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Abstract 

The main aim of this research was an attempt to clarify whether the protagonists of bacterial 

bone destruction were of a bodily origin as opposed to environmental contamination by soil 
bacteria and furthermore to demonstrate a time frame for such attack. It is hypothesised 

that bacteria from the gut commensal flora are responsible for micro-focal destruction (MFD) 

of bone postmortem that leaves distinctive tunnels. Microorganisms live with a person 
throughout their life and somewhat ironically after death persist to exploit this now non- 

operational substrate. They continue to thrive and without a working immune system are 

capable of crossing mucosal barriers and invading both soft and hard body tissues. 

Experimental protocol using pigs as human analogues were combined with archaeological 

sections of both humans and animals. The experimental research was almost absolute in 

the conclusion that only the fetal material was free of MFD one year post-mortem; these 

were entirely skeletonised and open to contamination by soil bacteria. All of the other pigs 
had suffered some form of attack, including those that had not skeletonised and were not 
therefore subjected to soil bacteria. The archaeological material tended to support the 
hypothesis that endogenous gut bacteria were the cause of MFD as both fetal material and 
animal bones were much less likely to be affected. It is suggested that soil bacteria are not 
normally accountable for MFD although their involvement cannot be ruled out entirely and 
they may be involved at a later stage. It is therefore likely that endogenous gut bacteria 
having access to a dead body immediately are most often the cause of MFD and that this 

occurs well within the early postmortem period. This has negative implications for 
biomolecular studies and positive implications for in-situ preservation. 
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Charter 1 

1.1 Introduction 

The main aim of this research is to investigate the determinants of microscopic 

bacterial degradation of bone tissue in the burial environment and to consider its 

implications for archaeology and forensic science. Child (1995: 19), states that; 

"Microbial decomposition is defined as any deleterious changes to a substrate due 

to the action of micro-organisms, their by-products and their enzymes. " Within this 

research theme it is anticipated that a conclusion may be drawn as to whether the 

attack is of bodily or environmental origin (i. e. endogenous origin/gut bacteria or 

exogenous origin/soil bacteria). Bacterial attack of bone is destructive and many 

modern investigative techniques rely on molecules retaining their original signatures. 
Bone integrity is critical to many biomolecular studies including DNA amplification, 

stable isotope studies and all other archaeometric approaches. If bacteria are 

affecting bone postmortem then the extent and origin must be understood before 

these methods are employed or there is a risk of losing primary information. Another 

consideration is the preservation in-situ of archaeological cemeteries. In certain 

cases where funds are limited or when it would be preferable to leave skeletal 

remains in place, until a time at which a better understanding can be gained by 

novel sampling or exploratory methods, it would be advantageous to have some 
insight in to how much further damage may occur if indeed the remains are left in 

the ground. Being capable of predicting which bones or sites may be affected by 

bacterial attack would be beneficial. 

This research presents an investigation of microbiological alteration of bone in the 

very early post-mortem period and will employ the use of light/polarized light 

microscopy combined with histological techniques applied to the morphological 
study of bacteria contaminating human and animal bone of varying origin. In 

archaeological and more recent bone it has been found that patterns of microscopic 
tunnels of varying shape, size and distribution can often be found (Ascenzi & 
Silvestrini 1984, Bell 1990, Bell et a11996, Bell & Elkerton, 2007, Child 1995, Collins 

et al 2002, Grupe 2001, Hackett 1981, Hedges & Millard 1995, Jans et al 2004, 
Wedl 1864, Yoshino et al 1991). The evidence for these tunnels can be seen 
directly after bone has been thin sectioned and viewed microscopically as well as 
indirectly from measurement of bone porosity. This is believed to be as a direct 
consequence of the enzymatic action of collagenase-producing bacteria that are 
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either present in the grave soil or in the microflora contained within the gut of the 

body (Child 1995, Collins et al 2002). It has not been proven or shown with any 

certainty which if any of these is the most likely culprit. It is known that bacteria from 

the gut are capable of transmigrating to the normally sterile blood and surrounding 

soft and hard tissues within hours of somatic death once they have broken through 

the intestinal mucosal barrier (Canavan & Southard 1914, Janzen 1977, Jensen 

1944, Kellerman et a!, 1976, Melvin et al, 1984, Roberts & Mead 1986). Once there, 
they can begin to colonize the bone and eventually destroy the collagen fraction 

which is believed to result in tunnelling of the bone structure. Soil bacteria may 
equally be responsible for this phenomena or it may perhaps be a consequence of 
the mutual action of both soil and gut microbes. This problem will be investigated 
further in this thesis in an attempt to clarify the situation somewhat. 

The main objective of the research is to determine the earliest point at which 
bacteria can become established in bone post-mortem; to evaluate how quickly 
tunnels become visible and to elucidate a possible culprit; exogenous versus 
endogenous. A very short time span has been suggested for the advent of this type 

of decomposition that lies within the very early postmortem period and this is in the 

realm of months rather than years; however this remains unproven and sometimes 
unconvincing. Archaeological studies of this particular type of diagenetic change are 
increasingly common but there remains disagreement between authors as to when 
bacterial tunnelling happens and also which microbes are responsible (Bell et al, 
1996, Child 1995, Hackett 1981, Hedges & Millard 1995, Jans et al, 2004, Yoshino 

et al, 1991). A thorough review of the literature available will be conducted. 

If the process of bacterial attack in bone is to become explicit it becomes imperative 
to appreciate any specific corpse's decompositional history from the time of death to 
the point of recovery as both environmental and pre/post burial conditions will affect 
the prevalence of micro-focal destruction (MFD). When looking at an endogenous 
origin of MFD it is fundamental to investigate death assemblages of organic origin 
that are recovered from the ground and its surface and this particular subject area is 
often termed 'taphonomy' or 'forensic taphonomy' dependent upon the time period 
being researched. The research reported here falls in to both realms as both the 
results of modern forensic experiments and studies of archaeological material are 
combined. The term taphonomy is borrowed from palaeontology and is derived from 
'tapho' (=burial) and 'nomos' (=laws). Taphonomy is the scientific study of the 
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processes of decomposition of remains and the accompanying events up until the 

period of recovery. 

Human Osteoarchaeology is the study of human remains from archaeological sites, 

most frequently these remains exist in the form of skeletal material. The 

preservational state of this material is often markedly different from site to site and 

even between different depositional contexts in a single site and may range from a 

mere shadow of a body buried in corrosive sand or to a beautifully preserved 

complete skeleton that has been recovered from a less caustic environment. 
Because bones and teeth are often the only tissues we are left with it becomes 

imperative that they are studied to the best effect. Yet in the past, bones have been 

dealt with mainly at the macroscopic level with a view to establishing life history 

properties such as age, sex, height, pathology and demographic reconstructions. 
These are all vital elements to an osteological assessment and form the basis of 

most good osteoarchaeological reports. At the microscopic level however, there is 

still much knowledge to be gained as to how the bones themselves degrade over 
time. Degradation of the hard tissues of the body is dependent upon many variables 
including soil type, pH and depth and duration of burial. These confounding factors 

are further compounded by treatment of the body prior to burial which may include 
factors such as disarticulation, cooking, scavenging, excarnation and trampling. 
Once all of the above have been considered it is then possible to view bone within 
its burial context and to attempt a reconstruction of its past treatment and how 
decomposition commences as a direct result of these agents. This research relates 
to one component of the process of degradation, the microbial decomposition of 
bone in the burial environment. 

After death has occurred in humans the body becomes a substrate for the 
continuation of life for various vertebrate, invertebrate and microbial fauna such as 
carnivorous scavengers, the larvae of blow flies and especially micro-organisms. 
Many studies of predator scats and of entomological succession have been reported 
and these two areas of research are relatively well understood (VanLaerhoven & 
Anderson, 1999, de Carvalho & Linhares, 2001, Hobischak & Anderson, 2002). The 
effects of microbial degradation however are the least understood. The research 
presented here aims at least in part to address this deficit by examining the 
microbiology of death by looking at both archaeological materials and also with the 
application of experimental approaches to simulate the modern forensic setting. 

3 



This research project was originally intended to be a study of the decompositional 

processes affecting juvenile bodies and whether or not small bodies decompose 

differentially to those of adults. At an early stage of the research it became clear 

that a difference in decompositional rate may be attributable to bacterial activity in 

the early post-mortem period. Therefore decomposition of bone via the agonal 

invasion of endogenous intestinal bacteria became the main focus of the study. 

Bacteria require certain environmental conditions to successfully survive and 

reproduce, with temperature and pH playing the largest role (Alexander, 1977). In 

addition to this the bacteria that can use bone as an energy source must have some 

particular adaptations, including the ability to produce a collagenase enzyme as well 

as creating chemical conditions appropriate for dissolution of bone mineral (Collins 

et al, 2002). 

In addition to this research a series of forensic experiments have been designed that 

use domestic pigs as an analogue for humans. This is entirely necessary due to the 

restrictions on the use of human soft tissue. The research that is presented here 

could be carried out using human cadavers, but both the Human Tissue Act, 2004 

and ethical issues make this unlikely to happen. Of the two, ethical considerations 

are probably more likely to prevent this type of research and ethical permission 

would have to be granted from the associated university. In the United States a 
human research facility does exist and it is commonly known as `The Body Farm' 

but religious views make it unacceptable to some people. The Human Tissue Act, 

2004 replaced the Human Tissue Act of 1961, the Anatomy Act of 1984 and the 

Human Organs Transplant Act of 1989. It was introduced as a reaction to the 

retention of body parts without proper consent at some hospitals, most notably, but 

amongst others Liverpool's Alder Hey. The Act of 2004 is ostensibly about consent, 

making this the most important principle in the lawful retention of human tissue. 

Although bodies after death can be donated to medical science, this is generally 
geared towards leaving your corpse to an Anatomy school. The scheduled 
purposes that require consent are listed in Table I (below). Part 4, obtaining 
scientific or medical information about a living or deceased person which may be 

relevant to any other person (including a future person), seems to suggest that 
bodies may be donated if relevance can be proved. 

Using pigs as an analogue for humans presents its own problems due to the 
dissimilarity between them. Because pigs are being used instead of humans it will 
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be necessary to look at the differences in microbial loads and species diversity of 

pigs, human adults, children and stillborn babies as all of this will affect any eventual 
tunnelling found. Traditional microbiological culturing methods are still most widely 

used and this may lead to a biased view of the aforementioned. Intensively bred 

pigs will be used for the experimental work as they are freely available and it does 

not require the killing of any animals. Organic pigs would absolutely be preferable 
but these would have to be killed for this reason which entails both moral and ethical 
dilemmas. Pigs farmed intensively bring their own pitfalls in that their gut flora may 
be modified because of farming practices such as the use of antibiotics and feed 

additives. 

Part Scheduled Purpose Requiring Consent 

1 Anatomical examination. 

2 Determining the cause of death. 

3 Establishing after a person's death the efficacy of any drug or other treatment administered to him. 

4 Obtaining scientific or medical information about a living or deceased person which may be 
relevant to any other person (including a future person). 

5 Public display. 

6 Research in connection with disorders, or the functioning, of the human body. 

7 Transplantation. 
8 Clinical audit. 

9 Education or training relating to human health. 

10 Performance assessment. 

11 Public health monitoring. 

12 Quality assurance. 

Table 1. Purposes requiring consent for the use of human tissue. (Data taken from Human 
Tissue Act, 2004). 

If soil bacteria are associated with the tunnelling of bone it becomes necessary to 
look at how this may be possible. Environmental microbiology has a much wider 
spectrum of diversity and although it is known that collagenolytic bacteria are 
present in soils this will vary from site to site especially when looking at differences 
between varying soil types (Alexander, 1977, Hackl et al, 2004). Depth of burial 
(Doryland, 1909) will have a direct effect on both which microbes can colonize a 
body and those that can work efficiently in the low temperatures found in most 
English grave soils. Yet again, culture methods used to enumerate soil bacteria are 
not ideal (Davis et al, 2005). Predaceous scavengers and fly larvae will affect 
microbial loads but within this study the main focus will be the latter. Maggots, 
which work to clear up natures dead corpses, are responsible for removing and 
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destroying indigenous microbes as well as any that infect the corpse from the 

surrounding microenvironment. This aspect will have to be considered when 

looking at those bodies left on the grounds surface. 

Diagenetic change is dependent upon various factors, one of which is the structure 

of the bone. This is fine when looking at archaeological samples of human bone but 

the experimental research uses pigs which have a rather different skeletal 

composition that sees bone being formed mainly of plexiform bone rather than the 

haversian systems seen in humans. 

The experimental research is supplemented by the histological analysis of adult and 

juvenile archaeological samples of human bone as well as archaeological samples 

of pig, sheep, cattle and canine bone. These are taken from a variety of sites and 

differing time periods. Bacterial assay tests have also been carried out to determine 

at what point bacteria can be found in bone. This involves the use of specific dyes 

and procedures that enable visualisation of the microbes within the bone structure 

before any tunnelling can be identified. No attempts have been made to type the 

bacteria to species as this is outside the remit of this study and would be incredibly 

time consuming and very possibly unhelpful as any bacteria found may not be those 

responsible for microfocal destruction. 

This research will make an important contribution to our understanding of the 

processes that effect the survival of skeletal remains in the archaeological record. 
Furthermore, the integrity of bone at the microscopic level is a major consideration 

when applying analytical methods such as chemical and biomolecular analysis. 
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Chapter 2: Taphonomy, Necrology, Biostratinomy and Differential Burial 

2.1 Introduction 
Taphonomy is the study of cadaver decomposition and is a broad term that covers 
the entire period from the point of death to the point of recovery of the remains. 
Within this discipline are the processes of death (necrology), biostratinomy (stage 

between death and burial), burial, and diagenesis (processes affecting a corpse 

postdeposition). All of these factors will affect what is recovered and its final 

exhumation condition. Because bacterial diagenetic change is dependant upon 
these earlier processes, it is essential to understand how any recovered skeletal 

elementals have previously been treated as microbial invasion of bone will depend 

upon the loads available which may be higher, lower or non-existent depending on 
the state in which the body enters the ground. Skeletonization would be seen as a 

prerequisite for the commencement of MFD (micro-focal destruction) if soil bacteria 

were to be found responsible for this phenomenon making it necessary to 

understand these prior decompositional processes. 

This chapter will deal with the taphonomic factors at work on any given corpse and 
will deal specifically with cadavers from the moment of death to the point of 
skeletonization or mummification/adipocere formation. It will not cover the more 
specific area of bone diagenesis and destruction as this will be covered in a later 

chapter in detail (Ch 5). There will also be a review of what has already been 

achieved experimentally and this will focus on studies using human cadavers and 
also those that use the carcasses of pigs, rabbits, rats and other animals. A short 
look at entomology and death will be necessary due to the close association 
between insects and soft tissue decomposition. This is a very brief introduction to 

early post-mortem changes that is far from conclusive but that offers a small insight 
in to the many factors that affect dead bodies. 

2.2 Necrology: Microbes and Death 

The very first process affecting the body is the point of death which is usually 
determined by the cessation of the circulation and respiration followed by a series of 
processes that occur at varying points in time and that include, cooling of the body, 
muscular rigidity (rigor mortis), postmortem staining (livor mortis/hypostasis) and 
putrefaction (Smith, 1945). Cooling of the body is determined by the immediate 
surroundings and may be affected by bed covers, clothing, climate, and refrigeration 
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at a morgue; it is also affected by the condition of the body and age, and by the 

mode of death (Kerr, 1946). Cadaveric rigidity (fig 2) is also governed by 

temperature and may occur earlier in cases of electric shock or by muscular 

exhaustion, whilst cadaveric lividity is a staining of the skin caused by blood 

gravitating to the lowest-lying parts of the body (Guy & Ferrier, 1888). 

Putrefaction marks the commencement of the destruction of the cadaver and 
commences internally almost immediately and is usually visible externally within 48- 
78 hours after death has occurred. This process is two-fold with enzymatic and 
bacterial decay working in tandem to breakdown the soft tissues (Poison & Gee, 

1973). Enzymatic decay better known as autolysis (self-destruction of body cells) is 

denoted by cell death and then destruction by body enzymes (Dix & Graham, 2000). 
Intestinal bacteria play a large part in putrefaction and this can firstly be seen in the 
discoloration of the skin of the right flank (around the cecum) of the abdomen (fig 
2.1). This greenish staining then spreads to cover the entire body and is caused by 
the breakdown of haemoglobin in the red blood cells by intestinal bacteria (Jackson 
& Jackson, 2004). Green discolouration of the skin is derived from sulphur- 
containing compounds as the haemoglobin undergoes chemical change (Gordon et 
a/, 1975). 
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Fig. 2.1 Green staining of the abdomen. 50kg Pig. The staining occurred gradually over a 
number of days after prior freezing. (Author, 2007). 

The bacteria involved are largely anaerobic due to a drop in oxygen levels after 
death. Normally, during life homeostatic mechanisms prevent bacterial overgrowth 

but as these cease at death the unrestrained growth of bacteria begins and is 

fuelled by the copious quantities of carbohydrate, protein and fat breakdown 

products which are released by autolysis (Clark et al, 1997). Bacterial transmigration 

will be discussed in detail in the next chapter. Once putrefaction has begun three 

main changes can be seen; changes in the colour of the tissues, evolution of gasses 
in the tissues and liquefaction of the tissues (Gordon & Shapiro, 1975). The 

physical state of a body at the time of death will impact on how the body decays and 

emaciated bodies tend to skeletonize rapidly, whilst in heavier persons there may be 

a trend towards the formation of adipocere in the fatty areas such as the breasts and 
buttocks (Mant, 1987). Septicaemia or blood poisoning (i. e. MRSA and wound 
sepsis) directly affects the rate at which a body decays. If a person dies with 
septicaemia then their blood will already be compromised by the influx of large 

numbers of bacteria in to the bloodstream (Perper, 1993). Such infections can lead 
to a rapid progression in putrefactive rate especially within the liver. Clostridium 

species have been indicated as contributing to this phenomenon in two sixteen year 
old children. The first, a boy, was found to have high-grade putrefaction of the 
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mucous membranes at autopsy and the authors state that bacterial sepsis should be 

considered a causative agent in cases of unusual advanced decomposition 

(Hausmann et al, 2004). In the second case, a 16-year-old girl was autopsied the 

day following her death from a clostridia infection and was found to be in an 

advanced state of decomposition (Totten, 1979). Breakdown of the soft tissues will 

persist until a point of either skeletonization or mummification. 

2.3 Pre-burial Modifications and Differential Burial Practices 

How bodies decompose after death is complicated by multiple factors. The early 

post-mortem changes have been noted above and decomposition is then further 

dictated by biostratinomy, how the body is dealt with prior to its interment, and then 

yet further by burial practice and soil conditions. So many factors contribute to the 

eventual end product of skeletonization or mummification that the outcome is not 
fully predictable. Decay may be accelerated or delayed (table 2) dependent on 

amongst others; the restriction or supply of oxygen, freezing and thawing, presence 

or absence of insects and scavengers, burial or ground deposition, soil type, flora 

and fauna, clothing, and obesity or anorexia (Gunn, 2006). 

Stage of I State of Remains Physical and Environmental Variables 

Decomposition 

Initial Decay Gases are produced internally, microorganisms 

are active, flesh remains intact and fresh, no 
discolouration or insect activity 

Putrefaction Internal gasses bloat the body, microbial activity 

is intensified, there is a strong odour of decay, 

and bodily fluids are purged (fig 2.2) 

Black Odour of decay intensifies, gasses and fluids 

Putrefaction are purged as the body collapses, internal 

organs take on a creamy consistency, and 
exposed flesh blackens. 

Butyric There Is a slow drying of the tissues, exposed 
Fermentation flesh ferments. 

Dry Decay Flesh is drying out and becoming leather-like. 

Skeletonizatlon Bone is exposed, most soft tissue will have 

gone and, there may be some residual ligament 

and cartilage remaining, desiccated tissue or 
mummified tissue covers less than one half of 
the skeleton 

Extreme Skeletonization with 

Decomposition bleaching! exfoliation/metaphyseal 
loss/cancellous exposure of vertebrae 

Small versus large body size (small bodies decompose at a 
faster rate) 
Cold climate (decomposition can be slowed or halted If body Is 
frozen, cold dry climate decay Is slower than cold humid 

climate) 
Whole versus wounded/dismembered (whole bodies 

decompose slower than separate body parts) 
Hot climate (hot humid climate accelerates decay, hot dry 

climate decomposition slows, dry heat desiccates flesh) 

Nude versus clothed/wrapped (nude bodies decompose faster 
Moist and/or acidic soils (decomposition rapid in these types of 
soil) 
Contained and buried versus not contained and not buried 
(contained and buried bodies decompose at a slower rate 
Sand, clay and gravel soils with a high pH (decomposition 

slower) 
Presence of water (decompose slower unless scavenged by 

aquatic animals, cold to freezing water will substantially delay 
decomposition) 
Insect activity (accelerates decomposition) 
Carnivore and scavenger activity (promotes decomposition) 
Seasonal differences (winter burials require longer to 
decompose) 

Table 2. Data modified from Galloway, 1997, Nafte, 2000, Mann et aI, 1990. 
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It is possible that the body may be disarticulated intentionally through the practices 

of butchery, de-fleshing or by excarnation. This will influence which bones will 

become buried and will also serve to sterilise the corpse by the removal of intestinal 

microbes from the body and hence also from the grave. Bones may be cooked or 

burnt which will again alter the microbial load and influence how quickly the remains 

will degrade. 

Although in today's society it is usual for bodies in the western world to be either 

buried or cremated, this does not hold true in past cultures whose bodies enter the 

archaeological record. Many of the bodies may indeed follow these two pathways 
but there are others that will have been treated in a diverse manner of ways. The 

main protagonist of who is buried, when, where and how is man (Henderson, 1987). 

According to Huntington & Metcalf (1991: 24): "Corpses are burned or buried, with or 

without human sacrifice; they are preserved by smoking, embalming or pickling; they 

are eaten - raw, cooked or rotten; they are ritually exposed as carrion or simply 

abandoned; or they are dismembered and treated in a variety of ways. " Bodies may 

simply have been left where they died and would either become naturally buried or 
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remain on the grounds surface. They may have been afforded a sea burial where 

generally the remains will be lost, but if discovered their preservational state will be 

dependant upon many variables including, water and air temperature, access by 

scavengers, seafloor substrate and geology, water chemistry and the season of 

death (Sorg et al, 1997). Carnivores may modify remains both by removing them 

from the death site and also by ingestion. Pickering (2001) discovered that primate 

metapodials and phalanges recovered from carnivore faeces are often better 

preserved than larger elements. This is due in part to the fact that they are often 

swallowed entire unlike the larger elements which require extensive chewing prior to 

being eaten. Remains may be modified by amongst others; ants (Byard, 2005), pigs 

(Berryman, 2002), rodents (Koszyca et a!, 2006, Tsokos et al, 1999), birds, reptiles 

and amphibians (O'Brien et a!, 2007), canids (Haglund et a!, 1989, Willey & Snyder, 

1989), ferrets (Ferrant et al, 2008), hamsters (Ropohl et a!, 1995), squirrels (Klippel 

& Synstelien, 2007) and bears (Carson et a!, 2000). 

It was not unusual in the past to embalm bodies, either by applying unguents known 

to have preservative properties such as honey, red pepper, vanilla, nuts and 

mushrooms all of which contain compounds that inhibit bacterial growth (Sledzik & 

Micozzi, 1997) or alternatively by removal of the viscera. A continuing theme 

amongst those of the catholic faith is the incorruptibility of the bodies of saints. 
There are literally hundreds of documented cases of saints who reportedly refuse to 

corrupt. The reasons for this are numerous, not least the effects of evisceration that 

successfully removes the intestinal gut flora from the remains leaving a somewhat 
sterile environment. Many Saints bodies were treated in this way and are often 
recovered in an incorrupt state. An Italian pathologist who was allowed to examine a 
number of bodies found that six had been preserved by both embalming and by the 

application of unguents (Fulcheri, 1996). This is then further aided by the 

application of known preservatives. Many of the saints were practising ascetics, 
otherwise known as 'Holy Anorexics' who deliberately starved themselves in both an 
explicit attempt to become closer to God and from a desire to be holy (Davies, 
1985). These men and women were not averse to starving themselves even if this 
led to the unfortunate occurrence of their deaths and dying with an empty bowel 

would improve their chances of being preserved significantly. 

/ 
Similar to this procedure is the act of mummifying bodies. This can either be 
natural, such as the bodies of newborns that are sterile, or in the case of adults that 
are placed in locations conducive to desiccation of the bodies. New and stillborn 
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babies are known to mummify and this is sometimes regarded as a natural 

conclusion due to their lack of gut bacteria and this is probably aided by their 

clandestine and generally warm hiding places that include airing cupboards and 

wardrobes. Often the bodies are wrapped in newspaper or cardboard which would 

serve to dry out the corpses further. It may also be by artificial means by either 

embalming or placing of the body in areas known to be preservative such as 

intramural locations (vaults, crypts, catacombs). Both embalming and 

mummification are extreme modes of modification that will seriously affect 

decomposition due in the case of artificial mummification to the removal of gut 

bacteria. In natural mummification, it is an issue of postmortem tissue dehydration 

overtaking the action of decomposition (Lynnerup, 2007). Basically, bacteria require 

water if they are to efficiently produce enzymes and if the body dries quickly then the 

process of bacterial putrefaction is halted. 

Bodies may be preserved in peat bogs, environments that are known to have 

antibacterial properties. Bog moss (sphagnum) releases a substance known as 

sphagnan that dissolves in the bog water and converts to humic acid which results 

in the bacterial growth being retarded (Fischer, 1996). In this case the skin is often 

better preserved than the skeletal material and is presumed to be as a consequence 

of intestinal microbes reaching the bone structure before the viscera is infiltrated by 

bog water (ibid). Extensive demineralization of the skeleton is caused by the acidic 

environment of the peat and in a study of an Iron Age bog body from Germany, it 

was found that 92.7% of the bone mineral density had been lost (Schilling et al, 

2008). The spatial structure of the bone was found to be very well preserved but this 

is in direct contrast to most other bog bodies where skin and hair are well preserved 
but where there is dissolution of the internal organs and the bones do not generally 

survive (Omar et al, 1989). Having said this, the bones of the bog bodies Zweeloo, 

Tollund and Meeny-braddan are quite well preserved. Brothwell and Gill-Robinson 

(2002) note that the bones of the hand and femur of Lindow II have something 

similar to microbial attack in the form of punched out lesions in the microstructure 

and therefore believe that microbial damage does at times occur despite the 

antimicrobial action of the sphagnan and this is somewhat corroborated by the work 

of Bell (1996) where modern forensic remains from a muskeg bog exhibit bacterial 

damage. Evershed & Connolly (1994) believe that two different mechanisms of 
decay operate differentially on muscle and skin, whilst bone was not researched in 

this case. However it does appear that skin is the best preserved part of the body 

with the collagen fibres being remarkably intact and in all cases where soft tissue is 
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preserved there is tanning (Painter, 1991). Adipocere that may form in bog bodies 

is composed mainly of fatty carboxylic acids indicating that both extensive reduction 

and oxidation have occurred during burial (Evershed, 1992). 

Bodies are occasionally buried within sealed iron coffins and these also appear to 

slow down the decompositional process especially when combined with embalming 

as was often the case in the late 19thC (Owsley & Compton, 1997). In a study of 
lead coffins buried for a period of 150 years, it was found that many of the corpses 
had preservation of the internal structures, skin and external features, caused by the 

airtight nature of the coffin producing the right conditions for the formation of both 

adipocere and mummification (Green, 2006). 

Another preservative process is the formation of adipocere which is regarded as a 
spontaneous inhibition of postmortem changes that makes a corpse almost 
completely resistant to decomposition in an unchanging environment (Fiedler & 
Graw, 2003). Adipocere formation is caused by a postmortem conversion of 
adipose tissue in to a solid material comprising fatty acids (Forbes et al, 2004) and 
both aerobic and anaerobic bacteria are involved by microbial conversion of various 
unsaturated fatty acids to hydroxy fatty acids (10-OHFA) (Takatori, 2001). This may 
occur in a variety of situations including terrestrial and marine environments. In cold 
sea water adipocere has been observed as early as 38 days postmortem (Kahana 

et al, 1999). It is known to occur in other animal species including pigs, cattle, 
sheep and rabbits and there is no evidence of any fundamental difference in 

composition although there remains a difference in formation with regards to time 
(Forbes et al, 2005). In research by Notter et al (2009), adipocere was found to 
form sooner in pigs than in humans and this was attributed to differences in the 
distribution of total fatty acids between species. O'Brien & Kuehner (2007) set up 
experimental research in to adipocere formation in aquatic contexts and named it 
the 'Goldilocks Phenomenon' because each. environment must be 'just right' for 

adipocere to form and that both water and bacteria must be present. Although 

adipocere is thought to be a phenomena linked to water, such as wet burial sites or 
marine settings it can also be formed in dry settings. An elderly woman who had 
been sealed in a box and covered by many plastic bags was shown to have 

significant adipocere formation at the time of her discovery (Nushida at al, 2008). 
Factors such as the soil having a mildly alkaline pH, warm temperatures and 
anaerobic conditions promote the formation of adipocere (Forbes et al, 2005). 
Further research by Forbes et al (2005) in to the effect of soil type on adipocere 
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formation concluded that it could form in a range of soils and that bodies buried 

directly in soil rather than within a coffin were more likely to exhibit these fatty 

changes. They also speculate that soil bacteria plays no part in the process, rather 
the microbes originate from within the rotting corpse. 

Excarnation is another postmortem act that will also affect what is buried, recovered 

and the amount of microbes available within the body. Redfern (2008) reports on 

Iron Age burials from Dorset that were excarnated, given a secondary burial and 

then selected bones were incorporated into structured deposits. The remains also 

demonstrated marks that corresponded to animal gnawing, dry fractures and 

perimortem blunt force trauma. Two skeletons found in a cairn at Loch Borralie had 

also been left above ground for some time prior to burial, as although the bodies 

were recovered from grave cuts, extensive scavenging had taken place 
(MacGregor, 2003). Similar to this (Reilly, 2003) are the remains recovered from 

Neolithic cairns in Orkney that had been interred articulated, allowed to decompose 

in-situ, then removed as disarticulated remains, whilst leaving the skulls in place or 

removing them to other sites of importance. All of these burial practices acutely 
influence what will be recovered and its condition. How you die, the diverse range 
of biostratinomic processes and burial practices as noted above have served to alter 
what we find in various ways. Diagenetic change will eventually cause more 

alteration and damage. 

2.4 Experimental Research: Decomposition Studies 

Because so many post-mortem changes take place it has become necessary to try 
and clarify matters by the use of experimental protocols. Most of this research has 
been carried out where pig or other animal cadavers (but also human) are sited 
within different environments (buried, left on the ground) and then recorded in 

respect of length of time for decomposition to be completed, insect activity, 
scavenging patterns, and body odour analysis (Wilson et al 2007, Aturaliya & 
Lukasewycz 1999, Prieto et a/ 2004, Morovic-Budak 1965, Weitzel 2005, Micozzi 
1986, Archer 2004, Tibbett et al 2004, Wiltshire & Turner 1999). A large amount of 
this research is completed in the USA and often with Federal funding. Regrettably, 
much of this valuable data cannot be applied to decomposition in England where the 
climate differs enormously from America and is generally cooler and wetter and with 
less seasonal variation. 
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Complete skeletonization of a corpse can take many years in a burial environment 

and is highly dependent on geography. Bodies buried at depth in Germany may 

skeletonize within 8 years but this may sometimes take twice as long (Breitmeier et 

al, 2005). Bodies afforded a shallow burial in summer will probably skeletonise 

within 6 months; the same circumstances in winter may lead to mummification of the 

corpse due to cold temperatures halting the decompositional process. The 

timescales given vary from author to author and from place to place and Rodriguez 

(1997) suggests that those given a deeper burial take between two to three years to 

skeletonize although in some cases this will be considerably longer. Burial depth 

appears to be of great consequence to how fast a body decomposes; deep burials 

will be subjected to more constant temperatures especially in temperate climates. 
The deeper the burial, the slower the rate of decomposition as demonstrated by 

bodies buried at the research facility in Tennessee (Rodriguez & Bass, 1985). The 

length of time a body is buried for coupled with the time of year are both deemed 

significant factors whereas postmortem changes such as trauma and autopsy do not 

exert any influence in decomposition. Schultz (2007) carried out experimental 

research and also concluded that although time is highly significant to 
decomposition so too is burial depth. Decomposition at depth is much slower due to 
limited access by carrion feeding insects, cooler temperatures and protection from 

predaceous scavengers. When looking at soil type it was found that cadavers buried 
in clay decomposed slower than those buried in sand. Weitzel (2005) also looked at 
variables such as depth and the use of clothing. In this study the deeper burials 
tended to decompose faster, however it must be noted that these were still very 
shallow and also that some of the pigs that decomposed quickly were smaller. It 

was also noted that the application of clothing tended to slow down the decay 

process of the piglets. 

Decomposition has been seen to advance differentially when animal carcasses are 
placed in either full sun or under the shade of woodland. A temperature based 
difference at the two sites resulted in the pigs from the woodland site decomposing 
slower under the influence of a slightly cooler setting that to some extent inhibited 
the destructive action of maggot larvae (Shean et al, 1993). If for any reason the 
decomposition process is slowed down or halted then mummification may occur. 
Many of the corpses from the 'Body Farm' have mummified soft tissue on the 
exterior of the bones, although the internal organs are lost and this is most likely 
caused by the extreme, high temperatures in Tennessee. In southern Arizona 
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mummification is also more frequent due to the aridity and high summer 

temperatures (Galloway et al, 1989). 

Komar (1998) looked at decay rates in a cold climate (Edmonton, Alberta) expecting 

decomposition to be retarded and it was discovered that in summer a body could 

skeletonize within 6 weeks and in winter by 4 months. The winter decomposition 

rate was faster than expected as the ground can remain frozen for long periods 

which should act in a similar way to cold storage/refrigeration. However, two 

significant factors were introduced that reflect a modified form of decay; scavengers 

reduced many of the remains and in other cases there may have been a freeze thaw 

effect. Micozzi (1986) found that previously frozen carcasses when thawed decayed 

slightly quicker than those that had not been frozen. Contrary to this are the findings 

of Stokes et al, (2008) who also investigated the effect of freezing prior to burial on 
the decomposition of soft tissue. They found the process to have no significant 

impact on decompositional rates but did note that microbial activity was significantly 

reduced. However, the soft tissue used in the study was skeletal muscle portions 

which should be free of enteric microbes. Both authors (ibid, Micozzi, 1997) believe 

that freezing will at least in part have some kind of biocidal effect against 

endogenous microbes. 

Vass (2001) introduced a formula for soft tissue decomposition (to a time when the 

body has either skeletonized or mummified) for cadavers placed on the ground. The 

formula provides a rough estimate for decomposition by taking the figure 1285, 
finding the average temperature for the duration of decomposition (say 10°C) and 
dividing (1285/10=128.5 days to skeletonize or mummify). Using the formula in this 

country would probably lead to a hefty discrepancy that would be accounted for by 

the very high temperatures in America. The use of 'accumulated degree days' has 

recently been introduced that utilises a point based system to score decomposition 
in defined areas of the body. These scores are then added together and used with 
known temperature data to provide a possible postmortem interval and this research 
suggests that decomposition is linked to accumulated temperature and not just time 
(Megyesi et a/, 2005). 

All of the taphonomic studies carried out are subjected to disturbance for data 

collection and it was thought that this may disrupt and alter the progress of 
decomposition rates. However, recent research in to this problem showed that 
repeated physical disturbance did not alter decomposition times and no detrimental 
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factors were determined (Adlam & Simmons, 2007). This is most likely the case as 

such events tend to be very short-lived with disturbance generally lasting no more 

than a few minutes before a return to a controlled environment is resumed. 

2.4.1 Experimental Research: Entomology 

Many of the decomposition studies are heavily based on entomology and the 

succession of fly larvae (VanLaerhoven & Anderson, 1999, Carvalho & Linhares, 

2001, Hobischak & Anderson, 2002) and also development rates to predict 

postmortem interval (Anderson, 2000). This is unsurprising as they have the 

greatest ability to affect the rate of reduction in a corpse (fig 2.3). Blowflies lay 

batches of eggs on corpses within a very short period after death (Smith, 1986, 

Anderson & VanLaerhoven, 1996) when temperature and accessibility permits. 

Oviposition usually occurs during daylight hours but has occasionally been observed 

nocturnally (Singh & Bharti, 2008). Once hatched the larvae move through three 

distinct larval stages that are classified as instar stages 1,2 &3 before leaving the 

corpse and pupating. Maggots have very soft mouthparts and digestive enzymes 

are released that help breakdown the food. Larger carcasses appear to be more 

attractive to the blowflies (Erzinclioglu, 1996) as presumably these are capable of 

sustaining many more larvae than a smaller corpse. Bodies that are buried are 

afforded some protection from larval activity and those species that can burrow are 
limited; which fauna can reach the corpse depends on the nature and depth of 
burial. Blowflies may be completely excluded by a covering of soil only 2.5cm deep 

(Smith, 1986). However, Collembola (spring tails) and coffin flies have been 

recovered from a corpse buried 1.8m in depth within an unsealed coffin inside an 

unsealed cement vault, 28yrs after death, showing that at least some flies can 

access deeply interred remains (Merritt et at, 2007). 
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Fig 2.3 Maggot activity exposes ribs in 10kg pig with postmortem slash wound to abdomen 
(Author, 2007). 
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Insect activity plays a crucial role in the stages of decomposition and Rodriguez & 

Bass (1983) relate that the four separate decay stages of fresh, bloated, decay and 
dry occur at timescales according to both climatic conditions and carrion insect 

populations. Putnam (1978) found that in reality there are two major pathways of 
decomposition that are characterized by the presence or absence of blowfly larvae. 

Seasonality and habitat did not affect decomposition in the same way (according to 

Johnson, 1975, differing species colonise corpses according to seasonality), 

although carcasses deposited in the winter or spring tended to decompose slowly 

and there was a propensity for these bodies to mummify. This was confirmed by 

Wang et al (2008). Payne (1965) constructed cages that either allowed insect 

access or prevented it when looking at decomposition in the summer months. The 

pig carcasses in the cages that excluded insects took many months to decompose 

and after 100 days 20% of the pig still remained in a mummified form. 

This would suggest that those bodies that mummify may have lower microbial loads 

due to the drying of the corpse which then becomes unattractive to microorganisms. 
Joy et a! (2006) found that pigs in shaded areas tended to decompose slower than 
those in full sunlight, with lower maggot mass temperatures, and smaller third instar 
larvae. Centeno et a! (2002) also found differences between sheltered and 
unsheltered pig carcasses. Koeärek (2003) found more coleopteran species 
colonised corpses in forest sites than meadow sites. Destruction is also caused by 
beetles that are often involved in corpse reduction at a later stage, feeding on 
mummified tissue and hair. Larder beetles feeding on mummified tissue can 
reduce a body to skeletonized remains in 5 months under optimum conditions 
(Schroeder et a!, 2002). 

2.4.2 Experimental Research: Children 

Experimental research in to decomposition rates in children are rare but it is 
necessary to provide a summary of what is known as much of the current research 
project looks at sterile versus non-sterile bodies (i. e. fetal bodies are known to be 
sterile and this is discussed in chapter 3). It is a known fact that very young children 
are often grossly underrepresented in the archaeological record. This is especially 
true of the Anglo-Saxon period and Buckberry (2000) suggests a number of reasons 
including both taphonomic and cultural factors. Lewis (2007: 37) argues that the 
bones of children have exactly the same "potential to survive well in the same 
conditions that allow for the good preservation of adult bones. " No experimental 
studies have been carried out to see if taphonomic factors rather than social or 
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cultural reasons could be the cause of this deficit. To gain an insight in to this 

discrepancy it is necessary to have some understanding of past cultural and social 

practices of communities that no longer exist. It is impossible to say with conviction 

what people in past societies believed but from modern studies carried out in 

developing countries it is possible to speculate (albeit with limited accuracy) about 
how they lived and their thoughts on life and death. Living in less blessed times 

before the advent of modern medicine, may have led to a belief system where 

children were not seen to be as important as adults, only reaching a certain level of 

value and autonomy at a pre-determined age; possibly at a point where endemic 

childhood diseases had diminished to a point where it was presumed that survival 

was more likely than imminent death. One scenario that is possible is that in times of 

great need the exposure of one mouth too many to feed may have been a 

necessary course of action if others were not to suffer. Any child born with a 
disability would have even more chance of being left to die in a field or remote 
location rather than a lifelong investment that may restrict the carer to a life of even 

worse proportions and hardship than really necessary. These abandoned children 

would possibly not be seen at the point of excavation in a bounded cemetery as 
their bodies may have been hidden or left in places where they would not be found. 
It is with great difficulty that we have to impose very different views from our own on 
to women in the past that often lived in very difficult times were altruism could prove 
to be an expensive luxury. Babies that were stillborn or died within the early 
postnatal period before the application of certain religious rites or ceremonies may 
be excluded from normal burial grounds due to a belief of them being polluted or 
impure. This again directs bodies outside the normal confines of burial areas and 
into unknown spaces that are not likely to be excavated on a regular basis unless 
they are within the confine of living quarters or the immediate surrounding vicinity. 

These are of course just some of the possible reasons why children are more 
difficult to find from the past. Even the child that is loved and wanted but that dies in 
the first couple of years will in all likelihood be treated differently at the time of burial. 
Adults are large and bulky requiring graves that can contain their considerable size, 
but very young children can be buried in undersized, shallow graves; after all it 
would be unlikely that anyone would dig a grave six feet deep for something so 
small; graves are usually cut to size. Unfortunately with shallow burial comes the 
possibility of scavenging by carnivorous predators looking for their next easy meal. 
A body weighing only a few kilograms may be removed from the grave site in its 
entirety and this would ultimately lead to a 'missing child'. Even if the remains are 
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not scavenged they may be subjected to trampling and/or possibly the effects of 

ploughing and they are also more likely to be disturbed during subsequent grave 

cutting. Adult bodies are often subjected to this latter scenario and therefore 

children must be at even higher risk due to being buried closer to the surface. It is 

also possible that excavator error or unfamiliarity with foetal or infant bones may 

mean that children's remains are not recovered because they are not recognised as 

such or are entirely missed due to their size. It is well known that even excavations 

of adults have often in the past been inadequate as the smaller bones are not 

necessarily visible or diagnostic of being human to the untrained eye. 

When looking at taphonomic reasons for this childless world, Guy et al (1997) argue 

that both low mineralization of the bone combined with its poorer quality may explain 

why their remains are not well preserved. They also note that small bones are more 
likely to be crushed and are attacked more easily by organic matter decomposition 

or by acid soils. A few studies have been conducted using child-sized remains, but 

these are not generally focused primarily on actual decomposition. For instance, 

Morton and Lord (2006) used small pigs for research in to scavenging and 

scattering. Whilst decomposition is noted, the emphasis on these areas detracts 

from decomposition without the hindrance of these secondary factors. This 

research was also limited by the size of the carcasses chosen. The remains ranged 
from 11.25-27kg and were meant to reflect the size of children aged to 2-11 years. 
No reason is given for the exclusion of smaller animals but it is probable that 

anything less than this would be taken away whole which would be 

counterproductive to their research. They did however discover some interesting 
facts in that vertebrates would avoid feeding on the carcass if invertebrate 

colonization had already commenced and scavengers would wait until the 
invertebrates had migrated away from the corpse before utilizing them as a food 

source. Further to this, there was found to be no apparent succession order of 
vertebrates feeding on the corpses. An increase in scavenging by vertebrates is 

seen in cooler weather and this is probably due to the fact that flies find it more 
difficult to locate carcasses when odours are not as apparent (DeVault et al, 2004), 

added to this is the fact that flies do not fly below 10°C. Schultz (2007) researched 
several decompositional variables using pigs as a proxy for humans and concluded 
that smaller-sized cadavers (i. e. those of child size) decomposed faster than larger 

cadavers. Gremillion (2005) looked at child sized remains with regards to insect 

colonization and found that decomposition was delayed where environmental 
conditions were not conducive such as times of rain, the presence of clothing and 
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low temperatures. The small carcasses were also subjected to scavenging by foxes 

even when covered by cages. Although Gremillion found rain to be counter 

productive to decomposition, in another study by Archer (2004) high temperature 

combined with rainfall actually reduced the time taken to decompose. The study 
focused exclusively on neonatal remains (using Sus scrofa as a proxy) and 
therefore this result cannot be directly extrapolated to adults. However, Archer 

states that rainfall is likely to have the same effect on larger bodies. This is mainly 
because the influx of water mechanically breaks up flesh, keeps the surrounding soil 

moist and most significantly rehydrates soft tissue, which in turn allows maggot 
ingestion and permits re-colonization by maggots. 

Taphonomic factors are much less likely to be the cause of the shortage of juvenile 

remains than cultural reasons. Most likely is that the babies are not there in the first 

place and in cases where children's remains are recovered from archaeological 

sites they appear to be just as well preserved as the adults. Having no direct 

correlates with data already gathered makes it difficult to presuppose what will 
happen to smaller or sterile corpses due both to their size and the English climate. 
Add to this the current difficulty of experimental research in this country because of 
the `Human Tissue Act, 2004' (http: //www. hta. gov. uk/about_hta/human tissue 

_act. cfm) it 
becomes increasingly tricky to find appropriate research models and methods. The 

methods employed here are far from ideal but go some way to explaining the 
decomposition process of very young children both in this country and elsewhere. 

2.5. Diagenetic Change 

This is a brief introduction to diagenesis as it is covered in detail in chapter 5. 
Diagenetic changes to bone in the form of bacterial attack in the burial environment 
may be reliant upon the body skeletonizing prior to any destruction. This has in fact 
been suggested previously as a prerequisite for the commencement of bacterial 
diagenetic change. Yoshino et al (1991) advocate that it takes 5 years for a buried 
body to skeletonize and this roughly correlates with bone destruction beginning after 
this period. They also propose that histological change will be impeded for long 
periods and will be less advanced in those bones left above ground. Undeniably if 
soil bacteria were to be the main proponents in this phenomenon then this would be 
of upmost importance as bacteria would not be able to enter the bones until all the 
soft tissue had putrefied. Conversely, if gut bacteria are instead deemed to be 
responsible, then the rate of putrefaction would not be of importance rather other 
factors such as access by insects and predaceous scavengers would be more 
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significant. It is therefore a fundamental necessity that the decompositional 

dynamics of necrology, biostratinomy, burial and diagenesis are understood. 

2.6. Summary 
Because cadaveric decay is so varied in the way that it advances it becomes difficult 

to ascertain a direct path taken by any given corpse. And although this research 
looks at the bare bones that are left after putrefaction of the soft tissue has ceased, 
these prior degrading routes are fundamental to the onset of bacterial decay of the 

hard skeletal tissues. Small bodies of children may be scavenged, adults may be 

disarticulated, bodies may be buried at depth or given a shallow burial or left on the 

grounds surface, adipocere may form or a body may mummify. All of these issues 

will have a direct bearing on the availability of the microorganisms that will inhabit a 
corpse and ultimately destroy collagen from the cadavers' bones. This really is 

where the microbiology of death is at its most pertinent as the above will be the 

ultimate reason why we then find bones that are either free of bacterial destruction 

or those that are devastated by the tunnels and degradation that is wrought by 

microorganisms under the right conditions. 
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Chapter 3. Microbiology of the Body 

3.1 General Introduction 

The main focus of this research concerns microbial degradation of bone and more 

specifically it investigates how microbes that are capable of producing a collagenase 

enzyme utilise bone collagen as an energy source and whether they cause the 

tunnelling that is then found in both archaeological and considerably more recent 

bone (as early as 3 months post-mortem). This tunnelling phenomenon is poorly 

understood and although it is believed to be as a direct consequence of bacterial 

activity, this remains a hypothesis rather than a proven mechanism. The tunnelling 

of bone post-mortem is believed to be a) as a result of endogenous gut bacteria, or 

b) a phenomenon caused by soil microbes, or 3) a combination of both gut flora and 

soil bacteria. Within the scope of the research presented here, domestic pigs (Sus 

scrofa) have been used as an analogue for humans. For this reason it is important 

to note that although much of what is discussed here is relevant to humans and 

other animal species there is also a discussion of how pigs may differ in the amount 

of bacteria present, the species of bacteria found and also the specific location of 

any bacteria present within both the gastro intestinal and oral tract. 

3 .2 Introduction to Microbiology 

There are three main groups of bacteria that can be determined by their ability to 

grow either with or without a supply of oxygen. The first group is the aerobes that 

must have oxygen to grow; the second are the anaerobes which cannot survive in 

the presence of oxygen and the third group, the facultative anaerobes that are 

capable of growth with or without the presence of oxygen (Alexander, 1977). In 

addition to this microbes require sometimes very specific, host or environmental 

conditions. For the bacteria to grow this must include access to the appropriate 

nutrients within the body and external conditions such as temperature, pH level, and 

reduction potential and some of these are listed in table 3 below. Temperature is 

very important and most bacteria are designated as Mesophiles which are adapted 
to intermediate temperature and are the most common of the bacteria. With all 
bacteria there is a range of temperature over which they can continue to thrive and 
this is quite large, however they also have an optimum temperature which covers a 

much smaller range. Usually bacteria can operate at lower temperatures over a 

greater range whilst an increase of just a few degrees above the optimum will 
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demonstrate a sharply defined maximum range. In addition to this, microbes are pH 

sensitive with most bacteria being designated as Neutrophiles (Table 3). 

Environmental and Host Bacterial Requirements 

Type of Bacteria 

Most Bacteria 

Psychrophiles 

Psychrotrophs 

Thermophiles 

Hyperthermophiles 

Temperature Range 

Range Can grow over a range of about 30°C 

Optimal Range Narrow 

Range 0°- 20° 

Optimal Range 15° 

Range 0°- 7° 

Optimal Range 20°-30° 

Range >550 
Optimal Range 55°- 65° 

Range >90° 
Optimal Range 80°-113° 

Range 20°- 45°C 

Optimal Range 37°- 44°C 

Optimal Range 30°C 

Mesophiles (most bacteria) 

Mesophiles in mammalian body 

Mesophiles in 

environment 
Type of Bacteria 

Acidophiles 

Neutrophiles (most bacteria) 

Alkalophiles 

Growth of Bacterial Populations 

E. coli 
E. coli 
Mycobacterium tuberculosis 

Pseudomonas aeruginosa 

Tolerant to pH Levelslranpe 

<4.0 

5.5-8 
8.5-11.5 

Environment Doubling Time 

Optimal 20 mins 
Human Intestine 10 hours 

Optimal 15-16 hours 

Soil 2-3 days 

Table 3. The requirements of bacteria that are needed for them to flourish 

The experimental research presented here is concerned with those species of 

bacteria that are capable of producing a collagenolytic enzyme. 

Two types of microbial collagenolytic enzymes are: (1) collagenolytic proteases 

which digest collagen macromolecules, and (2) aminopeptidases which recognize 

and digest collagen-specific sequences. True collagenase directly hydrolyzes 

collagen whilst proteases and gelatinases only hydrolyze gelatine, a denatured form 

of collagen (Watanbe, 2004: 520-521). The collagenase enzyme cleaves collagen (a 

scleroprotein found in hair, skin, nails tendon and bone) into small peptides. The 

collagen chains are tightly twisted which increases their resistance to proteolytic 

enzymes and Type I collagen (the collagen found in bone) is strengthened further 
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by a covalent bond that makes the molecule more resistant to enzymatic cleavage 

(Child, 1995). In bone and other calcified tissues the collagen is further protected 

from chemical attack by being surrounded by mineral. However, hydroxyapatite can 

be solubilized by many different bacteria that produce acids which will then make it 

easier to gain access to the collagen (Grupe et al, 1993). During life collagen 

degradation can occur in certain forms of pathogenic microorganism invasion such 

as tuberculosis and also in other diseases especially rheumatoid arthritis and 

periodontic inflammation (Watanabe, 2004). 

Thirty percent of the body protein in mammals is in the form of collagen (Harper, 

1980) and it accounts for more than 70% of the dry weight of skin and tendon (Lim 

et al, 1993). For bone to be affected the bacteria must normally penetrate the skin, 

mucous membranes or intestinal epithelium, surfaces that in life normally act as 

microbial barriers. Enzymatic catalysation is possible in a number of bacterium 

including but not limited to; Clostridium, Pseudomonas, Mycobacterium tuberculosis, 

Bacteroides, Prevotella, Fusobacterium, Proteus, Achromobacter, Streptomyces, 

Staphylococcus and Porphyomonas. The production of a collagenase enzyme by 

certain bacteria is critical for both growth and survival which is achieved by releasing 

amino acids from collagen and also by permitting the breakdown of defensive tissue 

planes that will allow the bacteria to spread and multiply. This greater nutritional 
diversity may confer a selective advantage over noncollagenolytic strains 
(Harrington, 1996). In summary, microbes are niche-filling opportunists with most 
being sensitive to a defined temperature, oxygenation and pH range. 

3.3 Adult Human, Newborn Human & Sus scrofa Microbiology 

For the experimental part of the research stillborn (foetal), newborn and older pigs 
were used as proxies for human cadavers at several stages of development. It is 
therefore relevant to discuss the microbial flora of all of the above and in addition the 
endogenous flora of the adult human. 

The full extent of the commensal gut community is unknown, but attempts are being 
made to rectify this. The adult body is a hive of activity with regards to bacterial 
colonisation that is present virtually body-wide, from the oesophagus to the skin to 
the intestinal tract. It has been suggested that the colon of an adult human contains 
96-99% bacterial anaerobes of the genera Bacteroides, anaerobic Lactobacillus, 
Clostridium, and Streptococcus) and only 1-4% aerobes (gram negative coliforms, 
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enterococcus, Proteus, Pseudomonas etc) (Gill-King 1997). The newborn infant 

body is a completely different matter and the microbes found here will be in much 

smaller quantities. The nine months spent in the womb is the only time that the 

human body is truly free of microbes, but this neonatal state is quickly compromised 

by an influx of bacteria from the mother and the surrounding environment: some of 

which will permanently inhabit the body at various locations such as the skin, the 

oral cavity and the gastrointestinal tract where they constitute an important aid to 

digestion (Wilson, 2005). An embryo is protected from bacteria by the maternal 

tissue that surrounds it. Impermeable membranes form a sac around the growing 

child that preserve sterility. A few hours before being born this barrier is ruptured 

and bacteria from the mother are free to cross over to the newborn as it travels 

down the vaginal canal. By the time the child is born the mouth, skin and external 

ear canals are all compromised and microbial colonization of the neonate will occur 

within 24 hours following birth (Tannock, 1995: 37). By two weeks of age the 

resident biota will in fact be of a similar population size to that of an adult (Ingraham 

& Ingraham, 2000). According to Savage (1977) in the early stages after birth the 

biota is predominantly Lactobaccillus sp in those infants fed on formula milk and this 
is also true of the pigs. In contrast, breast fed babies will have a biota consisting 

mainly of Bifidobacterium sp. In both humans and pigs these lactic acid species will 
be accompanied by a range of facultative anaerobes such as E. coil and the strict 

anaerobes will not usually be detectable until solid food is introduced. The levels of 
the aforementioned bacteria will increase progressively within the bowel until they 
become the dominant microbial population and by the time of weaning an adult 
climax level of bacteria will be present. However, Fanaro et al (2003) found that 
Bifidobacteria and Lactobacillus are seldom found in infants and they say that the 
dominant species are Enterococcus faecalis, E. coli, Enterobacter cloacae, 
Klebsiella pneumoniae, Staphylococcus epidermidis and Staphylococcus 

haemolyticus. Hughes (2007) agrees that Bifidobacteria do not make up a 
significant part of the infant biota and also noted that there is a tendency towards 

sudden shifts in species composition in the young. This research was carried out 
using DNA microarray technology rather than inadequate traditional culture methods 
that often fail to enumerate amounts of bacteria and species present. This latter 

research is more plausible as previous studies relied heavily on culture methods that 

were inherently flawed. Species composition therefore varies between the newborn 
and the adult but it also differs as we age as adults, varies along the length of the 

gut and is intrinsically affected by the environment (Hooper & Gordon, 2001). 
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The microflora of animals is distinct from that of humans both in terms of 
composition and in its location due to anatomical and dietary differences and 
environmental conditions. The proximal part of the gastrointestinal tract in the pig 
and some other animals, (fig 3) has its own microflora that is largely absent in 
humans (ibid). This is also true of the stomach, which in Sus is heavily colonised 
by Lactobacillus sp. Pigs are also coprophagic and consume both their own stools 
and/or those of other pigs. There is therefore a constant influx of microbes into their 

guts from the ingestion of bacteria-laden faeces. In studies where pigs are 

experimentally inoculated with bacteria, the pigs are fitted with bags that collect 
faeces to prevent self infection (Swildens et al, 2004). 

Pig 

Human Stomach 

Smelt Large 
Intestine Intestirw 

Fig 3. Areas holding the normal microflora are shaded. The pig clearly has colonization of the 
stomach that is absent in humans (Taken from: Tannock, 1995: 40). 

Numerous studies have been undertaken to estimate both the numbers and 
diversity of bacterial species in human and animal faecal matter. Traditionally, 
samples of faeces are cultured in the laboratory and bacterial counts taken. 
Williams Smith and Crabb (1961) found that the faecal flora of different animals 
were very similar during the first few weeks of life with Bacteroides and Lactobacilli 
predominating. In later life however, they found the bacterial counts and species 
identified to be grossly dissimilar. However, according to Wang et al, (2003) this 
technique was inadequate as many of the bacteria were unculturable and the 
methods did not reflect the true diversity. When Wang et al (ibid) looked at human 
gut flora using 16S rDNA sequence analysis they found that only 24% of the 
bacteria present could be identified by culture methods alone. They looked at the 
hindgut bacterial load across mammalian species (human, horse and pig) and found 
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that the phylum represented (especially Bacteroides and Clostridium which were 

predominant) were remarkably similar. Suau et al, (1999) estimate that 60-80% of 

gut bacteria cannot be identified through culture methods. Using 16s rDNA they 

also found three species to be prevalent, the Bacteroides and two species of 

Clostridium but noted that 76% of the clone sequences were unknown novel 

species. When Castillo et al (2006) researched total bacterial load in weaning pigs 

using real-time PCR, they received higher values for enterobacteria and lactobacilli, 

than when using traditional culture methods. This they state could simply be an 

overestimation due to PCR's ability to quantify dead bacteria. Eckburg et al, (2005) 

studied the microfiora of humans and found significant differences between subjects 

(bacterial loads being host specific) and between stool and mucosa communities as 

previously reported by Zoetendal et al (2002). The bacteria eliminated in faeces may 
be those species that are purely transient and ephemeral rather than a true 

reflection of commensal gut flora, therefore, cultures taken from the intestinal wall 

are more likely to reproduce a true picture of microbial species present. 

The pigs used in the present study are mainly intensively bred animals that are 
weaned at a very early age, often around several days instead of a more natural 
several weeks. This highly disruptive event places great stress on the digestive 

system of the young piglets and most of the litter will have to be treated with 
antibiotics on a daily basis. How this affects the natural gut flora has not been 

established but it must be presumed to be potentially detrimental and to modify the 
flora in unknown ways. According to Franklin et a! (2002), weaning age has a 
significant effect on both microbial populations and concentrations of volatile fatty 

acids. Tests were carried out on piglets weaned at 17 days and at 24 days and in 

the earlier weaned pigs the concentration of faecal anaerobes declined but were 
maintained in the older weaned pigs. 

Everything described so far deals with the living body but this research is concerned 
with those species of microbe that can proliferate within a corpse. At death the body 
is quickly deprived of oxygen and by the end stages of autolysis the environment 
becomes mostly anaerobic which allows the rapid growth of bacteria from the large 
intestine (Gill-King, 1997). A previous study by Vass (2001) attempted to explore 
the role of microbes in the corpse in an endeavour to utilise them as a possible post- 
mortem interval indicator. It was found that during the decomposition process too 
many microbes were involved to gain any understanding of any one particular role 
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carried out by different species. Vass recorded the presence of many species 

including; Staphylococcus, Malasseria, Bacillus, Streptococcus, Klebsiella, Proteus, 

Salmonella, Agrobacterium and Cytophaga. 

3 .4 Intestinal Bacteria and Timescale of Transmigration Post-mortem 

The transmigration of bacteria from the intestine to the rest of the corpse at a point 

soon after death has been researched avidly with varying results. It would seem 

reasonable to assume this presumption to be true with a natural pathway for 
transmigration being present by way of the vascular system. Once within the 

vascular canals, highly motile bacteria would be free to migrate anywhere within the 

body, including the bone structure which is highly vascularized. Conversely, 

newborn infants are presumed to have intestinal sterility at birth which would pre- 

empt any transmigration. 

Roberts and Mead (1986) explored the involvement of intestinal anaerobes 

(especially clostridia) via agonal invasion in the spoilage of meat, poultry and fish. 

They found that certain criteria will enhance the chances of meat spoilage including 

the storage of meat at elevated temperatures and stress from transportation 

immediately prior to slaughter. It was also found that muscle from stressed pigs 

contained much higher levels of contamination by the bacteria clostridium. It 

appears that translocation of bacteria out of the gut and in to the muscles and 

organs can occur in live animals especially where stress is a factor. In pigs, 

weaning is a traumatic time that can induce failure of the defence mechanisms 

protecting the gastrointestinal tract and stress from transportation lowers the 

intramucosal pH, both of these will allow bacteria to infect the internal organs after 
translocation out of the gut (Lieber-Tenerio et al, 1999 & Swildens et al 2004). A 

clinical trial by Swildens et al (2004) was successful in retrieving bacteria from 

organs (in live pigs) 72hrs after experimental intestinal inoculation in stressed 

animals. 

If in fact, these bacteria are reaching bone via the vascular network (fig 3.1) it must 
be noted that during life blood has bactericidal properties and it is therefore likely 
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Fig 3.1 Proximal femur of a dog showing extensive vascular network. Image available 
@http: //cal. vet. upenn. edu/projects/saortho/chapter_82/82mast. htm 

that any bacteria coming in to contact with the blood should not lead to disease. 

However, in previous studies (Jensen, 1944) it was found that certain strains of 
bacteria (Serriata, Achromobacter, Clostridium & Escherichia cols) were resistant to 

the bactericidal effect of hog's blood. It is not known how long after somatic death 

that blood loses this unique property. However, as early as the 1850's it was noted 
that the blood from animals that had died of diseases such as anthrax contained 

thread-like structures that multiplied by division; these were actually bacteria (Lamb, 

1893). This movement of bacteria out of the gut is probably one of the main 

reasons why many carnivores will not consume putrid corpses (Janzen, 1977. ) 

Some research has been undertaken with blood from both the heart and lungs being 

sampled at the time of autopsy. Wood et al (1965) attempted to correlate microbes 

grown from heart blood with both known and unknown antemortem cultures. Where 

antemortem cultures were taken they were quite successful at identifying the same 
bacteria from blood at autopsy (less than 15 hours after death) that was incubated at 
37°C for seven days. The majority of these microbes appear to be S. aureus, 
Pseudomonas, E. coli and Proteus. When they sampled blood from individuals 

where antemortem cultures were not made they found a similar array of bacteria 
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and when they tested blood from individuals where there was no anatomical 

evidence of infection they found the most prevalent microbes to be S. aureus, 

Aerobacter and Bacteroides. The findings are problematic as traditional culture 

methods were used and incubation at 37°C will allow those bacteria that thrive best 

at a higher temperature to proliferate. When Canavan and Southard (1914) 

researched the significance of bacteria cultivated from the human cadaver, it was 

reported that by twelve hours postmortem the majority of blood cultures were 

positive. Other research into postmortem bacteriology at autopsy revealed that up 

to 50% of samples were sterile and where bacteria were found the most common 

were E. coli, followed by Enterococcus. Other bacteria isolated included all of those 

previously mentioned with the addition of Streptococcus and Klebslella-Aerobacter 

(De Jongh et al, 1968). More recently, as part of research in to drug levels 

postmortem, Elliott et al, (2004) sampled blood from seven human fatalities; there 

was clear evidence of advanced putrefaction in six of the individuals (the other' was 

used as a control due to the lack of putrefaction). In all cases where decomposition 

was advanced, Clostridium, E. coli, Proteus vulgaris, Enterococcus faecalis and 
Aeromonas were isolated from blood. In the case used as a control no microbes 

were found. Unfortunately, no temperature data are given and it is not known how 
long the postmortem interval was in any of the cases, although one would presume 
the interval to be short. 

It is known that the mucosal membrane lining the gastro intestinal tract breaks down 

very soon after death; precipitating the influx of bacteria into otherwise sterile areas 
such as muscles etc. In a study by Melvin et al (1984) a piece of intestine was 
taken from decapitated mice. Bacterial transmigration took place within different 

timescales when kept at various temperatures, with transmigration apparent at only 
2-3hrs when the intestine was kept at 37°C. At a lower temperature of 25°C it took 
5-6hrs and at 4°C bacteria was found at 72hrs post-mortem (Table 3.1). The first 

microbes to be cultured were Staphylococcus and the last group were a variety of 
anaerobic bacteria. In an earlier study by Kellerman et al (1976) the first bacteria to 
be cultured from a loop of dog intestine were also Staphylococcus; however, this 

was not until 15hrs post-mortem. These bacteria then gradually declined in number, 
until at 48hrs they were practically absent. They were replaced by both gram- 
negative and gram-positive bacteria. 
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Hrs. after Incubation Source Aerobic Anaerobic 

0-12 (37°C) None None 

15 (37°C) Dog/Intestine S. aureus, Diphtheroids Bacteroides 
Non-hemolytic Streptococci Peptococcus 

Peptostreptococcus 
27 (37°C) As above plus E. Coll As above plus Clostridium by 19hrs 

36 (37°C) Predominant organisms: E. coli, As above 
Diphtheroids, Gram+ bacilli, S. 

aureus 
48 (37°C) As above As above 
0-12 (37°C) None None 

15 (37°C) S. aureus, Gram+ bacilli Bacteroides 
Non-hemolytic Streptococci Peptococcus 

Dog/Colon 

24 (37°C) S. aureus, Gram+ bacilli As above plus Peptostreptococcus & 
Alpha-hemolytic Streptococci Clostridium by 14 hrs? 
Proteus 

36 (37°C) Predominant organisms: E. coil, As above 
Proteus, Hemolytic Streptococcus, 

Gram+ bacilli, S. aureus 
48 (37°C) As above As above 
0-15 (37°C) None None 
18 (37°C) S. aureus, Staphylococcus 

Human/Colon epidermidis 

26-28 (37°C) As above plus Streptococcus (at Bacteroides 
26hrs) Peptococcus 

Clostridium (at 28hrs) 
31 (37°C) As above As above plus Peptostreptococcus 
48 (37°C) Predominant organisms: E. coll. As above 

S. epidermidis, Non-hemolytic 

Streptococcus, S. aureus 
2-3 (37°C) Mice/Intestine Staphylococcus 
4-5 (37°C) Coliforms & fungi 

e-8 (37°C) Coliforms (dominant) & anaerobes 
5-6 (25°C) Staphylococcus 

8-10 (25°C) Coliforms & fungi 
12-16 (25°C) Coliforms (dominant) & anaerobes 
66-68 (4°) Staphylococcus 

68-72 (4°) Coliforms & fungi (few species) 
>72 (4' Coliforms & anaerobes (rare) 

Table 3.1. Timescale of bacterial transmigration 
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3.5 Summary 

Once all of the above is taken into account it becomes clear that a single perpetrator 
of bacterial decomposition of bone would be unlikely. There are probably 

successions of bacteria that excrete various enzymes. Even narrowing down to a 

single species or even type, be it anaerobic or aerobic, is unlikely due to the 

difficulty of replicating this action faithfully under laboratory conditions. Not only is it 

difficult to culture some of the species (both of soil and intestinal origin) but also 

many of the flora are still unknown and what happens in the laboratory at fixed high 

temperatures or in vitro cannot satisfactorily be reconciled with a rapidly 
decomposing corpse. A likely perpetrator though would most likely be anaerobic 
due to the lack of oxygen both in the cadaver and at extreme burial depth. 

Several unanswered questions need addressing. Firstly, the difference between the 

gut flora of humans and pigs is unclear, with some authors suggesting a dissimilar 

assemblage whilst others suggest that there is much similarity across all mammalian 
species. Thus far the entire commensal community of the adult human gut remains 
unknown and the gut flora may be host specific. Different authors record varied 
species of bacteria in the newborn child and differences do exist between breast or 
bottle fed babies. Much of the research is also carried out with faecal bacteria, 

which may be purely transient having no niche to fill within the gut or having been 

out-competed. It is also perceivable that intensively bred pigs will have a modified 
gut flora from the stress that they endure from premature weaning and from the daily 
dosage of antibiotics. 

Secondly, the transmigration of highly motile bacteria from the gut to the 

surrounding tissues and blood is unambiguous. In stressed animals bacteria enter 
the live body (within 72hrs) and transmigration after death can occur within two 
hours when microbes are cultured at 37°C. Hence. at death the bacteria are 
already within the gut and ready to consume the nutrients that they require to thrive. 
However, the conditions essential for their propagation are many. 
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3.6 Appendix: Bacteria that Produce a Collagenase Enzyme Isolated from 
the Human Body (Harrington, 1996: 1886) 

Actinobacillus actinomycetemcomitans 

Actimomadura (Streptomyces) madurae 

Bacillus cereus 

Bacteroides spp 
Bifidobacterium sp 
Brucella melitensis 
Capnocytophaga ochracea 
Clostridium spp 
Enterococcus faecalis 

Escherichia coli 
Eubacterium alactolyticum 
Flavobacterium meningosepticum 
Fusobacterium nucleatum 
Peptococcus sp 
Peptostreptococcus spp 
Porphyromonas (Bacteroides) spp 
Prevotella (Bacteroides) sp 
Proteus mirabilis 

Pseudomonas aeruginosa 
Serratia marcescens 
Staphylococcus spp 
Streptococcus agalactiae (group B Streptococci) 

Streptococcus mutans 
Streptococcus sobrinus (S. mutans 6715) 

Treponema spp 
Vibrio vulnificus 
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Chapter 4. Environmental Microbiology 

4.1 Introduction 
The previous chapter dealt with those microbes that reside or pass through the 

human gut and this chapter will look at bacteria that are abundant in the 

environment and specifically those which are soil dwelling. It will be necessary to 

assess soil bacteria and their possible role in human tissue decomposition within a 

context of ambiguity. This chapter will look at how microbes colonise animal 
tissues, when they arrive and if there is a succession of bacteria similar to what 

would be found when dealing with entomology and also in a similar vein to the 

previous chapter a discussion of the inadequacies of laboratory culture methods. 
Soil bacteria will opportunistically use cadavers as a nutrient source if they are 
within range, but with burial at depth this may not be the case. A review of the 
literature is essential to assess at what depths microbes are active. Another point of 

substance that must be addressed is the role of maggots as destroyers of bacteria 

and their considerable role in corpse degradation. 

4.2 Notes on Bacterial Diversity and Culture Methods 
The current understanding of bacterial diversity is limited due to the fact that many 
bacteria have been termed 'unculturable' when using traditional culture-dependent 
microbiological methods. 'Unculturable' refers to the fact that many bacteria do not 
grow when using plating techniques at fixed temperatures using simple solid media 
in petri dishes. This is true of both endogenous animal microbes and those in the 
environment or more specifically the soil. Only a very small number of bacterial 
isolates can be cultured and any findings are flawed and confusing due to some 
bacteria performing better than others in the laboratory. Some headway is being 
made using traditional plating techniques and novel lineages of previously unknown 
soil isolates are being discovered (Janssen et al, 2002 & Stevenson et al, 2004). 
Using newly developed media combined with longer incubation times has had some 
success in culturing previously 'unculturable' isolates (Davis et al, 2005). Even so, 
only 4-7% of the microbial community can be recovered using this method (Cavaletti 
et al, 2006). Culture methods are still an important part of understanding bacteria 
but since the 1990's, new and more powerful methods that use molecular 
technology (16S rRNA) have been developed (Janssen 2006). 16S rRNA gene 
sequencing can be quite specific and has been able to prove that some bacteria (i. e. 
Crenarchaeota) that were thought to exist solely in 'extreme' environments also live 
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in temperate soils (Schloss & Handelsman, 2004). This method has also been 

useful in comparing and denoting bacterial community composition in forest soils 

that are determined by specific soil conditions (Hackl et al, 2004). 

4.3 Soil Bacteria 

The bacteria are the most numerous group of microbes within the soil (the others 
being fungi, algae, protozoa, and actinomycetes) and the size and make-up of the 

microfloral community will vary from site to site. Less than 1% of the soil surface 

area is covered by bacteria that are relatively immobile (with little ability to spread, 
Gray & Williams, 1971) and spend most of the time in an almost starved state (Van 

Veen & Kuikman (1990). When organic nutrients are added to the soil the 

autochthonous species will enter a period of rapid growth until the nutrients are 
exhausted, at which time they will decline in numbers. Both soil texture and 
structure control the rate at which organic matter can be decomposed, with coarse 
sandy soils having a higher rate than finer clay soils. 

There is only a limited understanding of species diversity, spatiality and aggregation 
in soil. This is largely due to the old culture methods used, but new techniques such 
as 16S rRNA are beginning to answer questions on soil biomass. Previously, those 

species that only made up a minor component of the soil grew in abundance which 
led to a belief that these were the dominant microbiota. This is now known to be 

untrue and in fact those species that are truly abundant were those that appeared 
minimal (Joseph et al, 2003). Microbes are capable of surviving for many decades, 
but the addition of material (corpses) for consumption by such bacteria would 
generate an environment where microbial mass is high and of a species 
composition that is important to decomposition. Soil (and human gut) bacteria are 
either autochthonous (indigenous) or they may be allochthonous (invaders) and 
although the latter group may be successful for some time they will not normally 
become an integrated part of the soil community (Alexander, 1977). This raises the 
issue of how bacteria within dead animals or humans will survive or thrive when in 
direct competition with the indigenous soil microflora, (they actually are the gut 
indigenous species of the host i. e cadaver, but are invaders in soil) and should be 

able to deter soil bacteria at least for some time. Certainly at depth the gut residents 
may be the only microbes present. Child (1995) argued that introduced microflora in 

soil never become part of the soil indigenous flora and if a new substrate is 
introduced the incoming bacteria will be out-competed and destroyed in a matter of 
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a few months to a few years. Child therefore believed that soil microflora is the most 

significant factor in the diagenesis of bone. This can be contested. In the first 

instance any body buried in a deep grave (see below) will be in a relatively sterile 

environment due to the lack of bacteria at depth, but even at shallower depths the 

indigenous microbes of the corpse will have plenty of time to attack the bone, 

especially if bacterial tunnelling is something that occurs within the early 

months/years. It is possible that there may be selection pressure acting on 

indigenous bacteria to develop the ability to colonise bone. 

4.4 Soil Depth versus Bacterial Counts 

Soil depth can affect the amount of bacteria present. In a study by King and 

Doryland (1909) where soil samples were taken over a period of months and at 

varying depths, it was found that the top 5cm of soil contained an average of 

14.47mpcc genomes of bacteria (millions per cubic centimetre), whilst at a depth of 

30cm the average was considerably lower at just 2.4 mpcc. There are few bacteria 

on the surface of the soil due mainly to lack of moisture (and the possible 
bactericidal effect of sunlight, Alexander, 1977) and the greatest number of soil 
bacteria exist at around 7cm in depth (table 4) with this gradually diminishing until 

around 200cm, where only a very limited number of microbes survive (Sewell, 

1914). There exists a difference in microbial diffusion between field soils (where the 

bacteria are generally most profuse several centimetres below the upper crust) and 

shaded or forest areas (numbers are highest in the top 1-2 cm) (Alexander, 1977). 

Organisms/g of Soil x 103 

Depth (cm) Aerobic Bacteria Anaerobic Bacteria 

3-8 7800 1950 

20-25 1800 379 

35-40 472 98 
65-75 10 1 
135-145 1 0.4 

Table 4 Distribution of anaerobic and aerobic bacteria at differing depths in soil. (Alexander, 
1977: 24). 

Bacteria require many different elements to thrive and of these nutrients, carbon is 

required in the greatest amount. However, the carbon input is relatively small being 

supplemented with pulses of food from the occasional rotting corpse or from dead 

roots (Brooks et al, 1985) with the result being a mainly dormant biomass. Carbon 
is most readily available in the form of carbohydrate but is also obtainable from other 
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sources such as monosaccharides, amino and fatty acids. In a study by Griffiths of 

al, (2003) it was concluded that the deficit of bacterial numbers at depth was 

attributable to several factors including a decrease in carbon content down the soil 

profile. Whilst the organic horizons higher up the profile (5cms) had a carbon 

content of 36.8%, the lower part of the profile (15-20cms) had only 6.5%. Other 

attributable factors included the lower profile being predominantly mineral which 

changes the soil texture, a lack of moisture and a lack of nitrogen, potassium, 

calcium and magnesium. Bacteria will rapidly colonize and decompose soft animal 

tissues, but the rate of breakdown of a solid medium is governed by the rate at 

which enzymes can dissolve nutrients to a soluble form (Richards 1974). For 

microbes to utilise bone collagen as both a source of energy and carbon they must 

produce collagenase. Microorganisms of soil origin that produce collagenase 
include; Clostridium histolyticum, (C. Welchii is also abundant and widely 
distributed) (Skinner, 1975) Achromobacter iophagus, Vibrio, Pseudomonas 

marinoglutinosa, Pseudomonas flourescens and Streptomyces sp. Streptomyces 

C51 can grow rapidly under aerobic conditions (Endo et al, 1987). According to 
Vrany et al, (1988) soil bacteria that are capable of producing a collagenolytic 
enzyme are widespread, especially under aerobic conditions. The authors also 
studied the occurrence of microorganisms that produce collagenase from various 
different types of soils. They found that garden soil had the highest number of 
isolates that were collagenolytic (36.6%) closely followed by meadow soil (30.4%) 

and then vegetable field soil at 29.1%. When they examined spruce growth soils 
they found not only less bacteria but also considerably less collagenolytic microbes 
(14.7%). This experimentation was carried out in a laboratory setting where 
temperatures were kept at 25°, no depths are given for the soil samples and 
reconstituted collagen was used as the substrate. Jennison (1945) notes that 

several species of bacteria which are able to cleave gelatine are unable to attack 
collagen. Gelatin is much easier to degrade as it lacks the triple-helix structure of 
collagen and it is probable that most serine proteases can degrade gelatine (Collins, 
2009 Pers Comm). 

4.5 Bacteria, Laboratory Culture Methods and Temperature 
Attempts to enumerate bacteria in the laboratory may provide misleading results. 
Clostridium and Bacillus are genera that grow optimally at high temperatures (30°- 
37°C) but that are also classed as soil bacteria. Soil temperatures in the UK are 
nowhere near this high, (except occasionally on the surface, where lack of moisture 
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excludes bacterial growth) but both have been cultured in the lab from soil samples, 

but at the optimum temperature of 370 (Skinner, 1975). Culture methods in the 

laboratory are not ideal and any micro-organisms grown are a reflection of this 

inadequacy (Gray & Williams, 1971). Estimates tend to be low and some bacterial 

organisms never produce recognizable colonies on agar media (Alexander, 1977). 

During research by Child et al (1993), it was found that only a restricted range of 

bacteria were capable of producing a collagenolytic enzyme at low temperatures. 

They discuss the fact that English grave (inhumations) temperatures at depths of 
100-300cms will be around 10°C and therefore only bacteria that can grow at this 

temperature are relevant to microbial decomposition (table 4.1). Thirteen different 

strains of bacteria were found to produce collagenase at this temperature of which 
the majority belonged to Pseudomonas sp and one in particular P. fluorescens 

(which is aerobic) taken from soil was prolific in its production of collagenase at 
10°C; this type is also found in human faeces. 

Species omen 
Re uirement 

Origin Specie s omen 
Re uirement 

Origin 

Pseudomonas fluorescent Aerobic Faeces Pseudomonas maltophilia Aerobic Soil 
(type a) (type b) 
Pseudomonas fluorescent Aerobic Soil Pseudomamas putida Aerobic Faeces 
(t)pe a) 
Pseudomonas fluorescent Aerobic Faeces Pseudomonas sp (type a) Aerobic Faeces 
(type a) 
Pseudomonat fGronrans Aerobic Soil Pseudomonas sp (type b) Aerobic Soil 
(type b) 
Pseudomono fluorescent Aerobic Faeces Aeromonas hydrophilia Facultative Soil 
(type c) Anaerobe 
Pseudomonas f uoruaur Aerobic Soil Aemmonas caviae Facultative Soil 
(type d) Anaerobe 
Pseudomonat maltophi/a Aerobic Soil Aeremonas sp Facultative Soil 
(type a) Anaerobe 
Pseudomonas makophi/a Aerobic Soil Kebsiella oxytoca Facultative Faeces 
(type a) Anaerobe 
Preudomonas maltophiara Aerobic Soil 
(tune b) 

Table 4.1. Those species of bacteria that produce collagenase at low temperatures (Child et 
at, 1993). 

However, no details are given as to where the bacterial samples were taken from 

and as already discussed it is highly probable that these bacteria probably only exist 
within the top few inches of the soil profile and would not consequently play a part in 
in decomposition of any cadavers buried deeper than this. And, although 
collagenase production was good, it should be noted that enzymes are most 
efficient at optimal temperatures and at lower temperatures they act at a much 
reduced rate as the catalytic action is slowed. 
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As previously discussed temperature clearly affects those species which can thrive 

in soil and it has been shown that in soils with a mesophilic microbial community 

(middle living with optimum growth at 30°-37°C) there will be a doubling of activity 

for each 10°C increase in temperature (between 0° & 30°-35° C) but there is a 

dramatic fall above this threshold (Kilham, 1994). And although soil researchers 

often store their samples at 4°C in the belief that this will impede activity this 

assumption is not true. Grupe et al (1993) agree that bacterial activity will be 

greatly reduced at low temperatures, but point out that in archaeological material 

there has been a great amount of time for bacteria to utilise the collagen and that in 

their laboratory experiments, it was possible to demonstrate bone decomposition by 

soil microbes even at 4°C. Yet again, this knowledge is based on carefully selected 
bacteria (which may not necessarily even be part of those bacteria which 

successfully colonize the corpse) that are cultured via in vitro experimentation rather 
than in a corpse based scenario. 

Clearly there are is limited knowledge regarding soil bacteria in their role as 
decomposers of organic matter. According to Gray & Williams (1971: 82): 

" "The study of decomposing animal corpses in soil has never been a popular 
pastime so that there is little known about the succession of micro-organisms on 
animal tissues originating above ground or within the soil. We can presume that 
their body components are competed for by soil microbes and that a succession of 
colonisers occurs. There is also a well developed microflora in the gut of most soil 
invertebrates and it is possible that these microbes also play a key role in 
decomposition of the animal body. " 

4.6 Experimental Research: Microbes 

Tibbett et al (2004) researched the rate at which pieces of sheep muscle placed in 
soil decomposed under laboratory settings. It was concluded that the muscle 
degraded quicker at higher temperatures and that soil microbes play a substantial 
role in the early postmortem period. The point of the research was to demonstrate 
that soil microbes could use muscle lacking an enteric microbial community as a 
nutrient source. Although the muscle did decompose there was no control sample 
such as muscle placed in a sterile medium, as enzymatic decay could account for 
some of the degradation. Neither is there sufficient information on the origin of the 
soil. In addition to this there is no record of how long the sheep had been dead prior 
to commencement of the experiments and if there was a delay of even just a few 
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hours then it is possible that bacteria from the gut could have transmigrated to the 

body tissues. There would be a definite need to sterilize the muscle to prevent 

contamination from enteric bacteria and prove that only soil microbes were 

responsible for the decay. 

4 .7 Macyaots Microbes and Antibiotic Secretions 

Maggots play an important role in decomposition of carcasses during the summer 

and autumn months where the bodies are accessible to flies. During the winter and 

early spring, decomposition advances much more slowly when only microbes are 

available to breakdown the carrion (Putnam, 1978). A range of species will lay their 

eggs on the corpses, but especially the blow flies that are better known as green 

and blue bottles. A recent resurgence in their usefulness in the medical world has 

prompted a renewed interest in their healing and disinfecting properties. There are 

many published studies on the efficacy of fly larvae and their ability to heal and 

disinfect both skin defects, such as leg ulcers and pressure sores and also 

infections of bone (osteomyelitis). Many of these papers were written in the early 

1930's before the advent of modern antibiotic therapy, but modern studies also exist 

with both eras concluding a very real antibiotic effect on microbially infected soft and 

hard tissues including those infected with Methicillin-Resistant Staphylococcus 

aureuslMRSA (Thomas et al, 1999, Courtenay et al, 2000, Bowling et al, 2007) 

which is the most common cause of osteomyelitis (Elliott et al, 1997). Septicaemia 

has been prevented by maggot therapy and it was effective in cases where 

antimicrobials, hyperbaric oxygen and disinfectants had all failed to heal the wounds 
(Mumcuoglu et al, 1999). As can be seen from the data presented below (table 4.2) 

maggots have been highly successful in eradicating many different strains of 

bacteria in hundreds of incidences involving both real life cases of infection and also 

in the laboratory. 
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Maggot Therapy/Disinfecting/Antibacterial Effects 

Location/Site 

Laboratory 

Laboratory 

Diabetic Foot Ulcers 
(13 Patients) 
Pressure sores of the lower 

sacral area and leg ulcers 
(25 patients) 

70 wounds of mixed 

pathology 

Laboratory 

Ulcer (2) 

Osteomyelitis (12) 

Osteomyelitis 
Chronic leg ulcers 
Compound fractures 

(572 cases) 
Osteomyelitis (2 cases) 

Osteomyelitis 
(4 Children in 1928) 

Further 89 Individuals 

Bacterial sp Larval sp Author Success Rate 
Staphylococcus aureus Not Known Thomas eta!, 1999 All Eliminated 

Pseudomonas 

aeruginosa 
Streptococcus A 
Streptococcus B 
MRSA 
S. aureus Lucilia sericata Simmons, 1935 All Eliminated 

Streptococcus pyogenes 
Streptococcus faecalis 
Streptococcus mitior 
Proteus vulgaris 
Eberthella typhi 

Clostridium Welch!! 

Methicillin-Resistant Lucilia sericata Bowling at al, 2007 12 out of 13 patients healed 

S. aureus (MRSA) after 45 days 

Streptococcus A Phaenicia sericata Mumcuoglu eta!, 88.4% complete 

(unidentified infections 1999 7% significant 
and septicaemia) 2.3% partial 

2.3% unchanged 
49 infected wounds (no Lucilia sericata Courtenay at at, 30 wounds complete 
sp Identification given) 2000 20 partial 

8 unchanged 
I deteriorated 

(90% successfully treated 

overall) 
Escherichia col! Lucilia sericata Mumcuoglu et al, Eliminated 

2001 

Pseudomonas (1) Lucilia sericata Graninger eta!, Ulcer decreased by 80% 
Staphyloccocus aureus 2002 (1) 
Streptococci (1) Spontaneous healing (1) 
Staphylococcus Lucilia sericata Miller et al, 1932 Prompt healing 

Phormia regina 
Not Known Lucilia sericata Livingston, 1936 88% Improved 

Lucilia Caesar McLellan, 1932 Healed 
Blue and Green Baer, 1931 Complete healing 

Bottle 

79 cases healed or 
improved, 9 cases no 
improvement, I case death 
from Tetanus 

Not Known 

Not Known 
Not all infections noted 
but includes; 

Staphylococcus 

Non-haemolytic 

Streptococcus 

Tuberculosis 

S. aureus 

Streptococcus 

pyocyancus 

Table 4.2. Lab based and Real Life Analysis of Maggot Therapy 

55 



The larvae appear to be effective for a number of reasons with most authors stating 

at least one of the following; there is surgical removal of the diseased tissue, the 

wound is actively sterilized by the maggots, which physically remove 

microorganisms by ingestion (Courtenay et al, 2000), wound disinfection via a 

potent bactericide that is secreted by the maggots and that has a wide spectrum of 

activity against many resistant pathogens (Simmons, 1935, Thomas et al, 1999, 

Sherman et al, 2000, Sherman 2003, Nigam et al, 2006 3[2]), change of the wound 

pH from acid to alkaline by excretion of ammonia (Mumcuoglu et al, 1999) which is 

then unfavourable to many bacterial species (Nigam et al, 2006 3[3]), most of the 

proventriculus 
.. __ 

Hind-Il+testina ýýý I 
Oasophu1ugt 

Pharynx 

Mid-Int est in 

T. ilctcher 

Fig 4. Gross anatomy of the Blowfly larvae (Fletcher & Haub, 1933). 

lalpi ghia n 
Tubules 

bacteria are killed in the midgut of the larvae and by the time the ingested bacteria 

reach the hindgut (fig 4. ) most are already dead and furthermore the excreta is 
either sterile or almost entirely free of microbes (Mumcuoglu, et al 2001). However, 
in 2007 it was decided that although maggots fulfilled the required definitions of an 
antiseptic (bacteria used; Micrococcus luteus, E. coil and MRSA), the maggots were 
excreting bacteria and as such considered to be medical waste (Daeschlein et al, 
2007). In a study where Lucilia sericata larvae were placed on bacterial lawn agar 
of fluorescent E coli the larvae demonstrated fluorescence within 3 minutes (Lerch 

et al, 2003). Simmons (1935) carried out successful experiments using the excreted 
elimination products of maggots that included both faecal matter and cutaneous and 
oral secretions. He even found that desiccated excretions were potent enough to kill 

microbes. In a recent in-vivo research study in to the antimicrobial activity of 
maggots, it was determined that maggot therapy was more effective against those 

wounds that were infected with gram-positive bacteria. Alternatively, wounds 
infected with gram negative bacteria required a higher number of maggots over a 
longer period of time (Steenvoorde & Jukema, 2004). Huberman of al (2007) have 
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isolated three low molecular weight compounds from the maggot of Lucilia sericata 

(p-hydroxybenzoic acid, p-hyroxyphenylacetic acid & octahydro-dipyrrolo [1,2-a, 1'2'- 

d]pyrazine-5,10-dione) that are effective against Micrococcus luteus and 

Pseudomonas aeruginosa, both when used individually and when used together. 

According to Nigram et al (2006) the disinfecting property is possibly also due to one 

specific type of bacteria (Proteus mirabilis) that forms part of the commensal flora in 

the maggot and that is known to produce agents such as phenylacetic and 

phenylacetaldehyde that both have antibacterial properties. Yet commercially used 

medicinal maggots are sterile and would not have any bacteria present. It is 

apparent that maggots are adapted to produce some kind of bactericide. The 

excretion of this cleansing agent possibly exists due to the fact that they live in an in 

an environment that is riddled with microbes of which some may be deadly. 

Alternatively this could equally be a mechanism to prevent bacteria from competing 
for the same food source. 

Having studied the effect of the fly larva in a medical situation where wounds that 

have previously been unresponsive to conventional medical practices and 

antibiotics, it becomes apparent that there may also be a similar effect on the dead 

body. A corpse is colonized by insect larvae soon after death and many thousands 

of larvae will feed on the carrion. The excretions and ingestion of the tissue will 

quickly eliminate bacteria from the body. It has been shown that the maggots are 

enormously proficient at disinfecting the hard tissue of the skeleton in cases of 
osteomyelitis. As all of the above research is carried out entirely within a live 

assemblage it is difficult to extrapolate what would happen in the dead. One can 

only presume that a similar disinfected and largely microbe free environment will 

eventually be perpetuated, especially as the tiny 1st instar larvae are perfectly 

capable of gaining access to the interior of the bone via the nutrient foramina. If this 

is the case then bacterial tunnelling of bone in bodies that have been exposed to 
larval activity may possibly be rare or limited. This would be relevant to surface 
depositions and to those bodies given only a very shallow burial. Further research 
in to maggot secretions and their effect on carrion is desperately required if we are 
to advance our knowledge of this area with any note of certainty. 

4.8 Maggots and Collagenase 

It was found during research that maggots themselves excrete the collagenase 
enzyme. Two papers published on the subject which have experimental protocol 
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and date to the early to mid 1900's. The experiments were carried out with Lucilia 

sericata and Phaenicia sericata Meig. In the 1931 study, experiments were carried 

out using diluted excreta and collagen from the Achilles tendon of an ox and catgut 

(Hobson, 1931). The catgut was almost completely dissolved and it was shown that 

it was maggot collagenase that produced this phenomenon rather than any bacteria 

within the larvae due to the sterility of the maggots employed. The author suggests 

that: 

"The collagenase enzyme plays an important part in the growth of Lucilia sericata on 

meat by digesting the fine strands of connective tissue which surround each muscle 

fibre. " (Hobson, 1931: 1462). The optimum ph for the activity was about 8.5 and 

increasing acidity decreases activity which will almost cease at ph 4.0. The original 

findings of Hobson were later confirmed in 1953 by Ziffren et aL They used sterile. 
larvae and concluded that Phaenicia sericata Meig maggots secrete collagenase, 

that its action is to break down long chain polymers to enable digestion and that the 

cleansing of wounds and the treatment of osteomyelitis is at least in part due to the 

collagenase enzyme. According to Blake (2005: 80) "the decomposition of necrotic 

substances is primarily achieved by proteolytic enzymes like collagenase, 

chymotrypsin and trypsin-like substances. " 

4.9 Summary 

Environmental corpse contamination via soil and airborne microbes is a little 

understood phenomena. Some of these bacteria must be capable of inhabiting a 

cadaver but many questions are raised by the research discussed here. Firstly, soil 

microbes exist in the greatest numbers towards the soil surface, yet most human 

bodies are buried at depths where few microbes should be active. Modern burials 

may not be subjected to these bacteria due to their interment at a depth of six feet, 

but the soil would undergo some mixing when placed back in the grave. Any burial 

contained within a coffin would also be protected from all soil microbes until a point 

at which soil infiltration or coffin disintegration had commenced; the same would 

apply to cist burials. In addition, little research has been carried out with animal 

carcasses and it remains unclear whether soil microbes can infiltrate a biomass that 
is already occupied by an indigenous flora. 

Secondly, the decomposer ability of insects may affect the bacterial loads that 

survive the decomposition process. When maggots are actively feeding from the 

corpse any bacteria within the soft tissue will be consumed and disinfected making it 
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difficult to assume that the bacteria preferentially feed on the soft tissue, only 

moving to the hard tissues after depletion of the original food source has occurred. 
Is it therefore possible that a buried body with the indigenous microbiota intact would 
be more likely to exhibit tunnelling? Not as a consequence of soil bacteria, but as a 
direct effect of the gut flora being protected from predation allowing them almost 

exclusive access to the body if it is buried at depth. 

Thirdly, is it possible that the collagenolytic activity of maggot larval secretions plays 

a part in bone diagenesis? The maggots are effective destroyers of bacteria, but 

just how efficient they are is debateable. Do any bacteria, possibly those that are 

gram negative, survive the ingestion/secretion/excretion process? If maggots are 

constantly excreting collagenase there must be some consequence for the bone that 

they surround in a corpse. First instar larvae being extremely minute are capable of 

entering bone through the foramens. One would presume that any direct 

destruction of the bone would be limited to the periosteal and endosteal surfaces 

rather than areas of attack around individual haversian systems that are so often 

seen. Damage to bone has never been recorded in cases of osteomyelitis being 

treated with larval therapy, probably due to the fact that larvae only consume 

necrotic tissue. The corpse however is a necrotic environment and as such may be 

at risk from larval activity. 

Finally, having considered both all of the above and the findings from chapter 3 it is 
likely that there are a multitude of reasons as to why microbial attack should never 
occur. But it does and on a large scale. Hence, the correct circumstances and right 
bacteria must prevail on a regular basis and it is purely a matter of time and 

research in the field before the actual offenders are found. 
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Chapter 5 Diagenesis: Nature of Bone and Bone Tunnelling 

5.1 Introduction 
Diagenesis is the study of post-mortem modification of bone in the burial 

environment. This chapter will firstly discuss the nature and composition of bone 

along with a comparison of human to porcine bone. This will be necessary as 

bacterial attack appears to be dependant upon the specific structure of bone and its 

haversian systems, whilst the experimental part of the research is carried out using 

pigs as human analogues as already discussed. A brief introduction to the 

structure of skeletal material will be presented together with an explanation of how 

bone forms and remodels. The action of microbes on bone is little understood but 

an explanation of the proposed mechanism will be provided and supplemented by a 

review of previous cases where it is thought that microbes have diagenetically 

altered bone in the postmortem period. 

5.2 Gross Anatomy of Bone 

Bone is a composite material that comprises both a mineral or inorganic component 

and a protein or organic component with hydroxyapatite accounting for the mineral 

phase and collagen and osteocalcin being the two most abundant proteins (Collins 

et al, 2002). The organic portion (collagen) in adults accounts for 24% of the dry 

weight of cortical bone but in children it has been claimed that the organic part 

accounts for a much larger proportion (Baker et al 2005, Guy et al 1997). In a 
different study (Dickerson, 1962) the opposite of this statement appears to be true 

with collagen accounting for less of the bone composition (whole bone) than in that 

of adults and a roughly similar collagen content being present in the cortical bone 

(table 5). 

Age Whole Bone (femur) Cortex (femur) Epiphyses (femur) 

Collagen Content Collagen Content Collagen Content 

g�100g Dry Bone gJ100g Dry Bone gJ100g Dry Bone 

Foetus 12-14 wks 3.37 16.2 15.5 

Foetus 20-24 wks 6.17 22.5 29.7 
Foetus 30-34 wks 8.46 22.4 40.3 
Newborn, full-term 9.28 23.3 42.2 
5-9 Months 12.5 23.7 48 

12-24 Months 14.1 24.3 52.9 
11-12 Years 16.3 25.4 41.4 
Adult 18-35 years 17.3 23 Not Available 

Toole 5. c; onagen conrenr or aIrrerenr Types of bone in different age groups (Dickerson, 1962). 
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The initial bone that forms in children that replaces cartilage is referred to as woven 

or immature bone that develops rapidly but is less organized than the lamellar or 

mature bone that gradually replaces it (Baker et al, 2005). Woven bone is typical in 

the foetus and is the most immature type; it forms quickly, is poorly organized and is 

weak. Lamellar bone is more mature, forms slowly is well organized and is laid 

down in parallel layers (Scheuer & Black, 2004). 

Bone has two basic structural components; compact (cortical) bone and spongy 

(trabecular) bone. Compact bone is solid and dense being found in the walls of 

bone shafts and on external bone surfaces, whereas trabecular bone has a 

honeycomb structure and is found in the ends of long bones, in short bones and 

vertebrae and is sandwiched between flat bones (White & Folkens, 2005). The 

outer surface of bone is covered by a thin tissue called periosteum during life, which 

is highly vascularized; blood is supplied partly by the periosteal vessels and partly 

by nutrient arteries, which enter bone via nutrient foramina (Gosling et al, 1996). At 

the inner surface of the bone is another osteogenic tissue called the endosteum 
(White & Folkens, 2000). Circumferential lamellar bone is replaced by osteons that 

are elongated parallel to bone long axis, circular in cross-section and that have a 
diameter of between 180-250pm (Ortner, 2003). These units of bone may divide, 

rejoin or interconnect with other osteons and are best seen in three dimensions (fig 

5). The first formed matrix in bone is the osteoid which becomes calcified by the 

binding of calcium phosphate crystals (hydroxyapatite) to the collagen fibres. The 

limit of the osteon is demarcated by the reversal or cement line (Bancroft & Stevens, 

1977). Bone forming cells become trapped as osteocytes within the matrix lacunae. 

Osteocytes are star shaped cells whose radiating processes lie within minute 

canaliculi. About 40% of the dry weight of bone is made up of collagen fibres that in 

younger individuals form randomly arranged bundles. Collagen becomes more 

organized as the individual matures and forms in to parallel sheets or lamellae 

(Walker & Liem, 1994). There are six stages to bone remodelling that revolve 

around 9-10 osteoclasts (cutting cones) and several hundred osteoblasts, beginning 

with activation. The next step is resorption where bone is resorbed at rates of up to 

40-50pm per day and this is followed by reversal which centres on the transition 

between cutting and formation. Concentric lamellae are then laid down during the 

formation phase before mineralization takes place where bone mineral is grown 
between the layers; this phase can take up to 6 months. Finally, bone enters a 
period of quiescence which ends the transformation; the bone matures and 
becomes an active component (ibid). 
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For the examination of bone within the remit of this research it is necessary to 

observe bone at the microscopic level as the changes to the collagen structure are 

not visible to the naked eye. Haversian systems make up large parts of the bone 

and these are usually easily recognisable due to their circular nature and the central 
Haversian canal that in life would house a blood vessel. Fig 5.1 depicts a 
transverse thin section through a piece of human bone and a more diagnostic 

description of the structures seen are given below. 
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Haversian system = (osteon) entire complex, functional unit of bone 
Haversian canal = carries blood vessel through center of osteon 
lamellae = "little layer" of matrix between concentric rings of osteocytes 
lacunae = "pools" which house osteocytes 
osteocytes = "bone cells" which maintain bone 
Volkmann's canal = feeder cross connecting vessel for blood supply 
canaliculi = protoplasmic extensions from osteocytes by which maintenance of bone 
is performed 
interstitial lamellae = layers between adjacent Haversian systems 

5.3 Sus Bone: Comparison to Human 

The main difference between human and domestic pig bone is the fact that in 

skeletally mature pigs the majority of the bone structure can be made up primarily of 

plexiform bone (Mulhern & Ubelaker, 2001). And furthermore in the immature pig, 

entire sections of bone will be made up of plexiform bone (fig 5.2) that has a 

complete absence of both haversian tissue and osteonal banding (Hillier & Bell, 

2007). Plexiform bone is usual in animals that grow quickly and gain weight rapidly. 
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Fig 5.1 Thin section of human bone. Available @ 
http: //. biology. clc. uc. edlfankhauser/ Labs/Anatomy & Physiology/A&P20done_'riistoiogyd 
one Histoloqy. htm 
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Fig 5.2 Sus scrofa (Periosteal) University of Sheffield 

Because pigs do not reach skeletal maturity until around 6 months of age all of the 

pigs used in this study would be classified as sub-adult. Robinson et al (2003), 

consider that pig bones are on average more porous than other ungulates and 

should therefore be likely to degrade faster after burial. In immature pigs this 

problem is compounded even further by even more porous bone. Here however, 

pig bones were being compared to other domesticates although one human rib bone 

was included in the study. It would seem fair to say that pig bone, especially when 

juvenile in nature, is more porous than human bone and this may affect how quickly 

bacterial or chemical dissolution can occur and may have an effect on the research 

being carried out here. With regard to bony anatomy, morphology, healing and 

remodelling, pig bone is considered to be closely representative of human bone and 

therefore a suitable species of choice (Thorwarth et al, 2005). In current medical 

experimental research there are a range of species that are approximated to human 

bone including; pig, sheep, rat, canine and chicken; although in forensic 

anthropology, this is almost exclusively limited to porcine with the occasional use of 

rat bones and carcasses. The reasons for using pigs as an analogy have already 
been discussed, but few studies in reality quantify how close a replicate they really 
are. When Robinson et al (2003) looked at bone porosity using nitrogen 
porosimetry they concluded that pig bone is on average more porous than both 

other ungulates and humans, but this is based on a comparison between adult bone 
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from the other species included in the study and juvenile bone from the pigs. There 

is some research to suggest that though porcine bone is a satisfactory substitute, 

canine bone is in fact closer in (table 5.1) several ways to human bone. 

Key Attributes of Similarity Between Four Animal Species and Humans 

Canine Sheep/Goat Pig Rabbit 

Macrostructure 

Microstructure 

Bone Composition 

Bone Remodelling 

++ +++ ++ + 

++ + ++ + 

+++ ++ ++ ++ 

++ ++ +++ + 

Table 5.1 Key: Least Similar + Moderately Similar ++ Most Similar +++ 
(Reproduced after Pearce et al, 2007 p8). 

During a study by Mosekilde et al (1987) they state that pig has a similar lamellar 

bone structure to that of humans, this is in direct contention with many others who 

state that pig bone is plexiform in nature (Mulhern & Ubelaker 2001, Hillier & Bell 

2007, Martiniakovä et a! 2006) and whilst porcine bone is similar to human bone in 

mineral density and mineral concentration, canine bone is closer to human than is 

porcine, but Aerssens at al (1998) point out that there are large interspecies 

variations. However, when Laiblin & Jaeschke (1979) were looking at bone 

regeneration in dogs, humans and pigs, they found that the rate of regeneration in 

pig bone was more similar to the human rate than was the canine bone. Pearce et 

al (2007) conclude that no species (other than non-human primates) are an ideal 

equivalent for human bone. These studies are all reliant only on bone whereas in 

this research it is important to have a breed of animal that has a similar digestive 

system to our own. Pigs being omnivores are ideal candidates whilst dogs are 

carnivorous and this will affect species composition of the commensal gut bacteria. 

This study is heavily tied to bacteriology and strict carnivores we are not. Humans 

are considered to be omnivorous whilst dogs are carnivorous, but most often dogs 

that are kept as companions will be fed whatever is left over from the diet of the 

human owner and this will almost certainly be a mixture of protein and vegetable 

matter. Although canine bone is more similar, there are ethical implications when 

using animal species that are companion animals (Pearce at 812007). It is perhaps 

easier to use those species that we already breed as food providing stock where 

emotive issues are less likely to be problematic. Of course the former applies 

mainly to often unnecessary experimentation that is carried out in-vivo and in the 

modern world, rather than examining the bones of long dead dogs. It would be 
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pertinent to explore archaeological canine bone as dogs were just as much pets in 

the past as they are today. Because of this they were often buried in a similar 

manner to humans, with care and emotion and were sometimes interred with their 

human owners. This means that they were buried in their entirety along with the 

microbial contents of the gut, oesophagus and skin, rather than the sterilised 

carcasses of domesticates that had been butchered for their meat. 

5.4 Diaaenetic Pathways 

The ways in which a bone or skeleton can decompose are varied whilst at the same 
time being limited. Much will depend upon both the pre-depositional processes and 
then subsequently upon the environment in which the remains are finally interred. 

Unfortunately, pre-depositional acts are seldom clearly defined by the bones 

themselves. Practices such as excarnation will not generally leave a definable trace 

and in the same way neither will a body where an extended pre-burial period has 

taken place. Lyman (1994) refers to these pre-burial processes as 'Biostratinomy' 

and includes factors such as trampling, exposure, butchery and defleshing, cooking 

and burning/cremation (See Ch 2). Biostratinomic processes chiefly influence 

which species and which skeletal elements end up in the burial record. Therefore 
those remains that become buried are already compromised and to an extent 
'selective'. It is clear that a human body is more likely to be buried in its entirety and 
even in cases of excarnation or cremation a certain amount of care may be taken to 

conscientiously gather most of the bones if these are then to be buried. In direct 

opposition to this are the remains of food providing domesticates. Here the external 
influences mentioned above will severely impact upon which bones survive and 
which are buried. In humanly created assemblages they are likely to have been 
differentially transported from kill sites, butchered, cooked, disarticulated, subjected 
to marrow extraction, fed to other carnivores or exposed to scavenging (Lyman, 
1994) before possibly ending up in a midden. One study has shown that 

experimental cooking of bone will both modify and accelerate deterioration (Roberts 

et al, 2002). It is consequently difficult to reconcile these differences when using 
pigs as an analogy for humans. Any archaeological specimens that are observed 
will have fundamental differences in both their pre and post depositional treatment 

which is further compounded by the innate dissimilarity in their bony morphology. 

Once the above factors are understood it then becomes pertinent to understand how 
skeletal remains are further diagenetically modified by their burial environment. 
Preliminary research in to bone diagenesis shows that degradation of the composite 
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material follows certain paths and is somewhat limited to deterioration of both the 

organic and mineral phases and by microbiological attack (Collins et al 2002). 

Further work by Jans (2005) looked at benign and corrosive environments. Recent 

research suggests that there are only four main pathways for change post 
deposition (Smith et al, 2007). The authors suggest that bones can either be well 

preserved, be subjected to accelerated collagen hydrolysis, be attacked by microbes 

or suffer catastrophic mineral dissolution; two of these pathways may be active at 

the same site. This they believe is linked to early taphonomic processes and 

whether or not a body is buried entire, rather than long term soil conditions (although 

soil type will have an effect). This research was followed up (Nielsen-Marsh et al, 
2007) by looking at inhumed entire corpses versus disarticulated remains in what 
they term as either'benign' (low pH, free draining) or'corrosive' (neutral pH, organic 

rich, urban) soils (fig 5.3). 
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Fig. 5.3 Pathways to destruction or preservation (Nielsen-Marsh et at, 2007) 

The information provided above suggests that the best preserved bone would 
originate from a disarticulated or sterile corpse that had been buried in a benign soil 
with neutral pH and if the hypothesis being tested here is correct then this would be 
highly likely as butchered remains do not have an endogenous gut flora. The other 
three pathways are destructive with little hope of bone remaining in the very long 
term. This experimental research however is looking for microbial tunnelling in the 
short term and the burials are based in woodland. Here the soil should in theory be 
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classified benign as woodland soils are generally slightly acidic with a pH of around 

4-5. However, as already discussed most bacteria are Neutrophiles that work best 

at pH levels of 5.5 - 8. Bacterial collagenases have an optimum pH value of 7.3-7.4 

(Poole & Tratman, 1978). Having measured the pH level at Riseholme it is known 

that the pH value for that particular site is around 7.6-7.8 which would suggest that 

most bacteria and those that produce the collagenase enzyme should be prolific 

providing an ideal environment for micro-focal destruction by bacteria. According to 

Gordon & Buikstra (1981) the preservation or destruction of inhumed human bone is 

quite strongly related to soil pH and that as the pH decreases the destruction of 

osseous materials increases, but this relates to acid dissolution rather than microbial 

activity. 

5.5 The Nature of Bone Tunnelling 
What happens to bone once the soft tissue has decomposed? Bone may become a 

substrate upon which bacteria can continue to gain their energy requirements whilst 

at the same time extending the organic phase available by using the hard tissue of 
the skeleton (more specifically the collagen) as discussed in chapter three. 
Previously undertaken studies have had varying success rates in the areas of; 
tunnelling detection, the rates at which it is found and the earliest recorded 
timescale for this process to occur. The very structure of the bone itself will to some 
extent define how and when it will be possible for bacteria to attack the bone and it 
has been shown that tunnelling is not random but rather reflects the lamellar nature 
of bone (Bell, 1990). In addition to this Hanson & Buikstra (1987) argue that post- 
mortem degradation proceeds independently from any extrinsic factors which only 
serve to hasten an intrinsically defined process. As previously discussed bone is a 
mixture of organic and inorganic material that comprises collagen in the form of a 
left-handed triple helix of polypeptide chains that forms fibrils. Collagen contains 
high levels of the amino acids glycine (33%), proline and hydroxyproline (20%) 
(Child, 1995). The spaces between the molecules are filled with the mineral 
component of hydroxyapatite (ibid). Hydroxyapatite is formed mainly of calcium 
(38%) phosphate and hydroxyl ions that form very small needle-like crystals about 
20nm in length (Bancroft & Stevens, 1977). It is believed that microbial attack is 
initiated by localized chemical dissolution of the mineral phase followed by 

enzymatic attack of the exposed organic matter (Collins et al, 2002). Child (1995) 
believes that microbial proteinase (a strong bacterial acid) results in 
demineralization of the hydroxyapatite. Either of these two pathways is possible. 

72 



There remains considerable disagreement in the literature as to whether bacterial 

tunnelling is as a result of soil or intestinal microbes. Microbes of soil origin have 

long been suspected of having a predominant role in the breakdown of bone 

collagen (Grupe, 2001), but some (Jans et al, 2004) are confident that the 

endogenous intestinal bacteria are the true perpetrators. Others are so convinced 

that soil bacteria are responsible that they state that tunnelling will not normally 

commence until the point of skeletonization at a time when the bone structure 

becomes available to soil microorganisms around five years postmortem (Yoshino et 

al, 1991). 

5 .6 Types of Tunnelling and Location 

There are currently four different types of tunnelling described in the literature that 

affect bone in terrestrial settings (Hackett, 1981). A further type affects material in 

marine settings and is attributed to cyanobacteria (Bell & Elkerton, 2007). Of the four 

that affect terrestrial remains one form is believed to be of fungal origin and is called 
'Wedl'; this was first described by Wedl in 1864 and pertained to bored labyrinth-like 

structures in archaeological and modern bone. This research is primarily interested 

in 'non-Wedl' tunnels that are understood to be as a consequence of bacteria from 

either the gut or the environment, using bone collagen as a substrate. These types 
have been described and classified by Hackett (1981) and are given the terms; 
Lamellate, Linear Longitudinal and Budded (table 5.2 & fig 5.4). These are 
designated to type by shape, size, distribution and abundance, contents, 
demineralization, mineral redeposition and the influence of the cement line. Hackett 

suggests that there may be other types that do not fall into the categories above. In 

many microscopic thin sections bacterial tunnelling cannot easily be placed into 

these three types; it is obvious that the bone has undergone major decomposition 

and there may be a total lack of collagen, but staining or the poor state of 

preservation may preclude a strict diagnosis. 

Recognised Types of MFD 
Wedl Linear Longitudinal Budded Lamellate 

5-1 Opm Small round focus 5- About 30Nm wide 10-20pm to 60x250pm 
No cuffing (i. e. mineral 10pm Frond-like tunnels Rounded but In transverse 
redeposition) Mineral redeposition in Side shoots budded at sections are curved following the 
Course is never smooth the form of a hyper- intervals of 80-90pm pattern of the lamellae 
straight or longitudinal mineralized cuff from Slight cuffing May appear close or away from 
They branch about 5pm Best seen in the osteon canal 
They are either empty or Restricted to osteon by longitudinal section Form concentric mono-lamellate 
contain spherical bodies the cement line Transverse section patterns 
The bacteria may leave before May be concentrated 

, appear rounded up to 
the osteon is packed in a single osteon 50Nm 

Table 5.2 Categories of tunnel types and distinguishing features. ( Hackett, 1981). 
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One of the difficulties in assessing MFD lies in the fact that bacterial invasion can be 

very different along the length of any given bone. Most sections are cut transversely 

through the mid shaft of a long bone at very thin sections. If no MFD are found it 

does not mean that there is not tunnelling present lower down or further up in the 

bone, after all only a 50pm section has been observed. Because tunnelling is 3 

dimensional, sections taken longitudinally give a better chance of detection as a 

much larger area is covered; however, visualizing MFD in this type of section is 

more suggestive. 
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Further quantification of the degree of postmortem microbial degradation can be 

achieved by using mercury intrusion porosimetry (HgIP) that measures total pore 

volume and pore size distribution. Turner-Walker et al (2002) found that diagenetic 

change in archaeological bone is restricted to two discrete pore ranges. They found 

three broad ranges of pore size that were attributable to firstly, chemical degradation 

of the collagen fibrils (<0.1 pm), secondly, microbial (spongiform) porosity in the 

range of 0.1-1 pm and thirdly pores with a volume >1 pm would be characteristic of 
the physiological properties of the bone. This correlates well with similar research 
by Jans et al (2004) in which it was found that budded and linear longitudinal types 

of tunnelling demonstrated pore size of approximately 0.6pm, lamellate was slightly 
smaller at 0.3pm, whilst Wedl tunnelling was between 0.1 and 1.2pm. 
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Fig. 5.4 The three recognised and different sized/shaped bacterial types of MFD. Green arrow 
= Linear Longitudinal (small/round), Yellow arrow = Budded (irregular, larger than LL) and Blue 
arrow = Lamellate (largest funnels/follow shape of osteon). (Picture, Author, 2007 Adult from 
Bolsover Collection) 



After examining many photographs of sections different types of MFD can appear 

very distinctive. Linear Longitudinal are very small and round, whilst Budded are 

much larger and Lamellate larger still and close to the osteon. In one however, this 

distinction has become blurred by what appears to be merging of discrete tunnels. 

In the lower right of the section a series of twelve or more tunnels are seen to blend 

r 

somewhat haphazard and zigzag manner (fig 5.5). 
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Fig 5.5 Tunnels that appear to amalgamate in to larger entities (Jans, Personal Histology 
Collection) 

Furthermore, some of the tunnels that would be designated as lamellate appear to 

have roughened edges and appear to be two or more smaller tunnels that have 

simply merged together. If this is the case then it could be possible that what is 

actually being visualised is one type of tunnelling that can blend to look like 

something else (fig 5.6). Many questions have been raised by which bacteria are 
responsible for tunnelling and it has been suggested that different microbes may be 

responsible for individual types of MFD. Is it possible that all three types are nothing 
more than a series of tunnels that have joined together, at least in the cases of 
bacterial attack? If this is possible then one issue raised is why aren't more tunnels 
in very close proximity to each other joined together? It is not unusual to see an 
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osteon packed with linear longitudinal type tunnels. What is proposed is that some 

of the tunnels can merge and others cannot and this will be dictated by how many 
bacteria are available and where in the tunnels margin, mineral redeposition occurs. 
Consider two sets of bacteria adjacent to each other and both begin to cleave 

mineral from opposite sides. As they work around the edge if they meet in the same 

place at the same time then they will break through the margin, much the same as 

when building a large underground tunnel with workers starting at both ends and 

meeting in the middle. If however one group of bacteria closest to the adjacent 

tunnel deposited mineral without meeting the adjoining bacteria then a mineral 

barrier would be formed and the tunnels would remain as discrete entities. The 

same would be true if fewer bacteria were involved. A host of bacteria have more 

enzymes at their disposal than say a few solitary bacteria. 
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Fig 5.6 What appears to be lamellate tunnelling, but could perhaps be linear longitudinal that 
has merged (Jans Personal Histology Collection) 

Jans et al (2004) assert that lamellate tunnelling is always found in association with 
budded foci. If the above proposition is true then this would be expected as tunnels 

of budded type would just be made larger by amalgamation. As an alternative 
explanation it is also possible that certain soil conditions such as chemical and 
physical factors may hydrolyse the mineral component faster prior to or after 
tunnelling has taken place. 
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In cases of known tunnelling it is evident that bacteria tend to colonise around 
individual canals and do not cross the cement line. Jackes et al (2001) consider an 
haversian system to be a `closed world for bacteria' as once the colony reaches the 

cement line the area becomes too acid for their continued livelihood. This is 

demonstrated well in fig 5.7 below as the areas of tunnelling do appear to be 

restricted to individual osteons. Also of relevance is that in most sections observed 
there is a definite `inside-out' mode of attack that affects the mesosteal region and in 

general the periosteal and endosteal areas will have a clear band of preserved bone 

(fig 5.7) where destruction has not taken place. Structural preservation of the 

periosteal surface has been noted by Hanson & Buikstra (1987) and Hackett (1981). 

This would be suggestive of endogenous bacteria entering the bone during the early 

putrefactive period. If soil bacteria were the cause then a more likely scenario would 
be a mode of attack that would start at the periosteal surface that then proceeded to 

the central area of the bone ('outside-in' mode of attack). Hanson & Buikstra (1987) 

advocate that micro-focal destruction begins with a series of isolated foci which 

steadily band together to form large patches of affected bone and that haversian 

systems are affected rather than the more highly mineralized interstitial bone. It has 
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Fig 5.7 Location of tunnelling (White, 2007). Key: black arrow = preserved periosteum, Red 
arrows denote band of attack between the periosteum and the mesosteum. 
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been suggested that once microbial tunnelling has begun it will generally continue to 

completion (Collins et al, 2002) i. e. the bone will be completely destroyed. This 

assumption appears to be supported by recent research where a histological index 

was assigned to bones from archaeological sites (Hedges & Millard, 1995). One 

hundred and thirty nine bones were sampled and the majority had a score of either 

one or five; meaning that either destruction was complete or alternatively had not 

commenced. However the findings were site specific so most of the well preserved 

bones came from one site and the poorly preserved from a different site. In the 

case of the 27% of bones affected by microbial diagenesis most fell in to the 

category of being affected across the entire section and only in a few cases was the 

deterioration said to be intermediate. In addition to this the authors suggest that the 

timescale involved is much shorter than previously believed as greater age of bones 

did not correlate with a worse preservational quality. Hedges (2002) agrees with 

this but is still referring to bacterial attack happening over hundreds of years rather 

than in the early postmortem period. In 1995, Hedges and Millard suggested that 

microbiological attack is generally complete within less than five hundred years. It 

could be argued that this estimate is still overly long and if the forensic cases are to 

be believed the time periods involved are set within the first few decades. In 

addition Hedges (2002) adds that there is great variability in bacterial attack within 

sites, between sites and within a single bone. Two pertinent questions provided by 

Hedges are; what environmental conditions are conducive to, or inhibit, microbial 

attack? And also, what pre-burial conditions affect microbial attack? 

5.7 Summary 

The structure of bone is designed to be a strong and dense due to its supporting 

role during life. This makes it difficult to hydrolyse, yet not impossible. Collagen 

from bone can be used by bacteria to gain energy and this can be achieved by the 

enzymatic dissolution of the hydroxyapatite which then allows access by other 

microbial collagenases to the collagen fraction itself. The morphology of human 

adult bone differs from both human foetal bone and Sus bone. The main differences 

are that in young children and foetal material the bone will be mainly woven bone 

and in the immature pig the bone will mainly be plexiform in nature. This cannot be 

overcome by the use of other animals as these are generally difficult to obtain and 

quite often seen as ethically corrupt if used in this way. Although canine bone would 
be a preferable model the efficacy of using it would be unacceptable. It Is therefore 

necessary to continue using porcine bone and dealing with any inadequacies that 

this may entail. 
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Four types of MFD are recognised and are often encountered in bone sections. 
Further analysis is required if these types are to remain distinct as the research here 

has demonstrated that in certain cases this may not necessarily be the case. It is 

possible that the same microbes are responsible for all of the tunnelling and those 

certain environmental conditions will allow tunnels of different sizes and shapes to 

form merely by amalgamation. Tunnelling is generally seen as an observable 
inside-out mode of attack suggesting that bacteria are gaining access to the bone 

via the vascular system and this in turn leads to an explanation of the microbes 
having been endogenous in origin, especially when it is acknowledged that 

butchered remains are less likely to be affected. 
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Charter 6. Case Studies of Diagenesis in the Form of Microbial and Fungal 

Alteration of Bone 

6.1 Introduction 

Diagenetic change in the form of microbial and fungal tunnelling has been well 

observed both in the archaeological record and in experimental studies. This 

chapter will look at these cases in more depth and will include terrestrial, laboratory, 

marine and archaeological settings. Because it is not known when bacterial 

destruction of bone commences it is necessary to look to prior research and 

experimental studies to try and ascertain both when microfocal destruction (MFD) 

begins and once begun how long it takes for it to progress to completion. 

6.2 Laboratory Based Studies 
Laboratory based studies are quite rare, but have been successful in mimicking 

what is found in older material recovered from ancient cemeteries and burials. 

However, these are often carried out under ideal conditions at optimal temperatures 

and with selective bacterial species. Grupe & Dreses-Werringloer (1993) used pig 
bones that were subjected to inoculation by either soil fungi or bacteria and then 
kept at temperatures optimal for bacterial growth. These were shown to be densely 

colonized by microbes within four months using fluorescence light microscopy. The 
bacteria chosen were selective, and unnaturally high temperatures were used to 
optimize results. It would be interesting to investigate how and if this process occurs 
at typical grave soil temperatures. 

6.2.1 Bones Exposed to Seawater (Marine Settinasl 
In experimental marine based studies microbial tunnelling has been found as soon 
as one year after deposition. This type of tunnelling often represents an outside in 

mode of attack and is quite different to terrestrial tunnelling visually and looks more 
like fungal tunnelling; although cyanobacteria are probably responsible for the 
damage seen. In one experiment fresh bovine metatarsi were deposited at a depth 
of 60m on the sea bottom. Bored cavities were apparent after one year's 
submergence, and these were often filled with micro-organisms. Bacteria, algae 
and protozoans were all present but it appears that the protozoans of amoebic type 
were unambiguously involved in bone resorption (Ascenzi & Silvestrini 1984). 
Tunnelling was also apparent in forensic bone recovered from sea water at between 
4&5 years postmortem by Yoshino et al (1991); no samples of earlier date were 
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included in the study. Balzer et al (1997) used sterilized bone inoculated with 

several different types of bacteria to research the implications for stable isotope 

analysis when bone collagen had been degraded by microbes. The bones were 

cultured for between 8 and 18mths at optimal temperatures and after this time 

bacterial invasion sites were clearly identifiable although no tunnelling phenomena 

were detected. It is clear from these limited studies that bacterial attack in water can 

commence very quickly even in disarticulated bone. This would suggest a very 
different process to what is seen in land based studies. 

6.2.2 Modern Terrestrial Real-Time Experiments 

A variety of situations have been researched using real-time experimentation. This 

entails depositing carcasses or disarticulated material in a variety of settings and 
then leaving in place for set periods before examination for diagenetic change. 
Although this is less likely to give false results it is reliant upon generally only one or 
two variables and therefore the results are limited. Using modern burials Cross 
(2006) examined two pig carcasses that had been buried for periods of up to 
18months. In neither case was any micro-focal destruction observed although one 
carcass was placed in the ground as soil temperatures were beginning to get colder 
and both corpses were in areas where temperatures are in general quite cold. 
Both cadavers had soft tissue remaining which would supply any microbes present 
with a food source that is presumably easier to exploit than bone collagen. 

Nicholson (1996) looked at buried animal remains including mammal, bird and fish 
that had been interred for a period of seven years. Although focal destruction is 
reported in a few of the cases (focal destruction in sheep metapodial from three 
sites) some of the animals were placed in the ground as singular bones whilst others 
were buried as entire corpses. Nicholson found that the most critical mode of 
destruction in the early postmortem period was microbiological followed by drainage 

and soil pH. It is also suggested that any differences can be accounted for by 
variance in soil microbial populations. But it should be mentioned that this paper 
was researching the effects of different types of soil and pH values on bone 
degradation rather than the effect of endogenous bacteria. 

Hackett (1981) experimented with sterilized compact bone buried in three types of 
garden soil over a period of one year. The bones were kept at room temperature 
and at the end of this period several sites of tunnelling were seen. Curiously, 
Hackett does not give these tunnels a type (after all he was the one to categorise 
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them); he merely states that they were not of 'Wedl' type, but that they were more 

likely to be due to bacterial invasion. In forensic and experimental cases it can be 

difficult to assign a type as any destructive lesions may be in the very early stages 

and unrecognisable as to distinct groups. Most of the information on how to label a 
lesion comes from archaeological bone where bacteria have had many hundreds of 

years to complete the destructive cycle. There must be a point at which collagen 
has begun to be lost but its extent is narrow and without the tunnels that define 

MFD. 

Wedl found fungal tunnelling of teethl3-17 days after being left in untreated well 

water (Wedl, 1864). Marchiafava et al (1974) carried out experimental research in to 

bone boring by fungi. Human vertebrae were placed in plant pots with garden soil 

and by the 45th day the specimens were penetrated by fungal hyphae. When using 

sterilized soil only one species (Mucor) was able to develop. These limited studies 

show varying degrees of destruction over very narrow time periods, but it is clear 

that both bacteria and fungi are capable of attacking bone in the early postmortem 

period. There is some optimism that the experimental research carried out for this 

study will add to and clarify what is already known. 

6.2.3 Modern Forensic cases 
Apart from real time experimentation the next best scenario is to look at medico- 
legal forensic cases. In these instances real bodies of humans are examined that 
have been exposed to the elements for possibly many years. One major drawback 
however, is that many of the bodies have been left on the grounds surface or are 
given a very shallow burial; rarely are there cases of deep interment. Yoshino of al 
(1991) looked at modern forensic bone and found that in general MFD was present 
in inhumed bone from around five years postmortem. They linked this to the fact 

that most burials would take this long to skeletonize unless in a shallow grave. In 

one case of shallow interment MFD was seen after 2.5 years. In bones that were 
found as surface exposures (no33) no MFD were seen in bones up to 15 years 
postmortem except for one case where bacteria were clearly responsible for a small 
area of bone destruction. The quickest Bell (1996) found bacterial postmortem 
tunnelling in forensic cases (apart from the predator scat discussed below) was 
fifteen months postmortem: this was recorded in a rib recovered from a surface 
exposure in a waterlogged muskeg . 

bog. -, Further destructive changes were 
evidenced in a variety of settings from PMI's of 2 years for marine type alteration 
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and between 7 and 70 years for terrestrial types of destruction. The primary 

problem (apart from lack of deep interment) with all of the above is that the bodies 

cannot be sampled over time. They are sampled only once, at the point of discovery 

in the case of clandestine burials/murders and at the point of exhumation in the 

other. This severely limits prior knowledge and a true timescale cannot be given 

and any attack found could have happened much sooner. 

6.2.4 Predator Scat 

A very different type of case from the others so far researched is that of a predator 

scat. Two sites of focal demineralization were observed by Bell (1996) in a fragment 

of bone recovered from a predator scat at three months postmortem. This section of 
bone had passed through the digestive tract of a carnivore and in addition was 

recovered from a wet coastal environment. It must be noted that during the passage 

through the predator the bone would have been subjected to microbial loading from 

the animals' indigenous flora as well as highly acidic conditions during passage 

through the digestive tract. This is a scenario that is quite different from the norm 

and this process is known to demineralise bone and therefore is not indicative of the 

natural tunnelling that is being researched here. It does however prove that 
tunnelling may very well be a product of the early postmortem period. 

6.3 Archaeological Cases 

The bulk of our knowledge of MFD is as a direct result of histological sampling of 
ancient human and animal bone from archaeological material. This often gives the 
best results as the bones have been subjected to bacteria for very long time periods 
and in general destruction by microbes will be complete. One problem with this 

material is that it can be so completely destroyed that it becomes practically 
impossible to visualise distinct MFD. Some sections become very unclear and 
although bacterial attack is the causative agent nothing more than the occasional 
haversian canal can be detected. Further to this is the problem of reuse of 
cemeteries and in particular graves, which may impede any results found. This 

section will cover a variety of archaeological case studies from a normal 
demographic cemetery were all age groups are represented to those burials where 
singular discrete burials of infants can be found. It will also incorporate 
disarticulated animal remains, mummified bodies, cist burials and unique findings 
from both the Mary Rose Shipwreck and the bodies of Pompeii. 
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6.3.1 Marine Type Tunnelling in Archaeology 

Bell & Elkerton (2008) published findings from the Mary Rose shipwreck and 

evaluated two different layers of deposition where the first formed very quickly with 

much silt type coverage and the second forming over a much longer time period 

(several decades). The bones from the first layer were all free of tunnelling whilst 

those from the second displayed peripheral tunnelling that is thought to have been 

caused by cyanobacteria. This type of destruction is visually unique (fig 6) and may 

be of use in forensic settings where it can be stated that bones demonstrating this 

type of degradation must have been in a marine environment. 

Garland (1987) also found what he described as Wedl type tunnelling affecting only 
the cortical area of bone that had been in seawater. Ascenzi & Silvestrini (1984) 
found borings in archaeological bone from two medieval shipwrecks that affected 
the canaliculi and that were similar morphologically to tunnels produced by fungi in 

soil-buried bodies. 
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6.3.2 Terrestrial Tunnelling 

Jans et al (2004) observed microbial changes in archaeological bone and found that 

out of 261 bone samples from 41 sites 68% had been altered by microbial attack 
and that linear-longitudinal and budded were the most prevalent types. The 

percentage of animal bone affected by microbes was much lower at only 34%, 
however bones from entire burials rather than from butchered animals were all 

affected by tunnelling. When Garland (1987) observed archaeological bone (n76) 
he found the predominant types to be Wedl, linear longitudinal and lamellate. It is 

interesting that it is stated that no budded foci were found as in Jans et al (2004) 

later study, lamellate foci were always found in association with budded MFD. It is 

possible that the distinction between budded and linear longitudinal were unclear as 
in the research carried out for this project budded foci are extremely prevalent in 

many of the sections viewed. Alternatively, this could be due to amalgamation of 
tunnels as previously discussed (chapter 5). Smith et al (2002) studied human 

archaeological material from the medieval site of Apigliano in Southern Italy where 
evidence of microbial attack is limited. Some samples do display tunnelling and 
several are described as being extensively affected, but the majority that are 
described as well preserved and which do not display microbial attack are highly 
cracked and the collagen fraction is depleted. It is suggested that collagen loss in 
the absence of microbial activity is due to the action of peptide bond hydrolysis. 
Hackett (1981) examined archaeological bone from several different countries and 
found one hundred and thirteen out of one hundred and seventy specimens to have 
suffered from tunnelling. Although all categories of tunnelling were recorded, no 
further information is provided as to types found and quantification. 

One of the few studies producing visual evidence of bacteria within bone was 
carried out by Jackes et al (2001). Using SEM they were able to visualise bacterial 

colonies in archaeological bone (fig 6.1). On examining bone from both the 
Mesolithic and the Neolithic, bacterial attack was evident in both thin sections and 
on uncut bone. They used diagnostic criteria to identify the bacteria as Clostridium 
histolyticum (although this remains unconfirmed as it is difficult to type bacteria 
visually) which is known to attack bone. In thin section the bacteria could be seen 
either side of a central unaltered portion of bone with most of the bacterial cavities 
having a breadth of around 1 p, and other cavities were closer to 0.5p in diameter. 
Evidence of tunnelling was apparent and these are described as being straight, 
tortuous or dog-legged. Colonies of bacteria were seen around the Haversian 
canals which were then reduced in size due to a coating of calcite around the canal 
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margins and the destructive foci are orientated around the circumferential lamellae 

rather than appearing randomly. Due to their findings experiments were carried out 

on modern human bone using three species of clostridium (C. sporogens, C. 

perfingens and C. septicum). 

The bones were examined after seven months at which time the specimens 

incubated with C. perfingens and C. septicum showed no alteration, however the 

surface of the specimen incubated with C. sporogens had an altered bone surface. 
In no case were tunnels seen in the bone. It is worth stating that a succession of 

colonisers would be presumed to be the norm (as with insect colonization of 
cadavers that occurs in distinct waves) and therefore even if bacteria are isolated 
from destructed archaeological bone, it is unlikely that these will be the pioneering 
decomposers (Grupe, 2001) and may instead be more modern environmental 
contaminants. 

6.3.3 Ossuary (Archaeological) 

Piepenbrink (1986) examined bones from the medieval ossuary at Göttingen and 
found that all of the samples had been subjected to extensive penetration (n20). 

This presents an interesting theory as the bones are from an ossuary. There is no 

recorded information as to where the bodies were originally buried and the duration 

of interment is not stated, although, it is usual for bones in ossuaries to have been 

deposited there in the early post-mortem period. It would be likely that any 
tunnelling would have taken place during interment as once within an ossuary the 

microclimate would probably not be conducive to tunnelling phenomenon. 
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6.3.4 Pompeii 

Guarino et al (2006) looked at unique bones that originated from the site of Pompeii 

and stored at Terme del Sarno. Twenty-seven femurs of unknown provenance 

were sectioned that had for a period of around 2000 years been buried beneath 5- 

6m of pyroclastic material. Causes of death in the city were separated in-to two 

distinct phases. Firstly, when Vesuvius erupted there was immediate fallout of 

pumice lapilli that reached depths of up to 2.8m (Luongo et a!, 2003). This material 

began to build up on the roofs of buildings and eventually these collapsed under the 

weight, causing death by the falling tiles and other debris. Many of the remains 

found at his level have fractured skulls. Within six hours of the eruption, a further 

and more fatal stage began that involved pyroclastic density currents (PDCs). The 

PDCs were responsible for overwhelming flows that destroyed everything in their 

path and formed a compact and very cohesive layer approx 1-3m thick on top of the 

previous pumice lapilli layer. The research by Guarino et a! showed that the 

majority of the bones were very well preserved (fig 6.2) and visibly very similar to 

fresh modern 
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Figs 6.2 & 6.3 Two very different bone sections from Pompeii. A= Very well preserved with 
evidence of microcracking (arrow) B= One of the few sections that is entirely destroyed by 
microbial tunnels (Guarino et al, 2006). Scale A= 90p Scale B= 180N 

bone and only 33.4% were affected by MFD (fig 6.3). One explanation for this is 

that the dense material above the corpses prevented air and moisture from reaching 
the corpses. Microbial attack would then be unexpected due to an unfavourable 

microenvironment. However, a few of the bones (at least 2) did exhibit signs of 

extensive diagenetic change in the form of lamellate tunnelling. Because 

provenance is unknown it is difficult to say why these few bones were subjected to 

diagenetic change in the form of MFD. One possibility is that the remains are from a 

group of people who were huddled together at the time of the eruption and some of 
them were better protected by the overlaying of bodies or by trapping of oxygen in a 
larger void. This is not improbable as many large groups of dead have been 

90 



recovered; this includes groups of 11,12,13,14,17,18 and 20. It is also 

interesting to note that the influence of soil bacteria would not be an issue here as 

the bodies were not buried, merely covered or more generally layered/sandwiched 

between the two separate deposits. In addition to this the pyroclastic material would 

have been sterile due to the high temperatures under which it was produced 

(although this would mainly have been deposited cold due to the small size of the 

particles) and therefore very little exogenous bacteria would have been introduced 

during the period of volcanic activity. The authors (Guarino et a!, 2006) themselves 

exclude bacterial infiltration from soil as a mechanism for the diagenetic change in 

the bones and offer instead the explanation that this was as a direct result of the 

invasion of intestinal bacteria. Another study of Pompeian remains (Cipollaro et a!, 

1998) produced similar results. In this research the provenance of the remains is 

well documented and consists of thirteen individuals from the house of Caius lulius 

Polybius. In this instance 53.8% of the bones analysed histologically are categorized 

as Good. This was the highest score possible and of the other categories one was 

intermediate, four were poor and one was very poor. It appears that the unique 

environment of the remains prevents bone diagenesis in some bodies better than in 

others. Turban-Just (1997) declares that soil bacteria are "an always present 

component of all burial conditions" and that "they substantially contribute to the 

decomposition of bone collagen". This is a slight inaccuracy; as demonstrated 

above this is not always the case and in many other scenarios this is also untrue. 

For instance lead coffins prevent the influx of soil and even wooden coffins will delay 

the soil bacteria reaching a corpse. 

6.3.5 Cist Burials where the Remains are Disarticulated 

Early Bronze Age burials from Windmill Fields, Ingleby Barwick, Stockton on Tees, 

have provided an interesting insight into disarticulated remains from a cist burial 

(Annis et al, 1999). The skeletal remains form part of a rescue excavation with eight 

sets of remains being identified with a MNI of eleven individuals. Of these 
diagenetic analysis by light microscopy was carried out on four of the burials (Booth, 
2008 SK2,3,5, & 6) and it was found that two of the skeletons displayed 
immaculate bone preservation (SK2 & 3) whilst the remaining two were almost 
completely destroyed by advanced bacterial attack. SK5 was articulated and 

crouched as was SK6 (fig 6.4 & 6.5) Excarnation has been implicated in one of the 

burials (SK3) that exhibits near perfect preservation as only the skull, long bones 

and a few finger bones were recovered from the grave that was highly suggestive of 
disarticulation prior to burial. In addition, the remains were also interred in a cist that 
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was originally constructed from wooden 

planks. It is difficult to ascertain the 

provenance of the further well preserved 

specimen (SK2) as these were disturbed 

during construction work and the bones were 

mostly recovered from the spoil heap. In 

addition to this it is thought that a number of 

the bones belong to SK1 and a female pubis 

belonging to an older woman was also found 

with the remains. If soil bacteria were the 

protagonist of bacterial postmortem 

tunnelling of bone then one would expect all 

of the bone from the site to be similarly 

affected. The fact that these two sets of 

bones are not, may be primarily influenced by the lack of gut bacteria entering the 

inhumation environment by the removal of the gut at a point soon after death. It 

must also be noted that a cist burial is often a sealed environment, with planks or 

stones lining the sides and also covering the top. From prior research (Taylor, 

1959), it is known that any fill within this type of burial is often as a consequence of 

soil slowly leaching in to the cavity over many years, either as the wood degrades or 
the stone breaks down. Therefore soil bacteria would not be available to colonise 
the body in the early postmortem period. 
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Fig 6.5 Layout of Burials at Windmill Fields (Annis et al, 1999). 

6.3.6 Cladh Hallan Mummies 

The Cladh Hallan mummies are an interesting enigma (Parker Pearson et al 2005). 

Research points towards their being mummified soon after death. This is supported 

by the arrangement of the bones and by multiple people in one set of remains (i. e. 

the skull and jaw and postcranial skeleton belong to three different people, yet the 

remains are articulated), carbon dating and demineralization of the bone. 

Summerfield (2003) originally looked at the remains microscopically and found an 

unusual pattern of diagenetic change in the remains of the adult male (SK2638). 

There is a thin band of destruction slightly beneath the periosteum that encircles 

most of the section (figs 6.6 & 6.7). This appears slightly unusual as often bacterial 

attack will affect the entire section but in this case for some reason the degradation 

has been halted. According to Parker-Pearson et al (2005) this is as a consequence 

of mummification in the early postmortem period and it was proposed that the 
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Figs 6.6 & 6.7 A= Bone section from Cladh Hallan mummified male showing a band of 
destruction of inside-out origin B= Polarized light view of same section showing corresponding 
loss of collagen (Parker-Pearson et al, 2005). No scale given. 

evisceration had preceded deposition in a bog for a period of time after death. After 

further research the authors (Parker Pearson et al, 2007) revised this speculative 

opinion and accepted that the body was most likely not eviscerated and that the 

diagenetic change was a result of gut bacteria. 

6.3.7 Infant Remains 

The initial and most profound purpose of this research was to gain an understanding 

of microbial attack and to decipher whether this was a phenomenon limited to 

intestinal bacteria or alternatively as a result of soil bacteria or a combination of 

both. To this end both parts of the experimental research are heavily biased 

towards children. The primary burials were very much an attempt to prove or 
disprove the theory of endogenous bacteria being responsible for bone tunnelling. 

The previous chapter discusses in depth the issue of presumed sterility in foetuses 

and with this in mind it is then possible to surmise that if a foetus is buried sterile 
then any resulting postmortem modification by bacteria must surely be as a result of 

soil bacteria, unless other contamination can be ruled out. Children's remains are 

not researched as avidly as those of their adult counterparts and there is a deficit in 

the literature regarding their histological integrity. Two sites where infant remains 
have been studied are Wijnaldum in the Netherlands and Bolsover, England. The 

remains from the Netherlands (Colson et al, 1997) comprise of seven skeletons that 

date from the 2nd-9th C AD of which six are newborn infants and the other is a young 
female adult of 18-19yrs. Five of the infants have excellent preservation status 

without any MFD visible and scored 4-5 using the OHI (Oxford Histological Index). 

The remaining infant has some damage to the bone with destructive foci present 
that was given a score of 3. However, this child is not given an age and comes from 
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scattered infant bones that are associated with other finds. This presents the 

difficulty of suggested reasoning for the attack without full provenance and age 

status. Human remains analysed from a cemetery in Bolsover, dating to Norman 

times have given interesting results. According to the author (Economou, 2003), the 

remains of foetuses that were buried as discrete singular burials showed no signs of 
tunnelling in the form of Linear Longitudinal MFD (table 6). The presumed sterility of 

pre-term infants would suggest that no bacterial attack should be found in their 
bones unless they are contaminated by either the mother (those children who died 

as a consequence of the mother dying) or another source whilst in the ground if 

endogenous bacteria are culpable of the tunnels that are found. However, apart 
from one exception, a foetus of 28 weeks that has a bone structure very similar to 

fresh bone (fig 6.8), all of the other infants suffer from tunnelling of the budded type. 
In the other remains (non-infants) both LL and budded occur regularly but Wedl and 
Lamellate were not recorded by the author. Most of the remains that were 

sectioned from this cemetery scored 1 on the OHI, meaning that they were all very 
badly preserved. Having reanalysed these skeletal remains, it appears that LL type 
tunnelling is present in at least four (n=7) of the foetuses. In two of the seven, 
destruction is so advanced that visualising any type of MFD is impossible. It is also 
possible that three of the foetuses are actually full term as one is aged at 39 weeks 
and the remaining two at 40 weeks. Aging of the skeletons was carried out during 
this research (table 6.1) and by using Fazekas and Kosa (1978) and prior probability 
(Gowland & Chamberlain, 2002) it is probable that some of the foetuses are older 
than the original ages given. Here at least, presumed sterility cannot be proved 

Skeleton 
(BOL) 

AGE OHI 
(Economou) 

OHI (This 
research) 

MFD 
(Economou) 

MFD (This research) 

007 Neonate 5 5 None None 
008a Foetus 5 5 None None 
008b Foetus 5 No Section None - 009 Neonate 5 No Section None - 010 Foetus 0 No Section Budded - 011 Neonate 0 0 Budded LL Budded LL 
012 Post- 3 2 Budded LL Budded LL Wedl 

neonate 
014 Foetus 1 0 Budded Budded LL L 
017 Neonate 0 0 Budded LL Budded LL 
028 Neonate 1 1 Budded LL Generalised 

Destruction 056 Foetus 1 0 Budded Generalised 
Destruction 

Table 6 Results of Bolsover thin sections 
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Fig 6.8. Exceptionally well preserved bone section. (Author, 2008). 

as childbirth is not always easily definable in terms of when a child is actually born. 

Premature babies are a daily occurrence with modern day infants surviving, 

admittedly with medical assistance, from as early as 22 weeks gestation. This 

would surely not have been the norm in the past but both 39 and 40 weeks gestation 

are certainly classed as viable. Additionally, not all of the remains were discrete 

singular burials. The North side of the church was almost exclusively used for infant 

remains, with just a few modern intrusions from cremations. So, in theory the 

infants found in this section of the graveyard, if found to have tunnelling, should 

have MFD only from intestinal bacteria if buried at depth and if indeed this is how 

microbial attack commences. It is interesting to note however, that in at least one 

case (BOL007) the infant remains have been interred in a grave cut that is adult in 

size. Is this a case of reuse of an old grave or simply a grave used in an unusual 

way. It is therefore entirely possible that these three infants survived at least long 

enough for bacteria to begin to colonise their bodies. This leaves 4 foetuses, one 

completely preserved and the other three being very poorly preserved. Of course, it 

must be remembered that their remains have come from a long used cemetery that 

has an infiltration of endogenous human intestinal flora every time a corpse is 

interred. Recent research (Wilson et al, 2006) in to microbial loads in soils 

containing decomposing animals, have found that the amount of anaerobic 

organisms (that can be cultured in the lab) triples in twelve months from the time of 

deposition. Additionally, basal respiration measurements, a more accurate method 

of counting bacteria looked at three deposition scenarios. The control grave, a pit 

dug but no burial, had the least amount of microbes, whilst a grave with a burial, (but 

that was subsequently scavenged) had double the amount of bacteria, and a third 

burial of a pig that was un-scavenged had double the amount as the scavenged pig. 

96 



Skeleton 
(BOL) 

Original 
Status 

Discrete 
Burial 

Femoral 
Length 

Humeral 
Length 

PP F&K Aged Original 
Age 

North Side of church 
007 Neonate Yes But in 89.2 73.7 46- 42- 

grave cut 48wks 44wks 

of adult 
0080 Foetus Yes but 38.2 

with twin 
008b Foetus Yes but 46.3 42.2 28wks 26wks 26- 

with twin 7? ý. S 28wks 

009 Neonate Yes 73.7 64.3 40- 40-42wks 1 38wks 
42wks 

010 Foetus No 35.9 34.7 26wks 22wks 24wks 
Intercuts 
grave of 

child 
011 Neonate Yes 75 67 40- 40-42wks 39wks 

42wks 
012 Juvenile Yes 93.1 76 46- Over 10 2rnths 1-3mths 

48wks lunar ý>ostnat 
mths al 

Foetus Yes 59.7 53.9 34- 34wks 14 33wks 
38wks 

017 Neonate Yes 78.7 68.4 42- Over 10 4i 40wks 
44wks lunar : t. ý 

mths 
General Cemetery 
028 Neonate No 75.4 66.8 40- Over 10 4u 39wks 

42wks lunar 47wk 
mths 

® Foetus No 50.8 45.5 28- 29-30wks 30wks 
30wks 

Table 6.1 Aging methods used in this research PP= Prior Probability (Gowland) F& K= Forensic 
Fetal Osteology (Fazekas & Kosa, 1978) 

Whatever the cause of MFD clearly the two youngest foetuses were not affected yet 

others merely weeks older were and in fact almost all of the skeletal material 

recovered from the site is very poorly preserved. Being unaware of past cultural 

practices makes any real suggestion untenable. In modern cases of stillbirth it is not 
unusual for mothers to keep the child at home until the time of burial. Visitors will 
call, most of whom will hold and kiss the child and whilst doing so pass on bacteria, 
the baby will be washed further contaminating the child. It is impossible then for the 

child to be presumed sterile although it is presumable that the intestines will not 
have been colonized, merely the skin and possibly the respiratory tract 

The Blackgate collection has a number of very young infants and foetuses. Twenty- 
four sections of all ages were taken of which nine are aged between 27 weeks to 
less than one year (table 6.2). Of these, four are free of MFD, one has generalised 
destruction where it is difficult to ascertain the cause, one has possible budded 
tunnelling and three have positive tunnelling. The three with definite tunnelling are 
aged between thirty-nine and forty weeks and this could mean that they were live 
born only to die within a few days of birth. All of the sections from the adults have 
visible MFD. 
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Skeleton No I Age MFD 

BG3277 27 wks Generalised Destruction 
BG90 3285 32 wks Possible Budded 
BG90 3191 36 wks None 
BG90 3166 39 wks (Tibia) Generalised Bacterial Attack 
BG90 3166 39 wks (Humerus) None 
BG3215 39 wks Budded LL 
BG90 3204 40 wks Budded LL 
BG3191 46 wks None 
BG90 3207 <1yr None 

BG90 3830 18mths Generalised Bacterial Attack 
BG90 3184 4-5yrs Generalised Bacterial Attack 
BG92 3664 5-6yrs Generalised Bacterial Attack 
BG81? Adult Generalised Bacterial Attack 
BG81? Adult Generalised Bacterial Attack 
BG464 Adult All 3 types 
BG91 Adult All 3 types 
BG8 Adult All 3 types 
BG481 Adult All 3 types 
BG548 Adult All 3 types 
BG127 Adult All 3 types 
BG614 Adult All 3 types 

Table 6.2 Blackgate collection showing differential preservation between juveniles and adults. 
Data from studies by the author. 

6.3.8 Animal bone 

It has been suggested that microbial attack in animal bone is less likely due to the 
fact that butchery practices result in sterile carcasses and that if any diagenetic 

change is present this will be in the form of fungal invasion. However, butchering 

can take different forms and this is evident at the butchery site of Paso Otero 1 in 

Argentina where bone samples are regularly found to have been diagenetically 

altered by bacteria (Gutierrez, 2001). Two distinct usage phases have been 

identified and excavated from which Guanaco (camelid type animal) bones have 

been recovered and analysed. The site is classified for these two time periods as 

stable landscapes dominated by buried A horizon soils that developed within a 
poorly drained and very moist setting with a typical vegetation of grasses and reeds. 
Two different processing methods were employed and in the earlier time period the 

whole carcass was deposited at the site and only the edible meat was taken back to 

the campsite. In the later period select animal parts in the form of fore and hind 

limbs were left in piles at the site. Both assemblages suffered from bacterial MFD 

although the later assemblage was slightly less affected. The group with the entire 

carcass being left behind is easier to interpret as the intestines would also have 

been left allowing bacterial attack to commence immediately. However, the stage 

where only limbs were deposited requires more thought. Presumably if a carcass is 

being processed in this way then the main objective is to leave 

inedible/bulky/unproductive parts at the site to ease the burden of carrying an 

already large and ungainly animal back to camp. This being the case it would not 
be presumptuous to suggest that the hunter/gatherers would also have gutted the 
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carcass. The intestines would not be identifiable later as their decomposition would 

be complete. It would make sense that these parts would also be deposited at the 

very least in the same locality as the limbs and very possibly deposited at the exact 

same location i. e. within the pile of limbs. The two strategies of procuring meat 

result in different assemblages with much the same outcome. Although in the 

second phase the intestines would not be within each and every bone and this may 

explain why these bones from this usage period are slightly better preserved. In 

addition to this any carcass being taken back to camp would be sterile and it then 

becomes feasible that these bones if later discovered will not suffer from bacterial 

MFD. Both assemblages (mni=36) demonstrate higher frequencies at stages 3&4 

of the histological index (where 1= worst preservation and 5= best preservation). In 

this case at least where microbial destruction has begun it has not generally 

continued to completion. 

Archaeological goose bones (n=320) from the Middle-Late Saxon site of Flixborough 

in Lincolnshire show MFD that demonstrates an inside out mode of attack (Haynes 

et al, 2002). The majority of the bones scored 3 using the HPI (figs 6.9 & 6.10), but 

overall the distribution of categories is quite evenly spread. 

0 
ý'w 

lw 

AB 
Fig 6.9 & 6.10 Archaeological Goose Bone from Flixborough. A= HPI 1 B=HPI 3. No scale given. 
(Haynes et al 2002). 

Again this is in direct conflict with the findings of Hedges et al (1995) who recorded a 
bi-modal distribution where the bones were either very well preserved or almost 
completely altered. The authors (Haynes et al, 2002) suggest that rather than there 
being a difference between mammalian bone and faunal bone, the difference lays in 

the burial environment. Bi-modal versus even distribution may be both a question of 

numbers. The larger the sample size, the more likely it will be that the distribution 

will be even or more possibly it relates to how the animals were buried. Intact 

corpses are more likely to display MFD than those that are disarticulated/processed 
before interment. When Reiche et al (2003) studied animal bones from the Neolithic 
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site of Bercy, France, they found that bone buried in the waterlogged zone had a 

high organic content and good preservational state, but during dry periods tunnelling 

by microorganisms was evident. This they attribute to an oxygen-rich environment. 

6.4 Summary 

Reported cases of MFD suggest that the time scale involved is most likely within the 

early postmortem period. Archaeological cases although useful are not definable in 

terms of when the attack took place. They are however beneficial in terms of which 

remains exhibit tunnelling and those that do not. It has been shown that 

disarticulated remains may be very well preserved when articulated remains from 

the same cemetery are subject to MFD possibly pointing to an endogenous reason 

for microfocal destruction. The Cladh Hallan mummies appear to have a limited 

form of MFD perhaps due to their early postmortem treatment and some of the 

remains from Pompeii that are not subjected to soil bacteria are also affected. Fetal 

remains are also less likely to be affected. All of these instances point towards a 

point of origin for MFD firmly within the body itself. Experimental and forensic cases 

are however providing some answers, even if these are not immediately answering 

very clearly defined questions. Three months is the earliest recorded timescale for 

MFD to occur but this cannot be equated to what is seen in the archaeological 

record. It is however clear that true cases of tunnelling may well be evident in 

terrestrially located bone within less than two years and possibly even earlier. 
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Chapter 7 Materials and Methods 

7.1 Site Location and General Conditions 

By kind permission of the Department of Forensic and Biomedical Sciences at the 

University of Lincoln, we were allowed to use land belonging to them for the 

experimental part of the research. Their assistance is gratefully acknowledged. The site 

is located at Riseholme, Lincolnshire. This is a 240 hectare estate that encompasses 

agricultural, animal related and biological science. The Riseholme estate is mainly 

arable, with mixed woodland making up 20 hectares of the total. Riseholme Hall, which 

used to be the Palace of the Bishop of Lincoln, is still situated at the site. The actual 

location of the experimental material is a small wooded area within this (fig 7) that has 

vehicular access. The site is to the rear of the Rural Science Centre and adjacent to 

paddocks, a public footpath/bridleway and a golf course. It is a quiet location that is not 

used by either students or members of the public making it an ideal location for privacy 

and to reduce the risk of accidental discovery. The woodland is comprised of Scots 

Pine, Norway Spruce and Beech, with very little under storey and the burials are central 

within the wooded area. The site is located at 53.27°N latitude and 0.52°W longitude 

with an elevation of 50 meters above sea level. Average climatic data for the site as 

recorded at RAF Waddington (Jan-Dec 2005) is depicted below (figs 7.1 & 7.2). 

Waddington is 1 0km south of Riseholme and at the same altitude. 
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Fig 7.1 Average temperatures relating to the Riseholme site as collected from RAF Waddington 
10km from site. KEY: TMAX = Maximum Air Temperature, TMIN = Minimum Air Temperature, 
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Fig 7.2_ Total monthly rainfall throughout the period Jan-Dec 2005. KEY: TOTRN = Total Rainfall 

7.2 Sus Experiments 
For the first part of the experiment 12 newborn domestic pigs (Sus scrofa) were 
'buried/placed' inside water tanks. The pigs were supplied by the local knackerman, 

who delivered them to the site and all had died within 24 hours of collection and were 
therefore considered fresh on arrival. Seven of the pigs had been refrigerated for a 

period of 4 days. They had all died of natural causes and were either stillborn or rolled 
on by their mother. Because in the UK it is difficult to gain ethical permission to use 
human cadavers (adult or juvenile) for this type of experimental research it was 
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determined that juvenile pigs would be used as a proxy or substitute for experimentation 

purposes. These were considered to be an appropriate model for newborn children, due 

to their similar size, lack of body hair and broadly comparable postcranial skeletal 

anatomy. The pigs used in this study ranged from 1.4-3.1kg (3.08-6.8lbs). The lowest 

weight is comparable to stillborn children whilst the higher weight roughly equates to 

newborn children. Many other animals have a thick coat of fur or hair, but pigs tend to 

have a much lighter covering that is similar to the amount of human body hair. Pig 

carcasses are often used in anatomical studies of both the soft and hard tissues of the 

human cadaver and although there are physiological and biochemical differences, there 

are also considerable similarities. However, the ratio of body fat to total body mass in a 

newborn human is relatively greater than in the neonatal pig; 16.1gm per 100gm, versus 
1.1gm respectively (Widdowson, 1950). It should also be noted that piglets can weigh 

anywhere between . 5kg-1.5kg whereas newborn humans usually weigh around 3.5kg. 
Many other previous studies in human taphonomy and decomposition have relied on 
this source also (Wilson et a12006, Morton & Lord 2006, Weitzel 2005, Micozzi, 1986, 

Turner & Wiltshire 1999, Schultz et a12006, Haefner et a12004, Hobischak at a12002, 
Joy et a/ 2006, ) due to ease of appropriation, ample availability, ethical considerations 
and the fact that animal by-products are permissible for diagnostic, educational and 
research purposes. 

Due to strict regulations and guidelines (Animal By-Products Regulations, 2005) 

enforced by the Department for Environment, Food and Rural Affairs, it is illegal to bury 

or contaminate land and soil with 'fallen livestock' and this regulation extends to cover 
stillborn animals. 

" "Fallen stock can no longer be buried or burnt in the open because of the risk of 
disease spread through groundwater or air pollution. Instead, animals must be taken 
to%ollected by an approved knacker, hunt kennel, incinerator or renderer, either by 

private arrangement, or under the National Fallen Stock Scheme. " (ibid). 

This is largely to prevent microbes from notifiable diseases such as BSE and scrapies 
entering the soil and/or public water supply. A need to prevent scavenging by other 
necrophagus wildlife is also obligatory. Personal health whilst handling the pig 
carcasses was addressed by the use of latex gloves and the application of antibacterial 
hand wash' after each visit to site. University held personal safety guidelines were 
followed and the site was only ever visited when two or more people could be present at 
the same time. This was achieved by inviting University of Lincoln Forensic Science 

students to help out with data collection. It was necessary to propose an experimental 
protocol that met these guidelines whilst retaining the general purpose of the 

106 



experiments. As no putrefactive liquids were allowed to penetrate the soil, the pigs had 

to be housed within boxes that were leak-proof. Small domestic water tanks were found 

to be an ideal size for young pigs. These were then filled to a depth of 3-4 inches with 

small pebbles that were subsequently covered by a layer of fine grade mesh (to prevent 

loss of small bones and epiphyses). The pigs could then be laid on top of the mesh for 

putrefaction to take place. Any liquids draining downwards are then contained within the 

pebbles which prevent the body from becoming waterlogged. The water tanks were 

then securely fitted with clear corrugated PVC lids attached to small sections of wood 

fitted internally to the top of two sides of the tank (fig 7.3). The lid was held in place by 

cross head screws and served the purpose of both preventing scavenging by 

carnivorous animals or carrion feeding birds whilst also keeping out any heavy rainfall 

which may have flooded the boxes. They also discouraged human interference. The 

lids were spray painted white to reflect sunlight, reduce the temperature of the box 

internally and to avoid public scrutiny if accidentally stumbled across. Access holes for 

flying/crawling insects were drilled along two sides of the boxes. The standardized 

design of the boxes reflected the need to provide identical environments for all of the 

individual pigs. 

7.3 Site Temperature 

A HOBO temperature data logger was placed inside the tank containing pig no. 2 to log 
the internal temperature of the boxes on a two hourly basis throughout the day. It was 
set to launch at noon on the 26th April 2006 and Onset software was used to retrieve 
temperature data via use of Boxcar 3.7. External temperature was provided by the 
Meteorological Office at monthly (provides daily data including a minimum and 
maximum daily temperature) and yearly (provides monthly data including maximum and 
minimum temperatures for the month) intervals from RAF Waddington. Data comprised 
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of maximum/minimum temperature, amount of rainfall and hours of sunlight for the four 

most relevant months can be seen below (table 7& fig 7.4). Relevant decompositional 

data were collected at set intervals (this ranged from every day to every other day or 

weekly depending on stage of decomposition). July 2006 appears to have been 

unusually hot and sunny with a max average temperature of 25.8°C compared to 20.8° 

C for the previous year. 

MONTH AVERAGE MAXIMUM AVERAGE MINIMUM RAINFALL SUN 

DAILY DAILY mm (Hours) 

TEMPERATURE TEMPERATURE 

(* C) L) 

APRIL 2006 12 4.7 31.6 164.1 

MAY 2006 16.4 8.3 86.2 187.3 

JUNE 2006 21 11.3 11.6 207.4 

JULY 2006 25.8 14.2 50.4 294.5 

Table 7. Climate d ata April-July 2006, from RAF Waddington. 
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Fig 7.4 Comparison of maximum daily temperatures at Riseholme. 

(Data from Waddington compares favourably to Riseholme, although the site temperature is 
usually around 2°C lower due to tree coverage). 

7.4 Boxed Sus Experiments 

The boxed pigs should provide a clear definition between bacterial sources with 
bacterial origin being tracked effectively due to the controlled environment of each pig. 
If a new born pig is buried without any covering and is subsequently found to be subject 
to rapid internal microbial attack then these bacteria are likely to be of internal origin. 
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Conversely, if a still born pig covered with soil demonstrates bacterial attack then this is 

more likely to indicate a soil origin for the bacteria. Stillborn pigs were included in the 

process due to their theoretical intestinal and respiratory tract sterility at birth. Soil (to 

detect soil microbes) was added to a third of the burials, builders sand to a further third 

and the remaining pigs were left uncovered. The soil was taken, with permission, from a 
local graveyard (from mole hills) as there is some suggestion that such areas would be 

highly laden with bacteria (either dormant or active) due to the steady influx of decaying 

material on to which bacteria can readily colonise. 

Six stillborn and six newborn pigs were used and were all single burials (i. e. one pig per 
box). From the six newborn, two were placed in the boxes with no covering (to reflect 

above ground burials), two had a shallow covering of soil (to reflect true burial) and two 

had a covering of sand as a control. The same protocol was used for the stillborn 

animals. The experiments were set up in two phases due to difficulty in obtaining twelve 

pigs of the right size and age all on the same day. Freezing of the pigs until all of them 

could be obtained was not considered at this point, due to the uncertainty of when the 

others would be available. The first four pigs (pigs nos. 1-4) were delivered to the site 
on the morning of the 26th April 2006. These were newborns, but exact age at death is 

not known (probably no more than 2 weeks old). All of the pigs were weighed (weight 

range 2.4Kg-3. lKg, Mean 2.9Kg) and their general condition recorded. Each was 
placed in a separate tank and all of the types of burial were replicated. The pigs within 
the two distinct groups were randomly assigned to each type of burial. 

A full description of condition is given individually for each pig (a summarized version 
can be seen in table 7.1). All of the subjects were personally selected and where 
possible healthy looking individuals without visible wounds or illness were chosen. Pig 

no. 1 weighed 2.4kg and was fresh with no apparent bloating or rigor mortis (fig 7.5). 
This burial did not have any covering (i. e. soil/sand) and was placed laying on its left 

side directly on to the mesh covered pebbles with the lid then fixed in place afterwards. 
Pig no. 2 weighed 3.1 kg, was in full rigor mortis (fig 7.6) and was a replicate of burial no. 
1. Pig no. 3 weighed 3.1 kg and was actively decomposing internally (fig7.7) as 
evidenced by the abdominal area which was markedly discoloured green. This pig was 
again placed on its left side and then given a shallow covering of soil. Pig no. 4 weighed 
3.1 kg, was considered fresh (fig 7.8) as no bloating, rigor mortis or decomposition was 
evident. This burial was covered with sand. 
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Fig. 7.5 Pig no 1 Fig 7.6 Pig no 2. 

Both Newborn, No 2 being in full rigor mortis. Neither was given any covering. (Author, 2006) 

Fig 7.7 Pig no 3 Fig. 7.8 Pig no 4 
Both newborn. No 3 has discolouration of the abdominal area. No 3 was covered with soil, No 
4 with sand. (Author, 2006) 

The eight remaining pigs (pigs' nos. 5-12) arrived at the Riseholme site on the 30th May 

2006 (roughly five weeks after the 1st experiments were set up). These were again 

recorded as to bodily condition and weighed (table 7.1). Pig no. 5 (fig 7.9) weighed 
2.9kg and was a replicate of burial no. 3, whilst pig no. 6 (fig 7.10) weighed 2.8kg and 

was a replicate of burial no. 4. Both of these pigs were fresh with no obvious signs of 
decomposition. It was decided at this point to reduce the amount of soil/sand covering 

the remaining pigs in an attempt to reduce the possibility of mummification due to the 

very dry nature of the tanks and to allow insects access to the carcass. 

The remaining six pigs placed at that time were theoretically stillborn and most still had 

the umbilical cord attached. However, the basis of being stillborn was mainly taken from 

their weight (this ranged from 1.4Kg-2.1 Kg with a mean of 1.9Kg). Normal birth weight 
in pigs is 1.6kg ± 0.4kg (1.2kg-2kg). Four of the pigs were at the top end of this range 
(1.9-2kg) and two were slightly higher at 2.1 kg and it is therefore possible that some of 
these juvenile pigs were not stillborn. 

Burials nos. 7&8 (figs 7.11 & 7.12) were both considered fresh and were firstly a 
stillborn weighing 1.9kg that had no sand or soil covering and secondly another stillborn 
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weighing 2.1 kg that was a duplicate burial of Pig no. 7. Burials nos. 9& 10 (figs 7.13 & 

7.14) were two stillborns weighing 2kg and 1.4kg respectively. Both of these animals 
had fly eggs already present around the facial and abdominal areas, suggesting that 

they had lain outside for a period of time prior to collection and refrigeration. Both 

burials were covered with soil. Burials 11 & 12 (figs 7.15 & 7.16) weighed 2kg and 2.1 kg 

in that order, were considered fresh and both were covered with sand. 

PIG WEIGHT CONDITION COVERING REFRIGERATED DATE REPLICATES 

No I 2.4kg Fresh No Covering No 26.04.06 No 2 

No 2 3.1 kg Full Rigor Mortis No Covering No 26.04.06 No I 

No 3 3.1 kg Abdominal area discoloured green Soil No 26.04.06 No 5 

No 4l 3.1 kg Fresh Sand No 26.04.06 No 6 

No 5 2.9kg Fresh Soil Yes 30.05 06 No 3 
No 6 2.8kg Fresh Sand Yes 30.05 06 No 4l 

No 7 1.9kg Fresh No Covering Yes 30.05 06 No 8 

No 8 2.1 kg Fresh No Covering Yes 30.05 06 No 7 

No 9 2kg Blowfly eggs present Soil Yes 30.05 06 No 10 

No 10 1.4kg Blowfly eggs present Soil Yes 30.05 06 No 9 

No II 2kg Fresh Sand Yes 30.05 06 No 12 

No 12 2. lkg Fresh Sand Yes 30.05 (16 No 

Table 7.1 Condition of Pigs at Time of Burial 

Fig I. 9 Pig no 5 
Both stillborn, No 5 covered with soil, No 6 
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Fig 7.11 Pig no 7 Fig 7.12 Pig no 8. 

Neither had any covering. (Author, 2006) 

Fig 7.10 Pig no 6, 



Fig 7.13 Pig no 9 rig 1.14 r'ig no lu 
Both had soil added to the box (Author, 2006) 

Figs 7.15 Pig no 11 
Both had sand added to the box. (Author, 2006) 

The 1st four boxes were originally placed at a different site at Riseholme, but due to 

vandalism by members of the public (the boxes were overturned) the boxes had to be 

moved to the location described above which is about 2 miles north of the original site. 

This was also a wooded area and because of the close proximity of the site this should 

have little bearing on any climatic or ambient temperature differences. The tanks were 

placed directly on to the under storey of the woodland about half a meter apart. The 

remaining eight burials were all located directly to the second site. At this time the 

newborns were separated from the stillborns by approximately 25 meters in an attempt 

to detect any potential differences in insect activity. 

7.5. Soft Tissue Decomposition 

The primary aim of the experiments was to wait until the carcasses had skeletonized 

and then to remove bone samples at set intervals (1,3,6,9,12,18 & 24 months) to look 

for evidence of bacterial tunnelling by histological analysis. However, to achieve this 

state the bodies had to be left to putrefy and the decompositional process was tracked 

throughout. Soft tissue decomposition is often used to determine post-mortem interval 

when other methods can no longer be applied (entomology, rigor/livor/algor mortis etc) 
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due to the longer timescale involved. Although there are no hard and fast rules as to 

how long it takes a body to skeletonize, a reconstruction of climatic data may help in 

narrowing the possible time that has elapsed before the body is recovered. This 

research is primarily concerned with the very young child, an area that is almost 

completely lacking in tangible evidence with reference to the decay process. It is hoped 

that what is recorded here may aid death scene investigators determine the likely time 

since death when investigating child deaths rather than adults whose much larger size 

impacts on how quickly a body can decompose. 

A brief but informative description of every pig's decomposition was recorded together 

with a category for that stage (table 7.2). Photographs were taken at every opening to 

ensure that a full record was kept. The photographs depict the full state of the body at 

each point from known time of death that creates an unambiguous record; unlike a 

simple description that is open to individual interpretation. 

Burials nos. 1&2 were opened on a daily basis for the first two weeks as they could be 

recorded with ease and without having to disturb the burial context in any way. It was 

decided that burials 2&3 were not to be recorded at all during this time initially due to 

their burial context (this would have required the soil/sand to be removed) and 

subsequently the fact that the burial environment appeared to be inhibiting 

decomposition (this in itself is important data). 
A FRESH 
1. Fresh, no discolouration or insect activity 
2. Fresh burned (cremated) 
3. Fresh, no discolouration, fly eggs present 
B. EARLY DECOMPOSITION 
1. Pink-white appearance with skin slippage and some hair loss 
2. Bloating without discolouration 
3. Grey to green discolouration-without bloating some flesh relatively fresh, 
4. Bloating with green discolouration 
5. Appearance of 1" Instar Larvae 
6. Green/grey/black discolouration to most of body 
7. Post bloating following rupture of the abdominal gases with discolouration going from green to dark 
8. Brown to black discolouration of arms and legs, skin having leathery appearance 
C. ADVANCED DECOMPOSITION 
1. Decomposition of tissues producing sagging of the flesh, caving in of the abdominal cavity, often 

accompanied by extensive maggot activity 
2. Moist decomposition in which there is bone exposure 
3. Mummification with some retention of internal structures 
4. Mummification of outer tissues only with Internal organs lost/some still intact, through autolysis or insect 

activity 
5. Mummification with bone exposure of less than one half the skeleton 
6. Adipocere development 
D. SKELETONIZATION 
1. Bones with greasy substances and decomposed tissue, sometimes with body fluids still present 
2. Bones with desiccated tissue or mummified tissue covering less than one half the skeleton 
3. Bones largely dry but still retaining some grease 
4. Dry bone 
E. EXTREME DECOMPOSITION 
1. Skeletonization with bleaching 
2. Skeletonization with exfoliation 
3. Skeletonization with meta h seal loss with long bones and cancellous exposure of the vertebrae 
Table 7.2 Decompositional data. Modified from Galloway et at, 1989. 
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After this period all four were recorded roughly every other day (although daily at times). 

The other eight burials were in-situ by the 30-05-06 and at this time all of the twelve 
burials were recorded on the same days which was either on a daily basis or every other 
day depending on the speed of post-mortem decay taking place (this became weekly at 
the point of maximum skeletonization or mummification). 

7.6 Further Experimentation 
The methods outlined above were devised to obtain data as efficiently as possible with 

regards to the timescale and origin of bacterial attack in modern and archaeological 
bone within the regulations set down by DEFRA. By combing multi-factorial methods a 

clear conclusion is to be expected. However, the nature of the experiments induces the 

problem of false results due to the unique environment in which the burials were placed 
(a storage tank that was not subject to normal climatic and entomological conditions, 
inducing much higher temperatures whilst excluding certain ground dwelling beetles). 
After lengthy discussions with DEFRA it has now been decided that the pigs could have 
been placed straight in to the ground from the outset under the derogation within the 

regulations that clearly states that fallen livestock can be used for 'Diagnostic, 
Educational and Research Purposes'. Communication with DEFRA (Lincoln) initially 

concluded that the pigs could not be buried in the soil. Due to this erroneous 
information the above experiments were carried out. A new methodology was then 

proposed that involved the shallow burial and ground placement of twelve juvenile pigs 
to be placed at Riseholme during the spring of 2007. The methods detailed above were 
employed for the new burials and a detailed methodology is set out below. 

7.7 Winter Burials 

Because permission was granted from DEFRA in the late autumn it was decided that we 
would not begin the experiments in earnest until the following spring when 
decomposition would proceed much quicker at higher temperatures and with insect 

activity. However, two ground burials were set up in the winter in an attempt to 
investigate the differences in decompositional time scale and amount of degradation as 
a result of seasonality. All of the other burials were conducted in early to late spring to 
achieve skeletonization of the carcasses within a short period. The effect of cooler 
burials during the coldest winter months on the activity of bacteria is to be assessed. 

The pigs were sourced from the same supplier and both were considered fresh on 
arrival at site. The 1st pig (fig 7.17) weighed 11.7kg and was given a direct soil burial at 
a maximum grave depth of 40cm. One maggot was seen on the carcass but this was 
not a true associate due to its large size and was classified as an incidental intruder 

114 



from other carcasses that it had been stored with. Otherwise the pig was generally in a 

fresh condition with a slight tinge of discolouration to the abdominal area. The 2"d pig 

weighed considerably less at 4.4kgs and was buried at a depth of 25cms (fig 7.18). 

Fig 7.19 Site of Pig no 13 after burial Fig 7.20 Site of Pig no 14 after burial 
(Both, Author, 2006) 
Both burials were contained within commercially bought cages that were adapted to 

allow ease of access for inspection and photography (figs 7.19 & 7.20). The cages are 
zinc plated with dimensions of (H) 64, (W) 77 & (D) 54 cm's. A Hobo data logger was 
placed in the grave of the larger pig prior to reburial to chart soil temperature. 

7.8 Spring Burials 

For this part of the experiment 16 domestic pigs (Sus scrofa) were given either a soil 
burial (fig 7.22) or were placed directly on top of the soil (fig 7.21). The burials varied in 
depth only to a small degree with the shallowest at 30cm (base of pit) and the deepest 

at 40cms. The soil was placed back in the grave in random fashion, with mixing of 
topsoil and subsoil resembling a real life scenario in which a body is hastily concealed 
by shallow burial. They were protected from scavengers by an electric fence that 

covered approximately 11 mx 7m and that comprised a 50m roll of 8 wire single spike 
Sheep netting (90cm) and an electric fence powered by a 12v Gallagher 
Batterymaster B75 Wet Battery Energiser and 12v leisure battery. This supplies 
6200 volts with stored energy of 0.75 Joules and an output of 0.55J. The ground 
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Fig. 7.17 Pig no 13 Fig 7.18 Pig no 14 



depositions were then each protected individually by a custom-made three sided 

mesh cage. 

Fig 7.21 Surface Depositions (Author, 2007) 

ýý; 

The pigs were again supplied by the local knackerman, who delivered them to the site. 
They were chosen on the basis of size and freshness although it is impossible to 

ascertain an exact time or date of death due to the mode in which the knackerman 

works. His job is merely to collect fallen livestock from outlying farms and these may 
have been dead for up to three days dependent upon which area they die in. They had 

all been frozen for a period of 2 days until transfer to Riseholme could be undertaken. 
They had all died of natural causes and were either stillborn, rolled on by their mother or 

euthanized (no=1 shot through head/others lethal injection) on medical grounds. On the 

day of burial no decompositional activity was observed although any previous post- 
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Fig 7.22 Some of the buried pigs (Author, 2007) 



mortem changes would have been retarded by the freezing process. Despite this, it was 

considered that by visual inspection of each pig 

Condition at Burial/Deposition 

Burials Surface 

Mass Grave One of the pigs very green 

at the abdomen, 3 Fresh 

50kg Skin bright red, Fresh 50kg Green Abdomen 

25kg Green Abdomen 25kg Green Abdomen 

15kg Green Abdomen 15kg Very red, gunshot to head, Fresh 

10kg Green Abdomen 10kg Bloated, Postmortem slash to right 

abdomen 

3-4kg Fresh 3-4kg Fresh 

1-2kg Fresh 1-2kg Fresh 

Table 7.3 Condition of the pigs at the time of deposition, varying from fresh to early putrefaction. 

that nine of the pigs were fresh (table 7.3), six had green discolouration of the abdomen 

and one was bloated (although no green discolouration of the abdomen was visible). 
The pigs used in this study ranged from 1.3kg-50kg (2.86-11 Olbs). The lowest weight is 

comparable to a fetal child whilst the higher weight roughly equates to a child of around 
14years of age. 

Girls Age Weight 
Kg 

Boys Age Weight Kg Mean of Both Weights Weight & Aqe 

Chosen 

Fetal 1-2 1.2Kg (2.2-4.4Ibs) 

Birth 3.4 Birth 3.6 3.5 Kg 3-4Kg (6.6-8.8lbs) 
3 Months 5.4 3 Months 6 5.5 Kg 

6 Months 7.2 6 Months 7.8 7.5 Kg 
12 Months 9.4 12 Months 10.2 9.8 Kg 10 Kg (221bs) 

2 Years 11.6 2 Years 12.6 12.1 Kg 
3 Years 14 3 Years 14.4 14.2 Kg 15Kg (331bs) 
4 Years 16 4 Years 16 16 Kg 
8 Years 25 8 Years 25.2 25.1 Kg 25 Kg (551bs) 
14 Years 49 14 Years 50 49.5Kg 5OKg (110lbs) 

Table 7.4 Weights chosen for each pig, to roughly correspond with an age range for humans of fetal to 
14 year old/small adult. 

Six pigs of varying weight (table 7.4) were used to correspond to children from fetal to 
fourteen years of age (or a small adult). The ages and weights represented are fetal (1- 
2kg), newborn (3-4kg), 1 year (10kg) 3 years (15kg), 8 years (25kg) and 14 years (50kg). 
The children's age weights are taken from growth charts and are for those within the 50th 

117 



Percentile (i. e. the average child's age/weight ratio) (Charts available @ 

www. pediatrics. about. com). 

Body mass has been chosen as the direct correlate between the pigs and the analogous 

children. There are two main differences that may affect the experiments. Firstly, 

piglets grow at a much faster rate than children reaching adult size by around six 

months of age whereas children develop at a much slower rate and full size is not 

obtained until the teenage years. The second and more difficult problem is one of 

weaning. The typical weaning age for piglets raised in intensive conditions is around 25 

days and this occurs abruptly. The natural weaning age would normally occur gradually 

over a period of weeks around the age of 12-15 weeks. This means that from as early 

as one month old the pig gut flora will change dramatically unlike in a human infant that 

may not be weaned for 6 months - two years. Any subsequent decomposition is then 

difficult to reconcile with the breast fed infant. A further problem becomes apparent in 

that the abrupt weaning is often harsh on the immature digestive system of the baby pig 

and this often leads to illness such as diarrhoea, failure to thrive or piglets that will 

require medication on a daily basis. 

A mass grave was also set up to investigate whether there is any difference in microbial 

attack within the individuals (i. e. do those in the middle of the grave contain more 
bacterial attack? ). Four pigs of very similar size (all around 25kg) were thrown at 

random into a pre-dug pit that reached a depth of 60cros. They were dragged by their 

hind legs to the edge of the pit and then thrown in. They landed quite neatly and are 

roughly aligned with the heads all facing in the same direction. Two landed in a supine 
position, one is laid on its right side and the fourth is laid on its left side (fig 7.23). 

rig 1.23 Mass Grave, four large pigs thrown in at random (Author, 2007). 
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Burial Type Grave Dimensions 

Length Width Depth 

Mass Grave 1.5m 1.5m 60cm 

50KG 1.5m 1m 40cm 

25KG 1.5m 80cm 40cm 

15KG 75cm 50cm 30cm 

10KG 75cm 50cm 30cm 

3-4KG 75cm 50cm 40cm 

1-2KG 75cm 50cm 30cm 

Table 7.5 Grave dimensions for each pig. 

7.9 Microscopy 

Once skeletonized, bone samples were taken from each pig at set intervals. Full 

decomposition was not complete in all of the burials and the collection of specimens 

sometimes necessitated the use of a scalpel and often considerable force to free the 

bone from the surrounding tissue and ligaments. It was then necessary to remove any 

tissue by washing and soaking the bones which were subsequently left to dry before 

being thin sectioned transversely to a width of 50p with a Leitz 1600 annular saw 

microtome. Up to three sections were taken of which one was mounted on a glass slide 

using Euparol mounting medium and covered with a glass cover slip. This was then 

examined beneath a polarizing light microscope for evidence of microbial activity. Other 

sections could be used for staining procedures or to check for decomposition throughout 

the bone length. 

7.9.1 Anaerobic Growth of Microbes 

The length of time taken for microbial tunnelling to become 

evident in bone is not known and although it appears to be 

something that happens relatively quickly, this could still be 

in terms of years rather than days or hours. In an attempt to 

speed up the effect of the microbes, six of the already 

sectioned bones were put in an anaerobic jar (fig 7.24) and 
Fig 7.24 Anaerobic Jar 
(www. shharmony. com) placed in an incubator at 30°C. The optimum temperature 

for some bacteria wou be around 37°C but it was felt that a lower temperature would 

still suffice and at the same time allow other bacteria without such a high heat tolerance 

to develop also. This should result in tunnelling at an earlier time than if the skeletons 

were left outside in the much cooler autumn and winter temperatures that tend to inhibit 

bacterial growth. However, there is a lack of available moisture within this environment 
that may inhibit bacterial growth. The anaerobic jar is a very basic system that involves; 
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the bones (or plates of agar spread with bacteria in most other cases) being placed in 

the base of the jar with an anaerobic indicator strip that has a drop of water placed on 

the tip, an anaerobic gas generating sachet is then opened and placed between the 

interior rack and the outside of the jar. The lid must then be replaced and the valves 

closed within 30 seconds to ensure that an anaerobic environment will ensue. Once 

closed the anaerobic indicator strip will, over time, change colour from pink to white 

giving a visual indication of anaerobiosis. 

7.9.2 Staining 
Some of the sections were stained with either Methylene Blue, Crystal Violet or by Gram 

Staining in an attempt to aid the visualisation of bacteria either prior to tunnelling 

becoming evident or once colonised. 

7.9.3 Simple Stain 
The first two methods are relatively simple and consist of placing the section on a glass 

slide, flooding it with either Methylene Blue or Crystal Violet for 30 seconds and then 

rinsing the section with distilled water to remove excess stain. The section is then 

blotted dry and can then be examined beneath a microscope where relevant bacteria 

will be stained blue in the case of Methylene Blue or pink if using Crystal Violet. 

7.9.4 Gram Stain 
The Gram stain method will separate the bacteria in to two large groups; the Gram- 

positive bacteria that stain blue and the Gram-negative bacteria that stain pink. Certain 

bacteria take up stain differently because of a difference in the cell wall composition. 
Gram-positive bacteria have a thick cell wall layer. Alcohol does not readily penetrate to 

decolorize the cell wall of the previously applied crystal violet stain. Gram-negative cells 
have a thinner cell wall through which the alcohol readily penetrates. The crystal violet 
is removed from these cell walls that are then stained with the safranin counterstain. 

GRAM+ GRAM - 
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Fig. 7.25 Stages of gram staining with eventual bacterial cell wall colour change to either 
purple or red. (http: /priede. bf. lu. lv/grozs/Mikrobiologijas/) 
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The method for Gram staining (fig 7.25) is to place the bone section on a slide, flood 

with crystal violet for 1 minute, wash off briefly with water for no longer than 5 seconds, 

flood with Gram's iodine solution and allow to sit for 1 minute, wash off with water and 

drain off excess liquid, flood slide with 95% alcohol and pour off immediately. Re-flood 

with 95% alcohol for 10 seconds and wash off with water (the first flooding with alcohol 

removes the excess water from the slide, so that alcohol used for decolourization is not 

diluted). Flood the slide with safranin solution and allow it to stain for at least one 

minute and wash off with water for 5 seconds. Finally, drain the slide and blot dry with 

bibulous paper. Gram-negative bacteria (fig 7.26) will stain pink (i. e. E. coll), while 

Gram-positive (fig 7.27) bacteria will stain blue (i. e. Staphylococcus aureus). 
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Fig 7.26 Gram negative Fig 7.27 Gram positive bacteria 

Both images available © www. nmpdr. orq/FIG/wiki/view. cqi/FIG/GramStain 

7.10 Archaeological Material (Human and Pig) 

To test whether bacterial attack can be found in juvenile (especially neonatal) bone, 

remains from archaeological contexts were also thin sectioned and examined 

microscopically. Thin sections were already available for the Bolsover site and had 

been previously analysed (table 7.6) with regards to bacterial attack (Economou, 2003). 

The Bolsover collection is from the churchyard of the Church of St Mary and St 

Lawrence that contains burials from the Norman period through to present day. The 

infants from this site were presumed to be buried in the 19th century due to their context. 
Most of them were recovered from the north side of the tower area and from a 2-3m 

wide strip around the foundations. Included within the previous study were three 

sections from the Blackgate collection (of Anglo-Saxon origin) and two from Carsington 
Pasture. Budded tunnelling appears to be present from as early as 24 weeks 
(gestation), but linear longitudinal does not appear until 39 weeks (gestation). After this 
time both types become increasingly prevalent. This material will be reanalysed as it 

was previously used for an MSc thesis (Economou, 2003). 
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OXFORD 

HISTOLOGICAL 

INDEX 

LINEAR 

LONGITUDINAL 

BUDDED AGE 

BOL 010 0 A P 24wks 

BOL 008A 5 A A 26wks 

BOL 008B 5 A A 28wks 

BOL 056 1 A P 30wks 

BOL 014 1 A P 33wks 

BOL 009 5 A A 38wks 

BOLOII 0 P P 39wks 

BOL 028 1 P P 39wks 

BOL 017 0 P P 40wks 

BOL 007 5 A A I month 

BOL 012 3 P P 1 month 

BOL 021 0 P P 6 months 

BOL 018 0 P P 4 years 

BOL 003 0 P P 20-40 years 

BOL 001 2 P P 18-30 years 

BOL 029 0 P P 7 years 

BOL 002 0 P P 4 years 

BG 3277 3 A P 27wks 

BG 3191 5 A A 46wks 

BG 3215 1 P P 39 wks 

CPCYO3 5 A A 46wks 

CPC99-21 5 A A 46wks 

Table 7.6 Data from Bolsover burials. A= Absent P= Present (Data taken from Economou, 
2003). 

Samples were also taken from the disarticulated human remains in the Blackgate, 

Newcastle Anglo-Saxon Cemetery. Archaeological pig bone was also sectioned, but 

this presents problems as in previous studies (Jans et al, 2004) microbial attack in 

disarticulated animal bone has been far less ubiquitous. This is thought to be a counter 

effect of butchering animals for their meat and possibly also as an effect of cooking. 

Unfortunately, this involves removal of intestinal organs and the complete disarticulation 

of the animal. If bacteria are colonising corpses via the vascular system directly from 

the natural gut flora, these will have been removed, rendering any bones found as 

effectively sterile. Other archaeological material used for this research include; the 

Cladh Hallan Mummies, Kilton Hill (possible execution site), Boraray, Stanton, 

Berinsfield, Exeter, Grantham, Royal Mint, Carsington Pasture and a selection of animal 

bone from various sites. One hundred and seventy one sections were observed of 

which one hundred and thirty eight were human and thirty three were animal. This does 

not include the sections of pig bone from the experimental research. 
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7.11 Summary 
It is hoped that the research carried out within the remit of this study will provide 
tentative answers to some confusing questions. Bacterial attack exists but its 

origins and the timescale required are still not known with any certainty. By using 

animals of differing size, ranging from fetal to young adult and by having above and 
below ground burials this will be a good starting point in the search for a more sound 
knowledge of this phenomenon. By combining these results with what is already 
known from archaeological and forensic cases it may be possible to arrive at some 
framework of both time and origin. 
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Chapter 8. Results 

8.1 Introduction 

Results of all the experimental and archaeological material are presented here. Soft 

tissue decomposition has been charted for both the boxed pigs and the second real- 

time burials up to the point of skeletonization along with climate data for the relevant 

periods. Bacterial assay results together with the anaerobic jar experiments are 

also provided. Results of the thin sectioning and microscopy evidence of both the 

experimental and archaeological material are given in section eight. 

8 .2 Results of Soft Tissue Decomposition (Boxed Pias) 

The first four pigs went out on the 26th April 2006, whilst the other twelve were not in 

place until just over a month later on the 30th May 2006. Ideally, it would have been 

preferable to have all of the burials out at the same time, but due to logistical 

problems this was not possible. Pigs No's 1-6 were newborns whilst pigs No's 7-12 

were considered to be stillborn. As all of the burials were carried out in duplicate, 

two of the first four (no's 3& 4) did not have a replicate for some time. It was 

decided that the spring would be the ideal time to locate the experiments as by this 

time the temperature would be more suitable to a faster rate of soft tissue 

decomposition and insect activity would be more substantial (most carrion and blow 

flies do not fly below 10°C). By April the temperature had risen and daily highs were 

recorded above 10°C on most days, although daily lows were also recorded as low 

as -1 °C on two separate occasions. By June, daily high temperatures were 

recorded at up to 27° and at least 16°C on every day throughout the month. 

Daily Maximum Temperatures May-July 
2006 
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Fig 8 Temperature at Riseholme may-July 2006 
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The lowest temperature recorded was 6.3°C on the 1st of June but other than this 

the temperature was almost constantly above 10°C. The difference in temperature 

(fig 8) had a direct influence on how the two sets of pigs decomposed. The 

combination of higher temperature (Mean temps: May m =16°C, June m =20°C and 

July m =26°C) and much greater insect activity throughout the month of June meant 

that the second set of pigs skeletonized over a very short time period whilst the 1st 

set of pigs although generally skeletonized retained mummified soft tissue across 

their entire bodies. 

8.2.1 1St Experimental Carcasses: Pigs No's 1-4 Newborns 

Of the first four pig burials two were placed in the box without any covering (no 1& 2) 

whilst one had a covering of soil (no3) and the other was buried in building sand 
(no4). They were evaluated on a daily basis but it was decided to leave the two 

covered ones undisturbed for as long as possible. Table 8.1 charts their 

decomposition over a number of weeks. Pig 1 (figs 8.1-8.4) was considered fresh 

and was free from rigor mortis and bloating. Pig 2 (figs 8.5-8.8) was in a state of full 

rigor mortis with blood present around the facial area. 
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Fig 8.2 Pig I. iI days PM Fig 8.1 Pig 1: At deposition 

Fig 8.4 Pig 1: Six weeks PM Fig 8.3 Pig 1: One month PM 
(All 4 pictures, Author, 2006) 



Pig not which was uncovered did not really bloat, maggot activity was absent for the 

1st seven days, it took two and a half weeks for the abdominal area to break down 

and five weeks for the first skeletal elements to become visible. Mummification of 

the soft tissue was apparent from one month post-mortem and this was retained 

throughout. 

Pig no2 which was also uncovered began to putrefy internally very quickly but 

decomposition by insects was slower to occur taking nine days for larvae to become 

evident. The corpse then went through a period of advanced decomposition 

becoming mummified within five weeks, a state that changed little over the following 

months. 

Pig no's 3 and 4 both had coverings (soil and sand respectively). Pig no3 (figs 8.9- 

8.12) was placed in a box that contained soil taken from a cemetery that is currently 
in use, whilst pig no4 (figs 8.13-8.16) was covered with commercially available 
builders sand. Both of these animals dried out due to the lack of moisture that could 
gain access to the box because of their design. Repeated attempts were made to 

keep the soil/sand moist by introducing water via spray bottles at each visit, but this 

proved inadequate and was eventually stopped. In the case of pig not very little 

active decomposition could be seen in this pig due to the soil but it is clear that 
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Fig 8.5 Fig 2: At Deposition Fig8.6 . ,. 'M 

Fig 8.7 Pig 2: Five weeks PM 
(All 4 pictures, Author, 2006) 

Fig 8.8 Pig 2: Six and a half months PM 



although not always obvious decomposition was occurring and the internal organs 

were probably being destroyed within one month of deposition and by two months 

were completely absent, leaving just bones surrounded by mummifying soft tissue. 

Unfortunately, at some time the tank became waterlogged and when a site visit took 

place in November the pig was completely covered in water. As much of this fluid 

was drained as possible and it became clear that the skin had taken on the 

appearance of that found in bog bodies. 

Pig no 4 suffered from the same drying problems as pig No3. The carcass was 

considered fresh and was free of bloating and rigor mortice at burial. Again, this 

was a burial that did not outwardly appear to be decomposing but was actually 
decaying on the inside unobserved. Two and a half weeks passed before maggots 

were introduced and then it was a slow process over another three weeks until all 
that remained was skin and bone. At the site visit in November the pig was 

practically unchanged apart from some further hair loss. 
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Fig 8.9 Pig 3: At Deposition Fig 8.10 Pig 3: Four weeks Pm 

Fig 8.1 1 Pig 3: Seven weeks PM 
(All 4 pictures, Author, 2006) 

Fig 8.12 Pig 3: Six and a half months PM 



Fig 8.16 Pig 4: Six and a half wks PM 

8.2.2 Experimental Carcasses: Pigs 5-12 (Boxed) 

Pigs 5-12 all arrived at site on the 30.05.06, roughly one month after the first set. By 

this time average daily temperatures were slightly higher. Pigs 5&6 were the last 

of the newborns whilst pigs 7-12 were considered to be stillborn. Tables 8-8.28 

chart their decomposition over a number of weeks. Pig 5 (figs 8.17-8.20) was 

covered with soil and pig 6 with sand. Pig no5 decomposed extremely rapidly 

reaching an almost skeletonized state within 11 days. The amount of insect activity 

at this pig was phenomenal, with thousands of maggots literally spilling out of the 

box. This level of insect activity was restricted to this pig and was not seen at this 

scale in any of the other animals. 
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Fig 8.15 Pig 4: Four weeks PM 
(All 4 pictures, Author, 2006) 



Fig 8.20 Pig 5: Seven Weeks PM 

Pig no6 (figs 8.21-8.22) took slightly longer to skeletonize (20 days). Within 24 

hours of burial putrefaction was evident at the abdomen and hind leg areas and 

many fly eggs were present. Green putrefaction progressed until 90% of the body 

was affected at eight days post burial. Within two days of this the abdomen had 

opened, maggot activity was extensive and the corpse had become deflated. From 

this point on, the internal soft tissues were rapidly destroyed, the skin became much 

drier and at each visitation more bones became visible. The corpse remained in a 

static condition from the end of June to the next examination in November where it 

was found that the bodily condition was almost identical except for further drying of 

the skin and the onset of some type of fungal/mould growth also to the skin. Pig 

no6 remained mummified whilst pig no5 eventually became waterlogged. 
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Fig 8.17 Pig 5: Four Days PM Fig 8.18 Pig 5: Six Weeks PM 

Fig 8.19 Pig 5: Six &a Half Weeks PM 
(All 4 pictures, Author, 2006) 



All of the pigs numbered 7-12 were considered to be stillborn and all went out at 

Riseholme together on the 30th May 06. The length of time taken to skeletonize was 

very similar in all cases and ranged from 14-20 days. Bloating was not observed in 

four of the carcasses as would be expected if the animals had a sterile intestinal 

tract. The two that did bloat may perhaps have been born alive only to die within the 

first hours/days after birth and subsequent to contamination by exogenous bacteria. 

Carcasses 7&8 (figs 8.23-8.26) were not given a covering, whilst 9& 10 (figs 8.27- 

8.30) had a layer of soil and 11 & 12 (figs 8.31-8.34) had sand added to the boxes. 

By November of 2006 pigs 7&8 remained mummified, 9,11 & 12 became 

waterlogged and pig 10 was skeletonized in a dry state. 
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Fig 8.22 Pig 6: Eleven Days PM Fig 8.21 Pig 6: Ten Days PM 

Fig 8.24 Pig 7 Three weeks PM Mummifying Fig 8.23 Pig 7 Bloated one week PM 
(All 4 pictures, Author, 2006) 



Fig 8.25 Pig 8: One week PM Bloated Fig 8.26 Pig 8: Two weeks PM Mummifying 

Fig 8.29 Pig 10: At Deposition 
(All 6 pictures, Author, 2006) 
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Fig 8.28 Pig 9: Two weeks PM, Skeletonizing Fig 8.27 Pig 9: At Deposition 30.05.06 

Fig 8.30 Pig 10: Two Weeks PM Skeletonizing 



(All 4 pictures, Author, 2006) 

Fig 8.34 Two Weeks PM Almost skeletonized 
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Fig 8.32 Pig 11: Three Weeks PM Skeletonized Fig 8.31 Pig 11: Five days PM 

Fig 8.33 Pig 12 Five days PM 
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8.3 Results Soft Tissue Decomposition Real Burial Pigs. 

It was only possible to monitor soft tissue decomposition in those pigs that were 
deposited on the ground surface. The buried pig carcasses were not disturbed until 

the point of examination at one year postmortem. 

In 2007, unusually high amounts of rainfall (fig 8.35) were recorded. In the months 

of May, June and July 482.4mm of rain fell. This compares to 180.5 in 2006 and 
208.9 in 2008, although most of the difference is accounted for in June and July. 

Average maximum daily temperatures (fig 8.36) were lower during the months of 
May, June and July of 2007 when compared to the same months in both 2006 and 
2008. This meant that over several of the most pertinent periods of decomposition 

the site was often waterlogged and decomposition was slowed. This also had a 
detrimental effect on the decomposition of the buried cadavers. 
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Fig 8.35 Average monthly rainfall for the three years 2006-08 inclusive 

Maximum Daily Temperature 2006-2008 
30 

25 

20 

15 
£ io d 

5 

0 

Fig 8.36 Monthly temperature maximums 2006-08 inclusive 
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8.3.1 Pigs 15-21 (surface depositions) 

With the exception of pigs no 20 (fetal) and 15 (50kg) all of the carcasses followed a 

similar path of decomposition. Pig No's 16-19 inclusive decayed quite rapidly in the 

first 2-4 wks. There was then a slowing of the decompositional rate coinciding with 

extremely wet weather. Weeks 6-14 eventually led to the skeletonization of the 

remains. Over this time period the skin became repeatedly waterlogged, impeding 

the decay process. Without the extreme rainfall the pigs would probably have 

achieved skeletonization by around weeks 6-8. The fetal pig (no 21) achieved 

skeletonization by around week 8 and decomposition advanced much quicker in the 

early postmortem period. The largest of the pigs (no 15/50kg) was slowest to 

decompose retaining much of its mass for the first 6-7wks. Again there was a 

slowing between weeks 6-11 and skeletonization was eventually reached in week 
14. A selection of photographs has been provided that show some of the different 

decomposition phenomena observed (figs 8.37-8.47). 
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Fig 8.37 50kg pig during extensive rainfall 7wks PM (Author, 2007) 



Fig 8.38 50kg pig. Beetle larvae only observed on this pig and only during the very wet period 
seven weeks PM 
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Fig 8.39 50kg pig. Skin hangs around the cranial area after rain. Seven weeks PM 
(Both pictures Author, 2007) 
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Fig 8.40 Foetal pig two weeks PN 
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Fig 8.43 Foetal pig six weeks PM Fig 8.42 Foetal pig four weeks PM 

Fig 8.44 Pig 16 (25kg) Very little outward decomposition but many maggots am witt in the 

carcass two weeks PM 
(All three pictures Author, 2007) 



142 

Fig 8.45 Pig 16 Little remains of the pig except for skin and bone. Maggots can be seen 
migrating backwards towards the bigger 50kg pig which is still fleshed. Four weeks PM 

Fig 8.46 Pig 16 Six weeks PM mummified skin attached to the skull 
(Both pictures Author, 2007) 



Tables 8.3 & 8.4 recording the first ten weeks are provided below that present a 

concise form of the early postmortem decomposition. All of the surface depositions 

were skeletonized before the first samples were taken for sectioning at 6 months. 
They were sampled again at 12mths postmortem. 

8.3.2 Buried Pigs 21-30 

Samples were taken from all of the buried pigs at one year postmortem. At this time 

the carcasses had not skeletonized and large amounts of soft tissue were still 

present. This is probably due to the fact that such high amounts of rain fell over the 

early decomposition period. There was also adipocere formation and a black sludge 

type of putrefaction with a really quite offensive odour. It was impossible to 

photographically evidence the putrefaction as the heavy wet soil was firmly adhered 
to the remains (fig8.48). Maggot activity was also noted even though the burials 

were 30-40cm in depth. Samples were also taken from the mass grave that 

contained four pigs. Two bones were taken from two separate pigs. 

143 

Fig 8.47 Pig 16 Eight weeks PM Bleaching of the skeleton (Author, 2007) 
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8.4 Note on Description of Histological Preservation 

Previous studies have classified micro focal destruction (MFD) in to four separate 

categories on the basis of their appearance in microscopic thin section and as 

previously discussed these are called Wedl (fungal), linear longitudinal, lamellate 

and budded (bacterial). Hackett (1981) who originally described the typical lesions 

believed that there were probably more than 4 types and even in his own work does 

not classify lesions to type. During this research there have been times when 

destruction has taken place in bone that cannot be categorised using the previous 

terms. In some instances the bone may be very degraded by bacteria but discrete 

tunnels cannot be seen due to the severity of the damage. In these cases the terms 

'bacterial attack' or'generalised attack' have been used. If the bone is damaged but 

bacterial attack does not seem to be responsible then the term 'generalised 

destruction' has been used. Further to this, in some of the archaeological sections 

and in the pigs there is destruction in the form of black dots (that resemble budded 

tunnelling) that coincides with collagen loss that can be seen optically as a loss of 
birefringence under polarized light. As this is seen in sections where clear tunnelling 

also occurs it appears to be the origin of tunnelling and has been termed early stage 
tunnelling. 

8.5 Results of Bacteria Based Experiments (Boxed Pigs) 

The first bone sections were taken approximately one month post-mortem and after 
skeletonization of most of the carcasses had occurred (29th June 2006). In four 
cases (pigs no's 1-4) most of the soft tissue had mummified although the internal 
organs were by this point completely corrupt leaving remains that consisted of very 
tough skin and the skeleton. A cross section of the bones was taken for thin 
sectioning (Pigs no's 1,2,3,5,7 & 8) and two transverse cuts were taken from each 
bone. The second samples were taken on the 11th November 2006 (6 months post- 
mortem) and by this time the majority of the pigs had almost completely 
skeletonized apart from mummified tissue that was still evident in a few of the 
burials. The first four pigs that went out were still bone that was almost completely 
covered by mummified soft tissue. The skin of pig No 1 was almost entirely covered 
with what appeared to be a white coloured mould and further traces of this 
substance was observed on pigs no's 2&4. The box containing pig No3 had 
somehow become waterlogged and the skin had lost the associated hair seen 
previously and the skin had the appearance of a bog body. It was decided not to 
take samples from waterlogged specimens. As the experiments are in duplicate 
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only six bones were removed for sectioning (one from each type of experiment). 
Further samples were taken at 12 months PM (no's 5,6,8,10 & 12), 18 months 
(no's 2,7 & 10) and 24 months (all of the pigs). At this time the pigs were mainly 

either skeletal with retained mummified tissue or waterlogged. 

8.5.1 Bacterial Assays 
From the 1st samples two of the sections were taken for experimental staining, the 

1st (pig 1) was subjected to gram staining (taken to the University of Lincoln, where 

they have the necessary materials) whilst the other (pig 7) was stained with 
Methylene Blue. Large colonies of bacteria could clearly be seen within both 

sections. Neither had any covering (i. e. sand or soil) but no7 was considered to be 

stillborn. This means that either the pig was older than previously thought or that 

there was environmental contamination. It was considered that this was true 

colonisation rather than surface contamination due to the fact that the bacteria could 
be seen throughout the depth of the section. In pig Not that was used for gram 

staining and both gram positive and gram negative bacteria were clearly visible. In 

the second samples (pigs 2,5,6,7,9 & 12) all of the bones sectioned were 
subjected to simple staining with Methylene Blue and bacterial colonies were 
visualized in 4 of the sections (table 8.5). Bacteria were evident in pigs 2,5,6 & 7, 
the 1st three being newborns and no7 the stillborn. Of these 2 had no covering, 1 
had a covering of soil and I was covered by sand. The sections from no's 9& 12 

which had coverings of soil and sand respectively and were considered stillborn did 

not have visible bacterial colonies. If tunnels are present these will also take up the 
stain but none were apparent for the sections taken at one month or for those taken 
at 6 months. 

Date Pig 
No 

Age Covering Section Staining 
Method 
Applied 

Bacteria Tunnels 

29.06.06 SK1 Newborn No T GS Yes No 
29.06.06 SK2 Newborn No T N/A No 
29.06.06 SK3 Newborn Soil T N/A No 
29.06.06 SK5 Newborn Soil T N/A No 
29.06.06 SK7 Fetal No T MB Yes No 
29.06.06 SK8 Fetal No T N/A No 
11.11.06 SK2 Newborn No T/L MB Yes No 
11.11.06 SK5 Newborn Soil T/L MB Yes No 
11.11.06 SK6 Newborn Sand T MB Yes No 
11.11.06 SK7 Fetal No T MB Yes No 
11.11.06 SK9 Fetal Soil T/L MB No No 
11.11.06 SK12 Fetal Sand T MB No No 
Table 8.5 Results of staining thin sections (boxed) Key: Section, T= Transverse, L= Longitudinal Staining method, GS= Gram Stain, MB = Methylene Blue 
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8.5.2 Anaerobic Jar Results 

Pig No Destruction Collagen Loss Tunnels 

1 No Destruction Small amount of collagen loss No 

2 No Destruction Some collagen loss No 

3 No Destruction Significant collagen loss No 

5 No Destruction Some collagen loss No 

Table 8.6 Results of collagen destruction via Anaerobic jar 

Of the bones placed in the anaerobic jar (table 8.6) and left for a period of one year 

no tunnelling was observed in any case. There was however some collagen loss 

that was visualized as a loss of birefringence under polarized light within the bones, 

but this could not be attributed directly to bacterial attack as no tunnels were seen. 

8.5.3 Results of Histology (Boxed Picas) 

The sections taken at one month and six months post-mortem were examined under 

normal microscopy and no evidence for bacterial tunnelling could be seen and under 

polarized light microscopy the collagen content of the bone appeared to be well 

preserved. However, in the bones that were stained by either Methylene Blue or 
Gram staining (figs 8.49-8.50) it became clear that the sections were heavily 

colonized by bacteria at one month postmortem. The pig bones were not sectioned 
until they had almost skeletonized and so it is highly possible that the bacteria were 
within the bone at a much earlier time. As previously noted bone is highly 

vascularised and bacteria are extremely mobile and colonization would ensue very 
soon after death. Both Gram positive and Gram negative bacteria are present and 
there are different types of bacteria visible in the form of both rods and cocci. The 
bacteria present are not contamination from the microtome saw or the bone surface 
as the colonies are very large and they can be visualised 'through' the section rather 
than just on the surface. 

149 



r, ýa ý, 

br.. 
°>. 

* 7e 

'41' 0 so -, ,x+E /I " "gyp.:;: 

g; N ; ý& fa to 
4 

*. 

B. 49 Section of bone showing extensive penetration by 
tmortem (Methylene Blue Stain) (Author, 2007) 

150 

ýN 

Ä 
A 



For their continued survival and possible destruction of the bone collagen a 
favourable environment would be necessary. Unfortunately due to the nature of the 
boxes, five of the twelve pigs became waterlogged and a further six suffered some 
degree of mummification. Neither of these conditions is sympathetic to the type of 

microbial attack being researched here. It is clear that in cases of extreme dryness 
bacterial attack will be arrested and in waterlogged conditions MFD most often takes 

the form of an 'outside-in' mode of destruction caused by cyanobacteria. At the 
intervals set for sectioning it became necessary to select bones from pigs that may 

yield results, and not all of the pigs were sectioned at the same time. Because by 

this time the real burials had been put in place it was felt that this was an easy 
sacrifice as it was hoped that much better results would be achieved with the 2nd 

experiments. 

As discussed above the boxed pigs were subject to waterlogging and mummification 
due to the specific environments in which they were housed and which formed the 
basis of DEFRA set specifications. If these pigs had been allowed real burials then 

the above problems would not have occurred. Nevertheless, it was decided to 

continue with the boxed pigs even after the new experiments of true burials were 
started as they would have a longer time to degrade and would act as 'backup' 

should anything jeopardise the real burials. 

The full results of the histological study of the boxed pigs are presented below (table 
8.7). No real histological changes were observed in either the stillborn or the 
newborn pigs during the initial 18months of deposition. There was some staining to 
one bone that was probably due to the soil and in another case there was a small 
amount of pink coloured infiltration that appeared to be of fungal origin as there was 
a corresponding loss of collagen at that area. The bone that was dark stained also 
appeared to have suffered from some collagen loss but this is more suggestive of 
chemical hydrolysis as no tunnelling was observed. When the pigs were sampled 
for the final time at 2 years postmortem there was a visible difference in histological 

structure. All twelve pigs were sectioned at this time and all but one had early stage 
tunnelling visible. In four of the newborns the early tunnelling was extensive and 
large enough to be defined as pre-tunnelling and in a further case there was 
evidence of fungal invasion in the form of Wedl tunnelling. Of the four with evidence 
of pre-tunnelling the type of covering varied with two having a sand covering, one 
soil and one had no covering at all. None of the six stillborns showed any signs of 
either pre-tunnelling or tunnelling. Although in one case (pig no 8, highlighted) there 
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was some loss of collagen. On reflection this pig was probably not stillborn due to 

two reasons. Firstly, it was rather heavy to be stillborn and secondly after deposition 

this piglet bloated and there was green staining of the abdomen suggestive of an 

animal that had lived long enough to have gut bacteria present. Unfortunately, it is 

impossible to be certain whether any of the designated stillborns died either prior to 

or at the time of birth as they were simply selected on size, weight and presence of 

umbilical cord as they were chosen directly from the processing room floor out of a 

selection of around a ton of animal waste. 

All of the above would suggest that any MFD found was a direct consequence of gut 

microbes both because the stillborns were not affected and in the newborns that 

were affected, at least one was not subjected to soil bacteria and two were in sand. 

The results of the boxed pigs are far from conclusive mainly due to the deficiencies 

of the study, namely the mummification and waterlogging. Whether or not this had a 

direct effect is debateable, but in the cases of pre-tunnelling two of the pigs were 

waterlogged and two mummified. As discussed in a previous chapter it is possible 

that the bacteria had time to cause damage within the bone before the microclimate 

became hostile. It is entirely possible therefore that the tunnelling is a true reflection 

of gut microbes in the newborns which correlates with the lack of tunnelling in the 

stillborns that should have been sterile and not subject to any MFD arising from this 

source. The experiments were not a perfect model and the author is fully aware of 

their limitations. 
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Postmortem 

interval 

Pig no New/Still Born Description Collagen Loss Tunnelling 

1 Month 1 Newborn No Destruction No No 

2 Newborn No Destruction No No 

3 Newborn No Destruction No No 

5 Newborn No Destruction No No 

7 Stillborn No Destruction No No 

8 Stillborn No Destruction No No 

6 Months 2 Newborn No Destruction No No 

5 Newborn No Destruction No No 

6 Newborn No Destruction No No 

7 Stillborn No Destruction No No 

9 Stillborn No Destruction No No 

12 Stillborn No Destruction No No 

12 Months 5 Newborn No Destruction No No 

6 Newborn No Destruction No No 

8 Stillborn No Destruction No No 

10 Stillborn Very dark staining Significant No 

12 Stillborn No destruction No No 

18 Months 2 Newborn Small area of decomp Minimal No 

7 Stillborn Pink area Fungal? At pink area No 

10 Stillborn No Destruction No No 

24 Months 1 Newborn Areas of black dots Minimal Possible Wedl? 

2 Newborn Areas of black dots Minimal Early stage tunnelling 

3 Newborn Areas of black dots Minimal Early stage tunnelling 

4 Newborn Few black dots No Early stage tunnelling 

5 Newborn No destruction No No 

6 Newborn Areas of black dots Minimal Early stage tunnelling 

7 Stillborn Very few black dots No No 

8 Stillborn Areas of black dots Minimal No 

9 Stillborn Very few black dots No No 

10 Stillborn Very few black dots No No 

11 Stillborn Very few black dots No No 

12 Stillborn Very few black dots No No 

Table 8.7 Results of Histology (Boxed pigs) 
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8.6 Results of Microscopy: Real Burials (2nd Burials) 

Sections were taken from the real burials at selective intervals. Bones could be 

removed with ease from the surface depositions but only with some difficulty from 

the buried remains. A literature review had suggested that bacterial attack would 

not commence until after skeletonization and even then would probably not occur 

until 2-5 years postmortem. It was therefore decided to allow sufficient time to pass 
for the buried remains to skeletonize. The poor weather conditions linked to the 

excessive rainfall during the early period of burial suggested that the buried pigs 

would not be skeletonized within the first year. In addition to this, femurs are the 

bone of choice for this research due to their proximity to the pelvic area (and 

therefore the intestinal tract) and because each pig only provides two of these 

elements it was decided to sample the surface pigs only twice (6mths & 12mths) 

and the buried pigs only once at 12mths. The surface pigs were all skeletonized by 
the 1st sampling period (6mths), but the buried pigs were not skeletonized at 12mths. 

8.6.1 Surface Depositions Summary 
The results of the surface depositions were quite interesting. Research had 

suggested that the decomposer ability of insect larvae may lessen the chances of 
bacteria surviving and therefore reducing the chance of bacterial attack in bones 
from this type of environment. However, at the first sampling six months 
postmortem, three of the pigs had suffered some degree of bone degradation. In 

the bones that were affected there was change in the form of black spots within the 
bone structure with a correlation to collagen loss as evidenced by loss of 
birefringence when viewed under polarised light. 

Tunnelling of bone has previously been recorded and classified from archaeological 
bone that has had hundreds of years to degrade and therefore does not record how 
tunnelling begins or how it would appear visually. There must be an initial point at 
which bone collagen is being used by bacteria but without the requisite archetypal 
tunnels having developed. Where the black spots have not joined together this has 
been termed early stage tunnelling and where they have coalesced to form larger 
entities the term tunnelling has been applied (the latter most closely resembling 
what is seen in archaeological material). In some archaeological material 
(examined by the author) this phenomenon has been noted. The Royal Mint 
sections provided much of this data where the black spots are seen individually, 

coalescing, and then finally merging to form characteristic tunnels. 
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Within the Ist sample the foetal pig, and the 25kg pig were both unaffected whilst the 

10kg pig had a very few black spots. By the time of the 2nd sampling all of the bones 

were affected to some degree with the exception of the foetal pig, which remained 

unique in its lack of tunnelling/pre-tunnelling. This would suggest that there may be 

a link between intestinal microbes and MFD. 

Postmortem 
Interval 

Pig 
No 

Weight 
(kg) 

Buried/ 
Surface 

Description Collagen Loss Tunnelling 

6 Months 15 50 Surface Dark band to central Minimal Early stage tunnelling 
section 

16 25 Surface Well preserved No No 
17 15 Surface Many black dots Minimal Early stage tunnelling 
18 10 Surface Very few black dots Minimal No 
19 3-4 Surface Destruction endosteal Loss endosteal Tunnelling 
20 1-2 Surface No destruction No No 

(Fetal) 
12 Months 15 50 Surface Black dots Collagen loss Early stage tunnelling 

16 25 Surface Black dots Collagen loss Early stage tunnelling 
17 15 Surface Black dots Collagen loss Early stage tunnelling 
18 10 Surface Black dots Collagen loss Tunnelling 
19 3-4 Surface Very few black dots Minimal collagen Early stage tunnelling 

loss 
20 1-2 Surface No Destruction No collagen loss No 

(Fetal) 
21 50 Buried Many black dots Collagen loss Tunnelling 
22 25 Buried Many black dots Collagen loss Tunnelling 
23 15 Buried Many black dots Collagen loss Tunnelling 
24 10 Buried Many black dots Minor collagen loss Early stage tunnelling 

25 3-4 Buried Many black dots Minor collagen loss Early stage tunnelling 

26 1-2 Buried Perfect preservation Minor collagen loss No 

(Mass) 27- 25 Buried Band of destruction Minimal Possible 
30 

(Mass) 27- 25 Buried Black dots Minimal No 
30 

Table 8.8 Results of Histology Real Burial Pigs 
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8.6.2 Buried Pigs Summary 

Because the pigs had not skeletonized at exhumation it was expected that no 

bacterial attack would have taken place if skeletonization was a precondition of MFD. 

Of the eight bones sampled from the buried remains (6 discrete burials and 2 from 

the mass grave) all but one (foetal) had suffered collagen loss. Again, tunnelling 

took the form of black spots and coalescing black spots with a corresponding loss of 

collagen (figs 8.51-8.70) which manifested in all of the bones except for the foetal pig. 

This degradation was much more advanced than in the surface depositions with 

many more spots and larger amounts of bone affected. Because the pigs had not 

skeletonized it is unlikely that soil bacteria were the perpetrators as a good deal of 

soft tissue remained on the corpses and adipocere was also present which 

prevented contact with the soil. It was also mentioned in chapter 4 that some soils 
have both less bacteria and less collagenolytic strains. This is true of spruce soils 

which are of the type found at Riseholme where considerably less Collagenase 

producing microbes would be present. This associated with the lack of destruction 

in the foetal pig, also points towards an intestinal origin of MFD. 
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Photographs of Experimental Material Thin Sections 
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8.7 Results of Histology of the Archaeological Sections 

In total one-hundred-forty-two human bone sections of both adults and children were 

observed, of which one-hundred-twenty-nine (91%) were seen to be affected by 

bacterial tunnelling (discrete tunnels) or generalised bacterial attack (bacterial attack 

type destruction without discrete tunnels). Of the eleven sites examined (table 8.12) 

(139 sections), one (Kitton Hill) was too degraded to visualise any bacterial damage 

and these were therefore classified as having general destruction. This was also 

applied to any other sections that could not clearly be seen. If we exclude Kilton Hill 

and look at the other ten sites then half of them are affected 100% by MFD. The 

Royal Mint site has 97.5% of sections affected (fig 8.71) and the other four all score 

above 70% (Bantycock 71.5%, Bolsover 71.4%, Blackgate 79% & Grantham 77%). 

The size of the samples is very small in some cases, and this is determined by three 

factors. In some cases (Kitton Hill) the remains are so poorly preserved that 

sectioning becomes incredibly difficult and once sampled it is clear that sectioning of 
further bones would be unproductive. In further cases the sections being observed 

were made previous to this research and are what is available for that cemetery. 

Finally, sectioning is a destructive process and often curators are not happy to have 

the bones sectioned especially where not many skeletal parts are available or where 
they are deemed to be of great importance. 

Archaeological Sections & Percentage Tunnelling Observed 

Archaeological Sections 
Royal Mint (39) 

Exeter (3) 

Berinsfield (22) 
Grantham (13) 

Stanton (3) 
Blackgate (24) 

LA Bolsover (14) 
Kilton Hill (4) 

Boreray (1) 
Cladh Hallan (6) 

Bantycock(7) 

Percentage 

W Tunnels 

H General Destruction 

N Early Stage Tunnelling 

9 No Tunnels 

Fig 8.71 Eleven of the sites used, showing percentages of sections affected. Includes 137 
sections, the other 5 from misc sites are not included. 
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Table of Archaeological Thin Sections and Findings (Adults and Juveniles) 

Number A, ge Destruction Tunnelling 

RANT 05 SK26 Mother of SK13 Stained, very poor preservation Tunnels Present 

KANT 05 SK13 Foetus of SK26 Stained, very poor preservation Tunnels present, budded 

KANT 05 SK19 6-9 mths Stained, very poor preservation Tunnels present, budded 

RANT 05 SK21 0-1 mth Stained, very poor preservation Tunnels present, budded 

KANT 05 SK22 38-39wks Better preserved than rest black dots No 

KANT 05 SK23 0-1 mth Microcracking Early Stage tunnelling 

RANT 05 SK27 39-40 wks Black dots Tunnels present 

CHO1-SK2316 Adult Stained dark brown Budded, LL & Lamellate 

CH01-SK2792 3 Years Stained brown, some areas well preserved Budded & Fungal 

CHOI-SK2727 10-14 Years Stained dark brown Budded, LL & Lamellate 97 

CH01-SK2638 Adult Endo & Ecto cranial well preserved, attack below surface Budded, LL & Lamellate?? 

CH01-SK2638 Adult Well preserved, attack below surface Budded, LL & Lamellate?? 

CH01-SK2638 Adult Well preserved, stained, some attack Budded, LL 

BRY 09-02 Adult Some staining, darker at one side, band as seen in pigs Yes 

KH SK44 Adult Stained, very poor preservation Generalised destruction 

KH SK86 Con 294 Adult Stained, very poor preservation Generalised destruction 

KH SK86 Con 294 Adult Stained, very poor preservation Generalised destruction 

KH Con 267 Adult Stained, very poor preservation Generalised destruction 

80L 008a 26 Weeks Very well preserved No Tunnelling 

BOL91-056 30 weeks Very degraded and stained Generalised destruction 

BOL91-014 33 Weeks Very degraded and stained All three 

BOL91-014 36 Weeks Very degraded and stained All Three 

BOL91-028 39 Weeks Very degraded and stained Generalised Destruction 

BOL91-011 40 Weeks Very degraded and stained Budded U. 

SOL91-017 40 Weeks Very degraded and stained Budded LL Difficult to see 

SOL9I. 007 46 Weeks Very well preserved No Tunnelling 

BOL91-012 48 Weeks Some destruction Budded LL 

BOL91-002 12ml4yrs4 Very degraded and stained LL Budded & Wedt 

BOL91.021 I Smonths Very degraded and stained All three 

BOL91-018 4 Years Very degraded and stained Full of MFD All Three 

BOL91-029 7 Years Very degraded and stained Full of MFD All Three 

80L91-019 40-45 yrs Very degraded and stained All Three 

BG90 3204 40 Weeks Stained, very poor preservation Budded LL 

BG90 3285 32 Weeks Stained, very poor preservation Possible Budded 

BG90 3191 36 Weeks Excellent No 

BG90 3166 39 Weeks Darkened areas. Well preserved No 

BG90 3166 39 Weeks Difficult to see structures Generalised bacterial attack 

BG90 3207 c1 Year Generally well preserved, dark bands None seen 

BG90 3830 18 Months Stained, very poor preservation Generalised bacterial attack 

BG90 3184 4-5 Years Stained, very poor preservation Generalised bacterial attack 

BG92 3664 5-6 Years Some well preserved, clear Islands of destruction Generalised bacterial attack 

BG81 4 Poorly preserved Generalised bacterial attack 
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Number age Destruction Tunnelling 

BG81 ? Poorly preserved Generalised bacterial attack 

BG281 7 Poorly preserved Generalised bacterial attack 

BG3215 39 Weeks Very degraded and stained Budded LL 

BG3277 27 Weeks Small areas of destruction Generalised destruction 

BG3191 46 Weeks Very well preserved No Tunnelling 

BG464 30-49 Years No staining, full of MFD All 3 

BG442 20-29 Years No staining, full of MFD All 3 

BG91 Stained, very poor preservation All 3? 

BG8 50+ Years Stained, very poor preservation All 3? 

BG481 40-49 Years Stained in places, small islands preserved bone All 3? 

BG548 45-54 Years Poorly preserved All 3? 

BG127 Adult Poorly preserved All 37 

BG614 30-39 Years Poorly preserved All 3? 

BG91-056 7 Very degraded and stained Budded LL 

Stanton 7 Poorly preserved Generalised bacterial attack 

Stanton 7 Poorly preserved Generalised bacterial attack 

Stanton ? Poorly preserved Generalised bacterial attack 

GLR91 029 18 Months Stained, very poor preservation Generalised bacterial attack 

Sampson Well preserved No 

Sampson Well preserved, bands of discolouration No 

Molar Tooth Destruction to Inner surface, rest well preserved Budded LL Lovely specimen 

Homo sapiens Very poor preservation Generalised bacterial attack 

Homo sapiens Very poor preservation Generalised bacterial attack 

BER1 27 13-16 Years Totally degraded, Stained yellow & gray Generalised bacterial attack 

BER73 18-25 Years Totally degraded, Stained yellow & gray Generalised bacterial attack 

BER49 45+ Years Totally degraded, Stained dark brown Generalised bacterial attack 

BER48 7-10 Years Totally degraded, Stained yellow & gray Generalised bacterial attack 

BER164 45 Years Totally degraded, Stained yellow & gray Generalised bacterial attack 

BER77 30-35 Years Totally degraded, Stained dark brown Generalised bacterial attack 

BER18 18-25 Years Totally degraded, Stained dark brown Generalised bacterial attack 

BER134 40+ Years Totally degraded, Stained yellow & gray Generalised bacterial attack 

BER164 45 Years Totally degraded, Stained yellow & gray Generalised bacterial attack 

BER82 20-25 Years Totally degraded, Stained yellow & gray Generalised bacterial attack 

BER126 17-20 Years Totally degraded, Stained yellow & gray Generalised bacterial attack 

BER53 40+ Years Totally degraded, Stained yellow & gray Generalised bacterial attack 

BER63 20-22 Years Totally degraded, Stained yellow & gray Generalised bacterial attack 

BER102 17-19 Years Totally degraded, Stained dark brown Generalised bacterial attack 

BER161 Adult Totally degraded, Stained yellow & gray Tunnelling visible 

BER152 18-20 Years Band of preserved bone, mesosteal Generalised bacterial attack 

BER50 38 Years Totally degraded, Stained yellow & gray Generalised bacterial attack 

BER14 6-7 Years Totally degraded, Stained dark brown Generalised bacterial attack 

BER032 45+ Years Totally degraded, Stained yellow & gray Generalised bacterial attack 

BER110 40+ Years Totally degraded, Stained yellow & gray Generalised bacterial attack 
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Number Age Destruction Tunnellinse 

BER77 30-35 Years Totally degraded, Stained yellow & gray Generalised bacterial attack 

BER82 Adult Totally degraded, Stained yellow & gray Generalised bacterial attack 

EX618 Full of MFD All 3 

EX561 Full of MFD All 3 

EX635 Full of MFD All 3 

GLR91063 Adult Full of MFD, unstained All 3 

GLR91 Test Adult Full of MFD, stained gray All 3 

GLR91056 Adult Full of MFD, unstained All 3 

GLR91046 Adult Very stained difficult to view, small islands preserved bone Generalised attack 

GLR91067 Adult Stained dark, difficult to view Generalised attack 

GLR91070 Adult Full of MFD, unstained All 3 

GLR91027 Adult Full of MFD, unstained All 3 

GLR91034 Adult Full of MFD, unstained All 3 

GLR91040 Adult Full of MFD, unstained All 3 

GLR91022 Adult Full of MFD, unstained All 3 

GLR91010 Adult Full of MFD, unstained All 3 

GLR91042 Adult Stained dark, difficult to view Generalised attack 

MIN86#23 Con#5859 35-45 Years Stained in places, small islands of preserved bone Generalised attack 

MIN86#22 Con#5859 35-45Years Very stained difficult to view, small islands preserved bone Generalised attack 

MIN86#15 Beautifully preserved except for periosteal edge where stained Generalised attack 

MIN86#23 Con#8210 45+ Years Very stained difficult to view, small islands preserved bone Generalised attack 

MIN86#24 Con6545 Adult Stained in places, large Islands of preserved bone, black dots Generalised attack 

MIN86#25 Islands of destruction that are stained black dots Generalised attack 

MIN86 Con'! 6122 45+ years Stained in places, large islands of preserved bone, black dots All 3 

Min86#18 #10348 45+ years Very stained difficult to view, small islands preserved bone Generalised attack LL & Budded 

MIN86 Con#10070 45+ Years Very stained difficult to view, small islands preserved bone Generalised attack LL & Budded 
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Number g Destruction Tunnellima 

MIN86 Con#5728 35-45 Years Very stained difficult to view Generalized attack 

MIN86 Con#1 1117 25-35 Years Very stained difficult to view Generalized attack 

MINB6#2 Con#9849 35-45 Years Stained in places, large islands of preserved bone Generalized attack 

MIN86#35 Con#10250 5-15 Years Very stained difficult to view Generalized attack 

MIN86#37 Con#14421 15-25 Years Some staining, tunnels visible All 3 

MIN86#36 Con#10240 Adult Stained grey, difficult to view Generalized attack 

MIN86#38 Con#10801 35-45 Years Islands of destruction Wedl? 

MIN86#1 Very stained difficult to view Generalized attack 

MIN86#36 Con#1 1117 25-35 Years Stained in places, large islands of preserved bone All 3 

MIN86#4 Con#9517 35-45 Years Destruction mainly to endosteal Generalized attack 

MIN86#6 Con#5265 25-35 Years Stained grey, difficult to view All 3 

MIN86#9 Con#6509 35-45 Years 

MIn86#20 Very stained difficult to view Generalized attack 

MIN86#21 Con8126 Well preserved None 

FCR34 02 Pig Well preserved, microc radang No 

Sus scrota Pig Well preserved, microcraclung No 

Sus scrofa Pig Well preserved, microcrackmg No 

Males males Badger Well preserved, bands of destruction Generalised bacterial attack 

Males males Badger Well preserved, bands of destruction Generalised bacterial attack 

Oryctolagus Cuniculus Rabbit Well preserved, bands of destruction Generalised bacterial attack 

Oryctolagus Cuniculus Rabbit Well preserved, bands of destruction Generalised bacterial attack 

Canis familiaris Dog Very well preserved No 

Canis familians Dog Very well preserved No 

Canis familiaris Dog Very well preserved No 

Canis familians Dog Very well preserved No 

Canis lupus Wolf Well preserved, microcradung No 

Canis lupus Wolf Well preserved No 

Vulpes vulpes Fox Well preserved No 

Vulpes vulpes Fox Well preserved No 

Ovis arias Sheep Well preserved No 

CPC99-1000 Cattle Destruction to Endo & Perio, some central Generalised bacterial attack 

CPC98-1032 Cattle Destruction to entire section Generalised bacterial attack, 

CPC98-1171 Cattle Destruction to entire section Generalised bacterial attack 

CPC98-1172 Cattle Destruction to entire section Generalised bacterial attack 

CPC98-1047 Cattle Destruction to Endo & Perio, some central Generalised bacterial attack 
CH C9 Cattle Dark stained difficult to view Generalised attack 
CH C10 Cattle Dark stained difficult to view Generalised attack 
CH C11 Cattle Dark stained difficult to view Generalised attack 
CH C13 Cattle Dark stained difficult to view Generalised attack 
CH C16 Cattle Dark stained difficult to view Generalised attack 

CH 99 1291-1 Dog Dark stained difficult to view Generalised attack 
CH S1 Sheep Dark stained difficult to view Generalised attack 

CH S2 Sheep Dark stained difficult to view Generalised attack 
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Number 6ge Destruction Tunnelling 

CH 83 Sheep Dark stained difficult to view LL & Budded 

CH S4 Sheep Dark stained difficult to view Generalised attack 

CH S8 Sheep Dark stained difficult to view Generalised attack 

Table 8.9 

8.7.1 Results Histology Foetal and Newborn 

When looking at the very young children the results are slightly different. If the 

foetal material is taken on its own (table 8.10) then only 33% are affected by 

tunnelling. 17% have generalised destruction and 50% are very well preserved. Of 

the newborns 40wks-1 year 58% show tunnelling, 17% have pre-tunnelling and 25% 

are not affected. As with the sections for all of the cemeteries the sample sizes are 

small for the same reasons previously stated, plus the fact that babies and foetal 

material are much rarer in archaeological assemblages meaning they are not there 

in the first place to section and even when they are available permission to employ 

destructive methods is often not forthcoming. 

Number ( Age Destruction Tunnelling 

RHSK20 Burled Foetal No Destruction No 
RHSK20 I Surface Foetal No Destruction No 

BOL008a 26 wks Very Well Preserved No 

BG3277 27 wks Small Areas of Destruction No 

80L91-056 30 wks Very Degraded & Stained Generalised Destruction 

BG90 3285 32wks Stained, very poor preservation Possible budded 

BOL91-014 33 wks Very Degraded & Stained All Three 

80191-011 36 wks Very Degraded & Stained All Three 

BANT05SK22 38-39wks Better preserved than rest No 
BOL91-028 39 wks Very Degraded & Stained Generalised Destruction 

BG3215 39 wks Very Degraded & Stained Budded, U. 
BG90 3166 39wks Well Preserved No 
Newborn 

BANT05SK27 39-40wks Black Dots Tunnels 

BG90 3204 40wks Stained, very poor preservation Budded, LL 

80L91-017 40 wks Very Degraded & Stained Budded, LL 

BOL91-011 40wks Very Degraded & Stained Budded, LL 

RHSK19 surface Newborn Destruction Endosteal Tunnelling 

RHSK19 Burled Newborn Very Few Black Dots Early stage Tunnelling 

BANTO5SK23 0-1 mth Black Dots Microcracking Early Stage tunnelling 

BANT05 SK21 0-1 mth Stained. Very Poor Preservation Budded 

SG3191 46 wks Very Well Preserved No 
BOL91 -007 46 wks Very Well Preserved No 
BOL91-012 48 wks Some Destruction Budded, LL 
BG90 3207 <1 yr Generally Well Preserved No 

Table 8.10 Foetal and newborn sections histology results. 

However, the differences are quite profound and this is probably a real discrepancy 

rather than one manufactured due to the small sample size. This supports the 
hypothesis that endogenous gut microbes are responsible for MFD rather than soil 
microbes. 
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8 .8 Results of Archaeological Animal Histology 

Animal remains were never meant to form a large part of this study due to the fact 

that they were often butchered in the past which would have removed the intestinal 

microbes. Therefore looking at pig bones from archaeological sites to compare with 

the new experimental research would be unproductive. Only a small sample of 

animals was therefore included in this study which included sheep, pigs, dogs and 

cattle. Of the thirty-two sections examined 20 (62.5%) had visible MFD, whilst 

twelve (37.5%) were well preserved. There was no evidence of Wedl type fungal 

tunnelling in any of the sections. This type of MFD has previously been suggested 

to be more prevalent in animal species (Jans et al, 2004). The extent of MFD in the 

animal bone sample is lower than in the archaeological human bone (91% affected) 

but higher than in the foetal human bone (33% MFD). If animal bones are 

butchered then we would expect to find very low numbers affected by MFD with a 

similar percentage to the foetal bone. Burial context may explain some of this 

discrepancy as bones may have been thrown into middens or rubbish pits that 

contained intestinal soft tissue and/or fresh faecal material and thereby re- 

inoculating the discarded bones with bacteria. Most of the sections are from 

unknown contexts and it would be fruitful in future research to look at animal bones 

where a full contextual provenance is known. 

8.9 Summary 
The results above appear to support the hypothesis that MFD is related exclusively 

to the presence of endogenous gut microbes in the early postmortem period, rather 
than those originating in the soil. The boxed pigs provide evidence of bacteria 

transmigrating from the intestines to the bone within one month postmortem and this 

is substantiated by the fact that the bacteria were present whether or not there was 

a soil covering. In the cases of pigs with no covering the bacteria must have 

originated from an endogenous source. At the time of the final sampling 2 years PM 

four of the newborn pigs had pre-tunnelling whilst none of the stillborns were 

affected. Results from the second set of experimental burials show that almost all of 
the pigs whether buried or on the surface had suffered some form of tunnelling with 
the exception of the two foetal pigs that were extremely well preserved. 

The archaeological sections were affected by MFD with fully 91% of sections of 
human bone suffering from tunnelling. The foetal material had only 33% affected 

and the animal bones had MFD in 33% of the sections. Because in many cases the 
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foetal material is not affected and soil does not seem to have a direct affect on 
tunnelling it would seem that endogenous bacteria can be the impetus for bone 

tunnelling. This does not rule out soil bacteria altogether, as these could still be 

implicated at a later stage of the decomposition process. 
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8.10 Appendix: Categories and Stages of Decomposition 
Modified from: Galloway, A. & W. H. Birkby, A. M. Jones, T. E. Henry, B. O. Parks. 1989. 

A. FRESH 
1. Fresh, no discolouration or insect activity 

2. Fresh burned 

3. Fresh, no discolouration, fly eggs present 

B. EARLY DECOMPOSITION 

1. Pink-white appearance with skin slippage and some hair loss 

2. Bloating without discolouration 

3. Grey to green discolouration-without bloating some flesh relatively fresh, 

4. Bloating with green discolouration 

5. Appearance of 1st Instar Larvae 

6. Green/grey/black discolouration to most of body 

7. Post bloating following rupture of the abdominal gases with discolouration going from 

green to dark 

8. Brown to black discolouration of arms and legs, skin having leathery appearance 

C. ADVANCED DECOMPOSITION 

1. Decomposition of tissues producing sagging of the flesh, caving in of the abdominal cavity, 

often accompanied by extensive maggot activity 
2. Moist decomposition in which there is bone exposure 
3. Mummification with some retention of internal structures 
4. Mummification of outer tissues only with internal organs lost/some still intact, through 

autolysis or insect activity 

5. Mummification with bone exposure of less than one half the skeleton 

6. Adipocere development 

D. SKELETONIZATION 

1. Bones with greasy substances and decomposed tissue, sometimes with body fluids still 

present 
2. Bones with desiccated tissue or mummified tissue covering less than one half the skeleton 
3. Bones largely dry but still retaining some grease 

4. Dry bone 

E. EXTREME DECOMPOSITION 

1. Skeletonization with bleaching 

2. Skeletonization with exfoliation 
3. Skeletonization with metaphyseal loss with long bones and cancellous exposure of the 

vertebrae 
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Chapter 9 Summary/Implications for Archaeology & Forensic Science/Future 

Directions/Conclusion 

9.1 Summary 
The main objective of the research was to determine the earliest point at which 
bacteria could become established in bone post-mortem; to evaluate how quickly 

tunnels become visible and to elucidate a possible culprit; exogenous versus 

endogenous microorganisms. Bacteria were found to be established within bone as 

early as one month postmortem. This data was taken from the first experimental pig 

carcasses that were housed in boxes and from those pigs where soil was not 
included. This demonstrates that bacteria are capable of migrating from the 

intestines to the hard tissues of the skeleton well within the early postmortem period. 
The bones were not examined prior to this time and hence bacteria may be able to 

reach the skeleton in a quicker time frame. The experimental research presented 
here appears to show that MFD occurs in the very early postmortem period (6-12 

months in surface carcasses and 12-18 months in buried carcasses) and that it does 

not affect fetal skeletons, at least in the time period that was available for this study. 
The difference in time frame for tunnelling to occur is apparent, although the buried 

pigs were not sampled until one year post-mortem and therefore it is not known 

when the tunnelling took place. It is unfortunate that a longer period could not be 

covered but the cadavers will remain in-situ for the foreseeable future and can 
always be thin sectioned and observed at a later date. However, it should be 

remembered that the experimental research presented here used pigs as an 
analogue for humans. There are limitations to this as pigs are not and never will be 
human and there are inherent dissimilarities in their bone structure. Immature pig 
bone being of a plexiform nature has been shown to be more porous than human 

adult bone and this may lead to tunnelling developing faster although this is 

probably negligible in terms of MFD developing in the early postmortem period. 
Some tunnels do however demonstrate re-depositing of the mineral around the 

margins of the tunnel and lower mineralization of the young pig bone may make 
access easier. Unfortunately, this was the best possible animal model available. 
The pig is after all an omnivore, which was important for the species composition of 
the endogenous microbes and pig cadavers are easily available without the 

necessity for. killing any animals. This is largely due to their intensive breeding and 
hence random death on a regular basis. Ethically, the use of pigs that have already 
died either due to poor farming practices or the unfortunate event of being rolled on 
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by their mother are preferable to the euthanasia of healthy animals. Organically 

raised pigs would have made a better analogue but there are inherent problems with 

this route. Because they are raised largely in a natural manner there are fewer 

deaths and this study required a large number of pigs on the same day to be 

delivered to site. After conversation with an organic pig farmer it was found that 

they have natural deaths very rarely and this averages less than I pig per month. 

Therefore if an ethical route was taken it would have taken several years and the 

freezing of corpses for a long period before enough pig carcasses would have been 

amassed and freezing may prove detrimental to the decomposition process. The 

only alternative to this would be unethical and expensive and would involve the large 

scale euthanasia of animals and subsequent purchase of the carcasses. 

When looking at the surface depositions, there was a real chance that no tunnelling 

would be found, forensic evidence had suggested that surface deposits suffer far 

less from this phenomenon and the bactericidal affect of fly larvae which effectively 

sterilises large parts of the carcass (even within the bone) would obviously hinder 

this type of destruction. Drying of the corpse and exposure to sunlight as it 

decomposes is also inhibitive to bacterial activity. However, of the six surface pigs at 

one year postmortem, 1 had tunnelling, 4 had pre-tunnelling and 1 (the foetal pig) 

had no tunnelling. This degradation was far less advanced than in the buried pigs 

and is probably as a consequence of the limiting factors already stated. Some of 

the endogenous bacteria are obviously surviving long enough to cause some 
damage. It should also be noted that soil bacteria were not in direct contact with the 

bones as they were not buried. The tunnelling seen in the surface (possibly also the 

buried) bones may be attributable to the fact that during the period May-July 2007 

there was an unusually high amount of rainfall (Ch 8.3) and the carcasses were very 

wet for long periods during the early postmortem period. This would undoubtedly 

have provided a favourable environment for the continuing growth of bacteria within 

the corpse. 

Because the fetal skeletons have not suffered this fate it has to be presumed that 
MFD is a consequence of endogenous gut bacteria. If the soil microbes were to 

blame then all of the cadavers should have been affected to an equal extent, and 
the fact that many of the buried corpses had retained significant amounts of soft 
tissue (preventing access by soil microbes) tends to support this theory. Also of the 

six buried pigs all except the foetal pig were affected. This was buried high enough 
in the soil profile to be subjected to large colonies of soil bacteria and although it had 
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skeletonized there was no tunnelling and the bones were perfectly preserved. The 

archaeological sections corroborate this to a certain degree as it was found that 
foetal bones demonstrate MFD in 33% of cases compared to 91% of the overall 

population in the sections used for this research. The animal bones were less 

conclusive and although the percentage of MFD was lower than the human bone a 

significant amount (62.5%) had visible tunnelling. There may be cultural or 

environmental factors that account for this as there is no way of knowing where the 

remains came from or whether they had been butchered and none of the remains 
had observable butchery marks. Of course it is always difficult to reconcile what we 
find in cemeteries with their past histories as so many different variables act on 
bodies after their death that are simply uncontrollable and unknowable. A small 
change of rainfall in one year, or the type of soil, the bodies condition at death or 
postmortem processes are just a few of the issues that may affect any corpse and 
the subsequent way in which it then decomposes. These problems are usually seen 
when looking at the soft tissues of the body and in certain cases such as 
mummification we can visualise that something happened to that body that 

prevented its destruction. And in some cases we can tell that the body has been 

eviscerated or placed in a location known to be favourable to desiccation. The hard 
tissues of the skeleton are less forthcoming with their histories, once the soft tissue 
has decomposed we are left with nothing but bones and the story becomes more 
difficult to write. If the findings here are correct than maybe in the future those 
bones that show no signs of MFD or a retarded form when others from the same 
cemetery are destroyed by bacteria, then maybe we will be able to say something 
more meaningful about why they are so well preserved. Maybe they were 
mummified (i. e. Cladh Hallan Mummies) or disarticulated (Cist burials at Ingleby) or 
suffering from starvation or some diarrhoeal disease that left the bowel empty. This 
has to be a good starting point from which advances could be made quite quickly by 
fervent examination of these types of burial. 

Microbial attack in bone presents two problems for the archaeologist. Firstly, and 
quite importantly, is the effect on bone integrity. Secondly, if microbial tunnelling is 
present in archaeological bone then we need to be looking at its source to evaluate 
how such bacteria impact upon the bodies that are recovered from ancient 
cemeteries that we subsequently analyse. 
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9.2 Implications for Bone Integrity Based Studies 
Bone integrity is a vital component in 21st century Archaeology; more and more 

sophisticated techniques are being employed that are highly controlled. There is a 
basic need to understand the past in its fullest terms and to this end there is an 

endeavour to discover who the remains belonged to, where they came from, the diet 

that they consumed, familial relationships and the age and sex of the individuals or 

communities being researched. 

Chemical and biomolecular analyses of archaeological bone are based on the 

extraction of bone collagen for studies of DNA, stable isotopes and radiocarbon 
dating. Some knowledge on the degradation of biomolecules in bone during the 

postmortem interval exists whereas data for teeth are deficient, although there 

appears to be a remarkable stability of collagen dental proteins over time 

(Dobberstein et al, 2008). Collagen degradation by microbial action can be 

detrimental to these types of research. According to Grupe (1992) bone displaying 

microbial invasion is less likely to yield intact biomolecules and because bacteria 

possess enzymes for the cleavage of all biomolecular fractions all archaeometric 

approaches must be aware of biases that microbial diagenetic change causes. 
Nielsen-Marsh (2002) adds that bones yielding well preserved biomolecules show 

no evidence of microbial attack. More research is required in this area to determine 

at what stage MFD becomes a problem for biomolecular analyses. 

In a study by Kaiser et al, (2008) where postmortem interval indicators were being 

researched, it was reported that in exhumed human bone with PMI's of between 1 

and 30 years, DNA was most prevalent in the outer (periosteal) part of the bone, 
less prevalent in the inner part (endosteal) and least prevalent in the middle of the 
bone (mesosteal). This would be expected as in many archaeological bone sections 
microbial attack is limited to the central (mesosteal) part of the bone with a clear 
band of preserved bone both at the endosteal surface and at the periosteal surface. 
However, it is then stated that although the outer section of the bone yielded the 

most DNA that this is due to amplification of extrinsic soil bacteria, in contrast the 

middle part of the bone is protected from soil bacteria and should therefore be the 

most useful area to extract DNA from. Two points are raised by this statement. 
Firstly, if the bones were buried at depth, which presumably they were as they came 
from a modern cemetery in Munich, then they would be protected from most soil 
bacteria that live much higher up in the soil profile; research shows that very few 
bacteria survive at depth. This may not necessarily be the case as soil and its 
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microbial populations are still little understood. And secondly, although soil bacteria 

would find it harder to penetrate the skeleton the bones are not protected from the 

endogenous bacteria within the body itself. The authors do not mention degradation 

of this type, but it is well understood and in these types of application, bones with 

visible MFD are often deselected for study. 

Schoeninger at al (1989) suggest histological analysis of bone as a rapid method of 

eliminating those bones whose structure has been diagenetically altered. Haynes et 

al (2002) state that the relationship between histology and DNA survival may not be 

as strong as has been suggested and that there is still a lack of understanding 

associated with the mechanisms for DNA preservation. According to Burger et al 
(1999) the most important factors for DNA preservation are temperature, humidity, 

pH value, the geochemical properties of the soil, the amount of postmortal organic 

substances and the general degree of microbial infestation in the respective soil. 
This last point is not necessarily true as it is possible that bacterial attack in bone is 

caused by endogenous bacteria rather than soil microbes. Grupe and Piepenbrink 

(1989) were able to demonstrate that fungi contaminate bone by transmitting metals 
in to the bone that then becomes fixed in the mineral matrix. In soils that are heavily 

enriched with such contaminants they suggest that bone that appears to be affected 
by microorganisms should not be used for studies in to trace element analysis. 
Balzer et al, (1997) found that microbes are capable of changing bone collagen 
between 8 and 18mths and that this is accompanied by changes in carbon and 
nitrogen isotopic abundances and will hence interfere with the correct isotopic value 
identification of the native material. 

A study of two Late-Roman populations from Spain suggests that significant 
diagenetic change results in elevated levels of Sr, Pb, Am and Mn. The Ca/P ratio 
is also altered preventing use of such bones for dietary reconstruction as well as for 
the investigation of the different individuals' health conditions, or of links between 
diet, health and skeletal indicators of growth stress (Zapata et a/, 2006). Hiller et al 
(2004) suggest the use of small-angle X-ray scattering as a useful tool that can be 
used to quickly screen bone as to its preservational integrity. They quote that bone 

must stay on a specific diagenetic pathway for DNA to be amplifiable with the best 

samples having little to no mineral alteration and in addition a strong correlation 
between levels of nitrogen and mineral. ' Prior to selection for DNA analyses, Turner- 
Walker at al (2002) suggest assessing the bone for diagenetic change with HgIP as 
microbial assault may be so extreme as to preclude the preservation of DNA. 
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Garland (1987: 124) asserts that chemical and biochemical techniques using the 

inorganic and organic composition of bone for the chronological ageing of 

specimens may produce spurious results if the components are sufficiently altered 

or absent. 

If indeed endogenous gut microbes are responsible for the tunnelling that is so 
frequently observed, then there is a chance that any remaining microbial DNA could 
impact on the outcome of such studies. Similarly, Stable Isotope research that 

requires collagen analysis will also be affected due to the collagenolytic effect 

wrought upon the bone by the invading bacteria. Although it is less of a problem 
here as the collagen/mineral ratio does not change until 96% of the collagen has 

been lost. This makes it almost impossible to select for undamaged bones by 

analysis of the cemetery itself. Most commonly when looking at these problems the 

researchers have to section bones and physically select those bones that are not 
affected by MFD. This is good practice and should continue as there is no other 
way to tell a bones internal integrity at the macroscopic level. 

The implications of bacterial tunnelling for modern studies that use bone collagen 
are apparent. Microbes are responsible for elevating or changing levels of certain 
biomolecules and any affected bone should be treated with caution or eliminated 
from such studies. 

9.3 Implications for In-Situ Preservation 

The best possible outcome would be a scenario where we could predict which of 
these bodies or cemeteries are likely to be affected by microbial attack without using 
invasive methods. This is unlikely to happen because once a body has been 

reduced to bones there is little evidence left as to the state of the corpse at the time 

of death. And this may be the only true indicator of how likely microbial attack will 
be in any given set of remains especially if the microbes are of bodily origin. This 

also rules out looking to the cemeteries themselves and helps somewhat with the 
decision on whether or not to preserve remains in-situ. Purely from a bacterial 
destruction point of view, the degradation by endogenous gut microbes will have 
taken place in the early postmortem period and further attack is unlikely to occur. A 
scenario where well preserved remains that have been in the ground for hundreds of 
years suddenly start being affected by MFD is highly unlikely. This is true whether 
the microbes are from the body or from the soil. This however is only true of 
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microbial attack and does not cover other areas of destruction such as corrosive 

soils or chemical hydrolysis. 

9.4 Implications for Archaeology and Forensic Science 
It is altogether obvious that for some reason not all bodies decay rapidly to a point of 

skeletonization and even where they do their overall condition can range from 

perfectly preserved to little more than a stain in the sand. Mummification is a prime 

example of the decay process being retarded to such a point that some bodies may 

be instantly recognizable even after many years of burial. In these cases it may be 

possible to say that bone tunnelling would be unlikely as these types of bodies 

provide an environment that is not conducive to bacterial growth and reproduction. 
In the case of infants can we decipher true cases of infanticide from natural death 

that occurs after a live birth? And also, should fetal remains survive preferentially in 

the archaeological record? 

Infanticide is extremely difficult to prove. When the skeletal remains of very young 
babies are found in a forensic context, there is generally no way of telling when the 

child died. Most diagnostic tools would involve the soft tissues. Because we have 

seen that the fetal bones were the only ones not subjected to MFD there may be 

scope to use histological preservation as a guide to whether the child was sterile 

and therefore possibly a stillbirth or alternatively, if MFD is present, that the child 
had lived long enough to have developed a bacterial gut flora. 

Looking at the second point raised, it has already been shown that there is scope for 
fetal bone to be better preserved than adult bone (Bolsover Cemetery, previously 
discussed) from the same cemetery and where the burials date to the same time 

period. However, because fetal bones are less often recovered oftentimes as a 
result of excavator inability to recognise such remains, but possibly also because 
there would have been fewer of this type of burial in the first place, it is difficult to 
say whether or not this is a true picture of bone survival in the very young. It is 
possible for bone preservation to vary across a site and this cannot be ruled out 
here. The effects on the soft tissue have a compounding affect on the hard tissues 
and it is reasonable to presume that those bodies that lack enteric bacteria for 
whatever reasons will possibly not suffer from diagenetic change in the form of post 
mortem bone tunnelling and where it does occur it will probably be limited. 
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9 .5 Implications for Bone Preservation in the Laboratory 

None of the above are ideal places for bacteria to live, they prefer warmth and 

moisture, access to the appropriate nutrients within the body and external conditions 

such as pH level, and reduction potential must all be available at the right levels. 

However during the experimental research carried out here, it was found that bone 

can quickly deteriorate when kept at ideal conditions. In five cases there has been 

moderate to extreme collagen loss in bone sections. Three sections (duplicates of 

sections) from the boxed pigs were kept but not mounted using fixative; instead they 

were placed on a glass slide and covered with a cover slip. These were then kept 

within a box in a lab. The boxed pig samples were from the first samples taken three 

months postmortem and were not examined again until around 18mths had passed. 

The slides that were fixed using Euparol had not degraded at all, but the un- 

mounted sections demonstrated both staining and collagen loss. The same occurred 

with two further sections (25kg surface 1st sample 6mths PM & Winter Burial 1st 

sample lyr PM). These sections were taken in early November of 2007 and by 

January of 2008 there was collagen loss and staining. This rapid degradation of the 

collagen may be attributable to the way in which bone is treated at the point of 

sectioning. Thin sections of bone are cut using a Microtome; this piece of 

equipment consists of a diamond tipped blade that is cooled by water. The bone is 

therefore thoroughly drenched during the sectioning procedure. The sections are 

usually left only briefly to dry before a fixative is used for mounting and this must be 

seen as an adequate process as none of the fixed bones have degraded. However, 

the introduction of moisture into unfixed sections may prove detrimental. In addition 

to this there is a chance that environmental microbial contamination occurs at the 

time of sectioning. This is then compounded further by the fact that the sections 

were then kept at room temperature and not sterilised. Moisture, temperature and 

the possible addition of microbes or the reactivating of bacteria already contained 

within the bone may in sum act as a catalyst for microbial degradation under storage 

conditions. This leads to the questionability of whether or not excavated bones 

should be exposed to water in the post-excavation period. Bones are washed on a 

regular basis and this is common practice. Although bones are then left to dry either 

on trays or by other means some moisture will be retained for unknown periods. 
Having seen that collagen loss can occur in sections exposed to water (in less than 

2 months) then it becomes necessary to understand that this process might be 

having detrimental effects on stored previously washed bones. It could be argued 
that skeletal remains are usually stored at lower temperatures, - but it has been 

proven that destructive enzymes can act upon bone even under these conditions. 
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9.6 Future Directions 

9.6.1 Bog Bodies 

If indeed MFD is a product of endogenous gut microbes as this research appears to 

suggest then there are several ways forward. It would be of great importance to 

look at other bodies that had in some way been bacterially modified in the grave 

setting. Bog bodies we know are subjected to an antimicrobial environment that 

should in theory sterilise any bodies deposited there. Yet in two known cases, 
Lindow 11 & forensic remains from a muskeg bog (muskeg is a Canadian term for a 
bog, that often has a high concentration of large tree branches) some form of 
tunnelling is evident in the bone (chapter 2). Having not seen the bones it is difficult 

to say whether or not this is true tunnelling or some other phenomenon, but the 

authors themselves are well acquainted with MFD and as such it becomes more 
believable. It is possible that the gut microbes may be protected from the waters 
action for sufficient time to allow some form of modification to commence or the 
bodies may not have been placed in the bog immediately following death. Ideally it 

would be necessary to look at more bog bodies but this is unlikely to happen due to 
two limiting factors. Firstly, bog bodies are rare and when they are found it is 

unlikely that any destructive action would be taken. Unfortunately, the methods 
employed in this research are destructive and cannot be carried out any other way 
as the inside section of the bone has to be observed. Secondly, it is atypical for bog 
bodies to have bone surviving; rather there is often just skin and hair. Both of these 
facts make it unlikely that this type of research would ever be conducted. 

9.6.2 Disarticulated/Excarnated Remains 

Similar to this are those remains that have been subjected to destructive actions 
prior to burial such as disarticulated remains, especially where the remains have 
been disarticulated or excarnated in the very early postmortem period. This should 
in theory lead to bones that are largely free of microbes. Disarticulation at a point 
soon after death would certainly almost completely sterilise bones as the gut 
contents would be removed and no contamination would exist. With excarnation the 
outcome becomes less clear. If the remains were reduced to a mere skeleton very 
quickly by hot dry heat then it is possible that many of the bacteria would not 
survive, but in a cooler more humid setting bacteria may first proliferate within the 
body and migrate to the bones quickly where damage may then be caused. There 
is some proof that disarticulation affects bone tunnelling and this comes from two 
early Bronze Age cist burials at Ingleby Barwick (Ch 6), where disarticulation was 
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suspected due to the manner in which the bones were found. Unlike the rest of the 

skeletons that had been microbially altered these two displayed excellent 

preservation. Having examined the sections personally it would appear that 

disarticulation accounts for their preservation as the other burials were articulated 

and badly affected by MFD. 

9.6.3 Mummified Remains 

Mummies are another subset of remains that could prove highly definitive in MFD 

studies. Those remains that were unmistakably eviscerated soon after death 

thereby sterilising the body could shed some light on microbial tunnelling. But these 

are similar to the bog bodies in the sense that destructive options are not normally 
taken due to their cultural worth and rarity. Other mummies such as those that have 

mummified naturally may also be worthy of examination. Las Momias Naturales are 

natural mummies from Spain; they make up 2-3% of the bodies (the rest having 

decomposed) disinterred due to non-payment of perpetuity rights to the tomb (after 

five years), from crypts and niches and are known to have mummified due to two 

facts. Firstly, they were interred in crypts and secondly, on examination were found 
in general to have an empty bowel (Medina, 1993). It can only be presumed that 
those that became mummies had for one reason or another died with an empty 
bowel; this could be due to prolonged illness or diarrheal disease. Again it would be 
interesting to examine them further in respect of bone preservation rather than the 

soft tissue. More interesting are the remains from Cladh Hallan (Parker Pearson et 
al, 2005). A number of skeletons were found that from their preservational state, 
location and articulation pointed towards a form of mummification. One of the 
remains, an adult male, has a small band of microbial attack that is below the 

surface. Of course it would be expected that for mummification to occur, microbial 
activity would have to be halted. But a precedent has already been set by bog 
bodies that show definite MFD whilst being in an anti-microbial environment. 
Perhaps in certain cases bacteria are capable of migrating to the bone before the 

micro-environment becomes un-conducive to their survival. This could of course 
happen if the remains were placed in a bog for a short time or alternatively and more 
likely if the body was allowed to dry slowly over a longer period. Because the body 

would dry externally first there is time for the moist environment of the gut to carry 
on its usual mode of operation. The second scenario is more likely because the 
mode of attack is of an inside-out type that would indicate that the bacteria had got 
to the bone through the internal vascular system via the intestines. Either way it is 
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interesting to note MFD in mummified remains and demonstrates the complexity of 

the situation. 

9.6.4 Canine Bone 

Looking at the situation differently it might make sense to study canine bone. Most 

animal bones do not suffer from MFD because of the butchery that precedes their 

burial. But dogs are different because they were treated as pets and therefore they 

were often buried intact. The collection at Sheffield does not contain many dog 

sections but of the five available four were very well preserved with no MFD whilst 

the other was extremely affected by MFD. The four with good preservation are of 

modern origin and the poorly preserved specimen is from an archaeological site 

(Cladh Hallan). The modern specimens have no provenance and may have been 

obtained without the animal ever having been buried. Future studies of articulated 

archaeological canine bone may prove to be rewarding. 

9.6.5 Juvenile Remains 
When looking at foetal and juvenile bones the archaeological record is unclear as to 

how well they survive, and to the incidence of microbial attack. On one hand there 

are discrete burials of fetal material from the Bolsover collection that are near 

perfectly preserved. Yet from the same collection there are fetal bones that are 

clearly attacked. Contamination of microbial loads from other burials cannot be 

ruled out. The experimental research carried out here demonstrates that fetal bones 

should not suffer this fate, maybe enough time had not elapsed for the bodies to be 

affected but this is unlikely as they would have skeletonized quicker and the attack 
in the larger remains occurred whilst the cadavers still had considerable flesh and 

adipocere remaining. This would almost certainly point to a gut origin for the 

bacteria as the soil was not in contact with the bones. Soil bacteria are relatively 

immobile and it is unlikely that they had contact with the bodies. The smaller bodies 

had skeletonized and therefore were in contact with the soil, yet no MFD were 

observed. Five infants from Wijnaldum in the Netherlands (Colson et al, 1997) 

corroborate this hypothesis as they were also free of bacterial attack. When looking 

at a mother and her fetus who had died during pregnancy both sets of remains were 

equally degraded and both had extensive bone tunnelling. This is to be expected as 
the fetal bones would have been directly contaminated by the endogenous flora of 
the mother. Clearly, fetal bones appear less likely to be attacked but in some 
instances they are affected. It cannot therefore be a matter of a difference in bone 
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structure and the answer must lie firmly within the remit of bacterial action and 

whether or not they have access to the remains. To clarify this dilemma would entail 

an extensive study of fetal bones from discrete burial sites and this could be 

achieved by for instance looking at those remains from a site in Greece where 
babies and foetuses were placed in jars before being buried. This would serve two 

purposes; firstly, the burials are discrete and secondly they are protected from the 

surrounding soil at least until the jars collapse. This would provide a much more 

meaningful insight in to MFD phenomenon that could then be interpreted without the 

influence of many other burial variables. 

9.6.6 Amputated Limbs 

Singular bones that have been buried on their own may present another way of 
looking at how bacterial attack works. There are several known medical cemeteries 
where amputated limbs have been recovered. At first, this looks like an ideal 

situation to look at those buried bodies that have not been accessed by gut bacteria. 
If MFD were found then this would presumably have come from the soil. However, 
the need for medical removal of an arm or leg is probably caused by either trauma, 
bacterial infection or some other illness. All of these reasons will unfortunately allow 
bacteria to enter the bone. In the case of trauma it may be several weeks before the 

need to amputate becomes acute and may only take place to prevent infection 

affecting other parts of the body. Bacteria would already be within the bone and this 

may affect any MFD depending on which bacteria are present. In both of the other 
cases bacterial infiltration is also probable. If medical records were available that 
told us these factors then it might be possible to select those remains where 
bacterial infection was not an issue and this is unlikely to happen unless the bones 

came from modern amputations that had subsequently been buried. Anatomy 

schools would also be of interest but due to the dubious way in which bodies were 
often procured (grave robbing) this may also prove difficult. If the bodies had lain in 
the ground for any amount of time before transfer to the anatomist then there is a 
possibility that bacteria will already have transmigrated to the surrounding soft and 
hard tissues of the body. Again modern anatomy schools would be of more use but 
due to the constraints laid down by the Human Tissue Authority this is unlikely to 
happen. 
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9.6.7 Forensic use of Modern Human Bone 

The ideal situation would involve looking at modern human bone in a forensic and 

controlled context. The human decomposition research facility located in America 

relies on donated bodies that are then left to decompose in a variety of settings. 

Data can then be collected that are relevant to the early postmortem period. A 

similar facility in this country would be of exceptional worth and although the concept 

is possibly achievable (as donation of bodies is a matter of consent) the ethical 

issues associated with such a facility would be difficult to reconcile and there is 

much remonstration (especially on religious grounds) against the use of such 

facilities in the USA. There remain problems even with this scenario as much of the 

research here is dependent on the bodies of the very young. Permission to use this 

type of material would almost certainly not be forthcoming. Other ways forward 

could include using bone that has been recovered forensically or by sampling of 

bodies that have been exhumed for re-burial. Theoretically this is possible but 

consent would have to be obtained for every individual; this would entail talking to 

the next-of-kin at a very difficult time. 

9.6.8 Soil versus Skeletons 

Most taphonomic studies are somewhat misdirected in their approach to MFD. This 

research has been the first to look solely at the differences between sterile and non- 

sterile bodies in a real time burial environment. Many of the other studies focus on 

soil processes which although insightful and interesting may be misguided if the true 

culprits are of a bodily source. Surely it would be more profitable to firstly eliminate 
the easiest suspects by looking at the bodies themselves. If answers cannot be 

found using this approach then a move to soil and its properties would be of use. 
Soil mechanics with regards to bacterial action are still little understood and in the 

field so many variables will affect any given body that it becomes a mammoth task 

to attempt to answer this question via these means. By looking at the obvious first, 

in terms of the abundance of archaeological material available it may be possible to 

illuminate this subject without having to carry out limiting field studies. 

9.7 Conclusion 

This has been a difficult but rewarding research theme. Ideally it would have been 

preferable to have the experimental research in place for a much longer period of 
time. Unfortunately due to the initial difficulties with DEFRA and the time constraints 
of the PhD itself have meant that the experiments had a limited amount of time in 
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which to decompose. However, the results are quite conclusive with a total lack of 
MFD in the foetal material; this fact really points towards the provenance of 

tunnelling as being of endogenous gut microbe origin. Fetal bone is surely as 

susceptible to bacterial attack, if not more so if it truly is more porous and less 

mineralized than adult bone, yet it was not found in the experimental material. 
Having assessed all of the evidence it would appear that endogenous gut microbes 

are the culprits of bacterial tunnelling of bone in the early postmortem period. 
Further research is necessary if this is to be stated with authority and the material 

needed such as bog bodies and mummified remains may shed more light on this 

theory. With any research protocol there is room for mistakes to be made and for 

false results to be recorded. It is therefore advised that further studies are 

undertaken looking directly at the bones themselves rather than focusing on soil 

science. 
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