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Abstract 

Modern civil engineering structures exposed to human-induced dynamic loading due to walk- 

ing, such as footbridges and long-span floors, are becoming increasingly slender and therefore 

more prone to vibrations generated by people. As a consequence, the vibration serviceability 

of these structures is becoming their governing design criterion. Currently, the design pro- 

cedures for the vibration serviceability check used in practice are mainly of a deterministic 

nature. This means that the walking force is modelled via a unique set of parameters, such 

as walking frequency, step length and force amplitude assumed to be representative for all 

pedestrians. Therefore, the natural inter-subject variability that exists in these parameters 

generated by different people is neglected. Moreover, these parameters vary with each step 

even in the force time history of a single person (intra-subject variability). This implies that 

the walking force is a narrow-band random process rather than a deterministic force. As 

a result of these shortcomings, current design procedures based on deterministic forces do 

not predict reliably the vibration responses to single person walking across as-built slender 

structures. 

To improve design procedures, it is necessary to take into account the both inter- and intra- 

subject variabilities in the walking force. This implies that a probability-based approach, 

whereby the probability of occurrence of various walking parameters can be taken into ac- 

count, might be more appropriate to model the walking excitation. 

In this thesis, a probability-based framework for a vibration serviceability check due to a 

single person walking is developed. For this, the probability density functions for walking 
frequencies, step lengths, magnitude of walking force and imperfections in human walking are 

proposed. They are used as building blocks to develop a design procedure that can estimate 
the probability of occurrence of a certain level of vibration response. Based on this result, a 

probability that the vibration response will not exceed certain predefined limiting values can 
be found. Moreover, a methodology for finding a reasonable limiting vibration level, based 

on the assumption that some human-structure dynamic interaction takes place when walking 

across perceptibly moving bridge, is suggested. A provisional value of 0.35 m/s2 is identified 
for two footbridges investigated. 

The probability-based design procedure developed in this thesis can be used for vibration 
serviceability check of footbridges responding in one or more vibration modes to excitation 
induced by a single walker. The method has potential to be used for vibration serviceability 
check of other slender structures. 

11 



Acknowledgements 

The work described in this thesis was conducted in the Department of Civil & Structural 

Engineering at the University of Sheffield starting from October 2002, with a three month 

break during 2003/2004. During these 37 months of full-time research I was a member of 

the Vibration Engineering Section. I owe my thanks to all current and former members of 

the section for their help and everyday company throughout the work on this thesis. Special 

thanks go to my supervisor Professor Aleksandar Pavic for his patience, advice, continuous 

encouragement and inspiring discussions. The help and advice of Dr Paul Reynolds, especially 

regarding vibration testing matters, is gratefully acknowledged, as are the valuable discussions 

with Professor James M. W. Brownjohn. The assistance of Dr Pero Vujovic and his team from 

the University of Montenegro in Podgorica during field testing is very much appreciated. I 

would also like to thank the National Institute of Education in Singapore and Professor 

Brownjohn for their permission to use the measured force time histories in the analysis 

conducted. Thanks also go to Dr Tianjian Ji of the University of Manchester for supplying 
data presented in Figure 6.2b. 

I was lucky to have the constant support of many friends and colleagues during my research. 
These include Marija Nefovska-Danilovic, Vladimir Novak, Jelena and Fredi Dobric, Chee- 

Ming Chan, Gordana Vasic, Nino Pesic and Zoran Miskovic. Also, life would not be the same 

without everyday discussions with my housemates on world problems, music, arts, engineering 
and other topics highly relevant for each of us. Thanks to Marco Ajovalasit, Nicola Tassini, 
Indra Tumur and Caroline Turner. Finally, necessary is to mention the invaluable support of 

my family. Without their understanding during my ups and downs of the last several years 

and the sincere friendship of Ivana Spasojevic and Dr Mihail Petkovski everything would 
have been much more difficult. Also, thanks go to Mihail for our numerous and challenging 
discussions. 

Finally, I would like to acknowledge the financial support which came from the Universi- 

ties UK Overseas Research Student Award Scheme (reference ORS/2002036023) and from 

the UK Engineering and Physical Sciences Research Council (EPSRC) for the grant refer- 

ence GR/S14924/01 ("Investigation of the As-Built Vibration Performance of System Built 
Floors") as well as for the grant reference GR/T03000/O1 ("Stochastic Approach to Human- 
Structure Dynamic Interaction") provided to Professor Pavic. 

111 



Memorandum 

The accompanying thesis entitled "Probability-Based Estimation of Vibration for Pedestrian 

Structures due to Walking" is submitted for the degree of Doctor of Philosophy in the Faculty 

of Engineering at the University of Sheffield. The thesis is based entirely on the independent 

work carried out by the author in the University of Sheffield between October 2002 and 
February 2006 (with a three months long leave of absence during 2003/2004) under the 

supervision of Professor Aleksandar Pavic and Dr Paul Reynolds. All the work and ideas 

recorded are original except where acknowledged in the text or by reference. The work 

contained in the thesis has not previously been submitted for a degree or diploma at this, or 

any other, University or Examining Body. 

ea oI Stang 2ivanovic 
February 2006 

iv 



Contents 

Abstract ii 

Acknowledgements iii 

Memorandum iv 

Contents V 

List of Figures x 

List of Tables xvi 

Notation xvii 

Abbreviations xxi 

1 Introduction 1 

1.1 Research Problem ... .......... .................... 
1 

1.1.1 Vibration Assessment due to Walking Excitation ............ 
2 

1.1.2 Vibration Assessment in Footbridges 
............ ....... 

4 

1.2 Need for Research .......... ................ ....... 
5 

1.3 Proposed Solution and Scope 
............... ............ 

6 

1.4 Thesis Outline ..... .......... .......... .......... 
7 

Preface to Chapter 29 

2 Literature Review 10 
2.1 Introduction 

.................... .......... ....... 11 
2.2 Humans as Vibration Source for Footbridges 

........ ......... . 12 
2.2.1 Early Works ............ .......... . ......... 13 
2.2.2 Single Person Force Measurements 

... ................. 13 
2.2.3 Force Modelling 

........ ............... ....... 19 
2.2.3.1 Time Domain Force Models ................... 19 
2.2.3.2 Frequency Domain Force Models ................ 27 
2.2.3.3 Vandal Loading ......................... 28 

V 



2.3 Footbridge Structures as Vibration Path ................. .... 
29 

2.3.1 Mass and Stiffness ......................... .... 
30 

2.3.2 Damping ........ ...................... .... 33 

2.3.2.1 Research Work in the 1970s ............... .... 34 
2.3.2.2 New Measurement Techniques ........... .. .... 35 

2.4 Receiver of Footbridge Vibrations ..................... .... 39 

2.4.1 Early Works ...... ... .......... ... ..... ..... 39 
2.4.2 Perception of Vertical Vibrations on Bridges .......... ..... 

41 

2.4.3 Horizontal Vibration and Its Perception within a Crowd ... ..... 46 
2.4.4 Concluding Remarks ....................... ..... 

47 

2.5 Human-Structure Dynamic Interaction in Footbridges ........ ..... 
48 

2.5.1 Dynamic Properties of Footbridges under Moving People .. ..... 
48 

2.5.2 Dynamic Forces on Flexible Footbridges .... ........ ... .. 49 

2.5.3 Synchronisation of People Walking in Groups and Crowds .. ... .. 50 
2.5.3.1 Lateral Synchronisation 

........... ..... ..... 53 
2.5.3.2 Vertical Synchronisation 

............... ..... 
56 

2.6 Design Procedures and Guidelines 
................... ..... 

59 

2.6.1 Design Procedures Reported in Literature ........... ..... 
60 

2.6.1.1 Time-Domain Design Procedures .... ....... ..... 
60 

2.6.1.2 Frequency Domain Design Procedures ........ ..... 
65 

2.6.1.3 Other Suggestions 
. .................. ..... 67 

2.6.2 Design Guidelines ...... ........... ....... ..... 67 
2.7 Measures against Excessive Vibrations of Footbridges ........ ..... 71 

2.7.1 Tuned Mass Dampers: Theory ................. ..... 72 
2.7.2 Mined Mass Dampers: Practice 

.......... ..... .. ..... 
74 

2.7.3 Other Damping Devices ... ..... ........ ..... ..... 77 
2.8 Summary ............... ............. ..... ..... 77 

Preface to Chapter 3 80 

3 Modal Testing and Finite Element Model Tuning of Podgorica Footbridge 81 
3.1 Introduction ...... .................. ............. 

82 
3.2 Background Review ................... ... ...... .... 83 
3.3 Description of Test Footbridge ............. . ..... ....... 84 
3.4 Pre-Test Finite Element Modelling 

........... ............. 86 
3.5 Testing ................. ......... ............. 88 

3.5.1 FRF-Based Modal Testing ... ........ ....... ....... 88 
3.5.2 Ambient Vibration Survey ... ........ .............. 92 

3.6 Vibration Parameter Estimation 
..... ...... .............. 93 

3.6.1 FRF-Based Estimates 
............. ..... ......... 93 

3.6.2 AVS-Based Estimates 
............. ......... ..... 97 

vi 



3.7 FEM Tuning .................................... 
100 

3.8 Conclusions . ... ..... .................. ..... ..... 
101 

Preface to Chapter 4 103 

4 Finite Element Modelling and Updating of Podgorica Footbridge 104 

4.1 Introduction .............. ........... ....... ... .. 105 

4.2 Background Review ...................... ........ .. 106 

4.2.1 Finite Element Model Updating ................... .. 107 

4.2.2 Basic Theory Used in FE Model Updating .... ....... ... .. 108 

4.2.3 Applications in Civil Structural Engineering ............. .. 
112 

4.3 Description of Test Footbridge Structure .................. ... 
113 

4.4 Initial FE Modelling, Modal Testing and Model Tuning ......... ... 113 

4.4.1 Initial Finite Element Modelling .................. ... 
114 

4.4.2 Dynamic Properties Estimated from Modal Testing . ..... .. ... 114 

4.4.3 FE Model Tuning ...... ........... ......... ... 115 

4.5 Automatic Model Updating ..... ... ........ ......... ... 
117 

4.5.1 Target Response Selection ..... ........ ......... ... 117 

4.5.2 Parameter Selection ......................... ... 
117 

4.5.3 Formal Updating and its Results .................. ... 
119 

4.6 Discussion ................................... ... 
123 

4.7 Conclusions ............... .......... ....... .. ... 125 

Preface to Chapter 5 127 

5 Human-Structure Dynamic Interaction during Footbridge Crossing 128 

5.1 Introduction .................................. ... 129 

5.2 Measured and Simulated Responses .............. ... .... ... 131 

5.3 Response Simulations to Measured Walking Forces .......... .. ... 134 

5.4 Nature of Differences between Measured and Simulated Responses ... . .. 137 

5.5 Walking Without Metronome ....... ........ ..... .... . .. 141 

5.6 Modelling of Human-Footbridge Interaction ................ ... 144 
5.7 Conclusions .................................. ... 149 

Preface to Chapter 6 151 

6 Probability-Based Estimation of Vibration Response of Footbridges 152 
6.1 Introduction ......................... ............ 153 

6.2 Modelling Assumptions .................. ............ 155 

6.2.1 Footbridge as SDOF System 
........... ..... ....... 155 

6.2.2 Walking (Step) Frequency ............. ....... ..... 155 
6.2.3 Number of Steps ................. ...... ....... 156 
6.2.4 Force Amplitude 

................. . ............ 158 

vi' 



6.2.5 Intra-Subject Variability in Force ................... .. 159 

6.2.6 Other Uncertain Parameters ....................... 
164 

6.3 Statistical Prediction of Footbridge Response to Single Person Walking .... 165 
6.3.1 Peak Modal Response to Sinusoidal Excitation ... .......... 165 
6.3.2 Joint Probability for Walking Parameters ................ 

166 

6.3.3 Modification of Peak Modal Response Asi,, due to Intra-Subject Vari- 

ability ...... ....... ....................... 168 
6.3.4 Influence of DLF Variability on Peak Modal Response ......... 

170 

6.3.5 Aberfeldy Footbridge ..... ........... ............ 171 
6.4 Monte Carlo Simulations .............................. 173 

6.5 Discussion ....... ............................... 174 

6.6 Conclusions . ..... ..... .......................... 176 

Preface to Chapter 7 177 

7 Prediction of Multi Mode Vibration Response of Footbridges 178 
7.1 Introduction .... ........................... ...... 179 
7.2 Subharmonics in Walking Force .................... ...... 

180 

7.3 Inter-Subject Variability during Walking ............... . ..... 181 
7.3.1 Walking Frequency and Step Length ............. ...... 181 
7.3.2 Force Magnitude .................. ..... . . ... .. 182 

7.3.2.1 DLFs for Main Harmonics 
............. ...... 182 

7.3.2.2 DLFs for Subharmonics 
............... ...... 184 

7.4 Intra-Subject Variability during Walking 
........... .... ...... 184 

7.5 Force Modelling ............ ................. ...... 185 
7.5.1 Force Description in the Frequency Domain ......... ...... 185 
7.5.2 Time Domain Force Model .................. ...... 189 
7.5.3 Procedure for Response Simulations 

......... .... . ..... 190 
7.6 Verification of the Force Model .................... ...... 191 

7.6.1 Imaginary Footbridge 
....... ..... ......... ...... 191 

7.6.2 Hope Footbridge ........................ ...... 193 
7.6.2.1 Response Measurements 

............... ...... 195 
7.6.2.2 Multi-Mode Response Simulations ... ...... ...... 196 

7.7 Conclusions ............................... ...... 198 

8 Discussion 199 
8.1 Human-Structure Interaction 

............... ..... ....... 199 
8.2 Force Induced by Walking 

......... .................... 200 
8.3 Footbridge as Vibration Path ..... ............. ......... 202 
8.4 Pedestrian as Receiver ........................ ....... 203 

9 Conclusions and Recommendations for Future Work 205 

viii 



9.1 Conclusions . ..... ............................. .. 
205 

9.2 Recommendations for Future Work ........................ 
207 

References 209 

Conference Papers Produced During Work on the Thesis .......... ..... 
226 

Journal Papers Produced During Work on the Thesis ................ 
226 

A Dynamic Analysis of Podgorica Footbridge under Pedestrian Traffic 228 
A. 1 Introduction . ..... ........................ ....... 229 

A. 2 Structural Description ........................ ....... 229 

A. 3 Experimental Modal Identification . ................ ....... 231 
A. 4 Modelling and Updating ....... ........... ..... ....... 232 

A. 4.1 Initial FE Model and Manual Tuning ..... . ..... ....... 232 
A. 4.2 Automatic Updating .................. ... ....... 

234 

A. 5 Pedestrian Monitoring Tests ..................... ....... 
236 

A. 5.1 General Observations .... .......... ...... ....... 236 
A. 5.2 Vibration Perception ..................... ....... 

237 
A. 5.3 Dynamic Response: Measured vs. Simulated . ... ... ....... 238 

A. 6 Conclusions 
.... ............... ........... ....... 239 

B MATLAB script FHSM. m 

C MATLAB script MHMM. m 

241 

248 

ix 



List of Figures 

2.1 Typical shapes of walking force in a) vertical, b) lateral and c) longitudinal 
direction (after Andriacchi et al., 1977) ...................... 

14 

2.2 Typical pattern of running and walking forces (after Galbraith & Barton, 1970). 15 

2.3 Typical vertical force patterns for different types of human activities (after 
Wheeler, 1982) ..................... ... .......... .. 15 

2.4 Dependence of stride length, velocity, peak force and contact time on different 
pacing rates (after Wheeler, 1982) .................... ..... 

16 

2.5 Periodic walking time histories in vertical, lateral and longitudinal directions. 17 
2.6 Normal distribution of pacing frequencies for normal walking (after Matsumoto 

et al., 1972) ....... ............................... 17 

2.7 Auto spectral density of a walking force (after Eriksson, 1994). ........ 
18 

2.8 Harmonic components of the walking force in (a) vertical, (b) lateral and (c) 
longitudinal directions (after Bachmann & Ammann, 1987). ... ....... 20 

2.9 DLFs and pedestrian velocity as a function of step frequency (after Yoneda, 
2002) ......................................... 21 

2.10 DLFs for the first four harmonics for (a) walking, (b) running and (c) jumping 
force (after Rainer et al., 1988) ..... ................. ..... 22 

2.11 DLFs of walking force for the first four harmonics (after Kerr, 1998)...... 23 

2.12 Review of DLFs for the first four harmonics after different authors (after 
Young, 2001) ............... .......... ....... ..... 23 

2.13 DLF for the first harmonic of the walking force as a function of number of 
people and walking frequency (after Ebrahimpour et al., 1996). ........ 

27 

2.14 Horizontal shaker used for testing of the Millennium Bridge (after Pavic et al., 
2002a) ......................................... 38 

2.15 Reiher and Meister's scale of human perception (after Smith, 1988). ..... 40 
2.16 Leonards and Smiths scales of human perception (after Smith, 1969)...... 42 
2.17 (a) Sinusoidal vibrations in the middle of the span. (b) Vibrations felt by a 

walking pedestrian (after Smith, 1969) ....................... 43 
2.18 Probability of footbridge unserviceability (after Kajikawa & Kobori, 1977). . 43 
2.19 Acceptability of vibrations on footbridges after different scales (after Smith, 

1988) ......................................... 45 
2.20 Acceptability of vertical vibrations in footbridges after different scales (after 

Pimentel, 1997) . .................................. 45 
2.21 Acceptability of vibrations in horizontal direction. This base curve should be 

multiplied by the factor 60 (after ISO, 1992) . .................. 46 

X 



2.22 Relationship between the bridge capacity, pedestrian density and their velocity 
(after Schlaich, 2002) . ............................... 

52 

2.23 (a) Peak amplitude of the lateral modal force per person per vibration cycle. 
(b) Lateral force per person per vibration cycle versus deck velocity (after 

Dallard et al., 2001a) ...... .......................... 
54 

2.24 (a) DLF and (b) probability of lock-in for a single person as a function of the 

moving platform amplitude and frequency (after Dallard et al., 2001a).. . .. 
55 

2.25 Probability of synchronisation as a function of the acceleration of the bridge 
(after Grundmann et al., 1993) ........................... 

57 

2.26 Multiplication factor for groups of up to 10 pedestrians (after Grundmann et 
al., 1993) . .......................... ............ 

58 

2.27 (a) Moving force model and (b) forcing function for a pedestrian load (after 
Blanchard et al., 1977) . .................... ..... ..... 

61 

2.28 Pedestrian modal force model based on the design procedure by Rainer et al. 
(1988) ......................................... 

62 

2.29 Dependence of the fundamental natural frequency on span of the bridge for (a) 

vertical modes (after Tilly et al., 1984) and (b) lateral modes (after Dallard et 
al., 2001c) . ........................... ... ....... 69 

2.30 Influence of the absorber friction on its effectiveness (after Jones et al., 1981). 75 

2.31 Frequency tuning as a function of the mass ratio and the bridge damping (after 
Bachmann & Weber, 1995) . ... ........ ..... ..... .... ... 76 

2.32 Dynamic amplification of the structural and relative structure-TMD response 
as a function of the mass ratio (after Bachmann & Weber, 1995). ....... 76 

3.1 Photograph of the Podgorica footbridge .......... ... .... ..... 85 
3.2 General arrangement drawing (not to scale) of Podgorica footbridge. 

..... 85 

3.3 Design FE model ..... ............... ... ......... ... 86 
3.4 The first seven modes of vibration as obtained in the design FE model based 

on best engineering judgement ........................... 87 

3.5 Measurement grid for modal testing. Plan drawn not to scale.......... 88 

3.6 The electrodynamic shaker operating in: (a) vertical mode and (b) horizontal 

mode ......................................... 89 

3.7 Typical chirp excitation and corresponding acceleration response signals at 
TP3 in the time and frequency domains 

............... ....... 90 
3.8 Comparison between point accelerance at TP3 with one (black-dashed line) 

and three averages (grey line) under the chirp excitation. .... . ... ... 91 
3.9 Typical acceleration signal ©TP3 during AVS . ........ ......... 93 
3.10 Comparison between fitted model and measured data for point accelerance 

in the horizontal direction in the form of a Nyquist plot. Frequency range 
[3.5-4.5Hz] relevant for mode 1HA is only presented ............... 94 

3.11 Modes identified in the FRF-based testing (black dashed line). Mode shapes 
obtained from tuned FE model are presented in grey (see Section 3.7). .... 95 

3.12 Comparison between the point accelerance for the vertical direction as mea- 
sured (grey line) and as modelled (black dashed line) . .... ......... 96 

xi 



3.13 Magnitude of accelerance in the first vertical mode of vibration due to two 
different types of excitation ...................... ....... 

97 

3.14 Stable modes identified in AVS. Natural frequencies and damping ratios are 
listed below the diagram and in Table 3.3 ..................... 

98 

3.15 (a) Acceleration response due to a pedestrian crossing at step frequency of 
2.04 Hz. (b) Damping estimate from the free decay .... ............ 

99 

3.16 The horizontal springs at the girder ends added to the design FE model. ... 
101 

4.1 Modes of vibration calculated from the initial FE model .... ......... 
114 

4.2 Choice of appropriate stiffness for spring supports at the ends of the box girder. 116 

4.3 Manual frequency tuning of different FE models ..... ... .... ..... 117 

4.4 Uncertain parameters in the manually tuned FE model . ....... ..... 118 

4.5 Plot of sum of normalised sensitivity of 14 selected target responses to 25 
uncertain parameters .... ............................ 

119 

4.6 Convergence of the iterative process presented via averaged frequency error. . 
121 

4.7 MAC matrix after updating. FEA and EMA stand for FE model and experi- 
mental model, respectively . ........ ........... ......... 

122 
4.8 Overlaying of mode shapes obtained experimentally (black-dashed line) and 

numerically in the final FE model (grey line) .............. ..... 123 

5.1 Photograph and the vibration mode investigated for: (a) Aberfeldy footbridge, 
(b) Podgorica footbridge and (c) Hope footbridge . ... ... ......... 131 

5.2 Measured (black line) and simulated (grey line) resonant modal responses on 
(a) Aberfeldy footbridge, (b) Podgorica footbridge and (c) Hope footbridge, 
for walking with a metronome. Note that the black and grey lines match in 
case (b) .................. ..... ............ ..... 133 

5.3 (a) Measured walking force time history. (b) Force detail between 30 and 40 s. 
(c) Fourier spectrum of the measured force . ....... ...... . ..... 135 

5.4 Measured force after filtering at the frequency of the first walking harmonic.. 136 

5.5 Modal response simulations to the first walking harmonic of a measured narrow- 
band force (black line) and a harmonic force (grey line) . ............ 

136 

5.6 Estimation of the DLF by comparing initial part of envelopes of different modal 
forces with that derived by Dallard et al. (2001a) for (a) Aberfeldy footbridge, 
(b) Podgorica footbridge and (c) Hope footbridge .......... ...... 138 

5.7 Simulation of the modal response due to the modal force that changes its phase 
at the nodal point of the mode shape . .......... ............ 140 

5.8 Vibration perception curves during crossing of the (a) Aberfeldy footbridge, 
(b) Podgorica footbridge and (c) Hope footbridge ..... ...... ...... 141 

5.9 The spectrum of measured acceleration response (grey vertical lines) on Aber- 
feldy footbridge for: (a) the first 37 s of the response, (b) the response between 
37 and 74 s, when walking with a metronome. Black line is related to the 
crossing without a metronome (Section 5.5) . ... ................ 142 

X11 



5.10 (a) Simulated (grey line) and measured (black line) modal responses on Aber- 
feldy footbridge. (b) Simulated (grey line) and measured (black line) modal 
responses on Podgorica footbridge. (c) Vibration perception curve during slow 
walking on Aberfeldy footbridge. (d) Vibration perception curve during fast 

walking on Podgorica footbridge ...... .................... 
143 

5.11 Dampening effect of a single pedestrian walking on (a) Aberfeldy footbridge 

with a metronome beat, (b) Aberfeldy footbridge without a metronome, (c) 
Podgorica footbridge without a metronome, (d) Hope footbridge with a metronome. 146 

5.12 Modal forces and peak modal forces per cycle on (a) Aberfeldy footbridge 
(walking with a metronome), (b) Aberfeldy footbridge (walking without a 
metronome), (c) Podgorica footbridge (walking without a metronome) and (d) 
Hope footbridge (walking with a metronome) ............ ....... 148 

6.1 (a) Normal distribution of walking frequencies. (b) Normal distribution when 
the frequency axis is normalised to a footbridge natural frequency in the ver- 
tical direction (2.04 Hz in this example) . ............ ......... 156 

6.2 (a) Walking speed as a function of step frequency (after Pachi and Ji, 2005). 
(b) Normal distribution of walking speed when walking with step frequency 
around 1.8 Hz. (c) Probability density function (independent on step frequency) 
for number of steps required to pass a 78 m long bridge . ... .... ..... 158 

6.3 (a) DLF for first harmonic of the walking force (after Kerr, 1998). (b) Distri- 
bution of actual to mean DLF ratio for the first walking harmonic of the force 
induced by walking . ...................... .......... 159 

6.4 Comparison of modal responses due to measured force (black-dashed line) and 
corresponding sine force (grey line) when walking at a step frequency equal to 
(a) a footbridge natural frequency and (b) 80% of the natural frequency. 

... 161 
6.5 Correction coefficient calculated for different number of steps required to cross 

a footbridge when walking at a step frequency equal to (a) a footbridge natural 
frequency and (b) 80% of the natural frequency. The damping ratio for the 
footbridge considered is 0.4% ........ ... .......... ....... 162 

6.6 (a) Attenuation factor for the modal acceleration response to measured force 
in comparison with the one due to sine force when walking at step frequency 
that matches the natural frequency of a footbridge. (b) Amplification factor 
for the modal acceleration response to measured force in comparison with the 
one due to sine force when walking at a step frequency equal to 90% of the 
natural frequency .............. ............. .... ... 163 

6.7 (a) Gamma distributions for the correction coefficient for footbridges with 
different damping. (b) Gamma distributions for the correction coefficient when 
walking at different frequencies on a bridge with damping ratio equal to 0.4%. 163 

6.8 (a) Parameter `a' and (b) parameter `b' for gamma distribution depending on 
structural damping and ratio between the walking and natural frequency. 

.. 164 
6.9 Podgorica footbridge - (a) photograph and (b) modal properties of the funda- 

mental mode of vibration ............. ....... . ...... ... 166 
6.10 Peak modal acceleration response due to sinusoidal walking force... ..... 167 
6.1 1 Joint probability density function p(fe/ f, N) for different combinations of 

step to natural frequency ratio and number of steps during the crossing of the 
Podgorica footbridge 

................... ........ . ..... 167 

X111 



6.12 (a) Graphical representation of (a) peak acceleration Ac as a discrete function 

of variable x, (b) probability density function as a discrete function of x. ... 169 

6.13 Podgorica footbridge - (a) Probability of certain acceleration level (a) before 

and (b) after taking into account imperfections in human walking. ...... 
170 

6.14 Podgorica footbridge - (a) Final probability of a peak modal acceleration level 

due to single person crossing the bridge. (b) Cumulative probability that the 

acceleration level is smaller than or equal to the acceleration level considered 
(shown on the horizontal axis) ....... .......... .......... 

170 

6.15 Aberfeldy footbridge - (a) photograph and (b) modal properties of the funda- 

mental mode of vibration . ......... ........... ...... ... 171 

6.16 Aberfeldy footbridge - (a) Probability of certain acceleration level. (b) Cu- 

mulative probability that the acceleration level is smaller than or equal to the 

acceleration level shown on the horizontal axis . ..... ... ......... 
172 

6.17 Aberfeldy footbridge - (a) Modal properties for mode at 1.86 Hz. (b) Cumu- 
lative probability that the acceleration level is smaller than or equal to the 
acceleration level shown on the horizontal axis . ................. 

172 

6.18 Probability of measured peak modal acceleration on Aberfeldy footbridge. .. 173 

6.19 Cumulative probability as a result of MC simulations for: (a) Podgorica foot- 
bridge, (b) Aberfeldy footbridge (mode 1) and (c) Aberfeldy footbridge (Mode 
2) ........................................... 

174 

7.1 (a) Dynamic part of a force induced by walking. (b) Amplitude of force Fourier 

spectrum. (c) Phase of force Fourier spectrum. (d) Period of each step. ... 181 

7.2 Probability density functions for: (a) walking frequency and (b) step length.. 182 

7.3 (a) Probability density function for multiplication factor for DLF1 (solid line) 

and DLF2 (dashed line). (b) DLF2 measured by Kerr (1998).......... 183 

7.4 DLFs for subharmonics as functions of DLF1 ..... ........... ... 185 

7.5 Normalised DLFs for first five subharmonics (left column) and harmonics (right 

column) ....................... ................. 187 

7.6 Distribution of phases for 400 lines in force spectrum . ............. 189 
7.7 (a) Force spectrum for force shown in Figure 7.1a according to the force model 

adopted. (b) Force reconstructed in the time domain .............. 190 

7.8 Cumulative probability that the acceleration level is smaller than or equal to 
the acceleration level shown on the horizontal axis for the response in (a) Mode 
1 due to measured forces, (b) Mode 1 due to simulated forces, (c) Mode 2 due 
to measured forces, (d) Mode 2 due to simulated forces, (e) Mode 3 due to 
measured forces and (f) Mode 3 due to simulated forces . ... ... . ..... 193 

7.9 Cumulative probability of acceleration response in Modes 2 and 3 due to 
(a) measured forces and (b) simulated forces. Cumulative probability of to- 
tal response to (c) measured forces and (d) simulated forces........... 194 

7.10 (a) Catenary footbridge. (b) Mode shapes for five vertical vibration modes. . 194 
7.11 Measured time history at (a) TP1 and (b) TP2. Fourier spectrum of signal at 

(c) TP1 and (d) TP2 . ............................... 195 

xiv 



7.12 Probability of certain acceleration level for (a) peak acceleration at TP1, 
(b) RMS acceleration at TP1, (c) peak acceleration at TP2, and (d) RMS ac- 
celeration at TP2. Measured data are presented as solid lines while calculated 
responses are shown as grey ............................. 

196 

7.13 Cumulative probabilities of acceleration being less than or equal to the accel- 
eration level shown on the horizontal axes. These are presented for measured 
(solid lines) and simulated (grey) (a) peak acceleration at TP1, (b) RMS ac- 
celeration at TP1, (c) peak acceleration at TP2, and (d) RMS acceleration at 
TP2 .......................................... 197 

8.1 (a) Probability of certain peak acceleration level. (b) Cumulative probability 
of unacceptable peak vibration level being less than or equal to the vibration 
level shown on the horizontal axis . ........................ 204 

A. 1 Photograph of the Podgorica footbridge 
........ ........ ...... 229 

A. 2 General arrangement drawing (not to scale) of Podgorica footbridge and mea- 
surement points . .................... ........ . ..... 230 

A. 3 Fourier spectra of vertical accelerations ...................... 231 
A. 4 Fourier spectra of horizontal accelerations .............. .... . .. 232 
A. 5 Initially developed FE model. Note: in the inset, supports are removed for 

clarity .............. .......... ... ........... ... 
233 

A. 6 Vibration modes from the updated model ....... .............. 235 
A. 7 Measured acceleration (upper) and its spectrum (lower). Sampling rate 0.025 s. 236 
A. 8 Distribution of step frequencies 

... ..... ..... ..... ... ...... 237 
A. 9 Rating of vibrations (upper) and vibration perception as a function of modal 

peak acceleration (lower): 1-acceptable, 2-unpleasant, 3-unacceptable. 
.... 238 

A. 10 Modal acceleration: simulated (upper) and measured (lower). 
......... 239 

xv 



List of Tables 

2.1 DLFs for single person force models after different authors. V, L and LO stand 
for vertical, lateral and longitudinal directions, respectively. . ...... ... 

24 

2.2 Measured damping ratios (for vertical Cv, horizontal (h and torsional (t modes) 
for some footbridges .............. ... .... ... ......... 

36 

2.3 Provisional values of damping ratio in footbridges (after Bachmann et al., 1995a). 39 

2.4 Design force model after Eriksson (1994) 
. ...... ..... ...... ... 

66 

3.1 Data acquisition parameters used for FRF-based testing ....... . ..... 
92 

3.2 Data acquisition parameters used for ambient vibration survey in the vertical 
direction . ................................ ... ... 92 

3.3 Natural frequencies and damping ratios according to different models. .... 
95 

3.4 Signal processing setup as adopted in data analysis in ARTeMIS. 
....... 99 

4.1 Correlation between experimental and initial FE model ............. 115 

4.2 Correlation between experimental and manually tuned FE model.. ...... 116 

4.3 The value of starting and updated parameters (E, p and h stand for dynamic 

modulus of elasticity, density and thickness of appropriate elements in FE 
model, respectively) . ................... ....... . ..... 120 

4.4 Correlation between experimental and updated FE model...... . ..... 122 

6.1 Parameters for response simulations under a single pedestrian on two footbridges. 175 

7.1 Parameters describing normal distribution of DLFs for higher harmonics. . . 184 
7.2 Fitting parameters for five harmonics . ............ .... ..... . 188 
7.3 Fitting parameters for five subharmonics .................... . 188 

7.4 Modal properties of the catenary footbridge .... ............... . 194 

A. 1 Natural frequencies [Hz) in different models .... ... ... ........ .. 234 
A. 2 Starting and updated uncertain parameters ....... ....... ...... 235 

B. 1 Parameter a............. ........................ 247 
B. 2 Parameter b................ 

..................... 
247 

xvi 



Notation 

Vectors and Matrices 

[j Matrix 
{} Vector 

IT Transpose of a matrix 
[ 1-1 Inverse of a matrix 
{ }T Transpose of a vector 
[A] Discrete state matrix 
[C] Discrete output matrix 
[Cp] Diagonal matrix of weighting coefficients for parameters 
[CR] Diagonal matrix of weighting coefficients for target responses 
[G] Matrix connecting vectors of changes in target responses and updating parameters 
{Po} Initial vector of updating parameters 
{P,, } Vector of updated parameters 
{Ra} Initial vector of target responses 
{Re} Experimentally obtained vector of responses 
{AR} Vector of response differences in analytical and experimental models 
{OP} Vector of parameter differences in two successive iterations 

(S] Sensitivity matrix 
{vk} Measurement noise vector at time instant k 
{wk} Process noise vector at time instant k 
{xk} State vector at time instant k 
{Yk} Response vector at time instant k 

Small Letters 

a Acceleration response 
a, b Parameters describing a gamma distribution 

a, (t) Modal acceleration due to a narrow band force 

ai, k, bi, k, ci, k Fitting parameters for ith harmonic (k = 1,2,3) 

xvii 



a%, k, bs, k, ct, k Fitting parameters for ith subharmonic (k = 1,2) 

aiim Limiting value of peak acceleration 

asin(t) Modal acceleration due to a sinusoidal force 

a(t) Time varying modal acceleration 

c Correction coefficient 
d(t) Time varying modal displacement 

er Error function 
fo Fundamental natural frequency 
fa Natural frequency from an analytical model 
fe Natural frequency obtained experimentally 
h Frequency ratio between the current frequency line in a spectrum around 

a harmonic and the step frequency 
fill Frequency ratio between the current frequency line in a spectrum around 

a subharmonic and the step frequency 
A, f Natural frequency of a footbridge 

f, Walking frequency 

f (x) Probability density functions of random variable x 
h Thickness 
i Current (sub)harmonic number 
i1 j Imaginary unit, 
k Spring stiffness 
l8 Step length 

m Modal mass; Number of target responses 
n Number of updating parameters 
PC Probability density function of correction coefficient c 
AMA) Probability density function for variable fl f,, 

p(f8/ f, N) Joint probability density for variables f, / fn and N 

p(fe/ fn, N, c) Joint probability density for variables f8/ fn, N and c 
r Current mode number 
n Model order 
t Time 

Vp Walking speed 
v(t) Time varying modal velocity 

x Longitudinal axis of a footbridge; Random variable 

Capital Letters 

Ar Peak modal acceleration due to a narrow band walking force (without taking 
into account variability of the dynamic loading factor) 

A,., Br Modal constants of the rth mode of vibration 

xviii 



Asin(t) Peak modal acceleration due to a sinusoidal force 

DLF1 Dynamic loading factor for ith harmonic 
DLF3 Dynamic loading factor for ith subharmonic 
DLFi(f3) Normalised amplitude in spectrum around ith harmonic 

DL-Fis (. T) Normalised amplitude in spectrum around ith subharmonic 
E Error function; Dynamic modulus of elasticity 
F Force amplitude 
Fd Dampening force 

Fh Modal harmonic force 

Fi (t) Time varying force having energy that corresponds to ith harmonic 

Fs (t) Time varying force having energy that corresponds to ith subharmonic 
Fain(t) Time varying harmonic force 
F(t) Time varying force induced by walking 
F(t, x) Time and space varying modal force induced by walking 
L Length of a footbridge; Number of test points 
MF Multiplication factor 

N Number of steps required to cross a footbridge; Number of vibration modes 
PAC. k; Ac, k+l Probability of Ac, k < Ac < Ac, k+1 
PC Probability of occurrence of a certain peak acceleration Ac 
Pj jth updating parameter 
Py=X{ Probability of having random variable x equal to x1 
Rti ith target response 
SS f Sensitivity of ith response to a change in jth parameter 
Sn, ij Normalised sensitivity of ith response to a change in jth parameter 
T Data acquisition time length 
TT Time needed to cross a footbridge 
W Weight of a pedestrian 

Greek Letters 

a(w) Receptance 

a, a* Mathematically modelled receptance and its complex conjugate 
ä, ä' Measured receptance and its complex conjugate 
ao Complex constant 
6 Variation 

µX Mean value of variable x 
0 Rotational shift in the Nyquist plane 
w Forcing frequency 

w,. Natural frequency of the rth mode of vibration 

xix 



p Density 

ox Standard deviation of variable x 
9(f, ß) Phase for current frequency line around a harmonic 
9(fß) Phase for current frequency line around a subharmonic 

Modal damping ratio 
CC(t) Time varying additional damping 
Cr Damping ratio of the rth mode of vibration 
is Discrete step of correction coefficient 
Af Frequency resolution 
A(f3/f, ) Discrete step of walking to natural frequency ratio 
AN Discrete step of number of steps 
OPA Change in parameter P, 
01- Change in response 11 
Ox Discrete step for random variable x 
-I){ Mode shape of the ith mode of vibration 
'Dn(x) Space varying amplitude of a mode shape 
fi(t) Mode shape expressed as a function of time 

xx 



Abbreviations 

3D Three-dimensional 
AVS Ambient Vibration Survey 

BS British Standard 
COMAC Coordinate Modal Assurance Criterion 

CVA Canonic Variate Analysis 

DLF Dynamic Loading Factor 
DOF Degree Of Freedom 

FE Finite Element 

FEM Finite Element Model 
FRF Frequency Response Function 
IIA Horizontal Anti-symmetric (mode of vibration) 
IIS Horizontal Symmetric (mode of vibration) 
ISO International Standardization Organization 

MAC Modal Assurance Criterion 

MDOF Multi Degree Of Freedom 

RMS Root Mean Square 
SDOF Single Degree Of Freedom 
TP Test Point 
UK United Kingdom 
VES Vibration Engineering Section 

VA Vertical Anti-symmetric (mode of vibration) 
VS Vertical Symmetric (mode of vibration) 

Foci 



Chapter 1 

Introduction 

Modern civil engineering structures exposed to human-induced dynamic loading, such as 

footbridges, long-span floors and staircases, have been becoming increasingly slender. As 

a consequence, the vibration serviceability of these structures is becoming their governing 
design criterion. The research reported in this thesis is concerned with vibration performance 

of slender pedestrian structures (footbridges, walkways, etc. ) under dynamic loading induced 

by walking. However, the procedures developed in this thesis can also be readily adapted for 

checking the vibration performance of other slender structures exposed to walking excitation. 

The rationale for the research and the thesis outline are described in this introductory chapter. 

1.1 Research Problem 

Excessive vibrations of slender pedestrian structures, such as footbridges, long-span floors 

and staircases, have occurred more frequently in the last 20 years than in the past. There 

are several reasons for this, such as: 

. improved mechanical properties of structural materials leading to reduced structural 

mass, 

" increased length of structural spans leading to increased slenderness, and 

9 aesthetic design requirements for eye-catching `transparent' structural forms. 

The factors mentioned above usually lead to very light structures that are also lightly damped. 

For example, a modal damping ratio as low as 0.5% has become a very frequent characteristic 
of modern footbridges, especially those that are made of steel, while the modal damping for 

composite long-span floors can be as low as 1%. In addition, these structures tend to have 

natural frequencies of the fundamental and often higher modes of vibration that are in the 

range of normal walking frequencies (1.5-2.5 Hz) or the first few of their integer multiples. 

1 
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All this makes pedestrian structures prone to vibration due to human-induced dynamic load- 

ing, such as walking, jumping, running, swaying and bouncing. Examples of lively structures 

are numerous (Bachmann & Ammann, 1987; Bishop et al., 1993; Pimentel, 1997). Among 

them are the structures made from different materials and using different structural sys- 
tems, indicating that the vibration serviceability problem is not exclusive to certain types 

of materials and structural forms. The problem is omnipresent and should be addressed 

comprehensively, starting from first principles. 

1.1.1 Vibration Assessment due to Walking Excitation 

Among the various types of human-induced dynamic excitation, walking is often the most 
frequent type for many structures. Therefore, it is necessary to model it mathematically to 

enable prediction of structural vibration behaviour under this load, which is often critical for 
design. 

Walking, as are all types of human activities, is an extremely complex activity to model. 
This is because people generally walk in different styles making different numbers of steps for 
the same amount of time, having different step lengths and inducing different time-varying 
dynamic forces into the surfaces they walk on. Not only are these forces different for different 

people, but also a single person walks differently in different circumstances, depending on 
their mood, weather they are hurrying, if they are in a group and so on. As an additional 
illustration of the complexity of the walking process finally comes the fact that a single 
person during walking makes successive steps that differ slightly in terms of their length, 
duration and intensity of the force induced. Because of this, the walking force is not periodic, 
as assumed in most current design codes and guidelines, but it is a narrow-band random 
process (Brownjohn et al., 2004b). Therefore, the study of forces induced by people during 

walking requires research into their inter- and intra-subject variability (Rainer et al., 1988; 
Ebrahimpour et al., 1996; Kerr, 1998; Brownjohn et al., 2004b). The term inter-subject 
variability implies that different pedestrians generate different dynamic forces, and intra- 
subject variability means that even a single pedestrian induces a walking force that differs 
with each step. This study should be done by making use of statistics and probability 
theory as done in other engineering disciplines dealing with random loading, such as wind 
engineering. 

A good general framework for handling vibration serviceability is developed in the ISO 10137 
guideline (ISO, 1992). This guideline deals with serviceability of buildings and walkways and 
defines the vibration source, path and receiver as three key, but separate, issues which require 
consideration when dealing with the vibration serviceability of any structure. Although this 
rationalisation of the vibration serviceability problem into the characterisation of the three 
separate parts seems straightforward, it is actually a very difficult task. This becomes clear 
when trying to make use of existing design provisions available for vibration serviceability 
assessment. Namely, they often fail to predict level of vibration occurring in practice either 
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by overestimating or underestimating it. This overestimation or underestimation can be quite 

significant, depending on the loading scenarios considered. 

In the case of footbridges, the current design practice worldwide usually addresses the vibra- 
tion serviceability problem in an oversimplified way. For example, the current British guide- 
line for footbridge design (BSI, 1978) treats human-induced loading as that produced by an 

average person who walks at constant frequency to cause resonance of the footbridge struc- 
ture. The response of the footbridge to this loading is calculated and then used for vibration 

serviceability assessment. Therefore this performance-based code provision (when response 
is calculated and assessed) uses a typical deterministic approach to model the walking force. 

Moreover, the walking force is essentially random in nature, so a deterministic approach may 
not be appropriate. Similar code provisions exist in Canadian design guidelines (OHBDC, 

1983; CSA, 2000) as well as in American (AASTHO, 1997), European (ENV, 1997) and Hong 

Kong (HD, 2002) design guidelines. On the other hand, some design guidelines, such as those 
in Switzerland (SIA, 1989) and Japan (Yoshida et al., 2002) avoid performance-based assess- 
ment of vibrations altogether by restricting the range of natural frequencies that are allowed 
for footbridge structures. Their criteria for avoiding certain frequency ranges are often too 
restrictive for design (Pimentel, 1997) since the structural natural frequency is not the only 
relevant parameter that governs vibration behaviour of the footbridge. If actual mass, stiff- 
ness and/or damping are high enough, the actual dynamic response may be low enough so 
that a footbridge having any natural frequency may have satisfactory vibration performance 
under pedestrian-induced excitation. 

Some new and interesting concepts have recently been employed in guidance for vibration 
serviceability assessment of post-tensioned concrete floors in buildings. Namely, to account 
for inter-subject variability, the UK Concrete Society has introduced a new design proce- 
dure (Pavic & Willford, 2005) that indirectly makes use of a probability-based approach to 

vibration serviceability assessment. In this approach, a deterministic sinusoidal force, that 
has 25% of probability of exceedance, is suggested as a model for human walking in design. 
Although this criterion might be on the safe side when doing vibration assessment for every- 
day loading scenarios, it is valuable as it is a pioneering attempt to introduce a probability 
approach into design practice dealing with human-induced dynamic loads. 

This thesis concentrates on improvement of the design strategy for a single person walking 
primarily across footbridges. Among the three key aspects of the design against excessive 
vibrations according to ISO 10137 (vibration source, path and receiver) most attention in 
this thesis is devoted to the modelling of the vibration source, that is the walking force 
induced by a single walker. The modelling of the force generated by a single pedestrian is 
a necessary building block for group- and crowd-induced walking excitations of footbridges 
and other structures. These loadings due to group and crowd of pedestrians are beyond the 
scope of this thesis. Since the walking across footbridges and similar structures is analysed in 
this thesis, the current practice in vibration serviceability assessment of footbridge structures 
under human-induced load will be considered in more detail in the next section. 
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1.1.2 Vibration Assessment in Footbridges 

4 

To prevent problems with excessive footbridge vibrations, in the late 1970s the pioneering 
design code BS 5400 appeared in the UK to deal with the effects of human-induced excitation 
(BS, 1978). At that time it was known that, while walking, pedestrians induce a dynamic 

force that has components in all three directions: vertical, horizontal-lateral and horizontal- 
longitudinal (Harper, 1962). However, the design code considered the vertical component 
only. This was done because this component was the largest of the three and believed to be 

the only one capable of causing excessive vibrations. 

The code gives a procedure for checking the vibration serviceability of footbridges due to a 
single person walking with a constant speed and with a frequency equal to the fundamental 

natural frequency of the footbridge investigated. This harmonic force was considered as 
the worst case scenario. The code itself was the first footbridge design code treating the 

vibration serviceability problem and it is, after almost 30 years, among the most advanced 
in the world. Similar code provisions appeared after 1978 in some other countries such as 
Canada (OHBDC, 1983) and Hong Kong (HD, 2002). 

Since 1978, considerable research has emerged highlighting shortcomings of the BS 5400 
and similar design codes used for vibration serviceability checks around the world. The 
infamous problem with excessive lateral vibration of the London Millennium Bridge in 2000, 
prompted the UK Highways Agency to include provisions for lateral vibrations in their Design 
Manual for Roads and Bridges (HA, 2001). However, the procedure for checking vibration 
serviceability in the vertical direction, although almost 30 years old, stayed the same as in 
the BS 5400. 

The following issues which do not feature in BS 5400 have emerged as its main shortcomings: 

1. Human-induced force is dependent on the walking frequency (Rainer et al., 1988). 

2. There is inter-subject variability in human-induced forces such as variability in their 
amplitudes (Rainer et al., 1988; Kerr, 1998), frequencies (Matsumoto et al., 1978) as 
well as duration of the load indicating the time required to cross the bridge (Rainer et 
al., 1988; Young, 2001). 

3. There is intra-subject variability in human induced walking forces, that is a pedestrian 
cannot make two exactly the same steps (Ebrahimpour et al., 1996) and as a conse- 
quence these forces are narrow band random processes in their nature (Brownjohn et 
al., 2004b) rather than deterministic periodic forces. 

4. Not only is the first harmonic of the walking force important, but also higher harmonics 
might be relevant (Pimentel, 1997). 

5. The binary pass-fail criterion based on a single value for limiting acceleration response, 
currently featuring BS 5400, might not be appropriate for the vibration serviceability 
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check. Bearing in mind inter-subject variability in vibration perception for different 

people, it might be more appropriate to define a probability based vibration limit (Ka- 

jikawa & Kobori, 1977). Also, the BS vibration limit defined as a single value is a com- 

promise based on laboratory-based research work conducted in the late 1960s (Leonard, 

1966; Smith, 1969). Because of this, there is a need to check the appropriateness of this 

vibration scale on as-built footbridges in open space environments. It might be useful 

to take into account some additional factors during this check, such as location of the 

footbridge, frequency of pedestrian traffic and whether people standing on the bridge 

might be expected. The current BS perception limit is actually a compromise between 

the limits for a standing and a walking person and it is not explicitly defined for which 

of these two options the bridge should be designed. 

As a consequence of these shortcomings, there is a strong body of evidence of unsatisfactory 

code provision when either predicting structural vibration response or people's reaction to it, 

or both. Some examples illustrating this are reported by Bachmann & Ammann (1987) and 
Pimentel (1997). 

1.2 Need for Research 

It is interesting that, despite the BS 5400 shortcomings, not much has been done to improve its 
design procedure. A possible reason for this is that it is difficult to formulate a new procedural 
framework that is broad enough to cover force variability and, at the same time, simple enough 
to be used in practice. For example, Ebrahimpour et al. (1996) suggested a probability 
approach for taking into account all randomness in human-induced forces. However, they 
did not manage to make a comprehensive force model and make greater impact on design 

practice. 

It is generally accepted nowadays that vibrations induced by pedestrians are in most cases 

a serviceability, rather than a safety (i. e. strength-related) issue. This is because these 

vibrations mainly have the potential to cause discomfort for users of the structure without 
compromising structural integrity. This is one more reason why the procedures for vibration 
serviceability check are not well developed. Historically, in the past priority was given to 

researching ultimate limit states of structures since their better understanding and handling 
in design would reduce the probability of structural collapse with catastrophic consequences. 

When the high profile problem with excessive lateral vibration of the London Millennium 
Bridge occurred on its opening day in June 2000, research communities worldwide concen- 
trated their efforts in researching this relatively new phenomenon. This, to some extent, 
masked the emerging problem with vibrations in the vertical direction, and might be a reason 
why not much work has been done on improvement of design codes in this sense. Interest- 
ingly, the author of this thesis herself was attracted by the area of vibration serviceability 
of footbridges after experiencing strong, unexpected and, from personal point of view, quite 
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disturbing lateral vibrations of a massive road bridge over Sava River in Belgrade, occupied 

only by a walking crowd of people during a mass civic protest in 1996. 

However, it should be said that some good quality research took place after the 1978 edition 

of BS 5400. Although not codified, this research pointed in the right direction and inspired 

other researchers worldwide. For example, inter-subject variability in the walking frequency 

was documented by Matsumoto et al. (1978) while variability in the force magnitude was 

reported by Rainer et al. (1988) and 10 years later by Kerr (1998) in a more detailed 

investigation. Imperfections in the walking force induced by an individual were explained 

by Brownjohn et al. (2004b) and further studied by Sahnaci & Kasperski (2005). Most of 

these works are explained in detail in the literature review presented in Chapter 2. Here, 

they are mentioned as important building blocks in understanding key aspects of modelling of 

the walking force. This understanding has enabled a development of a comprehensive design 

procedural framework in this thesis that can take into account stochasticity of all relevant 

parameters describing walking excitation. 

Following the ISO (1992) proposal for the rationalisation of vibration serviceability problem 
into three separate parts (source, path and receiver), the main questions, still unanswered, 
can be sumarised as follows: 

" Human-induced walking excitation: How to model it in a way to take into account both 

inter- and intra-subject variability? Which loading scenarios are relevant for design 
(single person excitation, stream of pedestrians, crowd load, etc. )? 

9 Path: How to get reliable modal properties of the bridge, especially in the design phase? 

" Human as a receiver: Who is the receiver: walking or/and standing person? What 

are the appropriate vibration perception scales for vibrations in both the vertical and 
horizontal directions? 

The latest draft of the revised ISO 10137 (ISO, 2005) deals with some of these questions. For 

example, it suggests that in the vibration serviceability design of footbridges, four loading 

scenarios could be considered. These are: a single person, small groups, a stream of pedes- 
trians and occasional festive events. In addition, this draft suggests checking of vibration 
perception for both a standing and a walking person. This is a significant step forward hav- 

ing in mind that most design codes consider only a single person walking scenario and define 

the vibration limit as a single number, for which it is not clear if it applies to a walking or a 
standing person. 

1.3 Proposed Solution and Scope 

This thesis combines the experimental and analytical approach to create a new and improved 
framework for the vibration serviceability check of footbridges. The main aim is to investi- 

gate, propose and verify a probability-based design procedure that can replace the existing 
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deterministic one for a single person walking. In this way not only can the most impor- 

tant factors describing inter- and intra-subject variability be taken into account, but also the 

probability of a certain vibration level not to be exceeded can be calculated. This enables 
development of a new probability-based vibration serviceability design philosophy. 

The reason for considering a single person is that it is necessary to describe individual loading 

reliably before extending the procedure to more complicated and realistic loading scenarios 
involving groups of people. As previously mentioned, group loading is beyond the scope of 
this thesis. 

As a side product in this thesis, a procedure for finding unacceptable vibration limits for 

moving (walking) people has been developed. This is based on an assumption that some 
human-structure interaction in the vertical direction takes place during walking. 

Therefore, this thesis concentrates on research into modelling of the vibration source, which is 

the walking force, and it also gives some insight into the modelling of the vibration path and 
human perception of footbridge vibration. An assumption used when developing a design 

procedure is that modal properties of the structure are known in advance. It should be 

said that this thesis has no ambition of resolving all questions quoted in Section 1.2, but 

rather aims to give a contribution towards updating the existing design procedures primarily 
through improving the walking force modelling. 

To reduce uncertainty in the structural modal properties required when doing vibration ser- 
viceability assessment, as well as to demonstrate a reliable way of their estimation, an as-built 
lively footbridge was tested and its modal properties were estimated. By doing this and by 

measuring vibration response to single person excitation, this bridge became available as a 
test-bed structure for the verification of the force model in addition to two other footbridges 
for which data were collected by other members of the Vibration Engineering Section in the 

past. An additional motive for modal testing of the as-built footbridge during the work on this 
thesis was to equip the author with knowledge and skills relevant for vibration serviceability 
assessment of existing structures (such as modal testing, data acquisition, signal processing 
and parameter estimation). This gave confidence when using and analysing the data collected 
in the past, helped understanding the way the data were collected and difficulties that can 
be encountered during experimental measurements in laboratory and field conditions. 

1.4 Thesis Outline 

The work in this thesis was conducted over 37 months of full-time research. It is organised 
in the form of six papers with the aim to publish them in peer-reviewed scientific journals. 
Chapters 2-7 contain these papers, three of which are already in print. The remaining three 
papers have been submitted for publication. Since the journal papers were written to stand 
alone, each chapter-paper is briefly introduced in a preface. The aim of this is to describe the 
importance of the chapter and its relationship with the rest of the thesis. Also, the chapters- 
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papers are slightly amended in comparison with the submitted papers to avoid repetition 

wherever possible and to convey information in a form appropriate to thesis format. 

The research work reported in this thesis is presented in nine chapters. Chapter 1 is this in- 

troductory chapter explaining the problem being researched in the thesis, the scope of work 

as well as the organisation of the thesis. A literature review giving background in vibra- 
tion serviceability problems in footbridges is outlined in Chapter 2. Chapter 3 deals with 

modal testing and experimental estimation of dynamic properties of a test-bed footbridge 

as well as its finite element modelling and manual correlation with experimental results. To 
further improve the correlation between the manually tuned finite element and the experi- 
mental models, an automatic updating procedure was used as explained in Chapter 4. This 

combination of analytical and experimental approach enabled a reliable estimation of modal 
properties of the footbridge analysed. These properties, together with modal properties of 
two other as-built footbridges for which data were already available, were then used for study- 
ing the human-structure dynamic interaction during a footbridge crossing (Chapter 5). Also, 
in Chapter 5 the effect of the human-structure interaction on development of the structural 
vibration response was investigated. Based on this analysis, a methodology for establishing 
limiting vibration level for a pedestrian crossing a footbridge is suggested. Chapters 6 and 7 

are the main body of the thesis and are concerned with mathematical modelling of the dy- 

namic force induced by walking as well as the estimation of the structural vibration response. 
More precisely, Chapter 6 describes a probability-based analytical framework for vibration 
serviceability check of footbridges responding in a single vibration mode. Chapter 7 then 
extends this model to allow for estimating the multi-mode response of a footbridge structure. 
A discussion of the research and its findings is given in Chapter 8, whereas Chapter 9 contains 
a summary of its conclusions and recommendations for future work. 



Preface to Chapter 2 

Chapter 2 contains a literature review addressing the vibration serviceability of footbridges 

under human-induced dynamic excitation. The review is written as a comprehensive paper 

reviewing and discussing all important aspects of the topic such as: 

" human-induced dynamic force, 

" dynamic properties of footbridge structures, 

" pedestrians as receivers of footbridge vibrations, 

" design aspects regarding vibration serviceability and 

" measures for suppressing excessive vibrations in as-built lively footbridges. 

9 



Chapter 2 

Literature Review 
This chapter, in a slightly amended form, has been published under the following reference: 

2ivanovi&, S., Pavic, A. and Reynolds, P. (2005) Vibration Serviceability of Footbridges under Human-Induced 

Excitation: a Literature Review, Journal of Sound and Vibration, 279 (1-2), 1-74. 

Abstract 

Increasing strength of new structural materials and longer spans of new footbridges, accompanied 

with aesthetic requirements for greater slenderness, are resulting in more lively footbridge structures. 
In the past few years this issue attracted great public attention. The excessive lateral sway motion 
caused by crowd walking across the infamous Millennium Bridge in London is the prime example of 
the vibration serviceability problem of footbridges. In principle, consideration of footbridge vibration 
serviceability requires a characterisation of the vibration source, path and receiver. This review is the 

most comprehensive review published to date of about 200 references which deal with these three key 

issues. 

The literature survey identified humans as the most important source of vibration for footbridges. 
However, modelling of the crowd-induced dynamic force is not clearly defined yet, despite some serious 
attempts to tackle this issue in the last few years. 

The vibration path is the mass, damping and stiffness of the footbridge. Of these, damping is the most 
uncertain but extremely important parameter as the resonant behaviour tends to govern vibration 
serviceability of footbridges. 

A typical receiver of footbridge vibrations is a pedestrian who is quite often the source of vibrations 
as well. Many scales for rating the human perception of vibrations have been found in the published 
literature. However, few are applicable to footbridges because a receiver is not stationary but is 
actually moving across the vibrating structure. 

During footbridge vibration, especially under crowd load, it seems that some form of human-structure 
interaction occurs. The problem of influence of walking people on footbridge vibration properties, 
such as the natural frequency and damping is not well understood, let alone quantified. 

Finally, there is not a single national or international design guidance which covers all aspects of 
the problem comprehensively and some form of their combination with other published information 
is prudent when designing major footbridge structures. The overdue update of the current codes to 
reflect the recent research achievements is a great challenge for the next 5-10 years. 

10 



CHAPTER 2 Literature Review 11 

2.1 Introduction 

In recent decades there has been a trend towards improved mechanical characteristics of 

materials used in footbridge construction. It has enabled engineers to design lighter, more 

slender and more aesthetic structures. A considerable variety of modern footbridge structural 

forms can be seen, for example, in recent articles by Biliszczuk et al. (2002), Block & Schlaich 

(2002), Eyre (2002), Firth (2002), Iso & Masubuchi (2002), Mimram (2002), Schlaich (2002), 

Strasky (2002), Takenouchi & Ito (2002) and Wörner & Schlaich (2002). As a result of these 

construction trends, many footbridges have become more susceptible to vibrations when 

subjected to dynamic loads. 

This review is focused on human-induced dynamic loading of footbridges. This is a frequently 

occurring and often dominant load for footbridges as it stems from the very purpose of a foot- 

bridge - to convey pedestrians. It was noted very early that this type of dynamic excitation 

could cause excessive vibrations and in extreme cases even a collapse of the structure. It is 

known that in 1154 a timber footbridge collapsed under a crowd that wanted to greet the 

Archbishop William (Wolmuth & Surtees, 2003). However, details related to the exact crowd 
behaviour are not known. Probably the oldest case of footbridge failure due to dynamic 

human-induced load reported in detail was the one which occurred in 1831 in Broughton, 
UK while 60 soldiers were marching across a bridge. It was this event that prompted the 

placement of the famous notices on a considerable number of bridges with a warning to troops 
to break step when crossing (Tilly et al., 1984). One of the notices displayed on a railway 
suspension bridge at Niagara Falls, USA reads as follows (Taylor, 2002): 

A fine of $50 to $100 will be imposed for marching over this bridge in rank and 
file or to music, or by keeping regular step. Bodies of men or troops must be kept 

out of step when passing over this bridge. No musical band will be allowed to 

play while crossing except when seated in wagons or carriages. 

Although there have been many reported cases of lively footbridges in the past (Bachmann & 
Ammann, 1987; Bachmann, 1988; 1992a; 1992b; Fujino et al., 1993), this problem attracted 
considerably greater public and professional attention after the infamous swaying of the 

new and attractive Millennium Bridge in London during its opening day on 10 June 2000 
(Dallard et al., 2001a). The Millennium Bridge problem attracted more than 1000 press 
articles and over 150 broadcasts in the media around the world. In this and almost all 
other previously reported problems related to footbridge vibrations, the excessive vibrations 
were caused by a near resonance of one or more modes of vibration. The reason for this is 
that the range of footbridge natural (vertical or lateral) frequencies often coincides with the 
dominant frequencies of the human-induced load (Leonard, 1966). It is important to note 
that the problems have occurred on a range of different structural types, such as cable-stayed, 
suspension and girder bridges, as well as on footbridges made of different materials (e. g. 
timber, composite steel-concrete, steel, reinforced and prestressed concrete). The problem of 
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footbridge vibrations is becoming so alarming that a major international conference, entitled 

Footbridge 2002, was recently held in Paris and was almost completely devoted to this issue. 

Among many articles given at the conference, three presented the current state-of-the-art in 

footbridge vibration serviceability design, especially with regard to human-induced dynamic 

load (Bachmann, 2002; Schlaich, 2002; Willford, 2002). 

Nowadays, it is generally accepted that vibration produced by human-induced loads is usually 

a serviceability rather than a safety (i. e. strength-related) problem (Wood, 1948; Jones et 

al., 1981; Bachmann & Ammann, 1987; Pimentel et al., 1999). This is because human beings 

are very sensitive to vibration levels as low as 0.001 mm (Pretlove & Rainer, 1995). This high 

sensitivity usually triggers the vibration serviceability problem much before the vibration 
levels are even remotely sufficient to cause damage of the structure itself. 

The ISO 10137 guidelines (ISO, 1992) define the vibration source, path and receiver as three 

key, but separate, issues which require consideration when dealing with the vibration service- 

ability of any structure. Following the notion of such an analytical framework, this chapter 
reviews these three issues for footbridges separately. 

The literature review contains six parts. In the first three, the materials related to the 

vibration source, path and receiver are presented. The fourth part outlines the human- 

structure dynamic interaction phenomenon while in the fifth some important design proce- 
dures/recommendations are reviewed. In this chapter, the term `design procedure' or `design 

recommendation' stands for design checking methods offered by different authors which are 
not formally codified, while for codified procedures the terms `design guidelines/codes (of 

practice)' are used. Naturally, some of the design recommendations tend to be adopted in 

key design codes of practice which deal with footbridge vibration serviceability. These codes 

are also presented. The last part reviews typical remedial measures which can be undertaken 
to lessen the excessive vibrations of footbridges. 

2.2 Humans as Vibration Source for Footbridges 

During walking, a pedestrian produces a dynamic time varying force which has components 
in all three directions: vertical, horizontal-lateral and horizontal-longitudinal (Bachmann 
& Ammann, 1987). This single pedestrian walking force, which is due to accelerating and 
decelerating of the mass of their body, has been studied for many years. In particular, 
the vertical component of the force has been most investigated. It is regarded as the most 
important of the three forces because it has the highest magnitude. Other types of human- 
induced forces important for footbridges are due to running and some forms of deliberate 

vandal loading (jumping, bouncing or horizontal body swaying). Some of these types of 
human-induced forces have been studied not only for a single person, but also for small groups 
of people. However, large groups of pedestrians have seldom been formally investigated. 
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2.2.1 Early Works 

Probably the oldest report of noticeable vibrations in footbridges was made by Stevenson 

in 1821. In addition to this, the same author reported severe vibrations due to a marching 

regiment crossing over a bridge, indicating very early a need to consider human-induced 

dynamic loads in bridge design. It is interesting that 10 years after Stevenson's observations, 

as previously mentioned, a bridge collapse in Broughton was caused by marching soldiers. 

Tilden (1913) wrote an excellent article for that time primarily devoted to the crowd load. 

However, he also reported some experiments in which, although not having precise measure- 

ment devices, he tried to quantify the dynamic effect of a force generated by a single person 

due to different activities. 

2.2.2 Single Person Force Measurements 

One of the first measurements of pedestrian-induced forces was conducted by Harper et al. 
(1961; Harper, 1962) with the aim to investigate the friction and slipperiness of a floor surface. 
They measured horizontal and vertical force from a single footstep using a force plate (Cross, 

1999). The shape of the vertical force with two peaks and a trough of the kind shown in 

Figure 2.1a was recorded. This general shape of the force time history was confirmed by other 

researchers such as Galbraith & Barton (1970), Blanchard et al. (1977), Ohlsson (1982), Kerr 

(1998) and many others. 

A lot of research into walking forces has been done in the field of biomechanics, usually with 
the aim to investigate differences in the step patterns between patients who are healthy and 
those with abnormalities. In one of these investigations, Andriacchi et al. (1977) measured, 

similar to Harper et al. (1961), single step walking forces in all three directions by means of 

a force plate. Typical shapes are presented in Figure 2.1. They also reported that increasing 

walking velocity led to increasing step length and peak force magnitude. In other words, the 
dynamic effect of the forces was changing with the walking speed. This demonstrates the 

complex nature of human-induced dynamic forces and their dependence on many parameters. 
For example, tests with control of only one of the parameters, such as the pacing frequency, 

speed or step length, each produce different relationships between the walking speed and the 

pacing frequency (Bertram & Ruina, 2001). Also, with increasing walking speed, the vari- 
ability in vertical and lateral forces over successive steps increases, whereas the longitudinal 
force has the minimum variability at a normal walking speed (Masani et al., 2002). 

Galbraith & Barton (1970) measured a single step vertical force on an aluminium plate, rang- 
ing from slow walking to running. They reported that the shape of running force differed from 

the walking force in having only one peak (Figure 2.2). Subject weight and step frequency 

were identified as important parameters which increase led to higher peak amplitudes of the 
force. On the other hand, the force was not dependent on the type of footwear and walking 
surface. By combining individual foot forces, which are assumed to be identical, a continu- 
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ous walking or running force can be obtained artificially (Figure 2.2). During walking there 

are some short time periods when both feet are on the ground which gives an overlapping 

between the left and right leg in the walking time history (Figure 2.2 - right). On the other 

hand, during running there are periods when both feet are off the ground leading to zero 

force recorded (Figure 2.2 - left). 
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Figure 2.1: Typical shapes of walking force in a) vertical, b) lateral and c) longitudinal 
direction (after Andriacchi et al., 1977). 

A very comprehensive research into human forces relevant to footbridge dynamic excitation 

was conducted by Wheeler (1980; 1982) who systematised the work of other researchers 
related to different modes of human moving from slow walking to running (Figure 2.3). He 

also presented dependence of many walking parameters, such as step length, moving velocity, 
peak force and contact time (the time while one foot is in the contact with the ground) as 
a function of the pacing frequency (Figure 2.4). It was noted that all these parameters are 
different for different persons, but some general conclusions can be drawn. For example, that 

with increasing step frequency the peak amplitude, stride length and velocity increase while 
contact time decreases. 
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Figure 2.2: Typical pattern of running and walking forces (after Galbraith & Barton, 1970). 
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Figure 2.3: Typical vertical force patterns for different types of human activities (after 
Wheeler, 1982). 
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Figure 2.4: Dependence of stride length, velocity, peak force and contact time on different 

pacing rates (after Wheeler, 1982). 

Measurements of individual step forces were followed by the more advanced and informative 

measurements of continuous walking time histories comprising several steps. For this purpose 
Blanchard et al. (1977) used a gait machine described by Skorecki (1966), Rainer et al. (1988) 

used a floor strip, whereas Ebrahimpour et al. (1994; 1996) used a platform instrumented 

with several force plates. The measured time histories were obviously near periodic with the 
(average) period equal to reciprocal value of the (average) step frequency. Unfortunately, in all 
these works the attention was paid only to vertical forces. However, based on measurements 
by Andriacchi et al. (1977) and taking into account that the fundamental frequency of the 
lateral walking-induced force is two times lower than its counterpart relevant to the vertical 
and longitudinal forces (Bachmann & Amman, 1987), general shapes for continuous forces in 

all three directions can be constructed if their perfect periodicity is assumed (Figure 2.5). 

A reliable statistical description of normal walking frequencies was first given by Matsumoto 

et al. (1972; 1978) who investigated a sample of 505 persons. They concluded that the 
frequencies followed a normal distribution with a mean pacing rate of 2.0 Hz and standard 
deviation of 0.173 Hz (Figure 2.6). Kerr & Bishop (2001) obtained a mean frequency of 
1.9 Hz but from an investigation of only 40 subjects. It is also interesting that Leonard 
in 1966 concluded that the normal walking frequency range is 1.7-2.3 Hz, which is in broad 
agreement with what Matsumoto et al. (1978) and successive researchers have found. Similar 
comprehensive statistically based investigations, such as the one given by Matsumoto et al. 
(1978) for walking, do not exist for other types of human-induced forces. However, there are 
some proposals as to the typical frequency ranges for different human activities (running, 
jumping, bouncing, etc. ). For example, Bachmann et al. (1995b) defined typical frequency 
ranges of 1.6-2.4 Hz for walking, 2.0-3.5 Hz for running, 1.8-3.4 Hz for jumping, 1.5-3.0 Hz for 
bouncing and 0.4-0.7 Hz for horizontal body swaying while stationary. 
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Taking an alternative approach to the problem, Ohlsson (1982) was interested more in the 

energy and frequency content than in the exact time history of the vertical force. He concluded 
that a single step force had most of its energy in the frequency range from 0 to 6 Hz. His 

successor Eriksson (1994) investigated this issue more closely. He measured a continuous 

walking force indirectly, concluded that it was a narrow-band random process and, quite 

conveniently, presented it in terms of its auto (or power) spectral density (Figure 2.7). 
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Figure 2.7: Auto spectral density of a walking force (after Eriksson, 1994). 

With regard to all this, it is prudent to stress that practically all mentioned measurements 
of the walking forces were conducted on various forms of rigid surface, such as a force plate 
on stiff ground, gait machine or high-frequency structure (for indirect measurements of the 
kind performed by Rainer et al. in 1988 and Eriksson in 1994). This leaves the possibility 
that the reported forces could be different from the ones that actually occur on low frequency 

footbridge structures that move perceptibly. 

Regarding vandal loading, some researchers have presented jumping forces from individuals 
(Ebrahimpour, 1987; Ellis & Ji, 1994; Bachmann et al., 1995b, Yao et al., 2002; 2003). 
During jumping, the peak forces have been found to be several times higher then the jumper's 

weight. Moreover, very recently gathered experimental evidence has shown that horizontal 
forces due to vertical jumping also exist (Pavic et al., 2002c), where the front-to-back force was 
considerably larger than its side-to-side counterpart. Also, time histories of the bouncing force 

were recently presented by Yao et al. (2002) who, quite differently from other researchers, 
measured these forces on a flexible and perceptibly moving instrumented platform. 

It should be noted that the majority of past investigations have been into forces due to 
activities of a single person. However, some limited measurements of forces produced by 

groups of people do exist and will be mentioned later. 
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2.2.3 Force Modelling 

To successfully apply the measured dynamic forces in design it is necessary to model them 

analytically. Two types of such models can be found in the literature: time domain and 

frequency domain models. Although the former is much more common than the latter, in 

both cases mathematical modelling of human-induced dynamic forces is a complicated task. 

This is because: 

1. there are many different types of human-induced forces and some of them change not 

only in time but also in space (e. g. walking and running); 

2. forces are dependent on many parameters as demonstrated in the preceding text; 

3. dynamic force generated by a single person is essentially a narrow-band random process 

which is not well understood and therefore difficult to mathematically model; 

4. the influence of the number of persons as well as their degree of synchronisation (cor- 

relation) is difficult to generalise; and 

5. there are strong indications that the forces are different in cases of perceptibly and not 

so perceptibly moving footbridges because of different behaviour of people in these two 

situations. 

However, force models do exist and are used in contemporary design. They are based on 

some more or less justifiable assumptions which will be presented. 

2.2.3.1 Time Domain Force Models 

Generally, two types of time domain models have been found in the literature: deterministic 

and probabilistic. The first type intends to establish one general force model for each type 

of human activity, while the other takes into account the fact that some parameters which 
influence human force, such as the previously mentioned activity frequency, person's weight 
and so on, are random variables whose statistical nature should be considered in terms of 
their probability distribution functions. 

In any case, time-domain models for walking and running are based on an assumption that 
both human feet produce exactly the same force and that the force is periodic. The assump- 
tion of perfect repetition is also frequently used in modelling of vandal loading generated by 

a single person and small groups. 

Deterministic Force Models 

It is well-known that each periodic force FF(t) with a period T can be represented by a Fourier 

series (Bachmann et al., 1995b): 
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n 
Fi(t) =G+ Gay sin(27ri fpt - 0z), (2.1) 

i=1 

where G is the person's weight [N], ai the Fourier's coefficient of the ith harmonic i. e. dynamic 

loading factor (DLF), fp the activity rate [Hz], Oz the phase shift of the ith harmonic, i the 

order number of the harmonic and n the total number of contributing harmonics. 

Based on Fourier decomposition, many researchers have tried to quantify DLFs which are 
the basis for this most common model of perfectly periodic human-induced force. Blanchard 

et al. (1977) proposed a simple walking force model based on resonance due only to the 
first harmonic with the DLF equal to 0.257 and pedestrian weight G= 700 N. This was 
given for footbridges with a vertical fundamental frequency of up to 4 Hz. For fundamental 
frequencies between 4 and 5 Hz some reduction factors were applied to account for the lower 

amplitude of the second harmonic because this frequency range could not be excited by the 
first harmonic of walking. On the other hand, Bachmann & Ammann (1987) reported the first 
five harmonics for vertical walking force and also harmonics for the lateral and longitudinal 
direction. They reported that the lst and 3rd harmonics of the lateral and the 1st and 2nd 
harmonics of the longitudinal force are dominant (Figure 2.8). It is interesting that in the 
latter case some sub-harmonics also appeared. Bachmann & Ammann (1987) explained it as 
a consequence of "more pronounced footfall on one side". The same authors suggested DLF 

values for the first harmonic of the vertical force between 0.4 (at frequency 2.0 Hz) and 0.5 
(at 2.4 Hz), with linear interpolation for other frequencies inside the 2.0-2.4 Hz range. For the 
second and third harmonic they suggested identical DLFs equal to 0.1 for step frequencies 

near to 2 Hz. 
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In 1982, Kajikawa formulated "correction coefficients" (i. e. DLFs) for walking and running 

as a function of step frequency (Yoneda, 2002). This function, together with person's velocity 
is given in Figure 2.9. A significant boost to the field was provided in the late 1980s by an 

excellent work of Rainer et al. (1988). They measured continuous single person force not 

only from walking but also from running and jumping. It was confirmed that DLFs strongly 
depended on the frequency of the activity. Values of the first four DLFs were presented 
(Figure 2.10). The only shortcoming of this work was that measurements had been done 

with only three human test subjects and therefore lacked statistical reliability. Much more 

extensive work, but only for the walking force, was presented by Kerr (1998) in his PhD 

thesis. His 40 subjects produced about 1,000 force records covering walking rates ranging 
from unnaturally slow 1 Hz to equally unnaturally fast 3 Hz. Kerr reported large scatter in 

the DLF values. However, the first harmonic had a clear trend to increase with increasing 

pace frequency and these results were similar to those reported by Rainer et al. (1988). 
However, DLFs of the higher harmonics in Kerr's work were very scattered, so they have 
been characterised statistically by mean values and coefficient of variation (Figure 2.11). 
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Young (2001) presented the work of Kerr and others (Figure 2.12) and outlined basic prin- 
ciples which are used by Arup Consulting Engineers when modelling walking forces and the 

corresponding structural responses. He proposed DLFs for the first four harmonics as a func- 
tion of the walking frequency assumed to be in the range from 1.0 to MHz. The design 

values of DLFs presented as 

al = 0.41(f - 0.95) < 0.56 if f=1.0 - 2.8 Hz 

a2 = 0.069 + 0-0056f if f=2.0 - 5.6 Hz 

a3 = 0.033 + 0-0064f if f=3.0 - 8.4 Hz (2.2) 

a4 = 0.013 + 0.0065f if f=4.0 - 11.2 Hz, 

where f is the frequency of an appropriate harmonic, had 25% chance of being exceeded. This 
is the first attempt known to the author of this review to take into account the stochastic 
nature of human walking in day-to-day design. Statistical mean values of DLFs defined by 
Young (2001) are given in Table 2.1. 
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Figure 2.11: DLFs of walking force for the first four harmonics (after Kerr, 1998). 
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It should be stressed again that in the described investigations, the DLFs were obtained 
by direct or indirect force measurements on rigid surfaces. However, Pimentel (1997) found 

that, for two full-scale footbridges investigated both analytically and experimentally, DLFs 
for resonant vertical harmonics (the 1t and 2nd harmonics) were considerably lower than 
those reported in literature. It seemed that the human-induced force differed from that 

measured on a rigid surface probably due to an interaction which exists between humans and 
low-frequency structures like footbridges. Yao et al. (2002; 2003) found this to be the case 
when jumping on a perceptibly moving structure, but similar direct measurements of the 

walking force are yet to be made. 

Table 2.1: DLFs for single person force models after different authors. V, L and LO stand 
for vertical, lateral and longitudinal directions, respectively. 

Author(s) DLFs for considered Comment Activity and 
harmonics its direction 

Blanchard et al. al = 0.257 DLF is lessen for freq. Walking -V 
(1977) from 4 to 5 Hz 
Bachmann & al = 0.4 - 0.5 Between 2.0 and 2.4 Hz Walking -V 
Ammann (1987) as = as = 0.1 At approximately 2.0 Hz 
Schulze (after al = 0.37, az = 0.10, a3 = 0.12, At 2.0Hz Walking -V 
Bachmann & a4 = 0.04, a5 = 0.08 
Ammann, 1987) al = 0.039, a2 = 0.01, a3 = 0.043, At 2.0 Hz Walking -L 

a4= 0.012, a5=0.015 
a1/2 = 0.037, al = 0.204, a3/2 = At 2.0 Hz Walking - LO 
0.026, a2 = 0.083, a5/2 = 0.024 

Rainer et al. al, a2, a3, a4 DLFs are frequency Walking, run, 
(1988) dependent (Fig. 2.10) jumping -V 
Bachmann et al. al = 0.4/0.5, az = a3 = 0.1/- At 2.0/2.4 Hz Walking -V 
(1995b) al = as = 0.1 At 2.0 Hz Walking -L 

al/2 = 0.1, al = 0.2, aZ = 0.1 At 2.0 Hz Walking - LO 
al = 1.6, a2 = 0.7, a3 = 0.2 At 2.0-3.0 Hz Running -V 

Kerr (1998) al, a2 = 0.07, a3 .;. 0.06 al is frequency Walking -V 
dependent (Fig. 2.11) 

Young (2001) al = 0.37(f - 0.95) < 0.5 Mean values for DLFs Walking -V 
Q2 = 0.054 + 0.0044f 
a3 = 0.026 + 0.0050f 
a4=0.010+0.0051f 

Bachmann et al. al = 1.8/1.7, a2 = 1.3/1.1, Normal jump at 2.0/3.0 Hz Jumping -V 
(1995b) a3 = 0.7/0.5 

al = 1.9/1.8, a2 = 1.6/1.3, High jump at 2.0/3.0 Hz Jumping -V 
as = 1.1/0.8 

al = 0.17/0.38, as = 0.10/0.12, At 1.6/2.4 Hz Bouncing -V 
a3 = 0.04/0.02 
al = 0.5 At 0.6 Hz Swaying -L 

Yao et al. (2002) al = 0.7, a2 = 0.25 Free bouncing on a Bouncing -V 
flexible platform with 
natural freq. of 2.0 Hz 
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A jumping force can be modelled in a similar way using the Fourier series. The shape of the 

time history of this force is qualitatively similar to that one from running (Figure 2.3) with 
the difference that jumping force is not moving across the structure. During one jumping 

cycle, a period of time, also known as the contact time, is spent in contact with the jumping 

surface and the rest of the jumping cycle is when the jumper is flying and not touching 
the surface. Bachmann & Ammann (1987) described a half-sine jumping force model and 
presented dependence of the first four harmonics on the ratio of the contact time to the 
duration of the jumping cycle, which is known as the contact ratio. Earlier, Wheeler (1980; 
1982) suggested modelling all walking, running and jumping forces using the "half-sine" 

model defined by a set of parameters which vary for different activities. 

Bachmann et al. (1995b) divided jumping into two categories: normal and high jump. For 
the latter case they reported the jumping DLFs for the first three harmonics as high as 1.9, 
1.6 and 1.1, respectively at the jumping frequency of 2 Hz. Compared with the walking 
force, it can be noticed that more harmonics are needed to accurately describe the jumping 
force. The same authors reported DLF values for vertical bouncing with hand clapping (0.38 

and 0.12 for the first two harmonics corresponding to the 2.4 Hz rate of the activity) and for 
horizontal in-place body swaying (0.5 for the first harmonic). However, Yao et al. (2002) 

measured the first two DLFs of 0.7 and 0.25 during bouncing. This was done in a test when 
the test subject was asked to bounce freely and in a way so as to produce maximum physically 
possible response of a flexible and perceptibly moving structure having fundamental frequency 
of 2 Hz. 

The overview of DLFs for single person force reported by different authors is given in Ta- 
ble 2.1. 

Some work on jumping forces from groups of people, usually at controlled frequencies, has 
also been carried out. For example, Rainer et al. (1988) reported that individuals jumping 
in groups of two, four and eight people produced on average lower DLFs than when jumping 
alone. This holds particularly well for higher harmonics, but not for the fundamental har- 
monic which DLF exhibits values approximately the same as when a single person is jumping. 
Pernica (1990) added that the average vertical DLFs per person tend to decrease with increas- 
ing number of people (in all walking, running and jumping activities). This clearly suggests 
that larger groups have reduced synchronisation between jumping people. 
Investigations, specifically related to low frequency footbridges, on forces due to activities 
performed by groups of people are very limited. Because of this, it is interesting to mention 
some work related to floors. For example, Allen (1990) indirectly measured the force from 
10-25 people jumping on a floor and proposed individual averaged DLFs of 1.5,0.6 and 0.1 
for the first three harmonics, respectively. He reported that synchronisation above 2.75 Hz 
was very difficult. Willford (2001) confirmed that several people jumping cannot achieve 
perfect synchronisation. Using the half-sine model and Ebrahimpour's (1987) proposal for 
statistical distribution of time delays between jumping people, Willford used a Monte Carlo 
approach and simulated the group effects. He independently confirmed Allen's proposal for 
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reduced, in comparison with a single person, group DLFs. In another investigation related 

to walking across a floor, a large group of 32 people was involved in experiments related to 

uncontrolled and controlled walking on a high frequency floor (Ellis, 2000; 2003). In both 

cases the response of the high-frequency floor was similar to the one due to a single person 

walking in such a way that one of the higher harmonics matched a natural frequency of the 

floor. However, it should not be forgotten that walking patterns in floors and footbridges 

are different, particularly because bridges are usually much narrower and longer structures 
having only one dominant dimension (length). 

Probabilistic Force Models 

A more detailed probabilistic approach to the walking force model is based on the fact that a 

person will never produce exactly the same force-time history during repeated experiments. 
In the case of two persons it is even more so (Saul et al., 1985). For a single person force, 

which is still assumed to be periodic, randomness can be taken into account by probability 
distributions of person's weight, pacing rate and so on. For several people, the probability 
distribution of time delay between people who perform a particular activity can be added. 
The main idea of this philosophy is to get a reliable estimate of the force from a group of 

people by combining forces from individuals. Naturally, for a reliable statistical description 

of human forces, a large database of measurements with a single person should be provided. 
Some work on this was done by Than & Saul (1985) who measured forces from many different 

activities mainly typical for grandstands, among which was jumping. 

In his PhD thesis, Ebrahimpour (1987) continued the work of Than and Saul and conducted 

measurements of different types of forces using a specially constructed force platform. Among 

many types of forces typical for activities on grandstand structures, a single jump and periodic 
jumping with controlled frequencies at 2,3 and 4 Hz were investigated. For a statistical 
description of continuous jumping force time histories from individuals, Ebrahimpour chose 
the first three harmonics of the Fourier series and the force repeating period. Then, by 

comparing the measured force from two people simultaneously with computer simulations 
obtained by a combination of forces from individuals, he identified the time delay distribution 
between two people who were trying to perform synchronised jumping. The idea was to use 
this time delay distribution together with statistically described individual time histories to 

enable the calculation of the resulting force from any number of people. The procedure 
was experimentally verified for only four people. Further Monte Carlo computer simulations 
revealed that the force peak amplitude per person decreased with increasing the number of 
people, which was in line with the already mentioned findings of Pernica (1990) related to 
DLFs. However, this model was hardly applicable in practice because of the fact that peak 
force amplitude is not enough to describe that force. A very good digested version of whole 
procedure is given by Ebrahimpour & Sack (1989). 

In a subsequent experimental work Ebrahimpour et al. (1989) found that the previously 
used computer program gave good estimates of the peak jumping forces for groups of up to 
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40 people. Three years later, Ebrahimpour & Sack (1992) tried to improve Ebrahimpour's 

previous design suggestion by proposing design curves for the first three harmonics of jumping 

load as a function of the group size, which was a much more practical proposal. 

An identical procedure was applied on walking loads by Ebrahimpour et al. (1996). A vertical 
dynamic load by a group of pedestrians was investigated. As a result, a design proposal for 

only the fundamental DLF was given as a function of a number of people (Figure 2.13). 
The reason was probably the fact that the spectrum of measured uncorrelated force for four 

people revealed that only the first harmonic is important. It is even more so in case of a 
larger number of people. However, this design proposal, although it includes up to 100 people, 
does not take into account the fact that people in such large crowds sometimes adjust their 

step according to the movement of others. The authors stressed that this effect, which is 
dependent on the crowd density, should be added but did not explain how. The DLFs given 
in Figure 2.13 are lower in comparison with the results of Pernica (1990). 
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Figure 2.13: DLF for the first harmonic of the walking force as a function of number of people 
and walking frequency (after Ebrahimpour et al., 1996). 

2.2.3.2 Frequency Domain Force Models 

In his PhD thesis, Ohlsson (1982) introduced at that time a rather new concept for mathemat- 
ical modelling of the human-induced force. Namely, as previously mentioned in Section 2.2.2, 
he measured a single step force and then produced continuous walking force assuming ar- 
tificial force periodicity. Then, he determined the auto spectral density (ASD) of the force 
treating it as a transient signal where identical steps were repeated perfectly but for a lim- 
ited number of times. Ohlsson studied only the high frequency content of the ASD between 
6 and 50 Hz because he was investigating behaviour of high-frequency building floors made 
of timber. This approach was further developed over the next 10-15 years and extended 
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to low-frequency floors. As a result, in his PhD thesis Eriksson (1994), who was Ohlsson's 

student, focused on low-frequency floors and made use of the ASD frequency range below 

6 Hz. Figure 2.7 presents this part of the spectrum of a measured continuous force lasting 

about 100 s. Eriksson explained that the fact that each peak has some width in this spectrum 

means that human walking cannot be perfectly periodic and therefore cannot be accurately 

described by DLFs. This whole procedure is based on the assumption that human-induced 

force can be treated as a stationary random process. This model, and several others based 

on the frequency-domain approach, will be explained in more detail in Section 2.6, because 

they tend to be `packaged' with the structural modelling and/or assessment. 

2.2.3.3 Vandal Loading 

This type of load was not researched very much in the past. Although recognised as an issue 

in the literature (Stevenson, 1821; Blanchard et al., 1977; Wheeler, 1980; 1982; Tilly et al., 

1984; Eyre & Cullington, 1985; Bachmann & Ammann, 1987; Grundmann & Schneider, 1991; 

Grundmann et al., 1993), vandal loading is not precisely defined in terms of which type of 
human activity, besides jumping, could be considered as it. Probably, deliberate horizontal 

body swaying can be added (Bachmann & Ammann, 1987) as well as deliberate bouncing. 

The earliest record of vandal loading and its consequences dates from 1821 when Stevenson 

reported very strong vibrations on a bridge for "foot passengers and led horses" when three 

or four persons were "amused" by noticeable vibration on the bridge and tried to increase it 

deliberately. The result was that one of the supporting bridge chains broke. Although we do 

not know exactly how this action was performed, it demonstrated very early the potential 

and consequences of deliberate synchronised human action. Also, Tilden (1913) reported that 

"jouncing"(i. e. bouncing) has a "high kinetic intensity". He did not explain more precisely 
this term, but it could be deduced from his paper that it was quite possible that this type of 
load was capable of producing a high level of response. 

Vandal loading has been much more debated in terms of whether it is relevant for a particular 
type of a structure than in terms of how it could be modelled. For example Blanchard et al. 
(1977) only confirmed that the data about this load type are very scarce, while Wheeler (1982) 

rather boldly concluded that synchronisation of people had not been a real possibility. This 

was based on a measurement of the response to jumping in unison of two and three people 
which proved to be similar to the response in a single person case. As previously mentioned, 
Rainer et al. (1988) reported a similar case when investigating correlated jumping of two, four 

and eight persons. However, Bachmann (2002) stated that synchronisation of a small number 

of people seems possible at least when considering the first loading harmonic. In that case, 
he proposed to simply multiply single person influence by the number of persons involved, 

meaning perfect synchronisation. Grundmann et al. (1993) suggested to link the dynamic 

amplitude due to rhythmical knee-banding with the displacement of the centre of gravity 
for a single person. However, the dependence between this amplitude and the frequency of 
this excitation was not stated. Also, the synchronisation factor for the case of several people 
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was not suggested. Finally, Pimentel & Fernandes (2002) claimed that there were no known 

cases of footbridge damage from vandals, probably not being aware of the case mentioned by 

Stevenson in 1821. 

In summary, it may be said that vandal load does not occur often in practice but it certainly 

deserves greater attention. This is especially so nowadays when footbridges are very light 

structures which can be excited relatively easily. Also, it should be remembered (Leonard, 

1966) that this type of load should probably be related to and treated as a social problem. 

The BS 5400 bridge design code (BSI, 1978) only requires robust construction of bearings and 

some reserve in reinforcement for prestressed bridges as measures against vandal loading. BS 

5400 does not contain any more explicit design procedure related to vandal loading and/or 

applicable for bridges of different materials. 

2.3 Footbridge Structures as Vibration Path 

The vibration path which transmits vibrations from the source to the receiver is the footbridge 

structure itself. Knowing mass, damping and stiffness properties of a footbridge, together with 

the previously defined force model, is necessary to calculate its dynamic response according to 

the well-known equation of motion of a multiple-degree-of-freedom (MDOF) system (Clough 

& Penzien, 1993): 

Mx(t) + C*c(t) + Kx(t) = f(t) (2.3) 

where M, C and K are the mass, damping and stiffness matrices respectively, each of order 

nxn where n is the number of degrees of freedom. In addition, x(t), k(t), x(t) and f(t) are 

nx1 vectors of acceleration, velocity, displacement and external force. Mass and stiffness 

matrices depend on the geometry of the footbridge and material properties. They are usually 
determined by the finite element (FE) concept. This implies a discretisation of the real 

structure having an infinite number of DOFs into an ensemble of finite elements which are 
interconnected at a limited number of points (nodes) and which possess a finite number of 
DOFs. These elements and their corresponding DOFs form the basis for further calculations. 
Namely, for each element type, mass and stiffness element matrices are defined and by their 

combination the mass and stiffness matrices for whole structure can be determined. In 

practice, however, the damping matrix cannot be evaluated in the same way. In footbridge 

vibrations, it is usually expressed via modal damping ratios ( which are experimentally 
determined. 

Assuming that the system is linear and proportionally damped, which is a fair assumption for 

most footbridges, the given system of n coupled equations with n unknown variables can be 

uncoupled into the n equations each featuring only one variable, that is, to n single-degree- 
of-freedom (SDOF) systems which standard form is (Clough & Penzien, 1993): 
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ý'nýtý + 2(nwný'n(t) + wnYn(t) = 
PMt) 

. 
(2.4) 

Here, k 
,, (t), Yn(t) and Y11(t) are modal (or generalised) acceleration, velocity and displace- 

ment, (n and wn are the damping ratio and natural circular (or angular) frequency for the 

nth mode of vibration, while Pn(t) and M,, are the modal force and mass for the same mode. 

Then, the total displacement vector x(t) can be presented as a linear combination of mode 

shape vectors Pn, where coefficients of that combination vary with time and are generalised 

displacements Yi(t), i=1,2,. .., n: 

x(t) _ 43'1Y1(t) + I2Y2(t) +. ""+ 4ýnYn(t)" (2.5) 

Generally, the most popular method for establishing and solving Equation 2.3 is the finite 

element (FE) method (Clough & Penzien, 1993). However, when one mode dominates, which 

often happens in footbridges, the response can be estimated sufficiently accurately using an 

SDOF modal equation (Equation 2.4) for the appropriate mode. This is very often imple- 

mented in practice when checking footbridge vibration serviceability (see design procedures 

outlined in Section 2.6). 

Therefore, for a reliable estimate of the structural response, it is necessary to determine 

dynamic properties of the footbridge which feature in Equations 2.3 and 2.4 as accurately as 

possible. In the next two sections issues related to the accurate determination of the mass, 

stiffness and damping in footbridges will be considered. The most convenient way to present 
these properties is in their modal form. 

2.3.1 Mass and Stiffness 

Knowing the characteristics of structural materials and geometry, an FE model of a bridge 

can be developed. After an eigenvalue extraction, performed using the established mass 

and stiffness properties, footbridge natural frequencies and mode shapes, can be determined. 

However, sometimes the obtained results can contain large errors due to uncertainties in 

the FE modelling process. For example, Deger et al. (1996) reported an error in the first 

natural frequency of 37% when compared with the test of a full-scale structure mainly due 

to inadequate modelling of footbridge boundary conditions. In circumstances when both 

analytical and experimental results exist, the FE model can be updated by their comparison 

assuming that the experimental results are correct. This approach helps future modelling 

of bridges with similar layouts. However, it should be noted that an FE model updating 

cannot be successful without good quality of experimental data (Cantieni, 1996; Pavic et al., 
1998). The most uncertain and sensitive parameters considered in the updating of footbridges 

are boundary conditions, material properties and modelling of certain aspects of the key 

structural and non-structural elements (such as decks, cables, handrails) which have the 

potential to influence significantly the footbridge dynamic behaviour. However, it should 
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also be noticed that changes in the temperature can cause changes in dynamic properties. 
For example, increasing in temperature from 21.4°C to 42.1°C was accompanied by a decrease 

of the fundamental frequency of a pedestrian walkway of 7.1% (Ventura et al., 2002). 

General procedures for FE model updating are given in the now classical textbook by Friswell 

& Mottershead (1995). However, this technology, widely used in the mechanical and aerospace 

engineering disciplines, requires special considerations when applied to civil structural engi- 

neering problems (Pavic et al., 1998; Brownjohn & Xia, 2000). Generally, FE model updating 

can be done manually, by trial and error, or automatically by using software developed for 

that purpose, where the latter is much faster than the former (Pavic et al., 1998; Hartley et 

al., 1999). However, it is recommended to conduct manual updating first to develop an FE 

model which features meaningful starting parameters for the automatic procedure where the 

choice of these parameters is very important (Pavic et al., 1998; Brownjohn & Xia, 2000). 
Usually, the most uncertain parameters are the stiffness of some nonstructural elements, dy- 

namic modulus of elasticity for concrete, stiffness of cracked concrete and stiffness of the 

supports. They should be parametrically investigated until a good agreement with experi- 
mental data, usually with frequencies only or frequencies and mode shapes, is obtained. The 
level of matching is typically checked by calculating the Modal Assurance Criterion (MAC) 

and/or the Coordinate Modal Assurance Criterion (COMAC) which represent degree of cor- 
relation between the analytical and experimental modes of vibration (Friswell & Mottershead, 
1995). Ideally, due to orthogonality of mode shapes, MAC should be equal to 1 when the 
same modes are compared, and 0 in other cases (Ewins, 2000). However, MAC values, for the 
same modes, as low as 0.7 are acceptable in civil engineering applications due to imperfect 

measurements typically made in noisy environments. Similar considerations apply to CO- 
MAC values which should also be between 1 and 0. Prior to updating, it is very important 
to conduct a sensitivity analysis to determine which parameters have the biggest influence 

on the target values of natural frequencies, MAC and COMAC (Brownjohn & Xia, 2000). 
Some practical observations as to the modelling of footbridges are given in the remainder of 
this sub-section. 

For the cases when there are significant axial forces in structural elements, second order ef- 
fects should be taken into account. However, this does not apply to internally prestressed 
concrete elements were second order effects do not develop. When required, the geometric 
stiffness should be considered together with the elastic stiffness (Przemieniecki, 1968), hav- 
ing in mind that compression force reduces and tension force increases the stiffness. This 
geometric nonlinearity effect is present in cable stayed bridges. It can change the overall 
stiffness of the structure and, consequently, influence mode shapes and frequencies. Large 
axial forces are typical not only for cables but also for girders and towers in these struc- 
tures (Gardner-Morse, 1990). In an investigation of a cable stayed footbridge, the geometric 
stiffness was taken into account only for cables, while it was neglected for other bridge ele- 
ments because their axial compression forces were small compared with the buckling forces 
(Gardner-Morse, 1990; Gardner-Morse & Huston, 1993). The cable behaviour was very dif- 
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ficult to model having in mind big differences (up to 40%) in the measured and calculated 
cable forces and the sensitivity of results to the cable modulus of elasticity. Similarly, in the 
FE modelling of a suspension footbridge, Brownjohn et al. (1994) modelled the whole bridge 

using 3D beam elements adding the geometric nonlinearity effect for tower pylons, cables and 
hangers. However, Pimentel (1997) found that, for a fibre reinforced cable-stayed footbridge 

investigated, taking into account the geometric stiffness induced only small differences in 

the obtained natural frequencies in comparison with the model where nonlinear effects were 

neglected. Khalifa et al. (1996) modelled cables as truss elements and took into account 
geometric nonlinearities but their influence on the dynamic performance of a fibre reinforced 
plastic cable-stayed footbridge was not given. 

For a cable-stayed footbridge, modelling the footbridge timber deck as a plate element gave 
much better agreement between experimentally and analytically obtained modal properties 
(Gardner-Morse, 1990; Gardner-Morse & Huston, 1993) than treating the deck only as a 
mass as in some previous case studies for the same bridge (Lintermann, 1986; Huston et al., 
1988). Moreover, Brownjohn et al. (1994) found that prestressed, precast, concrete panels 
of which the deck of a suspension footbridge was made, had potential to influence strongly 
the horizontal lateral frequencies and should be modelled in an FE model as plate elements. 
However, in suspended bridges lateral and torsional deck stiffnesses have little influence on 
vertical modes, which means that the structure can be modelled as a 2D model with the deck 

presented as a beam element when modelling vertical oscillations (Brownjohn, 1997). 

Brownjohn et al. (1994) reported differences of up to 10% in the footbridge natural fre- 

quencies obtained analytically and experimentally. The authors quoted uncertainties in the 
dynamic Young's modulus for concrete and the exclusion of the stiffness of railings and as- 
phalt surfacing from the FE model as likely reasons for this discrepancy. To illustrate the 
variability of the dynamic modulus for concrete it should be mentioned that the values of 
30.8 and 42.5 GPa were obtained by Pimentel (1997) in the updating process of two tested 
footbridges. The same author reported nearly 300 times greater horizontal stiffness of the 
elastomeric bearings for a composite bridge than the manufacturer's design static value. He 

also found that handrails in a stressed ribbon footbridge increased the fundamental frequency 
by about 20%. Obata et al. (1999) found that 50% of handrail stiffness was effective in in- 
vestigated footbridges. 

In conclusion, in all examples mentioned, the footbridge FE models were either developed 
using only beam elements or the deck was additionally modelled using plate elements. The FE 
model can be useful in detecting closely spaced modes of vibration or modes with combined 
lateral and torsional motion. The latter is typical when the mass and the shear centre 
of the footbridge section do not coincide (Gardner-Morse, 1990; Gardner-Morse & Huston, 
1993). Finally, there is sufficient evidence that footbridge handrails can increase, sometimes 
significantly, frequencies of vertical modes of vibration. 
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2.3.2 Damping 

Damping represents energy dissipation in a vibrating structure (Tilly, 1977). Each structure 
inherently possesses some capability to dissipate energy. That capability is very beneficial 
because it reduces structural response to a dynamic excitation near resonance. The near- 

resonant condition is the governing condition when considering footbridge vibration service- 
ability due to human-induced load. Therefore, it is very important to model damping as 
accurately as possible. 

In general, there are several dissipation mechanisms within a structure, the individual con- 
tributions of which are extremely difficult to assess. They can be divided into two groups: 
`dissipation' mechanisms which dissipate energy within the boundaries of the structure and 
`dispersion' or `radiation' mechanisms which propagate energy away from the structure. The 

overall damping in the structure which comprises both mechanisms is often called `effective 
damping' and it is this damping which is actually measured as modal damping in practice 
(Pavic, 1999). 

However, it is very hard to model mathematically these damping mechanisms. There are 
several damping models (Wyatt, 1977; Weber, 2002) but the most often used is the viscous 
one. Although this model does not describe the real behaviour of the structure, it is very 
convenient because of its simplicity. The usual way to express viscous damping is in its 
modal form i. e. by using the damping ratios defined for each mode separately. In the 
case of footbridges, this is very convenient both for the FE modelling and the experimental 
measurements. 

As previously mentioned, damping is very important if the structure vibrates at or near a 
resonant frequency, when the stiffness and inertial forces tend to cancel each other (ISO, 
1992). However, it is hard to predict it. To get better idea about damping, it is necessary to 
conduct testing. In testing it is very important to make the right choice of excitation which 
will generate resonant excitation for a mode investigated (Tilly, 1977). Therefore, frequency 
content for the excitation force should be chosen carefully. 

Modern construction technologies have brought a reduction of damping in structures because 
of a significant decrease in the amount of friction which was present in old structures. For 
example, Wyatt (1977) stated that until 1960 there had been a widespread belief that log- 
arithmic decrement in bridges could not be below 0.05 (i. e. viscous damping ratio 0.8%). 
In the mid-1940s the minimum value had even been 0.1 (1.6%), whereas nowadays, modern 
steel bridges regularly exhibit damping of 0.5% or less. 

In the following sections, the damping measurements using some rather old and nowadays 
obsolete procedures are presented. Then, some relatively new procedures gaining popularity 
in footbridge testing are outlined. Although in all tests natural frequencies and mode shapes 
were determined too, emphasis is given on damping measurements because of their relative 
uncertainty. It suffices to mention here that natural frequencies are usually determined 
from spectral plots of response frequency vs. amplitude while mode shapes, due to their 
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spatial nature, are determined by response measurements made at different locations on the 

structure. 

2.3.2.1 Research Work in the 1970s 

In one of the earliest attempts to measure damping, people who were jumping in unison with 

a frequency near the structural resonant frequency were used to excite the bridge on which 
they were jumping (Selberg, 1950). In another attempt in 1966, an impulsive force in the 

centre of the span of a road bridge was applied by means of cables attached to the bridge 

and pulled from a boat (Borges et al., 1968). Although this attempt was not successful, 

which is to be expected on a bridge with a central span as long as 1013 m, it is interesting to 

mention it considering the development of vibration measurement techniques. A short review 

of dynamic testing on full-scale civil engineering structures in general is given by Hudson 
(1977) and Severn et al. (1988). Rainer (1979) wrote an excellent paper full of practical 
advice related to vibration measurements on civil engineering structures. It deals with the 

planning of tests, instrumentation, way of collecting data and data analysis and interpretation 

of results. In absence of more data related to footbridges, some findings obtained for road 
bridges are presented in this sub-section too. 

In the 1970s, many investigations of bridge damping were conducted by the UK Transport and 
Road Research Laboratory. In those experiments, resonance tests were usually conducted. 
This was done using a single electro-hydraulic exciter, or a pedestrian whose pacing was 
adjusted to match resonance by means of a metronome (Leonard, 1974). However, tests 
with the electro-hydraulic exciter were regarded as more reliable to estimate experimentally 
not only footbridge damping, but also its natural frequencies and mode shapes because of 
the ability to control the excitation (and consequently response) frequencies. These were in 

essence stepped-sine tests in which, when a steady-state resonant response was established, 
the harmonic excitation was cut and damping was obtained from the free decay trace. Usually, 

acceleration response was measured because it was established as the best parameter for 
describing people's reaction to vibrations and, also, it was easy to measure it using widely 
available accelerometers. Test procedures used at that time not only for footbridges, but also 
for highway bridges are described in detail by Leonard (1974). 

Leonard & Eyre (1975) investigated eight bridges with steel box girder and concrete deck, 
among them one footbridge. However, measured logarithmic decrement in the first bending 
mode showed considerable variability - from 0.023 (0.37%) for the footbridge up to 0.18 
(2.86%) for road bridges. Therefore, it was obvious that a single value cannot be proposed for 
future design for this type of structure (steel box girders with concrete deck). The authors 
rightly concluded that supports and end conditions have great influence on the (radiation 
part of) damping. Also, they found that with increasing vibration amplitude damping also 
increases, which suggests that damping mechanism was amplitude dependent. However, Eyre 
(1976) could not confirm this finding during testing of a road bridge made completely of steel. 
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It was a bridge with very low first natural frequency of 0.53 Hz where maximum achieved 

amplitude was 13 mm which was possibly too low to activate extra damping mechanisms. 

Eyre & Tilly (1977) did measurements on 23 steel and composite bridges, many of which 

were footbridges. All structures were steel box girder or steel plate girder bridges, with dif- 

ferent number of spans (one to six) and span length (17-57 m, plus one road bridge with 

the main span of 213 m). The authors reported that damping was dependent of number of 

spans (single span bridges had higher damping then multi span ones) and vibration mode 

considered (higher modes generally had higher damping). Typically, logarithmic decrement 

for footbridges was between 0.02 and 0.03 (0.32% and 0.48%). The authors also confirmed 

Leonard & Eyre's (1975) finding that damping is dependent on response amplitude. Further- 

more, using all available data, Tilly et al. (1984) concluded that it was wrong to generalise 

that damping increases in higher modes or that it is dependent on the stiffness and span 

length. However, it appears to be certainly dependant on type of material - steel bridges 

exhibit the lowest and classically reinforced concrete bridges the highest level of damping. 

They also suggested that, because of amplitude dependence, it is always necessary to quote 

measured damping together with the level of response amplitude. This sound suggestion is, 

unfortunately, very often omitted in the published literature. 

All these results are mainly related to damping in the vertical modes, although some mea- 

surements were done in torsional modes too. 

2.3.2.2 New Measurement Techniques 

Towards the end of the 1970s, new and more reliable techniques were introduced to ex- 

perimentally determine the dynamic properties of bridges. These techniques made use of 
improved signal analysis techniques and were based on impulsive (hammer), forced and am- 
bient vibration excitation. There are numerous examples of these methods, such as those 

presented by Rainer & Van Selst (1976) and Buckland et al. (1979) on ambient testing and 
vehicle impact, Abdel-Ghaffar (1978) and Brownjohn et al. (1987) on ambient testing, and 
Rainer & Pernica (1979) on ambient testing and harmonic forced vibrations. 

In general, damping can be obtained using different methods. Related to civil engineering 
structures Rainer (1979) mentioned the time-domain free decay method after the excitation 
(impulsive or harmonic) stops, the frequency-domain half power bandwidth method (for 

the ambient and forced tests) and the time-domain based random decrement method (for the 

ambient vibration surveys). All of them can produce slightly different results as a consequence 

of different theoretical assumptions which usually cannot be completely satisfied in practice. 
Also, the frequency response function (FRF) curve (mainly circle) fitting method in the 
frequency domain is used very often (see Table 2.2) and the principle of that method can 
be found, together with many other methods, in standard textbooks dealing with modal 
identification procedures (Mafia et al., 1997; Ewins, 2000). 
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Interpretation of measurement results should be conducted very carefully. For example, the 
SDOF half-power bandwidth method using ambient testing response data tends to produce 
higher damping because of the averaging during data processing and the impossibility to have 

ideally stationary input necessary for ambient testing (Brownjohn et al., 1987). Also it can 

neither produce good damping estimate for closely spaced modes nor give insight into the 

amplitude dependence phenomenon. Problems with closely spaced modes can happen in the 

time-domain based free vibration decay method too (Rainer & Van Selst, 1976). 

The choice of the most appropriate excitation method for each bridge is very important. In 

almost all articles relevant to footbridges some examples of merits and demerits of one or 
more methods are given. It is known that for large structures, which are difficult to be excited 
artificially because of low frequencies, ambient testing is the most appropriate choice. Also, 
it is cheaper than forced testing and does not disrupt the normal service of the bridge. This 

testing is often used as preliminary investigation for other methods to give a quick and rough 
indication of bridge natural frequencies. However, damping values from these measurements 
can be unreliable as previously noted, especially when closely spaced modes exist. 

For short bridges featuring higher natural frequencies and modest testing budgets, hammer 
testing leading to FRFs may be more appropriate. It gives relatively reliable values of damp- 
ing and it is very easy to conduct such a test if a bridge can be closed. However, inevitable 
ambient extraneous excitation can easily make analysis more complicated. 

Finally, excitation by a controlled force produced by an electrodynamic or hydraulic shaker 
is believed to be most reliable method suitable for bridges of medium size. In principle, 
it requires shorter time for data acquisition than ambient tests. Also, electrodynamic and 
hydraulic shakers can produce different types of excitation which give flexibility in the mea- 
surement procedure. However, this method tends to be the most expensive. Also, it is hard 
to excite low frequencies, especially below 1.011z. 

Table 2.2 contains key published results related to damping measurements on footbridges. 
Damping ratios (,,, Ch and (t for the first two vertical, horizontal and torsional modes are 
given whenever data were available. 

Gardner-Morse & Huston (1993) investigated a small cable-stayed pedestrian bridge using 
an impact hammer. They successfully extracted the first 14 modes. Although the deck was 
wooden, measured damping ratios were very low - up to only 0.75%, except for the fourth 
vertical mode. Brownjohn et al. (1994) investigated a suspension footbridge, also using ham- 
mer testing. Besides results presented in Table 2.2, Brownjohn (1988) obtained very different 
damping estimates using the half-power bandwidth method. However, it should be said that 
these investigations were conducted just as a preparation exercise for measurements on a 
long suspended road bridge. Again by using an instrumented hammer (7.25 kg), Brownjohn 
(1997) successfully identified two closely spaced modes at frequency near 2 Hz on a suspended 
bridge. Cantieni & Pietrzko (1993) identified the first 12 modes on a wooden bridge using 
a vibration generator driven by a burst random signal (0.5-25 Hz). In his PhD thesis, Pi- 
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mentel (1997) tested two footbridges (pre-cambered beam and stressed ribbon) by means of 

the hammer testing. However, damping values were determined mainly using jumping and 

walking free-decay tests where the value obtained by jumping was higher due to presence of 

the test subject on the bridge. Pavic & Reynolds (2002) used a electrodynamic shaker with 

chirp excitation (1-30Hz) to investigate the same catenary (i. e. stressed ribbon) footbridge 

and found almost the same damping values as in Pimentel's (1997) walking tests. Pimentel 

(1997) also investigated a cable stayed bridge by ambient vibrations. 

Pavic et al. (2002a) successfully tested the London Millennium Bridge using two different 

shakers to excite horizontal lateral and vertical modes, respectively. The lowest lateral fre- 

quency was 0.5 Hz, which required the construction of a special hydraulic shaker which would 
he able to excite such a low frequency mode - an inertial shaker with moving mass of 1000 kg 

(Figure 2.14). It is interesting to compare it with the first attempts of using mechanical 

exciters in dynamic investigations of bridges such as that reported by Chasteau (1973) where 

an eccentric mass of 3.75 kg was used, or that reported by Eyre & Tilly (1977) where a hy- 

draiilic actuator could not excite a vertical mode with frequency at 0.53 Hz. The damping of 

the Millenium Bridge was measured for different configurations while some viscous dampers 

and/or a tuned mass damper were in operation. These results were published by Pavic et al. 
(2002b), while in Table 2.2 results for the first two lateral modes of the central span without 

any additional daIiiping device, are ¶iveu. 

Figure 2.14: Horizontal shaker used tOr testing of the Millennium Bridge (after Pavic et al., 
2002a). 

A timber footbridge was investigated by Hamm (2002) whose result confirmed Eurocode 5 

(ENV, 1997) proposal for damping of this type of pedestrian bridges of 1.0% and 1.5% depend- 

ing on the construction type. Unfortunately, only the first vertical mode was investigated. 

Based on everything stated so far, it is obvious that it is not possible to define unique value(s) 
for footbridge damping. To overcome this, Bachmann et al. (1995a) suggested in 1995 using 
Table 2.3 as a guidance based on data collected on 43 footbridges in the 1980's (Cantieni 
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et al., 1986). Based on the new data since published, these recommendations still look very 

reasonable. 

Table 2.3: Provisional values of damping ratio in footbridges (after Bachmann et al., 1995a). 

Damping ratio [%] 

Construction type Minimum Mean Maximum 

Reinforced concrete 0.8 1.3 2.0 

Prestressed concrete 0.5 1.0 1.7 

Composite 0.3 0.6 - 
Steel 0.2 0.4 - 

2.4 Receiver of Footbridge Vibrations 

The main receivers of vibrations on pedestrian bridges, who govern their vibration service- 

ability, are walking people. Although Walley (1959) reported that "a pedestrian at rest on 

the bridge might `feel' the passage of other pedestrians and be disturbed", Leonard (1966) 

claimed that it was economically unjustifiable to design footbridges where standing people 

would feel no vibrations. 

The reaction of human beings to vibrations is a very complex issue having in mind that 
humans are "the greatest variables with which anyone may deal" (Jacklin, 1936). According 

to Lippert (1947), not only different people react differently to the same vibration conditions, 
but also an individual exposed to the same vibrations on different days will likely react 
differently. This is known as the inter- and intra-subject variability of humans and their 

reactions to vibrations (Griffin, 1996). Knowing that human sensitivity to vibrations is very 
high (Wood, 1948), it is clear that this issue is of paramount importance for footbridge 

vibration serviceability. 

2.4.1 Early Works 

Probably one of the first laboratory works and certainly the most often referenced in the 
future studies was conducted by Reiher and Meister in 1931 (Wright & Green, 1959). They 
investigated the effect of harmonic vibrations on ten people having different postures (laying, 

sitting, standing) on a test platform driven by different amplitudes, frequencies and direction 

of vibrations. As a result they classified the human perception into six categories and as a 
function of vibration amplitude and frequency (Figure 2.15). 

In the 1940s, some very valuable systematisation of the work until that time were pub- 
lished by Postlethwaite (1944) and Goldman (1948). Postlethwaite (1944) tried to construct 
perception curves by combining experimental results of different authors and by the use of 
"some imagination where experimental results were lacking". The acceleration perception 
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threshold in the low frequency region of up to 1 Hz was 0.01 ft/s2 (0.03%g). Mallock, who 
investigated unpleasant vibrations at 10-15 Hz in some London houses due to traffic, found 

that the vibration displacement amplitude was very low (0.001 in i. e. 0.025 mm) but the cor- 

responding acceleration level (up to 2.3%g) caused the problem. As a result, he proposed 1%g 

and 5%g as noticeable and nuisance values, respectively (Postlethwaite, 1944). This example 

shows the importance of the vibration descriptor in which vibration amplitude is expressed 
(displacements, velocities or accelerations). Goldman (1948) used all known work regardless 
of the vibration direction, subject's posture and type of vibration to define three categories 
of human reaction to vibrations: perception, discomfort and maximum tolerable levels. Ac- 

cording to this study, the minimum discomfort level was about 4.6%g while the perception 
value was only 0.25%g. This minimum occurred around the frequency of 5 Hz which was the 

main resonant frequency of the human body (Dieckmann, 1958). Dieckmann also separated 
sensitivity to vibrations in the horizontal and vertical direction where for frequencies below 

about 4 Hz sensitivity was higher for horizontal vibrations. 
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Figure 2.15: Reiher and Meister's scale of human perception (after Smith, 1988). 

Although these few examples of early findings are not directly related to footbridges, they 
present the first steps in human vibration perception research which triggered and became a 
basis for subsequent investigations. They also give insight into large variations of vibration 
threshold limits caused typically by different test conditions and illustrate the need to research 
this issue separately for each type of structure of interest. 
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2.4.2 Perception of Vertical Vibrations on Bridges 

Trying to investigate the human perception of vibration on highway bridges, Wright & Green 

(1959) noticed that real vibrations on bridges are much more complex than the harmonic 

vibrations usually used in past investigations of human perception. Also, research was con- 
ducted in laboratory conditions and therefore its applicability to footbridges is questionable. 
Finally, many parameters specific to bridge vibrations were not considered such as the fact 

that the receiver is not stationary but is moving, the transient nature of footfall excitation 
and the limited duration of exposure to vibrations. As a confirmation of the desperate sit- 
uation regarding the knowledge of human perception of bridge vibrations the Committee on 
Deflection Limitations of Bridges (CDLB, 1958) reported that there was no scale at that time 

which was appropriate for bridge applications. 

In a large investigation Wright & Green (1963) measured the peak oscillations on 52 high- 

way bridges under normal traffic and found they were "unpleasant" or even in 25% cases 
"intolerable" according to their isosensors scale based on a refinement of Goldman's (1948) 

work. Similar results were obtained using Reiher and Meister scale. They concluded that 
these, and similar, scales based on long time vibrations might not be appropriate for bridge 

vibrations where peak vibrations usually lasted only for a short period of time. The duration 
of vibrations depends to some extent on the bridge damping which is considered as the most 
important factor in the human perception in Lenzen's (1966) work, but related to floors. 

Motivated by the lack of research related to walking and standing people under vibrations 
with limited duration, Leonard (1966) conducted a laboratory experiment on a 10.7m long 
beam driven by sinusoidal excitation at different amplitudes (up to 0.2" i. e. 5.08 mm) and 
frequencies (1-14 Hz). Forty walking and standing persons helped in these tests to define 
the boundary between acceptable and unacceptable vibrations in individual tests lasting 
up to one minute during which vibration amplitude was held on a constant level. Results 
clearly indicated that a standing person is more sensitive to vibrations than a walking one 
(Figure 2.16). Similarly to Wright & Green (1963), it was shown that the Reiher and Meister 
scale is fairly inappropriate for application to bridges. Leonard further suggested using the 
curve applicable to stationary standing people for vibration perceptibility in the case of large 
numbers of pedestrians because of a prolonged duration of the vibration level. A similar 
recommendation was made regarding the perception of vibration in the horizontal direction 
because of the greater human sensitivity in this direction. 

Smith (1969) conducted an experiment using a single walking pedestrian excitation on a flex- 
ible aluminium alloy plank. He pointed out that a pedestrian, even in the case of sustained si- 
nusoidal bridge vibrations, felt the maximum amplitude only near the midspan (Figure 2.17). 
Twenty-six subjects were asked to walk several times across the plank and to classify vibration 
level into three groups: acceptable, unpleasant and intolerable. During tests the frequency 
of the plank was adjusted to be as close as possible to the walking frequency. Because of 
the inter-subject variability and overlapping of the three vibration levels rated by different 
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test subjects, Smith decided only to define regions of acceptable and unacceptable vibrations 
(Figure 2.16). His threshold curve was much higher than the Leonard's. As a possible reason 
Smith mentioned possibility that Leonard chose to draw a lower limit curve rather than a 

mean curve. However, it could be that the length of the plank of only 4.88 m had influence 

too. It is interesting that in some of Smith's tests, when the resonant build up of vibration 

was achieved, some subjects were afraid. 
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Figure 2.16: Leonards and Smiths scales of human perception (after Smith, 1969). 

Kobori & Kajikawa (1974) conducted experiments similar to Leonard's tests, with 11 walking 
subjects on a vertically vibrating shaking platform driven by a sinusoidal force in the fre- 

quency range 1-10 Hz. It was found that the vibration velocity is the main parameter which 
influenced the human perception. The two authors formulated analytically the relationship 
between the vibration perception and the vibration velocity and reported a comparison be- 

tween responses to: a sinusoidal vibration, vibration having two harmonic components and 
random vibration. They concluded that the sensitivity is the same if the "effective value 
of both stimuli" is the same. However, it is not quite clear what this statement precisely 
means and how the results are processed. The same authors investigated the possibility that 

a footbridge will be unserviceable under a number of pedestrians (Kajikawa & Kobori, 1977). 
Using probability theory and assuming a Poisson distribution of pedestrian arrivals as well as 
a normal distribution of human response, they found the probability that serviceability of a 
footbridge will not be satisfied, in terms of a percentage of pedestrians who will feel an unac- 
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ceptable level of vibrations. Unserviceability curves for a pedestrian bridge, as a function of 

arriving number of pedestrians per second and the bridge damping are given in Figure 2.18. 

Unfortunately, none of these two articles (Kobori & Kajikawa, 1974 and Kajikawa & Kobori, 

1977) contains a list of pertinent references which could help to understand better the ap- 

proach proposed. It should be noted that velocity is adopted as the parameter for evaluation 

of footbridge serviceability in Japan (Yoneda, 2002). 

100' 

(a) 

(b) 
Vibration felt by pedestrian 

Figure 2.17: (a) Sinusoidal vibrations in the middle of the span. (b) Vibrations felt by a 
walking pedestrian (after Smith, 1969). 
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Figure 2.18: Probability of footbridge unserviceability (after Kajikawa & Kobori, 1977). 

In their design proposal for footbridges, Blanchard et al. (1977) used the mean value of 
Leonard's and Smith's results to define a level of acceptable acceleration ajimit, expressed as: 

........ ý......... UJ...... v.. uý UIuuONfIU 
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alimit = 0.5 f [m/S2] (2.6) 

where f [Hz] is the footbridge fundamental frequency. This value is adopted in the current 

British standard for assessing vibration serviceability of footbridges BS 5400 (BSI, 1978). 

However, Tilly et al. (1984) mentioned the possibility that the limit of V7 might be more 

appropriate outside the frequency range 1.7-2.2 Hz, but without detailed elaboration of this 

recommendation. 

Irwin (1978) collected data about human response to vibration from different sources based 

on both laboratory and tests on full-scale structures. He constructed either the perception or 

maximum allowable magnitude curves for different types of structures and different type of 

vibrations. Among them, the limits for root-mean-square (RMS) accelerations for bridges are 

given, separately for everyday usage and storm conditions (Figure 2.19). The maximum sen- 

sitivity for everyday curve for vertical vibrations was between 1 and 2 Hz, and was 0.07 m/s2 

when expressed as an equivalent harmonic peak value. This frequency range is far lower 

than the 4-8 Hz range in ISO 2631-2 (ISO, 1989) applicable to floor vibrations. The curve 
for storms is obtained by multiplying the base (everyday) curve by the factor 6. However, 

the horizontal motion is considered only for storm conditions, while for everyday usage it 

is neglected as rare. This work was founded on the base curve principle, which means that 

curves for different purposes can be obtained from the base curve by multiplying by some 
factor. All perceptibility curves were expressed, contrary to a lot of previous research based 

on peak values, via the RMS accelerations. This quantity is the square root of the mean 

value of the square acceleration during time record (Griffin, 1996): 

2 x(t)2dt RMS =fý t2 - tl 

t 
(2.7) 

where x(t) is the acceleration time history, and tl and t2 define the beginning and end 
of the time interval considered. However, the choice of RMS accelerations as the vibration 
perception descriptor, which became common in many guidelines related to human perception 
of vibrations, was based primarily on the fact that it is relatively easy to measure accelerations 
and the corresponding RMS values, using both analog and digital methods (Griffin, 1996). 

One of the recommendations for acceptable footbridge vibrations, which is based on RMS 

acceleration limits, is given in the ISO 10137 guidelines for serviceability in buildings (ISO, 

1992). It suggests using the base curves for vibrations in both vertical and horizontal di- 

rections given in ISO 2631-2 (1989) multiplied by the factor of 60 (Figures 2.20 and 2.21). 

However, this recommendation is, to the best of author's knowledge, not based on published 
research pertinent to footbridge vibrations. 
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Figure 2.20: Acceptability of vertical vibrations in footbridges after different scales (after 
Pimentel, 1997). 

Pimentel (1997) compared vibration limits given in BS 5400 (BSI, 1978), Ontario Code 
(OHBDC, 1983), Kobori & Kajikawa (1974) and ISO 10137 (ISO, 1992) related to footbridges. 

They are presented in Figure 2.20, while Figure 2.19 compares limits according to BS 5400, 

Leonard (1966) and Irwin (1978). A comparison of these limits shows that, for example, 
BS 5400 allows the highest level of vibrations over a typical range of footbridge response 
frequencies. On the other hand, Bachmann et al. (1995a) proposed a constant acceleration 
acceptance level of 0.5 m/s2. All these limits form a database of results related to footbridges. 

It should be noticed that the ISO (1992) curve given in Figure 2.20 was obtained by converting 
the RMS acceleration to the peak value by multiplying by the factor V2-. 
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Figure 2.21: Acceptability of vibrations in horizontal direction. This base curve should be 

multiplied by the factor 60 (after ISO, 1992). 

To account for different reactions between different people, Obata et al. (1995) presented, 
for each of four defined perception levels (lightly perceptible, definitely perceptible, lightly 

unpleasant and greatly unpleasant), curves of 25,40,50,60 and 75% probability where the 

reactions to vibrations will happen. They suggested that footbridge serviceability will not 
be compromised for a peak velocity of 1 cm/s, while it is rare that vibrations are unpleasant 
up to the peak 1.4 cm/s. For a footbridge with, for example, a natural frequency of 2 Hz, 

converting these velocity peak values to corresponding peak accelerations gives 0.13 and 
0.18 m/s2 respectively, where these limits are far lower than those in Figure 2.20. 

2.4.3 Horizontal Vibration and Its Perception within a Crowd 

Data on human perception of horizontal vibration of bridges are very scarce. However, 
there are many works related to human perception of horizontal vibrations in buildings. For 

example Chen & Robertson (1972) investigated the human perception threshold to horizontal 

sinusoidal vibrations with frequencies between 0.067 Hz and 0.20 Hz, which are characteristic 
of tall building response due to wind. Although this frequency range is unlikely to be relevant 
for footbridges, this work is interesting because it identified the most important factors typical 
for this issue: the frequency of vibrations, body movement, expectancy of motion and body 

posture. The authors found that, also in this low frequency region, the vibration perception 
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threshold of walking people is higher than for a stationary person and that the perception 

threshold is lower when the person expects the movement. However, it should be noticed that 

the tolerance level (as opposed to the perception level) is higher if one expects vibrations, 

regardless of its direction (Smith, 1988). Another interesting experiment was conducted by 

Nakata et al. (1993). Forty test subjects were exposed to horizontal sinusoidal vibrations at 

frequencies 1-6 Hz. The amplitude of vibrations was gradually increased and the perception 

value when the test subject felt vibration was recorded. It was concluded that the fore-aft 

perception threshold was higher than the side-to-side threshold in the range 1-3 Hz, while in 

the range 3-6 Hz the opposite was true. However, only the sitting posture was considered. 

Wheeler (1982) noticed that the human perception of vibration in a walking crowd on foot- 

bridges is different than for a single isolated person. An additional proof that different 

perception scales are necessary for circumstances involving different numbers of people was 

provided by Ellis & Ji (2002). They reported that during an experiment with a jumping 

crowd, jumpers were not concerned although the measured acceleration was 0.55g. It is not 

clear if the noise, the presence of other people or something else contributed to the fact that 

such high accelerations were considered as tolerable. 

As mentioned earlier, the only guideline which recommends a horizontal vibration limit for 

footbridges is ISO 10137 (ISO, 1992). The perception curve is presented in Figure 2.21. The 

highest sensitivity to this type of vibration is in the frequency region up to 2 Hz and is at 

about 3.1%g peak acceleration. 

Probably most valuable information about the tolerance level to footbridge lateral vibrations 
due to crowd loading is given by Nakamura (2003). Based on pedestrian experience of vi- 
brations on full-scale footbridges, he concluded that the amplitude of deck displacement of 
45 mm (corresponding to an acceleration of 1.35 m/s 2) is a reasonable serviceability limit. 
At the same time he noticed that a deck displacement amplitude of 10 mm (corresponding 

to acceleration level of 0.3 m/s2) was tolerable by most pedestrians, while a displacement of 
70 mm (2.1 m/s2) would make people to feel unsafe and prevent them from walking. 

2.4.4 Concluding Remarks 

In the majority of tests conducted it has been generally accepted that acceleration is the 

vibration parameter which should be used to describe the problem. One of the key reasons 
is that acceleration is convenient to be measured even though there are situations when the 

vibration effect can be explained better by other quantities such as velocity (Griffin, 1996). 

It is now widely accepted that the vibration tolerance for moving pedestrians on bridges is 
higher than for people in buildings, and that pedestrians can accept certain (initially unac- 
ceptable) level of vibrations when they accustom themselves to it (Smith, 1988). Therefore, 

the expectation of vibrations plays a very important role in footbridge vibration serviceability. 
However, hard numbers which would quantify these observations are scarce. 

Further work in this area for footbridges is necessary, especially with regard to the perception 
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of vibration in the horizontal lateral direction. This should be done by simulating real con- 
ditions as much as possible and by verifying results on full-scale structures. Finally, there is 

some limited evidence of some probability-based approaches to vibration perception on foot- 
bridges. Considering the large inter- and intra-subject variability, probability based methods 
are likely to be the best way forward when assessing the effects of footbridge vibrations. 

2.5 Human-Structure Dynamic Interaction in Footbridges 

It is now widely accepted that during footbridge vibration some kind of human-structure 
interaction almost inevitably occurs. Often, this interaction can be neglected, but it is be- 

coming more common that it cannot. In general, there are two aspects of this issue. The first 

considers changes in dynamic properties of the footbridge, mainly in damping and natural 
frequency, due to human presence. The second aspect concerns a degree of synchronisation 
of movement between the pedestrians themselves as well as between the pedestrians and the 

structure whose motion is perceived. Both phenomena are currently not well understood and 
research related to them has been intensified in recent years. 

2.5.1 Dynamic Properties of Footbridges under Moving People 

It is well-known that the presence of a stationary (standing or sitting) person changes the 
dynamic properties of a structure they occupy. The most important effect is the increase in 
damping in the joint human-structure dynamic system compared with the damping of the 
empty structure (Ellis & Ji, 1994; Sachse, 2002). The effect is greater if more people are 
present (Ellis & Ji, 1997; Sachse, 2002). Therefore, it can be concluded that the human 
body behaves like a damped dynamic system attached to the main structural system. Such a 
system can be described by biodynamics methods, structural dynamics methods or by their 
combination (Ji, 2000). The human body is in effect a complex non-linear MDOF system with 
its parts responding in different ways to structural movement (Williams et al., 1999). In a 
simplified study of human body-structure interaction, the human body can be approximated 
by a linear SDOF system (Ji, 2000). One of very few reported attempts to carry out system 
identification of the dynamic properties of a standing person, applicable to civil engineering, 
was done recently by Zheng & Brownjohn (2001). Their SDOF human body model had 
a damping ratio of 39% and natural frequency of 5.24 Hz. However, the simplified SDOF 
human body system has been shown to be dependent on structural frequency and cannot be 
always represented by the same set of mass, stiffness and damping parameters (Sachse, 2002; 
Sachse et al., 2002). 

The problem is even less researched in the case of moving people, which is usual for foot- 
bridges. Ellis & Ji (1994) found that a person running and jumping on the spot cannot 
change dynamic characteristics of the structure and, therefore, should be treated only as 
load. However, this investigation was conducted using a simply supported beam having a 
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high fundamental frequency of 18.68 Hz compared with typical footbridge natural frequencies. 

Nevertheless a similar conclusion was reached by the same researchers regarding the effects 

of a moving crowd on grandstands (Ellis & Ji, 1997). 

2.5.2 Dynamic Forces on Flexible Footbridges 

Ohlsson (1982) reported that the spectrum of a force measured on a rigid surface differed from 

that measured on a flexible timber floor. The spectrum experienced a drop around the natural 
frequency of the structure where the motion was the highest. This could be a consequence 

of the interaction phenomenon and is in agreement with previously mentioned Pimentel's 

(1997) findings of lower dynamic loading factors (DLFs) on real and moving footbridges 

in comparison with those measured on rigid surfaces. Ohlsson also claimed that a moving 

pedestrian increased the mass and the damping of the structure. However, it should be 

stressed again that he investigated only light timber floors where human-structure dynamic 

interaction is more likely due to large ratios of the mass of the humans and the empty 
structure. However, Willford (2002) also mentioned a result of data analysis from pedestrian 
tests on the Millennium Bridge which indicated that walking crowd had increased the damping 

of the structure in the vertical direction. 

That jumping and bouncing can change dynamic properties of a flexible structure was re- 
ported by Yao et al. (2002). They found that jumping forces are lower on a more flexible 

structure, but it should be noted that in their investigation the subject to structure mass 
ratio was very high (0.41). Further, Pavic et al. (2002c) compared horizontal jumping forces 
directly measured on a force plate and indirectly measured on a concrete beam. They found 

that the force on the structure was about two times lower than that one on the force plate. 
This could also be a consequence of a human-structure interaction effect but no conclusive 

evidence for it was presented. 

All these reported observations give only an indication that human-structure interaction 

really occurs without a more precise quantification of the phenomenon. Furthermore, with 
the exception of a paper by Pavic et al. (2002c), all reviewed research is related to vibrations 
in the vertical direction. Information on possible effects of moving people on the dynamic 

characteristics of footbridges in the horizontal direction is very scarce. 

It is clear that research into human-structure interaction involves various human activities 
(e. g. waking, jumping, sitting, standing) on different types of structure. In case of footbridges, 

although some previous findings are quite useful, the most relevant interaction scenario ap- 
pears to be a walking crowd. Considering the extremely scarce published data, this is an area 
that clearly requires further investigation. 
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2.5.3 Synchronisation of People Walking in Groups and Crowds 

Ninety years ago Tilden (1913) posed a question which is still unanswered: 

Against what loads, horizontal and vertical, should an engineer design a structure 

which is likely to have to carry a dense crowd of human beings? 

In an attempt to consider this question, he noted that none of the following two extreme cases 

are real. Neither is an increase in load directly proportional to the number of people involved, 

in comparison with a single pedestrian force (i. e. the case of perfect synchronisation), nor 

should only the static weight of the crowd be taken into account (i. e. dynamic effects be 

neglected). Subsequent research has shown that the solution is somewhere between these two 

scenarios. 

The first attempts to define the load induced by several pedestrians were in terms of multi- 

plication of the load induced by a single pedestrian. One of the first proposals was given by 
Matsumoto et al. (1978). Assuming that pedestrians arrived on the bridge following a Pois- 

son distribution, they stochastically superimposed individual responses and found that the 
total response can be obtained by multiplying a single pedestrian response by the multipli- 
cation factor V, -\T-O, where \ is the mean arrival rate expressed as the number of pedestrians 
per second per width of the bridge and To [s] is the time needed to cross over the bridge. 
Therefore, /To is equal to vfn-, where n is the number of pedestrians on the bridge at any 
time instant. According to random vibration theory (Newland, 1993), if the response due 
to n equal and randomly distributed inputs is vrn- times higher than the response due to 

a single input, it means that inputs (in this case pedestrians) are absolutely uncorrelated 
(unsynchronised). 

Similar to Matsumoto et al. (1978), Wheeler (1982) stochastically combined individual forces 
(defined deterministically using the half-sine model) assuming random arrival rate, normal 
distribution of step frequencies and a distribution of people's weights obtained for the Aus- 
tralian population. However, his simulations revealed that group loads were not a more 
onerous design case than a single pedestrian load, at least for footbridges with fundamental 

natural frequency away from approximately 2 Hz. Namely, the group load on bridges with 
the fundamental frequency away from the normal walking frequency range can be regarded 
as a non-resonant load which probably generates lower response than the one induced by 

a single pedestrian walking at the resonant frequency. However, the question still is if this 
can be applied in case of non-random walking of groups of pedestrians when some degree of 
synchronisation between people can be established. 

In any case, Matsumoto et al. 's proposal was regarded as appropriate at least for footbridges 
with natural frequencies in the range of walking frequencies (1.8-2.2 Hz), while for bridges 
with natural frequencies in the ranges 1.6-1.8 Hz and 2.2-2.4 Hz a linear reduction of Mat- 
sumoto et al. 's multiplication factor X7 was suggested with its minimum value of 2 at the 
ends of these intervals in the case of more than four people present on the bridge at the same 
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time (Bachmann & Ammann, 1987). Mouring (1993) simulated a vertical force from walking 

groups in a way similar to Wheeler (1982). However, she described a single pedestrian force 

more precisely using the first 10 coefficients of the Fourier series instead of the half-sine model. 
As a result, she found that the effect of group loads should be considered even in case of foot- 

bridges with fundamental frequency outside the normal walking frequency range (1.8-2.2 Hz). 

The response obtained agreed with Matsumoto et al. 's findings. However, Pimentel (1997) 

measured the response under three uncorrelated people on two footbridges and confirmed the 

inapplicability of the proposed multiplication factor for bridges with frequencies outside the 

normal walking frequency range, as claimed by Bachmann & Ammann (1987). It appears 
that group loading becomes more important precisely in the normal walking frequency range, 
and in that case it should be considered. Also, Matsumoto et al. 's proposal did not consider 
the possibility of synchronisation between people in a dense crowd, a phenomenon which has 

attracted a great deal of attention from researchers since the Millennium Bridge problem in 

London occurred in 2000. 

In 1985, Eyre & Cullington noticed that the vertical acceleration recorded on a footbridge 
in a controlled resonance test with a single pedestrian was 1.7 times lower than the one 
measured in normal usage which included two or more pedestrians who were not formally 

synchronised in any way. They explained it as a possible consequence of the occasional and by 

chance synchronisation between two people. Ebrahimpour & Fitts (1996) reported that the 
optical sense plays an important role in the synchronisation of people's movement. Namely, 
two jumping persons who could see each other synchronized their movement better than 
when they were looking in opposite directions. In both cases the jumping frequencies were 
controlled by an audio signal. Eriksson (1994) claimed that the first walking harmonic could 
be almost perfectly synchronised for highly correlated people within a group, while the higher 
harmonics should be treated as completely uncorrelated. Not surprisingly, Ebrahimpour et 
al. (1996) therefore focussed only on the first harmonic (Figure 2.13) claiming that higher 
harmonics cannot produce significant response for a walking crowd. 

It is now widely accepted that people walking in a crowd, because of the limited space on the 
bridge deck and the possibility that they can see each other, would subconsciously synchronise 
their steps. This becomes more likely if the crowd is dense. Bachmann & Ammann (1987) 
reported that the maximum physically possible crowd density can be 1.6-1.8 persons per 
square metre of the footbridge deck. However, they concluded that a value of 1 person/m2 is 
more probable. During the opening day of the Millennium Bridge in London, the maximum 
density was 1.3-1.5 people/m2 (Dallard et al., 2001a). The crowd density on the T-bridge 
in Japan (also prone to lateral movement) was between 1 and 1.5 people/m2 (Nakamura & 
Fujino, 2002). In any case, crowd density influences the walking speed (Figure 2.22), the 
degree of synchronisation between people and, consequently, the intensity of the human- 
induced force. 

Grundmann et al. (1993) proposed three models corresponding to different pedestrian con- 
figurations on a footbridge which should be considered separately: 
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Figure 2.22: Relationship between the bridge capacity, pedestrian density and their velocity 
(after Sehlaich, 2002). 

1. When people walk in small groups it is probable that they will walk with the same 

speed v5, and slightly different step frequencies f9 and step length l8 according to the 

equation: 

V8 = his. (2.8) 

In such cases, some synchronisation between these people is expected, but only when 
the bridge frequency is within the normal walking frequency range. 

2. On bridges with a light stream of pedestrians where people can move freely and their 

walking frequencies are randomly distributed. The maximum density of 0.3 pedestrians 

per square metre was suggested as an upper limit for unconstrained free walking. This 

type of walking (i. e. free walking) was considered in the previously mentioned proposal 
by Matsumoto et al. 's (1978). 

3. If footbridges are exposed to pedestrian traffic of 0.6-1.0 pedestrians/m2 then free un- 
constrained movement is practically impossible. In such circumstances, pedestrians are 
forced to adjust to some extent their step length and speed to the motion of other 
pedestrians. The previously mentioned swaying problems of the Millennium Bridge 
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and the Japanese T-Bridge belong to this group, despite the fact that their pedestrian 
densities were higher than proposed by Grundmann et al. 

As for the third model, it should be added that the case of crowd walking on a percepti- 
bly moving bridge deck is related not only to synchronisation between people but also to 

synchronisation between people and the structure. 

Before considering the research into the human-structure synchronisation phenomenon, two 

terms widely used in this review will be defined. The term `group' of walking pedestrians 
is used for several people walking at the same speed as defined in Model 1 above, while the 

term `crowd' is related to densely packed walking people who have to adjust their step to 

suit the space available, as explained in Model 3. 

2.5.3.1 Lateral Synchronisation 

The phenomenon when people change their step to adapt it to the vibrations of the bridge, is 

- for the same level of vibrations - much more probable in the horizontal than in the vertical 
direction. This is because of the nature of human walking and desire to maintain the body 
balance on a laterally moving surface. When it occurs, this is known as the synchronisation 
phenomenon (Bachmann & Ammann, 1987) or lock-in effect (Dallard et al., 2001a). As a 
consequence of the adjusted step when people tend to walk with more spread legs, the motion 
of the upper torso becomes greater and the pedestrian-induced force becomes larger. This 
in turn increases the bridge response and, finally, results in structural dynamic instability 
(Inman, 2001). In such circumstances, only reducing the number of people on the footbridge 

or disrupting/stopping their movement can solve the problem (Dallard et al., 2001a; 2001b; 
2001c; Fitzpatrick and Ridsdill-Smith, 2001; Fitzpatrick et al., 2001). It is interesting, how- 

ever, that in a laboratory experiment (McRobie et al., 2003) with a single pedestrian walking 
across a laterally moving platform, not every pedestrian walked in a way to boost the lat- 

eral vibrations. Some of them even managed to damp vibrations out. This fact complicates 
further study of pedestrian behaviour within a crowd, but also points out the need to define 
and investigate a factor which will describe the degree of synchronisation between people. 

Typically, the excessive swaying occurs on bridges with lateral natural frequencies near 1 Hz 
which is the predominant frequency of the first harmonic of the pedestrian lateral force 
(Figure 2.8). Fujino et al. (1993) reported such a case on the previously mentioned T-bridge 
in Japan. During very crowded times, significant lateral movement occurred in the first 
lateral mode with frequency of 0.9 Hz. The procedure proposed by Matsumoto et al. (1978) 

underestimated the actual bridge response. By video recording and observing the movement 
of people's heads in the crowd, and by measuring the lateral response, Fujino et al. concluded 
that 20% of the people in the crowd perfectly synchronised their walking. Fujino et al. 's 
assumption was also that the individual forces produced by the rest of pedestrians cancelled 
each other, so that their net effect was zero. Later, using image processing technique for 
tracking people's movement on the same bridge, Yoshida et al. (2002) estimated the overall 
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lateral force in the crowd of 1500 pedestrians at 5016 N, which gives an average of only 3.34 N 

per pedestrian. 

During the opening day of the Millennium Bridge in London, lateral acceleration of 0.20-0.25g 

was recorded. This corresponded with lateral displacement amplitudes of up to 7 cm. Dallard 

et al. (2001a; 2001c) tried to define the problem analytically on the basis of observations 

made during tests with a gradually increasing number of people on the bridge (up to 275 

people). Assuming that everybody contributed equally, they identified the amplitude of the 

modal lateral force per person (Figure 2.23a) and the dependence of the lateral force on the 
footbridge velocity (Figure 2.23b). This force was considerably higher than the one reported 
by Yoshida et al. (2002). Based on results in Figure 2.23b, Dallard et al. concluded that 

people, after synchronising their movement with the movement of the structure, produced a 
dynamic force F(t) which was proportional to the deck lateral velocity v(t): 

F(t) = kv(t). 

30 
25 0 

_ä 
20 

? 15 
10 
5 

is 
ö0 
E 

Test 11_CL1 

(a)-v 200 400 600 800 1000 1200 0 0.04 0.08 0.12 0.16 time [s] (b) 
velocity [m/s] 

Figure 2.23: (a) Peak amplitude of the lateral modal force per person per vibration cycle. (b) 
Lateral force per person per vibration cycle versus deck velocity (after Dallard et al., 2001a). 

This means that moving pedestrians act as negative dampers (i. e. amplifiers) increasing the 
response of the structure until walking becomes so difficult, due to body balancing problems, 
that they have to stop. This clearly indicates the need to model differently the human-induced 
load before and after the synchronisation occurs. Also, it seems more relevant to investigate 
bridge behaviour before (and not after) the lock-in occurs, in order to predict and prevent 
the problem in the future. Bearing in mind several other known examples of excessive lateral 
vibrations of crowded bridges, Dallard et al. (2001a; 2001b; 2001c) further concluded that 
the same problem can happen on every bridge with a lateral frequency below 1.3 Hz and with 
sufficient number of people crossing the bridge. That triggering (critical) number of people 
NL was defined as: 
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where c is the modal damping ratio, f is the lateral frequency of the bridge, M is the 

corresponding modal mass and k [Ns/m] is the lateral walking force coefficient introduced 

in Equation 2.9. For the case of the Millennium Bridge it was found by back analysis that 

k=300 Ns/m in the lateral frequency range 0.5-1.0 Hz. However, it would be interesting to 

find this factor for other bridges with the lateral swaying problem to compare with this 

value. Also, the shape of the force time history in Figure 2.23a revealed that the lock-in 

started at about 900 s. However, it seems that the lock-in was unsuccessfully triggered two 

times between 600 s and 800s. The factors which prevented these two lock-ins are still not 

identified and it would be extremely beneficial to know what they are. Also, it should be 

emphasized that, although the predominant lateral load frequency is about 1 Hz, during the 

bridge opening day the first lateral mode at about 0.5 Hz was also excited. This can be caused 
by the reduced frequency of the lateral walking force in a crowd (down to 0.6 Hz) and by 

some `meandering' patterns in human walking on moving bridge deck surfaces, as observed 
by Dallard et al. (2001c). 

Research described in three papers by Dallard et al. stressed the need to investigate the 

dependence between the probability of synchronisation between people and the amount of 
bridge movement in the lateral direction. In that sense, Willford (2002) reported tests with 

a single walking person on a platform moving laterally. The results showed that the lateral 

pedestrian force was increasing when the lateral movement increased. Also, he found that 
in the case of structural movement at 1 Hz with an amplitude of 5 mm, the probability of 

people adapting their step to the bridge movement is 40%. These relationships are nonlinear 
and dependent on frequencies of the bridge movement, even for a single person (Figure 2.24). 
These observations were made for individuals and their applicability to people walking in a 

crowd is still unknown. 
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Figure 2.24: (a) DLF and (b) probability of lock-in for a single person as a function of the 

moving platform amplitude and frequency (after Dallard et al., 2001a). 

An interesting study on a lively footbridge (M-bridge) in Japan revealed that a pedestrian, 
walking within a crowd on a perceptibly moving deck, synchronised their movement with the 
bridge vibrations (Nakamura, 2003). A phase from 120° to 160° between girder and pedestrian 
motion was identified. This synchronisation was only spoiled at maximum measured deck 
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amplitude of 45 mm, when it became much harder to walk. It is interesting that excessive 

lateral vibrations on this footbridge occurred at two different response frequencies (0.88 Hz 

and 1.02 Hz) depending on the crowd density. These two frequencies corresponded to two 

modes as high as the sixth and seventh lateral mode of vibrations. A very low damping ratio 

of 0.5% and also very low bridge mass of 400 kg/m2 certainly contributed to developing of 

such large vibrations. Nakamura (2003) also reported that the bridge mass was lower than 

the mass on other two well-known lively (in lateral direction) footbridges: Millennium Bridge 

(about 500 kg/m2) and T-bridge (800 kg/m2). 

Nowadays, increasing efforts are made to quantify the vibrations due to crowds using the 

basis of wind engineering theory. In one such attempt, Stoyanoff et al. (2002) suggested 

a correlation factor CR(N) in a moderate crowd of N people when the density is below 

1 pedestrian/m2 similar to one from vortex-shedding theory: 

CR(N) = e-ryN, (2.11) 

where the factor ry could be obtained from a condition that CR(N) = 0.2 (20%) for the max- 
imum congested footbridge as it was in the work by Fujino et al. (1993). However, Fujino 

et al. 's methodology could not predict the structural response during the Millennium Bridge 

tests (Dallard et al., 2001c). On the other hand, Yoneda (2002) stressed that several factors 

influenced the synchronisation factor: the lateral natural frequency, damping, length between 

node points in the resonant mode, walking speed and bridge length on which synchronisa- 
tion occurs. This observation was not experimentally verified on full scale structures but it 

deserves attention because of its generality. 

Interestingly enough, an entirely different theory to the one considered so far in this sec- 
tion which is based mainly on observations made on the Millennium Bridge, was given by 

Barker (2002). Ile claimed that the response to crowd movement may increase without any 

synchronisation between people. Further, Dinmore (2002) suggested treating the human in- 
duced force as a wave which propagates through the structure. As a way to control bridge 

response and avoid synchronisation, he recommended to vary the dynamic stiffness through 
the structure using different materials which will provide energy loss due to wave reflection 
and refraction on their contact. 

2.5.3.2 Vertical Synchronisation 

An attempt to quantify the probability of synchronisation in the vertical direction was made 
by Grundmann et al. (1993). They defined the probability of synchronisation Ps(ag) as a 
function of the acceleration amplitude of the structure a9 (Figure 2.25). They proposed that 
the response to N people on a structure should be calculated from the following formula: 

a9 = Ps(ag)Ntairz (2.12) 
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where alrz is the response to a single pedestrian and N,. = NK is the number of people 

reduced by the factor K<1 which takes into account that the load changes position along 

the structure. For a single span K=0.6 was proposed. For a bridge with fundamental 

frequency of 2 Hz the probability of synchronisation was suggested as 0.225. Therefore, for 

these parameters the multiplication factor PS(ag)Nr for the single pedestrian response alrz 
becomes: 

Ps(ag)N, =0.225.0.6"N=0.135N. (2.13) 

This is lower then the value vfY given by Matsumoto et al. (1978) for N up to 55 people, 
despite the fact that Grundmann et al. took into account the synchronisation possibility, 

and that fN implies N completely uncorrelated people. Grundmann et al. (1993) finally 

suggested that for groups of up to 10 people, the multiplication factor can be taken as 

presented in Figure 2.26, with maximum value of 3 for vertical natural frequencies between 

1.5 and 2.5 Hz. The same factor was proposed for the lateral direction but corresponding 
to two times lower natural frequencies. It should be said that synchronisation with bridge 

movement in the vertical direction is much less likely, although Bachmann & Ammann (1987) 

reported that it could happen when the vertical amplitude becomes at least 10 mm. 
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Figure 2.25: Probability of synchronisation as a function of the acceleration of the bridge 
(after Grundmann et al., 1993). 

Dallard et al. (2001a) suggested using random vibration theory to predict the bridge vertical 
response due to crowd. The mean square acceleration response E(a2) due to N pedestrians 
with normally distributed pacing rates was given as: 

2N irN wn wn -µ FwN 2 
E(a) .r --p (2.14) 

16cv Q 

)(M) 



CHAPTER 2 Literature Review 58 

where c, wn and M are the modal damping ratio, natural frequency and modal mass, F,,,, 

is the amplitude of the harmonic human force while p is the probability density function 

for normally distributed pacing frequencies with mean value p and standard deviation Q. 
However, this formula was conservative even in the Millennium Bridge case. Its assumption 
that people were uniformly distributed across the structure and that the mode shape was 

a sinusoid could induce errors and should be corrected according the real conditions on the 

bridge considered (Moutinho et al., 2002). Also, the distribution of step frequencies within 

a crowd is unknown. Finally, Mouring (1993) and Brownjohn et al. (2004) identified that 

a quantification of the degree of correlation between people in a crowd is a primarily task 
for future research. Brownjohn et al. (2004) went further and suggested a mathematical 

model for calculation of the bridge response under crowd of pedestrians based on theory of a 
turbulent wind on linear structures (Simiu & Scanlan, 1996). They proposed that the auto 

spectral density (ASD) of the response in a single mode $, (f) in a degree of freedom (DOF) 

specified by the coordinate z should be calculated as: 

ýziTz2coh(f, zl, zz)dzldz2 (2.15) S (. f) 
_ `I'z I H(f)12 SP, l(f) JL 

fo L 

0 

where 'Q, z is the mode shape ordinate in the same DOF, H(f) is the frequency response 
function (FRF) for acceleration response, Sp, 1(f) is the ASD of the pedestrian loads per 
unit length while'1z1 and " z2 are mode shape ordinates related to the location of each two 

pedestrians on the bridge described by coordinates zi and z2. Moreover, coh(f, z1, z2) is the 

correlation factor, between 0 and 1, which should be further researched, as mentioned earlier. 
This method gave a good estimate of the response for the footbridge investigated, but needs 
wider verification. 

4.0 
N 

3.0 

2. C 

2 
1. c 

91 
0 

0.01-- 0.0 

iIIIiI 
0.0 1.0 2.0 3.0 4.0 5.0 

natural frequency in vertical direction [Hz] 

Figure 2.26: Multiplication factor for groups of up to 10 pedestrians (after Grundmann et 
al., 1993). 

1. u 2.0 
natural frequency in horizontal lateral direction [Hz] 



CHAPTER 2 Literature Review 59 

An interesting suggestion for the assessment of liveliness of footbridges in the vertical direction 

under large crowd load, also based on the wind engineering theory (Simiu & Scanlan, 1996), 

was given by McRobie & Morgenthal (2002) and McRobie et al. (2003). It was proposed that 

the acceptability of vertical vibrations can be assessed by comparing the pedestrian Scruton 

number vPSN which is achieved with the one required for a particular footbridge. This 

number is defined as: 

vPSN = klk2m (2.16) 

where factors kl =C and k2 = 2n take into account the damping ratio of the empty 

footbridge ( (relative to the typical damping ratio of 0.5%) and the possibility that crowd 

density n could be different from a typical value of 0.6 persons/m2, respectively. In Equa- 

tion 2.16 m represents the mass per unit deck area for an equivalent simply supported beam 

having constant cross section. To have structure which will meet vibration serviceability 

requirements, a larger pedestrian Scruton number (i. e. larger damping and mass and lower 

pedestrian densities) is preferred. Data about acceptable Scruton numbers as a function of 

footbridge frequency should be provided by collecting data from existing footbridges known 

to be lively in the vertical direction. However, this task is hampered by the fact that not 

many footbridges have experienced large vertical vibrations under crowd load. 

In conclusion, it can be said that although the two considered types of synchronisation (among 

people, and between the people and the structure) are different in their nature, they usually 
happen simultaneously and lead to the same result - an increase in the response of the 

structure. In order to understand better the interaction between the moving crowd and the 

structure it is necessary to identify (Dallard et al., 2001c): 

1. the relationships between the crowd density, walking speed, walking frequency and 

probability of synchronisation, and 

2. the probability of lock-in and effective force per person in a crowd as a function of the 

amplitude and frequency of the bridge motion. 

2.6 Design Procedures and Guidelines 

Having a simple and accurate model of the human-induced force, knowing the footbridge dy- 

namic properties and having defined the tolerance level of human perception of vibrations are 
all required for checking the vibration serviceability of a footbridge. However, this is easier 
said than done. Based on previous sections, it is clear that researchers and practitioners have 
been working for many years on the formulation of footbridge vibration serviceability design 

procedures. As a result, some design guidelines have been adopted (BSI, 1978; OHBDC, 
1983). In general, it is important that these design procedures satisfy two somewhat con- 
tradictory requirements: to be simple and to be as accurate as possible. In this part of the 



CHAPTER 2 Literature Review 60 

review, key design procedures reported in scientific literature and design guidelines which are 

parts of formal national and international codes of practice are outlined. 

2.6.1 Design Procedures Reported in Literature 

The aim of most of the design procedures, defined either in the time or the frequency domain, 

is to determine the peak or the root-mean-square (RMS) response of a footbridge in order to 

assess its vibration serviceability. 

2.6.1.1 Time-Domain Design Procedures 

Chronologically the first and largest group of design procedures is based on an assumption 

that human-induced forces are perfectly periodic and can be therefore decomposed into har- 

monics by means of Fourier decomposition as given in Equation 2.1. Then, only a single 
force harmonic which can, theoretically, excite footbridge resonance related to the funda- 

mental mode shape, should be considered. This means that the structure can be regarded 

as a SDOF system in modal space as explained in Section 2.3. Usually, the first three or 
four excitation harmonics are considered as potentially resonant. All models presented in 

this sub-section are applicable to vertical forces only, if not stated otherwise. In general, 
the biggest problem in the modelling process is to simulate a pedestrian moving across a 
footbridge and the corresponding time limitation of such an excitation. 

Blanchard et al. (1977) proposed that serviceability should be checked in footbridges with 
fundamental natural frequencies f up to 5 Hz. As a serviceability criterion, they proposed 
that the acceleration response [m/s 2] due to one pedestrian should not exceed a limit of 
0.5VJ, where f is expressed in Hz. Blanchard et al. proposed a walking force model which 
was a resonant sinusoid moving across the bridge with velocity v of 0.9f (Figure 2.27a). 
Modal force per modal mass from the righthand side of Equation 2.4 for the fundamental 

vibration mode was given as: 

Pi (t) 
=P 0(0.9 f t) sin(21rf t) (2.17) 

M1 M1 

where P and M1 are the force amplitude of 18O N (which corresponds to the DLF of 0.257 

given in Section 2.2.3.1) and the generalised mass for the fundamental mode, respectively. 
x(0.9 f t) is the location-dependent ordinate of the first mode shape which is dependent on 
the position x=0.9f t of the pedestrian at time t after the beginning of walking. However, 
for simple bridge configurations (one, two or three spans), the procedure was simplified to a 
direct calculation of maximum acceleration response a using the formula: 

a= wly3KO (2.18) 
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where wl = 27rf is the fundamental circular frequency of the bridge, ys is the static deflection 

at the midspan due to the weight of one pedestrian, K is a configuration factor which depends 

on the number of spans and O is a dynamic response factor which takes into account the span 

length and footbridge damping. The last two parameters were obtained by numerical simu- 

lations on footbridges having up to three spans due to the general pedestrian load presented 

in Figure 2.27b. This work was probably the first attempt to define a design procedure for 

checking human-induced vibrations of footbridges and as such it is very valuable. However, 

the DLF equal to 0.257 used in Equation 2.17 is not representative of the whole frequency 

range of up to 5 Hz. In the 1970s, when Blanchard et al. (1977) published this groundbreak- 

ing paper, the concept of higher harmonics of human-induced dynamic loading was still not 

developed, so it is not surprising that the main criticism of their approach stems from this 

fact. Namely, for bridge frequencies in the range 1.6-2.4 Hz the influence of the first harmonic 

depends strongly on the walking frequency (Figure 2.10) and should not be represented by 

one value which is constant for all frequencies. At higher frequencies the response could be 

overestimated because the first harmonic is not relevant there. Also, this design procedure 

is only concentrated on the fundamental mode of vibration. However, if this mode had low 

natural frequency (up to 1.4 Hz), it hardly can be relevant for bridge response under human- 

induced force. In such a situation, a mode having frequency in the normal walking frequency 

range becomes more important. 

X. =ß, =(0.9f) , F(t) 
(a) 

fundamental mode 

(b) F(t) 
n"' pace 

F(t-T) IT 
fvý (n+1 )" pace 

Figure 2.27: (a) Moving force model and (b) forcing function for a pedestrian load (after 
Blanchard et al., 1977). 

Implementing the half-sine force model, Wheeler (1980; 1982) simulated response due to a 

single pedestrian walking at different frequencies on 21 footbridges. He used a computer pro- 

gram written for that purpose. He compared maximum displacements at each frequency with 
those obtained experimentally on each bridge. The differences in the results are explained 
as a consequence of many uncertainties encountered during the dynamic modelling process. 
Some of them, quoted in Wheeler's article from 1980, were nonlinear cable behaviour in cable- 
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stayed bridges, column supports modelled as pin joints, difficulties in predicting structural 
damping, neglecting of the mass of non-structural elements such as handrails, surfacing and 

so on. 

A considerable improvement of Blanchard et al. 's procedure was achieved with a model which 
took into account that the walking (or running) force had DLFs dependent on step frequency 

and harmonic considered (Figure 2.10), the force was moving and its duration was time 
limited by the length of the bridge (Rainer et al., 1988). The representative SDOF model is 

presented in Figure 2.28, where m, c and k refer to the modal mass, damping and stiffness 

respectively. A dynamic amplification factor 1) was introduced to account for the force moving 

and its limited duration, which was dependent on the structural damping and number of force 

cycles needed to cross the bridge. The modal peak acceleration response was then given as: 

a_ 
aP 4D (2.19) 
m 

where m is the modal mass, P is the pedestrian weight and a is the appropriate DLF according 
to Figure 2.10. This procedure demonstrated good agreement with an experimental study. 
Unfortunately, this design proposal was related only to single span footbridges. In the same 
article, it was proposed that the response to a jumping force could be calculated using an 
appropriate DLF for jumping (Figure 2.10) and the well-known formula for steady state 
response knowing that this force does not move along the bridge. Therefore, theoretically it 

could produce steady-state response although the practical duration of such an excitation is 
in question. 

P t, x mode shape 

modal 
V V,. 

force IxL 
P(t, x) 

m 

ký ILI c 

Figure 2.28: Pedestrian modal force model based on the design procedure by Rainer et al. 
(1988). 

After this proposal, several attempts to simplify or extend it were made. For instance, Allen 
and Murray (1993) simplified the procedure by replacing the walking force with a stationary 
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sinusoid acting at the centre of the span which amplitude and frequency depended on the 

relevant harmonic. In such conditions, the steady-state response was obtained and then a 

unique reduction factor R was introduced to take into account the exact nature of the force, 

that is the fact that it is moving and is of limited duration. The non-dimensional ratio 

between the harmonic peak response and gravity acceleration was then given by: 

a RaiP 
cos(2iri f t) (2.20) 

g OW 

where a; is a DLF, P is the pedestrian weight, 0 is the damping ratio, W is the bridge total 

weight while R is a reduction factor which is adopted as 0.7 for footbridges. However, this 

constant factor could not involve all possible situations produced by different span lengths and 

therefore different time needed to cross the bridge. Also, constant values for DLFs for each 

harmonic were adopted here as the maximum values given in Figure 2.10 (al = 0.5, a2 = 0.2, 

a3 = 0.1 and a4 = 0.05) which can give overconservative results. After some manipulations 

and taking into account the acceleration limits based on ISO (1992), Equation 2.20 was 

converted into a condition for minimum natural frequency of the bridge: 

fo > 2.861n 
W 

(2.21) 

where K is a constant equal to 8kN. The recommended damping ratio was 0=0.01. 

Further, Kerr (1998) converted Rainer et al. 's (1988) procedure into an analytical form to 

avoid using the graphs for DLFs and the factor 4). Also, he used his own expression for DLF 

as a function of step frequency (Figure 2.11) instead of the one proposed by Rainer et al. 

Finally, Pimentel & Fernandes (2002) extended the procedure proposed by Rainer et al. to 
footbridges with two spans introducing a factor ka. The peak modal acceleration was given 
in the form: 

2 amax = WoYsaiQdka (2.22) 

where wo is the fundamental circular bridge frequency, ys is the static deflection due to 
the weight of a pedestrian, ai is the DLF of the resonant ith harmonic, SZd is the dynamic 

amplification factor and ka is a numerically obtained factor which takes into account bridges 

with two spans in addition to single span structures. 

Grundman et al. (1993) used full theoretical expression (with transient and steady-state 
parts and assuming zero initial conditions) to calculate the resonant response due to a single 
pedestrian harmonic force. Acceleration response was given as: 

al, = 0.60'M (1- e-ri5) (2.23) 
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where the factor 0.4 is adopted as DLF for the first harmonic, G is the weight of a pedestrian, 
Al is the modal mass of the structure, S is the logarithmic decrement and n is the number 

of steps needed to cross the bridge. Introducing n means that a real duration of the moving 
force (i. e. the possibility that steady-state response is not achieved) has been taken into 

account. The factor 0.6 was included to involve moving of the pedestrian force i. e. the 

variation of the mode shape amplitude along the walking path. However, it is difficult to 
devise a formula representative of all footbridge span lengths and all simplifications of this 
kind will necessarily increase the errors in the response estimates. Grundmann et al. also 
proposed a similar approach for response calculation in the horizontal lateral direction but 

with DLF equals to one fourth of the DLF for the vertical harmonic. 

Probably the biggest shortcoming of all these procedures is their limitation to girder foot- 
bridges with only a few spans, usually one. Nowadays, when new footbridges have unusual 
structural form, it is necessary to formulate a more general design approach based on first 

principles. 

Young (2001) made an attempt to develop a design procedure independent of footbridge type. 
His procedure was based on the full theoretical expression for a steady-state acceleration 
response atz in a single vibration mode n (with the modal mass M, damping ratio (n and 
natural frequency f,, ) to a harmonic force with amplitude P and frequency f: 

an = JLi /j 
. 

1)2 PM 
DMF, (2.24 

where pi and µj are mode shape ordinates at the walking point and response point, respec- 
tively, while DMMMF is the dynamic magnification factor: 

DMF =1 22 
1-(j)2+i(2(nf) 

5 

At resonance, only the imaginary part of DMF remains. Young proposed a reduction factor 
r for this part to account for a limited duration of the pedestrian force and its moving across 
the structure: 

r= 1- e-2ýrS�N (2.26) 

where N depends on the number of cycles needed for the relevant nth harmonic to cross the 
bridge: 

N: 0.55n . (2.27) 

L and 1 represent the span and step lengths, respectively. 
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In addition to controlling the vibration serviceability under single person excitation, the 

response of the footbridge under a stream of pedestrians, groups and a crowd of people has 

been also considered by some authors, as previously described in Section 2.5.3. 

2.6.1.2 Frequency Domain Design Procedures 

Although design procedures presented in this section are not necessarily related to footbridges, 

they can be used as the basis for further investigations of these structures. The idea to assess 

the vibration serviceability of structures by using the theory of stationary random processes 

appeared in the early eighties (Ohlsson, 1982). It is known that for such a process, the auto 

spectral density (ASD) of the response Sy(w) can be calculated by the following relation 
(Newland, 1993): 

SS(w) =1 H(w) 12 Se(w) (2.28) 

where H(w) is the frequency response function of the structure and S', (w) is the ASD of the 
force. The mean square value of the response E[y21 can then be calculated as an area under 
the spectral density curve of the response (Newland, 1993): 

+00 

E[y21= f sy(w)dw 
00 

(2.29) 

and, further, the value of the root-mean-square (RMS) or peak acceleration, on which human 

perception criteria are often based, can be obtained. To obtain peak accelerations crest 
factors are usually used. 

As mentioned in Section 2.2.3.2, Eriksson (1994) paid great attention to force modelling in 

the frequency range up to 6-7 Hz, which was the typical range for fundamental frequency of 
the low-frequency floors he investigated. He assumed that a floor structure responded pre- 
dominantly in one ("weakest") mode and therefore could be modelled in the modal space as a 
SDOF system. Based on measurements of acceleration responses due to a single person (walk- 
ing, running and jumping) and groups of 7 and 11 walking people and using the relationship 
between spectral densities of the force and the response of the kind given in Equation 2.28, 
Eriksson proposed a force mean square design model with constant mean square in the range 
of the first harmonic frequencies and frequency dependent for higher harmonics (Table 2.4) 

where Fr�18 presents the root-mean-square function of the walking force while Knp(np) is a 
multiplication factor for a single person RMS force as a function of the number of people in 
the group np. He therefore found that group of people moving in step can be considered as 
almost perfectly correlated in considering its first harmonic. For that case it was proposed to 
multiply single force mean square by the factor of np-9 while for higher harmonics that factor 
was n°°"5 which is typical for uncorrelated people, where np is the number of people. 
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Table 2.4: Design force model after Eriksson (1994). 

Activity Frequency interval [Hz] F,, n, 
[N] KnP(np) 

Walking 0-2.5 220 a nP's 
2.5-10.0 180(fo/f) nPo. s 

Running 0-3.0 690 np's a, b 

3.0-10.0 4300(fo/f)2 np"5 b 

Jumping 0-3.5 1000 np's 
3.5-10.0 13000(fo/f)a nop. s b 

fo = 1.0Hz 
° Proposed factor is applicable for well correlated group. In case of 

normal traffic, the factor np 5 should be applied. 
b Factors given inter-alia in absence of sufficient data. 

Mouring (1993) and Mouring & Ellingwood (1994) modelled the auto spectral density of a 

modal force due to crowd dynamic loading as a product of number of people and the auto 

spectral density of an individual force. This is equivalent to the condition that time-domain 

acceleration response due to a group of n uncorrelated people is vfn- times higher than the 

acceleration due to a single person, as obtained by Matsumoto et al. (1978). 

Hansen & Sorensen (2002) defined jumping crowd load in terms of its harmonics, each of 

which was based on the appropriate harmonic due to a single person. Crowd effect and 
lack of synchronisation between people were taken into account by a crowd reduction factor. 

This factor was obtained for each harmonic separately as the ratio between the magnitude 

of deflection spectrum for a group to the magnitude of a single person spectrum. It seems 
that the calibration of the crowd reduction factor was based on measurements of the jumping 

response only at 2 Hz. 

Brownjohn et al. (2004) paid attention to imperfections in individual human walking patterns 

which spread excitation energy into adjacent spectral lines in comparison with the perfectly 

periodic force where the whole energy is concentrated at a single harmonic frequency. The 

spread of energy effect was shown to be more emphasized for higher harmonics. Based 

on direct measurements of the vertical force time histories for three test subjects walking 

on a treadmill, they proposed a model which described a forcing function for the first six 
harmonics. Namely, the ratio between Fourier amplitudes for real and periodic forces G' was 

given as a function of frequency f: 

G\ . ß_1c 
Gn I= A+ Be 'D (2.30) 

where f is the fundamental frequency of the appropriate perfect periodic force, n is the 

order number of harmonic while A, B, C and D are constants dependent on the harmonic 

considered. Knowing the ASD of the force harmonic SF, n(f ): 
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l 
(2.31) SF, n(f) _ [WGn(. fi)]2 SG' 

G) 

where TV, Gn and Sc' (f) 
are the pedestrian weight, the DLF for the appropriate harmonic 

of the perfectly periodic walking force and the ASD of the previously defined function Gn, 

respectively, the ASD of the response due to a single pedestrian can be obtained by applying 
Equation 2.28. On the other hand, for groups of people walking, it is suggested to evaluate 
the ASD of the response in terms of turbulent wind theory, as explained in Section 2.5.3.2. In 

principle, Brownjohn et al. 's model can take into account all relevant modes of the structure, 
including closely spaced modes. 

2.6.1.3 Other Suggestions 

Attempts to use the genetic algorithm optimisation procedure in modelling the serviceability 
problems are given by Obata et al. (1999) and Miyamori et al. (2001). Optimisation was 
carried out after the force and "human model" parameters, respectively. These parameters 
were used in calculation of the response with the aim to match it with the experimental 
response due to a pedestrian. However, it seems that optimisation parameters were different 
for different bridges which makes it difficult to generalise the model. 

2.6.2 Design Guidelines 

An early formal attempt to cope with the problem of vibrations perceptible by pedestrians 
on highway bridges was codified by the American Association of State Highway Officials 
(CDLB, 1958). For many years they limited the deflection due to live load to span-length 
ratio and the depth to span length ratio. However, Leonard (1966) reported that day-to-day 
design practice showed that such an approach had not led to bridges with acceptable level 

of vibrations. A different approach, related to composite highway bridges, was suggested by 
Mason & Duncan (1962). They proposed to limit the minimum bridge natural frequency to 
4 Hz and the maximum level of vertical acceleration to 0.15 m/s2 (1.5%g). 

Nowadays, there are two concepts which are present in design guidelines for footbridge vi- 
bration serviceability. The first requires a calculation of the actual dynamic response of the 
bridge and checking if it is within the acceptable limits for the bridge users. The second 
approach is based on the request to avoid footbridge natural frequencies which are in ranges 
coinciding with frequencies typical for human-induced dynamic excitation. 

A key example of the first approach is BS 5400: Part 2 (BSI, 1978). Historically, this is the 
first design code which dealt explicitly with the footbridge vibration serviceability issue. In its 
Appendix Ca procedure for checking vertical vibrations due to a single pedestrian was defined 
for footbridges having the natural frequency of the fundamental vertical mode of vibration of 
up to 5 Hz. This was based on the previously described work by Blanchard et al. (1977). Many 
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years later, based on experience with lateral vibrations of the London Millennium Bridge, the 

UK Highway'Agency started requiring checking the vibration serviceability also in the lateral 

direction in their Design Manual for Roads and Bridges (HA, 2001). For all footbridges with 

fundamental lateral frequencies lower than 1.5 Hz a detailed dynamic analysis is now required. 

However, the procedure for that is not given. Also, no improvement of the design procedure 

for vertical forces has been made in this provision. The vibration checking procedure is still 

based on Blanchard et al. 's (1977) work despite the fact that many shortcomings of that 

work have been identified in the last 25 years; some of them were explained in Section 2.6.1 

of this chapter. Also, although it is understandable that the natural frequency of a footbridge 

with up to three spans is estimated by a simplified calculation in 1977 when Blanchard et 

al. published their work, it is not justifiable nowadays. Modern trends in current footbridge 

design practice rely on finite element modelling. This and the fact that new footbridges 

usually have more complicated and unusual structural forms should be taken into account by 

proposing a methodology which is based on first principles and does not necessarily rely on 

simple formulae, which are very much discredited. 

The Ontario Highway Bridge Design Code (OHBDC, 1983) requires a calculation of the 

dynamic response of a bridge due to a footfall force simulated, similar to BS 5400, by a 

moving sinusoidal force with amplitude 18O N and frequency equal to the fundamental fre- 

quency or 411z, whichever is lower. Alternatively, if this full dynamic analysis is not done, 

then the simplified procedure based on Blanchard et al. 's (1977) paper should be conducted. 
The resulting peak acceleration response should be less than an acceleration limit defined 

graphically. This limit acceleration is lower than in BS 5400 (BSI, 1978; HA, 2001) given 
in Equation 2.6. Therefore, this code, like BS 5400, is based on a consideration of a single 

pedestrian force model. To avoid the problem of coupling between horizontal and vertical 

modes under wind loading, the Code also requires that lateral and longitudinal frequencies 

of the superstructures should not be less than the smaller of 411z and 1.5f where f is the 

fundamental natural frequency for vertical modes. For a footbridge with the natural vertical 
frequency of, say, 2 Hz this means that the lateral frequency should not be below 3 Hz. In 

principle, it would enable avoiding the first 2-3 harmonics of the lateral pedestrian force. 

However, having in mind Figure 2.29, this criterion can be prohibitively restrictive for foot- 

bridges with long spans. The same provisions for footbridges are given in Canadian Highway 

Bridge Design Code (CSA, 2000). 

A lot of research has been conducted to check applicability of the previous two guidelines. 
For example, Grundamnn et al. (1993) pointed to some problems with the applicability of 
BS 5400 to footbridges with natural frequencies around 2 Hz which are exposed to groups of 
pedestrians. Also, some work criticised the DLF given in the BS and OHBDC codes which 
is not representative of forces in the normal walking frequency range (Pimentel & Waldron, 
1996; 1997; Pimentel, 1997; Pimentel et al., 2001). 

Eurocode 5 (ENV, 1997) contains some interesting information relevant to design of timber 
bridges. It requires the calculation of the acceleration response of a bridge due to small groups 
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and streams of pedestrians in both the vertical and lateral directions, with the proposed 

frequency independent acceleration limits of 0.7 m/s2 and 0.2 m/s2 in these two directions, 

respectively. These limits should be checked for bridges with natural frequencies lower than 

5 Hz for the vertical modes and below 2.5 Hz for the horizontal modes. 
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Figure 2.29: Dependence of the fundamental natural frequency on span of the bridge for (a) 

vertical modes (after Tilly et al., 1984) and (b) lateral modes (after Dallard et al., 2001c). 

The procedure for the calculation of the vertical acceleration response for bridges with one, 

two or three spans is based on obtaining avert, a: 

avert, a = 165ka 
1- e-27rnC 

M( 
(2.32) 

which can be regarded as a response in a single mode and due to a single pedestrian excitation. 
Here, ka is a configuration factor based on Blanchard et al. (1977), while n, C and M are 

the number of cycles necessary to cross the bridge with step length of 0.9 m, damping ratio 

and the total mass of the bridge, respectively. This formula originates from a full theoretical 

expression for resonant response due to a harmonic force, where the force amplitude is 165 N. 

This amplitude includes the DLF as well as the fact that the force moves across the bridge 

(Hamm, 2002). For the case of a footbridge which has a more general structural configuration, 

the acceleration response should be calculated for the force Fvert(t) which is moving across 
the bridge with velocity of 0.9 f vert: 

Fvert (t) = 0.28 sin(2rc f vertt) [kN], (2.33) 

where fvert [Hz] is the fundamental natural frequency in the vertical direction. This force 

amplitude of 0.28 kN is higher than in BS 5400 (BSI, 1978) and the Ontario design code 
(OIIBDC, 1983), and corresponds to a DLF of 0.4 for an average pedestrian weighing 700 N. 
More detailed background of this formula and some possible modifications can be found in 
Hamm (2002). 

The response due to small group of pedestrians can be obtained by multiplying the calcu- 
lated avert, i by a factor k9ert, f which is dependent on the footbridge fundamental natural 
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frequency. Its maximum value of 3 is predicted for the range of common step frequencies 

1.5-2.5 Hz, as given by Grundmann et al. (1993) for groups of up to 10 people (Figure 2.26). 

However, if the bridge has a deck area greater than 37M2 , then this group response should 
be increased further by a factor which is dependent on the area, probably to take into ac- 

count the possibility of synchronisation of a crowd of pedestrians in the vertical direction. 

The same procedure should be followed when calculating the lateral acceleration response by 

replacing the quantities related to the vertical direction with the lateral direction ones. There 

are also differences in the force amplitudes in Equations 2.32 and 2.33 which are 40 N and 
0.07 kN instead of 165 N and 0.28 kN, respectively and in the expression for the pedestrian 
velocity which becomes 1.8 fho,. [m/s] where fha,. [Hz] is the fundamental natural frequency 
in the lateral direction. The factor kha,., f has, as k7Jert, f, the maximum value of 3, but in 

the frequency range typical for lateral force induced by pedestrians: 0.75-1.25 Hz. However, 
deriving this lateral response based on the procedure for the vertical one and without any 
experimental data could be problematic and erroneous as noted by Dallard et al. (2001c) 

and Briseghella et al. (2002). Therefore, as in previous guidelines, this proposal is also based 

on assumptions of the resonance condition and a single DLF value over a range of walking 
frequencies. However, the proposal considers a group of pedestrians which is a rather new 
and advanced approach in design codes. 

There are few data about the applicability of this guideline. On some bridges it has suc- 
cessfully predicted liveliness of structures, although more detailed explanation as to the level 

of agreement between the calculated and measured response was not given (Pedrazzi & Bel- 
trami, 2002). On the other hand, an attempt to apply this procedure to the Millennium 
Bridge for the case of high density of people produced significantly lower response in the 
lateral direction than the measured one (Dallard et al., 2001c). 

The Hong Kong Structures Design Manual for Highways and Railways (HD, 2002) requires 
controlling the acceleration response due to a pedestrian in accordance with BS 5400. Also, it 
limits the lateral acceleration to 0.15 m/s2. Moreover, it requires additionally a check of the 
acceleration response due to a stream of pedestrians. The assumption is that the stream is 
a continuous load moving with velocity 3 m/s over a simple beam. However, sufficient detail 
as to how to perform the load simulation was not given in the Hong Kong manual. 
Swiss standard SIA 160 (1989) belongs to the second group of guidelines which utilises the 
frequency checking and tuning approach. It requires avoiding footbridge natural frequencies 
in the range of the first (1.6-2.4 Hz) and the second walking harmonics (3.5-4.5 Hz) with the 
addition of frequencies 2.4-3.5 Hz if joggers/runners can appear on the structure. If these 
requirements are not fulfilled then the vibration response of the structure should be checked. 
Identical provisions as for the frequency ranges which should be avoided are given in the 
Design Code issued by Comite Euro-International du Beton (CEB, 1993). 

The American Guide Specification (AASHTO, 1997) also proposed to avoid fundamental 
footbridge frequencies in the vertical direction, but below 3 Hz. However, in the case of low 
stiffness, damping and mass, and when running and jumping on the footbridge are possible, all 
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frequencies below 5 Hz should be avoided to neutralise the influence of the second harmonic. 

However, it is not stated what the lower limits for these low dynamic properties are. If 

the frequency conditions are not satisfied, then the minimum natural frequency given by 

Allen & Murray (1993) in Equation 2.21 should be a target for the structure to satisfy 

serviceability requirements. As a possible measure to improve poor dynamic performance 

of bridges, installation of vibration absorbers and dampers is suggested. Finally, Yoshida et 

al. (2002) reported that Japanese design code for footbridges requires avoiding frequencies 
between 1.5-2.3 Hz for the vertical modes. 

Regarding the second group of guidelines, Pimentel et al. (2001) found that the frequency 

tuning approach can be restrictive because there are footbridges which are serviceable al- 
though they have frequencies in the range recommended for avoidance. 

A list of existing codes and their division between those which specify acceleration limits and 
those with frequency limits was given by Schlaich (2002). Unfortunately, the author omitted 
their exact references which leaves uncertainties as to the exact code titles and editions. 
As has been shown in this section, some codes recommend avoiding the resonant frequency 

range typical for the first or second force harmonic, the others give a more or less complex 
design procedure to calculate the response of the bridge and check if it is acceptable. None 

of the codes consider all aspects of vibrations induced by humans i. e. vibrations in both 
horizontal lateral and vertical direction and vibrations not only due to a single person but 
also due to groups and crowds. Therefore, there is a clear need to revise and update design 
guidelines featuring obsolete or missing information. 

2.7 Measures against Excessive Vibrations of Footbridges 

With the occurrence of the first problems related to the liveliness of footbridges, some early 
design recommendations, such as the one by Walley (1959), proposed that the fundamental 
vertical natural frequency of a structure below 2.7 Hz should be avoided. It is interesting 
to note that this corresponds to the upper limit of the range of the first walking harmonic, 
although at that time little was known about the actual nature of the walking force as no 
widely reported measurements of it existed. Leonard (1966), on the other hand, claimed 
that there was no need to avoid any frequency range if an appropriate damping and stiffness 
had been provided. For example, some footbridges are serviceable although their natural 
frequencies are inside the problematic ranges (Pimentel et al., 2001) or the damping ratio 
is as low as 0.4% (Parker et al., 2003). However, with modern trends towards slenderness 
in footbridge design, it happens that footbridges more and more frequently do not perform 
well in service as far as their vibration behaviour is concerned. A list of examples of such 
problematic footbridges was compiled by Pimentel (1997). 

There are several measures which can be used to predict, prevent and resolve the problems 
of liveliness in footbridges (Bachmann & Ammann, 1987; Bachmann, 1992a): 
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1. Frequency tuning: As previously mentioned, this measure means avoiding the critical 

frequency ranges for the fundamental modes. For vertical mode these are the frequencies 

of the first (1.6-2.4 Hz) and, for bridges with low damping, the second walking harmonic 

(3.5-4.5 Hz). Although Bachmann & Ammann proposed the same provision for the 

lateral modes (namely, 0.8-1.2 Hz for the first and possibly 1.6-2.4 Hz for the second 

harmonic), it should be added that lower frequencies could be excited too, according to 

observations made on the Millennium Bridge, London where the frequency of the lowest 

mode excited was only 0.5 Hz (Dallard et al., 2001a). For the longitudinal direction, the 

first sub-harmonic and the first harmonic, with frequencies 0.8-1.2 Hz and 1.6-2.4 Hz, 

respectively, should be avoided. Excessive vibrations in this direction are very rare, but 

one case was reported by Bachmann (2002). It should be stressed that the designer can 

influence frequencies of the footbridge by choosing an appropriate layout of the structure 

and by studying different options for distributing its stiffness and mass. Figure 2.29 

gives a rough guidance of the possible fundamental frequencies as a function of the 

bridge span for vertical (Tilly et al., 1984) and lateral modes (Dallard et al., 2001c). 

Structural frequency can, for example, be changed by stiffening the structure (installing 

stiffer handrails or adding tie-down cables); Tilly et al. (1984) found that footbridges 

with stiffness in the middle of the main span which is lower than 8 kN/mm are likely 

to be prone to vibrations in the vertical direction. 

2. Detailed Vibration Response Assessment: This is a measure which is the basis of many 

contemporary design procedures (Section 2.6). However, it is underpinned by many 

uncertain modelling assumptions and its reliability is often questionable. 

3. Measures to Reduce Vibration: These measures are: 

9 Restricting the use of the bridge (for example, ban marching over the bridge); 

" Increasing the damping (e. g. by adding extra damping devices such as viscous 
dampers or tuned mass dampers). 

It can be added here that warning and/or educating people to expect vibrations can help 

them to tolerate higher vibration levels than they would without an explanation that their 

safety is not in question. This is not surprising as safety is the main concern of the bridge 

users in case of excessive vibrations (Leonard, 1966). 

The remainder of this section will consider the use of damping devices that are often used in 

practice. 

2.7.1 Tuned Mass Dampers: Theory 

Tuned mass dampers (TMDs) are spring-mass or spring-mass-damper systems which can be 

added to a structure to reduce its vibration response. Contrary to active vibration suppression 
systems, which directly monitor the structural response and accordingly adjust their dynamic 
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behaviour to reduce response over a wide frequency range, tuned mass dampers are passive 

devices which are effective only in a narrow frequency range (Hunt, 1979). 

Ormondroyd & Den Hartog theoretically formulated principles of TMDs in 1928. They found 

that adding a spring-mass system to an undamped SDOF structure, which was excited by a 

resonant sinusoidal force, would form a new 2DOF system in which the structural response 

would be completely eliminated in the case when the natural. frequency of the absorber was 

the same as the one of the primary system. Adding damping to the absorber's spring-mass 

system made it efficient not only at a single frequency but also over a frequency range. The 

absorber damping was more effective in reducing the response of the main SDOF system than 

the damping already present in the main system. This was the reason to neglect structural 

damping in many numerical simulations of TMDs reported in the literature. Although Or- 

mondroyd & Den Hartog (1928) concluded that there was an absorber damping value (the 

optimum damping) which would give the maximum attenuation of the structural response, 

they could not find it analytically. This paper was and still is an excellent base for further 

research in this area. 

In his textbook, which had five editions between 1934 and 1985, Den Hartog found the 

absorber frequency and damping which will minimise the steady-state displacement response 

of a structure under sinusoidal force, both as functions of a chosen ratio p of the absorber 

and SDOF system masses. These optimum (tuning) parameters are (Den Hartog, 1985): 

f=1 (2.34) 
+ 

3µ (c"2 
(2.35) c, = 8(1 + p)31 

where f is the ratio of the absorber and structural natural frequencies, while Lr is the 

absorber damping ratio. 

Footbridges with well-separated modes which are perceived as lively respond mainly in one 

mode of vibration. This mode is usually lightly damped. Therefore, by using appropriate 

modal mass and stiffness, the excited mode can be represented as a SDOF system, and the 

optimum TMD parameters can be calculated using Equations 2.34 and 2.35. In that case the 

parameter p becomes ratio of the absorber mass and modal (generalised) mass of the SDOF 

system. For a simple beam structure, the assumption that the relevant pedestrian harmonic 

does not move produces only small differences in the tuning parameters in comparison with 

a moving force. The effectiveness of the absorber is nevertheless lesser for the moving force 

case (Jones & Pretlove, 1979). 

Generally, an optimisation of absorber parameters (f and -I) could be done for different types CCr 
of excitation and considering different response parameters. A lot of work has been devoted 

to this issue. For example, Warburton (1982) analysed an undamped SDOF system under 
harmonic excitation but optimised response against displacement, velocity and acceleration of 



CHAPTER 2 Literature Review 74 

the main mass, and also against the force transmitted to the base. He also did optimisation 
analysis for white noise excitation and harmonic base acceleration. Rana & Soong (1998) 

analysed numerically the optimisation for a damped system due to harmonic main mass 

excitation and harmonic base excitation. They also pointed out the possibility to control 
the response in more than one structural mode by installation one TMD for each mode 

considered. Several TMDs can also be used for controlling SDOF system response due to 

wide-band random excitation (Xu & Igusa, 1992; Rana & Soong, 1998). 

In the case of footbridges, a single TMD for a dominant mode is usually considered. It is 

most effective to put the TMD at the point with maximum structural response, that is at 
the antinode (Jones & Pretlove, 1979). 

2.7.2 Tuned Mass Dampers: Practice 

Matsumoto et al. (1972) reported one of the first cases of installation of a spring-mass 
absorber to suppress excessive vibration of a footbridge. An explanation of that exercise, as 
well as of an installation of two additional absorbers in another pedestrian bridge was given 
by Matsumoto et al. in 1978. Also, Brown (1977) reported briefly on another installation of 
a TMD on a bridge. 

Chasteau (1973) described the successful installation of two TMDs on a three span footbridge 

susceptible to wind dynamic excitation. The two TMDs were a new technology at that time 
which was probably the reason for clients to ask for these devices to be maintenance-free. 
Because of that, the author decided to use air instead of fluid damping, although it was hard 
to fabricate that sort of a solution. Finally, the absorbers increased the bridge damping by 

about five times, but their mass ratios were 0.043 and 0.065 which is quite high. As reported 
by Eyre & Cullington (1985), this state of affairs probably discouraged engineers at that time 
to use TMDs more frequently to solve the liveliness problem in footbridges. 

Jones & Pretlove (1979) investigated effectiveness of a TMD on a 30 m long beam. It was 
demonstrated that a TMD of 70 kg having the mass ratio of only 0.006, can be quite effective. 
However, this was expected, having in mind very low damping ratio in the structure of only 
0.13%. Jones & Pretlove also showed that Den Hartog's formulae for optimum TMD design 
given in Equations 2.34 and 2.35 can be used if the damping of the structure is below 1% 
and that the effectiveness of the TMD can be reduced because of the internal friction in the 
absorber. Figure 2.30 shows the difference between theoretical and measured displacement 
amplitude of the beam for a range of harmonic excitation frequencies. 

Bachmann & Weber (1995) wrote an excellent and comprehensive article about the design 
and effectiveness of vibration absorbers. They showed that Equations 2.34 and 2.35 can be 
used for all lightly damped structures, especially if the damping is below 2% (Figure 2.31). 
It was also demonstrated that the effectiveness of the absorber was much more sensitive 
to the error in the tuning of the TMD frequency than in the tuning of its damping. The 
procedure for the absorber design was outlined with a particular emphasis on the choice of 
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the appropriate mass ratio. Namely, an absorber with, for example, mass ratio of 0.02 seems 
to be a solution which both successfully attenuates the structural response and also keeps 

the absorber mass movement within reasonable limits (Figure 2.32). 

With regard to the usage of TMDs, it is now common practice to design them upfront, but 

actually manufacture and install them after the footbridge is constructed if problems of exces- 

sive vibrations are noted. Also, it is interesting that 26 pairs of TMDs were installed on the 
Millennium Bridge, London to prevent possible excessive movement in the vertical direction 

which was not noticed during the conducted tests (Dallard et al., 2001a). Some examples 

of TMDs installed in footbridges can also be found in articles presented at Footbridge 2002 

conference in Paris (Breukelman et al., 2002; Collette, 2002; Hatanaka & Kwon, 2002). 
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Figure 2.32: Dynamic amplification of the structural and relative structure-TMD response 
as a function of the mass ratio (after Bachmann & Weber, 1995). 

TMDs can suppress either vertical or horizontal movement. TMDs working in the vertical 
direction usually consist of a mass, helical springs and viscous-fluid damper while the hori- 

zontal ones are typically constructed as pendulums (Weber, 2002). Vertical TMDs are more 

common and they are usually attached to main girders, beneath the deck or above the deck 

in the plane of the handrails. They are usually low-cost and easy to maintain. However, 

with time the effectiveness of absorbers can be reduced because of disappearance of viscous 

oil (Eyre & Cullington, 1985), changing of dynamic properties of the structure (Bachmann 

& Weber, 1995) and changed nature of the live pedestrian load for which the footbridge was 

originally designed. In all these cases de-tuning of the TMDs occurs. The last two reasons 
initiated a quest in the research community for a better solution for vibration suppression. 
One of the options is replacing the passive with a semi-active damper in the TMDs. Without 

getting into details of this relatively new technology here, reference will be made to analyses 
conducted by Occhiuzzi et al. (2002) and Seiler et al. (2002). They described semi active 
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devices which, owing to their rheological properties, can adjust their stiffness and damping 

according to changes in the main structure. However, these devices require additional equip- 

ment for measurements and control and it may be some time before they become economically 

viable. 

Also, because of the variability of the human pacing rate, the multiple tuned mass dampers 

(MTMD) can be a more effective solution than a single TMD. Poovarodom et al. (2001; 2002; 

2003) reported the installation of six TMDs to reduce the vertical vibration of a footbridge. 

Although their weight was only 1% of the structural weight, they decreased acceleration by 

about three times. 

2.7.3 Other Damping Devices 

Although TMDs are most popular, other devices for suppressing bridge vibration response can 

also be used. For example, a very simple friction device composed of two springs was installed 
in the handrails of a footbridge (Brown, 1977). Furthermore, 37 fluid viscous dampers were 
installed on the Millennium Bridge in London mostly to suppress excessive vibrations in 
the lateral direction. As a result, the damping ratio increased from 0.5% to 20% and near- 
resonant accelerations were reduced by about 40 times (Dallard et al., 2001a; Taylor, 2002). 
Also, tuned liquid sloshing dampers can be used for the same purpose. In this system liquid 
is contained in a shallow tank which is placed on the structure. The required height of the 
liquid is established by nonlinear shallow-water wave theory. The motion and viscosity of the 
liquid generate the required damping. This tuned liquid damper (TLD) is cost-effective, easy 
to install and maintain and requires a very low vibration level to which it will respond, which 
is sometimes a problem with standard mechanical TMDs (Fujino et al., 1992). Nakamura & 
Fujino (2002) reported that 600 plastic tanks with 34 mm of water were employed to suppress 
lateral vibrations of a cable-stayed footbridge. The TLDs were placed inside the box girder. 
The mass ratio was only 0.007. It was shown that these TLDs were very effective at the time 
of installation. However, it was also reported that after 10 years without any maintenance, 
their effectiveness reduced considerably, mainly because the water evaporated. On the same 
bridge, secondary wires were used to connect stay cables and decrease their in-plane vertical 
oscillation which in fact is an example of stiffening rather than dampening of the structure. 
As a way forward, multiple TLDs with different level of liquids can be used to suppress motion 
over a range of frequencies (Fujino & Sun, 1993). 

2.8 Summary 

This chapter has reviewed about 200 references dealing with different aspects of vibration 
serviceability of footbridges under human-induced load. It is found that the whole issue is 
very complex and under-researched. However, rationalisation of the problem into its three 
key aspects: the vibration source, path and receiver (ISO, 1992) is adopted nowadays when 
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dealing with vibration performance of footbridges. 

Among different types of human-induced loads on footbridges, walking force due to a single 

pedestrian was established in the past as the most important load type because of its most 
frequent occurrence. Also, almost all existing force models for this type of load (defined either 
in the time or frequency domain) are developed from the assumption of perfect periodicity of 
the force and are based on force measurements conducted on rigid (i. e. high frequency) sur- 
faces. However, footbridges which exhibit vibration serviceability problems are low frequency 

flexible structures with natural frequencies within the normal walking frequency range. In 

such a situation, walking at a near resonant frequency is expected to generate the highest 

level of response as considered in the published literature. However, the walking force is not 

perfectly periodic (Saul et al., 1985; Eriksson, 1994; Brownjohn et al., 2004) and it could be 

attenuated due to interaction between the pedestrian and the structure (Ohlsson, 1982; Yao 

et al., 2002; 2003). These two facts deserve more attention in future force modelling. 

Apart from a single person walking, a group of pedestrians walking at the same speed to 

maintain the group consistency are a very frequent load type on footbridges in urban areas. 
This type of dynamic load was not researched much in the past, especially in relation to 

pedestrian bridges. Wheeler (1982) and Grundmann et al. (1993) were among a handful of 
researchers who investigated this issue. They found that, under this type of load, footbridges 

with a natural frequency of around 2 Hz are prone to experience vibrations at a higher level 
than those induced by a single pedestrian because of synchronisation of walking steps between 

people in the group. However, there is no group force model which is generally accepted. The 
fact that Eurocode 5 (ENV, 1997) recently tried to include this type of load as a compulsory 
consideration demonstrates a need to codify it more widely. 

As this literature survey found, the problem of excessive lateral swaying of the Millennium 
Bridge in London in June 2000 triggered a lot of urgently needed research into crowd loads 

on footbridges. Attention was paid to forces induced not only in the lateral but also in the 

vertical direction. It was found that some degree of synchronisation between people within 
the crowd exists as a result of not only a limited space available when walking in a crowd but 

also of pacing adjusted to the bridge movement. Qualitative observations revealed that the 
degree of synchronisation is dependent on several factors: the natural frequency of the bridge 

excited by crowd walking, amplitude of the footbridge response, number of people involved, 
density and velocity of people and so on. However, more research is needed to quantify the 
influence of all these parameters on the level of synchronisation. 

This review also found that forces induced by joggers, runners and vandals have not been 

researched much in the past. However, there is an increasing awareness that the application of 
vandal loading, in particular to very slender light structures with low damping, can generate 
a significant response of the structure and should be treated adequately. It is found that 
jumping, bouncing and horizontal body swaying are usually considered as possible vandal 
loads. However, contradictory proposals about the modelling of this type of loads exist. These 
range from the one that vandals in small groups can be perfectly synchronised (Bachmann, 
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2002) to the one that vandals can produce only slightly higher response than a single person 

performing the same activity (Wheeler, 1982). Therefore, a clarification of the exact definition 

of the vandal loading, regarding its duration, type of load and number of people involved, as 

well as its force modelling is a task for further investigation. 

For a reliable estimate of vibration serviceability performance of footbridges, an appropriate 

modelling of its dynamic properties (mass, stiffness and damping) is very important. This 

review showed that, using finite element packages, mass and stiffness can be modelled most 
successfully using previous experiences when modelling similar structures. In that way, good 
estimates of natural frequencies and mode shapes can be obtained. However, the only reliable 
way to determine structural damping is to conduct the testing of the full-scale structure after 
it is built. 

As for evaluation of human-induced vibrations on footbridges i. e. their acceptability to human 

receiver, it is accepted that in the case of normal footbridges, the vibration level should be 

evaluated for a walking and not standing person. Issues such as the transient nature of 
footfall excitation, limited time of exposure to vibrations and the fact that the receiver is 

not stationary but is moving were identified as important ones. Leonard (1966) and Smith 
(1969) investigated the acceptability of vertical vibrations to walking test subjects, having in 

mind the mentioned issues. As a result, they constructed scales of acceptable vibrations as 
function of their dominant frequency. The average value of these results has been adopted 
as a design rule in BS 5400 (BSI, 1978; HA, 2001) and it is widely used in design practice. 
There is no similar widely accepted scale related to acceptability of vibrations in the lateral 
direction, although some recommendations related to perception within a crowd have recently 
been published. Also, research into differences in human acceptance of the vibrations when 
walking alone, in small groups or a large crowd is very scarce. 

Finally, it can be said that the most advanced design guidelines, such as BS 5400 (BSI, 1978) 

and Canadian Highway Bridge Design Code (CSA, 2000), which served as the basis for most of 
other guidelines, are founded on research data collected in the 1970s. As a consequence, they 
still imply some parameters which are nowadays proven as inadequate (such as a constant 
DLF regardless of the pacing frequency and force harmonic considered). Also, although some 
formal national guidelines require consideration of lateral forces induced by pedestrians, exact 
procedures as to how to consider them are usually not given or are proven to be inadequate. 
Based on these facts, the existing guidelines should be used carefully, with plenty of lateral 
thinking and along with some recently published research which could be relevant for a design 
case considered. 



Preface to Chapter 3 

The work on modal testing and finite element (FE) modelling of a lively footbridge in Pod- 

gorica (capital of Montenegro) is presented in Chapter 3. In addition, correlation between 

the experimental results and the FE model is studied to identify any major inaccuracies in 

the FE model. This work is the first phase in a process of estimating more reliable dynamic 

properties of the footbridge. The second phase of automatic model updating is presented in 

Chapter 4. 

The rationale for the work in Chapter 3 was to: 

. estimate dynamic properties of a footbridge structure that later will be required for 

verification of a force model, and 

" gain necessary experience in dealing with data acquisition, signal processing and param- 
eter estimation that is required for vibration serviceability assessment of footbridges. 

This proved to be a particularly useful exercise having in mind that data collected by 

other Vibration Engineering Section members in the past were planned to be used at 

a certain point of the research. Therefore, understanding of their format and way of 

collecting was required. 

During the work presented in Chapter 3 the author became familiar with data acquisition 
for both FRF- and ambient-based modal testing, parameter estimation by using ICATS and 
ARTeMIS software as well as with FE modelling in ANSYS. 
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Chapter 3 

Modal Testing and Finite Element 
Model Tuning of Podgorica 

Footbridge 
This chapter, in a slightly amended form, has been published under the following reference: 

2ivanovid, S., Pavic, A. and Reynolds, P. (2006) Modal Testing and Finite Element Model Tuning of a Lively 
Footbridge Structure, Engineering Structures, 28 (6), 857-868. 

Abstract 

Despite huge advances in numerical modelling in recent decades, finite element models for footbridges 

should be used with caution when evaluating vibration properties of these structures. This is due to 

some unavoidable modelling uncertainties such as modelling of boundary conditions, material prop- 

erties and effects of non-structural elements. These are difficult to deal with at the design stage. A 

common method to rectify this problem is vibration testing of these structures after construction. 
As footbridges are unique prototype structures testing in this late stage does not help the design of 
the actual structure. However, combining testing and analysis improves understanding of vibration 
behaviour, helps future designs of similar structures and provides key information for the design of 

remedial measures, if required. 

This chapter describes a lively full-scale footbridge, its numerical modelling and dynamic testing. 
This was done using state-of-the-art procedures available nowadays for finite element modelling and 
frequency response function based modal testing. The time efficiency of the testing and parameter 
estimation procedures carried out without formally closing the footbridge is demonstrated as well as 

good quality of results achieved. The identified vibration parameters compare well with those from an 
ambient vibration survey where only the bridge responses were measured. Also, it was demonstrated 

that properly planned testing can be performed successfully even with some limited facilities, such 
as only two accelerometers available. The correlation between a very detailed finite element model 
and experimental results is then studied. For this particular structural system, stiffness of girder 
end supports in the longitudinal direction and bending stiffness of inclined columns were identified 

as the modelling parameters which influenced most strongly the vertical and the horizontal modes of 
vibration, respectively. 
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3.1 Introduction 

Finite element (FE) modelling of footbridges is now common in a normal footbridge design 

process. With advances in numerical modelling, it is often expected that FE models based 

on technical design data and best engineering judgement can reliably and equally well sim- 

ulate both the static and dynamic behaviour of the bridge. However, because of modelling 

uncertainties (such as stiffness of supports and some non-structural elements, material prop- 

erties and so on) as well as inevitable differences between the designed and as-built structure, 
these FE models cannot often predict the natural frequencies and mode shapes with the re- 

quired level of accuracy. This raises the need for verification of the FE models of footbridges 

after their construction. This is especially so when they are required to further study the 

structural behaviour, for example when designing vibration suppression measures (e. g. tuned 

mass dampers). Moreover, the modal damping, a very important dynamic parameter which 

governs the footbridge dynamic response near resonance, varies from structure to structure 
and can only be determined experimentally after the particular structure is built. 

A common approach nowadays for establishing a feedback between the real structural perfor- 
mance and design FE models is to employ some form of modal testing (Maia et al., 1997) on 
footbridges in service. The aim of modal testing is to determine as-built natural frequencies, 

mode shapes and damping ratios. Currently, the dynamic testing and experimental verifica- 
tion of FE models are not part of a normal design procedure in civil structural engineering. 
This is contrary to mechanical and aerospace engineering disciplines where studying of the 

prototype models of the structure and its correlation with a corresponding FE model has 
become a part of everyday design practice (Friswell & Mottershead, 1995). This is often 
justified by the fact that mechanical and aerospace engineering deal with large production 
of identical units as opposed to civil structural engineering where almost every structure is 

actually a unique prototype. 

As dynamic testing is not a part of the normal design process in civil structural engineering 
and it can also be expensive, it is common not to do it. Additionally, there are serious 
legal and cultural issues related to it, such as a fear of legal liability, possibly leading to 
additional expense, if the testing proves that the structure does not perform as predicted 
during design. As a result, there is currently a serious lack of information about the as-built 
dynamic performance of civil engineering structures, leading also to a lack of information 

about the reliability of FE modelling in civil structural engineering design. In other words, 
by avoiding testing as-built structures and correlating the measured data with the numerical 
models, we do not know how good the created dynamic FE models are even if best engineering 
judgement and practice is employed in the modelling. 

On the other hand, there are multiple benefits of dynamic testing. In the case of footbridges 
it adds to the body of knowledge about their as-built performance. As mentioned above, 
this knowledge is currently very limited, which is not satisfactory considering that vibration 
serviceability is becoming the governing design criterion for footbridges. Also testing enables 
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retrofitting measures, such as installation of tuned mass dampers. Moreover, it helps future 

design of structures of similar configurations. Finally, the dynamic testing is nowadays an 
important part of research into vibration serviceability of footbridges. Namely, good quality 

experimental data are required for both manual (model tuning) and automatic updating of 
the design FE model (Fritswell & Mottershead, 1995; Maia et al., 1997). These models are 

crucial for studying vibration serviceability state of as-built footbridges. 

Bearing all this in mind, this chapter presents a case study related to FE modelling, modal 
testing and manual FE model tuning of a lively footbridge in Podgorica, Montenegro. It 
demonstrates the reliability of a very detailed design FE model which was firstly developed 
by employing best engineering judgement and available design data. Then, the lowest modes 
of vibration in both the vertical and horizontal lateral directions were identified using a 
state-of-the-art frequency response function (FRF) based testing procedure, using shaker 
excitation with in-situ data processing and analysis. Also, to verify the shaker test results, 
an ambient vibration survey (AVS) was conducted to examine the (lively) vertical direction 

only. Based on the experimental results, the design FE model was then revised and manually 
tuned to match the actual natural frequencies of the footbridge more closely. Manual tuning 
is required when developing an FE model suitable for later implementation of the automatic 
updating procedure (Brownjohn & Xia, 2000). Otherwise, automatic updating may not work 
as the starting model is too far away from the measured targets. Using the manually tuned 
FE model, a sensitivity-based automatic updating was also conducted successfully and is 

presented in Chapter 4. 

The first part of this chapter reviews briefly the existing literature concerning the numerical 
and experimental investigations of dynamic performance of footbridges. Then, the steel box- 

girder footbridge investigated is described followed by a description of a design FE model and 
the main assumptions made during its development. Then an FRF-based modal testing of 
the bridge is described, together with an AVS testing exercise. After this, the as-built modal 
properties of the footbridge are identified and compared with the numerical results. Finally, 
the FE model is manually tuned and key results of this interesting exercise are discussed. 

3.2 Background Review 

There are only a few articles dealing with both vibration testing and FE modelling specif- 
ically related to footbridges. Probably the first extensive work related to vibration testing 
of footbridges was conducted by the UK Transport and Road Research Laboratory in 1970s 
(Leonard, 1974; Leonard & Eyre, 1975; Eyre & Tilly, 1977). Their work was concentrated on 
presenting and discussing the experimentally identified modal properties (Leonard & Eyre, 
1975; Eyre & Tilly, 1977). The testing equipment used was described separately in a paper 
by Leonard (1974) and from today's point of view it was quite limited. This is particularly 
so regarding the type of exciters used, very limited excitation frequency range, the slow data 
collection and limited vibration parameter estimation techniques. A common shortcoming 
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related to the 1970s reporting of tests was that the digital data acquisition parameters (sam- 

pling rate, type of filtering, etc. ) were regularly omitted from written reports. Knowing these 

parameters is very important to judge the quality of the experimental data collected and, 

consequently, the quality of the vibration parameter estimation. 

In the last 10-15 years, a number of authors started to pay more attention to providing 

complete data acquisition parameters in their work (Cantieni & Pietrzko, 1993; Pavic & 

Reynolds, 2002). Together with this trend some work discussing correlation between modal 

testing and FE model results has also emerged (Gardner-Morse & Huston, 1993; Brownjohn 

et al., 1994; Deger et al., 1996; Brownjohn, 1997; Pimentel, 1997). The reported discrepancies 

between the initial model predictions and experimental results were usually highly significant, 

typically due to inaccurate modelling of boundary conditions, neglecting influence of non- 

structural elements, such as deck and handrails, and uncertain material properties. This has 

led to improved structural idealisation (boundary conditions, non-structural elements, etc. ) 

and revised estimates of numerical modelling parameters to be used in creation of the FE 

models (Pavic et al., 1998; Brownjohn & Xia, 2000). 

The modal testing procedures used in all these papers were either FRF-based testing (with 

either instrumented shaker or hammer excitation) or ambient vibration survey. In the former 

both the input force and output response are measured. In the latter only the response is 

measured while the input force due to environmental excitation (wind, traffic, etc. ) is as- 

sumed to be a stationary random process (that is white noise excitation having approximately 
flat frequency spectrum within the frequency range of interest). A brief but well presented 
review of modal testing methods for bridges explaining their advantages and limitations was 

presented by Salawu & Williams (1995). 

3.3 Description of Test Footbridge 

The investigated footbridge spans 104 m over the Moraca River in Podgorica, capital of 
Montenegro (Figure 3.1). 

The structural system of the Podgorica footbridge is a steel box girder with inclined supports 
(Figure 3.2). The structure's main span between inclined columns is 78 m and it has two side 
spans of 13 m each. The top flange of the main girder forms a3m wide deck. The depth of 
the girder varies from 1.4 m in the middle of the central span to 2.8 m at the points where 
the inclined columns connect to the main box girder (Figure 3.2). Along its whole length the 
box girder is stiffened by longitudinal and transverse stiffeners, as shown in Figure 3.2. The 

connection between the inclined columns and box girder is strengthened by vertical stiffeners 
visible in Figure 3.1. Water supply and drainage pipes pass through the steel box section 
and they are suspended from the top flange of the main girder (Figure 3.2). 

In the early 1970s, when the footbridge was designed and constructed, design guidelines 
for vibration serviceability of footbridges did not exist in the former Yugoslavia. This is 
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not surprising considering that the first modern footbridge vibration serviceability guidelines 

appeared in BS 5400 in the UK in 1978 (BSI, 1978). 

Figure 3.1: Photograph of the Podgorica footbridge. 
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Figure 3.2: General arrangement drawing (not to scale) of Podgorica footbridge. 

Since its construction, under pedestrian walking excitation, the footbridge has been very 
lively in the vertical direction. Also, a review of its design calculations found that a particular 
design load combination induces stresses close to allowable limits in some of its cross sections. 
This was the reason for designers to try to strengthen the structure to increase its carrying 

capacity. The plan for this strengthening was to also stiffen the structure and shift its 

natural frequencies above the frequency region of normal human walking which is 1.6-2.4 Hz 

(Bachmann et al., 1995b). The steel box girder was strengthened by a concrete slab cast over 
the bottom steel flange in the region around columns (Figure 3.2). The aim was to enhance 
this part of the box section so that it can resist large column reactions and compression due 

to hogging moments. A similar steel-concrete composite slab was cast around the mid-span of 
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the footbridge, but this time over the top flange of the box girder (Figure 3.2). However, this 

added not only stiffness but also some mass to the dynamic system. Consequently the natural 

frequencies did not change very much and the footbridge remained very lively. Sometimes, 

perceptible vibrations are excited by just a single pedestrian crossing over the bridge. The 

vibrations are perceptible to the person generating them and also to other pedestrians, either 

stationary or walking, who are present on the footbridge deck. At the first sight this is 

somewhat surprising considering how massive the 260-tonne structure is (Figures 3.1 and 

3.2). 

This liveliness, together with the fact that information about vibration behaviour of the de- 

scribed structural layout can seldom be found in the published literature, makes the Podgorica 

footbridge interesting for investigation of its as-built dynamic characteristics. 

3.4 Pre-Test Finite Element Modelling 

A good practice for modal testing of an as-built structure requires a development of reasonably 
detailed FE model before the testing (Maia et al., 1997). This first insight into dynamic 
behaviour of the footbridge helps the test planning and preparation. 

A 3D FE model for the Podgorica footbridge was developed (Figure 3.3) using the ANSYS 
FE code (SAS, 1994). The aim was to construct a detailed model which would be able to 

simulate the dynamic behaviour of the structure as well as possible. This was based on the 
limited technical data available and best engineering judgement. 

Figure 3.3: Design FE model. 

The key modelling assumptions were as follows: 

" The main steel box girder and its longitudinal and transverse stiffeners and box sec- 
tion columns were modelled using orthotropic SHELL63 elements assuming isotropic 

" support in the lateral 
support in the' direction 
vertical direction 
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properties. These elements are capable of transferring both in-plane and out-of-plane 
loads. 

9 The composite steel-concrete slabs (Figure 3.2) were modelled using an equivalent steel 

thickness and, again, SHELL63 elements with isotropic property. 

" The handrails were modelled using 3D BEAM4 elements. 

" Water and drainage pipes were modelled as distributed mass along the lines connecting 

points at which the pipes were suspended from the bridge deck. The mass was calculated 
by assuming that water filled a half of the pipes' volume. 

" Inclined column supports were modelled as fully fixed considering solid rock founda- 

tions. 

" Supports at both ends of the main girder were modelled as pinned, but with a possi- 
bility to slide free in the longitudinal direction i. e. along the bridge longitudinal axis 
(Figure 3.3). 

The seven lowest modes of vibration calculated using this model are shown in Figure 3.4. 
Labels H and V stand for the horizontal and vertical modes, respectively. Similarly, S and A 

stand for the symmetric and anti-symmetric modes, respectively. 

1 HS: 1.66 Hz 

1VA: 2.11 Hz 

2VS: 7.39 Hz 

1 VS: 1.96 Hz 

1 HA: 3.91 Hz 

Figure 3.4: The first seven modes of vibration as obtained in the design FE model based on 
best engineering judgement. 
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3.5 Testing 

The primary aim of the modal testing was to identify the lowest modes of vibration in both the 

vertical and horizontal lateral directions. For this purpose an FRF-based testing procedure 
(Maia et al., 1997) was employed. The second aim was to conduct an ambient vibration 

survey and compare results with the FRF-based modal testing, to check their consistency. 
Both types of test required the footbridge to be empty, which means closed and without any 

pedestrians present during measurements. Due to the importance of this footbridge located 

in the city centre, the only time when the tests could be conducted was during the night 

when pedestrian traffic was reduced, although still present. The tests were scheduled to last 

up to five hours during two nights in October 2004, starting at midnight. 

3.5.1 FRF-Based Modal Testing 

Based on mode shapes identified in the FE model (Figure 3.4) and the fact that only two 

accelerometers were available for measurements, it was decided to conduct testing at 14 

measurement points, as shown in Figure 3.5. This was done to avoid problem with spatial 
aliasing of mode shapes (Maia et al., 1997) and enable the identification of the lowest few 

modes of vibration presented in Figure 3.4. The test was first conducted to identify the 

vertical modes and then repeated for the horizontal lateral modes. 

Elevation 

13 m 13 m 

Plan 

x6.5 4x19.5 m=78.0 m >,? x6_5 m 

14 13 12 11 10 98 

1234567 

" FRF-based testing (all 14 points for the vertical direction, first seven points 
for the horizontal lateral direction) 

x ambient vibration survey 

Figure 3.5: Measurement grid for modal testing. Plan drawn not to scale. 

The excitation source for the FRF-based testing was an APS Model 113 electrodynamic 
shaker. The dynamic force induced by the shaker was measured by an accelerometer at- 
tached to its armature. The same type of transducer was used for the structural response 
measurements. Both transducers used were Endevco 7754-1000 piezoelectric accelerometers, 
having nominal sensitivity 1000 mV/g. They are suitable for low frequency measurements 
down to less than 1 Hz. The shaker operating in the vertical direction is shown in Figure 3.6a 
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and the setup used for it in the horizontal direction is shown in Figure 3.6b. 

Test point 3 (TP3), at the quarter of the main span (Figure 3.5), was chosen as an excitation 

point for both directions. For the vertical measurements the vertical response was measured 

at all 14 points while for the horizontal lateral modes only first seven points were used to 

measure the horizontal response. 

I 
9 

' . ti 

Figure 3.6: The electrodynamic shaker operating in: (a) vertical mode and (b) horizontal 

tnocie. 

A dual-channel Data Physics SignalCalc ACE dynamic signal analyser was used to acquire 
the time domain acceleration data and process them leading to a set of FRFs between the 

excitation and response points. Based on some very limited previous measurements decribed 
in Appendix A, a damping ratio (I as low as 0.3% was expected in the vertical fundamental 

iuode of vibration having frequency fl of 2.0 Hz. A suggested frequency resolution Af for 
data acquisition is therefore approximately (DTA, 1995): 

Af= 
2(i fl_2 . 0.0003.2.0 

= 0.002 Hz . (3.1) 66 

"I'llis, in turn, required time-domain data blocks lasting at least 500 s, as calculated in Equa- 

tion 3.2: 

T=Qf= 500s. (3.2) 

With this in mind, and considering the limited time available for keeping the bridge closed 
during the testing, a compromise had to be made. A 327.68 s data block was chosen using 
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available options in the signal analyser provided that the FRFs were analysed immediately 

during testing to ensure that the experimental FRF-data can lead to a good and believable 

curve-fit. The next step was to decide about the type of force signal capable of exciting the 

260-tonne bridge so that its response is measurable in all relevant modes of vibration. A typ- 

ical time history of a chirp excitation signal at TP3 together with the response measurement 

at the same point, as well as their spectra are shown in Figure 3.7. 
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Figure 3.7: Typical chirp excitation and corresponding acceleration response signals at TP3 

in the time and frequency domains. 

The resulting point accelerance obtained firstly with three averages and then with no average 
(i. e. using just one block of data) are shown in Figure 3.8. Quite surprisingly the FRF 

data quality was almost the same. Because it was difficult to close the bridge even for 10 

minutes at a time, an FRF estimation without averaging was adopted as it approximately 
halved the time required for testing. Also, this choice was supported by good quality of 
the FRF that was not averaged as a consequence of high signal to noise ratio. This ratio 

was high owing to both the good excitation technique and quiet night with almost no wind. 
Also, the fact that some modes of vibration had very low damping ratio and therefore were 

easily excitable, contributed to obtaining high quality FRF data without any averaging. This 

feature is not often seen when testing full-scale civil engineering structures residing in open- 
space environments. These are naturally quite noisy a therefore create a considerable level of 

extraneous unmeasured excitation of the test structure. If uncorrelated with the measured 
excitation the only way to remove the effects of this excitation is by averaging. However, and 
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quite interestingly, on this particular occasion this was not necessary. 
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Figure 3.8: Comparison between point accelerance at TP3 with one (black-dashed line) and 
three averages (grey line) under the chirp excitation. 

The adopted data acquisition parameters are shown in Table 3.1. However, having in mind 

that the modal mass is the least reliable parameter in a parameter estimation process, and 

that it is very sensitive to response magnitude, it was decided to conduct a single point 

accelerance measurement due to random excitation with 10 averages, each lasting 327.68 s, 
just to estimate the modal mass. Harming window with 75% overlapping was used for this 

purpose. The whole exercise took about 15 minutes. This measurement was used to estimate 

modal mass of the second mode of vibration (i. e. first vertical mode denoted as 1VS in 

Figure 3.4) which dominated footbridge response under normal pedestrian traffic. 

For modal testing in the horizontal lateral direction, the shaker as well as the response 
accelerometer were rotated by 90 degrees (Figure 3.6b). All other parameters remained 
unchanged. 

The test in the vertical direction was completed during the first night. The whole exercise, 
together with (un)packing the equipment and trials took about five hours, as planned. Al- 

though the time required for the data acquisition was less than six minutes per point, the 

setting up time between two consecutive measurements was about 10 minutes. This long 
time was primarily required to allow occasional pedestrians to cross the footbridge. Having 
in mind low damping of the structure, the time needed for it to damp out vibrations after 

Frequency [Hz] 
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these crossings was very long. Sometimes this was as long as two minutes, depending on the 

level of vibration induced by pedestrians. The testing in the horizontal lateral direction was 

conducted during the second night together with ambient measurements. 

Table 3.1: Data acquisition parameters used for FRF-based testing. 

Parameter Value 

Acquisition time [s] 327.68 

Frequency resolution [Hz] 0.00305 

Time step [s] 0.04 
Sampling frequency [Hz] 25 

Excitation type linear chirp 
Frequency range of excitation [Hz] 1-9 
Window type rectangular 
Number of FRF averages 1 
Excitation duration [s] 278 

3.5.2 Ambient Vibration Survey 

The ambient vibration survey was conducted after the FRF-based testing. The shaker was 

removed and only vertical response measurements due to ambient excitation on the empty 
bridge were made. The aim was to verify the results obtained by FRF-based testing, having 

in mind its unusual data acquisition approach (i. e. without averaging). TP3 was again 
chosen as the location for the reference accelerometer while the traveller accelerometer was 
placed only at points 4,5,10,11 and 12 (Figure 3.5). This reduced measurement grid (in 

comparison with the FRF-based testing) was adopted due to short testing time available and 
difficulties in footbridge closures lasting 10 minutes at a time, as needed for AVS. For this 

reason the AVS work was focused on the vertical direction only as it was more critical for 

vibration serviceability. 

The data acquisition parameters adopted in these tests are given in Table 3.2 while typical 

measured time history at the reference point is shown in Figure 3.9. 

Table 3.2: Data acquisition parameters used for ambient vibration survey in the vertical 
direction. 

Parameter Value 
Acquisition time [s] 600 
Time step [s] 0.04 
Sampling frequency [Hz] 25 

The complete vertical AVS together with FRF-based testing in the horizontal direction lasted 
less than 4.5 hours during the second night of testing. For reference, it should be said 
that tests during both nights were conducted under very pleasant weather with average 
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temperature being around 18°C. 
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Figure 3.9: Typical acceleration signal ©TP3 during AVS. 

3.6 Vibration Parameter Estimation 

Modal parameter estimation was performed on site for both FRF-based modal testing and 
AVS. 

3.6.1 FRF-Based Estimates 

The FRF data collected were analysed using an MDOF parameter estimation procedure 

available in the ICATS software (IC, 2000) under the usual assumption of linear behaviour 

of the footbridge for the vibration levels measured. In particular, the Non-Linear Least- 

Squares (NLLS1-M) method (Gaukroger et al., 1973) was applied. This method produced 

slightly better fits (judging them visually) than the Rational Fraction Polynomials method 
(Richardson & Formenti, 1982), called GRF-M in ICATS and the Global Method (Fillod 

et al., 1985), called GLOBAL-M. The method used is also considered as one of the most 
accurate single-input multiple-output FRF fitting methods (Gaukroger et al., 1973; DTA, 

1995). However, it should be said that the vibration parameter estimates (natural frequencies, 

mode shapes and modal damping ratios) were similar across the different estimation methods, 
with the only exception of the damping ratio for mode 1VA which varied most. This is because 

this mode was quite damped (in comparison with the others) and therefore was difficult to 

excite. 

Basically, the NLLS1-M method fits every receptance function a(w) by summing N modes 

as follows (Gaukroger et al., 1973; DTA, 1995): 

A, +iwB, 
a(w) = ao + 

w2 - w2 + i2wwr(r ejO (3.3) 

0 200 400 600 
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with the aim to minimise an error function er, given in the form: 

L 

er=>(( -cf)(äi-«i) 
i=1 

(3.4) 

over L measured data points, each corresponding to a different discrete (forcing) frequency 

w within the frequency range of interest. In Equations 3.3 and 3.4, at and äi represent 

receptance as mathematically modelled using Equation 3.3 and measured, respectively, while 

ati and äi are their complex conjugates. w, and C1 are the natural frequency and damping 

ratio for mode r, respectively, while Ar and Br are constants containing information about the 

modal mass and mode shape amplitudes related to mode r. w is the forcing frequency within 
the frequency range of interest while ao and 0 are introduced to compensate for measurement 

errors. ao is a complex (constant) number which covers errors due to translation of the true 

origin for presenting a(w) in the Nyquist plane relative to the measurement origin, while 

angle 0 compensates for rotational shifts in the same Nyquist plane. One example of the 
Nyquist plane fitting of an isolated mode of vibration in the horizontal direction is given in 
Figure 3.10. 
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Figure 3.10: Comparison between fitted model and measured data for point accelerance in 
the horizontal direction in the form of a Nyquist plot. Frequency range [3.5-4.5Hz] relevant 
for mode 111A is only presented. 

By curve fitting modal frequencies w,., damping ratios Cr and mode shapes were identified. 
The seven modes identified are shown in Table 3.3 and Figure 3.11 (black dashed line). 

A comparison between the measured and synthesised (via the experimentally estimated modal 
properties) point accelerance for the vertical direction at TP3 is shown in Figure 3.12. It 
suggests that the estimated modal properties did represent the measured structural behaviour 
very well. The mismatching of the measured and curve-fitted FRF phase around 5-6 Hz 
happened due to presence of a weak mode which was not identified. This is a common problem 

-ý u5 
Real Point Accelerance [(m/s')/N] 
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which clearly does not affect the accuracy of the curve-fitting around strongly excited modes. 

The same applies to the obtained quality of analytical model representing horizontal modes 

which is not elaborated here further. 

Table 3.3: Natural frequencies and damping ratios according to different models. 

Mode 
# 

Design FEM 
f [Hz] 

FRF based 
f [Hz] S[%] 

AVS 
f [Hz] S[%] 

Model 2 
f [Hz] 

Tuned FEM 
f [Hz] 

1 1.66(111S) 1.83 (1HS) 0.26 - - 1.82 (1HS) 1.82 (1HS) 

2 1.96 (1VS) 2.04 (1VS) 0.22 2.05 (1VS) 0.29 2.02 (1VS) 2.02 (1VS) 

3 2.11 (1VA) 3.36 (1VA) 1.86 3.42 (1VA) 1.04 2.36 (2VA) 3.47 (1VA) 

4 3.91 (111A) 4.54 (1HA) 0.98 - 4.35 (1HA) 4.36 (1HA) 

5 6.16 (2VA) 7.35 (2HS) 2.68 - - 6.52 (2VA) 7.15 (2HS) 

6 6.52(211S) 7.56 (2VA) 0.76 7.55 (2VA) 0.76 7.13 (211S) 7.34 (2VA) 

7 7.39 (2VS) 7.98 (2VS) 0.60 8.00 (2VS) 0.44 7.56 (2VS) 7.74 (2VS) 

v L. X 

I HS: W. 83 Hz, 4=0.26% 

ti 

IVS: f=2.04 Hz, C=0.22% 

ý+X 

IVA: f=3.36 Hz, ý=1.86% 

y L. X 

2HS: f=7.35 Hz, z=2.68% 

Y ciý t-. 
x 

1 HA: f=4.54 Hz, C, =0.98% 

2VA: f=7.56 Hz, ý=0.76% 

x 
2VS: f=7.98 Hz, ý=0.60% 

Figure 3.11: Modes identified in the FRF-based testing (black dashed line). Mode shapes 
obtained from tuned FE model are presented in grey (see Section 3.7). 

At the end of parameter estimation process, the modal mass of the first mode of vibration in 

the vertical direction was calculated. This was done based on the magnitude of acceleration 
response measured under random excitation. The point accelerance is shown in Figure 3.13 
(black dashed line), with the magnitude of 0.001036 m/s2 under 1N unit harmonic force. This 

measurement was conducted at TP3 which is an important detail considering that modal 
mass is usually defined with regard to the modal amplitude corresponding to an antinode 
(i. e. maximum amplitude in absolute sense) of a particular mode. In this case the antinode 
of the 1VS mode was at TP4. Therefore, the ratio between amplitudes at TP3 and TP4, 
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obtained from experimental mode shapes shown in Figure 3.11, was used as a scaling factor 

for both the force and response magnitude at TP4. In this way the modal mass mlvs can be 

calculated from the formula for steady state response under sine resonant excitation (Clough 

& Penzien, 1993): 

43,1 VSF0.002492 
F4 

=_ 
04, ivs 

3_0.0050(; 
] 

1 

min's = ýa __ - o. oo: ýohi = 53,188 kg. (3.5) 
2(IVSa4 2(ivs(03,, 

vsa3) 
2.0.003 (u 002192 0.001036) 

Here, '3,1vs and 04, lvs are mode shape ordinates for mode 1VS at TP3 and 4, respectively, 

as obtained from curve fitting, F3 and F4 are resonant sine force amplitudes at points 3 and 
4, while a3 and a4 are corresponding measured acceleration amplitudes. (ivs is the estimated 
damping ratio for mode shape 1VS. 
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Figure 3.12: Comparison between the point accelerance for the vertical direction as measured 
(grey line) and as modelled (black dashed line). 

If the modal mass is estimated in the same way, but using the point accelerance FRF obtained 
via the unaveraged chirp excitation (grey line in Figure 3.13), then a mass of 48,763 kg is 
obtained. This indicates the high level of sensitivity of the estimate of modal mass. 
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Figure 3.13: Magnitude of accelerance in the first vertical mode of vibration due to two 

different types of excitation. 

3.6.2 "S-Based Estimates 

For parameter estimation using the AVS data, the ARTeMIS software (SVS, 2004) was used. 
The Canonical Variate Analysis (CVA) identification method (Peeters, 2000), which is a 
time-domain parameter estimation technique, was chosen. This is one of the so called 'data- 

driven' stochastic subspace identification methods. This means that the method fits the 

raw measured time-domain data directly, instead of fitting the covariances (Peeters, 2000) 

produced using data from different test points. The starting point in the method is to present 
the dynamics of a structure under unknown environmental excitation in the discrete-time 

state-space form, assuming structural linearity and time-invariability, as follows (Peeters, 

2000): 

{Xk+1}nx1 = [Alnxn{xk}nxl + {wk}nxl (3.6) 

IYk}Pxl = EC]pxn{Xk}nxl + {Vk}px1 (3.7) 

where Equation 3.6 is typically called the state equation while Equation 3.7 is called the 

observation/output equation. The state equation is sufficient to describe dynamics of the 

system (instead of using the well-known equation of motion) with 2 degrees of freedom, 

where n is called the model order. Here, {xk} = {x(kOt)} is the discrete time state vector 
containing 2 displacements and 2 velocities describing the state of the system at time instant 

tk = t(kit), {xk+i} is the same vector defined at time tk+l = (k + 1)Ot, [A] is the discrete 

state matrix dependent on the mass, stiffness and damping properties of the structure, while 
{Wk} represents the inevitable but unmeasured noise input as well as the noise present due 
to modelling inaccuracies at time tk. The observation equation calculates the response of the 

structure {yk} at p measurement locations at time tk via the state vector {xk}. Here, [C] is 
the discrete output matrix whose main purpose is to map the state vector into the measured 
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output, while {vk} represents the noise due to measurements and unmeasured noise input at 
time tk. 

It can be shown that modal properties (natural frequencies, mode shapes and damping ratios) 

of a structure under white-noise excitation can be identified by relying only on the measured 

output responses {yk} (Peeters, 2000). However, models of different order will typically 

produce more or less different estimates. This is the reason to consider several models of 
different order and to choose the one with the lowest level of error obtained when comparing 

the measured and analytically predicted outputs. This is how the optimum models were 

selected for data sets at all five test points while analysing the Podgorica footbridge ambient 

responses. An example of this process is shown in Figure 3.14 which shows that there are 
four stable modes identified in all five measurement sets corresponding to the five test points 
(connected by lines in Figure 3.14). 
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Figure 3.14: Stable modes identified in AVS. Natural frequencies and damping ratios are 
listed below the diagram and in Table 3.3. 

These identified modes are listed in Table 3.3. The identified natural frequencies compared 
well with those from the FRF-based modal testing procedure. Regarding damping ratios, 
the largest difference was for mode 1VA. However, the reliability of this damping ratio as 
identified by AVS is not very high as the scattering across the data sets, expressed as the 
standard deviation, is as high as 0.57% in comparison with the average (i. e. identified) 
damping ratio of 1.04% (Figure 3.14). As mentioned earlier the estimation of the damping 
ratio for this mode was least reliable in the FRF based-testing too. The agreement between 
the mode shapes in the two methods was good as checked by visual inspection. The signal 
processing parameters used as input in the ARTeMIS software are given in Table 3.4. 
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Table 3.4: Signal processing setup as adopted in data analysis in ARTeMIS. 

Parameter Value 

Acquisition time per point [s] 600 

Time step [s] 0.04 
Filter type high-pass Butterworth 

Filter order 8 

Filter cut-off frequency [Hz] 1 

Also, it should be said that differences in damping ratios in the two experimental methods 

may be due to amplitude dependent damping as the level of vibration during the AVS was 

up to two orders of magnitude lower than during the FRF measurements. However, it was 

interesting to additionally check the damping value for a lively mode 1VS, since this value 

is particularly important for vibration serviceability assessment of the footbridge. For this, 

the vertical acceleration response to a pedestrian crossing the bridge with controlled step 

frequency at approximately 2.04 Hz (metronome set at 122 beats per minute), was measured 

at the middle of the bridge. After the pedestrian crossed the bridge, the free decay of the 

response was also recorded. The measured response (bandpass filtered with centre frequency 

of 2.04 Hz) is shown in Figure 3.15a. 
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Figure 3.15: (a) Acceleration response due to a pedestrian crossing at step frequency of 
2.04 Hz. (b) Damping estimate from the free decay. 

Using the logarithmic decrement method (Maia et al., 1997), the damping ratio was estimated 
for a number of data blocks, each containing eight subsequent cycles of decaying vibration. For 
this, the MATLAB-based MODAL software developed by Prof. James Brownjohn of Sheffield 
University, was utilised. Each of these blocks corresponds to slightly different amplitude 
of the middle cycle and can be used to estimate damping as a function of this amplitude 
(Figure 3.15b). It can be seen that the damping was weakly dependent on the vibration 
amplitude, but its average value of 0.26% agreed well with those measured during modal 
testing. 
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3.7 FEM Tuning 

A comparison between vibration modes obtained experimentally and analytically revealed 

that all seven mode shapes measured (Figure 3.11) had their counterparts in the design FE 

model (Figure 3.4). However, the sequence of 2VA and 2HS FE modes was reversed com- 

pared with their experimental counterparts (Table 3.3). Also, the FE model underestimated 
frequencies for all vibration modes, the maximum difference being 37% for mode 1VA. On 

the other hand, the correlation between mode shapes was good with the modal assurance 

criterion (MAC) values (Maia et al., 1997) higher than 0.90, except for modes 2HS (0.82) 

and 2VA (0.84). This implied that there was a problem with inadequate modelling which 

underestimated the stiffness consistently throughout the whole footbridge. This was despite 

the fact that the FE model was as detailed as possible using all available design information 

and based on best engineering judgement. 

Some of the differences in the numerical and experimental natural frequencies were signif- 
icant and somewhat surprising. They prompted the author to do an additional search for 

information about the properties of the as-built bridge. It was discovered that during the pre- 

viously described strengthening of the footbridge, the plates which constitute the box cross 

section of the inclined columns were also strengthened (Djuranovic, 2002). These data were 

missing from the design documentation available for developing the design FE model. As a 

consequence, the design FE model could not simulate the real behaviour of the footbridge 

accurately. It should be said that this situation with missing technical information is quite 
typical when retrofitting structures that are relatively old. 

Apart from the fact that the strengthening took place no precise information was available 

about the actual thickness of the additional plates. Therefore, it was assumed that they 

were two times thicker than in the design FE model (6.0 and 4.0 cm instead of 3.0 and 
2.0 cm, respectively). This improved considerably the correlation between the FE model and 

experimental results, especially for horizontal modes ('Model 2' in Table 3.3). However, the 
differences in some of the vertical modes were still quite high. This especially applies for the 

vertical anti-symmetric modes (1VA and 2VA). Since the movement of the columns was very 
strong in these modes an attempt to better correlate the FE model with the experimental 
data was made through further increase of the column stiffness. However, this required a 
physically unacceptable column thickness of about 25 cm. Because of this, the sensitivity 
of the vertical anti-symmetric modes to some other uncertain FE modelling parameters was 

considered. These were: the thickness of the composite slabs, their dynamic modulus of 

elasticity, mass of the water pipes with water in them and stiffness of additional elastic 
supports at both ends of the bridge girder in the longitudinal direction (horizontal springs 
instead of free edge, see Figure 3.16). It was found that the stiffness of the horizontal support 
springs in the longitudinal direction was the only parameter which increased the frequencies 

of vertical modes as required. Elastic springs (ANSYS COMBIN14 element), having stiffness 
of 108 N/m per metre length of the width of the bridge deck, were adopted. The physical 
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explanation of this is the restraint condition caused by the expansion joint between the bridge 

deck and the walking path used to approach the bridge. For low-level vibration this expansion 
joint was very much `stuck' introducing additional support condition. In addition, it might 
be that for low-level vibration the friction in the longitudinal direction in bearings at the 

ends of the box girder could not be overcome. 

Figure 3.16: The horizontal springs at the girder ends added to the design FE model. 

In this way the correlation with the experimental data was significantly improved, with 

the sequence of modes now being the same as obtained experimentally ('Tuned FEM' in 

Table 3.3). The maximum difference in natural frequencies was reduced to a reasonable 4% 

for mode 1HA. The MAC values increased for all triodes except for 2HS, which was now 0.81 

- still quite acceptable. All FE mode shapes are presented as a grey line in Figure 3.11. 

Clearly, this tuned FE model simulated the footbridge vibration much better than the design 

FE model. It was subsequently possible to update automatically this manually tuned FE 

model, contrary to the design FE model. The design FE model had modes that were simply 

too far away from their measured counterparts for the automatic updating to be successful. 
This is another key benefit of the manual tuning, apart from learning about the actual as- 
built structural behaviour. The results of automatic updating of this FE model are described 

in the next chapter. 

3.8 Conclusions 

An FRF-based modal testing conducted to identify dynamic properties of a lively steel box 

girder footbridge successfully identified the seven lowest modes of vibration in both the ver- 
tical and horizontal-lateral directions. The testing procedure, based on chirp excitation by 

an electrodynamic shaker, was efficient and sufficiently accurate, even though only two chan- 
nels were used during the FRF measurements and the traditional signal averaging was not 
performed. These results compared well with those obtained in an ambient vibration sur- 
vey conducted in the vertical direction only. It was found that the footbridge had very low 
damping ratio associated with the lowest horizontal-lateral and vertical modes of vibration 
of only about 0.26% for both modes. This low damping, together with the natural frequency 

nonzontal spring 
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of 2.04 Hz for the vertical mode, being in the frequency range of normal human walking, 

contributed to the footbridge liveliness. 

A detailed design FE model, which was developed based on the design data available and 
best engineering judgement, significantly underestimated some of the measured natural fre- 

quencies of the structure. This was somewhat surprising and the experimental results proved 
to be crucial in identifying drawbacks in the FE modelling. It was found that missing design 

information about the strengthening of the columns was responsible for the general under- 

estimation of natural frequencies, mainly for the horizontal-lateral modes. Moreover, the 

stiffness of additional horizontal spring supports (in the direction along the footbridge) at 
the ends of the girder had a significant influence on the vertical modes of vibration. The 

effect and presence of this stiffness was not anticipated during development of the design FE 

model which assumed that the expansion joints introduced no stiffness in the longitudinal di- 

rection. This type of modelling error is hard to avoid due to difficulties in simulating the real 
boundary conditions. Manual tuning by trial and error of these two modelling parameters 
improved significantly the FE model and its correlation with the experimental model, reduc- 
ing the maximum difference in the natural frequencies from 37% to only 4%. Without this 
tuning it was impossible to perform automatic updating due to large differences between the 

measured and analytically predicted natural frequencies using the design FE model. After 

the tuning, automatic updating was successfully carried out and is presented in Chapter 4. 
In conclusion, if required after construction, FE models used in design should be critically 
evaluated, parametrically studied and, if possible, manually updated based on experimental 
data. 



Preface to Chapter 4 

Chapter 4 describes the second phase in establishing reliable vibration properties of the Pod- 

gorica footbridge introduced in Chapter 3. This phase deals with the automatic updating 

of the finite element (FE) model described in the previous chapter, by using the specialised 
FEMtools software. The aim of this work was to experiment with the advanced FE model 

updating technology and to improve further the correlation between the experimental results 

and FE model. In this way, modal properties of the footbridge (mode shapes, natural fre- 

quencies, modal masses and damping ratios) could be estimated and used for its vibration 

serviceability assessment. 

Since the chapter is written in form of a paper to stand alone, it was necessary to briefly 

review some information from the previous chapter regarding the FE model development and 
its manual tuning, before implementing the automatic updating procedure itself. Moreover, 
in order to avoid confusion, it should be said here that the starting model for the analysis in 
Chapter 4 was the one that includes more recently found information about column strength- 
ening that was not available when developing the very first model (called `Design model') 
in Chapter 3. Therefore, the `Initial model' described in Chapter 4 is actually the same as 
`Model 2' from Chapter 3. 
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Chapter 4 

Finite Element Modelling and 
Updating of Podgorica Footbridge 
This chapter, in an amended form, has been provisionally accepted for publication under the following reference: 

Zivanovi&, S., Pavic, A. and Reynolds, P. Finite Element Modelling and Updating of a Lively Footbridge: The 

Complete Process, Journal of Sound and Vibration. 

Abstract 

The finite element (FE) model updating technology was originally developed in the aerospace and 
mechanical engineering disciplines to automatically update numerical models of structures to match 
their experimentally measured counterparts. The process of updating identifies the drawbacks in the 
FE modelling and the updated FE model could be used to produce more reliable results in further 

dynamic analysis. In the last decade the updating technology has been introduced into civil structural 
engineering. It can serve as an advanced tool for getting reliable modal properties of large structures. 
The updating process has four key phases: initial FE modelling, modal testing, manual model tuning 

and automatic updating (conducted using specialist software). However the published literature does 

not connect well these phases, although this is crucial when implementing the updating technology. 
This chapter therefore aims to clarify the importance of this linking and to describe the complete 
model updating process as applicable in civil structural engineering. The complete process consisting 
of the four phases is outlined and brief theory is presented as appropriate. Then, the procedure is 
implemented on a lively steel box girder footbridge. It was found that even a very detailed initial 
FE model underestimated the natural frequencies of all seven experimentally identified modes of 
vibration, with the maximum error being almost 30%. Manual FE model tuning by trial and error 
found that flexible supports in the longitudinal direction should be introduced at the girder ends 
to improve correlation between the measured and FE-calculated modes. This significantly reduced 
the maximum frequency error to only 4%. It was demonstrated that only then could the FE model 
be automatically updated in a meaningful way. The automatic updating was successfully conducted 
by updating 22 uncertain structural parameters. Finally, a physical interpretation of all parameter 
changes is discussed. This interpretation is often missing in the published literature. It was found 
that the composite slabs were less stiff than originally assumed and that the asphalt layer contributed 
to the deck stiffness. 
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4.1 Introduction 

As civil engineering structures, and in particular footbridges, are becoming increasingly slen- 
der due to improvements in construction materials and technology, they are also becoming 

lighter and less damped. In principle, this means that new footbridge structures tend to 

be easier to excite than older ones and there is a higher potential for vibration serviceabil- 
ity problems to occur. This has already been experienced by many new structures in the 

last decade - the new London Millennium Bridge (Dallard et al., 2001c) being a particularly 
high-profile example. For slender and lightly damped bridges, their dynamic response due to 

near-resonant excitation governs their vibration performance. When doing response calcula- 
tions in design, simulation of this type of near-resonant dynamic response is very sensitive 
to even small variations in modal properties, such as damping ratio, natural frequency and 

modal mass. These are key input parameters in the analysis. Therefore, knowing modal prop- 

erties of a footbridge, together with its mode shapes, as precisely as possible has become very 
important. This is important not only for the design of new structures with similar layouts, 

but also for the rectification of existing lively footbridges, as well as for seismic analysis and 
general research into vibration serviceability. However, despite the huge importance of modal 
properties in the assessment of vibration performance of footbridges, their reliability when 
predicted via finite element (FE) modelling is still rather uncertain. The main reason for this 
is the general lack of information on modal properties of as-built footbridge structures and 
their correlation with FE modelling based on design data and best engineering judgement. 

Developing a numerical model of a civil engineering structure that has sufficiently reliable 
dynamic properties is a complex issue. It requires a rather wide range of skills and expertise 
in areas as diverse as FE modelling, modal testing of full-scale structures and FE model 
correlation, tuning and updating with regard to experimentally obtained modal properties. 
This methodology is nowadays used routinely in the mechanical and aerospace engineering 
disciplines, where prototyping is part of a normal design process of structures subjected to 
dynamic loading. 

Unfortunately, prototyping is not common in civil structural engineering design. Therefore, 

all this cannot be done easily during the design (of, say, a footbridge) bearing in mind that 
the modal testing can be conducted only on an already built structure, which is a unique 
`prototype' never to be built again. Thus, it may appear that the whole idea of getting reliable 
structural modal properties by FE modelling, modal testing, and FE model correlation and 
updating is pointless in the case of civil engineering structures after they are built. However, 
this is not the case as exercises like this are the only reliable way to gauge our ability to 

predict vibration behaviour of future civil engineering structures. The whole process of FE 

modelling, modal testing, and FE model correlation and updating adds to the currently very 
limited body of knowledge on vibration performance of as-built structures with significant 
potential to use this knowledge in future designs. 

Therefore, the aim of this chapter is to demonstrate the complete combined analytical and 
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experimental process required to obtain as reliable as possible estimates of modal properties 

of a steel box girder footbridge. For this purpose, every phase of the process and its purpose 

will be first explained briefly, with particular attention paid to the automatic FE model 

updating procedure, which is a new technology still not used commonly in civil engineering. 

However, in current civil structural engineering design practice, it has become common to 

develop an FE model of the structure and use it for calculation of its static and/or dynamic 

responses. To obtain a good model it is necessary to reduce the mathematical modelling 

errors to an acceptable level. Therefore, the assumptions on which the model is based should 
be evaluated carefully. Nevertheless, even with most careful and detailed numerical mod- 

elling based on design data available and best engineering judgement, differences regularly 

occur between the modal properties of an as-built structure and their counterparts predicted 

numerically. This is typically due to inevitable uncertainties linked with modelling of, in the 

case of footbridges, boundary conditions, material properties, and effects of non-structural 

elements, such as handrails and asphalt. 

The errors in the natural frequencies for footbridges predicted by very reasonable FE model 
in the design can be as large as 37% (Deger et al., 1996). Not surprisingly, it is now widely 
accepted that modal testing is much more reliable way for estimating dynamic properties of 
as-built structures than FE modelling (Mottershead & Friswell, 1993; Modak et al., 2002). 

Once the modal dynamic properties of a footbridge (mainly natural frequencies and mode 
shapes) are identified experimentally and the level of error introduced by the initially de- 

veloped FE models is identified, then drawbacks in the FE modelling can be found and the 
initial FE model can be corrected. This procedure is called FE model updating, and can be 

considered as an attempt to use the best features from both the experimental and analytical 
model (Modak et al., 2002). The former gives more reliable modal properties of the structure, 
including modal damping which cannot be obtained analytically, while the latter retains very 
detailed representation of the structure. 

In this chapter, first presented is a background review regarding the FE model updating tech- 
nology. This is followed by examples of implementation of the procedure in civil structural 
engineering, especially in bridge engineering. After this, a lively steel box girder footbridge 
is briefly described and the initial FE model is presented. After the presentation of exper- 
imentally identified modal properties obtained in Chapter 3, the manual tuning necessary 
to prepare the FE model for an automatic updating is given. Then, a sensitivity-based 
automatic model updating is conducted and results are discussed. 

4.2 Background Review 

In this section general information about FE model updating techniques is given first, followed 
by their implementation in civil structural engineering. 
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4.2.1 Finite Element Model Updating 

The FE model updating procedure typically minimises the differences between FE and exper- 
imentally estimated modal properties. This is done by changing some uncertain FE modelling 

parameters which have the potential to influence modal properties. The resulting FE model 

can then be used in further analyses. 

The updating process typically consists of manual tuning and then automatic (or formal) 

model updating using some specialised software. The manual tuning involves manual changes 
of the model geometry and modelling parameters by trial and error, guided by engineering 
judgement. The aim of this is to bring the numerical model closer to the experimental 
one. Often, in this process an analyst is able to improve the initial structural idealisation 
typically related to boundary conditions and non structural elements. This process usually 
includes only a small number of key parameters manageable manually. The aim of automatic 
updating is to improve further the correlation between the numerical and experimental modal 
properties by taking into account a larger number of uncertain parameters. 

The term `parameter' is used here for all input values which define the numerical model. 
Moreover, all measured modal properties which are targeted in the updating process will be 

called `target responses' hereafter. 

It is important to emphasise here that not all FE models of a structure can be updated. 
To have a successful automatic updating of an FE model, it is necessary to prepare the 
initial FE model for it. To do this, firstly it would be necessary to minimise discretisation 

errors and to use modelling strategies which can represent truly all important aspects of 
structural behaviour and geometry (Brownjohn et al., 2001; Chen & Ewins, 2001). This 

means that careful attention should be paid to model geometry and various other details. 
This is important because the automatic model updating procedure cannot easily correct 
large errors in the geometry of the initial modelling. It can only rectify the errors caused 
by uncertainties of modelling parameters in a geometrically well defined model. Also, when 
preparing the FE model for the automatic updating, the differences between analytical and 
experimental modal responses (usually natural frequencies and mode shapes) should be as 
small as practicable. If they are too large, the automatic updating procedure can have 
numerical difficulties and/or produce physically unrealistic parameter changes during the 
updating process. These are reasons to recommend the manual tuning (by trial and error 
and engineering judgement) of the initial FE model first. The tuned model should therefore 
feature meaningful starting parameters for the formal updating (Pavic et al., 1998; Brownjohn 
& Xia, 2000). 

Formal FE model updating is now a mature technology. It is widely used in the mechanical 
and aerospace engineering disciplines to update analytical models of structural prototypes. 
A large number of updating procedures exist (Mottershead & Friswell, 1993; Friswell & 
Mottershead, 1995) and their detailed discussion is beyond the scope of this work. Here, only 
the principles on which model updating is based are reviewed briefly. 
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4.2.2 Basic Theory Used in FE Model Updating 

The main idea in formal FE model updating of minimising the differences between the ana- 

lytical and experimental models is, in essence, an optimisation problem. This problem can be 

solved in many different ways. In general, there are two groups of updating methods: direct 

methods and iterative (or parametric) methods. The former are based on updating of stiff- 

ness and mass matrices directly, in a way that often has no physical meaning. The latter, on 

the other hand, concentrates on the direct updating of physical parameters which indirectly 

update the stiffness and mass matrices in which these parameters feature (Modak et al., 2002; 

Kim & Park, 2004). Iterative methods are slower than their direct counterparts. However, 

their main advantage is that changes in the updated model can be interpreted physically. 
Also, iterative methods can be implemented easily using existing FE codes (Wu & Li, 2004). 

These are the main reasons why iterative methods are widely accepted and now used almost 

exclusively in the updating exercises. This link between the iterative updating and the phys- 
ical world is very important in civil structural engineering and is the main reason why only 
this type of updating is considered in this chapter. Numerous examples of implementation of 
direct methods, mainly in mechanical engineering and control theory, can be found elsewhere 
(Minas & Inman, 1990; Friswell & Mottershead, 1995; Cha & Tuck-Lee, 2000). 

The iterative methods are mainly sensitivity based. This requires the sensitivity matrix [S] 

to be calculated in every iteration. The sensitivity matrix is a rectangular matrix of order 
mxn, where m and n are the number of target responses and parameters, respectively (DDS, 

2004). Its element Sad can be defined as: 

, (4.1) sij 
bp 

and it represents the sensitivity of the target response R;, (i = 1,2,..., m) to a certain change 
in parameter P3 (j = 1,2, ..., n). Operator d presents the variation of the variable. Elements 

of the sensitivity matrix can be calculated numerically using, for example, the forward finite 
difference approach (DDS, 2004): 

Sii _ 
Ri(Pi + APj) - Ri(Pj) 

(4.2) 
(Pi+APB)-Pi 

where R(PM) is the value of the ith response at the current state of the parameter P,, while 
R1(Pj + APj) is the value of the same ith response when the parameter P, is increased by 

value OPj. 

Obviously, for calculation of the sensitivities, the relevant target responses and structural pa- 
rameters should be selected. The target responses should be chosen between those measured. 
The responses which are mainly considered in civil engineering applications are natural fre- 

quencies, mode shapes and frequency response functions (FRFs), or some combination of 
these. The choice depends on the measured data available, their quality, and (non)existence 
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of close modes (Mottershead & Friswell, 1993). As a rule, only high quality measured modal 

properties should be used as target responses. As natural frequencies are normally measured 

quite accurately, they are almost always selected. If close modes are present, FRFs might be 

a better choice for target responses. 

Selection of updating parameters is probably the most important step on which the success 

of the model updating depends. It is recommended to choose uncertain parameters only, 

and between them to choose those to which the selected target responses are most sensitive. 
Also, the number of parameters should be kept to an absolute minimum. All this is to avoid 

numerical problems due to ill-conditioning (Kim & Park, 2004). 

Once relevant (measured) target responses and structural parameters for updating have been 

selected, the sensitivity matrix can be calculated. Since in the iterative model updating 

process the updating parameters change at every step, the sensitivity matrix has to be re- 

calculated in each iteration. Let us denote, for a given iteration, the starting parameter and 

response vectors as {Po} and {Ro}, respectively. The vector of updated parameters in the 

current iteration is {Pu}, while the target response vector obtained experimentally is {Re}. 

The targeted experimental response vector {R, e} can be approximated via vectors {Ro}, 

{Pu} and {Po} using the linear term in a Taylor's expansion series: 

{Re} {Ro} + [S] ({P,, } - {Po}). (4.3) 

The iterative process is required here because the relationship between target responses and 
parameters that is mainly non-linear is approximated by the linear term. This means that 

updating parameters need to be changed by a small amount in each iterative step until the 

required minimum difference between the calculated and experimentally measured responses 
is achieved. Therefore, the finally updated parameters cannot be calculated in a single step 
(Collins et al., 1974). 

The task of updating aimed at finding parameter values {Pu} in the current iteration can be 

solved in different ways such as using a pseudo-inverse (least squares) method, weighted least 

squares or Bayesian method. This depends on whether weighting coefficients for parameters 
and/or target responses are used as is the case in last two methods (Wu & Li, 2004). The 

purpose of these weighting coefficients is to give different significance to numerical parameters 
and measured target responses depending on the confidence in these data. For example, 
weighting coefficients for responses take into account the confidence in the measured values, 
which is typically higher for natural frequencies than for mode shapes. Weighting coefficients 
for input parameters take into account the degree of uncertainty in them. The more uncertain 
a parameter is, the lower is the confidence in it, which means that the weighting value is lower 
too. 

If a Bayesian method is chosen, which is often the case in the commercially available model 
updating software, then the aim of the updating procedure is not to simply minimise the 
difference between numerical and measured target responses. Instead, an error function which 
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includes differences, not only between the target experimental and numerical responses, but 

also between updating parameters in two successive iterations as well as parameters and 
target responses' weights, is defined. In this way the aim of the updating procedure is to 

minimise response differences {OR} and simultaneously to ensure convergence of the process 
via minimisation of parameter differences {OP} in two successive iterations. Therefore, this 

error function is, in general, defined as a function of input parameters and target responses, 
as well as the weighting factors. The error function used for the case study presented in this 

chapter is defined as (DDS, 2004): 

E({OR}, {AP}, [CRI, [Cpl) = {AR}T. [CR] - {AR} + {AP}T. [Cp] " {OP} (4.4) 

where {OR} = {Re} - {Ro} is the vector which represents the errors in target responses 
while {OP} = {Pu} - {Po} is the vector of parameter changes. [CR] and [Cp] are diagonal 

matrices of weighting coefficients for target responses and parameters, respectively, and both 

should be defined by the analyst based on their experience. Higher values of these coefficients 
indicate greater confidence. From Equation 4.4 it can be seen that the greater the confidence, 
the finer tuning of the corresponding quantities is needed to make the error sufficiently small. 
On the other hand, the parameters and target responses in which the confidence is small will 
not contribute significantly to the error value and therefore will have a less strong influence 
on the final results. 

Using the linear relationship between the target responses and parameters given in Equa- 
tion 4.3, estimating the confidence into the parameters and target responses and expressing 
parameter differences {OP} in the current iteration as: 

{AP} = {Pu} - {Po} = [G] ({Re} - {Ro}) (4.5) 

one can find matrix [G] in the way to minimise the error function (Collins et al., 1974; 
Hongxing et al., 2000). It can be proven that matrix [G] in the case when there are more 
responses than parameters (m > n) is (DDS, 2004): 

[G] = 
([Cpl 

+ SIT [CR] [5]) -1 [SIT [CRI 
, 

(4.6) 

Otherwise, when there are more parameters than responses (n > m) matrix [G] is: 

[G] = [Cpl-1 [S]T ([CR]' 
+ [S] [CPI-1 [SIT)'. (4.7) 

Bearing all this in mind, the updating procedure can be summarised as follows: 

1. Calculate the sensitivity matrix [S] for the given state of parameters {Po} and re- 
sponses {Ro}. 
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2. Choose the weighting factors for parameters and target responses. 

3. Calculate matrix [G] using either Equation 4.6 or 4.7. 

4. Calculate the updated parameter vector {P,,, } via a re-arranged Equation 4.5: 

{Pu} = {Po} + [G] ({Re} - {Rol). (4.8) 

5. Calculate a new response vector which corresponds to updated parameters {P,, } via 

modal analysis. This response vector and the vector of updated parameters then become 

the starting vectors {Ro} and {Po} for the next iteration. 

The procedure then goes back to step 1 to calculate a new sensitivity matrix (which changes 
whenever the model is updated between two iterations). Steps 1 to 5 are repeated until a 
satisfactory convergence of numerical responses to the experimental data is achieved (that is 

until the error function is minimised to a prespecified tolerance). 

An updating process which produces good correlation between experimental and analytical 
responses can be regarded as successful only if finally obtained parameters are physically 
viable. If not, then either a different error function or different parameter selection, or both, 

should be considered (Kim & Park, 2004). Also, some changes in the weighting matrices 
should be considered, having in mind that these coefficients can be difficult to assume correctly 
first time round (Collins et al., 1974). Therefore, it is expected that some kind of additional 
trial and error approach is used before a satisfactory set of updated parameters is obtained. 

Generally, the updating which targets larger number of measured responses at a time is 

preferable because it puts more constraints to the optimisation process. Successful updating 
in this case becomes more difficult but once it is achieved it gives more confidence in the 

results than the same procedure using only a few responses. This becomes clear if a simple 
example is considered with only one target response, say a natural frequency. There is an 
infinite number of ways to achieve good correlation for this response by changing either 
only one parameter at a time or some combination of them. In this way it is not possible 
to decide which parameter change is most realistic. Therefore, targeting more responses 
at a time decreases the number of combinations for parameter changes. Finally, to ensure 
that parameter changes are physically possible, some additional constraints in the form of 
physically acceptable limits for updating parameters can also be introduced. This makes sure 
that if the parameter reaches its limit in a particular iteration, it will stay constant through 

all subsequent iterations until the end of the updating process. 
Finally, the success of the updating process is usually judged through a comparison of nat- 
ural frequencies, overlaying mode shapes and calculation of the Modal Assurance Criterion 
(MAC) and the Coordinate Modal Assurance Criterion (COMAC). However, if the measured 
responses are not particularly reliable (say from noisy data), then convergence of the iterative 
procedure can become a problem. It seems that higher modes are more difficult to update in 
this situation (Brownjohn & Xia, 2000). Also, if a measurement grid is not dense enough to 
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prevent spatial aliasing, the MAC values can suggest correlation between modes which are 

otherwise linearly independent (Modak et al., 2005). 

4.2.3 Applications in Civil Structural Engineering 

Over the last decade there have been several attempts to transfer the updating technology 

from the mechanical and aerospace engineering to civil structural engineering. The whole 

procedure is more difficult to implement in civil engineering because of the larger size of 
the structures leading to poorer quality of experimental data gathered in open-space noisy 

environments. Also, the inherent non-linear amplitude dependent behaviour, the presence of 

numerous non-structural elements and difficult to define boundary conditions mean that the 

structural modelling parameters are not so controllable as is often the case in the mechanical 

and aerospace disciplines. However, some successful examples of updating in civil engineering 
do exist and are presented here. 

In principle, papers dealing with the complete process of experimental modal testing and 
analytical/numerical modelling and updating of civil engineering structures are rare. How- 

ever, there are many good papers devoted to modal testing of civil engineering structures 
(Abdel-Ghaffar, 1978; Buckland et al., 1979; Rainer & Pernica, 1979; Brownjohn et al., 1992; 
Brownjohn, 1997; Chang et al., 2001). As the modal testing technology has developed and 
been accepted as a way for reliable estimation of dynamic properties, more researchers have 

started to pay attention to the correlation between the initial FE model and experimental 
results from real-life as-built structures. In this process, the structural parameters which 
influenced the analytical results most and managed to shift them towards the experimental 
ones were identified in general. In the case of footbridges these are: stiffness of supports and 
non structural elements (decks, asphalt surfacing and handrails) as well as material prop- 
erties, such as dynamic modulus of elasticity for concrete (Gardner-Morse & Huston, 1993; 
Brownjohn et al., 1994; Pimentel, 1997). 

The logical step forward was then to try the automatic updating procedure by using specialist 
software developed for this purpose. The procedure was successfully implemented on different 
types of structure, such as a 48-storey building (Lord et al., 2004), a high rise tower (Wu & 
Li, 2004), road and/or rail bridges (Brownjohn & Xia, 2000; Zhang et al., 2001; Jaishi & Ren, 
2005) and two footbridges (Pavic et al., 1998). Also, model updating has been attempted as 
a tool for damage identification (Brownjohn et al., 2001; Xia & Brownjohn, 2003; Teughels 
& De Roeck, 2004). 

Reviewed papers suggest that the automatic updating of full-scale road and railway bridges 

might have difficulties in achieving a high level of correlation with experimental results. 
For example, when updating a 750 m long road and railway bridge, Zhang et al. (2001) 

got a maximum frequency error in the updated model of about 10%. A similar result was 
obtained by Brownjohn & Xia (2000) for a curved road bridge spanning 100m. Maximum 
frequency difference for a 90 m long road bridge of 6.2% was obtained by Jaishi & Ren 
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(2005). On the other hand, the automatic updating conducted by Pavic et al. (1998) for two 

footbridges spanning 34 m and 20 m produced maximum frequency difference of only 2.0% 

and 1.1%, respectively. It, therefore, seems that it is easier to update smaller bridges, such as 

pedestrian ones. This is not surprising considering that larger structures tend to have many 

more features which are important for their dynamic behaviour (e. g. connections, supports, 

etc. ) but are difficult to model in detail in the FE model. Also, experimental data on larger 

structures tend to be of poorer quality compared with their smaller counterparts. Moreover, 

it is worth noting that, for example, Zhang et al. (2001) conducted updating which targeted 

as many as 17 measured natural frequencies, which put a lot of constraints to the optimisation 

procedure, whilst in the case of the footbridge where the maximum frequency error was 1.1% 

the updating was done according to natural frequencies and mode shapes for three measured 
modes only (Pavic et al., 1998). Regarding MAC values, in most cases, they were higher than 

0.80, which is a very good mode shape agreement for civil structural engineering applications 

of updating. 

4.3 Description of Test Footbridge Structure 

The investigated footbridge spans 104 m over the Morava River in Podgorica, capital of 
Montenegro. It is a still box girder bridge described earlier in Chapter 3 (Figures 3.1 and 3.2). 

As explained in Chapter 3, the footbridge experienced strong vibrations in the vertical direc- 
tion under pedestrian walking excitation immediately after its construction. This was due to 
the fact that the footbridge fundamental natural frequency for the vertical mode was in the 

region of the normal walking frequencies, which is 1.3-2.5 Hz (Matsumoto et al., 1978). In 

order to supress its liveliness, the footbridge was strengthened by a concrete slab cast over 
the bottom steel flange in the regions around the columns as well as over the top flange of 
the box girder in the central part of the main span (Figure 3.2). At the same time, addi- 
tional steel plates were added to the box columns, as learned during attempts to correlate 
significant differences in frequencies of horizontal modes present when comparing the design 
FE and experimental models (Chapter 3). However, all this added not only stiffness but also 
some mass to the dynamic system. Consequently the fundamental natural frequency did not 
change very much and the footbridge still remains very lively. 

4.4 Initial FE Modelling, Modal Testing and Model Tuning 

This section describes briefly the development of the initial FE model for the footbridge 
investigated as well as its modal testing. Then, the manual model tuning is discussed. 
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4.4.1 Initial Finite Element Modelling 

To minimise discretisation and modelling errors a very detailed initial 3D FE model was 
developed using the ANSYS FE code (SAS, 1994). This initial FE model differs from the 

design FE model described previously in Chapter 3 only in the fact that the late information 

about additional steel plates used to strengthen the columns in the rectification phase is now 
taken into account. In the absence of more precise data, it was assumed that two different 

plates used for strengthening of columns were as thick as the types of plates used in the 

initial design, that is 2 and 3 cm. Therefore, the initial model for the analysis in this chapter 
is actually `Model 2' from Chapter 3. Features of the model are described in Chapter 3 and 

will not be repeated here. 

Seven lowest modes of vibration from the initial FE model are presented in Figure 4.1. As 

before, labels H and V stand for the horizontal and vertical modes, respectively. Similarly, S 

and A stand for the symmetric and anti-symmetric modes, respectively. 

1 HS: 1.82 Hz 

1 VA: 2.36 Hz 

1VS: 2.02 Hz 

1 HA: 4.35 Hz 

2VA: 6.52 Hz 2HS: 7.13 Hz 

2VS: 7.56 Hz 

Figure 4.1: Modes of vibration calculated from the initial FE model. 

4.4.2 Dynamic Properties Estimated from Modal Testing 

Modal testing based on FRF measurements for both vertical and horizontal lateral modes was 
conducted and the seven lowest modes of vibration were identified. A detailed description of 
the testing procedure and parameter estimates can be found in Chapter 3. Here, only the 
natural frequencies and corresponding damping ratios are presented (columns II and III in 
'able 4.1). 
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Table 4.1: Correlation between experimental and initial FE model. 

I II III IV V VI VII 

Exp. mode 
# 

Modal testing 
f [Hz] C [%] 

FE mode 
# 

Initial FEM 
f [Hz] 

Frequency error 

(f v-h! ) I fll [%] 
MAC 

[%] 

1 1.83 (111S) 0.26 1 1.82 (1HS) -0.6 99.5 

2 2.04 (1VS) 0.22 2 2.02 (1VS) -1.0 99.7 
3 3.36 (1VA) 1.86 3 2.36 (1VA) -29.8 97.8 

4 4.54 (111A) 0.98 4 4.35 (1HA) -4.2 98.6 
5 7.35 (2HS) 2.68 6 7.13 (2HS) -3.0 80.7 
6 7.56 (2VA) 0.76 5 6.52 (2VA) -13.8 86.6 
7 7.98 (2VS) 0.60 7 7.56 (2VS) -5.3 97.9 

4.4.3 FE Model Tuning 

All seven modes identified experimentally had their counterparts in the initial FE model 
(Table 4.1, column V). However, the sequence of 2VA and 2HS FE modes was reversed 

compared to their experimental counterparts (Table 4.1: columns I and IV). Also, natural 
frequencies of all experimental modes were underestimated, with the frequency error being 

exceptionally high (29.8%) for mode 1VA (Table 4.1: column VI). Another mode with quite 
large error of 13.8% was also vertical and anti-symmetric one (2VA). On the other hand, all 

mode shapes were well correlated, with the minimum MAC being 0.81. Something was clearly 

wrong with the prediction of anti-symmetric modes in the initial FE model. A parametric 

study revealed that introducing the horizontal springs in the longitudinal direction at girder 

ends instead of free edges could improve significantly the correlation between measured and 

analytical vertical modes, in particular the anti-symmetric ones, as mentioned in Chapter 3. 

The stiffness of these springs (modelled as COMBIN14 element in ANSYS) was varied by trial 

and error until the best correlation with measured frequencies was obtained. A stiffness value 
of 108 N/m per metre width of the bridge deck produced the smallest difference between the 

measured and FE-calculated natural frequencies for the first four vertical modes of vibration 
(Figure 4.2). This value was adopted in the manually tuned FE model developed prior to 

automatic updating. Also, in this way the sequence of mode appearance became the same as 
in the experimental model, and frequency error was decreased significantly with the maximum 
value being 4.0% for mode 1HA (Table 4.2). The MAC values were improved only slightly. 

The data given in Tables 4.1 and 4.2 are also presented graphically in Figure 4.3. The ratio 
between analytical and measured natural frequencies for the seven modes of vibration is given 
for the initial FE model and the manually tuned model. Having in mind that the information 

about column strengthening was not present in the original design data available, and that 
this information was found some time after the first FE model had been developed, it is also 
interesting to show the frequency error which would have resulted from not introducing this 
information (and horizontal springs) into the modelling. The frequency ratios in this model, 
labelled as `design model' in Figure 4.3, are also shown. It can be seen that strengthening 
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the columns influenced the frequencies of horizontal modes strongly ('initial FE model' in 

Figure 4.3), while the added springs then improved correlation with vertical modes ('manually 

tuned model' in Figure 4.3). 

1.4 

1.3 

1.2 
v 

y 1.1 

1.0 

00.9 
Q 

0.8 

ýa 0.7 

0. E 

Spring stiffness [N/m/mj 

Figure 4.2: Choice of appropriate stiffness for spring supports at the ends of the box girder. 

Table 4.2: Correlation between experimental and manually tuned FE model. 
I II III IV V 

Exp. mode Exp. model 
f (Ilzj 

Tuned model 
f [Hz] 

Frequency error 
(fill 

- f11)/f11 [%] 
MAC 

[%] 

1 1.83 (1HS) 1.82 (1HS) -0.6 99.5 
2 2.04 (1VS) 2.02 (1VS) -1.0 99.7 
3 3.36 (1VA) 3.47 (1VA) 3.3 99.9 
4 4.54 (1HA) 4.36 (1HA) -4.0 98.7 
5 7.35 (211S) 7.15 (211S) -2.7 81.1 
6 7.56 (2VA) 7.34 (2VA) -2.9 88.9 
7 7.98 (2VS) 7.74 (2VS) -3.0 98.0 

Having reduced the maximum frequency error in the manually tuned model to 4.0% and 
matching the sequence of experimental and FE modes facilitated the successful and physically 
meaningful automatic updating by the updating software (DDS, 2004). Also, it can be 

concluded that very detailed FE modelling and some manual tuning led to a very good 
correlation between experimental and analytical model. However, it would be interesting 
to see if/how the automatic updating could improve these results, having in mind that this 
starting model for automatic updating was much closer to the experimental results than most 
of the automatically updated models reported in the reviewed literature. 
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Figure 4.3: Manual frequency tuning of different FE models. 

4.5 Automatic Model Updating 

The updating procedure was conducted with the aim to improve further the analytical model 

so that it could be used in vibration response analysis. The procedure is based on the 

theoretical principles outlined in Section 4.2.2. 

4.5.1 Target Response Selection 

Having in mind the good quality of the experimental data, all seven measured modes of 

vibration were targeted in the updating process. Both measured natural frequencies and 
MAC values were taken into account. Therefore, in total 14 target responses were selected for 

updating. To take into account the lower reliability of identified mode shapes in comparison 
with measured natural frequencies, the confidence factor for MAC values was taken to be ten 
times lower than that for natural frequencies. This was chosen based on previous experience 
(Pavic et al., 1998). These confidence factors feature in [CR] matrix that is a part of the 

error function (Equation 4.4). 

4.5.2 Parameter Selection 

As previously mentioned, the main criteria for parameter selection are their uncertainty and 
sensitivity. Therefore, parameters related to the geometry that was not precisely described 
in the design data available were selected as uncertain. These parameters are shown in 
Figure 4.4. For simplicity, only half of the bridge is presented in the figure having in mind its 

symmetry with respect to the YZ plane. It can be seen that all parameters that characterise 
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the deck were selected. This is because of uncertain contribution of the asphalt and composite 

slab to the stiffness of the bridge deck. Besides this, only approximate data about asphalt and 

concrete thicknesses were available. The same applies to the composite slabs in the column- 

girder connections (Figure 3.2). Also, the fact that the bridge is more than 30 years old may 

contribute to the deterioration of its components (such as the asphalt layer). Because of the 

unavailability of precise data related to column strengthening, the thicknesses of the column 

steel plates as well as their dynamic modulus were also selected for updating. The density 

of water pipe material was selected to take into account the uncertainty about the amount 

of water in the pipes. Finally, the stiffnesses of the horizontal-longitudinal support springs 

at the girder ends were also taken into account. In total, 25 parameters were selected, with 

their sequence number given in parentheses in Figure 4.4. 

DECK 1 -densltý 
12mm steel+asphalt 
-dynamic modulus (5) DECK 2 
-density (12) 
-plate thickness (19) 20mm steel+asphalt 

-dynamic modulus (9) 
-density (14) 
-plate thir kr -, -, !; '+I 

DECK 3 
12mm steel+asphalt+concrete 
-dynamic modulus (8) 
-density (13) 

water pipe -composite plate thickness (22) 
-density (18) 

-dynamic modulus (6) 
-plate thickness (20) 

X40mm 

steel 
-dynamic modulus 
-plate thickness kness ((21) ) 

SLAB 1 
at the other end of the deck: summ steel+concrete 
k, (t)ý k, (3) 15mm steel+concrete -dynamic modulus (10) 
ty(2)--+ k, (4) -dynamic modulus (11) -density (15) 

-density (16) -composite plate thickness (24) 
-composite plate thickness (25) 

SLAB 2 

Figure 4.4: Uncertain parameters in the manually tuned FE model. 

After the parameter selection, a sensitivity analysis was conducted. To be able to compare 
the sensitivity values of different target responses to changes in different parameters, the 
normalised sensitivity, that is the dimensionless number S,,, tij, defined as 

ARi/OPA 
_0 

Pj 
Rj/Pj OPA Ri 

(4.9) 

was calculated for each combination of target responses and parameters. This was done by 
using the forward finite difference approach (DDS, 2004) with an assumed parameter change 
of +1% for all updating parameters. 

The plot of sums of normalised sensitivities corresponding to all responses and for all param- 
eters is shown in Figure 4.5. It was found that target responses were much less sensitive to 
three parameters (numbered as 11,16 and 25 in Figures 4.4 and 4.5) defining a composite 
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slab in the column connection areas in comparison with other parameters. Because of this, 
these three parameters were excluded from the updating process. All other parameters en- 
tered the updating process with their starting values given in Table 4.3 (column IV). Also, 

physically meaningful upper and lower limits for these parameters were estimated and are 
given in columns V and VI. 

>o 
N 
c a> Co 

c 

0 
C 

Ö '2 
E 
U, 

2468 10 12 14 16 18 20 22 24 
Updating parameter 

Figure 4.5: Plot of sum of normalised sensitivity of 14 selected target responses to 25 uncertain 
parameters. 

4.5.3 Formal Updating and its Results 

The updating procedure was conducted using the FEMtools updating software (DDS, 2004) 
based on the Bayesian algorithm presented in Section 4.2.2. The aim was to minimise the 
error function of the kind defined in Equation 4.4, where both natural frequencies and MAC 
values for mode shapes were selected as target responses. A constraint to the updating 
procedure was the introduction of the upper and the lower allowable limits for parameter 
values. The parameter changes per iteration were not limited. For all parameters the same 
confidence value featuring the matrix [Cp] was chosen. 
The updating process converged after five iterations. For every mode of vibration the error 
in calculated natural frequencies compared with their measured counterparts was defined as 
an absolute value of the relative difference between numerical fa and experimental fe natural 
frequency: 

frequency error =If °' f, 
(4.10) 

fe 

The average value of this error across all seven modes for each iteration is presented in 
Figure 4.6. 
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Table 4.3: The value of starting and updated parameters (E, p and h stand for dynamic mod- 

ulus of elasticity, density and thickness of appropriate elements in FE model, respectively). 

I II III IV V VI VII VIII 
Pararne- Type Structu- Starting Allowed Allowed Updated Parame- 

ter # -ral part value decrease increase parame- -ter 
(Fig. 4.4) [%] [%] -ter value change [%] 

1 ki spring 36.1 no limit no limit 25.9 -28.6 
support [MN/m/m] [MN/m/m] 

2 k2 spring 72.1 no limit no limit 41.4 -42.6 
support [MN/m/m] [MN/m/m] 

3 k3 spring 36.1 no limit no limit 30.5 -16.0 
support [MN/m/m] [MN/m/m] 

4 k4 spring 72.1 no limit no limit 55.0 -23.7 
support [MN/m/m] [MN/m/m] 

5 E deck 1 210 [GPa] -10 +10 230 [GPa] 9.5 
6 E column 210 [GPa] -35 +35 283 [GPa] 35.0 

plate 
7 E column 210 [GPa] -35 +35 228 [GPa] 8.6 

plate 
8 E deck 3 210 [GPa] -35 +35 141 [GPa] -32.9 
9 E deck 2 210 [GPa] -10 +10 189 [GPa] -10.0 
10 E slab 2 210 [GPa] -35 +35 253 [GPa] 20.5 
12 p deck 1 17475 -20 +20 15987 -8.5 

[kg/m3] [kg/m3] 
13 p deck 3 6712 -20 +20 7450 11.0 

[kg/m3] [kg/m3] 

14 p deck 2 13625 -20 +20 10900 -20.0 
[kg/m3] [kg/m3] 

15 p slab 2 4977 -10 +10 4480 -10.0 
[kg/m3] [kg/m3] 

17 p water pipe 4858 -50 +50 4479 -7.8 
[kg/m3] [kg/m3] 

18 p water pipe 4858 -50 +50 4475 -7.9 
[kg/m3] [kg/m3] 

19 h deck 1 12 mm 0 +30 13.5 mm 12.5 
20 h column 60 mm -50 +50 63.9 mm 6.5 

plate 
21 h column 40 mm -50 +50 42.0 mm 5.0 

plate 
22 h deck 3 67 mm -30 +30 51.2 mm -23.6 
23 h deck 2 20 mm 0 +20 20.0 mm 0.0 
24 h slab 2 110 mm -20 +20 102.7 mm -6.6 
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Figure 4.6: Convergence of the iterative process presented via averaged frequency error. 

The frequencies and MAC values obtained as a result of the updating process are presented 
in Table 4.4. It can be seen that previous maximum frequency difference of 4.0% decreased 

to 1.2%. Minimum MAC value increased from 0.81 to 0.85, with all other values being well 

above 0.90. The complete MAC matrix is shown in Figure 4.7. The agreement between mode 

shapes in updated FE model and the experimental data was very good, which can be seen in 

Figure 4.8. 

The final parameter values are presented in Table 4.3 (column VII). The absolute maximum 
parameter change was 42.6% for the stiffness of a support spring. Only four parameters, 
amongst 22 selected, reached their allowable limits. The fact that most parameters did not 
go to their limiting values is a sign of a good parameter choice. 

However, when changes in the parameter values through iterations were checked it was found 

that very large changes occurred in the first iteration. Maximum change was for parameter 2 
(k2) which was -23%. This could be important because of the fact that the Taylor's series 

given in Equation 4.3 was limited to its linear term only. However, the relationship between 

responses and parameters is, in fact, non-linear, and having very large changes in parameters 
in a single iteration can violate the main principles on which the updating procedure was 
based. Because of this, the updating process was repeated with parameter changes in every 
iteration limited to 1% - the value which was used to calculate the sensitivity matrix in each 
iteration. Limiting the maximum parameter change per iteration makes sure that parameter 
will take new value in the vicinity of the previous value, enabling a more reasonable linear 

approximation used in Equation 4.3. Nevertheless, the new updating setup produced almost 
the same level of agreement between experimental and numerical target responses as those 

presented previously. This time, results were obtained after 50 iterations (lasting 10 times 
longer than previously used five iterations). The agreement of results gave some confidence 
in their reliability. 
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Table 4.4: Correlation between experimental and updated FE model. 

I II III IV V 

Exp. mode Exp. model 
f [Hz] 

Updated model 
f [Hz] 

Frequency error 
(firn - fii)/fii [%] 

MAC 
[%] 

1 1.83 (1HS) 1.84 (1HS) 0.6 99.9 

2 2.04 (1VS) 2.05 (1VS) 0.5 99.8 

3 3.36 (1VA) 3.38 (1VA) 0.6 99.9 

4 4.54 (1HA) 4.50 (1HA) -0.9 99.3 

5 7.35 (2HS) 7.34 (2HS) -0.1 84.7 

6 7.56 (2VA) 7.47 (2VA) -1.2 93.8 

7 7.98 (2VS) 7.98 (2VS) 0.0 98.9 

¶AC 
100 

75 

50 

25 

0 

Figure 4.7: MAC matrix after updating. FEA and EMA stand for FE model and experimental 

model, respectively. 

Finally, it should be said that an attempt to update the initial FE model (not featuring 

horizontal springs) under the condition of maximum parameter changes per iteration of 1% 
led to much worse frequency and MAC correlation (after 140 iterations) although the limits 
for parameters were free. At the same time, changes in some parameters were physically 
impossible. For example, the thickness of the column plates was about 25 cm which meant 
that all columns are completely cast in steel, which is obviously wrong. Moreover, the col- 
unin stiffness was additionally increased via increase in dynamic modulus by a factor of 2. 
Obviously, the non existence of the horizontal-longitudinal support springs in the initial FE 

model required changes in the column parameters which were too large in order to try to 

correlate vertical modes. Therefore, the manual model tuning conducted before the formal 

updating proved to be crucial for the success of the formal updating procedure. 

1 F-rvin 
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Figure 4.8: Overlaying of mode shapes obtained experimentally (black-dashed line) and nu- 
merically in the final FE model (grey line). 

4.6 Discussion 

Although a very detailed initial FE model of the Podgorica footbridge was developed based 

on design data available and best engineering judgement, the discrepancies in the natural 
frequencies of the first seven modes were quite large between the experimental and numerical 
results. Particularly poor correlation was obtained for anti-symmetric modes and an error as 
high as 30% occurred for mode 1VA. 

This initial FE model could not be updated in a physically meaningful way by using a 
sensitivity-based procedure implemented in the FEMtools updating software. This confirmed 
conclusions found in papers by Pavic et al. (1998) and Brownjohn & Xia (2000) that the initial 
FE model usually cannot be updated successfully when large differences between their modal 
properties and their experimental counterparts exist. This is because these large differences 

violate the key assumption used in updating that the relationship between response errors 
and parameter changes in Equation 4.3 can be expressed using the first term in the Taylor's 

series only. 

Therefore, the manual tuning which would reconcile as much as practicable the difference 
between the initial FE model and its experimental counterpart was required before imple- 

menting the automatic updating. For the bridge investigated, it was found that flexible 

supports in the longitudinal direction should be introduced instead of free edges at girder 
ends to improve the correlation between the measured and FE-calculated modes. It seems 
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that the expansion joints at both ends of the bridge deck got jammed due to lack of mainte- 

nance and therefore provided a restraint to the bridge movement in the longitudinal direction. 
Such movement was much more pronounced in the anti-symmetric modes. Also, it might be 

that the end supports deteriorated and obstructed free movement of the box girder ends. 

A simple manual tuning by trial and error guided by engineering judgement was necessary to 

prepare the FE model for the automatic updating and proved to be crucial for its successful 
implementation. Of 25 parameters which were considered as uncertain, three were excluded 
from the updating process because the target responses were not sensitive to them. This is 

a usual procedure which should help to prevent problems with ill conditioning during up- 
dating. After this, the updating procedure was successfully conducted improving correlation 
of natural frequencies and MAC values between the final FE and the experimental models. 
Having said this, it would be interesting here to analyse physical meaning of the parameter 
changes presented in Table 4.3. 

Water pipes: For both pipes the density approximately decreased for 7.8%. This is an 
equivalent to the situation when water fills 43% of the pipes volume, a little bit less than the 
initially assumed 50%. 

Deck 1: The stiffness of deck 1 tended to increase through both dynamic modulus of elasticity 
and thickness of shell elements. This means that the asphalt layer contributed to the overall 
stiffness of the deck which was neglected when developing the manually tuned FE model. 
The overall mass of the deck remained approximately the same. 

Deck 2: In this area the shell stiffness tended to decrease as well as the overall mass. Having 
in mind the asphalt contribution to the stiffness in the deck 1 area, it would be expected that 
the same happened here but it did not. However, the result obtained for deck 2 probably 
means that the designed increase in the steel plate thickness from 12 mm in the area of deck 1 
to 20 mm in the area of deck 2 was actually not carried out. It was impossible to confirm 
this information within the scope of this work. 

Deck 3: Changes in dynamic modulus of elasticity, shell thickness and its density suggested 
that the total mass and stiffness of this composite slab are smaller than assumed. This means 
that the composite slab is composed of 1.2 cm of steel and 7.2 cm of concrete, instead of 1.2 cm 
of steel and 10.0 cm of concrete, as initially assumed. The 33% decrease in dynamic modulus 
of elasticity also suggests that the concrete was probably cracked over time and there was 
possibly certain level of slippage between the steel and concrete layers. 

Slab 2: The mass of this composite slab decreased, meaning that the concrete layer is 9.4 cm 
thick instead of the previously used 13.0 cm. However, the dynamic modulus of elasticity 
increased by 20%. This, together with the increase of the same parameter for column plates 
suggests that the whole area of connection between the box girder and columns is very stiff. 
The exact source of this stiffness is difficult to identify having in mind that there are no precise 
data about the geometry of columns as well as of the concrete layer in the composite slab. 
The final plate thicknesses in columns almost stayed unchanged at 6 and 4 cm, which was in 
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agreement with the rule from the national bridge design code in Montenegro. According to 

this code the plates used for stiffening of a structure can have the thickness which is, as a 

maximum, the same as the thickness of the original plates. 

Longitudinal spring supports: The stiffnesses of these springs were free to increase and de- 

crease. It is interesting here that springs at the right side of the bridge were on average about 
25% stiffer than those on the left side. This parameter change probably happened due to an 

attempt of the numerical procedure to accommodate slight violation of the anti-symmetry in 

the measured mode 2VA (Figure 4.8). 

Finally, having in mind that the first vertical mode of vibration is responsible for the foot- 

bridge liveliness, the modal parameters related to this mode important for further vibration 
analysis of the bridge were possible to be identified accurately by combining the FE and 

experimental results. These are: natural frequency of 2.04 Hz (from testing) and modal mass 
(from the fully updated FE model) of 58,000 kg. This mass was about 10% higher than that 

obtained from modal testing in Chapter 3, being 53,188 kg. The damping ratio estimated 
from FRF-based testing was 0.22%. However, when assessing vibration performance of the 
footbridge under human-induced load, it is recommended to use the value of 0.26% identified 
by analysing the footbridge response that typically occurs due to human-induced walking 
excitation (Figure 3.15 in Chapter 3). 

4.7 Conclusions 

When developing an FE model of the footbridge structure based on the design data available 
and best engineering judgement where necessary, there is no guarantee that this initial model 
can reasonably well estimate the modal properties (natural frequencies and mode shapes) of 
the bridge even when it is very detailed. First seven modes of vibration of the Podgorica 
footbridge were identified via modal testing. A comparison with their estimates from the 
initial FE model revealed errors in the natural frequencies, particularly large for two vertical 
anti-symmetric modes. 

An attempt to formally update this design model by changing its input parameters failed to 
produce physically meaningless changes in some parameters. This was due to large differences 
in the initial and experimental models which cannot be supported by the iterative updating 
procedure used. 

Because of this, a manual tuning of the initial FE model was required with the aim to rec- 
oncile these differences. Adding flexible supports to the free edges in the bridge longitudinal 
direction at the girder ends improved considerably the correlation between the numerical and 
the experimental models. Only then was it possible to automatically update the numerical 
model via the FEMtools software. 

This formal updating further improved the frequency correlation and increased MAC values 
by changing the values of 22 uncertain and sensitive structural parameters. The fact that 
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all parameter changes were within their physically acceptable limits was very important for 

judging the updated parameters as meaningful, and therefore the whole of the updating 

process as successful. The parameter changes suggested that the composite slabs in the 
bridge were less stiff than assumed. Also, it seemed that the asphalt layer contributed to the 
deck stiffness. 



Preface to Chapter 5 

Estimation of modal properties of the Podgorica footbridge described in Chapters 3 and 4 

provided a reliable modal model of the bridge that could be used in further dynamic analysis. 
This model, together with two similar models for two other lively footbridges investigated by 

the Vibration Engineering Section in the past, became available as a tool for investigating 
human-structure dynamic interaction during a footbridge crossing. This investigation is 

presented in Chapter 5. The primary motivation for it was to investigate possible differences 
between walking on a rigid and a perceptibly moving surface. The work was conducted by 
looking at vibration development during the crossing of the structure and by studying in 
detail the parameters that influence the vibrations. 

Therefore, Chapter 5 gives insight into the human-structure dynamic interaction that occurs 
in the seldom investigated vertical direction while crossing lively footbridges. It makes use of 
this interaction to define a possible limiting vertical vibration level for walking people. 
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Chapter 5 

Human-Structure Dynamic 
Interaction during Footbridge 
Crossing 
This chapter, in an amended form, has been published under the following reference: 

2ivanovi&, S., Pavic, A. and Reynolds, P. (2005) Human-Structure Dynamic Interaction in Footbridges, Proceedings 

of the Institution of Civil Engineers - Bridge Engineering, 158 (4), 165-177. 

Abstract 

Dynamic force induced in the vertical direction by a single person walking across a footbridge structure 
is usually modelled as a harmonic force having frequency that matches one of the footbridge natural 
frequencies. A comparison between modal responses generated by this harmonic force and a walking 
force measured on a treadmill confirmed that using the harmonic force is justifiable in the case of 

walking across a structure that does not vibrate perceptibly, especially in case when walking frequency 

is controlled with help of a metronome. It is further shown that using this harmonic force for predicting 
the response of a perceptibly vibrating footbridge can significantly overestimate the real footbridge 

response and therefore its degree of liveliness. This is because of the inability of pedestrians to keep 

pacing steadily when perceiving strong vibrations. A methodology for systematic comparison of the 

measured and simulated responses is proposed with the aim of identifying vibration levels which 
disturb normal walking. On two footbridges investigated this level was 0.33 m/s2 and 0.37 m/s2, in 
both cases being lower than the levels allowed by the current British footbridge design code. Finally, 

the observed effect of losing steady walking step can be expressed via either increased damping or 

modified harmonic dynamic force over time periods when test subjects lose their steps. The average 
increase in the damping over the analysed time periods of imperfect walking was up to 10 times higher 

than the damping of an empty footbridge. 
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5.1 Introduction 

Footbridge structures are becoming increasingly slender due to aesthetic design requirements 

and a tendency to utilise fully the carrying capacity of structural materials which are con- 

stantly improving. As a consequence, it is the vibration serviceability of these structures 

under human-induced load that is becoming their governing design criterion. In the UK, BS 

5400 (BSI, 1978) and BD 37/01 (HA, 2001) recognise a dynamic load induced by a single 
person walking across the bridge at a frequency that matches a footbridge natural frequency 

as a critical design case when dealing with vibrations in the vertical direction. Furthermore, 

since the widely publicised problem of excessive lateral sway vibrations under crowd load 

occurred on the London Millennium Bridge (Dallard et al., 2001a), an additional check re- 
lated to the level of lateral vibrations is expected to be conducted (HA, 2001). However, a 
methodology to perform this check has not yet been codified. To deal with this problem, BD 
37/01 indicates a threshold natural frequency of a sway mode of 1.5 Hz, above which lateral 

vibration problems are unlikely to occur. 

The majority of the current design procedures for calculating footbridge vibration response (in 
the vertical direction) induced by a single walking person model the corresponding excitation 
force as a sinusoidal force moving across the bridge with a constant speed (Rainer et. al., 
1988; Grundmann et al., 1993). The modal force induced in this way is equivalent to the 
same sinusoidal force weighted by a mode shape. The frequency of the sinusoidal force is 
either the walking frequency, being in the range 1.5-2.4 Hz (Matsumoto et al., 1978), or an 
integer multiple if one of the higher harmonics of the walking force (assumed to be periodic) 
is analysed. The serviceability checks are usually conducted for cases when the frequency 

of one or more of the first three harmonics (Young, 2001) coincides with one of the natural 
frequencies of the footbridge. The amplitude of the sinusoidal force is expressed as a fraction 

of the pedestrian's weight, via the so called dynamic loading factor (DLF). The value of DLF 
depends on the walking harmonic considered as well as on its frequency and in addition, it 
varies between different pedestrians (Rainer et al., 1988; Kerr, 1998). This variability of DLFs 
implies that a value of DLF used in modelling should, in principle, be taken as a stochastic 
variable. 

There is a lot of work which concentrates on measuring the DLFs for different walking fre- 
quencies and harmonics (Rainer et al., 1988; Kerr, 1998). Generally speaking, DLFs have 
been obtained by measuring the dynamic force induced by different test subjects by walking 
on a rigid (i. e. not perceptibly vibrating) surface. Based usually on the average DLF obtained 
experimentally for a certain walking frequency, the harmonic force representing walking is 
typically defined and used to simulate the response on a particular footbridge. This response 
can then be compared with a measured response. Often, significant differences between the 
two responses are noticed and they are attributed to inappropriate values of DLFs used in 
simulations (Pimentel, 1997). However, there are not many works investigating the nature 
of and causes for the observed differences. 
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This study investigated the nature and possible causes of differences between the simulated 

and measured responses and the way these differences can be taken into account in a design 

model. This research is based on the response measurements due to single person walking 

excitation and its numerical modelling for three footbridges of different structural systems. 

Since these footbridges have fundamental natural frequencies in the range of the first walking 

harmonic, only this harmonic is investigated. All three footbridges are briefly described and 

their modal properties required in the response simulations are presented. 

Aberfeldy footbridge is a light glass-reinforced plastic, cable-stayed footbridge, with a total 

length of 113 m. Its total mass is about 20,000 kg. An investigated mode of vibration was 

the fundamental vertical mode at a frequency of 1.52 Hz. Podgorica footbridge is a heavy 

(260,000 kg) steel box girder footbridge spanning 104 m having the first vertical natural fre- 

quency of 2.04 Hz, as obtained in Chapters 3 and 4. Hope footbridge is a catenary-shaped 

stressed-ribbon structure spanning 34 m. Its mass is about 30,000 kg and the first mode of 

vibration is at 2.44 Hz. Vertical vibration of all three footbridges can be felt during walking. 

The footbridges are presented in Figure 5.1 together with modal properties (mode shape, 

natural frequency, damping ratio and modal mass) of relevant mode of vibration. The modal 

properties of vibration modes were obtained by combination of modal testing for all three 

footbridges and their FE modelling and model updating. The three bridges have natural fre- 

quencies covering well the full range of walking frequencies (1.5-2.4Hz). All three footbridges 

are lightly damped, which is a common feature in footbridges. 

A more detailed description of the three footbridges and the modal testing conducted can be 
found in publications by Pavic et al. (2000) for Aberfeldy footbridge and Pavic and Reynolds 
(2002) for Hope footbridge, while Podgorica footbridge, as already mentioned, is described 

in detail in Chapters 3 and 4. 

This chapter concentrates on the interaction phenomenon between a single pedestrian and 
footbridges which are perceptibly lively in the vertical direction. It first compares the mea- 

sured and simulated resonant response time histories on as-built footbridges. Then, walking 
forces measured on a treadmill (Brownjohn et al., 2004b) are introduced into the simula- 
tions. After this, the differences between the simulated and measured responses on as-built 
footbridges are explained and their possible causes identified. This is done for walking with 
both controlled and not controlled (by a metronome) pacing rates. Finally, a way forward in 

terms of a possible modelling strategy for predicting vibration response on footbridges which 

vibrate perceptibly is suggested. 
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Figure 5.1: Photograph and the vibration mode investigated for: (a) Aberfeldy footbridge, 

(h) Podgorica footbridge and (c) Hope footbridge. 

5.2 Measured and Simulated Responses 

To generate the maximum responses for all three footbridges, test subjects were asked to 

walk with a pace matching the footbridge natural frequency, which was established prior to 

pedestrian tests. To help achieve this, a metronome set to a beat equivalent to the natural 
frequency was used. The footbridge response was recorded at the midspan point for the first 

two footbridges and at a quarter-span point for the third one considering that it had an anti- 
symmetric first vertical mode, which is common in catenary structures. As the measurement 
point in the last case was not exactly placed at the maximum mode shape amplitude, the 
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recorded acceleration was increased by an appropriate scale factor to be comparable with the 

simulated modal responses at the antinode of the excited mode of vibration. In addition, 
the time instants when a test subject entered and left the bridge in a single crossing were 

monitored by a video camera and/or by a sound recording system with whistle signs given 

at the entry and exit times. In this way, and assuming a constant walking speed, it was 

possible to match the pedestrian location on the bridge with the acceleration response at 
that location. Therefore, the level of vibrations felt while walking at every point in time 
during the crossing could be identified. Moreover, in this way the crossing time was known 

which enabled calculation of pedestrian velocity. Consequently, the pedestrian step length 

could be obtained by dividing the constant velocity with the step/metronome frequency. 

These parameters were required for the response simulations to be carried out. In addition, 
all measurements started from an ambient level of footbridge vibrations. This was done to 

make sure that the investigated effects of a single person walking are not superimposed with 

vibrations generated by some previous crossings made by the same or other pedestrians. All 

measured acceleration time histories were dominantly influenced by only the mode shape 
investigated, indicating predominantly single degree of freedom (SDOF) behaviour. They 

were filtered to obtain modal acceleration. Typical modal responses for all three footbridges 

are shown in Figure 5.2 (black lines). 

For all three cases, the pedestrian dynamic load was then defined as a sinusoid having fre- 

quency f,, and amplitude DLF " W, where TV is the weight of the test subject. Then the 

modal force F(t, x) is calculated by weighting the sinusoid by the mode shape D (x), to take 
into account the pedestrian location on the bridge during a crossing. Therefore, the modal 
force induced by walking can be written as (Smith, 1988): 

F(t, x) _ cn(x)(DLF "W" sin(27r fnt)) (5.1) 

where t is the time while x is the pedestrian location on the bridge. These two variables (t 

and x) are interdependent since the pedestrian location on the bridge x at any time instant t 
during a crossing can be obtained via multiplication of the pedestrian speed v, by this time 
instant (assuming that t=0s is a time instant when the pedestrian enters the bridge). Since 
the DLF value in Equation 5.1 directly influences the level of force amplitude, it was chosen 
carefully using the methodology explained in Section 5.4. 

Considering the footbridge as a SDOF system with known modal properties (natural fre- 

quency f, damping ratio ( and modal mass m given in Figure 5.1), the well-known modal 
equation of motion: 

a(t) + 2«2ir fn)v(t) + (2ir fn)2d(t) = 
t, (5.2) 

could be solved numerically. In this equation a(t), v(t) and d(t) are modal acceleration, ve- 
locity and displacement, respectively. The modal acceleration responses obtained for all three 
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footbridges are shown in Figure 5.2 (grey lines). It can be seen that the level of footbridge 

modal response is the highest for the first footbridge, followed by the third and the second 

ones. Moreover, with the exception of the second structure (in which the measurements and 

simulations, i. e. black and grey lines, match), the simulated responses overestimated the 

corresponding measured responses. In the case of the first footbridge, the measured peak ac- 

celeration response was overestimated by a highly significant 76% while for the third structure 
the simulated peak response was 28% higher than that measured. It should be emphasised 
that these differences exist (and can be quite significant, as in the case of the first bridge) 

even though the tests had been conducted in a strictly controlled manner and simulations 
were done with as precise input parameters as possible. This behaviour was noted for many 
other test subjects repeating the same test. Therefore, an investigation of the causes of these 
differences was carried out. 

The modal force used in the simulation of the response of the Hope footbridge (presented as 
grey line in Figure 5.2c) was obtained by multiplication of the sinusoidal force by absolute 
value of the amplitude of the anti-symmetric mode shape shown in Figure 5.1c instead by 
the amplitude itself. This has a specific meaning and will be explained in Section 5.4. 
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Figure 5.2: Measured (black line) and simulated (grey line) resonant modal responses on 
(a) Aberfeldy footbridge, (b) Podgorica footbridge and (c) Hope footbridge, for walking with 
a metronome. Note that the black and grey lines match in case (b). 
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5.3 Response Simulations to Measured Walking Forces 

In the research related to vertical forces induced by walking, Brownjohn et al. (2004b) mea- 

sured these forces on an instrumented treadmill at the National Institute of Education in 

Singapore. Eight test subjects walked on a treadmill, set to a constant speed, for about one 

minute or longer. The treadmill speed ranged between 2.5 km/h and 8.0 km/h. A typical 

walking force time history (after subtraction of the test subject's weight) is shown in Fig- 

ure 5.3a. Figure 5.3b presents 10 s of the same walking force extracted between 30 s and 
40 s of the record to give further insight into the shape of the forcing function. The spectral 

content of the walking force measured during 86 s is presented in Figure 5.3c. The spectrum 
is obtained by transforming a full number of cycles of the force time history to the frequency 

domain to avoid the signal leakage. It can be seen in Figure 5.3c that in the frequency domain 

there is a spread of energy in the measured force around its main harmonics, in this case 

at 1.52 Hz and its integer multiple frequencies. This phenomenon indicates that the walking 
force is not a periodic but a narrow-band random process, which has been investigated in 

some previous works (Eriksson, 1994; Brownjohn et al., 2004b). It can safely be assumed 
here that this spread of energy would be smaller if the walking frequency was controlled by 

a metronome instead of controlling the walking/treadmill speed. This is because the use of 
a sound prompt for pacing reduces the level of randomness in the walking forcing function. 

The force presented in Figure 5.3a was band-pass filtered around its first harmonic with a 
filter width of 0.5.1.52 Hz=0.76 Hz. The filtered force is shown in Figure 5.4. It is noticeable 
that this force has a slightly variable amplitude - again, an indication of a narrow-band 
process. 

As already said, this study aims to explain differences between measured and simulated re- 
sponses starting with walking controlled by metronome first. For this purpose the measured 
force time histories with the least energy spreading were chosen for resonant response simula- 
tion on the as-built footbridges. Furthermore, the footbridge with the longest crossing time is 

most preferable in this analysis. The long crossing time is important here because it is more 
probable that general trends in the footbridge dynamic response will be better developed and 
easier to notice than in the case of shorter crossing times. This applies to footbridges with 
damping ratios of the same order, which is the case for the three footbridges considered. The 
crossing time TT for every bridge could be calculated as: 

T_L_L C vp fn is (5.3) 

where L is the footbridge length, while vp, f,, and is are the pedestrian velocity (equal to 
the treadmill velocity in this analysis), step frequency and step length, respectively. Typical 
crossing times under forces measured on the constant velocity treadmill would be around 
110s for Aberfeldy footbridge, 60 s for Podgorica footbridge and only about 20 s for Hope 
footbridge. Therefore, the crossing time was longest for Aberfeldy footbridge. From Equa- 
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tion 5.3 it is clear that this is not only because this footbridge was the longest but also 

because of the slowest walking (resonant) frequency (1.52 Hz) for this bridge. 
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Figure 5.3: (a) Measured walking force time history. (b) Force detail between 30 and 40s. 

(c) Fourier spectrum of the measured force. 

The procedure for calculating the expected footbridge modal acceleration response under a 
measured force was as follows. First the time length of the measured force is compared with 
the crossing time. If it was longer, the measured force was shortened to the crossing time 
length. If the force duration was shorter than the crossing time, the force record was extended 
by repeating the same force record as long as it was required to reach the crossing time. This 
force was then slightly shortened to consist of an integer number of steps, to avoid signal 
leakage when numerically transforming the signal to the frequency domain. The force was 
then filtered, modulated by the mode shape, and used for SDOF response simulation. The 

result of this simulation will hereafter be referred to as Simulation 1. Next, the filtered force 

was approximated using a harmonic force having frequency of 1.52 Hz. The amplitude of this 
harmonic force was obtained as the average of all amplitudes in the filtered force. The first 
five cycles were excluded from averaging since they have low amplitudes as a result of the 
filtering process. The response to this harmonic force is called Simulation 2. 
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The two simulated responses under a test subject walking at a speed of 3.4 km/h (0.94 m/s) 
are shown in Figure 5.5. The agreement between the two responses is quite good. This means 
that, theoretically, it is possible to approximate the first harmonic of the walking force by a 
sinusoid without losing significant accuracy of analysis. 
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Figure 5.5: Modal response simulations to the first walking harmonic of a measured narrow- 
band force (black line) and a harmonic force (grey line). 

To research this further, all measured walking forces with a first harmonic in the frequency 
range between 0.95 fn, and 1-05f, where ff,, is the footbridge natural frequency, were con- 
sidered. For Aberfeldy footbridge with natural frequency of 1.52 Hz this range was between 
1.44 Hz and 1.60 Hz. In total, nine measured walking force time histories had a first harmonic 
in this frequency range. The two response simulations were carried out for all nine forces, 
but with a slight change in the SDOF natural frequency to match the dominant walking frequency. This was done to preserve resonance in all simulations. A comparison between Simulations 1 and 2 revealed that the agreement between them was not always as good as that shown in Figure 5.5. This is because some test subjects often changed their walking 
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frequency slightly and therefore introduced larger spreading of energy around the main har- 

monics in comparison with that given in Figure 5.3c. However, in four of nine tests test 

subjects walked very steadily. As a result, the peak response due to sine force was only up 

to 5% higher than that due to the measured force. On the other hand, in the remaining five 

tests test subjects had problems with keeping constant walking frequency. This resulted in 

20-26% higher peak response in Simulation 2 in comparison with Simulation 1. 

An important conclusion can be drawn here. Namely, despite the fact that all walking 
forces analysed were measured without controlling pacing frequency by a metronome, some 
test subjects were still clearly able to walk in a stable manner producing negligible energy 

spreading around their forcing harmonics. As a consequence, modal responses due to the 
filtered measured force and its approximation by a sinusoid were almost the same. This 

suggests that walking with a metronome would produce a force which can be replaced by a 

sinusoid even more accurately. However, this conclusion is related to walking on a rigid (i. e. 

not perceptibly vibrating) surface. 

5.4 Nature of Differences between Measured and Simulated 
Responses 

Based on the analysis in Section 5.3 it can be stated that a harmonic force is a good approx- 
imation of the walking force when walking on a rigid surface with a metronome. However, 
this was not always the case when comparing the measured and simulated responses due to 
walking on the investigated as-built footbridges (Figure 5.2). There are at least two possible 
explanations for observed differences in the responses. Either some inappropriate parame- 
ters were used in the simulations while getting numerical responses, or there were differences 
between human walking on a rigid and on a perceptibly moving surface. 
As for the first explanation, it can be said that all parameters used in the simulations such 
as structural modal properties, pedestrian weight, walking frequency, walking speed and 
crossing time were all quite reliable, well established and controlled. This applies under a 
reasonable assumption that these parameters remain constant during the crossing analysed. 
The only remaining parameter was the DLF. This parameter was found in a systematic 
way. Specifically, since all test subjects started their footbridge crossings from an ambient 
level of vibrations, it is reasonable to assume that they did not perceive these low-level 

vibrations in the initial part of the crossing. Therefore these vibrations could not disrupt test 
subjects' walking patterns. Consequently, it can be said that at least in the initial part of the 
footbridge crossing, walking of the test subjects can be considered as walking across a rigid 
surface. Based on this, the DLF for each case was determined by trial and error. Namely, 
the DLF was changed iteratively until a good amplitude agreement between the simulated 
and measured responses was achieved. This agreement was in fact excellent as visible in the 
initial part of responses for all three simulations presented in Figure 5.2. The DLFs obtained 
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in this way are given in the same figure. It should be noticed that they are all within the 

range of values measured (on a rigid surface) by Kerr (1998) for given walking frequencies. 

An additional methodology can be used for identifying the DLFs. It is based on constructing 

the envelopes of maximum modal forces per cycle for several different DLF values (black lines 

in Figure 5.6). These envelopes can then be compared with that identified from the measured 

modal acceleration time history following the procedure proposed by Dallard et al. (2001a) 

for the Millennium Bridge. The envelopes corresponding to the measured data are shown 
for all three footbridges in Figure 5.6 by grey-dashed lines. The value of DLF for which the 

initial part of the modal force envelope best fits that given by Dallard et al. is the one which 
is realistic for a footbridge crossing analysed. The range of the DLF for Aberfeldy footbridge 

is clearly around 0.12, for Podgorica footbridge it is 0.59, while for Hope footbridge it is 

between 0.28 and 0.42. The precise values of DLF for Aberfeldy and Hope bridges can be 

obtained by linear interpolation and they are equal to the value determined previously in 

Figure 5.2. It was reassuring to see such a good agreement indicating the robustness of the 

assumed DLFs for the three footbridges. 
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Figure 5.6: Estimation of the DLF by comparing initial part of envelopes of different modal 
forces with that derived by Dallard et al. (2001a) for (a) Aberfeldy footbridge, (b) Podgorica 
footbridge and (c) Hope footbridge. 
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Therefore, the logical way to explain the differences in the responses in Figure 5.2 is to 

conclude that the some test subjects were influenced by increasing vibrations which they felt 

during their footbridge crossing. Even with a help of a metronome, they could not keep the 

step after they started feeling stronger levels of vibrations. The point when the simulated 

and measured responses start to differ can be denoted as the point when the test subjects 

lost their step under the influence of the perceived vibrations. This occurred on Aberfeldy 

footbridge at t= 37 s, and at t=8s on Hope footbridge, while it did not occur at all for 

Podgorica footbridge during a complete crossing (Figure 5.2). After the step was lost on 

Aberfeldy and Hope bridges, the walking frequency did not match the footbridge natural 

frequency precisely. As a result, a decrease in the footbridge response in comparison with the 

simulated one occurred. This is often interpreted in the literature as a decrease of the DLF 

on as-built footbridges, in comparison with the DLF measured on the rigid surface (Pimentel 

et al., 2001). 

An additional argument that supports the existence of the interaction between a pedes- 

trian and the footbridge can be given for case of Hope footbridge. This bridge has an 

anti-symmetric mode of vibration (Figrure 5.1c). If the modal force was modelled in a usual 

way, i. e. by multiplication of a sinusoidal force by the mode shape, then this force would 

have changed its phase at the middle of the bridge where the node of the mode shape is. As 

a result, the footbridge response would be reduced to zero after certain amount of time, as 

presented in Figure 5.7. The fact that this did not happen in actual measurements (one ex- 

ample is shown as black line in Figure 5.2c) proves a pedestrian's inability to keep the steady 

pacing after passing the nodal point of the mode shape. This probably happens because the 

required change in the phase of the walking force for 180° requires that the pedestrian walks 
(relatively to the structural movement) in an opposite way to that done before crossing the 

nodal point. Since this would cause the discomfort (when the footbridge vibrates perceptibly) 

the pedestrian adjusts their step to the structural movement in order to maintain the same 

relative movement between the bridge and themselves as it was before the passing the nodal 

point of the mode shape. This seemingly develops stronger vibrations than in the case when 

phase of the walking force has been changed by 180° (compare the vibration levels presented 

as black lines in Figures 5.2c and 5.7 after t= 15 s). This pedestrian interaction with the 

bridge after crossing the nodal point was the reason to model the human-induced modal 
force for simulations across Hope bridge as the sinusoidal force multiplied by an absolute 

value of the mode shape amplitude. This was done since it produced more realistic vibration 

response of the footbridge. Since the most important consideration in this chapter is related 
to the time instant when a pedestrian loses their step, and this occurs at t=8s (i. e. before 

reaching the nodal point of the mode shape) regardless of the way of modelling the modal 
force, the human-structure interaction after crossing the nodal point is not analysed in more 
detail here. 

By multiplying the maximum measured vibration level per vibration cycle over time for 

every crossing with the mode shape amplitude which corresponds to the location of the test 
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subject at the given time instant, vibration perception curves as a function of time can be 

constructed. These curves present the level of vibrations felt by the test subject during 

the footbridge crossings. They are shown in Figure 5.8. It can be seen that in the case 

of Aberfeldy footbridge, the test subject lost his step when feeling vibrations of 0.82 m/s2. 

This was in agreement with the fact that the test subject on Podgorica footbridge, who felt a 

maximum acceleration level of 0.56 m/s2 during the complete crossing, did not lose his step at 

all. Finally, the test subject crossing Hope footbridge lost his step when perceiving vibrations 

of 0.51 m/s2. His walking frequency of 2.44 Hz was very fast, which made it more difficult to 

keep step when perceiving strong vibrations. 
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Figure 5.7: Simulation of the modal response due to the modal force that changes its phase 
at the nodal point of the mode shape. 

It should be noticed here that the maximum level of perceived vibrations is not necessarily 
the same as the measured peak acceleration. For example, the maximum perceived level 

on Podgorica footbridge of 0.56 m/s2 (Figure 5.8b) was lower than the peak acceleration of 
0.73 m/s2 (Figure 5.2b). This is because the peak acceleration was recorded at the midspan 
point about 12 s after the test subject passed this point. 

The observed differences in the vibration level when the step was lost (Aberfeldy and Hope 

footbridge) are expected since the vibration perception depends on vibration frequency and 
test subject's sensitivity to vibrations (Griffin, 1996). Although the findings found here 

cannot be generalised due to small number of test subjects and test structures investigated, it 

is interesting that the jerk value, defined as the first derivative of acceleration (Griffin, 1996), 

was the same for the two cases when the step was lost (Aberfeldy and Hope footbridge). 
This value was exactly 7.8 m/s3. The same jerk value for Podgorica footbridge required an 

acceleration level of 0.61 m/s2, the value that was higher than 0.56 m/s2 - the maximum that 
the test subject experienced during the crossing (Figure 5.8b). 

As the crossing time for Aberfeldy footbridge was long enough, the Fourier spectra for the 
first 37 s (i. e. until the step was lost) and the next 37 s (i. e. between 37 s and 74 s) of the 

5 10 15 20 25 
Time [s] 



CHAPTER 5 Human-Structure Interaction during Footbridge Crossing 141 

measured modal response were calculated. They are presented in Figure 5.9 (grey vertical 
lines). In the first 37 s the dominant response frequency was at 1.52 Hz (Figure 5.9a). The 

second spectrum has two peaks - at 1.46 Hz and 1.52 Hz (Figure 5.9b) indicating that the 

walking frequency dropped to 1.46 Hz. Therefore, the average walking frequency did not 

match the natural frequency between 37 s and 74 s of the crossing which is in agreement with 

the finding that the test subject lost step after 37 s. Furthermore, as the walking frequency 

was slightly changed this caused a variation of the response amplitude known as the `beating' 

effect (Figure 5.2a). 

1.4 
ti^ 

1.2 

1.0 
ca 

0.8 

E 0.6 

8 0.4 

0.2 
a 

nr 

(a) 
`ý ' max 1.17 m/s- 

0.82 m/sý 

"'o 10 20 30 40 50 
Time [s] 

0.8 
0.7 

0.6 

cc 0.5 
Co 

0.4 
E 

0.3 

0.2 

0.1 

0.0 

0.7 

0.6 

0.5 

0.4 
0 E 0.3 
M 
? 0.2 

C) 0.1 

0. c 

(b) 
0.56 

60 70 80 0 10 20 30 40 50 
Time [s] 

(Cý max 0.8 m/s' 

I co 

0.51 m/ S2 

05 10 15 20 25 
Time [s] 

60 

Figure 5.8: Vibration perception curves during crossing of the (a) Aberfeldy footbridge, 
(b) Podgorica footbridge and (c) Hope footbridge. 

5.5 Walking Without Metronome 

Since walking with a metronome is not a natural situation on as-built footbridges, it is 
interesting to see what happens if the same test subject walks without a metronome but close 
to or at the resonant frequency. This condition is difficult to fulfil during tests, since many 
tests should be conducted until a test subject manages to walk at the resonant frequency. 
However, the two test subjects who conducted tests with a metronome shown in Figures 5.2a 
and 5.2b had success in matching the resonant frequency when walking freely. Regarding 
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Hope footbridge none of the seven test subjects who took part in the testing programme 

matched the frequency of 2.44 Hz during free walking, which is expected bearing in mind 

that this is an unnaturally fast walking frequency. 
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Figure 5.9: The spectrum of measured acceleration response (grey vertical lines) on Aberfeldy 

footbridge for: (a) the first 37 s of the response, (b) the response between 37 and 74 s, 

when walking with a metronome. Black line is related to the crossing without a metronome 
(Section 5.5). 

The recorded resonant modal responses from the first two footbridges are presented in Fig- 

ures 5.10a and 5.10b (black lines). These responses were obtained only by giving a simple 
instruction to the test subject to walk slowly, in case of Aberfeldy footbridge, and fast, in case 
of Podgorica footbridge. The corresponding simulated responses are presented as grey lines. 
It can be seen that both test subjects generated lower vibration levels than when walking 
with a metronome (Figures 5.2a and 5.2b: black line). The perception curves during the two 

uncontrolled crossings are also presented in Figures 5.10c and 5.10d. 

In these tests both test subjects generated responses that followed the simulated modal re- 
sponse (grey line in Figures 5.10a and 5.10b) closely in the initial 35 s for Aberfeldy footbridge 

and 26 s for Podgorica footbridge. After these time instants the differences between measured 
and simulated responses arose, being greater than when walking with help of a metronome. 
Namely, simulated peak response for Aberfeldy footbridge was now 3.47 times higher than 
that measured, whereas for Podgorica footbridge this ratio was 1.30. These differences now 
probably originate not only from losing step due to perception of footbridge vibrations but 

also from natural variations of the step frequency seen for some test subjects walking on 
the treadmill without a metronome. However, assuming that the test subject lost their step 
when the simulated and measured responses start to differ, the vibration level perceived by 
the test subject at that moment can be adopted as the level of vibration which disturbs their 
normal walking. Therefore, the disturbing level of vibrations obtained in this way might be 

conservative, that is on the safe side. 
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Having this in mind, it can be concluded that for a test subject walking across Aberfeldy foot- 

bridge, the disturbing vibration level dropped from 0.82 m/s2 when walking with a metronome 
(Figure 5.8a), to 0.33 m/s2 when walking without it (Figure 5.10c). Also, it can be noticed 

again that the Fourier spectrum in the first 35 s has only one peak (black line in Figure 

5.9a) whereas the two peaks at 1.52 Hz and 1.59 Hz are present in the response measured 
between 35s and 70s (black line in Figure 5.9b). On the other hand, the test subject on 
Podgorica footbridge did not have problems with keeping step at as high vibration level as 

0.56 m/s2 when walking at metronome beat (Figure 5.8b), but lost his step at vibration level 

of 0.37m/s2 when walking freely (Figure 5.10d). Corresponding jerk values for these two 

disturbing vibration levels (i. e. 0.33 m/s2 and 0.37 m/s2) on the two footbridges are 3.2 m/s3 
3 and 4.7 m/s, respectively. 
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Figure 5.10: (a) Simulated (grey line) and measured (black line) modal responses on Aberfeldy 
footbridge. (b) Simulated (grey line) and measured (black line) modal responses on Podgorica 
footbridge. (c) Vibration perception curve during slow walking on Aberfeldy footbridge. 
(d) Vibration perception curve during fast walking on Podgorica footbridge. 

The disturbing vibration levels, at which a test subject loses their step, obtained in this way 
for more test subjects can hell) establish the (un)acceptable level of vibrations for pedestri- 
ans, an area currently not well researched. The allowable vibration levels defined by BS 5400 
(BSI, 1978) are 0.62 m/s2 for Aberfeldy footbridge, 0.71 m/s2 for Podgorica footbridge and 
0.78 m/s2 for Hope footbridge, while those defined by ISO 10137 (ISO, 1992) are 0.70 m/s2, 
0.60 m/s2 and 0.54 m/s2, respectively. The analysis conducted in this study suggests that 

y __ 
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disturbing vibration levels might be lower than those defined by the BS 5400 and ISO 10137. 

This is in agreement with results obtained from interviewing 300 randomly chosen pedestrians 

who were asked to rate the vibration level perceived during their crossing of Podgorica foot- 

bridge (Appendix A). Additionally, Kasperski (2005) reported similar conclusions regarding 

applicability of codified vibration perception scales on people walking across as-built foot- 

bridges. However, more research in this area is needed to establish if the vibration level which 

disturbs the normal walking, calculated by the methodology suggested in this study, is at the 

same time the level which annoys pedestrians. 

The behaviour of losing step under increased levels of vibration seemingly prevents the de- 

veloping of high level of vertical vibrations for single person walking at resonant frequency. 

However, in case of similar behaviour of a pedestrian walking at a near-resonant frequency, 

it is quite possible that losing step at high level of vibrations perceived will lead to adjust- 

ing step to resonant frequency (as long as the pedestrian is capable of keeping this resonant 

walking frequency) and developing stronger vibration than initially anticipated. This is a 

phenomenon called lock-in (Bachmann, 2002) and might be relevant when considering nor- 

mal pedestrian traffic in which all sorts of walking frequencies are possible (Matsumoto et 

al., 1978). 

It is also worth noting that DLF values used in the simulations for walking with and without 

a metronome were different for the same test subject walking at the same pacing frequency. 

This just means that this value is not only an inter-subject variable but also intra-subject 

variable. Inter-subject variability means that different test subjects will generate different 

DLFs even when walking with the same pacing rate, while the intra-subject variability means 
that the same test subject can generate different DLFs in two tests conducted under the same 

conditions (Griffin, 1996). 

5.6 Modelling of Human-Footbridge Interaction 

The effect of losing step when strong vibrations are perceived reduces the actual vibration 
response to below the expected level assuming perfect resonance (Figure 5.10). This situation 
may be modelled by the damping increase in the resonating structure, after a certain vibration 
level is achieved. Therefore, it would be interesting to present the human-structure interaction 
in terms of the damping change over time. This additional damping ratio (p(t) can be 

introduced in the SDOF equation of motion written in its modal form as follows: 

a(t) + 2(( + (p(t))2irfn " v(t) + (2irfn)2d(t) = 
F(m t) (5.4) 

All variables used in this equation were defined previously. 

To get ((t) the following procedure was used. First the total damping ratio (+(p(t) was kept 
as the value for the empty bridge (i. e. (p(t) = 0) until the time instant when the step was 



CHAPTER 5 Human-Structure Interaction during Footbridge Crossing 145 

lost. After the time instant when simulated and measured responses started to differ, say at 

time tl, the total damping ratio C+ (p(t) was changed iteratively. This was done until good 

agreement between measured and simulated responses was achieved for a time slot after the 

time instant tl. Once the good agreement was obtained, the new time instant t2 > ti when 

the two responses start to differ was spotted. Then new value for the total damping ratio 

was chosen. The procedure was repeated until good agreement between the two responses 

was achieved for the complete response time history. During this procedure, the harmonic 

dynamic force was kept constant. 

The procedure was conducted for both walking with a metronome and without it for Aber- 

feldy footbridge, walking without a metronome for Podgorica footbridge and walking with a 

metronome on Hope footbridge; namely for all response time histories presented in Figures 

5.2 and 5.10 for which the simulated and measured responses differed. 

The change of total damping ratio C+ (p(t) over time is shown in Figure 5.11. Furthermore, 

additional damping ratio Cp(t) is presented in the same figure to illustrate the degree of added 
damping due to imperfect human walking. It can be seen that some damping changes were 

quite significant and long lasting, especially for walking without a metronome on Aberfeldy 

footbridge (Figure 5.11b). To illustrate these changes more clearly the added damping was 

averaged over the time periods when it was significant, say greater than 50% of the damping 

of the empty bridge. This value is also given in Figure 5.11. In this way we can say, 
for example, that the average additional damping was about 3.9 times higher for Aberfeldy 

footbridge when test subject walked without a metronome (Figure 5.11b), in comparison with 

walking with a metronome (Figure 5.11a). In both cases this significant damping increase 

lasted more than 20s. For other two footbridges (Figures 5.11c and 5.11d) the additional 
damping was of the same order as the damping of the empty bridge. 

The physical interpretation of this damping increase should be intuitive to anybody who has 

walked over a vertically bouncing footbridge. Namely, often the pedestrian can feel up and 
down vibrations of the footbridge which are opposite to the movement of the pedestrian's 
foot. What the pedestrians feel in this situation is that the bridge deck `hits' their feet. Since 

this can be also considered as the pedestrian's opposition to the footbridge movement then 
it can be said that the pedestrians act similarly to active dampers. 

Alternatively, this dampening effect of the walking person can be described as a change in 
the modal force, while the structural damping stays the same as that for the empty structure. 
Namely, if the additional damping force from Equation 5.4 is transferred to the right side of 
the equation then this right side of the new equation: 

a(t) + 2S " 2ir f� " v(t) + (21rf�)2d(t) = 
F( ,, t) 

- 2((t) " 2irfn " v(t), (5.5) 
ý-ý 

Fh Fd 

can be interpreted as the modal force which takes into account the human-structure inter- 

action. This force consists of the two terms (Fh and Fd) that are, at resonance, in phase 
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with each other as well as with velocity. This resulting force is shown in the first column 

of Figure 5.12 (black line) in comparison with the initially assumed harmonic force multi- 
plied by the mode shape (grey line). It can be seen that the effect of the human-structure 

interaction can be generally interpreted as a modification of the initially assumed harmonic 
force Fh when perceiving high level vibrations. This modification is actually an attenuation 
of the initially assumed harmonic force Fh as long as the amplitude of the dampening force 
in absolute sense IFdI is smaller than the amplitude of the harmonic force IFht. In this case 
the amplitude of the resulting force on the right hand side of Equation 5.5 Fh - Fd is still 
in phase with the footbridge velocity. However, when the amplitude of the dampening force 
jFdI becomes greater than that for the harmonic force jFhI then the resulting force Fh - Fd 

acts out of phase with the velocity. Additionally, if the dampening effect of the pedestrian is 

extremly strong and jFdI >2 IFhI then the resulting force Fh - Fd is not only out of phase 
with velocity but also greater in amplitude sense than the initial force IFhj. This effect is 

noticeable in Figure 5.12b around 39th second of pedestrian's crossing. 
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Figure 5.11: Dampening effect of a single pedestrian walking on (a) Aberfeldy footbridge with 
a metronome beat, (b) Aberfeldy footbridge without a metronome, (c) Podgorica footbridge 
without a metronome, (d) Hope footbridge with a metronome. 

The peak values of this force per vibration cycle are presented in the second column of 
Figure 5.12 (black line) and compared with the same kind of force obtained following the 
previously mentioned procedure developed by Dallard et al. (2001a) for lateral sway forces 
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on the Millennium Bridge. A good agreement between the two modal forces can be noticed. 
However, it also can be seen that the modal force evaluated by Dallard et al. (2001a) for 

Aberfeldy footbridge (Figures 5.12a and 5.12b) becomes negative over some time periods, 

mainly at 41-46 s in Figure 5.12a and 37-41 s as well as 48-55 s in Figure 5.12b. This has a 

specific meaning. Namely, in the model with constant structural damping, the modal force 

must act out of phase with velocity to produce good agreement with measured response 

over time intervals observed. Normally, this force is in phase with velocity over all other 
time intervals, as explained before. Therefore, the pedestrian opposition to the structural 

movement is strongest over these time periods. In the previous model when human-structure 

interaction is modelled via damping change while keeping the dynamic force constant, it is 

expected that the strongest damping increase will be seen over the time periods observed. It 

can be seen in Figures 5.11a and 5.11b that this is the case. 

Therefore, when analysing the vibrations in the vertical direction the effect of human-structure 

dynamic interaction while walking can be looked at as either the damping increase or the 
harmonic force modification. This approach is basically the same as the approach used by 
Dallard et at. (2001a) for explaining excessive vibrations on the London Millennium Bridge. 
A difference is that the approach of Dallard et al. (2001a) was applied for crowd-induced 
vibrations in the lateral direction. Furthermore, another difference is that crowd loading 
increased lateral vibrations on the Millennium Bridge and therefore had then the effect of 
decreasing apparent damping. In contrast, vibrations induced by a single pedestrian in the 

vertical direction are being reduced, meaning that a single person walking has a dampening 

effect similar to an active damper. 

However, the suggestions for treating the human-structure dynamic interaction during a 
footbridge crossing as either the damping increase or the harmonic force modification are 
simplifications of the real situation. Namely, it seems that a pedestrian changes the frequency 

and probably amplitude and phase of the walking force when perceiving the high level of 
vibrations. Therefore, the resonant condition is not fulfilled in this situation and consequently 
the walking force does not stay in phase with the velocity of the structure, as assumed in this 

study. Clearly, a complex phenomenon, such as the human-structure interaction is, deserves 
further research and refined modelling. 
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Figure 5.12: Modal forces and peak modal forces per cycle on (a) Aberfeldy footbridge 
(walking with a metronome), (b) Aberfeldy footbridge (walking without a metronome), 
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with a metronome). 
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5.7 Conclusions 

In this chapter the interaction between a single pedestrian and footbridge structure in the ver- 
tical direction during walking across the footbridge at or near a natural footbridge frequency 

has been analysed. It was found that modelling of the first harmonic of the human-induced 

modal force as a sinusoidal force modulated by the mode shape is appropriate when walking 

across an imperceptibly moving surface, especially in case when walking frequency is con- 
trolled with the help of a metronome. However, this approach can significantly overestimate 
the footbridge vibration response if the footbridge develops perceptible vibrations during a 

single person's crossing. 

By comparing measured and simulated responses on three lively footbridges, it was found 

that differences in responses can be significant when walking with or without a metronome. 
It has been argued that these differences originate in the inability of the pedestrian to keep 

in a steady step when feeling strong vibrations. This applies to the case of walking with the 
help of a metronome. Moreover, these differences become larger when walking without the 

metronome. The increased differences originate not only in the fact that it is easier to lose 

a steady step when step frequency is not controlled, but also in natural variability of the 

walking frequency (i. e. not perfectly periodic walking force) caused by the fact that humans 

are not perfect machines. 

The time instant when differences in the simulated and measured responses start to occur 
was adopted as the one when a pedestrian loses steady step during their walking. The 

corresponding vibration level felt by the pedestrian at this time instant can then be calculated 
and is called the disturbing vibration level. This value was 0.33 m/s2 and 0.37 m/s2 for walking 
naturally (i. e. without controlling the step frequency) across two footbridges. Therefore, the 
acceleration level of around 0.35 m/s2 could be considered as a provisional limiting vibration 
level. This is about 50% lower than values defined by the British footbridge design code 
indicating that the code limit may not be appropriate to apply. However, this vibration level 

was obtained in a limiting testing programme and should be researched further. 

The methodology for determining disturbing vibration levels in an objective way (and not a 
subjective way usually used in literature) presented in this chapter can be used as a systematic 
approach for creating a vibration perception database of a walking person. This should be 
based on response measurements on more footbridges and with more test subjects. To the 
best of the author's knowledge, a database of this kind does not currently exist in the available 
literature. 

The effect of losing steady step during walking while perceiving strong vibrations was mod- 
elled via footbridge damping increase. Not surprisingly this effect was more emphasised when 
walking at the resonant frequency without a metronome. Alternatively, the phenomenon of 
the human-structure interaction could be modelled by a modification of the human-induced 
modal force. One of these two methodologies can be used for predicting responses on foot- 
bridges with perceptible vibration levels once a wider database from different footbridges is 
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formed. 

However, what actually happens on the footbridge is that the pedestrian loses their steady 

walking frequency when perceiving a certain level of vibrations. Therefore, some future study 

might attempt to model this phenomenon directly (via say change in walking frequency, force 

amplitude, and so on) rather then to express it via either damping increase, while keeping 

constant harmonic excitation force, or harmonic force modification while keeping the damping 

constant. 



Preface to Chapter 6 

Chapter 6 describes a framework for a probability-based procedure for estimating vibration 

response of footbridges due to a single person walking. It was assumed that only the first 

harmonic of the walking force is relevant for estimating the response that occurs only in a 

single mode. The same assumptions are made in the current British code provision (BSI, 

1978). 

This procedure makes use of the vibration level indicated in Chapter 5 as the provisional 
limiting value (being approximately 0.35 m/s2) for serviceability assessment of two footbridges 
for which data were available. This value is supported by subjective evaluation of vibration 
response of Podgorica footbridge obtained by interviewing 300 randomly chosen pedestrians. 
The work on interviewing pedestrians is not part of the main body of this thesis since it is a 
part of an investigation of multi-person traffic that is beyond the scope of this thesis. For this 

reason this work, published as a paper presented at EURODYN 2005 conference in Paris, is 

shown separately in Appendix A. 
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Chapter 6 

Probability-Based Estimation of 
Vibration Response of Footbridges 
This chapter, in an amended form, has been submitted for publication under the following reference: 

Livanovi&, S., Pavic, A. and Reynolds, P. Novel Probability-Based Framework for Prediction of Vibration Response 

to Single Person Walking across Footbridge, ASCE Journal of Structural Engineering. 

Abstract 

Due to their slenderness, many modern footbridges may vibrate significantly under pedestrian traffic. 
Consequently, the vibration serviceability of these structures under human-induced loading is becom- 

ing their governing design criterion. Most current design codes consider the dynamic force induced by 

a single pedestrian as the relevant loading scenario when predicting footbridge vibration response in 

the vertical direction. This excitation is modelled as a deterministic harmonic force having frequency 

that matches a footbridge natural frequency and amplitude defined as a certain percentage of the 

pedestrian's weight. However, walking is not a deterministic phenomenon since the force induced by 

human walking is a narrow band random process, rather than a periodic force representable by a 
Fourier series. In addition, all human beings are different and therefore generate different dynamic 

forces, both in terms of their amplitude and frequency. A way to deal with this randomness and 
include these uncertainties, which influence force modelling and response prediction, is to represent 
them by probability density functions. A formulation of these probability density functions and their 
implementation into a procedure for vibration response prediction underpins a novel probabilistic ap- 
proach presented in this chapter. Instead of a single response value obtained using currently available 
design guidelines throughout the world, this new analytical framework yields a probability that a 

certain level of vibration response will not be exceeded for single person walking. It is shown that 

this approach is appropriate for describing the physics of walking more realistically. Moreover, this 

approach leads to a lower probability of liveliness of footbridges having natural frequencies away from 

mean pacing rates, which is what has been observed in practice. With regard to this, it is also shown 
that the deterministic approach usually significantly overestimates the actual observed response of 
full-scale footbridges. Finally, there are strong indications that the single person loading scenario may 
not be representative when predicting responses of footbridges conveying multi-person traffic. 
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6.1 Introduction 

Due to their slenderness, many new footbridges are susceptible to vibration serviceability 

problems under human-induced load. Since the infamous problem with excessive lateral 

vibrations of the London Millennium Bridge in 2000 (Dallard et al., 2001a), the research 

community worldwide has been attracted by this new challenge to study lateral vibration 

response of footbridges, especially under crowd load (Dallard et al., 2001a; 2001c; Newland, 

2004; Strogatz et al., 2005). In the meantime, the design approach to check for vibration 

serviceability of footbridges in the vertical direction has remained where it was in the 1970s 

when it was originally developed. For this check, the design codes (BSI, 1978; OHBDC, 1983) 

currently require calculation of the response to a single person walking across a footbridge at 
a frequency that matches one of footbridge natural frequencies. The human-induced walking 
force is modelled as a sinusoidal, and therefore deterministic, force moving across the bridge 

at a constant speed and having predefined amplitude. The reason for choosing this resonant 
force model is that it is considered as the worst-case scenario. 

The main shortcomings of this deterministic model are: 

. It does not take into account inter-subject variability, i. e. that different people generate 
different forces during walking (Kerr, 1998). 

" It neglects intra-subject variability, i. e. that a pedestrian can never repeat two exactly 
the same steps (Brownjohn et al., 2004b). 

" It assumes that the resonant condition is achieved under a single person walking on an 
as-built footbridge. However, it is very often difficult to match the footbridge natural 
frequency during walking, especially when that natural frequency requires either too 

slow or too fast pacing for an average pedestrian. 

" It does not take into account the fact that pedestrians adapt their behaviour to the 
footbridge vibration felt, that is they interact with the structure. As demonstrated 
in Chapter 5, due to human-structure interaction, people cannot easily keep a steady 
step when perceiving a high level of vibrations. On two lively footbridges investigated, 
this level was apparently around 0.35 m/s2. After perceiving such a level of accelera- 
tion, pedestrians responded to footbridge vibration by slightly changing their walking 
frequency in an attempt to avoid discomfort. 

As a consequence of these shortcomings, the harmonic force model often significantly overes- 
timates the experimentally measured footbridge response, even that measured at resonance 
when a pedestrian deliberately walks at a pacing rate to match a footbridge natural frequency 
(Pimentel, 1997). 

To overcome these shortcomings, and take into account both inter- and intra-subject variabil- 
ity when simulating forces during walking, a probabilistic framework for force modelling and 
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response prediction is required. In such an approach, the factors that describe the two types 

of variability can be defined via their probability density functions and therefore introduced 

into calculation via their probability of occurrence. The factors which require probabilistic 

treatment are briefly reviewed, as follows: 

1. Walking (step) frequency differs between different people and can be described via a 

normal distribution (Matsumoto et al., 1978). The normal walking frequency is usually 
in the range between 1.5 and 2.5 Hz. 

2. People walk with different speeds (Pachi & Ji, 2005), even when walking with the same 
frequency. 

3. Magnitude of the dynamic force induced by different people is also an inter-subject 

variable (Rainer et al., 1988; Kerr, 1998) and depends on walking frequency. 

4. A pedestrian cannot make two steps in the exactly same way. For example, the walking 
frequency and force amplitude vary slightly in each step, which is an indicator of the 

intra-subject variability in the force induced. This is a consequence of the fact that 

the human-induced force is in fact a narrow band random phenomenon, rather than a 

periodic force (Brownjohn et al., 2004b; Sahnaci & Kasperski, 2005). 

It should be mentioned that Ebrahimpour et al. (1996) have been working on a probability 

approach for modelling of a walking force. They observed the importance of inter- and intra- 

subject variability in modelling but without introducing it into a comprehensive force model 
that can be used for structural response prediction in practice. 

The aim of this study therefore is to propose a novel probability-based framework for pre- 
dicting vibration response due to a single person walking. This is considered to be a prudent 

way forward to update the current single person walking model featuring in many codes of 

practice. For this purpose, the probability distributions for the four parameters mentioned 
are proposed based on the data currently available. These proposals are building blocks of an 

analytical framework which is open for further improvement. This can be done when more 
data related to a specific variable become available leading to more reliable probability distri- 
butions. Also, these distributions should be critically evaluated when taken into calculation 
since they might be different for footbridges located in different countries, environments and 
having different purpose. For example, it seems that people in Japan generally walk with 
faster step frequency than people in Montenegro, as will be demonstrated in Section 6.2.2. 
This is probably a consequence of the way of life in these two countries as well as the fact 

that Montenegrians are, on average, taller than Japanese. 

After defining the main modelling assumptions, a probability based analytical procedure for 

modal response calculation is explained and applied to two footbridges with known modal 
properties. Based on this, the probability of exceeding a certain level of vibration is obtained. 
Then, the same kind of analysis was conducted using computationally more demanding Monte 
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Carlo simulations. In this way the proposed analytical approach was verified. Finally, the 

results were compared with those from a deterministic procedure and checked against some 

available real-life measurements considered to be relevant to this investigation. 

6.2 Modelling Assumptions 

This section aims at analysing the parameters important for the probabilistic modelling of the 

walking force and calculating the corresponding vibration response. Probability distributions 

of these parameters (walking frequency and amplitude, number of steps needed to cross the 

bridge and imperfections in human walking) are defined. They are based either on data avail- 

able in literature or the data gathered previously during work on this thesis (Appendix A). 

This information should enable statistical prediction of footbridge vibration response to a 
force induced by a single walker. However, some additional uncertain parameters could not 
be included into the model developed because of unavailability of the experimental data. 

These parameters are discussed at the end of this section (Subsection 6.2.6). 

Based on experience from full scale lively footbridges where the first harmonic of the walking 
force is often responsible for generating strong structural vibrations, it was decided to consider 

only this harmonic in this study. However, the general procedure suggested in the study can 
be extended easily to footbridges where higher harmonics are relevant by taking into account 
an appropriate distribution for amplitude of the harmonic considered. 

6.2.1 Footbridge as SDOF System 

Footbridges are structures that often have well separated frequencies of different modes of 

vibration. In this case, the footbridge can be modelled as an SDOF system with known 

modal properties (natural frequency, modal mass and damping ratio). Furthermore, among 
the structural vibration modes, often only one mode, with a shape that can be approximated 
by a half-sine shape, is responsible for the footbridge liveliness (Bachmann et al., 1995a). 
This assumption of having a half-sine mode shape is used in this study. For some bridges this 

might seem to be too restrictive. However, the methodology presented here can be extended 
for other mode shapes provided that the analysis of the kind presented in Section 6.2.5 is 

conducted beforehand. Here, the aim is to present the framework for the methodology itself 

rather than to cover all possible footbridge structural layouts. 

6.2.2 Walking (Step) Frequency 

Matsumoto et al. (1978) identified a normal distribution of human walking frequencies with 
a mean value of 2.00 Hz and standard deviation of 0.173 Hz. This was identified using a 
sample of 505 people. However, recently a more extensive work has been conducted by the 

author of this thesis on Podgorica footbridge in Montenegro where the step frequency was 
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estimated by analysing video records of 1,976 people crossing over the footbridge. Detailed 

description of this work can be found in Appendix A. Here, it will only be mentioned that 

it was confirmed that the distribution of human walking frequencies follows a normal dis- 

tribution, but with mean value of 1.87 Hz and standard deviation of 0.186 Hz (Figure 6.1a). 

As already mentioned, it is likely that the distribution parameters differ between different 

countries (say, between Japan and Montenegro), different footbridge locations, etc. In this 

study, the distribution identified on the footbridge in Montenegro is used since it has been 

established by video monitoring of one of the two footbridges investigated in this study. Also, 

this distribution has a mean value that is closer to that found by some other European re- 

searchers in recent years: 1.9 Hz measured by Kerr & Bishop (2001) and 1.8 Hz measured by 

Pachi & Ji (2005), as well as by Sahnaci & Kasperski (2005). 
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Figure 6.1: (a) Normal distribution of walking frequencies. (b) Normal distribution when 
the frequency axis is normalised to a footbridge natural frequency in the vertical direction 

(2.04 Hz in this example). 

To incorporate the probability density function shown in Figure 6.1a into the calculation of 
footbridge response, it is convenient to transform the horizontal axis into a frequency ratio 
between the step frequency and the natural frequency of a particular footbridge. An example 
for Podgorica footbridge having a natural frequency of 2.04 Hz is presented in Figure 6.1b. 
It can be seen that the frequency ratio ranges between 0.64 and 1.19 for this particular 
bridge. During this transformation the vertical axis is multiplied by 2.04 Hz to preserve 
the area defined by the probability density function being dimensionless number equal to 1 
(Montgomnery & Runger, 1999). 

6.2.3 Number of Steps 

It is known that there is a variability between people in their walking speeds (Bertram & 
Ruina, 2001). It is expected that even people who walk with the same step frequency fs will 
have different walking speeds vP due to different step length is when crossing a footbridge. 
The relationship between these walking parameters is given by the formula vp = fsls. When 
the walking speed v, is known and assuming that it is constant, crossing time TT needed to 
cross a bridge can be calculated as TT = ., where L is the footbridge length. The crossing 
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time calculated defines the duration of the dynamic force induced by a pedestrian. 

From biomechanics research, it is also known that walking speed is dependent on the walking 
frequency (Bertram & Ruina, 2001). Rare experimental data about walking speed when 
crossing footbridges, such as those presented by Pachi & Ji (2005), show that the mean 
velocity µ� can be linearly related to the walking frequency fs according to the formula 

µ� = 0.71 f8 (black line in Figure 6.2a), where 0.71 is the average step length expressed 
in metres. However, it would also be interesting to know distribution of walking velocities 
at a certain frequency. Observing data in Figure 6.2a it can be seen that most points are 
concentrated in the area µ� ± 0.2µv. These upper and lower limits (i. e. 0.811� and 1.211�) are 
represented in Figure 6.2a by grey lines. Based on a visual inspection, it is estimated that 
they accommodate approximately 95% of all data points. Assuming that the walking velocity 
is normally distributed at each walking frequency and knowing that 95% of points that follow 

a normal distribution are located in the area it ± 2a, where µ is the mean value and a is the 
standard deviation (Montgomery & Runger, 1999), it can be concluded that the standard 
deviation for walking speed a,,, in this case can be calculated from the equation 2a� = 0.2µ,,, 
that is a,, = 0. lµ� = 0.071f.. This assumption of normal distribution of walking speeds 
with the standard deviation being 0.071f, for a particular walking frequency is confirmed 
experimentally for walking frequency between 1.75 and 1.85 Hz (Figure 6.2b). This is based 
on the data extracted from Figure 6.2a and obtained through personal communication (Ji, 
2005). The calculated linear dependence of the standard deviation a, to the walking frequency 
f8 (a,, = 0-071f. ) takes into account that the walking velocity of different people is more 
scattered with increased step frequency, as can be noticed in Figure 6.2a. 

It is convenient here to calculate the number of steps N required to cross the bridge as follows: 

N=T fe =v f8. (6.1) 
P 

According to normal distribution theory (Montgomeri & Runger, 1999), almost all points 
(99.7%) of a normally distributed variable, in this case the walking velocity, lie in the interval 
µ� f 3ot, = 0.71f. ± 0.213 f8i. e. between 0.497 f8 and 0.923f'. Taking these extreme values 
for velocities back to Equation 6.1 it can be seen that number of steps needed to cross the 
bridge (at any walking frequency) lies in the range: 

0.9 23 f! 
f8-N <_ 5. 

L497 
f. 

f 8, (6.2) 

that is 

0.23-N<_0.97' (6.3) 

and depends only on the footbridge length L in metres, which is a quite interesting observation 
from this exercise. This actually means that the step length is normally distributed between 
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0.497 m and 0.923 m (with the mean value of 0.71 m and the standard deviation of 0.071 m) 

regardless of walking frequency. 

The probability density function for walking velocities at any walking frequency can be trans- 

lated to a probability density function for a number of steps by transforming the horizontal 

walking speed axis (Figure 6.2b) into an axis describing the number of steps via Equation 6.1 

and preserving the area of the function being equal to 1. For a footbridge with span length 

of 78 m this probability density function is presented in Figure 6.2c where it can be seen that 

the number of steps required to cross the footbridge ranges from 85 to 155 steps and is the 

same function for each walking frequency. 
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Figure 6.2: (a) Walking speed as a function of step frequency (after Pachi and Ji, 2005). 
(b) Normal distribution of walking speed when walking with step frequency around 1.8 Hz. 
(c) Probability density function (independent on step frequency) for number of steps required 
to pass a 78 m long bridge. 

6.2.4 Force Amplitude 

When modelling the force generated by human walking as a harmonic force, one usually 
defines the amplitude of this force as a portion of the pedestrian's weight, that is as a prod- 
uct of a dimensionless coefficient called dynamic loading factor (DLF) and the pedestrian's 
weight W. The most extensive research into DLFs was conducted by Kerr (1998). He anal- 
ysed about 1,000 force records produced by 40 test subjects and presented DLFs for different 
force harmonics as a function of the walking frequency. DLFs for the first harmonic as ob- 
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tained by Kerr are shown in Figure 6.3a. The dependence of the mean value of DLF µDLF 

on the step frequency f$ is given by: 

/2DLF = -0.2649f,, 
3 + 1.3206f, 2, 

- 1.7597f, + 0.7613. (6.4) 

Kerr (1998) also found that in the walking frequency range 1.5-2.2 Hz, 95% of DLFs lie in the 

area tDLF ± O. 32µDLF" Under an assumption that DLFs are normally distributed around 

their mean value (for a certain walking frequency), the standard deviation can be defined as 

QDLF = 0.16E. PDLF" 
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Figure 6.3: (a) DLF for first harmonic of the walking force (after Kerr, 1998). (b) Distribution 

of actual to mean DLF ratio for the first walking harmonic of the force induced by walking. 

The described probability density function for a DLF can be normalised to the value of 
the mean DLF. Since the modal response of a linear SDOF footbridge model is directly 

proportional to the DLF then, for example, 1.2 times increase in the DLF will generate 1.2 

times higher modal response. By this analogy it can be concluded that the probability of 
the ratio between the actual modal acceleration response and the response calculated under 

assumption of the mean value of DLF is the same as the probability of the ratio between the 

actual DLF and the mean DLF. This enables use of only the mean DLF when calculating 
structural modal response. In a later stage of the analysis, the probability that this `mean' 

response is different from the one calculated can be estimated. As before, the area under the 

probability density curve for this distribution has to be equal to 1. This probability density 
function is presented in Figure 6.3b. It should be noticed that this function does not depend 

on the walking frequency. 

6.2.5 Intra-Subject Variability in Force 

Until now, the analysis has been concentrated on defining probability distributions related 
to parameters (such as step frequency, walking velocity and force amplitude) that describe 
differences in walking forces induced by different people. This was done under the assump- 
tion that a human-induced walking force can be modelled as a sinusoidal force. Under this 
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force the modal acceleration response asti, l(t) can be calculated, taking into account the half- 

sine mode shape. This procedure is partly justifiable since there are human induced forces 

(measured on a treadmill) that can be approximated by a sinusoidal force when considering 
the first harmonic of walking (Brownjohn et al., 2004b). It has also been confirmed on full- 

scale footbridges that these forces can indeed induce a response that is almost the same as 
that induced by a corresponding sinusoidal force, as explained in Chapter 5 and shown in 
Figure 5.2b. 

On the other hand, in the same way that some people are able to walk steadily and in- 
duce an almost perfect sinusoidal force to the footbridge, there are many more people who 
cannot do this. Namely, due to intra-subject variability the force induced in every step is 

usually different in terms of its frequency and amplitude (Brownjohn et al., 2004b; Sahnaci & 
Kasperski, 2005). As a result, it is not realistic to model the force exclusively as a harmonic 
force. Instead, the fact that this force is a narrow band random process (Newland, 1993) 

should be taken into account. Although this variation of the force in successive steps for the 
first harmonic does not have significant influence on the structural response when the foot- 
bridge is excited in the resonance (Brownjohn et al., 2004; Chapter 5), it deserves studying 
and quantification. The whole procedure can later be repeated for higher harmonics of the 

walking force, if required. 

One way to consider the force variation, and at the same time to keep simplicity of the 
response calculation corresponding to harmonic force excitation, is to define the probability 
that the modal response to an actual (measured) walking force a, (t) will be different from 
that generated by a sine force a8in(t). Examples of such responses are shown in Figure 6.4 

as black and grey lines, respectively. The corresponding peak responses in Figure 6.4 are 
denoted as A, and Aain" 

Figure 6.4a presents the two modal responses when a pedestrian walks at a step frequency that 

matches a footbridge natural frequency, while in Figure 6.4b they walk at a step frequency 

equal to 80% of the natural frequency. In the latter case the beating response, noticed in 

some real-life measurements when walking with out-of-resonance frequency, is present in the 

response to measured walking time history (Figure 6.4b: black-dashed line), while it is almost 
non-existent in the case of simulation due to the sinusoidal force (Figure 6.4b: grey line). 

The ratio between the two peak modal responses will be called the correction coefficient c: 

_ 
A, 

C Asin 
(6.5) 

and it is this factor that will be used for introducing the intra-subject variability into calcu- 
lation of the actual peak modal response. 

To define the probability density function for the correction coefficient, 95 walking forces 

measured by Brownjohn et al. (2004b) on a treadmill were analysed. These walking forces 

were produced by nine test subjects who were asked to walk for at least 60 s on a treadmill set 

i 
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to a constant speed. The speed range was between 2.5 km/h and 8.0 km/h in different tests. 

Therefore, the walking speed was set to a constant value during each test, while the walking 

frequency was freely chosen by the test subjects so that they could walk in a comfortable 

manner. 
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Figure 6.4: Comparison of modal responses due to measured force (black-dashed line) and 

corresponding sine force (grey line) when walking at a step frequency equal to (a) a footbridge 

natural frequency and (b) 80% of the natural frequency. 

The measured walking forces were band-pass filtered around the walking frequency so that 

only force components pertinent to the first harmonic remained. Then, the filtered force 

was multiplied by the half sine mode shape to get the modal force. Finally, peak modal 

acceleration response of the SDOF model to this force was calculated. The natural frequency 

of the footbridge was assumed to be in the range between fs/1.20 and ff/0.80, where fs is the 

average walking frequency, while modal damping ratio c ranged between 0.1% and 2.0%. For 

all these combinations of different natural frequencies and dampings, the different number of 

steps needed to cross the bridge was also considered (50-250). The peak modal acceleration 
response obtained in this way A, was divided by the peak modal acceleration response Assn 
due to a corresponding sinusoidal force to calculate the correction coefficient c. The amplitude 
of the sinusoidal force was defined as the average amplitude of the filtered force measured on 
the treadmill. As a result of this analysis, the correction coefficient depending on the ratio 
between walking and footbridge natural frequency, damping ratio of the footbridge as well 
as different number of steps was found. It was noticed that the distribution of the correction 
coefficient was quite independent from the number of steps. An example illustrating this is 

shown in Figure 6.5. It can be seen that for any number of steps the correction coefficient 
is distributed in similar way and between approximately the same limiting values (which are 
different for different footbridge damping and walking to natural frequency ratio) for both 

walking at the step frequency that matches the footbridge natural frequency (Figure 6.5a) 
and that differs from the natural frequency (Figure 6.5b). This was the reason to eliminate 
the number of steps as a variable in this analysis of intra-subject variability, keeping only the 
frequency ratio and modal damping as factors relevant for describing coefficient c. 
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Figure 6.5: Correction coefficient calculated for different number of steps required to cross a 
footbridge when walking at a step frequency equal to (a) a footbridge natural frequency and 
(b) 80% of the natural frequency. The damping ratio for the footbridge considered is 0.4%. 

A general observation from the results obtained is that the peak modal acceleration due 

to measured walking force is attenuated when walking in the way to match the footbridge 

natural frequency in comparison with that produced by the corresponding sinusoidal force, 

i. e. the correction coefficient is less than 1 (Figure 6.4a). An example of the distribution of 
the coefficient that illustrates this is given in Figure 6.6a. This is a consequence of inability 

of the test subject to walk at the constant frequency all the time. It should, however, be 

noticed that some test subjects produced almost perfect sine force leading to the correction 

coefficient equal to 1. In few cases, the correction coefficient was even greater than 1. This was 

a consequence of having several heavy footfalls (i. e. footfalls in which the force amplitude was 
higher than the average one) occurring when vibrations have already been well developed. On 

the other hand, the correction coefficient is mainly greater than 1 when the step frequency is 
different from the natural frequency (Figure 6.6b). The reason for this are again imperfections 
in human walking frequency from one step to another, but this time its slight change leads 

to being closer to the resonant frequency from time to time, causing an actual acceleration 
response higher than the one generated by a sine force. Moreover, the beating is quite 
pronounced in the response to the measured force (Figure 6.4b). 

Since the distribution of the correction coefficient could not be presented by a single function 
for different combinations of modal damping and walking to natural frequency ratio, different 
distributions having different sets of parameters were considered. Among them, it was found 

that a gamma distribution best described the probability distribution of the correction coef- 
ficient. The quality of the approximation can be seen in Figure 6.6 where two sets of results 
are approximated by a gamma distribution presented as black line. The gamma distribution 

could describe a trend that with increasing damping ratio the scatter of the calculated correc- 
tion coefficient decreases, with the most probable correction coefficient approaching 1.0. An 

example for f, = 1.15f,, is shown in Figure 6.7a. Also, the gamma distribution can represent 
the fact that for non resonant walking, the increase in the walking to natural frequency ratio 
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leads to smaller scatter in the correction coefficient, with its peak approaching the value equal 
to 1. An example for a bridge with a damping ratio of (=0.4% is presented in Figure 6.7b. 
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Figure 6.6: (a) Attenuation factor for the modal acceleration response to measured force 

in comparison with the one due to sine force when walking at step frequency that matches 
the natural frequency of a footbridge. (b) Amplification factor for the modal acceleration 

response to measured force in comparison with the one due to sine force when walking at a 
step frequency equal to 90% of the natural frequency. 
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The probability density function f (x) for the gamma distribution is defined by the following 

formula (Montgomery & Runger, 1999): 

-X 
Ax) ýx) = ba f0 xa-le-xdx 

(6.6) 

where x is the random variable (i. e. correction coefficient c), while a and b are parameters 

that describe the distribution. According to the definition of the gamma distribution, x, a 
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1.0 2.0 3.0 4.0 5.0 
Correction coefficient 
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and b have to be positive numbers. 

0.25 

Parameters a and b define the shape of the distribution function. They were identified for 

footbridges with different damping ratios and different walking to natural frequency ratios, 

and are presented in Figure 6.8. The precise values of these parameters can be found in 

Appendix B. Based on the two graphs in Figure 6.8, the two parameters can be found by 

linear interpolation for a footbridge with a particular damping ratio. 
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Figure 6.8: (a) Parameter `a' and (b) parameter `b' for gamma distribution depending on 

structural damping and ratio between the walking and natural frequency. 

6.2.6 Other Uncertain Parameters 

The research reported in this chapter aims at modelling the uncertainties in parameters 
describing the walking force via their probability treatment. These parameters are the forcing 
frequency and amplitude, number of steps required to cross the bridge, and imperfections in 
human walking, as already mentioned. An additional parameter that influences the force 

modelling but is not considered in this thesis is pedestrian's weight W. There are indications 
that increasing the pedestrian's weight leads to increased DLFs (Galbraith & Barton, 1970). 
However, there is no quantification of this dependence known to the author. Also, it is 
difficult to find a precise description of the probability distribution of the weight (i. e. its type 
and parameters describing it) at the same place, although some (incomplete) information 
is available (DH, 2005). These were the reasons to omit this distribution from the analysis 
and use an average weight of 750 N (DH, 2005) in the formulation of the force model. When 

more data describing the distribution of the weight and its relationship with the DLFs are 
collected, they might be combined with the probability distribution of DLFs (Figure 6.3b) 
to a single probability distribution defining the amplitude of the walking force (DLF " W). 

Apart from variabilities in parameters that describe the dynamic force induced by pedestrians, 
there is another group of uncertain parameters when designing a new footbridge. This group 
is related to the dynamic properties of the structure to be built. These include modal mass, 
damping ratio and natural frequency. However, the research in this thesis is concentrated 
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on dealing with uncertainties in the force description and their influence on the structural 

vibration response while the uncertainties in structural dynamic properties are beyond the 

scope of this work. However, they certainly deserve to be researched in future. 

Finally, the inter-subject variability in the limiting (disturbing) vibration level for walking 

person is not included into the analysis conducted in this thesis. This is because most of 

published research deals with a standing person as a receiver of vibrations and more research 

is required for establishing vibration acceleration limits for walking people. Therefore, instead 

of treating the vibration limit for a walking pedestrian in a probabilistic sense, a single (and 

only provisional) vibration limit of 0.35 m/s2 is used in this work. This value is obtained 
based on the methodology explained in Chapter 5. However, when probability distribution 

of vibration limit for different walkers becomes available, then it can simply be combined 
(see Chapter 8) with probability distribution of the acceleration response (that is an outcome 

of the methodology presented in this chapter, as will be shown in Section 6.3) in order to 

estimate percentage of pedestrians that might complain of footbridge vibrations caused by 

their own walking. 

6.3 Statistical Prediction of Footbridge Response to Single 

Person Walking 

This section describes a methodology for statistical description of footbridge response to a 

single person crossing. Statistical distributions for different parameters defined in the previous 

section are used for this purpose. The procedure is explained step by step and applied to 
Podgorica footbridge in Montenegro where the first walking harmonic was relevant and the 

mode shape could be approximated by a half sine function. After this, the procedure is 

repeated for Aberfeldy footbridge. 

Podgorica footbridge is described in detail in Chapters 3 and 4. Here, only the most important 

characteristics of the bridge that are required in the analysis will be summarised briefly. The 
bridge is a steel box girder shown in Figure 6.9a. Its length is 104 m, with 78 m between 
inclined columns. The footbridge responds to normal walking excitation dominantly in the 
first vibration mode with frequency at 2.04 Hz. The mode shape and modal properties of 
this mode (natural frequency f,,, damping ratio ( and modal mass m), as estimated from 

modal testing and finite element model updating described in Chapters 3 and 4, are shown 
in Figure 6.9b. 

6.3.1 Peak Modal Response to Sinusoidal Excitation 

The first step in the analysis is to calculate the peak modal response of an SDOF system to 

sinusoidal excitation. Under the assumption of the bridge having a half-sine mode shape, the 

equation of motion in its modal form can be written as (Inman, 2001): 
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a(t) + 2((27r fn, )v(t) + (27rf,,, )2d(t) =m DLF "W sin (27r f, t) " sin 
(8t). 

(6.7) 

%0 
X 

v(t 

where a(t), v(t) and d(t) are modal acceleration, velocity and displacement of the footbridge 

structure, respectively, while (. m and fn, are modal damping, mass and natural frequency. 

respectively. The right hand side of the equation represents the modal force acting on the 

SDOF system obtained by multiplication of the sinusoidal force Fsi, (t) by the half-sine mode 

shape O(t). The frequency of the force Fsi,,, (t) is f3 while its amplitude is defined as a 

product of the mean DLF dependent on fs (defined in Equation 6.4) and an assumed average 

pedestrian weight IV = 750 N (DH, 2005). The mode shape O(t) was initially a space function 

dependent on pedestrian position on the bridge x and footbridge length L. However, by 

assuming a constant pedestrian velocity vp, the mode shape defined along the bridge length 

can he transformed into a time-varying function: 

sin 
L= 

sin L 
Pt = sin 

(L 7r L 
NSt) = sin 

(NSt) 
(6.8) 

where N is t lie number of steps required to cross the bridge. 

Equation 6.7 has an analytical closed-form solution (see PHASE 5 in Appendix B). For the 
Podgorica footbridge the solution was found for different combinations of step to natural 
frequency ratios (0.64-1.19 as shown in Figure 6.1b) and number of steps needed to cross the 
bridge (85-155 as shown in Figure 6.2c). The resulting peak modal acceleration shown in 

Figure 6.10 gives a range of possible peak modal acceleration responses A8j,, under sinusoidal 
force excit at ion. 
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Figure 6.9: I'udgon is ,, t,,,, i i, r(i, c - (a) photograph and (b) modal properties of the funda- 

mental mode of vibration. 

6.3.2 Joint Probability for Walking Parameters 

As explained previously, the walking frequency is a normally distributed variable, with the 
probability density function presented in Figure 6.1. It has also been explained that the 
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probability density function for number of steps needed to cross the bridge can be obtained 
from the probability distribution of walking velocities. This probability density function is 

shown in Figure 6.2c and depends on the footbridge length only. For Podgorica footbridge 

this length is 78m, since the mode shape can be considered as being close to a sinusoidal 

shape on the main span while its amplitude can be neglected on the relatively short side spans 
because of their low magnitude (Figure 6.9b). Since the walking frequency and number of 

steps are independent variables, the joint probability of walking at a particular frequency fs 

and making a particular number of steps N during a footbridge crossing can be calculated by 

multiplication of the probability density functions from Figures 6.1b and 6.2c (Montgomery 

& Runger, 1999). The resulting joint probability density function is shown in Figure 6.11. 
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Figure 6.10: Peak modal acceleration response due to sinusoidal walking force. 

0.16 

0.12 

nnn 10 v. vv 
!. 

o. o4 
c 

0.002 ýqw 
F 1.0 

re9uer, ' atö 
C 

` 140 160 
100 

abet Ot steps 

Figure 6.11: Joint probability density function p(f3/ fn, N) for different combinations of step 
to natural frequency ratio and number of steps during the crossing of the Podgorica foot- 
bridge. 
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6.3.3 Modification of Peak Modal Response Asi,, due to Intra-Subject Vari- 

ability 

For every pair of frequency ratio f, / fa and number of steps N, it is possible to find the 

peak modal acceleration Ai,, due to a sine force (Figure 6.10) as well as a point in the 

probability density function p(f, / fa, N) that has exactly this combination of f8/ fn and N 

(Figure 6.11). After this, the fact that the peak acceleration level Ac could be higher or lower 

than that in Figure 6.10 due to intra-subject variability can be introduced. For this purpose 

the peak acceleration A, i, ti from Figure 6.10 for each point (f8l fn, N) is multiplied by a range 

of correction coefficients c from the appropriate gamma distribution defined in Section 6.2.5: 

Ac = cAsin" (6.9) 

In this way a range of possible peak acceleration values A,, for each acceleration Asi, ti from 

Figure 6.10 has been obtained. It should be noted here that the gamma distribution of 

the correction coefficient chosen for this calculation depends on the walking to natural fre- 

quency ratio (f, / f,, ). At the same time the probability density function of the three variables 

p(f, l f., N, c) corresponding to each combination of f/ fn,, N and c used for calculation of 
A, can be obtained by multiplication of every point in the joint probability density function 

p(f3/ f,,, N) (Figure 6.11) with a gamma probability density function p,, (dependent on f, / fn 

ratio) of the kind presented in Figure 6.7: 

P(fa/, fn, N, c) = p(fa/fn, N)pc" 6.10) 

For further calculation it would be convenient to present peak acceleration A, (calculated 

according to Equation 6.9) as a function of x, where x is a variable that contains all pos- 

sible combinations of discrete random variables fl f,,, N and c. This function is given in 

Figure 6.12a as an arbitrary discrete function. At the same time an arbitrary function that 

presents a discrete probability density function calculated according to Equation 6.10 is shown 
in Figure 6.12b. The functions mentioned here are discrete functions because computer calcu- 
lation of A, and p(f, / f, N, c) (Equations 6.9 and 6.10) require discretisation of the variables 
included in the analysis (f, / f,,, N, c). 

Probability Px=T+ of having variable x= xi can then be calculated approximately as the 
black area in Figure 6.12b: 

Px=xi = P(xi)Ox = PiOx, 6.11) 

where Ox is the discrete step for variable x. 

The obtained value P,, =,,, is actually a probability that variables fe/f,,, N and c (contained 
in variable x) are equal to (fa/ f,, )s, Ni and c;., respectively. This probability is at the same 
time a probability of having a peak acceleration response Aq that corresponds to the choice 
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of the three variables. This probability will be denoted as P,, hereafter. Probability Pr that 

f3/fn = (fs/f,, )i, N= Ni and c= ci therefore can be presented as follows: 

Pci = 1ý (fsý fn = (fsý fn)i N= Ni, c= ci. ) 0(fs/fn)ANOc, (6.12) 

where A(f3/ fn, ), AN and Ac are discrete steps chosen for discrete representation of variables 
fs/ f,,,, N and c, respectively. 
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Figure 6.12: (a) Graphical representation of (a) peak acceleration A, as a discrete function 

of variable x, (b) probability density function as a discrete function of x. 

Once a probability for each combination of variables fl f, N and c (and therefore a corre- 

sponding peak acceleration A, ) is found, the probability that the peak acceleration response 
A, is within a certain interval, such as A,, k < A, < Ac, k+1 can be found. There are three 

points in this acceleration range in Figure 6.12a. They define the three grey areas in Fig- 

ure 6.12b. Adding them together the peak acceleration in the interval considered can be 

calculated as follows: 

P`9c, 
k: Ac, k}1 =E Pc(AC)" 

Ac, k<Ac<Ac, k+l 

(6.13) 

This probability calculated for the Podgorica footbridge is shown in Figure 6.13b. For a 

comparison purpose the probability of having certain peak acceleration response without 
taking into account the intra-subject variability is shown in Figure 6.13a. It can be seen that 

probability of extremely low accelerations (below 0.05m/s2) as well as of extremely high ac- 

celerations (around 0.6 m/s2) decreases after taking into account the intra-subject variability. 
In the former case it is because walking with the step frequency away from the footbridge 

natural frequency (small acceleration levels) is likely to produce higher accelerations than 
the corresponding sine walking force (as also demonstrated in Figures 6.4b and 6.6b), while 
in latter case the walking at the footbridge natural frequency (high acceleration levels) is 
likely to produce a lower acceleration response than that induced by a sine force (as shown 
in Figures 6.4a and 6.6a). 
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Figure 6.13: Podgorica footbridge - (a) Probability of certain acceleration level (a) before 

and (b) after taking into account imperfections in human walking. 

6.3.4 Influence of DLF Variability on Peak Modal Response 

As the final step in the analysis, the influence of probability of DLF being different from 

the mean value used in previous calculation should be taken into account. This can be 

done by multiplying the probability density function that corresponds to the probability of 

certain acceleration response shown in Figure 6.13b by the probability density related to DLF 

variation (Figure 6.3b). After this, the probability that the vibration level is within a certain 
range can be obtained as presented in Figure 6.14a. In the case of Podgorica footbridge, this 
function is almost the same as the one shown in Figure 6.13b before taking into account the 

probability density for DLFs. This is a consequence only of choosing an acceleration step as 
large as 0.05 m/s2 for data presentation. 
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Figure 6.14: Podgorica footbridge - (a) Final probability of a peak modal acceleration level 
due to single person crossing the bridge. (b) Cumulative probability that the acceleration 
level is smaller than or equal to the acceleration level considered (shown on the horizontal 

axis). 

A more interesting cumulative probability that the acceleration level is either smaller than or 
equal to a certain level is presented in Figure 6.14b. Having this distribution, the information 
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about the level of vibration that is not acceptable for pedestrians would be very useful in 

order to judge acceptability of the bridge in case of a single pedestrian traffic. If a peak 

acceleration of 0.35 m/s2 -a value obtained from the analysis in Chapter 5- is considered as 

an unacceptably high vibration level, then it can be expected that this level of vibration is 

exceeded once in every 20 crossings by a single person (5% exceedance probability). In other 

words, it can be expected that every 20th person crossing the footbridge is disturbed by its 

vibration. 

A MATLAB script written for implementing the described analytical procedure for obtaining 
the cumulative distributions for the Podgorica footbridge is presented in Appendix B. 

6.3.5 Aberfeldy Footbridge 

The procedure applied to Podgorica footbridge is repeated for a light cable-stayed footbridge 

made of glass reinforced plastic (Aberfeldy footbridge). The total length of this footbridge 

is 113 in and its total mass is only about 20,000 kg. The footbridge is shown in Figure 6.15a, 

and the properties of its first mode of vibration, as measured during modal testing, are given 
in Figure 6.15b. 
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Figure 6.15: Aberfeldy footbridge - (a) photograph and (b) modal properties of the funda- 

mental mode of vibration. 

Aberfeldy footbridge is a very light structure that is prone to significant vibrations generated 
by human walking. Following exactly the same procedure as for Podgorica footbridge, the 

probability of acceleration level (due to fundamental mode excitation) being within a certain 

range is calculated and shown in Figure 6.16a. The cumulative distribution of this proba- 
bility is presented in Figure 6.16b. It can be seen that only 46% of people would cross the 
bridge without being disturbed, when the disturbance limit is set to the previously mentioned 
0.35 m/s2. In other words, approximately every second person crossing the footbridge would 
be disturbed by the movement of the bridge due to excitation of first vertical mode at 1.52 Hz. 

However, the footbridge is considered in practice as being lively almost all the time. This 

is likely to be a consequence of the fact that its second vertical mode of vibration is at 
1.86 Hz, therefore almost the same as the mean pacing rate shown in Figure 6.1a. The second 
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mode is anti-symmetric (Figure 6.17a) and can easily be excited by normal walking. A large 

percentage of people (Figure 6.1) can be expected to walk with pacing rate equal or near 
to 1.86 Hz. In other words, mode 2 is more likely to be excited than mode 1. The same 

analytical procedure as for the first mode is applied for the second mode, taking into account 

only a 31.5 m long part of the bridge length on which the mode shape can be approximated 
by a half-sine function. As before, the modal mass, damping and mode shape were obtained 
from full-scale tests on the bridge and are shown in Figure 6.17a. The cumulative probability 
obtained is shown in Figure 6.17b. It shows that 82% of people will generate vibrations 
higher than the assumed 0.35 m/s2 threshold of acceptability. Since both vertical modes of 

vibration will respond to pedestrian walking across the footbridge, it is not surprising that 
it was observed during full scale tests that almost all pedestrians perceived strong vibrations 

caused by their own walking. 
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Figure 6.16: Aberfeldy footbridge - (a) Probability of certain acceleration level. (b) Cumu- 
lative probability that the acceleration level is smaller than or equal to the acceleration level 

shown on the horizontal axis. 
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Figure 6.17: Aberfeldy footbridge - (a) Modal properties for mode at 1.86 Hz. (b) Cumulative 
probability that the acceleration level is smaller than or equal to the acceleration level shown 
on the horizontal axis. 

The result of the analytical study for Aberfeldy footbridge is partly verified by the response 
measurements to single person excitation. Seven test subjects were asked to cross the bridge 
with their `fast', `normal' and `slow' pacing rate. For each pacing rate two tests were con- 
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ducted. Therefore, in total 42 crossings of the bridge were analysed, and peak modal accel- 

eration was extracted from each of them. In this limited testing programme, the footbridge 

response was measured at the midspan point only, which is a nodal point for the second 

mode. Therefore, only the response in the first mode was recorded. 

Figure 6.18 shows the probability of different levels of peak modal acceleration measured. It 

can be seen that the observed probability distribution is similar to the one calculated (Fig- 

ure 6.16a) verifying to some extent the analytical framework used. The fact that probability 
of the peak acceleration to be higher than 0.4 m/s2 is slightly lower in the measured than in 

the calculated sample is likely to be a consequence of the human-structure interaction taking 

place on such a lively bridge during response measurements. 
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Figure 6.18: Probability of measured peak modal acceleration on Aberfeldy footbridge. 

6.4 Monte Carlo Simulations 

To check results obtained using the presented analytical probabilistic approach, 2,000 Monte 
Carlo (MC) simulations were conducted for both footbridges. Besides modal properties of 
footbridges, input parameters were also force properties. Firstly, 2,000 normally distributed 
walking frequencies were generated. Then, 2,000 possibilities for the number of steps required 
to cross the bridge were generated independently from the walking frequency. The ampli- 
tude of the force was obtained using the mean value of DLF for the given step frequency 
(Equation 6.4) and assuming a pedestrian weight of 750 N. 

The response of the footbridge to the generated modal forces was calculated. After this, each 
response was multiplied by a factor which takes into account the variability of DLFs - again a 
value generated as normal distribution (Figure 6.3b) and independent from the step frequency. 
Finally, depending on the frequency of walking, gamma distributions (Section 6.2.5) that take 
into account imperfections in the human induced force (i. e. differences between subsequent 
steps made by the same person during walking) were generated. In this way a deviation 
of the real modal acceleration from the one calculated in the previous step was obtained. 
As a result, a cumulative distribution of peak modal acceleration response was calculated 
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for both footbridges. These distributions are shown in Figures 6.19a, b and c. They are 

very similar to those given in Figures 6.14b, 6.16b and 6.17b, respectively. In this way 
the previously described analytical probabilistic approach was verified. Since the analytical 

procedure required about 40 times less computational time than the MC method for these two 
footbridges, it is recommended to use it rather than MC simulations that are computationally 

quite demanding. 
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Figure 6.19: Cumulative probability as a result of MC simulations for: (a) Podgorica foot- 
bridge, (b) Aberfeldy footbridge (mode 1) and (c) Aberfeldy footbridge (Mode 2). 

6.5 Discussion 

In the case of the two footbridges investigated, a probabilistic approach was able to estimate 
the probability that people will be disturbed by footbridge vibrations. When the allowable 
vibration limit is set to 0.35 m/s2, as many as 95% of people would not feel strong vibrations 
whilst crossings Podgorica footbridge. This is quite a satisfactory percentage and shows 
that single pedestrian traffic would not produce significant disturbance for a person crossing 
the bridge. However, the bridge is subjectively considered as lively during normal multi- 
pedestrian traffic when peak acceleration regularly reaches 0.4 m/s2 and occasionally goes up 
to 0.6 m/s2 (Appendix A). This is consistent with the 0.35 m/s2 threshold. It also means that 
the single pedestrian loading scenario may not be sufficient when designing heavily trafficked 
footbridges regularly conveying groups of pedestrians. Moreover, it indicates the need for a 
similar probability-based multi-pedestrian (as opposed to single pedestrian) loading model 
which currently does not exist. 

On the other hand, for Aberfeldy footbridge, more than 50% of people would be disturbed 
by footbridge vibrations if only the first mode responds to their excitation. In case it is 
only the second mode that responds, this percentage goes above 80%. Since the footbridge 
normally responds in both vibration modes at the same time, it is quite likely that it will be 
perceived as lively at any time even for a single pedestrian traffic case investigated here. This 
is what was observed during in-situ monitoring of Aberfeldy footbridge. This conclusion also 
points out the need to extend the analytical framework not only to multi-person, but also to 
multi-mode response. 



CHAPTER 6 Probability Based Modelling 175 

It is interesting to compare results of the single pedestrian study conducted here with those 

from the classical deterministic approach. Probably the most often used implementation of 

this approach is that given in the British Standard BS 5400 (BSI, 1978), which also features in 

the Canadian design guideline (OHBDC, 1983). It is well known (Pimentel, 1997) that some 

parameters used in this code are well out-of-date (such as a single DLF value for all walking 
frequencies). This is a reason to make use of more realistic (average) modelling parameters 
for presenting the results of the deterministic approach in this study. The walking force 

therefore is modelled as a resonant sine force with parameters given in Table 6.1. Following 

the BS 5400 procedure, the peak modal response is calculated and shown in the last row of 

the table. It is equal to 0.52 m/s2 for Podgorica footbridge, and 3.12 m/s2 and 2.70 m/s2 for 

Aberfeldy footbridge, for modes 1 and 2, respectively. 

Table 6.1: Parameters for response simulations under a single pedestrian on two footbridges. 
Footbridge Podgorica Aberfeldy (1't mode) Aberfeldy (2"d mode) 
Weight [N] 750 750 750 
Step frequency [Hz] 2.04 1.52 1.86 
DLF 0.42 0.21 0.35 
Walking speed [m/s] 1.45 1.08 1.32 
Peak modal response [m/s2] 0.52 3.12 2.70 

Based on the cumulative probabilities previously calculated (Figures 6.14b, 6.16b and 6.17b), 
it can be concluded that the probability of exceeding the calculated accelerations of 0.52 m/s2, 
3.12 m/s2 and 2.70 m/s2 under a single person excitation is very small. Therefore, the sin- 
gle person model based on resonant excitation is quite conservative. There are schools of 
thought that the single person resonant approach is designed to cater for some more compli- 
cated (for calculation) loading scenarios, such as normal multi-person pedestrian traffic. In 

case of Podgorica footbridge the estimate of 0.52 m/s2 is quite good for the in-situ observed 
peak vibration level under multi-person pedestrian traffic, being between 0.4 and 0.6 m/s2 
(Appendix A). However, this seems to occur simply by chance and a generalisation of this 

approach to all footbridges can significantly both under- and over-estimate the response de- 

pending on the particular footbridge investigated. Because of this, the aim should be to 
consider all possible (but reasonable) loading scenarios for a particular bridge, depending on 
their realistic probability of occurrence. In this way the vibration serviceability design would 
be based on basic physical principles and actual vibration performance, as appropriate for 

serviceability checks. Also, it would not be at risk of replacing a complicated problem with 
a simpler but non representative one. 

Finally, it should be mentioned that acceleration limits allowed by BS 5400 (BSI, 1978) are 
0.71 m/s2 for Podgorica footbridge and 0.62 m/s2 for Aberfeldy footbridge. It is interesting 
that the first footbridge is considered as being lively by many people crossing it although 
0.71 m/s2 is almost never achieved in normal usage (Appendix A). On the other hand, expe- 
rience from Aberfeldy footbridge is that it is considered as being lively even under a single 
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person excitation. This is interesting as the probability that acceleration level being higher 

than 0.62 m/s2 under single person walking is only about 12% for this footbridge respond- 

ing in first mode (Figure 6.16b) and about 60% for the footbridge responding in the second 

mode (Figure 6.17b). It is likely that these considerations indicate serious possible deficiency 

in the BS 5400 limit for peak acceleration aiiT.,. given by the well-known empirical formula 

aiim = 0.5v, where fo is the fundamental natural frequency in the vertical direction. This 

formula is, in fact, a compromise between two sets of rather different and old data gathered 

by Leonard (1966) and Smith (1969) in the 1960s and seems to set the allowable vibration 

limit to a higher level than what is observed in practice. 

6.6 Conclusions 

A novel probability based framework for predicting vibration response to single person exci- 

tation is presented in this chapter. A single person force is modelled as a harmonic force with 
its amplitude, frequency and duration described via probability density functions. These 

factors represent inter-subject variability between people in the force induced by their walk- 
ing. In addition, intra-subject variability in terms of force induced is taken into account as 

a probability density function representing (in)ability of people to produce sinusoidal force. 

The aim here was to consider as many parameters relevant to the study of a single person 

as possible. When including the four probability distributions into the calculation, the cu- 

mulative probability that the response will not exceed a certain peak acceleration under a 

single person walking can be calculated. This can be used as key design information when 

making decision about vibration serviceability of the footbridge. In this way shortcomings 

of having only one response value, as defined in currently used deterministic force modelling, 

are avoided. Results presented in this study have been partially verified on two full scale 
footbridges. 

The probability procedure developed in this chapter can be used when designing footbridges 

that are not very busy and where a single person loading scenario is reasonable. Having 

good mathematical representation of a single person provided in this study is a necessary 
prerequisite for developing a similar probability-based model for multi-person excitation of 
footbridges in future. 



Preface to Chapter 7 

The probability-based procedure from Chapter 6 was extended in Chapter 7 to deal with 
footbridges that respond in several vibration modes to a single person excitation. Because of 
this multi-mode response, it was necessary to model the walking force in such a way that all 

relevant harmonics could be taken into account. 
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Chapter 7 

Prediction of Multi Mode Vibration 

Response of Footbridges 
This chapter, in a slightly amended form, has been submitted for publication under the following reference: 

2ivanovi&, S., Pavic, A. and Reynolds, P. Probability Based Prediction of Multi Mode Vibration Response to Walking 

Excitation, Engineering Structures. 

Abstract 

In vibration serviceability checks of footbridges, a force induced by a single person walking is usually 
modelled as a harmonic force having frequency that matches one of the footbridge natural frequencies. 
This approach assumes that, among the infinite number of harmonics a walking force is composed of, 

only a single harmonic is important for a vibration serviceability check. Another usual assumption 
is that the footbridge can be modelled as an SDOF system, implying that only vibration in a single 
mode is of interest. In addition, due to the deterministic nature of this approach, it cannot take into 

account inter- and intra-subject variabilities in the walking force that are now well documented in the 
literature. To account for these variabilities, a novel probabilistic approach to carry out a vibration 
serviceability check is developed in this chapter. Factors such as probability distribution of walking 
frequencies, step lengths and amplitude of walking force for its five lowest harmonics and subharmonics 
are taken into account. Using walking force time histories measured on a treadmill, the frequency 

content of the force was investigated, resulting in the formulation of a multi-harmonic force model. 
This model can be used to estimate multi-mode response in footbridges. This was verified successfully 
on an as-built catenary footbridge structure. Although only vibration response of footbridges was 
analysed in this chapter, the force model proposed has potential to be implemented in estimation of 
vibration for low frequency floors as well, where multi-mode response occurs more frequently. The 

model is easily programmable and as such could present a powerful tool for estimating efficiently 
the probability of various levels of vibration response due to a single person walking. Therefore, 
the proposed probability-based methodology has the potential to revolutionise the philosophy of the 

current codes of practice dealing with vibration serviceability of structures under human-induced 

excitation. 
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7.1 Introduction 

Vibration serviceability checks for slender footbridges that are potentially lively in the vertical 

direction are usually based on the assumption that an average single pedestrian is crossing 

the bridge with a step frequency matching one of the structural natural frequencies. In 

these analyses, it is assumed that the human-induced walking force is a sinusoidal force 

and that a footbridge structure responds in a single vibration mode (BSI, 1978; OHBDC, 

1983; Bachmann & Amman, 1987; CSA, 2000; HA, 2001; BSI, 2004). This practice can 

significantly overestimate the footbridge vibration response (Pimentel, 1997). This occurs due 

to neglecting inter- and intra-subject variability in the walking force induced (Ebrahimpour 

et al., 1996; Kerr, 1998; Brownjohn et al., 2004b; Sahnaci & Kasperski, 2005). The former 

term implies that different pedestrians generate different dynamic forces, and the latter means 

that even a single pedestrian induces a walking force that differs with each step. Therefore, 

the walking force is not a sinusoidal force as assumed in the mathematical model used widely 
for vibration serviceability check of footbridges. Rather, it is a considerably more complex 

narrow band random process, as demonstrated by Brownjohn et al. (2004b). 

Variability in the walking force can be taken into account via probability-based modelling 
described in Chapter 6. In this approach, variables that characterise the human-induced 

force can be described via their probability density functions. These can be defined for the 

parameters characterising both inter-subject variability (such as the walking frequency, step 
length and force amplitude) and intra-subject variability (that is the inability of people to 

repeat the same force in each step). As a logical consequence of this probabilistic approach, 
the estimate of the vibration response can be expressed as a probability that a certain level 

of vibration, considered to be a limiting value for vibration serviceability check, will not be 

exceeded. Rather than ending up with a single number and a binary pass or fail outcome, 
the novelty of the proposed approach is that a range of possible vibration responses and the 

probability of their occurrence is produced. An assessment of these is a much more logical 

way of judging vibration serviceability. 

The previously defined probability based model (Chapter 6) was developed for the case when 

a single force harmonic and the corresponding single mode response were sufficient for the 

vibration serviceability check. However, there are footbridge and other structures, even with 

very simple configurations, such as catenary footbridges (as will be shown in this study), that 

respond to pedestrian-induced excitation in several vibration modes simultaneously, with 

more than one of them being important. These modes often can be excited by energy around 
different force harmonics. Therefore, it is necessary to take into account all relevant harmonics 

of the walking force. By doing this, and knowing modal properties of the relevant vibration 
modes, the multi-mode response of the structure can be found via the mode superposition 
principle (Clough & Penzien, 1993). 

This chapter aims to formulate a multi-harmonic force model for calculation of the multi- 
mode structural response to a single person walking across a footbridge. This will be done 
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using a probability-based framework developed in the previous chapter. Therefore, a single 
harmonic force model will be extended to a multi-harmonic force model. This new model will 

contain not only the main harmonics usually dealt with in literature, but also subharmonics 
that appear between main harmonics in the force spectrum (Sahnaci & Kasperski, 2005). 

As in Chapter 6, the probability distribution of weight for human population, variability in 

the structural dynamic properties (which are difficult to predict in the design stage) and 
the probability distribution for limiting vibration level are not taken into account in the 

modelling. The reasons for this have been explained in Chapter 6. 

In the first part of this chapter, the appearance of the subharmonics in the force spectrum 
is explained. After this, probability density functions describing inter-subject variability in 
the walking force are defined. Then, the intra-subject variability, that is the imperfections in 
human induced force, is analysed to formulate a time domain force model. This force model 
is then experimentally verified leading to the main conclusions presented at the end of the 

chapter. 

7.2 Subharmonics in Walking Force 

Human-induced walking force is not periodic, but rather it is a narrow band random process 
(Brownjohn et al., 2004b). This means that there is a leaking of energy around main har- 
monics in force spectrum. To illustrate this, 80 steps of a dynamic part of the walking force, 
measured on an instrumented treadmill (Brownjohn et al., 2004b) and shown in Figure 7.1a, 
are analysed. The average number of steps per second made by a test subject during this 
measurement was 1.96 steps/s, that is the walking frequency f9 was 1.96 Hz. The force pre- 
sented was transformed into the frequency domain. Fourier amplitudes and phases are shown 
in Figures 7.1b and 7.1c, respectively. The aforementioned leaking of energy around the main 
harmonics can clearly be seen in Figure 7.1b. Here, the main harmonics are those present at 
frequencies equal to the average walking frequency (1.96 Hz) and its integer multiples. How- 
ever, it can be seen that there are also some subharmonics appearing at frequencies between 
the main harmonics. This phenomenon has recently been reported in detail by Sahnaci & 
Kasperski (2005). The explanation for this lies in the fact that the fundamental period of 
the force time history is equal to the time required to make two successive steps, rather than 
one, as has been widely accepted in the literature. In this way, the fundamental period is 
actually approximately two times higher than when analysing one step only and consequently 
the fundamental frequency of the walking force is approximately two times lower than that 
for a single step. The reason for this is that walking process for two legs can be described 
by slightly different parameters (walking frequency/period and step length) meaning that 
one leg is `stronger' than another (Sahnaci & Kasperski, 2005). An illustration of this are 
differences in the periods for the two feet that are presented in Figure 7.1d. Crosses represent 
the period for the left foot while circles represent period for the the right foot. It can be seen 
that time required for the left foot to make one step is consistently longer than that for the 
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right foot. 

Based on this anlaysis, it would be more appropriate to call the harmonic appearing at 

a frequency of 0-5f. (Figure 7.1b) as the fundamental harmonic. However, for the sake of 

consistency with the literature published in the last 40 years and bearing in mind the narrow- 
band nature of the walking force, the terminology used is as follows. The energy around peaks 
that appear at frequencies that are integer multiples of the average step frequency will be 

called `harmonics' (or `main harmonics') of the walking force, while the energy corresponding 
to peaks between these will be called `subharmonics'. 
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Figure 7.1: (a) Dynamic part of a force induced by walking. (b) Amplitude of force Fourier 

spectrum. (c) Phase of force Fourier spectrum. (d) Period of each step. 

7.3 Inter-Subject Variability during Walking 

Parameters that describe variability in walking forces induced by different pedestrians are 
walking frequency, step length and magnitude of the walking force. These parameters are 
described in this section. 

7.3.1 Walking Frequency and Step Length 

Walking frequency f, and step length le can be considered as two independent modelling 
parameters as explained in Chapter 6. It is necessary to have information about them when 
doing force modelling. fe in fact defines the forcing fundamental frequency and together with 

ýa) _ Tme Is] 

12345 
Frequency / Walking frequency 
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le is required for the calculation of time TT required for footbridge crossing. This time can 

be obtained from: 
TC =L (7.1) 

f9is 

where L is the length of the footbridge. Tc basically defines the duration of the walking force. 

Therefore, it is useful to know probability distributions of fs and l9. These were described 

earlier in Chapter 6 as normal distributions. They are shown in Figures 7.2a and 7.2b, 

respectively. The mean values of walking frequency and step length in Figure 7.2 are denoted 

as µf8 and µj9, respectively, while their standard deviations are denoted as a f, and als, 

respectively. Letters p and a will be used throughout the chapter to describe the mean value 

and standard deviation of a variable whose name will be given as their subscript. 
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Figure 7.2: Probability density functions for: (a) walking frequency and (b) step length. 

7.3.2 Force Magnitude 

The third parameter required for force description is the magnitude of the walking force. Since 

this force is composed of harmonics and subharmonics (Figure 7.1b), it is necessary to define 
the amplitude of each of them. This is not a straightforward task because of energy spreading 
around main harmonics and subharmonics. However, for each of them a sinusoidal force can 
be defined in such a way that its power is equal to the power of the (sub)harmonic analysed 
taking into account its neighbouring frequency lines, say those in the range of ±0.25f,, around 
the (sub)harmonic. The amplitude of this sinusoid, divided by test subject's weight, is the 
value widely accepted for characterisation of the strength of each (sub)harmonic. This value 
is called the dynamic loading factor (DLF). 

7.3.2.1 DLFs for Main Harmonics 

Different people generate different values of DLFs, even when walking at the same frequency 
(Rainer et al., 1988; Kerr, 1998). For the first harmonic, Kerr (1998) found that the mean 
value of its DLF is dependent on the walking frequency f8, as follows: 

PDLF1 = -0.2649f. 3 + 1.3206f., 2 - 1.7597f, + 0.7613. (7.2) 
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Distribution of DLF1 around its mean value, for a particular walking frequency, can be 

obtained via multiplication of the mean value by a normally distributed factor MF shown in 

Figure 7.3a by solid line. 
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Figure 7.3: (a) Probability density function for multiplication factor for DLF1 (solid line) 

and DLF2 (dashed line). (b) DLF2 measured by Kerr (1998). 

For complete description of the walking force, the probability distributions of DLFs for higher 

harmonics are also required. This study deals with the first five harmonics of the walking 
force, since it is believed that harmonics higher than the fifth are not capable of inducing 

perceptible vibrations in footbridges. 

Kerr (1998) reported a mean value for DLF2 equal to 0.07 (Figure 7.3b) regardless of the 

walking frequency. Under an assumption of normal distribution of DLF2 for each walking 
frequency and assuming that DLF2 is independent from DLF1, a normal distribution of a 

multiplication factor for getting DLF2 from its mean value can be presented based on Kerr's 

data (dashed line in Figure 7.3a). It should be noted that, due to large standard deviation, 

some negative values of DLF2 tend to appear in Figure 7.3a. These do not have physical 

meaning and as such should be removed from the calculation procedure by replacing them 

with zero values. It can be seen that the scattering of DLF2 is much higher in comparison 

with that for the first harmonic. 

Based on Kerr's research (Kerr, 1998), the normal distribution for third and forth harmonic 

can be defined in similar way as it was done for the second harmonic. By analysing 95 force 

time histories measured by Brownjohn et al. (2004b), the data related to the fifth harmonic 

have also been collected. The mean values and standard deviations describing the normal 
distributions of the second, third, fourth and fifth harmonics are listed in Table 7.1. Similarly 

to DLF2, all negative values of DLFs that appear in the probability distributions due to large 

scatter should be replaced by zero values. 
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Table 7.1: Parameters describing normal distribution of DLFs for higher harmonics. 

Harmonic # Mean Standard deviation 

2 0.07 0.030 
3 0.05 0.020 

4 0.05 0.020 
5 0.03 0.015 

7.3.2.2 DLFs for Subharmonics 

This section aims to define DLFs for the first five subharmonics in the walking force. These 

data are missing from the literature available. Because of this, the 95 time histories measured 
by Brownjohn et al. (2004b) for nine test subjects walking on a treadmill were transformed 

into the frequency domain. Then the power for each subharmonic was calculated in the 

frequency range (i - 0.5)f. ± 0.25f., where i is the subharmonic considered (i = 1,2,3,4,5). 

After this, the amplitude of a sinusoidal force having the same power was calculated and 
divided by the weight of the test subject to get the DLF. However, since force time histories 

for only nine test subjects taking part in 95 measurements with different walking speeds were 

available, it is not prudent to construct probability density functions for these subharmonics 

as there were insufficient data points around each walking frequency. Instead, it is possible 
to establish a relationship between DLFs for subharmonic and, say, first walking harmonic 
DLF1. These relationships are presented in Figure 7.4, based on DLFs obtained for 95 force 

time histories. Also, a linear fit in the least square sense is presented for each graph in the 
figure. Therefore, for modelling purpose only the relative relationship between subharmonics 

and the first harmonic is adopted. In this way the magnitude of the DLF for subharmonics 

can be obtained only after the magnitude of DLF1 is known. 

7.4 Intra-Subject Variability during Walking 

Due to the inability of human beings to walk in the same way when making every single step, 
the walking force is not a perfectly periodic process. Imperfections in the human walking force 

can be described via slight changes of the walking frequency (that is reciprocal value of the 

period presented in Figure 7.1d), amplitude (Figure 7.1a) and phase lag in each step. These 

changes can be taken into account via investigation of the force in the frequency domain that 
is inherently part of the force modelling described in the next section. 
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Figure 7.4: DLFs for subharmonics as functions of DLF1. 

7.5 Force Modelling 

In this section, frequency content of the measured walking forces is analysed first, followed 

by description of the force model adopted. Then a procedure for model usage is briefly 

summarised. 

7.5.1 Force Description in the Frequency Domain 

The force induced by walking can be presented in the frequency domain via its amplitudes and 
phases characterising each frequency line in the force spectrum (Figures 7.1b and 7.1c). Since 

a decision to cover the frequency range of walking force related to the first five harmonics 

and subharmonics was made, a force model covering the frequency range 0.25f,, -5.25f, will 
be formulated. 
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To formulate this force model, 95 time histories measured on a treadmill set to a constant 

speed in each test (Brownjohn et al., 2004b) were analysed. The Fourier spectrum of exactly 

80 steps for each time history was found. Amplitudes of this spectrum in the range ±0.25f, 

around each (sub)harmonic were divided with the corresponding DLF for this (sub)harmonic. 

In this way the normalised amplitude spectra were obtained. They were overlayed for each 

(sub)harmonic, and are presented as grey lines in Figure 7.5. After this, the mean functions 

for all spectra were found and fitted in the least square sense. The normalised amplitudes 

DLFi(fj) for ith harmonic are fitted by a function available as a built-in function in MATLAB 

(MathWorks, 2006): 

1j-bi 12 'b i22 '6 i32 l 
DLFs(J3) = ai, le `$, 1 

/+ 
ai, 2e- \ `i, 2 /+ ai, 3e `i, 3 (7.3) 

where ai, k, bi, k and Ci, k (k = 1,2,3) are nine fitting parameters for ith harmonic. jj is the 

frequency ratio between the current frequency line and the step frequency f8, and it belongs 

to the interval [i - 0.25, i+0.25) with step $o, including its left limit. Therefore, for the first 

harmonic variable Ij is in the range 0.75-1.25, for the second harmonic 1.75-2.25, for third 

2.75-3.25, forth 3.75-4.25 and fifth 4.75-5.25. In this way, the spectrum width of 0.5f8 around 

each harmonic is taken into account when defining the normalised DLF for that harmonic. 

Since every time history analysed contained 80 steps, this was the reason to have spacing 
between frequency lines equal to 80. When spectrum width of 0.5fs used for each harmonic 

is divided by the frequency spacing, it follows that each harmonic is described by 40 lines. 

The nine parameters for each of the first five harmonics are listed in Table 7.2. 

For fitting the normalised amplitudes for subharmonics DLFs (fj) a chosen function has the 
following form: 

y\2 -( 
Is ba s 

DLFis (J) = ai, ie °''1 J1 + ai, 2e ``'z J1 (7.4) 

where 4, k, bik and ci, k (k = 1,2) are six fitting parameters for ith subharmonic. fj' is the 
frequency ratio between the current frequency line and step frequency f, ', and it belongs to 

the interval [i - 0.75, i-0.25) including its left limit. So, for first subharmonic this variable 
is in the range 0.25-0.75, for the second subharmonic it is 1.25-1.75, and so on. As in the 

case of the main harmonics, 40 lines are used for the description of a subharmonic. The six 
parameters for each of the five subharmonics are listed in Table 7.3. 

The functions in Equations 7.3 and 7.4 used to fit the mean functions for the harmonics 

and subharmonics are shown as black lines in Figure 7.5. It can be seen that the fit for 

subharmonics is quite similar for all of them in terms of normalised amplitude and shape of 
the fitting function. In the case of main harmonics, it is evident that the higher ones are 

weaker in amplitude and broader in frequency content than the lower ones. This indicates 
higher degree of randomness for higher harmonics. 
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Table 7.2: Fitting parameters for five harmonics. 
i12345 

a1, i 0.785200 0.513000 0.390800 0.325500 0.280600 
b1,1 0.999900 2.000000 3.000000 4.000000 4.999000 

Cj, 1 0.008314 0.011050 0.009560 0.008797 0.007939 

ai, 2 0.020600 0.133000 0.156700 0.164700 0.158400 
bs, 2 1.034000 1.957000 3.000000 4.001000 5.004000 

Ci, 2 0.252400 0.263200 0.055250 0.066410 0.078250 

a;, 3 0.107400 -0.049840 0.068660 0.068880 0.072890 
b;, 3 1.001000 1.882000 2.957000 3.991000 4.987000 

c;, 3 0.036530 0.058070 0.560700 0.375000 0.450100 

Table 7.3: Fitting parameters for five subharmonics. 
i12345 

a;, 1 0.340600 0.302400 0.262700 0.234400 0.264500 

b;, 1 0.498800 1.500000 2.500000 3.501000 4.499000 

C!,, 0.008337 0.008735 0.009748 0.009898 0.010190 

a{, 2 0.280300 0.134500 0.245600 0.235500 0.238900 
b;, 2 1.133000 1.532000 0.231200 -1.576000 1.153000 

C:, 2 0.638800 0.723300 2.932000 7.050000 4.561000 

Having a model representing amplitudes in the spectrum of the walking force, additional 
information about phase for each frequency line is required for accurate force representation 
in the time domain. For this purpose, the phase spectra of measured forces were examined. 
It was noticed that the phases for all 400 frequency lines in the range 0.25f. - 5.25f" are 

approximately uniformly distributed in the interval [-ir, +ir] for any force time history anal- 

ysed. An example of this distribution for phase diagram presented in Figure 7.1c is shown 
by a histogram in Figure 7.6. Any interdependence between phase changes around the main 
harmonics (where the amplitudes are the highest and most important) as well as between dif- 

ferent harmonics could not be noticed. This was the reason to adopt a uniformly distributed 

random phase in the force model. 

It should be said here that the modelling presented in this section is an extension of a model 
formulated by Brownjohn et al. (2004b), as: 

" subharmonics are now included into the force model, 

" phase information is taken into account, and 

" complete frequency content of the force spectrum, up to the frequency of 5.25 f', is now 
included into the model without any discontinuities. 

With all frequency lines considered and phase information added, the reconstruction of the 
force in the time domain is possible. This, in turn, makes it possible to weight the human- 
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induced force by mode shape in order to take into account that the force moves across 
the footbridge and has limited duration. This weighted (modal) force can then be used to 

calculate structural modal response in a particular mode of vibration. This kind of analysis 
is not possible if only the magnitude of the walking force is defined in the frequency domain, 

such as in the force model formulated by Brownjohn et al. (2004b). 
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Figure 7.6: Distribution of phases for 400 lines in force spectrum. 

7.5.2 Time Domain Force Model 

For ith harmonic, occurring at frequency if, the force can be reconstructed in the time 
domain via following formula: 

i+0.25 

Fi(t) =W" DLFF E DLFi(fj) cos (2ir fj ft + 9(fß)) 
, 

(7.5) 
Jj=i-0.25 

while for ith subharmonic it would be 
i-0.25 

Fi (t) = TV W. DLFt E DLFti (fj) cos (2ir f, fst + 6(fß )) . (7.6) 
ff =i-0.75 

Here, i is the (sub)harmonic considered, fj f8 is a frequency of the current line in the spectrum 
within the energy range of the harmonic analysed while B(fr) is phase assigned to the same 
line. This assignment is based on a uniform distribution of phases in the interval [-ir, +ir]. 
DLFi is the DLF for the harmonic analysed, DLFi(fj) is the normalised amplitude for the 
same harmonic for each line, while W= 750 N is the average weight of a pedestrian. Variables 
containing superscript s are related to subharmonics. Finally, the total force can be obtained 
as: 

55 

F(t) _ Fi(t) + F'(t). (7.7) 
i=1 i=1 

-it -irl2 0 m/2 n 
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To demonstrate the quality of the force model presented, an attempt to model the force 

shown in Figure 7.1a has been made. The fundamental frequency of this force as well as 

its DLFs are already known. The frequency is 1.96 Hz while DLFs for all harmonics and 

subharmonics are obtained based on procedure explained in Section 7.3.2. These values were 

used as input values for defining normalised amplitudes in the frequency domain for the force 

analysed. The force spectrum obtained in this way is presented in Figure 7.7a. The peaks 
in this spectrum are a bit attenuated in comparison with the real spectrum (Figure 7.1b) 

due to using an average spectrum of walking forces defined by Equations 7.3 and 7.4 and 
Figure 7.5. After obtaining the spectrum of amplitudes, uniformly distributed random phases 

were generated for all 400 lines in the spectrum and the force was reconstructed in the time 
domain (Figure 7.7b). It can be noticed that force model (Figure 7.7b) differs from that 
in Figure 7.1a. The two forces could visually be, in general, both more similar and more 
different from each other than obtained here, depending on the randomly generated phase 

values for each case. Since the probability-based response calculation will be based on a large 

sample of generated forces, it can be assumed that the phase influence on the results in such 
a sample is not significant. It should be noticed that the energy of the force is not influenced 

by the phase values. 
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Figure 7.7: (a) Force spectrum for force shown in Figure 7.1a according to the force model 
adopted. (b) Force reconstructed in the time domain. 

7.5.3 Procedure for Response Simulations 

This section reviews briefly the key steps required for estimation of a modal response of a 
footbridge when using the force model formulated. This is based on Monte Carlo simulations. 
To simplify explanation, it is assumed that simulations for 2,000 individual pedestrians walk- 
ing on their own across a bridge will be conducted. It is further assumed that only a single 
mode is relevant for the calculation, and that its modal properties are known. In the case 
that more than one mode is relevant, the modal responses obtained for individual vibration 
modes should be summed according to the mode superposition principle. The procedure for 
a single mode response can be described as follows: 

1. Generate the walking frequency and step length for each of 2,000 pedestrians (Fig- 

1LJ1 ýaý 
Frequency / Walking frequency 
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ures 7.2a and 7.2b). 

2. Calculate IDLF1 for each walking frequency (Equation 7.2). 

3. Calculate crossing time for each person via Equation 7.1. 

4. Generate multiplication factors for each DLF1 (Figure 7.3a) and multiply them by 

µDLF1 one by one to get 2,000 DLFs for the first harmonic. 

5. Generate 2,000 DLFs for higher harmonics (Table 7.1). 

6. Generate 2,000 DLFs for each subharmonic depending on DLF1 values (Figure 7.4). 

7. Generate functions for normalised DLFs for harmonics and subharmonics by using 

functions defined in Equations 7.3 and 7.4. 

8. For each pedestrian do the following: 

" Generate 400 random phase values for each frequency line in the 400-line force 

spectrum. 

" Reconstruct force in the time domain by using Equations 7.5,7.6 and 7.7. The 

force should be reconstructed for time equal to the crossing time for the person 

analysed. 

" Calculate the modal force by multiplying individual forces F(t) by the mode shape. 

" Calculate footbridge modal response to each of 2,000 modal forces. 

" Calculate peak and/or RMS value of the response and save it. 

9. Find probability that a certain footbridge vibration level will be less than or equal to 

a prescribed acceleration value. 

7.6 Verification of the Force Model 

Verification of the force model was conducted by analysing the response of two structures to 

walking excitation. The first `structure' is an imaginary 3DOF bridge while the second one 
is the Hope footbridge near Sheffield in the UK. 

7.6.1 Imaginary Footbridge 

The imaginary 3DOF footbridge is a lightly damped `structure' that responds to dynamic 

excitation in three vibration modes. It is assumed that all three vibration modes have max- 
imum displacement at the same point. This allows simple summation of the responses in 

individual modes in order to get total response of the structure. The modal properties of the 

vibration modes were chosen to be: 
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" Modal mass equal to 10,000 kg in each vibration mode. 

" Natural frequencies equal to 1.9 Hz, 3.8 Hz and 5.7 Hz, for the first, second and third 

mode respectively. 

" Modal damping equal to 0.3% for all modes. 

The natural frequencies of vibration modes were chosen to correspond with the dominant 

walking frequency and its integer multiples. Therefore, it is expected that all three modes 

of vibration will be excited since their frequencies are matched by the dominant frequencies 

for the first three harmonics. Since the three harmonics will all generate structural responses 

that cannot be neglected, it is expected that phase difference between different harmonics 

will play an important role in the estimation of the total vibration response. 

The structural response was calculated in two ways. Firstly, 95 responses to 95 measured 

forces, lasting 60 s each, were calculated. Then, 95 forces were generated using the force 

model described in Section 7.5.2. The walking frequencies and DLFs for all harmonics and 

subharmonics for these 95 forces were manually adjusted to be the same as those for mea- 

sured forces. The responses obtained in this way were then compared with those obtained 
from measured force time histories. Before presenting the results, it should be said that all 

simulations were conducted under an assumption of the force being stationary i. e. acting at 
the point of maximum modal response in each mode. This does not reduce the value of this 

comparison. 

Obtained results can be sumarised as follows: 

" Cumulative distribution of RMS value for the response in each vibration mode indi- 

vidually under the measured forces, was almost the same as that under the simulated 
forces (Figure 7.8). 

" Cumulative distribution of RMS values for the sum of responses in any two modes was 

almost the same for cases of measured and simulated forces. For comparison, only the 

sum of responses in the second and third mode is presented in Figures 7.9a and 7.9b. 

" Cumulative distribution of RMS values for the total response of all three modes to 

measured forces was almost the same as the one to simulated forces (Figures 7.9c 

and 7.9d). 

Based on this example, it seems that taking phases in the force model as random variables does 

not change the vibration response significantly (comparing it with the response to measured 
forces). 
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Figure 7.8: Cumulative probability that the acceleration level is smaller than or equal to 

the acceleration level shown on the horizontal axis for the response in (a) Mode 1 due to 

measured forces, (b) Mode 1 due to simulated forces, (c) Mode 2 due to measured forces, 

(d) Mode 2 due to simulated forces, (e) Mode 3 due to measured forces and (f) Mode 3 due 

to simulated forces. 

7.6.2 Hope Footbridge 

Hope footbridge is a 30,000 kg catenary structure near Sheffield spanning 34 m (Figure 7.10a). 
The footbridge is quite short and simple structure. It has five well separated vertical modes 
of vibration in the frequency range up to 1011z. Their mode shapes are presented in Fig- 

ure 7.10b, while their natural frequencies, modal damping ratios and modal masses, as iden- 
tified by Pavic & Reynolds (2002), are listed in Table 7.4. Note that the first mode is 

anti-symmetric, which is a consequence of the curvature of the undeformed shape of the 
bridge deck. 
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Figure 7.9: Cumulative probability of acceleration response in Modes 2 and 3 due to 
(a) measured forces and (b) simulated forces. Cumulative probability of total response to 
(c) measured forces and (d) simulated forces. 

Table 7.4: Modal properties of the catenary footbridge. 

Mode 12345 
Natural frequency [Hz] 2.44 3.66 4.86 6.66 9.50 

Modal damping ratio [%] 0.53 0.65 0.96 0.73 0.77 
Modal mass [kg] 10,520 5,880 8,690 10,767 10,319 
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Figure 7.10: (a) Catenary footbridge. (b) J\Iode shapes for five vertical vibration modes. 
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7.6.2.1 Response Measurements 

Acceleration response of this footbridge to a single person excitation was measured at a 

quarter-span (hereafter referred to as test point 1) and at the midspan point (test point 2) 

(Athanasiadou, 2001). Seven test subjects were asked to cross the bridge with a pacing 

rate they personally considered to be normal. The exercise was repeated twice for each test 

subject so that in total 14 responses were recorded. By using a video camera, the crossing 

time was also recorded for every crossing. Typical acceleration time histories measured at 

test point 1 (TP1) and test point 2 (TP2) are shown in Figures 7.11a and 7. llb, respectively. 
Their Fourier spectra are presented in Figures 7. llc and 7.11d. It can be seen that at the 

quarter-span point (TP1) several modes respond significantly to walking excitation. These 

are 4P 1, t3 and F4i i. e. all modes that have nonzero amplitude at TP1 (Figure 7.10b). Also, 

at the midspan point (TP2), the response is mainly a combination of the second and the 

fifth mode (Figure 7.10b). Based on these measurements it is evident that the contribution 

of several vibration modes should be taken into account when estimating vibration response 
to human-induced force. The measured accelerations are low-pass filtered (up to 10 Hz) in 

order to contain only the frequency content related to the first five vertical modes analysed. 
Results are summarised in Figures 7.12 and 7.13. They are shown as solid lines on probability 
histograms presented in Figures 7.12a and 7.12b for TP1, and Figures 7.12c and 7.12d for 

TP2. Cumulative probabilities are also presented as solid lines in Figures 7.13a and 7.13b 
for TP1, and Figures 7.13c and 7.13d for TP2. 
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Figure 7.11: Measured time history at (a) TP1 and (b) TP2. Fourier spectrum of signal at 
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Figure 7.12: Probability of certain acceleration level for (a) peak acceleration at TPl, (b) RMS 

acceleration at TP1, (c) peak acceleration at TP2, and (d) RMS acceleration at TP2. Mea- 

sured data are presented as solid lines while calculated responses are shown as grey. 

7.6.2.2 Multi-Mode Response Simulations 

The response of the bridge was calculated for 2,000 different force time histories generated 

according to the procedure described in Section 7.5.3. The modal responses at TP1 and TP2 

were obtained for individual vibration modes and then summed after multiplication of each 

modal response by the mode shape amplitude at the point considered. In this way the total 

physical responses were obtained at both test points. A MATLAB-based program developed 

and used for this calculation is presented in Appendix C. 

The probability and the corresponding cumulative distribution for peak and RMS values of 
total acceleration responses in these two points are shown as grey in Figures 7.12 and 7.13, 

respectively. Comparing them with the probability distribution of measured accelerations 
(solid lines in Figures 7.12 and 7.13), it can be seen that probability of having higher level of 

peak responses generally exists for the calculated responses only (Figures 7.12a and 7.12c). 

This is an estimate that is on the safe side and is a consequence of the fact that the probability 
of having forces with greater amplitudes and with frequencies of their harmonics closer to 

some of natural frequencies is much greater in simulations than in the measured sample of 

only seven pedestrians making 14 crossings in total. An additional reason not to have high 
level responses in the measured data is that some pedestrians lost their steady step due to 
human-structure interaction when perceiving a vibration level that they personally considered 
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as disturbing, as explained in Chapter 5. 

The differences in the measured and calculated responses can also be a consequence of the 

fact that the modelling of the pedestrian-induced walking force is very difficult when the 

pedestrian walks over nodal points of the mode shape of a lively footbridge, which the Hope 

bridge is. The problem with this modelling has already been mentioned in Chapter 5 and it 

is a part of a complex human-structure dynamic interaction phenomenon. Further research 

into the phenomenon is required with the aim of improving the force modelling. 
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Figure 7.13: Cumulative probabilities of acceleration being less than or equal to the accel- 
eration level shown on the horizontal axes. These are presented for measured (solid lines) 

and simulated (grey) (a) peak acceleration at TP1, (b) RMS acceleration at TP1, (c) peak 
acceleration at TP2, and (d) RMS acceleration at TP2. 

Finally, the model is much more accurate in prediction of vibration response of footbridges 
to single person excitation than BS 5400 (BSI, 1978) currently used in the UK. To illustrate 
this, a deterministic `single-harmonic - single-mode' response defined in BS was applied on 
the first two modes individually. In both cases, the amplitude of the dynamic force is taken 
to be 180 N, i. e. 25.7% of the test subject weight, being 700 N. It was assumed, based on the 

recommendations in BS 5400 (BSI, 1978), that the pedestrian walking at a step frequency 
that matches the natural frequency of the first mode at 2.44 Hz crosses the bridge with a 
quite fast, and also quite improbable, walking speed of 2.2 m/s, while the one walking at the 
step frequency that matches the second mode at 3.66 Hz moves with an even less probable 
speed of 3.3 m/s. The peak acceleration responses calculated in this way were 0.42 m/s2 and 
0.72 m/s2 for the first two modes respectively. Comparing these results with those presented 
in Figures 7.13a and 7.13c, it can be concluded that the values estimated by BS 5400 are 
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highly unlikely to occur on the bridge analysed. This is despite the fact that the BS takes 

into consideration only a single vibration mode. 

7.7 Conclusions 

This chapter describes the modelling of the human-induced walking force for a single pedes- 

trian. A probability based model is proposed that takes into account inter- and intra-subject 

variability in the walking force. The model takes into account all of the frequency content of 

walking force up to the fifth harmonic. In this way, a general multi-harmonic force model is 

formulated that allows for calculation of multi-mode response of a structure. 

This model is an extension of a probability based ̀ single-harmonic - single-mode' response 

calculation model developed in Chapter 6. The inter-subject variability is modelled via 

probability distributions of walking frequencies, force amplitudes and step lengths. The 

intra-subject variability is modelled via frequency domain representation of both amplitudes 
and phases in the spectrum of the walking force. As such, this modelling of intra-subject 

variability is an extension of the model formulated by Brownjohn et al. (2004b). 

Based on case studies of one imaginary 3DOF footbridge simulation model and one real- 
life as-built footbridge, the proposed model was successfully verified. It was shown that it 

predicts the multi-mode response of footbridges with sufficient accuracy. The new challenge 
in the next stage of research is the verification of the model on slender low frequency floors, 

where multi-mode response occurs more frequently as well as an implementation of the model 
for multi person traffic. 

The model defined is easily programmable and as such could present a powerful tool for 

estimating efficiently the probability of footbridge vibration response due to single person 

walking. The novel methodology has the potential to revolutionise the current codes of 

practice dealing with vibration serviceability assessment due to dynamic excitation caused 
by human-walking. At the same time, however, further research into modelling of the force 

phase spectrum as well as the human-structure interaction phenomenon, with the aim of 
improving prediction of the multi-mode response of footbridges, are recommended. 



Chapter 8 

Discussion 

This chapter discusses findings described in the previous chapters as well as their possible 

application for the vibration serviceability assessment of footbridges. The discussion will be 

presented separately for the three issues (vibration source, path and receiver) characterising 

the vibration serviceability check according to ISO (1992) guidelines. However, before this, a 

discussion regarding human-structure dynamic interaction during walking will be presented. 

8.1 Human-Structure Interaction 

The phenomenon of human-structure dynamic interaction during footbridge crossing, as dis- 

cussed in the literature review (Chapter 2), tends to occur more often nowadays than in 

the past because of the increased slenderness of footbridge structures. The interaction can 
be manifested in two different ways: via changes in structural modal properties caused by 

human presence and via synchronisation of movement between pedestrians themselves as well 

as between the pedestrians and the perceptibly moving structure. Since only a single person 
loading scenario was investigated in this thesis, it was interesting to consider possible inter- 

action between a single person and the vibrating footbridge. This topic was interesting since 
it was evident that existing design models, based on the analysis of walking forces measured 
on a rigid surface, usually overestimate structural response under a single person walking 

across lively footbridges. Therefore, the logical question was if these models can be used on 
footbridges that vibrate perceptibly. 

This question was systematically investigated in Chapter 5 by comparing the measured and 

simulated responses to three single pedestrians crossing three as-built footbridges. Parameters 
describing the human-induced force and structural modal properties used in the analysis were 
either strictly controlled or estimated in a reliable way, and they were assumed to remain 
constant in the analysis. Based on this, it was possible to conclude that differences that almost 
inevitably occur between measured and simulated responses originate in the inability of people 
to keep a perfectly steady step during a footbridge crossing when perceiving vibrations. This 
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inability introduces variations in the frequency (and probably in the amplitude and phase) 

of the walking force that are greater than when walking on a rigid surface. Therefore, the 

degree of randomness in parameters describing the walking force is higher when the human- 

structure interaction is taken into account. This implies that the walking force should be 

modelled differently when vibrations are and are not strong enough to be disturbing for the 

walker. These perceptible vibrations most often occur when a pedestrian walks at or close to 

a footbridge natural frequency. Being disturbed by the perceptible vibrations the pedestrian 

may change their pacing frequency slightly shifting it away from resonance. As a consequence, 
the vibration response may be attenuated. This suggests that pedestrians might in fact act as 

active dampers, as long as vibration in the vertical direction is concerned. Some indications 

about this beneficial effect of walking people on dampening vertical vibrations already exist 
in published literature (Willford, 2002; Brownjohn et al., 2004a). Therefore, human-structure 

dynamic interaction can be understood as increase of modal damping of the structure. But, 

equally well, it can be simulated as an attenuation of the resonant force induced when walking 

across a perceptibly moving surface in comparison with that induced when walking on a rigid 

surface. This force attenuation is in agreement with observations from experiments related 
to jumping and walking on flexible surfaces made by other researchers in the past but not 
studied in detail (Ohlsson, 1982; Pimentel, 1997; Yao et al., 2002). 

Logically, this dampening effect is quite useful in the sense of preventing the development 

of the vertical lock-in of the kind that can happen in the lateral direction (Dallard et al., 
2001a). Therefore, human-structure dynamic interaction in the vertical direction seems to 
have beneficial effect on the structure. However, the question that remains is if the high- 
level vibrations that trigger human-structure interaction should be allowed in first place. 
This is important in today's world where the comfort of users of every product, including 
footbridges, is a major concern. If the answer to this question is yes, then there is a need 
to model the walking force in two different ways for two cases when the human-structure 
interaction does and does not take place, as explained previously. On the other hand, if the 
answer is negative, then the force model can be based on forces measured on rigid surfaces. 
In both cases, some limiting vibration level must be established, as a necessary ingredient in 
the vibration serviceability check. 

8.2 Force Induced by Walking 

Modelling of walking forces is quite a complex task, bearing in mind the natural diversity 
between human beings regarding magnitude of the walking force induced, walking frequency 
and step length, as well as variability in parameters characterising each step in an individual 
force time history. When the fact that there is some interaction between a pedestrian and 
perceptibly moving structure is included into the analysis then the modelling becomes even 
more complicated. When all these facts are taken into account, then it comes as no surprise 
that most current design codes (BSI, 1978; AASHTO, 1997; CSA, 2000) often fail to predict 
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vibration levels induced by a single pedestrian, usually overestimating it significantly. This 

happens because all these codes are based on the assumption that an average single pedestrian 
crosses the bridge at a footbridge natural frequency. Therefore, the attempt to model the 
human population via an average superbly coordinated person is a major drawback of current 
design guidelines. Another drawback is that the human-induced load is based on information 

about forces measured on rigid surfaces, even when checking vibration response on potentially 
lively structures where human-structure interaction, in the form explained previously, is quite 
likely to occur. For such structures, it is logical that the current codes will overestimate the 

actual footbridge vibration response, as shown in Chapter 5. 

Force modelling as presented in Chapters 6 and 7 of this thesis, was mainly concerned with 
the first drawback in the existing force models. In this sense, the inter- and intra-subject 

variabilities in the walking forces were taken into account to develop a probability-based 
model for prediction of vibrations due to a single person walking. As an output of this 
force modelling, a probability that a certain vibration level will not be exceeded could be 

obtained. In this way, a range of possible acceleration levels induced by an individual walker 
was calculated, which is a much more logical way of assessing the pedestrian influence on the 

structural vibration response than via a single vibration level dictated by an average person. 
The results obtained from the implementation of such walking force models were supported 
by observations on three real-life footbridges, as discussed earlier in Chapters 6 and 7. 

The analytical force model developed in Chapter 6 includes the first harmonic of the walking 
force only, and assumes that the footbridge will respond in a single vibration mode having 

a half-sine mode shape. This approach was motivated by the fact that these assumptions 
are quite realistic for large number of as-built footbridges, which is the reason why BS 5400 

uses them too. However, since there are some bridges where higher harmonics of walking 
force are relevant and/or which respond in several vibration modes, the probabilistic force 

model described in Chapter 6 was extended for these additional cases in Chapter 7. This 

was done also because a more general model of the kind described in Chapter 7 has potential 
to be used for vibration serviceability assessment of other pedestrian structures exposed to 
walking force. However, it should be noted that the model from Chapter 7 is based on Monte 
Carlo simulations, which means that it requires a statistically reliable number of pedestrians 
to be taken into calculations. This might be a time consuming task only for the reason that 
the vibration response to each pedestrian from the sample has to be found via numerical 
integration of the equation(s) of motion. In this work, the not particularly efficient Newmark 
method of numerical integration has been used and programmed in MATLAB (Appendix C). 
Therefore, it might be worth considering some other more efficient numerical methods. On the 
other hand, the force method described in Chapter 6 is purely analytical, and consequently 
is quite time efficient. 

Finally, the fact remains that the human-structure interaction was not directly included in 
the force models developed in this thesis. This was based on the assumption that relatively 
high-level vibrations that trigger human-structure interaction in footbridges should not ac- 
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tually be allowed to occur in the first place when designing new footbridges. Instead, the 

backbone of the design models developed in this thesis is that they are capable of predicting 

a percentage of pedestrians that will generate high-level vibrations (that trigger the human- 

structure interaction) and therefore be disturbed by them. If this percentage is too high to be 

acceptable for a particular footbridge, then the design of the footbridge should be modified. 

The design models presented in this thesis deal with a single person excitation and uncer- 

tainties in the corresponding walking force. A natural way forward in the modelling would be 

to extend the probability-based methodology used to multi-person traffic. Also, it would be 

useful to include the probability distribution for some additional uncertain parameters, not 

considered in this thesis, into the modelling. These are: the weight of pedestrians, vibration 
limit for different pedestrians and structural modal properties that are difficult to predict in 

the design stage. 

8.3 Footbridge as Vibration Path 

Identification of reliable modal properties of structures is a necessary requirement when doing 

vibration serviceability assessment of any structure. It is known, and it has been demon- 

strated in this thesis, that these properties are difficult to estimate at the design stage, even 

with the help of a very detailed finite element model. This especially applies to the modal 
damping values since they can be estimated only based on either prior experience in deal- 

ing with similar structures or based on vibration testing of the structure itself (that is not 

possible at the design stage because the structure does not exist). 

Estimation of modal properties of a footbridge based on modal testing and finite element 

modelling and updating is presented in Chapters 3 and 4 of this thesis. This work was 

motivated by the fact that verification of the force model, which development was the primary 
task within the scope of the work on this project, is possible only if reliable dynamic properties 
of the considered structures are provided for this purpose. Therefore, it was important to 

reduce, if not eliminate, any possible errors in the vibration serviceability check originating 
from inaccurate modal properties. In this way the real picture about reliability of the force 

models proposed can be obtained. 

However, it is worth saying that the modal identification exercise presented in Chapters 3 

and 4 is usually expected to be conducted when rectifying footbridges that are lively in 

normal usage. Therefore, the whole exercise was highly useful and it is worth repeating the 
two interesting outcomes here. 

First, when doing FRF-based modal testing with chirp excitation, a sufficient accuracy when 
estimating modal properties can be achieved even in case when signal averaging is not em- 
ployed. The necessary prerequisite for it is that the signal to noise ratio is high. It goes 
without saying that avoiding averaging can significantly reduce the time required for testing, 

which is always limited when testing structures in operation. Another result is that boundary 
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conditions of a structure should be modelled with caution when doing finite element mod- 

elling. In most cases these boundary conditions are not straightforward. In such situations it 

is highly recommended to conduct a parametric study that can suggest a possible range for 

natural frequencies. These results should then be used when estimating a range of possible 

vibration responses to different types of dynamic loading. 

8.4 Pedestrian as Receiver 

The problem of establishing a vibration limit that can be allowed to be perceived by a 
walking pedestrian is inherently linked with investigation of the human-structure dynamic 
interaction during footbridge crossing. As explained previously, the work in this thesis was 
based on the assumption that vibrations that trigger human-structure interaction should not 
be allowed. Instead, the existence of human-structure interaction during walking should be 

used to establish an allowable vibration limit for footbridge vibrations, in the way proposed 
in Chapter 5, and probably depending on footbridge natural frequency. Bearing in mind 
inter- and intra-subject variability in vibration perception (Griffin, 1996), these scales should 
preferably be defined in a probabilistic sense. Currently, in the design codes worldwide the 
acceleration levels allowed are defined in form of a single value for each vibration frequency. 
If the structural vibration response is higher than that value, the structure is considered as 
not performing satisfactorily. While this binary pass or fail criterion is appropriate when 
dealing with the ultimate limit states where the structural integrity is in question, it might 
not be appropriate for vibration serviceability checks. This is because a single response value 
might not be a good indicator of (un) acceptability of vibrations for most users. The reason 
for this is that people's reaction to vibrations vary significantly between different individuals 
(Griffin, 1996). 

In this thesis a peak modal acceleration of around 0.35 m/s2 was found to be an indicative 
limiting vibration value for two pedestrians crossing two footbridges of different modal prop- 
erties. This limit is significantly lower that those defined by BSI (1978) and ISO 10137 (1992), 

and is supported by recent research reported by Kasperski (2005). Clearly, more research on 
other footbridges and with more test subjects involved is required for reliable definition (in 
a probabilistic sense) of vibration scales for walking (moving) human receivers. 

Once these scales are defined the cumulative probability distribution function for unaccept- 
able vibration limit can be combined with the probability function for acceleration level 
generated by a single person. This probability function of acceleration level is an outcome 
of the design model developed in this thesis. As a result of the combination, a percentage of 
people that will be disturbed by vibrations generated by their own walking may be calculated. 
An example illustrating the calculation procedure is shown in Figure 8.1. For this purpose a 
possible probability function in form of a histogram for acceleration level generated by a single 
person crossing a footbridge is shown in Figure 8.1a. The function is expressed as a number 
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of people (out of 100) that generate certain vibration response shown on the horizontal axis. 
Figure 8.1b presents an assumed arbitrary cumulative probability function of unacceptable 

vibration level. This function is chosen arbitrarily since the research related to vibration 
limit for walking people is scarce, as explained previously. Number of people disturbed by 

high-level vibrations can then be calculated as follows: 

10.0+15.0.4+35.0.5+25.0.7+10.0.8+5.0.9+0.1.0=53.5. (8.1) 

The calculation is based on the assumption that, for example, among 35 people generating 
the peak vibration level between 0.2 m/s2 and 0.3 m/s2 all groups of people with different 

perception levels are present. Since 50% of people in human population would consider 

vibration level being less than or belonging to the range 0.2 - 0.3 m/s2 as unacceptable (based 

on Figure 8.1b) then 35 people had to be multiplied by 0.5 to get a number of people annoyed 
by vibrations in this particular group (of 35 people). Therefore about 54% of people (out of 
100), as obtained in Equation 8.1, would perceive strong vibrations (from personal point of 

view) during crossing over the footbridge for which the probability function of acceleration 
is given in Figure 8.1a. 
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unacceptable peak vibration level being less than or equal to the vibration level shown on 
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Chapter 9 

Conclusions and Recommendations 
for Future Work 

In this chapter, the main conclusions related to the work presented in this thesis are sum- 

marised and then some recommendations for future work are suggested. 

9.1 Conclusions 

1. Existence of well known inter- and intra-subject variabilities in the force induced during 

walking can be described via probability distributions for the following factors: walking 
frequency, step length, force amplitude and imperfections (i. e. step by step differences) 
in human walking. All these distributions have been proposed in Chapter 6 based on 
literature search and own data. They are given in a form that can be used in design. 

2. Due to undoubtable inter- and intra-subject variabilities of walking forces, the esti- 
mation of the vibration response of footbridges to a single person crossing should not 
be expressed via a single number. The binary pass or fail criteria, as is currently the 

case in design codes worldwide, appears not to be a particularly prudent approach to 
footbridge vibration serviceability. Instead, a probability based procedure that takes 
into account the aforementioned variabilities in the walking force is developed in this 
thesis. This yields a probability that a certain vibration response due to a single per- 
son walking will not be exceeded. An analytical probability-based design procedure for 

obtaining this probability function, when the first force harmonic and a single mode 
response are sufficient for the vibration serviceability check, is developed in Chapter 6. 
The model was verified on two as-built footbridges. 

3. In the case when a footbridge responds to forced vibration in more than one vibration 
mode, then usually more than one force harmonic is responsible for such a multi- 
mode response. For footbridges belonging to this category, a probability-based design 
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procedure for calculation of the response is developed in Chapter 7 based on Monte 

Carlo simulations. This model was verified using data from a real-life footbridge. 

4. Design procedures developed in Chapters 6 and 7 can be used for updating the current 

single person walking model featuring in many codes of practice. 

5. There are indications that the single pedestrian loading scenario may not be sufficient 

when designing heavily trafficked footbridges that regularly convey groups of pedestri- 

ans. Therefore, in addition to the single person force models, a multi-pedestrian loading 

model should be developed. 

6. A pedestrian walking across a perceptibly moving footbridge having relatively low 

damping ratio of about 0.5% or less tends to lose their steady step and unconsciously 

change their walking frequency. Since these strong vibrations usually occur when a 

pedestrian generates a walking force that excites a footbridge resonant frequency, then 

- due to low damping - by changing the walking frequency and/or phase even slightly, 
the pedestrian prevents further development of the resonant structural response and 

may act as an active damper. It was found that this phenomenon is a consequence of 
human-structure dynamic interaction that occurs due to the inability of people to keep 

a steady step under strong vibrations. This can mathematically be described either as 
an increase of the structural damping or through the attenuation of the walking force 
induced by the same pedestrian when walking across a rigid surface. 

7. The vibration level felt by a pedestrian at a time instant when they start losing their 

step can be determined in an objective way, as described in Chapter 5. This vibration 
level can be adopted as the disturbing (i. e. maximum allowed) vibration level for a 

walking person. For two footbridges investigated, a provisional value for this level was 
found to be around 0.35 m/s2. This is about 50% lower than values defined by the 
British footbridge design code indicating that the code limit might not be appropriate 
to apply. This is also about 40% lower than the ISO 10137 (1992) limit. This vibration 
limit for a walking person that apparently seems to be lower than those recommended in 
the current design codes is supported by recent findings reported by Kasperski (2005). 
The provisional vibration limit of 0.35 m/s2 agrees well with subjective evaluations of 
vibrations by 300 interviewed pedestrians on an as-built lively box-girder footbridge 
(Appendix A). 

8. Finally, two outcomes of the testing and finite element model updating exercises de- 

scribed in Chapters 3 and 4, are worth mentioning. Namely, it is possible, in situation 
when the signal to noise ratio is quite high, to conduct good quality FRF-based modal 
testing even without performing signal averaging. Another result is that boundary 

conditions of a structure should be modelled with extreme caution when doing finite 

element modelling. 
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9.2 Recommendations for Future Work 

1. A probability distribution of pedestrian's weight should be added to the force model de- 

veloped. To do this the data describing this probability distribution should be collected 

and its possible dependence on the force amplitude should be defined. 

2. Sensitivity of the structural response to different input probability distributions should 
be parametrically studied in order to investigate the impact of the errors in probability 
distributions on results. 

3. Since probabilistic force models developed in this thesis are formulated for the case 
of a single pedestrian crossing the bridge, further work is required for extending them 
to multi-person pedestrian traffic, again following a probabilistic approach to pedes- 
trian arrival times and their behaviour on the bridge (moving and standing). In case 
of having high-level response to multi-person traffic, some human-structure dynamic 
interaction can be expected. Therefore, a modification of the force induced by each 
pedestrian perceiving strong vibration would be required in this situation. Modelling 

of this modification is expected to be the most complicated aspect of estimating the 
response to multi-person traffic. 

4. Having in mind that the multi-harmonic force model developed in this thesis is capable 
of predicting the multi-mode response of a structure and knowing the frequency range 
on which the model is defined, it would be prudent to check its applicability on slender 
structures, such as long-span low frequency floors, that tend to respond to walking 
excitation in several vibration modes. 

5. A similar probability-based methodology for estimation of vibration response can be 
developed for estimating vibration response of staircases, where walking forces are dif- 
ferent in comparison with those induced into a flat surface, as well as for other types of 
human-induced excitation (jumping, running, bouncing, and so on). 

6. A method for generating the walking force in the time domain to closely resemble the 
measured force should be developed. 

7. More reliable data regarding some probability distributions required in the force mod- 
elling (such as probability distributions for DLFs for harmonics and subharmonics) are 
worth acquiring. This especially applies to defining the probability distributions for 
the DLFs at an individual walking frequency. Moreover, further research investigating 
interdependence between DLFs for different (sub)harmonics is required. 

8. Distribution of step lengths at each walking frequency also require further experimental 
investigation. 

9. It would be interesting to develop a force model that takes into account human-structure 
dynamic interaction during walking. Namely initial (intra-subject) variability in the pa- 
rameters describing the walking force appears to be increased due to the interaction 
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when perceiving high-level vibrations. A possible way to model this could be via in- 

creasing degree of randomness in the parameters compared with those for walking across 

rigid surfaces. This model, as already mentioned, would be very useful for modelling of 

the multi-person traffic. 

10. Although a procedure for establishing the vibration perception limit for a walking pedes- 

trian in an objective way has been suggested in this thesis, together with a provisional 
limiting acceleration value of 0.35 m/s2, more data should be collected for drawing final 

conclusions. The future tests should involve more people to account for inter-subject 

variability in vibration perception. Preferably, the tests should be conducted on foot- 

bridges of different size and with different modal properties (especially natural fre- 

quencies) since vibration perception may be different for different response frequencies. 

Ideally, these vibration limits for a moving person should be defined in a probabilistic 

sense and then combined with probability distribution of vibration response to predict a 

percentage of people that would sense high-level vibrations, as explained in Section 8.4. 

11. Further investigation of human-structure dynamic interaction when a pedestrian crosses 
a nodal point of the mode shape is required. 

12. Since structural modal properties are difficult to predict during the design process there 
is a need to include their uncertainties in a probability-based design model. 

13. Based on biomechanics research, it seems possible to reconstruct human-induced forces 
from the recorded motion of the human body. Therefore, it would be interesting to 

monitor motion and behaviour of people on real-life pedestrian structures. Once a 
wide database of this kind is available, different loading scenarios can be extracted 
from it and statistically described. Then, reconstruction of forces characterising these 
loading scenarios and their influence on dynamic response would be feasible, regardless 
of the exact type of human activity (walking, running, standing, bouncing, etc. ). In 

this way information about the influence of the human-structure interaction on human 

gait and consequently on forces generated can be obtained. Moreover, the way in 

which pedestrians walking in groups and/or crowds influence each other's movement 
can be studied. Finally, a method for determining dynamic forces from groups/crowds 
of pedestrians could be established, using only video data of groups/crowds walking. 
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Appendix A 

Dynamic Analysis of Podgorica 
Footbridge under Pedestrian Traffic 

This appendix was presented as a paper at EURODYN 2005 conference under reference: 

2ivanovi&, S., Pavic, A., Reynolds, P. and Vujovif, P. (2005) Dynamic Analysis of Lively Footbridge under Everyday 

Pedestrian Traffic. In: Proceedings of The Sixth European Conference on Structural Dynamics, Vol. 1, pp. 453-459, 

Paris, France, 4-7 September. 

Abstract 

A footbridge known to be lively under vertical pedestrian excitation was tested and the lowest modes 

of vibration were identified. It was established that the first vertical mode had the natural frequency 

of 2.05 Hz and a very low damping ratio of only 0.28%. These were the main factors which influenced 

most of 300 randomly interviewed pedestrians to rate the footbridge as lively. A detailed finite element 

model was developed and formally updated using a sensitivity based model updating approach to 

match the measured natural frequencies. By monitoring pedestrian traffic, pedestrian arrival time 

distribution and frequency distribution of their steps were identified. Using these data and modal 

properties of the updated finite element model, the vibration response of the bridge to everyday 

pedestrian traffic was simulated using a stochastic approach (Monte Carlo simulations) and compared 

with the measured acceleration. 

228 
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A. 1 Introduction 

229 

This paper presents a combined experimental and analytical case study which aims to inves- 

tigate the vibration performance of a full-scale footbridge structure known to be lively under 

normal pedestrian traffic. 

The paper describes first the test structure and key results of a limited dynamic testing 

programme. Then. numerical modelling of the structure is described together with the as- 

sumptions made to update the numerical model to match the measured natural frequencies. 

Furthermore. results of monitoring of pedestrian traffic and the corresponding structural dy- 

namic response are described. Statistical distributions for pedestrian arrivals on the bridge 

as well as for their step frequencies are identified. Based on these data and the updated finite 

element model. the response of the bridge to normal pedestrian traffic, consisting mainly 

of groups of people rather than individuals, is simulated and compared with the measure- 

ments. Finally. results of subjective rating of vibrations as experienced by pedestrians on 
this footbridge are presented. 

A. 2 Structural Description 

"I'hv m-, ' estigated footbridge spans 104m over the Nloraca River in Podgorica, capital of 
NImitenegro (Figure A. 1). 

Figure A. 1: Phc)toýgi; tph UUf tl«c 1'(u1guric"a footbridge. 

The structural system of the Podgorica footbridge is a steel box girder with inclined supports. 
The main span between inclined columns is 78 m while two side spans are 13 in each. Along 

its whole length the box girder is stiffened by longitudinal and transverse stiffeners. as shown 
in Figure A. 2. The connection between the inclined columns and box girder is enhanced by 

vertical stiffeners visible in Figure A. 1 as well as by a concrete slab cast over the bottom 

steel flange forming a composite slab structure (Figure A. 2). The aim of this enhancement 
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is to strengthen this part of the box section so that it can resist large column reaction forces 

and compression due to negative bending moments. A similar layout of the steel-concrete 

composite slab exists around the midspan of the footbridge, but the concrete is cast over the 

top flange of the box girder (Figure A. 2). 

I 

composite slab composite 

m 

2 
, composite slab (31.2 m long) 

Section 1-1 
3.0 m 

E 
water/drainage ao, 
Pipes N 

ff. ..., 

slab 

Section 2-2 
3.0 m 

slab 

Figure A. 2: General arrangement drawing (not to scale) of Podgorica footbridge and mea- 

surement points. 

Since its construction, this footbridge has been very lively in the vertical direction. Some- 

times, perceptible vibrations have been excited even by a single pedestrian crossing over it. 

The vibrations are perceptible to the person generating them and also to other pedestri- 

ans, either stationary or walking, who are present on the footbridge deck. At the first sight 
(Figures A. 1 and A. 2), this is somewhat surprising considering how massive the 260-tonne 

structure is. 

Because of the liveliness of the footbridge, some limited testing was conducted in order to: 

1. estimate the natural frequencies for the lowest modes of vibration in both the vertical 
and in the horizontal-lateral directions, 

2. establish the as-built key dynamic properties of the footbridge structure, 

3. assess the footbridge vibrations due to everyday pedestrian traffic, and 

4. gather information on the perception of pedestrians of the footbridge vibrations. 

+ heel-drop points " measurement points 
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A. 3 Experimental Modal Identification 

Due to the limitation of measurement equipment available as well as short time scales, it 

was decided to perform only the heel-drop testing to estimate the lowest footbridge natural 

frequencies. 

Heel-drop testing was conducted in April 2004. Two Endevco 7754-1000 piezoelectric ac- 

celerometers were available for these tests. They were placed in the vertical direction at 

quarter-span (point 2) and at midspan (point 1) of the main span (Figure A. 2). Then, 

heel-drop tests at these two points were conducted. 

Fourier amplitude spectra of the two signals measured are shown in Figure A. 3. The frequency 

resolution was 0.05 Hz. The signal measured at midspan (Chl) due to a heel-drop at this 

point is presented by a solid grey solid line while the one measured at point 2 (M), due to 

a heel-drop at point 2, is presented by a black dashed line. Bearing in mind the behaviour of 

a classical beam and the sequence of symmetric and anti-symmetric modes of vibration, in 

both signals a peak at frequency 2.05 Hz clearly indicated the natural frequency of the first 

vertical symmetric mode. Also, a peak at 8.00 Hz was found. These two modes seemed to 
have symmetric mode shapes. On the other hand, the presence of two peaks at 3.15 Hz and 
7.25 Hz only at Ch2 indicated possible presence of two anti-symmetric mode shapes. While 

the first peak at 3.15 Hz was clearly a mode of vibration, the much weaker peak at 7.25 Hz was 
unexpected. Its presence indicated that the third mode seemed to be anti-symmetric which 
was surprising having in mind that the second mode (at 3.15 Hz) was also anti-asymmetric. 
The low magnitude of this peak could have been simply a consequence of just a small vibration 
amplitude for this mode at the position of the accelerometer. 
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Figure A. 3: Fourier spectra of vertical accelerations. 

In the second part of the test it was decided to repeat heel-drop tests but this time with 
accelerometers rotated by 90° to measure the horizontal-lateral response. The idea was to 
identify modes with predominant horizontal motion. These modes could have been excited 
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by heel-drops if there was some vertical movement in them. 

By doing this, two modes were clearly identified. The first one at 1.85 Hz was picked up 

by both accelerometers while the second at 4.55 Hz was present only in the spectrum of the 

response at the quarter point (Figure A. 4). This suggested that these two modes are the first 

symmetric and the first anti-symmetric horizontal modes, respectively. 
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Figure A. 4: Fourier spectra of horizontal accelerations. 

The first vertical mode of vibration was known to be the main contributor to the footbridge 
liveliness (Pavic et al., 2004). The damping ratio of this mode was identified by Pavic et al. 
(2004) from free decay of the response after a single pedestrian near-resonant excitation was 
removed from the footbridge and it was only 0.28%. 

A. 4 Modelling and Updating 

A finite element (FE) model of the bridge was developed before the testing (Pavic et al., 2004). 
This section describes the formal updating of the model to match the measured frequencies. 
In this way a more reliable FE model was developed and used for calculation of the modal 
mass of the relevant vibration mode needed for response analysis. 

A. 4.1 Initial FE Model and Manual Tuning 

Firstly, a 3D finite element model was developed using the ANSYS FE code. The key 

modelling assumptions were as follows: 

" The main steel box girder and its longitudinal and transverse stiffeners and box section 
columns were modelled using SHELL63 elements with isotropic properties. 
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. T1 composite steel-concrete slabs (Figure A. 2) were modelled using an equivalent steel 

thickness and, again, SHELL63 elements. 

" The handrails were modelled using BEAM4 elements (3D beams). 

" Water and drainage pipes were modelled as distributed mass along the lines connecting 

points at which the pipes were suspended from the bridge deck. The mass was calculated 

taking into account that water filled a half of the pipes' volume. 

" ('(, lumn supports were modelled as fully fixed considering solid rock foundations. 

" Siipports at both ends of the main girder were modelled as pinned. 

The initially developed FE model is presented in Figure A. 5. 

AN 

Figure A. 5: Initially developed FE model. Note: in the inset, supports are removed for 

clarity. 

The eight lowest natural frequencies in this model are shown in the second column of Ta- 
ble A. 1. Labels 11, V and T stand for horizontal, vertical and torsional modes, respectively, 
while S and A stand for symmetric and anti-symmetric modes, respectively. 

Regarding vertical modes, it, can be seen that the frequency of the first vertical anti-symmetric 
mode (1 VA) was overestimated by more than 1 Hz (4.30 Hz calculated vs. 3.15 Hz measured). 
Also, mode 2VA did not appear in frequency range up to 10 Hz. Moreover, modes 1HA and 
1 VA changed their sequence of appearance in comparison with the corresponding experimen- 
tal values. For these reasons, to obtain a reasonably accurate starting model necessary for 
automatic FE model updating (ßrownjohn & Xia, 2000), manual tuning was conducted. 
Based on experience gathered during the previous modelling and limited manual tuning of 
only the first vertical mode of the same bridge (Pavic et al., 2004), as well as on the reliability 
of the input data, a number of parameters was selected for more extensive manual tuning 
aimed at several modes of vibration. These were: the thickness of the composite slabs, their 
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Young's modulus and density, mass of the water pipes with water in them and boundary 

conditions at both ends of the bridge girder (flexible instead of rigid supports). It was found 

that by far the most important parameter, which influenced the first vertical anti-symmetric 

mode, was the stiffness of the support springs in the longitudinal direction. Elastic springs 

(COMBIN14 element) having stiffness of 108 N/m per metre length of the edge of the bridge 

deck were adopted. Frequencies obtained in this way are shown in the third column of 

Table A. 1. It can be seen that 1VA mode became much closer to the measured frequency, 

and that this mode became lower than 1HA, which is what was measured. At the same 

time, it can be seen that frequencies of the vertical modes were much closer to the measured 

values, while the horizontal ones were still very different. What was interesting was that 

mode 2VA appeared and its frequency was lower than the frequency of mode 2VS. Therefore, 

two vertical anti-symmetric modes (1VA and 2VA) appeared next to each other in the vertical 

direction and this gave some confidence that the measured peak at 7.25 Hz (Figure A. 3) really 

presented a vibration mode (2VA). Because of the vicinity of point 2 to the node of this mode 

(see mode 2VA in Figure A. 6) the peak magnitude was so weak in the measurements. These 

facts suggested that the FE model updated in this way could be used as a starting model for 

automatic updating. 

Table A. 1: Natural frequencies [liz) in different models. 
Mode # Initial model Manual tuning Automatic updating Experimental model 

1 1.58 (IIIS) 1.56 (iIIS) 1.60(111s) 1.85(111s) 
2 1.9,1 (1VS) 1.94 (1VS) 2.06 (1VS) 2.05 (1VS) 

3 3.74 (111A) 3.38 (1VA) 3.12 (1VA) 3.15 (1VA) 

4 4.30 (1VA) 3.65 (111A) 3.69 (111A) 4.55 (111A) 

5 6.62 (211S) 6.28 (211S) 6.22 (211S) - 
6 7.92 (2VS) 6.92 (2VA) 6.98 (2VA) 7.25 (2VA) 

7 9.4.1 (211A) 7.51 (2VS) 7.85 (2VS) 8.00 (2VS) 
8 9.70 (1T) 8.90 (211A) 9.09 (211A) - 

mm (kg 66,220 66,050 61,552 - 

A. 4.2 Automatic Updating 

Automatic updating was conducted using the FEM-tools software (DDS, 2004) with the 
aim to match analytical and experimental natural frequencies. The main rationale for this 
updating was to obtain the modal mass and mode shape of the first vertical mode of vibration, 
needed for the response analysis. 

The parameters selected for the updating were of the same kind as those chosen for manual 
tuning; 

9 stiffness of the support springs in the longitudinal direction, 

" the density of the deck elements, 
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9 the `density' of the pipes with water in them, 

" thickness of the deck layers, and 

" Young's modulus for some steel and composite SHELL63 elements. This was selected 

only for the elements which modulus had strong influence on the vertical modes, as 
demonstrated in the sensitivity analysis (not presented here due to limited space). 

iHS: 1.60Hz 

1VA: 3.12Hz 

2VA: 6.98Hz 

1VS: 2.06Hz 

MA: 3.69Hz 

2VS: 7.85Hz 

Figure A. G: Vibration modes from the updated model. 

In this way, in total 23 parameters were selected for updating. The main results are presented 
in Table A. 2. 

Table A. 2: Starting and updated uncertain parameters. 
Parameter Initial value Updated value 
Support stiffness (N/m/m) 1.00x108 0.55x108 
Asphalt thickness [cm] 5.5 8.0 
Composite slab thickness (on the top flange) [cm] 6.7 4.8 
Composite slab thickness (on the top of columns) (cm] 11.0 11.6 
Percentage of water in pipes [%] 50 32 

Natural frequencies of the FE model updated in this way are shown in the fourth column 
of Table A. 1. The modal mass was found to be approximately 62,000 kg. This is the value 
adopted for further dynamic analysis. The six horizontal and vertical modes are shown in 
Figure A. 6. 
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It can be noticed that the updating process almost did not affect the horizontal modes. In an 

additional analysis it was shown that frequencies of the two measured horizontal modes were 

very sensitive to the change of the stiffness of the inclined columns. Namely, it seemed that 

these two columns were much stiffer than it was taken into account in the starting model. 
The reason could be that during enhancement of the top parts on the columns the columns 

themselves were also reinforced. More detailed analysis of this issue was not possible having 

in mind the data available. It should be emphasised that vertical mode 1VS at 2.05 Hz was 

not sensitive to the small increase of the stiffness of the inclined columns (which was affecting 
horizontal modes). This is because its modal displacements at column points were already 

close to zero. Therefore, the modal mass of this mode was not dependent on this uncertain 

parameter. 

A. 5 Pedestrian Monitoring Tests 

The vertical response of the footbridge under normal pedestrian traffic was monitored during 

three time slots, each lasting 45 minutes. The acceleration was measured at the midspan 

point, next to the railing. About 2,000 pedestrians crossed the bridge during this time. 
Their crossings were recorded by two video cameras on both ends of the bridge. Immediately 

after crossing, 300 randomly selected pedestrians were asked to characterise vibrations felt 

during their crossings. 

A. 5.1 General Observations 

A typical measured acceleration time history during 45 minute slot is presented in Figure A. 7 
(upper). Its spectrum in Figure A. 7 (lower) reveals that the first vertical mode dominates 
the response. Its frequency dropped from 2.05 Hz to 2.00 Hz probably due to increased modal 
mass caused by the presence of pedestrians. 
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Figure A. 7: Measured acceleration (upper) and its spectrum (lower). Sampling rate 0.025 s. 
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Using the video records, the time needed for each analysed pedestrian to make 20 steps was 

estimated. This was done for 1976 pedestrians. Then the 20 steps were divided by the time 

estimated to get the average step frequency. The mean step frequency across all subjects was 

1.87 Hz. This was close to 1.9 Hz reported by Kerr & Bishop (2001) in their experiments and 

slightly lower than 2.0 Hz suggested by Matsumoto et al. (1978). The obtained distribution 

of step frequencies can be considered as normal distribution with mean value of 1.87 Hz and 

standard deviation of 0.186 Hz (Figure A. 8). Based on video records of crossings of the bridge, 

it could be said that only people who were in a hurry achieved a step frequency of 2.0 Hz 

or more. Also, it was noticed that people walking in groups and/or in a crowd tended to 

adjust their walking velocity, rather than step frequency, to each other. This means that they 

were prone to walk at different frequencies (but with same speeds), especially if their height 

differed significantly. 
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Figure A. 8: Distribution of step frequencies. 

Further analysis confirmed that the arrival times of pedestrians at the bridge can be approx- 
imated by the Poisson distribution, as claimed by Matsumoto et al. (1978). 

A. 5.2 Vibration Perception 

300 randomly selected pedestrians were asked, immediately after they crossed the footbridge, 

to answer a questionnaire about their perception of the vertical vibrations. As many as 
220 among them answered they had felt footbridge vibrations during the crossing. These 

pedestrians were asked to rate the vibrations according to the following three categories: 

" acceptable, 

9 unpleasant and 

" unacceptable. 

More than a half of 220 test subjects who felt vibrations (56% exactly) rated vibrations as 
either unpleasant or unacceptable (Figure A. 9: upper). 
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Figure A. 9: Rating of vibrations (upper) and vibration perception as a function of modal 

peak acceleration (lower): 1-acceptable, 2-unpleasant, 3-unacceptable. 

For 41 pedestrians it was possible to identify the level of modal peak acceleration they felt 

during the crossing. This level is shown in Figure A. 9: lower as a function of the rating of 

vibrations. Boundaries between the three categories of vibrations cannot be clearly identified, 

although a general trend of increasing the modal peak acceleration with decreasing the degree 

of its acceptability is noticeable. It is interesting that a large number of pedestrians found 

peak accelerations between 0.2 and 0.5 m/s2 unpleasant. Also, for some people modal peak 

acceleration levels between 0.3 and 0.45 m/s2 were unacceptable, although they were still 

well bellow the acceleration level allowed by BS 5400 (BSI, 1978), which is equal to 0.7 m/s2 
for this particular bridge. In this situation, defining probability functions of acceptability 

of vibrations for different acceleration levels could be the way forward instead of using the 

apparently unreliable and unsafe single acceleration value defined in BS 5400. 

It is worth noting that there is anecdotal evidence that some people in Podgorica avoid 

crossing this footbridge altogether because of its liveliness. These people are, obviously, not 
included in this statistical study of vibration rating. 

A. 5.3 Dynamic Response: Measured vs. Simulated 

Acceleration response of the bridge was simulated taking into account all data gathered during 

tests. Each pedestrian force Fl was modelled as a sinusoidal force modulated by the mode 
shape of the first vertical anode of vibration ¢(x) (Smith, 1988): 

Fl (x, t) = DLF "W" sin(21rfst + cp)O(x). (A. 1) 

DLF is the dynamic loading factor dependent on the step frequency and calculated accord- 
ing to Young's (2001) model while W= 700N is assumed average pedestrian weight. Step 
frequency f, is taken according to the identified normal distribution, while the time t during 

which the pedestrian was crossing the bridge was based on the Poisson distribution of pedes- 



Appendix A 239 

trian arrivals and an assumed step length of 0.75 m. The force phase shift cp was generated 
by TATLAB program for all pedestrians as a random number in the interval [0,2-7r] (uni- 

form distribution). The mode shape ¢(x) along the bridge axis was obtained from the fully 

updated FE model of the footbridge. 

The bridge was modelled as a single degree of freedom system with the dynamic properties 

of the first vertical mode of vibration: the natural frequency of 2 Hz, modal mass of 62,000 kg 

and damping ratio of 0.28%. 

The modal responses as simulated and measured are shown in Figure A. M. 
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Figure A. 10: Modal acceleration: simulated (upper) and measured (lower). 

It can be said that the simulated responses were up to 45% higher than the measured one (in 

a sense of RIM of the whole signal). This can be considered as a very good first estimate. 
The reason for difference could be that walking on a flexible surface would decrease the force 
in comparison with that measured on a rigid surface. Also, the possibility that some people 
damp out vibrations by walking opposite to footbridge movement might have an influence. It 
is interesting that the difference in two responses in terms of RMS values can be minimised 
if structural damping is increased to 0.6%. These issues are the subject of further research. 

A. G Conclusions 

A limited heel-drop testing programme of a footbridge known to be lively under vertical 
pedestrian excitation identified the first four vertical and two horizontal modes of vibration. 
The natural frequency of the fundamental vertical mode was in the range of normal walking 
frequencies. This was, coupled with the very low damping ratio of only 0.28%, the main 
reason for the liveliness of the footbridge. 

A detailed initial 3D finite element model based on best engineering judgment failed to predict 
all six measured modes of vibration. Decreasing the stiffness of the girder edge supports in the 
longitudinal direction improved the model significantly and fairly well predicted the vertical 
modes of vibration. 
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Traffic on the bridge was monitored for 135 minutes. It was found that the distribution 

of step frequencies followed the normal distribution with mean value of 1.87 Hz which was 
slightly lower than what was found in the literature. Also it was concluded that pedestrian 
arrival on the bridge followed a Poisson distribution. 

Most of 300 randomly interviewed pedestrians felt vibrations of the bridge during their cross- 
ing. It is interesting that for a number of pedestrians, vertical vibrations between 0.2 and 
0.45 m/s2 were either unpleasant or unacceptable. This despite the fact that these vibrations 
were well below the acceleration limit of 0.7 m/s2 given by BS 5400. 

Finally, Monte Carlo simulations of the bridge response due to normal pedestrian traffic 

estimated reasonably well the measured response due to up to 40 people on the bridge at the 

same time. The simulations were based on the distributions of step frequencies and pedestrian 
arrival on the bridge as identified during the monitoring tests. Some improvements of this 

predictive mathematical model have been suggested including the increase of damping due 
to walking pedestrians. 
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MATLAB script FHSM. m 

MATLAB script FHSM. m is a program developed for probability-based estimation of vibration response to walking 
excitation under a single pedestrian. The theory behind the procedure has been explained in Chapter 6. 

% ............................................................. 

% FHSM. m - First Harmonic Single Mode 
% ............................................................. 

% Created by S. Zivanovic on 16 July 2005 
% ............................................................................. 
% Program for probability-based estimation of vibration response of footbridges 
% First Harmonic of the valking force is considered only 
% Footbridge responds in a Single Mode of vibration 
X ---------------------------------------------------------------------------- 
% ----------------------------------------------------------------------------- 
% INPUT: Footbridge modal properties: m- modal mass [kg] 
% fn - natural frequency [Hz] 
% ceta - damping ratio 
%L- length on which mode shape is close to half-sine [m] 
%V- 750 N (average pedestrian weight) 
% ----------------------------------------------------------------------------- 
% OUTPUT: Probability of certain acceleration level 
% Cumulative probability of certain acceleration level 
% ------------------------------------------------------------------------------------------------ 
% ------------------------------------------------------------------------------------------------ 
'h PHASE 1: Normal distribution of step frequencies fs 
% Taken according to Zivanovic et al. (2005), EUAODYN, Paris 
% mean - 1. BTHz 
% std - 0.186Hz 
% ------------------------------------------------------------------------------------------------ 
% PHASE 2: Define DLF-i(fs). Mean value as given by Kerr's PhD (1998) (page 86) 
% DLF - -0.2649"fs'3 + 1.3206"fs'2 - 1.7597sfs + 0.7613 
% DLF a Dynamic Loading Factor 
% is - Step Frequency 

% ------------------------------------------------------------------------------------------------ % PHASE 3: Define probability distribution for number of steps needed to cross the bridge 
% Based on Pachi a Ji (2005): walking velocity at each frequency is defined as normally distributed 
% mean - 0.71sfs [m/s] 
% std - 0.10"mean [m/s] 

La bridge length [m] (on vhich mode shape 18 close to a half-sine) 

241 
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%N- L/v * fs (number of walking cycles) 
X ----------------------------------------------------------------------------------------------- 
% PHASE 4: Walking frequency ratio distribution is independent from number of steps distribution 

X Present their joint probability density 

X Joint distribution - (pd for fs/fn) * (pd for number of steps) 
X -----ýýý----------------------------------- -------- ------------------------------------- 
% PHASE 6: Peak modal acceleration taking into account half-sine mode shape (Inman, 2001) 

X ------------------------------------------------------------------------------------------------ 
% PHASE 6: Probability that certain level of acceleration will occur is calculated. 
X DLF variability and imperfections in walking are not taken into account. 
% ------------------------------------------------------------------------------------------------ 
% PHASE 7: Probability that certain level of acceleration will occur is calculated. 
% Imperfections in walking are taken into account. 
% --------------------------------------------------------------------------------------------- 
% PHASE 8: Final probability that certain level of acceleration will occur is calculated. 
% DLF variability is taken into account. 
% ------------------------------------------------------------------------------------------------ 

clear all 

x INPUT 

% ------------------ -- - 
m-68000; 
fn-2.04; 

omegan 2*pi*fn; 
k-m*omegan'2; 

ceta-0.0026; 
c-2*ceta*sgrt(ksm); 
L-78; 

H-760; 
X ---------------- --- ----------- ---- ---------------------------------------------------------- 
% Choice of some calculation parameters 
df. 0.01; % resolution for frequency fs [Hz] 

a_step-i/20; % resolution for response (acceleration) Cm/s2] 
dN-6; % resolution for number of steps 
dt-0.006; % resolution for response time history [s] 
X ---------------- -- ----------- ---- ----------------------------------------------------------- 

x PHASE I 
f///i///ffiffii/f/ffif! /ffiff////ftiifif/ifif 

fs/1.31: df: 2.43; % range of step frequencies (99) points of a normally distributed sample) 
mean_fsf1.81; std_fs-0.186; 
pd_fe/1/(sgrt(2"pi)+std_fa) * exp(-(fa-mean_fs). '2/2/std_fs'2); % probability density (pdf) 

ratio_f-fs/fn; 
pd_fratio-pd_fssfn; % pdf for fs/fn 
% --------------------------------------------------------------------------------------------- 

% PHASE 2 
% 

.................................. tt................................ =.. ii>................... 

DLF--0.2649+fs. '3 + 1.3206Sfs. '2 - 1.7697*fs + 0.7613; 
% --------------------------------------------------------------------------------------------- 

% PHASE 3 
% ................................................................................................. 

mean_vel-0.71x2; 

std_vel-0.10*meaa_vel; 
ve1oO. 994: 0.001: 1.846; % range of mean_vel +- 3*std_vel (for fs-2Hz) 
pd_vel-1/(sgrt(2*pi)*std_vel) * ezp(-(vel-mean_vel). '2/2/std_vel'2); % pdf for velocity for fs-2Hz 
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Ns-Ls2. /vel; 

N-round(min(Ns)/dN)*dN: dN: round(maz(Ns)/dN)*dN; 

for i. i: length(N) 

qq-abs(Ns-N(i)); 
pp. find(gq--min(gq)); 

pd_N(i)-pd_vel(pp); 

% range of Number of steps for any fs 

% range for Na with step dN for any fs 

end 
pd_N-pd_N/(trapz(pd_N)*dN); % pdf for Na for any fe 

% -~~----------~--~-~--------- ~~~----------------------------- ~----------------------- 

% PHASE 4 
% 

fffiifffiiffiifffffiiffffffffffffffiifffffiifffffffffffffiffififfifffifffiffiffffiifffffffifiifii 

for 1.1: length(ratio_i) 
for j. 1: length(N) 

pd2(i. j)ipd_ir&tio(i)"pd_N(i); 

end 

end 

figurs(1) 

mesh(N, ratio_f, pd2) 

grid on 
title('Chapter 6- Figure 11') 

xlabel('Number of cycles') 

ylabel('Frequency ratio') 

zlabel('Joint probability density') 
% --------------------------------------------------------------------------------------------- 

% PHASE b 
% 

iiiiiiiii iiiiii. iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiitiiiiiiiiiiiitiiiiilfiiiiiiiiiiitii 

omegani2"pi"fn; omegas"2. pi'fi; 

for i. 1: length(fe) 

for j. 1: length(N) 

vwfs(i)"L/N(j); 
t'. 0: dt: (L/v); 

AsDLF(i) W; 

f0. -A/2/m; alfa. omegas(i)+pi*v/L; 
PP-omsgaa'2-alfa'2; omegad-omegan*(sgrt(i-ceta'2)); 
RR-2"csta"omegan"alfa; 

a1_t-ceta'2ºomegan'2ºexp(-ceta*omeganst) .* (-fOºPP/(PP'2+RR-2)*cos(omegadºt) - ceta*omegan/omegad " ... 
f0ºPP/(PP'2+RA'2)*sin(omegadst) - RR*alfasfO/omegad/(PP'2+RR'2)*sin(omegad*t))-... 
2ºcetasomegansexp(-cetaºomegan*t) .º( fO*omegad*PP/(PP'2+RA'2)*sin(omegad*t) - cetasomeganº... 
f0ºPP/(PP'2+RA'2)*cos(omegad*t) - RRsalfaºfO/(PP'2+RA'2)scos(omegadºt) )+... 

sip(-cetaºomeganºt) .s( fOsomegad'2sPP/(PP'2+RR'2)*cos(omegadºt) + cetaºomeganºomegad*... 
f0*PP/(PP'2+RR'2)ssin(omegadºt) + RR*alfa*omegad*fO/(PP'2+RR'2)ºsin(omegad*t) ); 

a1_ss -fO/(PP'2+RA'2)º(PP*alfa'2ºcos(alfa*t)+RR*alfa'2ssin(alfast)); 

f0-A/2/m; alia-omegas(i)-pi"v/L; 
PP-omegan'2-a1fa'2; omegad-omegan"(sgrt(i-ceta-2)); 
RRm2"ceta"omegansa1fa; 

a2-t-ceta'2*omegan 2*exp(-ceta*omegan*t) .* (-fO*PP/(PP'2+RR'2)*cos(omegad*t) - ceta*omegan/omegad *... 
fO*PP/(PP'2+AR'2)*sin(omegad*t) - RR*alfa*fO/omegad/(PP'2+RR"2)*sin(omegad*t))-... 
2"cetasomegan*exp(-ceta*omegan*t) .s( fO*omegad*PP/(PP'2+AR'2)*sin(omegad*t) - ceta*omegan*... 
fO*PP/(PP'2+RA'2)*cos(omegad*t) - RR*alfa*fO/(PP'2+RR'2)*cos(omegad*t) )+... 
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end 

exp(-ceta*omegan*t) .*( fO*omegad'2*PP/(PP'2+RR'2)*cos(omegad*t) + ceta*omegan*omegad*... 
fO*PP/(PP'2+RR'2)*sin(omegad*t) + RR*alfa*omegad*fO/(PP'2+RR'2)*sin(omegad*t) ); 

a2_ss--f0/(PP'2+RR'2)*(PP*alfa'2*cos(alfa*t)+RR*alfa'2*sin(alfa*t)); 

a_modal-ai t+ai_ss+a2_t+a2_ss; % modal acceleration 

mAcc(i, j)-max(a_modal); % peak modal acceleration 
end 

figure(2) 

mesh(N. ratio_f. mAcc) 
grid on 
title('Chapter 6: Figure 10') 

xlabel('Number of steps') 
ylabel('Frequency ratio') 
zlabel('Peak modal acceleration [m/s'2]') 

% PHASE 6 
% 

tffffffitfiftiffiiff/fttfififiiffitftiftffifftiitfttfitfiiffiftf tfiifffifttitttiftiffiffffitiffif 

d_accaO: a_step: (max(max(mAcc))+a_step); 

for i-1: (length(d_acc)-1) 

gq. find(mAcc>d_acc(i) & mAcc<-d_acc(i+1)); 
Macc(i).. d_acc(i+i); 

end 
p_acc(i)-8um(pd2(gq))"dN*df/fn; 

figure (3) 
bar(Macc-a_step/2, p_acc) 
grid on 
title('Chapter 6: Figure i2a') 

xlabel('Peak modal acceleration (m/s'2]') 

ylabel('Probability') 

PHASE 7 
..................................... a....... a... am. _a_0. a_s. Maeass.............. aaa_............ 

Read a and b coefficients from MAT files. ceta_all is the vector of all damping ratios considered 
% Coefficients are listed in Tables B. i and B. 2 of this appendix 
load a_gamma; load b_gamma; 

zeta-ceta*100; pp-1; i-1; while pp--1 
if zeta>-ceta_all(i) & zeta<ceta_all(1+1) 

a_0_80-(a(l, i+l)-a(1,1))*(zeta-ceta_a11(i))/(ceta_all(i+l)-ceta_all(i))+a(l, i); 
a_0_85-(a(2, i+1)-a(2,1))*(zeta-ceta_all(i))/(ceta_all(i+l)-ceta_all(1))+a(2,1); 

a_0_90-(a(3,1+1)-a(3,1))*(zeta-ceta_all(1))/(ceta_all(1+1)-ceta_all(i))+a(3,1); 
a_0_95-(a(4,1+1)-a(4, i))*(zeta-cote-all(i))/(ceta_all(i+l)-ceta_all(i))+a(4, i); 
a-1_00-(a(5.1+1)-a(5,1))*(zeta-cote-all(i))/(ceta_all(1+1)-ceta_al1(i))+a(5,1); 
a_1_05-(a(6, i+1)-a(6,1))*(zeta-ceta_all(i))/(ceta_all(i+l)-ceta_all(i))+a(6, i); 
a_1_10-(a(7,1+1)-a(7,1))*(zeta-ceta_all(1))/(ceta_all(i+l)-ceta_all(i))+a(7, i); 
a-1_15-(a(8,1+1)-a(8, i))*(zeta-ceta_all(i))/(cote_all(i+l)-ceta_all(1))+a(8,1); 

a_1_20-(a(9,1+1)-a(9,1))*(zeta-cote-all(i))/(cote_all(i+l)-ceta_all(i))+a(9,1); 

b_0_80-(b(l, i+l)-b(i, i))*(zeta-ceta_all(i))/(ceta_all(i+l)-ceta_all(i))+b(1,1); 
b_0_85-(b(2, i+1)-b(2, i))*(zeta-ceta_all(i))/(ceta_all(i+1)-ceta_all(i))+b(2,1); 
b_0_90-(b(3,1+1)-b(3,1)). (zeta-ceta_all(i))/(ceto_all(i+l)-ceta_all(i))+b(3,1); 
b_0_95-(b(4,1+1)-b(4,1))"(zeta-ceta_all(i))/(ceta_all(i+i)-ceta_all(i))+b(4,1); 
b_1_00-(b(5,1+1)-b(5,1))"(zeta-ceta_all(i))/(ceta_all(i+l)-ceta_all(i))+b(5, 

i); 
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b_1_05-(b(6, i+1)-b(6, i))"(zeta-ceta_all(i))/(ceta_all(i+1)-ceta_all(i))+b(6, i); 
b_1_10-(b(7, i+1)-b(7, i))*(zeta-ceta_all(i))/(ceta_a11(i+i)-ceta_all(i))+b(7, i); 
b_1_1&-(b(8, i+1)-b(8, i))"(zeta-ceta_all(i))/(ceta_all(i+1)-ceta_all(i))+b(8. i); 
b_1_20. (b(9, i+i)-b(9, i))*(zeta-ceta_all(i))/(ceta_all(i+1)-ceta_all(1))+b(9, i); 

pp-2; 
end 
i-i+i; 

end 

step_ratoO. 1; 

ratio-0: step_rat: 6; % range of frequency ratio on which gamma pdf will be generated 
% Gamma distributions for different step/natural frequency ratios 

g_i-ratio. '(a_0_80-1). "erp(-ratio/b_0_80)/b_0_80'a_0_80/gamma(a_0_80); 

g_2. rat to. '(a_0_85-1). "ezp(-ratio/b_0_85)/b_0_85'a_0_85/gamma(a_0_85); 

g_3-ratio . '(a_0_90-1). "e: p(-ratio/b_0_90)/b_0_90'a_0_90/gamma(a_0_90); 
g_4"ratio. '(a_0_95-1). +ezp(-ratio/b_0_95)/b_0_95'a_0_95/gamma(a_0_95); 

g_6-ratio. '(a_i_00-1). "erp(-ratio/b_1_00)/b_1_00'a_1_00/gamma(a_1_00); 

g_6-ratio. '(a_i_05-1). *oxp(-ratio/b_1_05)/b_1_05'a_1_05/gamma(a_1_05); 

g_7-ratio. '(a_i_10-i). "erp(-ratio/b_i_10)/b_1_10'a_1_10/gamma(a_1_10); 

g_8-ratio. '(a_1_15-1). "erp(-ratio/b_1_15)/b_1_15'a_1_15/gamma(a_1_15); 

g_9-ratio. '(a_1_20-1). "erp(-ratio/b_1_20)/b_1_20'a_1_20/gamma(a_1_20); 

pp-1; for i-l: length(ratio_f) 
if ratio-f(i)<-0.83 

6'8-i" 
end 
if ratio-f(i)>0.83 & ratio-f(i)<-0.88 

8-B-2; 
end 
if ratio-f(i)>0.88 & ratio-f(i)<-0.93 

B'8-3; 
end 
if ratio-f(i)>0.93 & ratio-f(i)<-0.98 

H'8-4" 

end 
if ratio-f(i)>0.98 t ratio-f(i)<=1.02 

B'8-b; 
end 
if ratio-f(i)>1.02 & ratio-f(i)<-1.07 

8'6-6; 
end 
if ratio-f(i)>1.07 i ratio-f(i)<-1.12 

8'6-7" 
end 
if ratio-f(i)>1.12 & ratio-f(i)<"1.17 

B'8-8; 
end 
if ratio-f(i)>1.17 

8'8-9; 
end 

for j-l: length(N) 
for ii. l: length(g) 

AA(pp)wratio(ii)"mAcc(i, j); 
pd3(pp). g(ii)spd2(i, j); 
pp'pp+1: 

end 
end 
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end 

d_AA-O: a_step: (oas(lA)+a_step); 

for i-l: (length(&AA)-1) 

gq. find(AA>d-AA(1) & AA<-d-AA(i+1)); 

Maccl(i)'d_AA(i+l); 

and 
p_AA(i). sum(pd3(gq))"dN. df/fn"step_rat; 

figure(4) 
bar(Mlaccl-a_step/2. p-AA) 

grid on 
title('Chapter 6: Figure 12b (walking imperfections included)') 

: label('Peak modal acceleration [m/s'2]') 

ylabel('Probability') 

% pdt for acceleration AA 

pd_AA'p_AA/a_step; 

% PHASE 8 
% .. N__t .................. a. _t...... __... __i. _........ n........... S.. _ii.. 

stop_dlf-0.01; 

% dlf ratio distribution (Kerr, 1998) 
dlf. 0. &2: step_dlf: 1.48; 

mean_dlf"1; 
std_dlf. 0.16; 
rat_dlf. (0.62+step_dlf/2): step_dlf: (1.48-step_dlf/2); 

pd_dlf. 1/(sgrt(2sp1)sstd_dlf) ' ezp(-(rat_dlf-mean_dlf). '2/2/std_dlf'2); 

for i i: 1ength(Maccl) 
for jsi: length(rat_dlf) 

pd_AAA(i, j). pd_AA(i). pd_dlf(j); 
AAA(i. j)-(Maccl(i)-a_step/2)srat_dlf(j); 

end 
end 

pd_AAA. pd_AAA(: ); AAA-AAA(: ); 

d_AAA-O: a_step: (mas(AAA)+a_step); 

for 1.1: (1. ngth(d_AAA)-1) 
qq=find(AAA>d_AAA(i) & AAA<"d_AAA(i+l)); 
Macc2(i). d_AAA(1+1); 

end 
p_AAA(i)-sum(pd_AAA(gq))"a_step"atep_dlf; 

tigure(5) 
bar(Macc2-a_step/2. p_AAA) 
grid on 
title('Chapter 6: Figure 13a') 

xlabel('Peak modal acceleration [m/s'2]') 

ylabel('Probability') 

pp-0; for i-1: length(Macc2) 
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p3(t). pp_w(i); 
pp-p3(i); 

and 

figure(6) 
bar(Macc2-a_step/2. p3); 

grid on title('Cbapter 6: Figure 13b') 

xlabel('Peak modal acceleration (L/s'2]') 

ylabel('Cumulative probability') 

end of program 

Table B. 1: Parameter a. 
Damping ratio [%] 

0.1 0.2 0.3 0.4 0.5 0.6 0.8 1.0 1.5 2.0 

0.80 12.227 12.622 13.001 13.587 14.454 15.166 16.470 17.353 19.560 22.013 

0.85 12.646 13.735 14.510 16.177 17.706 19.067 21.345 23.200 26.629 29.289 

0.00 10.353 12.251 14.350 16.197 17.846 19.273 21.543 23.444 27.443 31.284 

0.95 13.967 16.214 17.874 19.251 20.478 20.701 20.170 22.874 30.449 39.159 

1.00 31.431 41.659 52.926 65.341 78.930 93.821 126.460 161.180 247.620 318.600 

1.05 10.061 10.886 11.934 12.934 13.744 14.415 13.112 15.665 23.409 33.318 
1.10 18.589 20.680 21.812 22.868 23.721 24.045 24.268 22.713 28.083 34.101 
1.15 19.687 23.154 26.071 28.565 30.816 32.872 36.517 39.651 46.277 52.192 
1.20 24.319 28.624 32.605 36.314 39.736 42.967 48.834 53.939 64.153 71.769 

Table B. 2: Parameter b. 
Damping ratio [% 

GA. 
0.1 0.2 0.3 0.4 0.5 0.6 0.8 1.0 1.5 2.0 

0.80 0.2202 0.2019 0.1870 0.1715 0.1550 0.1429 0.1246 0.1133 0.0928 0.0777 
0.85 0.1795 0.1567 0.1422 0.1226 0.1084 0.0979 0.0836 0.0743 0.0609 0.0530 
0.00 0.1922 0.1541 0.1260 0.1080 0.0954 0.0863 0.0745 0.0665 0.0539 0.0455 
0.05 0.1250 0.1038 0.0915 0.0829 0.0762 0.0741 0.0740 0.0632 0.0447 0.0332 
1.00 0.0261 0.0203 0.0163 0.0135 0.0113 0.0097 0.0073 0.0059 0.0039 0.0031 
1.05 0.1673 0.1500 0.1330 0.1197 0.1103 0.1032 0.1114 0.0900 0.0563 0.0376 
1.10 0.0820 0.0719 0.0668 0.0627 0.0596 0.0581 0.0565 0.0596 0.0464 0.0371 
1.15 0.0801 0.0659 0.0570 0.0509 0.0,163 0.0427 0.0375 0.0338 0.0279 0.0241 
1.20 0.0618 0.0510 0.0438 0.0386 0.0348 0.0317 0.0273 0.0243 0.0198 0.0173 
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MATLAB script MHMM. m 

MATLAB script MHMM. m is a program developed for probability-based estimation of multi-mode vibration response 
to walking excitation under a single pedestrian. The theory behind the procedure has been explained in Chapter 7. 

X 
.. N.. N....... nNNN...... f. a... fa ........................ 

% MHMM. m - Multi Harmonic Multi Mode 
........ fNf. N. ffff. f.... N... f----------------------------- 

% Created by S. Zivanovic on 6 January 2006 
............................................................................. 

% Program for probability-based estimation of vibration response of footbridges 
% First five harmonics of the walking force are considered 
% Footbridge responds in several vibration modes (natural frequencies <"10Hz) 
X -------------------------------------------------------------------------------- 
X ------------------------------------------------------------------------------- 
X INPUT: Footbridge modal properties: mi - modal mass for i-th mode [kg] 
% fni - natural frequency for i-th mode [Hz] 
% cetai - damping ratio for i-th mode 
X Mode shape for each mode 
XV" 760 N (average pedestrian weight) 
% NoP - number of people to enter a simulation 
X -------------------------------------------------------------------------------- 
% OUTPUT: Probability of certain acceleration level 
% Cumulative probability of certain acceleration level 
% ------------------------------------------------------------------------------------------------ 
% ------------------------------------------------------------------------------------------------ 

clear all 

% ---------------- % INPUT MODAL DATA 
% ---------------- 
dtoO. 001; 

m l, 10520; m2-5880; m3-8690; m5-10767; m7-10319; 
fn1o2.44; fn2-3.66; fn3w4.86; fn5.6.66; fn7-9.50; 

kl-(2"pi"fnl)'2"mi; 
k2a(2"pi"fn2)'2'm2; 
k3-(2"pi"fn3)'20m3; 

248 
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k5-(2. piefn5)'2. n5; 
k7-(2"p1"fn7)'2"s7; 

cetal-0.0053; ceta2-0.0065; ceta3-0.0096; ceta5-O. OOT3; ceta70.0077; 

c1.2"cetal"sgrt(kt"m1); 
c2a2"ceta2"sgrt(k2"m2); 
c3-2"ceta3"sgrt(k3"&3); 
c5-2. ceta5*sgrt(k5*m5); 
cT-2"ceta7"sgrt(k7"m7); 

load NodeShape_Hop. 1; % . MAT file containing length L and mode shape amplitude fi 

L1wL; Fllsfi; 

load ModeShape_Hopa2; L2"L; F12-fl; 

load Mod. Shap. _liop. 
3; L3-L; F13-fl; 

load Mod. Shap. _HopsS; 
LS-L; FIS-fi; 

load Mod. Shapa_Hop. 7; L7-L; F17efi; 

äoP"2000; 
W760; 

% STATISTICAL DISTRIBUTIONS 
X ------------------------ 

% normal distribution of step frequencies (meansl. BTNz. std-0.186Hz) 
fs-1.87+0.186"randa(NoP. 1); % generates NoP step frequencies 
DLFmean--0.2649"fs. '3+1.3206sfs. '2-1.7697*fs+0.7613; % mean DLF1 

DLF_rat-i+0.16"randn(NoP. 1); % distribution of MF1 
DLF-DLFaean. "DLF_rat; % generate NoP values for DLF1 

DLF2.0.07+0.03"randn(NoP. i); 

vd2. find(DLF2<0); 
DLF2(vd2). 0; 

DLF3-0.05+0.02"randn(NoP. 1); 

vd3 fiad(DLF3<0); 
DLF3(vd3). 0; 
DLF4-0.0b+0.02"raadn(NoP. 1); 

vd4. flnd(DLF4<0); 
DLF4(vd4). 0-. 

DLF6-0.03+0.016*randn(NoP, i); 

vd6-find(DLF6<0); 
DLF6(vdb). 0; 

% distribution of DLF2 

X removal of negative DLFs 

X distribution of DLF3 

X distribution of DLF4 

X distribution of DLF5 

% DLFi for first five "ubharmonics 
DLF06-0.026"DLF+0.0031; 
DLF16-0.074. DLFr0.01; 
DLF26-0.012. DLF+0.016; 
DLF35-0.013"DLF+0.0093; 
DLF46.0.016"DLF+0.0072; 

mean-la-0.71; 
std_1s. 0.071; 
le-mean_ls+std_ls. rsndn(NoP, 1); % distribution for step length 
NoC-ms: (L1). /ls; % transferring step length to number of steps 
Crossing-NoC. /ts; % crossing time for NoP pedestrians 
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X Fitted force model (40 amplitudes in the spectrum for each harmonic) 

105-0.25: 1/80: (0.75-1/80); 

11.0.75: 1/80: (1.25-1/80); 

115.1.25: 1/80: (1.75-1/80); 

12-1.75: 1/80: (2.25-1/80); 

125.2.25: 1/80: (2.75-1/80); 

13-2.76: 1/80: (3.25-1/80); 

f35-3.25: 1/80: (3.75-1/80); 

14-3.75: 1/80: (4.25-1/80); 

145-4.25: 1/80: (4.76-1/80); 

16-4.76: 1/80: (6.25-1/80); 

HI-0.7852"e: p(-((f1-0.9999)/0.008314). '2) + 0.0206"ezp(-((fi-1.034)/0.2524). '2) + ,., 
0.1074"exp(-((fi-1.001)/0.03653). '2); 

H2-0.6130". sp(-((f2-2.0000)/O. 011050). '2) 
0.04984". xp(-((f2-1.882)/0.05807). '2); 

H3-0.3908".: p(-((f3-3.0000)/0.009560). '2) 
0.06866.. xp(-((f3-2.957)/0.6607). '2); 

H4-0.3256*. xp(-((f4-4.0000)/0.008797). '2) 
0.06888".: p(-((f4-3.991)/0.375). '2); 

145-0.2806". zp(-((f5-4.9990)/0.007939). '2) 
0.07289". xp(-((f&-4.987)/0.4601). '2); 

+ 0.1330*exp(-((l2-1.957)/0.2632). '2) - ... 

+ 0.156T. ezp(-((t3-3.000)/0.05525). '2) + ... 

+ 0.1647*ezp(-((f4-4.001)/0.06641). '2) + ... 

+ 0.1584se: p(-((15-5.004)/0.07825). '2) + ... 

H06-0.3406"sxp(-((f06-0.4998)/0.008337). '2) 
H16-0.3024".: p(-((f16-1.6000)/0.008736). '2) 

1i26-0.2627".: p(-((f25-2.6000)/0.009748). ' 2) 
H35-0.2344". xp(-((f36-3.6010)/0.009898). '2) 
H46.0.2646..: p(-((f46-4.4990)/0.010190). '2) 

+ 0.2803*exp(-((f05-1.133)/0.6388). '2); 
+ 0.1345*exp(-((f15-1.632)/0.7233). "2); 
+ 0.2456*exp(-((f25-0.2312)/2.932). '2); 
+ 0.2355*exp(-((f35+1.676)/7.05). '2); 
" 0.2389sexp(-((f45-1.153)/4.661). '2); 

% Uniformly distributed random phase for each line in spectrum 
Phai. -pi+2"pi"rand(NoP"40,1); 
Pha2. -pi+2"pisrand(NoPs40,1); 
Pha3. -pi+2"pi"rand(NoP"40,1); 
Pha4--pi+2"pi"rand(NoP'40,1); 
Pha6"-pi+2"pi"rand(NoP"40,1); 

Pha06--pi+2'pi"rand(NoP"40,1); 
Pha16. -pi+2"pi. rand(NoP"40,1); 
Pha26. -pi+2"pi"raad(NoP"40,1); 
Pha36. -pi+2"pi"rand(NoP. 40,1); 
Pha46. -pi+2"pierand(NoP"40,1); 

for i-i: NoP 

t-O: dt: Crossing(1); 

FRO; 
for ii-1: 40 

F. F+Ws( DLF(i)"H1(ii)*Cos (2*piofl(ii)*fs(i)*t+Phal((1-1)*40+11)) + 
DLF2(1)"H2(11)"tos(2*pi*f2(ii)*fs(i)*t+Pha2((1-1)*40+ii)) + 
DLF3(i)*H3(ii)*cos(2*pi*f3(ii)*fs(i)*t+Pha3((i-1)*40+11)) + 
DLF4(i)*H4(li)*Cos (2*pisf4(11)*fs(i)st+pha4((i-1)*40+11)) + 
DLF5(i)*H5(ii)*cos(2*pi*f5(11)*fs(1)*t+pha5((i-1)*40+ii)) 

F-F+W*( DLFO6(i)*HOS(11)*cos(2*pi*f05(ii)*fs(i)*t+pha05((i-1)*40+11)) 
DLFI5(i)*H16(it)*cos(2*pi*f16(11)*fs(i)st+phal5((i-1)*40+11)) + 
DLF25(i)*H25(ii)*cos(2*pisf25(11)*fs(1)*t+Pha25((1-1)*40+11)) + 
DLF36(i)"H35(ii)scos(2*pi*f35(ii)*fs(i)"t+Pha35((1-1)*40+ii)) + 
DLF45(i)*H45(ii)*cos(2"pi*f45(11)*fs(i)*t+Pha45((i-1)*40+11)) ) 
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end 

rv(i)-ma: (LI)/Crow ing(i); 

'r"Ci)"t; 
[fil]sLin_interpolation(L1, Fll. zp); 
[fi2]-Lin_interpolation(L2. FI2. xp); 
[fi3l-Lin_interpolation(L3. F13. rp); 
[fib] aLin_interpolation(L5. FIb. zp); 
[f17l-Lin_interpolation(L7, FI7. xp); 

% Lin_iterpolation. m is a subroutine 
% for linear interpolation of mode shape 
% listed after this program 

% nodal forces for each mode of vibration 

LPi-F. sfil; an-F. *fi2; mF3-F. *fi3; zFS. F. *fi&; LF7-F. *fi7; 

% modal response in each vibration mode 
(d1, vl, a1]"Nevmark(ki, ml. cl, mFl, dt); % Nevmark. m is a subroutine 
[d2, v2, a2). Nevmark(k2, m2, c2, mF2, dt); % for numerical integration of 
[d3, v3, a3]"Nevmark(k3, m3. c3, mF3, dt); % equation of motion listed 
[d5, v5, a5]. Nevmark(k5, m5, c5, mF5, dt); % at the end of this appendix 
[d7, r7, a7] Nevmark(k7. m7. c7. mF7. dt). 

% peak response for each vibration mode 
mas_al(i)-mai(abs(al)); max_a2(i)-max(abs(a2)); 
mas-a3(i)-max (abs(a3)); maz_ab(i). max(abs(ab)); maz_a7(i)-maz(abs(aT)); 

% rms response for each vibration mode 
rms_al(i)"sgrt(mean(al. '2)); rms_a2(i)wsgrt(mean(a2. '2)); 

rms_a3(i). sgrt(mean(a3. '2)); rms_a5(i)"sgrt(mean(ab. '2)); rms_a7(i)-sgrt(mean (a7. '2)); 

% mode superposition 
c14-a1.0.894-a2.0.033+0.988"a3-0.594"ab-0. Oiisa7; % at a quarter-span point (8.5m) 
c12 a2-0.290"a3-0.019"ab*0.921"a7; % at the midepan point 

maz_c14(i)wmax(abs(c14)); max_c12(i)umaz(abs(c12)); 
rms_c14(i)-sgrt(mean(ci4. '2)); rms_c12(i). sgrt(mean(ci2. '2)); 

and 

X calculation of cumulative distributions for response at the quarter-span point 
X the same set of commands can be used to present response at the midspan point 
a_step. i/40; % acceleration resolution for histogram of maximum response 
a_stepr"i/200; % acceleration resolution for histogram of rms response 

% peak modal acceleration 
d_a-O: a_st. p: (mas(max_c14)+a_st. p); 

P-&-El; 
for 1.1: (lsngth(d_a)-1) 

gq. sum(max_c14'd_a(i) & max-c14<-d_&(1+1)); 
p_a(i)-qq/NoP; 

end 

Macc-d_a(2: leagth(d_a))-a_atep/2; 

figurs(1) 

Pp-O; PC-D; 
for i-i: length(Macc) 

pc(i)-PP*P_a(i); 
PP-PC('); 

end 
bar(Macc, pc); 
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grid on 
title(`Chapter 7: Figure 7.12a') 

xlabel('Peak nodal acceleration (m/s'27') 

ylabel('Cumulative probability') 

% rms nodal acceleration 
d_ar-O: a_stepr: (nax(rns_ci4)+a_stepr); 

p_ar-0 ; 
for i-i: (length(d_ar)-1) 

qqr-sum(rms_c14>d_ar(i) & rms_C14<-d_ar(i+i)); 

p_ar(i). gqr/NoP; 
end 

Maccr-d_ar(2: leagth(d_ar))-a_stepr/2; 

figure(2) 
pp-Os pcr. Ü; 
for i"l: length(Maccr) 

pcr(i)-pp+p_ar(i); 
pp-pcr(i); 

and 
bar(Maccr. pcr); 

grid on 
titls('Chapter 7: Figure 7.12b') 

xlabel('RMS modal acceleration (m/s'21') 

ylabel('Cumulative probability') 

x . na of program 

x ------------------------------------------------------------------------------------------------ 
x ----------------------------------------------------------------------------------------------- % Subroutine for linear interpolation of an arbitrary discrete function 

% INPUT: vector x- independent variable 
% vector y- function value (at each x) 
% vector ip - variable x for vhich the function y should be interpolated 

X OUTPUT: vector yp - value of y in xp 

function[yp]. Lin_intsrpolation(x. y, ip); 

epsilon -0.00001; 

lo_xp-length(xp); 

for i"l: le_xp 
k 1; 

while x(k) < xp(i)-epsilon 
k k+l; 

end 

if xp(i) "- x(k) 
yp(i) - y(k); 

she 

end 
yp(i) - y(k-1) + (y(k)-y(k-1)) / (z(k)-: (k-1)) + (zp(1)-z(k-1)); 

and 
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end of subroutine 

-- -- --- - ---------- - --------- 
x Subroutine for numerical integration of dynamic equation of motion 

X INPUTS: k- nodal stiffness [N/a]. 

%"- modal mass (kg]. 

%c- nodal damping [N/(m/s)]. 

% of - modal force (N], 

% dt - time step for numerical integration [a] (-time step in the force vector) 

% OUTPUTS: z- modal displacement [ml. 

%v- modal velocity [m/s], 

;Ga- modal acceleration [m/s/s] 

function [d. v, a]. N. vmark(k, w, c. &F, dt) 

% initial displacement & velocity 
dO-O; 

VO-0. 
a0-(aF(1)-k"dO-csvO)/m; 

d(1)-do; 

v(1)-v0; 
a(1)-a0; 

kk-k+4/(dt'2). m+2/dt+c; 

for i-2: (1. ngtb(mF)); 
qq(i)-mF(i)+as(4/(dt'2)*d(i-1)+4/dt"v(i-1)+a(i-1))+c*(2/dt"d(i-1)+v(i-1)); 
d(i)'. gq(i)/kk; 
v(i)-2/dtod(i)-2/dt'd(i-1)-v(i-1); 
a(i)-4/(dt'2)"d(i)-4/(dt'2)"d(i-1)-4/dt"v(i-1)-a(i-1); 

and 

% end of subroutine 


