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Abstract 
This thesis comprises of two different kinds of work. The first part is focussed on ex- 

isting experimental data. Investigations and observations of the behaviour of plain 

concrete under triaxial and multiaxial compression following cyclic loading and a 

variety of stress paths has been presented. The behaviour of concrete with different 

constituents was also investigated. The directions of the plastic strain vectors were 

identified. Two loading surface were also identified: (i) the Peak Nominal Stress 

surface (PNS) which was identified from the peak stresses recorded from stress con- 

trol tests and (ii) the Volume Transition Stress surface (VTS) which determines the 

onset of the volumetric dilation. The plastic VTS is the surface which was identified 

from plastic strain components only. At this surface, the directions of the plastic 

strain vectors are purely deviatoric. A proposal for the shapes of the yield surface 
for concrete is given. These shapes were identified by the plastic work contours and 

also from the directions of the plastic strain vectors assuming the associated flow 

rule. This assumption has been verified by examining the normality of the plastic 

strain vectors to the PNS surface. 

Following the investigation of the experimental data, an examination of various ad- 

vanced plasticity models for concrete revealed the need to develop a new constitutive 

model with a suitable shape of the loading surfaces and with a better prediction for 

the stress-strain response. A new constitutive model for plain concrete has been 

developed using the previous work in this field at the University of Sheffield. The 

new yield surface was developed as a combination of a reflection of part of the peak 

nominal stress surface (PNS) and a quartic function. The continuity, the convexity 

and the normality of the yield surfaces were ensured. The model was calibrated 

and the optimum values of the thirteen material constants are presented. This is 

followed by a sensitivity study with simulations of a wide range of existing experi- 

mental data. Simulations of concrete with different constituents are also presented. 

The formulation of the model was simplified and verified by using numerical deriva- 

tives. A comparative study between the analytical and numerical derivatives of the 

constitutive model is presented. 

The sensitivity study and the simulations of experimental tests showed that the new 
constitutive model is: (i) easy to calibrate using only data from uniaxial compression 
tests and one triaxial compression test, and (ii) gives very good predictions of stress- 
strain response of different types of concrete under triaxial compression stresses and 
at different levels of confinement all the way to the peak stress state. 
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Chapter 1 

Introduction 

1.1 Introduction 

Proper understanding and characterisation of engineering materials and implemen- 

tation of these models in modern computational solution procedures is a vital com- 

ponent for safe, economical and competitive design of industrial and public work 

systems. Unless constitutive models for the materials composing these systems, 
based on sound scientific principles, laboratory testing and verification, are em- 

ployed in the analysis, the computer results will have only limited validity, if at 

all. This recognition has encouraged significant activities towards research for the 

constitutive modelling and testing for wide range of engineering materials. As a 

result, great number of models have been developed for a wide range of materi- 

als. In addition to the theoretical developments, it is also essential to calibrate 
the models based on appropriate laboratory tests and identify and evaluate the 

material constants [Desai et at., 1991]. 

Concrete under compression is of significant importance in many special structures 

such as reactor containment vessels, off-shore structures, columns for high-rise 

buildings, bridges, prestressed concrete elements, gravity dams and other struc- 
tures. Therefore, efforts have been made to develop constitutive models to analyse 
the response of plain concrete under multiaxial compression. 

The behaviour of concrete on the macro-level is highly complicated due to its 
heterogeneous multi-phase nature. It exhibits nonlinear and complex mechanical 
behaviour. It is a cohesive-frictional material in which the stress transfer in many 
loading cases is accomplished by frictional forces. The three-dimensional stress- 
strain behaviour of concrete is highly pressure-sensitive ranging from quasi-brittle 
in tension to almost ductile response in highly confined compression. 

1 
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With the acknowledgment of this difficulty, many constitutive models have been 

proposed and used for the analysis of concrete. These include the elasticity-based 

models [Kupfer, 1973; Elwi and Murray, 1979; Kotsovos and Newman, 19771, which 

no longer appear quite so prominent as they fail to address the irrecoverable de- 

formations observed under load. 

Fracture and damage models have been developed to deal with the stiffness degra- 

dation. This theory was first proposed by Kachanov (1958) to describe creep 

rupture in metals. The theory further developed to describe the isotropic and 

anisotropic damaging behaviour of concrete [Krajcinovic and Fonseca, 1981; Li 

and Ansari, 1999]. 

The microplane model is one of the recent advanced models [Bazant and Prat 

(1988a; 1988b)]. This model does not satisfactorily simulate degradation in the 

unloading stiffness and in its current explicit form it possesses a very high sensi- 
tivity to the values (and calibration) of the material constants [Qiu, 1999]. The 

numerical integration procedure required by this model is also costly in terms of 

computer disk space and CPU time [Tahar, 2000]. 

Most of the other models have been cast within the plasticity framework [Willam 

and Warnke, 1974; Ohtani and Chen, 1988; Chen and Saleeb, 1994b]. Attempts 

have been made to use elastoplastic modeling for prepeak behaviour and fracture 

energy for postpeak behaviour [Frantziskonis and Desai , 1987; Etse and Willam, 

1994; Meschke et at., 1998; Lee and Willam, 1997; Hansen and Willam, 2001]. 

Some efforts have concentrated on introducing an appropriate unified framework 

for modelling crack development through the use of strain softening and specific 
fracture energy concepts [Willam et at., 1986; Smith, 1987]. Other work has ex- 

amined approaches to provide a robust integration algorithm and the consistent 
tangent operator for plasticity models [Krieg and Krieg, 1977; Ortiz and Simo, 

1986; Simo and Hughes 1987; Runesson et at., 1988; Li, 2005]. 

A number of peak nominal stress (PNS) surfaces have been proposed to model the 

response of plain concrete. Mohr-Coulomb (1800) and the Drucker-Prager (1952) 

were the two first criteria. These criteria were developed to describe the response of 
materials such as rock, sand and concrete for which hydrostatic pressure affects the 

material yield and failure strengths. The Mohr-Coulomb criterion is rarely utilized 
in current concrete models in part because of the discontinuity of the surface which 
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causes numerical complications and in part because recent investigations show the 
Mohr-Coulomb criterion to be only a moderate fit to experimentally observed ma- 
terial response. 

The Drucker-Prager criterion represents moderately well the response of plain con- 
crete subjected to multiaxial compression and provides a smooth yield surface. 
This criterion is incorporated into some currently proposed concrete material mod- 
els [Imran and Pantazopoulou, 1996]. The response of concrete subjected to biax- 
ial compressive loading [Kupfer et al., 1969] is characterized well by this criterion. 
Comparison of the Drucker-Prager criterion with experimental data shows that 

while the criterion may be used to represent the response of concrete subjected to 

multiaxial compression, the model over-estimates the capacity of concrete for high 

confinement if the calibration is based on the uniaxial compression and uniaxial 
tensile strengths. 

A number of researchers have addressed the response of plain concrete under var- 
ious load regimes through the use of multi-surface plasticity models. Murray et 
al. (1979) proposed a three surface model to characterise the response of plain 
concrete subjected to biaxial loading. This approach was extended to concrete 
loaded in three-dimensions by Chen and Chen (1975), and Lubliner et al. (1989). 
Experimental investigations of concrete subjected to severe hydrostatic pressure 
loading show that the material does not respond elastically as is implied by some 
models [Drucker-Prager, 1952; Murray et al., 1979; Vermeer and De Borst, 1984] 
in which the failure surface is linear in Haigh-Westergaard space. This issue has 
been addressed by other models where a non-linear relationship is proposed [Han 

and Chen, 1985]. 

The evolution of yield surface is another important topic when the theory of plas- 
ticity is adopted. This evolution is typically defined by a hardening rule. Some 

models assume that the shape of the yield surface remains the same with the elastic 
region expanding and contracting as a function of load history [Kupfer et al., 1969; 
Chen and Chen, 1975; Murray et al., 1979]. In this case the hardening function 
is a scalar. There are few data defining the way the concrete elastic domain ex- 
pands and contracts under multiaxial loading. Hence, it is reasonable to calibrate 
the hardening function on the basis of the well-defined uniaxial concrete response 
[Murray et al., 1979; Lubliner et al., 1989]. 

The hardening law in some models is based on the plastic strain as hardening par 
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rameter [Grassl, 2004]. Some researchers [Lade and Kim, 1988] used plastic work 

as a hardening parameter. 

Models that propose variable shaped yield surfaces include that proposed by Han 

and Chen (1985), Ohtani and Chen (1988) and de Boer and Dresenkamp (1988). 

The model proposed by Han and Chen incorporates many of the techniques cur- 

rently used in the development of a concrete yield surface that evolves under a 

variable load history. 

Some models have been formulated assuming nonassociated flow rule where the 

yield function is chosen independently from the plastic potential function [Lee and 
Wiliam, 1997; Imran and Pantazopoulou, 2001; Grassi, 2004]. The evolution of the 

plastic strain is given as a function of the plastic potential, which depends on the 

stress vector and possibly other internal variables. Others modelled concrete using 
associated flow rule [Ohtani and Chen, 1988; Najjar et al., 1993, Tahar, 2000; Li, 
2005]. 

Although all the up-to-date constitutive models have been developed to give insight 
into a fundamental response of concrete, it is generally believed that the complex- 
ity of behaviour displayed by concrete is beyond the reach of these conceptualised 
approaches. The behaviour of plain concrete subjected to multiaxial stresses is 
the subject of an intensive experimental research programme in the Department 

of Civil and Structural Engineering at the University of Sheffield. The aim of this 

research is to obtain a detailed picture of the mechanical behaviour of plain con- 
crete with different constituents under variety of load paths. This is to be used for 

the material in nuclear reactor vessels by extending the range of stresses in which 
it can be safely employed. 

Examination of some advanced plasticity models developed for concrete revealed 
some previously un-reported features associated with the shape of the loading sur- 
faces and the manner in which hardening is incorporated into these models. In 

particular the attractive model for concrete proposed by Etse and Willam [Etse 

and Willam, 1994) has a difficulty associated with the form of the hardening sur- 
faces. Under moderate levels of hydrostatic confinement, the model can exhibit a 
loading direction oriented towards, rather than away from, the hydrostatic axis. 
This produces dilative plastic strains if an associated flow rule is adopted. Even 

without this undesirable feature, the Etse-Willam model shows a complex depen- 
dency of the shape of the deviatoric sections on the mean stress level and the degree 
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of hardening. Many of the other models exhibit vertices in the tension and com- 

pression regions. These difficulties can lead to instability (failure to converge) in a 
finite element analysis [Tahar, 2000]. 

Given these difficulties, an improved version of Etse-Willam model has been pro- 

posed by Tahar where the proposed hardening yield surface function is constructed 

such that the meridians always intersect the hydrostatic axis normally in the com- 

pression and tension quadrants. However, there are some shortcomings associated 

with this model. The model overestimates the axial strain in the pre-peak region 
for the uniaxial compression tests and for concrete under low level of confinement. 
The model also lacks the flexibility needed to identify the onset of plastic dilation. 

1.2 Objective of the Thesis 

The aim of this thesis is to develop a constitutive model for plain concrete with 
different constituents subjected to multiaxial compression loading. The model is 

to be flexible, extendable and based on experimental observations rather than ab- 
stract mathematical principles. The simulations are to be carried out over large 

number of tests with different stress paths, sample shapes and constituents. Be- 

side the evaluation of the validity of the model, these simulations will offer a step 
forward in developing a comprehensive model which will be constituent dependent. 
The model is to be developed within the framework of plasticity and should take in 

consideration the fundamental behaviour of concrete and the advances which have 

been achieved in this field. The new yield surface is to be smooth and convex, and 
defined by a simple mathematical expression. 

The newly developed model should have the following features: 

1. Provide a realistic description of concrete behaviour in the full range of com- 
pression loading; both uniaxial and multiaxial, monotonic and cyclic loading, 
including proportional and nonproportional stress paths. 

2. Take into account the apparent contraction and dilation of the material under 
load. 

3. Offer a simple formulation which is easy to calibrate and is consistent with 
the fundamental laws of thermodynamics. 

4. Satisfy Drucker's stability postulate to insure uniqueness, continuity, and 
stability of a solution 
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5. It will be suitable for use in computation (in particular the model should 
lend itself to a straightforward and efficient implementation in finite element 

codes). 

1.3 The Original Contribution of the Thesis 

The original contribution of the thesis can be summarised as follows: 

1. Development of a new constitutive model to describe the behaviour of con- 

crete under multiaxial compression. The new model has been created by 

using meridional reflection of the PNS envelope along with another quartic 

equation about symmetrical axis in the meridional plane. Special care has 

been given to the determination of the directions of the plastic strain vectors. 
This is then used to identify the yield surfaces assuming associated flow rule. 
The model is then fully validated under complex loading histories. 

2. Proposal of a new hardening function based on the equivalent plastic strain. 

3. Proposal of a new ductility measure to scale the equivalent plastic strain. 

4. Introduction of an auxiliary formulation to deal with the stresses that fall 

out side the zones covered by the model. 

5. A new formulation to identify the onset of plastic dilation. 

6. Determination of the directions of the plastic strain vectors for concrete with 
different load paths, strengths and constituents, from existing experimental 
data. 

7. Proving the validity of associated flow rule for concrete based on experimental 
identification. This has been achieved in two ways: 

(a) Identification of the peak nominal stress envelope and the plastic strain 
vectors at that envelope. 

(b) Using the plastic work contours. 

8. Proposal for the shapes of the yield surfaces based on experimental observa- 
tions. Two ways have been used to identify these surfaces (i) the plastic strain 
vectors, assuming associated plasticity, and (ii) the plastic work contours. 
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1.4 The Features of the Model 

1. The adoption of the peak nominal stress reflection gives the model the flexi- 

bility to be used by any PNS formulation. This formulation also helps in the 

reduction of material constants. 

2. The capability of the model to predict the plastic dilation. 

3. The good performance of the model over a large number of multiaxial com- 

pression tests and different stress paths, cyclic loading, and for different types 

of concrete. 

1.5 The Limitations 

The newly developed model has the following limitations: 

1. It deals with plain concrete. 

2. The study is focused on the response of concrete in multiaxial compression 
only (no tensile states). 

3. Only hardening response is modelled here (no softening). 

4. Isotropic hardening is assumed in the initial and subsequent loading process 
(no anisotropy due to damage). 

5. Associated flow rule has been assumed. 

6. The model is time independent (no rate effect). In the experiments used here, 

the concrete is subjected to quasistatic short-term loading. 

7. The investigation is restricted to the isothermal (temperature independent) 

case. 

8. The concrete is subjected to quasistatic monotonic short-term loading. 

9. The model is a phenomenological model, which relates average stresses to 
average strains (macroscopic level). 

10. Only concrete and mortar with normal-to-high strength (f, =20-60 MPa) is 

considered in this study (no high performance concrete). 
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1.6 Organisation of the Thesis 

Chapter 2 presents an experimental observation of concrete under compression 
loading. The chapter starts with the definition of stress, and an introduction to 

the stress invariants and the Haigh-Westergaard stress space. The chapter then 
describes the structure of plain concrete. The uniaxial behaviour of concrete is 

discussed. This includes the axial and lateral stress-strain response, elasticity pa- 

rameters, total and plastic volumetric strain, peak strength, the peak strain, plastic 
flow and plastic work. The behaviour of concrete under triaxial loading is investi- 

gated by the same topics that have been discussed in the uniaxial loading, with an 

addition of the peak nominal stress surface (PNS) and the volume transition stress 
(VTS) surface, and a discussion on the validity of the associated flow assumption. 
A proposal for the shape of the yield surfaces is introduced based on the identifi- 

cation of the plastic work contours and the directions of the plastic strain vectors. 

Chapter 3 presents the formulation of the new constitutive model. The continuum 
constitutive modelling of concrete is briefly presented. This includes elasticity, 
damage, microplane and elasto-plastic models. The main characteristics of these 

models along with their advantages and disadvantages are introduced. The main 
topics associated with the theory of elasto-plasticity are then presented. These 
include the additive decomposition of the strain vector, the yield condition, the 
flow rule, and the hardening law. The loading and unloading states, the Drucker's 

stability postulate and the isotropic hardening are then discussed. The develop- 

ment of the consistency parameter and the tangent elasto-plastic matrix are also 

presented. The numerical integration algorithm needed for the infinitesimal equa- 
tions along with a stable stress return algorithm, the closest point projection (CPP) 

needed to integrate the proposed elasto-plastic constitutive model at the material 
level is subsequently presented. The main features of the Sheffield model are also 
discussed with some observations and reservations. The formulation of the new 
model is also given. The isotropic hardening function which controls the evolution 
of the yield surfaces, and thereby the expanding elastic domain is then described. 
A new auxiliary stress surface has been formulated. The model first and second 
derivatives with respect to the stress (o) and the internal variable kp are presented 
in detail. 

In Chapter 4, calibration and simulation of the model at a material level using 
triaxial and multiaxial compression test data are presented. The chapter presents 
the full set of material constants which are divided into three groups; elastic, PNS 

and hardening constants. The calibration process for these material constants is 
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subsequently discussed. This process enables the user to identify near-optimum 

value for each constant. The sensitivity analysis of each material constant reveals 
its influence on the response of the model. This has been done at two levels, local 

and global. The local level addresses the influence of each constant on the part 

of the model which it controls, while the global level addresses the influence on 
the stress-strain response. The simulations of the model for two sets of experimen- 
tal data are presented; triaxial compression tests conducted at the University of 
Sheffield and a set of multiaxial compression tests carried out at Colorado Univer- 

sity. Finally, a comparative study using an error measure based on the Root Mean 

Square method is presented. 

Chapter 5 presents the investigations and simulations of concrete with different con- 

stituents. Three mixes were used for this purpose; the first was normal mix similar 
in mix design to that presented in Chapter 2, the second was made with no coarse 

aggregates and the third with double amount of coarse aggregates. The chapter be- 

gins with the examination of the uniaxial compression response of the three mixes. 
This includes stress-strain response, the volumetric strain, peak stress, peak strain, 
Young's modulus, Poisson's ratio and the plastic flow vectors. The same topics are 
discussed for the triaxial response with an additional study of the peak nominal 

stress envelope, the volume transition stress envelope and the yield surfaces. The 

simulations of the three mixes are then presented. 

In Chapter 6, the general formulation of the numerical derivatives is introduced 

along with Romberg's optimisation method. Ridder's algorithm is presented with 

a verification study to evaluate the algorithm performance and the calculations of 
the derivatives. In order to explore the performance of the model using numeri- 

cal derivatives, the Colorado multiaxial data set is re-visited. The calibration of 
the model is discussed and the simulations of a number of tests are presented. A 

comparative study of the time consumption for the numerical and analytical for- 

mulations is presented. 

Finally, Chapter 7 summarizes the major findings of the thesis and suggests possible 
topics to be explored in further research work. 
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Chapter 2 

The Deformation of Concrete 

under Compression 

2.1 Introduction 

The testing of concrete under multiaxial stresses provides vital information for the 
development and validation of a constitutive model. The first step in such mod- 
elling could be the adoption of the theory of elastoplasticity to simulate the ductile 
behaviour of confined concrete [for example Smith et at. 1989], although other 
approaches exist. 

Since the pioneering work of Balmer (1949), many researchers have captured the 

experimental multiaxial deformation of concrete [Kotsovos and Newman, 1978; van 
Mier, 1986; Wang et at, 1987; Smith et at., 1989; Bellotti and Rossi, 1991; Chern 

et at, 1992; Dahl, 1992; Imran and Pantazopoulou, 1996; Li and Ansari, 1999]. 

The present chapter reports on the experimental testing by others, to determine the 

mechanical properties of concrete subjected to triaxial loading. The experimental 
program was conducted at the Department of Civil and Structural Engineering at 
the University of Sheffield during 1998. The intention was to observe the behaviour 

of moderate strength concrete under triaxial compression with cyclic loading. As 

part of her taught MSc. degree, Papatheodorou carried out the tests under the 
supervision of Professor Crouch. The work was reported in a document to British 
Energy (UK) plc [Crouch et al; 2001]. The tests were carried out in a Hoek cell. 
This is a triaxial cell in which the axial forces are applied on the flat ends of a 
cylindrical specimen, and radial compressive forces are applied by pressurising the 
fluid in the reservoir of the cell. Figure 2.1 shows a cutaway view of this cell. The 
tests were performed by using stress control in the axial direction. As a result, 
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Figure 2.1: Cut-away view of the triaxial testing cell designed by Hoek and Franklin 

the softening post-peak response was not recorded. The data stored in the results 
files contain the readings of two strain gauges measuring the axial strains and two 

strain gauges measuring the lateral strains. The average values of the axial and 

lateral strains, the time, the load, the axial and lateral stresses were also recorded. 
The concrete cylinders were 60 nine in diameter and 120 mm in height. 

The raw output data needed to be prepared into common format, with a few nega- 
tive stress values removed from the beginning of some tests. The post peak readings 

were also ignored (see Chapter 1). The average readings from the two axial and 
lateral strain gauges were taken. If one gauge is broken before reaching peak, then 

the reading of the other gauge is taken as an average value. The signs of the com- 

pression stresses and strains are taken as negative, while the tensile stresses and 

strains are taken as positive. The test, has been performed at ambient temperature. 

In Section 2.2 the definition of stress, the stress invariants and the Haigh-Westergaard 

stress space, respectively are introduced. In Section 2.3 the structure of concrete 
is briefly described. In Section 2.4 the uniaxial behaviour of concrete is discussed. 
This includes the axial and lateral stress-strain response, elasticity parameters, the 
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total and plastic volumetric , the peak strength, the peak strain, plastic flow and 
the plastic work. In Section 2.5 the behaviour of concrete under triaxial loading is 

investigated with the same topics that have been discussed in Section 2.4 with an 

addition of the discussion of the peak nominal stress surface (PNS) and the volume 
transition stress (VTS) surface and a discussion on the validity of the associated 
flow assumption. 

2.2 Definition of Cauchy Stress 

The component of the stress tensor in the Cartesian coordinate system can be 
defined as follows: 

Qi "= lim { 
Fj 

(2.1) 
9 A.. O lAi 

where FF is the force in the coordinate direction j (j = 1,2,3) and A; is the area 
normal to the direction j on which the force F3 acts. 

There are, in total, nine stress components on the three faces of a cubic continuum 
under equilibrium (Figure 2.2 A). 

Qxx Qxy Qxz 

cii = ay., ayy ayz (2.2) 

Qzx ay Qzz 

Only six components are unique due to symmetry in the absence of body moments 
(that is Q., y=vyx, vyz=Qzb and azx=oxz). In engineering use, components of stress 
are often expressed in vector form as 

{v}T =fox or, o" r 'ryz 7 2] (2.3) 

where the component with identical subscripts are the direct (or normal) stresses 
and those with different subscripts are the shear stresses. This vector can be simpli- 
fied into three principal direct stresses as acting seen in Figure 2.2 B. The principal 
stresses are defined as normal stresses on planes of such orientation that the as- 
sociated shear stresses vanish. This condition of principal stresses can be stated 
without reference to any particular coordinate system (that is, they are coordinate 
invariant). 

The principal stresses al, a2, and a3 can be expressed in a three-dimensional space 
of principal stresses. If we take the tensile stress to be positive, the stress state 
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divides the stress space into eight different zones with differently signed values. 
Figure 2.3 shows the eight stress regions in principal stresses space. 

y 

4 ol V., : ou= oiý 

Q2 

z 
(A) Component of stress tensor (B) Principal stresses 

Q1 

Figure 2.2: Element of stress tensor and three principal stresses 

The principal stresses are not the only invariants 
. 

Alternative invariants can be 

defined in a number of ways [Desai and Siriwardane]; one way is to use the Cayley- 

Hamilton theorem which states that every square matrix over the real or complex 
field, satisfies its own characteristic equation. This implies the following: 

If [A] is the given square nxn matrix and [I] is the nxn identity matrix, then the 

characteristic polynomial of [A] is defined as: 

F(A) = det (A [I] - [A]) (2.4) 

where det is the determinant function. The Cayley-Hamilton theorem states that 

the characteristic polynomial results in a zero matrix for any matrix [A] 

F(A) =0 (2.5) 

If the stress tensor a is considered, the characteristic equation can be written as 

A3 -I1. \2+I2A-I3=0 (2.6) 

where 

II = Qii = Qxx + Qyy + Uxx = tr(a) (2.7) 

I2 = 
orxx ax/ 

+ 
UYY ayz 

+ 
Qxx Qzx 1 

tr(Q)2 (2.8) 
orxy a71 uyz azz Qzx Qzz 2 
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Figure 2.3: Eight, stress regions in principal stresses space 

I,; = lQ1ji =3 tr(Q)3 (2.9) 

These three quantities, Il, I21 I3, are invariants of the stress tensor. According to 

the Cayley-Hamilton theorem equation 2.6 will be satisfied when orij is substituted 
for X. 

In terms of the principal stresses, the three invariants can be written as 

11 = O1 +Q2 +Q3 

I2 = Q102 + Q263 + 0'30'1 (2.10) 

13 = Q1o2Q3 

The symmetric stress tensor a can be decomposed into two symmetric tensors; 
hydrostatic tensor and deviatoric tensor. The decomposition is given by 

Qij = sij +3 Qnn bij (2.11) 

where sib is the deviatoric stress tensor, 5 is the Kronecker delta and repeated 
suffix implies summation. 

Equation (2.11) can be written in matrix notation as 
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[a] = [s] + [p] (2.12) 

The tensor 3 O'nn Jtj or the matrix [p] refers to the hydrostatic stress. In the matrix 
[p], each component of the diagonal denotes mean pressure p= (a +a, + or,,.. ) /3. 

Another useful tensor is the deviatoric stress tensor. The deviatoric stress tensor 
is a second-order symmetric tensor. It is important to note that the trace of this 
tensor is zero; that is 

Sii = Sxx + syy + szz =0 (2.13) 

Hence the deviatoric stress has only two nonzero invariants J2 and J3. 

112_1 
sxx sxy szx sxx sxy Szx 

J2 =2 sij s; j =2 tr( s)=2 tr sxy SO Syz sxU syy syz 

Szx Syz Szz Szx Sgz szz 

(2.14) 

expanding (2.14) 

J2 =2L Sxx + sxy + Szx + Sxy + S2 + Sgx + Szx + 2y, + Szz (2.15) 

Substitute (2.12) into (2.15) and from the definition we have sxx = oxx - p, sib = 
avy - p, Szz = Qzx - p, sXv = Qxy, syx = vvz, szx = vx,, the forgoing expression 
is simplified to 

J2 1-- 6[l Qxx - Qyy)2 + (a - Qzz)2 + (axx ' Qzz)2 I+ a2 22 + or., + Qzx (2.16 

In terms of the principal stresses 

J2 -1 [(Ol 
- 02 )2 + (Q2 

- a3)2 + (Ql 
- U3)21 (2.17) 

The third invariant of the deviatoric tensor (J3) can be expressed as 

J3 =3 Sid Sim Si=3 tr(s)3 

Sxx S¢Y szx Sxx sxy Szx Sxx Sxy Szx (2.18) 
=3 t1' Sx1 Syy SYz S2Y SYY SYz S2Y SYY SYz 

Szx Syz Szz Szx syz Szz Szx Syz Szz 
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expanding 2.18 

J3 = 
g((sxx + Sxy + Szx)sxx + 2(sxxsxy + sxysyy + Szxsyz)Sxy+ 

2(sxxszx + Sxysyz + SzxSzz)szx + (sxv +s+ Syz)s + 

2(sxyszx + syysyz + Syzszz)SUz + ýSzx + Syz + Szz)szz) (2.19) 

3 
xx 

+ Syy } Szz) 

In terms of the principal stresses 

J3 =1 27 
(2 ai - U2 - Q3) (2 Q2 - al - U3 2 U3 - Ol - a2ý (2.20) 

For isotropic materials, the values of three principal stresses are sufficient to de- 

scribe the state of stress uniquely as do the values of the three stress invariants, Il, 
J2, J3. 

This study will be restricted to isotropic behaviour, therefore the Haigh-Westergaard 

representation of the yield function is employed [Hill]. The use of these coordinates 
leads to an attractive geometric interpretation [Chen and Saleeb 1994a]. Figure 
2.4 shows the Haigh-Westergaard stress space. In the Haigh-Westergaard represen- 
tation, the hydrostatic and deviatoric stress components are defined by the stress 
invariants as follows 

(2.21) 

= 
fc 

(2.22) 

p=2 J2 (2.23) 

p=f (2.24) 

where f. is the uniaxial compression strength of concrete. 
The position of the stress point in the deviatoric plane is identified by the Lode 

angle. It is the angle measured from the projection the major principal stress (a, ) 

on the deviatoric plane to p and can be defined as 

cos (3 B) =32 
J3 3 (2.25) 
a 
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Figure 2.4: Normalised Haigh-Westergaard stress space 

2.3 The Structure of Concrete 

Plain concrete is a heterogeneous mixture of coarse aggregate, sand and hydrated 

cement paste (Figure 2.5). For normal-weight concrete mixes, coarse aggregate 

is usually gravel or crushed rock that is larger than 4.75 mm in diameter whereas 

sand is aggregate compromising particles with diameters between 4.75 mm and 0.75 

mm. Hydrated cement paste (HCP) refers to the hydration products of Portland 

cement and water. The transition zone refers to the HCP located in the immediate 

vicinity of the coarse aggregate particles. Because the transition zone typically 

has a slightly higher water to cement ratio than is observed in the bulk HCP and 
because of the physical boundary between the different materials, the transition 

zone is generally weaker than the bulk HCP. 

Schematically, concrete can be seen as either aggregates embedded in the cement 

matrix or a stack of aggregates of many different sizes. This means that concrete is 
highly heterogeneous. Despite its heterogeneous nature, concrete is often assumed 
to be isotropic. 

In computational material science, concrete is characterised as a multi-phase mate- 
rial with several different representative scales. At the macroscopic scale, concrete 
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7-1 

Figure 2.5: The concrete composite [Alehta and Monteiro] 

could be regarded as a homogeneous material while at mesoscopic scale it is treated 

as consisting of coarse aggregates and mortar matrix. Further subdivisions of the 

mortar matrix produce fine aggregates and hardened cement paste with pores em- 
bedded within [Wriggers and Moftah]. 

One of the most important factors which affects the behaviour of concrete at any 
load state is the existence of large numbers of microcracks in the transition zone 
between the cement paste matrix and the aggregate. The microcracks are exist 
even before any load has been applied. In the following text, consideration of the 

causes of these microcracks is given. 

It is generally accepted that the cause of fracture and failure of concrete is the 

propagation of flaws or niicrocracks which exist within the body of the material. 
Kotsovos (1979) has attributed these pre-existing flaws to a number of causes, the 

main ones being 

1. Discontinuities in the cement paste matrix due to its complex morphology. 
Such flaws range in size from a number of angstrom units at the gel lattice 
level, to several microns, or above, for isolated or continuous capillary pores 

2. Voids caused by shrinkage or thermal movements due to incompatibility be- 
tween the properties of the various phases present in concrete 

3. Discontinuities at the boundary between the aggregate particles and the paste 
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or mortar matrix caused by segregation 

4. Voids present in concrete as a result of incomplete compaction 

The above pre-existing flaws can be considered as randomly distributed and orien- 
tated within the material and to exhibit a range of shapes and sizes. The presence 

of these microcracks has a great effect on the mechanical behaviour of concrete, 

since their propagation during loading leads to the nonlinear behaviour at low 

stress levels and causes volume expansion near failure. Since the aggregate-mortar 
interface has a significantly lower tensile strength than mortar, it constitutes the 

weakest link in the composite system. This is the primary reason for the low tensile 

strength of concrete [Grassi]. 

Under moderate loading, the response of the concrete mixture is controlled by 

microcracking in the transition zone between the aggregate and the HCP. Under 

increased loading, microcracks in the transition zone grow and merge and therefore 

microcracks initiate in the HCP. Eventually, a continuous crack system forms which 
traverses the transition zone and the HCP, resulting in the loss of load capacity. 
Under compression loading, the continuous crack system may include cracks that 

transverse the coarse aggregate. Under tensile loading, the increased load acts 
directly to increase the stress at the crack tip and thus drive crack propagation. As 

a result, for tensile loading, the sequence of cracking leading up to the development 

of a continuous crack system and loss of strength occurs very rapidly. Increased 

compressive loading indirectly increases the stress at the crack tip, driving crack 

propagation at a slower rate. For compressive loading, the stages of crack initiation 

and propagation are readily identified in the observed stress-strain response of the 

concrete and loss of load capacity occurs more slowly. 

2.4 The Behaviour of Concrete under Uniaxial 

Cyclic Compression Loading 
The response of concrete subjected to uniaxial compression provides useful data 
for use in characterising the response of concrete to general loading. The mechan- 
ical behaviour is presented here in the form of stress-strain response, so that the 
material description becomes less dependent on the dimensions of the specimen 
tested. 
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2.4.1 Axial and Lateral Stress-strain Behaviour 

The stress or strain state applied to a composite material such as concrete, gen- 

erates a strain field within the material which is dependent on the distribution of 
the component phases (i. e. the aggregate particles and the cement paste matrix), 

and the size, shape and distribution of flaws. Local strain concentrations there- 
fore develop throughout the material due to the incompatible deformation of the 

constituent phases. Such strain concentrations are further intensified due to the 

presence of flaws, particularly those with high aspect ratios. These flaws are con- 
sidered to be the potential sources of any load-induced cracking. 

Over the last thirty years a picture of the progressive fracture in concrete has 

emerged. The following notes collect together the descriptions from many tests. 
Newman (1973), in particular, has introduced the notions of stable and unstable 
crack growth in concrete. 

Figure 2.6 shows a plot of the stress-strain response of a concrete sample subjected 
to uniaxial cyclic loading undertaken at Sheffield University. The sign of the ax- 
ial compression and the lateral strain are taken as positive while the axial strain 
remained negative. This has been done for the sake of illustration but the signs 
used for all calculations throughout this thesis are taken as positive for tension and 
negative for compression. 

From the shape of the stress-strain curves it seems that in the first part of the 
loading process, the curve shows an almost linear response up to about 30 percent 
of the peak stress (fe). This is because at this level of loading the transition zone 
remains relatively undamaged and the pre-existing cracks do not propagate signif- 
icantly. 

At the end of this stage, the stress-strain curve exhibits its first visible nonlinear 
response. However, the crack process is stable and the debonding cracks are not 
interacting with each other. The nonlinearity then increases gradually with the 
tangent slope becomes increasingly flat until it becomes parallel to the strain axis 
at the peak stress. The increase of nonlinearity with increased loading is attributed 
to the irregularities and the different mechanical stiffness of the components that 
may lead to stress concentrations and, thereby, to further crack growth. 

To clarify this, the stiffness of the aggregates is significantly greater than the stiff- 
ness of the surrounding matrix (for normal strength concrete). Hence, in com- 
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Figure 2.6: Axial, lateral and volumetric stress-strain for uniaxial compression test 
from Sheffield University, sample 5_3a 

pression the lateral deformations of the softer matrix are greater than those of the 

aggregates, so the bond between aggregate and matrix is broken. Furthermore, due 

to the difference in lateral deformations, shear stresses are activated at the top and 

the bottom of the aggregate, leading to triaxial compression regions. When the 

external load increases, these cracks propagate into the matrix. This crack process 
is initially stable and the inclined cracks resist increasing load, while the cracks in 

the load direction open. The response in this stage is strongly non-linear. Due to 

crack opening, the lateral strains increase faster than the axial strains. 

2.4.2 Volumetric Strain 

The Voliniietric strain (&11) is the ratio of the change in volume that occurs when 
a body placed under pressure to the original volume of the body. This is equal to 
the first invariant of the strain, I,, or in other words, the trace of the strain tensor 

Ev = IiE _ Ej + E2 + E3 (2.26) 

where el, E2 and e3 are the principal strains. In cylindrical specimens, the principal 
strains, E11 E2 and E are equal to El, Er and E, therefore 

-3000 -2000 -1000 ``'` 0 1000 2000 
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Ev = ei + E, + e, (2.27) 

where Ej, er and e, are the longitudinal, radial and circumferential strains. 

But er and e have the same value 

Or_2thr_ 

r 27rr - C` (2.28) 

where r is the radius of the specimen. Thus for this cases e� may be written as 

e� _ ei + 2e, (2.29) 

e� is considered as being positive when the material is dilating. 

Figure 2.6 shows volumetric strain versus axial stress for a uniaxial test from 
Sheffield University. The concrete is in a state of compaction throughout the pre- 
peak range but close to the peak, the sample recovers its original volume. The 

volumetric strain exhibits an almost linear response for about 40% of the peak 
stress. Arrival at this stage has been termed by some researchers [Newman] onset 
of stable fracture propagation (OSFP), and has been linked with the stress level 

at which the volumetric strain becomes nonlinear. It should be noted that the 
detection of this point has been based on approximation, because the linearity of 

concrete itself is an issue of discussion. 

The compaction continues with an increasing rate in nonlinearity. At about 90% 

of the peak, the size of the sample reaches its minimum. The cracks grow again 
at the transition zone and also in the cement paste matrix. When the two groups 
of cracks assemble, the system becomes unstable. The stress at this level is called 
by some researchers the critical stress [Chen and Saleeb, 1994b], while some call 
it the onset of unstable fracture propagation (OUFP) [Newman], and in this study 
it will be called volume transition stress (VTS). This is because the previous two 
names associated the behaviour of concrete with fractures which might bring some 
reservations when concrete is treated as continuum media. At this level of stress, 
concrete shows a time dependance fracture; that is, under sustain stress conditions 
cracks bridging between the transition zone and the matrix would lead to failure 

at a stress level lower than the peak strength f, [Price]. 

The dilation response then starts, where the rate of dilation is significantly greater 
than the earlier contraction. The lateral displacements increase to such an extent 
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that the volume of the specimen starts to increase again. 

Concrete loaded to more than the VTS responds with an increased compressive 

strain under constant loading. This results from spontaneous crack growth in the 

transition zone and HCP as well as from the consolidation of microcracks into 

continuous crack systems. Finally, loading to compressive strains beyond that cor- 

responding to the compressive strength, results in reduced compressive stress. This 

response is a result of the development of multiple continuous crack systems and 
thereby the softening occurs. 

For model development, the pre-peak behaviour may be simplified into three levels 

of response 

1. Elastic: Concrete initially responds as an elastic material. 

2. Nonlinear with volume contraction: Under increased loading, the response 
becomes none linear with volumetrical contraction. 

3. Nonlinear with volume dilation: Further increase in compressive stress in- 

creases the nonlinearity with volumetric dilation and the sample retains its 

original volume close to the peak stress. 

2.4.3 Poisson's ratio, v 

When concrete is loaded in uniaxial compression, it will shorten and at the same 
time develop a lateral strain. The ratio of lateral to axial strain is called Poisson's 

ratio. A common value measured for concrete is 0.20 to 0.21, but that value may 
vary from 0.15 to 0.25 depending upon the aggregate, moisture content, concrete 
age, and compressive strength [Neville]. 

In the case of uniaxial compression, Poisson's ratio is given by 

-De2 
v= 0ý1 (2.30) 

For the more general case (considered subsequently) we make use of the incremental 
3D isotropic form of Hook's law 

Aei = 
Dot - v(D0r2 + ACS) 

2.31 E() 

&72-V(AUl+&73) 
ýýs -E (2.32) 
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De3 _ 
OQ3 - v(OQ2 + Oat) 

(2.33) 
E 

Where v is Poisson's ratio, E is the modulus of elasticity, L 71, A62, Aor3, are the 

corresponding changes in the principal stresses and Del, 0E2, AE3, are the changes 

in principal strains. In Sheffield's triaxial data (as has been mentioned) Q2 = 63. 

Solving Poisson's ratio, we obtain 

_ 
(OQ20e1) - (A(T1AE2) 

(2.34) v (OE' a') + (OQ2AEi) - (20a20&2) 

La1,0a2,0E1 and 0c2 are taken from the loading and unloading points on the 

stress-strain curve as shown in Figure 2.7. The values of Poisson's ratio for two 

loading cycles in three tests of uniaxial compression are shown in Table 2.1. The 

values for the first cycle is slightly higher than the second cycle by approximately 
5 %. The average value of the ratio for all cycles is found to be 0.21, which is a 

common value normally assumed for concrete analysis. 

co 
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Figure 2.7: Axial tress versus axial and lateral strains with cyclic loading, Sheffield 
tests, sample 5.3a_R_() 
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Sample First cycle Second cycle 
5-la 0.22 0.21 
5_3a 0.22 0.21 
5_8c 0.21 0.2 

Table 2.1: The values of Poisson's ratio from three uniaxial compression tests 

2.4.4 Young's Modulus 

The common way to define the Youngs modulus, EE, is to assume it to be equal 
to the tangent ratio of the initial, approximately linear, part of the uniaxial stress- 
strain curve and is determined by the ratio of the average stress and the average 
strain in this region. However, the stress-strain curve is rarely perfectly linear, even 
at the initial part of the curve. In fact, sometimes concavity occurs at the initial 

part due to the closure of the pre-existing cracks. Therefore, there are different 

methods for computing the modulus; tangent, secant and chord moduli. In this 

study, the unloading chord modulus is used, which is the modulus calculated from 

the unloading reloading points on the stress strain curves as shown in Figure 2.7. 
The modulus is estimated as follows 

E- 
Aal -2v O0r2 

(2.35) 
Del 

The values of Young's modulus for two loading cycles in three example specimens 

are shown in Table 2.2. 

Sample 1 1 First cycle 
GPa 

Second cycle 
GPa 

5-1a 48.4 45.7 
5_3a 47.1 44.4 
5_8c 48.7 43.4 

Table 2.2: The values of Young's modulus for three uniaxial tests from Sheffield 
test calculated for two loading cycles 

The average value of the modulus for all of the loading cycles is found to be 46.3 
CPa. 

It is clear that the values of the modulus in the second loading cycle decreases 
by about 8 %. This degradation of stiffness is attributed to the damage that has 
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been encountered during the cyclic loading. The first value is thought to be more 

appropriate, since it represents the value before the damage has occurred. 

It is of interest to compare the values found here with some empirical formulas 

that have been suggested in the literatures. The value of Young's modulus that 
has been recommended by ACI 318-95 (revised 1992) for structural calculations, 

applicable to normal weight concrete, is 

E, = 4.73 (fc)° 5 (2.36) 

where fe is the uniaxial peak stress in MPa. 

Using (2.36) with f, = 58MPa, the value of EE is found to be 36 GPa, which is 

about 22 % lower than the experimental value. 

For concrete with strengths up to 83 MPa, ACI 363 R -92 quotes 

EE = 3.32 (f)°5 + 6.9 (2.37) 

The value calculated form this expression is found to be 32.2 GPa, which is about 30 
% lower than the experimental value. These expressions are proposed for practical 

uses and the safety precautions taken may explain the conservative values for these 

expressions. 

2.4.5 Volumetric Plastic Strain 

Plastic strain is defined as the deformation that is not recovered upon unloading 
to zero stress. The total strain increment can be considered to be decomposed into 

elastic and plastic components, denoted by L ee; j and Dep; j, respectively, 

DEij = AEe{j + 0&'p{j (2.38 

After calculating the linear elastic isotropic constants (E, v), from (2.34) and 2.35), 
the elastic strain from (2.31), (2.32), and (2.33), the principal plastic strain from 
(2.38), then the volumetric plastic strain can be calculated as follow 

Div = AE', +2 AEPI (2.39 

for the cylindrical specimens. 

Figure 2.8 shows the volumetric plastic strain (e. ) versus the uniaxial stress for a 
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Figure 2.8: Axial stress versus total and plastic volumetric strain, uniaxial test, 
sample 5_3a, Sheffield University 

uniaxial compression test frone Sheffield University. Despite the appearance of very 
little volumetric plastic strain, considerable plastic deformation has occurred in the 

pre-peak region; yet the axial and lateral plastic strain oppose each other result in 

very little plastic volume change. It may be noted that no significant volumetric 

plastic strain is recorded for about, 40% of the peak loading. This is a confirmation 

of the elastic response of the volumetric strain. &P is then increased at small but 

continuous rate up to about, 0.9 fe where the plastic VTS is reached. The stress 
level at this level has a significant importance. At this point the direction of the 

plastic strain vector is purely deviatoric. If an associated flow is assumed, this 

point, could be used to identify the yield surface. 

2.4.6 Peak Stress, f, 

The uniaxial compressive strength is defined as the average axial stress carried by 
the specimen at, peak load, Finax: 

fc _ amax - 
Fmax 

(2.40) 
C 

where A, is the area on which the load is applied. 
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The uniaxial compression strength is used to normalise the multiaxial stress to 

obtain a non-dimensional representation of the data. An important factor which 
needs to be considered when evaluating the uniaxial strength of concrete is the 
loading rate. It is generally reported that the more rapid the rate of loading, the 
higher the observed strength value. An excellent review of the literature has been 

prepared by Fu et at. (1991). Their general conclusions are as follows: 

1. Both compressive strength and stiffness increase with increasing strain rates. 

2. Higher strain rates appear to have a more profound effect on low to moderate 
strength concrete than on high-strength concrete. 

3. Wet concrete is relatively more sensitive to a change in loading rate than dry 

concrete. 

4. The failure of concrete at very high strain rates can be explosive. 

5. The slope of the descending branch in the stress-strain diagram increases with 
increasing rate of straining [Zia et al. ]. 

However, Jones and Richart (1936) found that within the range of customary test- 
ing, the effect of rate of loading on strength is not that large. For example, com- 
pared with the data from the standard compression test (ASTM C 469), which 
requires the rate of uniaxial compression loading to be 0.25 ± 0.034 MPa/sec, a 
loading rate of 0.007 MPa/sec reduced the indicated strength of 150 x 300 mm 
concrete cylinders by about 12%. On the other hand, a loading rate of 7 MPa/sec 
increased the indicated strength by a similar amount [Mehta and Monteiro]. Fig- 

ure 2.9 shows the effect of loading rate on the stress-strain behaviour of a uniaxial 
compression test. 

The specimen size also needs attention in order to evaluate the present experimen- 
tal results. Many studies [Tanigawa et at., 1990; Baalbaki et at., 1992; French and 
Mokhtarzadeh, 1993; Aitcin et at., 1994] have been conducted to investigate the 
specimen size effect on the compressive strength. Comparisons were usually made 
between the compressive strength of 100 x 200 mm cylinders and that of 150 x 300 
mm cylinders. Generally, 100 x 200 mm cylinders exhibit higher strengths than 
150 x 300 mm cylinders. The difference may vary from 2 to 10 % with a common 
value being 5 %, and the difference is lower for higher strength concrete. Burg 
and Ost (1992) reported, however, that their test data showed that the strength of 
100 x 200 mm cylinders was within 1% of the strength of 150 x 300 mm cylinders. A 
contradiction to this trend is the study reported by Carrasquillo and Carrasquillo 
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Figure 2.9: Effect of loading rate on the stress-strain behaviour in uniaxial com- 
pression [Fumagallij 

(1988a) which showed that the compressive strength of 100 x 200 mm cylinders 

were approximately 7% lower than 150 x 300 mm cylinders. 

The preparation of the end conditions (capping) of the concrete cylinder can sig- 

nificantly affect the measured compressive strength. Many studies [Pistilli and 
Willems, 1993; Boulay et al., 1992; Lessard et al., 1993; Johnson and Mirza, 1993] 

have been conducted to investigate the end condition effect. The standard sulphur 

mortar capping is found to be suitable for concrete strength up to about 52 MPa. 

For higher strength concrete, different procedures are used to prepare the end con- 
ditions of cylinders for compressive testing. One procedure is the parallel grinding 

of the ends of the cylinder, thereby eliminating the need for end caps. While grind- 
ing is regarded as the best procedure, it entails expensive equipment and longer 

preparation time so that it is not practical for many laboratory applications. An- 

other procedure is the use of an un-bonded cap which is far more cost-effective and 
can be easily equipped by any laboratory and used in the field [Zia et al ]. 

Ipatti (1993) compared untreated mold surface, sulphur capping, and ground sur- 
face for cube specimens, and sawn surface, sulfur capping, and ground surface for 

cylindrical specimens. The test results indicated that for the cylindrical specimens, 
the highest average strengths were obtained with ground or sulphur capped sur- 
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Figure 2.10: Uniaxial compression strength variation: (a) with antifriction ma- 
terials between loading platens and specimen, (b) without anti-friction materials 
[Fumagalli]. 

faces. The coefficient of variation averaged 1% for ground surfaces, 1.5 % for 

sulphur capped surfaces and 7.9 % for sawn surfaces. Figure 2.10 shows uniaxial 
compression strength variation with antifriction materials between loading platens 
and specimen, and without anti-friction materials. 

Sample Peak stress 
MPa 

Peak axial strain 
µe 

Peak lateral strain 
µe 

5_1a 58.16 -1766.85 751.23 
5_3a 58.01 -2085.77 1106.64 
5_8c 53.93 -1679.08 904.21 

150 

C 
O 

100 
L 
D1 

50 

Table 2.3: The values of peak stresses and strains for three uniaxial compression 
tests 
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Figure 2.11: Uniaxial compression stress-strain variations for three tests 

2.4.7 Strain at Peak Stress 

The axial strain capacity, (i. e. the strain at, maximum stress), similarly to the 

strength response, depends on various factors. Table 2.3 and Figure 2.11 show the 

stress-strain results for three different uniaxial tests from the Sheffield data. The 

average value of the first two samples is found to be -1926.31 jww and the lateral 

is 928.94 µe. Even with nominally identical concrete mix and test arrangement, 

variations in peak strains have been recorded. The axial variation of the first two 

samples is around 20% and the variation in the lateral strain even higher. This 

is due to the rapid formation of multiple cracks especially in the lateral direction 

which makes the accurate recording of lateral strain at peak challenging. The het- 

erogenous nature of concrete, the end preparation of the sample and the loading 

rate all play roles in these variations. 

2.4.8 Plastic Work, W7' 

Plastic work identifies the irrecoverable part, of energy expended during a loading 

cycle, which may be obtained from the area enclosed in the loading cycle multiplied 
by the specimen volume. The incremental plastic work per unit volume is given by 

W'' = 
f{a}T{d} (2.41) 

For some constitutive models, cast, within the framework of plasticity, the yield 
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Figure 2.12: Plastic work versus for uniaxial test, Sheffield tests 

surface is defined as a contour of constant plastic work. The correlation between 

plastic work and yield surfaces is based on the experimentally observed behaviour 

of frictional materials [Sinan and Lade]. Some researchers [Lade and Kim] see ad- 

vantages in using plastic work as a hardening parameter instead of plastic strain as 

the former avoids difficulties in determination of yield points on stress-strain curves. 
Computation of plastic work is relatively straight forward. The plastic work con- 

tours capture yielding in terms of shear strains as well as volumetric strains. 

Figure 2.12 shows the plastic work for a uniaxial test from Sheffield University. 

The general shape of the response follows an exponential function. The response 
is concave, with loading to approximately 30% f,, showing no significant plastic 

work. Close to the peak, significant plastic work has been recorded. During the 
loading-unloading cycles, the plastic work does not appear to change. Plastic work 
represents the consumption of energy which can not be recovered. The concept of 
plastic work might prove to be an interesting way of defining the shape of the yield 
surfaces. Further discussion on this concept will be presented in Subsection 2.5.9 

2.4.9 Plastic Flow 

The plastic strain directions or the plastic flow is a kinematic assumption of the 

plastic deformation. It defines the direction and thus could be treated as a vector 

-0.6 -0.5 -0.4 -0.3 - -0.2 -0.1 0 



Chapter 2 The Deformation of Concrete under Compression 37 

in the six dimensional strain space or three dimensional space in principal coor- 
dinates. The component which is parallel to the hydrostatic axis, represents the 

volumetric strain rate. The component parallel to the deviatoric axis represents the 
deviatoric strain rate. The identification of the plastic flow gives direct indication 

of the yield surface when associated flow rule is assumed. 

In order to plot the plastic flow in Haigh-Westergaard stress space, the author has 

created a Fortran program to determine the change in the plastic strain directions 
by reading existing experimental data from compression tests of concrete. The pro- 
gram was used to read in 81 test files, each with more than 1000 lines of 8-columns 
data of stress-strain data. The program automatically detects loading and unload- 
ing such that the Young's modulus and Poisson's ratio may be determined. Given 
this (averaged) information, the program calculates the plastic strain increments, 

which can be used to plot the normalised plastic strain vectors superimposed on a 
stress path diagram. 

The algorithm for the calculation of the plastic flow operates as follows 

1. It identifies the loading-unloading turning points on the stress-strain curves. 

2. It calculates the Poisson's ratio (v) for every cycle using (2.34). 

3. It selects the appropriate v value, the value of the first cycle, the last, or the 

average value (depending on the user control). 

4. It calculates the Young's modulus for each cycle using (2.35). 

5. It selects the appropriate value for the Young's modulus. 

6. It calculates the axial elastic strain from (2.31), and the lateral elastic strain 
from (2.32). 

7. It calculates the axial plastic strain, eä 

EQ = ea -ä (2.42) 

and the lateral plastic strain, eP 

ep = ei - ei (2.43) 

8. The hydrostatic strain invariant increment, ASE, is calculated from 
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Aýp = (0&'ä + (2 AEP))/ý (2.44 

9. The deviatoric strain invariant increment, Opp, is defined from 

A=3 JOEä - AEp1 (2.45) 

10. It calculates the norm of the plastic strain invariant increment 

IAEPI 
= (O p)2 + (Opp)2 (2.46) 

11. The program normalises ýp and pP with respect to this norm 

12. From (2.22) the code calculates the normalised hydrostatic stress invariant 

and frone (2.24) it calculates the normalised deviatoric stress invariant p 

13. Finally, the code superimpose the strain invariants on the stress path. 

P 

Figure 2.13: Plastic strain directions, stress path, and volumetric transition stress 
point for uniaxial compression test, Sample 5_3a, Sheffield tests 
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Figure 2.13 shows the plastic strain direction for one uniaxial test from Sheffield 

University. The magnitude of the plastic strain is seem to increase with contin- 

uation of loading. During the initial part of loading, the plastic strain directions 
(of very small magnitude) seem to have an almost random directions. This is due 

to the cyclic loading where some plastic strains appear, although, theoretically for 

an un-coupled elasto-plastic material, the unloading should be purely elastic. The 

plastic strain directions are predominantly in the negative hydrostatic direction 
during the initial loading. This indicates plastic compaction in the specimen. The 
direction then becomes increasingly rotated towards the deviatoric direction, be- 

coming purely deviatoric at the plastic volumetric transition stress point. Beyond 

this point, the direction of the plastic strain becomes increasingly volumetric but 
in the positive direction which indicates that the specimen is undergoing plastic 
dilation in this phase of the test. 

2.4.9.1 Effect of E on the Plastic Flow 

Figure 2.14 shows the sensitivity of the plastic strain directions following increase 

of Young's modulus by 20%. Increasing the modulus increases the elastic strains 
which delays the occurrence of the plastic strains. This effect decreases as the peak 
is approached. The later is due to the plastic strains becoming the dominant part 
of the strain response. 

2.4.9.2 Effect of v on the Plastic Flow 

Figure 2.15 shows the effect of increasing Poisson's ratio by 20%. Increasing this 

ratio has a similar effect to increasing Young's modulus but with less intensity. 
Both elastic constants have a strong effect in the early stage of loading. 

2.5 The Behaviour of Concrete under Triaxial 
Compression 

When investigating the behaviour of concrete under triaxial compression, one can 
not neglect the Cooperative Research on Properties of Concrete, promoted by Ger- 
stle in the 1970s, during which a wide comparative research programme was per- 
formed [Fumagalli]. In this programme several laboratories, the most active and 
qualified in the field, performed comparative tests using the same concrete from a 
central source, prepared at the University of Colorado in Boulder. The laborato- 
ries used advanced but quite different testing methodologies. The large variation 
in experimental results suggests that basic research is not yet able to explore in an 
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Figure 2.14: The sensitivity of plastic flow to Young's modulus, sample 5_3a.., 

Sheffield tests 
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Figure 2.15: The sensitivity of plastic flow to Poisson's ratio, sample 5_3a, Sheffield 
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Figure 2.16: Axial stress versus axial and lateral strain for different level of con- 
finement, Sheffield tests 

exhaustive way the triaxial properties of concrete, nor to propose specifications in 

order to perform tests in a complete systematic way. 

Under triaxial compression stress states, the non-linear response depends very much 

on the load path followed. Also, it is well known that the stress-strain response in 

the pre-peak region depends significantly on the stress state applied. For instance, 

the differences between the stress-strain responses in uniaxial and axisymmetric 

triaxial compression for different, levels of confinement from Sheffield University 

are shown in Figure 2.16. It can be seen that, the axial stress-strain relation for 

the confined stress states shows a significant increase in strength and strain capac- 

ity in both axial and lateral directions. An explanation for it is that the lateral 

compressive stresses delay the bond cracks and, in a later stage, increase the shear 

stresses which can be transferred along a shear crack. 

A different approach from the use of cylindrical triaxial tests is to use cubic speci- 

mens in fully multiaxial studies. In these tests, independent application of the three 

load components is possible, allowing the complete determination of the peak stress 

envelope, at least for the compression zone which is of practical interest. This kind 

of apparatus has been constructed at the University of Sheffield. The new fa- 

cility subjects 100 mm cubic concrete specimens to true multiaxial compression 
(al 0'2 a3) up to 400 MPa at temperatures of up to 3000 C. Forces are de- 

livered through three independent loading frames equipped with servo-controlled 
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Figure 2.17: Stress lath for triaxial compression under 60 MPa confinement, 
Sheffield test, sample 52cß 

hydraulic; actuators creating uniform displacement boundary conditions via rigid 

platens. Specimen deformation is calculated from displacements measured to an 

accuracy of 10-6 in using a system of six laser interferometers [Petkovski et al. ]. 

The investigations on the concrete response in this chapter were carried out using 

the triaxial tests in Sheffield University where the major principal stress (al) was 

greater than the other two principal stresses (a2i 0'3), which are equal to each other 
(a1 > a2 = a3). For this stress condition the stresses Qi were applied in steps of 
10 MPa, and then held constant while (a2 = a3) increased until it became equal 
to 61. This operation was repeated for the higher confinement until it reached the 

specified level and held constant whereupon al was increased until the peak. Figure 

2.17 shows a stress path of one of Sheffield's triaxial test with 60 MPa confinement. 
Note that in this plot the compressive stresses are taken as positive and the scale 
of the two axis are not the same. To observe the behaviour of concrete in more 
complex loading histories, the specimens were tested under cyclic loading paths. 

Strain data obtained from some relatively high level confinement tests are incom- 

plete due to rupture of strain gauges before reaching the peak. Tests at 50 and 
70 MPa have only one result each where sufficient data was captured. Tests at 40 
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MPa confinement exhibited some irregularities as can be seen in Figure 2.16. 

2.5.1 Peak Axial Stress 

The strength of concrete under uniaxial compression differs significantly from the 

strength in triaxial compression. That strength may be expressed in the form of a 

vector normalised by the uniaxial compressive strength 

Q1 

Q; =1 v2 (2.47) 
T Q3 

where the three components are the stresses in the principal directions at maximum 
load; clearly in the case of uniaxial compression, the strength vector becomes 

1 

vi =0 (2.48) 

0 

The normalised strength vectors can be presented as points in principal stress space; 
a combination of all such points results in a strength surface. The stresses al, a2 
and a3 may be transformed from Cartesian co-ordinates into Haigh-Westergaard 

co-ordinates. The axis in the deviatoric plane for which the Lode angle 0= -26:, is 

referred to as the extension meridian. A stress state on this meridian is equivalent 
to a hydrostatic stress state with a tensile stress superimposed in one direction. 
Analogously, a stress state on the compressive meridian (0 = 6) is defined as a 
hydrostatic stress state with a compressive stress superimposed in one direction. 

The increase in confining pressure leads to an increase in the maximum axial load- 

carrying capacity as can be seen in Figure 2.16. The highest level of normalised 
confinement for Sheffield data was 1.17f. At low level of confinement (0.17 f f), the 
load carrying capacity increases to 2f. At medium level of confinement (0.5 f f), 
the load carrying capacity increases to reach 2.3f. For high level of confinement 
(1.17f), the load carrying capacity increases to reach 4.6 f f. 

The relationship between the level of confinement and maximum peak axial stress 
seems to be linear as shown in Figure 2.18. In the absence of more data between 

uniaxial and 10 MPa level of confinement, the response can be modeled with two 
linear equations. For the first zone between 0 to 10 MPa confinement 

a1 =A a(2=3) +fe (2.49) 
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Figure 2.18: Peak axial stresses for different levels of confinement, Sheffield tests 

where A is constant and its value is 5.8. 

The second zone from 10 to 70 MPa confinement can be modelled as follows 

di =B0 (2_3) +C fc (2.50) 

where B and C are constants and their values are 3.25 and 1.5 respectively. 

2.5.2 Strains at Peak Stress 

The axial and lateral strains at peak stress both increase significantly with increas- 

ing confinement, as can be seen in Figure 2.19. The average increase in axial strain 

for low level confinement is 2.6 e, laa and the average increase in the lateral strain 

is 2 E, 1xl, where eu,. n and are the axial and lateral uniaxial peak strain respec- 

tively. For medium level of confinement, the average increase in peak axial strain 

is 6.9 E, and the average increase for the peak lateral strain is 4.5 E�xj. For high 

level of confinement, the average increase in peak axial strain is 17.7 euxa and the 

average increase for the lateral strain is 17.7 eu�i. 

Figure 2.20 shows the equivalent plastic strain 
(E 

q= 
(EQ)2 +2 (E )2) at peak 

axial stresses for different levels of confinement, versus the normalised hydrostatic 

pressure (E). The peak equivalent plastic strain increases with the increase in the 

level of confinement. The response is nonlinear and follows an exponential form. 
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Figure 2.19: Lateral stress versus axial and lateral strains at Peak Stresses 

2.5.3 Volumetric Strain 

Figure 2.21 shows the volumetric strain for different levels of confinement. It, may 

be noted that for medium (0'2 = 30 MPa) and high (a2 = 60 MPa) levels of con- 

finement the initial change in the volume is almost linear up to 0.4 of the peak 

axial stress (äl). The stress at this level is referred to as the onset of stable fracture 

propagation (OSFP). The behaviour then becomes nonlinear up to about 0.9 Q1. 

At this point the volumetric strain changes from compaction to dilation. The stress 

at this transition level is referred to as volume transition stress (VTS). 

The volumetric plastic strain is also shown in Figure 2.21. Up to about 0.2&1, 

concrete shows no plastic strain. During unloading-reloading the volumetric plas- 
tic strain remains relatively constant, this shows that the response is essentially 

elastic. The behaviour then becomes increasingly nonlinear until the volumetric 

plastic strain reaches its minimum value near the stress level at the onset of total 

volumetric strain dilation (VTS). It can be seen that the total VTS and the plastic 
VTS are close to each other especially with high levels of confinement. This is 
because the plastic strain is dominant at this region. 
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Figure 2.20: Equivalent plastic strain at peak stresses for different levels of con- 
finement, Sheffield tests 

Figure 2.21: Axial stress versus volumetric plastic strain with different level of 
confinement 
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Figure 2.22: Poisson's ratio versus the hydrostatic stress 

2.5.4 Poisson's Ratio 

Figure 2.22 shows the values of Poisson's ratio for different, levels of confinement. 

The value of the ratio for the first cycle appears to be greater than the values 

recorded in the last cycles for most of the samples. This could be due to closure 

of the initial cracks during the first cycle. The average value of the ratio seems to 

increase during low level of confinement (0.17 f, < 0'2 < 0.35 f, ), but maintains a 

similar value for higher levels of confinement. 

The average value of Poisson's ratio of all the twenty seven specimens for all loading 

cycles is found to be 0.22. However, the values for individual tests may vary 

as mentioned earlier. Therefore the values captured during the first cycles are 

thought to be more representative for the elastic state, since the material has not yet 
developed cracks. These values are more consistent compared with the subsequent 

values, supporting the hypothesis that Poisson's ratio is a material parameter and 
therefore should be unaffected by the stress path. Only one test was performed at 
70 MPa confinement. The value of Poisson's ratio in that experiment was found 

to be 0.27. This value is inconsistent with other values and there is no other test 
data available to verify it and therefore ignored. 

2.5.5 Young's Modulus 

The Young's modulus from each cycle has been calculated. Figure 2.23 shows the 

values of the modulus for every cycle at different levels of confinement. The value 
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Figure 2.23: Young's modulus for different levels of confinement calculated at each 
loading cycle, Sheffield tests. 

of the modulus for the first cycles of loading appear to be greater than those in the 

last under low confinement, the degradation of stiffness is attributed to the damage 

that have been encountered during the cyclic loading. 

The values of the modulus for the first cycles seem to increase slightly with the 

increase of the level of confinement. This is thought to he a result of compaction 

of the specimen due to the closure of the microcracks and the collapse of voids in 

the material invoked by hydrostatic pressure. The average value of the modulus 
for all cycles is found to be 50.5 Gila. The average value of the modulus for the 

first cycles of loading is 51.1 Gila and the value for the last loading cycles is 50.0 

Gila. The average difference between the first, and last cycles is around 2 %. 

The values of Young's modulus calculated from the first loading cycles is thought to 
be more representative to the modulus of elasticity. This is because firstly, it rep- 
resent the material before the propagation of the fractures. Secondly, the modulus 
is thought to be a material parameter and should be independent from the stress 
path. Therefore, the modulus for the first cycle has been adopted in this study. 
The values of the modulus for the test under 70 MPa confinement for three cycles 
are found to be 80.2,66.2 and 53.3 GPa. These values are found to be inconsistent 

with other values and there is no other test to verify them. Therefore they are 
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ignored. 

The increase of Young's modulus with the increase in confinement for the first 

cycles can be modeled reasonably well with a linear equation as can be seen in 

Figure 2.23. The equation takes the form 

E= Eo + AE v2 (2.51) 

Where Eo is the value of Young's modulus for concrete with no confinement and 
AE is a constant. The value of this constant for the fitting shown in Figure 2.23 is 
0.06. Note that the modulus is in GPa while a2 is in MPa. 

2.5.6 PNS Surface 

The peak nominal stress (PNS) envelope is relatively well defined (it is easily de- 

tected) in concrete under biaxial, triaxial and even truly multiaxial stress states 
[Crouch]. In Figure 2.24, data is presented from Sheffield's results to illustrate the 
PNS in the compression meridian using the Haigh-Westergaard and p coordinates. 
These results show that the PNS envelope is open-ended along the hydrostatic axis 
in the compression region but intuitively, the hypothesis can be made that such a 
surface closes itself on the hydrostatic tensile region close to the origin. This is con- 
firming the well known fact of the weakness of concrete in tension and also the fact 

that the PNS envelope is pressure-sensitive. The results show sharp nonlinearity 
near the origin. This nonlinearity decreases and the envelope becomes almost linear 

with high hydrostatic stress. This contradicts the reports of other researchers [Lau- 

nay and Gachon] which suggest that the meridians of the PNS envelope are curved. 

The following are the characteristics of the PNS envelope that have been reported 
by others (for example Launay and Gachon, 1972): 

1. The strength is significantly smaller on the extension meridian than on the 
compressive meridian. 

2. The difference between the deviatoric lengths on the compressive and exten- 
sion meridians decreases with increasing pressure. 

3. The envelope is sensitive to the intermediate stress component. This means 
that strength in equibiaxial compression is greater than the strength in uni- 
axial compression. 

These findings are well documented but due to the limited data that have been 
used here, these findings can not be verified. 
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Figure 2.24: Peak nominal stress surface, Sheffield tests 

2.5.7 VTS Surface 

P 

A second stress surface that could be identified is that corresponding to the plastic 
VTS. Figure 2.25 shows the experimental values of this surface obtained from the 

Sheffield tests. From examining the experimental results it seems that this surface 
for concrete has a similar shape to that of the peak nominal stress surface but 

with a reduced size. The ratio of the stresses at this surface to that at the 

PIAS surface appears to be almost constant. For the Sheffield tests this value is 

found to be approximately 0.92. This surface is therefore identified by the following 

expression 

Pvts = Ovts Pc (2.52) 

where pvt, 9 is the normalised deviatoric stress invariant for VTS and p, is the nor- 
nialised deviatoric stress invariant for the PNS. 

2.5.8 Plastic Flow 

Figure 2.26 shows the plastic flow vectors for six Sheffield tests with different levels 

of confinement. The stress paths for the sample with 30 and 70 MPa confinements 
suffered control problems during the hydrostatic loading stages but returned to 
the intended paths subsequently. It seems that these path diversions have not af- 
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Figure 2.25: PNS and VTS surfaces 

fected the plastic flow results. The strain gauges for the test with 20 and 60 MPa 

confinement had ruptured before reaching the peak as can be seen in Figure 2.26 

(red triangles). Tests under 40 and 50 MPa confinement, encountered an early fail- 

ure of the strain gauges and thus the plastic strain vectors have not been presented. 

The general trends of the triaxial plastic strain directions are similar to those seen 

in uniaxial compression test. The initial parts of these tests show limited plastic 

strains. Then plastic strains increase and reach the maximum values at peak. Note 

that the results have been considered up to the peak stress and if the tests are to 

be continued after the peak, more plastic strains would have been recorded. 

The initial vectors are mostly in the hydrostatic negative direction which indicate 

that the samples undergo compaction. The deviatoric component increases as the 

axial loading increases and the direction becomes purely deviatoric at about 90 

% of the peak stresses where the total volume of the sample reaches its minimum 
(VTS). Then the directions rotates with an increasing rate towards the hydrostatic 

positive direction which is an indication that the sample undergoes plastic dilation. 

At peak, the directions of the plastic strain vectors appear normal to the PNS 

surface. This is most interesting, since it suggests that the plastic flow for concrete 
at PNS is associated. This observation will be used to support the argument for 
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Figure 2.26: Plastic strain directions, stress path, PNS and VTS for different levels 

of confinement, Sheffield tests. 

associated plasticity when modelling the behaviour of concrete under multiaxial 

compression is considered. There are now three stress states and the corresponding 

plastic strain directions are clearly identified: 

1. The plastic VTS and the directions of the plastic strain vectors which is 

purely deviatoric 

2. The plastic strain directions on the hydrostatic intersection point in the ten- 

sile region where the plastic strain is in the hydrostatic positive direction 

3. The intersection point on the hydrostatic axis in the compression region where 
the plastic strain is purely hydrostatic and the negative direction 

These three points along with the directions of the plastic vectors could be used to 

identify the shape of the yield surfaces. A schematic draw of the proposed surface 
is shown in Figure 2.27. An initial attempt has been made to identify the shape of 
the yield surfaces for the Sheffield tests is shown in Figure 2.28. 
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Figure 2.27: Schematic draw for the proposed shapes of the yield surfaces assuming 
associated flow rule 

P 

Figure 2.28: Proposed shapes of the yield surfaces assuming associated flow rule 
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Figure 2.29: Plastic work for different level of confinement, Sheffield tests 

2.5.9 Plastic Work, W1' 

Figure 2.29 shows a family of plastic work curves obtained from six triaxial com- 

pression tests on plain concrete from the Sheffield tests under confining pressures 

of 0,10,20,30,60 and 70 MPa. The test for the sample with 60 MPa confinements 

suffered control problems during the loading stages but returned to the intended 

paths subsequently. The general trends of the triaxial plastic work are similar to 

that seen in uniaxial compression test. The responses are nonlinear and follow an 

exponential form. 

Figure 2.30 shows the values of the plastic work at peak stress for different level of 

confinement. The values of WP at peak stress seem to increase significantly with 

the increase in the level of confinement. The general response is nonlinear and 
follows an exponential form. 

A family of contours can be drawn to connect the stress points with the same 
values of Wr. It is interesting to check the normality of the incremental plastic 
strain vectors on the plastic work contours. Lade [Lade and Kim] reported that for 
frictional materials, the directions of the incremental plastic strain vectors appear 
to coincide with the normal directions to the plastic work contours. However, he 

suggested that, the directions normal to the yield surfaces at failure correspond to 
more dilation of the material than measured in experiments. This conclusion makes 

_5 -4 - -3 -2 -1 0 



Chapter 2 The Deformation of Concrete under Compression 55 

fE 

z 
a) 

ö 

2 

fýv 

C- 

_5 -4 -3 -2 -1 0 

Figure 2.30: Peak plastic work for different level of confinement, Sheffield tests 

it necessary to employ a nonassociated flow rule. However, Figure 2.27 shows the 

plastic strain vectors appear to be normal to the 1'NS which is in disagreement 

with his findings. 

Figure 2.31 shows the plastic work contours for the Sheffield tests. These contour 

lines have been identified by using parabolic equations and the least square opti- 

misation technique. Figure 2.32 shows the proposed yield surfaces based on the 

plastic work contours. Figure 2.33 shows the suggested yield surface superimposed 

on the plastic strain vectors. It, appears that the plastic strain vectors are normal to 

the plastic work contours. Therefore the assumption of associated flow for concrete 

is valid. 

2.6 Concluding Remarks 

1. The 1'NS envelope is open-ended along the hydrostatic axis in the compres- 

sion region. With no or low confinement the surface is nonlinear but the 

shape becomes increasingly linear with high confinement. 

2. At peak, the directions of the plastic strain increments appear to be normal 
to the PNS surface. This is an important point, since it suggests that the 

plastic flow for concrete at PNS is associated. 

3. It appears that the plastic strain vectors are normal to the plastic work 
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Figure 2.31: Plastic work contour for different level of confinement, Sheffield tests 
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Figure 2.32: Proposed yield surfaces based on plastic work contour, Sheffield tests 
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Figure 2.33: Proposed yield surfaces based on plastic work contour superimposed 
on the plastic strain vectors, Sheffield tests 

contours. This gives further support, to the assumption of associated flow for 

concrete. 

4. The VTS surface has a similar shape to that of the PNS surface but with 

reduced size. For the same level of confinement, the ratio of the deviatoric 

component of the stresses at VTS and that of PNS can be assumed to be 
constant =_ constant). 

P, 

5. At plastic VTS the directions of the plastic strain vectors are purely devia- 

toric. 

6. P1ast. ic VTS and the intersection points of the yield surface with the hydro- 

static axis along with the plastic strain directions could be used to identify 

the shape of the yield surfaces. 

7. The volumetric strain versus major principal stress seems to maintain an 
initial linear response regardless of the level of confinement. This linearity 

then turn to nonlinearity at a point referred to as the onset of stable fracture 

propagation (OSFP). 
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8. The pre-peak behaviour of concrete under compression may be simplified into 

three levels of response: 

(a) Concrete initially responds as purely elastic material. 
(b) Under increased loading, distributed microcracking results in volumetric 

nonlinearity with contraction. 

(c) Eventually, further increase in compressive strain demand results in the 
development of multiple continuous crack systems resulting in nonlinear 
volumetric dilation response. 

9. At about 90% of the peak stress where the size of the sample reaches its 

minimum the dilation response starts. The rate of dilation is significantly 
greater than the previous rate of contraction. The stress at this level is called 
volume transition stress (VTS). 

10. Under high level of confinement the total and plastic VTS become closer to 

each other. This has been attributed to the fact that the plastic strain is 
dominant in this region. 

11. Concrete seems to be in a state of compaction throughout the compression 
loading but at peak, it seems that concrete sample retains its initial size. 

12. The values of Young's modulus in the second and subsequent loading cycles 
is less than the first cyclic loading. This degradation of stiffness is attributed 
to the damage that have been encountered during the cyclic loading. 

13. The average values of Young's modulus seems to increase slightly with the 
increase of the confinement. This is due to the compaction of the material 
caused by closing of cracks and collapse of voids. 

14. Poisson's ratio is effectively independent of the loading path. 

15. The influence of the elastic parameters (E and v) on the plastic flow is more 
evident close to the elastic region. 

16. The peak axial and lateral stresses and corresponding strains increase signif- 
icantly with the increase of confinement. This supports the well known fact 
of the higher strain capacity of confined concrete. 

17. The axial strain capacity increases more than the lateral one. 

18. The equivalent plastic strain at peak stress increase significantly with the 
increase of confinement. The general relationship is nonlinear and follows an 
exponential form. 
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19. The values of peak plastic work also increases significantly with the increase of 

confinement. The general relationship is nonlinear and follows an exponential 
form. 
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Chapter 3 

Development of the New 

Constitutive Model 

3.1 Introduction 

This chapter deals with the modelling of the behaviour of plain concrete under 
multiaxial compression using the theory of plasticity. The aim is to model the 

stress strain behaviour in uniaxial, biaxial and multiaxial compression by means 
of few parameters utilizing the advances that have been achieved in this field and 
maintaining the simplicity of the mathematical approaches. 

The model formulation is based on the experimental observations discussed in 
Chapter 2, of which the behaviour of concrete under triaxial loading has been 
investigated. The observations include the plastic flow and the directions of the 

plastic strain vectors. One of the most easily detectable characteristic features is 

the state at which plastic dilation commences. This point has been referred to 

as the plastic volume transition stress (VTS). It is the state associated with the 

minimum volumetric plastic strain. Note that at this point the response is purely 
deviatoric. 

The model is then constructed assuming associated plasticity in which the plastic 
strain increment is normal to the yield surface. Three points on the yield surface are 
identified; the hydrostatic tensile intersection point (&), the hydrostatic compres- 
sion intersection point (&, ) and the plastic VTS point (ý�t� p�t, ). The directions of 
the plastic strains at these points are also known; for (ht) and (hc), the direction is 
in the hydrostatic sense while at the plastic VTS point is in the deviatoric direction. 

An important point which should be considered is the convexity of the yield surface 

64 
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needed to fulfill the stability requirement of Drucker's postulate. In the newly de- 

veloped model, the convexity has been ensured within the range of the material pa- 

rameter that has been suggested. A novel hardening law has been used with a new 
ductility measure introduced. The yield surface is expressed in Haigh-Westergaard 

stress space which is based on the cylindrical coordinate stress invariants ý and p 

and the Lode angle 0. 

The continuum constitutive modelling of concrete is briefly presented in Section 

3.2. This includes elasticity, damage, microplane and elasto-plastic models. The 

main characteristics of these models along with their advantages and disadvan- 

tages are introduced. In Section 3.3, the main topics associated with the theory of 

elasto-plasticity are presented. These include, additive decomposition of the strain 

vector, the yield condition, the flow rule, and the hardening law. In the same 

section the loading and unloading states, the Drucker's stability postulate and the 
isotropic hardening are discussed. The development of the consistency parameter 

and the tangent elasto-plastic matrix is also presented. The numerical integration 

algorithm needed for the infinitesimal equations along with a stable stress return 
algorithm, the closest point projection (CPP) needed to integrate the proposed 
elasto-plastic constitutive model at the material level is presented in this section. 
The main features of the Sheffield model are also discussed with some observations 
and reservations. 

The formulation of the new model is given in section 3.4. The isotropic harden- 
ing function which controls the evolution of the yield surfaces, and thereby the 

expanding elastic domain is described in the same section. A new auxiliary stress 
surface has been formulated. The first and second derivatives of the yield surface 
with respect to a and the internal variable kp are presented in section 3.5. Finally, 

concluding remarks are given in section 3.6. 

3.2 Continuum Constitutive Modelling 

Many constitutive models have been proposed and used for the analysis of concrete 
structures. These models may be classified into two groups 

1. The group of macroscopic models, based on a representative volume element 
relating average strain states to average stress states. 

2. The group of microscopic models, based on discrete modelling of the inter- 
action between the components of concrete (e. g. the aggregates and the 
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cement matrix). These models are often used to simulate fracture initiation 

and processes [Vonk, 1992; Carol et al., 2001b]. 

Common macroscopic models for plain concrete are the elasticity models, plasticity 

models, continuum damage mechanics models, and microplane models. Grassl has 

reported on the later three groups [Grassi]. In this section a summarised overview 

of these models is presented along with their main advantages and disadvantages. 

3.2.1 Elasticity Models 

The linear theory of elasticity combined with criteria defining failure of concrete is 

the most commonly used material law for concrete in reinforced concrete analysis 
[Chen and Saleeb, 1994a]. The simplest constitutive model for a strain recoverable 

material is provided by the hyperelastic formulation, for which the stress response 
is characterised in terms of a stored energy function. Linear elasticity is normally 

expressed in terms of the classical constitutive equations, referred to as the gen- 

eralised Hook's law. The elasticity based models [Kupfer, 1973; Kotsovos and 
Newman, 1978] no longer appear so prominent to model the deformation of plain 
concrete as they fail to address the irrecoverable deformation observed under load. 
From a physical point of view, the elastic models bears only a faint resemblance 
to the internal mechanism proper to concrete in the stress range of interest. The 

reason for their previous adoption is clearly a matter of practical convenience, not 
of physical belief. 

3.2.2 Damage Models 

Damage theory is developed to deal with the stiffness degradation. This theory was 
first proposed by Kachanov (1958) to describe creep rupture in metals. The theory 
further developed to describe the isotropic and anisotropic damaging behaviour 

of concrete [Krajcinovic and Fonseca, 1981]. The basic assumptions used of the 
theory are: 

1. The response of the material depends only on the current state of the mi- 
crostructural arrangement. 

2. The current state of the microstructural arrangement can be described by a 
finite set of internal variables, termed "damage variables". 

As a damage measure, damage variable may be a scalar or a tensorial quantity. 
Most of the early damage models were using a scalar as damage variable since the 
scalar implies that the damage is isotropic, independent of the orientation of the 
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microdefects. To describe flat planar microcracks, a vector normal to the plane of 

crack and of magnitude equal to the area of the crack is needed [Chen and Saleeb, 

1994b]. 

The models based on this theory are often used to describe the mechanical be- 

haviour of concrete in tension [Mazars and Pijaudier-Cabot, 1996; Peerlings, 1999; 

Carol et al., 2001c]. The fundamental assumption for these models is that the local 

damage in the material can be averaged and represented in the form of damage 

variables, which are related to the tangential stiffness tensor of the material. The 

main components are the damage loading function, the evolution law and the re- 
lation of the damage variables to the tangential stiffness tensor. 

The advantages of using damage mechanics models can be summarised as follows 

1. The use of explicit algorithm. That is for a given strain increment, the 

corresponding secant stiffness modulus and stress state can be determined 

without iterative calculation procedures. 

2. The elastic stiffness degradation observed in experiments in the case of tensile 
loading can be accounted for. 

The disadvantages are as follows 

1. These models cannot describe the remaining deformations observed in exper- 
iments with concrete in compression. 

2. The loading function is formulated in the strain space, which is difficult to 

calibrate to experimental results. 

3. The evolution law cannot be directly related to a stress-strain curve, and 
hence cannot be determined easily from experiments, unlike the hardening 
law used in the theory of plasticity. 

3.2.3 Microplane Model 

The microplane model is a highly simplified model of the microstructure in which 
the adjacent grains forming the material exchange forces on planes passing through 
their contact points. The number of force components assumed to act on these 
planes and the stress-stain laws attributed to each of them determine the behav- 
iour of the model at the macroscale level [Qui]. 
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The microplane model was presented for concrete in its classical form based on 
kinematic constraints by Bazant and Prat [1988a; 1988b]. It can describe brittle 

cracking in tension and the behaviour of concrete under triaxial compression and 

shear. It was subsequently extended to cyclic loading by Ozbolt and Bazant [1992] 

and its numerical implementation was improved through an explicit algorithm by 

Carol et al. [1992]. The microplane model in this form showed a pathological behav- 

iour in uniaxial tension, in the form of unrealistic lateral expansion. To overcome 
this problem, Bazant et al. [1996a; 1996b] introduced stress-strain boundaries, i. e. 
the microplane components have stress limits which are a function of the macro- 
scopic stress state. The model was further developed by Bazant et al. [2000], and a 
thermodynamic formulation was presented by Carol et at. [2001a] and Kuhl et at. 
[2001]. An alternative approach to overcome the pathological behaviour in tension 

was proposed by Ozbolt et al. [2001] by using a relaxed kinematic approach in the 

case of dominant tensile loading. 

The advantages of the microplane models can be summarised as follows: 

1. Their capability to fit a large set of experimental data. 

2. The explicit calculation flow of these models where the stress state can be 
directly determined for a given strain state. 

The disadvantages can be summarised as follows: 

1. There are many parameters on the microplane level which are required to be 

calibrated in order to obtain agreement with experimental results. 

2. An explicit calibration by means of results of material tests is not possible. 
Instead, it is necessary to obtain the parameter required by means of re- 
analysis. Hereby, it is difficult to distinguish between material properties and 
structural properties, and the extrapolation of the calibration parameters 
obtained is doubtful. 

3. The earlier versions of the microplane models do not fulfil the thermodynamic 
laws. 

4. The very high computational cost, which is mainly caused by the split of the 
strain tensors onto the microplanes. 

5. These models do not satisfactory simulate degradation in the unloading stiff- 
ness and in its current explicit form it possessed very high sensitivity to the 
values of material constants [Qui]. 
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3.2.4 Plasticity Models 

The physical model behind elastic-plastic theories involves the occurrence of irre- 

versible slips within the crystalline structure of the material. As such, the model is 

certainly a more appropriate start point for describing the macroscopic behaviour 

of metal, rather than concrete. However, the theory of plasticity when not nar- 

rowly interpreted, provides a very flexible mathematical model that can be used to 

describe the behaviour of concrete [Chen and Saleeb, 1994b]. 

This theory has now been widely used in modeling the non-linear stress strain be- 

haviour of concrete in multiaxial stress state. Many models have been classified as 

plasticity based models [Willam and Warnke, 1974; Ohtani and Chen, 1987; Chen 

and Saleeb, 1994b; Tahar 2000; Li, 2005]. The stress-strain behaviour of concrete 

consists of a linear elastic regime, corresponding to the first stage of deformation, 

and a nonlinear hardening corresponding to the second stage. In the nonlinear 

regime, the total strain is decomposed into an elastic part and a plastic part. Then 

the multiaxial stress-strain relations can be developed based on the theory of plas- 
ticity. 

The advantages of the plasticity theory can be summarised as follows 

1. The simplicity and direct calibration of the stress state. 

2. The yield surface corresponds at a certain stage of hardening to the strength 

envelope of concrete, and thus has, a strong physical meaning. 

3. The split of the strains into elastic and plastic parts corresponds to the ob- 
served remaining deformations of concrete in compression, so that unloading 
and path dependency can be accounted for in a realistic way. 

4. The theory of plasticity has a very long tradition; hence the implementation 

of the formulation is efficient and thermodynamic validity is assured. 

The disadvantages can be summarised as follows 

1. Unable to account for the stiffness degradation during loading process. 

2. The indirect calibration of the deformation behaviour by means of the plastic 
potential if associated plasticity is used. 

3. The number of invariants to describe the behaviour of plain concrete is limited 
and, therefore it is difficult to model the concrete behaviour with all its 
complexity. 
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4. The implicit calculation procedure where the stress state must be iterated 

so that, for a given strain state, the yield condition is fulfilled and that is 

computationally costly. 

Comparing the advantages and disadvantages of models based on different theories, 

it can be seen that the plasticity models are well suited to describe the compression 
behaviour of concrete, whereas the strength of damage mechanics models lie in the 

modelling of the tensile behaviour. 

3.3 The Theory of Elasto-Plasticity 

In this section the main topics related to the theory of elasto-plasticity are pre- 

sented. These include the basic assumptions of the theory, the loading-unloading 

states, Drucker's stability postulate and the isotropic hardening. The development 

of the consistency parameter and the tangent elasto-plastic matrix are also pre- 

sented. The numerical integration of the infinitesimal equations is described along 

with the closest point projection algorithm. Finally, a brief introduction to the 
Sheffield model is presented. 

3.3.1 Plasticity Basic Assumptions 

Plasticity model of concrete must involve four basic assumptions: 

1. The additive decomposition of the strain vector 

2. There exist an initial yield surface and a failure surface in stress space, which 
define the elasticity region and the hardening region, respectively. 

3. A hardening rule, which defines the change of the loading surface as well as 
the change of the hardening properties of the material during the course of 
the plastic flow. 

4. A flow rule, which is related to a plastic potential function and leads to an 
incremental plastic stress strain relation [Chen and Saleeb, 1994b]. 

The yield surface (loading surface) limits the elastic domain. It depends on the 
stress state {a} and a hardening function k. It has the form 

F(Q, k) =0 (3.1) 

where k is a function of the hardening parameter kp, expressed as 
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k=h(kr) 

The hardening parameter is given in the form 

(3.2) 

dkp = dA kp (or, J) (3.3) 

where dA is plastic multiplier. 

If the yield function is equal to zero, plastic flow occurs. The flow rule prescribes in 

which way the plastic flow develops. The direction of the flow vector is determined 

by the gradient of the plastic potential function G. The amount of the plastic flow 

is determined by the plastic multiplier dA 

{dEP} = dA 
JOG 1 

(3.4) 

Additive Decomposition of the Strain Vector 

The strain vector is decomposed into its elastic and plastic components, denoted 

by fee} and {cP}, respectively, according to the infinitesimal relationship 

{de} = {dEe} + {d6P} (3.5) 

{de} is regarded as an independent vector variable. As noted above, the in- 
finitesimal stress vector {da} is related to the infinitesimal elastic strain vector 
{dEe} by means of a stored energy function X according to the hyperelastic rela- 
tionship. For linearised elasticity, X is a quadratic function of the elastic strain 
(X = 2{Ee} 

[D] {El}), where [D] is the elasticity stiffness matrix which can be iden- 

tified for an isotropic material by two material constants, Young's modulus (E) 

and Poisson's ratio (v). 

The relationship between the linear components is expressed as follows 

{a} = [D] {Ee} 

Equations (3.5) and (3.6) may be combined to obtain 

(3.6) 

o}- [D] 
IIEI - {c'}) 

(3.7) 

Note that it is possible to write (3.7) in terms of total stress and strain measures 
because of the linearity of the elastic components. 
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Yield Conditions 

The yield criterion can be defined as the limit of elastic deformations expressed by 

combination of states of stresses [Desai and Siriwardane]. It is worth noting that 

the shape of the yield surface is still a matter of investigation amongst researchers. 
No consensus has been reached as what is the true shape of this surface or even if 

plasticity is an appropriate constitutive framework. The differences might continue 

as long as there is no experimental investigation into the real shape of the yield 

surface, which might be achieved by performing a sequence of small load-unload 

paths throughout the stress space to identify the plastic strain occurring at each 

stage. Note that the identifications of the initial and subsequent yield surfaces are 

not easy to achieve experimentally. However, a proposal for the shape of the yield 
surfaces assuming associated flow has been given in Chapter 2. The modelling of 
such surfaces is presented in Section (3.4.3). 

One of the issues related to the shape of the yield surface is whether the plastic 
flow is associated or not. It has been argued by several workers that when plastic 
potential function is chosen independently from the yield function, the fit to the 

experimental observations is better [Bicanic and Pearce]. Others [Najjar et al. ] 

have modelled concrete reasonably well using an associated flow rule. There is, 
however, a serious price to pay for the introduction of non-associativity, in that it 

results in a non-symmetric tangentional stiffness matrix. The latter is not conve- 
nient from a numerical point of view. It necessitates greater storage and a more 
general solution technique for large systems of equation. There is also a second 
physically unacceptable consequence of non-associated rule; the uniqueness of a 
solution is not guaranteed and energy may be created during a load-unload cycle 
[Tahar]. Therefore, the validity of introducing the associated flow is one of the 

questions examined in this study. 

At any stage of plastic deformation the yield condition is given as a function of the 

stress state ja} and the internal variable k. For isotropic plasticity, the latter is 

considered as a scalar measure, which itself is a function of the accumulated plastic 
strains {EP}, in the simple strain hardening formulation considered here 

F=F (a, k(E')) =0 (3.8) 

For stress states inside the yield surface, F<0. Points on the yield surface sat- 
isfy F=0, whereas inadmissible states, outside the yield surface, are described 
by F>0. When the yield surface expands as k evolves, hardening behaviour is 
observed. A hardening rule describes how the yield surfaces grow or move with 
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respect to k. Conversely, softening is associated with shrinking or translation of 
the yield surface. 

At a stress point Jul on the yield surface, a stress increment {AO} may have any 
direction for hardening plasticity. In the case of softening plasticity, it can only be 

directed inwards. Considering the hardening case, if the stress probe is directed 

inward then a purely elastic response will be generated. If it is directed outward, 
however, both elastic and plastic straining will occur. For a stress state lying within 
the loading surface (F < 0) the material will behave according to the constitutive 

relations of elasticity. 

The yield surface at peak stress or the peak nominal stress surface (PNS) is eas- 
ier to identify experimentally. There are many formulations in the literature for 

the PNS envelope. There are formulations proposed by Rankinee (1876), Mohr- 

Coulomb (1900), von Mises (1913), Leon (1935), Drucker-Prager (1952), Willam 

and Warnke (1974), Ottosen (1977), Hoek-Brown (1980), Etse-Willam (1994, Men- 

trey and Willam (1995), Bicanic-Pearce (1996), Tahar (2000), Li (2005). These 
formulations differ mainly in the number and kind of material parameters required 
for the calibration. 

In commercial finite element codes it is still often common to use a Mohr-Coulomb 

or a Drucker-Prager yield surface . These surfaces do not represent the main 
properties of the failure surface of concrete in compression. In the case of the 
Mohr-Coulomb failure surface (see Figure 3.1), the meridians are straight and the 

yield surface is independent of the intermediate principal stress component, i. e. 
the strength in uniaxial compression is equal to the strength in biaxial compres- 
sion. Furthermore, the relation of the strength on the compressive meridian to 
the strength on the tensile meridian stays constant with increasing hydrostatic 

pressure. The Drucker-Prager yield surface (Figure 3.1) is a generalisation of the 
Mohr-Coulomb yield surface. The meridians are straight, and the strength on the 

compressive meridian is equal to that on the tensile meridian, i. e. the strength 
in biaxial compression is highly overestimated. Calibrated for stress states on 
the compressive meridian, the Drucker-Prager yield surface leads to an equibiaxial 
compressive strength significantly higher than the uniaxial compressive strength 
[Grassi]. 
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Figure 3.1: Classic yield surfaces and yield surface for concrete 
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Flow rule 

The flow rule prescribes the evolution and the amount of the plastic strain. The 

evolution of the plastic strain is given as a function of the plastic potential, G, 

which depends on the stress vector and possibly other internal variables, G(o, r). 
The flow rule is defined by the following expression 

{d¬p} = d\ 
ýý 

(3.9) 

where ea defines the direction of the plastic flow and the parameter dA >0 is 

a non-negative scalar factor, called the plastic multiplier (or consistency parame- 
ter), which obeys the following Kuhn-Tucker complementarily conditions [Simo and 
Hughes, 1987] 

dA > 0, F(Q, kp) <0 and dAF(a, kp) =0 (3.10) 

In addition, the following consistency requirement must be satisfied 

dA dF(Q, kp) =0 (3.11) 

In its most general case, the flow is said to be non-associated. When the yield 
function is used as a plastic potential (G = F) then the resulting theory is referred 
to as associated plasticity. This implies that the plastic strain rate develops in a 
direction normal to the yield surface hence (3.9) is often referred to as a normality 
rule. Experimental observations show that the plastic deformation of metals can 
be characterised quite well by the associated flow rule, but for many frictional, 

porous materials such as rocks, concrete and soils, some researchers think that the 

use of an associated flow rule overestimates the volumetric expansion reported in 

experiments [Tahar]. Hence non-associated flow rule is often thought to provide a 
better representation of behaviour [Khan and Huang]. However, it has been shown 
in Chapter 2 that the plastic flow of concrete at PNS and during hardening can be 

characterised as associated. The plastic work contours also thought to be normal 
to the plastic strain vectors. Therefore the associated flow rule is adopted to model 
the response of concrete in this thesis. 

Hardening law 

There are certain ways to idealise the stress-strain behaviour of different materials; 
these idealisation are: 

1. Perfectly elastic 
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2. Rigid, perfectly plastic 

3. Rigid, linear strain hardening 

4. Elastic, perfectly plastic 

5. Elastic, linear strain hardening, linear strain softening 

6. Elastic, nonlinear strain hardening, nonlinear strain softening 

The elastic deformations do not depend on how and along what stress path the 

state of stress was reached. They depend only on the final state of stress. However, 

in the case of plastic deformations, the strains depend on the history of the stress 

state, and the stress-strain relationships are generally nonlinear. If the material is 

assumed to experience no hardening, then it is called perfectly plastic. Figure 3.2 

shows graphical representation of different idealised models. 

If the material characteristics are not affected by the orientation, the material is 

called isotropic. A material that is initially isotropic may remain isotropic during 

the deformation process or it may become anisotropic. 

The isotropic hardening (adopted here) assumes that the subsequent yield surface 
is a uniform expansion of the initial yield surface. In other words, the shape and ori- 
entation do not change. It is also assumed that the material's isotropic response to 

yielding remains unchanged during plastic deformation. It neglects the anisotropic 
effect on the subsequent yielding induced by the deformation. 

For isotropic materials, the yield surface F may be expressed in terms of the prin- 
cipal stresses: 

F(ai, o2, as) _ 0, (3.12) 

or the stress invariants: 

F(I1, J2, J3) =0 (3.13) 

The assumption of isotropy will be shown to offer a reasonable compromise for 

concrete provided that the material does not undergo significant stress reversals 
or changes in the principal stress directions. Note that the hardening parameter 
k reflects the effects of the past loading events on the material fabric. If the yield 
surfaces were anisotropic then k would be represented by a higher order matrix. 
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Figure 3.2: Idealised stress strain models 
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The isotropic hardening implies the existence of a universal function between a 

certain measure of stress, called equivalent stress, and a certain measure of strain 

called equivalent strain or equivalent plastic strain. The definitions of these mea- 

sures depend on the yield criteria to be used. The function is called universal 
because it holds true for any stress and strain state and loading path. 

The hardening law, given by equation (3.2), controls the shape and size of the yield 

surface and the plastic potential by means of the function k. Hence, it determines 

the amount of plastic deformation at a certain stress state. The function k is often 

a form of the relation of the uniaxial compressive stress to the equivalent plastic 

strain (E'), which is a scalar defined as the length of the plastic strain 

EP = {Ep} {Ep} (3.14) 

where the plastic strain vector, {E? }, is determined according to the flow rule in 

equation (3.4). 

The influence of the confinement on the axial and lateral inelastic deformation 

capacities was presented in Chapter 2. It was seen that with increasing of the 

confinement the deformation capacity increases significantly. A way to incorporate 

this increase into the hardening law may be achieved by introducing a ductility 

measure. The hardening parameter kp from equation (3.3) is hereby scaled with 
a function of the hydrostatic stress, (, also called the ductility measure [Etse and 
Willam, 19941. Then the hardening parameter becomes a function of the stress 

state and the plastic strain state: 

kP(o, EP) =P S( ) (3.15) 

3.3.2 Loading and Unloading 

The yield surface can be used to identify the elastic and plastic regions and loading 

and unloading criteria to identify the characteristics of the deformation. For per- 
fectly plastic materials the subsequent yield surface at any instant is exactly the 
same as the initial yield surface. Loading occurs when the stress state point is on 
the yield surface and remains there, and the plastic strain can increase indefinitely. 
If the stress point moves to the inside of the yield surface, it causes unloading. This 

can be summarised as follows 
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F< 0 

F=O and dF>O 
F=O and dF <0 

(elastic deformation) 
(loading) 
(unloading) 

For the work-hardening materials the Kuhn-Tucker complementary loading/unloading 

conditions summarize the consistency condition which conform with our intuitive 

notions of plastic loading and elastic unloading. 

1. If F(Q, kp) <0 then, from condition (3.11), dA F(a, kp) =0 infers that 
dA = 0. Then, it follows that {dcp} =0 and dkp = 0. This case corresponds 
to the elastic loading case {de} = {dee}, and the infinitesimal form leads to 

{dul = [D] {de} (3.16) 

hence the response is instantaneously elastic. 

2. When the stress path has reached the yield condition F(Q, kp) = 0. Two 

situations can be obtained, depending on whether dA is zero or positive 

(a) If dF(o, kp) <0 and dA dF(a, kp) =0 this implies that dA = 0, result- 
ing in {dcp} =0 and dkp = 0. This type of response is called elastic 
unloading from a plastic state 

(b) If dF(a, kp) = 0, this defines the differential form of the plastic consis- 
tency condition in which equation (3.11) is automatically satisfied. If 
dA > 0, then {d¬P} 0 and dkp 0 0; a situation called plastic loading. 
The case dA =0 and dF(a, kp) =0 is termed neutral loading 

These loading/unloading conditions are summarised below 

F<0 dA =0 (elastic loading) 
dF <0 and dA =0 (elastic unloading) 

F=0 dF =0 and dA =0 (neutral loading) 
dF =0 and dA >0 (plastic loading) 

Figure 3.3 shows the loading and unloading conditions for work-hardening materi- 
als. 
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{do} dA { ää } 
Rj Loading 

Neutral loading 

{da} {dv} 
Unloading yield surface 

Figure 3.3: Loading and unloading for work-hardening materials 

3.3.3 Drucker's Stability Postulate 

In an effort to establish the general plastic stress-strain relations for any yield cri- 
terion, Drucker proposed a unified approach based on his stability postulate. In 

a series of papers [Drucker; 1950,1951,1959,1964], he developed the postulates 
of stability in the small and of stability in the large for isothermal time indepen- 
dent materials. By means of these postulates it is possible to prove that for a 
work-hardening material the yield surface is convex and that the plastic strain- 
increment is normal to the yield surface. One major consequence of Drucker's 

postulate is that the flow rule for stable material is associated (i. e. G= F). 

Drucker's stability postulate asserts that if a material is stable, the following in- 

equality must be satisfied: 

W= J{Lia}{de} >0 (3.17) 

The integral represents the work done by the external agency. It was shown by 
Drucker that any material that does not obey this inequality is unstable. 

Drucker summarised these conditions by the following inequality 

{dv}{dE }>0 (3.18) 

The above expression refers to stability in the small. Stability in the large is 
expressed by 

{a}{dc"}' 0 (3.19) 

The Drucker's stability postulate is a fairly strong requirement that can be satisfied 
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only by hardening materials whose subsequent yield strength increase with defor- 

mation. Any material on which an external agency does positive work during an 

elastic-plastic stress cycle is considered as hardening material. Drucker's postulate 
does not apply to softening materials, and it needs to be modified for perfectly 

plastic materials [Khan and Huang]. 

The postulate has the following implications: 

1. The yield surface should be convex in stress space. 

2. The yield surface and the plastic potential surface should coincide, implying 

an associated flow rule is necessary. 

3. Work softening is not permissible. 

Some researchers feel Drucker's postulate is more a means of identifying material 
classes rather than a strict requirement for all constitutive models [Tahar]. 

3.3.4 Development of the Consistency Parameter and the 
Tangent Elasto-Plastic Matrix 

Recall the four infinitesimal general elasto-plastic constitutive relations: 

1. The additive decomposition of the strain vector 

{dE} _ {de'} + {dip} (3.20 

2. The hypoelastic law 

{dQ} = [De}{dee} (3.21) 

3. The flow rule for associated flow (F = G) 

{j P} = dA 
ä 

(3.22) 

4. The hardening rule 

dkp = dA h (3.23) 

where 
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dkp _ 
{deP}T {dep} 

(3.24) 

and C is a ductility measure. 

Following standard Voigt notation {c}, {Ee} and {eP} denote the total, elastic and 
plastic strain tensor, {Q} is the Cauchy stress, and kp signifies a suitable internal 

variable. Equation (3.20) expresses the commonly assumed additive decomposition 

of the infinitesimal strain tensor into elastic and plastic parts. Equation (3.21) rep- 
resents the generalized Hooke's law which linearly relates stress and elastic strain 
rates through a stiffness matrix [Del. Equation (3.22) expresses an associated 
flow rule for the plastic strains whereas (3.23) governs the evolution of the plastic 
variable. In these equations, {} is the plastic flow direction, h is the plastic 
modulus and dA is a plastic consistency parameter to be determined with the aid 
of the loading-unloading criterion, which can be expressed in terms of the Kuhn- 
Tucker conditions. 

Substitute (3.22) into (3.24) 

dA { BF }T dA { BF } 

dkp =l 
a° JC 1 8° f 

(3.25 

{ 
8ä 

}T {F 

dkp = da 
C 

(3.26) 

from (3.23) and (3.26) 

h_ 
{äý}T {eQ} 

3.27 

The yield surface is identified as follows 

F(a, k) =0 (3.28) 

where F gives the yield function. 

Using the chain rule, the derivative of F at (v, kp) is given as 

T 

dF ={ 
_ý } 

{du} + dkp =0 (3.29) 
P 

By substituting (3.26) into (3.29) 
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dF = 
taF {}T 

[DY]{dý}- 
ýý T 

[De]{d "}+ 
l1 

ýäQ 
1=0 

(3.30) - -akp 190, 

T 

aý C 

Substitute (3.22) in (3.30) 

aF aF e 
öF} Te äF da OF äF T {}=o 

dF aý [D {d} -ý [D ] da }+{} (3.31) 

and solve (3.31) for dA 

da =l 
eý IT [De] {de} 

(3.32) 
F ( 

öo 
}T 

i aor 
1 { 

öö 
IT [De] { 

Da C8p 

Substitute (3.32) into (3.22) and using this with (3.20)in (3.21) gives 

T 

{du} = [D'] {d, -} - 
[De] { äý } [D'21 {de} { OF } 

(3.33) 
_I _ 

IAF 
ýý2F 

f: 
ay 

(g 

Substituting 3.27 into 3.33 gives the constitutive equation: 

p} 
T[DeJ 

{de} l 9F1 } 
(3.34) {do} = [De] {dE} - 

[De] 1 
ä° 

!Tr1 

{da} _ [Del - 
[De] 

l 
! ftF 
off 

} [DCý 
l as J {C } (3.35) 

[Del { eo }{ 
eo 

} OF P l2 

[Dep] 

where [De'1 is the elasto-plastic stiffness matrix. 

3.3.5 Integration of the Infinitesimal Equations 

The constitutive relations for a general elasto-plastic material relate an infinitesi- 

mal stress rate to an infinitesimal strain rate at a given stress state and a plastic 
deformation state, as has been shown in the previous section (3.3.5). However, 
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in a conventional finite element analysis, one applies a finite load increment (or 

displacement) instead of an infinitesimal one. Therefore, the constitutive relations 
have to be integrated. In most cases this must be done numerically. The precision 

with which the constitutive relations are integrated has a direct impact on the 

overall accuracy of the analysis. The efficiency of the integration algorithm has 

a significant effect on the overall computational cost of the analysis. There are a 

large number of integration algorithms which may be used for this purpose [Ortiz 

and Simo, 1986; Runesson et at, 1988; Pramono and Willam, 1989]. One of the 

simplest implicit computational techniques is the cutting-plane method. With this 

approach the derivative of the hardening law and the second derivatives of the yield 
function need not be determined [Tahar]. 

There are two classes of stress return algorithm: explicit and implicit. Explicit 

methods have recently fallen out of favour in view of their conditional stability, 

poor accuracy and the fact that the updated solution may not even exist if the 

strain increment is too large [Runesson et al. ]. Among the implicit methods, there 

exist the backward Euler (or Closest Point Projection method, CPP), the gen- 

eralised midpoint rule (GMPR) and the generalised trapezoidal rule (GTR). In 

general, implicit predictor-corrector schemes are widely accepted as being most 

appropriate for the integration of elasto-plastic constitutive relations. The Closest 

Point Projection is known to be superior for large increments, providing smaller 

errors compared with other methods. This scheme has also been identified as being 

particularly suitable when the yield surfaces have regions of high curvature [Simo 

and Hughes]. 

Closest Point Projection (CPP) Method 

In the displacement-based finite element (FE) method, the closest point projection 

approach first considers the total strain increment {A¬} as producing a purely 

elastic response, thereby arriving at an initial predictor trial stress state, {otr} [Li, 

Tahar]. If this lies inside the yield surface 

F({Qtr}, {kp}) < 0, (3.36) 

no plastic deformation will have occurred during that strain increment; otherwise, 
an elasto-plastic response must have taken place. 

Given the stress state and the hardening parameter at step n plus the newly calcu- 
lated elastic predictor stresses, the central tasks of the CPP algorithm are to find 
the following values at step n+1: 
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1. the corrective up-dated (return) stress {fl+10} 

2. the converged plastic strains 
{n+1 eP} 

3. the plastic multiplier a+l A that simultaneously 

(a) results in zero residual strains {n, +l r} = {O} (see below the definition 

of {r}) 

and 

(b) satisfies the consistency condition n+1F({�+1 a}, {n+1 kp}) =0 

4. the algorithmic tangent corresponding to the final converged state. 

The following expression {r}, identifies the residual plastic strains and hardening 

internal variable calculated in CCP iteration i during the global time increment 

from n to n+1 

i 
{n+lr} _ 

-{n+l EP} + {EP} 
+n+, 

{n+18ý } 
(3.37) 

-n+l kP +n kp n+l h 

If i=0, we set 

{n+1eP} 
= {nE: p} n+1kP =n k n+10, \ =0 (3.38) 

Linearising (3.37) at stress state {n+1Q}, which is equivalent to expanding {,, +lr} 
via a Taylor's series at stress state {n+la}, ignoring the second and higher derivative 

terms and then equating {n+lr} to zero and noting that both F and h are functions 

of {a} and kp, leads to: 

ti 
{n+, AI-p} 

i 
n+l 

n+10kP 
s 8F 

+i ntlSid 

{i 
n+18v {0} 

n+lh 

fl 1 82 F fi 82F 1n+1 
7ýo7r 2' 
49 

l 
ini 18F8kp 

}1f 
Ln+10QI 

fi 8h Ti 8h i 
in+18J n+18kp n+1Akp 

(3.39) 
Since the sum of the corrective elastic and plastic strains from the trial state to 
the final converged state is zero during the corrective return: 

{n+lAe'} + {n+1&P} = {0}, (3.40) 

the plastic strain increment is: 
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{n +10&P} = -[Da]-1{'n+10Q} (3.41 

Substituting (3.41) into (3.39) gives 

i 
{n+lAu} 

i 
{n+l 

Q} {n+1T} + ýn+iAý +n+1 bA 
i= 

{0} (3.42) 
n+10 P n+l h 

where 

(De -1 +i Qý(i 82F i Qýfe 2F 
l n+l 1n+1 =1 n+l 1n+18aökp 

}r1 

Pn+, A]-1 
0ýj: eh tz 

-1-ý' D. ýt ah 13.431 

n+l lntlQJ n+l n+lýkp 

The dimension of [n+1A]-1 is seven by seven but it can be decreased to four by 

four by using three component principal stresses rather than the six component 
form. The principal form is adopted in this study to simulate the experimental 
data where only principal components were recorded and no rotation of the princi- 

pal axes occurred. If the algorithmic elasto-plastic tangent is to be calculated then 

the general form with six component needs to be used [Borja et al. ]. 

Solving (3.42) for {; 
a +1a} and ;, +, kp gives: 

XT, 
{n+lk 

[n+LAl 
({ýir} 

--n+l 
SD 

{n i BF 

i+1 

} 
(3.44) 

n+l P n+l 

Likewise, linearisation of the consistency condition 

F({n+io}, n+i kn) =0 (3.45) 

at the stress state {�+10'} gives 

OF T aF {'. +, Oa} 

n+, F' + 
[{in+l 

Oa 
n+l Op 

+Qk =0 (3.46) 
n+l P 

Substituting (3.44) into (3.46) and then solving for SA leads to: 

i fi OF lT i OF l 

n+16'\ = 
n+1F - 

lin+1 
8s J n+18ýPI[in+144]{i+lrl (3.47) 

fti 8Fl 
(ri 8F iT i OF (i A 1n+1 8Q I Rn+1 

57a n+18kp 
] 

In+l 
l 

n+l 
h 

The stress increment and the hardening internal variable are then obtained from 
(3.44), and the incremental plastic strain from (3.41). These are used in-turn to 
update the current state. 
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CPP algorithm 

We are now in position to define the CPP algorithm. Given {n+le}, {n"P} and 

nkp, the task is to find {�+l&'}, {n+la} and n+lkp using the following stages. These 

stages have been illustrated graphically by Li [Li] and a thorough investigation of 
the CPP method can be found there. 

1. Set the CPP iterative counter i=0. 

2. Let the plastic strains and the internal variables equal their values obtained 
from the converged state at the end of the previous time-step. 

Ln+i 
}= 

incp} 

in+1k 
}- {nkkl 

3. Set the plastic multiplier to zero 

=0 n+IAI\ 

4. Determine the current stress state 

In+1Q} = [Del(ln+1-'I 
- 

In+1EP}) 

5. Calculate the first derivative of the yield function {n+, as } 

6. Calculate the residual plastic strain and internal hardening variable 

ft ýpt + fept ft OF 
ft rl = 

in+l ILJ +i QA In+l80 
in+l I_ n+l 

n+1 P +n p n+l 
h' 

If In+1FI < tolF and 11{;, 
+lr}1l < tol, then the solution is deemed to have 

converged and the algorithm may be exited; otherwise move to step 7. 

7. Calculate the following derivatives: 

(a) The second derivatives of the yield function with respect to the stresses 
82F 

In+i 
ý 

(b) The mixed derivatives of the yield function with respect to the stresses 
and the hardening internal variable {;, +1 

äoäkp } 

(c) The derivatives of the hardening function with respect to the stresses 
ti Ohl {nil 

8o J' 
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(d) The derivatives of the hardening function with respect to the internal 

hardening variable tt+l äp 

8. Calculate [;, +1A] from (3.43). 

9. Calculate the first derivatives of yield function with respect to the hardening 
P internal variable OF 

10. Calculate the iterative change in the plastic multiplier n+lbA using (3.47). 

11. Calculate {n+1L a} and ti+, 
Akp from (3.44). 

12. Calculate {. A'} from (3.41). 

13. Update the plastic strains {` +l9} using 

i 
+1Ep} = {n+1Ep} + 1n+1AEp1 

14. Update the internal hardening variable +1kp using 

+ik» =n+i kn +n+l ikp 

15. Update the plastic multiplier +11 AA using 

+i+l 1A " n+l 
0A +n+1 bA 

16. Increment the iterative counter i=i+1 then return to step 1 and repeat the 
loop. 

3.3.6 Sheffield Model 

A C2 continuous hardening / softening elasto plasticity model for concrete has 

been developed at the University of Sheffield by Tahar [Tahar]. In its most general 
form this model is defined by sixteen material constants. In many cases it is only 

necessary to define eleven of the material constants as the remaining can assume 
defaults values. This model is based on earlier work carried out at the University 

of Colorado [Pramono and Wiliam, 1989; Etse and Willam, 1994]. Restricting the 
formulation to the common case of isotropy, the peak nominal stress (PNS) surfaces 

are formulated in a way which provides a continuous, smooth surface, intersecting 

the hydrostatic axis normally in the tension region. 
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In order to describe the shape of the PNS surface not only on the compression 

and extension meridians, but also for any Lode angle 0, the Bhomik-Long devia- 

toric shape function r is used to define smooth convex traces [Bhowmik and Long], 

which ensure a stable material behaviour according to Drucker Stability Postulate, 

having unique gradients to define the direction of the plastic strain rate. Unlike the 

original elliptic function of Willam and Warnke [Willam and Warnke], this formu- 

lation introduces an addition control point on this shear meridian. The proposed 
hardening yield surface function is constructed such that the meridians always in- 

tersect the hydrostatic axis normally in the compression and tension quadrants. 

There are some shortcomings associated with this model. These can be summarised 

as follows: 

1. The model overestimates the axial strain in the pre-peak region for the uni- 

axial compression test. The same can be said for concrete under low level of 

confinement. 

2. The model lacks the flexibility needed to identify the onset of plastic dilation. 

3. The ductility measure which should represent the values of the plastic strain 
at peak, does not take the true material response under confinement. 

The newly formulated model has adopted the same PNS formulation of the Sheffield 

model both in the meridional and deviatoric sections. A new yield function is 
introduced assuming associated flow rule. A new hardening function along with a 

new ductility measure is also proposed. 

3.4 The Development of the New Model 

In this section the formulation of the new model is described. This includes the 
description of the the elastic behaviour, the peak nominal stress envelope (PNS) in 
meridional and deviatoric sections, the yield surface, and the hardening function 
incorporating new ductility measure. 

3.4.1 Elastic Behaviour 

If the trial stress state lies inside the yield surface that is (F < 0), the response 
is considered as purely elastic. In this case, the classical constitutive equations, 
referred to as the generalised Hooke's law is to be used 

{Q} = (De] {e} (3.48) 
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where [De] is the elastic matrix. If [De] is constant, the material is said to be 

linearly elastic. 

The isotropic linear elastic stress-strain relation can be re-written using the Lame 

constants as 

{Q} = A[I){e} + 2µ{E} (3.49) 

where A and µ are Lame constants and [I] is the identity matrix. Table 3.1 shows 
the relationships between Young's Modulus, E, Poisson's ratio, v, the elastic bulk 

modulus, K, the elastic shear modulus, µ, and A. 

E v K A 71 77µ7 
E VE E 

,v - - 31-2v l+v 1-2v 21+v 
E, K - 

3K-E 
- - 3KE 

K, N 3lC+ i 2 3K+u - K3 
- 

Table 3.1: The relationship between different elastic moduli for linear isotropic 
elasticity 

The linear, isotropic elastic stiffness matrix may finally be written as: 

1-v vv 

v 1-v v 

[De]- 
Evv 1-v 

(1 + v)(1 - 2v) 000 

000 
000 

0 
0 
0 

2(1 - 2v) 
0 
0 

0 
0 
0 
0 

2(1-2v) 

0 

0 
0 
0 
0 
0 

2(1 - 2v) 
(3.50) 

and the corresponding compliance matrix as: 

1 -v -v 0 

-v 1 -v 0 

-v 1 0 
E 0 0 0 2(1 + v) 

0 0 0 0 
0 0 0 0 

0 
0 
0 
0 

2(1 + v) 
0 

0 
0 
0 
0 
0 

2(l + v) 

(3.51) 
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For the case of principal stresses and strains the stiffness matrix is: 

11-v vv 
[De] 

(1 + v)(1 - 2v) v1-vv (3.52) 

vv 1-v 

and the corresponding compliance matrix as 

-v -v 
[De]-1 =E -v 1 -v (3.53) 

-v -v 1 

3.4.2 Peak Nominal Stress (PNS) Envelope 

After some initial uncertainty [Wastiels], there now appears a consensus as to the 

proper form for the triaxial strength envelope (PNS) [Crouch]. Many of the new 

models offer a satisfactory fit to the peak stress compression meridian experimental 
data. The peak nominal stress achievable by an isotropic concrete specimen under 

multi-axial loading may be expressed in terms of the three principal stress compo- 

nents. The envelope of points corresponding to the PNS states may also be defined 

in terms of normalised Haigh-Westergaard co-ordinates ,p and 0. The Lode an- 

gle, 0, equals -S, ,0 and +11 on the extension, shear and compression meridians 

respectively, whilst p,, p, and pe refer to the values of the deviatoric invariant on 
the compression, shear and extension meridians. Although the convention adopted 
here is one of tension positive, the uniaxial compressive strength f, (used to nor- 

malise the invariants) is treated as a positively-valued quantity. 

Given that the symbols It and Ik represent the positively-valued normalised PNS 

magnitudes under uniaxial tension and equal biaxial compression respectively, Ta- 

ble 3.2 shows the values for the normalised principal stresses and invariants. 

Loading case 11 vl v2 Q3 0 

Uniaxial tension it 0 03 it s 
Uniaxial compression 0 0 -1 771 -' 6 

Equal biaxial compression 0 - fbc - fý -2 ? fý 33 _* 6 

Table 3.2: PNS values for uniaxial and biaxial states 
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Meridional Laws 

Many concrete PNS meridional (that is 0= constant) criteria can be expressed in 

a common mixed-polynomial form, encompassing the Rankine (1876), von Mises 

(1913), Mohr-Coulomb (1900), Drucker-Prager (1952), Leon (1935), Wiliam-Warnke 

(1974), Hoek-Brown (1980), Etse-Wiliam (1994), Menetry-Willam (1995), Bicanic- 

Pearce (1996) and the Tahar (2000) criteria. The generalised expression is given 

as follows 

F= ao (P ? ')n' + al(Pr) ' +ßo(ß)"' + Q1() -1=0 (3.54) 

where r is a deviatoric shape function and ao, al, f3o and 01 are material constants. 

For some of the common PNS criteria nl = n2 =2 [Tahar]. 

The Hoek-Brown criterion [Hoek and Brown], which was originally developed for 

rocks, is based on the combined considerations of the Griffith fracture criterion 

and the Mohr-Coulomb slip criterion. This empirical criterion was first defined in 

terms of the normalised major and minor principal stresses as follows: 

FHB(Ü1,6r3) - 
(o 

- 
d3 )2 + MHfa1 - CHB =0 

(3.55) 

The material parameters cHD and rnHD represent measurements of cohesive and fric- 

tional strength, respectively. 

One of the real attractions of this criterion is that it can be calibrated by using 
just two material constants; uniaxial tension and uniaxial compression. It is ap- 

pealing because it provides a limiting tensile stress condition (similar to that of 
Rankine) and a compression criterion sharing the features of the Mohr-Coulomb 

criterion. Researchers at the University of Colorado successfully used the Hoek- 

Brown criterion to characterise the triaxial strength of structural concrete [Willam 

and Warnke]. 

Using (3.55) and the following relationships between the principal stresses and the 
(Haigh-Westergaard) cylindrical co-ordinate invariants 



Chapter 3 Development of the New Constitutive Model 93 

Q1= I- 3psin(0 - 3) 
Q2 = 73e + 3psin(9) (3.56) 

Qg = 734 + 3/) sin(0 +3) 

(where al > a2 > a3), the Hoek-Brown criterion may be re-expressed as: 

FHB(4, p, 0) =2 cost 0p2 + 
ý23 

pm HB cos(0 +6 )p +4-1=0 (3.57) 

The expression for the compression meridian is obtained by inserting the value of 

0=6 in equation (3.57). 

3(PC+ jaHB 
Pc + 

allB 

-1=0 (3.58) 

Similarly, the extension meridian is obtained by inserting 0= -M into (3.57): 

FHDe( + P) =3 (Pe)2 + mHD 
3Pe 

+m3 -1=0 (3.59) 

Re-arranging (3.58) one obtains: 

p'ý =63 
(-mHB 

+ mHB2 - 12fmHB' + 36 (3.60) 

and re-arranging (3.59) one obtains: 

2 
Pe =133 

(-mHß 
+ m"BZ - 3vr3maB +9 (3.61 

In the form presented here, the Hoek-Brown criterion exhibits deviatoric sections 

which are similar to those of the Mohr-Coulomb criterion. That is, they repro- 
duce the experimental results well, but introduce corners at the compression and 

extension meridians. Despite being somewhat less flexible than the Wilam-Warnke 

criterion, the Hoek-Brown surface deserves attention because of its ease of calibra- 
tion. 

All the above criteria which intersect the hydrostatic axis in the tension region 

exhibit a vertex at this point. If these PNS surfaces define yield surfaces (and plas- 
tic potential surfaces) in an elasto-plastic model then the surface normal will be 

non-unique and the surface undefined for zones outside this region. The latter will 
lead to problems when a hydrostatic trial stress states passes beyond the vertex. 
To remove this discontinuity, a modification to the expressions defining the PNS 

meridians has been proposed by Tahar [Tahar]. 
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In all that follows, the Hoek-Brown criterion has been adopted as the basic criterion 

as it offers a good balance between physical relevance, ease of calibration and 

accuracy. However, it should be pointed out that the same procedures proposed by 

Tahar could be applied to many of the other PNS criteria. The Tahar modification 
has been achieved by raising certain terms of Hoek-Brown criterion to a power -y 

which is typically 0.9 < ry < 1. This provides a continuous, simple, smooth surface, 
intersecting the hydrostatic axis normally in the tension region. The modification 
is as follows: 

pc (6)y 3 (-m 
+ m2 - 122/m + 367 (3.62) 

7 

pe = (3)ý 3 
(-m 

+ m2 -3/m+9 (3.63) 

Consider the case when _ -ý: 

(6)'I (_m + 
ýM2+12fm 

+ 36ry =3 (3.64) 
1 

This formulation ensures that the surface passes through the uniaxial compression 
point. In the case _I and p=3 it (corresponding to the peak uniaxial tensile 

stress), we obtain: 

(3.65) 
aft - (3)ry 

J3 (-m+ /m2 
- 3fm 

L 
t+9 

7 

After rearranging, we can express m as: 

m_ 
(I (it) 

It + 2(it) 7 (3.66) 

Since the new PNS surface is formulated on the basis that it passes through both f, 

and ft, it follows that the material constant m is controlled by both the normalised 
tensile strength and the constant y. When ry is taken equal to 1, an m identical to 
that used in the Hoek-Brown expression is recovered. 

Now consider the case of equal biaxial compression, where =2, p_2 3fi 
and0=-6: 

(_m-()ry 3+ 
/m2 

+ 6vm 1 fJ+9 (3.67) 

ý After simplifying, we obtain: 
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Figure 3.4: The Peak Nominal Stress surface (PNS) determined by (3.62) and 
compared against tria: cial data from Sheffield tests for f, =58 MPa 

9(fk)(') + 6m(f&. )ý7ý - 677ifb, -9=0 (3.68) 

It can be shown that for any ry (in the range defined above), f b, will always equal 
I. 

This criteria seems to preform well with Sheffield experimental data presented in 
Chapter 2. Figure 3.4 shows the PNS surface predicted by the model compared 

with the test data for a normal concrete mix with fý =58 MPa. The model has 
been calibrated as follows: 

1. t1SSum(' default value for 7 of 0.99, 

2. use the experimental nican value for f, 

3. identify the petit value of m, using least squares fit procedure, and 

4. solve equation (3.66) numerically to identify ft. 

Deviatoric Behaviour 

Experimental observations show that for a given value of hydrostatic stress there 
is a considerable variation of peak deviatoric stress with Lode angle (0) 

. For 

532 -1 01 
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large values of hydrostatic stress, the PNS deviatoric section tend to a circular 
form [Crouch]. Adopting an elliptic deviatoric cross-section (such as that used 
by Willam and Warnke) the model predicts that the traces of the PNS surface 

are nearly triangular for tensile states, becoming increasingly circular for higher 

compressive stresses. This appears to agree with the trends suggested by existing 

multi-axial test data. Whilst the elliptic deviatoric sections are attractive, here a 

more generalised expression, first employed by Bhowhmik and Long [Bhowhmik 

and Long], is used. 

The Bhowmik-Long deviatoric shape function r is defined by a smooth curve pass- 
ing through the points A(pe, -s), B(p�0) and C(p,, 6) which is normal to the 

principal stress axes projected onto the deviatoric plane at both points A and C, 

as shown in Figure 3.5. The subscript s refers to the shear meridian. Unlike the 

original elliptic function of Willam and Warnke, the formulation introduces an ad- 
ditional control point on the shear meridian. This shape function describes smooth 
convex PNS traces. In the context of a plasticity model, these imply convex yield 
surfaces which ensure a stable material behaviour according to Drucker's Stability 
Postulate, having unique gradients to define the direction of plastic strain incre- 

ments (in an associated flow formulation). 

-Q1 

- Q2 

Figure 3.5: Bhowmik-Long deviatoric plane 

7[/6) 

Q3 

The deviatoric shape function is expressed in the first sextant of principal stress 
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space (-6 <0< s) as: 

r_ 
2do (3.69) 

di - ((di)2 - 4dod2) 

where 

do = clcos2 0- c2sin20+ c3 sin 0 cos 0 

dl = 2(c4 V cos 0- c5 sin 0) (3.70) 

d2 = Bo(4 - 3Boco) 

_ 
2-fBi 2Bo-fBl 
(Bi(1+Bo)- 3Bo)2 

cl= 3-co(1+Bo)2 

C2 =1+ 3co(1 - Bo)2 (3.71) 
C3 = 2co%3(1-B02) 

C4 = (1 + Bo) (1 - Boco) 

c5 = (1 - Bo)(1 - 3Boco) 

subject to the following restrictions 

2 <Bo<1 

<B<B 
(3.72) 

143BO 
1+ea 1 7ä 

where 

Bo = 
Pe (3.73) 
PC 

and 

B1 = 
P' (3.74) 
PC 

The portions of the trace in the other sextants are obtained from symmetry. 
Bl can be expressed as a function of Bo in terms of its upper and lower limits 

V3-Bo o ýBo 
Bl =+ c«2B - Bo) 

(3.75) 
1+Bo 1+ 

where a takes a value between 0 and 1. 

As a approaches 0, r degenerates to a linear form between the compression and 
extension meridians. The Tresca form is obtained when Bo =1 and a=1. 

Note that the Bhowmik-Long deviatoric shape function includes the original ellip- 
tic form as a special case. Clearly at 0=-6,0 and 6, r equals Bo, Bl and 1 
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respectively. 

3.4.3 New Yield Function 

In this study associated plasticity has been assumed. On that basis and with the 

help of the plastic strain directions calculated in Chapter 2, the shape of the yield 

surface can be identified. We may begin by considering the PNS surface as one 

of the yield surfaces. Figure 3.4 shows the results from the University of Sheffield 

tests on 60 mm diameter cylindrical specimens at confining levels of 0,10,20,30, 

50,60 and 70 MPa (see Chapter 2). The proposed formulation of the new yield 

surface has to fulfill the following basic requirements; 

1. smoothness, 

2. convexity, 

3. normality with respect to the plastic strain vectors 

4. validity of the function for a broad class of experimental data for different 

concrete mixes. 

Plastic Volumetric Transition Stress Surface, VTS 

The plastic volumetric transition stress (VTS) is one of the key components in the 

formulation of this model. The identification of this state has been discussed in 

Chapter 2. Examination of experimental results has indicated that under compres- 

sive loadings, dilation begins at about 90 percent of the peak stress. This is also 

supported by the findings from other researchers [Chen and Saleeb, 1994b]. The 

plastic volumetric transition stress (VTS) locus could be expressed as follow 

Pvta = a2 Pc (3.76) 

where p, identifies the deviatoric stress on the PNS surface and a2 is a material 

constant which can be identified for example from uniaxial compression tests. In 

Chapter 2 (for a normal concrete mix with a uniaxial compression stress of 58 
MPa) this parameter was found to be 0.927. The value has been identified by the 

method of least squares. Figure 3.6 shows this surface at the compression meridian 
for confinements (61 = Q2) of 0,10,20,30,40 , 50 and 60 MPa. 
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Figure 3.6: The PNS and VTS surfaces from Sheffield experiments and the model 

predictions for the compression meridian 

The Formulation of the New Yield Function 

The yield function of the proposed model has been formulated in four zones (Zone 

1 to zone 4) by four equations ( see Figure 3.7 ) as follows 

1. In the first zone (ýht-ý1) the yield function takes the form of the PNS surface 

as expressed by (3.62). 

2. The second zone (ý1 - 2) has been represented by polynomial equation that 
fulfills five conditions: 

(a) The curve passes through the common point (ýi, pi) on the PNS surface 

(h) The equation is to have the same value of the first derivative of the 
PNS with respect to ý at the converging point (ý1, pi) in order to ensure 

continuity of the first derivatives. 

(c) The equation is to have the same value of the second derivative of the 
PNS with respect to ý at the common point (ý1, pi) in order to ensure 

continuity of the second derivatives. 

(d) The equation is to pass through the volumetric transition stress (VTS) 

point identified by (ý2, P2). 

-6 -5 -4 -3 -2 -1 01 
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.ý 

Axis of summetry 

S 
>e, 
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Quartic equation '_ - ý' P2 

1 PI 
1 

.ý, Quartic equation j-etlection 

Zone 54+ Zone 4 .. Zone 3+ Zone 2 Zone 1 Zone 0 
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Figure : 3.7: The general shape of the four equations that formulate the yield surface 

(e) The first derivative of the equation with respect to at point (ý2, P2) 
is to he equal to zero. This will ensure normality of the plastic strain 

vector at. the plastic volumetric transition point. 

3. In the third zone (ý2 - 6) the equation is the reflection of the second zone 

about. a symmetry plane normal to 4 axis at the point ý2. 

4. In the fourth zone (6 -ý .) the function is the reflection of the first zone 

about, a symnietry plane normal to 4 axis at the point ý2. 

The general yield function , F, takes the form 

F(a, kr)=rp-pf=0 (3.77) 

where r is the deviatoric shape function and pf is the deviatoric stress at a mean 
stress ý calculated in each zone as follows: 

1. Zone 1 

pf = (1/6)" 3(-m 
+ (m2 - 12 f mý + 36))ry (3.78) 

This equation is identical to the PNS formulation. 
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2. Zone 2 

pf = aý4+b 3+c 2+d +e (3.79) 

a, b, c, d, and e are parameters to be identified below. 

(a) Consider the hydrostatic tensile point (ht, 0), where ht is the tensile 

strength of concrete taking the form 

Sht 
3 it (3.80) 

where ft =f is the normalised uniaxial tensile strength of concrete. 

(b) Identify the distance (to) between the hydrostatic tensile strength (ýht) 

and the hydrostatic compression stress (hc) 

o= 1`4kk 
(3.81) 

where Ak is a material parameter and k is the hardening scalar. 

(c) Identify the common point (c', pl). There are two ways to achieve this: 

i. Calculate .1 

6= he - ai ýo (3.82) 

where al is a material parameter. Then define pl form 

P1 = (1/6)ry 
3 

(-m + mz -12 ýml + 36 ry (3.83) 

ii. Identify pl and then calculate ý1 

Pi = 01 P2 (3.84) 

where p2 is the p of the plastic volumetric transition stress calculated 
as follow 

P2 = as Pia (3.85) 

where the pct is the PNS value associated with ý2 calculated as 
follows: 

P12 
3 (-m 

+ m2 - 12 ýrr2 + 36 ry (3.86) 
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and 

2= the - 
Co (3.87) 

After calculating P2i 6 can be calculated form 

/ 
I (i/ 

l 
m(2), ý(2)-2r 36m 

(-36(2)2Y+ ((1/6 ) 
+2 

7 

(3.88) 

The first approach has been adopted for this study because it is simpler 
and easier to code. This approach requires an extra care when choosing 
the parameter al, but the sensitivity study (Chapter 4) will show that 
the model is not very sensitive to al within the range discussed there. 

(d) Identify the first derivative of the PNS at point (ei, pl) with respect to 

OF 
= 

-2 (116)'Y f m+ Ri 
7'Y V3-m 

etl Qi -m+ Qi 
(3.89) 

where 

ßi = m2 -12 Vm e1 + 36 (3.90) 

(e) Identify the second derivative of the PNS at point (ý1, pl) with respect 
to ýi: 

ry ry 
02F 

_ 

36(1/6)ryf m+ ßi) I m2 36 (1/6)7v6 -m+ Ql rym2 

3/2 
(3 

36(1/6)76(-m+ pi) 

3i ( 

Ym2 
(3.91) 

-\m+ 
431 ) 

(f) Solve equation (3.79) for the five unknowns a, b, c, d, and e using the five 
known pair of values, (ý1, p'), (ýi, äff, )+ (c', ä ), (2' P2), and (2, a) 

2 03F OF 02F 8F 2 02F 
-6 P2+ 8 +4ý28ýý 22ia -4ý, eýý +b - +6pi 

a= 17 
2r [ 1124-4 2S1 +%2ý12+ý14-4ý, 23) 

(3.92) 
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b= -(ä i -ßi 2ät -5 1 äýý iC2 aä 8C, P2+8CiPi+ 

2CiC21 aci 
F- +3 2äý+'4ý2Pi+ 202F ff-4ý2P2)/(&ä-4ý2 i+ 

sze1+i-4i2) 
(3.93) 

c= (-12 ß12 P2 + Ala 82F - 12 C2 Ci2 OF +2 ß13 2eä - 6ß13 ä{1- 

6 2ßi2 eä +12 X12pl+182 iob+24Ci zPi+2C2 a- 

24ýi. 2P2+ý4 88 )/(2(C2 -4C2C1 +6C2C12+C14 -4Ciý2)) 
(3.94) 

d= -zýiä -i 288 +3 z iäß-6 iäß- ääO- 
ii 

eä +i ýi eäß +4i ýi ätß - 12 ýi P2 + 12 Ei Pi)I( 2- 

4S2ýi +6S2bi +Si -4S1S2) 

(3.95) 

e= (-6 1 zäF +i 28 +2 iP2+2pi g-2 1 2eä - 
$ C1 C2 P2 -2 Ci 04, Z+81 e4ý 2+i 02F 2+ 12 pi ä 

(24 -4C2'i +6ý2C +ýi -4C, C3)) 
(3.96) 

3. Zone 3 

In this zone the reflection of the quartic equation of zone 2 about a symmetry 
plane normal to the ý axis at ý2 has been used 

Pf =ab3+bS3+c43+dS3+e (3.97) 

where 

s=-+2 ý2 (3.98) 
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4. Zone 4 

The reflection of the PNS equation about a symmetry plane normal to the 

axis at ý2 has been used 

pf = (1/6)7 3(-m+ 
(m2 - 12 v/'3- mt3 + 36))" (3.99) 

Figure 3.7 shows the general shape of the four equations. Figure 3.8 shows a sample 

of a yield surface that has been produced from the four equations. Figure 3.9 shows 

the yield surface for different level of hardening and Figure 3.10 shows the plastic 

strain direction with the yield surfaces. The results suggest that the proposed 

model is capable of fulfilling the normality condition and convexity needed for 

associated plasticity. 

Figure 3.8: The general shape of a yield surface with PNS and VTS surfaces 

3.4.4 The hardening function 

The hardening function h controls the evolution of the yield surfaces, and thereby 
the elastic domain. In isotropic plasticity, the internal variable (kp) is considered 
as a scalar measure, which itself is a function of accumulated plastic strains, {ep}. 

ý2 
-2 -1 101 
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Figure 3.9: The initial and subsequent yield surfaces 

Figure 3.10: Plastic strain directions and yield surfaces for the new model 

-6 -5 -4 -3 -2 -1 01 

-6 -5 -4 -3 -2 -1 01 
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If the yield surfaces are anisotropic then k would be represented by a higher order 

tensor. 

The hardening function suggested here involves a third order polynomial of kp 

k= ahkp+bhkp+Ch kp +fah 

subjected to the following conditions 

1. k =ko if kp= 0 

2. k =1 if kp =1 

3. Ilk- = so if kp =0 

4. e; =0 if kp =1 

(3.100) 

where so is the initial slope of the k- kp curve. The value of this parameter is 
finite and positive. 

After solving equation (3.100) for the four unknown constants, ah =2 ko+so-2, bh 

=3-2 so -3 ko, Ch = so and dh = ko, and substituting these values in equation 
3.100, the hardening function takes the form 

k= (2ko + so - 2) kp + (3 - 2so - 3ko) kp + so kp + ko (3.101) 

where k0 is the initial hardening value and kp is an internal variable to be discussed 
in the following section. If a default value of 2.7 is assumed for so at kp = 0, an 
identical function to that used by Grassl is obtained [Grassl] 

k=ko+(1-ko)kp (kp-3kp +3) if kp <1 (3.102) 

and 

k=1 if kp >1 (3.103) 

Figure (3.11) shows the relationship between the hardening measure k and the 
hardening internal variable kp. 

3.4.5 Ductility Measure C 

The evolution of the hardening variable kp depends on the rate of the plastic strain 
and the stress state. The infinitesimal increment of the hardening function (dnp) 
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1.2 

1.0 

0.9 

0.6 

0.3 

k0 

Figure 3.11: The relationship between hardening measure k and the hardening 
internal variable kp 

is the norm of the plastic strain scaled by the hardening ductility measure (. The 

function suggested in this study for (is a single exponential function with only two 

material parameters Ah and Bh. The equation takes the form: 

(= Ah exp (- 4/Bh) (3.104) 

Figure 3.12 shows the general shape of the ( function with the values of material 

parameters A,, and B, 
1 taken as 0.003 and 0.99 respectively. These values have 

been identified from the calibration process which will be presented in Chapter 4. 

3.4.6 Auxiliary Stress Surface 

The nwdel is capable of dealing wit h the stresses that fall inside the zones between 

the hydrostatic tensile strength (ýht) and the hydrostatic compressive stress (hc). 

These zones are referred to here as zone 1,2,3, and 4. The zone that is greater 
than ýht is zone 0, and less than ýhc is zone 5 as shown in Figure 3.13. If the stress 
trial state falls in zones 0 and 5; an auxiliary stress is to be introduced to ensure 
that the stress state remains inside the zone covered by the model. The value of the 

auxiliary stress state suggested here is defined by the intersection point between a 

circular arc passing through the hydrostatic compression stress state ýhc and having 

0 0.3 0.6 kP 0.9 I. () 1.2 
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Figure 3.12: The ductility measure ( versus ý 

its center on the hydrostatic axis at ý2i and a radial projection passing e2 on the 

hydrostatic axis to the trial stress (fit,. 
, pi,. ) as shown in Figure 3.13. 

The procedure to identify the auxiliary stress state is as follows: 

The linear equation of CT takes the form 

p= ax + bx (3.105) 

Subjected to the following conditions: 

Ifý2 then p=0 

and 
if =fit,. then p= pt,. 

where a, and b1 are constants determined as follows: 

Substitute the above values in (3.105) and solve the equation for ay and bx and 
re-insert the values into equation 3.105 

Ptr (ý - ý2) 
ýtr 

- S2 
(3.106) 

-5 - -4 -3 -2 -1 01 
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Zone 5 ."- Zone 1- 4 Zone 0 

Figure 3.13: Auxiliary stress state and the six zones 

The equation of the circular arc is given as 

2 

(- cx)2 + P2 =4 (3.107) 2 

subjected to the following condition: if ýhc then p=0 

Substituting the above into (3.107) and solving for cy gives two solutions of the 

equation for (cx): 

Cx = he + 
ý2 

(3.108) 

and 

Cx - he - 
ýO 

(3.109) 2 

The first solution identifies the value we seek and the other solution is valid for the 

extension meridian. 

Substituting (3.108) in (3.107) and solving for ý also gives two roots. For zone 0 

where (ý >_ ýht ) 

_ 
if2+2Ptrb+2ý2Ctr-4ý. 1ýt, + (ýp(F2 tr-2ftrf2+Pir)2) 3.110) 

2(E 
tr-2 tr) 
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where ýA is the auxiliary value of 
For zone 5 where (ý <= ýh, ) 

2C2+2p . 2+2E2Er-4f2ftr- (Eö(f2+F?. -2Etrf2+Pir)(Etr-E2)2) (3.111) ýA =2 (t +t' -2er) 

Substitute ýA in (3.106) 

PA = 
Ptr(ýA - 2) (3.112) 

tr -2 

where PA is the auxiliary value for p. 

Following the identification of the auxiliary stresses using Haigh-Westergaard co- 

ordinates, the task is to identify the auxiliary stresses in principal stress space. 

Since 

ti ý1 

OA = OC + CA 

and 

(3.113) 

= 
al+a2+Q3 (3.114) 

and on the hydrostatic axis, al = a2 = a3. Therefore 3.114 can be written as 
follows 

C2 = {a} (3.115) 

or 

ÖC = 
12 

(3.116) 
, 43 

Since the triangles CAa and CTt are similar. That is 

A CAa N0 CTt (3.117) 

It is possible to establish that 

CA= L CT (3.118) 

where 

1Vy 

CT=OT-OC (3.119) 
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Substituting 3.116 into 3.119 and then into 3.118 and then into 3.113 the auxiliary 

stress vector can be identified 

{Q} _ 
v(3- 

+ 
PT 

{Qtr} 
ý43- 

(3.120) 

3.5 The Derivatives 

The linearisation of the residual plastic strains and hardening parameter jr}, which 
is required as part of the CPP method, necessitates the calculations of four sets of 
derivatives: 

1. The derivatives of the yield surface (F) with respect to the internal hardening 

parameter kp, that is eP. 

2. The derivatives of the yield function with respect to the stress tensor, which 
include the first derivative fäa } and the second derivative [a- 

3. Mixed derivative of the yield surface with respect to the internal hardening 

parameter and the stress tensor { 
aý2 

äQ } 
P 

4. The derivatives of the hardening function (h), which include the derivative 

with respect to the stress tensor 12-h- }, and to the internal hardening para- 
meter 8 

P 

3.5.1 The Derivative of Yield Function with Respect to kp 

The yield function (F) is presented here as a function of stress (a) and hardening 

internal variable kp 

F(o, kp) =rp- pf =0 (3.121) 

The derivative of the yield surface may be written using the chain rule, 

BF 
= 

OF 8k (3.122) 8kp 8ý 8kp 

The derivative takes the form 

ak 
=3 (2 ko + so -2)k P2 +2 (3 -2 so -3 ko) kp + so (3.123) äkp 

Here OF is calculated from the chain rule as 

OF 
_ 

8F ! 2ü 
3.124 8k - öeo 0k 
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Since the hardening parameter k is a function of ýo (expressed in equation (3.81)) 

the first derivative of k with respect to ýo can be calculated as follows 

ä_ 
ýlA,, r 

(3.125) 

Note that the term of the yield equation that is dependant on k is pf, while the 

deviatoric shape function (r) and p are independent of k. Therefore the first deriv- 

ative of the yield function with respect to k takes the following form: 

aF 
_-a. pf 

Ufo azo (3.126) 

The expressions for pf in each of the four zones are different, therefore for each of 
these zones the e{o is to be determined independently. 

In Zone 1, the formulation of pf adopts the same form as the PNS, and it is 
independent of ýo. Therefore: 

=o (3.127) 

In Zone 2, pf takes the form expressed in (3.79), where all the five parameters (a, 

b, c, d, and e) which appear in the equations are variables dependant on ýo. The t 

are independent variables of ýo. Therefore the first derivative of pf with respect to 
ýO can be expressed as follows: 

2ft 
= 

as E4+ a6 3+ ac '2+ ad + Le (3.128) 
aFo ato aEo ob afo ado 

where ego eEo' äßo äßo 
+ and a{o are presented in the equations from (3.133) to 

(3.138). These derivatives have been calculated using mathematics tool MAPLE 8 
[MAPLE]. These derivatives have also been verified numerically using the central 
difference approximation 

(x) y(x + h) - y(x - h) 
2h (3.129) 

where h, is a small increment (of the order of 1x 10-6 in most cases here). The 

results are then presented graphically as shown in Figure 3.14. It can be noticed 
that the first derivative of the yield surface with respect to k, shows graphical con- 
tinuity in all zones. 

In Zone 3, pf takes the form expressed in (3.97) and (3.98). All the terms that 
appear in the equations are dependant on ýo. Therefore, the first derivative of pf 
with respect to ýo can be expressed as follows: 
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of 
- 

%o 

S3 + 4Q 3ä+ 
ö{o g+ 3b 3ä+ 

8fc9c 
F2 

o 
C3 + 2C3 8+ 

(3.130) 
ZTOC3 + dä +äßo 

and from equation (3.98) the derivatives of ý3 with respect to ýo can be expressed 

as follows: 

9-fa --1 ato (3.131) 

In Zone 4, pf is given by (3.99). The first derivative of pf with respect to ýo is 

given by 

(1/6)'Vf -m+ 03 ryry fm 
(3.132) LPL 

=2 Q3 -rººt p3 

where 03 is a dependant variable given by (3.140). 

The derivatives of the five parameters (a, b, c, d, and e) with respect to ýo are 

- 
(_a2. 

m ea 
_ 1/2 

vrijý - 12 ä+ 108 p+ 2/3 m+ 

12 O "`'`Y -6 Ri 
sm2 - 216 2p6 3/° 

-}- 2/3 s 3m, +, 

Qi 
M2 C2 6p + 108 

3v1 
06-1 - 1/2 (-1/3 a2 v6 

(-7n +)- 

6p- 4/3 sp 'n + 12 
C2 C, 

Ql/ 
a' + 4/3 vfm 

-6 
26""' 

3,2 31 Q13 '+ IT/T-- v 
1/3 06- -m + )) ß4ß6-2 

(3.133) 

Ob _- 
(1/9 a2' (-m + y) - 1/9 V (-m +'ý-3+ T Aý 

4/9 al a2 06- (-m + v72) +9 4/9 al (-m +)+ 
108 ý'"A163ý" 

- 12 -108 
2 R6 3, ý, rjý 

- 2/3 06- -vf3-ma + 

12 21 C22gym' 6ý2ý, 108 2, ý, r6m3, ý, r3a 4/3 2 ffm+ 
00/2 Al Ai5 A, 

2a 's"`+1 3 ýv'"+ ýý"`+108 23v m , cl 
-V 

/ -01 V-01 Ol 5/2 

22/342 22 ý�3"`1 Q6-1 + 
(-6 p"`2,3 +6 2Ai3 m3 +5/3 2ýfm+ 

J Ai 
6 

Al 
; m' - 4/9 ýi a2 f (-m + 32) + 4/9. i / (-m +)- 

t2 (I Qý'n 
- 

2ýp '" + 2/9 e2 (-m +) -6 Qým2 - 
2/3 

2/9 ý2 a2 \6 
(-m 

+N 1T2)) 
ß4ß6 2 

(3.134) 
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ac = 11/2 (-2/3 ei tJ6 
(-m +) - 4/3 al Z2 (-m +ý 

eEo 
4/3 e1 (-m + vrji) al +62 Qým + 18 Ql 

zmý + 
41. vf6-3-ýl EI �r62 4 5/2 -12 

33_- 4/34la2f (-m+ )a1+108 

2ýfý2, Vfm 
-2 

ýý ma 36 'R13 12 
a+ 36 

Q13 z 
2c + 

V 
12 23R1 `/2 +6 Z2 i '`r Rm+ 108 4 pm3ýa + 4/3 al Z2 a2 (- 

m+)+6 
Qýz' + 2/3 ei a2f (-m ++ 12 3 m2 

_ß 3/2 

L '-3 

-4 ý`} 36 Ä 
-2 

2v/ m'+216 3 Qm3ý� 

12 3 `/' 3`f3-, 
- 648 ' '`rm3fa) 

- 1/2 (- 216 Ql 6 Q15 2 
ß6 

2/3 12a2 
ý (-m+i) 

-6Rsm2 +4ý2E1'ýým - 12 R1 R13 2+ 

2 3`rp + 36 21 412 m2 + 2/3 12 V ý-m +iý-6 
EI E2 2 äVf3-'"+ 

ßi 3/2 

eel 4/3 ei Z2%76 (-m + %/'ßl) - 12 23ßi ; m' -4/34142 a2 V (-m + V) - 
6Rs m2 ) 04ß6-2 

(3.135) 

azo = 1/2 p- e2 (-3 Q6m' 
- 4/3 1 

(-m +) al -12 
gßi 

/2 + 
108 4 Äi"3ýa 

-108 
3pb 3ýa + 1/2 ýp m+2 E2 Ei fä '"'a - 

2 63 ma 1/2 2ý-, r3m 6 %(6 r6�2, E'2 
1 ßi - ßi �, 

m + 12 
ßi 

108 e2 EI 2 Vf6-'n3%73-a +9 
92 41 ' `ism' + 108 3 ým 

5/2 s. &x + 4/3 Z2 EI %/6*�r3M + al pl Pi 

4/3 'a ,r fm + 4/3 ei a2 m+ al -2 
12a Vim) /36-1ý-N7 %4J2) 

% 2 05 PA J 
ß6 A 

(3.136) 
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ado = 1/2 (-18 3Q3- 2/9 f (-m +) X23 + 2/9 13a2 v (-m+ 

V72) - 2/3,06 ý-m +)b 62 + 4/9 -m +) a1 X23+ 

2/3 s (-m + , JT) i X22 -2Z 
'ýýý« 

_23 
ýým 

- pl Ri 

12 6M2Z 4+ 6+ 6-m2 + 108 +2 
5/2 

3`/3a 
- 4/9 1 

3a2 6(- 
f4 

' 
01 

m+�/iý«1+1/3 
a° 

2 V6- 
\/"3- "`+12 122 

\1 
fl2 -216 

g gp 23ýa + 

El C2 23a //m 
- 4/3 3"` 3+ 

4/3 ßi2 2 a2 
(-m + J) al - 4/3 

E1 X23 7 m2 

- 
., 
r3 bm;, 

+ 12 ' 
p13 

ýý 3,1 f12 C2 4 2ýý"` + 108 2 8/3 
Ri 

+ 
Qi 

4/3 f (-m +) 22 1 ai) Qs-1 1/2 sý fin 
-6 cl C2 + 22mß + l2 2, 

R1 pý 

1/9 ý14a2 06 (-m +)+ 1/9,06- (-m +) 24 + 12 323; m2 - 01 
6 

a2 f (-m +)+ 2/3 +- 8/3 26 m3- 4/912 

6zä mz ++ 2/3 (-m + 1) e22C12 - 4/9 f (-m +) ý' 3/3 

b23) 
ß4Q6-2 

(3.137) 

where 01,02,33,64 and #4 are five dependant variables given by 

ßl = M2 - 12 f mß'1 + 36 (3.138) 

02 = m2 - 12 /m 2+ 36 (3.139) 

03 = m2 - 12 -. 13M b+ 36 (3.140) 

04 = 2(-b 3+ ý13 +6 ý2 
S1 

2a1 
-3 b12b2 -6 S22b1 al -2 b13a, + 

(3.141) 
2c123 +3 b22C1) 

= -G 6sJ m2 ' fým +2 'ý3m +13 3fým 05 + 
V/6- m2 C2 

R -Vol 01 
/6' 

REz 
Ei 

-6 
3R'n2 

- 4/3 Qmm 
- 2/3 12x2 -m + NIT2) +2 

2/3X12f -m+ 
ý 

(3.142) 

ß6 =64 -4 ý1 2+ 66 2C12 + C14 -4 ý2 1 (3.143) 

The derivatives for the parameters are rather lengthly. This is unfortunate but 

unavoidable given the constraints acting on the expressions (common tangents 
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between zones). 

5 

Figure 3.14: The c ont inuity of t he first derivative of the yield funct ion wit 11 respect 
to k 

3.5.2 The Mixed Derivatives 

The mixed derivatives of the yield function with respect to the internal hardening 

parameter kp and the stresses are given as 

102F)= a2F JAI (3.144) Apac akl, aý ao 

}can he determined directly from { 21 

Q1 +(72+Q3 

= (3.145) 
f f 

thus 

{ä }- {} (3.146) 

while 

82F 82F 8k 
ö (3.147) 8kp8F 8k8ý kn 

This derivative can be determined using (3.126) 

`)2F, -a (3.148) aka - aýoaý ak 
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where ak is given by (3.125), while e{ ä is to be calculated independently for each 

zone. 

In Zone 1, the yield function is independent of k, and therefore: 

82F 
ecog% =0 (3.149) 

In Zone 2, by taking the derivative of ea (which is given by (3.128)) with respect 

to ýo, we obtain: 

02F -4 ea +3 eb e2 +2 ec ,+ ed (3.150) 
0 aý - ado ato a{o a£o 

In Zone 3, by taking the derivative of ae (which has been expressed in (3.130)) 

with respect to Co, the derivative is: 

äßo=4a X33 + 12 a& f +3' eo 32+6b3+2 2äö 3+2 ce + NO 
(3.151) 

Finally, for Zone 4, by taking the derivative of O'f (which is given by (3.132)) with OCO 

respect to o: 

82F 
_ 

-36 (1/6)7 f (-m+ 
Q3)' t2m2 36 (1/6)7 f 

-m+ 03 
y-t 

m2 

8ý084 03 
(_m+ 

Q; 
) 

+ 
Q33/2 -m+ Q3 

+ 

36 (1/6)'y f -m} Q3 "ry 
m2 

(3.152) 

1 -m+ Q3 1 03 

3.5.3 Stress Derivatives 

The partial derivatives of the yield function with respect to the stress tensor is 

obtained by applying the chain rule of differentiation. Recall (3.77); each term 

which appears in the equation is dependant on the stress state. Therefore the first 

derivative of the yield function with respect to the stresses is expressed as follows: 

{ o(F 00, 
OJ{e}- at 

f 2j) } (3.153) 

where J2 is the second deviatoric stress invariant. 

The second derivatives of the yield function with respect to the stresses are given 
by 
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a 2F 
__ar8 

faJ ýör1a aJ 1aJ l (a J ý]ää 
la e, aoe 1a la 1r+l 

ýa r+ (3.154) 
{äa} 

aJ2 1 190, JO2 
{ao} loaf 

The first derivative of r with respect to the stress tensor is given as: 

{ä }-ä {ä }+ äe {äo} (3.155) 

The second derivative is 

8r 88 8r 8B 8 8r f8 l f8Bl ýý - a{ý {ä}{ä}+O 
coo 

{ 
ea 

}{ä}+ 
0049C 

e1l0+ 8r1 

(3.156) a2r t8e 82e ar 
ae 

J {eo} +=e 

ar 82r a2r ae o2T ate 
The details of derivations of äff,, a a0, o+ ae o can be found in the 

appendix. 

The first and second partial derivatives of F with respect to C have been calculated 

separately for each zone. 

In Zone 1 and from (3.78): 

-2 (1/6)'r f 
P ON -m+\/ 

11 fm 

vro 
3157 

82 36 (1/6)r %r6 -m+ý 
ryry2m2 

36(1/6)'yf -m-} 
yrym2 

8{ p (_m+ý) 03/2 -m+0 

36 (1/6)7f -m+ / 7m2 
(3.158) 

p( m+ý) 

In Zone 2, from (3.79): 

= 4a3+3b 2+2cß+d (3 159) 04 . 

N =12aý2+6bß+2c (3.160) 

In Zone 3, from (3.97): 

8= -(4a 33 + 3b 32 +2c 3+ d) (3.161) 
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ae = 12aX32 + 6b 3+ 2c (3.162) 

In Zone 4, from (3.99): 

2 (1/6)'Yf -m+ Q3 
ry'Y ým 

LPL 
_ (3.163) 

Aa -m+ R3 

8ýP1 
= 

36(1/6)~ vr6 
(-M+ R3)yry2m2 36(1/6)(_. m+/) Q3 

ryrym2 

103 
(-m+ 

Q3) Q33/2 
(_m+/) 

3 

(3.164) 
36 (1/6)7 f (-m+ R3) Y M2 

03 
(-M+%/03)4 

The first and second derivatives of p with respect to the second deviatoric stress 
invariant J2 are given from 

2J2 (61 - a2)2 + (U2 
- (73)2 + (U3 

- a1)2 
A=f= 

fc 
(3.165) 

h 
thus 

aP 
=1 (3.166) äJh fcP 

and 

O2P 
= -1 (3.167) J-2 fc P3 

The first and second derivatives of J2 with respect to the stress tensor are given in 
the appendix. 

3.5.4 The Derivatives of the Hardening Function 

Recall (3.27) 

{8o}T r 

h=S (3.168) 

The first derivative of h with respect to the stress tensor is 

Oh lle ' läQ + llaal '[ 
1) 

_h 
lä 1 

aa 2h (2 
(3.169) {} 

and 
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Oh 3h Uk 
äkp - äk äp (3.170) 

where 

Oh 
__ 

\1 
äoä 

k} "{ 
äu l)+(l äý I" {ämä }) 

(3.171) 
äk 2h (2 

which can be simplified to: 

-_{ 
äoäß }"{F} 

(3.172) 
ök h (2 

3.6 Concluding Remarks 

The newly proposed constitutive model for plain concrete under multiaxial com- 

pression has the following features: 

1. The new formulation of the yield surfaces captures the fundamental require- 

ments of simulating plastic compaction and dilation. 

2. The yield surfaces are convex, smooth, C2 continuous and intersect the hy- 

drostatic axis in the compression and tension regions without vertices. 

3. The model is constructed within a classical isotropic elasto-plastic framework, 

based on a study of the plastic strain rate vectors and the assumption of an 

associated flow rule. 

4. The proposed model is capable of fulfilling the normality condition needed 
for associated plasticity. 

5. The deviatoric cross-sections of the yield surface have a general elliptic form 

which includes a control point on the shear meridian, in addition to control 

points on the compression and extension meridians. 

6. The hardening function has been formulated to introduce a control of the ini- 
tial slope of the k-kp curve. This enables the nonlinear multiaxial deformation 

to be simulated in a realistic way. 

7. The ductility measure is expressed using an exponential function using just 
two parameters. 

8. An auxiliary stress surface has been introduced to deal with stress states 
which fall outside the zone where the yield function is undefined. 
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9. The concept of the reflected yield surface and the ductility dependent harden- 

ing function could be introduced into other formulations with different PNS 

descriptions. 

10. In total, thirteen material constants are available to calibrate the model. 
Some of these may take default values, if experimental data has not been 

captured for a particular concrete. The calibration, sensitivity study, and 

simulation procedures are described in Chapter 4. 
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Chapter 4 

Calibration and Simulations 

4.1 Introduction 

Reliability of constitutive models for any material depends on their performance 

to simulate the stress-strain response of the material under various loading histo- 

ries. In the previous chapter, the mathematical formulation of the model has been 

described. Although the construction of the model is based on the experimental 

observation which has been presented in Chapter 2, the validation of the model 

relies on its performance against all possible stress histories consisting of arbitrary 
load paths, unloading, stress reversal, and reloading. Any element of a real struc- 
ture could be expected to be exposed to such load sequences during its life-time. 

In this chapter, calibration and simulation of the model at a material level using 
triaxial and multiaxial compression test data are presented. The model contains 
thirteen material constants that need careful value selection in order to attain close 
agreement with experimental observation. 

Section 4.2 presents the full set of these material constants which are divided into 

three groups: elastic, PNS and hardening constants. The calibration process for 

these material constants is discussed in Section 4.3. This process enables the user 
to identify near optimum value for each constant. The sensitivity analysis of each 
material constant reveals its influence on the response of the model. This has been 
done at two levels, local and global. The local level addresses the influence of each 
constant on the part of the model which it controls, while the global level addresses 
the influence on the stress-strain response. This work is presented in section 4.4. 
In the last section, the simulations of the model for two sets of experimental data 

are presented; 

(i) triaxial compression tests conducted at the University of Sheffield 

126 
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(ii) a set of multiaxial compression tests carried out at Colorado University. 

Concluding remarks are appended at the end of the chapter. 

4.2 Material Constants 

As noted in the introduction to this chapter, the full set of material constants for 

the new elasto-plastic model consists of thirteen constants. However, nine of these 

constants can be fixed with a default values. These material constants can be 

grouped into the following three categories: 

1. The elastic constants (which control the initial stiffness): Young's modulus 
(E) and Poisson's ratio (v). By using these two constants alone, an isotropic 

linear elastic behaviour may be described. 

2. The PNS constants: the uniaxial compressive strength f,, the uniaxial tensile 

strength It, the deviatoric shape factor a and the meridional shape factor -y. 
Adding this set of constants to the elastic constants allows an elastic-perfectly 

plastic behaviour to be described. 

3. The hardening constants: the yield surface constant al, the plastic volume 
transition constant a2, the initial hardening variable ko, the hydrostatic in- 

tersection factor Ak, the initial slope factor so and the hardening factors Ah 

and Bh. Adding this set of constants to the previous two sets describes an 

elastic-hardening plastic behaviour. 

Table 4.1 shows a list of the constants classified according to the three categories, 

elastic, PNS and hardening. Ten of these constants are dimensionless, with units 

required only for E, ff, and ft. 

4.3 Calibration 

The calibration process for the material constants is discussed such that the op- 
timum values may be obtained by examining laboratory data. The experimental 

results used for the calibration process here are those of Hoek cell tests undertaken 
in the Department of Civil and Structural Engineering at the University of Sheffield 

during 1999. In the triaxial cell tests, the axial forces are applied on the specimen 
by means of an axial load system, and the radial compressive forces are applied 
by pressurising the fluid in the reservoir of the cell. Cyclic loading with different 
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Table 4.1: The model material constants classified into three groups 

level of confinements have been reported [Crouch et. at., 20011. Another set of 
data was produced by a test program undertaken at the University of Colorado 

during 1981 and 1982 using multiaxial compression on cubic specimens [Scavuzzo, 

1982; Stankowski, 1983. The constants are now discussed in the same order as 

they appear in Table 4.1. 

4.3.1 Poisson's Ratio, v 

The ratio of lateral to axial strain is called Poisson's ratio. A common value used 
is 0.20 to 0.21, although the value may vary from 0.15 to 0.25 depending upon the 

aggregate, moisture content, concrete age, and compressive strength [Neville]. 

From the elementary isotropic form for Hooke's law 

ýEl = (Lal 
- v(&2 + Aa3)) (4.1) 

0CE2 = (L o- v(OQ1 + OQ3)) (4.2) 

De3 = (Ov3 - v(& 2+ AO l)) (4.3) 

where v is poisson's ratio; E is the modulus of elasticity, a1, a2 i and 0'3, are prin- 
ciple stresses and el, E2, and e3i are principal strains. 
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For the set of Sheffield triaxial experimental data with cylindrical specimens, the 

intermediate and minor principal stresses are equal (Q2 = v3). 

Solving the above equations for Poisson's ratio, 

v- 

(ia20E1) 
- 

(Oo1'. 
2) (4.4) 

(&1071) + (OQ20e1) 
- 

(20Q20F2) 

Where A O'2 is the change in the lateral stress; 0e1 is the change in the axial strain 

and Aal is the change in the axial stress; Lee is the change in the lateral strain. 
The change (0) is taken from the unloading and reloading points on the stress- 

strain curve as shown in Figure 2.7. The procedure to calculate Poisson's ratio is 

as follows: 

1. Identify the loading unloading points on the experimental stress strain curves. 

2. Identify the change in the principal stresses (Ool, A62 and io3) and the 

principal strains (0&1, Dee, and De3). 

3. Calculate Poisson's ratio for each cycle using the formula 4.4 

4. Select the appropriate value or take the average of all the cycles (see Chapter 

2). 

The overall average value of Poisson's ratio of all twenty seven specimens from 
Sheffield experiments for all loading cycles is found to be 0.23 and the standard 
deviation is 0.02. 

4.3.2 Young's Modulus, E 

Since the stress-strain curve for concrete is not linear, the modulus may be taken 
from different parts of the a-e curve as discussed in Chapter 2. In this study, the 

unloading chord modulus has been used to represent Young's modulus. It is the 

modulus calculated from the unloading to the loading points on the stress strain 
curves (see Figure 2.7). In Chapter 2, the Young's modulus from the Sheffield tests 
for each cycle has been calculated using the following formula 

E- 
OQl -2v AQ2 

(4.5) Ae1 

For the concrete mix with f, = 58 MPa the average value of the modulus for all 
cycles is found to be 50.5 GPa, the average value of the modulus for the first cycles 
of loading is 51.1 GPa and the average value for the last loading cycles is 50 GPa. 
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The values of Young's modulus calculated from the first loading cycles is thought 

to be more representative for the modulus of elasticity. This is because firstly, 

it represents the material before the propagation of microcracks, secondly, the 

modulus is thought to be a material constant and should be independent from the 

stress path. Therefore, the modulus for the first cycle has been selected in this 

study. 

4.3.3 Uniaxial Compressive Strength, f, 

The uniaxial compressive strength is the most common test preformed on concrete. 

However, it is surprising that with the advanced methods and techniques today 

available, the reliable determination of concrete strength is still a very difficult 

tasks. Uniaxial compression test results are subject to several causes of variation 

owing to the different test methodologies and apparatus used. Among the different 

causes of variation we can consider, for example, the sample size; the method of load 

application; the rate of loading [Riisch]; and in particular the boundary conditions 
(confinement conditions, the kind of contact between specimen surface and loading 

plate, and the type of loading system) [Fumagalli]. Various ways to carry out the 

test are described in different codes of practice. There are in general three different 

ways: 

1. ASTM C 39 (Cylinder Test): The normal compressive specimen in North 

America is a cylinder with length to diameter ratio of 2: 1. Since strength 
is dependent on loading rate, the specimen should be loaded at a controlled 

rate of 20 to 50 lb/in2/s (0.14 to 0.34 MPa/sec) or a deformation rate of 0.05 

in/min (1.27 mm/min). 

2. Cube Test BS1881-120 (Cube test): Standard in Great Britain and Germany, 

uses a6 in (152.4 mm) cubic mold, which is filled in three layers, rodded 35 

times with a 25 mm square rod or compacted with a vibrator. The cube is 

tested at right angles to the position tasted and therefore requires no capping 

or grinding. The loading rate is 33 lb/in2/s (0.23 MPa/sec). 

3. Prism Test (ASTM C 116): Developed to test compressive strength from 

broken portions of beams tested in flexure. This is a research test and is not 

an alternative to the cylinder test. 

Cube tests - in general - provide higher values than the cylinder tests. The cylin- 
der/cube ratio depends on various constants, including the compressive strength 
of the concrete. A number of studies have been carried out in order to express the 

variation of the ratio with cube strength. It is generally found that the ratio, which 
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is about 0.82 for ordinary concrete, approaches the value one when the strength 
increases. However, it has been known for a long time that the ratio, depends on 

other factors, for instance the maximum size of aggregate [Gyengo]. The sensitivity 

of the material to the curing process could be a relevant parameter also, because 

the surface/volume ratio is generally higher for cubes. Apart from these three 

factors related to the material itself, other factors, related to the specimen, are of 
importance. The size of the specimen, whatever the shape, influences the compres- 

sive strength (a bigger specimen leading to lower mean value and lower standard 
deviation). Finally, the end condition of a specimen plays a role, especially for 

cylinders, as cubes are generally tested directly by the lateral faces (as compared 

with the casting position), without any treatment (this is the main interest of the 

cube) [De Larrard et al. ]. The mean value of the uniaxial compression strength in 

the Sheffield tests was found to be 58 MPa. 

4.3.4 Uniaxial Tensile Strength, ft 

The value of the uniaxial tensile strength can be determined from three types of 
tests: 

1. Direct tension test: This test is performed by the application of direct and 
pure tension force. However, the application of such a force free from eccen- 
tricity, is very difficult. A test using bonded end plates, is prescribed by the 
U. S. Bureau of Reclamation. 

2. Flexure test: In these tests, a plain (unreinforced) concrete beam is subjected 
to flexure using symmetrical two-point loading until failure occurs. British 
Standards BS 1881: Part 118: 1983 prescribes third-point loading on 150 by 
150 by 750 mm beams supported over a span of 450 mm. 100 by 100 beams 

can also be used, provided the beam side is at least three times the maximum 
size of aggregate. 

The requirement of ASTM C 78-94 are similar to those of BS 1881: Part 
118: 1983. There exist also a test for flexural strength under center-point 
loading, prescribed in ASTM C 293-94, but no longer covered by a British 
Standard. 

3. Splitting tension test: In this test, a concrete cylinder, of the type used for 

compression tests is placed with its axis horizontal between the platens of 
a testing machine, and the load is increased until failure by indirect tension 
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in the form of splitting along the vertical diameter takes place. This test is 

prescribed in BS 1881-117: 1983 and ASTM C 496-90. 

The value of ft adopted here, was the value obtained from the triaxial compression 
tests by applying the following procedure: 

1. Determine the values of the peak nominal stresses envelope (PNS) experi- 

mentally. 

2. Identify the best value for the PNS constant m by the mean of the least square 

optimisation between the experimental values and the values calculated from 

the equation (3.62) using the existing value of f, and -y. 

3. Solve the equation (3.66) numerically for ft. 

The value of ft for the tests carried out at the University of Sheffield is found to 
be 4.25 MPa (0.07 f f). 

4.3.5 PNS meridional Shape Constant, ry 
The material constant ry has been introduced by Tahar to ensure continuity of 
the yield surface in the hydrostatic tensile region [Tahar]. On the basis of several 
investigations, Tahar recommends that a value of 0.99 be assumed for all structural 
concrete. The location of the PNS for ry =1 and y=0.99 are almost identical. 
However, it is only when ry <1 that C_ continuity of the surface is obtained. If the 

experimental data suggest that the PNS and residual surfaces are better simulated 
by lower values of -y, then a least squares error minimisation approach could be 

used to obtain the optimum value . 

4.3.6 PNS Deviatoric Shape Constant, a 

a may be determined on the basis of the biaxial compressive strength under a 
stress ratio of 1: 0.5 assuming it and ry have already been found. The procedure is 

as follows: 

1. Given the experimental result Ql (knowing that Q2 = 0.5&1 and Q3 = 0) find 
the corresponding value for using equation (2.22) 

2. Given t calculate the corresponding values for p, (3.62) and pe (3.63) 

3. Calculate ps using p, =2 
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4. Insert the values of Bo and Bl into 

V3-B 

a_ 
B1 - 

2B 
1+Bo (4.6) 

3B 
ý3 1+Bo 

Using this approach together with the classical biaxial data of Kupfer et al. (1969), 

Tahar obtained a value of a=0.8. It has been noticed that a slightly reduced value 

of a can provide a better fit to biaxial stress ratios less than 1: 0.5. Note that an 

alternative method of calculating a could be to examine results from multi-axial 

compression testing in a given deviatoric plane for Lode angles -2:, 0 and 6. For 

the case where data is not available, a default value of 0.8 could be assumed. 

4.3.7 Yield Surface Constant al 

This is the constant which controls the common point at the PNS, or in other words 

the beginning of zone 2 of the yield surface. Two proposal have been introduced in 

Chapter 3. The first proposal is the one which has been used in this study for the 

reasons mentioned there (see Section 3.4.3). The value of this constant is found to 

be in the range between 0.2 and 0.4. Default value of 0.25 can be assumed. 

4.3.8 Volumetric Transition Stress Constant cx2 

This constant can be calibrated from the uniaxial compression tests as follows: 

1. Calculate the volumetric plastic strain ej = ei+ E2+e3 

2. Identify the stress state where c value is at a minimum. 

3. Calculate the (VTS) and p(VTS) at this point 

4. Identify p(PNS) at the PNS that corresponds to the same point. 

5. Calculate a2 
a2 _ 

P(VTS) (4.7) 
P(PNS) 

Experimental results from the previous chapter have indicated that under com- 

pressive loadings, dilation begins at about 90 percent of the peak stress. This is 

also supported by the findings of other researchers [Chen and Saleeb 1994b]. For 

Sheffield tests data, the overall value of this constant is found to be approximately 
0.93. 



Chapter 4 Calibration and Simulations 134 

4.3.9 Initial Hardening Surface constant, loo, and Hydro- 

static Intersection Constant, Ak 

ko and Ak are the two constants that identify the initial yield surface which repre- 

sent the limit of initial elasticity. To date, there have been no extensive experimen- 
tal test programmes which have determined the size and shape of the initial yield 

surface for concrete in multi-axial stress space. This could be achieved by following 

small scale unloading-reloading stress probes in a multi-axial rig and monitoring 

when inelastic strains first appear after loading in different directions. Such a test 

programme has been undertaken at the University of Sheffield. Information of this 
kind is required in order to calibrate the material constants ko and Ak. 

If hydrostatic compression test data are available and it is possible to detect the 

point at which non-linearity in the hydrostatic stress-strain curve first appears, 
then ýo is known and Ak is given by 

Ak=ßo(1-ko) (4.8) 

The calibration of these two constants has been achieved by assuming a default 

value for ko = 0.1 and using the least square method to find the optimum value for 
Ak. This value is found to be in the range between 1.0 and 3.0. 

4.3.10 Hardening Slope Constant, so 

The role of this constant is to give an extra control over k- kp relationship by 

controlling the initial slope (Figure 3.11). This constant should take a finite positive 
value. The value which has been adopted throughout this study, is 2.7. 

4.3.11 Hardening Constants Ah and Bh 

The hardening constants Ah and Bh (which control the value of the ductile measure 
() are calibrated by means of the peak strains in uniaxial compression and triaxial 
compression (Figure 3.12). In the tensile region the variation in C is limited. The 

values for Sheffield tests for Ah and Bh are found to be 0.003 and 0.55 respectively, 
and for Colorado tests are 0.005 and 0.5. Typical ranges and default values of all 
constants for concrete are shown in Table 4.2. 
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[- 1 1 Material constant Typical ranges Default values 

v Poisson's ratio 0.15 <-º 0.25 0.2 
E Young's modulus 15 H 60 GPa NA 

niaxial compressive strength 20 +-º 80 MPa NA 
ial tensile strength 2H5 MPa 0.1 ff 

M 

meridional shape constant 0.95 ý--º 0.999 0.999 
deviatoric shape constant 0.1+-+0.9 0.8 

Yield surface constant 0.2+-+0.4 0.25 
Volume transition constant 0.9 *-+ 0.95 0.9 

R 

Initial hardening surface constant 0 t-+ 0.3 0.1 

so Hardening meridional shape constant 1.0+-+3.0 2.7 
Ak Hydrostatic intersection constant 04-+3 1 
Ah Ductility constant 0.003 f--º 0.006 NA 
Bh Ductility constant 0.3 H 1.5 NA 

Table 4.2: Model constants with typical ranges and default values for concrete 

4.4 Sensitivity Study 

In this section the sensitivity analysis of each constant is discussed, and how indi- 

vidual material constants affect the local and global response of the model. The 

local sensitivity illustrates the influence of each constant on that part of the model 

which is influenced by the constant, i. e the influence of the PNS constants on the 
PNS, the influence of the yield constants on the yield surface and the influence of 

the hardening constants on the hardening function. 

The global study investigates the effect of changing the constants on the predictions 

of stress-strain results. The sensitivity is investigated for Sheffield tests data by 

fixing all but one of the material constants, then varying the constant by plus and 
minus the same value. In the following section, the sensitivity results from each of 
the material constants are discussed. 

4.4.1 Poisson's ratio, v 

Figure 4.1 shows the stress-strain curves for sample 5-8a from the Sheffield tests 

with v=0.20,0.22 and 0.24. The model shows very little sensitivity to the change 
of v. Higher value of v results in only slight decrease in the stresses. 
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Figure 4.1: The sensitivity of the stress strain response to Poisson's radio v 
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Figure 4.2: The sensitivity of the stress-strain response to E 
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Figure 4.3: The sensitivity of the PNS to f, 

4.4.2 Young's Modulus, E 

The sensitivity of the model to the Young's modulus (E) has been examined by 

using the values of 44.6,49.0 and 53.7 GPa for E. Test sample 5-8a with 20 

MPa confinement is simulated. Figure 4.2 shows the effect, of E on the stress-stain 

response. The initial part of the stress strain is clearly influenced by the change, 

whilst the peak response is not.. This is due to the fact that initially the response 

is predominantly elastic, but, close to the peak the plastic response becomes the 

dominant, factor. 

4.4.3 Uniaxial Compressive Strength, f, 

The uniaxial compression strength, fc, is perhaps the most important material 

constant, in the model. This constant. is used extensively in the formulation of the 

model since it is used to normalise the stress invariants. Figure 4.3 shows the effect 

of this constant on the PNS surface. Figure 4.4 shows the effect of the constant on 
the stress strain response for sample 5-8a of the Sheffield tests with a confinement 

of 20 NII'a. Both figures show the response after varying the constant by +10% of 
the value shown in the Table 4.3. 

The formulation of the PNS is based on the condition that the equation passes 
through the uniaxial compression strength point, this results in enlarging the PNS 

-5 -4 -3 -2 -1 01 
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Figure 4.4: The sensitivity of the stress-strain to fý 

surface envelope away from the hydrostatic axis if the value of fý increases. Glob- 

ally, higher values of f, cause the stress to increase for the same value of strains. 

4.4.4 Uniaxial Tensile Strength, ft 

Figure 4.5 shows the effect of uniaxial tensile strength, ft, on the PNS surface. 
Values of ft of 3.82,4.25, and 4.675 correspond to m values of 15.38,13.82, and 
12.54, respectively have been used. It, is clear that, decreasing the value of ft, has the 

effect of pushing the PNS surface away from the hydrostatic axis in the compression 

region and inward in the tensile region. This does not agree with the experimental 

evidences [Neville] which suggest that as compressive strength, f,, increases, the 

tensile strength, ft, also increases but with a decreasing rate. Therefore, further 

improvement, is required to the performance of the model in the tensile region. 
Figure 4.6 shows the effect of this constant on the stress strain response for sample 
5-8a of the Sheffield test with a confinement, of 20 MPa. Decreasing the value of 
the constant, increases the stresses predicted for the same values of strains. Both 

figures show the response after varying the constant by ±10`% of the value shown 
in the Table 4.3. It, can be seen that the effect, is not proportional. This is due to 

the nonlinear relationship between constant, in, and ft (See Figure 4.7). 

-12000 -9000 -6000 -3000 0 3000 6000 
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Figure 4.5: Sensitivity of the model to ft 
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Figure 4.6: The sensitivity of the stress-strain response to ff 
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Figure 4.7: The relation between m and ft 

4.4.5 PNS Meridional Shape Constant, -y 

Figure 4.8 shows the effect of the ineridional shape constant, ry, on the PNS surface 

and the yield surface. Reducing the value of 'y has the effect of marginally reducing 

the PNS surface and the yield surface in the compression region. In order to in- 

vestigate this effect, a triaxial compression test with a confinement of 20 MPa was 

used to examine the sensitivity of the stress-strain response to changing -y. This 

(for 'y values of 0.97,0.98 and 0.99) is shown in Figure 4.9. It can be seen that 

decreasing 'y within this range has no noticeable effect on the stress-strain response. 

4.4.6 PNS Deviatoric Shape Function Constant, a 

Figure 4.10 (a) and (b) shows the deviatoric sections of the smooth PNS surfaces 

at ten levels of normalised hydrostatic pressure (=0 to -2) for two different (a 

=0.005 and 0.6) values with PNS meridional shape constant ry = 1. In tension, the 

deviatoric sections approach the triangular shape of the Rankine envelope. With 

increasing confinement, the deviatoric sections resemble the hexagonal shape of the 

Mohr-Coulomb condition but under very high confinement they may approach the 

circular shape of the von-Mises criterion, depending on the value of a. Note that 

for BO = 1, the influence of the Lode angle disappears, and the deviatoric shape of 
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Figure 4.8: Sensitivity of the model to 7 
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Figure 4.9: Sensitivity of the stress strain response to y 
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Figure 4.10: The deviatoric sections of the smooth PNS criterion at ten levels of 
normalised hydrostatic pressure (=0 to -2) for two different a values , 

(a) a= 
0.005 and (b) a=0.6 (ry = 1)[Tahar] 
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the PNS surface becomes circular as in the generalised Drucker-Prager criterion. 

The material constant a affects the shape of the PNS surface in a deviatoric plane. 

The model will show no change in the stress-strain curves under uniaxial compres- 

sion and uniaxial tension as a is varied. The effect of a is only apparent when 

examining stress paths which lie away from the extension and compression merid- 

ians. That is, a only influences the behaviour when fi <9<6. Increasing a will 

lead to higher strengths in this region and will result in marginally higher strains 

at peak stress. 

4.4.7 The Yield Surface Constant, ctrl 

Figure 4.11: Sensitivity of the model to ai 

Figure 4.11 shows the effect of the yield surface constant ai on the yield surface. 
Values of ai of 0.05,0.15, and 0.25 have been used. It is clear that within these 

values the effect is very limited. The global effect on the stress strain response 

also seems almost unnoticeable. Figure 4.12 shows the stress strain response of 
Sheffield test, data with 20 MPa confinement to the increase and decrease of 10% 

of the value of the constant. 

4.4.8 Plastic Volume Transition Constant, a2 
Figure 4.13 shows the effect, of the p1a t. ic volume transition constant a2 on the 
yield surface. Values of 0.7,0.8 and 0.9 has been used to demonstrate the effect. 

1 
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axial stress versus axial and lateral strain 
(20 MPa confinement) 
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Figure 4.14: Sensitivity of the stress strain response to the change of a2 

Increasing the value of this constant pushes the yield surface towards the PNS sur- 

face without, changing the value of the hydrostatic compression intersection point 
'hr 

Figure 4.14 illustrates the effect of this constant on the stress strain response for 

Sheffield test, data with 20 NII'a confinement. The increase of this constant causes 

an increase of the stresses for the same values of strains near the peak with no 

noticeable effect near the origin. 

4.4.9 The Hardening Constant, soy 

Figure 4.15 illustrates the effect of so on the hardening variable k for 
. soy = 1.5,2 

and 2.5. Increasing the value of this constant, increases the initial slope of the kp - 
A" rnrve. The inhplic"at icºn of timt, is decreasing the initial hardening. 

4.4.10 Initial Hardening Surface, ko 

The 1-csi unsc of t 1w )"icld surface to k� = 0.1,0.15 and 0.2 is shown in Figure 4.16. 
The increase of this constant, increases the size of the initial elastic domain and 
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Figure 4.17: The effect of ko on the stress-strain response 

hence, delays the onset of the nonlinear response. Figure 4.17 shows the effect of 

this constant. on the triaxial test from Sheffield test data with 20 MPa confinement. 
The change of kn has no apparent effect on the response under this stress path. 

4.4.11 Hydrostatic intersection constant, Ak 

The Constant Ak i-' ººsecl to "c", ºle t Iw size of the elastic clcnnain for a fixed value of k. 

The effect of changing Ak can the yield surface is shown in Figure 4.18. Values of Ak 

= 0.5,0.7, and 0.9O have been used. The role of the constant, is to increase ý() which 
is defined as the dimension between the hydrostatic tensile intersection point. ýht 

and the hydrostatic compression intersection point, ýº,,.. Increasing the value leads 

to inc rem-Ae in the linear domain and hence slightly delays the onset of non-linearity. 
Under triaxial confinement the effect. of the change on the stress-strain response 
is illustrated in Figure 4.19 where test. data from the Sheffield tests with 20 A11'a 

level of confinement h, Ls been uscecl . 
Decreasing the value of the constant, increases 

slightly the stresses at peak for the same level of strain. 

4.4.12 Hardening constant, A,, 

Inc"re, w, ing t lic value of A,, k &u1s to iucreasc in the value of the ductile measure C. 
Figure 4.20 shows the affect of Ah = 0.001,0. (103 and 0.005 on (. The sensitiv- 
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Figure 4.18: The sensitivity of the model to Ak 
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Figure 4.19: The effect of Ak on the stress strain prediction 
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Figure 4.20: Effect of constant Ah on the ductile measure 
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Figure 4.21: The effect of Ah on the stress strain prediction 
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Figure 4.22: Effect of constant Bh on the ductile measure, 

ity of the hardening stress-strain response to Ah = 1.15 x 10-4,1.20 x 10-4 and 

1.25 x 10-4 is shown in Figure 4.21. Increasing the value of Ah has the effect of 

slightly decreasing the initial slope of the stress strain curve whilst the effect is less 

prominent close to the peak. 

4.4.13 The Hardening Constant, B, 
1 

Figure 4.22 shows the effect when Bh = 0.89,0.99 and 1.09 on the ductile measure 

(. Increasing the value of the constant decreases the value of the ductile measure in 

the compression region, but does not inflict any change on the value of ( at = 0. 

The effect of the increasing the value of B,, on the stress strain response is shown 

in Figure 4.23. With higher values of Bh there is an increase in the predicted value 

of the stresses especially close to the peak. 

4.5 Simulations 

In this section, two sets of experimental data from the University of Sheffield and 

the University of Colorado are used to examine the ability of the constitutive 

model to capture the material response of plain concrete. The first data set in- 
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Figure 4.23: The effect of B,, on the stress-strain response 

cludes cyclic triaxial compression loading tests performed by Papatheodorou as 

part of her taught MSc. degree, under the supervision of Professor Crouch. The 

work was reported in a document to British Energy (UK) plc [Crouch et al; 2001]. 

The second data set includes tests conducted by Robert Scavuzzo and Thomas 

Stankowski at the University of Colorado during 1981 and 1982 [Scavuzzo, 1982; 

Stankowski, 1983]. The tests consist of different multiaxial load paths, unloading, 

stress reversals and reloading. 

The material constants used for the two sets of simulations are given in Table 

4.3. The values for these constants were determined by the calibration procedure 
described in Section 4.3. 

4.5.1 Sheffield Uniaxial and Triaxial Compression Tests 

A series of six tests regimes are simulated. Each of these regimes was repeated 

at least once in the laboratory using nominally identical concrete. The repeat ex- 

perinients give an indication of the scatter found when testing this heterogeneous 

material. The triaxial tests range from minimal confinement 62 = Q3 =0 to 70 

MPa. 
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11 1 Material Constant Sheffield Colorado 

v1 1 Poisson's ratio 0.22 0.2 
E Young's modulus 50 GPa 20 GPa 
E fý Uniaxial compressive strength 58 MPa 22.6 MPa 
; 

Uniaxial tensile strength 4.28 MPa 2.26 MPa 

ry PNS meridional shape constant 0.999 0.999 

a PNS deviatoric shape constant 0.8 0.8 

al Yield surface constant 0.25 0.35 

a2 Volume transition constant 0.93 0.9 
ko Initial hardening surface 0.1 0.1 

so Hardening meridional shape constant 2.7 2.7 
Ak Hydrostatic intersection constant 1 2.5 
Ah Ductility constant 0.003 0.005 
Bh Ductility constant 0.55 0.5 

Table 4.3: Material constants used for the triaxial simulations 

Figure 4.24 (a) shows the model simulation (in the red line) and the experimental 

stress-strain responses (blue) for the case of uniaxial compression test (test sam- 

ple 5_la_R_0). The simulation has been performed using the material constants 
illustrated in Table 4.3. In this test, the model simulates the stress-strain response 

of concrete very well for about eighty percent of the stress-strain curve. However, 

close to the peak, the model over-predicts the stresses. For the lateral stress, the 

shape of the curves are similar to that of the experimental. For the axial stress, 
the shape of the curve is almost linear initially and becomes increasingly nonlinear 

close to the peak. The simulation could be improved if an alternative values of Ah 

and Bh and Ak are used. Figure 4.25 (a) shows the simulation of the same test 

where the value of Ah =4x 10-5, Bh = 0.12 and Ak =1 are used. The model 

predicts very well the behaviour of concrete and total agreement is achieved. How- 

ever, the values of Figure 4.24 are chosen in order to maintain same values for all 
the material constants during the simulations. The simulations shown in Figure 

4.25 have been performed using various values of the material constant Bh while 
other constants remained fixed. This has been performed in order to demonstrate 

the capability of the model for a much better simulations. 

Figure 4.24 (b) shows the performance of the new model when compared with 
the results of triaxial compression tests under confinement of 10 MPa (sample 
5_6a_R_10). With this level of confinement, the peak strength is increased to almost 
double the uniaxial strength and so are the peak strains. The model predictions 
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for the lateral stresses seem to agree well with the experimental data and the shape 

of the curve is also in close agreement. The response of the model for the axial 

stresses seems to be linear in the first two cycles. The model does predict well the 

values of the stresses but the shape of the curve is close to a linear response. The 

selection of a small value of Ak could improve the shape of the curve. Figure 4.25 

(b) shows the same test using Ah =7x 10-5 , Bh = 0.2 and Ak = 1. It can be seen 

that with these values the prediction of the model is very close to the experiment. 

Figure 4.24 (c) shows the model simulation for a triaxial compression test with 

a confinement of Q2 = u3 = 20 MPa (sample 5-7a-R20) using the values for 

the constants from Table 4.3. The lateral prediction of the model seems to be in 

good agreement with the experiments. As for the axial stresses the model response 

seems to be linear for part of the intermediate zone, then towards the peak the 

response tends to be none-linear and predicts well the peak stress of the concrete. 
The simulations can be improved if different values of material constants are used 

as shown in Figure 4.25 (c) where Ah = 12 x 10-5, Bh = 0.265, and Ak = 1. 

Figure 4.24 (d) shows the results from a triaxial compression test where Q2 = Q3 = 
30 MPa (sample 5_3b_R_30). In the initial part of the tests, where the behaviour 

is generally linear, the model predicts well the stresses. After the cyclic loading 

zone, the model under-predicts the value of stresses but the general shapes of the 

stress-strain curves are maintained. The simulations could be improved if another 
set of values for the constants are used. Figure 4.25 (d) shows the prediction of the 

model with Ah = 18 x 10-5, Bh = 0.25, and Ak = 1. The model shows total agree- 
ment with the experiments. It can be seen that the improvement of the ductility 

measure ((') leads to a better simulation. 

In Figure 4.24 (e), the behaviour of concrete under triaxial compression at a cell 
pressure of 60 MPa, is shown (sample 5_2c_R_60). Whilst the lateral stresses pre- 
dictions show total agreement with the experiments, the model appears to under- 
estimate the axial stresses in the intermediate part of the curve. The model then 
re-captures the behaviour and good agreement is achieved with the experiments. 
Figure 4.25 (e) shows the simulations of the same sample with Ah = 29.5 x 10-5, 
Bh = 0.25, and Ak = 1. The model predictions have been enhanced with the 

changing of the constants which give another confirmation of the significant role of 
the ductility measure (. 

Finally, in Figure 4.24 (f), a triaxial compression test with a cell pressure of 70 MPa 
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(sample 5_7c_R_70) is simulated. The model slightly underestimates the values of 

stresses but the model captures the general shape of the stress-strain curve. Figure 

4.25 (f) shows the simulations of the same sample with Ah = 25 x 10-5, B,,, = 0.25, 

and Ak = 1. The simulations show very good agreement with the experiments. 

The predictions of the model are compared with results from uniaxial and triaxial 

compression tests. It is shown that excellent predictions of the stress-strain re- 

sponses for most of the compression tests are achieved. The predictions could be 

improved if different values for the ductility measure constants are used. Another 

set of simulations were performed by fixing all the material constants except the 

material constant Bh. These simulations have shown very good agreement with the 

experimental tests. The values of the material constant Bh were increased with the 

increase of the confinement. The relationship between Bh and . could be modelled 

with an exponential function. This requires an amendment to the model and an 
introduction of more derivatives and also leads to an increase in the number of 

material constants. However, this could open the way for further improvement to 

the model through the investigation of the properties of the ductility measure C. 
The simulations -in general- have shown that the assumption of associated flow 

is valid for modelling the behaviour of plain concrete under triaxial compression 
loading. 

4.5.2 Colorado Multiaxial Compression Tests 

In the previous section, results from triaxial compression Hoek cell tests have been 

simulated. In this section the performance of the model will be evaluated using 
multiaxial compression tests. Colorado data is used to verify the simulations. The 
data comprise sixty seven multiaxial loading tests. Stresses were applied in ap- 
propriate steps, and principal strains were measured and recorded for each load 

step, so that the complete stress-strain curves could be drawn. Details of the test 
program are contained in references [Scavuzzo] and [Stankowski]. 

The test program can be divided into the following series; 

1. Series 1: Twelve cyclic triaxial tests, consisting of cyclic hydrostatic preload- 
ing to various stress levels, followed by proportional deviatoric stress cycles 
without reversal along the triaxial compression, simple shear, and triaxial 
extension paths. 

2. Series 2: Eight cyclic triaxial tests consisting of hydrostatic pre-loading, fol- 
lowed by proportional deviatoric stress cycles with reversal along the same 
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deviator path as in series 1. 

3. Series 3: Seventeen tests consisting of hydrostatic loading, followed by stress 
deviation, followed by a circular stress path within the deviatoric plane. 

4. Series 4: Twenty two axisymmetric triaxial tests to explore load path effects; 

in addition to proportional and hydrostatic-deviatoric paths. This series con- 

tained stair-case type loadings to explore convergence to the proportional 

path, tests with hydrostatic stress increments with and without hydrostatic 

preloading, and tests under non-proportional loadings. 

5. Series 5: Six tests within the deviatoric plane, as well as a number of other 

tests specifically designed to check the meaning of loading and unloading. 

6. Series 6: Two tests of piecewise-uniaxial loadings. 

For every test, the plastic flow has been presented using the same procedures de- 

scribed in Chapter 2. The average uniaxial compression strength is reported to be 

22.6 MPa, the Young's modulus is 20.0 GPa and Poisson's ratio is 0.2. 

In order to plot the results clearly in one figure, the first two strain readings are 
taken as negative and the third is taken as positive. Every stress is plotted against 
its associated strain. 

The simulations of the first series of these tests are shown in Figures 4.26 to 4.28. 

Figure 4.26 shows the model simulation (red line) and the experimental stress- 

strain responses (black line) from test 1-1 to test 1-4. Test 1-1 is a cyclic triaxial 

extension (TE) test preformed by hydrostatic loading reaching a value of = -3.8 
in two loading-unloading cycles, followed by deviatoric loading reaching a value 

of (p = 2.3) in two loading-unloading cycles. The plastic flow in the hydrosta- 

tic zone shows scattered directions. This is due to the loading-unloading cycles 

where the the experiments suggested that there is an occurrence of plastic strains 

while theoretically the behaviour should be purely elastic. The plastic strains di- 

rections show consistency during the deviatoric loading. They suggest decreasing 

in compaction while the deviatoric loading increases. The results of the model 
simulations show that the model predicts well the general shape of the stress-strain 
curve but underestimates the stresses in the region close to the peak. This could be 

improved if different values for the ductility measure constants Ah and Bh are used. 

In the same figure, the plastic flow and the model simulation for Test 1-2 is shown. 
This is a cyclic triaxial compression (TC) test which has been performed in the 
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same manner as the previous test with lower deviatoric loading. The model picks 

up the general shape of the stress-strain curves but slightly over estimates the 

stresses for one of the principal axes. At the end of one of the stress-strain curves 

there seems to be perfect plastic response where the model unable to capture. Test 

1-3 is shown in the same figure. This is cyclic simple shear (SS) test with the 

same level of hydrostatic loading. The results are similar to the previous test. The 

results of both tests could be improved if the ductility measure (() value increases 

slightly. This can be done by changing the values of the ductility constants Ah and 

Bh. 

The performance of the model for test 1-4 is shown in the same figure. This is 

a cyclic triaxial compression (TC) test where the highest value of ý_ = -2.8. The 

plastic flow takes the same trend with some vertical plastic strain vectors indicat- 

ing that the test reached the volumetric transition stress (VTS) point. The model 

shows very good agreement with most of the test. 

Figure 4.27 shows test 1-5 which is cyclic simple shear (SS) test where '= -2.8 
is the deviatoric plane. The plastic flow also takes the same trend with some odd 

readings during the deviatoric loading, which could be due to the loading-unloading 

cycles. The model picks up the general trend of the behaviour, but close to the 

peak it slightly over predicts the stresses. This is due to the value of C which is 

controlled by the two constants Ah and Bh. In the same figure the performance of 

the model for test 1-6 is shown. This is cyclic triaxial extension (TE) test where 

the deviatoric plane is as in the previous test. The model slightly underestimates 

two principal stresses and overestimates the third. This could be improved by re- 

visiting the values of the ductility constants. In the same figure, the test 1-7 is 

shown. This is a cyclic triaxial compression (TC) test in which the loading path in 

nominally identical to that of test 1-5. The model follows the general trend of the 

stress-strain behaviour and slightly over estimates the stresses. Test 1-8 is shown 
in the same figure. This test has been preformed in the same way of the previous 
tests. The model predictions is almost in total agreement with the experimental 
data. 

The results for test 1-9 is shown in Figure 4.28. This a cyclic triaxial extension 
(TE) test with the deviatoric plane at = -2.8. The plastic flow has the general 
directions as in the previous tests. The model predicts well the results for one prin- 

cipal stresses while slightly under predicts the other two. Test 1-10 shown in the 

same figure, is a cyclic triaxial compression (TC) with the deviatoric plane at _ 
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Figure 4.26: Plastic flow, stress paths and stress-strain simulations for Colorado 
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-3.8. The model predicts the values of the stresses very well but, close to the peak 
the model underestimates slightly their values. This can be improved by changing 
the ductility constants Ah and Bh. Test 1-11 also shown in the same figure. This 

is a cyclic simple shear (SS) test with the deviatoric plane at t equal to that of the 

previous test. The predictions of the model agree almost totally with experimental 
data. However, for one principal stress at peak, where perfect plasticity has been 

observed, the simulation is not adequate. This has been noticed perviously. Test 

1-12 is shown in the same figure. This is a cyclic triaxial extension (TE) test with 
deviatoric plane similar to the previous test. The results show good agreement 

with the experiments in the beginning of the test, but close to the peak the model 

underestimates the stresses in two principal directions. The prediction could be 

improved if the value of ( is changed. 

The second series starts with Test 2-1 which is shown in Figure 4.29. Test 2-1 is a 

cyclic stress reversal along the TC-TE path in '= -3.8 plane with TC failure. The 

directions of the plastic strains follow the expected trend indicating compaction 

close to the hydrostatic axis which decreases gradually as the test moves along 
the deviatoric plane. The vertical direction at the end is an indication of reaching 
the dilation stage. The model successfully predicts the experimental results for all 
principal stresses but slightly underestimates the stresses close to the peak. This 
issue has been addressed earlier. Test 2-2 shown in the same figure, is a cyclic 
reversal test along TC-TE path in '= -3.8 plane with TE failure. Initially, the 

model successfully predicts the stress-strain behaviour but close to the peak the 

prediction of one principal stress is not as good. 

The simulation of test 2-3 is shown in the same figure. This is a cyclic stress reversal 
along SS path in '_ -3.8 plane. The model successfully predicts the stress-strain 
behaviour for all three principal stresses. Test 2-4 shown in the same figure, is 
identical to the previous test and the model predictions of the stress-strain behav- 
iour is as good as in the previous test. 

Test 2-5 is shown in Figure 4.30. This test is a cyclic stress reversal along TC-TE 

path in = -1.8 plane, with TC failure. The model picked up the general shape 
of the stress-strain curve but over estimated the stresses. This can be improved 
if different values for the ductility constants are used. Test 2-6 is shown in the 

same figure. This test is a cyclic stress reversal along TC-TE path in _ -1.8 with 
TE failure. The model predicts well the initial response but for stresses close to 
the peak the model overestimates the stresses. This can be improved by revisiting 
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the values of the ductility constants. In the same figure test 2-7 is presented. It 

is cyclic stress reversal along SS path in _ -1.8 plane. The model followed the 

general shape of the stress-strain curves and predicted well the response with over- 

estimation of the stresses close to the peak. Test 2-8 is also shown in the same 

figure and it is identical to the previous test and the response of the model is similar. 

The third series starts with Test 3-1. This series consists of circular stress paths in 

= -1.8 and -3.6 deviatoric planes. The first fourteen tests, which include several 

repeats, involve hydrostatic, monotonic loading to the specified deviatoric plane, 
followed by stresses deviation along the triaxial compression path to the specified 

circle. The circular stress path consist of ten degree load steps. Figure 4.31 shows 

the simulations for the tests 3-1,3-2,3-3 and 3-4. The plastic flow for these tests 

follow the same trends with an inclination toward dilation at peak. The model 

predicts two of the three principal stresses for test 3-1 very well. The prediction of 

the third stress is good close to origin but an over prediction is noticed close to the 

peak. This might be due to some odd experimental readings. The model predicted 

well the stress-strain responses for the tests 3-2,3-3 and 3-4. In test 3-2 the model 
has over predicted the stresses which could be improved if the ductility constants 

changed. 

Test 3-5,3-6,3-7 and 3-8 are shown in Figure 4.32. The model predicts well the 

stress-strain response for test 3-5. The other three tests were preformed under 
deviatoric path in _ -3.8 plane. The model picked up the general shape of the 
behaviour for test 3-6. For test 3-7, the model diverted away from the experiments 
for one principal stress, but simulated very well test 3-8. Figure 4.33 shows test 

3-9,3-10,3-11 and 3-12. The model predicts well the behaviour of concrete for 

test 3-9. The mode simulations for test 3-10 is good close to the peak, but towards 

the origin the predictions are not as good. This region is controlled by the elastic 

constants and readjusting these constants would improve the model performance in 

this region. The model predictions for test 3-11 is less accurate in the intermediate 

zone where sharp drop of stresses is noticed. Test 3-12 is simulated well although 
it is identical to the previous test. 

Figure 4.34 shows tests 3-13,3-14,3-15 and 3-16. Tests 3-13,3-14 are similar to 

each other but with lower deviatoric loading for the latter. The model followed 

well the general shape of the stress-strain response and the overall predictions are 
satisfactory. 
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Tests 3-15,3-16 and 3-17 have been conducted using hydrostatic stress cycles up 

to various levels are applied in part A, followed in part B by circular stress paths 

as before. Finally, part C consist of hydrostatic post-loading in test 3-15, and of 

additional circular paths in tests 3-16 and 3-17. Tests 3-15 and 3-16 are shown in 

Figure 4.34 and Figure 4.35 shows test 3-17. The model predicts successfully the 

stress-strain response of these tests. 

Figure 4.35 shows the first three simulations of the fourth series tests. This series 

consists of twenty two tests, intended to explore concrete response to loading at 
the extension meridian. The figure shows test 4-1 and 4-2, the model successfully 

simulated the stress-strain behaviour. 

Test 4-3 to 4-8 have been performed under hydrostatic stress increments follow- 

ing prior stress deviation, both in the triaxially compressive and tensile directions. 

Test 4-1 and 4-2 are repeats while tests 4-4 to 4-8 involved prior hydrostatic pre- 
loading. The plastic flow shows the normal trends with some odd readings due to 

the loading-unloading cycles. The model picks up the behaviour of concrete under 
these stress paths and good predictions for all the stresses are observed. 

In Figure 4.36 test 4-4 to 4-7 are shown. The plastic flow is inconsistent during 
loading-unloading cycles where theoretically should be no plastic strain occurrence. 
The predictions of the model for test 4-4 and 4-5 are very good. The overall behav- 
iour of the concrete for tests 4-6 and 4-7 is simulated well and the model followed 

the general shape of the stress-strain behaviour but, close to the end, it overesti- 
mated the stresses. 

Figure 4.37 shows the simulations of test 4-8 to 4-11. Test 4-8 is preformed with hy- 
drostatic stress increment with preloading triaxial extension. The model picked up 
the general features of the response but, for the loading-unloading part the model 
overestimated the stresses. This could be improved by the alteration of the elas- 
tic and hardening constants. Test 4-9 has been preformed by triaxial compressive 
stress deviation at three levels. The plastic flow is consistent with the general shape 
expected for this loading. Test 4-10 has been preformed with triaxial compressive 
stress deviation at = -2.8, followed by two deviatoric cycles. The odd plastic 
flow is attributed to the loading-unloading cycles. Test 4-11 has been preformed 
using triaxial compressive stress deviation at _ -3.8, followed by additional stress 
deviation. In these tests the predictions of the model does pick up the general 
trend of the behaviour of concrete but, the general fitting is not as good as the pre- 
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vious simulations. This might be due to the complicated stress paths of these tests. 

Figure 4.38 shows the simulations of test 4-12 to 4-15. Test 4-12 and 4-13 have 

been preformed using proportional axisymmetric stress path to _ -3.8, followed 

by additional paths. The model simulations for these two tests are close to the 

experimental data. Test 4-14 has been preformed using proportional axisymmetric 

stress path to _ -3.8, followed unsymmetric stress paths. The plastic flow follows 

the usual trend. This test is simulated well for one principal stress but the model 

over estimates significantly the stresses for the other two stresses. However, the 

general shape of the curves does agree with the shape of experiments. Test 4-15 

has been preformed using piecewise-linear axisymmetric stress path to = -3.8, 
followed by unloading. The scattered direction of the plastic flow is a result of un- 

loading portion of the test. The model predicted well the shape of the stress-strain 

response and the value of the stresses. 

Figure 4.39 shows test 4-16 to 4-19. Test 4-16 has been preformed using piecewise- 
linear axisymmetric stress path to = -3.8, followed by unloading. The model 

predicts well the general behaviour of concrete under this loading arrangement 
but, unable to reach the zero value at the end of the test. This could be improved 

if an alternative values of elastic constants are used. Test 4-17 has been preformed 

coarse stair-step stress path to = -3.8. The simulation of the model for this test 

is reasonable for one principal stress but the model over estimates significantly the 

stresses for the other two stresses. However, the general shape of the curves does 

agree with the shape of experiments. Test 4-18 has been preformed with fine stair- 

step stress path to '= -3.8. The simulations of this test is very good. Test 4-19 

has been preformed with non-proportional axisymmetric stress path, followed by 

axisymmetric stress paths. The model simulated well one principal stress but the 

model over estimates significantly the stresses for the other two stresses. 

The last three tests 4-20,4-21 and 4-22 are shown in Figure 4.40. These tests 
have been preformed with non-proportional axisymmetric stress path, followed by 

axisymmetric stress paths with three different deviatoric angles with respect to the 
hydrostatic axis. The simulations of the model for these three tests are reasonable 
for one principal stress but the model over estimates significantly the stresses for 

the other two stresses; however, the model does capture in general the general 
trends of the stress-strain responses. 

In the same figure, the first of the fifth series (test 5-1) is shown. This series con- 
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sists of six tests from test 5-1 to 5-6. Test 5-2 to 5-5 are shown in Figure 4.41 and 
the final test 5-6 is shown in Figure 4.42. Tests 5-1 to 5-3 were subjected to triax- 
ially compressive deviation with the _ -1.9 plane, followed by non-proportional 

stress increments at angles ranging from 30° to 900 from triaxially compressive axis. 
The model overestimated these three tests but picked up the general shape of the 

stress-strain curves. The simulations could be improved if an alternative values 

of ductility constants are chosen. Tests 5-4 to 5-6 have been conducted by using 

various deviatoric sequences of stress within the = -1.9 deviatoric plane. The 

model predicted well the behaviour of concrete for test 5-4 but overestimated the 

stresses for test 5-5 and 5-6 which could be improved with an alternative constants 
values. 

The final series (series 6) consist of two tests. Loading was of piecewise-uniaxial 

steps, applied in such a sequence that all possible uniaxial and equi-biaxial stress 

states of a given level were reached. Figure 4.42 shows the two tests, test 6-1 and 
6-2. The model over predicted the stresses for both tests but it followed the general 
shape of the stress-strain response. The performance of the model could be im- 

proved if an alternative values of the constants are chosen as can be seen in Figure 
4.42 test 6-1-b where Ah = 0.015, Bh =1 and Ak = 0.7, and test 6-2-b where Ah 

= 0.02, Bh =0.7, and Ak = 0.5. 

For most of the simulations, the model has shown good to excellent agreement with 
the experimental results. For a few tests, the model has shown less agreement. Part 

of this is attributed to the error in the experimental data where many sources of 

error are expected. This may include error in the experiment arrangements, the 

way the results recorded and presented. 

4.6 The Error 

It is always important to evaluate the effectiveness of the constitutive models 
against the experimental results. The root mean square (RMS) error measure 
has been used here to quantify the difference between the predictions of the model 
and the experimental tests. The RMS is identified as follows: 

Mimi exp)2 
RMS = 

Ek=1- 6ij 
. 100% (4.9) / ex ) Ek=11ýij 2 

where Q are the stresses calculated by the model and a' are the stresses reported 
by the experimental tests, q is the number of stress-strain readings in each test. 
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Table 4.4 shows the error values recorded for each of series 1 tests. The highest 

error recorded was 26.9%, the range was 12.2% and the average value of the error 

was 18.5%. The errors recorded for series 2 are shown in Table 4.5. The highest 

error recorded was 27.6 %, the range was 14.9 % and the average value of the errors 
is found to be 19.4%. The errors of series 3 are shown in Table 4.6. The average 

value of all of the seventeen tests of this series is found to be 19.6%. The highest 

value of the error in this series is 29.1% and the lowest 14.3%. The errors of series 
4 are shown in Table 4.7. In this series, higher errors are recorded and wider range. 
The higher error was 37.3% and the range was 24.3% and the average was 23.1%. 
Table 4.8 shows the errors of series 5. Higher errors have been recorded for this 

series. The average value of the errors is found to be 33.2%. Finally, the errors of 
the last series (series 6) is shown in Table 4.9. Only two test are available for this 

series and the average error is found to be 85.35%. 

The overall average of RMS for all the sixty seven tests is found to be 23.7% and 
the standard deviation is 8.4%. This is markedly better than the results reported 
by Simo et at where the RMS was found to be 26.6% and the standard deviation 

was 14.0%, and the results reported by Crouch, where the overall RMS of error 
was 29.4% and the standard deviation was 12.8% [Crouch, 1990]. 

specimen RMS % 1111 specimen RMS % 
1-1 14.9 Jill 1-2 18.7 
1-3 20.6 1-4 16.5 
1-5 26.9 1-6 18.9 
1-7 24.8 1-8 17.6 
1-9 14.8 1-10 14.7 
1-11 17.4 Jill 1-12 16.3 

Table 4.4: The root mean square of the error recorded for series 1, Colorado tests 

specimen RMS % Jill specimen RMS % 11 
2-1 15.0 2-2 16.1 
2-3 12.7 2-4 13.1 
2-5 23.1 2-6 22.9 

11 2-7 27.6 2-8 
__ 

Jill 24.7 

Table 4.5: The root mean square of the error recorded for series 2, Colorado tests 
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F specimen RMS % specimen RMS % 

-1 3 24.7 3-2 21.6 
3-3 29.1 Jill 3-4 15.0 
3-5 23.7 3-6 19.5 
3-7 25.7 Jill 3-8 15.8 
3-9 

1 

14.5 Jill 3-10 21.6 
3-11 15.6 3-12 14.3 
3-13 23.8 3-14 15.1 
3-15 16.6 3-16 18.3 
3-17 18.4 

Table 4.6: The root mean square of the error recorded for series 3, Colorado tests 

specimen J RMS % Jill specimen I RMS % 11 
4-1 22.4 1111 4-2 23.4 
4-3 20.3 1111 4-4 13.0 

11 4-5 13.3 Jill 4-6 23.1 
4-7 29.4 Jill 4-8 22.8 
4-9 25.2 4-10 20.9 
4-11 17.4 4-12 19.3 
4-13 29.9 4-14 25.7 
4-15 16.6 4-16 16.5 
4-17 19.9 4-18 27.4 
4-19 13.9 Jill 4-20 36.5 
4-21 33.0 4-22 37.3 

Table 4.7: The root mean square of the error recorded for series 4, Colorado tests 

Table 4.8: The root mean square of the error recorded for series 5, Colorado tests 

Table 4.9: The root mean square of the error recorded for series 6, Colorado tests 
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4.7 Concluding Remarks 

In this chapter, the performance of the new constitutive model developed in Chap- 

ter 3 has been presented. This included the following: 

1. In Section 4.2, each of the thirteen material constants were identified. Most 

of these can be assumed defaults. 

2. In section 4.3, a complete calibration procedure (for all the constants) was 
developed. 

3. In Section 4.4, the sensitivity of the model response to small changes in the 

material constants was determined. Some constants are found to have strong 
influence. These include, the uniaxial compression strength (f, ), the uniaxial 
tensile strength (ft), the Young's modulus (E), and the ductility constants 
(Ah and Bh). 

4. In Section 4.5, a series of comparisons between the model simulations and 

established experimental data was given. The data include triaxial and mul- 
tiaxial compression tests. 

5. In Section 4.6, the efficiency of the model was tested by determining the error 
for every simulated test. The overall error then compared with two previous 
results reported by other researchers. The model showed improvement in the 

results. 

This chapter has shown that the new isotropic hardening elasto-plasticity formula- 

tion based on associated flow rule is capable of capturing all the basic deformation 
features under a wide range of triaxial and multi-axial compression stress states. 
Further work may be required to identify a more general hardening function. 
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Chapter 5 

Investigations and Simulations of 
Concrete with Different 

Constituents 

5.1 Introduction 

Concrete is a heterogeneous material whose properties depend on the properties of 
its component phases and the interactions between them. Under the same configu- 

rations, concrete may perform differently because of material properties. Concrete 

constituents such as cement type, coarse and fine aggregates, water-cement ratio, 

additives, admixtures, temperature, mixing procedure, and mix proportions have 

a considerable contribution on the strength and strain experienced by a confined 

element of concrete. 

It is intended in this chapter to investigate the effect of using different proportions 

of coarse aggregate on the behaviour of concrete under triaxial compression and to 

simulate the stress-strain response using the new developed model (see Chapter 4). 

Coarse aggregate is a material that will pass the 3-inch (75 mm) screen and will 
be retained on the No. 4 sieve (e. g sieve size is 5 mm). Coarse aggregate occu- 
pies most of the volume of the concrete. The cement paste coats and binds the 

aggregates together. The composition, shape, and size of the aggregate all have 

significant impact on the workability, durability, strength, weight, and shrinkage 
of the concrete. The coarser the aggregate, the more economical the mix. Larger 

pieces offer less surface area of the particles than an equivalent volume of small 
pieces. Use of the largest permissible maximum size of coarse aggregate permits a 
reduction in cement and water requirements. One restriction usually assigned to 

186 
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coarse aggregate is its maximum size. Larger pieces can interlock and form arches 

or obstructions within a concrete form. That allows the area below to become 

a void, or at best, to become filled with finer particles of sand and cement only. 
That results in either a weakened area or a cement-sand concentration that does 

not leave the proper proportion to coat the rest of the aggregate. 

Since the aggregate is generally stronger than the paste, its strength is not a ma- 
jor factor for normal strength concrete. However, the aggregate strength becomes 

important in the case of higher-strength concrete or lightweight aggregate con- 

crete. Surface texture and mineralogy affect the bond between the aggregates and 
the paste as well as the stress level at which microcracking begins. The surface 
texture, therefore, may also affect the modulus of elasticity, the shape of the stress- 

strain curve and, to a lesser degree, the compressive strength of concrete. Tensile 

strengths may be very sensitive to differences in aggregate surface texture and sur- 
face area per unit volume [Aitcin and Mehta]. 

The fine and coarse aggregates normally used for concrete are natural deposits of 
sand and gravel. Fine aggregate is defined as material that will pass a No. 4 sieve 
and will, for the most part, be retained on a No. 200 sieve (e. g. sieve 75 pm). 
The purpose of the fine aggregate is to fill the voids in the coarse aggregate and to 
improve the workability of the mix. 

Beside testing the validity of the constitutive model developed in Chapter 3 against 
as many variations as possible, it is also important for some practical reasons to use 
concrete with no coarse aggregates. In desert regions, there are special problems 
associated with concreting. These problems concern the availability of the coarse 
aggregates, their cost, and the environment. On the other hand, concreting in such 
regions has an advantage due to the presence of fine aggregates almost everywhere 
[El-Ariss]. 

During 2003, at the Department of Civil and Structural Engineering of the Uni- 

versity of Sheffield, a testing program was carried out to investigate the influence 

of coarse aggregates on the triaxial behaviour of plain concrete. Three mixes were 
used for this purpose; the first was normal mix similar in mix design to that pre- 
sented in Chapter 2, the second was made with no coarse aggregates, the third 
with double coarse aggregates. Table 5.1 shows the mix proportions (by weight), 
for the three mixes, normalised with respect to cement content. 
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Constituents Mix 1 
(standard) 

Mix 2 
(mortar) 

Mix 3 
(double coarse agg. ) 

Cement 1 1 1 
Water 0.56 0.56 0.56 
Plasticiser 0.006 0.006 0.006 
PFA 0.33 0.33 0.33 
Sand 2.447 2.447 2.447 
10 mm aggregate 1.39 0.0 2.78 
20 mm aggregate 2.777 0.0 5.554 

Table 5.1: The mix proportions (by weight), for the three mixes, normalised with 
respect to cement content 

All samples were tested using a Hoek cell. The data contains six uniaxial tests 

for each mix and three tests for each of the six levels of confinements. There are 

six levels of confinement; 10,20,30,40,50, and 60 MPa. The data have been 

examined individually. Each test specimen had four strain gauges; two to measure 
the axial strains and two for the lateral strains. Readings were taken up to the 

peak stress. The average of the two readings from the strain gauges was adopted. 
If the strain gauge was broken before reaching the peak, the reading of that gauge 

was ignored. In such case only one reading was considered. In some tests there are 

no complete readings, and thus the entire test was ignored. The sign convention 

was chosen to be negative for compression and positive for expansion. However in 

some figures the stresses were assigned positive for the sake of illustration. 

This chapter begins with section 5.2, where the examination of the uniaxial com- 

pression response of the three mixes is presented. This includes stress-strain re- 

sponse, the volumetric strain, peak stress, peak strain, Young's modulus, Poisson's 

ratio and the plastic flow vectors. In Section 5.3, the same topics are discussed 

with an additional study of the peak nominal stress envelope, the volume transi- 

tion stress envelope and the yield surfaces. In Section 5.4, the simulations of the 
three mixes are presented. In Section 5.5 the yield surface for the three mixed are 
introduced. Finally, concluding remarks are listed in Section 5.6. 
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5.2 Uniaxial Response 

5.2.1 Stress-strain Response 

Figure 5.1 shows the uniaxial stress-strain response for three tests taken from six 

uniaxial tests for Mix 1, Sheffield tests. The first and second are taken from test 

M1A3_00_1 and M1C1_00_1 where the average values of the two strain gauges mea- 

suring the axial and lateral strains are taken. The third set of results are taken 

from test M1C9_00_1 where the results of only one strain gauge are taken because 

of the irregularities of the initial part of the curves of the other gauge and the large 

strain recorded prior to the loading. The other three samples are disregarded due 

to irregularities in the test results at the initial stage where large strain readings 

are recorded while the stress is still zero. Some strain gauges failed before reaching 

peak. The figure shows some concavity in the initial part of the tests. This could 
be due to some error in recording the stresses or the initial bedding of the platens. 
It seems that the latter is the most likely reason due to the repeated occurrence of 
the problem even with the normal concrete mixes. 

Figure 5.2 shows the uniaxial stress-strain response for Mix 2. Only three out of 

six tests are presented here due to the same irregularities mentioned above. The 

behaviour of concrete seems to take almost a linear response for about 30% of the 

peak stress. This is then followed by a nonlinear response with an increasing rate 

until it reaches zero tangent at the peak. 

The stress-strain behaviour for Mix 3 is presented in Figure 5.3 where three tests 
(M3A3A_00_1, M3A6_00_1 and M3A8_00_2) out of six tests are found to be useful. 
The average values of the two longitudinal and radial gauges are taken. Concavity 

in the initial part of some curves are again observed. This is due to some error in 

recording the stresses or the closure of the pre-existing cracks. The behaviour then 

changes into linear and gradually to nonlinear. The nonlinearity rate increases 

significantly whilst approaching the peak. 

Figure 5.4 shows the variation of the stress-strain response of the three mixes men- 
tioned above under uniaxial compression loading. It can be seen that the response 
is strongly influenced by the constituents proportions. The general behaviour of 
the axial response for the three mixes seems to have the same trend but with a 
significant reduction in the initial slope for Mix 2 and increase for Mix 3. The fig- 

ure illustrates that Mix 2 seems to be the most ductile and Mix 3 is the most brittle. 
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Figure 5.1: Three stress-strain curves for uniaxial compression test of Mix 1, 
Sheffield tests 

Mix 2 uni all 

co Q. 

9 

Figiire 5.2: Three stress-strain curves for uniaxial compression test of Mix 2, 
Sheffield tcwts 
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Figure 5.3: Three stress-strain curves for uniaxial compression test of Mix 3, 
Sheffield tests 
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Figm-c 5A: The variation of the stress-strain response of the three mixes under 
uniaxial compression loading 
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I ignre 5.5: The volunietric strains versus the axial stresses for the three mixes 

5.2.2 Volumetric strain 

Figure 5.5 shows the volumetric strains for the three mixes. The volumetric be- 

haviour of Mix 1 and Mix 3 seems to be similar to each other with some concavity 
in the initial part, of the curves. This concavity is also notice in the stress-strain 

response and thought to be due to some technical error. The values of the volu- 

metric st rain for Mix 2 are much greater and the response is almost linear for most 

of the loading process. The volumetric transition stress (VTS) values are presented 
in Table 5.2. The average values show that coarse aggregates have a clear effect 

on the material constant aqq (see Chapter 2) which represents the percentage of 

plastic VTS to f, Mix 2 shows the highest value of a�c, 9 which indicates a delay in 

the fornºnlat ion of the unstable fractures to the last stage of loading. 

Mix First test, Second test, Third test Average 
Mix 1 0.82 0.85 0.81 0.83 
Mix 2 0.97 0.99 0.97 0.97 
Mix 3 0.91 0.85 0.84 0.87 

Takle 5.2: The percentages of the VTS to ff for the three mixes tested under 
iminxial compression tests 
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5.2.3 Peak Stress, fc 

Compressive strength of the three mixes are given in Table 5.3, and Figure 5.4 

illustrates the effect of aggregates on the uniaxial compression strength. It seems 
that the average compressive strength of concrete is the same for Mix 1 and Mix 

2. The average value of Mix 3 is higher by around 7%. These results should be 

viewed within the limits of the nature of the aggregates that have been used. Using 

different kinds of coarse aggregates might give different values. Zhou et al. have 

studied these effects [Zhou et at., 1995]. They concluded that concrete containing 
the expanded clay aggregates has a 28-day cube strength of about 30% of that 

of the mortar; the corresponding value for the sintered fly ash aggregates is about 
80%. The limestone aggregate produces concrete of the same strength as the mortar 

although it is unlikely to be always so. The measured cube strength is high for 

glass bead and this may be a reflection of the insensitivity of the cube strength to 

aggregate mortar bond failure, which is certainly evident in this type of concrete. 
Too stiff aggregate, though improving modulus, may cause stress concentrations 

and initiate more microcracking causing a decrease in strength . 
Mix First test Second test Third test Average 

Mix 1 58.52 58.05 55.44 57.34 
Mix 2 58.35 55.48 57.59 57.14 
Mix 3 56.92 64.80 63.47 61.73 

Table 5.3: The peak stresses for the three mixes tested under uniaxial compression 
tests 

5.2.4 Strain at Peak Stress 

Axial strains at peak stresses for the three mixes are given in Table 5.4 and the 
lateral strains in Table 5.5. Figure 5.4 shows the effect of coarse aggregates on 
the strain at peak stress. An increase of about 50% in the average value of the 
axial peak strain for Mix 2 is observed compared with Mix 1, whereas insignificant 
difference between Mix 3 and Mix 1. For the lateral strains, a decrease of around 
30% fgr Mc 2 is n9ticfd coznr ared with Mix 1, while Mix 3 is less by around 15% 

ioung s IVIODUIus 

The average values of Young's modulus for the three mixes are given in Table 
5.6. The values suggested a decrease of about 35% of Young's modulus for Mix 2 
compared with Mix 1 and an increase by an average value of about 13% for Mix 3. 
These values show that the coarse aggregates has significant effect on the stiffness. 
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Mix First test Second test Third test Average 
Mix 1 -2097.13 -2003.17 -2122.10 -2074.13 
Mix 2 -3039.59 -2974.72 -3524.31 -3179.54 
Mix 3 -1841.45 -2017.66 -2101.15 -1986.75 

Table 5.4: The axial strains at peak stresses for the three mixes tested under 
uniaxial compression tests 

Mix 1 1 First test Second test Third test Average 
Mix 1 1576.73 1591.06 1493.06 1553.62 
Mix 2 866.84 943.15 1239.12 1016.37 
Mix 3 1030.24 1453.68 1297.60 1260.51 

Table 5.5: The lateral strains at peak stresses for the three mixes tested under 
uniaxial compression tests 

The absence of coarse aggregate causes a significant reduction in the stiffness of 
concrete. 

Mix 1 1 First test Second test Third test Average 
Mix 1 38.35 43.3 42.6 41.42 
Mix 2 27.97 25.17 28.5 27.21 
Mix 3 51.0 43.93 45.93 46.95 

Table 5. G: The average values of Young's modulus for the three mixes tested under 
uniaxial compression tests 

5.2.6 Poisson's Ratio 

The average values of Poisson's ratio for the three mixes are given in Table 5.7. 
It seems that the average value decreases by about 15% for Mix 2 and increases 
by about 7% for Mix 3. These are an average values of the Poisson's ratio but 
individual values of different tests might have the same values for different mixes. 
However, all these values do fall in the range of Poisson's ratio for concrete that 
have been reported in literature (see Chapter 2). 
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Mix First test Second test Third test Average 

Mix 1 0.20 0.23 0.20 0.21 
Mix 2 0.20 0.17 0.18 0.18 
Mix 3 0.225 0.23 0.22 0.225 

Table 5.7: The average values of Poisson's ratio for the three mixes tested under 

uniaxial compression tests 

M1A3_00_1 

P 

Figurºv 5.6: Plastic strain directions of concrete under uniaxial compression for Mix 

1, sample NilA3_OO_1 

5.2.7 Plastic Flow 

I it; ººnc 5.6 shows tIºc 1)I LStis straicº climdimis for Mix 1 under uniaxial compression. 
The plastic flow is scattered during the initial part of the loading process. This is 

due to the cyclic loading where sonne plastic strains have been recorded although 
t heoretically, it should be totally elastic. Then, uniform and gradual plastic strains 

can he seen at about 80% of the peak stress. The directions in this region are 

mostly normal to the stress path which indicates that most of the plastic strains 

near the peak, are in the lateral direction. 

"I'hc pl st it st rain direct ions of one uniaxial test of Mix 2 is shown in Figure 5.7. 

-0.6 -0.4 -0.2 0 
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M2D3_00_2 
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Figure 5.7: Plastic strain directions of concrete under uniaxial compression for Mix 
2, sample M1D3.00_2 

The plastic flow takes a gradual and systematic manner whereas the initial plastic 

strain directions are mainly in the negative hydrostatic direction. This indicates 

that, the sample undergoes compaction. The directions then become more devia- 

toric until it, reaches a purely deviatoric state at about 95% of the peak stress. The 

direction then changes to the positive hydrostatic direction which is an indication 

of plastic dilation. The directions remains increasingly positive until it becomes 

almost: normal to the stress path at peak which is an indication of overwhelming 
lateral plastic deformation at, this region. The overall behaviour illustrates the 
ductile behaviour of concrete without coarse aggregates. The plastic strains seen 

at. the initial part of the test are thought to be the result of the cyclic loading and 
therefore, should not. influence the general idea of the manner of the plastic flow. 

Figure 5.8 shows the plastic flow of one of Mix 3 tests. It shows limited plastic 
strain (hiring most of the loading process. Then, at about 90% of the peak stress, 
the plastic strains increase significantly. During the last part of the loading, the 

pltc. Stic strain directions are almost normal to the stress path. This indicates, as 
in the previous samples, that the lateral plastic deformation is dominant in this 

region. It should be noted that all the plastic strain vectors are normalised with 
respect to the peak equivalent plastic strain. So, the length of these vectors does 

-0.6 -0.4 - -0.2 0 
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Figure 5.8: Plastic strain directions of concrete under uniaxial compression for Mix 

3, sample M3A6_00_1 

not, reflect, the act actual value of the plastic strains. 

5.3 Triaxial Response 

"I'h t riaxial response for the three mixes is discussed in this section. This will help 

to u, I>serve the effect of the confinement on the mechanical properties of concrete 

with different constituents and draw a wider picture for the behaviour of concrete 

under various loading magnitudes. The same topics that have been discussed in 

the previous chapter are discussed here with additional discussions on the PNS, 

VTS and the yield surfaces. 

5.3.1 Stress-strain Response 

'I'hr stress strain behaviour for two levels of confinement (10 and 30 MPa) of the 

three mixes are shown in Figure 5.9. The peak axial stress of concrete increases 

significantly with the increase in confinement for all the three mixes, but with less 

{proportion for Mix 2. The increase in confinement, increases the ductility for all 
Iu1X( $, but this effect is the most prominent for Mix 2. The nonlinear response can 
be svell in all Il le ºuiixe" for nioºst of the loading process. The peak lateral strain 
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Figure 5.9: The axial stress versus axial and lateral strains for two levels of con- 
finement 

seems to be less for Mix 1 and Mix 2. However, these observations have been made 

with the limited data that have been studied. Only two complete sets of three tests 

under confinement are found in Sheffield's data. For other levels of confinement, 

the strain gauges have failed before reaching the peak. 

5.3.2 Peak Axial Stress 

Figure 5.10 shows the peak axial stress versus lateral stress for the three mixes. The 

response of all the three mixes seem to be almost linear. The effect of the coarse 

aggregates becomes more prominent with increasing confinement. The highest 

values of peak stresses are for Mix 3 followed by Mix 1 and the lowest are the 

values of Mix 2. At, moderate to high level of confinement (30 MPa < Q2 < 60 

MPa) the difference between the peak stresses of Mix 1 and Mix 2 seem to be 

maintained, while for Mix 3, the difference increases proportionately. 

5.3.3 Young's Modulus 

Figure 5.11 shows the values of Young's modulus for the three mixes. The values 

of Mix 2 are lower than that of Mix 1 and the values of Mix 3 are the highest. The 

average value for Mix 1, Mix 2 and Mix 3 are 44.1,27 and 52 GPa respectively. 
For Mix 1, the values increase slightly with the increase in confinement. There is 

no valid data for 40 MPa level of confinement and only one valid test for 20 and 
30 level of confinement. For Mix 2, the data is available only for moderate level 
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Figure 5.10: The peak axial stress versus lateral stress for the three mixes 

of confinement (< 30 MPa) and the modulus increases slightly with the increase 

of confinement. Finally, the modulus also increases slightly with the increase of 

confinement for Mix 3. For 10 NIPa level of confinement, there is sharp increase in 

the modulus. This value is hard to verify due to the limited data for this level of 

confinement. 

5.3.4 Poisson's Ratio 

The average values of the Poisson's ratio for Mix 1, Mix 2 and Mix 3 are found to 

be 0.23,0.22 and 0.23 respectively. Figure 5.12 shows Poisson's ratio for the three 

uºixes with different levels of confinement. The values of Mix 1 (considering the 

experimental variations) seems to be independent of the ratio of coarse aggregates 

and the level of confinement. The same conclusion can be drawn for the other two 

Ill1XCS. 

5.3.5 Plastic Strain at Peak Stress 

Figure 5.13 shows the equivalent. plastic strain at peak for the three mixes. The 

values of Mix 1 show the same trend that have been observed in Chapter 2. The 
limited number of complete data has restricted the detailed information on part of 
the behaviour, especially with high confinement where most tests have not reached 
the peak. The response is non linear with low values at zero level of confinement 
yet, high values at high level of confinement. The response can be modelled by 

exponential funct ion. Mix 2 has a similar shape of response but with a sharper 
increase with the increase in the level of confinement. As for Mix 3, the data seems 
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Figure 5.11: Young's modulus for the three mixes with different levels of confine- 
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Figure 5.12: 1'cºitisuu's ratio for the three mixes with different levels of confinement 
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Figure 5.13: The equivalent plastic strain at peak stress for the three mixes 

to be inconsistent, the response seems to increase almost linearly with the increase 

of the level of confinement for low and moderate level of confinement. The values of 

the equivalent plastic strains do not change significantly with high levels of confine- 

ment. These observations should be treated with caution because it seems that in 

most tests the strain measurement were interrupted before reaching the peak stress. 

5.3.6 Plastic Flow 

The 1)1a t ic" strain directions of the three mixes are shown in Figure 5.14, Figure 

5.15 and Figure 5.16. For Mix 1, tests for five levels of confinement (0,10,20,30 

and 50 M1'a) are presented. The plastic flow is similar to that of the concrete that 
hals been discussed in Chapter 2. The plastic strain directions are mainly in the 

negative hydrostatic direction for most of the loading process. This indicates that 
the Sample undergoes 1)1a1tit, ic contraction in this zone. At about 90% of the peak 
loading the direction becomes purely deviatoric. Beyond this point the direction 

changes to the positive where the dilation begins. Close to the peak the direction 
become almost normal to the stress path. This is an indication that most of the 

1)Iastic strains at, this point are in the lateral direction. 

Fý ýr Mix 2. the figure includes the results of four levels of confinements (0,10,20 

and 30 MP'a). For the 30 MPa level of confinement, it seems that the strain gauges 
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Figure 5.14: The plastic flow and stress path for Mix 1 

have broken before reaching the peak. The plastic strain direction takes the same 

trend of Mix 1 but the volume transition stress (VTS) state is closer to the peak 

stress. 

Six levels of confinement (0,10,20,30,40 and 50 MPa) are used to identify the 

plmst. ic flow for Mix 3. The trend of the directions is similar to that of the other 

two nixes but, the VTS state is relatively lower. The scattered directions at the 

initial zone are due to the cyclic loading. 

5.3.7 Peak Nominal Stress, PNS 

The Iwak nominal stresses (PNS) for the three mixes are shown in Figure 5.17. For 

Mix 2, where there are no coarse aggregates, the strength envelope is reduced in 

size. This shows clear reduction in strength for this mix. The PNS envelope for 
Mix 3 is increased in size, which indicates the increase in the strength of concrete 
with double coarse aggregates. The overall shapes of the PNS for the three mixes 
look similar to each other. That is, clear nonlinear behaviour with no or low level 

of confinenient (0 < a2 < 10 MPa). The behaviour then becomes more linear with 
the increase in confinement. 

-4 -3 -2 -1 0 
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Figure 5.15: The plastic flow and stress path for Mix 2 
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Figure 5.16: The plastic flow and stress path for Mix 3 
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The PNS for the three mixes can be modelled well using the expression for p, which 
has been discussed in Chapter 4. 

pý = (1/6)ry 
3 (-m 

+ m2 - 12 mf+7 
ry (5.1) 

Here p, has been calibrated using the least squares optimisation technique. An 

initial value for the model constant m is assumed. The value is then varied until 
the least squares value is reached. The optimised values of m for the mixes can be 

found in Table 5.8. 

We calculate fr by using the expression for m which has been presented as a function 

of ft in Chapter 3, 

3 (1 
- ft 

l m=__1 (5.2) (ft 
+2ft) 

A numerical solution is used to identify the values of It for each mix. The values 
of f, have been identified from the experimental data. Table 6.7 shows the values 
of m, ft, ft and ff for the three mixes. 

constant Mix 1 Mix 2 Mix 3 
m 12.5 7.2 16.3 
A 0.08 0.14 0.06 
f, 58.25 57.1 60.9 
ft 4.71 7.9 3.8 

Table 5.8: The optimised values of m, the numerical values for ft, the experimental 
values of fc and ft for the three mixes 

According to the calibrations of p, the value of ft for Mix 2 is almost double that 
of Mix 1 while f, decreased by about 5%. This shows that the model predicts a 
significant increase in the tensile strength as the compression strength decreases. 
This requires further investigation and probably further improvement of the per- 
formance of the model in the tensile region. One suggestion is to choose a third 
point in the confinement region beside f, and ft to formulate the PNS envelope 
expression. 
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PNS Three mixes 

Figure 5.17: Experimental PNS and model fit for the three mixes 

Figure 5.17 shows the experimental PNS and model fit for the three mixes. p, 
forninlat ion shows a good agreement with the experimental data for all mixes. 

5.3.8 Volume Transition Stress (VTS) 

The experiI1 1 hd vaºInes of VTS for the three mixes are shown in Figure 5.18, 

Figure 5.19 and Figure 5.20. The VTS envelopes for the three mixes have been 

simulated by the same equation for p�ts that have been used in Chapter 2 

Pvts = a2 Pc (5.3) 

'I'hc material constant (12 has been identified using the least squares optimisation 

tec"hnicfue. The values of the constant for Mix 1, Mix 2, and Mix 3 are found to be 

0.93,0.96, and 0.94 respectively. These values suggested that the uniaxial results 
for the VTS state may not, he sufficient to identify a2 for high level confinement 

rstics. The figures also show the fit (5.3) with the experimental data for the three 

mixes. 'I'l c tit seems to be good for all mixes. 

As has ixen the case of concrete presented in Chapter 2, the shape of the VTS 

envelope is similar to that of the PNS but with reduced size. The value of the 
material constant (12 seems to increase 

slightly for Mix 2 and more for Mix 3. This 
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PNS VTS Mix 
-1 

Figure 5.18: Experimental PNS and VTS, p, and p�t3 for Mix 1 

suggests that dilation starts closer to the peak for both mixes. 

5.4 Yield Surfaces 

Iýill )vV I1the j( l('nt iti(at i(>n of t 1w phist is flow and the material constants (ft, f, 

and n2), the yield surfaces of the three mixes can be determined assuming associ- 

ated flow rule in the same manner that has been discussed in Chapter 4. Figure 

5.21, Figure 5.22 and Figure 5.23 show the yield surfaces for the three mixes. The 

yield surface pass horizontally through p,,, p and intersect the hydrostatic axis nor- 

inally at &ht and ý ,. 

For Mix 1, the yield surfaces have the same shape and size of that of the normal 

concrete that have been simulated in Chapter 4. The plastic strain directions 

do seem to be normal to the yield surfaces even though the experimental data 

is limited. For Mix 2, few sets of data are found to be complete. Although the 
VTS is very close to the I'NS, the model succeeded in fulfilling the requirements 
without crossing the 1'NS or encountering concavity. This shows the flexibility of 
the 111odel and its capability of capturing the most extreme material variations. 
With the limited data available, the associated flow rule seems to to be valid for 

t his test . Finally, the behaviour of Mix 3 can be also classified as associated flow. 
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PNS VTS Mix 
-2 

Figure 5.19: Experimental PNS and VTS, p, and puts for Mix 2 

PNS VTS Mix 
-3 

FignrE! 5.20: Experimental PNS and VTS, p, and p�ts for Mix 3 
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The model seems to be capable of capturing the yield surface of all the mixes if an 

appropriate material constant values are selected. 

PNS VTS Mix 
-1 

Figure 5.21: Yield surfaces, plastic strain directions, experimental PNS and VTS, 

pr and Puts for mix 1 

5.5 Simulations 

Following the investigation of the influence of coarse aggregates on the material 

constants in the previous sections, it is now possible to simulate the stress-strain 
behaviour of the three mixes using the newly developed model (see Chapter 3 and 
4). The salve procedures of simulation which have been discussed in Chapter 4 are 

rased here, where t he input, data includes the total principal strains and the output 
data presents t he total principal stresses. The values of the constants that are used 
to simulate the behaviour of the material are shown in Table 5.9. The values for 

most of the constants remain fixed for the three mixes, some of them changed by 

small margins, such as crl, a2 and Bh. Young's modulus and uniaxial compression 
strengt h f,, are taken from the experimental data while uniaxial tensile strength ft 

is taken from the calibrated values in section 5.3.7. 

Figure 5.24 shows experimental data and model predictions for stress-strain curves 
of Mix 1, with 0,10,20,30 and 50 MPa confinement. The assigned value of Young's 

-5 -4 -3 - -2 -1 01 



Chapter 5 Investigations and Simulations of Concrete with Different Constituents 209 

PNS VTS Mix 
-2 

Figure 5.22: Yield surfaces, plastic strain directions, experimental PNS and VTS, 

p, and p�f. q 
for niix 2 

PNS VTS Mix 
-3 

Figure 5.23: Yield surfaces, plastic strain directions, experimental PNS and VTS, 
p,. and p�q, for mix 3 
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Constants Mix 1ý Mix 2 Mix 3 

v Poisson's ratio 0.2 0.2 0.22 
E Young's modulus 40 GPa 27 GPa 45 GPa 

niaxial compressive strength 58 MPa 57 MPa 60 MPa ff 

niaxial tensile strength 4.3 MPa 7.9 MPa 5.5 MPa 
NS meridional shape constant 0.999 0.999 0.999 
NS deviatoric shape constant 0.8 0.8 0.8 

ko Initial hardening surface constant 0.1 0.1 0.1 

al Yield surface constant 0.25 0.3 0.25 

C12 Volumetric Transition Stress Constant 0.92 0.95 0.94 
Ak Hydrostatic intersection constant 1.5 1.5 1.5 
Ah 1 1 Hardening constant 0.0004 0.0004 0.0004 
Bh Hardening constant 0.4 0.3 0.4 

Table 5.9: The model material constants for the three mixes 

modulus seems to be appropriate as can be seen from the unloading-reloading part 

of the curves. The model overestimated the stresses of the uniaxial compression test 
for sample M1C3-00. Another attempt has been made to simulate test (M1A3_00) 

with a reduction in the hardening constant Bh. The prediction of the model shows 

almost total agreement with the experimental results. 

The simulation of concrete with 10 MPa confinement for sample M1B6_10_3 shows 

good agreement with the experimental data. However, close to the peak the model 

overestimates the stresses slightly. The overall shape of the model simulation seems 
to be similar to that of the experiments for the lateral response. The axial response 

shows almost linear behaviour up to the reloading point, then follows another linear 

state with gradual nonlinearity close to the peak. This difference in the response 

may be due to the nature of the data which has shown linear response for part of 
the stress-strain curves. 

For 20 MPa confinement (sample M1C5_20_2), the model slightly underestimated 
the stresses. However, these predictions are thought to be good bearing in mind 
the variations in the experimental results. For 30 MPa level of confinement (sam- 

ple M1B1_30_1), the model predicts very well the stress-strain response and almost 
total agreement was achieved in the lateral stresses. Finally, the model underes- 
timates the stresses for the test with 50 MPa (sample M1B9_50_3). This can be 
improved if the value of the constant Bh is increased slightly. 
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Figure 5.24: Experimental and model predictions for stress-strain curves of Mix 1, 
with 0,10.20, : 30 and 50 NIPa confinement, 
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Figure 5.25 shows the experimental and model predictions for stress-strain curves 

of Mix 2 with 0,10,20 and 30 MPa confinement. Two uniaxial tests (M2D3_002 

and M2D5_00_1) are simulated where the model shows good agreement with the 

experiments. However, close to the peak, the model overestimates the stresses. 
Taking into consideration the variations of the experiments, theses predictions can 
be considered to be good. The model underestimates the stresses for the interme- 

diate zone of the 10 MPa confinement where sample M2C2_102 is simulated. 

The predictions of the model for the test with 20 MPa confinement show good 

agreement with the experiments for about 50% of &j, then the model overesti- 

mates the stresses but maintains the general shape of the stress-strain response. It 

can be seen from the unloading-reloading part that the value of the Young's mod- 

ulus is overestimated. The reduction of its value might improve the predictions. 
Finally, a sample (M2F7-30_2) with 30 MPa confinement is simulated. The model 

successfully predicted the general shape of the response. The estimation of the 

stresses is good especially close to the peak. The value of the Young's modulus is 

also overestimated. 

Figure 5.26 shows the simulations of the stress-strain response for Mix 3. The 

predictions of the uniaxial compression test for sample M3A3A_00 is very good. 
The model predicted well the shape of the stress-strain response and the values of 
the stresses. The simulation of the 10 MPa confinement is presented with sam- 
ple M3A1_10. The model predicted well the stresses for up to about 90% of Ql, 
then significantly overestimated their values. For 20 MPa confinement, sample 
M3A3B20 is simulated. The predictions of the model are very close to the experi- 
ments. The 30 MPa confinement is represented by sample M3A9C30. The model 
underestimated the stresses initially and overestimated them when the peak was 
approached. However, the general shape of the stress-strain curve is maintained, 
and the results can be improved if an alternative values for the hardening constant 
Bh are used. 

Sample M3A2A40b has been used to simulate the behaviour with 40 MPa confine- 
ment. The value of the Young's modulus seems to be appropriate, but the model 
underestimated the stresses. However the general shape of the response has been 

maintained. Finally, the simulation of sample M3C8_50_3b where 50 MPa confine- 
ment is used have been presented. The model simulated well the initial part of the 
test, but underestimated the stresses while the test was progressing. This could be 
improved if a higher value of Bh is used. 
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Figure 5.25: Experimental and model predictions for stress-strain curves of Mix 2, 
with 0,10,20 and 30 NIPa confinement 
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5.6 Concluding Remarks 

1. The overall predictions of the newly developed model for the stress-strain 

response of the three mixes are close to the experimental data. 

2. The yield surfaces for different mixes show the flexibility of the model and 
its capability of capturing extreme material variations. 

3. The experimental PNS for the three mixes shows significant decrease in the 

strength envelope for Mix 2 (mortar mix) and significant increase for Mix 3 
(double coarse aggregate). 

4. Further investigation and probably further improvement for the PNS formula- 

tion is required. One suggestion is to choose a third point in the confinement 

region along with fe and ft to construct the PNS formulation. 

5. The calibration of the PNS formulation based on the triaxial compression 
data led to the prediction of significant increase in the tensile strength as the 

compression strength envelope decreases. This requires further investigation 

and probably further improvement of the performance of the model in the 
tensile region. 

6. The shape of the VTS envelope for all the mixes is similar to the PNS envelope 
but with reduced size. The envelope is closer to the PNS envelope for Mix 2 

and Mix 3. This indicates that the plastic dilation starts closer to the peak 
for these two mixes. The model predicted well the VTS envelope for the three 

mixes. 

7. The plastic strain directions do seem to be normal to the yield surfaces even 
though the experimental data is limited. This suggest that the assumption 
of associated flow rule is valid for all kinds of concrete. 

8. Coarse aggregate content had a mild effect on the uniaxial compressive strength. 
There is marginal decrease for concrete with no coarse aggregate and a mar- 
ginal increase where double amount of coarse aggregate is used. 

9. The content of coarse aggregate has mixed effect on the uniaxial strain at 
peak stress. Significant increase with no aggregate content was noticed and 
marginal decrease where double aggregates are used. 
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10. Increasing coarse aggregate content significantly increased the modulus of 
elasticity. 

11. The values of Poisson's ratio seems to be independent of the content of coarse 
aggregates and the level of confinement. 

12. The uniaxial compression responses have shown that Mix 2 was the most 
ductile and Mix 3 was the most brittle. 

13. The information available from uniaxial tests might not be enough to identify 

the appropriate values of all material constants. Hence, a triaxial test may 
be necessary if a satisfactory calibration for the model is to be attained. 

14. The quality of the tests needs to be improved. Some errors have been noticed 
especially at the beginning of some tests where large values of strains are 

recorded prior to any loading. Also, many strain gauges seem to fail before 

reaching the peak. 
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Chapter 6 

Numerical Verification and 
Simplification 

6.1 Introduction 

Large numbers of constitutive models have been proposed to simulate the behav- 

iour of concrete under multiaxial loading. Many of these models stayed stored in 

the literature without any practical usage. The complexity of these models and 
the high number of material constants which causes difficulty to calibrate play a 

major role in the deterring of users. 

Simple ideas without compromising the basic principle prove to be more effective. 
Therefore, for the model to be commercially accepted it has to be easy to un- 
derstand, easy to calibrate and easy to use. One of the difficulties that we have 

encountered during the formulation of the new model, was the length of the analyt- 
ical derivatives. This has been encountered because the newly developed model was 
built in four different stages with the introduction of a quartic polynomial function 

to fulfill the essential requirements of the yield surface, such as the conditions of 
continuity for the first and second derivatives. In other words, there are a number 
of dependent variables that have necessitated the use of long analytical derivatives. 

Using numerical derivatives would significantly reduce the size of the derivatives 

and some derivatives of the internal variables can be avoided, thus much simpler 
derivatives could be produced. This will lead to a shorter code which makes it 

easier to understand and use. For example, the first derivative of the yield surface 
F with respect to {a} which has been presented in Chapter 3 

1j =p{as}+, r { }-eä {ä 
J 

(6.1) 

217 
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requires the determination of eleven different analytical derivatives namely, { äö 

aJ a ar, ar, a for 
-2L '{ä}{ä 

}' 
äC' äe 

{ aeäa } and a or four zones. These derivatives can be re- 
duced to one single derivative if the numerical derivatives are to be used. Similarly, 

the twenty four derivatives required for {], the fourteen derivatives required for 

akP and the fifteen derivatives required for { 
akpOa 

}, each one of these analytical 
derivatives can be reduced to one numerical derivative. 

In this chapter, the general formulation of the numerical derivatives is introduced 

in Section 6.2 along with Romberg's optimisation method. In the same section 
Ridder's algorithm is presented with a verification study to evaluate the algorithm 

performance and the calculations of the derivatives. In order to explore the per- 
formance of the model using numerical derivatives, the Colorado multiaxial data 

set is re-visited. The calibration of the model is discussed in Section 6.3 then the 

simulations of the number of tests are presented in Section 6.4. A comparative 

study about the time consumption for the numerical and analytical formulations 

is presented in Section 6.5. Finally, concluding remarks are presented in Section 6.6. 

6.2 The Formulation of the Numerical Deriva- 

tives 

The fact that differentiation (or equivalently, evaluation of Taylor coefficients) of 

analytical functions can be efficiently performed numerically was observed about 
fifty years ago. The earliest algorithm we know is the one described by Abate and 
Dubner in 1968 [Fornberg]. The algorithms to calculate the numerical derivatives 

are based on the expansion of Taylor's series in the vicinity of x which can be 

expressed as follows [Scheid]: 

F(x + h) = F(x) + h. F'(x) +2 h2. F"(x) + ... (6.2) 

F(x - h) = F(x) - h. F'(x) +1 h2 . F"(x) - ... (6.3) 

From equation 6.2 and 6.3 there are three well-known formulas that can be formu- 
lated to calculate the value of the first derivatives 

y, (x) _ 
y(x + hh - y(x) + 6(h) (6.4) 
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Y' (x) = 
y(x + h)2 

hy(x 
- h) 

+ O(h2) (6.5) 

yý(x) = 
y(x) - y(x - h) 

+ 0(h) (6.6) 

They are Newton Forward, Stirling and Newton Backward formulas respectively; 

in which only one term of the Taylor series is used. 

In this chapter, the Stirling formula is used because it yields a more accurate 

approximation. Its error is proportional to square of the spacing. Its approximate 

second derivative is given by 

y�(x) N 
y(x + h) - 2y(x) + y(x - h) (6.7) 

h2 

and for its mixed derivative 

82F [F(x+h, y+h) -F(x+h, y- h)] - [F(x-h, x+h) - F(x -h, y- h)] 
äxäy N4 h2 

(6.8) 

If the above equations are applied without critical consideration it is almost guar- 

anteed to produce inaccurate results [Fornberg]. There are two sources of error in 

these equations; the truncation error and the roundoff error. The truncation error 

comes from discarding higher terms in the Taylor series expansion. The roundoff 

error has various contributors. First, there is a roundoff error in the stepsize h if 

it does not have an exact representation in binary. The other contributor is the 

machine accuracy which controls the lower value of h [Press et al. ]. 

Therefore, an exploration of the functions derivative over a scale comparable to 

the point where the derivative required is needed, so that the high-order terms 
in a Taylor expansion have some meaning. Such methods also involve multiple 

evaluations of the function F, so their increased accuracy must be weighed against 
increased cost. For derivatives, one seeks to extrapolate, to h -º 0, the result 
of finite-difference calculations with smaller and smaller finite values of h. One 

uses each new finite-difference calculation to produce both an extrapolation of 
higher order, and also extrapolations of previous, lower, orders but with smaller 
scales of h. Ridders has given a nice implementation of this idea which is based on 
Romberg's numerical integration [Ridders]. In the following subsection the method 
is presented followed by the algorithm. 



Chapter 6 Numerical Verification and Simplification 220 

6.2.1 Romberg's Method 

The numerical differentiation that has been used here is based on extension to the 

numerical differentiation of Romberg's principle of sequence extrapolation, origi- 

nally developed for numerical integration so that an algorithm can be developed 

which is capable of guaranteeing convergence to the actual optimal solution. This 

can be achieved bearing in mind that the functional form of the error of a numerical 

algorithm is known; the error can be estimated by evaluating the algorithm for two 

different increment sizes. The error estimate can be used both for error control and 

extrapolation [Ridders]. 

In order to approximate F'(x) and F"(x) we use the Taylor expansion in the vicinity 

of x [Scheid], so 

F, (x) - 
F(x + h) - F(x - h) 

+e (6.9) 
2h 

with 

e=-3 h2 . F"'(x) + O(h3) (6.10) 

and 

F"(x) - 
F(x + h) - 2F(x) + F(x - h) 

+d (6.11) 
h2 

with 

d=-2 h2 F, V (x) + O(h3) (6.12) 

When we put e=d=0, we obtain the well-known and widely used approximation 
for the first and second derivative. 

A serious drawback is the sensitivity of the accuracy of stepsize h. Machine pre- 
cision imposes a lower boundary for h, so one never can be sure of the significant 
digits that are obtained. 

From 6.10 and 6.12, we conclude the fact that the error e and d decrease quadrat- 
ically with decreasing h. When we repeatedly halve the value of h, a series of 
corresponding values of (F(x + h) - F(x - h))/2h are obtained, which we denote 
by & A2, Aa, 

... 

Now F'(x) - Al + el - A2 + e2, furthermore el/e2 = 4, so we get a better 
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proximation 

F'(x) .., 
4A2 - Al 

4-1 

which we denote by Bi. 

(6.13) 

This procedure leads us to the well known Romberg method. The entries can be 

represented in a so-called tableau: 

Al A2 A3 A4 ... 
M=1 Bl B2 B3 ... 
m=2 Cl Cl ... 
m=3 Di """ 

with 

B,, = 
An+l 

. 
4m - An 

, n, ß _1, 
M= 1 (6.14) 

4 

C. = 
B. +144 '1 Bn 

m=2 (6.15) 

and so on. 

6.2.2 The Algorithm 

To improve the accuracy in the computation of the derivatives of the model func- 

tion (F), Ridder's algorithm which is based on Romberg's method is applied. The 

method gives fast convergence to an answer containing more significant digits than 

the usual method provides. The strategy is to evaluate equation 6.14 and 6.15 for 

a sequence of values of h tending to zero, stopping when the desired accuracy is 

reached. Input to the routine is a function (F), a position x, and a large stepsize 
h. Output is the returned value of the derivative, and an estimate of its error. 

The following steps are to be carried out in sequence: 

1. Estimate an initial stepsize (h); it need not be small and must be nonzero, 
but rather should be an increment in x over which y(x) changes substantially. 

2. Set an initial value for the permissable error in the derivative. 

3. Set a value of the factor that the stepsize is decreased by in each iteration. 

4. Set maximum value of the size of the tableau. 
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5. Calculate the initial derivative from x-h and x+h 

F'(x) = 
F(x + h) - F(x - h) (6.16) 

2h 

6. Try a new, smaller stepsize. 

7. Recalculate the derivative with the new stepsize. 

8. Compute extrapolations of various orders, requiring no new function evalua- 

tions. 

9. Compare each new extrapolation to one order lower, both at the present 

stepsize and the previous one. If the error is decreased, save the improved 

answer. 

10. If the error is less or equal to the tolerance, save the derivative. 

11. If the higher order is worse by a significant factor, then EXIT. 

12. Go to step 6 

6.2.3 The Derivatives of the Yield Function 

Four groups of numerical derivatives are required to preform the numerical formu- 

lations. They are as follows: 

1. The first derivatives of the yield function F with respect to the stresses 

OF F(Ql + h) - F(Ql - h) 
(6.17) =2h . 17) 

OF 
_ 

F(o2 + h) - F(a2 - h) 
(6.18) 

äv2 2h 

OF 
_ 

F(Q3 + h) - F(v3 - h) 
(6.19) ö03 2h 

2. The first derivatives of the yield function F with respect to the internal hardening 

variable kp 

U_ F(kp + h) - F(kp - h) 
(6.20) 8kp 2h 
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3. The second derivatives of the yield function F with respect to the stresses 

ö2F 
_ 

F(ol + h) -2 F(al) + F(Ql - h) (6.21) 
äQi h2 

82F 
_ 

F(v2 + h) -2 F(Q2) + F(v2 - h) (6.22) äQ2 h2 

82F 
_ 

F(Q3+h)-2F(a3)+F(a3-h) 
5ý h2 

(6.23) 

82F 
_ 

[F(al + h, a2 + h) - F(Ql + h, Q2 - h)] - [F(al - h, 172 + h) - F(al - h, (72 - h)] 

aUlaQ2 4 h2 
(6.24) 

(6.25) 82F 02F 
aý2aý1- aý, aU2 

82F 
_ 

[F(o2 + h, v3 + h) - F(Q2 + h, v3 - h)] - [F(Q2 - h, o, 3 + h) - F(Q2 - h, Q3 - h)] 

802003 4 h2 
(6.26) 

32F a2F 
&73872 = &720Q3 (6.27 

02F 
-_ 

[F(al + h, 03 + h) - F(al + h, Q3 - h)] - [F(vl - h, Q3 + h) - F(ai - h, Q3 - h)] 
8v1r0Q3 4 h2 

(6.28) 

ä2F ä2F 
(6.29) 

a0 %rl = 19a, ao3 

4. The second mixed derivatives of the yield function F with respect to the stresses 
and the hardening internal variable 

02F 
_ 

[F(kp + h, of + h) - F(kp + h, of - h)] - [F(kp - h, a, + h) - F(kp - h, ý1- h)] 
akp& r1 4 h2 

(6.30) 
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191F [F(kp + h, Q2 + h) - F(kp + h, 02 - h)] - [F(kp - h, Q2 + h) - F(kp - h, a2 - h)] 

akpaa2 4 h2 
(6.31) 

02 F [F(kp + h, 0'3 + h) - F(kp + h, Q3 - h)] - [F(kp - h, 0'3 + h) - F(kp - h, 03 - h)] 

ak Ekr3 4 h2 
(6.32) 

6.2.4 Verification 

A two-variable polynomial equation has been used to verify the derivatives by using 

arbitrary values for x, y and h. This has been introduced in order to verify the 

capability of the algorithm to calculate the derivatives of a simple function where 
its derivatives are already known. The algorithm has successfully calculated all 
derivatives and produced accurate results. All the numerical derivatives have been 

verified by comparing them with the analytical derivatives. The yield function then 

was introduced to the code and all its derivatives are calculated. 

The error for all the derivatives is calculated using the following error measure 

error = 
numerical derivative - analytical derivative 

x 100% (6.33) 
analytical derivative 

For example, an arbitrary location on the yield surface is chosen from test 1-1 of 
the Colorado tests where ý= -1.97. The same values of material constants are 
used for both analytical and numerical codes. The error of eP is found to be 

2.23x1011%, for (! 2-F) is -0.0425 %, for { '92F kP 
} is -0.423 % and for [ä] is 3.8 

%. The values of these errors are thought to be within the acceptable range if we 
take in consideration that the values of the [ems] are in 10x-17 range where the 
roundoff error can not be avoided. 

6.3 The Model Calibration 

The calibration of the model has been performed in the same manner that has been 
discussed in the analytical derivatives in Chapter 4 and 5 with an exemption of 
the hardening constants Ah and Bh and the hydrostatic intersection constantAk. 
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These constants were calibrated through an automatic procedure where a modified 

version of the code has been introduced. The program is coded in a way which 

makes it possible to find the values of Ak, Ah and Bh which give the minimum 

error. The code is to freeze the value of two constants and vary the third and cal- 

culate the error. The same procedure is repeated for the other two constants. The 

values associated with the minimum error are to be chosen. The results were then 

re-examined where the minimum values of the errors are looked at in conjunction 

with a limited variation in the values of constants. 

The range initial values has been selected from previous calibrations. These val- 

ues were 0.5,0.001 and 0.1 for Ak, Ah and Bh respectively. The optomised values 

were then used to simulate the stress-strain results. The peak uniaxial compression 

stress ff, is reported to be 22.6 MPa and the tensile strength It, is assumed to be 

10% of the peak compression stress. 

The Modulus of elasticity E, is assumed to be 20.0 GPa. This value has been 

verified by examining the trend of the loading-unloading part of the stress strain 
curve. In previous chapters our study has shown that Young's modulus increases 

slightly with the increase of confinement. However, in this simulations the value 
of Young's modulus is assumed to be constant. The value of Poisson's ratio v is 

assumed to be 0.2, the initial hardening constant ko is 0.1, the meridional shape 
constant ry is 0.999 and the merging constant al, is 0.35. 

The VTS constant a2 has been identified in the previous chapters through exper- 
imental investigations. During that investigation the value of this constant was 
found to be between 0.9 to 0.95. It was also observed that limited change in this 
constant does not have a significant effect on the general predictions of the model. 
The value of this constant in these simulations was set to 0.90. 

The initial stepsize h has been selected according to the magnitude of the internal 
variables. For the stresses, the initial value is set to 100 Pa and for the internal 
hardening constant kp the value is set to 0.1. 
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specimen Ah Bh Ak min error % 

1-1 0.002 1.6 2.9 12.2 
1-2 0.002 1.0 2.2 13.0 
1-3 0.002 1.3 1.4 8.9 
1-4 0.002 0.7 2.9 26.2 
1-5 0.002 0.7 2.9 29.5 
1-6 0.002 1.5 2.9 13.4 
1-7 0.002 1.2 2.9 16.2 
1-8 0.002 1.0 2.3 27.95 
1-9 0.002 1.6 2.9 15.1 
1-10 0.002 0.8 2.9 21.0 
1-11 0.004 1.8 2.7 15.7 
1-12 0.004 2.0 2.9 18.7 

Table 6.1: The minimum error between experimental data and model predic- 
tions and the hardening constants Ah and Bh with the hydrostatic intersection 

constantAk for series 1 

6.4 The Simulations 

Colorado test data [Scavuzzo et. al. ] has been simulated in this section . All 

the sixty seven tests were simulated. The data includes three stress readings and 

three strain readings. Stresses are in psi and strains are microstrain x 1000 and 

the compression is taken positive. 

The error measure for the simulations is as follows 

Ek=107 - °ex 1. i )Z 
, 100% (6.34) error = Ek_1o. eFP)z 

where a are the stresses calculated by the model and ap are the stresses reported 
by the experimental tests. 

The minimum error values of series 1 with the hardening constants are shown in 

Table 6.1. The error values vary from around 10 % to 30%. The average error 
for the tests of this series is 19.8%. The values of Ah and Ak remains constant for 

most of the test while Bh changed in order to obtain the minimum values of error. 
The stress-strain curves for some tests of this series are shown in Figure 6.1. The 

performance of the model is similar to that of the analytical response with some 
improvement. The improvement is the result of the changing of the hardening 

constants. 

The minimum error values of series 2 are shown in table 6.2 and the stress-strain 



Chapter 6 Numerical Verification and Simplification 
ý2 7 

11 

a a 

i 

w 

. 16000 8000 0 8000 16000 24000 
stre! n (n1 crottrn) 

1_9 

120 II 

00 

-ýxp9nmont 

-Model 

"1E000 -0000 0 8000 16000 24000 
strain tm, cro4lrsm) 

7 11 

F 

II 

ä 
5 

ý. 

i 

a 

1-2 

'°. ^^. a^^r wýn+ imnro 74000 
-16000 -8000 0 8000 16000 24000 svsm ImKroste«o) 

strain lmicrostreinl 

Figure G. 1: Experimental and model stress strain curves for the Colorado tests, 
Series 1 

. 16000 -8000 
0 8000 16000 24000 

strain (miciustren( 

18 

-16000 -8000 0 8000 16000 24000 
scram (mlcroetra n) 

17 

-16000 -0000 0 9000 18000 24000 
'vain (mictostmin) 

1 10 

-16000 45000 0 0000 16000 24000 
strain (microslrain) 

1 12 



Chapter 6 Numerical Verification and Simplification 228 

specimen Ah Bh Ak min error % 

2-1 0.001 0.9 2.9 11.9 
2-2 0.001 0.9 0.6 14.9 
2-3 0.003 0.9 2.7 13.7 
2-4 0.004 0.5 2.8 10.1 
2-5 0.008 1.1 2.7 18.5 
2-6 0.006 0.9 2.9 21.5 
2-7 0.008 1.2 2.6 23.4 
2-8 0.008 0.8 2.9 24.1 

Table 6.2: The minimum error and the hardening constants Ah and Bh with the 
hydrostatic intersection constantAk for series 2 

simulations for some of the tests are shown in Figure 6.2. The minimum error 

varies between 12 % and 24 % but the values of the hardening constants have been 

changing for most of the tests. The average value of the error for this series is 15.3%. 

Table 6.3 shows the minimum error values for series 3 along with the hardening 

constants. It can be seen that the model has shown very good agreement for most 

of the tests and the error for test sample 3-7 is as low as 7%. In some tests the 

error has exceeded 25%. The overall average of the error for all tests in this series 
is 15.4%. Ah and Ak have remained constant for most of the tests while Bh has 

some variation. The stress-strain response for some tests of this series is shown in 

Figure 6.3. 

The minimum errors recorded for series 4 are shown in Table 6.4. The average value 

of the error for this series is 24.2%. The minimum error is 6.7% (test sample 4-17) 

and the highest is 36.8% (test sample 4-21). Ah and Ak have been maintained for 

most of the tests while Bh has been changed. Some of the stress-strain responses 

of this series are shown in Figure 6.4. 

The minimum errors for series 5 are shown in Table 6.5. The average value of 
these error is 26.2%. Ah and Ak have remained constant for all the tests and Bh 
has changed slightly for some tests and significantly for test 5-4. The stress-strain 
simulations for this series is shown in Figure 6.5. Finally, the errors for the tests of 
series 6 are shown in Table G. G. Significant error has been recorded. The average 
value of the errors is 35.8%. 

The overall average error for all of the Colorado test data is 20.6%. 
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specimen Ah Bh Ak min error % 

3-1 0.003 1.3 2.7 16.3 
3-2 0.003 1.3 2.7 20.5 
3-3 0.003 1.3 2.7 23.7 
3-4 0.003 1.0 2.7 12.1 
3-5 0.003 1.0 2.7 11.4 
3-6 0.003 0.8 2.7 9.9 
3-7 0.003 0.5 2.1 6.9 
3-8 0.003 1.3 2.7 13.5 
3-9 0.003 1.0 2.7 11.7 
3-10 0.003 0.8 2.7 25.7 
3-11 0.003 0.4 2.1 15.9 
3-12 0.003 1.2 2.7 22.7 
3-13 0.003 1.2 2.7 22.7 
3-14 0.003 0.5 2.9 14.9 
3-15 0.003 1.2 2.9 13.8 
3-16 0.003 1.2 2.7 8.3 

Table 6.3: The minimum error and the hardening constants Ah and B,, with the 
hydrostatic intersection constantAk for series 3 

specimen Ah_ I Bh Ak min error % 
4-1 0.003 1.0 2.7 20.5 

11 4-2 0.003 1.0 2.7 22.8 
4-3 0.003 1.3 2.7 17.8 
4-4 0.003 0.7 2.8 11.7 
4-5 0.003 0.7 2.9 14.6 
4-6 0.003 0.7 2.9 25.9 
4-7 0.005 0.8 2.8 20.2 
4-8 0.003 1.0 2.7 20.7 
4-9 0.003 1.1 2.7 19.8 
4-10 0.003 1.1 2.9 20.4 
4-11 0.002 1.0 2.9 17.4 
4-12 0.002 0.8 2.7 18.4 
4-13 0.003 0.7 2.7 27.5 
4-14 0.003 0.9 2.7 25.7 
4-15 0.003 1.4 2.9 35.2 
4-1G 0.003 0.8 2.7 32.8 
4-17 0.003 1.1 2.7 6.7 
4-18 0.003 1.4 2.7 12.5 
4-19 0.003 1.1 2.7 30.1 
4-20 0.003 1.1 2.7 32.4 
4-21 0.003 0.7 2.7 36.8 
4-22 0.003 0.6 2.7 31.4 

Table 6.4: The minimum error and the hardening constants Ah and Bh with the 
hydrostatic intersection constantAk for series 4 
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specimen Ah Bh Ak min error % 

5-1 0.003 0.6 2.7 28.6 
5-2 0.003 0.6 2.7 27.4 
5-3 0.003 0.7 2.7 27.6 
5-4 0.003 1.1 2.7 28.8 
5-5 0.003 0.8 2.7 19.4 
5-6 0.003 0.7 2.7 25.2 

Table 6.5: The minimum error and the hardening constants Ah and Bh with the 
hydrostatic intersection constantAk for series 5 

specimen Ah Bh Ak min error % 
6-1 0.003 0.2 1.0 33.0 
6-2 0.008 0.4 1.0 38.6 

Table 6.6: The minimum error and the hardening constants Ah and Bh with the 
hydrostatic intersection constantAk for series 6 



Chapter 6 Numerical Verification and Simplification 235 

specimen numerical (sec) analytical (sec) N num/ana 
1-1 0.531 0.047 11.3 
1-2 0.656 0.043 15.3 
1-3 0.578 0.062 9.3 
1-5 0.614 0.046 13.3 
1-6 0.391 0.047 8.3 
1-7 0.469 0.047 10.0 
1-8 0.640 0.047 13.6 
1-9 0.484 0.031 15.6 
1-10 0.531 0.078 6.8 
1-11 0.547 0.062 8.8 
1-12 0.625 0.063 9.9 11 

Table 6.7: The time consumption of the analytical and numerical codes, series 1, 
Colorado tests 

6.5 The Time Consumption 

An important aspect - if the constitutive model is to be incorporated in finite 

element code - is the time consumption. Table 6.7 to Table 6.12 give the time 

consumption of both the numerical and analytical simulations for the Colorado 

tests. It can be seen clearly that the time consumed by the numerical simulations 
is much greater than the time consumed by the analytical ones. The average ratio 
between time consumption in the numerical and analytical simulations of series 1 
is approximately 11 times, for series 2 approximately 15 times, for series 3 approx- 
imately 16 times, for series 4 approximately 12 times, for series 5 is approximately 
13 times and for series 6 approximately 17 times. The overall average of the ratio 
of the time consumption between the numerical and analytical derivatives for all 
six series is approximately 15. 

This significant increase in the time consumption of the numerical simulation is a 
result of the extrapolation and evaluation of the stepsize. This procedure involves 
two calculation loops in the Fortran program and therefore consumes more time. 
Changing the values of the tableau and the factor of safety could reduce the time 
consumption but does not eliminate the difference. 
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specimen numerical (sec) analytical (sec) num/ana 
2-1 0.531 0.031 17.1 
2-2 0.594 0.078 7.6 
2-3 0.536 0.046 11.7 
2-4 0.500 0.032 15.6 
2-5 0.469 0.031 15.1 
2-6 0.375 0.016 23.4 
2-7 0.516 0.031 16.6 
2-8 0.469 0.031 15.1 

Table 6.8: The time consumption of the analytical and numerical codes, series 2 

specimen numerical (sec) analytical (sec) num/ana 
3-1 0.250 0.016 15.6 
3-2 0.203 0.015 13.5 
3-3 0.547 0.047 11.6 
3-4 0.500 0.031 16.1 
3-5 0.484 0.031 15.6 
3-6 0.422 0.016 26.4 
3-7 0.328 0.031 10.6 
3-8 0.391 0.016 24.4 
3-9 0.532 0.031 17.2 
3-10 0.625 0.047 13.3 
3-11 0.422 0.031 13.7 
3-12 0.625 0.047 13.3 
3-13 0.750 0.062 12.1 
3-14 0.703 0.062 11.3 
3-15 

E 
0.313 0.015 20.9 

3-16 0.688 0.047 14.6 
3-17 0.641 0.047 13.6 

Table 6.9: The time consumption of the analytical and numerical codes, series 3 
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specimen numerical (sec) analytical (sec) num/ana 
41 0.485 0.046 10.5 
4-2 0.515 0.047 10.9 
4-3 0.500 0.047 10.6 
4-4 0.391 0.031 12.6 
4-5 0.407 0.032 12.7 
4-6 0.516 0.031 16.6 
4-7 0.578 0.047 12.3 
4-8 0.578 0.047 12.3 
49 0.672 0.062 10.8 
4-10 0.562 0.047 11.9 
4-11 0.641 0.062 10.3 
4-12 0.797 0.063 12.7 
4-13 0.782 0.079 9.9 
4-14 0.656 0.047 13.9 
4-15 0.641 0.063 10.2 
4-16 0.703 0.062 11.3 
4-17 0.625 0.047 13.3 
4-18 0.610 0.078 7.8 
4-19 0.656 0.063 10.4 
4-20 0.859 0.063 13.6 
4-21 0.813 0.062 13.1 
4-22 0.610 0.047 13.0 

Table 6.10: The time consumption of the analytical and numerical codes, series 4 

specimen numerical (sec) analytical (sec) num/ana 
5-1 0.688 0.047 14.6 
5-2 0.656 0.047 14.0 
5-3 0.485 0.031 15.6 
5-4 0.547 0.063 8.7 
5-5 0.484 0.031 15.6 
5-6 0.531 0.047 11.3 

Table 6.11: The time consumption of the analytical and numerical codes, series 5 

specimen numerical (sec) analytical (sec) num/ana 
6-1 0.641 0.031 20.7 
G-2 0.469 0.032 14.7 

Table 6.12: The time consumption of the analytical and numerical codes, series 6 
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6.6 Concluding Remarks 

1. Numerical derivatives have been used in order to verify the analytical deriv- 

atives and reduce the size of the code for the newly developed model. 

2. The numerical algorithm has successfully calculated the derivatives of the 

yield surface. The performance of the algorithm has been verified by com- 

paring the results with the analytical solution. 

3. The most critical issue associated with the numerical derivatives was the 

selection of the stepsize. Romberg's optimisation method which is developed 

originally for numerical integration has been used to reach an optimisated 

value for the stepsize. 

4. The simulations using the numerical derivatives have similar results to that 

of the analytical derivatives. 

5. Significant reduction in the size of the code and a simplification has been 

achieved. 

6. The time consumption of the numerical derivative method is higher than 
that of the analytical method. This is attributed to the implementation of 
the extrapolation and optimisation technique of the stepsize. 

There are benefits in producing a compact code for the potential new user. If 

that user is comfortable with the simulation capabilities of the model, then it is 

suggested that the full analytical derivatives be used to speedup the run time. 
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Chapter 7 

Conclusions and Suggestions for 

Further Research 

7.1 Introduction 

This study has been carried out in two parts. The first part dealt with the ex- 

perimental observations and investigations of plain concrete under triaxial and 
multiaxial compression following cyclic loading and a variety of stress paths. The 
behaviour of concrete with different constituents was also investigated. The second 
part dealt with the modelling of the behaviour of concrete using the the theory 

of plasticity. In this part, a new constitutive model for plain concrete has been 

developed using the previous work in this field at the University of Sheffield. The 

new yield surface was developed as a combination of a reflection of part of the peak 

nominal stress surface (PNS) and a quartic function. The model was calibrated 
and the optimum values of the thirteen material constants are presented. A sen- 
sitivity study with simulations of a wide range of experimental data is presented. 
Finally, a comparative study between the analytical and numerical derivatives of 
the constitutive model is presented. This chapter contains the main experimen- 
tal findings followed by the features of the new model. Finally, suggestions and 
recommendations for further studies are proposed. 

7.2 Conclusions 

7.2.1 Experimental Observations 

In this section the main experimental findings are presented. These can be classified 
into three groups; the elastic, the pre-peak and the peak behaviour. 

240 
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Elastic Behaviour 

The elastic behaviour is concerned with determination of the elastic parameters 

namely Young's modulus, Poisson's ration and their influences on the plastic flow. 
These can be summarised as follows: 

1. The values of Young's modulus in the second and subsequent loading cycles 
is less than the first cyclic loading. This degradation of stiffness is attributed 
to the damage that has been encountered during the cyclic loading. 

2. The average values of Young's modulus seem to increase slightly with the 
increase of the confinement. This is due to the compaction of the material 
caused by closing of cracks and the collapse of voids. 

3. Increasing coarse aggregate content significantly increased the modulus of 
elasticity. 

4. Poisson's ratio is effectively independent of the loading path. 

5. The values of Poisson's ratio seems to be independent of the content of coarse 
aggregates and the level of confinement. 

6. The influence of the elastic parameters (E and v) on the plastic flow is more 
evident in the elastic region. 

Pre-peak Behaviour 

The pre-peak observations are as follows: 

1. The pre-peak behaviour of concrete under compression may be simplified into 
three levels of response: 

(a) Concrete initially responds as purely elastic material. 
(b) Under increased loading, distributed microcracking results in volumetric 

nonlinearity with contraction. 
(c) Eventually, further increase in compressive strain leads to development 

of multiple continuous crack systems resulting in a nonlinear volumetric 
dilation response. 

2. The volumetric strain versus major principal stress seems to maintain an 
initial linear response regardless of the level of confinement. This linearity 
then turns to nonlinearity at a point referred to as the onset of stable fracture 

propagation (OSFP). 
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3. Concrete seems to be in a state of compaction throughout the compression 
loading but at peak stress, concrete sample retains its initial size. 

4. At about 90% of the peak stress, where the volume of the sample reaches its 

minimum, the dilation response starts. The rate of dilation is significantly 

greater than the previous rate of contraction. 

5. A loading surface can be identified from the minimum volumetric plastic 

strain. This is called the volume transition stress (VTS) surface. 

6. At plastic VTS the directions of the plastic strain vectors are purely devia- 

toric. 

7. Under high level of confinement, the total VTS and plastic VTS become 

closer to each other. This has been attributed to the fact that the plastic 

strain is dominant in this region. 

8. It appears that the plastic strain vectors are normal to the plastic work 
contours. This gives further support to the assumption of associated flow for 

concrete. 

Peak Behaviour 

The experimental observations for concrete at peak loading can be summarised as 
follows: 

1. The peak axial and lateral stresses and corresponding strains increase signif- 
icantly with the increase of confinement. This supports the well known fact 
of the higher strain capacity of confined concrete. 

2. With the increase in confinement, the axial strain capacity increases more 
than the lateral. 

3. The equivalent plastic strain at peak stress increases significantly with the 
increase of confinement. The general relationship is nonlinear and follows an 
exponential form. 

4. The values of peak plastic work increases significantly with the increase of 
confinement. The general relationship is nonlinear and follows an exponential 
form. 

5. Increasing the coarse aggregate content increases the brittleness of concrete. 
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6. Coarse aggregate content had a mild effect on the uniaxial compressive strength. 
There is marginal decrease in concrete with no coarse aggregate and a mar- 

ginal increase for concrete with double coarse aggregates. 

7. The content of coarse aggregate has a mixed effect on the uniaxial strain at 

peak stress. Significant increase for no coarse aggregate concrete was noticed 
and a marginal decrease where double the amount of coarse aggregates were 

used. 

8. The peak nominal stress (PNS) envelope is open-ended along the hydrostatic 

axis in the compression region. With no or low confinement, the surface 
is nonlinear but the shape becomes increasingly linear with the increase of 

confinement. 

9. Increasing the coarse aggregates content significantly increases the strength 
envelope. 

10. The shape of the VTS surface is similar to that of the peak nominal stress 
(PNS) surface but with a reduced size. For the same level of confinement, 
the ratio of the deviatoric component of the stresses at VTS and that at PNS 
is found to be constant (a�t, ='= constant ). PC 

11. The VTS envelope is closer to the PNS envelope for the mortar mix comparing 
with the normal and double coarse aggregates concrete mixes. This indicates 
that the dilation starts closer to the peak. 

12. Plastic VTS and the intersection point of the PNS surface with the hydro- 

static axis along with the plastic strain directions could be used to identify 
the shape of the yield surfaces. 

13. At peak stress, the directions of the plastic strain increments appear to be 
normal to the PNS surface. This is an important point, since it suggests that 
the plastic flow for concrete at PNS is associated. 

14. The directions of plastic strain vectors for concrete with different coarse ag- 
gregate contents seem to be normal to the yield surfaces. This suggests that 
the assumption of associated flow rule is valid for concrete with different 
constituents. 

7.2.2 The New Constitutive Model 
In this section the main features, the performance and efficiency of the new con- 
stitutive model are presented. 
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The Features 

The main features of the new model can be summarised as follows: 

1. The model is constructed within a classical isotropic elasto-plastic framework, 
based on the findings of experimental results. 

2. It takes into consideration the physical behaviour of concrete and the effect of 
its constituents. Plastic VTS and the intersection points of the PNS surface 

with the hydrostatic axis along with the plastic strain directions have been 

used to identify the shape of the yield surfaces. 

3. The new approach provides continuous loading surfaces, C2 continuous and 
intersecting the hydrostatic axis normally in both tension and compression 

regions. These surfaces do not include any vertices. The geometric form of 
these surfaces provides considerable flexibility, allowing the surfaces to predict 
the plastic dilations. 

4. It utilises one surface only for the yield and PNS. 

5. It maintains the basic plasticity postulates such as normality and the con- 

vexity of the yield surface. 

6. The deviatoric cross-sections of the yield surface have a general elliptic form 

which includes a control point on the shear meridian, in addition to control 
points on the compression and extension meridians. 

7. The hardening function has been formulated with an introduction of con- 
trol over the initial slope of the curve represents the relationship between 

the hardening parameter k and the internal hardening parameter kp (k-kr 

curve). This enables the nonlinear multiaxial deformation to be simulated in 

a realistic way. 

8. The ductility measure is expressed using an exponential function using just 
two parameters. 

9. An auxiliary stress surface has been introduced to deal with stress states 
which fall outside the zone where the yield function is defined. 

10. The concept of the reflected yield surface and the ductility dependent harden- 
ing function could be introduced into other formulations with different PNS 
descriptions. 
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11. In total, thirteen material constants are available to calibrate the model. Most 

of these can take default values, if experimental data is not available for a 

particular concrete. A complete calibration procedure (for all the constants) 

was identified. The sensitivity of the model response to small changes in 

the constants was determined. Some constants are found to have strong 
influence. These include the uniaxial compression strength (f, ), the uniaxial 
tensile strength (ft), Young's modulus (E), and the ductility constants (Ah 

and Bh). 

The Efficiency 

The efficiency of the new model has been tested against a large number of existing 
data. The following points summarise the main findings: 

1. A series of comparisons between the model simulations and existing experi- 
mental data was given. The data includes triaxial and multiaxial compression 
tests. 

2. The efficiency of the model was tested by determining the error for every 
simulated test. The overall error was then compared with two previous results 
reported by other researchers. The model showed better results. 

3. The model describes the inelastic nonlinear behaviour of concrete in the pre- 
peak range in a realistic manner. 

4. The new formulation captures the fundamental requirements of simulating 

plastic compaction and dilation. 

5. The overall predictions of the newly developed model for the stress-strain 
response of the three mixes are close to the experimental data. This is a step 
forward in the development of a constituent dependent model. 

6. The model predictions of the yield surfaces for different mixes show the flexi- 
bility of the model and its capability of capturing the most extreme material 
variations. 

7. Numerical derivatives have been used in order to verify the analytical deriva- 
tives and reduce the size of the code used for the newly developed model. The 

numerical algorithm has successfully calculated the derivatives of the yield 
surface. The performance of the algorithm has been verified by comparing the 
results with the analytical solution. The most critical issue associated with 
the numerical derivatives was the selection of the stepsize. Romberg's optimi- 
sation method which was developed originally for numerical integration has 
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been used to reach an optimisation value for the stepsize. The simulations 
using the numerical derivatives have similar results to that of the analytical 
derivatives. Significant reduction in the size of the code and a simplification 
has been achieved when numerical derivatives are used. The time consump- 
tion of the numerical derivative method is higher than that of the analytical 

method. This is attributed to the implementation of the extrapolation and 

optimisation technique of the stepsize. 

There are benefits in producing a compact code (using numerical derivatives) 

for the potential new user. If that user is comfortable with the simulation ca- 

pabilities of the model, then it is suggested that the full analytical derivatives 

be used to speed up the run time. 

8. The information available from uniaxial tests might not be enough to identify 

the appropriate values of all material constants hence, a triaxial test may be 

necessary if a satisfactory calibration for the model is to be attained. 

7.2.3 Suggestions for Further Research 

Some partially unsolved issues were encountered during this research. Other top- 
ics need to be added for further research programs. These can be classified into 
improvement of the existing model, extending it and further verifications and im- 

plementations. 

Improving the Model 

Two suggestions are proposed to enhance the efficiency of the model. These are: 

1. The simulations of a variety of experimental data for different load paths have 

shown that the performance of the model is enhanced significantly when the 
values of the ductility constants Ah and Bh are changed with the change in 
confinement. Therefore, a new formulation to include this effect is recom- 
mended. One suggestion is to fix all the material constants and add a new 
formulation linking Bh with through exponential function. This will in- 

crease the number of the material constants and it will require amendment 
of the hardening derivatives. 

2. The calibration of the PNS surface based on the triaxial compression data 
led to the prediction of significant increase in the tensile strength as the 
compression strength envelope decreases. This requires further investigation 
and probably further improvement of the performance of the model in the 
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tensile region. One suggestion is to choose a third point in the compression 

region at any confinement along with fe and ft to construct the PNS surface. 

Extending the Model 

Some limitations have been introduced in this research. It is thought that it is 

appropriate to extend the model in the following directions: 

1. Extensions of the model to include a continuum damage mechanics approach 
to anistropic stiffness degradation could be made to improve the simulation 

of the cyclic response and the stiffening encountered with a high level of 

confinement. 

2. Further extensions of the model should be made to include a temperature de- 

pendency to enable modelling of accidental thermal loading of nuclear reactor 
vessels. 

3. This study is focused on the response of concrete in multiaxial compression 
only. The model should be extended to the tension domain for applicability 
in finite element analysis of structures in which both brittle cracking and 
the frictional behaviour in compression play an important role. A promising 

approach might be a combination of a damage mechanics model, for the be- 
haviour of concrete in tension, with the proposed plasticity model describing 

the compression behaviour. 

4. The softening formulation needs to be introduced by linking the degrada- 

tion of strength under progressive tensile straining to the dissipated fracture 

energy. 

5. The model is time independent and further development is required to incor- 

porate the loading rate effect. 

Further Verification and Implementations 

Further verification and implementations are proposed. These are: 

1. Calibration of the model for different materials, such as rocks, using the PNS 

surfaces formulations for these materials. 

2. Reformulating the hardening function using the plastic work as an internal 
hardening parameter instead of the equivalent plastic strain. 

3. Coding the model using another language such as MATLAB. 
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4. The performance of the new constitutive model should be examined by im- 

plementing it in an advanced nonlinear finite element code such as yaFEc 
(Sheffield's finite element code). 

5. High quality of experimental test data is needed. Some errors in existing test 
data have been noticed, especially at the beginning of some tests where large 

values of strains are recorded prior to any loading. Also, many strain gauges 
seem to fail before reaching the peak. Furthermore, experimental data for 
high performance concrete is needed in order to explore the capability of the 

model to simulate concrete with wider range of strengths. 
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Derivatives of the Stress 

Invariants and the Deviatoric 

Shape Function 

In the formulation of the newly developed model, a set of new derivatives have 

appeared. These derivatives were fully defined and presented in Chapter 3. For 

completeness, here are presented the existing derivatives for the Haigh-Westergaard 

coordinates (ý, p, and 0) and the shape function (r) which appeared in the yield 

surface formulation. 

A. 1 Derivatives of the Stress Invariants 

Recall the Haigh-Westergaard coordinate of the stress space , p, and 0: 

The hydrostatic coordinate 

_ 
11 

(A. 1) 
and the normalised hydrostatic coordinate 

ý 
fr. (A. 2) 

The deviatoric coordinate 

p=2 Ja (A. 3) 

and the normalised deviatoric coordinate 

P fý (A. 4) 
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and Lode angle 0, where 
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The first and second derivatives of p with respect to second deviatori c stress in- 
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The first and second derivatives of J2 with respect to the stress tensor are as follows: 

Since 

J2 °1 [(Ol 
- Q2)2 +( Q2 - a3)2 +( Ql - Q3 )2] (A. 15) 

then the first derivatives with respect to the principal stresses are as follows: 
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A. 2 Derivatives of the Deviatoric Shape Func- 

tion 

The deviatoric shape function r (see subsection 3.4.2) follows from Bhowmik and 
Long and is formulated as 
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Carrying out the partial differentiation 
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The derivatives of the meridians pe and p5 with respect to t are now given 
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The derivative of Bo with respect to is as follows 
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On the following, the second derivative with respect to the stress tensor are given. 
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