LGR) local grid refinements. 
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Table 7.3 The summary of the different case scenarios of water-oil simulations run during the study. 

 

7.4.1 Simulation modelling results (Oil-water Model) 

This section presents the results from different model cases of oil-water model were 

run, the difference in these models were only in assigning the flow properties of the 

faults and the way the properties were incorporated into the model. Initially the 

simulation was performed using TMs then the fault was explicitly modelled using 

LGRs in which the fault was assigned its own relative permeability and capillary 

pressure.  

Model CP has only one producer without any aquifer support and injector. The 

results presented in Figure 7.6 predicts that pressure drop could be observed within 

TM=1 as oil is produced in that there is no fault. The TMs case showed that there is 

flow across fault, which appears that the fault is acting as a partial barrier. From TM 

case, it was observed that oil in left compartment across the fault starts 

communicating with right side oil producing compartment, as the pressure decreases 

due to oil production. As production starts from right compartment, the pressure 

increases across the fault as well as in the un-drained oil compartment. When the 
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pressure reaches the fault threshold pressure, the oil from the left compartment of 

reservoir enters into the barrier and then flows across the fault. The difference is not 

significant in TM case and the base case in which there was no fault. However, when 

flow across fault was explicitly modelled using LGRs assigning fault rock its own 

two-phase properties, the results from TM and LGR are clearly different. In LGR 

both cases, it was observed that there was hardly any flow across fault and the fault 

seems to be acting almost as barrier. The LGR cases of high and low capillary 

pressure predict lower oil production as compared to base case and TMs case. The 

effect of fault was observed after 22years of production.  

Model HP has one producer in right compartment and one injector on its opposite 

compartment. The results presented (Figure7.8) predicts that fault has a large impact 

in case of using LGR of high capillary pressure case. There was a large pressure 

difference in between two compartments observed, which shows that the fluid was 

injected at the opposite side of producing compartment has not communicated across 

the fault. Although, there was no any difference observed within the TMs and the 

Base case model.  As in this model there was injector well, so the oil produced 

predicts the similar results of cumulative production for all cases irrespective of the 

TM or high and low threshold pressures were used for fault modelling.  

In performing simulations, unlike former models, the Model CS has one producer in 

each compartment. The simulation results showed that the fault properties assigned 

based on TM multipliers has no any impact on the oil production (Figure 7.9). This 

would be expected that both compartments were behaving in the similar manner, so 

the both compartments were producing at same rate. It was observed that if both 

compartments are producing at same rate their depletion behaviour will be virtually 

identical and the fault will not play any role in retarding fluid flow in this case. 

The oil saturation maps are presented in Figure 7.7 for HP model from TM case and 

LGR and base case model at the end of model production period of 30 years. In TM 

case, the change in saturation during production was observed as oil started 

migrating towards the wellbore and across the fault from left compartment. 

However, in case of LGR model, the only saturation change was observed was 

within right compartment, which shows that there was a producing well in that 

compartment and there was hardly any change in left compartment saturation during 
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the production period, that reflects the fault is acting as a strong barrier in this case. 

The saturation maps shows two different depletion trends as it is obvious that in fault 

sealing case there is faster depletion compared to non-sealing cases (Figure 7.7). 

The depletion stage was controlled by the depletion rates that were set as a minimum 

pressure of 500psi. As pressure of the right compartment depletes due to oil 

production, the oil from left compartment across the fault is not flowing and the fault 

is almost acting as barrier. 

 

 

 

 

Figure 7.6 Simulation results and their comparison from CP-oil-water model that has one producer 

in right compartment with no injector. The results presented for different cases where there was no 

fault case, TM case and the fault was modelled by LGR by assigning high and low capillary pressure 

curves. The results show, the total production from field, the filed pressure, region pressures and 

difference of pressures in between compartmented.    
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Figure 7.7 Illustrations are the oil saturation distribution of the model at the end of simulation runs. 

(a) Base case-no fault (b) TM transmissibility multipliers case and (c) is LGR case explicitly 

modelling fault rock by giving its own relative permeability and capillary pressures. The fault cuts the 

entire model splitting it into two compartments. 

(c) LGR case1 

(a) Host rock base case 

 (b) TM case 

(c) LGR case2 
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Figure 7.8 The illustraions are the comparsion of results from HP model case of simulation run, 

which has one injector and one producer in each compartment. The results presented are compares 

different cases, where the fault was modelled by assignining (TM=1) no fault case, the fault modelled 

by assigning transmissbility multipliers which were calculated from fault rock properties and the 

third model in that the fault was given its own properties relative permeability and capillary 

pressures curves of two different ranges of high and low caapillary pressures.  The results from all 

simulation runs were compared are the cumulative production of oil, field pressures, 

compartmentpressures and pressure difference within the compartments as a fucntion of producing 

time of the reservoir. 

 

   

Figure 7.9 Comparisons of simulation results from CS model, where fault rock properties were 

assigned by transmissibility multipliers and by giving fault its own relative permeability and capillary 

pressure. The results show that the both of the compartments are depleting at same rate, so the model 

response in all case is identical.  
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7.4.2 Simulation modelling results (Gas-water model) 

For gas-water system two different model types were run as shown in Table 7.4.  In 

first case reservoir model BP, the reservoir exhibits only one producer, without any 

injector and aquifer support. In GP model there is one producer and one injector at 

the opposite side of the producer. In both cases the fault was modelled by assigning 

relative transmissibility multipliers, absolute TM and by assigning fault its own two 

phase flow properties by explicitly.  

The results predicted from Model BP are shown in Figure 7.11. This model shows 

that the production is overestimated in case of the fault rock properties that were 

modelled by assigning transmissibility multipliers that were calculated from single 

phase permeability and it is obvious that the gas production predicted by TM case 

assumes that there is cross flow across fault and the compartments are in 

communication. However, that is opposite to the two phase flow case (LGR) when 

fault was explicitly modelled by assigning relative permeability and capillary 

pressures. The method of TM case1 was different from TM case 2, in that the TMS 

were calculated based on the modified approach, the formula for calculation of such 

TMs are presented above. In that case, model results were nearly close to those 

predicted by LGR and of the modified TMs case1. The graphs show two different 

depletion trends, as a sealing fault and high fault transmissibility as non-sealing 

faults. It is obvious that fault sealing cases are depleted faster than the non-sealing 

cases (Figure 7.11). The depletion stage is controlled by the depletion rates that 

were set and a minimum pressure of 500psi.  

Table 7.4 The summary of the different case scenarios of gas-water system simulations run during the 

study. 
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The results from model GP presented in Figure 7.12 shows importance of 

considering the fault rock two-phase flow properties. As in this model there is an 

injector well which maintains the pressure of reservoir and there is very less change 

in gas saturation was observed (Figure7.13) the injector in TM case equilibrates the 

pressure of compartments. The only saturation change was around the injector well. 

The effect of fault was observed after ten years of cumulative production in case of 

LGR model. The TM case 2 and base case in which there is no fault exhibits the 

similar behavior and the cumulative production from these cases are nearly identical.  

a) Base case  
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b) TM case  

 

c) LGR model  

 

Figure 7.10 Illustrations are the gas saturation distribution of the model at the end of simulation 

runs. (a) Base case-no fault (b) TM transmissibility multipliers case and (c) is LGR case explicitly 

modelling fault rock by giving its own relative permeability and capillary pressures. The fault cuts the 

entire model splitting it into two compartments. 
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Figure 7.11 Comparisons of simulation results from BP model, different model cases were run, such 

as no fault as a base case, a TMs case where fault rock properties were assigned by transmissibility 

multipliers and LGR by giving fault its own relative permeability and capillary pressure. The 

simulations results resented compares the different responses such as cumulative field production, 

field pressures and water production as well as region one pressures. 

 

 

Figure 7.12 GP simulation model results for the gas reservoir that has one injector and one producer 

which are opposite side to each other. Comparisons of different cases, in which there was a base case 

(no fault), a model in that the fault rock properties were assigned by TM and explicit model (LGR) in 

that the fault was assigned with its own two-phase flow properties.     
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a) Base case  

 

b) TM Case 

 

c) LGR model 

 

Figure 7.13 Illustrations are showing the maps of gas saturation distribution of the GP model at the 

end of simulation runs in which there is a one injector and the producer is in the opposite side of 

injector. (a) Base case-no fault (b) TM transmissibility multipliers case and (c) is LGR case explicitly 

modelling fault rock by giving its own relative permeability and capillary pressures.  
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Simulation results based on high fault rock relative permeability 

range:- 

In following section water-oil simulations were performed considering four different 

scenarios that were compared using low fault rock relative permeability curves. 

Similar model geometry and other input parameters were considered as in previous 

cases, two different ranges of capillary pressures used. The TMs of high and low 

range were assigned to run the sensitivities, the TMs values were calculated based on 

the absolute permeability data presented in Table 7.1 . The results are presented in 

Figure 7.14.  

In this simulation run , there is only one producer without any aquifer support and 

injector. The results presented predicts that pressure drop could be observed within 

TMs case showed that there is flow across fault, which appears that the fault is acting 

as a partial barrier. From TM case, it was observed that oil in left compartment 

across the fault starts communicating with right side oil producing compartment, as 

the pressure decreases due to oil production. As production starts from right 

compartment, the pressure increases across the fault as well as in the un-drained oil 

compartment. When the pressure reaches the fault threshold pressure, the oil from 

the left compartment of reservoir enters into the barrier and then flows across the 

fault. The difference is not significant in TM case and the base case in which there 

was no fault. However, when flow across fault was explicitly modelled using LGRs 

assigning fault rock its own two-phase properties, the results from TM and LGR are 

clearly different. In LGR both cases, it was observed that there was hardly any flow 

across fault and the fault seems to be acting almost as barrier. 
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Figure 7.14  The illustraions are the comparsion of results from high relative permeability range of 

simulation run, which has one injector and one producer in each compartment. The 

results presented are compares different cases, where the fault modelled by assigning 

transmissbility multipliers which were calculated from fault rock properties and the third 

model in that the fault was given its own properties relative permeability and capillary 

pressures curves of two different ranges of high and low caapillary pressures.  The results 

from all simulation runs were compared are the cumulative production of oil, field 

pressures, compartmentpressures and pressure difference within the compartments as a 

fucntion of producing time of the reservoir. 
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Simulation results based on low fault rock relative permeability 

range:- 

In following section series of simulations were performed considering different 

scenarios that were compared considering low fault rock relative permeability. 

Similar model geometry and other input parameters were considered as in previous 

cases, different ranges of capillary pressures of high and low were used. 

Transmissibility multipliers of high and low range were also assigned to study the 

impact of fluid flow across fault. The results are presented in Figure 7.15.  

In low relative permeability simulation Model run that has only one producer 

without any aquifer support and injector. The result presented Figure 7.15 predicts 

that pressure drop within TMs simulation case could show that there is a flow across 

fault, which appears that the fault is acting as a partial barrier. It was also observed 

that oil in left compartment across the fault starts communicating with right side oil 

producing compartment, as the pressure decreases in both of the compartments due 

as the oil starts producing. As production starts from right compartment, the pressure 

increase observed across the fault as well as in the opposite compartment. When the 

pressure reaches the fault threshold pressure, the oil from the left compartment of 

reservoir enters into the barrier (fault) and then flows across the fault. The pressure 

difference is not significant in TM case. However, when flow across fault was 

explicitly modelled using LGRs assigning fault rock its own two-phase properties, 

the results from TM and LGR are clearly different. In LGR both cases, it was 

observed that there was hardly any flow across fault and the fault seems to be acting 

almost as barrier. 
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Figure 7.15 The illustraions are the comparsion of results from low permeability case of simulation 

run, which has one injector and one producer in each compartment. The results presented 

are compares different cases,where the fault modelled by assigning transmissbility 

multipliers which were calculated from fault rock properties and model in which the fault 

was assigned with its own properties relative permeability and capillary pressures curves 

of two different ranges of high and low caapillary pressures.  The results from all 

simulation runs were compared are the field pressures, compartmentpressures and 

pressure difference within the compartments as a fucntion of producing time of the 

reservoir. 
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Simulations performed using relative transmissibility 

multipliers  

One of the alternate approach of transmissibility multipliers for incorporating fault 

rock properties have been adopted to produce results in combination with the 

existing methods; the details could be found in Al-Hinai,et al. (2008) Fisher, Harris 

and Al-Busafi (2006).  In previous simulations, the transmissibility multipliers 

calculations were performed using single-phase properties of the fault, and therefore 

the relative permeability needs to be included in such calculations. This has been 

done by scaling the transmissibility multiplier by the end-point gas relative 

permeability and by deriving the capillary pressure from mercury injection data. 

 

 

Figure 7.16 The illustraions are the comparsion of results from relative TMs case of simulation run, 

which has one injector and one producer in each compartment. The results presented are 

compared with different cases, where the fault was modelled by assignining (TM=1) no 

fault case, the fault modelled by assigning transmissbility multipliers which were 

calculated from fault rock properties and the third model in that the fault was given its 

own properties relative permeability and capillary pressures curves of two different 

ranges of high and low caapillary pressures.  The results from all simulation runs were 

compared are the cumulative production of oil, field pressures, compartmentpressures 

and pressure difference within the compartments as a fucntion of producing time of the 

reservoir. 

Results from relative transmissibility multiplier (TMs case 1) compared with all 

other different simulation cases run.  The results from relative TMs approach are 

significantly improved and reproduce results similar to those when fault rock 

properties effects modelled by using LGRS. Although this approach has worked on 

basic models, this could be evaluated in other situations, suppose the reservoir is 

being produced by water flooding. Although, this methods of TMs calculation and 

the existing methods of accounting for the effects of faults on fluid  provides a sound 
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basis to incorporate fault rock properties into simulation models that is adequately 

easy to implement that could also be acceptable to the practising reservoir engineers. 

The above cases of fault modelling were solely based on the existence of oil in both 

compartments however; another case of fault modelling was performed. In that one 

compartment was totally full of water phase i.e. the left compartment and the right 

compartment was containing oil phase. The grid geometry and all other properties of 

the model were same as previous case of LGR model, similar size and number of the 

LGR considered and the fault thickness. The model has only one producer without 

any aquifer support or injection well. The sensitivity study conducted to test that 

effect of flow across fault that is separated by water on other side of oil producing 

compartment. 

The results of cumulative oil and water production from the model are summarized 

in Figure 7.14. These results show that the fault has a large impact on flow; it almost 

acts as a total sealing fault with most of the production coming from compartment 

one.  Cumulative water production is also very small until the end of simulation 

period, which also reflects that there is no communication between compartments. 

The simulation results from pressure versus time and pressure difference between 

two compartments are presented in Figure 7.15. The pressure gradually decreases 

within the right compartment as reservoir starts depleting; however there is very 

small change in left compartment pressure.  The simulation results show that there is 

higher pressure difference in between two compartments. The graphs show two 

different pressures depletion trends of two compartments, which show that fault 

acting almost as a sealing fault. It is obvious that fault sealing cases are depleted 

faster (Figure 7.16). The depletion stage is controlled by the depletion rates that 

were set and a minimum pressure of 500psi. As pressure of the right compartment 

depletes due to oil production it might be expected that water from left compartment 

across the fault is not flowing and the fault that is acting as barrier. Generally, the 

capillary pressure increases across the fault within the undrained compartment. If 

capillary pressure exceeds the fault rock threshold pressure then flow of water from 

left compartment starts invading into the fault then the flow across fault could occur 

towards the producing compartment.  However, this was not the case within this 
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model. Instead, it was observed there was no flow across fault and the fault is acting 

almost barrier. The saturation profiles are presented for this case at the end of 

simulation period as shown in Figure 7.16. The saturation within the left 

compartment does not change even at the end of simulation that reflects that the fault 

rock is acting almost barrier to water.  

 

 

Figure 7.15 Field cumulative oil production total from the LGR model.  

  

  

Figure 7.16 Illustration is the pressure in (LGR case) compartment 1 and compartment 2. The 

producer is in the compartment 1 and model results from pressure difference between compartment 1 

and compartment 2 at the end of simulation period.  
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1. LGR model 

 

Figure 7.17 Oil saturation map of the model containing water and oil in left and right compartments 

(LGR case) at the end of simulation run.   
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7.5 Discussion  

The fault rocks from central North Sea fields and Hopeman outcrop studied both had 

very low permeability and high capillary threshold pressure. The fault samples from 

Hopeman were relatively homogenous compared to samples from central North Sea 

reservoir cores, which shows that measured average water saturations are only relevant 

for the fault rock itself.  

The simulations performed during present study showed that if the faults have low 

permeability it is necessary to incorporate their multi-phase flow properties in the 

production simulation models to predict their behaviour; otherwise modelling the flow 

behaviour by assigning TM will overestimate the cross fault flow. The transmissibility 

multipliers (calculated based on fault rock single phase permeability and its thickness) 

response was nearly identical to the case where there was no fault. The number of 

simulation cases performed during present study has shown that the fault rocks having 

low permeability similar to that of the faults formed within the Rotliegend gas 

reservoirs of the southern North Sea fields of offshore UK reservoirs where high 

compartmentalization was observed and their behaviour could not be accurately 

modelled based on their single phase flow properties. In contrast, the cases where fault 

rock formed within clean sands, the impact of fault modelling by explicit method using 

LGR assigning their own relative permeability and capillary pressure is not important, 

in those cases of high permeable faults with lower threshold pressure pressures could be 

modelled by assigning TM. However, the faults formed in low permeability have high 

capillary threshold pressures need to be modelled their behaviour by assigning their 

own two phase flow properties.  The fault was also modelled by an alternative approach 

that was different from traditional way of calculation of transmissibility multiplier TMs 

based on single phase permeability of the fault rock. However, the alternative method of 

fault modelling that has been also reported by authors such as Zijlstra et al. (2007) in 

which relative permeability was used to scale the transmissibility multiplier. The results 

obtained from this approach and from explicit method of fault modelling using LGR by 

assigning fault its own two-phase properties were very close to each other.   

The authors have reported that faults sealing capacity depends on the fault rock 

permeability, thickness and threshold pressures, the flow across fault is depend upon the 

average of these properties (e.g. Manzocchi et al. 2010). Davies et al. (2003) argues that 
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the petroleum within low pressure region and the water pressure gradient in fault 

supports the column in high pressure region, when the high pressure of compartment 

depletes, so the capillary pressure within fault increase until it exceeds the entry 

pressure of the fault and to enter into fault, in that situation the fault rock turns to be 

permeable to oil. Essentially, this is the case of capillary seal failure of fault that takes 

place when there is a displacing fluid moves towards the fault and invades into the fault 

due to cross fault pressure differences (e.g. Manzoochi et al. 2010; Brown, 2013). The 

extent to which a fault rock acts as a barrier depends on permeability, threshold pressure 

and its thickness. Cross-fault flow can only happen if capillary pressure becomes higher 

than the fault threshold pressures (e.g. Fisher et al. 2001; Manzocchi et al., 2008; 

Brown, 2013). More recently, it has been argued that it might be possible at earliest to 

know the time for the failure of the barriers within producing reservoirs by relating the 

cross-barrier pressure difference to the permeability and threshold pressure (e.g. Brown, 

2013).  

The present study has modelled simple synthetic reservoir behaviour to understand the 

flow behaviour and impact of fault seal failure due to reservoir pressure depletion. The 

results from different simulation cases have suggested that in case of TM based on 

single phase fault rock properties, the flow exceeds the capillary threshold pressure and 

enters into the fault rock and cross flow occurs. This might overestimate the cross fault 

flow of those faults which were formed within low permeability impure sands. 

However, authors have suggested that low permeability faults need to be modelled 

explicitly by assigning two phase properties (e.g. Al-Hinai et al. 2008) similar to that 

present study has also observed that if two phase flow properties of faults ignored then 

there would be overestimation of cross-fault flow. Moreover, the introduction has 

provided several examples where history matches were achieved where cross fault flow 

was modelled based on single phase flow properties. It also gives examples where 

incorporating two-phase flow properties of the faults improved history matches. It 

might be relevant that the former examples were from reservoirs that deformed early in 

which faults in clean sandstones had a high permeability. On the other hand, the 

reservoirs in which history matches were improved using multiphase flow properties of 

faults deformed at deeper depths so had low permeability fault rock.  
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Many of the studies have tried to understand the importance of flow behaviour of fault 

in context of production during reservoir depletion process (e.g. Freeman et al., 2007; 

Harris et al. 2007; Manzocchi et al., 2008). Hence, no one have yet provided with any 

clear conclusion, as the behaviour of the fault is case specific, sometime it behaves very 

complex and some time is simple (e.g. Manzocchi et al., 2010). The modelling 

considerations are likely to be critical due to material properties of reservoir such as 

overburden stresses. Coupled fluid flow-geomechanical modelling of such processes by 

taking into account of the stress sensitivity of fault rocks is also important, particularly 

when processes such as stress arching (Segura et al., 2011) are occurring. Considering 

stress sensitivity in modelling fault compartmentalized reservoirs would provide a guide 

as to when it is worth investing the time into incorporating multiphase flow properties 

or stress sensitivity into simulation models. Clearly such analysis depends on the 

information on reservoir properties, regional hydraulic properties, structure and the fault 

rock properties as well as reservoir depletion in case of producing reservoirs and 

trapping mechanisms in case of injection. However, the oil and gas reservoirs data and 

other information related to field producing behaviour and the data of assets are 

confidential, so research based on real reservoir is difficult without industry partnership. 

So, it is recommended that the work need to be performed to develop methods that 

incorporate the stress sensitivity impact into the numerical simulation to accurately 

model the flow behaviour across faults based on real reservoir data.  

7.6 Conclusions  

Experimental data from reservoir core samples of central North Sea fields and Hopeman 

fault rock presented in chapter 6 were incorporate into the synthetic reservoir 

simulation model as a realistic fault and host rock properties. The fault modelling was 

performed by either using local grid refinement by assigning fault its own two-phase 

flow properties or by assigning with transmissibility multipliers. The focus of present 

study was to investigate the effect of fault on fluid flow properties across the fault 

rocks. The main findings from this chapter are summarized below: 

 Models have been constructed in which the low permeability fault cataclastic 

faults from Hopeman outcrop and from Central North Sea reservoirs have been 

used to estimate rates of cross-fault flow. The TM methods that use single phase 

permeability to model the impact of faults on fluid flow have overestimated the 
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cross fault flow compared to discrete representation, which uses LGR grids that 

are assigned two-phase flow properties.  

 The experimental results of gas relative permeability of faults from Central 

North Sea-Group-A samples presented in chapters 6 were higher than Hopeman 

cataclastic fault. If these faults that are formed within high permeability have a 

less impact if capillary entry pressure of faults is low. As within some Brent 

reservoirs of North Sea, the history matching resulted by assigning fault with 

TMs, because of fault formed in clean sands having high permeability and low 

threshold pressures and it was possible for gas to flow across fault, this implies 

that the fault present was a low permeable (non-sealing) (e.g. Jolley et al. 2007). 

 Ignoring the fault rock two-phase flow properties of Hopeman faults might 

result in a significant overestimation of production. If these faults were present 

within southern North Sea, whose relative permeability values would be less 

than 0.02. The results from this study explain that fault formed within Rotligiend 

reservoirs of southern North Sea UK could not be easily modelled based on the 

single phase flow properties. Although, if these faults were modelled based on 

single phase flow might overestimates the cross fault flow by many orders of 

magnitude.     

 The assessment based on existing methods of fault modelling to incorporate the 

fault rock properties into simulation models have suggested that there were 

different depletion trends related to incorporating the fault properties either 

using transmissibility multipliers and by giving faults its own two-phase flow 

properties. These showed that fault modelled by using LGR giving its own two-

phase flow properties was almost acting as a sealing fault and the depletion was 

faster within the compartment where there was a producing well than the non-

sealing cases which were modelled using transmissibility multipliers. 
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8 Conclusions and recommendations for 

future work  

 

 

8.1 Introduction  

The main aim of this thesis has been to address challenges in estimating cross-fault fluid 

flow within fault compartmentalized reservoirs. Several experiments were conducted 

including:- 

 X-ray CT tomography to assess the internal structure of samples.   

 Microstructural analysis using scanning electron microscopy (SEM) to examine 

the rock texture and to relate with the rock permeability.  

 Quantitative X-ray diffraction analysis (QXRD) to determine relative 

proportions of minerals present. 

  Mercury porosimetry to obtain pore size distribution and capillary entry 

pressures.  

 Absolute permeability using gas, distilled water and formation compatible 

brines NaCl at a range of stress conditions from ambient stress up to in-situ 

stress conditions were performed to assess the accuracy of existing fault rock 

permeability data.  

 Relative permeability measurements and air brine capillary pressure 

experiments were conducted to assess the multiphase flow properties of fault 

rocks.  

The work presented and summarized in this chapter is solely based upon the findings 

presented in the previous chapters. The chapter then provides possible future work for 

improving further understanding of the flow through complex heterogeneous fault rock 

systems.  



 

Petrophysical properties of fault rock-Implications for petroleum production  Page 253 

 

8.2 Summary of experimental results  

As evidence in the literature review presented in Chapter 2, there have not been many 

published studies of fault rock permeability conducted at high stress conditions. Also, 

the data available on two-phase flow (relative permeability and capillary) properties of 

fault rocks are very limited. In addition, to the authors’ knowledge no any other study 

has attempted to measure the fault rock liquid permeability stress sensitivity. The 

experimental work done and the data collected on fault rock flow properties during the 

present study are particularly useful as the data have been collected in conjunction with 

measurements of the mineralogy and microstructure of the samples. Therefore, this 

forms a sound basis for comparing the results with existing models and previous data 

sets to incorporate the data accurately to model the fluid flow through such complex 

fault rocks. 

8.2.1 Conclusions from single phase permeability experiments 

(ambient stress) 

The physiochemical interactions and fine particles retention within the confined pore 

throats of fault rocks play significant role in controlling permeability. This chapter was 

aimed at understanding the impact of brine composition on fault rock permeability. The 

main conclusions arising from the experimental investigations, discussions and analysis 

are summarized below:   

 Fault rock permeability measurements made with different pore fluids such as 

gas, distilled water and brine of different composition showed a gradual 

decrease in permeability by changing pore fluids from gas, to brine and then to 

distilled water. Essentially, the permeant used have a significant effect on fault 

rock permeability due to rock surface and mineral interactions.  

 Microstructural and mineralogical observation of fault rocks has shown 

presence of variety of clay minerals including illite-smectitie, kaolin and 

chlorite; the presence of clay minerals resulted to differences in permeability. 

Using gas permeability values to calculate transmissibility multipliers instead of 

using formation compatible fluids might lead to an overestimation of cross-fault 

fluid flow.   
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 The samples contained a variety of minerals such as quartz (dominant mineral), 

clay and on some extent cementing minerals (calcite). The presence of different 

minerals types in differing proportions has shown a contrasting permeability. 

The water adsorbed by the clay minerals surfaces possibly reduces the pore 

throat size due to interaction with swelling clays and hence reduces the 

permeability. Furthermore, the permeability results show that the difference in 

gas and liquid permeability might be the result of layer of bound water on 

mineral surfaces. This affects the narrow pore throat areas which might be 

reduced subsequently reducing the cross-sectional area for the fluid to flow and 

hence reducing the permeability of fault rock. 

 The permeability of fault rocks plotted versus clay content resulted in scatter. 

Attempts were made to model the permeability based on the information of clay 

content using existing empirical correlations (e.g. Manzocchi et al. 1999; 

Sperrevik et al. 2002; Revil and Cathles 2001). The comparisons of empirical 

estimates for fault rock permeability suggested that Revil and Cathles (2001) 

model provides reasonable permeability estimation compared to aforementioned 

empirical relations. However, it is important to have information of sand-clay 

contents.   

 The gas slippage factor calculated from following Klinkenberg procedure 

suggests that it would be far better either to measure the permeability of each 

sample or to conduct permeability measurements at high pore pressure therefore; 

the gas slippage effect could be compensated particularly for low permeable 

fault rocks.  

8.2.2 Conclusions from fault rock permeability stress sensitivity 

experiments 

Experiments have been conducted to investigate the stress sensitivity of fault rock gas 

and liquid permeability; Klinkenberg corrections were applied to all gas permeability 

measurements. The combined effect of gas slippage and permeability reduction due to 

stress was analysed and the following are some of the important conclusions which 

evolve from stress sensitivity experiments conducted: 
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 At low confining stresses, the permeability of the fault rock core samples 

showed high stress sensitivity, whereas at higher confining stresses the 

permeability was less pronounced to stress. This might be due to core damage 

effects, and the micro fractures formed due to stress release, which were 

observed from SEM images of the samples. The pore radius calculated from gas 

slippage parameters at low confining pressures was of the same order of 

magnitude as the microfracture width observed in SEM. The pore radius was 

reduced at higher confining stresses, which reflects that microfractures are 

closed due to stress application. The permeability estimated from a simple 

fracture model also supported the idea that at ambient stress there was high flow 

as well as higher permeability due to microfractures. The permeability stress 

sensitivity results from outcrop and reservoir cores showed that outcrops 

samples are less stress sensitive than reservoir core samples. This potentially 

reflects the presence of microfractures formed as a result of stress release. The 

microfractures were observed from thin sections of core samples.  

 It was also interesting to note that fault rock permeability data (e.g. Fisher and 

Knipe, 2001) compared with present study results and was found that the use of 

distilled water (which gave lower permeability than formation brines) and low 

stresses (which give higher permeability than high stress measurements) 

partially cancel one another out. Therefore it is still safe to use the data sets 

published by Fisher and Knipe (2001) for modelling and making predictions for 

fault seal analysis.  

 At in situ stress, the pore pressure reduction initially reduced the measured 

permeability by increasing the net stress and thus reducing the absolute 

permeability. As the gas pressure was reduced further, the increased contribution 

of gas slippage increased in the measured permeability. This indicates that large 

pressure differences (drawdowns) would enhance the rate of gas production in 

these reservoirs without reducing fault permeability due to being stress sensitive. 

 An attempt was made to find a relation between the stress sensitivity of 

permeability and rock mineralogy. However, it was found that mineral 

composition is not the primary reason to control the permeability stress 

sensitivity; the samples have shown different stress sensitivity even when having 

a similar mineral composition.  
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 The absolute gas and liquid permeability of fault rocks obtained from core and 

outcrop is sensitive to the stress conditions under which it is measured. Overall, 

the stress sensitivity of fault rocks is similar to that of the tight gas data of 

Byrnes et al. (2009). Although, some fault rocks have shown less stress 

sensitivity than tight gas sandstones.   

8.2.3  Two-phase flow properties  

The two phase flow properties measurements were conducted, the reservoir core 

samples were supplied from different fields of North Sea reservoirs. The following 

conclusions were made from two-phase flow experiments.  

 The samples having low absolute permeability have lower relative permeability 

compared to high absolute permeability samples at similar capillary pressures. 

The permeability of partially saturated samples were very sensitive to stress. The 

effective gas permeability in some cataclastic faults and many of the 

phyllosilicate framework faults is significantly reduced at higher stress, namely 

of 4000psi, and there was hardly any flow to gas at 5000psi effective stress. This 

indicates that fault rocks may act as effective barriers within the deep reservoirs.  

 The gas relative permeability values of low permeability (<0.01mD) cataclastic 

fault rocks are most likely <0.02. Therefore, these results suggest that if low 

permeability cataclastic faults are present within the reservoirs it would be 

necessary to take into account the multiphase flow properties for simulation and 

modelling. Otherwise, transmissibility multipliers calculated based on the single 

phase permeability might overestimate cross-fault flow. 

 The permeability of samples sub-divided based on the clay content that has 

shown an effect on permeabilities (effective and relative permeability). As clay 

percentage increases both the effective permeability and the relative 

permeability decrease. This also depends on the samples absolute permeability.  

8.2.4 Modelling the impact of fault rock properties 

The fault rock properties obtained from central North Sea samples and Hopeman fault 

rock based on existing method of fault modelling were incorporated into a specific 

example of synthetic fault reservoir models. It was observed that the faults formed 
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within low permeability having higher threshold pressures need to be modelled by 

assigning with two-phase flow properties. By ignoring two phase flow properties will 

result in overestimation of cross fault flow. However, the faults formed in clean sands 

having high permeability and low capillary entry pressures could be modelled by 

assigning TM multipliers based on their single phase properties.  An alternate method of 

was used to model the flow behavior of fault using relative permeability to scale the 

transmissibility multiplier. The results obtained from this approach and from explicit 

method of fault modelling using LGR by assigning fault its own two-phase properties 

resulted in close match to each other.   

8.3 Implications of the results for fault seal analysis  

The purpose of conducting experiments at higher stresses and changing brine NaCl 

concentration to see how the permeability results differ from the published data (e.g. 

Fisher and Knipe, 2001) as these were measured under inappropriate experimental 

conditions i.e. measurement were made at low stresses using distilled water as 

permeant. The results obtained during the present study at in-situ stress were compared 

with those previously published by Fisher and Knipe (2001). An important observation 

was that the permeability measured at ambient stress using distilled water gave lower 

permeability values, whereas the permeability measured at in-situ stress with formation 

compatible fluid (i.e. brine NaCl) in turn gave higher values, therefore the effect of low 

stress distilled water measurements and high stress brine permeability measurements are 

partially cancelling out. Therefore, the present study findings suggested that the data 

reported by Fisher and Knipe (2001) could be reliable to use for analysis of fault seal.  

The simulations performed using the data collected during present study have suggested 

that the fault rocks formed within low absolute permeability, it is essential to take 

account of their relative permeabilities and capillary pressures, when modelling their 

behaviour. However, the faults found within higher absolute permeability it might not 

be so important to model by assigning their two phase flow properties. The faults 

formed in high permeable reservoirs and low capillary threshold pressures could be 

modelled based on their single phase flow properties of faults.  
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8.4 Recommendations for future work  

Although a number of achievements have been gained in fault rock characterization and 

modelling, there is still no universal method that could be applied to all types of fault 

rocks in all situations. These issues and problems require some further investigation. 

The following recommendations are suggested for future work.  

8.4.1 Experimental work   

 All fault rock samples studied during this research were from siliciclastic 

sediments. However, hydrocarbon reserves exists within the carbonate 

formations if faults found within carbonate reservoirs might have a different 

behaviour than sandstone to address the effects of fluid flow within such 

reservoirs would be an active area of research.  

 Most of the data related to fault rock capillary threshold pressures comes from 

measurements performed under ambient stress conditions. This could be one of 

the important areas of research which needs to be further investigated, by 

performing experiments under realistic reservoir stress conditions which may 

alter results significantly. 

 Since faults have such a major impact on the movement of fluids on both 

geological and production time-scales, it is likely that they will also have a 

significant impact on the movement of CO2 in and around geological storage 

sites. A large proportion of the CO2 projects are aimed to use numerical 

modelling and laboratory experiments to predict how faults will affect the long-

term integrity of CO2 storage sites such as depleted oil and gas reservoirs or 

deep saline aquifers. To the author’s knowledge only one study has been 

conducted on fault rock CO2 injection in saline aquifers (e.g. Tueckmantel et al., 

2012). To better parameterise simulation studies of CO2 injection and to reduce 

the uncertainties in storing CO2 this needs to be further investigated by 

collecting data from those of the representative fault compartmentalized 

reservoirs fields and measurements should be conducted at reservoir stress 

conditions using CO2 and brines. The attention should be paid to those sites 

which are potential candidates for CO2 injection so the accuracy could be 

verified with experimental results. 
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8.4.2 Capillary end effects 

Capillary end effects within heterogeneous reservoirs are important to be investigated; 

the fault rocks are very tight than its associated host sandstones, though their capillary 

characteristics will be different from their host sandstone.  At the interfaces of different 

core segments within composite core, the capillary contact might not maintained 

between connecting segments. In general, if two phases wetting and no-wetting such as 

water and oil present within the porous rock segments, the rocks neighbour to each 

other possessing high and low permeability, the saturation discontinuity exists and the 

capillary pressure is continuous this is called the capillary end effect (e.g. Bear, 1988). 

Capillary end effect has significance in fault rocks as these comprises alternate layers of 

high and low permeability deformation bands. This effect has been studied by Dale et 

al. (1997) that discusses this effect based on analytical solution within 1D steady state 

two phase flow as a function of pressure and saturation across heterogeneous rocks. The 

relative permeability within heterogeneous rocks composed of alternating bands of high 

and low permeability segments might be obtained through analytical solutions presented 

by Dale et al. (1997) and is an important area of research.   

8.4.3 Field scale fault modelling  

There are two common methods of fault compartmentalized reservoirs modelling; the 

one which is routinely practiced within the industry is the TMs method (e.g. Manzocchi 

et al., 1999). The other method of fault modelling is representing fault as LGR local 

grid refinement, the explicit method of fault modelling and is performed by assigned 

fault rock two-phase flow (relative permeability and capillary pressure) properties 

discretely (e.g. Rivenæs and Dart, 2002; Al-Busafi et al., 2005; Berg and Øian, 2007, 

Al-Hinai et al., 2008). However, the modelling considerations are likely to be critical 

due to material properties of reservoir such as overburden stresses. Coupled fluid flow-

geomechanical modelling of such processes by taking into account of the stress 

sensitivity of fault rocks is also important, particularly when processes such as stress 

arching (Segura et al., 2011) are occurring. This might change simple rules of thumb 

that would provide a guide as to when it is worth investing the time into incorporating 

multiphase flow properties and stress sensitivity into simulation models. Therefore, for 
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coupling of stress sensitivity effects within complex field scale modelling is yet an 

important research area to be considered for fault modelling. 

8.4.4 Pore network modelling  

The fault rocks have diverse geological characteristics consisting of high and low 

permeability deformation bands associated with undeformed host sands. Most of the 

fault rocks are dominated by more or less uniform quartz cementation to heterogeneous 

distributions of authigenic clay minerals (Fisher and Knipe, 2001). The experimental 

characterisation of fault rocks is also difficult due to their low permeabilities and 

heterogeneities. The experimental analysis of such rocks is difficult to perform and is 

very time consuming. The empirical models of relative permeability and capillary 

pressure estimation often have little or no physical basis. Hence, the prediction could 

differ from one model to the other and there might be considerable differences in the 

laboratory measurements and prediction from empirical models (e.g. Blunt, 2000). The 

numerical pore scale modelling is fast compared to conventional laboratory experiments 

(e.g. Blunt, 2001). Although, there is no any standard workflow available to model fault 

rock properties using pore network modelling. Therefore, a next step could be the 

extraction of pore networks for fault rock multi-phase fluid flow.  
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Appendix-A 

 

Central North Sea Group-A 

All samples supplied from a Triassic reservoir in the Central North Sea. Samples from four wells were analysed. 

Well CP1 

Well CP1: Triassic reservoir, central North Sea, UK Depth: 11724.0-11724.4 m MD 

Sample ID: CP1A Cataclastic fault 

 

 

 Fault 

 

Host 

 

Fault 
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The undeformed sandstone is medium grained and moderately well sorted with a porosity of 25.2%. QXRD results 

indicate that it is composed of 38.2 % chlorite, 19.2 % quartz, 16.3 % microcline, 7.3 % albite, 3.8 % mica, and a 

porosity of 25.2 %. However, the sample taken for BSEM contains far less chlorite and more quartz and K-feldspar. 

The main diagenetic process to affect the sample were the precipitation of K-feldspar, chlorite, and quartz The K-

fedlspar occurs as up to 50 μm wide rhombs on detrital K-feldspar. The chlorite occurs as a grain coating clay. It is 

possible that it formed as a result of the recrystallization of early smectitic clay. The authigenic quartz is relatively 

abundant and occurs as both overgrowths and outgrowths. 

The fault has porosity of <5%, which is <20% that of the host sandstone. This reduction in porosity has occurred as 

a result of three processes. First, framework grains were fractured allowing enhanced mechanical compaction. 

Second, clays were mixed with fractured framework grains leading to enhanced mechanical compaction. Third, the 

fault appears to have undergone enhanced grain contact quartz dissolution.  

Faulting occurred after the precipitation of K-feldspar overgrowths and chlorite (or its precursor) but before quartz. 

Hg-injection (unstressed) 

 

Gas permeability vs stress: fault                                               Brine permeability 

 

  

Gas relative permeability 
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Well CP1: Triassic reservoir, central North Sea, UK Depth: 11928.1-11928.5 mMD 

Sample ID: CP1B Cataclastic fault 

 

 

 

 Fault 

 

Host 

 

Fault 

 

The undeformed sandstone is medium grained and well sorted and is composed 31.2 % quartz, 20.8 % microcline, 

11.0 % chlorite, 8.7 % albite, 7.0 % mica, 2.2 % Illite-smectite, and a porosity of 22.9%. The main diagenetic 

process to affect the sample were the precipitation of K-feldspar, chlorite, and quartz The K-fedlspar occurs as up to 
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50 μm wide rhombs on detrital K-feldspar. The chlorite occurs as a grain coating clay. It is possible that it formed as 

a result of the recrystallization of an early smectitic clay. The authigenic quartz is relatively abundant and occurs as 

both overgrowths and outgrowths. 

The fault has porosity of 8%, which is <40% that of the host sandstone. This reduction in porosity mainly occurred 

as a result of cataclastic deformation, which enhanced mechanical compaction.  

Faulting occurred after the precipitation of K-feldspar overgrowths and chlorite (or its precursor) but before quartz. 

Hg injection (unstressed) 

 

Gas permeability vs stress     Brine permeability: fault 

 

 

 

Gas relative permeability 
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Well CP1: Triassic reservoir, central North Sea, UK Depth: 11934.3-11934.7 mMD 

Sample ID: CP1C Cataclastic fault 

 

 

 

 

 

Host 

 

Fault 

 

The undeformed sandstone is fine grained (upper), moderately well sorted, composed of 28.9 % quartz, 16.9 % 

microcline, 15.2 % chlorite, 8.3 % albite, 4.5 % mica, 2.5 % Illite-smectite, 1.2 % kaolin, and a porosity of 23.7%. The 

main diagenetic process to affect the sample were the precipitation of K-feldspar, chlorite, and quartz as well as the 

partiual dissolution of feldspar The K-feldspar occurs as up to 50 μm wide rhombs on detrital K-feldspar. The chlorite 

occurs as a grain coating clay. It is possible that it formed as a result of the recrystallization of an early smectitic clay. 

Secondary pores, surrounded by K-feldspar overgrwoths are present. These probably formed as a result of feldspar 

disolution. The authigenic occurs as both overgrowths and outgrowths. 

The fault has porosity of ~5%, which is <25% that of the host sandstone. This reduction in porosity has occurred as a 

result of three processes. First, framework grains were fractured allowing enhanced mechanical compaction. Second, 

clays were mixed with fractured framework grains leading to enhanced mechanical compaction. Third, the fault appears 

to have undergone enhanced grain contact quartz dissolution.  

Faulting occurred after the precipitation of K-feldspar overgrowths and chlorite (or its precursor) but before quartz and 
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secondary porosity formation.  

Hg-injection (unstressed) 

 

Gas permeability vs stress: fault         Brine permeability vs stress: fault 

 

 

Gas relative permeability 
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Well CP1: Triassic Central North Sea Depth: 11936.4-11937.0 m MD 

Sample ID: CP1D Cataclastic fault 

  

 Fault 

 

Host Fault 
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The undeformed sandstone is fine grained (upper), moderately well sorted, and is composed of 28.7 % quartz, 20.0 % 

microcline, 10.9 % albite, 9.4 % chlorite, 5.3 % Illite-smectite, 4.7 % mica,  5.3 % Illite-smectite, and a porosity of 

21.0%. The main diagenetic processes to affect the sample were the precipitation of K-feldspar, chlorite, and quartz. The 

K-fedlspar occurs as up to 50 μm wide rhombs on detrital K-feldspar and albite. The chlorite occurs as a grain coating 

clay. It is possible that it formed as a result of the recrystallization of early smectitic clay. The authigenic quartz occurs 

as both overgrowths and outgrowths. 

The fault has porosity of 9%, which is <50% that of the host sandstone. This reduction in porosity mainly occurred as a 

result of cataclastic deformation, which enhanced mechanical compaction.  

Faulting occurred after the precipitation of K-feldspar overgrowths and chlorite (or its precursor) but before quartz. 

Hg-injection (unstressed) 

 

Gas permeability vs stress: fault 

 

Brine permeability: fault 

 

Gas relative permeability 
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1.1.1.1 Well CP2 

Well CP2: Triassic reservoir, central North Sea, UK Depth 12984.0-12984.3 mMD 

Sample ID: CP2A Cataclastic fault 

 

 

 Faulted core 
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Host 

 

Fault 

 

The undeformed sandstone is fine grained, moderately well sorted, and is composed of 25.5 % quartz, 20.4 % 

microcline, 9.7 % albite, 8.7 % chlorite, 4.4 % mica, 4.3 % Illite-smectite, 1.7 % pyrite and a porosity of 24.4%. The 

main diagenetic process to affect the sample were the precipitation of K-feldspar, chlorite, and quartz The K-fedlspar 

occurs as up to 50 μm wide rhombs on detrital K-feldspar and albite. The chlorite occurs as a grain coating clay. It is 

possible that it formed as a result of the recrystallization of early smectitic clay. The authigenic quartz occurs as both 

overgrowths and outgrowths. 

The fault has porosity of 5%, which is ~25% that of the host sandstone. This reduction in porosity mainly occurred as a 

result of cataclastic deformation, which enhanced mechanical compaction. Mixing of clays with the grain fragments also 

added to the reduction in porosity.Faulting occurred after the precipitation of K-feldspar overgrowths and chlorite (or its 

precursor) but before quartz. 

Hg-injection (unstressed) 

  

Gas permeability vs stress: fault         Brine permeability vs stress: fault 
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Gas relative permeability 

 

 

Well CP2: Triassic reservoir, central North Sea, UK Depth 12996.6-12996.9 mMD 

Sample ID: CP2B Cataclastic fault 

 

 

 

 

Host Fault 
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The undeformed sandstone fine grained, well sorted, and is composed of 23.9 % quartz, 8.2 % albite, 21.6 % microcline, 

8.5 % chlorite, 6.9 % mica, 2.0 % Illite-smectite and a porosity of  28.4%.  The main diagenetic process to affect the 

sample were the precipitation of K-feldspar, chlorite, and quartz The K-feldspar occurs as up to 50 μm wide rhombs on 

detrital K-feldspar and albite. The chlorite occurs as a grain coating clay. It is possible that it formed as a result of the 

recrystallization of an early smectitic clay. The authigenic quartz occurs as both overgrowths and outgrowths. 

The fault has porosity of 9%, which is ~30% that of the host sandstone. This reduction in porosity mainly occurred as a 

result of cataclastic deformation, which enhanced mechanical compaction.  

Faulting occurred after the precipitation of K-feldspar overgrowths and chlorite (or its precursor) but before quartz. 

Hg-injection (unstressed) 

 

Gas permeability vs stress: fault    Brine permeability vs stress: fault 
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Gas relative permeability 

 

 

  



 

296 

 

Well CP2: Triassic reservoir, central North Sea, UK Depth: 13023.3-13023.8 mMD 

Sample ID: CP2C Cataclastic fault 

 

 

 

 

Host 

 

Fault 
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The undeformed sandstone is medium grained (lower) and moderately well sorted with a porosity of 25.7%. QXRD 

indicates the sample is composed of 24.2 % quartz, 22.7 % microcline, 8.1 % albite, 8 % chlorite, 2.9 % calcite, 4.8 % 

mica, and 3.2 % Illite-smectite. However, calcite was not observed in the sample prepared for SEM but poikilitic barite 

was identified. The main diagenetic processes to affect the sample were the precipitation of K-feldspar, chlorite and 

quartz, which subordinate quantities of barite. The K-feldspar occurs as up to 50 μm wide rhombs on detrital K-feldspar 

and albite. The chlorite occurs as a grain coating clay. It is possible that it formed as a result of the recrystallization of an 

early smectitic clay. The authigenic quartz occurs as both overgrowths and outgrowths. The barite occurs as ~2 mm 

wide poikilitic grains. 

The fault has porosity of <5%, which is <20% that of the host sandstone. This reduction in porosity mainly occurred as a 

result of cataclastic deformation, which enhanced mechanical compaction.  

Faulting occurred after the precipitation of K-feldspar overgrowths and chlorite (or its precursor) but before quartz and 

barite. 

Hg-injection (stressed) 

 

Gas permeability vs stress: fault                                  Brine permeability vs stress: fault 

 

  

Gas relative permeability 
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Well CP2: Triassic reservoir, central North Sea, UK Depth: 13024.3-13025 mMD  

Sample ID: CP2D Cataclastic fault 

 
 

 

 

Host 

 

Fault 

 

The undeformed sandstone is fine grained (upper), moderately well sorted, composed of 27.2 % quartz,  25.9 % 

microcline, 8.2 % albite, 7.7 % chlorite, 6.2 % mica, 1 % calcite, and a porosity of 23.4%. The main diagenetic process 

to affect the sample were the precipitation of K-feldspar, chlorite, and quartz as well as the partiual dissolution of 

feldspar The K-feldspar occurs as up to 50 μm wide rhombs on detrital K-feldspar. The chlorite occurs as a grain coating 

clay. It is possible that it formed as a result of the recrystallization of an early smectitic clay. Secondary pores, 
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surrounded by K-feldspar overgrwoths, are present, which probably formed as a result of feldspar disolution. The 

authigenic quartz occurs as both overgrowths and outgrowths. 

The fault has porosity of ~5%, which is <25% that of the host sandstone. This reduction in porosity has occurred mainly 

as a result of cataclastic deformation, which enhanced mechanical compaction  

Faulting occurred after the precipitation of K-feldspar overgrowths and chlorite (or its precursor) but before quartz and 

secondary porosity formation. 

Hg-injection (stressed) 

 

Gas permeability vs stress: fault                                   Brine permeability: fault 

 

 

Gas relative permeability 

 

 

Well CP2: Triassic reservoir, central North Sea, UK Depth: 13105.7 13106.3 mMD 
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Sample ID: CP2E  

 

 

 

 

 

  

The undeformed sandstone is fine grained (upper), well sorted, composed of 26.4 % quartz, 17.6 % microcline, 12.6 % 

albite, 8.8 % chlorite, 6.5 % mica, 3.9 % illite-smectite, and a porosity of 24.1%. The main diagenetic process to affect 

the sample were the precipitation of K-feldspar, chlorite, and quartz as well as the partiual dissolution of feldspar The K-

feldspar occurs as up to 50 μm wide rhombs on detrital K-feldspar and albite. The chlorite occurs as a grain coating clay. 

Secondary pores, surrounded by K-feldspar overgrwoths, are present, which probably formed as a result of feldspar 

dissolution. The authigenic quartz occurs as both overgrowths and outgrowths. 

The fault has porosity of ~8%, which is ~30% that of the host sandstone. This reduction in porosity has occurred mainly 

as a result of cataclastic deformation, which enhanced mechanical compaction Faulting occurred after the precipitation 

of K-feldspar overgrowths and chlorite (or its precursor) but before quartz and secondary porosity formation. 

Hg-injection (unstressed) 
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Gas permeability vs stress: fault       Brine permeability: fault 

 

 

Gas relative permeability 

 

 

  



 

302 

 

Well CP2: Triassic reservoir, central North Sea, UK Depth: 13114.8-13115.2 mMD  

Sample ID CP2F  

 

 

 

 

 

Host 

 

Fault 

 

The undeformed sandstone is medium grained, well sorted, composed of 24.5 % quartz, 22.4 % microcline, 10.7 % 

albite, 10.8 % chlorite, 8.8 % mica, 1.7 % Illite-smectite, and a porosity of 21.1%. The main diagenetic process to affect 

the sample were the precipitation of K-feldspar, chlorite, and quartz as well as the partiual dissolution of feldspar The K-

feldspar occurs as up to 70 μm wide rhombs on detrital K-feldspar and albite. The chlorite occurs as a grain coating clay. 

Secondary pores are present, which probably formed as a result of feldspar dissolution. The authigenic quartz occurs as 

both overgrowths and outgrowths. 

The fault has porosity of ~9%, which is ~<50% that of the host sandstone. This reduction in porosity has occurred 

mainly as a result of cataclastic deformation, which enhanced mechanical compaction Faulting occurred after the 

precipitation of K-feldspar overgrowths and chlorite (or its precursor) but before quartz and secondary porosity 

formation. 

Hg-injection (unstressed) 
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Gas permeability vs stress: fault                                         Brine permeability vs stress: fault 

 

 

Gas relative permeability 

 

 

Central North Sea –Group-B samples 

All samples supplied were from a Triassic reservoir in the Central North Sea. Samples from four wells were 

analysed. 

Well ShellA: Triassic reservoir Central North Sea, UK Depth: 14200.1-14200.8 m MD 

 

Sample ID 3A Cataclastic fault 
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Host sandstone 

 

 

 

  

The undeformed sandstone very fine grained, moderately well sorted, composed of 26.4 % quartz, 19.0 % microcline, 

12.0 % chlorite, 11.6 % albite, 3.4 % dolomite, 6.9 % mica, 2.9 % Illite-smectite, and has a porosity of 18.0%. The main 

diagenetic process to affect the sample were the precipitation of K-feldspar, dolomite, chlorite and small amounts of 

quartz. The K-feldspar occurs as thin (20 μm) wide overgrowths on detrital K-feldspar. The dolomite occurs as 50 μm 

rhombs that are compositionally zoned with put dolomite cores and ankerite rims. The chlorite occurs as a grain coating 

clay. It is possible that it formed as a result of the recrystallization of an early smectitic clay. The authigenic quartz 

occurs as outgrowths on detrital quartz. 

 

The fault has a porosity of <5%, which is around 25% that of the host sandstone. The reduction in porosity occurred as a 

result of three process. First, framework grains were fractured during faulting. Secondly, clays were mixed with the 

products of cataclasis allowing enhanced mechanical compaction. Third, the fault appears to have undergone enhanced 
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grain contact quartz dissolution. Faulting occurred after the precipitation of dolomite, K-feldspar overgrwoths and 

chlorite (or its precursor) but before authigenic quartz.  

Hg-injection (unstressed) 

 

Gas permeability vs stress:  

 

Brine permeability vs stress (20% brine for stress 

measurements) 

 

Gas relative permeability 
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Sample ID: 5A 

Well lB: Triassic reservoir Central North Sea, UK 

 

Depth 14359-14359.3 mMD 

Sample ID: 5A Phyllosilicate-framework fault rock 

 

 

 

Host 

 

 

Host 

 

Fault 

 

The undeformed sandstone fine grained, well sorted, composed of 41.7 % quartz,  16.8 % albite, 6.4 % mica,  5.4 % 

Illite-smectite,  4.4 % chlorite, 3.3 % dolomite, 1.1 % pyrite and a porosity of 21%. The main diagenetic process to 

affect the sample were the precipitation of dolomite, chlorite and small amounts of quartz. The dolomite occurs as 100 

μm rhombs that are compositionally zoned with pure dolomite cores and ankerite rims. The chlorite occurs as a grain 

coating clay. It is possible that it formed as a result of the recrystallization of an early smectitic clay. The authigenic 

quartz occurs as outgrowths on detrital quartz. 
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The fault has a porosity of <5%, which is around 25% that of the host sandstone. The reduction in porosity occurred as a 

result of three process. First, clays were mixed with the products of cataclasis allowing enhanced mechanical 

compaction. Second, framework grains were fractured during faulting. Third, the fault appears to have undergone 

enhanced grain contact quartz dissolution. Faulting occurred after the precipitation of dolomite and chlorite (or its 

precursor) but before authigenic quartz.  

 

Hg injection (unstressed) 

 

Gas permeability vs stress:  

 

Brine permeability vs stress (20% NaCl brine for 

the stressed measurements) 
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Well lB: Triassic reservoir Central North Sea, UK Depth: 14359.3-14359.6 mMD 

Sample ID 5B Phyllosilicate-framework fault rock 

 

 

 

Host sandstone 

 

Faulted core 

 

Host 

 

Fault 

 

The undeformed sandstone is very fine grained, well sorted, composed of 40.5 % quartz,  17.0 % albite, 8.4 % mica, 7.5 

% Illite-smectite, 4.7 % chlorite, 4.1 % dolomite, 1.8 % pyrite and a porosity of 16.0%. The main diagenetic processes 

to affect the sample were mechanical compaction, the precipitation of dolomite, chlorite and small amounts of quartz 

and albite. Mechanical compaction is manifest by the presence of deformed mica throught the sample. The dolomite 

occurs as 100 μm rhombs that are compositionally zoned with dolomite cores and thin ankerite rims. The chlorite occurs 

as a grain coating clay. It is possible that it formed as a result of the recrystallization of early smectitic clay. The 

authigenic quartz and albite occurs as think outgrowths on detrital quartz. 

 

The fault has a porosity of <5%, which is around 25% that of the host sandstone. The reduction in porosity occurred as a 

result of two process. First, clays were mixed with the products of cataclasis allowing enhanced mechanical compaction. 

Second, the fault appears to have undergone enhanced grain contact quartz dissolution. Faulting occurred after the 
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precipitation of dolomite and chlorite (or its precursor) but before authigenic quartz and albite. There is no evidence of 

grain fracturing suggesting faulting occurred under low effective stress conditions. 

 

Hg-injection (unstressed) 

 

Gas permeability vs stress 

 

Brine permeability vs stress 
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Well lB: Triassic reservoir Central North Sea, UK Depth: 14360-14360.2 mMD 

 

Sample ID 5C Phyllosilicate-framework fault rock 

 

 

 

 

 
 

The undeformed sandstone is very fine grained, moderately well sorted, composed of 39.5 % quartz,  19.1 % albite, 3.7 

% dolomite, 6.4 % mica, 5.3 % Illite-smectite, 4.1 % chlorite, 1.1 % pyrite and a porosity of 21.0%. The main diagenetic 

process to affect the sample were mechanical compaction, the precipitation of pyrite, dolomite, chlorite and small 

amounts of quartz and albite. The pyrite occurs as framboids in organic-rich layers and probably precipitated directly 

beneath the sediment-water interface soon after sediment deposition. The dolomite occurs as 70 μm rhombs that are 

compositionally zoned with dolomite cores and thin ankerite rims. The chlorite occurs as a grain coating clay. It is 

possible that it formed as a result of the recrystallization of an early smectitic clay. The authigenic quartz and albite 

occurs as think outgrowths on detrital quartz. 

The fault has a porosity of <5%, which is <25% that of the host sandstone. The reduction in porosity occurred as a result 

of two process. First, clays were mixed with framework greains leading to enhanced mechanical compaction. Second, 

the fault appears to have undergone enhanced grain contact quartz dissolution. Faulting occurred after the precipitation 

of dolomite and chlorite (or its precursor) but before authigenic quartz and albite. There is no evidence of grain 

fracturing suggesting faulting occurred under low effective stress conditions. 
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Hg-injection (stressed) 

 

 

Well lB: Triassic reservoir Central North Sea, UK Depth: 14363.1-14363.6 m MD 

Sample ID 5D Proto-cataclastic fault 

 

 

 

 

 

 

Host 

 

Fault 
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The undeformed sandstone is fine grained, well sorted, composed of 42.1 % quartz, 17.5 % albite, 5.8 % mica, 4.9 % 

pyrite, 2.7 % Illite-smectite, 2.4 % dolomite,  2.5 % chlorite, and a porosity of 22.0%. The main diagenetic process to 

affect the sample were mechanical compaction, the precipitation of pyrite, dolomite, chlorite and small amounts of 

quartz and albite. The pyrite occurs as framboids in organic-rich layers and probably precipitated directly beneath the 

sediment-water interface soon after sediment deposition. The dolomite occurs as 70 μm rhombs that are compositionally 

zoned with dolomite cores and thin ankerite rims. The chlorite occurs as a grain coating clay. It is possible that it formed 

as a result of the recrystallization of an early smectitic clay. The authigenic quartz and albite occurs as think outgrowths 

on detrital quartz. 

The fault has a porosity of 8%, which is <40% that of the host sandstone. The reduction in porosity occurred as a result 

of cataclastic deformation which allowed enhanced mechanical compaction. Faulting occurred after the precipitation of 

dolomite and chlorite (or its precursor) but before authigenic quartz and albite.  

 

Hg-injection (unstressed) 

 

Gas permeability vs stress 

 

Brine permeability vs stress (20% NaCl brine for stressed 

measurements 

 

Gas relative permeability 
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Well lB: Triassic reservoir Central North Sea, UK Depth: 14367.9-14368.3 mMD  

Sample ID 5E Disaggregation zone/Phyllosilicate-framework fault 

rock 

 

 

 

 

 

 

Host sandstone 
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Host 

 

Fault 

 

The undeformed sandstone is fine grained, well sorted, composed of 42.2 % quartz,  19.1 % albite, 6.0 % Illite-smectite, 

3.5 % dolomite, 3.9 % mica,  3.1 % chlorite, and a porosity of 22.0%. The main diagenetic process to affect the sample 

were mechanical compaction, the precipitation of dolomite, chlorite and small amounts of quartz and albite. The 

dolomite occurs as 50 μm rhombs that are compositionally zoned with dolomite cores and thin ankerite rims. The 

chlorite occurs as a grain coating clay. It is possible that it formed as a result of the recrystallization of an early smectitic 

clay. The authigenic quartz and albite occurs as think outgrowths on detrital quartz. 

The fault has a heterogeneous microstructcure. In some places, it it very similar to that of the host sadsntone. Elsewhere 

it has experienced a slight reduction in porosity due to the deformion-induced mixing of clays with framework grains 

leading to enhanced mechanical compaction. There is no evidence of grain fracturing suggesting faulting occurred under 

low effective stress conditions. 

 

Hg-injection (unstressed) 

 

Gas permeability vs stress 

 

Brine permeability vs stress (20% NaCl brine) 
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Gas relative permeability 

 

 

Well lB: Triassic reservoir Central North Sea, UK Depth: 14375-14375.4 m MD 

Sample ID 5F Phyllosilicate-framework fault rock 

 

 

 

Host sandstone 

 

Fault 
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Host 

 

Fault 

 

The undeformed sandstone is fine grained, well sorted, composed of 40.2 % quartz, 19.1 % albite, 5.3 % mica, 4.2 % 

pyrite, 4.1 % Illite-smectite, 4.3 % dolomite, 3.1 % chlorite, and a porosity of 20.7%. The main diagenetic process to 

affect the sample were mechanical compaction, the precipitation of pyrite, dolomite, chlorite and small amounts of 

quartz and albite. The pyrite occurs as framboids in organic-rich layers and probably precipitated directly beneath the 

sediment-water interface soon after sediment deposition. The dolomite occurs as 70 μm rhombs that are compositionally 

zoned with dolomite cores and thin ankerite rims. The chlorite occurs as a grain coating clay. It is possible that it formed 

as a result of the recrystallization of an early smectitic clay. The authigenic quartz and albite occurs as think outgrowths 

on detrital quartz. 

The fault has a porosity of 9%, which is <40% that of the host sandstone. The reduction in porosity occurred as a result 

of the deformion-induced mixing of clays with framework grains leading to enhanced mechanical compaction. Faulting 

occurred after the precipitation of dolomite and chlorite (or its precursor) but before authigenic quartz and albite. There 

is no evidence of grain fracturing suggesting faulting occurred under low effective stress conditions.  

Hg-injection (stressed) 

 

Gas permeability vs stress 

 

Brine permeability vs stress (20% NaCl brine for stressed 

measurements) 
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Well lC: Triassic reservoir Central North Sea, UK Depth: 14507.1-14507.8 m MD 

Sample ID 7A Cataclastic fault 

 

 

Host sandstone 

 

Faulted core 

 

Host 

 

Fault 

 

The undeformed sandstone is fine grained upper, moderately well sorted, composed of 40.2 % quartz,  14.7 % albite, 8.9 

% microcline, 6.9 % dolomite, 5.6 % chlorite, 4.6 % mica,  3.0 % Illite-smectite, and a porosity of 16%. The main 

diagenetic process to affect the sample were mechanical compaction, the precipitation of dolomite, chlorite, quartz and 

small amounts of albite. The dolomite occurs as 100 μm rhombs that are compositionally zoned with dolomite cores and 

thin ankerite rims. The chlorite occurs as a grain coating clay. It is possible that it formed as a result of the 

recrystallization of an early smectitic clay. The authigenic quartz is relatively abundant and occurs as both overgrowths 

and outgrowths. 

The fault has a porosity of 6%, which is ~30% that of the host sandstone. The reduction in porosity occurred as a result 

of cataclastic deformation which allowed enhanced mechanical compaction. Faulting occurred after the precipitation of 

dolomite and chlorite (or its precursor) but before authigenic quartz and albite.  
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Hg-injection (unstressed) 

 

 

Gas permeability vs stress 

 

Brine permeability vs stress (20% NaCl brine for stressed measurements) 

 

Gas relative permeability 
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Well Sample ID 7B: Triassic reservoir Central North Sea, UK Depth: 14519.2-14519.8 mMD 

Sample ID 7B Cataclastic fault 

 

 

 

Host 

 

 

Host 

 

Fault 

 

The undeformed sandstone is medium grained, well sorted, composed of 37.4 % quartz, 13.7 % albite, 10 % microcline, 

7.2 % dolomite, 6.1 % Illite-smectite, 4.4 % chlorite, 4.2 % mica,  and a porosity of 17%. The main diagenetic process 

to affect the sample were mechanical compaction, the precipitation of dolomite, chlorite, quartz and small amounts of 

albite. The dolomite occurs as 100 μm rhombs that are compositionally zoned with dolomite cores and thin ankerite 

rims. The chlorite occurs as a grain coating clay. It is possible that it formed as a result of the recrystallization of an 

early smectitic clay. The authigenic quartz is relatively abundant and occurs as both overgrowths and outgrowths. 

The fault has a porosity of 7%, which is ~30% that of the host sandstone. The reduction in porosity occurred as a result 

of cataclastic deformation which allowed enhanced mechanical compaction. Faulting occurred after the precipitation of 

dolomite and chlorite (or its precursor) but before authigenic quartz and albite. 
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Hg-injection (unstressed) 

 

Gas permeability vs stress:  

 

Brine permeability vs stress (20% NaCl brine for stressed 

measurements) 

 

 

Gas relative permeability 
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Well C: Triassic reservoir Central North Sea, UK Depth: 14520.6-14521.0 m MD 

Sample ID 7C Phyllosilicate-framework fault rock 

  

Host sandstone 

 

 

 
 

The undeformed sandstone is very fine grained, moderately well sorted, composed of 32.8 % quartz,  18.2 % albite, 11.7 

% microcline, 7.7 % chlorite, 6.4 % Illite-smectite, 5.7 % mica, 3.5 % dolomite, and a porosity of 14.0%. The main 

diagenetic process to affect the sample were the precipitation of K-feldspar, dolomite, chlorite, quartz and albite. The K-

feldspar occurs as μm overgrowths on detrital K-feldspar grains; it is has been partially corroded during later burial. The 

dolomite occurs as 100 μm rhombs that are compositionally zoned with dolomite cores and thin ankerite rims. The 

chlorite occurs as a grain coating clay. It is possible that it formed as a result of the recrystallization of an early smectitic 

clay. The authigenic quartz and albite occurs as think outgrowths on detrital quartz. 

The fault has a porosity of ~6%, which is ~40% that of the host sandstone. The reduction in porosity occurred as a result 

of two process. First, clays were mixed with framework greains leading to enhanced mechanical compaction. Second, 

the fault appears to have undergone enhanced grain contact quartz dissolution. Faulting occurred after the precipitation 

of dolomite and chlorite (or its precursor) but before the precipitation of quartz and albite or the dissolution of K-

feldspar. 
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Hg-injection (unstressed) 

 

 

Gas permeability vs stress 

 

Brine permeability vs stress (20% NaCl brine for stressed 

measurements) 

 

Gas relative permeability 
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Well C: Triassic reservoir Central North Sea, UK Depth: 14623-14623.3 m MD 

Sample ID 7D Phyllosilicate-framework fault rock 

 

 

 

 

Fault 

 

Host 

 

Fault 

 

The undeformed sandstone is very fine grained, moderately well sorted, composed of 32.0 % quartz, 23.5 % albite, 8.9 

% chlorite, 7.8 % microcline, 7.7 % Illite-smectite,   5.9 % dolomite, 2.3 % mica,  and a porosity of 12%. The main 

diagenetic processes to affect the sample were the precipitation of K-feldspar, dolomite, chlorite, quartz and albite. The 

K-feldspar occurs as μm overgrowths on detrital K-feldspar grains; it is has been partially corroded during later burial. 

The dolomite occurs as 200 μm rhombs that are compositionally zoned with dolomite cores and thin ankerite rims. The 

chlorite occurs as a grain coating clay. It is possible that it formed as a result of the recrystallization of an early smectitic 

clay. The authigenic quartz and albite occurs as think outgrowths on detrital quartz. 

The fault has a far lower porosity than the host sandstone has a result of two processes. First, clays were mixed with 

framework greains leading to enhanced mechanical compaction. Second, the fault appears to have undergone enhanced 

grain contact quartz dissolution. Faulting occurred after the precipitation of dolomite and chlorite (or its precursor) but 

before the precipitation of quartz and albite or the dissolution of K-feldspar. 
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Hg-injection (unstressed) 

 

Gas permeability vs stress:  

 

Brine permeability vs stress (20% NaCl brine 

 

Gas relative permeability 
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Well C: Triassic reservoir Central North Sea, UK Depth: 14051.8-14052 mMD  

Sample ID 7E Phyllosilicate-framework fault rock 

 

 

 

 

 

 

 

 

Host 

 

Fault 

 

Host 

 

Fault 

 

The undeformed sandstone is fine grained upper, well sorted, composed of 36.2 % quartz, 16.7 % albite, 9.5 % chlorite, 

7.4 % Illite-smectite, 6.6 % microcline, 4.5 % mica, 4.0 % dolomite,  and a porosity of 15%. The main diagenetic 

process to affect the sample were the precipitation of K-feldspar, dolomite, chlorite, quartz and albite. The K-feldspar 

occurs as 20 μm overgrowths on detrital K-feldspar grains. The dolomite occurs as 200 μm rhombs that are 

compositionally zoned with dolomite cores and thin ankerite rims; occasionally it exhibits a poikilitic texture. The 

chlorite occurs as a grain coating clay. It is possible that it formed as a result of the recrystallization of an early smectitic 

clay. The authigenic quartz and albite occurs as think outgrowths on detrital quartz. 

The fault has a far lower porosity than the host sandstone has a result of two processes. First, clays were mixed with 

framework greains leading to enhanced mechanical compaction. Second, the fault appears to have undergone enhanced 

grain contact quartz dissolution. There appears to be more clay in the fault rock than in the host sandstone possibly 

indicating material was injected along the fault. 

Faulting occurred after the precipitation of dolomite and chlorite (or its precursor) but before the precipitation of quartz 

and albite or the dissolution of K-feldspar.  
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Hg-injection (unstressed) 

 

Gas permeability vs stress   (b)Brine permeability vs stress (20% NaCl brine) 

(a)  

 

Gas relative permeability 

 

 

 

 

 

Triassic reservoir Central North Sea, UK Depth: 14717.9-14718.2 mMD 

Sample ID 7F Phyllosilicate-framework fault rock 
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 Fault 

 

Host 

 

Fault 

 

The undeformed sandstone is fine grained upper, well sorted, composed of 31 % quartz, 21.8 % albite, 12.5 % chlorite, 

6.2 % microcline, 5.2 % dolomite, 4 % Illite-smectite, 3.4 % mica, and a porosity of 16.0%The main diagenetic process 

to affect the sample were the precipitation of K-feldspar, dolomite, chlorite, quartz and albite. The K-feldspar occurs as 

20 μm overgrowths on detrital K-feldspar grains. The dolomite occurs as 100 μm rhombs that are compositionally zoned 

with dolomite cores and thin ankerite rims. The chlorite occurs as a grain coating clay. It is possible that it formed as a 

result of the recrystallization of an early smectitic clay. The authigenic quartz and albite occurs as think outgrowths on 

detrital quartz. 

The fault has porosity than the host sandstone has a result of two processes. First, clays were mixed with framework 

greains leading to enhanced mechanical compaction. Second, the fault appears to have undergone enhanced grain 

contact quartz dissolution. There appears to be more clay in the fault rock than in the host sandstone possibly indicating 

material was injected along the fault. Faulting occurred after the precipitation of dolomite and chlorite (or its precursor) 

but before the precipitation of quartz and albite or the dissolution of K-feldspar. 
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Hg-injection (unstressed) 

 

(a) Gas permeability vs stress                           (b) Brine permeability vs stress (20% NaCl brine) 
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Well D: Triassic reservoir Central North Sea, UK Depth: 14638.1-14638.4 mMD 

Sample ID 10/3A Phyllosilicate-framework fault rock 

  

Host 

 

Fault 

 

Host 

 

Fault 

 

The undeformed sandstone is medium grained, moderately well sorted, composed of 49.4 % quartz, 15.8 % albite, 7.4 % 

microcline, 6.3 % chlorite, 3.7 % Illite-smectite, 2.7 % dolomite, 2.7 % mica, and a porosity of 12%. The main 

diagenetic process to affect the sample were the precipitation of K-feldspar, dolomite, chlorite, quartz and small amounts 

of albite. The K-fedlspar occurs as up to 40 μm wide rhombs on detrital K-feldspar and plagioclase. The dolomite occurs 

as 30 μm rhombs that are compositionally zoned with dolomite cores and thin ankerite rims. The chlorite occurs as a 

grain coating clay. It is possible that it formed as a result of the recrystallization of an early smectitic clay. The 

authigenic quartz is relatively abundant and occurs as both overgrowths and outgrowths. 

The fault has porosity than the host sandstone has a result of two processes. First, clays were mixed with framework 

greains leading to enhanced mechanical compaction. Second, the fault appears to have undergone enhanced grain 

contact quartz dissolution. There appears to be more clay in the fault rock than in the host sandstone possibly indicating 

material was injected along the fault. 

Faulting occurred after the precipitation of dolomite and chlorite (or its precursor) but before the precipitation of quartz 

and albite or the dissolution of K-feldspar. 
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Hg-injection (unstressed) 

 

Gas permeability vs stress:  

 

Gas relative permeability 
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Well lD: Triassic reservoir Central North Sea, UK Depth 14718.1-14718.7 mMD 

Sample ID 10/3B Cataclastic fault 

 

 

Host 

 

Fault 

 

Host 

 

Fault 

 

The undeformed sandstone is medium grained, moderately well sorted, composed of 47.6 % quartz, 9.0 % albite, 11.1 % 

microcline, 6.4 % chlorite, 4.7 % Illite-smectite, 2.1 % mica, and a porosity of 19%. The main diagenetic process to 

affect the sample was the precipitation of K-feldspar, dolomite, chlorite, quartz and small amounts of albite. The K-

fedlspar occurs as up to 20 μm wide rhombs on detrital K-feldspar. The dolomite occurs as 200 μm rhombs that are 

compositionally zoned with dolomite cores and thin ankerite rims. The chlorite occurs as a grain coating clay. It is 

possible that it formed as a result of the recrystallization of an early smectitic clay. The authigenic quartz is relatively 

abundant and occurs as both overgrowths and outgrowths. 

The fault has porosity than the host sandstone has a result of three processes. First, framework grains were fractured 

allowing enhanced mechanical compaction. Second, clays were mixed with fractured framework grains leading to 

enhanced mechanical compaction. Third, the fault appears to have undergone enhanced grain contact quartz dissolution.  

Faulting occurred after the precipitation of dolomite and chlorite (or its precursor) but before the precipitation of quartz 

and albite or the dissolution of K-feldspar. 
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Host 

 

Gas permeability vs stress 

 

Brine permeability vs stress (20% NaCl brine for stressed 

measurements 

 

Gas relative permeability 

 

 

Southern North Sea samples 

Well WIN1:  Depth: 3111.00-3111.60 

Sample WIN1A Cataclastic fault 
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Host 

 

Fault 

 

The undeformed sandstone is medium grained, well sorted with a porosity of 15.4%. QXRD analysis 

indicates that it is composed of 49.1 % quartz, 21.2 % kaolin, 5.8 % albite, 5.6 % mica, 1.1 % calcite, 

and 1.5 % illite-smectite. Although, the sample analyzed by SEM does not contain calcite, has <10% 

kaolin but does contains small amounts (<1%) of dolomite. The main diagenetic process to affect the 

sample was the precipitation of kaolin and quartz; there are also the occasional secondary pores. The 

kaolin accurs as ~50 μm booklets and appears to have precipitated during early burial but may have 

recrystalled.  The authigenic quartz occurs as outgrowths and can occasionally be observed 
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overgrowing the kaolin. 

The fault has porosity of ~8%, which is ~50% that of the host sandstone. This reduction in porosity has 

occurred mainly as a result of cataclastic deformation, which enhanced mechanical compaction. 

Faulting occurred after the precipitation of kaolin and dolomite but before the quartz. 

Gas permeability vs stress: 

 

 

Well WIN1:  Depth: 3133.10-3133.2 m 

Sample WIN1B Juxtaposition fault with anhydrite 

cement 
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Host 

 

Fault 

 

Examination of the hand specimen revealed it to be extremely heterogeneous so several samples were 

taken for SEM analysis. One sample was composed of ~31.4% quartz, 18.4% dolomite/ferroan 

dolomite, 15.1% kaolin, 13.2% calcite, 6.4% albite, 5.2% mica, 4% siderite, 3.5% anhydrite and a 

porosity of 4%. Another sample, had far less authigenic cements and was composted of ~46.2% quartz, 

12.1% kaolin, 9.4% albite, 4.2% dolomite/ferroan dolomite, 4.6% mica, 2.9% calcite, and a porosity of 

17%. The first mineral to precipitate was ferroan dolomite, which occurs as up to 100μm rhombs 

overgrown by ferroan dolomite. The next mineral to precipitate was kaolin, which occurs as 50um 

booklets that are partially overgrown by kaolin. During deeper burial the sample then experienced the 

precipitation of ferroan calcite, quartz, siderite and finally anhydrite. 

The fault is a juxtaposition fault but in places it has dilated and been cemented by anhydrite. It is 

possible that the fault formed relatively early and that the dilation occurred due to late stage 

reactivation. 
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Well WIN1:  Depth: 3133.35 – 3133.55 

Sample WIN1C  

  

 

 

Host 

 

Fault 

 

The undeformed sandstone is fine grained, well sorted with a porosity of 12%. QXRD analysis 

indicates that it is composed of 35.3 % calcite, 25.8 % quartz, 17.2 % kaolin, 5.1 % mica, 3.8 % albite, 

and 1.3 % dolomite. Although, the sample analyzed by SEM contains far less calcite. The main 

diagenetic process to affect the sample were the precipitation of kaolin and calcite; dolomite and quartz 

cement are also present but in small quanitties. The kaolin accurs as ~50 μm booklets and appears to 

have precipitated during early burial but may have recrystalled.  The calcite occurs is pore filling and 
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occassionally poikillitic. The authigenic quartz occurs as outgrowths and can occasionally be observed 

overgrowing the kaolin. 

The fault has porosity of ~8%, which is ~75% that of the host sandstone. This reduction in porosity has 

occurred mainly as a result of cataclastic deformation, which enhanced mechanical compaction. 

Faulting occurred after the precipitation of kaolin and dolomite but before the calcite and quartz. 

Gas permeability vs stress 

 

 


