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Abstract

Modern civil engineering structures exposed to human-induced dynamic loading due to walk-
ing, such as footbridges and long-span floors, are becoming increasingly slender and therefore
more prone to vibrations generated by people. As a consequence, the vibration serviceability

of these structures is becoming their governing design criterion. Currently, the design pro-
cedures for the vibration serviceability check used in practice are mainly of a deterministic

nature. This means that the walking force is modelled via a unique set of parameters, such
as walking frequency, step length and force amplitude assumed to be representative for all
pedestrians. Therefore, the natural inter-subject variability that exists in these parameters

generated by different people is neglected. Moreover, these parameters vary with each step
even in the force time history of a single person (intra-subject variability). This implies that
the walking force is a narrow-band random process rather than a deterministic force. As

a result of these shortcomings, current design procedures based on deterministic forces do

not predict reliably the vibration responses to single person walking across as-built slender
structures.

To improve design procedures, it is necessary to take into account the both inter- and intra-

subject variabilities in the walking force. This implies that a probability-based approach,
whereby the probability of occurrence of various walking parameters can be taken into ac-

count, might be more appropriate to model the walking excitation.

In this thesis, a probability-based framework for a vibration serviceability check due to a
single person walking is developed. For this, the probability density functions for walking
frequencies, step lengths, magnitude of walking force and imperfections in human walking are
proposed. They are used as building blocks to develop a design procedure that can estimate
the probability of occurrence of a certain level of vibration response. Based on this result, a
probability that the vibration response will not exceed certain predefined limiting values can

be found. Moreover, a methodology for finding a reasonable limiting vibration level, based
on the assumption that some human-structure dynamic interaction takes place when walking

across perceptibly moving bridge, is suggested. A provisional value of 0.35m/s? is identified
for two footbridges investigated.

The probability-based design procedure developed in this thesis can be used for vibration
serviceability check of footbridges responding in one or more vibration modes to excitation

induced by a single walker. The method has potential to be used for vibration serviceability
check of other slender structures.
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