
Wild Birds in Urban Gardens: Opportunity or Constraint? 

Andrew R. Cannon 

A thesis submitted for the degree of Doctor of Philosophy 
Department of Animal & Plant Sciences 

Faculty of Pure Science 

December 2005 



Summary 

This thesis examines whether urban residential areas, where small private gardens are 

the main wildlife resource, offer wild birds ecological opportunities as habitat or impose 

ecological constraints on them. Ecological opportunities should facilitate the 

establishment of an avifauna that does not depend on immigration, is similar in 

composition and structure to those in less-urbanised gardens and comprises individuals 

within normal ranges of biometrics, behaviour and condition. Ecological constraints 

may compromise the sustainability of this avifauna and restrict successful exploitation 

of the habitat to birds of particular characteristics. 

The analyses presented first investigate which bird species urbanise and why, and 

secondly which species use gardens and how. Patterns and trends in the use of gardens 
by British birds are examined, in general and in urban areas. A case study builds on 

these two themes, linking urban and garden ornithology by investigating an avifauna 
that uses gardens as its primary habitat but within a highly-urbanised context. Field 

studies of the breeding avifauna and some aspects of its ecology are presented, together 

with data from a ringing study on the use of feeding stations and the mobility and 

persistence of individual birds. 

More bird species urbanise than might be expected and urbanisation is not restricted to 

species with high behavioural flexibility. Gardens are an extension of natural habitat for 

many species, but in urban gardens utilisation rates are declining more than in gardens 

elsewhere, raising concerns for urban conservation policy. Small gardens in a highly- 

urbanised area support a breeding avifauna that is of low density but appears sustainable 

and of stable composition with individual birds maintaining normal territoriality and 

persisting over time. The spatial distribution of breeding territories is related to all-year 

artificial feeding but not to cat activity, and the mechanisms of birds' adaptation to 

urban life show interesting variation between species. 
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1. Introduction and review of literature 

1.1. Introduction 

It is an everyday observation that despite the antipathy of urbanisation to biodiversity in 

general, cities and towns nonetheless support wild birds. Not only are urban avifaunas 

of ecological interest per se, their persistence despite habitat fragmentation and 
distortion, competition from commensal species, abiotic peculiarities and extreme 

disturbance may provide insights into how wildlife in modified habitats elsewhere can 

be helped. Furthermore, as global urbanisation continues, urban avifaunas are becoming 

of greater relative importance. Habitats associated with human habitation already 

support more than 20% of the British populations of Blackbird and the red listed 

Starling and Song Thrush (Eaton et al. 2004; Gregory & Baillie 1998). Although only 
10% of British landcover, urban habitats hold between 17 and 62% of the populations of 

a number of other species (Noble et al. in press) including an estimated 54% of Starlings 

and 62% of House Sparrows (Crick et al. 2001), the latter now also red listed. Hence, 

they are increasingly appropriate targets for research and conservation efforts, the 

collateral benefits of improved awareness and quality of life maximised among dense 

populations. According to UN criteria around 47% of the world population and 90% of 
the U. K. population lived in urban areas by 2000. Worldwide, about 160,000 people 

move from rural areas to cities every day (United Nations Population Fund 2002). 

This thesis reports a programme of work undertaken to improve understanding of some 

of the ecological opportunities and constraints applicable to wild birds in urban habitats. 

In particular, whereas most urban bird studies to date have focused on parks or other 

ecologically anomalous green spaces, this research considered the birds using a little- 

studied but important urban habitat: private gardens. In this introductory chapter, the 

general characteristics of the urban environment as wild bird habitat are outlined. The 

specific issues examined in subsequent chapters are then introduced and relevant 
literature reviewed. Finally, an outline is presented of the various approaches taken in 

subsequent chapters to increase understanding of these issues. 

General treatments of urban ecology have long been available in professional and 
popular literatures (e. g. Adams 1994b; Baines 1986) but recently research interest has 
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increased (Jensen 1998; Nilon et al. 1999; Pickett et al. 2001; Walbridge 1998). Urban 

ornithology has grown in parallel; several summaries of urban bird ecology are now 

available (e. g. Bowman & Marzluff 2001; Marzluff et al. 1996; Savard et al. 2000). 
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Figure I. I. Frequency distribution of years of publication of 287 urban ornithology 
references consulted for this thesis. After Marzluff, Bowman et al. (2001 b) 

Around 75% of studies located by Marzluff, Bowman et al. (2001b) were from the last 

20 years and figure 1.1 illustrates a similar bias in literature reviewed for this thesis. The 

European literature, however, does include some older work (e. g. Batten 1972; Erz 

1964; Gladkov 1958,1960 in Konstantinov 1996; Pitelka 1942; Simms 1962; Snow 

1958) and the invaluable legacy of a generation of east European ornithologists 

constrained from wider travel (L. Tomialojc 2002 pers. comm). 

Adams (1994) acknowledges Dasmann's (1966 in Adams 1994b) exhortation to "get 

out of the woods and into the cities" as a turning point in conservation biology. Urban 

biodiversity conservation and science now enrich people's lives in their home 

environment (Harrison et al. 1987); urban birds are particularly important in this 

context, being diurnal, visible, and often regarded sympathetically (Clergeau et al. 
2001b) as well as being environmental indicators (Furness & Greenwood 1993). Even 

apparently pristine habitats are unlikely to have escaped human influence (Grayson 

2001; Vitousek et al. 1997) so the faunas of modified habitats are relevant to almost all 

ecology. Understanding the dramatic ongoing changes in urban habitats may help 

predict more widespread future changes (Pickett et al. 2001) and characteristic features 

of urban ecosystems exemplify key themes in modem ecology, notably the prevalence 
of invasive alien species (Niemela 1999) and biotic homogenization (McKinney & 

7 

1906 1921 1936 1951 1966 1981 1996 
Year of Pubication 



Lockwood 1999). Bird urbanisation can be seen as an ̀ ecological experiment' (Erz 

1966), imposing "unprecedented and intense manipulations" (McDonnell & Pickett 

1990) and offering accessible insights into processes and patterns, although research in 

habitats where biodiversity preservation and human exploitation interact is always 

challenging (May 1999). Mobile and subsidised, urban birds may not be appropriate 

`umbrella' (Fleishman et al. 2000), `focal' (Lindenmayer & Fischer 2003) or `keystone' 

(Mills et al. 1993) species in any ecological sense, but they are ̀ touchstone' species for 

humans; visible and charismatic totems of wildlife and its conservation that perform "a 

strategic socio-economic role" (Walpole & Leader-Williams 2002), contributing to 

urban sustainability by engaging human supporters (Nilon et al. 1999). Inevitably 

incorporating human influences and socio-economics, urban ornithology is an ecology 

of urban habitats rather than ecology in urban habitats (Grimm et al. 2000). 

Classifying habitats as more or less urban seems simple, but repeatable, standardised 

classification has become more complex as urbanisation rates outstrip urban population 

growth (Pickett et al. 2001). Possible metrics include position within spatial structure of 

conurbations, human population density and landscape characteristics. Spatial structures 

of cities are increasingly variable, with development clusters (Makse et al. 1995). 

Sometimes ̀urban sprawl' has clear urbanization gradients that correlate with bird data 

(Crosby & Blair 2001). Elsewhere, ̀ exurban' or `edge city' humans interface with non- 

urban birds (Greene 1997). Meanwhile, urban centres are redeveloped; such distortion 

of traditional concentric urban morphologies and linear urbanisation gradients 

complicates habitat characterisation (Alberti et al. 2001), as in Naples where bird 

diversity correlated with an urbanization gradient but presence/absence data did not 
(Mirabella et al. 1996). Nonetheless, both simple (Clergeau et al. 1998; Odell & Knight 

2001) and complex (1996; 2001a; Melles et al. 2003; 2000) urbanisation gradients have 

successfully been identified but they remain "difficult places to carry out ecological 

research" (Matson 1990). 

A figure of 620 people km-2 is cited as the US Census definition of `urban' by 
McDonnell and Pickett (1990), more recently the US Census adopted thresholds such as 

population of 2,500 with density of 386 people km -2 (Gibson 1998); both seem low, the 

case study area for this thesis has over 2000 households km72 and Singapore has >5800 
humans km72 (Soh et al. 2002). Simple metrics may be culturally biased but combined 
population and landscape measures have proved useful (Gorski 1997; Marzluff et al. 
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2001b). Opdam & Wiens (2002) identified dissection, perforation, fragmentation, 

shrinkage and attrition as five stages of natural habitat loss for a typology of relative 

urbanisation. Simpler metrics can mislead; 60-80% of typical temperate cities meets a 

conventional definition of `forest' (Rowntree 1984 in Adams 1994). Comprehensively 

classifying urban land cover is time-consuming (Freeman & Buck 2003) but 

quantitative categorisations are essential, with landscape, vegetation and land use 

metrics (Marzluff et al. 2001 a), which require standardization (McIntyre et al. 2000). 

Even in parks within the same biogeographic area, variations in origin, vegetation, 

management and surrounding land use differentiate their avifaunas (Tomialojc & Profus 

1977), and even when age, location and host culture are known, simple habitat metrics 

such as proportion of green space are highly variable (e. g. Gorski 1997). 

In 41 of 101 urban bird studies reviewed by Marzluff, Bowman et al. (2001b) the urban 

setting was not quantified at all; at the very least, authors should record study area size, 

estimated proportion of green space and human population. Furthermore, human 

activities, such as provision of quasi-natural habitat and supplementary food in private 

gardens, may subsidise bird populations such that simple relationships between relative 

urbanisation metrics and bird communities break down. The case study habitat in this 

thesis scores highly on quantitative urbanisation metrics, yet supports bird species that 

are not primarily urban. ̀ Top down' habitat metrics are essential, but arguably `bottom 

up' observations of species occurrence and persistence are also meaningful in terms of 

assessing relative urbanisation of a habitat from the birds' point of view. 

Basic ecological parameters of urban environments are more repeatably measurable. 
Differentiating abiotic factors include the urban heat island effect (Adams 1994b) that 

promotes winter roosting (Feare 1984) and range expansion (Williamson 1975), 

although in low latitudes cities may be cooled by watering of plants (Pickett et al. 
2001). High abstraction and runoff lowers water tables despite higher precipitation 
(Adams 1994b); waterbirds face variable levels, summer drying, turbidity, 

channelisation and higher water temperatures, though the latter can augment habitat, the 
banks of the river Don in Sheffield were colonized by Fig trees when waterborne seeds 
germinated, warmed by steelworks (Gilbert & Pearman 1988). Aquatic biotopes greatly 
influence the composition and diversity of urban avifaunas (Bozsko 1985). 
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Artificial light may advance breeding (Bartholomew 1949 in 2004) and light affects the 

starting time of the dawn chorus (Thomas et al. 2002). Urban daylight has high ultra- 

violet (UV) content (Heisler & Grant 2000); iridescence or reflectance affects prey 

visibility (Church et al. 1998; Siitari et al. 1999; Vulinec 1997). In Vienna, Kestrels 

caught flying moths at night around a floodlit tower but disappeared when the UV 

component of the light was filtered (Sachslehner 1996). A particular issue with 

nocturnal urban lighting is bird collisions (e. g. Cochran 1958), fatality rates can be 

ameliorated by lighting reduction (Ogden 2002). Coastal town illumination attracts 

migrating seabirds (Podolsky 2002) and birds also collide with buildings during the day 

(Bower 2000; Klem 1990) and with telecommunications towers (Jackson 2004); for a 

bibliography of bird impacts with structures see Trapp (1998). Urban noise may affect 

birds (Adams 1994b); their hearing differs from that of mammals (Slabbekoorn & Smith 

2002) and many hunt by sound (Montgomerie & Weatherhead 1997) but some species 

cope with noise (Benson 1995; Rheindt 2003) by adjusting song volume (2004; Brumm 

& Todt 2002) or frequency (Slabbekoom & Peet 2003). Pollution may contribute to 

urban House Sparrow declines, (J. D. Summers-Smith pers. comm. ); birds absorb 

pollutants from food, water or dust deposition on their plumage (Dmowski 1999; Hui 

2002). Nestling Blue and Great Tit faeces had increased concentrations of lead, 

cadmium, arsenic and copper at polluted sites (Dauwe et al. 2000) but pollution effects 

are hard to assess and species-dependent, for example pollution stress in Great Tit 

nestlings was detectable at morphological and ecological but not biochemical levels, 

whereas in Pied Flycatchers it was detectable at all three (Eeva et al. 2000). 

Biotic factors differentiating urban habitats include disturbance and predation and 

vegetation composition and structure. Most studies of anthropogenic disturbance 

examine waders and waterfowl, in which recreational disturbance typically reduces 

breeding success and favours common opportunistic species (Hockin et al. 1992). 

Disturbance from adjacent urbanization affected Nightjar numbers on heathland (Liley 

& Clarke 2003), but in North America Caprimulgidae feed and nest in urban 

environments (Bowles 1921; Marzilli 1989; Wedgwood 1973). Some studies have 

found little or no effect (Bolger et al. 1997; Mörtberg 2001; Sauvajot et al. 1998), others 

negative effects (van der Zande et al. 1984 in Mörtberg 2001); avian disturbance 

literature in an urban context is reviewed by Fernandez-Juricic et al. (2001). 
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Two opposing factors influence urban nest predation. Optimum sites that minimise 

predation (e. g. Martin et al. 2000) may be scarce in urban habitats; predation rates were 

higher in Finnish town centres (Jokim . ki & Huhta 2000; Jokimäki et al. 2005) and 

artificial nest predation rates in Florida suburbs increased with housing density 

(Thorington & Bowman 2003) although assessing predation with artificial nests is 

notoriously problematic (e. g. Blair 2004; DeGraaf et al. 1999; Gregoire et al. 2003). On 

the other hand, the absence of woodland nest predators from urban habitats can improve 

survival (Chamberlain 1994; Orell 1989; Simöns et al. 2000; Snow 1988; Gering & Bair 

1999 in Thorington & Bowman 2003; 1977). Relationships between predation and 

urbanisation are affected by differences in predator communities; in some countries 

mammals such as Martens predate urban nests, in others predation is dominated by birds 

such as Magpies (Clarkson & Birkhead 1987) and Jays, which experience increased 

predation themselves as larger corvids urbanise (Jerzak 1995; Marzluff & Balda 1992). 

In one study, birds attacked more nests near paths but mammalian predators were more 

active away from them (Miller & Hobbs 2000), in another, Blackbirds nesting nearer 
human activity were more productive and less discriminating in site selection (Osborne 

& Osborne 1980). Predation in Polish and London parks decreased with human activity 
(Tomialojc 1979; Tomialojc & Profus 1977) but Russo & Young (1997) found urban 

and especially suburban predation rates much higher than in rural habitat. The evidence 
is mixed; urban predation is sometimes lower than non-urban in Europe but higher in 

North America (Morneau et al. 1994), and "one can imagine reasons for both higher and 
lower rates" (Bland et al. 2004). 

Urban bird habitats have built and vegetative components, both highly modified 
compared to natural alternatives. Buildings dominate in core urban areas where, in 

general, only species that nest on them sustain populations. Swift, House Sparrow, 

House Martin and Feral Pigeon are commensal, other flexible species exploit natural 

nest site substitutes, including Jackdaw, Raven, Peregrine Falcon, Kestrel and arboreal 

and montane pigeons such as the Speckled Pigeon and White-collared Pigeon in Africa 

(Goodwin 1979). Beijing was once known as ̀ the city of Swallows' (Jackson 1992 in 

Adams 1994). Where vegetation provides food, cavity nesters such as tits, Pied Wagtail, 

Wren and Robin exploit pipework and gaps in masonry; buildings clad with plants host 

a still wider range of nesters such as Blackbird and even Mallard. Fisk (1978) noted 22 

species nesting on urban roofs, including cliff nesters, ground nesters and opportunists 
like gulls, which have been doing so for more than a century although numbers have 
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increased recently (Belant 1997); UK urban gulls can have higher nesting success than 

traditional colonies (Raven 1997) but productivity was lower than non-urban colonies in 

Ohio, USA (Belant et al. 1993). Derelict buildings also support birds, Black Redstart 

most famously in the UK (Frith & Gedge 2000). 

Urban vegetation often differs from that of surrounding areas and generally cannot 

replace natural forest in terms of bird communities (DeGraaf 1987). Even natural 
habitats retained within development change; between 1968 and 1986,30% of plant 

species were lost from forest stands conserved within a Toronto development (Boyer et 

al. 1986 in Adams (1994)). Street trees exemplify structural and taxonomic 

simplification in urban vegetation; they produce a step increase in nest site availability 

upon attaining a suitable size; most London Plane trees in the UK are still growing, their 

parent species has mature girth of 12m (Chengappa 1999). Urban House Crows have 

tree morphology preferences (Soh et al. 2002) and street trees predicted Magpie 

distribution in Manchester, dense canopy species offering protection from Carrion 

Crows were preferred (Tatner 1982b). Canadian urban Merlins use abandoned corvid 

nests in urban trees (James 1988) and wooded Madrid streets were feeding or nesting 
habitat for 14 bird species although ground, scrub and hole nesters were absent and 
roads connecting parks had more diverse avifaunas (Fernandez-Juricic 2000). 

One of the main vegetated habitats is amenity green space, typically grass with scattered 
trees and shrubs, controlled succession and simplified vertical structure (Adams 1994b), 

replicating early succession and climax vegetation (Niemela 1999) but offering little for 
disturbance-sensitive scrub nesters (Femandez-Juricic et al. 2001), urban humans 

preferring sightlines and permeability (Harrison et al. 1995; Luymes & Tamminga 
1995). Tree densities may approach those of non-urban forest (Lawrence 1995 in 
Pickett et al. 2001) and cavity-nesters do well, especially if provided with boxes 
(Luniak 1992). Generally, parks support more species than other urban habitats 
(Fernandez-Juricic & Jokimaki 2001), particularly if large (Baker 1988; Fernandez- 
Juricic & Telleria 1999; Gavareski 1976; Jokimäki 1999; Mason et al. in press; 
Mörtberg 2001; Park & Lee 2000; Sinclair et al. 2004), although Willow Tits use small 
forest fragments (Helle 1984 in Mörtberg 2001) but did not use similarly sized urban 
fragments. Assuming bigger is always better ignores the contribution of small patches to 
species accumulations, particularly in urban environments where conserving small 
patches is the only option (Fischer & Lindenmayer 2002). However, persistence in 
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small fragments of aggressive species such as Noisy Miner (Mac Nally & Horrocks 

2002; Major et al. 2001) or dominant synanthropes amplify the effects of patch size 

reduction on shyer species. Nonetheless, lower bird diversity in small parks does not 

always mean fewer birds; smaller forest remnants in Stockholm had higher bird 

densities (Mörtberg 1996 in Mörtberg 2001) and in Poland small parks have breeding 

densities higher than nearby forest (Tomialojc 1970; Tomialojc & Profus 1977). Other 

public areas providing habitat include city farms (Sorace 2001) and cemeteries (Thomas 

& Dixon 1974 in Adams 1994b; Kocian et al. 2003; Lussenhop 1977). 

Parks exemplify the fragmentation of urban vegetation; much urban ecology literature 

invokes island biogeography and metapopulations (e. g. Fernandez-Juricic & Jokimaki 

2001; Niemela 1999; Rudd et al. 2002). However, Tworek (2002) found some species 

responded positively to non-urban habitat fragmentation, though others were negatively 

affected (Roslin 2002). Simple `habitat/non-habitat' island analogies fail to adequately 
describe urban habitats due to interspecific variation in fragmentation scale (Opdam & 

Wiens 2002) and preferred structure (Bolger et al. 2001), to birds' high mobility 

(Brotons et al. 2003) and because edges are as important as size; due to regeneration 
failure (Moran 1984 and Bagnall 1979 in Pickett et al. 2001) urban forest patches have 

the type of open margins at which nest predation, for example of Indigo Buntings 

(Suarez et al. 1997), is higher than at natural edges with plant succession. Reviews of 
habitat fragmentation and productivity (Maina & Jackson 2003; Paton 1994; Stephens et 

al. 2003) emphasise the roles of predation and disturbance in edge effects. 

1.2. Differentiating urban avifaunas 

The first section of this thesis examines the differentiation of urban and non-urban 
avifaunas. Certain avifaunal characteristics have become dogma of urban ornithology 
(e. g. Adams 1994b; Chace & Walsh 2006; Emlen 1974; Erz 1966; Huhtalo & Järvinen 

1977; Marzluff 2001; Marzluff et al. 1996). Urban avifaunas are relatively species-poor 

with generalist, broad niche species doing well but specialists disadvantaged, and often 
high in overall biomass, largely accounted for by core urban species. The extent to 

which these characteristics apply depends on the degree of relative urbanisation from 

the birds' point of view. This can be hard to quantify, particularly in the little-studied 
habitat between the centres of cities and their periurban fringes that provides the case 
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study for this thesis: high density residential areas that are highly-urbanised on most 

metrics yet support bird species that are not exclusively commensal, often originally of 

woodland edges (e. g. Simms 1962; Tomialojc 1998). The avifaunas of these 'second- 

tier urban' habitats show a characteristic duality (1998); core urban and non-urban 

avifaunas mingle. In a sense, they are a meeting point of `resource breadth' and 
`resource availability' bird distributions (Gregory & Gaston 2000); broad niche species 

such as Blackbird mix with commensals such as House Sparrow. 

Bird communities simplified with increasing urbanization in all but one of 14 studies 

reviewed by Clergeau et al. (2001a), in Massachusetts (DeGraaf 1981), in Rennes and 

Quebec (Clergeau et al. 1998) and in seven types of anthropogenic landscapes in Russia 

(Konstantinov 1996). Diversity can decline within urbanisation despite negligible 

apparent habitat change (Jones & Bock 2002). Its decline is not confined to temperate 

cities (Reynaud & Thioulouse 2000), nonetheless urban habitats do not always have the 
lowest integrity bird communities (O'Connell et al. 1998a; von Euler 1999) and 
diversity of some guilds can increase (Smith 2002). Typically, ten or fewer abundant 

species dominate core urban avifaunas (Johnsen & Vandruff 1987 in Adams 1994b; 

Huhtalo & Järvinen 1977; Luniak 1996) with density and species richness inversely 

related (Clergeau et al. 1997; Dulisz & Nowakowski 1996) although in smaller towns, 

central synanthrope concentrations may not arise (Huhtalo & Järvinen 1977; Vogrin 

1998). Generalisation is complicated by variations in urban form, seasonality and rapid 

population change but city centre bird densities are frequently higher than in nearby 

non-urban habitats (Bland 1979; DeGraaf 1981; Tischler 1955 in Erz 1966; Luniak 
1977; Mitschke & Baumung 2001; Sasvari 1990), and even raptors, such as Eastern 
Screech Owl (Gehlbach 1988) and Merlin (James 1988) achieve high urban densities. 

Urban avifaunas are particularly interesting in terms of anthropogenic ̀ biotic 
homogenisation' (McKinney & Lockwood 1999), of which they provide an accessible 
case study (Blair 2001a; Blair 2001b; Clergeau et al. 2005, in press; Crooks et al. 2004) 

although Jokimäki & Kaisanlahti-Jokimäki (2003) found urbanisation did not 
homogenise avifaunas monotonically but above a threshold of anthropogenic influence. 
In addition to global homogenisation due to the ubiquity of cosmopolitan synanthropes, 
whose densities equalise quickly (Clergeau et al. 1998), avifaunas of widely-separated 
cities within biogeographic areas often show commonality (Bozsko 1985; Dinetti et al. 
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1996; Jokimäki et al. 2002), although dominance and commonality are not necessarily 

related (Tomialojc 1970 in Huhtalo & Järvinen 1977). 

A further interesting feature of urban avifaunas is that many are changing rapidly, 

complicating attempts to differentiate them. A common pattern seems to be increasing 

species richness (Dinetti et al. 1996; Morneau et al. 1999; Nowakowski 1996) and 

colonisation of larger opportunists such as corvids (Aparova 2001; Kristan 2001; Soh et 

al. 2002; Vuorisalo et al. 2003), raptors (Bird et al. 1996; Bokotey 1996; Chace & 

Walsh 2006; Konstantinov et al. 1994; Rejt 2001; Warkentin & James 1988), pigeons 

(Slater 2001) and waterfowl (Adams et al. 1985; Bentz 1985; Bezzel 1985; Ilyichev et 

al. 1990; Jedraszko-Dabrowska & Debinska 1993; Jozkowicz & G6rska-Klek 1996; 

Konstantinov et al. 1994; Traut & Hostetler 2003), together with declining small 

passerines (e. g. Rollinson et al. 2003), suggesting a major gain in net biomass (Luniak 

1990). Species turnover has often been extensive even where there has been little 

change in species richness (e. g. Luniak 1996) and where richness has increased, it has 

often done so more in central than in suburban habitats (e. g. Witt 1996). Magpie is a 

. particularly visible larger species which has rapidly urbanised since the 1950s, west to 

east across Europe and Asia (Jerzak 1995). Populations almost doubled between 1982 

and 1992 in 11 Polish towns that had expanded around the Magpies' nesting habitat, 

from which they colonised older built-up areas as recently-planted trees matured 
(Gorski 1997). Longer lifespan and higher breeding success than non-urban birds helped 

their increase (Jerzak 1995). The Berlin population has greatly increased in the last 20 

years (Witt 1997), while Dublin nest density increased by 12-13% per year between 

1970 and 1987 with no sign of stabilisation (Kavanagh 1987a). Magpie colonisation of 

urban Kazan (Russia) only began in the 1980s but recent breeding densities reached 10 

pairs km-2, ten times typical non-urban density (Vodolajskaia 2001). 

As urbanisation intrudes into landscapes worldwide, it is important to identify which 
bird species tolerate its modification of their habitat and which do not adapt 

successfully. The core urban synanthropes are well-known, but can a more general 

subset of species within a national avifauna be identified that consistently associate 

more than other species with urbanisation? In the UK, bird species likely to urbanise 
have had time to do so; cities are long-established and despite urban sprawl and 
regeneration, many remaining extensive non-urban habitats are protected to some 
degree. Chapter two takes advantage of this relatively stable mosaic of urban and non- 
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urban habitats, across which both land cover and the distribution of the breeding 

avifauna have been reliably mapped, to examine this issue on a broad scale. 

1.3. Factors influencing the relative urbanisation of species 

Chapter three builds on this analysis to consider whether ecological traits predispose 
bird species to be more or less urban, a question that has so far defied systematic 

answer. McClure (1989) compiled observations of 848 species from 30 locations in 

Asia and the USA between 1941 and 1988 and classified each species according to 113 

characteristics, of which 29 were common to at least 50% of 70 species designated as 

`urban'. No firm conclusions could be drawn. Synanthropy, the degree to which species 
"gain some benefit from use of habitats modified by humans" (Johnston 2001), is not 

necessarily directly related to urbanisation and can vary seasonally (e. g. Nuorteva 1971) 

and geographically. For example, Konstantinov et al. (1994) categorised Song Thrush as 

a species for which increased urbanization does not favour breeding and it was lost from 

50% of breeding atlas plots in Berlin between 1977-83 and 1989-91 but is still abundant 
in adjacent forests (Witt 1996). In contrast, urban London gardens in the 1960s 

supported stable populations (Simms 1962) and in the U. K. the built environment is 

now more important than the countryside for this species (Mason 2000). The ongoing 

and often rapid changes in urban avifaunas referred to above complicate defining birds 

consistently as ̀ urban', for example Great Spotted Woodpecker and Coal Tit are non- 

urban in Finland (Jokimäki & Suhonen 1998) but increasingly urbanised in the UK 

(Cannon 2000), linked to positive population trends (Baillie et al. 2001). Species which 
ordinarily never urbanise, such as South African montane sunbirds, can do so if driven 
by extreme events such as fires and drought (Harrison 2000). 

In general, urban environments disadvantage habitat specialists except those whose 

speciality is commensality; this effect is even apparent in exurban settlements among 

pristine habitat (Fraterrigo & Wiens 2005). Urbanised generalists are typically edge 

species, naturally occurring where habitats meet and tending to be residents or partial 

migrants, granivores or omnivores (Adams 1994). In Australia, generalists such as 
Torresian Crow, Australian Magpie and Noisy Miner are abundant in urban and 
suburban habitats (Rollinson & Jones 2002). In Finland, omnivores were more prevalent 
in urban environments, Carrion Crow and House Sparrow abundances correlating with 
proportion of built-up area and, together with Feral Pigeon, with human density 
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(Jokimäki & Suhonen 1998). In Naples, species occurring in all habitat types were Feral 

Pigeon, Blackbird and two resident granivores, Italian Sparrow and Serin (Fraissinet 

1995). It is hard to measure species' dependence on urbanisation as it is rarely reversed. 
However, Konstantinov (1996) monitored birds along a habitat gradient from a small 
town centre to settlements that were being abandoned. Synanthropes declined and 
disappeared with settlements and a forest bird community started to reappear. Again, 

ongoing worldwide urbanisation raises the question of whether the species which adapt 
to it successfully and, perhaps more importantly, those which fail to adapt, can be 

predicted on a broader scale, ideally based on a small number of measurable traits. 

1.4. The role of gardens 

Localised and/or seasonal surveys (Cannon 1999) suggest that private gardens provide 
substantial resources for significant numbers of wild birds, and they form a significant, 
if variable, proportion of the vegetative bird habitat in urban areas. The second 
analytical section of this thesis, chapters four, five and six, examines the year-round use 

of this habitat by wild birds, and its seasonal variation, on a larger scale than previously 
attempted, firstly across the UK as a whole and secondly examining variation between 

urban and non-urban gardens. Cowie & Hinsley (1987) observed that, in Britain at least, 

gardens differ from parks in having fewer mature trees but often abundant 
supplementary food. Consequently, their avifaunas also differ, for example in parks 
Great Tit densities are often higher than those of Blue Tits (e. g. Berressem et al. 1983; 
Dhondt & Eyckerman 1980) but in gardens Blue Tit densities are often higher (Bland 
1979). Gardens contribute to bird conservation (Cannon 1999) and Lepczyk et al. 
(2003a) found that more than half of the respondents to a survey of residents helped 
birds by providing food, nest boxes or bird-friendly shrubs. Rudd et al (2002) showed 
that wildlife linkages between half the urban green spaces in Vancouver could only be 

realised by backyards and that their enhancement was the best approach to connectivity. 
Nonetheless, garden Blue and Great Tit productivity was lower than in non-garden 
populations and, despite artificial food, appeared to be limited by natural food supply 
(Cowie & Hinsley 1987; Cowie & Hinsley 1988). Non-native plants are commonly 
blamed for hosting fewer invertebrates, although there is little evidence for this 
relationship in Sheffield (Gaston et al. 2004) and Belfast Blue Tits obtained up to 13% 
of their daily energy by extracting nectar from non-native flowers (Fitzpatrick 1994). 
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There is a need to examine the use of this habitat by birds nationally and, given its 

relative importance in urban landscape, to determine whether urban patterns of garden 

use are different from those elsewhere. 

1.5. Case study: the breeding avifauna of urban gardens 

The third analytical section of the thesis presents results from a field investigation of an 

urban case study avifauna. If the importance of urban habitats to birds is to be promoted 

and enhanced, it is important to understand the extent to which they support sustainable 

breeding populations; chapter seven shows how territory mapping can establish this 

despite the disadvantages of urban environments for fieldwork. Correlations between 

urbanisation and breeding success vary (Thorington & Bowman 2003) according to 

habitat structure, landscape context, species, predator communities and scale. Most 

evidence is from large, accessible or nestbox species, as shown in table 1.1, for which 

productivity generally equals or exceeds non-urban habitats (Marzluff et al. 1996). 

However, for smaller species urban clutches may be smaller, notably in garden Blue and 
Great Tits (Cowie & Hinsley 1987) and productivity lower (Luniak 1977; Schnack 

1991) although in five box-using species in Warsaw and Poznan, clutch size and 

productivity were no worse than in adjacent non-urban areas (Luniak 1992). Lower 

adult mortality may compensate for low productivity (Erz 1966; Horak & Lebreton 

1998; Tatner 1982a) although post-fledging mortality of suburban Australian Magpies 

(Rollinson & Jones 2002) and Warsaw Starlings (Luniak 1977) was higher than in rural 
conspecifics. Temporal advancement is also commonly observed in seasonal climates 
(Gehlbach 1988; Ilyichev et al. 1990; Perrins 1970; Rollinson & Jones 2002). 

Again, most studies to date have been in either core urban habitats or parks; in contrast, 
chapter seven reports probably the first attempt to map in detail the breeding avifauna of 

an urban residential area in which private gardens are the primary habitat. If small urban 

gardens do provide a significant proportion of the wild bird habitat in urban areas and if 

they can support sustainable breeding avifaunas, it is important to understand which 

particular characteristics of the habitat best enable wild birds to breed and which, if any, 
are problematic for them. Chapter eight assesses correlations between breeding species 
richness, habitat structure variables and with two anthropogenic influences, one positive 
(supplementary food) and one negative (prevalence of domestic cats). 
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1.6. Case study: individual birds in urban gardens 

The territory mapping study determined the breeding bird community and its relative 

stability but provided no information on winter use of the case study habitat, which was 

synonymous with use of feeders, the primary food resource. Chapters nine, 10 and 11 

report information obtained from a year-round programme of catching birds at feeding 

stations and marking them with rings. This is complementary to the GBW reporting rate 

analysis, which shows seasonal patterns in urban feeder use but provides no data on 
individual birds, their fidelity to feeding stations and their persistence at them over time 

and between seasons. Another interesting issue is the relationship between the breeding 

avifauna and birds using feeders. If feeders are the primary resource, not just in winter, 
but through the year, there should be a strong correspondence between the breeding 

avifauna mapped in chapter seven and the species caught at feeders. 

Marking individual birds is also the only way to study the degree of exchange between 

an urban garden population and other habitats. This question of mobility between urban 

and non-urban populations is important because it is still unclear whether urban and 

non-urban populations of even common and well-studied species are isolated from each 

other. For synanthropes in which urbanisation has fuelled range expansion, such as 
Collared Dove, the entire population may effectively be urban (Tomialojc 1988). 
Continuously distributed species such as Great Tit may have isolated urban populations 
(Schmidt & Einloft-Achenbach 1984), others such as House Sparrow mix breeding 
isolation with non-breeding dispersal and mingling. Blackbird, Eastern Screech-Owl 

and Woodpigeon have been shown to have freely mingling urban and non-urban 
populations and some urban Blackbird populations may depend on non-urban recruits 
(Groom 1993; Erz 1964 in 2004), although urbanised Blackbirds in Europe may have 

`leapfrogged' non-urban populations to progressively colonise urban areas (Erz 1966; 

Steinbacher 1942 in Tomialojc 1998) and Batten (1973) considered that London's 
Blackbirds formed a stable and even a source population. Timescale may determine 

whether urban populations are sources or sinks; recently-established populations may 
not be self-sustaining (Luniak 1977) and source-sink relationships vary or even reverse 
with time (Opdam & Wiens 2002). 

In the final part of the case study, specific ecological opportunities and/or constraints 
applicable to birds breeding and feeding in urban gardens are investigated, using Blue 
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and Great Tits as study species. Urbanisation modifies food availability for birds, 

through anthropogenic input but also alters natural food availability. Invertebrates may 

respond in a similar way to birds with an increased proportion of generalists and 

declining diversity, for example Warsaw has only 15% of regional species (Luniak 

1999) but the effects vary with species (Helden & Leather 2004; Zanette et al. 2005), 

season (Pouyat et al. 1994 in 1997) and scale (Gibb & Hochuli 2002) and are little- 

studied. Earthworms are sometimes more abundant in cities than elsewhere (Steinberg 

et al 1996 in 1997) while urban sites in the same regions have very different carabid 

assemblages and their completeness varies greatly (Eversham et al. 1996). Lower 

invertebrate populations may reduce parasitism, French rural Blackbirds had 

significantly higher prevalence of ticks than urban conspecifics (Gregoire et al. 2002). 

Even small food quality differences in early life can affect trait expression in birds 

(Ohlsson et al. 2001); Estonian urban Great Tits were less brightly-coloured than non- 

urban conspecifics; cross-fostering suggested dietary deficiency, even though the urban 

birds had better health, lower reproductive effort and higher survival (Horak et al. 

2001). It is therefore important in assessing the sustainability of urban avifaunas to 

understand more about the extent to which the diet of nestlings differs from that of non- 

urban conspecifics, as found in Song Thrushes in Vienna parks, for example, which 

provisioned nestlings with fewer snails than birds in an adjacent wood (Schnack 1991). 

Overall, the taxonomic and structural incompleteness of urban vegetation seems likely 

to reduce the availability of invertebrates for nestling provisioning although some non- 

native urban plants provide nectar for adults, as in Greater Manchester where butterfly 

species richness decreased with urbanisation but Large White, Small White and Holly 

Blue showed potential to increase due to increasing area of host plants (Hardy & Dennis 

1999). For Lepidoptera in general, light trapping shows urban and suburban faunas to be 

very impoverished although species associated with garden conifers have markedly 
increased their range recently (Taylor et al. 1978 in Davis 1978). Constraints in food 

availability may also be indirectly apparent, through, for example, variations in the 

energy budgets of adult birds finding food for their broods and it may result in heavy 

use of feeding stations; which could facilitate disease transmission; results of 
investigations into both these issues within the case study area are also reported. 
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1.7 Structure of the thesis 

The research presented in the following chapters aimed to improve understanding of 

wild birds' use of urban gardens by applying a suite of fieldwork and analytical 

techniques at different biogeographical and taxonomic scales. Broadly, the chapters 

divide into three sections, analyses of the use of urban habitats and analyses of the use 

of gardens, followed by a case study. Chapters two and three consider the use of urban 

habitat at landscape level by a wide range of species within a national avifauna. 

Chapters four, five and six investigate the use of private gardens as a particular habitat 

by the species that frequent them most often, both generally and specifically in urban 

areas. Chapters seven to 12 examine the use of highly-urbanised gardens by a breeding 

bird community of relatively low diversity, and by individual birds. 

In the first section, mapped breeding bird atlas data for 128 species across Great Britain 

is compared with land cover data to determine the species most closely associated with 

urbanisation (chapter two). The results of this spatial analysis enabled relationships 
between relative urbanisation and species traits to be tested; behavioural flexibility as 

measured by relative brain size is used in chapter three as an example of this approach. 
The second section evaluates the use of gardens as a habitat by 40 commoner bird 

species monitored in a volunteer survey, again across Great Britain. Trends and patterns 
in reporting rates are identified (chapter four) and those in urban gardens compared with 

gardens elsewhere (chapters five and six). 

Results from fieldwork in an area of small urban gardens in Sheffield are then 

presented, first at the community level. Mapping the breeding territories of nine 

common species enabled relationships between habitat variables and breeding species 

richness to be analysed. At the species and individual levels, birds' use of gardens 

within the case study area was studied by catching them at feeding stations and marking 
individuals with coloured leg rings; this enabled analyses of their seasonal use of 
feeders (chapter nine), persistence and mobility (chapter 10) and biometrics and 

condition (chapter 11); the last chapter presents three specific field investigations into 

the opportunities or constraints affecting birds in the case study area. 
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2. Identifying the urban avifauna 

Abstract 

To identify ecological factors determining relative urbanisation in birds, it is first necessary to 
systematically construct a list of species ordered by some quantitative relative urbanisation 
parameter. Deriving such a metric from large-scale spatial distribution data has until now been 
hindered by a lack of formal methods that account for spatial autocorrelation in binary variables. 
A newly-developed implementation of autologistic regression for presence/absence data was 
used in this analysis to examine relationships between distribution and relative urbanisation for 
128 British breeding bird species; 77 species showed significant associations, 42 positive and 35 
negative. Because autologistic regression was an untried method, both traditional logistic 
regression and comparisons with other data were performed to validate the results; in general 
they were supported although there was more consistency and fewer surprises in the species 
negatively associated with urbanisation than among those positively associated. 

2.1. Introduction 

In this chapter the relative urbanisation of bird species is examined, using the breeding 

avifauna of Great Britain as a case study. Spatial distributions of breeding species from 

atlas data were modelled against land cover classification and hence the degree to which 

each breeding bird species is positively or negatively associated with urbanisation was 

estimated. Urban avifaunas are characteristically low in species richness compared to 

their `host' avifauna i. e. to the naturally selected avifauna of the original pre-urban and 

surrounding non-urban landscapes (Chapter 1). Nonetheless, even within their relatively 
few species and despite their characteristic numerical dominance by a small number of 
synanthropes, they can retain considerable functional and taxonomic diversity. If there 

are any common ecological traits that predispose some species to successful 

urbanisation and render it less likely in others, they remain unidentified. To investigate 

this in any systematic way, it is necessary first to quantify the degree to which each 

species in a host avifauna has adapted to urban habitats. 

Surveys enumerating species that occur regularly and sustainably in urban areas are 
scarce in the literature, as Luniak (1996) observed in compiling the surveys that make 
up half of table 2.1. which shows, as expected, that urban avifaunas have lower species 
richness than their host avifaunas; between 20% and 64% of species are represented. 
There are a number of problems with attempting to systematically associate bird species 
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with their relative propensity to urbanise by using such published lists. Not only are few 

such lists available, they are temporally and biogeographically widely distributed. It 

would be unwise to compile lists that were even a few years apart in time due to the 

rapid and ongoing changes in urban avifaunas globally (Chapter 1) and, despite biotic 

homogenisation, urban avifaunas in different biogeographic areas feature very different 

species. Almost every city has its birders' checklist, but these are typically compiled in 

isolation with no methodological comparability and a species accumulation approach; 

almost any species from the host avifauna can be found among human habitation if 

observation is long and diligent enough, especially in winter. The published London 

`bird list' contains 356 species recorded within 20 miles of St Paul's cathedral (Self 

2005); clearly, only a small fraction of this number will be sustaining a viable 

population within the urban environment and hence relevant to this analysis. 

Table 2.1. Relative species richness data from urban avifaunas. Pop = human 
population of city. Spp = number of species present, N= national or regional total 
avifauna, adjusted for comparability i. e. either breeding or all-year according to the 
urban data available. 

Location Pop km2 Spp N % Reference 
Hungary (8 towns) - 
Italy (14 towns) - 

- 117 
- 176 

208* 
370 

56 
48 

Bozsko (1985) 

Fraissinet 1992/93 in Dinetti, Cignini et at (1996) 

Olsztyn 174 k 88 41 233* 16 Dulisz and Nowakowski (1996) 
Naples 4.4. M 117 62 250* 25 Fraissinet (1995) 
La Plata 600 k 100 101 5001 20 Montalti and Kopij (2001) 
Warsaw 2.4 M 520 169 233* 62 Luniak(1996) 
Lodz 776 k 294 100 233* 43 Tranda et al. 1983 in Luniak (1996) 
Berlin 3.4 M 900 127 247* 51 Witt 1984, Degen & Otto 1988 in Luniak (1996) 
Prague 1.2. M 496 131 205* 64 Fuchs et al. 1990 in Luniak (1996) 
Vilnius 540 k 402 105 201 * 52 Idzelis 1993 in Luniak (1996) 
Vienna 1.5 M 415 145 408 36 Boeck 1993 in Luniak (1996) 
Washington DC 553 k 177 115 311 37 Hadidian, Sauer et al (1997) 
* from Earthtrends (2005) Buenos Aires Province 

Another problem with compiling published lists is their area-dependence; from table 
2.1, the percentage of the host avifauna recorded as urbanised is positively correlated 
with the area of the conurbation considered (Spearman's rank correlation, rs = 0.83, P= 
0.003, N= 10). Species-area relationships apart, as the survey area increases so does the 
number of habitat types included and the breadth of the definition of `urban', 

compromising comparability of the lists in the absence of detailed land cover data. 

The approach adopted in the following analysis is that systematic determination of the 
relative urbanisation of bird species requires a dataset collected using a uniform 
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protocol, that covers both urban and non-urban habitat in the same way and 

(importantly, in the light of ongoing changes in urban avifaunas) at the same time; a 

broad-scale ̀snapshot' rather than censuses that are exhaustive but spatially and 

temporally dispersed. There should be some uniform and unambiguous criterion for 

registration of a species as ̀ present', such as establishment of successful breeding, 

which overcomes problems of mobility and transience, and the dataset should be 

amenable to mathematical modelling and hence statistical testing of the hypothesis that 

the presence and/or proximity of urban development significantly affects the probability 

of a species being successfully established at any particular location. The availability of 

both national-scale breeding atlas data and systematic land cover classification data on 

the same spatial scale, combined with new developments in autologistic regression that 

enable the modelling of presence/absence data while accounting for spatial 

autocorrelation, enabled the evaluation of this proposal in the following analysis. 

If bird species can be characterised as more or less urban than others, their geographic 

distribution should be predicted to some extent by corresponding variation in the 

geographic distribution of urban land cover within their range. To test this hypothesis, 

the probability of presence of breeding bird species in 10km grid squares across Great 

Britain was modelled against the proportion of urban land cover in each square. The 

objectives were to establish a reference list of the British bird species whose 
distributions are significantly associated (either positively or negatively) with relative 

urbanisation of their habitat, and to order this list by some quantitative measure of each 

species' relative urbanisation, for use in subsequent regression analysis of the ecological 

traits predicting relative propensity to urbanise (Chapter 3). Due to the novelty of 

modelling large presence/absence datasets with substantial spatial autocorrelation and 

the potential wide applicability of atlas data to correlative analyses if this problem can 

be solved, a subsidiary objective of this investigation was to validate the results of a 

novel implementation of autologistic regression against results produced by more 

traditional logistic regression and indications of relative urbanisation from other data. 

2.2. Methods 

Breeding bird distribution data for Great Britain were acquired from the second 
BTO/IWC/SOC breeding atlas of British and Irish birds, for which records were 
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collected during the years 1988 - 1991 (Gibbons et al. 1993) in the form of binary 

presence/absence records for every 10km x 10km Ordnance Survey National Grid 

square. Contemporary land cover data as a percentage of area for each of 25 land classes 
in each 10-km square was obtained from the NERC Centre for Ecology & Hydrology 

Land Cover Map 1990. The urban land cover category (denoted landclass2l) includes 

cities, large town centres, major industrial and commercial sites, major areas of concrete 

and tarmac and permanent bare ground such as car-parks and tips (CEH 2003). Figure 

2.1 plots the proportions of this landcover class in each of the 2739 10km grid squares. 
Britain being a small island, 477 of these squares have land area less than 50%. For 

squares with increasingly small proportions of land area the occurrence of terrestrial 

breeding birds might become more strongly influenced by decreasing size of sample 

area than by habitat. One way to overcome this would be to model the proportion of 

urban land class in the land within the 10km square, i. e. if a square has urban, landclass 

10% but land area only 50%, the variable takes a value of 20%. However, as can be 

seen from figure 2.2, this approach disproportionately urbanises coastal squares 

containing small towns, adding some very highly urbanised squares on the south coast 

and distorting the urbanisation gradient by relocating its maximum values away from 

the most urbanised areas. The degree of this distortion is an artefact of the arbitrary 

positioning of the imposed sampling grid. Of the 477 10km grid squares with land area 
less than 50%, only 15 have a value of greater than 1% for landclass2l (urbanisation) 

so, arguably, little information about urban birds is lost by discarding them. 

Also, exclusively coastal species such as Shag may occur in the same square as coastal 
towns but their distribution is determined by the square being coastal rather than by 

urbanisation. Conversely, synanthrophic species such as House Sparrow, Feral Pigeon 

and Swift frequently breed in British coastal towns but not in non-urban coastal habitat. 
Also, maritime species such as Lesser Black-Backed Gull are increasingly urban 
breeders. Hence, to discard all coastal squares thereby limiting the analysis to non- 
coastal species would not only sacrifice valid data on common synanthropes of 
conservation interest but would inappropriately bias the investigation of correlations 
between urbanisation and biological traits towards terrestrial passerines, perhaps 
sacrificing interesting information on the urbanisation of coastal non-passerines such as 
gulls. Hence, the compromise solution adopted was to discard squares with land area 
below 50%, leaving 2262 squares as the primary dataset for analysis. To restrict the 
analysis to a practical number of species with reasonable sample sizes and hence a 
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reasonable likelihood of convergence in the iterative techniques used, only the 128 

species (table 2.2) present in more than 10% of the atlas squares were considered. 

Table 2.2. List of species recorded as breeding in more than 10% of the 10km squares 
and hence included in the analysis (see appendix B for scientific names). 

Species Species Species Species 
Barn Owl Goldfinch Long-tailed Tit Short-eared Owl 
Black Grouse Goosander Magpie Siskin 
Black Guillemot Grasshopper Warbler Mallard Skylark 
Blackbird Great Black-backed Gull Marsh Tit Snipe 
Blackcap Great Crested Grebe Meadow Pipit Song Thrush 
Black-headed Gull Great Spotted Woodpecker Merlin Sparrowhawk 
Blue Tit Great Tit Mistle Thrush Spotted Flycatcher 
Bullfinch Green Woodpecker Moorhen Starling 
Buzzard Greenfinch Mute Swan Stock Dove 
Canada Goose Teal Nightingale Stonechat 
Carrion Crow & Hooded Crow Grey Heron Nuthatch Swallow 
Chaffinch Grey Partridge Oystercatcher Swift 
Chiffchaff Grey Wagtail Peregrine Tawny Owl 
Coal Tit Greylag Goose Pheasant Tree Pipit 
Collared Dove Hen Harrier Pied Flycatcher Tree Sparrow 
Common Gull Herring Gull Pied Wagtail Treecreeper 
Common Sandpiper House Martin Raven Tufted Duck 
Common Tern House Sparrow Red-breasted Merganser Turtle Dove 
Coot Jackdaw Red-legged Partridge Twite 
Corn Bunting Jay Redshank Wheatear 
Crossbill & Scottish Crossbill Kestrel Redstart Whinchat 
Cuckoo Kingfisher Reed Bunting Whitethroat 
Curlew Lapwing Reed Warbler Willow Tit 
Dipper Lesser Black-backed Gull Ring Ouzel Willow Warbler 
Dunlin Lesser Redpoll Ringed Plover Willow/Red Grouse 
Dunnock Lesser Spotted Woodpecker Robin Wood Warbler 
Eider Lesser Whitethroat Rock Pipit Woodcock 
Feral pigeon Linnet Rook Woodpigeon 
Fulmar Little Grebe Sand Martin Wren 
Garden Warbler Little Owl Sedge Warbler Yellow Wagtail 
Goldcrest Little Ringed Plover Shag Yellowhammer 
Golden Plover Long-eared Owl Shelduck 
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Fig. 2.1. Plot of proportion of urban landcover in each 10km square (landclass2l) 
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Fig. 2.2. Plot of ratio of urban landcover to land area in each 10 km square 

As a `first cut' analysis to determine the likelihood of a sufficient number of species 

being significantly associated with degree of urbanisation to make subsequent 

investigation worthwhile, logistic regression for each of the 128 species individually 

was performed in SAS procedure GENMOD using binomial error distribution and type 

3 sums of square analysis. Species for which type 3 analysis was significant at P :S0.05 

were sorted in decreasing order of the regression parameter estimate (logit coefficient) 

for the variable landclass2l (continuous urban development) and are presented in table 

2.4. A feature of the biogeography of the British Isles is a general habitat cline between 

the milder, lowland, relatively urbanised south-east and the cooler, higher, wilder north- 

west, along which the breeding distributions of many bird species are clearly biased in 

one direction or the other. To control for this, geographic grid references expressed as 

Ordnance Survey GB National Grid Basting and northing values were included in the 

model, as shown in equation 2.1. 

p(presence) =a+ ßi (landclass2l) + 82 easting + ßj northing (2.1. ) 

Carrion Crow and Hooded Crow were `lumped' into a single morphospecies, as were 
Crossbill and Scottish Crossbill. 

Whenever an arbitrary grid is superimposed upon species distribution data, the presence 

of a species in one grid square is likely to influence and/or be influenced by its presence 
in adjacent squares, hence the presence/absence scores for the bird species in the atlas 
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data are likely to be spatially autocorrelated. Because of this, although widely used with 

such data, standard logistic regression is theoretically not appropriate; in particular, 

likelihood ratio tests and their P values should not be regarded as definitive. To better 

understand and evaluate the impact of spatial auto correlation on the associations 

between bird species distribution and urbanisation in these data, the regression analysis 

was repeated using the program suite AUTOCAT, developed by Hongtu Zhu 

(University of Victoria, Canada) and Fangliang He (University of Alberta, Canada). 

AUTOCAT uses autologistic regression to model the conditional probability of 

occupancy of each grid cell given the occupancies of all other cells. Three estimation 

methods are provided. Typically, Besag's Maximum Pseudo-Likelihood Estimation 

method (MPL) is first used to generate initial parameter estimates which are then input 

as starting values to the Monte Carlo Likelihood method (MCL) of Geyer & Thompson. 

Should the MCL method fail, the program also provides the Markov Chain Monte Carlo 

Stochastic Approximation (MCMC-SA) of Gu & Zhu as an alternative (He et al. 2000; 

He et al. 2003 and references therein). 

Although Maximum Pseudo-Likelihood (MPL) is by far the quickest estimation method 

implemented in AUTOCAT, it does not give valid variance estimates and is not 

efficient in cases of strong spatial correlation (He et al. 2003). To obtain goodness of fit 

information the appropriate procedure is to use the parameter estimates produced by the 

MPL model as starting values for either of the Monte Carlo methods. Full second order 

spatial autocorrelation i. e. four non-equal spatial correlation coefficients, two cross and 

two diagonal, for each cell (y' 0 72 013 0 Y4) was incorporated into the model, the form 

of which was therefore: 

p(presence) =a+ ß1(landclass2l) + /32 y' +ßj 72 +ßa y3 +ßs y4 (2.2. ) 

and the initial values of all six parameters (intercept a, urbanisation parameter ßi and the 

four spatial autocorrelation parameters ß2 - ß5) were set to zero. The Markov Chain 

Monte Carlo Stochastic Approximation method is a two stage process requiring two sets 

of pre-assigned constants (Gu & Zhu 2001; He et al. 2003). Based on values suggested 
in He et al. (2003) and practical experience, the stage 1 gain constants which force the 

estimates into a feasible region were set to a1= 0.3, b1=10,111 = 0.1, while the stage 2 

true estimation constants were set to a2=0.6, b2=. 1. The stopping criterion was initially 

set to T12=0.001 but this resulted in long run times (up to 20,000 iterations for sparse 
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species) and a number of species failed to converge to this accuracy. As 128 species had 

to be processed and as 0.001 precision was not essential to achieve the two objectives of 

a significance test for association and the ordering of species by their parameter 

estimates, this was reduced to 112=0.01 whenever convergence failed to occur after 

10,000 iterations at 1120.00l. 

As a simple validation of species' associations with urbanisation, the proportions of the 

squares in which each species occurred that contained relatively large amounts of urban 
landcover were calculated. For each of the 77 species occurring in more than 10% of the 

10km2 breeding atlas squares and having significant associations with urbanisation 

under autologistic regression, species-positive squares in which the proportions of 

urbanisation (landclass21) exceeded 20%, 10%, 5% and 1% were counted and these 

counts expressed as proportions of the species-positive squares. Further simple 

validation of the identification of the most urbanised species was done based on the 

approach of Bozsko (1985) who identified the species most frequently occurring in 

urban areas as the `urban stock avifauna'. Experimentally, a selection criterion of 
[continuous urban development (landclass 21) + suburban/rural development (landclass 

20)] >= 28% of area of square was found to select a subsample of approximately 10% 

(218 out of 2262) of the most developed 10km squares from the breeding atlas dataset. 

The frequency of occurrence of the 128 species in this subsample of highly developed 

squares was then calculated and those occurring within Bozsko's `urban stock avifauna' 
frequency range of 80 - 100% of developed squares were tabulated. Finally, to compare 
the breeding atlas data with a more recent dataset, the latest breeding densities for 

various habitat types were obtained (S. E. Newson 2005 in litt. ) from the 
BTO/JNCC/RSPB Breeding Bird Survey (see Newson et al. 2004 for methods). For 

species with non-zero density in habitat type `human', the ratio of their density in this 
habitat type to their mean density in other habitat types was calculated. 

2.3. Results & Discussion 

Table 2.3 lists 67 species for which type 3PS0.05 in logistic regression of 
presence/absence against landclass2l. Blackbird, Starling and House Sparrow are the 
`top three' in terms of size and sign of their landclass2l parameter estimate, all species 
commonly found in urban habitats, the latter two generally regarded as synanthropic 
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(Johnston 2001). Four of the next six species are water birds that are found in urban 

habitats but are unlikely to have their distributions primarily determined by 

urbanisation, Great Crested Grebe especially. Collared Dove, Magpie, Feral Pigeon and 

Swift are all highly but not exclusively urbanised species. Mute Swan and Canada 

Goose are significantly urbanised species, but Little Ringed Plover and Little Grebe are 

unlikely to have distributions primarily determined by urbanisation. At a 10km square 

scale, the presence of gravel pits and reservoirs serving cities within the same squares as 

patches of urbanisation may cause these habitat associations in water birds. Further 

down the list of positive associations, none of Lesser Whitethroat, Bullfinch, Nuthatch, 

Lesser Spotted Woodpecker, Reed Bunting or Reed Warbler would normally be 

considered significantly urbanised. Species negatively associated with urbanisation in 

table 2.3 are generally less surprising, only Jackdaw might be considered to any extent 

an urban breeder. Siskin also now breeds in suburban habitats but only in very recent 

years, post-dating the survey on which these data are based. The 17 most negatively 

associated species are species of remote and upland landscapes. For comparison, the 

models were re-run using all 2739 10km squares, coastal squares included (not 

tabulated); 74 species had type 3 P: 5 0.05 as opposed to only 67 when squares with less 

than 50% land area were excluded. Species losing significance with the exclusion of 

coastal squares were Blackcap, Blue Tit, Crow, Great Tit, Greenfinch, Little Grebe, 

Mistle Thrush, Robin, Shag, Song Thrush, Treecreeper and Jay. Species gaining 

significance when coastal squares were excluded were Cuckoo, Spotted Flycatcher, 

Teal, Swallow and Woodlark. 

All three autologistic regression methods produce six parameter estimates, for the 
intercept, urbanisation (landclass2l) and the four spatial autocovariates y' - 74. The 

parameter estimates for urbanisation and their t values for all 128 species using all the 

three methods are given in table 2.4. Estimates with t values of magnitude greater than 
1.98 (critical value forp < 0.05 at 120 DF) are deemed to be significant (N= 2262 

squares) and are shown in bold in table 2.4. Although MPL provided initial parameter 
estimates for all species except Cuckoo, for the majority of species the MCL method 
failed to converge even when using these as starting values. The MCMC-SA method, 
however, did converge for all species except Eider, Black Guillemot (exclusively 

coastal and very restricted distributions) and Nightingale. These were the three least 
frequently occurring species in the dataset, incidentally supporting the decision to only 
include species occurring in more than 10% of grid squares in the analysis. 
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Table 2.4. Parameter estimates (P-est) and t values, autologistic regression. *see text. 
Species MPL*: P-est and t MCL*: P-est and t MCM-SA*: P-est and t 
Blackbird 7.963797 3.471323 fail fail 9.633414 4.091979 
Blackcap 0.106016 1.411368 fail fail 0.356287 4.058435 
Bullfinch 0.134919 2.241513 fail fail 0.222322 3.677297 
Black-headed Gull -0.025233 -0.626904 -0.066935 -2.008282 -0.073781 -2.276424 
Black Grouse -3.228639 -3.458245 fail fail -3.570969 -4.253441 
Barn Owl -0.026177 -0.746668 -0.027040 -1.394243 -0.025613 -1.390408 
Blue Tit 4.313498 3.207261 fail fail 6.593086 4.509902 
Buzzard -0.406050 -3.462903 fail fail -0.342945 -5.065800 
Crow 0.080644 0.898060 0.389136 1.149923 0.153679 1.555677 
Corn Bunting -0.045532 -1.268220 fail fail 0.003055 0.287513 
Chiffchaff 0.023082 0.540829 fail fail 0.102378 2.604282 
Collared Dove 0.002789 2.642347 fail fail 0.005634 5.010815 
Canada Goose 0.026843 0.652685 fail fail 0.082154 2.775096 
Chaffinch 0.405454 1.494888 0.564289 1.839558 0.581816 1.916061 
Cuckoo fail fail fail fail -0.021615 -1.242940 
Common Gull -2.322943 -3.301541 fail fail -2.946956 -4.612074 
Common Tern 0.016667 0.566662 0.038118 2.273778 0.039478 2.441968 
Coot 0.222172 2.547877 fail fail 0.377423 4.679348 
Crossbill -0.203730 -2.124921 fail fail -0.267202 -3.183681 
Common Sandpiper -0.161759 -1.788008 fail fail -0.290908 -4.468510 
Coal Tit -0.002361 -0.063734 0.011066 0.365175 0.012781 0.441139 
Curlew -0.164016 -3.287488 fail fail -0.133800 -4.498616 
Dunnock 0.366987 2.142409 fail fail 0.818784 3.877130 
Dipper -0.156084 -2.257704 fail fail -0.236915 -4.706578 
Dunlin -0.394543 -2.235572 fail fail -0.363649 -2.817691 
Eider -2.010799 -2.001533 fail fail fail fail 
Fulmar 0.006425 0.089296 fail fail -0.167156 -1.780318 
Feral pigeon 0.114422 2.550426 0.116437 2.110610 0.141493 4.000547 
Green Woodpecker -0.040749 -1.374851 fail fail 0.003062 0.252945 
Great Black-backed Gull -1.203169 -2.287006 fail fail -1.870491 -8.611099 Goldcrest -0.034705 -1.366880 -0.034985 -1.788942 -0.034219 -1.769357 Goosander -0.966056 -3.294853 fail fail -0.858780 -0.858780 Great Crested Grebe 0.102473 2.548688 fail fail 0.143398 4.180526 
Grasshopper Warbler 0.004713 0.172930 0.010401 0.550325 0.010018 0.538782 
Greylag Goose 0.005303 0.175498 0.013008 0.853844 0.012592 0.852172 
Grey Wagtail -0.019939 -0.687105 fail fail -0.039104 -2.608782 
Goldfinch 0.065319 1.041430 fail fail 0.232707 3.283162 
Golden Plover -0.232323 -1.784028 fail fail -0.294933 -8.906704 Greenfinch 0.281284 2.152869 fail fail 0.746222 4.659664 
Great Spotted Woodpecker 0.055294 1.218502 fail fail 0.003921 0.309356 
Great Tit 1.043859 2.775474 fail fail 1.933210 4.224437 
Garden Warbler -0.001405 -0.040690 0.024727 0.376526 0.031230 1.395030 
Grey Heron -0.012607 -0.502540 -0.005274 -0.226848 -0.005570 -0.239055 Herring Gull 0.037366 1.162359 fail fail -0.026034 -0.899211 Hen Harrier -5.043718 -3.486363 fail fail -5.726342 -4.561980 House Martin 0.188598 1.419272 fail fail 0.615942 3.504378 
House Sparrow 2.240166 3.358714 fail fail 3.887160 4.943616 
Jay 0.011551 0.320641 0.045533 1.644859 0.048216 2.105757 
Jackdaw -0.042815 -1.459145 fail fail -0.028907 -1.455668 Kestrel 0.061988 1.168370 fail fail 0.157541 2.707062 
Kingfisher 0.049854 1.739211 fail fail 0.053413 2.776697 
Lapwing -0.044812 -1.542318 fail fail -0.011968 -0.557127 Lesser Black-backed Gull 0.046464 1.306537 -0.008997 -0.232086 0.000877 0.029054 
Long-eared Owl -0.005133 -0.134973 fail fail 0.007233 0.325768 
Little Grebe 0.062568 1.853837 0.111424 2.971433 0.104244 3.759753 
Linnet -0.007815 -0.158035 fail fail 0.217749 3.067511 
Little Owl -0.060200 -2.105619 fail fail 0.006482 0.539732 
Little Ringed Plover 0.054955 1.768754 fail fail 0.092597 3.803955 Lesser Redpoll -0.010448 -0.397508 -0.004072 -0.268886 -0.003423 -0.238931 Lesser Spotted Woodpecker 0.056916 1.699685 fail fail 0.041094 2.445781 
Long-tailed Tit 0.066370 1.262698 fail fail 0.140496 2.680139 
Lesser Whitethroat 0.025696 0.730178 fail fail 0.051841 2.432990 
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Mistle Thrush 0.211500 2.041841 0.490067 1.925631 0.324639 2.951896 
Mallard 1.335205 3.408380 1.770452 3.899765 1.735365 4.097109 
Magpie 0.312058 1.881368 fail fait 0.790087 4.809028 
Moorhen 0.661970 2.966612 fail fail 1.442998 5.649366 
Merlin -0.538697 -2.871096 fail fail -0.537861 -3.426379 
Meadow Pipit -0.051889 -1.969577 fail fail -0.063381 -3.382912 
Mute Swan 0.095217 2.327471 fail fail 0.122983 3.514207 
Marsh Tit -0.030823 -0.923490 fail fail -0.018857 -1.755018 
Nightingale -0.027576 -0.461173 fail fail fail fail 
Nuthatch 0.098497 2.090108 fail fail 0.011775 0.695788 
Oystercatcher -0.077299 -1.693643 fail fail -0.121270 -3.691952 
Grey Partridge -0.021319 -0.730346 0.032995 0.650454 0.012678 0.869176 
Peregrine -0.393924 -2.788138 fail fail -0.643530 -5.160561 
Pied Flycatcher -0.027120 -0.602748 fail fail -0.042529 -2.335285 
Pheasant -0.071165 -2.380168 fail fail -0.029439 -1.866660 
Pied Wagtail -0.021525 -0.503458 -0.009854 -0.246507 -0.009704 -0.246810 Robin 1.206025 2.227711 1.492270 2.559377 1.455602 2.517253 
Reed Bunting 0.060336 1.281142 fail fail 0.170430 3.419031 
Rock Pipit - -0.305185 -1.545527 fail fail -0.609022 -2.785758 
Willow/Red Grouse -0.161222 -1.648744 fail fail -0.238773 -3.431726 
Redshank -0.019224 -0.702401 0.001333 0.055840 -0.015183 -1.009578 
Red-legged Partridge -0.075404 -2.182760 fail fail -0.010081 -0.877260 
Red-breasted Merganser -3.110654 -3.395296 -4.344941 -4.238204 -3.640265 -4.622192 
Raven -0.573207 -2.710247 fail fail -0.798009 -4.226196 
Rook -0.082450 -2.218376 fail fail -0.039494 -2.709709 
Ringed Plover -0.003885 -0.134220 -0.008745 -0.422806 -0.007871 -0.398353 Redstart -0.112729 -2.273180 -0.128259 -3.642510 -0.120791 -4.052150 
Reed Warbler 0.029200 0.980441 fail fail 0.040793 2.453277 
Ring Ouzel -0.851605 -3.210439 fail fail -0.687561 -5.950166 
Skylark 0.026531 0.410281 0.058706 0.822784 0.061315 0.883990 
Shag -3.744398 -2.478179 fail fail -4.966107 -0.036192 
Stonechat -0.177433 -2.138399 fail fail -0.240807 -3.488162 
Stock Dove -0.010071 -0.303219 fail fail 0.047565 2.485087 
Short-eared Owl -0.322563 -2.248237 fail fail -0.339076 -2.930842 Spotted Flycatcher -0.020949 -0.610341 0.000458 0.015346 -0.000791 -0.026753 Starling 

. 
5.220525 3.722802 fail fail 6.884786 5.093922 

Sparrowhawk 0.004761 0.177914 0.032968 1.284117 0.029300 1.332681 
Swift 0.237706 2.674361 fail fail 0.445478 4.707670 
Siskin -0.206480 -2.226847 fail fail -0.353695 -4.146415 Swallow -0.042589 -1.179487 -0.025115 -0.523858 -0.027129 -0.732854 Sand Martin 0.007841 0.312951 -0.008663 -0.507903 -0.008317 -0.479074 Snipe -0.046425 -1.451249 fail fail -0.066048 -3.136463 Song Thrush 0.613759 2.275810 0.935428 2.520570 0.823645 2.760078 
Shelduck 0.003490 0.115781 fail fail 0.005964 0.407603 
Sedge Warbler 0.003558 0.130234 fail fail 0.033467 1.540622 
Teal -0.048804 -1.091013 fail fail -0.104424 -2.613919 Treecreeper 0.039356 1.088070 0.069664 1.781690 0.057716 1.893716 
Turtle Dove -0.018324 -0.543533 fail fail -0.009769 -0.917834 Tawny Owl 0.111407 2.213947 0.147507 2.888424 0.146088 3.131089 
Tree Pipit -0.041053 -1.391432 -0.064796 -3.019233 -0.061441 -3.225101 Tree Sparrow -0.031178 -1.179202 fail fail 0.023943 1.656681 
Tufted Duck 0.032608 1.041553 fail fail 0.062334 2.768716 
Twite -0.516626 -2.790729 fail fail -0.317746 -2.988930 Black Guillemot -1.783501 -1.701257 fail fail fail fail 
Wheatear -0.201099 -2.312249 fail fail -0.348828 -9.032336 Whinchat -0.107993 -2.105061 fail fail -0.183010 -4.229690 Whitethroat 0.083662 1.112095 fail fail 0.365007 4.001259 
Woodcock -0.047025 -1.418911 -0.020001 -1.102951 -0.025023 -1.471156 Wood Warbler -0.039365 -1.176977 fail fail -0.050261 -2.417586 Woodpigeon 0.894353 2.670267 fail fail 1.855388 4.428392 
Wren 0.446560 1.617832 0.588398 1.883590 0.584409 1.953252 Willow Tit -0.035445 -1.095420 fail fail 0.004432 0.390131 Willow Warbler 0.290074 1.655116 0.350890 1.949173 0.345910 910929 1 Yellowhammer -0.065239 -1.920821 fail fail -0.004225 

. 
-0 196294 Yellow Wagtail -0.015236 -0.574025 fail fail 0.014303 

. 
1.143576 
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Figure 2.3. Comparison of the parameter estimates from autologistic and logistic 
regression of breeding bird species' presence/absence in 2262 x 10 km squares 
against landclass2l (relative urbanisation), for 50 species with significant (type 3 P: 5 
0.05) associations under both methods. 1: 1 line shown for reference. 

Figure 2.3 shows that for the 50 species that have significant associations under both 

regression methods, there is good correlation between the parameter estimates produced 

(Pearson correlation r=0.892, P<0.001). The `top 20' species under logistic 

regression i. e. those with the 20 most positive parameter estimates all have significant 

positive associations under autologistic regression as well, with the exception of 

Nuthatch. The `bottom 20' under logistic regression all have significant negative 

associations under autologistic regression as well, except Goosander. Nine species 

(Turtle Dove, Barn Owl, Red-legged Partridge, Marsh Tit, Nightingale, Yellowhammer, 

Jackdaw, Pheasant and Goosander) are significantly negatively associated with 

urbanisation (all nine as would be expected) under logistic regression but, perhaps 

unexpectedly for such non-urban species, this association loses significance under 

autologistic regression. Woodlark, Cuckoo, Spotted Flycatcher and Swallow are 

significantly negatively associated with urbanisation (again as would be expected) in 

logistic regression when coastal squares are excluded but this significance is lost under 

autologistic regression (and if coastal squares are included in logistic regression). The 

significant negative association between Shag and urbanisation when coastal squares are 

included does not occur when coastal squares are excluded, as would be expected given 
that Shag is an exclusively coastal species. 
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Nuthatch, Lesser Black-backed Gull, Herring Gull and Great Spotted Woodpecker show 

significant positive associations with urbanisation under both logistic regression 

methods while Crow and Treecreeper are positively associated when coastal squares are 
included. All these associations become non-significant under autologistic regression 

and are all to some extent surprising as none of these species are notably urban, 

although Crow is becoming more urbanised and is in fact included in the UK 

government provisional index of town and garden birds (DEFRA 2004a) and has a BBS 

density ratio notably greater than 1 (table 2.8). 

This leads to a general observation that the positive significant associations with 

urbanisation are notably less consistent and intuitive than the negative associations. It is 

very striking that none of the significant negative associations with urbanisation under 

autologistic regression could be described as debatable or counter-intuitive (although 

Siskin is commonly found in urban habitats in winter but its negative association is 

nonetheless reasonable for the breeding season). In contrast, a number of the positive 

associations with urbanisation are surprising, most notably among those unique to the 

autologistic method Linnet, Kestrel, Chiffchaff, and Stock Dove. Other surprising 

positive associations under autologistic regression are Whitethroat, Blackcap, Bullfinch, 

Reed Bunting, Tawny Owl, Little Grebe, Little Ringed Plover, Kingfisher, Lesser 
Whitethroat, Lesser Spotted Woodpecker, Reed Warbler and Common Tern; all these 

associations gain further support from logistic regression. 

Lower consistency in the positive associations than in the negative can also be seen in 

that all eight of the species that have no significant association with urbanisation under 
logistic regression with no coastal squares but do have significant associations under 
both autologistic regression with no coastal squares and logistic regression with coastal 
squares have positive associations. It is again striking that this inconsistency does not 
occur for any of the negatively associated species. However, the numbers of species 
acquiring a significant association under autologistic regression despite having no 
significant association under either logistic regression method were 9 out of 42 for 

positively associated species and 10 out of 35 for negatively associated species and 
these proportions are not significantly different (f test, p=0.47). 

Table 2.5 shows a clear general decline in the proportions of species-positive squares 
that are relatively highly urbanised as species' associations with urbanisation become 
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less positive under autologistic regression, this is confirmed by the correlation 

coefficients (table 2.6). Again, it is striking that the species with negative associations 

under autologistic regression behave as expected, most of them having zero or very low 

proportions of urbanised squares, whereas the species with positive associations behave 

much less intuitively. 

Sorting the species in descending order of their proportions of squares over each of the 

thresholds of relative urbanisation in turn gives some surprising results. The `top 7' 

species with the highest proportions of their species-positive squares over the 20% 

urbanisation threshold are Common Tern, Little Ringed Plover, Lesser Spotted 

Woodpecker, Great Crested Grebe, Tufted Duck, Canada Goose and Kingfisher with the 

first species that might normally be regarded as urban, Feral Pigeon, in 8th position. 
Sorting by the 10%, 5% and 1% threshold proportions produces similarly counter- 
intuitive rankings, the >=5% ranking gives Little Ringed Plover, Reed Warbler, Great 

Crested Grebe, Lesser Spotted Woodpecker, Common Tern, Lesser Whitethroat, 

Canada Goose, Little Grebe, Kingfisher, Tufted Duck, Mute Swan and Coot as the ̀ top 

12' with Feral Pigeon only appearing in 13th rank, followed by further surprising species 
before the species with high positive associations under autologistic regression finally 

start to appear midway down the rankings. House Sparrow, for example, is ranked at 34 

out of 77 species, Blackbird at 42 and Starling at 37. 

Table 2.5. Proportions of the squares in which the species whose distributions had 
positive associations with landclass 21 under autologistic regression occurred that had 
percentage cover of landclass 21 exceeding four different thresholds. 

Species 
autologistic 
regression 

rank P-est 

Proportion of species-positive squares with 
urbanisation >= threshold percentages 
>= 20% >=10% > 5% >=1% 

Blackbird 1 9.6334 0.001859 0.0079 0.02277 0.121283 
Starling 2 6.8848 0.001954 0.008305 0.023937 0.127504 
Blue Tit 3 6.5931 0.001909 0.008115 0.023389 0.124582 
House Sparrow 4 3.8872 0.001978 0.008408 0.024233 0.128586 
Great Tit 5 1.9332 0.001952 0.008297 0.023914 0.126403 
Woodpigeon 6 1.8554 0.001989 0.008454 0.024366 0.128294 
Mallard 7 1.7354 0.001935 0.008224 0.023706 0.124819 
Robin 8 1.4556 0.001829 0.007773 0.022405 0.118884 
Moorhen 9 1.443 0.002424 0.010303 0.029091 0.155152 
Song Thrush 10 0.8236 0.001871 0.007951 0.022919 0.119738 
Dunnock 11 0.8188 0.002014 0.00856 0.024169 0.128399 
Magpie 12 0.7901 0.002551 0.010842 0.03125 0.161352 
Greenfinch 13 0.7462 0.002227 0.009465 0.026726 0.139755 
House Martin 14 

. 
0.6159 0.00203 0.008122 0.024365 0.129442 Swift 15 0.4455 0.002616 0.011118 0.030739 0.155657 Coot 16 0.3774 0.00299 0.012706 0.035874 0.17713 Whitethroat 17 0.365 0.001814 0.009674 0.028416 0 149335 Blackcap 18 0.3563 0.002506 0.010652 0.029449 . 0.149749 
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Mistle Thrush 19 0.3246 0.002048 0.008705 0.024066 0.128008 
Goldfinch 20 0.2327 0.002398 0.010192 0.027578 0.142086 
Bullfinch 21 0.2223 0.002489 0.009956 0.029247 0.143746 
Linnet 22 0.2177 0.002341 0.008777 0.026331 0.142188 
Reed Bunting 23 0.1704 0.002533 0.008866 0.029132 0.145028 
Kestrel 24 0.1575 . 0.002281 0.008552 0.025086 0.13569 
Tawny Owl 25 0.1461 0.00253 0.010753 0.02783 0.13852 
Great Crested Grebe 26 0.1434 0.005806 0.018868 0.056604 0.249637 
Feral pigeon 27 0.1415 0.003562 0.014248 0.035619 0.170971 
Long-tailed Tit 28 0.1405 0.002336 0.009346 0.025701 0.134346 
Mute Swan 29 0.123 0.003378 0.01098 0.036318 0.170608 
Little Grebe 30 0.1042 0.003315 0.01326 0.040884 0.196685 
Chiffchaff 31 0.1024 0.002716 0.010862 0.028513 0.149355 
Little Ringed Plover 32 0.0926 0.006369 0.025478 0.079618 0.321656 
Canada Goose 33 0.0822 0.004315 0.015102 0.042071 0.206041 
Tufted Duck 34 0.0623 0.004338 0.011931 0.037961 0.170282 
Kingfisher 35 0.0534 0.00375 0.01125 0.04 0.18875 
Lesser Whitethroat 36 0.0518 0.003394 0.014706 0.044118 0.209276 
Jay 37 0.0482 0.003325 0.011638 0.030756 0.162926 
Stock Dove 38 0.0476 0.003056 0.009931 0.029794 0.151261 
Lesser Spotted Woodpecker 39 0.0411 0.006061 0.022222 0.048485 0.226263 
Reed Warbler 40 0.0408 0.003559 0.016014 0.05694 0.224199 
Common Tern 41 0.0395 0.007782 0.015564 0.046693 0.178988 
Collared Dove 43 0.0056 0.002522 0.010719 0.030265 0.152585 
Grey Wagtail 44 -0.0391 0.002581 0.007742 0.019355 0.098065 
Rook 45 -0.0395 0 0.002865 0.017765 0.130659 
Pied Flycatcher 46 -0.0425 0 0.003759 0.011278 0.071429 
Wood Warbler 47 -0.0503 0 0.00369 0.01476 0.087331 
Tree Pipit 48 -0.0614 0.000858 0.003433 0.012876 0.090129 
Meadow Pipit 49 -0.0634 0.000557 0.005568 0.018931 0.105791 
Snipe 50 -0.066 0 0.001835 0.015596 0.089908 
Black-headed Gull 51 -0.0738 0 0.003906 0.011719 0.068359 
Teal 52 -0.1044 0 0.002012 0.014085 0.054326 
Redstart 53 -0.1208 0 0.002035 0.005086 0.061038 
Oystercatcher 54 -0.1213 0 0 0.006048 0.047379 
Curlew 55 -0.1338 0 0.000841 0.004205 0.063078 
Whinchat 56 -0.183 0 0.001055 0.004219 0.048523 
Dipper 57 -0.2369 0 0.00096 0.001919 0.037428 
Red Grouse 58 -0.2388 0 0.001493 0.001493 0.028358 
Stonechat 59 -0.2408 0 0 0.003333 0.041667 
Crossbill 60 -0.2672 0 0 0.002667 0.042667 
Common Sandpiper 61 -0.2909 0 0 0.001078 0.02694 
Golden Plover 62 -0.2949 0 0 0.001894 0.028409 
Twite 63 -0.3177 0 0 0 0.035714 
Short-eared Owl 64 -0.3391 0 0 0 0.033033 
Buzzard 65 -0.3429 0 0 0.00197 0.031527 
Wheatear 66 -0.3488 0 0 0 0.02893 
Siskin 67 -0.3537 0 0 0.001471 0.030882 
Dunlin 68 -0.3636 0 0 0.003788 0.026515 
Merlin 69 -0.5379 0 0 0 0.031884 
Rock Pipit 70 -0.609 0 0.001961 0.02549 0.127451 
Peregrine 71 -0.6435 0 0 0.003527 0.017637 
Ring Ouzel 72 -0.6876 0 0 0 0.017857 
Raven 73 -0.798 0 0 0.001894 0.011364 
Great Black-backed Gull 74 -1.8705 0 0 0 0.012821 
Common Gull 75 -2.947 0 0 0 0 
Black Grouse 76 -3.571 0 0 0 0.003676 Red-breasted Merganser 77 -3.6403 0 0 0 0 
Hen Harrier 78 -5.7263 0 0 0 0 
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Table 2.6. Correlations between autologistic parameter estimates and proportions of 
species-positive squares with urbanisation (landclass 21) greater than or equal to 
threshold percentages: 

threshold % urbanisation Pearson correlation coefficient P value 
20 0.227 0.047 
10 0.289 0.011 
5 0.278 0.015 
1 0.337 0.003 

Looking at the occurrence frequencies in the most developed squares (table 2.7), there 

are few surprises in the top third of the species with 80-100% occurrence frequencies, 

except perhaps for Mallard which is consistently positively associated with urbanisation 

on all measures so far analysed. Swallow has a surprisingly high occurrence frequency 

and the presence of widely distributed species such as Pied Wagtail, Willow Warbler, 

Blackcap and Skylark in the upper half of this ranking suggests that this result is 

strongly influenced by overall high abundance and uniform distribution, as might be 

expected at a 10 km spatial scale, rather than by urbanisation per se. Thirty-nine 

(17.6%) of the 221 species logged as breeding in Britain during the fieldwork for the 

atlas dataset meet the 80-100% criterion. From table 2.1 it can be seen that this is much 

lower than the typical proportion of national avifaunas breeding in urban habitats but 

remarkably similar, in number if not in exact species composition, to the `urban stock 

avifauna' for Hungary of 33 species (15.8% of national breeding avifauna) identified by 

Bozsko (1985). 

Table 2.7. Species having occurrence frequencies (%) of 80 - 100% in the 218 most 
developed 1 0km squares, sorted in descending order of occurrence frequency. 

Species % Species % Species % 
Mallard 99.5 Magpie 96.3 Whitethroat 90.8 
Blackbird 98.6 Pied Wagtail 95.9 Collared Dove 90.4 
Blue Tit 98.6 Willow Warbler 95.4 Spotted Flycatcher 89.4 
Chaffinch 98.6 Blackcap 95.0 Long-tailed Tit 88.5 
Robin 98.6 Skylark 95.0 Pheasant 87.6 
Starling 98.6 Song Thrush 95.0 Swift 86.2 
Wren 98.6 Goldfinch 94.5 Yellowhammer 85.8 
House Sparrow 98.2 Mistle Thrush 94.5 Coal Tit 83.9 
Great Tit 97.2 Moorhen 94.0 Reed Bunting 83.5 
Swallow 97.2 Jackdaw 93.6 Bullfinch 83.0 
Crow 96.8 Greenfinch 93.1 Treecreeper 82.6 
Dunnock 96.8 Rook 92.2 Great Spotted Woodpecker 82.1 
Woodpigeon 96.8 Chiffchaff 90.8 Lapwing 81.7 
House Martin 96.3 Linnet 90.8 Tawny Owl 80.7 
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Table 2.8 provides further support for positive associations with urbanisatiön for the 

`top 6' most positively associated species under autologistic regression, although the 

BBS ratios cast doubt on the urban credentials of Mallard, Robin and Song Thrush 

which certainly persist in urban areas but could not be claimed to be quintessentially 

urban species, and, further down the rankings, Coot, Whitethroat and Blackcap. 

Table 2.8. Species with significant associations between distribution and urbanisation 
under autologistic regression and having non-zero density in 'human' habitat 
classification of the BBS, sorted and ranked by autologistic regression parameter 
estimate with logistic regression parameter estimates also shown for comparison. BBS 
ratio is ratio of density in human habitat to mean density in other BBS habitat classes in 
which density was non-zero. Bold: BBS ratio >1. Italics: BBS ratio < 1. 

species 
logistic 

regression 
autologistic 
regression rank 

BBS 
ratio 

BBS ratio 
rank 

Blackbird 3.3266 9.6334 1 4.188 6 
Starling 2.7353 6.8848 2 14.634 2 
Blue Tit 6.5931 3 1.734 14 
House Sparrow 1.2917 3.8872 4 13.396 3 
Great Tit 1.9332 5 1.202 16 
Woodpigeon 1.8554 6 2.057 12 
Mallard 0.5125 1.7354 7 0.594 27 
Robin 1.4556 8 0.819 22 
Moorhen 0.5729 1.443 9 1.417 15 
Song Thrush 0.8236 10 0.772 23 
Dunnock -0.1916 0.8188 11 2.724 9 
Magpie 0.3889 0.7901 12 5.238 5 
Greenfinch 0.7462 13 3.492 8 
House Martin 0.6159 14 1.084 19 
Swift 0.1936 0.4455 15 3.636 7 
Coot 0.3269 0.3774 16 0.245 35 
Whitethroat 0.1292 0.365 17 0.374 33 
Blackcap 0.3563 18 0.436 30 
Mistle Thrush 0.3246 19 1.142 17 
Goldfinch 0.2327 20 0.979 20 
Bullfinch 0.13 0.2223 21 0.429 31 
Linnet 0.2177 22 0.659 24 
Kestrel 0.1575 24 0.615 26 
Feral Pigeon 0.2214 0.1415 27 49.444 1 
Long-tailed Tit 0.1405 28 0.517 28 
Mute Swan 0.1348 0.123 29 1.946 13 
Chif}°chaf 0.1024 31 0.157 38 
Canada Goose 0.1631 0.0822 33 0.508 29 
Tufted Duck 0.078 0.0623 34 0.018 39 
Jay 0.0482 37 0.974 21 
Stock Dove 0.0476 38 1.111 18 
Collared Dove 0.2753 0.0056 43 7.867 4 
Grey Wagtail -0.0391 44 0.229 36 
Rook -0.2286 -0.0395 45 0.164 37 
Oystercatcher -0.2124 -0.1213 54 2.115 11 
Crow ns ns 2.352 10 
Jackdaw -0.1748 ns 0.622 25 
Great Spotted Woodpecker 0.0849 ns 0.405 32 
Nuthatch 0.1215 ns 0.346 34 
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Moorhen persistently appears among the most urbanised species, having the 15th most 

positive BBS ratio. Mistle Thrush too is positively urbanised in BBS as well as the atlas 

data; this result is supported by observations of sustainable urban Mistle Thrush 

populations in Sheffield (Chapter 7). The BBS ratios for Feral Pigeon and Collared 

Dove are much more convincing in terms of demonstrating urbanisation than the 

rankings of their associations under autologistic regression, similarly the relative 

urbanisation of Crow is strongly supported by BBS despite the lack of a significant 

association under autologistic regression. This may be a reflection of the recentness of 

this species' urbanisation, the BBS data are 20 years more recent than the atlas data. 

Positive BBS ratios for Stock Dove and Oystercatcher, however, may cast some doubt 

on the validity of this relatively simple analysis, although Stock Dove breeds in urban 

Sheffield (pers. obs. ) and Oystercatchers among urban sewage works (pers. obs. ). For 

those species with non-zero BBS density in the `human' habitat class, there is a 

significant correlation between autologistic regression parameter estimate and BBS ratio 
(Spearman's rank correlation, rJ = 0.417, N= 35, P=0.0126) 

2.4. Conclusions 

There are no surprises in the ̀ bottom 30' species most negatively associated with 

urbanisation. The `top 15' positively associated species are also familiar in urban 

environments; the strong positive associations for Coot and Moorhen perhaps supported 
by their use of periurban reservoirs as well as urban waterways and park lakes. In terms 

of known species habitat preferences, the assumption that the parameter estimate is 

directly proportional to relative urbanisation appears to work well for non-urban species 
but perhaps less consistently for positive associations; Feral Pigeon, for example, is 

ranked by the autologistic regression method as only the 17`h most urban species and 
Collared Dove is ranked as less urbanised than Lesser Spotted Woodpecker. However, 

the results for these species may be influenced by their strong associations with non- 
urban human habitats in villages and farms. Little Grebe appears surprisingly urbanised, 
but Bozsko (1985) noted that many developed areas in Hungary include or are adjacent 
to water bodies and that Little Grebe, as well as Great Crested Grebe, Mallard, Coot and 
Moorhen, readily bred in her urban study areas where suitable habitat was present, 
despite high levels of disturbance. Little Ringed Plover may also appear to have a 
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surprisingly positive association with urbanisation, but according to the Urban Wildlife 

Trust (2005) "this species primarily favours man-made habitats in Britain" and its 

primary habitat in Norway is "urban areas" (State of the Environment Norway 2005). 

In addition to spatial autocorrelation, a key technical issue with this kind of analysis is 

the question of scale appropriateness and its interspecific variation (Hostetler 2001); 10 

km squares represent a fairly coarse resolution. Over the contiguous USA, a huge area 

with significant biogeographic variation, spatial resolution of land-cover classification 
did affect the results of models predicting the occurrence of bird species, especially with 

regard to aridity and altitude (Lawler et al. 2004). The UK is much smaller and has 

much less variation, in those parameters especially. However, the issue of controlling 
for altitude might be worth further investigation. Whitethroat, Lesser Whitethroat and 
Bullfinch are species of lowland scrub and farmland that have surprisingly positive 

associations with urbanisation in this analysis; in reality this may be a negative 

association with altitude, which should co-vary negatively with urbanisation, most 
British cities being historically ports (although it will also co-vary to some extent with 

northing and easting, which were included in the models). There is also the perennial 

concern with any evaluation of wildlife associations with man-made habitats; human 

delineations of urban and non-urban may not match the assessments made by birds, the 

effects on birds of many aspects of urbanisation remaining largely unknown (Miller et 
al. 2001) 

Despite the complications of spatial autocorrelation and the highly significant 
confounding association between urbanisation and position (P<0.0001 for both Basting 
and northing) in the Great Britain dataset, autologistic regression has successfully 
generated a list of species ordered by relative urbanisation that not only makes a great 
deal of ornithological sense and is supported by other less rigorous analyses but is 

sufficiently extensive and diverse to facilitate further analysis of causal factors. At the 
time of writing, this is the first large-scale correlative investigation of relative 
urbanisation in birds that formally takes account of spatial autocorrelation. 
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3. Predicting the relative urbanisation of British breeding bird species 

Abstract 

If urban environments differ from non-urban in their ecological opportunities and constraints, a 
degree of behavioural flexibility may be required if bird species are to persist in them 
successfully. Some bird species exploit urbanised habitats more readily than others; for 72 
commoner British breeding species of a wide range of taxa, a measure of relative propensity to 
urbanise was compared with an index of relative brain size, as a surrogate of behavioural 
flexibility, using phylogenetically independent contrast regression. There was no significant 
relationship between relative urbanisation and brain size. Natural habitats used, population 
trends and taxonomy also have little influence on relative urbanisation; it is broadly associated 
with the number of other habitats exploited but as urban environments and avifaunas are 
actually quite diverse, probably not consistently with any one trait or even suite of traits. 

3.1. Introduction 

The question of whether the bird species that adapt successfully to urban environments 
differ in any consistent, measurable ways from those that do not urbanise is of 
increasing research interest given greater awareness of urban ecology specifically and, 
more generally, the need to predict the responses of species and assemblages to habitat 

modification. Comparative techniques that control for phylogeny offer opportunities to 

conduct large-scale, multi-species analyses, if datasets quantifying the relative 
urbanisation of a suite of species can be constructed. In this chapter, the relative 
urbanisation dataset derived for British breeding birds in chapter 2 is utilised to 
investigate the relationship between species urbanisation and a measure of relative 
behavioural flexibility: brain size. 

Are urbanised birds adapting to completely novel habitat or are they simply exploiting 
remnants of recognisably `natural' habitat or functionally equivalent habitat surrogates? 
If adaptation to a novel environment has taken place, some degree of intraspecific 

population differentiation in behaviour, morphology and perhaps eventually in genotype 
might be expected to arise, indeed Diamond (1986) has proposed that urbanising birds 

offer an opportunity to study rapid evolution. On the other hand, urbanised species may 
have sufficient a priori behavioural and/or morphological plasticity to give their pre- 
urban phenotypes an inherent ability to tolerate urban habitats (e. g. Jedraszko- 
Dabrowska & Debinska 1993), with behavioural differences between urban and non- 
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urban birds reflecting this plasticity and genetic differentiation unlikely. Ecological 

reality probably involves varying combinations of both adaptation and plasticity. 

Aspects of behaviour observed to change in urbanised birds include aggression and/or 

vocalisation (e. g. James 1988; Jedraszko-Dabrowska & Debinska 1993; Jozkowicz & 

G6rska-Kiek 1996), nest construction (e. g. Jerzak 1995; Tatner 1982a) and prey 

selection (e. g. Wright 1973). In general, these changes seem within the range of a priori 

phenotypic plasticity; even physiological differences such as in the timing of gonadal 

growth in urban Blackbirds (Partecke et al. 2004) and in the blood of urban Rufous- 

collared Sparrows (Ruiz et al. 2002) disappeared under identical captive conditions. 

Nonetheless, there is a common assumption that urban environments are more hostile 

and unpredictable than non-urban, and that adaptation to a relatively inhospitable habitat 

will drive genetic differentiation. Alternatively, another plausible ecological basis of 

genetic differentiation in urban birds is reduced genetic diversity due to relative stability 

and predictability of urban environments reducing selection pressure on those species 

whose inherent phenotypic plasticity allowed them to colonise what might in fact be a 

relatively benign environment (Rejt et al. 2004). One possible mechanism is seen in the 

Great Tit, in which two `personality' traits determining behaviour in novel 

environments (`fast' or `slow' explorers) are heritable and affect survival, but vary in 

their distribution between sexes from year to year. The annual balance of the two types 

alternates adaptively between sexes based on inter-year variations in food availability 

and consequent intraspecific competition (Dingemanse et al. 2004). If the urban food 

supply were more predictable, there would be less selection pressure to retain this 

variation as one of the two `personalities' is better adapted than the alternative to 

abundant food in each sex (Dingemanse et al. 2004) and genetic diversity would 
decrease, assuming the urban population was to some extent reproductively isolated. 

Unfortunately, other studies have suggested that exploratory behaviour `personalities' in 

Great Tits, although heritable, may have a common genetic basis that constrains their 
independent evolution within populations (van Oers et al. 2004). 

Aspects of urban environments more benign for birds include higher night temperatures, 
abundant nest and roost sites for cavity and ledge using species and relatively low 

parasite incidence (e. g. Gregoire et al. 2002), which may reduce selection pressure for 
immunocompetence. Conversely, some aspects of urban environments may promote 
genetic differentiation; mutation rates in Herring Gulls nesting in an industrial urban 
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harbour were more than twice those of non-urban nesters (Yauk & Quinn 1996). In 

highly-urbanised Britain, patches of built habitat provide a more or less continuous 

availability of urbanisation across much of the landscape; it seems unlikely that there is 

no population exchange between birds of built and rural habitats and genetic 

differentiation would therefore perhaps be surprising, particularly on the very recent 

timescale of large-scale urbanisation. However, the possibility cannot be discounted, 

given that spatial genetic differentiation in small passerine birds has been documented 

in populations as little as 25km apart (Moore et al. 2005) and can occur within a single 

woodland in Great Tits (Garant et al. 2005). 

Nonetheless, among the British avifauna at the present time and stage in the 

urbanisation process, some species such as Blue Tit, Robin and Dunnock regularly and 

sustainably occur in built habitats whereas others such as Willow Tit, Stonechat and 

Meadow Pipit do not. Among the 47 British breeding species having positive 

associations with urbanisation (Chapter 2) there is some ambiguity; a few of the species 

with weak positive associations would not normally be considered highly urbanised. 

This probably arises because many of these species occur in both types of habitat. In 

contrast, among the 35 species negatively associated with urbanisation there are few, if 

any surprises; as these species tend to only occur in non-urban habitat and never 

urbanise. Some species clearly do urbanise, and this may both require phenotypic 

plasticity and promote adaptation, but the overarching biological issue remains of what 

a priori factors apparently prevent some other species from ever urbanising at all. 

Some apparent trait biases have been observed in comparisons of urban and non-urban 
avifaunas. In a US study, degraded rural habitats of similar bird community integrity to 

urban assemblages had significantly more ground nesters (O'Connell et al. 1998b). 

There may also be taxonomic bias. In Italy, for example, Apodiformes and 
Columbiformes are the most diversely represented urban non-passerine families and 

among the Passeriformes, Fringillidae and Corvidae have the most urban species 
(Dinetti et al. 1996). This may be a common pattern elsewhere (Erz 1966) but such 
calculations are rarely comparable between studies. Urban biotic homogenisation 
(Chapter 1) suggests that a measure. of ubiquity might predict a species' relative 
propensity to urbanise; within biogeographic areas the subsamples of bird species 
present in even widely separated urban areas often show considerable commonality (e. g. 
Bozsko 1985). Relative biogeographical origin may be another interesting bias; Luniak 
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(1996) noted that the biogeographical origins of Warsaw's avifauna were similarly 

proportioned to those of other central European cities, but it seems unlikely that this 

observation could be generalised globally and Bozsko (1985) observed that despite their 

commonality, the primary determinant of urban avifaunas' species composition was 

their host avifauna. Measures of ubiquity and biogeographical origin are likely to be at 

best supplementary or subsidiary to ecological traits in quantifying species' relative 

tendencies to urbanise. 

The most commonly observed ecological trait bias in the composition of urban 

avifaunas is ecological versatility, with habitat specialists typically disadvantaged 

except for those whose speciality is commensality (Adams 1994a) or early ecological 

succession (Johnston 2001). Hence, measures of ecological versatility such as 

exploitation indices might predict species' urbanisation. In North America, for example, 

non-urban taxa include woodland warblers, vireos and flycatchers, which are mainly 

migrant insectivores, while urbanised generalists are typically habitat edge species and 

either residents or partial migrants, granivores or omnivores (Adams 1994). 

Unfortunately, quantifying ecological versatility is very difficult due to practical and 

conceptual problems in accurately evaluating ecological opportunities and constraints 
from the perspective of the target species, aggravated by mobility and seasonal variation 
in resource exploitation (Mac Nally 1995). Also, in any direct correlative analysis of 

relative versatility it would be very hard to control for differences in the relative 

availabilities of resources between urban and non-urban habitats and for the effects of 

competitive release within the urbanised subsample of a host avifauna, perhaps 

aggravated by variations in colonisation sequence. 

Nonetheless, accepting the reasonable proposition that urban environments are to some 

extent novel to birds, species that successfully urbanise may well require a degree of 
behavioural flexibility and adaptability which can loosely be described as ̀ intelligence'. 

If this is the case, relative urbanisation should hypothetically be predicted by a 

measurable morphological trait: brain size, which is correlated with a number of 
behavioural traits in birds. Relative brain size in birds has been shown to be related to 
frequency of opportunistic foraging innovations (Lefebvre et al. 1997), indicators of 

relative immune system function correlated with behavioural repertoire (Moller et al. 
2005), social complexity (Burish et al. 2004), song complexity (Garamszegi et al. 
2005), developmental traits (Iwaniuk & Nelson 2003), extent of food hoarding 
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(Garamszegi & Eens 2004) and cognitive ability (Iwaniuk et al. 2005). On the other 

hand, the extent of cooperative breeding (a measure of sociality) in Corvidae was not 

associated with brain size (Iwaniuk & Arnold 2004). In other taxa, primates show a 

positive correlation between behavioural innovation, social learning frequency and brain 

size (Reader & Laland 2002), while brain centres related to flight and neuronal 

capabilities increased with habitat complexity in bats (Safi & Dechmann 2005). 

A result of particular relevance to the prediction of species' persistence in putatively 

novel and challenging urban environments was that of Sol et al. (2002), who showed 

that relative brain size predicted successful establishment of bird species introduced to 

new locations; this was subsequently replicated in a larger database of >600 

introduction events (Sol et al. 2005a). Brain size was also related to a disinclination to 

migrate, which implies flexibility to tolerate seasonal change (Sol et al. 2005b) and, 

more recently, Shultz et al. (2005) showed it was significantly related to population 

persistence in UK farmland, a habitat undergoing changes that have proved challenging 
for many of its bird species. Even more relevantly, Timmermans (1999) showed that 

relative forebrain size, along with feeding innovation rate, was significantly associated. 

with taxonomic bias in propensity to urbanise and weakly associated within taxa with 

urbanisation frequency; as determined by consulting field guides for records in urban 

situations. The present study benefits from the availability of a rather more sophisticated 

measure of relative urbanisation. 

Aspects of avian life in an urban environment that could be considered to require 
behavioural flexibility include the need for feeding innovations to deal with novel foods 

and food sources such as artificial feeders. Competition may differ between urban and 

non-urban populations, for example at feeding stations and other clumped food 

resources, from non-native synanthropes not encountered in non-urban habitats and for 

limited nest sites. On the other hand, lower competition than that encountered in natural 
forests may account for very high bird densities in some urban parks (Tomialojc & 

Profus 1977). A more subtle aspect of birds' behavioural flexibility is their relative use 
of `public' and ̀ private' information when foraging. Poor sightlines and high 
background noise in urban habitats may distort or attenuate the information received by 
birds, affecting, for example, their responses to disturbance and their foraging 

efficiency. In the Yellowhammer Emberiza citrinella (a species of open country that has 

not urbanised), foraging birds that heard conspecifics' predator alarm calls but did not 
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observe the actual predator remained alert and lost feeding time longer than birds that 

saw the predator and had complete information (van der Veen 2002). Woodland edge 

species, such as Blackbird, which readily urbanise may be better adapted to incomplete 

information, arguably an example of greater behavioural flexibility. For example, poor 

visibility in urban gardens might prevent birds from discovering food without observing 

other birds, but Blackbirds do not take such preharvest ̀ public information' into account 

when selecting food patches, paying more attention to avoiding dominant conspecifics 

and revisiting known rich patches (Smith et al. 2001). 

The following analysis examines the hypothesis that the relative propensity of species 

within a host avifauna to adapt to urban habitat is associated with relative intelligence 

expressed quantitatively as relative overall brain size. Supporting analyses aim to 

determine whether other ecological factors might be associated with relative 

urbanisation, specifically whether urbanisation is associated with the preferential 

exploitation of one or more other habitat types and whether it is simply a reflection of 

general population increase. Taxonomic bias of urbanised species is investigated and the 

degree to which relative urbanisation is associated with the number of habitat types 

exploited, as a measure of relative niche breadth, is also examined. 

3.2. Methods 

Brain sizes were obtained from literature (Iwaniuk & Nelson 2003; Moller et al. 2005) 

and data for additional species were kindly provided by Dr Andrew N. Iwaniuk of the 
University of Alberta, Canada (2005, in lilt. ) who holds a database of avian brain sizes 

compiled from a number of primary sources and his own work. Data were available for 

72 of the 78 species whose distributions had been found to be significantly associated 

with urbanisation under autologistic regression ('significant' species, see chapter 2) and 
for 106 of the 128 species breeding in 10% or more of grid squares ('breeding' species). 
Significant species for which brain sizes were not available were Black Grouse, Grey 

Wagtail, Ring Ouzel, Rock Pipit and Twite. Brain masses and volumes appear to be 

used interchangeably in the literature and endocranial volume has been shown across 82 

species to provide a reliable estimate of brain size (Iwaniuk & Nelson 2002), the two are 
linearly related by the generally agreed value for fresh brain density of 1.036g m1'. 
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Most of the data available were expressed as brain volumes, any masses were converted 

to volumes for consistency. 

The expected negative allometric relationship between brain volume and body mass is 

given by equation 3.1 where Y= brain volume, X= body mass and the exponent b is 

less than one for negative allometry. 

Y= aXb and hence logY = Iog a+b LogX (3.1. ) 

The hypothesis to be tested predicted that the more successfully urbanised bird species 

will have brain sizes deviating positively from this baseline relationship, and conversely 

the brain sizes of less urbanised species will deviate negatively; the first part of the 

investigation was therefore to estimate the deviations of each species' relative brain size 

from this baseline. According to Boire & Baron (1994) a traditional and widely- 

accepted method is to calculate fitted brain sizes from a regression of brain size against 
body size for a reference group of species. This reference group should be ideally of 

related species having the same level of encephalisation but also of a wide range of 
body weights (Boire & Baron 1994). In fact, Garamszegi & Eens (2004) considered the 

inclusion of a large range of species for the baseline regression to be very important 

(more so than controlling for phylogeny). Accordingly, OLS regression of log brain 

volume against log body size (using MINITAB 13) in the 106 breeding species was 

used to construct this regression baseline. Mute Swan and Canada Goose were 
identified by MINITAB as outliers with disproportionate influence on the regression 

equation and so were removed from the analysis (see below for further discussion). A 

simple method of testing the hypothesis that deviations of brain size from the baseline is 

associated with relative urbanisation would be to regress urbanisation against the 

residuals of the log brain /log body regression; Boire & Baron (1994), however, 

recommended the brain size index as used by Stephan (1967 in Boire & Baron 1994), 

the ratio of actual brain volume to the fitted brain volume in the baseline regression, 

expressed as a percentage. This was therefore the metric used for the regression analysis 

of relative urbanisation against brain size, which was initially performed using OLS 

linear regression to indicate any general trend. 

However, an issue with multi-species statistical analysis is that species' values of 
parameters cannot be treated as independent data points due to the confounding effect of 
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common descent. Accordingly, the program Comparative Analysis by Independent 

Contrasts (CAIC) was additionally used in a second, phylogenetically controlled 

analysis (Purvis & Rambaut 1995b). Firstly, CAIC's regression facility was used to 

perform phylogenetically independent regression of urbanisation on brain index, again 

to inspect the basic trend. Secondly, a definitive analysis was performed using CAIC to 

generate independent contrasts for the variables logio(brain volume), logjo(body mass) 

and urbanisation with logio(body mass) set as the independent variable, in effect asking 

CAIC to compare urbanisation with loglo(brain volume) while holding constant the 

effects of logio(body mass) (Purvis & Rambaut 1995a). The resulting contrast values 

from CAIC were then modelled in a multiple regression of contrast[urbanisation] 

against contrast[log(body mass] and contrast[log(brain volume)] with the ̀ no 

intercept' option set in SAS PROC REG to force the regressions through the origin. 

The relationship was further investigated by removal of outlier species and taxonomic 

focusing. Raven, Canada Goose and Mute Swan are outliers (figure 3.4. ) due to their 

unusually large body mass; their removal from the analysis can be justified on 

ecological as well as statistical grounds. Raven was formerly widely distributed across 

both urban and non-urban habitats and is only non-urban in modem times due to 

persecution. Canada Goose is a recently- introduced feral species and as such has not 

adapted to urbanisation in the progressive ̀ natural' way typical of native species. Mute 

Swan is sparsely but very widely distributed, its breeding distribution is primarily 
determined by the presence of almost any suitable water body, urban or non-urban. 
These species are also highly variable in body mass, depending on sex and age. Datasets 

without waterbirds and consisting solely of passerines were also examined. 

As in chapter 2, the BTO/JNCC/RSPB Breeding Bird Survey (BBS) (Noble et al. in 

press) provided supporting data on breeding densities in different habitat types. To 

examine the issue of whether relative urbanisation is associated with the degree to 

which species exploit other habitat types either uniformly or preferentially, OLS 

multiple regression analysis (PROC REG in SAS) was used to examine how breeding 

densities in nine habitat types (plus a tenth `miscellaneous' habitat type) estimated from 

the BBS might jointly predict relative urbanisation. BBS figures were available for 47 

of the significant species. Automatic backwards elimination of predictors at P? 0.1 was 

used. Distributions of the predictors were highly skewed with many zeroes so all ten 

were log transformed (with 0.1 added to allow logarithms of the zeroes). 
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To examine the association of relative urbanisation with the direction of population 

trends, the significant species were coded as 1 or 0 respectively for positive and 

negative associations with urbanisation and 1 or 0 for either generally rising or 

generally falling population trends (www. bto. org). Where trends have changed in recent 

years, subjective judgement was used to assign a trend direction more or less 

contemporary with the Atlas data gathering period (1988-91); 52 species had trends that 

could be unambiguously classified in this way. The resulting contingency table was 

tested for association using a test (PROC FREQ in SAS). 

Detailed analysis at family level of taxonomic bias in propensity to urbanise was not 

possible due to the sparse representation of many families among the 128 breeding 

species. However, relative distributions of the species between seven intermediate taxa 

within the three categories of association with urbanisation (positive, negative and no 

significant association) were examined graphically. In addition, the association between 

whether a species is passerine or non-passerine and the direction of the relationship of 

its breeding distribution with urbanisation (positive, negative and no significant 

association) was evaluated using a test. 

To investigate whether relative urbanisation is associated with the number of different 

habitat types exploited by a species, the 83 species for which BBS breeding density data 

were available was coded either 1 (positive association with urbanisation), -1 (negative 

association) or 0 (no significant association) and the number of different BBS habitat 

codes in which each species attained a non-trivial breeding density (Newson et al. 2004) 

was counted (maximum 9, including `miscellaneous' habitat). A two sample t-test was 

used to compare the mean number of habitat types exploited by positively and 

negatively urbanised species, one-way ANOVA was used to compare the numbers of 

habitats used by species positively, negatively and non-significantly associated with 

urbanisation. As a further indicative analysis, OLS linear regression was performed of 

species' degree of association with urbanisation (autologistic regression parameter 

estimate) against the number of habitats in which they had non-trivial BBS breeding 

densities, for the 49 of the significant species having BBS densities. 
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3.3. Results 

Although the distribution of the autologistic regression parameter estimate values for 

landclass2l (subsequently referred to as urbanisation) for the 72 species considered was 

not formally normal (Kolmogorov-Smirnov test P<0.01) it was considered adequately 

symmetrical about the mean for regression analyses to be informative. 

S 
m 

log 10 body nmiss log 10 Wain voWme 

Figure 3.1. a. Frequency distribution of log10 (brain volume (ml)) with normal distribution 
(blue), for the 72 significant species Figure 3.1. b. Frequency distribution of log10 (body 
mass (g)) with normal distribution (blue), for the 72 significant species 

Similarly both brain volume (K-S test, P<0.01) and body mass (K-S test, P<0.01) failed 

formal normality tests but, as expected for a negative allometric relationship their 

logarithms were fairly symmetrical, although still formally non-normal (both K-S test, 

P<0.01) in distribution with some bimodality apparent (figures 3.1. a. and b. ). As 

expected, there was a highly significant correlation between log(brain volume) and 

log(body mass), as shown in figure 3.2. `Significant' species (N = 72) are those for 

which there was a significant association of distribution with urbanisation under 

autologistic regression, `additional' species are the additional 34 species out of the 128 

occurring in 10% or more breeding atlas squares (table 2.2. ) for which brain data were 

available (total N= 106). Species are tightly clumped at low values. 

Linear regression of brain volume against body mass was highly significant (F1,70 = 

69.1, P<0.001, r2 = 49.3%), as was linear regression of logo (brain volume) against 

logio (body mass), equation 3.1 is the regression equation for the 72 significant species. 

logjo (brain volume) =-0.837 + 0.541 loglo (body mass) (3.1. ) 
(P<0.001, F170=617.5, r2=89.8%) 
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Figure 3.2. Scatterplot of Iog, o (brain volume (ml)) against logo (body mass (g)), for 72 
'significant' species (significantly associated with urbanisation) and 34 additional 
species not so associated but also occurring in 10% or more breeding atlas squares. 

The equation for 104 species (Mute Swan and Canada Goose removed) was little 

different (equation 3.2. ) Table 3.1. shows brain size indices predicted by equation 3.2. 

logjo (brain volume) _-0.88 + 0.557 log, () (body mass) (3.2. ) 

(P < 0.001, F11102 = 857.37, r2 = 89.4%) 

The parameters log(a) and b of equation 3.2. remained unchanged to 2 decimal places 

when two alternative sets of body mass data for the same species (one independently 

collected from literature by a colleague (K. L. Evans pers comm) and one compiled by 

the BTO (Robinson 2005)) having up to 10% mean variance with respect to the original 

dataset were experimentally substituted in the regression. OLS linear regression of 

urbanisation against relative brain size index for all 72 of the significant species 

indicated no significant association (figure 3.3). Removing gulls, waders and waterbirds 

from the regression analysis made little difference (P = 0.936, F 146 = 0.01, r2 = 0.0%) 

and regression for passerines only was also non-significant (P = 0.856, F1,34 = 0.03, r2 _ 

0.1 %) even when outliers such as Raven and Blackbird were removed. 

Phylogenetically independent regression of urbanisation on brain size index using 
CAIC's own bivariate regression facility failed to show any significant association (P = 
0.982, r2 = 0.00). For all 72 significant species, multiple regression of the urbanisation 
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contrasts produced by CAIC against the log (brain volume) and log (body mass) 

contrasts failed to demonstrate any significant association between relative urbanisation 

and brain volume, controlling for body mass (P = 0.626, F2556 = 0.47, r2 = 0.017). 

Neither removing Mute Swan, Canada Goose and Raven (P = 0.529, F2556 = 0.64, r2 = 

0.0237), nor removing water birds and waders (P = 0.358, F2,35 = 1.06, r2 = 0.0570) 

substantially affected the result. 

Table 3.1. Relative brain size index (%) for 104 British breeding bird species, with 
reference to a baseline linear regression of loq(brain volume) against loa(bodv mass 
Species % Species % Species % 
Raven 239.5 Dipper 107.1 Spotted Flycatcher 84.1 
Tawny Owl 227.3 Greenfinch 107.1 Mallard 83.5 
Crow 209.6 Goldfinch 106.4 Pied Flycatcher 83.4 
Barn Owl 200.6 Tree Sparrow 104.6 Tree Pipit 82.8 
Rook 199.9 Long-tailed Tit 104.6 Snipe 80.8 
Jackdaw 194.7 Lesser Black-backed Gull 103.7 Red-breasted Merganser 80.5 
Magpie 185.0 Yellowhammer 102.6 Shelduck 80.4 
Great Spotted Woodpecker 184.2 Black-headed Gull 102.2 Pied Wagtail 80.1 
Jay 183.4 Great Black-backed Gull 101.9 Swallow 79.4 
Short-eared Owl 171.1 Wren 101.7 Curlew 78.6 
Lesser Spotted Woodpecker 163.7 Goldcrest 100.9 Wood Warbler 76.1 
Little Owl 156.5 Black Guillemot 100.7 Meadow Pipit 75.9 
Kestrel 156.3 Linnet 100.6 Tufted Duck 75.3 
Buzzard 149.9 Whitethroat 100.5 Chiffchaff 74.8 
Hen Harrier 147.4 Blackcap 100.0 Mute Swan 74.5 
Crossbill 139.5 Stonechat 99.8 Kingfisher 73.9 
Nuthatch 139.4 Reed Bunting 99.1 Sand Martin 73.8 
Marsh Tit 132.8 Little Ringed Plover 98.5 House Martin 73.5 
Blue Tit 129.7 Common Tern 98.5 Willow Warbler 73.5 
Starling 128.8 Siskin 96.9 Moorhen 71.8 
Coal Tit 126.3 Garden Warbler 96.7 Common Sandpiper 69.2 
Bullfinch 126.3 Skylark 96.6 Goosander 69.1 
Peregrine 124.6 Robin 94.8 Stock Dove 66.6 
Great Tit 124.2 Wheatear 93.1 Swift 66.5 
Fulmar 124.2 Canada Goose 92.7 Turtle Dove 65.1 
House Sparrow 117.7 Reed Warbler 90.1 Great Crested Grebe 62.9 
Lesser Redpoll 117.7 Whinchat 89.7 Collared Dove 62.5 
Merlin 117.5 Golden Plover 89.3 Pheasant 62.1 
Lesser Whitethroat 115.1 Oystercatcher 89.2 Woodpigeon 61.9 
Song Thrush 114.1 Redstart 88.5 Feral pigeon 60.2 
Mistle Thrush 114.0 Teal 88.0 Red-legged Partridge 59.7 
Blackbird 112.5 Sedge Warbler 87.9 Little Grebe 59.4 
Chaffinch 111.2 Treecreeper 87.9 Red Grouse 54.6 
Common Gull 110.1 Cuckoo 87.3 Coot 51.8 
Ilerring Gull 109.0 Dunlin 87.3 
Dunnock 108.8 Yellow Wagtail 85.0 
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Figure 3.3. Scatterplot of relative urbanisation (model parameter estimate from chapter 
2) against relative brain size index, for the 72 species with breeding distributions 
significantly associated with urbanisation (Chapter 2). OLS linear regression not 
significant (P = 0.93, F,, 70 = 0.01, º2 = 0%). 

Multiple regression of relative urbanisation against the ten BBS densities estimated 

equation 3.3 (P < 0.0001, F5,41 = 11.32, r2 = 0.58). Log transformed predictors 

representing inland water, broadleaved woodland, moor and hill bog, improved 

grassland and arable were removed by automatic backwards elimination at P >= 0.1. 

urbanisation =0.752 + 0.3 log(SNGRASS + 0.1) + 0.406 log(HUMAN + 0.1) 

- 0.2 log(CONIFER +0.1) - 0.22 log(COASTAL + 0.1) 
+ 0.48 log(MISC + 0.1) (3.3) 

It is unlikely that breeding densities in each habitat are independent, so this analysis is 

indicative rather than definitive but it suggests that use of semi-natural grassland 

(SNGRASS) for breeding is positively associated with relative urbanisation, as is use of 

human habitats (HUMAN) (as expected). Use of coniferous woodland (CONIFER) and 

coastal (COASTAL) habitats is negatively associated with urbanisation. The largest 

parameter estimate is for `miscellaneous' habitats (MISC), which makes interpretation 

of the model difficult. Habitat codes are from LCM2000 (Chapter 5). 

There was no significant association between direction of association of breeding 

distribution with relative urbanisation and direction of overall population trend (j = 
3.02, DF =1, P=0.082), nor between direction of association of breeding distribution 
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with relative urbanisation (+ or -) and whether species were passerine or non-passerine 

(x2 = 0.197, DF =2, P=0.906), nor did the distributions of species between seven 

intermediate taxa vary significantly between three relative urbanisation categories, as 

shown in figure 3.4 ()? = 18.48, DF =12, P=0.102). 
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Figure 3.4. Assortment of the 128 breeding species into seven taxonomic groups 
within the three categories of association of distribution with urbanisation (1 = positive 
association, 0= no significant association, -1 = negative association). 
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Figure 3.5. Boxplot of numbers of habitat types in which 83 BBS species had non- 
trivial breeding densities, by direction of association of each species' breeding 
distribution with relative urbanisation (-1 = negative association, 0= no significant 
association, 1= positive association) as determined by autologistic regression. Bar = 
median, box = first and third quartiles, whiskers = highest and lowest values 
respectively within upper (Q3 + 1.5 Q3 - Q1) and lower (Q1 - 1.5 (Q3 - Q1) limits. 
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The numbers of BBS habitat types per species were normally distributed (Kolmogorov- 

Smirnov test P=0.15). Among the 49 of the `significant' species for which BBS 

densities were available, the mean number of habitat types with non-trivial breeding 

densities for the species whose distributions were negatively associated with 

urbanisation was 3.62 (N = 13). This was significantly lower than the mean number of 

habitat types with significant breeding densities for those species positively associated 

with urbanisation (5.67, N= 36, t= -4.1, DF = 23, P<0.001). When non-significant 

species were added and consequently a third association class (no association) 

introduced, the overall difference between the three association classes remained highly 

significant (ANOVA, P=0.003, F2,80 = 7.1, r2 = 13.25%), as indicated by figure 3.5. 

Figure 3.6 suggests the relative urbanisation parameter estimate tends to vary positively 

with the number of habitats exploited per species. Although the variances increase with 

number of habitats, an indicative OLS regression line is shown to illustrate the potential 

of this analysis for further development should more detailed habitat usage data become 

available. This regression is barely significant (P = 0.050, F1,47 = 4.05, r2 = 7.9%) but if 

the outliers Starling, Blackbird and Blue Tit are removed the fit considerably improves 

(P = 0.018, F1,44 = 17.44, r2 = 28.4%). 
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Figure 3.6. Scatterplot of autologistic regression parameter estimate for association of 
breeding distribution with urbanisation against number of BBS habitat types with non- 
trivial breeding densities per species, indicative OLS regression line shown (blue) 
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3.4. Discussion 

For commoner British breeding bird species, the relative urbanisation parameter 

produced by modelling species distribution against land cover under autologistic 

regression is not predicted in any statistically significant way by brain volume, even 

when controlling for body size and phylogeny. Relative propensity to urbanise 

successfully is therefore not linked to behavioural flexibility; at least in as far as the 

brain volume data used are reliable and appropriate as its surrogate measure. 

Concerning reliability, many of the brain volumes available were necessarily from small 

samples of individuals and some species vary considerably in individual biometrics, 

especially dimorphic or polytypic species. However, Garamszegi et al. (2005) found 

high repeatability in brain size measurements across studies, concluding that 

intraspecific variation is small compared to interspecific variation. Furthermore, the 

log(brain volume)/log(body mass) regression equation intercepts and parameter 

estimates obtained by regressing the brain volume data separately onto three 

independently derived sets of body masses were unchanging to two decimal places, 

although the ranking of species by brain size index did change somewhat, notably 

among the lower-ranking species. Nonetheless using different sets of body mass data 

did not produce any improvement in the statistical significance of the hypothesised 

association between relative brain size and urbanisation. There are theoretical and 

practical issues with using residual-derived measures in subsequent regressions; in some 

cases multiple regression may be more appropriate (Freckleton 2002) and the fit lines 

can vary widely depending on the taxonomic level at which species are grouped (Burish 

et al. 2004). However, Garamszegi et al. (2005) showed that for brain size data, 

residuals-based analyses gave similar results to partial correlation methods and were 

simpler to interpret, especially if, as in this analysis, data from a large number of species 
(106) from a wide range of taxa were included in the regression. 

With respect to appropriateness, it is possible that by considering only total brain 

volume, variation in specific brain components associated with behavioural flexibility 
has not been captured. Some brain components vary in size more between species than 
total brain volume, for example telencephalon has a greater increase in size with body 

mass than other brain components and a larger range of variation (Boire & Baron 1994 

and references therein). Opinions vary as to which measure of relative brain size is the 
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most appropriate to consider in terms of association with behavioural traits, Burish, 

Kueh et al. (2004) concluded that telencephalic volume per whole brain volume &I was 

`the most prominent structural correlate of behavioural traits' in birds, outperforming 

residuals-based measures of relative brain size, whereas Lefebvre, Whittle et al. (1997) 

preferred component size / brain stem size. Also, different brain components are 

associated with different specific aspects of behaviour than others, for example 

telencephalon with social complexity (Burish et al. 2004) but hippocampus with spatial 

learning and degree of food hoarding (Garamszegi et al. 2005), the latter perhaps only in 

an experience-dependent manner (Francis 2005; Healy et al. 2005). Nonetheless, 

correlation between the brain size indices calculated in this chapter and Burish, Kueh et 

al's F1,1 values was good (linear regression, P<0.001, F1,41 = 73.89, r2 = 64.3%). 

Despite the uncertainty, it remains reasonable to use relative total brain size as a ̀ best 

guess' indicator of overall relative intelligence (A. N. Iwaniuk 2005 pers. comm. ). In fact 

Garamszegi, Eens et al. (2005) explicitly state that according to their review "studies 

testing for ecological and behavioural correlates of encephalisation tend to use total 

brain size as a focus of study, even if selection may act on individual brain structures". 

In the light of this analysis, the question of what factors might influence the relative 

propensity of different bird species to exploit urban habitats remains. Historical 

colonisation sequence may have an influence, as in the observed mutual exclusion of 

House Sparrow and Tree Sparrow from their apparently preferred built habitats 

depending on which of the two species arrived in each particular urbanised area first 

(Summers-Smith 1988). Another intuitive predictor of failure to urbanise is a species' 

association with homogeneous, open landscapes such as open farmland, wetland or 

moorland. Comparison of relative urbanisation with BBS habitat use data does not 

immediately appear to support this but the data are not ideally partitioned for testing this 

particular hypothesis, they suggest that breeding in semi-natural grassland is positively 

associated with propensity to urbanise whereas use of coastal and coniferous habitats is 

negatively associated with urbanisation; birds highly visible in semi-natural grassland 

may of course actually be woodland edge species. More detailed breakdown of habitat 

use, notably dissection of the `miscellaneous' BBS habitat type that is the largest 

significant predictor of urbanisation and probably obscures important differentiating 

niche breadth information, would be required to develop this analysis further. 
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Relative propensity to urbanise in bird species may not be measurable on a linear scale, 

as assumed in this analysis; there is probably a need to distinguish between those 

species that merely tolerate. urban environments, those that never use them and those 

that actually persist or even thrive in them, in order to understand what factors enable or 

prevent successful urbanisation. Ecological niches provided by urban habitats may 
differ from those in non-urban niches and may be rather narrow but they could 

nonetheless be highly diverse, allowing substantial ecological diversity in urban 

avifaunas. Having said that, the BBS data on habitat utilisation support the urban 

ornithology dogma that niche breadth is linked in some general way to propensity to 

urbanise in bird species. However, phylogenetically controlled regression analysis 

clearly shows that whatever traits may be significantly associated with this apparent 
broadening of a species' niche to encompass urban environments, behavioural 

flexibility as measured by relative brain size is not one of them. 
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4. National trends in the use of gardens by birds in Great Britain 

Abstract 

Trends in the use of private residential gardens by wild birds in Great Britain were investigated 
using weekly bird records from 18,300 gardens over eight years. Plotting reporting rates for 40 
species showed that the use of this habitat is seasonal and cyclic with the timing and regularity 
of its periodicity variable between species. Using logistic regression modelling with 
trigonometric terms, the significances of underlying trends in the cyclic reporting rates were 
evaluated; 18 species showed clear trends, the three with the most negative year term parameter 
estimates being `red-listed' as of high conservation concern. Correlations with national scale 
survey data suggested that garden reporting rates are related to general population trends in a 
number of species, including several of conservation importance. Other species exhibit 
important differences between national and garden trends. 

4.1. Introduction 

In Great Britain private gardens contribute a significant proportion of the total available 
bird habitat, garden ownership being a traditional and widely held aspiration (Dunnett & 

Beer 2001). Owen (1991) estimated their total area in England and Wales as 485,000 ha 

or 3% of total land area. Based on a net annual increase in residential land use of 5,000 
ha year' in England (ODPM 2003), and assuming around one third of such 
development is garden, they may cover as much as 500,000 ha of England and Wales 

today. This compares well with approximately 120,000 ha of national and local nature 

reserves in England (English Nature 2004) and 115,000 ha of Royal Society for the 
Protection of Birds (RSPB) reserves in the U. K. (RSPB 2002). Hence, it islikely that 

private gardens support a significant proportion of the national populations of some bird 

species; in the case of some species of conservation concern, such as House Sparrow 

perhaps a large proportion (Robinson et al. 2002b). 

Human residential habitats in which gardens are the primary resource support important 

populations of a number of wild bird species (Gregory & Baillie 1998), perhaps more 
important than previously suspected (Bland et al. 2004), and appear to be refuges for 

some declining species such as the Song Thrush (Mason 2000; Peach et al. 2004). 
Although most typical gardens support only a reduced avifauna due to a variety of 
factors, including high levels of disturbance and predation, lack of nesting cover and 
predominantly alien plant species, some garden bird species are effectively subsidized 
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in this habitat by artificial feeding and provision of nest boxes (Beebee 2001; Cannon 

1999). Despite the recent upsurge in urban ornithological activity (Marzluff et al. 

2001 a), most research has remained focused on larger green spaces such as parks or on 

gradient studies. However, in many cities the overall area of private gardens may be 

very extensive, extimates include 23% of Sheffield (Gaston et al. in press), 27% of 

Leicester (Jeffcote 1993) and 20% of London (London Biodiversity Partnership 2001). 

Questionnaire data suggest that Sheffield's private gardens contain 25,000 ponds, 

350,000 trees and 45,000 bird nest boxes (Gaston et al. in press), a very significant 

habitat resource 

Being adjacent to human habitations, gardens are amenable to detailed year-round " 

monitoring by volunteers, an obvious opportunity to increase public engagement in bird 

conservation and obtain data on a population that is otherwise inadequately monitored 
despite its potential conservation importance. Volunteer garden bird surveys have been 

attempted in a number of countries (Cannon 1999). Since 1970, around 250 volunteers 
have recorded exact numbers of birds using feeding stations over the winter period for 

the British Trust for Ornithology (BTO) Garden Bird Feeding Survey (Chamberlain et 

al. 2005; Toms 2003), which offers a uniquely long time series of feeder use data but is 

limited by small scale and issues with modelling the free-format data. At the other 

extreme of scale, Project FeederWatch collects data from thousands of volunteers across 
North America, demonstrating continental-scale movements as well as trends (Wells et 

al. 1998) but unfortunately only in the winter half of the year. The Canberra bird survey 
(Veerman 2002) exemplifies the comprehensive data available on smaller geographical 

scales; resources generally limit this intensive approach to local survey areas. 

The BTO/CJ Wildbird Foods Ltd Garden BirdWatch (GBW) is presently the only 

garden bird survey collecting systematic weekly data from thousands of sites on a 

national scale and throughout the year (Cannon 2000; Toms 2003). In this chapter, the 
first eight years' data from GBW are analysed to determine seasonal patterns of garden 

usage and their variation between species, and the occurrence or otherwise of inter- 

annual directional trends and other temporal variations. By comparing GBW reporting 

rates with national population indices, the extent to which changes in garden usage by 

bird species reflect or differ from patterns in overall population levels is investigated, 

and the implications for species of conservation concern are considered. 
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4.2. Methods 

GBW is an open-access project funded by volunteers' subscriptions; participation has 

grown from around 5,000 sites in January 1995 to over 16,000 in 2004 (figure 4.1). 
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Figure 4.1. Numbers of sites contributing data to the analysis each week. Week 
numbers 1- 416 run from January 1995 to December 2002. 

All available data for the years 1995 - 2002 were used in this analysis. The data are 
incomplete longitudinally as sites may join or leave the project at any time. Figure 4.2 

shows that despite inevitable concentration in areas of highest human population density 

the survey covers the whole of Great Britain reasonably well. 
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0 

Figure 4.2. GBW sites in Great Britain, November 2003. Map: www. dmap. co. uk 
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Presence/absence data were collected weekly using a standard checklist of 40 bird 

species. This method overcomes the zero records problem observed by Rushton, 

Ormerod & Kerby (2004), in that `absence' records can be confidently interpreted as 

zeroes. Carrion Crow and Hooded Crow (Parkin et al. 2003) were recorded as a single 

species, few Hooded Crows visit gardens and in this habitat the ecological role of the 

two is similar. Volunteers were instructed to define their own consistent ̀ study area' 

within which if a species was observed at any time during a week it would be recorded 

as ̀ present' for that week. No restrictions were imposed on the type of garden observed. 
Almost all volunteers provided artificial food of some kind and feeding stations were 

generally the focal point of the study areas. Volunteers were asked to maintain 

consistent observation effort each week and encouraged to discard data from under- or 

over-observed weeks. Some variation in observer effort and competence is inevitable, 

but this does not detract from the ecological interest of these unique data when 

examined at a national scale and over an eight-year timescale. The full volunteers' 
instructions are available at www. bto. org. 

For each of the 40 species and 416 weeks a weekly reporting rate was calculated, i. e. the 

proportion of the sites returning data that week at which the species was recorded. The 

procedure GENMOD in SAS was used to fit a Generalized Linear Model (GLM) with a 
logit link function and binomial error distribution ('logistic regression') appropriate to 
the dichotomous dependent variable count, which has values of either `present' or 
`absent' for each species and week (Allison 1999). This procedure estimates the 
logarithm of the odds of occurrence in week i, In (p; /I -Pd where p; is probability of 
occurrence in week i. A notable feature of the GBW reporting rates is strong cyclic 
variation with period of one year. The objective of the modelling being to examine 
longer-term trends underlying this periodicity, it was accounted for in the model by 

using trigonometric terms, following Flury and Levri (1999). The initial form of the 

model for all species was: 

In (p, / I-pd =0 where (41) 

O= a+ 81 (year) + 62 (year2) + Qj (cosweek) + X34 (sinweek) 
+ Aas (cosweek * sinweek) + /36 (sinweek * year) + 67 (cosweek * year) 
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where a is the value of the GLM intercept returned by GENMOD and ßj. 7 are the GLM 

parameter estimates for each term. The term year took integer values between 1 and 8 

representing 1995 - 2002, cosweek and sinweek were the cosine and sine respectively of 

the week number (1 - 52) within each year. Likelihood ratio statistics for each term 

were obtained using the TYPE3 option in GENMOD, terms for which P, >>0.05 

were successively removed until all remaining terms were significant at this level 

('minimum adequate models'), at which point estimated values for weekly occurrence 

probability p, were calculated from the model parameter estimates using the formula: 

p; =ee/1+e0 (4.2) 

As the same sites provide data many times over the life of the project, the weekly 

observations are not independent. Therefore, rather than the default maximum 
likelihood estimation method in GENMOD, the generalized estimating equations (GEE) 

option for longitudinal data was selected, which produces standard errors and test 

statistics that are adjusted for dependence (Johnston & Stokes 1997; Zeger & Liang 

1986). GEE option TYPE=AR was chosen to impose a lag-1 autoregressive structure on 
the correlation matrix (Allison 1999). 

Modelling was performed twice for each species, firstly using datasets containing all 
sites in order to model overall reporting rates ('all sites' models). For less frequently- 

occurring species a proportion of the sites might be inherently unsuitable (such as urban 

gardens for Treecreeper or Reed Bunting) and hence interesting trends in the use of 
suitable sites by such species might be obscured by the bulk of permanently negative 
observations. Accordingly, the modelling process was repeated using subsets of sites 
from which any gardens in which a species had never been recorded were removed 
('species positive' models). 

To examine the extent to which GBW reporting rates correlate with trends in national 
populations the means over weeks 14 - 26 annually of the GBW reporting rates 
predicted by the model were compared with the population indices (also model-derived) 
for Great Britain from the BTO/Joint Nature Conservation Committee (JNCC)/RSPB 
Breeding Bird Survey (BBS), which takes place between April and June (Spearman 

rank correlation coefficients, PROC CORR in SAS, N=7). Mean `winter' predicted 
reporting rates for weeks 1-13 annually were also calculated and correlated with both 
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the following BBS, i. e. that in the same calendar year (BBS/GBW wintery_1, N=7), and 

with BBS from the preceding calendar year (BBS/GBW wintery+l, N=6). The BBS field 

methodology and analytical procedures are described in detail elsewhere (Noble et al. in 

press; Raven et al. 2003); indices for Great Britain (not reported elsewhere) were 

calculated using standard BBS modelling procedures that correct for regional 

differences in sampling effort. No BBS index was available for the year 2001. 

4.3. Results & Discussion 

Weekly occurrence probabilities (predicted reporting rates) calculated from model 

parameter estimates, together with actual weekly reporting rates from the raw data were 

plotted; 14 examples are shown here (figures 4.3 - 4.16), figures for all 40 species are in 

appendix C. The two plots can easily be distinguished; the raw data plots (blue) are 

visibly `noisy', the modelled values (black) are smoothed sinusoids. Cyclic patterns of 

seasonal habitat use are visible for almost all species, the primary cause of which is 

likely to be variation in exploitation of garden food supplies. Detailed examination of 

these cycles is beyond the scope of this chapter but other causal factors (varying in 

relative importance between species) probably include the effects of moult on bird 

visibility, preferential use of some types of artificial food by juveniles and the extent to 

which gardens are used as breeding, rather than merely feeding, habitat. Non-breeding 

winter visitors are clearly differentiated from residents, migrants (Fieldfare figure 4.3, 

Redwing and Brambling) having reporting rates of zero in the summer months while 

winter visitors (Black-headed Gull figure 4.4) have very low summer reporting rates. 

Several species show progressive temporal reduction in the amplitude of their periodic 

seasonal cycles, notably Dunnock (figure 4.5), Robin, Blue Tit, Great Tit, Greenfinch 

and perhaps Starling and Chaffinch. General population increases leading to increased 

garden residency are a possible explanation, as is a general increase in year-round 

provision of artificial food (Cannon 2000). Reporting rates for winter visitors (including 

Siskin (figure 4.6) which increasingly breeds in Great Britain) are irregular from year to 

year as would be expected but notable irregularity is also present in the data for Pied 

Wagtail, Wren and Goldcrest (insectivorous species whose garden use is strongly 
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weather-dependent) and in Jay, Nuthatch, and Bullfinch (low reporting rate species for 

which most gardens are probably `emergency' habitat). 
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Figure 4.4. Black-headed Gull 
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Figure 4.3. Fieldfare 
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Figure 4.5. Dunnock 
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Figure 4.7. Feral Pigeon 
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Figure 4.6. Siskin 
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Figure 4.8. Song Thrush 
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Figure 4.9. House Sparrow 
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Figure 4.10. Starling 
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Figure 4.11. Great Tit 
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Figure 4.12. Magpie 
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Figure 4.13. Blue Tit 
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Figure 4.14. Woodpigeon 
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Figure 4.15. Mistle Thrush 
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Figure 4.16. Coal Tit 

Figures 4.3 - 4.16. Weekly reporting rates calculated from original data ('noisy' blue 

plots) and probabilities of occurrence predicted by 'minimum adequate' GEE models 
('smooth' black plots). Horizontal axis: week numbers 1- 416, January 1995 to 
December 2002. Vertical axis: proportion of gardens. 'All sites' data (solid lines) plotted 
for all species. 'Species positive' data (dotted lines) additionally plotted for species in 
which there is either a gain or loss of formal significance in the year term or an 
improvement in data dispersion, or an interesting difference in the form of the two plots. 

Table 4.1 lists all model terms and their GEE type 3P values for all 40 species and the 

`all sites' data. To enable comparison between species in the relative significance of 

their model terms, the values for just the initial model run are given, i. e. all terms were 
included in these models whether significant or not. 
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SAS Procedure GENMOD does not provide GEE fit statistics (SAS Institute Inc. 2003), 

nonetheless the deviance statistics from the initial maximum likelihood models divided 

by degrees of freedom are presented in table 1 as a ̀ rule of thumb' indicator of relative 
data dispersion. This figure should be approximately equal to 1 (Der & Everitt 2002; 

SAS Institute Inc. 2003); from practical experience, values between 0.5 and 2.0 suggest 
dispersion is reasonably controlled and provide a pragmatic assessment of model 

appropriateness when combined with visual inspection of predicted probability plots 

and residuals if necessary. For the `all sites' data, only 14 of the 40 species had 

deviance/DF figures outside this range; five of these (Black-headed Gull, Fieldfare, 

Redwing, Brambling and Siskin) are winter visitors with particularly sharp and sudden 

reporting rate peaks that are clearly less amenable to sine/cosine modelling. Tawny 

Owl, Goldcrest, Treecreeper, Tree Sparrow, Bullfinch, Yellowhammer and Reed 

Bunting are low reporting rate species (generally < 0.1), while Mistle Thrush and 
Blackcap have fairly low general reporting rates with some irregular peaks; nonetheless 
the data for these two species are only marginally underdispersed (deviance/DF = 0.49 

and 0.43 respectively). 

The magnitudes and directions of the GEE parameter estimates for the terms year and 

year2 (table 4.1. ) indicate whether the models have identified significant overall trends. 
From table 1,32 of the 40 species modelled using data from all sites have a statistically 
significant year term in their models (type 3 GEE P1 >S0.05). Of the eight 
remaining, four have significant year2 terms and the year2 term for Blackbird is only 

marginally non-significant (P = 0.05 1). For only three species, Feral Pigeon (figure 4.7), 
Nuthatch and Jay has this modelling method clearly failed to identify significant year- 
on-year change across all sites over the sampling period. These three species have 

uniformly low reporting rates (: z 0.1). 

For 18 species (table 4.1, section i. ) the trends are unambiguous, that is, data dispersion 
is clearly within an acceptable range and type 3 GEE scores for year are significant. The 

three species most clearly identified as having negative trends are Song Thrush (figure 
4.8), House Sparrow (figure 4.9) and Starling (figure 4.10). These trends are visually 
apparent from the reporting rate plots, that for Song Thrush showing a recent upturn 
which is reflected in the high positive parameter estimate for year2. Positive trends are 
visually apparent in the three species with the most positive year terms, Great Spotted 
Woodpecker, Great Tit and Long-tailed Tit, that for Great Tit (figure 4.11) possibly 
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more due to progressive flattening of intra-year reporting rate variation. The parameter 

estimate for year2 for Great Tit is considerably more negative compared to the other two 

and indeed some decrease in the rate of change is suggested by the plot. Pied Wagtail 

and Dunnock have relatively high positive year2 parameter estimates as well as negative 

year terms; their reporting rate trends are mitigated by apparent recovery towards the 

end of the survey period. 

Negative year trends for four corvids, Rook, Jackdaw, Crow and Magpie (figure 4.12) 

are somewhat surprising given anecdotally reported increases in garden use; their plots 

support the suggestion of a slightly downturning overall trend although the year2 

parameter estimates are all positive albeit relatively small. A slight downward trend for 

Blue Tit (figure 4.13) is apparent from the plot but the dispersion statistic is relatively 

poor perhaps due to the progressive flattening of the periodicity in this species. The 

reporting rate trajectory for Wren reflects a known population decline and recovery, as 
discussed in Cannon (2000); an overall trend for this species over this timescale is 

probably meaningless. The suggested negative trend for Greenfinch might be accounted 
for by a similar flattening of the reporting rate periodicity as in Blue Tit (the year2 term 
is exceptionally non-significant in both species, perhaps suggesting some similarity in 
data form). The P value for year is not impressive by the standards of this model; the 

same can be said about Chaffinch for which a positive overall trend is suggested. 

A number of species have trends that are clearly apparent to the eye from their reporting 
rate plots but which are not reflected in the P values for both year and year2 terms. 
Perhaps the most notable are Woodpigeon (figure 4.14, positive), Coal Tit (positive), 
Goldfinch (positive) and Mistle Thrush (figure 4.15, negative). Year and yearn 
parameter estimates for these species are shown in table 4.1 section ii. Mistle Thrush 

was excluded from table 4.1 section i. due to a relatively poor dispersion statistic. 
However, the plot suggests this may result from a number of irregular reporting rate 
spikes. If these are disregarded the significant and relatively large negative parameter 
estimate for the year term probably reflects an authentic downward trend. The 

accelerating reporting rate increase for Goldfinch is reflected in the highly significant 
and relatively large positive parameter estimate for yearn but two anomalous reporting 
rate peaks, one high (spring 1996), one low (spring 2002) might explain the inability of 
the model to resolve a significant year term. The summer reporting rate minima for 
Woodpigeon show inter-year variation (figure 4.14). This may be compromising the 
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ability of the model to reflect the clearly-apparent upward trend although again a highly 

significant year2 term partly redeems this. Poor P values for both year and yearn (the 

latter formally significant but unimpressive in the context of this model) in Coal Tit are 

disappointing given an apparent upward trend, however both the winter maxima and 

summer minima for this species are notably variable from year to year. 

Table 4.2. Effect of removing any sites where a species has never occurred from the 
modelled data set on the data dispersion statistic and on the G EE model P values and 
parameter estimates for terms year and year2. 

`all sites' data set 'species positive' data set 
Species DIDF Year P est Year2 P est DIDF Year P est Yea Pest 

i Species gaining si gnificance 
Columba palumbus 1.29 0.1492 0.0192 <0.0001 0.0069 1.30 0.006 0.0371 <0.0001 0.0067 

Columbalivia 0.70 0.2632 0.0241 0.8450 0.0004 1.06 0.0003 0.0828 0.7035 -0.0008 
Parusater 1.33 0.6259 0.0062 0.0282 0.0025 1.33 0.0068 0.0351 0.1617 0.0016 

Sitta europaea 0.73 0.2881 0.0213 0.6403 0.0008 1.18 0.0001 0.0831 0.4602 -0.0014 
Garrulusglandarius 0.72 0.6698 0.0077 0.3480 -0.0015 0.95 0.0025 0.0548 0.0766 -0.0029 
Cardueliscarduelis 0.99 0.1811 0.0208 <0.0001 0.014 1.04 0.0322 0.0332 <0.0001 0.0146 

ii Species losing sig nificance 
Corns monedula 1.24 <0.0001 -0.0781 <0.0001 0.0081 1.24 0.0771 -0.0301 <0.0001 0.0075 

Carduelischloris 1.14 0.0286 -0.0320 0.1405 0.0019 1.14 0.1029 -0.0240 0.0977 0.0022 

Carduelisspinus 0.44 0.0115 -0.0502 0.0747 0.0033 0.56 0.7384 0.0065 0.2215 0.0022 

iii Species with notably improved data dispersion 
Emberiza citrinella 0.21 0.0063 -0.1034 0.3534 0.0032 0.58 0.4236 -0.0301 0.5052 0.0024 

Emberiza schoeniclus 0.08 0.0005 -0.1910 0.0644 0.0093 0.35 0.2006 -0.0684 0.1641 0.0071 

Strix aluco 0.27 0.0217 0.0871 0.1818 -0.0045 0.65 <0.0001 0.1553 0.0674 -0.0062 

Turdusviscivorus 0.49 <0.0001 -0.1317 0.0003 0.0066 0.63 <0.0001 -0.0877 0.0002 0.0069 

Passer montanus 0.37 0.0223 0.0785 0.2889 -0.0033 0.91 0.0046 0.1065 0.4686 -0.0025 
Pyrrhulapyrrhula 0.43 <0.0001 -0.1258 <0.0001 0.0136 0.58 <0.0001 -0.0940 <0.0001 0.0146 

As can be seen from table 4.2 section i, all four of the species having clearly visible 

trends in their raw data but failing to trend unambiguously in the `all sites' models 

acquire either significant year terms (Woodpigeon, Coal Tit, Goldfinch) or an 

acceptable dispersion statistic (Mistle Thrush) when modelled using only `species 

positive' data. Significant upward trends are also acquired by the only three species for 

which the model previously failed to identify any significant trend (Feral Pigeon figure 

4.7, Nuthatch and Jay). Conversely, for Jackdaw, Greenfinch and Siskin the year terms 

lose formal significance when the models are applied to the `species positive' data set. 

For Siskin, the replacement of a significant negative year term in the `all sites' data with 

a small (although highly non-significant) positive year term in the `species positive' 
data might be predicted from comparing the plots (figure 4.6). In addition to Mistle 

Thrush, five other low reporting rate species acquire a more respectable dispersion 

statistic (table 4.2 section iii) although that for Reed Bunting remains unacceptably low. 

Formal significance of the year terms for Tawny Owl, Tree Sparrow and Bullfinch does 

not change although the P values greatly improve. 
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Figures 4.17 - 4.24. Mean values of predicted GBW reporting rates over weeks 14-26, 
plotted with corresponding Great Britain BBS Indices, years 1995 - 2002 (2001 
missing) for eight species with significant and/or interesting correlations. Winter GBW 
means additionally plotted for Blackbird (Fig. 4.22) 
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Figure 4.19. Black-headed Gull 
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Figure 4.21. Great Spotted Woodpecker 
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Figure 4.20. Woodpigeon 
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Figure 4.22. Blackbird 
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Figure 4.23. Blackcap 
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Figure 4.24. Starling 
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In seven of the 37 species for which BBS indices are available, their values correlate 

significantly with the GBW mean predicted reporting rates over the same period (table 

4.3 and figures 4.17 - 4.24). Woodpigeon (figure 4.20) and Great Spotted Woodpecker 

(figure 4.21) have very strong positive correlations and rising trends, Black-headed Gull 

(figure 4.19) and House Sparrow (figure 4.18) have strong positive correlations and 

falling trends. In Greenfinch (figure 4.17), Blackbird (figure 4.22) and Blackcap (figure 

4.23), rising BBS trends are negatively correlated with falling trends in GBW, although 

relatively poor data dispersion and irregularity of winter peaks cast some doubt on the 

modelled GBW means for Blackcap. BBS indices for all these species show similarly 

strong correlations with winter GBW predicted means although the correlation for 

Blackbird reverses, becoming negative. Crow and Jackdaw also show significant 

negative correlation between winter GBW means and rising BBS trends but their 

breeding season correlations are non-significant, that for Jackdaw strikingly so. For 

Starling, all three correlations are positive and marginally non-significant, both BBS 

and GBW figures are clearly decreasing. Correlations for Yellowhammer are also 

marginally non-significant and consistent. Robin has a significant positive winter. l 

correlation (rising trend) while Tawny Owl has a significant positive winter+1 

correlation, although the clear opposition of the overall GBW (rising) and BBS 

(declining) trends suggests the latter can be explained by the fall in BBS index having 

occurred in the most recent two years only. The year with the biggest fall (2002) is 

ignored in the winter+l calculation; prior to 2000 there was a rising trend in BBS as in 

GBW. If notional BBS and GBW values for the missing BBS year (2001) are 
interpolated by simple averaging, the correlation loses significance (rs 0.393, p=0.383). 

When sites at which species never occur were removed ('species positive' data sets), 

results for the seven species with the strongest GBWBBS correlations were largely 

unchanged except that for Blackcap the winter., correlation became non-significant. 
Siskin acquires very strong significant correlations in the `species positive' data (table 

4.4), the rising BBS trend correlating positively with GBW breeding season predicted 

means in gardens favoured by the species despite an overall negative GBW trend in the 
`all sites' data. Figure 4.6 shows the breeding season reporting rate in the `species 

positive' gardens creeping up. The correlations are strongly negative with both winter 
GBW means, but the way the model appears to have smoothed this species' irregular, 

weather-dependent winter peaks into a steady declining trend may be misleading. 
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Table 4.4. Changes in GBW/BBS correlations when sites at which species never 
occurred were removed from data ('species positive' data set). Correlations acquiring 
or losing significance are shown in italics. Correlations changing sign are underlined. 

Species BBS/GBW wks 14 - 26 BBS/GBW winter-, BBS/GBW winter., 
r, P r, P rs P 

i. species gaining significance 

Carduelis spinus 0.90094 0.0056 -0.90094 0.00056 -0.94286 0.0048 

Parus major 
Streptopelia decaocto 

Regulus regulus 
Corns monedula 

0.81084 0.0269 
0.80013 0.0307 
0.81084 0.0269 
0.85714 0.0137 

-0.10911 0.8175 
0.70921 0.0743 
0.81084 0.0269 
0.82143 0.0234 

-0.48571 0.3287 
0.85331 0.0307 
0.55078 0.2574 
0.94286 0.0048 

ii. species losing significance 
Sylvia atricapilla -0.89286 0.0068 -0.32143 0.4821 0.25714 0.6228 

Larus ridibundus 0.70273 0.0782 0.82886 0.0212 0.84067 0.0361 

Corvus corone/cornix 0.18019 0.699 -0.45047 0.3104 0.08697 0.9699 

For Jackdaw, the `species positive' breeding season GBWBBS correlation becomes 

highly significant and positive, in contrast to the negative ̀ all sites' correlation; both 

winter correlations also change sign to become highly significant and positive with 

respect to the rising BBS trend. Both winter correlations for Crow (significant in the `all 

sites' data) become poor and highly non-significant. The winter+l correlation for 

Goldcrest loses significance when only `species positive' sites are used but breeding 

and winter+l correlations become significant (positive, rising trend), which makes sense 

considering the significant positive year term in the model (albeit with poor dispersion). 

Finally, in their `species positive' data sets Great Tit and Collared Dove acquire 

significant positive breeding season correlations with rising BBS trends. 

To provide a simple indicative comparison of overall variation, percentage differences 

between 1995 and 2002 in the 13-week ̀ winter' and ̀ breeding' GBW predicted 

reporting rate means were calculated and are tabulated in table 4.3 together with simple 

arithmetic percentage differences between 1995 and 2002 in BBS indices for Great 

Britain. Table 4.3 also shows the percentage changes in BBS index for the UK as a 

whole between 1994 and 2002 (from Raven et al. 2003) which are model-derived and 

significance-tested rather than simply arithmetical. 

Interaction terms (year * sinweek, year * cosweek) were included in the model in the 
hope of detecting significant timing shifts in the seasonal reporting rate cycles. In only 
four species were both these model terms non-significant (Tawny Owl, Goldcrest, 
Brambling and Reed Bunting), in a further 13 species one of these two interaction terms 
is non-significant. It is hard to see any systematic relationships between model term 
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significance and plotted reporting rates. For example, in Pied Wagtail there is clear 

variation between the timing of the sharp and irregular reporting rate peaks and the 

smoothed peaks of the predicted reporting rate plot, however in Dunnock (figure 4.5) 

and Robin the peaks are broad and there is little obvious variation in the phase 

relationship of the actual and modelled data plots. 

4.4. Conclusions 

The results suggest that the modelling method can resolve underlying trends in these 

highly cyclical data, despite the dominance of the sine and cosine terms, which for most 

species produce GEE parameter estimates an order of magnitude greater than those for 

the year and interaction terms. However, there are some discrepancies between the 

timing of modelled occurrence probability peaks and reporting rate peaks in the raw 

data (e. g. Blue Tit, House Sparrow). Logistic regression models might be expected to 

detect statistical significance for even quite weak trends in such a large data set, but in 

some cases visually-apparent trends in raw data do not produce correspondingly 

significant model terms (e. g. Coal Tit figure 4.16). It seems this modelling method may 

require further refinement adequately to capture trends in species whose reporting rates 

are significantly irregular or irruptive. 

There is also the issue of assessing fit. For example, Reed Bunting shows a clearly 

apparent decreasing trend in the raw data and although this is reflected as expected in a 

significant negative year term in the model, the dispersion statistic is outside normal 
limits of acceptability. Although the GEE technique allows for temporal 

autocorrelation, spatial autocorrelation is also a theoretical issue but at the time of 

writing no generally available modelling method that allowed for this in binary data was 

available. Given the eight-year timescale and the wide distribution of sites on a national 

scale (figure 4.2. ), broad-scale long-term trends should greatly outweigh local spatial 

autocorrelation effects in these data. Adding further complication to the modelling 

would be practically unfeasible; as it is, data from a total of 16,172 different sites were 

included in data sets having typically between 2.3 and 2.5 million observations; 

calculating GEE models with autoregression across 416 weeks for datasets of this size 

was extremely computationally intensive. The high sensitivity of the model to small 
interactions leaves it unable meaningfully to assess inter-year changes in the timing of 
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garden use. Inspection of the GBW data suggests that such changes may be emerging in 

some species and will be worthy of further investigation. However, figure 4.9 shows 

that for House Sparrow the model fails to keep pace with the peak in actual reporting 

rates, which is becoming later each year, and has trouble tracking the small post- 
breeding reporting rate peak despite the excellent dispersion statistic (1.07). 

With a very large sample size and excellent geographical coverage, Garden BirdWatch 

is effectively monitoring the specific target habitat, private residential gardens. One 

point frequently raised in discussion of volunteer garden surveys is that virtually all 
Garden BirdWatch volunteers provide supplementary food. Given that supplementary 

food is extremely widespread and frequently superabundant in British gardens and that 

survey data from Sheffield (Chapter 8) suggest that around one third of British 

households provide food for birds, `gardens with supplementary food' should be 

monitored as an important habitat in their own right. Furthermore, most British gardens 

are smaller than the normal territory (and considerably smaller than the winter feeding 

range) of most species considered here. A mobile bird exploiting supplementary food in 

one garden will also be exploiting the two unfed gardens either side, hence 

presence/absence data from fed gardens is likely to be representative of the British 

garden habitat as a whole, certainly as far as the 40 commoner species covered by 
Garden BirdWatch are concerned. There have been some changes in the timing and 
types of food provided over the period considered (Toms 2003) and it is possible that 
these are affecting reporting rates. For example, the reduction in amplitude of the 

seasonal cycles noted in several species might be partly due to a shift from winter-only 
to year-round provisioning. If the relative proportions of various garden types in the 
survey changed as participation increased over the period considered, this might affect 
reporting rates for some species but there is no evidence of this and the recruiting 
methods and target audience have remained unchanged. 

The reporting rate data document a period of almost universal change in garden usage 
rate in most of the commoner species that exploit British gardens regularly, and the 
mathematical models have successfully captured significant trends for several important 

species. Of the 18 species with trends clearly identified by the model, the three with the 
most negative year term parameter estimates are ̀ red-listed' as of high conservation 
concern (Song Thrush, House Sparrow, Starling), that with the fifth most negative 
(Dunnock) is `amber listed' as of medium concern (Gregory et al. 2002). Five are 
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designated ̀pest' species of economic importance (Rook, Jackdaw, Crow, Magpie and 

Collared Dove) (DEFRA 2004b); for all of these the model has successfully identified 

significant year trends, all negative except for Collared Dove which is positive as would 

be expected from the >25% national population increase over this period. Crow, Magpie 

and Jackdaw, in contrast, all have generally increasing populations so the negative 

trends in the garden reporting rates are interesting and conflict with anecdotal evidence 

of a general increase in corvids' use of residential gardens. The models failed to identify 

significant trends across all sites in four `red-` (Tree Sparrow, Bullfinch, 

Yellowhammer and Reed Bunting) and five `amber-listed' (Black-headed Gull, 

Redwing, Fieldfare, Mistle Thrush and Goldcrest) species. None of these species are 

typical garden residents, being either seasonal visitors or primarily associated with other 

types of habitat. Three ̀ pests' also fail to show a significant trend across all sites 

although all three (Woodpigeon, Feral Pigeon and Jay) do have significant and positive 

year terms in the ̀ species positive' gardens. 

The presence and detectability of underlying trends in the GBW data enable 

examination of whether trends in this habitat differ from those in general populations in 

direction or timing, perhaps due to gardens acting as a refuges or to temporal resource 

partitioning. Of the species with significant BBS/GBW correlations, positive 
correlations on rising trends (Woodpigeon, Great Spotted Woodpecker) suggest that 
increasing populations are colonising gardens while those on falling trends (House 

Sparrow, Starling) suggest that garden reporting rates can reflect known serious 
declines in species of conservation concern. Other species have negative correlations, 
notably Greenfinch and, perhaps surprisingly for a well-established garden-breeding 
species, Blackbird (although the GBW decline for the latter is very slight, suggesting 
this correlation should be treated with caution). Negative winter correlations in 
Jackdaw, Crow and Goldcrest support a conclusion that some species are using gardens 
differently from others. That Greenfinch (negative correlation) and House Sparrow 
(positive correlation) are using gardens in very different ways is supported by the large 

timing difference between their reporting rate peaks. 

For some species, garden usage may well reflect breeding populations whereas for 

others, it may primarily reflect winter feeding behaviour. A previous study found 

significant correlations between average percentages of winter garden feeders visited 
and US BBS indices across 13 states for nine North American species (Wells et al. 
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1998) but temporal correlations across a seven year period were less successful, 

significant only for Carolina Wren and House Sparrow, whereas we have found 

significant correlations for 15 species over 8 years. The detection of significant trends 

and the demonstration of so many correlations with trends in the general population 

over a relatively short timescale show that Garden BirdWatch has great potential as a 

monitoring tool for a habitat that is important in its own right and not adequately 

covered by other monitoring schemes. It provides a wealth of data that would not be 

affordable or practicable to collect by any other means and is ongoing, so the value and 
information content of the data can only increase. 
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S. Comparison of urban and non-urban trends in garden usage 

Abstract 

Urban, suburban and rural garden reporting rate trends over eight years (1995-2002) were 
compared using weekly records of common wild bird species from private gardens across Great 
Britain and modelled separately using trigonometric logistic regression. Significant differences 
were found between the three garden types in their inter-year trends in 13 species. Discriminant 
function analysis with subjective garden classifications as the training set systematically 
classified the sites according to relative urbanisation of their surrounding land cover according 
to satellite imaging. Overall, urban bird reporting rates are changing less than non-urban but in a 
generally similar manner. Where there is change it is generally negative although several 
species, including some of conservation interest, show recent upturns in their non-urban garden 
reporting rate trends. There were significant differences in inter-year linear trends between the 
three garden classes for 13 species of which five had significant trends in both urban and rural 
gardens; three of these are listed as of conservation concern, the other two are ̀ pest' species, 
underlining the importance of monitoring urban garden birds. 

5.1. Introduction 

In this chapter, trends in the use of private residential gardens within urban, suburban 
and rural environments by wild birds are separated and those of urban and non-urban 
gardens compared. While both the importance of private gardens in general as wild bird 
habitat (Chapter 4) and the increasing conservation relevance of urban habitats (Chapter 
1) are becoming more widely accepted, few attempts have been made to discriminate 
between the relative contributions of gardens in urban areas and those in other 
landscape settings. This is an important issue generally, given ongoing urbanisation, and 
specifically in the U. K. given the government's plans for future house building. Up to 
3.8 million extra households are argued to be needed in England alone by 2021 (ODPM 
2000a). The pressure on available land (particularly if impacts on previously 
undeveloped ̀ green field' sites are to be minimised) means that the gardens of new 
housing will be smaller than those of many older dwellings. Guidance on housing 

recommends increasing densities from the `normal' 20-25 to a perhaps more typically 
`urban' 30-50 dwellings ha' (ODPM 2000b), and portions of many existing gardens 
(particularly larger ones) are likely to be built over, due to pressure for `backland' 
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development (London Biodiversity Partnership 2001). Consequently, an increasing 

proportion of the important habitat resource represented by residential gardens is likely 

to become ̀urban' in character. Given the marked effects of urbanisation on avian 

species richness and abundance (e. g. Crooks et at. 2004), this can be expected to affect 

its avifauna. For example, Chamberlain et al. (2004) showed that garden occurrence 

probabilities for 22 of the 40 species considered in this chapter were significantly 

associated with an urban-rural local habitat gradient. 

5.2. Methods 

As in Chapter 4, this analysis used weekly records of the presence or absence of 

common wild birds in gardens across Britain during the period 1995 - 2002 from the 

British Trust for Ornithology/CJ WildBird Foods Ltd Garden BirdWatch (GBW) 

project (Cannon 2000; Toms 2003) GBW participants are asked to classify their gardens 

as urban, suburban or rural according to a simple subjective protocol, as follows: 

"Urban means densely built-up areas and town centres with very few natural or near- 

natural bird feeding sites. Suburban means inhabited areas near countryside or with 

large gardens, municipal parks or recreational areas. Rural refers to areas away from 

towns, with just a few scattered houses, farms or other isolated buildings". Although 

these distinctions appear straightforward, practical experience of administering the 

project since 1995 (pers obs) revealed that they confused a proportion of volunteers and 

that the character of a garden as perceived by its owner and the character of the avifauna 
`available' to that garden as a consequence of the type of land cover dominating the 

surrounding area did not always match well. In particular, the proportion of gardens 
designated by their owners as urban appeared to be inappropriately small, given the 

prevalence of urbanisation in the British landscape, probably due to the impreciseness 

of the project's definition of `suburban' and perhaps also due to a preference among 

volunteers to think of their homes as non-urban. Therefore, a more objective 

classification method was sought. 

The Centre for Ecology and Hydrology (CEH) Land Cover Map 2000 (LCM2000) is a 
thematic classification of satellite image data (CEH 2001; Fuller et al. 2002), which 
provides a means of resolving this difficulty by assigning garden locations to land cover 
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classes more objectively. The 1 km summary dataset summarises the original 25 m 

raster data within a1 km grid and according to 10 aggregate land cover classes and 27 

subclasses, of which two `suburbanfrural development' (c24) and ̀ continuous urban' 

(c25) are distinguished within the aggregate class ̀ built up areas and gardens'. Each 

garden in the GBW dataset was assigned to the appropriate 1 km square with its 

associated values (0 - 100%) for each of the 27 land cover subclasses. Some of these 

land cover variables, such as saltmarsh, were unlikely to play a significant role in 

discriminating between urban and non-urban 1km squares. A subset of the LCM2000 

land cover variables that contributed significantly to discriminating among the a priori 

garden types was therefore pre-selected by performing a stepwise backwards 

elimination discriminant analysis using PROC STEPDISC in SAS (v8.02) (SAS 

Institute Inc. 1998). The significance level for a variable to stay in the analysis was 0.15 

(SAS default). Then, to re-classify the sites according to these selected variables, 
Discriminant Function Analysis (DFA) using PROC DISCRIM in SAS (Der & Everitt 

2002) was applied, selecting the CROSSVALIDATE option in which each observation 
in the dataset is classified using a discriminant function derived from all other 

observations in the dataset, i. e. the `training' and ̀ test' samples are the same (SAS 

Institute Inc. 1998). The garden types assigned by the volunteers were the a priori 

classification ('training set') in the DFA, which used all the land cover subclasses that 
had been identified as significant discriminators by the discriminant analysis. Prior to 
the DFA, Kolmogorov-Smirnov tests for normality in SAS PROC UNIVARIATE were 
applied to the LCM2000 subclass values to determine whether parametric or non- 
parametric DFA should be used. 

Weekly reporting rates for each of the 40 species and 416 weeks were then calculated 
and modelled exactly as in Chapter 4 but in this case for the DFA-classified urban, 
suburban and rural garden data separately. Prior to modelling the reporting rates for the 
three samples, urban, suburban, and rural separately, the same model was run using the 

entire data set (referred to below as the allsites models) but with the additional inclusion 

of the interaction term gardenclass * year, in order to determine whether differences in 

the inter-year trends between the three reclassified samples were formally significant. 
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5.3. Results & Discussion 

Discriminant analysis identified 16 land cover variables that contributed significantly to 

discriminating between sites (PI>F < 0.15) with respect to their a priori garden type 

classifications and eight non-significantly discriminating variables (table 5.1). The 

values of all the land cover variables were normally distributed across all grid squares 
(Kolmogorov-Smirnov tests, P<0.01) so parametric DFA was used. This reclassified 
14.22% of the gardens that were a priori designated rural, 41.28% of suburban and 
48.93% of urban, increasing the number of gardens in the urban sample from 791 to 

2074. The rural sample increased from 5683 to 7260 gardens, while the suburban 

sample decreased from 9501 gardens to 6641. 

Tables 5.2 and 5.3 show the deviance / degrees of freedom (as a measure of relative 

model fit) and the type 3P values for the gardenclass*year interaction term in the 

allsites models, together with deviance / degrees of freedom values and the parameter 

estimates of the year and year2 terms in the three models rural, suburban, and urban. 
Significances of these model effects (from type 3P values) are indicated by bold type 

and asterisks. In the allsites model, 13 species had both model deviance / degrees of 
freedom within an acceptable range (0.5 < D/DF < 1.5) and a significant type 3P value 
for the interaction term; they were Sparrowhawk, Collared Dove, Woodpigeon, Great 
Spotted Woodpecker, Dunnock, Song Thrush, Coal Tit, Jackdaw, Carrion / Hooded 
Crow, House Sparrow, Goldfinch, Siskin and Bullfinch (table 5.2). Figure 5.1 depicts 

the differences between linear trends in the two endpoint garden classes, urban and 
rural, by comparing on a scatterplot of the model year term parameter estimates for just 
the urban and rural garden samples; their magnitudes and signs indicating relative slope 
and direction respectively of any linear inter-year reporting rate trend. 

For five of the above 13 species, year terms were not significant in either rural and 
urban models, while for another five, Song Thrush and House Sparrow (red listed), 
Dunnock (amber listed), Crow and Jackdaw (both `pest' species); they were significant 
in both. In total, eleven species had significant year terms in all three habitat types; the 
five noted above and another six that had no significant interaction term in the allsites 
models, Black-headed Gull, Pied Wagtail, Fieldfare, Redwing, Blackcap and Starling. 
In all 11 of these species, all the year terms are negative but mitigated by positive year1 
terms (not significant in Redwing or Blackcap). All 11 are located in the `negative rural, 
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negative urban' quadrant of figure 5.1, based on the signs of their year term parameter 

estimates, and of the five with a significant allsites interaction term, only Dunnock has a 

less negative trend in urban than in rural. In fact, where significant inter-year linear 

trends were detected they were overwhelmingly negative; from tables 5.2 and 5.3, the 

only significant positive year terms were in rural Long-tailed Tit, Tree Sparrow and 

Brambling and suburban Goldfinch, Feral Pigeon, Great Tit and Brambling; there were 

no significant positive year terms in the urban garden sample. 

Table 5.1. Land cover subclasses and their contributions to discrimination between the 
a priori garden types. Codes cnn are CEH LCM2000 land cover subclass designations 
i. Variables Retained 
Variable Partial ? F Pr >F 
c03 Littoral Rock 0.0003 2.33 0.0975 

c10 Open dwarf shrub heath 0.0025 19.97 <. 0001 
c12 Broad-leaved / mixed woodland 0.003 23.91 <. 0001 
c13 Coniferous woodland 0.0051 40.83 <. 0001 
c14 Improved grassland 0.0128 103.49 <. 0001 
c15 Neutral grass 0.0013 10.06 <. 0001 
c16 Setaside grass 0.0003 2.4 0.0909 
c17 Bracken 0.0005 3.79 0.0225 
c 18 Calcareous grass 0.0021 16.42 <. 0001 
c19 Acid grassland 0.0026 20.97 <. 0001 
c20 Fen, marsh, swamp 0.0009 6.9 0.001 
c21 Arable cereals 0.0124 99.98 <. 0001 
c22 Arable horticulture 0.0083 66.9 <. 0001 
c23 Arable non-rotational 0.0028 22.33 <. 0001 
c24 Suburban/rural development 0.0124 100.24 <. 0001 
c25 Continuous urban 0.0157 127.56 <. 0001 
ii. Variables removed (in order of removal) 
Variable Partial r2 F Pr >F 
c02 Water (inland) 0 0 0.9968 
c05 Saltmarsh 0 0.09 0.9172 
c06 Supra-littoral rock 0 0.19 0.8269 
c04 Littoral sediment 0.0001 0.65 0.5216 
c07 Supra-littoral sediment 0.0001 0.89 0.4127 
c09 Dense dwarf shrub heath 0.0001 1.04 0.3541 
c08 Bog (deep peat) 0.0001 1.15 0.3169 
c01 Sea/ Estuary 0.0001 1.1 0.3341 
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Generally, modelled reporting rates were higher in rural gardens than urban or 

suburban (28 species), but urban gardens had highest rates for Feral Pigeon and, more 

surprisingly, Woodpigeon, Jay and Redwing, for which the highest reporting rates are 

urban and lowest rural; the reverse is true for Fieldfare. House Sparrow and Crow had 

similar modelled reporting rates in urban and non-urban gardens while the models 

predicted that Starling and Magpie are most-reported in suburban gardens, together 

with Collared Dove, Black-headed Gull and Blackcap. Siskin and Coal Tit were 

predicted more or less as frequently in suburban gardens as in rural. There was less 

change and little evidence of independent change in the urban samples; 13 species had 

significant urban year terms compared to 23 significant rural year terms and 26 

suburban. In only two species was a significant urban year term not matched by 

significant year terms in both other samples; negative urban and suburban year terms 

for Wren and Greenfinch were significant but their rural terms were non-significant 

For the 13 species with significant variation in linear trends between garden classes, 
figures 5.2.1 - 13 plot the predicted reporting rate values and table 5.2 shows the model 

parameter estimates. The three species with the most negative year terms have 

significant mitigating positive year2 terms and for Song Thrush, the negative rural year 

parameter estimate is sufficiently small for this positive year2 term to influence the 

model into an overall U-shaped trajectory with a dip followed by a recovery (figure 

5.2.1, blue). However, in the urban gardens, the negative year term is sufficiently large 

for this recovery not to be apparent (figure 5.2.1, red). The same is seen for House 

Sparrow; even though the positive and significant year2 term in the urban model is an 

order of magnitude higher than the equivalent term in the rural model, the negative year 
estimate is almost double the rural value and the figure clearly shows the modelled 
urban reporting rate (figure 5.2.2, red) starting higher and finishing lower than that for 

rural (figure 5.2.2, blue). For Dunnock the year term in the rural model has larger 

magnitude than that in the urban model; both have significant positive years terms but 

that for rural is larger; this shows as a more pronounced recovery in the modelled rural 

reporting rate, notably a rise in the post-breeding reporting rate minima (figure 5.2.3 
blue) not visible to the same extent in the modelled urban trajectory (figure 5.2.3, red). 
Hence, though comparison of the year terms suggests a less negative trend in urban 
than rural (figure 5.1) this may be outweighed by the more positive rural year2 term. 
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The urban year' model term for Jackdaw is not significant; this is apparent from the 

plot in which the modelled urban reporting rate shows a steady linear decline (figure 

5.2.4, red) but the rural model shows a quadratic recovery becoming an overall increase 

(figure 5.2.4, blue). Similarly, the modelled urban trend for Crow spp. is clearly 

negative and linear (figure 5.2.5, red) whereas in the rural model the negative linear 

trend is slower and mitigated by a significant positive year2 term (figure 5.2.5, blue). 

Significant negative year and positive year2 terms are apparent in the modelled 

reporting rate plots for Bullfinch; the initial decline of the rural model (figure 5.2.7, 

blue) is steeper than that in the suburban model (figure 5.2.7, pink). Neither urban 

model term is significant for this species but the flat plot (as opposed to the falling rural 

and suburban trajectories) shows a rising tendency although the reporting rate is very 

low overall which probably accounts for the lack of significance. Goldfinch shows 

extreme periodicity and uniformly rising trends dominated by significant years terms 

although the urban model (figure 5.2.8, red) lacks a significant year term. The 

difference in linear trends indicated by the allsites model is probably due to a reversal in 

sign of the year terms between rural (negative) and suburban (positive). The same 

explanation may apply to Woodpigeon, although the sign difference is reversed and the 

year terms are non-significant; despite the difference between garden types indicated by 

the allsites model, modelled reporting rates for all three garden classes show a uniform 

positive trend (figure 5.2.9), driven again by significant positive year2 terms. 

Coal Tit has a significant positive years term in rural (figure 5.2.10, blue) but no other 

terms are significant despite the slight overall upward trend suggested by the plots. The 

only significant term for Sparrowhawk is a negative year term in suburban; this is 

surprising as the urban modelled reporting rate (figure 5.2.11, red) clearly diverges 

negatively from that for suburban (figure 5.2.11, pink); however, the urban reporting 

rate is very low, which probably prevents the model from resolving any formally 

significant trend. For Collared Dove and Great Spotted Woodpecker, the allsites model 

indicates a significant difference in linear trend between the three garden classes but 

none of the three single class models produce either significant year or year terms. The 

modelled urban reporting rate for Collared Dove (figure 5.2.6, red) diverges negatively 

and that for rural Great Spotted Woodpecker (figure 5.2.12, blue) diverges positively 
but for both these species the actual values of seasonal maxima and minima in the raw 
data (black plots) are quite variable; this may prevent the models from resolving 
formally significant terms without longer runs of data. 
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Figure 5.2.13. Siskin 

Figures 5.2.1 - 13. Time series plots of actual and predicted weekly garden reporting 
rates for the 13 species with significant interactions of garden class and year in the 
allsites models. Four plots are superimposed in each figure. The black plot of 'noisy' 
appearance is the actual reporting rate for all sites combined, for reference. 'Smoothed' 
plots are weekly reporting rates predicted by the GEE models for urban (red), suburban 
(pink) and rural (blue) gardens separately. Week numbers 1- 416 run from January 
1995 to December 2002. Y axis is proportion of gardens reporting species. 

Modelled reporting rates for the 27 species having no significant interaction terms in the 

allsites models are plotted in figures 5.3.1 - 27 with the urban predicted rates as solid 
black lines, rural as dots, suburban as dashes and the combined raw data as hairlines. 

Ten of these species have formally significant trends in the urban models, of which 

eight have negative year terms mitigated by positive year2 terms. Goldcrest has a 

significant negative year2 term only; figure 5.3.12 shows its urban plot to have a 

negative quadratic form. In contrast, for Robin (figure 5.3.6), only the positive year2 

term is significant; the urban model tracks those of other garden types with steady 
increases in the reporting rate minima The downward trend in Black-headed Gull 

(figure 5.3.1) is quite pronounced, as it would have to be to attain significance at this 

low reporting rate; that for Pied Wagtail (figure 5.3.4) is similar; both flatten somewhat 

as indicated by the positive year2 terms but are not actually recovering whereas the plot 
for Wren (figure 5.3.5) is notably more quadratic in tendency. 
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Wintering Fieldfare (figure 5.3.8) and Redwing (figure 5.3.9) show steadily decreasing 

trends in all three garden types. The positive yea? term is not significant for urban 

Blackcap (figure 5.3.11) whereas it is in the other two garden classes. Starling modelled 

reporting rates trend uniformly negatively in all three garden types (figure 5.3.21), 

positive years terms showing little effect, while the urban model for Greenfinch (figure 

5.3.25) has a slight significant negative year trend and shows a progressive reduction in 

the amplitude of the seasonal variation which is much less visible in the non-trending 

rural (dotted) plot. 

The selection of discriminatory land cover variables can be regarded with confidence as 

there is a step change between the rejected and retained variable sets in the F and P 

values of their partial correlations and, reassuringly, the highest partial r2 is that of the 

variable continuous urban (table 5.1). That for suburban/rural development is also high, 

although r2 values for improved grassland and arable cereals are similar, showing the 

importance of agricultural activity in characterising the British landscape. DFA reduced 

the number of gardens in the category with the least precise definition, suburban, and 

increased numbers in both of the definitive categories, urban and rural; the size of the 

urban sample almost tripled. An issue with reclassification of sites based on square grid 

cells, rather than on land cover radially surrounding each site, is that a few sites will be 

located at square edges and hence may be sub-optimally reclassified. Nonetheless, this 

procedure provides a more objective and systematic classification than volunteers' a 

priori assessments; the avifaunas of urban habitats are influenced by landscape 

variables at multiple scales rather than simply by the character of the immediate 

surroundings (Chamberlain et al. 2004; Hostetler 2001; Melles 2001 and therein) 
(although Clergeau et al. 2001a found the opposite). 

The modelling technique has successfully resolved much interesting variation in the 

data but not all apparent trends were captured, for example, it is astonishing that the 

positive trend in urban Feral Pigeon (figure 5.3.2, solid plot) did not attain formal 

significance and the upward trend in rural Tawny Owl (figure 5.3.3, dotted plot) is also 

non-significant; low reporting rates could explain the latter but those for significantly- 
trending Black-headed Gull are hardly any higher (figure 5.3.1). Nonetheless, this 

aspect of model performance should improve with longer runs of data. For simplicity, 
throughout this analysis statistical significance of the year term in a model is treated as 
the primary indicator of a meaningful inter-year trend. However for some species, such 
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as Woodpigeon and perhaps Robin, the overall trajectories of the modelled reporting 

rates are clearly modified or even dominated by year2 terms, showing the importance of 

looking beyond simple linear trends when assessing bird habitat usage time series. 

Non-rural gardens clearly represent an important resource for birds, even if they are 

perhaps generally less hospitable to wild birds than rural ones. This analysis confirms 

the latter have generally higher reporting rates than either suburban or urban gardens 

for the majority of the species considered here, but also shows that for many of these 

species the difference is not substantial and that for a number of species, including 

Starling and House Sparrow (both red-listed as of high conservation concern in the UK 

(Gregory et al. 2002)), more surprisingly Jay which has been declining somewhat since 

1970 (Eaton et al. 2005) and the winter-visiting Redwing, urban and suburban gardens 

have reporting rates similar to or even higher than those in rural gardens. This 

underlines the importance of these non-rural habitats for certain species. Nonetheless, 

there is little or no variation in the urban gardens independent of matching trends in 

non-urban sites; what is interesting, however, is that the number of species showing 

significant variation is substantially less in the urban sample, suggesting that urban 

gardens may be in some way buffered from changes occurring at non-urban sites. In 

general, agriculture is the dominant influence on the ecology of the non-urban habitats 

of most of the species considered here and British agriculture has undergone rapid 

change in recent years with considerable effects on populations of formerly abundant 
birds (e. g. Gibbons & Avery 2001; Siriwardena et al. 1998). In contrast, the typical 

configuration and management of the average British urban garden is probably 

relatively stable. Other plausible influences might include warmer temperatures, lower 

predation and supplementary food (Chapter 1) although this requires further 

investigation; other possible causes include lower urban sample sizes reducing statistical 

power of the models and generally lower urban bird diversity. The insectivorous Wren 

(figure 5.3.5), whose long-term general population trend is a moderate increase (Crick 

et al. 2004), seems to be an exception, its modelled reporting rate in rural gardens (non- 

significant year term) appears less influenced than those in suburban and urban (both 

significant year terms, table 5. l . b) by a general population decline after the cold winter 

of 1996/97. 

There are some interesting differences in the height, timing and breadth of the modelled 
reporting rate peaks. The models predict Goldcrests (figure 5.3.12) arriving later in 
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suburban (dashed) and urban (solid) gardens than in rural (dotted), but for Blackcaps 

(figure 5.3.11) the coincident urban (solid) and suburban (dashed) peaks are earlier than 

those of the rural (dotted) plots. The rural winter modelled reporting rate peak for Coal 

Tit (figure 5.2.10) is broader than those for suburban and urban gardens whereas that 

for Black-headed Gull (figure 5.3.1) is narrower. The models predict that rural 

Woodpigeons (figure 5.2.9) increase garden use later in spring and early summer than 

those in suburban and urban habitats; autumn departure time is the same in all three 

samples. The winter peak in modelled reporting rate for rural Sparrowhawks (figure 

5.2.11) is very pronounced, in suburban and urban samples the winter peak is generally 

broader with a small peak in late winter. 

Although very few formally significant positive trends were resolved by the models, 

this is not to say that all urban birds are exhibiting negative trends. By inspection of the 

modelled reporting rate plots, species such as Goldfinch (figure 5.2.8), Robin (figure 

5.3.6) and Woodpigeon (figure 5.2.9), which have significant positive year2 terms only, 

together with species such as Great Tit (figure 5.3.5), Long-tailed Tit (figure 5.3.13), 

Feral Pigeon (figure 5.3.2) and even the red-listed Bullfinch (figure 5.2.7) for which 

neither term is significant, have modelled reporting rate trajectories that show evidence 

of positive change in the urban garden sample. At the time of this analysis, none of 

these changes could be expressed mathematically as simple trends, however GBW is 

ongoing and longer runs of data may well improve this. 

Even with only eight years' data, modelling GBW reporting rates in this way provides 
far more information than can be covered in one thesis chapter and potentially sheds 
light on many conservation issues. As one example, many observers and campaigners 

cite increasing levels of corvid and/or raptor predation as one possible cause of recent 
declines in urban bird numbers despite their not affecting populations in the wider 

countryside (Thomson et al. 1998). This appears still less plausible from the modelled 
GBW data as not only is the urban reporting rate trajectory for Sparrowhawk (figure 

5.2.11) clearly negative towards the end of the period considered (despite very low 

reporting rates the negative years term is only marginally non-significant at P=0.07) but 

the model for Magpie (figure 5.3.19) has no significant year or year terms in the urban 
sample over this period (despite the species undoubtedly becoming more urbanised over 
the previous 30 years in many British cities) and has significant negative year terms in 

the non-urban models. 
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Of the five species with significant year trends in both urban and rural gardens and 

significant inter-year variation in linear trends between the three garden classes over the 

period, the two red-listed species are trending more negatively in urban than in rural 

gardens. This may surprise those who consider built habitats to be refuges for the 

commensal House Sparrow and the garden-loving Song Thrush. Perhaps equally 

surprising is the less negative urban trend for the amber-listed Dunnock, a classic 

suburban and large-garden species that is largely insectivorous. However, in Sheffield 

(pers. obs) they are adapting with notable success to urban habitats. 

Negative year and non-significant year2 terms and visible downward trajectories in 

urban modelled reporting rate plots for Crows (figure 5.2.5) and Jackdaw (figure 5.2.4) 

suggest that the ongoing urbanisation of corvids may not be proceeding as implacably 

as many observers believe; these are both designated ̀pest' species, controlled in the 
UK under General Licences (DEFRA 2004b), so their population trends are of 

economic as well as conservation interest. 

5.4. Conclusion 

Urban garden reporting rates provide an effective monitoring tool for the wild birds of 
this important and perhaps increasingly significant habitat and they are amenable to 
formal mathematical modelling from which inter-year trends can be examined and 
tested for significance. The divergence of urban and non-urban modelled reporting rate 
trajectories for some species of conservation concern and/or economic interest suggests 
the urban population ecology of these species would repay further investigation and that 
longer time series of GBW data are well worth collecting. 
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6. Composite trends in urban garden bird reporting rates 

Abstract 
In the light of recent upturns in wild bird populations in agricultural habitats due to successful 
habitat conservation and restoration, a composite index of bird reporting rates in urban gardens 
over a comparable time period was calculated and examined for any similar recent upward 
trajectory. None was found and in fact the composite reporting rate index for urban gardens 
failed to track recent upward trends in the same index for non-urban gardens. This suggested 
that for this subset of species at least, urban garden birds had not so far benefited from the 
conservation actions that had successfully arrested the declines of non-urban populations. 

6.1. Introduction 

The disturbing declines of some British bird species in the past 25 years have to some 

extent been arrested in the wider countryside by more sympathetic management of 

agricultural land since the mid 1990s. Most notably, the U. K. government's index of 
farmland bird populations has increased by 5% between 1998 and 2002 (DEFRA 

2004c). Wintering birds in particular are helped by specific agri-environment options 

such as Countryside Stewardship (Peach et al. 2001), game cover (Parish & Sotherton 
2004) and hedgerow improvement (Norton et al. 2004). However, it is questionable 
whether the success of such measures is reflected in the bird populations of urban areas, 
which occupy the second largest proportion of Britain's land area after agriculture and 
also support significant numbers of birds of conservation importance (Gregory & Baillie 
1998). As discussed in previous chapters, private gardens are arguably the most 
important component of the available bird habitat in urbanised areas (Gaston et al. in 

press) and greater numbers of birds than previously realised rely on them (Bland et al. 
2004). In this chapter, the reporting rate trajectories of a suite of garden species are 
compared between urban and non-urban gardens and over a comparable timescale (1995 

- 2002) to that of the 5% farmland bird index increase cited above. 

6.2. Methods 

Garden bird reporting rate data from the BTO/CJ Garden BirdWatch (GBW) project 
(Cannon 2000) were used to construct composite indices of weekly garden bird 

prevalence for urban and non-urban sites separately. The majority of species recorded 
by the GBW project are not typically urban, so for this comparison a subset of ten 
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species was used to construct the index. The ten species chosen were those that had 

been previously identified by the UK government's Department for Environment, Food 

& Rural Affairs (DEFRA) as typical of towns and gardens and included in their 

provisional biodiversity index, designated Ti UK (DEFRA 2004a). These were 
Collared Dove, Robin, Blackbird, Song Thrush, Blue Tit, Magpie, Carrion Crow, 

Starling, House Sparrow and Greenfinch. As described in Chapter 5, recorders' 

subjective classifications of their gardens as ̀ urban', `suburban' or `rural' were used as 

the training set in a discriminant function analysis that objectively re-classified sites 

according to the land cover within their Ikm grid square using NERC Centre for 

Ecology & Hydrology Land Cover Map 2000 data (Fuller et al. 2002). For each of the 

resulting three sets of re-classified gardens (Chapter 5), geometric means of the weekly 

reporting rates for the ten provisional index species were calculated to produce the basic 

weekly index values (Gregory et al. 2003; Newson et al. 2004). These means were also 

averaged over each of the four 13 week quarters of each of the eight years, in order to 

examine seasonal variation. 

6.3. Results 

Figure 6.1. a shows the composite reporting rate indices for rural, suburban and urban 

gardens from 1995 to 2002. Over the last four years of the period considered, the 

suburban (pink) and rural (blue) indices stabilised and even recovered somewhat from a 
low in 2000, while the urban (red) index continued to decrease, albeit more slowly. The 

difference between the urban and rural index values increased with time (figure 6.1. d). 
For the first quarter of the year (January - March, weeks 1-13) in particular, figure 6. l. c 
shows that in 2001 and 2002 this recovery was not apparent in the urban data. The 

average reporting rate trajectories for urban gardens in the other three quarters of the 

year (not shown) tracked those of rural and suburban gardens somewhat more 
accurately, but there was nonetheless a similar overall divergence between urban and 

non-urban indices in all four quarters over the survey period (figure 6.1. d, Spearman's 

rank-order correlation between values for weeks 1-13 and weeks 14-26,27-39 and 40- 
52 respectively, r3 = 0.76 P=0.03, rs = 0.76 P=0.03, r3 = 0.79 P=0.02). Construction 

of an index for the same ten species using the reporting rates predicted by generalised 
linear modelling in chapter 5 showed a similar divergence (not shown). 
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Figure 6.1. a. - d. Divergence between urban and non-urban composite garden 
reporting rate indices for Collared Dove, Robin, Blackbird, Song Thrush, Blue Tit, 
Magpie, Carrion Crow, Starling, House Sparrow and Greenfinch. a. composite index 
(geometric mean of weekly reporting rates) for the ten species in urban (red) suburban 
(pink) and rural (blue) gardens (left axis). b. difference between rural and urban index 
values (green, right axis). c. 13 week means of weekly composite index over weeks 1- 
13 (January - March) for urban (red) suburban (pink) and rural (blue) gardens. d. 
differences between 13 week mean values of rural and urban indices. 
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6.4. Discussion 

A positive response of rural bird populations to conservation measures appears to be 

reflected in a small upturn in their reporting rates in non-urban private gardens. In 

contrast, urban garden reporting rates did not follow the same trajectory and, in 

particular, winter (January - March) urban reporting rates have failed to track the non- 

urban upturn over the period considered. This suggests that an important component of 
Britain's bird population was missing out on the general success of bird conservation 

activities, at least in 2001 and 2002. 

Bird conservation policy has focused on laudable attempts to restore birds and 
biodiversity generally to rural habitats, while development policy (largely supported by 

conservationists) has emphasised the reclamation of urban ̀ brownfield' sites for non- 
wildlife use (ODPM 2000a). The latter policy may in fact mean that the biodiversity of 
Britain's cities is now declining as wildlife-friendly gaps in the urban matrix are 
developed and traditional low-density built areas are replaced with higher density units, 
in the drive to provide more affordable accommodation. This analysis suggests that in 

view of the better understanding now developing of the conservation relevance of urban 
bird populations, it is important to consider whether they are ̀ falling down the crack' 
between policies; those of habitat restoration for wildlife in the countryside and habitat 

regeneration for human use in towns and cities. Urban birds are the primary personal 
interaction with wildlife for the majority of the human population in highly urbanised 
countries like Britain; they contribute to urban dwellers' perceived quality of life and 
help to create a sustainable conservation constituency. They should not be forgotten in 
the otherwise largely successful efforts now underway to restore British wild bird 
habitats and conserve their populations. 
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7. The Breeding Birds of SK3388 

Abstract 

Breeding densities of birds in the SK3388 study area during 2002,2003 and 2004 were 
censused by territory mapping; seven vocal species were successfully mapped and areas of 
breeding activity delineated for two colonial species. Seven species bred at higher densities than 
predicted from other urban censuses although Great Tit and Starling were scarcer, due to 
ongoing colonisation and decline respectively. A novel method of mapping core breeding 
activity zones was devised and implemented for the territorial species to enable spatial 
comparison of breeding activity and habitat. Compared to core urban habitats, the overall 
breeding bird density of SK3388 is low due to the absence of large numbers of commensal 
synanthropes. However it does support significant breeding populations of species typical of 
non-urban habitats. 

7.1. Introduction and Objectives 

Having examined the use of private residential gardens by wild birds on a national 

scale, particularly in urban areas, the remaining chapters of this thesis report some 
insights gained into the ecological opportunities and/or constraints applicable to wild 
birds in urban gardens through field investigations. Does this highly-modified 

environment provide sufficient ecological opportunities to support a representative, 

sustainable breeding avifauna? Or, are the ecological constraints imposed by such 
habitats reflected in a breeding avifauna that is depauperate and/or dependent on 
immigration? This chapter presents an investigation into the structure and dynamics of a 
highly urbanised breeding avifauna which had two objectives; firstly, to quantify the 

complete breeding bird population of a relatively large area of highly-urbanised habitat 

and secondly to derive a systematic measure of spatial variation in species richness, for 

subsequent comparison with habitat variables. 

There have been very few field investigations of the breeding avifaunas of areas of 
homogenous, old-established residential urbanisation, because urban field ornithology 
to date has generally focused on either ecologically anomalous ̀habitat islands' such as 
parks, or on whole-city atlases providing large-scale, summarised distribution and 
species data (Chapter 1). Even in the UK, until the advent of the BTO/JNCC/RSPB 
Breeding Bird Survey (BBS) in 1994 which covers all habitat types, no systematic 
national census covered urban habitats; volunteers for the BTO Common Birds Census, 
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the national territory mapping survey and precursor of BBS, were asked not to include 

them in survey plots (J. H. Marchant pers. comm. ). Hence, despite the success of isolated 

studies (e. g. Bland 1979) and a considerable body of work from eastern Europe, 

particularly Poland (e. g. Luniak 1994; Tomialojc 1998), little general interest has been 

taken in the birds of urban residential areas and general experience of urban bird census 

methods, particularly in the UK context, is lacking. 

This chapter reports the results of a field study to quantify the breeding bird population 

of 100 ha of old-established urban residential habitat as accurately as possible and map 
its spatial distribution, using territory mapping. Changes in the community over three 

years are identified and discussed and the densities of the main species mapped are 

compared with those of other urban and non-urban habitats. A method of systematically 
delineating core zones of breeding activity based on territory maps derived from field 

data, is described and implemented in preparation for further analysis (chapter 8). 

7.2. Methods 

7.2.1. Study Site 

The study site for this and subsequent chapters and the primary field research site for 

this thesis was the 1 km x1 km Ordnance Survey (Great Britain) National Grid square 
designated SK3388, located in the west of Sheffield, England and centred on N 53° 23' 
32", S 10 29' 52 ". Although Sheffield is to some extent polycentric in its more recent 
development, the area to the west of the city has been constrained from developing a 
typical late 20th century `urban sprawl' by an adjacent National Park and hence has 

more or less retained a traditional concentric urban morphology. A non-residential core 
of `primary urbanisation' forms the centre and a residential suburban outer ring 
characterised by relatively large private homes and gardens and abutting rural habitats 

can be designated ̀tertiary urbanisation'. SK3388 is located within an intermediate ring 
of `secondary urbanisation', primarily high-density, low-rise, relatively old-established 
(mostly 19th century) homes with small private yards or gardens. 

Very few ikm x1 km National Grid squares within Sheffield do not contain ecological 
anomalies such as industrial sites or pre-20th century parks with large mature trees but 
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SK3388 is relatively homogeneous and dominated by residential housing, mostly 

terraced (contiguous small two-storey homes with small backyards) with some larger 

detached homes. There are a few low-rise apartment blocks and a shopping street runs 

the length of the plot although even above these shops there is typically residential 

accommodation with small backyards used by some birds. One small park and one 

grassed recreation ground cover a total of 6.8 ha of the study area but both are of recent 

origin in ecological terms (1970s) and contain no large mature trees likely to attract 

woodland species, as in older parks. In effect, they are a continuation of the surrounding 

residential garden habitat which is therefore the dominant habitat type in determining 

the avifauna. Within the 100 ha study area there are approximately 3000 residential 
homes; allowing for parks and roads the mean land area per home is approximately 275 

m2; the distribution of areas being right-skewed with numerous small plots and a few 

large. Figure 7.1 shows the vegetation cover, layout of roads and buildings and numbers 

of homes per 100 mx 100 m grid square in the SK3388 study area, together with the 
location of this 1 km x Ikm square within the city of Sheffield. 

7.2.2. Bird Census 

The primary fieldwork method was territory mapping (Bibby et al. 2000; Gregory et al. 
2004), which although it has been applied in urban habitats (Tomialojc 1980) 

nonetheless normally relies on good visibility within the habitat to locate birds. This is 

generally not available in an environment consisting largely of continuous terraced 
housing and numerous small private gardens, most of which are invisible from public 
roads. However, with the advent of downloadable, detailed, portable maps delineating 
individual buildings and yards and given the friendly nature of Sheffield householders, 
it proved possible in this study to accurately map singing territorial passerines to within 
a few metres using public roads and selected vantage points. This method was 
complemented by gathering data on non-vocal, non-territorial species not amenable to 
territory mapping. All observations of all species seen or heard were mapped during the 

census visits and casual observations during other fieldwork were noted. Systematic 

mist netting in the study area during the same period failed to produce any species 
undetected by territory mapping or casual observations and further supporting 
information was obtained by searching for scarce species (such as Tawny Owl, Stock 
Dove and Blackcap) and acquiring garden bird lists and reports of nests from residents. 
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Figure 7.1 a-d. The SK3388 Study Area (1 km x1 km). Grid north to top of page 
a. from Cities Revealed® aerial photography © The Geoinformation Group, 2001. 
b. and d. from Ordnance Survey map data © Crown copyright. 

c. (left) density of houses per 
100m x 100m square. 
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Territory mapping was undertaken during three breeding seasons, 2002,2003 and 2004, 

generally following the BTO Common Birds Census (CBC) protocol (Marchant 1983; 

Marchant et al. 1990 pp. 7-11), although the urban habitat and the unusually large area 

covered (100 ha, compared to 20 ha CBC average for woodland and 70 ha for farmland) 

imposed slight modifications. It was impractical to enter all private gardens as this 

would have been extremely time-consuming due to both distance walked and interaction 

with the public; some groups of gardens could be viewed from vantage points but most 

registrations were based on calls or song. Censuses were performed when the weather 

was suitably dry and reasonably still, visits were curtailed if the weather became too 

cold or wet such that most birds ceased to sing. Visit duration was partly a function of 

observer fitness (the study area rises from 95 m asl to 210 m asl and contains over 17 

km of roads, all of which had to be walked for a complete census), confidence and 

familiarity to the public. Numerous interactions with the public were time-consuming in 

the first season. During 2002 only five visits were achieved and all required two days to 

cover the 100 ha plot, whereas in subsequent seasons the entire plot was covered in 

approximately eight hours and the number of visits was only limited to seven by the 

need to undertake other fieldwork concurrently. Visits were started shortly after dawn, 

continued until either the entire plot had been covered or the weather deteriorated and 

were started from different positions to ensure even plot coverage over the season. In 

line with CBC guidelines, time was not diverted to nest-finding to the detriment of 

mapping; the mapping of nests was supplemented by observations during other 

fieldwork and/or reports from the public. In the first field season (2002) it was 

envisaged that reports from householders would provide the bulk of nest registrations, 
hence 2000 publicity flyers with record slips requesting reports of any nests in gardens 

were printed and distributed to householders in the study area. Despite providing phone, 

e-mail and postal contacts and offering to collect completed record slips, fewer than 10 

responses were received, none resulting in registration of a successful breeding attempt. 

During each census visit, all birds heard or seen were registered on A4 paper maps; 25 

maps each covering a 200m x 200m square were carried on a standard clipboard. The 

scale of the maps was approximately 9cm: I00m (1: 1111), all individual buildings were 

clearly shown together with street names and outlines of all gardens to facilitate 

accurate registration, these maps were downloaded as postscript files from the 

JISC/EDINA Digimap service. Subsequently all registrations for each of the vocal 

territorial species were transferred onto individual Al paper maps of the whole 100ha 
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plot and territories delineated using the standard BTO CBC protocol with advice and 

validation from an experienced professional CBC analyst (D. E. Balmer pers. comm. ). 

Table 7.1. Dates of territory mapping visits. 
Year: 2002 2003 2004 

Visit Date Date Date 
A 29.3.02 and 30.3.02 5.3.03 15.3.03 
B 9.4.02 27.3.03 3.4.03 
C 24.4.02 and 25.4.02 15.4.03 13.4.03 
D 16.5.02 and 17.5.02 23.4.03 25.4.03 
E 11.6.02 and 12.6.02 12.5.03 11.5.03 
F 21.5.03 26.5.03 
G 11.6.03 13.6.03 

Two semi-colonially breeding species, House Sparrow and Starling, occurred in 

sufficient numbers for mapping of breeding presence and absence to be worthwhile in 

terms of assessing relationships with habitat variables. A third such species, Feral 

Pigeon, occurred only as small flocks at fixed locations. House Sparrows were 

impossible to census accurately in the time available, as they occurred in small, active 

groups that tended to remain in cover or within their roof nest sites during the survey 

period and the exact size of groups could rarely be observed due to visibility constraints. 

All groups seen and heard were mapped and nesting sites observed and counted as far as 

possible. To compensate for under-estimation of group size and to allow for birds 

nesting at the rear of buildings (in almost all cases only the fronts of buildings could be 

seen), a correction factor was estimated based on the relative proportions of fronts and 

rears of buildings visible where these species were seen; as in previous urban House 

Sparrow censuses (J. Tully pers. comm. ). This correction was so close to two (1.98) that 

the numbers of visible pairs was simply doubled to give an indicative density figure. 

This may be a significant under-estimate and must be treated with extreme caution. 

Positioning of sightings on the map was more successful in terms of reliable 
information generation; although these do not delineate individual territories in these 

two colonial species, they clearly indicated zones of presence and absence, accordingly, 
these were mapped as for the territorial species although core activity zones around 

centroids (see below) were not generated. Although Starlings are also semi-colonial, 
individual pairs could be mapped with more confidence as the breeding density of this 

species was much lower than for House Sparrow. Although a few pairs nesting behind 
buildings may have gone unseen and hence the density figures could be underestimates, 
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they can be treated with much less caution than those for House Sparrow as most 

singing males were successfully registered during early census visits. 

For the seven vocal territorial species plus House Sparrow and Starling, the breeding 

densities estimated from the cumulative mapped registrations were compared with 

breeding density and survey plot area data from a large number of previous published 

studies (data compiled and generously made available by Marco Pautasso, University of 

Sheffield). In order to correctly compare the densities found in SK3388 with densities 

from other surveys, the negative relationship within species between observed breeding 

density and survey plot area (Gaston & Blackburn 2000; Pautasso & Gaston 2005) must 

be taken into account. To control for this effect of plot area in the derivation of 

predicted breeding densities from previous survey data, log (density) / log (plot area) 

scatterplots were constructed and their OLS regression lines used to calculate the 

predicted density values for 100 ha shown in the species account density comparison 

tables. Density estimates from the BTO/JNCC/RSPB Breeding Bird Survey (Noble et 

al. in press) were also obtained (S. Newson pers. comm. ) for human habitats, defined as 
`land relating to human habitation in a city or town, on the outskirts of a city or town or 
in the countryside, e. g. village or hamlet'. These were also compared with the mapped 
densities and are designated UK BBS in the species account tables. 

7.2.3. Analysing the mapped territories 

All territories were digitised as polygons in a Geographic Information System (GIS) 
(ESRI® ArcMapTM 8.3, Arclnfo), to facilitate interspecific and interseasonal 

comparison and enable the data to be subsequently spatially analysed with respect to 

environmental variables (chapter 8). Using estimated territories produced by the CBC 

method for spatial analysis of environmental covariates of breeding species richness is 

problematic. The cumulative registrations of bird activity accurately enumerate 
territories (all that is required of the method in its usual census function) and give clues 

as to their sizes and shapes, for example where males are observed in territorial conflict. 
However, in most cases the sizes and shapes of the territories drawn by the analyst are, 
at best, indicative, for example where closely-grouped registrations indicate a territory 
but to draw a circle tightly round them would delineate an area smaller than would 
actually support a breeding pair. Intensive fieldwork is required to accurately delineate 
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territories even in a small area (let alone 100 hectares), furthermore, species and 

individuals differ in the extents to which birds forage outside the core defended area, to 

which territories are defended or porous to conspecifics and to which territories are 

contiguous or have neutral zones between them. The problem is exacerbated by the 

dependence of estimated territory sizes on numbers of registrations which in turn 

depends on number of census visits. In 2002, only 5 census visits were achieved which 

is adequate for territory enumeration but the estimated territories for that year are 

consequently smaller than those for 2003 and 2004 (seven visits), for Blue Tit (t test, t= 

-3.65, P<0.001, DF = 88), Blackbird (t test, t= -4.07, P<0.001, DF = 194), Dunnock 

(t test, t= -3.06, P=0.004, DF = 32) and Robin (t test, t= -8.19, P<0.001, DF = 64), 

although they were not significantly different in Wren (t test, t= -1.2, P=0.283, DF = 

31) and Great Tit (t test, t= -1.43, P=0.19, DF = 8) and the difference was marginally 

non-significant in Magpie (t test, t= -1.91, P=0.063, DF = 44). 

Consequently, a more objective method of delineating zones of bird breeding activity 

was required for spatial analysis of breeding species richness and its environmental 

covariates. A systematic approach to defining the core activity zone of each territorial 

pair that was fieldwork-based yet standardised was developed. It was assumed that `core 

activity zones' of breeding pairs, analogous to the home range ̀ core areas' studied by 

Hatchwell et al. (2001), take the form of `rubber discs'(terminology attributed to Julian 

Huxley (Perrins & Birkhead 1983)) and are essentially circular around a central point, 

which might often be the nest although not always. It was also assumed that in saturated 
habitat patches they abut contiguously rather than being separated by any neutral zone. 
Due to the problems of access to the numerous small private gardens in the study area, 
nests could not be located for most of the territories mapped but instead the further 

assumption was made that the hand-drawn territories, although possibly inaccurate in 

size and shape, were at least accurately positioned on the map and hence could be used 
to define and locate the centre point of each pair's core activity zone (see figure 7.2. ). 

The centroid positions of each mapped territory were calculated using ArcMap and 
buffer circles then created around each centroid using the built-in `buffer' function of 
the GIS, as shown in figure 7.3. The buffer circle radius was calculated in two stages. 
Firstly, the mean area of the hand-drawn territories for each species for the years 2003 

and 2004 combined was calculated. The radius of the first-stage buffer circles was then 
specified such that isolated circles drawn with this radius would have area equal to the 
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2003-04 mean territory area. Intersecting core activity zones generated in this way are 

clipped by each other and hence represent a smaller area than the mean estimated per 

territory area. Therefore the buffer circle radius was increased by a correction factor to 

bring the total area of the core activity zones for 2003 and 2004 combined to within 1% 

of the total area of estimated hand-drawn territories. The two years 2003 and 2004 were 

used in the calculation because the numbers of census visits were the same, however the 

resulting calculated radius was applied to the territory maps of all three years, 2002-04. 

The areas of the hand-drawn territories for 2003 and 2004 were compared before the 

procedure to check for systematic differences in the way the territories had been drawn. 

Circular core activity zones were only generated for the seven vocal territorial species 

mapped, they are unlikely to be meaningful for semi-colonial, non-territorial species. 

Figure 7.2. Example hand-drawn Robin territories of estimated size and shape (blue) 
for 2004, derived using BTO CBC protocol from field registrations of breeding activity 
and demonstrating typical problems of unknown true extent, shape and degree of 
contiguity. Red dots are positions of calculated territory centroids. 

Figure 7.3. Buffer circles (red) superimposed upon original hand-drawn Robin 
territories (blue) to represent 'core activity zones' in 2004. Radii calculated to set areas 
of isolated circles equal to the mean area of the hand-drawn territories for 2003 and 2004, then corrected to compensate for the total area lost due to intersecting circles. 
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7.3. Results and discussion: species accounts 

In this section, results of territory mapping and comparative data from literature are first 

presented for the seven vocal, territorial species (Robin, Dunnock, Magpie, Wren, 

Blackbird, Great Tit and Blue Tit) that were mapped with high confidence. Secondly, 

results of mapping the areas of breeding activity are presented for two semi-colonial 

species (House Sparrow and Starling) that were mapped with reasonable confidence, 

again with comparative data from literature. 

7.3.1. Robin 

Table 7.2 shows that Robin numbers almost doubled from 2002 to 2003 but fell back 

again in 2004. The areas of the estimated hand-drawn territories in 2003 and 2004 were 

not significantly different (t test, t=0.74, P=0.462, DF = 38). The corrected radius of 

the core activity zones was 57.26 m, their corrected total area for 2003 and 2004 

combined was 532086 m2,0.1% less than the estimated total of 532668 m2. Figure 7.5 

shows the mapped estimated territories and circular core activity zones for Robin. 

Robin breeding territories can be mapped with high confidence in urban habitat due to 

strong territoriality and a loud distinctive song in the male, the mean density observed 

over the three years was almost three times the value predicted by the regression line 

(figure 7.4), however it was very similar to the BTO CBC density for farmland and the 

UK BBS value for human habitats (table 7.3. ). In 2003, the value regarded as typical for 

British farmland and woodland was equalled in SK3388. 

Table 7.2. Numbers of mapped territories and mean areas for Robin 
Year Number of 

territories 
mean area of estimated 

territories ± SE m2 
2002 17 5284 ±549 
2003 32 9722 ± 634 
2004 20 10536 ±892 

2003 + 2004: 10044 ± 519 

For Robin, this appears not to be a saturated habitat with a mean annual mapped 
occupancy for 2003 and 2004 of only 27% of the study area. Robins are territorial in 

winter as well as in the breeding season, which may influence urban densities. Resident 
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breeders must compete with influxes of wintering individuals to the relatively warm 

urban habitat with its abundant artificial food; this winter competition may depress the 

all-year carrying capacity of the habitat. In Robins, breeding territory area tends to be 

about twice that of winter territories defended by individuals on the same site (Cramp et 

al. 1977 - 1994). It has also been reported that at low densities, Robin territories are 

often more aggregated than might be expected from the habitat and rarely exceed 20000 

m2 even if surplus habitat is available (D. G. C. Harper in Cramp et al. 1977 - 1994). 

Table 7.3. Comparison of territory densities for Robin 

Study location (all in Cramp et al. 1977 - 1994 unless stated) Density (territories km"') 

degenerate forest in Morocco 1.5 
ash and alder forest in Poland 7 
Garden-poor area in Bristol 1978 (Bland 1979) 7.2 
BTO CBC other habitats (Gates et al. 1993) 8.05 
Predicted from compiled urban data (figure 7.4. ) 8.7 
UK BBS 20.7 
BTO CBC farmland (Gates et al. 1993) 21.7 
THIS STUDY mean ± SE 23.3 ± 4.48 N =3 
forest in Morocco 25.8 
`average for farmland and woodland' (Mead 1984) 30 

mixed ancient forest in Poland 48 
Garden-rich area in Bristol 1978 (Bland 1979) 91 
BTO CBC woodland (Gates et al. 1993) 104.4 
`maximum in Britain' 250 - 300 
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Figure 7.4. Plot of log (breeding density (individuals per km2)) against log (census plot 
area (ha)) for Robin. Regression: log(density) = 1.96 - 0.361 log(plot area). F, 94= 31.2, 
r2 = 24.9%, P<0.001. Dashed red plots = 95% confidence limits. Data from literature 
(N = 95): black. Data from this study: red. 
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Figure 7.5. a - e. Robin 
Estimated (hand-drawn) territory 
maps and circular core activity areas 
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centroids for Robin. 
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Seven out of the 52 mapped Robin territories in SK3388 did exceed 20000 m2, although 

none by more than a third. Recorded median territory sizes in the literature include 5500 

m2 (1800 - 14700, N= 29) in Devon, 5600 m2 (2500 - 8300, N= 63) in Cambridge, 

8000 m2 (3000 - 11200, N= 53) in Oxfordshire, 14400 m2 (7200 - 21000, N= 18), 

12000 - 23000 m2 (N = 14) at Antwerp and 9000 - 15000 m2 on the outer Canary 

Islands (all in Cramp et al. 1977 - 1994). In this study (2003 and 2004 only) the median 

area was 11509 m2, which is towards the higher end of sizes previously reported in the 

UK, however the SK3388 area range of 4598 - 26451 m2 (N = 53) is larger than the 

combined ranges of all three UK studies cited above. 

7.3.2. Dunnock 

Table 7.4 shows that Dunnock numbers also almost doubled from 2002 to 2003 but, 

unlike Robins, did not fall back again in 2004. The areas of the estimated hand-drawn 

territories in 2003 and 2004 were not significantly different (t test, t= -0.18, P=0.858, 

DF = 46). The corrected radius of the core activity zones was 62 m, their corrected total 

area for 2003 and 2004 combined was 543825 m2,0.3% greater than the estimated total 

of 542013 m2. Figure 7.7 shows the mapped estimated territories and circular core 

activity zones for Dunnock. Typical male territory areas of 1500 - 3000 m2 are again 
2 much smaller than the 11062 ± 746 m found in this study, reported female territories 

elsewhere are even smaller, as little as 800 m2 (Cramp et al. 1977 - 1994). 

Table 7.4. Results of territory mapping for Dunnock 

Year Number of mean area of estimated 
territories territories ± SE m2 

2002 13 7588 ±854 
2003 24 10923 ±1056 
2004 25 11194 ± 1075 

2003 + 2004: 11062 ± 746 

Mean Dunnock density in SK3388 is almost three times the value predicted for a 100ha 

census area by figure 7.6, twice as high as the UK BBS density and only slightly below 

the CBC density for woodland (table 7.5. ). Dunnock is a successful urban species in 
Sheffield (pers. obs), nesting in unpromising patches of core urban habitat so it is not 
surprising to find relatively high densities in the relatively benign gardens of SK3388. 
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Singing males can be mapped with high confidence, even in urban habitat, but 

estimation and comparison of breeding densities is complicated by this species' 

polyandrous breeding system. Commonly, females frequent the territories of more than 

one male which then coalesce, the a- and ß- males using the same perches for singing 

(Cramp et al. 1977 - 1994). Polygamous territories are larger than monogamous, 

perhaps reflected in the distribution of territory areas for 2003 and 2004 combined being 

not normal (KS test, P=0.014) in this study but right-skewed. The degree of polyandry 

is negatively correlated with habitat quality, one study in farmland hedgerows found 11 

monogamous and 14 polyandrous territories (Bishton 2001). The proportion of birds in 

polyandrous systems might be expected to be higher in urban habitats if their resource 

density is lower, but even if the mean territory density in this study (20.7 ± 3.8 

territories km2) is multiplied by three to give a high-end estimate of breeding 

individuals kin -2 the result (62 ± 11.5) is very low compared to figures for Cambridge 

Botanic Garden (640 birds km"2) and woodland and scrub in southern England (230 

birds km"2) although "much lower breeding densities are recorded in woodland and 

other areas with sparse or localised undergrowth", as suggested by the BTO CBC (all 

comparative and behavioural data from Cramp et al. 1977 - 1994 unless stated, original 

references therein). There is probably room for more Dunnocks in SK3388 as the mean 

annual mapped occupancy rate for 2003 and 2004 is only 27% of the study area. 
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Figure 7.6. Log (breeding density (individuals per km2)) against log (census plot area (ha)) for Dunnock. Regression: log(density) = 2.31 - 0.532 log(plot area). F1553 = 41.57, 
r2 = 44.0%, P<0.001. Dashed red plots = 95% confidence limits. Data from literature 
(N = 54): black. Data from this study: red. 
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Figure 7.7. a - e. Dunnock 
Estimated (hand-drawn) territory 
maps and circular core activity areas 
centred on estimated territory 
centroids for Dunnock. 
1 km x1 km, SK3388 study area 
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Table 7.5. Comparison of territory densities for Dunnock 

Study location Density 
(territories km 2 unless stated) 

Garden-rich area in Bristol 1978 (Bland 1979) 0 
BTO CBC other habitats (Gates et al. 1993) 3.1 
Garden-poor area in Bristol 1978 (Bland 1979) 7.2 
Predicted from compiled urban data figure 7.5. ) 8.8 
UK BBS 12.8 
BTO CBC farmland (Gates et al. 1993) 16.0 
THIS STUDY mean ± SE 20.67 ± 3.84 N =3 
BTO CBC woodland (Gates et at. 1993) 26.6 
Cambridge University Botanic Garden, overall density 640 adults 
(Davies & Lundberg 1984) 

7.3.3. Magpie 

Table 7.6 shows that Magpie numbers increased slowly over the study period. The areas 

of the estimated hand-drawn territories in 2003 and 2004 were not significantly different 

(t test, t= -0.74, P=0.462, DF = 40). The corrected radius of the core activity zones 

was 91.5 m, their corrected total area for 2003 and 2004 combined was 1112506 m2, 

0.1% less than the estimated total of 1113952 m2. Figure 7.9 shows the mapped 

estimated territories and circular core activity zones for Magpie. 

Table 7.6. Results of territory mapping for Magpie 
Year Number of mean area of estimated 

territories territories ± SE m2 
2002 18 19904 ±1896 
2003 22 26053 ±2677 
2004 23 23512 ± 2127 

2003 + 2004: 24754 ± 1693 

Breeding Magpies are easy to census due to the visibility of the nests; SK3388 density 

was about one third higher than the BBS value and four times higher than the predicted 

value (figure 7.8), but would have to increase by half again to reach the maximum for 

northern England (table 7.7). Comparison of reported densities is complicated by the 
fact that urban Magpie densities throughout Europe have increased rapidly in recent 

years (e. g. Cramp et al. 1977 - 1994). Hence, year of survey may be a confounding 

predictor of density in the regression, although a reasonable amount of variation in log 

(density) is explained by log (plot area) (r =32%) and Sheffield supports higher Magpie 
densities than cities in the south and east of England (pers. obs. ). It would be unwise to 
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assess habitat saturation from mapped territory area as breeding density is probably 

limited more by the availability of nesting trees than any other factor; although a few 

pairs in SK3388 nest as little as 3m from the ground in garden bushes. Also, inter- 

territorial spaces may be occupied by non-breeding adults, competing for food 

(Birkhead 1991). 
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Figure 7.8. Log (breeding density (individuals per km2)) against log (census plot area 
(ha)) for Magpie. Regression: log(density) = 2.04 - 0.517 log(plot area). F1100 = 46.7, r2 
= 31.8%, P<0.001. Dashed red plots = 95% confidence limits. Data from literature (N 
= 54): black. Data from this study: red. 

Table 7.7. Comparison of territory densities for Magpie 

Study location (all in Cramp et at. 1977 - 1994 unless stated) Density (territories km-`) 

BTO CBC other habitats (Gates et al. 1993) 1.2 
suburban northwest Poland (Gorski & Kotlarz 1997) 1.2 (from 0.9 in 1978) 
Five towns in Slovenia 1998 (Vogrin 2003) 5.0 ± 0.58 
Predicted from compiled urban data (figure 7.8. E 5.05 
BTO CBC farmland (Gates et al. 1993) 5.3 
Netherlands 7.3 
Sheffield 1986 8.1 (from 1.3 in 1946) 

urban northwest Poland 1992 (Gorski & Kotlarz 1997) 8.2 (from 3.6 in 1978) 
BTO CBC woodland (Gates et al. 1993) 9.3 
Turku (Vuorisalo et al. (1992) in Gorski & Kotlarz 1997) 14 
Tierpark, Berlin 1969 14 (from 1.2 in 1955) 
Dublin (Kavanagh 1987b) 16.4 
UK BBS 16.5 
THIS STUDY mean ± SE 21.0 ± 1.53 N =3 
Polish rural villages 1992 (Gorski & Kotlarz 1997) 21.3 (from 12.4 in 1978) 
Poznan (Poland) (Mizera (1988) in Gorski & Kotlarz 1997) 21 - 25 
`maximum density in northern England' 32 
Manchester urban parks (Groom 1993) 35.2 
Sofia (Antonov & Atanasova 2003) 56.8 
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Figure 7.9. a - e. Magpie 
Estimated (hand-drawn) territory 
maps and circular core activity areas 
centred on estimated territory 
centroids for Magpie. 
1 km x1 km, SK3388 study area. 
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7.3.4. Wren 

Table 7.8 shows that Wren numbers increased by a quarter in 2003, dropping back 

slightly in 2004. The areas of the estimated hand-drawn territories in 2003 and 2004 

were not significantly different (t test, t=0.19, P=0.852, DF = 43). The corrected 

radius of the core activity zones was 47.8 m, their corrected total area for 2003 and 2004 

combined was 324700 m2,0.4% greater than the estimated total of 323382m2. Figure 

7.11 shows the mapped estimated territories and circular core activity zones for Wren. 

Table 7.8. Results of territory mapping for Wren 

Year Number of mean area of estimated 
territories territories ± SE m2 

2002 20 5770 ± 806 
2003 25 6800 ± 612 
2004 22 6971 ± 676 

2003 + 2004: 6880 ± 449 
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Figure 7.10. Log (breeding density (individuals per km2)) against log (census plot area 
(ha)) for Wren. Regression: log(density) = 2.43 - 0.675 log(plot area). F, 64= 81.56, r2 _ 
56%, P<0.001. Dashed red plots = 95% confidence limits. Data from literature (N = 
65): black. Data from this study: red. 

Wren is a particularly easy species to census in urban habitat due to its high territoriality 

and the very loud and distinctive song of the male. Breeding density in SK3388 was 

notably similar to the UK BBS value for human habitats (table 7.9) although nearly four 

times higher than the predicted value from the regression (figure 7.10). Insectivorous 
Wrens attain high densities in urban parks but are scarce across core urban areas; hence 
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the regression line slope is notably negative and may under-predict density for a large 

but relatively hospitable area such as SK3388, where densities are one third lower than 

in farmland and an order of magnitude lower than in some rural woodlands, Saturation 

is low with a mean plot coverage for 2003 and 2004 of only 16.2% of total area. 

Table 7.9. Comparison of territory densities for Wren 

Study location (all in Cramp et al. 1977 - 1994 unless stated) Density (territories km- ) 

Orkney Moorland 2.4 
Predicted from compiled urban data (figure 7.10. ) 6.0 
New Forest 16.2 
BTO CBC other habitats (Gates et al. 1993) 17.5 
UK BBS 20.4 
Suffolk farmland 20.7 
THIS STUDY mean ± SE 22.3 ± 1.45 N =3 
BTO CBC Farmland (Gates et al. 1993) 33 
ancient forest in Poland 20 - 50 
Anglesey young conifers 63 - 99 
Gwynedd sessile oak 107 
BTO CBC Woodland (Gates et al. 1993) 134 
man-modified habitats of western Europe >150 
Wytham (deciduous wood) 232 

7.3.5. Blackbird 

Table 7.10 shows that Blackbird numbers were stable in 2002 and 2003 but fell by 

around 20% in 2004. The areas of the estimated territories in 2003 and 2004 were not 

significantly different (t test, t= -1.39, P=0.168, DF = 127). The corrected radius of 

the core activity zones was 49 m, their corrected total area for 2003 and 2004 combined 

was 976683 m2,0.3% greater than the estimated total of 976683 m2. Figure 7.13 shows 
the mapped estimated territories and circular core activity zones for Blackbird. 

Table 7.10. Results of territory mapping for Blackbird 
Year Number of mean area of estimated 

territories territories ± SE m2 
2002 81 4740 ± 334 
2003 80 6182 ± 365 
2004 68 7040 ±499 

2003 + 2004: 6577 ± 304 

Urban Blackbird breeding territories can be mapped with reasonable confidence. 
Although singing males are easy to map, the amount and timing of song varies greatly 
between seasons, some are non-breeders and songposts are often high chimneys, some 
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Figure 7.11. a - e. Wren 
Estimated (hand-drawn) territory 
maps and circular core activity areas 
centred on estimated territory 
centroids for Wren. 
1 km x1 km, SK3388 study area. 
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way from nests. However, females collecting nesting material are often spotted early in 

the season and both sexes are frequently observed foraging in greenspaces adjacent to 

nests as breeding progresses. SK3388's breeding density is more than twice the 

predicted value from the regression (figure 7.12) but very close to the UK BBS value 

(table 7.11). Saturation of the plot is relatively high with a mean total coverage for 2003 

and 2004 of 48.7% of total area; Blackbirds forage fairly widely outside their core 

defended territories so there may be little scope for further colonisation of the study 

area. Nonetheless, Blackbirds are clearly capable of attaining much higher breeding 

densities in suburban and woodland habitats (table 7.11). 
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Figure 7.12. Log (breeding density (individuals per km2)) against log (census plot area 
(ha)) for Blackbird. Regression: log(density) = 2.63 - 0.406 log(plot area). F1 189 = 42.3, 
r2 = 20%, P<0.001. Dashed red plots = 95% confidence limits. Data from literature (N 
= 170): black. Data from this study: red. 

Table 7.11. Comparison of territory densities for Blackbird 

Study location (all in Cramp et al. 1977 - 1994 unless stated) Density (territories km -2) 

`open country, as low as... ' 1 
BTO CBC other habitats (Gates et al. 1993) 11 
Predicted from compiled urban data (figure 7.12. ) 32.9 
BTO CBC Farmland (Gates et al. 1993) 26.4 
Garden-poor area in Bristol 1978 (Bland 1979) 51 
BTO CBC Woodland (Gates et al. 1993) 66.9 
THIS STUDY mean f SE 76.3 t 4.2 N =3 
UK BBS 82.5 
Woodland populations c. 100 
Garden-rich area in Bristol 1978 (Bland 1979) 142 
`Suburban densities over wider areas' 200 - 300 
`Densest, usually suburban, populations' 700 
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7.3.6. Great Tit 

Table 7.12 suggests that Great Tits were actively colonising SK3388 during the study 

period with numbers more than doubling between 2002 and 2004. The areas of the 

estimated territories in 2003 and 2004 were not significantly different (t test, t= -1.39, P 

0.180, DF = 20). The corrected radius of the core activity zones was 68.3 m, their 

corrected total area for 2003 and 2004 combined was 361194 m2,0.2% greater than the 

estimated total of 360316 m2. Figure 7.15 shows the mapped estimated territories and 

circular core activity zones for Great Tit. 

Table 7.12. Results of territory mapping for Great Tit 
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Year Number of mean area of estimated 
territories territories ± SE m2 

2002 6 10768 ±2239 
2003 10 12632 ±1044 
2004 15 15600 ±1861 

2003 + 2004: 14413 ± 1210 
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Figure 7.14. Log (breeding density (individuals per km2)) against log (census plot area (ha)) for Great Tit. Regression: log(density) = 2.24 - 0.430 log(plot area). F, 195 = 71.58, 
rz = 26.9%, P<0.001. Dashed red plots = 95% confidence limits. Data from literature 
(N = 196): black. Data from this study: red. 
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Other than during incubation, Great Tits are active, visible and noisy in the nesting area 

and consequently can be mapped with high confidence even in urban habitat. SK3388 

was clearly not a saturated habitat in 2002 as numbers increased over the survey period 

and in 2004 occupancy was still only 23% of total area. Great Tit is the only one of the 

seven territorial mapped species to have a mean breeding density lower than both the 

predicted value from the regression (figure 7.14), and the UK BBS value (table 7.13. ), 

although both were exceeded as colonisation proceeded in 2004. Rural woodland 
densities can be considerably higher than those found in SK3388, with reported territory 

sizes in ideal habitat as little as 5000 m2. However the range of territory sizes is large, 

20,000 - 30,000 m2 in the Netherlands, 5100 - 8500 m2 in Belgium and 400 -17000 m2 
in deciduous woodland in southern England (all in Cramp et al. 1977 - 1994); estimated 
territory sizes in 2003 and 2004 also varied widely in SK3388, between 6540 and 28119 

m2, a quite similar range to that in a residential area in Israel (6000 - 36000 m2). 

Table 7.13. Comparison of territory densities for Great Tit 
Study location (all in Cramp et al. 1977 - 1994 unless stated) Density (territories km") 
BTO CBC other habitats (Gates et al. 1993) 2.2 
BTO CBC Farmland (Gates et al. 1993) 9.7 
THIS STUDY mean ± SE 10.3 ± 2.6 N =3 
Predicted f om compiled urban data figure 7.14) 12 
Garden-rich area in Bristol 1978 (Bland 1979) 13 
farmland with hedges, southern England 13.8 
UK BBS 14 
Garden-poor area in Bristol 1978 (Bland 1979) 14.5 
mixed deciduous woodland southern England c. 20 - 320 
BTO CBC Woodland (Gates et al. 1993) 48.6 
oak woodland south Wales c. 80 - 320 

7.3.7. Blue Tit 

Table 7.14 suggests that Blue Tit numbers were rather stable in SK3388 during the 
study period. The areas of the estimated territories in 2003 and 2004 were not 
significantly different (t test, t=0.95, P=0.347, DF = 84). The corrected radius of the 
core activity zones was 59.7 in, their corrected total area for 2003 and 2004 combined 
was 905960 m2,0.2% less than the estimated total of 907147m2. Figure 7.17 shows the 
mapped estimated territories and circular core activity zones for Blue Tit. Urban Blue 
Tits can be mapped with confidence, although their mobility, high density and wide 
repertoire of calls causes some difficulties early in the season, pairs feeding young are 
easy to spot and most use nestboxes, hence mapping nest sites is easy. 

134 



Table 7.14. Results of territory mapping for Blue Tit 

Year Number of mean area of estimated 
territories territories ± SE m2 

2002 42 7595 ± 616 
2003 41 10897 ±635 
2004 46 10008 ± 691 

2003 + 2004: 10427 ±472 

This species is associated with artificial food in Britain; breeding density in SK3388 is 

higher than predicted from an international dataset (figure 7.16) but lower than the UK 

BBS figure (table 7.15). The habitat may not be saturated, mean occupancy (2003 and 

2004) is only 45% and density lower than those attained in woodland habitats. 
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Figure 7.16. Log (breeding density (individuals per km2)) against log (census plot area 
(ha)) for Blue Tit. Regression: log(density) = 2.28 - 0.54 log(plot area). F1135 = 59.27, r2 
= 30.5%, P<0.001. Dashed red plots = 95% confidence limits. Data from literature (N 
= 136): black. Data from this study: red. 

Table 7.15. Comparison of territory densities for Blue Tit 

Study location (all in Cramp et at. 1977 - 1994 unless stated) Density (territories km T) 
BTO CBC other habitats (Gates et al. 1993) 6.7 
Predicted from compiled urban data (figure 7.16. ) 7.9 
BTO CBC Farmland (Gates et al. 1993) 18.3 
THIS STUDY mean ± SE 43.0 t 1.53 N =3 
Garden-poor area in Bristol 1978 (Bland 1979) 50 
UK BBS 51.4 
BTO CBC Woodland (Gates et al. 1993) 82.4 
Garden-rich area in Bristol 1978 (Bland 1979) 91 
Dense oak woodland, Surrey 40 - 99 
Mixed woodland, Berkshire 51 - 133 
Mature oak wood, Gloucestershire 136 - 372 
Mature oak wood, Middlesex 190 - 590 
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7.3.8. House Sparrow 

Figure 7.17. a - e. Blue Tit 
Estimated (hand-drawn) territory 
maps and circular core activity areas 
centred on estimated territory 
centroids for Blue Tit. 
1 km x1 km, SK3388 study area. 
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Urban House Sparrows are hard to census by cumulative mapping; it is impossible to 

accurately count the small groups of birds loafing in cover without delaying the overall 

census unacceptably and many nests are invisible behind buildings. Table 7.16 suggests 

that earlier studies in urban habitats have generally recorded substantially higher 

densities of this species and very high urban densities were still recorded as recently as 
40 years ago, for example 1000 pairs km-2 in an urban park in France, in 1964 (exact 

location unknown) (Ferry & Ferry 1964 in Tomialojc & Profus 1977). 

Table 7.16. Comparison of territory densities for House Sparrow 
Study location (all in Cramp et al. 1977 - 1994 unless stated) Density (territories km") 
BTO CBC woodland (Gates et al. 1993) 0.6 
BTO CBC other habitats (Gates et al. 1993) 2.1 
BTO CBC farmland (Gates et al. 1993) 6.1 
Predicted from compiled urban data (figure 7.18. ) 101.6 
THIS STUDY meant SE (estimated) 121 t 9.26 N =3 
Garden-rich area in Bristol 1978 (Bland 1979) 142 
Warsaw (Luniak 1996) 144 - 309 
Garden-poor area in Bristol 1978 (Bland 1979) 225 
Urban central east England 1994 -2000 (Siriwardena et al. 2002) 238.4 ± 4.6 
Central Lvov (Ukraine) 1993-1995 (Bokotey 1996). 256 
Rural human habitats, central east England 1994 -2000 348.9 ± 38.8 (Siriwardena et al. 2002) 
Suburban central east England 1994 -2000 444.0 ± 19.8 (Siriwardena et al. 2002) 

Nonetheless, the density/area regression (figure 7.19) predicts approximately 101 pairs 
km-2 for a 100ha plot, which although slightly lower than the mean estimated density in 
SK3388 of 121 ±9 pairs km-2, given that the correction factor of 2 pairs per mapped 
registration used for the SK3388 estimate contains a substantial element of guesswork, 
is very much in the correct range. The UK BBS figure is around a quarter higher than 
the SK3388 estimate but again very much in a similar range. For this highly sedentary 
and localised species the density/area relationship in surveys might be expected to be 

particularly strong, with high densities in small plots that happen to coincide with the 
typically small home ranges of social groups and lower densities across larger plots 
containing much unoccupied area. In fact the association is weak, albeit significant, 
with a value of r2 of only 2.3%. Given the rapid population decline over the last 50 

years, which appears to be general across Europe (Summers-Smith 2003), year of 
survey is probably a confounding predictor of density for this species. 
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Figure 7.18. a-d. House Sparrow 
Estimated areas of semi-colonial breeding activity for House Sparrow. 
Estimated numbers of pairs; 2002: 138,2003: 120,2004: 106. 
Area mapped: 1 km x1 km, SK3388 study area. 

Figure 7.18 shows the mapped estimated breeding activity zones for House Sparrow, 

which is a commensal species and so the concept of habitat saturation is to some extent 

not ecologically meaningful, however, its ongoing decline both in the study area and 

elsewhere suggests the population is at its limit. 
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Figure 7.19. Log (breeding density (individuals per km2)) against log (census plot area 
(ha)) for House Sparrow. Regression: log(density) = 2.63 - 0.161 log(plot area). F1,270 = 
6.37, º2 = 2.3%, P=0.012. Dashed red plots = 95% confidence limits. Data from 
literature (N = 271): black. This study: red. 

7.3.9. Starling 

Starling is also a roof nester and many sites to the rear of buildings cannot be seen, but 

as SK3388 densities are now relatively low, individual singing males are easy to map 

and their density can be estimated with reasonable confidence. If their densities were as 
high as they might have been before the recent general decline, this would not be the 

case. From table 7.17, the SK3388 mean density is within one standard error of the 

predicted value from the regression (and within the 95% regression confidence limits, 

figure 7.20) but still less than one third of the UK BBS figure and only one tenth of the 

value for urban central east England estimated in a recent detailed study (Siriwardena et 

al. 2002). Figure 7.21 shows the mapped estimated breeding activity zones for this 

species. There are many more buildings in SK3388 that would be suitable as nest sites 

and appropriate anthropogenic food is superabundant, nonetheless the population of this 

species appears to be at its ecological limit in SK3388 and probably declining further. 
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Figure 7.20. Log (breeding density (individuals per km2)) against log (census plot area 
(ha)) for Starling. Regression: log(density) = 2.50 - 0.375 log(plot area). F1,266 = 45.78, 
r2 = 14.7%, P<0.001. Dashed red plots = 95% confidence limits. Data from literature 
(N = 267): black. Data from this study: red. 

Table 7.17. Comparison of territory densities for Starling 

Study location (all in Cramp et al. 1977 - 1994 unless stated) Density (territories im_"') 

BTO CBC other habitats (Gates et at. 1993) 3.5 
Warsaw 1971-73, city centre (Luniak 1977). 6 
BTO CBC farmland (Gates et al. 1993) 6.3 
BTO CBC woodland (Gates et at. 1993) 12.5 
THIS STUDY mean ± SE 26.33 ± 1.76 N =3 
Predicted from compiled urban data (figure 7.20. ) 28.1 
UK BBS 90 
Garden-poor area in Bristol 1978 (Bland 1979) 101 
Rural human habitats, central east England 1994 - 2000 
(Robinson et al. 2002a) 102.5 t 16.7 

Garden-rich area in Bristol 1978 (Bland 1979) 117 
Urban central east England 1994 - 2000 
(Robinson et at. 2002a) 245.9 ± 33.9 

Warsaw 1971-73, allotments at city edge 
(Luniak 1977). 360 
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Figure 7.21. a-d. Starling 
Estimated areas of semi-colonial breeding activity for Starling, 2002,2003 and 
2004. Estimated numbers of pairs; 2002: 27,2003: 29,2004: 23 Area mapped: 1 km 
x1 km, SK3388 study area. 
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7.4. General Discussion 

7.4.1. Relative density of breeding birds in SK3388 

Of the nine species mapped, only Great Tit and Starling have breeding densities in 

SK3388 lower than those predicted by linear regression of urban density/plot area data 

from other locations and both their observed densities are within the 95% confidence 
limits of the regressions (figures 7.14 and 7.20). Great Tit mean density of 10.3 (all 

density figures in this section are pairs km'2) is marginally lower than the predicted 
figure of 12 but still higher than the BTO CBC farmland density of 9.7. The figure for 

UK BBS is 82.5 and density in the garden-rich area of Bristol (1978) reached 142. This 

is clearly a dynamic population with only 6 pairs km"2 in 2002 but fairly rapid ongoing 

colonisation since. In contrast, Starling at 26.33 pairs km-2 might be expected to have a 
lower density than the 28.1 predicted because it is in decline in SK3388. The UK BBS 

figure is 90 and garden-rich areas of Bristol had 101 pairs k1d 2 in 1978. Even so, if the 

population in SK3388 continued to drop at a linear 7% per three years, as it did over the 

survey period, it would not reach the BTO CBC woodland figure of 12.5 for another 20 

years; built habitats remain important refuges for relatively high densities of Starlings 
(Robinson et al. 2002a). 

The other seven species mapped all have higher densities in SK3388 than predicted by 

their regression lines. The estimated figure for House Sparrow (121) is slightly higher 
than the predicted 101.6, and is a minimum estimate that should be treated with caution. 
Despite this species' general decline, the SK3388 density probably still compares quite 
well with that of garden-rich areas in Bristol in 1978 (142) although it is well short of 
the suburban central-east England figure of 444. The remaining six species all occur in 
SK3388 at much higher densities than the values predicted by other surveys, which for 
Robin was only 8.7, similar to that of garden-poor Bristol (7.2) but below the SK3388 
density of 23.3 which is not far off the rural average of 30 although garden-rich Bristol 

supported a much higher 90 pairs km'2. Dunnock too had a predicted value (8.8) similar 
to that of garden-poor Bristol (7.2) but much lower than the SK3388 density of 20.7 

which approaches that of BTO CBC woodland (26.6). Magpie predicted density was 
only 5.05 whereas that in SK3388 (21.0) was very similar to that of Polish rural villages 
in 1992 (21.3 but probably increased since) although still short of the urban northern 
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England maximum of 32. Wren density at 22.3 pairs km-2 was also much higher than 

the predicted 6.0 and slightly higher than that of Suffolk farmland (20.7), Blue Tit 

density though was considerably lower than that of garden-rich Bristol (91); at 43.0 the 

SK388 density was closer to the 50 of garden-poor Bristol and very much lower than 

densities in oak woodlands (136 - 590). Finally, SK3388 is a productive habitat for 

Blackbirds; their observed breeding density was twice that predicted from the 

international data, although the population fell by 15% between 2003 and 2004. 

In general, SK3388 supports denser breeding populations of individual species than 

would be expected from other urban studies and, with the exception of species 

undergoing rapid change in their local population, densities are closer to those of 

garden-rich and/or rural habitats than those of garden-poor urban environments. One 

shortcoming of predicting territory densities for a given plot area from the regressions is 

that the negative relationship between survey area and observed density is likely to be 

particularly strong in urban habitats because small urban survey plots are typically 

`habitat islands' that support very high densities of breeding birds, particularly if nests 

are clustered within them because they provide the only suitable nesting habitat within 
the larger area over which the nesting pairs' territories actually extend. Conversely, 

breeding densities over large urban study plots may well be low, because such areas 
include large tracts of core urban habitat that supports few birds. Hence it is not 
surprising that a density/plot area regression for urban sites should have a steep negative 

slope and predict lower densities than are in fact found in a medium-sized plot of 
uniform residential habitat with many gardens. 

7.4.2. The complete breeding avifauna and its relative density 

In order to compare the overall bird density of the survey area with other urban habitats, 
it is necessary to estimate the entire breeding avifauna; as shown in table 7.18, which 
also shows theoretical maximum zero-mortality post-breeding numbers of birds in the 

study area to provide some insight into mortality and emigration rates. Estimating the 
total breeding avifauna in SK3388 is problematic due to the visibility issues that limit 

accurate territory mapping to singing territorial species, nonetheless other species can be 

estimated during territory mapping fieldwork with reasonable accuracy (Tomialojc 
1980) by a combination of mapping, incidental observations and informed estimation, 
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taking into account known nesting locations. Transient species observed during census 

visits but with no indications of breeding activity were Grey Heron, Sparrowhawk, 

Whitethroat, Willow Warbler, Pied Wagtail, Grey Wagtail, Redpoll, Jay and Rook. 

Table 7.18. Estimated breeding avifauna of SK3388,2002 -2004 (pairs) with zero 
mortality maximum post-breeding population (individuals) of resident species (Npb), 
calculated as (number of pairs) x (maximum theoretical annual productivity per pair (P)) 
+ (number of pairs) x 2. Figures for maximum productivity P from Robinson (2005). ** 
= numbers of pairs censused with confidence from territory mapping. 
*= numbers of pairs estimated from cumulative mapping of breeding activity. 
t= known exactly. No superscript = from supporting and incidental observations, with 
confidence except for Swift and Feral Pigeon which are estimates only. 

Year: 2002 2003 2004 
Species P Pairs Nob Pairs Nob Pairs Nob 
Feral Pigeon 10 15 180 15 180 15 180 
Stock Dove 6 2 16 4 32 2 16 
Woodpigeon * 4 12 72 24 144 23 138 
Collared Dove * 8 15 150 19 190 17 170 
Tawny Owlt 2 1 4 1 4 1 4 
Swift 2 25 100 20 80 15 60 
Wren ** 4 20 120 25 150 22 132 
Dunnock** 8 13 130 24 240 25 250 
Robin ** 9 17 187 32 352 21 231 
Blackbird 12 81 1134 80 1120 68 952 
Song Thrush 12 1 14 1 14 1 14 
Mistle Thrush 8 2 20 2 20 2 20 
Blackcap 8 1 10 2 20 1 10 
Goldcrest 14 0 0 1 16 3 48 
Long-tailed Tit 7 3 27 2 18 2 18 
Coal Tit 8 1 10 2 20 4 40 
Blue Tit ** 8 42 420 41 410 46 460 
Great Tit ** 8 6 60 10 100 15 150 
Nuthatcht 5 0 0 0 0 1 7 
Magpie ** 4 18 108 22 132 23 138 
Carrion Crowl 4 2 12 2 12 2 12 
Starling * 4 27 162 29 174 23 138 
House Sparrow * 10 138 1656 120 1440 106 1272 
Chaffinch 4 2 12 2 12 3 18 
Greenfinch * 8 12 120 18 180 15 150 
Goldfinch 8 4 40 4 40 5 50 
Bullfinch 8 0 0 1 10 1 10 
Totals: 191 460 4764 503 5110 462 4688 

Feral Pigeon numbers in SK3388 (an estimated 15 pairs, more or less constant 2002 - 
04) are lower than in core urban habitats in Sheffield and confined to a few taller 
buildings; these primarily determine the distribution of this species as they provide the 
high nesting and loafing sites required (Cramp et al. 1977 - 1994). Very high densities 
are possible in core urban habitats, hence across urban areas as a whole mean densities 
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tend to be higher than in SK3388, from 72 pairs km-2 upwards in Warsaw (Luniak 1996) 

and 58 pairs km"2 in Lvov (Bokotey 1996), for example. One of the most interesting of 

the scarcer breeding species of SK3388 is Stock Dove, nesting unobtrusively in 

pollarded street trees and chimneys, overlooked by most bird spotters who disregard 

anything similar to a Feral Pigeon. This is not a typically urban species, it's small-scale 

colonisation of SK3388 may be a reflection of an overall national population increase 

and is not necessarily secure; the birds were less visible in 2004 than in 2003 when at 

least four pairs were easily seen and heard; no casual records were acquired in 2005, 

disturbance of trees and buildings may have displaced them. 

In SK3388, Woodpigeons are more numerous and visible than Collared Doves, the 

former increasing notably from 2002 to 2003 (although stable in 2004) while the latter, 

smaller species appears stable despite its high productivity and observed ability to breed 

as early as February in SK3388. In 2002, Woodpigeon nestlings in SK3388 were 

regularly predated by a large, non-resident, female Sparrowhawk; breeding numbers 
doubled in 2003 when this predator was not observed, perhaps more closely reflecting 

the increasing national population and general urbanisation of Woodpigeons (Crick et 

al. 2004; Mead 2000). Several casual observations of Woodpigeons' first occurrences at 
feeding stations were received in 2005; this species may be responding in a similar way 
to the Magpie to the maturation of street trees, which provide increasing numbers of 

nest sites, and to a superabundance of anthropogenic food. Successful ongoing 

urbanisation of the larger, native species might have negative implications for the 

smaller non-native Collared Dove, which uses similar resources and has remained 
largely dependent on human habitats throughout its recent colonisation of Great Britain. 
Collared Dove breeding density in SK3388 is around half that in Lvov (Bokotey 1996). 

A single pair of Tawny Owls breeds in or close to SK3388; in 2002 fledged young were 
found within the study area, in 2003 and 2004 adults were regularly observed and 

extremely vocal. It is not unusual for this species to breed in large urban parks with 
densities as high as five (Biadun 1994) or six (Tomialojc & Profus 1977) pairs km2, but 

the SK3388 pair does well to persist given the absence of mature parkland and the 

relative paucity of Starlings, a favoured urban prey species. It may be that they are 
controlling the SK3388 population of the Grey Squirrel which casual observations 
suggest is around ten pairs km'2 and surprisingly stable, given the superabundance of 
anthropogenic food. Brown Rat and Wood Mouse are also abundant potential prey. 
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Swift numbers could only be estimated but declined noticeably over the three year 

survey period, mirroring a national decrease in numbers (BBS -22% 1993 - 2004, 

(Raven et al. 2005)). Across Warsaw overall breeding density was 10 - 11 pairs km'2 

(Luniak 1996), in Lvov, 27 pairs km'2 (Bokotey 1996); these populations may also have 

declined if Swifts elsewhere face similar problems. Historically, much higher urban 

densities have been recorded (Mead 2000). Neither Swallow nor House Martin occur in 

SK3388 and are extremely scarce in Sheffield as a whole. The red-listed (Baillie et al. 

2005) Song Thrush is very scarce in SK3388 with only one pair at most, very few 

juveniles were observed and all nests located were destroyed by predators. In contrast, 

the larger, stronger Mistle Thrush is notably successful in SK3388 with at least two 

broods reared in all three years. At least one pair of Blackcap bred successfully in all 

three years and the number of singing Goldcrests increased notably over the study 

period with families observed in 2003 and 2004. The numbers of Long-tailed Tit pairs 

in table 7.18 are probably underestimates as breeding pairs of this species are hard to 

observe without good and sustained visibility into gardens; however, the productivity 

estimate is probably a maximum as nest predation rates are high. The estimated mean 

density of 2.5 pairs km72 lies between the 1.74 pairs km'2 in BTO CBC farmland plots 

and 7.02 pairs km-2 in woodland (Gates et al. 1993) but is much lower than breeding 

densities of 12 -13 pairs knf2 reported from a woodland site located on the edge of 

Sheffield only 6 km away from SK3388 (Hatchwell et al. 2001). 

Coal Tits became more common in SK3388 over the study period, and the national 

population is generally stable (Baillie et at. 2005) although BBS suggests a recent 
decline (Raven et al. 2005). Increased use of urban garden habitat may be linked to the 

recent adoption by garden bird feeders of more suitable food, notably black sunflower 

seeds which are extremely popular with this species. Two pairs of Carrion Crow nested 

successfully in the study area in all three survey years. Urban populations of corvids 

generally appear to be increasing (Marzluff et at. 2001 c; Vogrin 2003; Vuorisalo et at. 

2003) and the national population is increasing steadily (Baillie et at. 2005) but numbers 
in SK3388 are probably constrained by the limited availability of tall trees for nesting. 
Residents of SK3388 report that the crows are a recent arrival in the area. Very few 

Chaffinches bred in SK3388 during the study period, the small numbers estimated are 

maxima based on singing males, not all of which may actually have bred successfully. 
This is surprising considering the much higher densities reported elsewhere (e. g. Bland 

1979; Huhtalo & Järvinen 1977; Kocian et al. 2003), that this species is a frequent 
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visitor to feeding stations in suburban and rural gardens around Sheffield (pers. obs. ) 

and that it is known to breed readily in "the interiors of large cities" (Snow et al. 1998). 

Furthermore, the average GBW reporting rate for April - June was 76% of gardens 

(Toms 2003). Greenfinches, in contrast, use feeders year-round in SK3388 and although 

it is not meaningful to map their territories as they only defend small areas around nests, 

the males do sing from regular song-posts (Snow et al. 1998) and hence the densities in 

table 7.18 were derived from cumulative registrations with reasonable confidence. This 

species frequently nests in `neighbourhoods' of 4-6 pairs (Snow et al. 1998) so 
densities are often uneven, varying between 45 - 59 and 184 pairs km-2 in Krotoszyn 

(Kosinski 2001). The more or less constant small number of breeding pairs of Goldfinch 

in SK3388 fails to reflect a steady increase in use of the site by post-breeding and winter 

feeding flocks during the survey period. Finally, Bullfinch is a regular user of garden 

feeders in suburban Sheffield but appears to be a new arrival in SK3388 during the 

study period (pers. obs. ), with at least one pair breeding in 2003,2004 and 2005. 

Total breeding species richness was 27 species (table 7.18). Of the 25 species reported 
in 10% or more of GBW gardens between April and June (Toms 2003), five did not 
breed in SK3388. The only Great Spotted Woodpeckers (22% of GBW gardens, Toms 

2003) seen were transient juveniles, one caught and ringed in 2003 and a casual 

observation in 2005. Jays (12% of GBW) were occasionally seen in all three census 
years but did not breed; Jackdaws (29% of GBW) were absent. Single Pied Wagtails 

(10% of GBW) were seen in transit but were not observed to feed, let alone breed. 

Rooks (12% of GBW) are colonial breeders and there is no colony in SK3388; they 

commute over the site between a colony elsewhere and a large refuse tip to the north but 

very rarely land. The seven SK3388 breeders with average GBW April - June national 
reporting rates of less than 10% of gardens were Blackcap (6% of GBWgardens, Toms 
2003), Bullfinch (8%), Goldcrest (4%), Mistle Thrush (9%), Tawny Owl (2%), Stock 

Dove (negligible in GBW) and Swift (not surveyed in GBW). 

Table 7.19 compares the total breeding density in SK3388 with that of other sites. This 

shows that the total breeding density compares well with that found over entire large 

cities (Berlin) and with that of small cities (Leghorn, Lvov) but is much lower than that 
typical of the centres of large cities where there are high densities of feral synanthropes. 
Nonetheless, a residential study area of a small town in northern Finland of almost 
identical area (95 ha) and the same species richness (Tornio) had overall breeding 
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density 60% higher, suggesting that although the gardens of SK3388 support a breeding 

bird density that is within the normal range for urban habitats, it falls between the higher 

densities found in both core urban and suburban habitats. 

Table 7.19. Total breeding densities for all species in urban study sites, from literature, 
with that for SK3388 shown for comparison. 

Study location Breeding pairs km' 

Olsztyn (Poland): industrial areas with high species richness 300 
(Dulisz & Nowakowski 1996). 
Tornio (northern Finland) (30 ha built-up area, 14 spp) 326 
(Huhtalo & Järvinen 1977) 
Berlin - entire city area (Witt 1984 in (Luniak 1996) 225 - 337 

Leghorn (Italy) (Dinetti et al. 1996). 419 

SK3388- this study mean 475 
Central Lvov (Ukraine) 1993-1995 (Bokotey 1996). 500 - 550 
Olsztyn (Poland): overall mean 540 
(Dulisz & Nowakowski 1996). 
Warsaw 1986 - 1990 (Luniak 1996). 392 - 762 
Warsaw 1986 - 1990 old central parks (Luniak 1996). 500 - 1000 
Tornio (northern Finland) (95 ha residential area, 27 spp) 758 
(Huhtalo & Järvinen 1977) 
Olsztyn (Poland): old town tenements, low species richness 800 
(Dulisz & Nowakowski 1996). 
Warsaw 1986 - 1990 new housing estate 1280 
(Luniak 1996). 
Warsaw 1986 - 1990 built-up city centre 1180-2380 
(Luniak 1996). 
Berlin - 30 ha around zoo 2310 
(Lenz 1971 in Tomialojc & Profus 1977) 
Wroclaw (Poland) 1970-73,23 ha urban parks 2422 
(Tomialojc & Profus 1977). 

7.4.3. Changes in density and distributions 

There were some interesting changes in densities and distributions over the survey 

period. Robin density varied quite dramatically, almost doubling from 2002 to 2003 

then dropping back by a third to 2004. Dunnock and Magpie, in contrast, showed a very 

similar pattern of change, increasing substantially from 2002 to 2003 then remaining 

more or less the same in 2004. Wren numbers were comparatively stable, up 25% in 

2003 then down 12% in 2004. Blackbird numbers were remarkably consistent between 

2002 and 2003 (which suggests that low numbers for other species in 2002 are not an 

artefact of fewer census visits but accurate) yet dropped by 15% in 2004. Great Tits 

appeared to be actively colonising the study area during the study period, increasing by 
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66% in 2003 and another 50% in 2004 while Blue Tit numbers were comparatively 

stable. House Sparrow and Starling are declining, House Sparrow more consistently. 
Table 7.20 compares SK3388 densities with BTO/CJ Garden BirdWatch (GBW) mean 

reporting rates and UK BBS population changes in the same three years. The drop in 

Robin numbers in 2004 is reflected in a -6% drop in BBS index but the same BBS 

decline in Dunnock has not impacted the SK3388 population, although as actual 
Dunnock numbers cannot be directly calculated from territory numbers, due to their 

complex breeding system, the very small change in the number of territories in SK3388 

between 2003 and 2004 may not reflect actual population change. The increase in 

Magpies in SK3388 appears to oppose declining BBS indices; the GBW reporting rate 

varies inconsistently. All three measures are consistent for Wren and Great Tit but the 

increase for Great Tit in SK3388 is faster than that in either of the other two measures. 

Table 7.18 Numbers of breeding pairs in SK3388 in 2002,2003 and 2004, for species 
censused by territory mapping, with Garden BirdWatch (GBW) mean quarterly 
reporting rates and BBS population changes for England shown for comparison. 
Figures in bold type indicate species/year combinations in which the directions of all 
three measures were consistent. 
t GBW values are means of the 13 weekly reporting rates in the second quarter of each 
year i. e. week numbers 14 - 26 (April - June), for urban gardens only. 

BBS values are percentage population changes with respect to the previous year for 
England, all habitats (Raven et al. 2003; Raven et al. 2004; Raven et al. 2005). 

Year: 2002 2003 2004 
Species SK3388 GBWt BBS= SK3388 GBWt BBS= SK3388 GBWt BBS; 
Robin 17 0.610 +5 32 0.645 +2 21 0.642 -6 Dunnock 13 0.598 +4 24 0.653 +5 25 0.660 -6 Magpie 18 0.435 -2 22 0.40 -1 23 0.436 -4 Wren 20 0.267 -3 25 0.315 +3 22 0.308 -3 Blackbird 81 0.930 +3 80 0.938 +3 68 0.928 -3 Great Tit 6 0.67 -2 10 0.68 +4 15 0.685 +8 
Blue Tit 42 0.829 +4 41 0.831 +6 46 0.826 -2 House Sparrow 138 0.779 -1 120 0.803 +2 106 0.765 +1 
Starling 27 0.718 -5 29 0.704 - 17 23 0.676 -9 

The apparent decline in SK3388's Blackbirds in 2004 is reflected in decreasing values 
for both GBW urban reporting rate and BBS index, whereas the SK3388 Blue Tit 

population seems to be decoupled from national population changes, rising in a year 
with falling BBS index (2004) and falling slightly in a year with rising index (2003). 
House Sparrows appear to be staging a small recovery nationally, according to BBS, but 
this is not reflected in the declining SK3388 population; also, the GBW urban reporting 
rate is down overall over the study period, although variable. An increase in SK3388 
Starling numbers of only two pairs from 2002 to 2003 is well within likely census error; 
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both GBW and BBS figures are declining in line with the overall observed trend in 

SK3388 (there were strikingly few casual observations of this species in 2005). Overall, 

the correspondence between SK3388 populations and national data are mixed. Robins 

and Wrens may be less protected from winter conditions in SK3388 than the more 

omnivorous, feeder-exploiting tits, Blackbird and Magpie. 

The different colours (2002 red, 2003 green and 2004 blue) of the mapped core activity 

areas in figures 7.5. e., 7.7. e., 7.9. e., 7.11. e., 7.13. e., 7.15. e., 7.17. e., and the overlaid 

breeding activity zones in figures 7.1 8. d. and 7.21 .d show the positions of the territories 

varied over the three years, in addition, figures 7.22 and 7.23 summarise the proportions 

of the study area occupied by breeding territory in different numbers of years. 

Dunnock and Wren have similar numbers of territories but Dunnocks appear to be more 

mobile, re-using a lower proportion of their mapped territory than Wrens. Mapped areas 

of breeding activity for Starling are remarkably consistent in position; sedentary House 

Sparrows also have high re-use percentages although for House Sparrow, comparing 

figures 7.19. a. and 7.19. c., the areas of mapped breeding activity have clearly shrunk 

between 2002 and 2004, despite the fewer census visits in 2002. In contrast, proportions 

of re-use in Blue Tit and Blackbird may be partially explained by increasing density. 

E 
Q 

O 

I 
8 
ýa 
d 

A 
i 

7 
aý 
N 

A 
Y 

w 

d 

U 
U 
v 

100 

80 

U 
U 
U 
0 

60 

4C 

x 

species 

years 

Figure 7.22. Percentages of the total area of SK3388 (1 x 106 m2) occupied by mapped 
territory in zero, one, two and all three of the years 2002,2003 and 2004 for the seven 
territorial and two semi-colonial mapped species. B= Blackbird, BT = Blue Tit, D= 
Dunnock, GT = Great Tit, HS = House Sparrow, MG = Magpie, R= Robin, SG = Starling, WR = Wren. 
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Figure 7.23. Percentages of the areas of SK3388 occupied by mapped territories for 
each species that were occupied in one, two and all three of the years 2002,2003 and 
2004. Species codes as figure 7.22. 

7.5. Conclusions 

Breeding densities of seven of the most common species in SK3388 are higher than 

predicted by other studies, suggesting that despite high levels of relative urbanisation 

this habitat is not merely a winter larder for transient birds but supports a significant 

breeding population; indeed, for some species such as Blue Tit and Dunnock it may 

actually buffer them from population pressures experienced in other habitats. 

Nonetheless, the overall breeding bird density is not particularly high compared to 

either core urban or suburban habitats elsewhere. As discussed in chapter 1, SK3388 is 

where core urban and non-urban avifaunas meet; it may be that the habitat it provides is 

somewhat sub-optimal for both and hence such second-tier urban habits represent a 

trough in the distribution of total breeding density along urbanisation gradients. Even 

so, it supports meaningful numbers of several species of conservation concern and 

increasing populations of species such as Great Tit, Goldfinch and even Bullfinch 

suggest that positive changes within the area are increasing its hospitality to species 

atypical of core urban environments. 
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B. Associations between breeding bird distribution and habitat variables 

Abstract 

Breeding species richness across the SK3388 study area was mapped for seven territorial and 
two semi-colonial bird species to 25 m grid square resolution. Regression analysis controlling 
for spatial autocorrelation showed that species richness for the seven territorial species was not 
significantly predicted by either tree cover, building density or by the proportions of green space 
or garden habitat in the squares, although when House Sparrow and Starling were included 
proportion of garden had a small but significant negative influence. The relative prevalence of 
Domestic Cats in each grid square was also not associated with breeding species richness which 
was, however, significantly predicted in both territorial and all species by the locations of 
feeding stations providing supplementary food year-round. 

8.1. Introduction 

Despite the generally lower species richness, productivity and perhaps overall 

sustainability of urban avifaunas compared to bird communities of non-urban habitats 

(Chapter 1), there are nonetheless large parts of the urban environment, especially those 

characterised by numerous small private gardens, which rather than just supporting a 
few core urban bird species and provisioning winter transients, actually sustain breeding 
bird communities of appreciable diversity and integrity (Chapter 7). As urbanisation 

continues to increase, the proportional contribution of such habitat to supporting wild 
bird populations increases accordingly and it will become increasingly important to 

understand the habitat variables that allow resident avifaunas to persist among such high 
levels of landscape modification and human activity. Such knowledge is also of 
increasing public and research interest with growing general and professional 
engagement in urban wildlife ecology (e. g. Bowman & Marzluff 2001; Collins et at. 
2000), promotion (e. g. Baines 1986; Vandruff et al. 1990) and conservation (e. g. Barker 

& Graf 1989; Beebee 2001). There is also increasing realisation that it is unhelpful to 

attract birds to urban residential habitats with, for example, nestboxes and feeders 

without at the same time ensuring that the general environment enables them to sustain 
viable populations (Boal 1997; Vines 2005). Therefore, greater understanding is 

required of which habitat variables within urban residential environments most directly 
determine birds' ability to sustain diverse breeding communities. 
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In this chapter, the relationship between habitat variables and bird diversity is 

investigated by mathematically modelling variation in spatially mapped breeding 

species richness in the SK3388 study, as determined in chapter 7, against habitat 

variables. The exploration of any such mapped dataset using correlational techniques 

encounters the issue of spatial autocorrelation; a modelling method which controls for 

this is applied for the first time to a detailed habitat analysis over a relatively small area 

in which animal breeding distributions have been accurately mapped. Species richness 

was chosen as the measure of habitat utilisation because correlating habitat variables 

with relative bird abundance could be misleading as built patches supporting only core 

urban bird assemblages could have high abundances of commensal species, yet offer the 

lowest habitat quality to the species of interest here. Also, as observed by Bock & Jones 

(2004), bird counts are particularly likely to fail to predict habitat quality in 

anthropogenically altered habitats, due to the ecological trap effect; settlement to breed 

is likely to be a more reliable measure of habitat quality, particularly if aggregated over 

a number of species and over three seasons, as in this study. Also, given that species 

richness of avifaunas characteristically declines with urbanisation (Chapter 1), it follows 

that breeding species richness reflects the extent to which an area of urban habitat 

approaches or emulates non-urban habitat quality. 

The habitat structure variables used were green space, garden area, building density and 
tree cover. Breeding season species richness was correlated with green space in Orebro, 

Sweden (Sandström et al. 2005) and in Harwich (Mason 2004) although in the latter 

study it was independent of garden area which was nonetheless included in the analysis 
as it forms the majority bird habitat in SK3388 and garden size was related to 

probability of occurrence in 25 GBW species (Chamberlain et al. 2004). Green space is 

also informative in that it is a surrogate (negative) measure of human population density 

(r = -0.64 in US cities, according to Nowak et al. 1996). Cowie & Hinsley (1987) found 

a significant association between tree density and productivity in garden Blue Tits, 

while Lancaster & Rees (1979) showed that urban bird species richness increased with 
tree cover, as did Palomino & Carrascal (2005) in Tenerife, where it was also negatively 
associated with building density, which Thorington & Bowman (2003) found positively 
predicted urban nest predation rates. As urban areas have both street trees and treeless 

green spaces, tree cover and greenspace are complementary habitat metrics. 

153 



Two other measure of anthropogenic influence on habitat quality were also included in 

the analysis, the provision of supplementary food and the prevalence of cats. The 

general ecological impact of the Domestic Cat remains little understood and, in 

particular, its effect on birds' breeding distribution is unknown but it is one of the most 

visible predators of urban birds. Cats occur at higher densities in urban areas (Lepczyk 

et al. 2003b) and they predate both young and adult birds (Leopold & Dedon 1983 in 

Adams 1994b; Churcher & Lawton 1987; Kawakami & Higuchi 2002; Kosinski 2001), 

hunting behaviour in cats being decoupled from hunger (Calhoon & Haspel 1989). Cat 

predation may particularly impact colonisation (and consequently diversity) as they 

have been shown to select rarely encountered prey when food density is generally high 

(Church et al. 1994). However, predation rates vary greatly between individual cats (e. g. 

Tabor 1983) and are very hard to quantify as not only is the ratio of kills discovered to 

kills attempted impossible to ascertain but many birds injured in cat encounters die of 

septicaemia from even small puncture wounds (Cousquer 2003). In terms of influencing 

the spatial distribution of nesting birds, however, the deterrent effect of cat activity may 

be as important as actual levels of predation. 

Another striking characteristic of urban residential bird habitats is the availability of 

anthropogenic food. Supplementary food can boost breeding diversity and attract new 

species, particularly range-expanding granivores such as Mourning Dove, House Finch, 

American Goldfinch and Northern Cardinal in North America (Brittingham & Temple 

1989; Bolen & VanDruff 1987 in Morneau et al. 1999). Of 17 Montreal park species 

whose reporting rates increased between 1981 and 1994,10 were feeder users; between 

the two censuses many new feeding stations had been established, including some in the 

parks themselves (Morneau et al. 1999). The recent adoption of thin skinned oilseed 
Sunflower varieties for garden bird feeding has assisted northwards range expansion of 

wintering Greenfinch and Blue Tit in Finland (Jokimäki & Suhonen 1998). It can also 

affect breeding behaviour and success. Carrion Crows with supplementary food 

produced nine times as many young as pairs with only natural food (Richner 1992 in 

Soh et al. 2002) and supplementary food increased clutch size in Nutcracker (Swanberg 

in Lack 1954) and advanced mating in Robins (Tobias 1997) and Red-winged 

Blackbirds (Ewald & Rohwer 1982), although the effect depends on food quality. High- 

protein food brought forward laying in Magpie (fish, Hogstedt 1981)), Carrion Crow 
(eggs and chickens, Yom-Tov 1974) and Great Tit (mealworms, Källander 1974) yet 
sunflower seeds failed to advance Great Tit laying dates (Jones 1973 in Hogstedt 1981) 
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and whereas supplementary cooked egg increased egg volume in Blue Tits, fat had no 

effect (Ramsay & Houston 1997). In SK3388, households feeding year-round tended to 

provide ad lib high-quality food, in line with conservation organisation guidelines. In 

contrast, winter-only feeders often provided just intermittent poor quality food such as 
bread and scraps in hard weather. Also, supplementary feeding during the breeding 

season will increase the energy available, which could predict breeding species richness 
in the same way that it is predicted better by summer than winter energy availability 

measured by temperature (Lennon et al. 2000). Hence, all-year provision was the 

feeding variable used for this analysis. 

8.2. Methods 

The Geographic Information System (GIS) ESRI® ArcMapTM 8.3 was used to calculate 
breeding bird distribution dependent variables and habitat covariates for the spatial 

regression analysis based on the 1600 cells (each 625 m2) of a 25 mx 25 m square grid 

generated using ET Geowizards 8.6. First, the maps of breeding territories (and of the 

circular core activity zones for the vocal territorial species, see Chapter 7) were 

converted from feature layers to raster data using ArcMap's Spatial Analyst, the output 

cell size was set to 1 m2. The Zonal Statistics feature, also in ArcMap's Spatial Analyst, 

was then used to assign values of 1 for `breeding species present' and 0 for `breeding 

species absent' to each of the 25 metre grid squares according to the overlaid breeding 

territory data. This procedure also produced counts of the numbers of lm squares out of 
the 625 within each 25 m grid square that were occupied by breeding territory but due to 
the indicative nature of the initial territory drawing procedure, this finer level of analysis 
would have represented a spurious degree of mapping accuracy. The 1's and 0's for 

each 25 x 25 m square were then summed to give a numerical score for breeding 

species richness for each square, having values between 0 and 7 for the seven vocal 
territorial species and between 0 and 9 when zones of breeding activity for the semi- 

colonial House Sparrow and Starling were included. Summing the three annual values 
of breeding species richness for each square gave the overall breeding occupancy per 
25m square, having values between 0 and 21 based on the mapped territories and the 

circular core activity zones respectively of the territorial species, and values between 0 

and 27 based on mapped territories of all nine species. 
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Data on the occurrence of cats and bird feeding were collected through an intensive 

field survey of private homes in SK3388 conducted mostly in 2003, with some 

supplementary data collection in 2004 and 2005. An attempt was made to interview an 

occupant of every accessible home and to collect a small amount of deliberately 

simplified information, primarily the number of domestic cats associated with the 

household and whether food was provided for birds, either year-round or in winter only. 

The full data collection protocol and results of this survey will be presented elsewhere, 

the present analysis uses only the records obtained of cats and of year-round bird 

feeding. Where householders were not at home, the simplicity of the survey meant that 

in virtually all cases reliable data could be obtained from neighbours or from visual 

inspection of gardens. The 337 households with cats that were identified in the field 

survey (approximately 10% of households in SK3388) were mapped as point features in 

the GIS. In order to spatially map relative cat activity in a systematic way circular core 

activity zones were drawn around each cat-occupied home with a radius of 50 m (area 

0.78 ha). This is a reasonable approximation to a ̀ typical' home range radius for 

domestic cats (Barrette 1997; Calhoon & Haspel 1989) but actual range size of cats 

varies with age, sex and season and the degree of territoriality of urban cats remains 

unknown so it is, at best, an estimate. Each circular zone was weighted with the number 

of cats associated with the household, most commonly 1 but in a few cases as high as 9. 

The superimposed and weighted cat activity zones were rasterised to 1 m2 resolution 

and the union and dissolve functions within ArcGIS used to calculate an index of 

relative cat activity in cat m2 for each 25 x 25 m grid square (variable cats) . 

The locations of the 345 surveyed households at which food was provided throughout 

the year were mapped in ArcGIS. To more accurately represent the influence of feeding 

stations over their immediate area, rather than using merely counts of their point 
locations within grid squares as the spatial covariate, neighbourhood counts of feeders 

(variable feeders) were calculated using 3x3 neighbourhoods of 25 x 25 m (0.5625 ha) 

grid squares. Other habitat variables for SK3388 were available as spatial covariates by 

courtesy of J. Tratalos (pers. comm). Variable greenspace is the proportion of each 25m 

square classified as ̀ natural' in the Ordnance Survey (OS) Mastermap dataset 

(Ordnance Survey of Great Britain 2005). Private gardens are not included in this 

classification. Variable gardens is the proportion of the area of each 25 m square 
consisting of private gardens, which are classified by Mastermap as ̀ multiple'. These 

two variables were coded as numbers of square metres per square, i. e. having values 
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between 0 and 625. Variable trees is the proportion of each 25 m square that was 

covered by tree canopy and was obtained by hand digitisation of visible tree cover on 

Cities Revealed aerial photographs (The Geoinformation Group 2001). Variable 

buildings is the number of building centroids (from the OS Mastermap dataset) located 

within each 25 m square; this provides a simple index of relative housing density. 

The relationship between breeding bird species richness and the predictor variables 

feeders, cats, greenspace, buildings, trees, and gardens was modelled using a 

generalised linear mixed model with spatial covariance as a random effect, Poisson 

errors and pseudo-likelihood estimation (PROC GLIMMIX in SAS). The model range 

parameter p was estimated by eye from the asymptote of a semi-variogram plotted for 

the 40 x 40 grid cell dataset using the residuals of a non-spatial model (using PROCs 

MIXED and VARIOGRAM in SAS) and was held fixed. The sill parameter s2 was not 
fixed but set to a starting value, also from the semi-variogram, and allowed to converge 

to an estimate in each model. Exponential spatial covariance structure was chosen based 

on visual assessment of the semi-variogram following Legendre & Legendre (1998); for 

low distance values the semi-variogram appeared to be rather linear, lacking the 

sigmoidal trajectory that would suggest a Gaussian covariance structure. The change 

parameter was set to 1x 10-5. GLIMMIX option random residual_ was set to correct 
for overdispersion via residual-side random components, as appropriate for a smooth- 

scale environmental effects model as opposed to block effect designs (SAS Institute Inc. 

2005a), and option subject = intercept instructed the model to consider all observations 

as correlated. Backwards stepwise model selection was used based on type 3P values; 
covariates were successively removed until all remaining effects were significant. 
Collinearity of predictors was tested by measuring tolerance as 1- r2 in OLS multiple 
regression of each single predictor against all others; following Quinn & Keough (2002) 
it was deemed acceptable overall as no predictors had tolerances less than 0.1. 

8.3. Results 

Figures 8.1,8.2 and 8.3 show the spatial distributions across SK3388 of breeding 

species richness for the three survey years separately (a - c) and the composite values as 
used in the analysis (d). For the seven vocal species, Robin, Magpie, Dunnock, Great 
Tit, Blue Tit, Blackbird, and Wren, figure 8.1 maps the estimated hand-drawn territories 
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while figure 8.2 maps the circular `core activity zones' systematically calculated from 

territory centroids (Chapter 7). The general distribution patterns are very similar, as 

expected, but there are some differences in detail, mostly in 2002 when hand-drawn 

territories were smaller, again, this is as expected. There is clearly an area of high 

species richness in the southeast corner and two interesting ̀ holes', in the centre and 

towards the northeast. In figure 8.3, breeding activity zones for two colonial species, 
House Sparrow and Starling have been added to the composite species richness 

mapping; some of the less-used areas are filled in somewhat but the general pattern of 
figure 8.3. d is similar to that of figure 8.2. d. 

Figure 8.4 shows the spatial distributions of the four habitat structure variables, as 

calculated with reference to the 25 x 25 m square grid. The proportion of squares 

covered by gardens (figure 8.4. a) is relatively uniform across the area, reflecting the 

uniform residential character of SK3388, apart from two clear gaps (green) 

corresponding to the park and the grassed recreation area which also show up as red 
patches in figure 8.4. c (green space); as mentioned above, these two measures were not 
unacceptably collinear despite their apparent complementarity when mapped. Figure 
8.4. b maps the amount of tree cover in each square; both this and the numbers of 
buildings (figure 8.4. d) show an apparent correspondence (positive and negative 
respectively) with the area of high species richness to the southeast, but patterns 
elsewhere across the study area are less visually apparent. 

Figure 8.5 a and b show the derivation and figure 8.5. c the final mapping of relative cat 
activity, an obvious `hot spot' coincides with one of the two `holes' in the bird 
distributions but the second of these has no obvious matching cat concentration 
although cat activity is clearly low in the southeast where diversity is high. Figure 8.5. d 

shows feeder locations and figure 8.5. e the neighbourhood statistics, showing low 
feeder counts in open spaces, as expected, but also a low count in the high-diversity 

southeast. Evidently, these patterns are insufficiently simple for visual assessment, 
underlining the value of the mathematical modelling approach used. 
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M =7 18-21 

b. 2003 

Figure 8.1. (a - c). Estimated 
breeding species richness for seven 
vocal territorial bird species in SK3388, 
2002 - 2004, expressed as the number 
of species with their hand-drawn 
mapped territories occurring within 
each grid square. Mapped area: 1 km x 
1 km. Grid: 25 mx 25 m. Species: 
Robin, Magpie, Dunnock, Great Tit, 
Blue Tit, Blackbird, Wren. 
(d). Summed estimated breeding 
species richness for 2002 - 04, seven 
species, three years i. e. each 25 m 
square is scored between 0 and 21. 
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Figure 8.2. (a - c). 'Systematic' 
breeding species richness for seven 
vocal territorial bird species in SK3388, 
2002 - 2004, expressed as the number 
of species with their circular core 
breeding activity zones occurring within 
each grid square. Mapped area: 1 km x 
1 km. Grid: 25 mx 25 m. Species: 
Robin, Magpie, Dunnock, Great Tit, 
Blue Tit, Blackbird, Wren. 
(d). Summed systematic breeding 
species richness for 2002 - 04, seven 
species, three years i. e. each 25 m 
square is scored between 0 and 21. 
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a. 2002 

c. 2004 

a. - c. number of species d. species-years 
0 =0 0-3 
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Figure 8.3. (a - c). Estimated breeding 
species richness for nine bird species, 
seven vocal territorial and two semi- 
colonial, in SK3388,2002 - 2004, 
expressed as the number of species with 
their hand-drawn mapped areas of 
breeding activity occurring within each 
grid square. Mapped area: 1 km x1 km. 
Grid: 25 mx 25 m. Species: Robin, 
Magpie, Dunnock, Great Tit, Blue Tit, 
Blackbird, Wren (territorial), House 
Sparrow, Starling (colonial). 
(d). Summed estimated breeding species 
richness for 2002 - 04, nine species, 
three years i. e. each 25 m square is 
scored between 0 and 27. 

d. Total species-years 2002 - 2004 



a-c m2125m2 d buildings/ 25m2 
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Figure 8.4. a. - d. Spatial distributions of habitat predictor variables gardens, trees, 
green and buildings. 
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0 

6. 
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a. Locations of households with cats. 

c. (left) Index of relative cat activity per 
25 x 25 m grid square, derived from 
core activity zones in b. summed and 
weighted by cats per household. 

c: 0 cats increasing cat activity No 

a"Mo0" 
e: 0 1-3 4-5 6-7 8-9 10-11 feeders 

e. 3x3 neighbourhood cell counts of 
all-year feeders, key to colours above 

Figure 8.5. a. - e. Spatial distributions of cat activity and year-round provision of 
supplementary bird food within SK3388. c. and e. show values of the predictor 
variables cats and feeders in the spatial regression analysis. 
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b. Core cat activity zones, 50 m radius. 

d. Locations of all-year feeders and 
counts per square, white = 0, red =4 



Table 8.1 shows the model parameter estimates and P values for the predictors 

remaining in the minimum adequate models after non-significant predictors had been 

removed. The only significant predictors of breeding species richness for all nine 

species, totalled across the years 2002 - 2004, were feeders, and gardens. For the 

circular core activity areas of the seven territorial species, the only significant predictor 

of summed species richness 2002 - 2004 was feeders. The model failed to converge for 

the estimated territories of the seven territorial species. 

Table 8.1. Model parameter estimates and P values for habitat effects significantly 
predicting summed breeding species richness of 25 m squares 2002 - 2004 in SK3388 

i. Response: Ninesp ecies, estimated territories =12 = 0.842 
Effect Parameter 

estimate 
f SE DF t Pr > Iti 

Intercept 2.3754 0.05643 0 42.09 - 
feeders 0.01066 0.00361 1597 2.95 0.0032 
gardens - 0.00005 0.000025 1597 -2.24 0.0252 
ii. Response: Seven territorial spe ies, circular core activi ty zones = 21 = 1.69 

Intercept 1.7457 0.163 0 10.71 - 
eeders 0.01083 0.0054 1598 2.01 0.0449 

The number of all-year feeders in the immediate surrounding neighbourhood is 

positively associated with breeding species richness. When the two non-territorial 
species, House Sparrow and Starling, are included, the proportion of garden in each 
square has a small but significant negative effect on breeding species richness. 

8.4. Discussion 

For the seven territorial species, only feeders influences the positions of their centres of 
breeding activity. Although the model did not converge for the hand-drawn territories; 
(these complex models take many hours to run and consequently scope for further 
investigation is limited), modelling the systematically-derived species richness is 

nonetheless useful as the circular core activity zones are meaningful in terms of both 
their total area occupied and the positions of their centroids. Furthermore it is 

reasonable to assume in this relatively low density and unsaturated habitat (Chapter 7) 
that breeding pairs may be predominantly `central-place foragers' (Hatchwell et al. 
2001) rather than being most active in defending territory edges. If birds were adjusting 
the shapes of their actual territories to include strategic resources, these might be 
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expected to include feeders, in which case the model of the estimated spatial 

distributions against feeder locations would be more likely to converge than that of the 

circular zones, not less likely. In fact, the relative performance of the two models 

suggests that feeders play a central, not peripheral, role in territory positioning. 
Nonetheless, this approach fails to accommodate variations in individual and/or pair 

quality and in resource density, which might vary territory size, as well as constraint or 

expansion of territories into irregular shapes due to roads, sectors of unsuitable habitat 

or positions of suitable nest sites with respect to food sources; such variations 

undoubtedly occur in reality. 

When hand-drawn, estimated territories were used and the two non-territorial species 

were added, the model did converge and indeed the P value for the association with 
feeders improved. Feeders clearly play an important role in determining the location of 

territories, however they may be mapped, which is perhaps unsurprising as they 

represent a considerable resource. Average annual US expenditure on bird food in 2001 

was $68 per person (US Fish & Wildlife Service 2001) equating to approximately 61 kg 

of sunflower seeds or 102 kg of mixed seed per household. Moss & Cottridge (1998) 

estimate that more thanl 5,000 tons of peanuts are presented to birds annually in Britain, 

more than the annual energy intake of the entire breeding population of Greenfinches 
(Kirkwood 1998). The field survey (this chapter) found that around 25% of households 
in SK3388 provide food, 15% year-round. Globally, this is not a high proportion. In 
Rennes, 33% of people fed birds regularly (Clergeau et al. 1997), the US average in 

1972 was 20% (DeGraaf & Payne 1975 in Brittingham & Temple 1988a) and 34% of 
Wisconsin households fed birds regularly in 1983(Brittingham & Temple 1988a). More 

recently, 37% of survey respondents in both Michigan and Brisbane fed birds or wildlife 
(Lepczyk et al. 2003a; Rollinson et al. 2003). These figures suggest that feeding stations 
may have an even more profound influence on bird ecology elsewhere; in northern 
Finland Great Tits depend on them for winter survival (Orell 1989). 

The small negative effect of gardens introduced by House Sparrow and Starling 

corresponds with the findings of Chamberlain et al. (2004) who showed that although 
25 GBW species were more likely to occur in larger gardens, House Sparrow and 
Starling ( as well as Collared Dove and Black-headed Gull) were more prevalent at 
smaller sites. It is also supported by survey data from Bristol, where House Sparrows 

and Starlings were more prevalent in less affluent neighbourhoods with denser housing 
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than in suburbs with larger gardens (J. Tully, 2004, pers. comm) and follows logically 

from the observation of Fernandez-Juricic (2001) that in Madrid parks synanthropes 

were denser at edges, species with more ̀ natural' habits were denser away from them. 

Although the landscape variables almost entirely fail to predict the distribution of 

centres of breeding activity across the entire 100 ha study area their influence is clearly 

scale-dependent. At smaller scales, hotspots of species richness map onto the park (but 

not the recreation area, which has no shrubberies) and the patch of larger gardens and 
tree cover to the southeast. Clergeau et al (2001 a) found that local habitat features 

influenced species richness in French, Finnish and Canadian urban bird communities, 

which were substantially independent of the bird diversity of adjacent landscapes but 

other studies have found that either landscape scale habitat variables are more important 

than local (Chamberlain et al. 2004) or that both should be considered (Bolger et al. 
1997; Hostetler & Holling 2000; Mason et al. in press) particularly if landscape-scale 
habitat quality is non-uniform (Melles et al. 2003). However, a recent multiscale study 
in Phoenix found that land use was not a good predictor of urban bird occurrence even 
at multiple scales (Hostetler & Knowles-Yanez 2003). 

Scale-dependence may also apply to the influence of cats; the correspondence of a cat 
density hotpot and a bird density ̀ hole' to the northeast of the study area is apparent in 

the field (pers. obs. ) and well-known to local residents. One possible explanation is a 
threshold effect; birds may tolerate a certain range of cat activity levels but leave an 
area when it becomes too high. It may be that cat density in SK3388 has in fact dropped 
to a historically low level, enabling birds to colonise. In old, high-density residential 
areas of Cardiff in 1944, around 60% of households had cats (Matheson 1944), 

compared to around 10% currently in SK3388. 

Although numerous studies have shown that birds optimise nest site details to minimise 
predation in general (e. g. Burger 1987; Liebezeit & Luke 2002) and even from learned 

experience of predation (Hatchwell et al. 1999), as Burger (1987) pointed out, territory 
and nest site selection are different stages in the breeding process and may be influenced 
by different factors. Evidence of a direct effect of relative predator prevalence on 
territory location is scarce. Some studies do show territory-scale site selection related to 
general avoidance of predation (e. g. Hoover & Brittingham 1998; Throgmartin 1999; 
Whittingham et al. 2002) and local variations in predation pressure do influence settling 
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(Forstmeier & Weiss 2004). The presence of Red Foxes alters breeding density but not 

species richness of farmland birds (Tryjanowski et al. 2002), but in other species 

territory-scale habitat selection and predation seem quite unrelated (e. g. Chase 2002). 

There seems no reason to doubt the prediction of the model that the birds of urban 

gardens are little influenced by moderate levels of cat activity in their breeding territory 

selection, which begs the question of whether this lack of clear avoidance is adaptive. If 

birds are failing to judge the significance of cat predation in reducing their breeding 

productivity, it may amount to an ecological trap in urban garden habitats, especially 

where feral cats are present in addition to household animals (none were known in 

SK3388). However, preliminary field data from SK3388 (V. Sims, 2005, pers. comm. ) 

suggests that most cats in the study area predate mostly mammals with only a few 

individuals specialising on birds. Also, unlike the Grey Squirrels and Magpies which 

are abundant in SK3388, Haskell et al. (2001) found that most cats did not eat eggs, 

even when presented in their food bowls and when urban nest predation in Italy, France 

and Spain was compared, only in Italy was it related to cat numbers (Jokimäki et al. 
2005). Cat density did not influence recruitment of Blackbirds in Madrid parks 
(Fernandez-Juricic & Telleria 1999) and both Gering & Blair (1999) and Shochat 

(2004) considered the effect of cats on nest mortality to be negligible. 

The general lack of significant associations between the habitat structure variables and 
breeding species richness in this analysis does not necessarily mean that birds ignore 

such variables in SK3388; the habitat variables may influence other measures of 
breeding performance such as abundance, or it may be that other measures of habitat are 
more influential. Vegetation volume has been shown to influence urban bird 
distributions (Goldstein et al. 1986; Mills et al. 1989) and shrub cover and height 

predicted recruitment of urban Blackbirds (Fernandez-Juricic & Telleria 1999), a 
species for which Hatchwell et al. (1996) considered an index of habitat complexity 
('cover score') to represent a key defensible resource. Shrubby areas were occupied first 
by urban Blackbirds in Szczecin, whereas tree canopy, the variable used in this analysis, 
predicted late occupancy (Wysocki et al. 2004). Other studies found relationships with 
the proportion of native plants (Borgmann & Rodewald 2004; Day 1995; Green 1984; 
Mills et al. 1989; Rosenberg et al. 1987; White et al. 2005) although such results tend to 
be found where there are dramatic differences between natural and planted vegetation, 
such as in and climates and Parsons et al. (2003) found remnant native vegetation had 

no influence on suburban bird species richness. A particular issue with multiple 
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predictors is that different species within an urban assemblage may respond differently 

to the same habitat variables, for example in Breznice (Czech Republic), urban Redstart 

territories contained larger proportions of trees than those of urban Black Redstarts, 

which contained more buildings (Sedlacek et al. 2004). 

However, the result of Chamberlain et al. (2004) that birds use of individual gardens 

was influenced substantially by surrounding habitat but very little by garden habitat 

supports the overall lack of influence of the habitat structure variables demonstrated in 

this analysis as SK3388 is actually rather homogenous on a ̀ surrounding habitat' scale 

and the 25 m resolution of the variables used in this analysis is more akin to the less 

influential single-garden scale of variation. Above all, this analysis supports the opinion 

of Shochat (2004) that it is high predictability of food above all else that influences bird 

population structure in urban habitats. 
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9. A ringing study of urban garden birds: i. Birds caught 

Abstract 
Trends and patterns over the three years 2002-2004 in the use of feeding stations by wild birds 
in SK3388 were investigated by systematically trapping feeder-using species with mist nets. 
From 1785 catches of 29 species the overall re-trap rate was 11.6% and increased slightly over 
time suggesting long-term persistence of some individuals. Winter catch rate and diversity 
peaks suggested use of the feeders by transient foragers but for the ten most-frequently ringed 
species, total numbers of breeding adults caught correlated with numbers of breeding adults 
known to be present in 2002 and 2003. This suggests that in the breeding season the feeder- 
using avifauna is representative of a stable breeding avifauna and that in general this habitat is 
exploited by birds in a similar way to larger suburban and rural gardens, despite the study area 
being highly urbanised. Inter-specific variation in diel patterns of feeder use were observed, 
with Coal Tits in particular visiting feeders earlier than other species. 

9.1. Introduction 

Territory mapping successfully quantified the breeding avifauna of SK3388 and showed 
that its size, composition and spatial distribution were relatively stable between 2002 

and 2004 (Chapter 7). However, this method is unable to determine the extent to which 
this avifauna is either self-sustaining or dependent on annual immigration from other 
habitats and provides no data on the winter bird community. To assess the persistence 
from year to year of the breeding birds in SK3388 required the marking and subsequent 
recognition of individuals. Although some expert observers have visually identified 
individual birds at feeders from plumage variation within single species (e. g. Fitzpatrick 
1997a; Fitzpatrick 1997b), marking individuals with uniquely-recognisable 
combinations of coloured leg rings is a well-established, safe and productive way of 
achieving this on a larger scale (e. g. Milligan et al. 2003). Colour-ringing can 
encompass a wider range of the species using the gardens and the data/effort ratio can 
be greatly improved by the acquisition of supplementary re-sighting records from 

relatively unskilled volunteer observers. 

A programme of mist-netting and colour-ringing was undertaken in order to trap and 
uniquely mark a sample of individual birds within and in the immediate area of 
SK3388. Trapping was undertaken all year round to maximise the proportion of the 
avifauna subsequently identifiable. This year-round sampling enabled the study to 
additionally address issues of seasonal stability in the composition of the avifauna by 
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examining whether relative numbers of different species caught corresponded with their 

representation in the breeding avifauna. A distinctive feature of British private 

residential gardens, typified by those of SK3388, in their role as wild bird habitat is the 

availability of point sources of ad lib anthropogenic supplementary food, some seasonal 

(typically winter-only) but increasingly year-round. Focusing the trapping and marking 

of birds at these feeding stations maximised catch rates. The dominant habitat feature, 

as far as winter birds are concerned, was effectively monitored and some important 

additional questions concerning the ecological impact of such food provision on an 

urban garden avifauna could be addressed. The fidelity of individuals and/or species to 

certain feeders or their mobility between them could help elucidate the effects of garden 

feeding on territoriality and foraging behaviour. The degree of correspondence of year- 

round patterns of relative activity at the feeders with national patterns should suggest 

the extent to which the small urban gardens of SK3388 support birds in similar ways to 

larger suburban and rural gardens. Daily patterns of relative activity at the feeders might 
indicate whether some species are more constrained than others in their exploitation of 

this habitat 

In this chapter, data obtained from year-round catching and ringing of wild birds at 
feeding stations in residential gardens within the SK3388 study area between February 

2002 and November 2004 are presented and summarised. Section 9.2 describes the 

trapping programme and reports the numbers of birds caught, their trends and patterns. 
In section 9.3, the species caught are reported, temporal patterns in diversity examined 

and the composition of the sampled feeder-using assemblage compared with that of the 
breeding avifauna. Section 9.4 considers the pattern of daily activity at the feeders, as 
reflected in catch rates and reports inter-specific variation in the timing of daily feeder 

visits. The trapping data presented in this chapter include repeated catches of the same 
individuals (designated ̀re-traps'). The data on survival and mobility obtained from re- 

sightings of colour-ringed birds and recoveries of dead birds, as well as re-traps (all 

three henceforth referred to collectively as ̀ re-encounters') are reported in chapter 10. 

Biometric and condition data obtained through the mist netting programme are reported 
in chapter 11. 
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9.2. Trapping method, numbers of birds caught, trends and patterns 

9.2.1. Introduction 

In this section, overall temporal trends and patterns in the mist-net catches, including re- 

traps, of all species are examined for information on the way birds use the feeding 

stations at which they were trapped and how that usage varies with time of day and with 

the seasons. The seasonal pattern of activity is compared with national garden bird 

reporting rate data to determine whether the urban birds of SK3388 differ in their 

seasonal use of this resource from the general garden bird population. 

9.2.2. Methods 

Birds were caught using mist-nets in private residential gardens. Initially, an attempt 

was made to catch birds at as many sites as possible within and adjacent to the study 

area, in order to saturate the area with marked birds and generate data secondarily 

through numerous re-sightings from the public. However, it became clear that due to 

very low catch rates, uneven distribution of suitable and/or accessible gardens, weather- 
dependence and consequent unpredictability of catching and a general lack of interest 

among local residents in re-sighting birds, a more systematic trapping programme that 

maximised primary data acquisition from the mist-netting per se was required. 
Accordingly, in 2003 and 2004 effort was focused on the five most productive sites, 

with the objective of catching birds at each site once per month using the same nets in 

the same positions; a form of `constant effort' protocol. Constant effort mist-netting has 

been implemented widely and successfully by national ringing schemes, enabling bird 

ringing to generate survival rate and productivity data in addition to biometric and 

movement information (deSante & Nott 2001; Peach et al. 1998; Spina 1999). It was 

envisaged that sampling a smaller number of sites more systematically in this way 

would enable more information to be gathered on the persistence of individual birds at 
feeding stations. Locations of these five primary sites are shown in figure 9.2.1. The 

SK3388 study area, its location and characteristics are described in chapter 7. Details of 
the mist-netting technique for trapping live birds are provided by Bub (1995), Redfern 
& Clark (2001) and Gosler (2004). Trapping and colour-marking of birds was 
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performed under a licence (A4754) issued by the British and Irish Ringing Scheme 

administered by the British Trust for Ornithology (www. bto. org/ringing) and subject to 

the bird welfare, health and safety regulations of that scheme (Redfern & Clark 2001). 

Bird feeders were installed at the five primary sites and replenished regularly with pre- 

shelled sunflower seed ('sunflower hearts', donated by CJ Wildbird Foods Ltd). Other 

foods such as peanuts and scraps were also provided by the garden owners at each site 

and at all five sites there was additional anthropogenic food available in adjacent or 

nearby gardens, resulting in effectively a year-round ad lib food supply at each site. 

`Superfine' (75 denier 2-ply, 1.25 inch mesh) four shelf polyester mist-nets 

approximately 4m high and of varying lengths according to site were used; these retain 

species up to the size of Magpie. Larger species such as pigeons and doves are rarely 

retained by such nets and are therefore under-sampled with respect to their actual 

prevalence at the ringing sites. It was necessary for an observer to remain within sight of 

the nets at all times to prevent domestic cats from attacking restrained birds, this 

probably reduced the catch rate somewhat compared to that typical of garden mist- 

netting at safer sites. Every bird caught was fitted with a uniquely-numbered butted 

aluminium alloy BTO leg ring and Blue Tit, Great Tit, Blackbird, House Sparrow, 

Dunnock, Robin, Greenfinch and Chaffinch were additionally colour-ringed with three 

single-colour DARVIC (PVC) rings; a total of four rings per bird in unique 

combinations of colours and positions, enabling individual birds to be identified upon 

re-sighting at feeders and elsewhere. Colour-rings were heat-sealed with a portable 
butane gas soldering iron to prevent loss or removal. Mist-net lengths and times open 

were recorded for each session. 

The five primary sites were different in character, the aim being to sample as far as 

practicable a representative selection of the garden types in the study area. Site 102 was 

a sloping garden entirely planted with decorative perennials, no lawn but a pond, and 
typically a single 12 m net was used, sloping above stone steps adjacent to a large 

feeding station. Site 37 was a level garden, relatively undeveloped with fruit trees and 
bushes and semi-wild vegetation, and typically one 18m and one 6m net were erected 

either side of feeders. Site 66 was a small, level, square garden with central feeders, a 
small pond, conifers and a park adjacent, two 6m nets were used along two sides. Site 
79 was a long, level, narrow garden laid to lawn with tall hedges either side, typically 
27 m of netting was placed in a single line with feeders distributed along the length. Site 
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01 was a large, steep, terraced garden entirely planted with decorative perennials and 

vegetables, with a pond and trees within the plot and to either side, feeders at several 

locations and typically around 18 m of net in various configurations. Site locations were 

determined primarily by availability, the observed presence of appreciable numbers of 

birds and suitability for mist-netting. Capture data were computerised using the BTO 

standard ringing database program Integrated Population Monitoring Reporter (IPMR) 

and submitted to the national ringing scheme. IPMR uses standard BTO five-letter 

species codes; these codes appear in some figures in this chapter that are derived 

directly from that database (see Appendix A). 

Figure 9.2.1. Locations of the primary ringing sites within the SK3388 1 km2 study area 

Monthly new bird and re-trap numbers were corrected for variation in monthly catching 

effort by dividing monthly totals by the total number of mist-net metre hours (metres of 

net multiplied by hours nets were open) for the month then multiplying by the mean 

value of the monthly mist-net metre hours over the three years 2002 - 2004 to give 

standardised figures. Monthly re-trap ratios were calculated by dividing the numbers of 

re-traps (including repeats) each month by the numbers of new birds each month 

(standardised and actual re-trap ratios are equal). Cumulative monthly re-trap ratios 

were calculated from the cumulative monthly figures for re-traps and new birds, 

standardised to control for catching effort. Monthly catch/effort ratios were calculated 

as total birds caught divided by total number of mist-net metre hours for each month. 

To examine whether monthly catch rates were related to national garden reporting rates 
for the same species a monthly national garden usage index was calculated for the years 
2002 - 2004. Geometric means of the BTO/CJ Garden BirdWatch (chapter 4) weekly 
reporting rates for the eleven most-frequently caught species (Blackbird, Blue Tit, Coal 
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Tit, Dunnock, Goldfinch, Great Tit, Greenfinch, House Sparrow, Long-tailed Tit, Robin 

and Wren) were calculated to compile an index (see chapter 6) and the means of the 

four or five weekly index values optimally corresponding to each calendar month were 

calculated to produce 34 values of GBWindex (month 2- month 35). The winter- 

visiting Siskin was excluded. The total numbers of these eleven species that were caught 

by mist-netting in each month (catch) were then regressed against GBWindex with 

minimum monthly temperature (mintemp, for location 4339E 3872N, 131 metres amsl, 

from UK Meteorological Office www. metoffice. com/climate/uk/stationdata) and 

monthly catching effort in net metre hours (effort) as covariates using PROC REG in 

SAS following Der & Everitt (2002). Variance inflation factors were examined to check 

for multicollinearity. Examination of residuals revealed heteroscedasticity, log 

transformation of catch over-compensated; therefore the square root of catch, for which 

residuals were symmetrically distributed, was used as the dependent variable. 

9.2.3. Results 

Over the three years 2002-04,1785 birds were caught by mist-netting, of which 207 

were re-traps (including repeat re-traps), an overall cumulative re-trap proportion of 
11.6%. Re-trap proportions for individual calendar years 2002,2003 and 2004 were 
10.2%, 11.2% and 14.7% respectively. Table 9.2.1 details the overall catch and re-trap 

rates at the five primary sites and at all other sites combined. Some variation in the 

proportions of birds re-trapped is apparent but is not significant, neither considering just 

the five primary sites (=2.37, DF = 4, P=0.67), nor when the overall re-trap 

proportion at all other sites was included (=2.55, DF = 5, P=0.77). Monthly totals 
for 32 months, February 2002 (month 2) to November 2004 (month 35), are plotted 

cumulatively in figure 9.2.2. The mean monthly trapping effort in net metre hours ± SE 

was 342 ± 29 m hr, which in traditional mist-netting parlance equates approximately to 

a single ̀ sixty-foot' (actually 18 m) mist-net open for 19 hours. The mean number of 

new birds caught per month was 49.3 ± 5.7. Linear regression of cumulative 

standardised new birds against month predicts a linear catch rate of 48.9 ± 0.73 new 
birds per month (r2 = 99.3%, P<0.001). 
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Table 9.2.1. Total numbers of new birds (unique) and re-traps (including repeat re- 
traps) caught by mist-netting at each of the five key sites over the three years 2002-04, 

with the proportion of re-traps among all captures at each site. 

Site code: 102 37 66 79 01 all others Totals 

New birds: 323 181 233 218 147 476 1578 
Re-traps: 39 29 25 27 21 66 207 
Total: 362 210 258 245 168 542 1785 
Re-trap proportion: 10.8% 13.8% 9.7% 11.0% 12.5% 12.2% 11.6% 
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Figure 9.2.2. Cumulative monthly totals of new birds and retraps mist-netted. Black 
and red plots are actual monthly totals. Green and blue plots are standardised to 
control for variation in monthly trapping effort: monthly numbers caught and re-trapped 
were divided by actual mist-net metre hours for the month, then multiplied by the mean 
number of monthly mist-net metre hours (342 net m hrs ± 29 N= 32). 

In figure 9.2.3, the plot of cumulative re-trap ratios (black), standardised for catching 

effort suggests a slow increase in the proportion of captures that were re-trapped. The 

plot of actual ratios (not shown) is almost identical and their mean not significantly 

different (t-test, t= -0.51, P=0.613, DF=65). Linear regression of cumulative monthly 

re-trap ratio against month (r2 = 63.9%, P<0.001) predicts a monthly increase in the re- 

trap ratio of 0.00186 ± 0.00025, i. e. if 49 birds are caught per month with zero re-traps 

in month one, the number of re-traps in month 12 would be two, in month 24, three and 

in month 36, four. Re-trap ratios are highest in May 2002 (month 5), April 2003 (month 

16) and May 2004 (month 29), when only territorial breeding adults, most of which are 

already ringed, would be expected to visit the feeders, and in January 2003 (month 13) 

and February 2004 (month 26) when most of the winter visitors to the feeders have 

already been ringed but are still using the feeders. Re-trap ratio minima occur in July - 

175 



September 2002 (months 7- 9), July - September 2003 (months 19 - 21) and June 

October 2004 (months 30 - 34), when unringed juveniles were using feeders. 
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Figure 9.2.3. Ratios of re-traps to new birds monthly (red) and cumulatively (black), 
mist-net captures only, both new bird and re-trap counts standardised to control for 
variation in monthly trapping effort as per figure 9.2.2. No catches in months 20 or 33 
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Figure 9.2.3. Total monthly mist-net catches (new birds and re-traps combined), 2002 
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metre hours for the month, red plot, secondary Y axis). All species (cf catch-effort ratios 
in figure 9.2.4. which are for the 11 most-caught resident species only). 
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Corresponding patterns can be seen in the monthly total numbers of birds caught (figure 

9.2.3., black) which attain maxima in November - December 2002 (months 11 - 12) 

and November - December 2003 (months 23 - 24). Low catch and high catch/effort 

ratio in month 35 was due to anomalously low effort. Monthly catches of the 11 major 

species combined were significantly positively related to catching effort and 

significantly negatively related to monthly minimum temperature (table 9.2.2. a. ), i. e. 

when temperatures were low, catch rates were high. Variance inflation factors for effort 

and mintemp are close to 1.0, showing negligible collinearity. When national GBW 

index (GBWindex) was added to the regression, there was substantial collinearity 

between it and minimum temperature (VIF = 10.07,9.93 respectively, and in a separate 

regression, mintemp negatively predicted GBWindex with r2 = 89.6%, P <0.0001), 

therefore mintemp was removed from the regression. Table 9.2.2. b. shows that 'Icatch 

was not significantly related to GBWindex although the lack of formal significance is 

marginal (P = 0.0581). 
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Figure 9.2.4. Time series plot of monthly SK3388 catch/effort ratio and national 
Garden BirdWatch (GBW) composite reporting rate index for the 11 most-caught 
resident species (see 9.2.2 for list). February 2002 - November 2004. No catches in 
months 20 and 33. 

The time series plot (figure 9.2.4) suggests that lack of correspondence between 
SK3388 catch rate and national GBWindex values is most pronounced in months 30,31 

and 32. If values of catch and effort for these three months were set to values similar to 
those for the same months in the preceding year, the P value for GBWlndex in the 

multiple regression model with effort improved to P=0.0055. Comparing catches for 
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weeks 30,31 and 32 with those for weeks 18,19 and 20, this variation could be 

accounted for by increased catches of Great Tits (mean monthly catch 10.7 ± 3.8 vs 0.33 

± 0.33, adoption of nestboxes) and substantially more Blue Tits (20.0 ± 4.7 vs 5.7 -12.9, 

increased numbers and box use) and Goldfinches (2.3 ± 2.3 vs 0, increased breeding 

numbers). Otherwise, the main source of lack of correspondence appears to be an earlier 

peak and a faster decline in winter catch rates in SK3388 with respect to the national 

garden reporting rate index (figure 9.2.4). 

Table 9.2.2. a - b. Results of multiple regression analysis of monthly catch rates 
against monthly catching effort, monthly minimum temperature and national monthly 
average garden reporting rate. P. E. = parameter estimate, SE = standard error of 
parameter estimate, VIF = variance inflation factor. 

a. Model: 1catch = effort mintemp. F2,31 = 42.7, P, >F<0.0001, r2 = 73.4% 

Variable P. E. SE t P, > Itl VIF 

Intercept 3.50987 0.76106 4.61 <. 0001 0 

effort 0.01228 0.00145 8.48 <. 0001 1.02148 

mintemp -0.15641 0.06526 -2.4 0.0228 1.02148 
b. Model: catch = effort GBWindex. F2,31= 39.7, Pr> F<0.0001, r2 = 71.9% 
Variable P. E. SE t P, > Iti VIF 
Intercept -2.4309 2.41234 -1.01 0.3214 0 

effort 0.01256 0.00148 8.52 <. 0001 1.00586 

gbwindex 8.54742 4.34469 1.97 0.0581 1.00586 

9.2.4. Discussion 

Standardisation of capture rates temporally and spatially is crucial in any mist-netting 

study that aspires to inventory and/or monitor a bird population (Ralph et al. 2004). In 

this regard, it is encouraging that the monthly new bird acquisition rate plot (figure 

9.2.2) is reasonably linear and there was no systematic variation between the sites in the 

likelihood of re-trapping a ringed bird. However, the first comment of any experienced 

garden mist-netter with respect to these data would be that 49 new birds per month is a 

remarkably low mean catch rate for mist-netting at garden feeding stations, it would be 

commonplace to catch more than that number of birds in a single morning at a suburban 
or rural garden ringing site (pers. obs. ). This reflects not only the practical difficulties of 
mist-netting in small, cat-infested urban plots but also the generally low numbers of 
birds in the study area; the breeding population is relatively low by general 
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urban/suburban standards (chapter 7). The roving winter feeding flocks of small 

woodland passerines, notably tits, that are typical of non-urban habitats were absent 

(pers obs), with the exception of small winter Siskin flocks in the early months of 2003 

and 2004; such flocks are generally smaller and less diverse in more fragmented 

(Telleria et al. 2001) and urban (Yaukey 1996) habitats. After a slow start, trapping and 

re-trap rates improved at the start of 2003 (month 12) when the revised program of 

ringing at just the five primary sites was implemented. 

The slow increase in the cumulative monthly re-trap ratios, corrected for trapping effort 

(figure 9.3.2, black) and considered against the high linearity of the overall monthly 

marking rate for new birds, might suggest a positive annual survival rate overall, 

lending support to a hypothesis that the bird population of SK3388 is not dependent on 

annual net immigration for its persistence. However, three years' data are insufficient to 

assess this definitively. Over this short timescale, the regression that suggests a linear 

increase in re-trap ratios could be unduly influenced by the relatively steep initial slope 

as re-traps rise from zero, the plot does appear to level off somewhat in 2004. 

The timings of the catch/effort ratio maxima and minima vary between the years, which 

suggests that there is more to the use of these feeding stations than simply a resident 

population regularly supplementing its daily diet. Transient and wintering birds could 

well be exploiting this resource as well, possibly on an annual basis; this is explored 
further using re-encounter data in chapter 10. In May 2002, April 2003 and May 2004 

there are notable correspondences between catch/effort ratio minima and re-trap ratio 
maxima, as winter transience in the bird assemblage declines and already-ringed 
breeding adults become most prevalent at the feeders. Catch/effort ratio maxima in 

months 4,12 and 25 are followed one month later by re-trap ratio maxima, suggesting 
persistence of trapped birds at the feeding stations; interestingly, the winter catch/effort 
ratios behave very differently in 2003 and 2004.2003's January peak (month 12) is 

sustained into February, whereas the January peak in 2004 (month 25) is followed by a 

sharp dip in February (month 26), when the re-trap ratio attains an all-time high in 

contrast to the re-trap ratio in February 2003 which is lower than that in January 2003. 
This suggests significant inter-year variation in how the feeder-using birds in SK3388 

respond to varying winter conditions. 
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The overall form of the seasonal variation in mist-net catches supports the general result 

that urban bird densities are higher in winter (DeGraaf 1991; DeGraaf & Wentworth 

1986; Yaukey 1996), particularly as feeders attract tits into provisioned areas (Graber & 

Graber 1979) and decrease their winter mortality (Brittingham & Temple 1988b; 

Jansson et al. 1981), but also that the feeder-using bird assemblage in SK3388 is at least 

partly composed of an established breeding population. The general form of figure 

9.2.4. suggests a strong correspondence between patterns of seasonal variation in feeder 

use by common species in SK3388 and nationally, although the winter peaks (months 

12 and 22) in activity occur earlier than those in the national index (months 15 and 27) 

and decline more quickly. Possible reasons for this include the typical later winter 

reporting rate maxima for Greenfinch in GBW gardens nationally (Cannon 2000) not 

being reflected in the generally low and steady SK3388 catch rates (although catches in 

late winter of 2002-03 were higher than in 2003-04). This might indicate that SK3388 

is not recognised as a resource by large numbers of transient winter birds in the way that 

larger suburban and rural garden feeders are, despite an apparent superabundance of ad 

lib food. Other possible reasons include earlier commencement of breeding activity in 

the urban habitat and the fact that the ringing sites in SK3388 were provisioned 

continuously year-round, whereas national garden food provision rates may vary 

seasonally. Nonetheless, for the purposes of this study, the fact that the seasonal pattern 

of feeder usage in SK3388 can be brought into significant correlation with the national 

pattern after only minor adjustment for known changes in the local avifauna suggests 

that this second-tier urban habitat, despite its high human housing and cat density, is 

capable of provisioning wild birds in a similar manner to the larger suburban and rural 

gardens traditionally considered to be more suitable bird habitat. 

Although mist-netting is a stochastic, non-selective and weather-dependent capture 

method for which small urban gardens are not ideally configured, it nonetheless enabled 

the inspection and marking of 1578 birds over three years, a reasonable sample size 

considering that the mean total annual adult breeding bird population in SK3388 over 
the same period was 950 individuals (table 7.18). The relationships between mist-net 

catch rates and numbers of birds present are not necessarily direct and vary between 

species (see section 9.3.1 for discussion), but if the proportions of the individuals of 

each species utilising the feeding stations that are caught in nets set at those stations do 

not vary significantly from month to month, seasonal variation in overall catch/effort 

ratios should reflect seasonal variation in feeding station utilisation. Problems with this 

180 



assumption include the observation that certain species are less cautious at certain times 

of year, for example Mistle Thrushes are prone to capture when competing for 

territories in late winter but otherwise are extremely trap-shy (pers. obs. ). Adults and 
juveniles may also have differing susceptibilities to mist-netting (e. g. Bart et al. 1999), 

altering the overall trapping probability of a species between seasons. However, both 

the problematic examples cited above involved species that do not use feeders; in the 

present study the great majority of the birds caught were visiting the sites specifically to 

feed, nets were set close to and around feeders and were constantly observed; personal 

observations suggest that most individual birds of feeder-using species choosing to use 

the feeding station on a particular morning stood a high chance of being caught at some 

point during a catching session. 

Nonetheless, some birds will have been missed. It may be that catch rates are also 
influenced by the urgency with which the birds require supplementary food which in 

turn will be influenced by their condition and the weather. However, that factor can also 
be expected to influence the national prevalence of wild birds at garden feeding stations 

and is therefore arguably controlled to a great extent within any time series comparison 

of local and national feeding station utilisation through the year; Lepage & Francis 

(2002) showed that the numbers of birds using feeders were representative of actual 
winter populations for around 80% of feeder-using species in North America. 
Therefore, examining the degree of correspondence between feeder usage rates in 
SK3388 and nationally will aid better understanding of whether birds in the urban 
habitat are using feeders in different ways from those at the non-urban 

sites that make 
up the bulk of the national Garden BirdWatch dataset (see chapters 4 and 5) and 
consequently the extent to which the avifauna of SK3388 resembles that of more 
ostensibly bird-friendly suburban and rural garden habitats that provide the bulk of the 

national data. 
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9.3. Species caught: diversity and comparison with breeding population 

9.3.1. Introduction 

In this section, two aspects of the composition and ecological diversity of the subset of 

species caught by mist-netting during the study are examined. Firstly the ecological 

diversity and its seasonal patterns are examined. If SK3388 supports wild birds in a 

similar way to suburban and rural gardens, that is to say with a stable but relatively low- 

diversity breeding avifauna augmented by additional species visiting exclusively to feed 

in winter, the ecological diversity of the feeder-using assemblage should show a regular 

seasonal pattern. Conversely, if SK3388 is marginal habitat, exploited only 

opportunistically by transient species, ecological diversity would be relatively constant 

and less seasonally predictable. Secondly, breeding season catch rates of the most 

common resident species are compared with their actual breeding populations as 

determined by territory mapping (chapter 7), in order to investigate the extent to which 

relative degree of exploitation of feeding stations in support of breeding activity varies 

between species. A further benefit from the demonstration of concordance between the 

two measures of relative density would be that the mist-netting catch rates for the post- 

breeding and winter periods in the same study area could then be used to at least 

indicate changes in their bird population densities. 

Mist-netting is not a suitable catching method for all species of bird and in most study 

areas only a subset of species actually present will be trapped using this technique; some 

are too large to be retained in the nets, some behave in ways that make them less 

vulnerable (see Bibby et al. 2000; Gosler 2004). In this study, species which do not use 

garden feeding stations are very unlikely to be caught by mist-nets placed at those 

stations. In SK3388, however, apart from habitat-specific and easily located exceptions 

such as Swift and Feral Pigeon that were consistently present across the study period, 

species other than garden and feeder users were relatively rare (chapter 7) and gardens 

with anthropogenic food are the dominant habitat (chapter 8). Furthermore no 

colonisations or extinctions of non-garden species were detected during either breeding 

censuses or winter observations over the three years. It follows therefore that there will 

have been little meaningful variation in diversity that would not have been reflected in 

the birds sampled at garden feeding stations. Hence the form of the species 
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accumulation curve for mist-netting at these stations will indicate the relative stability of 

the feeder-using bird assemblage. Also, the diversity of the species caught, although 

perhaps not reflecting the complete avifauna of the site, should nonetheless vary 

seasonally in line with the diversity of the most significant and potentially variable 

component of that avifauna. 

Silkey et al. (1999) observed that relative changes in breeding density can be inferred 

from mist-net catch rates for some species, but not for others. Their study and review of 
literature demonstrated variability in the relationship between catch rate and breeding 

density among studies and between species, which they attributed to behavioural 

differences rather than abundance differences. To some extent the present study 

addressed this by distributing catching effort between five very different garden types in 

which different behaviours might be expressed, rather than concentrating effort at a 

single station or in a single garden type. Also, behaviour-induced variation in relative 

catch rates actually provides further rationale for comparing the two measures of 

relative density in terms of the present study because it suggests that presence or 

absence of correspondence between catch rates and density will elucidate inter-specific 

differences in the extent to which the presence of feeders influences foraging behaviour 

and territoriality. For example, relative capture rates in a 12 year study did correlate 
significantly with relative breeding density for three out of four scrub-nesting passerines 
(Silkey et al. 1999) and other studies showed good correspondence in 9 out of 21 

species (Peach et al. 1998) and in 47 of 64 species (Dunn et al. 2004). However, 

validation studies on relative abundance indexing via mist-netting are scarce in the 
literature (Dunn & Ralph 2004). 

9.3.2. Methods 

To assess variation in the ecological diversity of species trapped per month, the 
Shannon-Wiener diversity index (H) for each month was calculated (equation 9.1, S= 

number of species and p; = proportion of total sample belonging to species i). 

S 

H=- E p11n p1 9.1. t-I 
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This is a type I diversity index that signals changes in relative abundance of rare 

species; it was used rather than a type II index that signals changes in relative 

abundance of common species (Krebs 1999) because the question of interest is whether 

a known and relatively stable breeding assemblage is augmented by scarcer visiting 

species at certain times of year. 

Breeding populations were estimated between April and June (chapter 7), therefore, for 

comparison, numbers of unique individual adult birds, assumed to be breeding or at 
least capable of breeding, ringed in months 4 -6,16 - 18 and 28 - 30 were totalled and 
divided by the total trapping effort (net metre hours) for the three month period. Same- 

year re-traps were not counted. Ratios of adults ringed per net metre hours are 

multiplied by 103 for easier comparison (figure 9.3.3). 

9.3.3. Results & Discussion 

Of the 29 species that were mist-netted during the three year study period, 27 species 
had been caught by September 2003 (month 21), 28 by November 2003 and 29 by April 
2004. All 18 of the relatively mobile breeding passerine species likely to be caught 
without specially targeted effort had been trapped by February 2003, one year after 
project commencement. Figure 9.3.1 plots the rate of accumulation of trapped species 
with catching effort in mist net metre hours; a plot against date had a very similar form 
(not shown) showing signs of converging towards an aysmptotic limit of the number of 
catchable species but with occasional new species still occurring after three years. 

Figure 9.3.2 shows a general pattern; both diversity and species/effort ratio are higher in 

winter and lower during and just after the breeding period. This is probably accounted 
for by winter visits to feeders by non-breeding species such as Siskin (72 birds, all in 

months 13 - 15 and 25 - 27), Redwing (three birds, months 13,24 and 25) and Redpoll 
(three birds in month 13), the late winter carelessness of the territory-disputing Mistle 
Thrushes (two in month 2, one in month 14) and the winter hunger of otherwise 
uncatchable Woodpigeons (one in month 28) and Collared Doves (one in month 11). 
The diversity minimum and corresponding high species/effort ratio at month 35 is due 
to low trapping effort. 

184 



U 
V 

IA 
u ä 
N 
m 
di 0 

d 

9 

u 
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Figure 9.3.2. Shannon's Diversity Index H (black plot) for species caught by mist- 
netting plotted for each month, together with the ratio of number of species caught to 
trapping effort (net m hrs) for each month (red plot, secondary Y axis). 

Among the less frequently caught species, two Willow Warblers boosted diversity in 

month 28 and wintering Blackcaps were caught in months 2,3 and 24. The only 
Chaffinches caught were winter juveniles (months 6,14,24,27 and 34); one Chiffchaff 

improved diversity in month 9 and an exceptional four were caught in month 21. 

Transient Goldcrests were caught in late autumn each year. In 2002 and 2003, 
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Goldfinch catches were almost all in winter; in 2004 catches were more evenly 

distributed with 12 between March and June. Magpies were numerous but just three 

juveniles were caught, eight Song Thrush catches were evenly distributed through the 

three years and a single juvenile male Sparrowhawk was caught in month 10. Nine out 

of 19 Starling catches were juveniles at a single site in month 19 (July), reflecting 

successful nesting nearby and, as can be seen from figure 9.3.2, boosting diversity 

compared to the same months in previous (7) and following (31) years Of the 27 known 

breeding species (chapter 7), those not caught by mist-netting were Feral Pigeon and 

Stock Dove (large, scarce, sedentary, not breeding near netting sites), Tawny Owl (as 

previous, plus nocturnal), Swift (high flying, does not use feeders), Nuthatch (one pair 

only in 2004, sedentary) and Carrion Crow (large, trap-shy). Non-breeding species mist- 

netted were Siskin, Redwing, Sparrowhawk, Great Spotted Woodpecker, Jay, Goldcrest, 

Willow Warbler and Chiffchaff. Known wintering species not trapped were Waxwing 

Bombycilla garrulus and Fieldfare (scarce, do not use feeders). The only known 

transient species not trapped was Whitethroat (rare, does not use feeders). 
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adults (individuals) in the study area (from census data, chapter 7) April - June, linear 
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was not significant. Numbers of birds ringed in each season are divided by trapping 
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103 for easier comparison. WR = Wren, D= Dunnock, R= Robin, B= Blackbird, BT = Blue Tit, GT = Great Tit, LT = Long-tailed Tit, HS = House Sparrow, GR = Greenfinch, 
CT = Coal Tit. 

186 



For the ten most-ringed species, OLS linear regression indicated that the numbers of 

breeding adults caught per year were correlated with the numbers of breeding adults 

present in 2002 (F1,8 = 8.02, r2 = 50.1%, P=0.022) and 2003 (F1, g = 8.16, r2 = 50.5%, P 

= 0.021). (figure 9.3.3), but the correlation for 2004 was not significant (F1,8 = 3.41, r2 = 

29.9%, P=0.102). From examination of the residuals between actual numbers of 

breeding season adults trapped and those predicted by breeding populations (figure 

9.3.3), some species show consistent variation. Fewer breeding adult Blackbirds and 
Robins were trapped than might have been expected from relative breeding numbers; 

this perhaps reflects high territoriality and relatively low dependence on feeding 

stations, although residuals for Wren and Dunnock, for which similar factors might 

apply, are inconsistent. In contrast, numbers of mobile, feeder-using Greenfinches 

ringed are consistently higher than predicted, as are those for House Sparrows which are 

notoriously immobile but localised populations were resident at four of the five primary 

sites. Residuals for Blue and Great Tits are inconsistent and reverse between years; in 

2002 more Great Tits and fewer Blue Tits were trapped than predicted, the opposite was 
the case in 2003. Numbers of Coal and Long-tailed Tits are too small to assess. 

9.3.4. Conclusions 

In this study, mist-netting was relatively successful in detecting species known to be 

present in the study area; 29 out of 37 were trapped (78%) and 21 of 27 known breeders 

(77%). This is a relatively high detection rate, aided by habitat homogeneity and low 

species richness. In comparison, five years of netting (mean 6.8 days per month) at a 
heterogeneous suburban US site detected 47 out of 76 species present (62%) and 20 out 
of 31 known breeders (65%) (Hansrote & Hansrote 1991), while three years of suburban 
garden mist-netting in South Africa detected 59 of roughly 100 catchable species 
(Brown & Brown 2003 & pers. comm). Seasonal patterns of variation in relative 
diversity again suggest that this habitat, although highly urbanised, supports an avifauna 
more typical of suburbia rather than a core urban avifauna; in the latter, seasonal 
variation in diversity is characteristically low (e. g. Mulsow 1980 in Bezzel 1985). 

Some aspects of the interspecific variations in correspondence between numbers of 
breeding adults trapped and present are unsurprising, particularly the contrast between 

granivorous and semi-colonial Greenfinch and House Sparrow (higher than predicted 
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trapping rates at feeders) and territorial, invertebrate-feeding Blackbird and Robin 

(lower than predicted). Silkey et al (1999) suggested that the least territorial species had 

the poorest correspondence between catch rate and breeding population. This might 

suggest that this correspondence could be particularly poor if dependence on point 

sources of high-quality, ad lib food at feeding stations induced the birds of SK3388 to 

forage in a less conventionally territorial way than conspecifics in a habitat with more 

uniform food distribution. It seems that in none of the most-trapped species does the 

presence of these particular feeders obviously over-ride normal territorial behaviour, 

suggesting that availability of food within territory is not a serious constraint on 

breeding season adults. An alternative hypothesis might be that if feeders draw all the 

breeding individuals within an area to a point source of food at some time during each 

day, catch rates at those feeders should be a good reflection of overall breeding 

numbers. This would depend on the extent to which the feeders attract extra-limital 

birds, the study area being arbitrarily delimited within a continuous population. 

9.4. Differential timing of garden feeding station use in urban birds 

9.4.1. Introduction 

This analysis examines whether different species of bird utilise urban garden feeding 

stations at different times of day. If they did, this might indicate temporal resource 

partitioning inter-specific competition (Kronfeld-Schor & Dayan 2003). It might also 

reflect how species resident in and transient through the study area use feeders in 

different ways, and the degree to which the presence of feeding stations affects 

territoriality. Resident/territorial species will have access to the resource at any time of 

the day, whereas transient or non-territorial species might visit according to a regular 

daily schedule of foraging activity. 

9.4.2. Method 

The times after sunrise of 1785 individual mist-net catches (corrected for summer time) 

were obtained from the US Navy Astronomical Applications Department website 
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(aa. usno. navy. mil/cgi-bin/aa_pap. pl) for Sheffield (longitude W I. 5, latitude N53.4). 

One-way ANOVA of trapping time after sunrise against species was performed using 

MINITAB v. 14, Tukey multiple comparison tests detected differences between species 

pairs. To normalise the distribution of the response variable, it was square root 

transformed and captures after 12 p. m (181 captures, 10.1% of the data) were removed 

(Ryan-Joiner normality statistic = 0.999, P =0.095). To focus the analysis on species 

with a reasonable sample size and restrict species to a tractable number for pairwise 

comparison, species with fewer than 30 captures were removed, leaving 1508 records of 
12 species, Blackbird (68 captures), Blue Tit (529), Coal Tit (70), Dunnock (86), 

Goldfinch (65), Great Tit (109), House Sparrow (210), Long-tailed Tit (77), Robin (39), 

Siskin (67) and Wren (60 captures). 

9.4.3. Results 

In general, the urban garden birds of SK3388 did not differ in their general diel trapping 

pattern from that well-known to non-urban mist-netters, i. e. the bulk of birds are caught 
in the first 4 hours (0 - 14400 seconds) after sunrise and catch rates tail-off after 5 hours 

(18000 seconds). The boxplots for both winter (figure 9.4.2) and breeding season 
(figure 9.4.3) captures suggest that there is some variation between species in the 
timings of the use of the feeding stations, even in winter when daylength and 
consequently available feeding time is less. Among all captures in all months, there was 
highly significant variation among the 12 species in time after sunrise of capture 
(ANOVA: F11.1489 = 2.96, r2 = 2.14%,. P=0.001). Tukey pairwise comparisons 
revealed five significant differences between species pairs: Coal Tit and Blue Tit (t 
4.11, P=0.0024), Coal Tit and Greenfinch (t = 3.59, P=0.0174), Coal Tit and Long- 
tailed Tit (t = 3.49, P=0.0244), Coal Tit and House Sparrow (t = 4.645, P=0.0002) 

and Great Tit and House Sparrow (t = 3.55, P=0.0198). 

For winter captures in months October to March only (figure 9.4.2, ANOVA: F11,893 = 
2.63, r2 = 3.14%, P=0.003), pairwise differences were found between Coal Tit and 
Blue Tit (t = -3.7, P=0.0114), Coal Tit and Greenfinch (t = 3.997, P=0.0037) and 
Coal Tit and Long-tailed Tit (t = 3.58, P=0.00178). For breeding season captures in 

months April - September only (figure 9.4.3, ANOVA: Flo, 585 = 2.75, ?=4.49%, P= 
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0.003), the only significant pairwise difference was between Great Tit and House 

Sparrow (t = 4.39, P=0.0006). 
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Figure 9.4.2. Winter: boxplot of time after sunrise of capture by species, 911 captures, 
before midday, October- March only, 2002-2004. Bar = median, box bottom= first 
quartile Q1 (25%), box top = third quartile Q3 (75%), upper whisker = 03 + 1.5(Q3 - 
01), lower whisker = Q3 - 1.5(Q3 - Q1), asterisks = outliers. 
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Figure 9.4.3. Breeding season: boxplot of time after sunrise of capture by species, 597 
captures, before midday, April - September only, 2002-2004. 
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9.4.4. Discussion 

It would be desirable to compare these patterns with those obtained in non-urban 
habitats but it would be impossible to control for catching effort; in the present study a 

uniform protocol was adopted, weather permitting (start at dawn, stop after 11 am as 

soon as no bird caught in 30 minutes) but netting durations elsewhere are generally not 

recorded. All that can really be said with reference to non-urban avifaunas is that the 

presence of ad lib food does not seem to grossly distort the diel activity pattern in terms 

of inducing birds to forage evenly throughout the day; there is still a clear early morning 

activity peak at the feeding stations. This observation is confounded by the increasing 

visibility and consequent decreasing sampling efficiency of mist-nets with increasing 

sunlight but anecdotal observation and field notes concur that bird feeders in SK3388 

generally do go quiet by mid-morning. A post-breakfast increase in visible human (and 

cat) activity may contribute to birds' preference for early morning feeding. 

Much of the small proportion of variation in capture time attributable to species is 

probably accounted for by the notably early use of the feeders by Coal Tit, which 
Fitzpatrick (1997b) also observed visiting feeders early in the day. This species is 

similar in food and feeder exploitation methods to the Blue Tit but is marginally smaller 
and notably less competitive at feeders, also (and perhaps associatively) it stores seed in 

caches rather than consuming it immediately at the time of acquisition. These 
differences could explain its use of feeders early in the day when it attempts to acquire 
and store as much food as possible before competing species become active. Coal Tits 

are notoriously selective and inefficient exploiters of sunflower seeds (pers. obs & 

comms); possibly, in this habitat, they forage as ̀ cream skimmers' (Kneitel & Chase 
2004; Jones et al. 2001 in Kronfeld-Schor & Dayan 2003; Brown et al. 1997 in Shochat 

et al. 2004) with a high giving up density in the face of competition, although their 

singular caching behaviour may also redeem the cost of not visiting the feeders later in 

the day. House Sparrows, in contrast, are reputed to be `late risers', able to dominate 
feeding stations and to have a relatively short `working day' in terms of active food 

acquisition (Summers-Smith 1963). Once they do visit feeders they use them to obtain 
the bulk of their food and with low giving-up densities, according to Shochat et al. 
(2004) who point out that "competitive interactions play significant roles in structuring 
urban bird communities". In one US study, 82.6% of the food of urban House Sparrows 
was seed (Gavett & Wakeley 1986). 
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Capture times of Blackbird, Wren, Robin and perhaps Dunnock can be dissociated from 

feeding behaviour as these are not generally feeder users except in hard weather; 

resident territorial individuals of these species may be mist-netted at any time of day. In 

contrast, most Long-Tailed Tit captures are from flocks drawn to peanuts in winter, and 

they visit feeding stations significantly later than the seed-eating Coal Tit. This analysis 

assumes that diel variations in mist-net detectability and avoidance are similar in all the 

species considered. Casual observations of feeders in SK3388 suggest that further 

periods of activity do occur during the afternoons; a more complete investigation of diel 

interspecific variation in feeder use would require systematic catching effort throughout 

all the hours of daylight. Also, observations of diel activity patterns cannot necessarily 

be generalised between sites; Wilson (2001) noted that Black-capped Chickadees varied 

in their diel patterns of winter feeder usage between two sites. 

9.5. Conclusions 

In general, feeders are not used uniformly throughout the days and seasons but their 

usage rates are associated with early morning low temperatures, suggesting that for 

many individual birds in SK3388 they fulfil their traditionally-ascribed primary role of 

alleviating short-term nutritional stress. Nonetheless, some birds can be caught at 
feeding stations throughout the year, suggesting that they provide resources for a 
breeding population as well as winter transients. With uniform trapping effort, the re- 
trap rate slowly increased with time, suggesting that this avifauna is not entirely 
dependent on repeated immigration. Year-round patterns of feeder utilisation are 

generally similar to national garden patterns, suggesting that to some extent small urban 

gardens fulfil a similar role to larger suburban and rural gardens as bird habitat. There is 

some correspondence between catch rates of breeding adults and the known breeding 

population and departures from correspondence can be understood in terms of the 

species' normal breeding and feeding ecology, again suggesting that this habitat is 

supporting a breeding avifauna whose patterns of habitat use do not differ markedly 
from those in other habitats. This also suggests that the degree to which this habitat 

represents ecological opportunities or constraints varies between species; this is further 

supported by evidence that some species are more constrained that others in their diel 

patterns of feeder usage. 
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10. A ringing study of urban garden birds: birds re-encountered 

Abstract 

Mist-netting at feeders and re-sighting of colour-ringed birds in the SK3388 study area 
produced 2077 re-encounter records of 587 individuals and 17 species; 33% of birds ringed 
were re-encountered. Some individuals were very persistent, 26 birds (4.5%) contributing 25% 
of re-encounters and individuals of seven species were re-encountered more than two years after 
ringing. Frequency distributions of re-encounter durations showed that some species use the 
study area seasonally whereas others are year-round residents. Re-encounter rates of birds 
ringed in the breeding season did not differ between species in both adults and juveniles, 
suggesting the breeding avifauna is stable in composition. In winter, re-encounter rates varied 
between species, affected by winter visitors and transient juveniles. Very few birds were 
recovered dead but there was some evidence of population interchange between SK3388 and 
suburban gardens as well as several longer-distance movements. Within the study area, 
however, most birds maintained normal territoriality as evidenced by site fidelity; only 
Greenfinches were re-encountered at more than four sites. Despite high relative urbanisation, 
SK3388 supports an avifauna of stable composition and with movements and seasonal 
dynamics typical of more rural garden habitats. 

10.1. Introduction 

A fundamental question that has been little-investigated to date in urban ornithology is 

the extent to which the same individual birds persist at a given site through time. Many 

urban garden bird enthusiasts are sure that `their' favourite birds visit daily for several 

seasons (numerous pers. comm. ), yet overall mean survival rates among the species 
involved are in general so low as to render such longevity unlikely. The persistence and 
mobility of individuals and species within urban habitats are of key importance in 

evaluating whether they support self-sustaining avifaunas or are just either temporary 

resources for time-varying assemblages of transients and/or sink habitat for doomed 
immigrants. They are also important in terms of the wider objective of this thesis: 

evaluating the ecological opportunities and constraints experienced by the birds of 
SK3388. If birds are generally sedentary, their opportunities and constraints are those of 
the immediate environment; greater mobility, on the other hand, would increase the 
scale over which the ecological factors affecting them should be assessed. In this 
chapter, the persistence and mobility of individual birds using urban garden feeding 

stations is investigated using re-encounters of birds that were ringed in the SK3388 
study area between 2002 and 2004. 
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Firstly, frequency distributions of re-encounter durations are compared to determine 

whether any particular species or age classes are exploiting the habitat differently from 

others. Differences in re-encounter duration patterns will indicate the degree to which 

species are either largely resident or exploiting the habitat seasonally or transiently. 

Secondly, species' re-encounter rates are examined separately according to age class of 
birds ringed and season of ringing. Variation in re-encounter rates between adults and 
juveniles will provide insight into the overall and species-specific sustainability of the 

avifauna. Variation between species' winter and breeding season re-encounter rates will 
indicate whether the dynamics of the winter and breeding bird assemblages in SK3388 

are different. If the utilisation of the study area by all species is fairly stable and the 

population of each species in reasonable equilibrium year to year with no anomalous 
influxes or emigrations, over three years the re-encounter probabilities of regularly- 

caught and re-sighted species should not vary greatly between species. If, on the other 
hand, the composition of the assemblage were unstable and irregular changes to the 

relative numbers of some species within it took place, significant inter-specific variation 
in re-encounter rates over a three year period might be expected. 

Thirdly, the bird movements revealed by the ringing programme are reported and the 

relative mobility within the study area of the most-frequently ringed species evaluated. 
Movements between SK3388 and elsewhere will show whether the avifauna is isolated 

or part of a wider population, a key issue in urban ornithology. The degree of intra-site 

mobility will indicate the extent to which this highly-urbanised habitat supports a 
residential, territorial bird community or, conversely, to which SK3388 is a ̀ free for all' 
with mainly transient birds ranging widely over the area and little settlement. 

10.2. Methods 

Mist-netting and colour-ringing of wild birds at garden feeding stations in SK3388 
during 2002 - 2004 (Chapter 9) produced 2077 records of 587 previously-ringed 
individuals of 17 species that were either re-trapped, found dead or, in the case of the 
eight colour-ringed species, re-sighted. All these post-ringing events in combination are 
referred to henceforth as ̀ re-encounters'. In addition, 136 pulli and a few adults ringed 
in nestboxes contributed re-encounters; hence numbers of birds considered in this 
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chapter differ slightly from the mist-net catch data in chapter 9. For each re-encounter, 

the time elapsed in days since initial ringing of the bird was designated ̀duration'. 

Records of birds ringed at unknown age and species contributing less than 35 

individuals and/or less than 5 re-encounters were removed from the sample, leaving 

Blackbird, Blue Tit, Coal Tit, Dunnock, Great Tit, Greenfinch, House Sparrow, Long- 

Tailed Tit, Robin, Siskin and Wren and a total of 1553 records. The threshold was 

chosen to exclude Goldcrest (30 individuals but a transient species generating only two 

re-encounters) and Goldfinch (66 individuals but not colour-ringed and consequently 

only two re-encounters) but to include Robin (only 39 individuals but a colour-ringed 

resident with some interesting re-encounter histories). Frequency distributions of re- 

encounter durations for the eleven species, listed above, together and for the seven 

most-frequently ringed species (Blue Tit, Blackbird, Dunnock, Greenfinch, Great Tit, 

House Sparrow and Robin) separately were plotted as histograms for comparison. 

For the calculation of age- and season-specific re-encounter rates and their comparison 
between species, each record of a newly-ringed bird was allocated one of four codes 

according to age and season of original ringing. `Winter' was defined as the months 
October - March inclusive, `breeding season' as months April - September. Birds of 
EURING age code 3J (juvenile plumage) at any time or age code 3 in months April - 
September were coded as juveniles ringed in the breeding season. Birds of age code 3 in 

months October - December and birds of age code 5 in months January - March were 
coded as juveniles ringed in winter. Birds of age codes 4,5 or 6 in months April - 
September were coded as adults ringed in the breeding season; birds of age codes 4 or 6 
in months October - March plus age code 5 in months October - December were coded 
as adults ringed in winter. 

Overall re-encounter rates were first examined for differences between birds ringed as 
adults and juveniles in each species; using Wilcoxon two-sample tests (SAS, PROC 
NPAR1 WAY) as distributions of durations were significantly different from normal. 
Secondly, to compare the overall probabilities of winter and breeding re-encounters 
between age classes and species, ringed individuals were coded according to presence 
or absence of any winter and/or breeding season re-encounters in the dataset. Re- 

encounter rates were then compared separately for birds ringed as adults and juveniles 

and in winter and in the breeding season using X tests, including only those species 
with sufficient data. 
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To examine relative mobility, re-encounters occurring at a different location from that at 

which the bird was originally ringed were classified as ̀ movements' and their linear 

distance (m) measured using ArcGIS. To examine inter-specific variation in relative 
local mobility, the numbers of different locations within and nearby (< 500m) the study 

site at which individual birds were encountered over the three year study period were 

expressed graphically as proportional pie charts for the nine most re-encountered 

species. 

10.3. Results 

10.3.1. Re-encounter rates 

Within or close to SK3388,251 birds were re-trapped and 21 birds recovered dead, in 

addition two re-traps and four recoveries were more distant. Colour-ringing generated 
1833 field sightings, 147 in 2002,759 in 2003,775 in 2004 and a further 152 in the six 

months after ringing ceased, all but two were from within or near SK3388. Members of 
the public supplied 1397 sightings, of which 95.3% were from the seven keenest regular 
observers; 436 sightings were obtained by the author. Figure 10.1 shows the cumulative 
monthly re-encounter numbers over time (orange plot) in comparison with the 

cumulative numbers of new birds and re-traps. The re-encounter rate mirrors the re-trap 
rate until November 2002 when several keen observers were recruited and re-sighting 
rates accelerated rapidly. Considering individual birds, figure 10.2 shows that although 
most of the individual birds that were ringed were not re-encountered (1173 out of 
1754,67%, all catching methods) and many subsequently contributed relatively few 

observations (257 (14.6%) re-encountered only once), a small number of individuals 

were re-sighted regularly. Of the 581 individuals that were re-encountered at least once, 
26 individuals (4.5%) contributed 25% of the logged re-encounters. For example, 
territorial female Blackbird RK11376 was formally recorded 38 times in the garden in 

which she nested during two of the three study years but was actually present almost 
daily, according to the observer. 
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Figure 10.1. Time series plot of cumulative monthly re-encounter numbers (orange 
plot), superimposed on plots of monthly new birds and re-traps as in figure 9.2.2. 
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Figure 10.2. Frequency distribution of total numbers of records by number of records 
generated per individual bird, all species, birds contributing two or more records each. 

Out of the 30 species ringed, 14 generated no re-encounters. Individuals of sixteen 
species were re-encountered on one or more occasions but only seven species provided 
more than 20 re-encounter records each over the study period. Frequency distributions 

of all re-encounter durations for all species combined and for these seven most-re- 
encountered species individually are plotted in figures 10.3 a-h. The data for all 

197 

5 1U 15 20 25 30 35 
Timber of records per bird 



species combined (figure 10.3. a) show an anniversary peak in re-encounters around day 

365 and this is also visible among the individual species in the cases of Blue Tit (figure 

10.3 b) and House Sparrow (figure 10.3 g) and quite pronounced in Greenfinch (figure 

10.3 e). Anniversary peaks are not apparent in Great Tit (figure 10.3 f) and Blackbird 

(figure 10.3 c), although, despite regular re-sighting of a few individuals, overall 

numbers of re-encounters for the latter species are small. The pattern for Robin (figure 

10.3 h) is particularly striking in contrast with that for Dunnock (figure 10.3 d). 

Table 10.1 presents the longest re-encounter durations per individual for each of the re- 

encountered species. The longest re-encounter for any reported individual of that 

species is shown as `max', together with the medians and means of the maximum re- 

encounter durations for all individuals, that is, with any individual re-encountered more 

than once contributing only its single, longest, re-encounter duration. Medians are 

consistently less than means, as expected for right-skewed survival data, and are not 

correlated with numbers of birds ringed (Spearman's rank correlation rS = 0.32, P= 

0.231, N= 16). 

Table 10.1. Overall re-encounter rates and longest re-encounter durations (max) 
, 

by 
species, sorted in descending order of median duration. For individuals with repeat re- 
encounters only the longest duration (i. e. the most recent re-encounter) for each 
individual is included in the calculations of medians and means. 

Individuals Re-encounter durations (days) 
Species ringed re-encountered maximum median mean t SE 
Blackbird 76 20 (26%) 1148 321 409 71 
Greenfinch 129 63 (49%) 1093 280 325 35 
Chaffinch 7 2 (29%) 471 241 241 229 
House Sparrow 223 73 (33%) 828 235 275 23 
Goldfinch 66 2 (3%) 419 218 218 201 
Dunnock 80 33 (41%) 800 216 291 40 
Starling 18 1 (6%) 195 195 195 
Great Tit 128 45 (35%) 966 149 206 28 
Blue Tit 615 284 (46%) 1070 137 243 14 
Coal Tit 58 14 (24%) 561 108 136 39 
Robin 39 18 (46%) 799 93 184 54 
Long-tailed Tit 85 14 (16%) 676 68 177 62 
Goldcrest 30 2 (7%) 105 64 64 42 
Bullfinch 6 1 (17%) 59 59 59 
Wren 51 10 (20%) 378 54 114 39 
Siskin 69 5 (7%) 409 46 164 87 
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Figure 10.3. a-h. Frequency distributions of time in days (duration) between original 
ringing date and re-encounter date, repeat re-encounters of same individuals included. 
Anniversaries (durations 365,730 and 1095 days post-ringing) shown by red arrows. 
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Considering the issue of variation in re-encounter patterns between age classes, from 

figures 10.4. a. and b., which include all re-encounters not just the longest duration per 

individual, birds ringed as juveniles generate many more short-duration re-encounters 

than birds ringed as adults, but birds ringed as adults persist for longer re-encounter 

duration times overall. However, when just the longest per-individual re-encounter 

durations are compared between the two age classes, among the nine most-re- 

encountered species only those for adult-ringed and juvenile-ringed Blue Tits differed 

significantly (table 10.2) 
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Figure 10.4. a. and b. Frequency distribution of time in days since date bird was 
originally ringed (duration) for all re-encounters, all species. Adults (a. ) are birds 
ringed in the calendar year post-hatching or subsequently. Juveniles (b. ) are birds 
ringed during their calendar year of hatching. 
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Table 10.2. Results of Wilcoxon two-sample test for differences between longest re- 
encounter durations of birds ringed as adults and birds ringed as juveniles. N= number 
of re-encounters, Mean = mean re-encounter duration (days) SE = standard error of 
mean duration. Median = median re-encounter duration (days) P= two-sided Pr>IZI 
from Wilcoxon two-sample test. juvs = juveniles, see 10.2. for derivation of age classes. 

Species N 
adults juvs 

Mean 
adults juvs 

SE 
adults juvs 

Median 
adults juvs 

P 

Blackbird 16 4 477 136 80 28 399 124 0.065 
Blue Tit 68 216 359 205 32 15 348 111 <0.0001 
Coal Tit 4 10 155 128 51 52 177 66 0.479 
Dunnock 15 12 296 312 63 75 266 163 0.826 
Great Tit 9 35 235 177 40 27 236 121 0.172 
Greenfinch 29 34 316 333 56 44 196 341 0.60 
House Sparrow 15 25 246 285 48 44 179 244 0.716 
Robin 8 10 230 148 81 75 150 66 0.182 
Wren 5 2 154 130 72 64 54 130 0.85 

For 11 species, sufficient data were available for the examination of age- and season- 

specific re-encounter rates among 1431 individual birds in total, of which 944 were 

ringed as juveniles and 487 ringed as adults. Of the juveniles, 505 (53.5%) were ringed 
in winter, and 439 (46.5%) in the breeding season, while 344 of the juveniles (36%) 

were re-encountered, 281 in winter, 154 in the breeding season and 91 in both seasons. 
Of the adults, 262 (53.8%) were ringed in winter, 225 (46.2%) in the breeding season 

and a total of 172 (35%) were re-encountered, 121 in winter, 107 in the breeding season, 
56 in both seasons. 

Table 10.3 presents a further breakdown of the re-encounter data by season and species 
for birds ringed as juveniles in either season (table 10.3 a), ringed in winter (table 
10.3. b. ) and ringed in the breeding season (table 10.3 c), while table 10.4 presents the 
data for birds ringed as adults, broken down in the same way. Where totals do not match 
those in table 10.1., this is due to birds that could not be aged at time of ringing (mostly 
House Sparrows and Long-tailed Tits in winter). In table 10.5, overall re-encounter rates 
as adults for birds ringed as juveniles are shown, indicating the degree to which local 
fledglings and/or dispersing juvenile immigrants persist to adulthood within SK3388. 

201 



Table 10.3. a-c Within age class re-encounter rates: birds ringed as juveniles. RE = 
overall re-encounter rate (proportion of birds ringed that were subsequently re-trapped, 
re-sighted or recovered). REb = birds re-encountered in breeding season. REM, = birds 
re-encountered in winter. REboth = birds re-encountered in both seasons. 

a. Birds ringed as juveniles in either season 
Species Ringed RE REb RE, RENAAA 
All ll species 944 344 (36%) 154 (16%) 281 (30%) 91(10%) 
Blackbird 29 4(14%) 4(14%) 2(7%) 2(7%) 
Blue Tit 491 214 (44%) 74 (15%) 188 (38%) 48 (10%) 
Coal Tit 51 10 (20%) 5 (10%) 6 (12%) 1 (2%) 
Dunnock 33 12 (36%) 8 (24%) 9 (27%) 5 (15%) 
Great Tit 100 33(33%) 19(19%) 24(24%) 10(10% 
Greenfinch 71 34 948%) 23 (33%) 28 (39%) 17 (24%) 
House Sparrow 67 23 (34%) 16 (24%) 14 (21%) 7 (10%) 
Long-tailed Tit 4 0 0 0 0 
Robin 26 10 (38%) 4 (15%) 7 (27%) 1 (4%) 
Siskin 49 3 (6%) 0 3 (6%) 0 
Wren 23 1 (4%) 1 (4%) 0 0 

b. Birds ringed as juveniles in winter 
Species Ringed RE REb REW REb0th 
All 11 species 505 209(41%) 76(15%) 188 (37%) 55(11%) 
Blackbird 22 4 (18%) 4 (18%) 2 (9%) 2 (9%) 
Blue Tit 247 131 (53%) 32(13%) 127(51%) 28(11%) 
Coal Tit 38 8(21%) 4(11%) 5(13% 1(3%) 
Dunnock 19 8 (42%) 6 (32%) 6 (32%) 4(21%) 
Great Tit 38 17(45%) 8(21%) 14 (37%) 5 (13%) 
Greenfinch 58 31(53%) 21(36%) 25 (43%) 15 (26%) 
House Sparrow 1 0 0 0 0 
Long-tailed Tit 0 0 0 0 0 
Robin 15 6 (40%) 0 6 (40%) 0 
Siskin 49 3 (6%) 0 3 (6%) 0 
Wren 18 1 (6%) 1 (6%) 0- 0 

c. Birds ringed as juveniles in breeding season 
Species Ringed RE REb RE., REnth 
All 11 species 439 135(31%) 78 (18%) 93(21%) 36 (8%) 
Blackbird 7 0 0 0 0 
Blue Tit 244 83 (34%) 42 (17%) 61(25%) 20 (8%) 
Coal Tit 13 2 (15%) 1 (8%) 1 (7%) 0 
Dunnock 14 4 (29%) 2 (14%) 3 (21%) 1 (7%) 
Great Tit 62 16(26%) 11(18%) 10(16%) 5(8%) 
Greenfinch 13 3 (23%) 2 (15%) 3 (23%) 2 (15%) 
House Sparrow 66 23 (35%) 16 (24%) 14 (21%) 7 (10%) 
Long-tailed Tit 4 0 0 0 0 
Robin 11 4 (36%) 4 (36%) 1 (9%) 1 (9%) 
Siskin 0 0 0 0 0 
Wren 5 0 0 0 0 
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Table 10.4. a-c Within age class re-encounter rates: birds ringed as adults. 
Notation as table 10.3. 

a. Birds ringed as adults in either season 
Species Ringed RE REb REQ. REboth 
All 11 species 487 172 (35%) 107 (22%) 121 (25%) 56(12%) 
Blackbird 47 15(32%) 11(23% 9(19%) 5(11%) 
Blue Tit 123 67 (54%) 37 (30%) 51(42%) 21(17%) 
Coal Tit 6 4 (67%) 1 (17%) 3 (50%) 0 
Dunnock 33 15 (45%) 13 (40%) 9(27%) 7 (21%) 
Great Tit 27 8(30%) 5(19%) 6(22%) 3(11%) 
Greenfinch 58 27 (47%) 20 (34%) 18(31%) 11(19%) 
House Sparrow 93 14(15%) 10(11%) 9(10%) 5(5%) 
Long-tailed Tit 46 9 (20%) 4 (9%) 7 (15%) 2 (4%) 
Robin 13 8 (62%) 3 (23%) 5 (38%) 0 
Siskin 20 0 0 0 0 
Wren 21 5 (24%) 3 (14%) 4 (19%) 2 (10%) 
b. Birds ringed as adults in winter 
Species Ringed RE REb RE,, REb�th 
All 1I species 262 97 (37%) 49 (19%) 76 (29%) 28(11%) 
Blackbird 17 5 (29%) 3 (18%) 4 (24%) 2 (12%) 
Blue Tit 80 43 (54%) 21(26%) 34 (43%) 12 (15%) 
Coal Tit 4 2 (50%) 0 2 (50%) 0 
Dunnock 12 6 (50%) 5 (42%) 6 (50%) 5 (42%) 
Great Tit 16 6 (19%) 1(6%) 2 (13%) 0 
Greenfinch 23 13 (57%) 8 (35%) 8 (35%) 3 (13%) 
House Sparrow 29 6 (21%) 3 (10%) 5 (17%) 2 (7%) 
Long-tailed Tit 40 9(23%) 4(10%) 7(18%) 2(5%) 
Robin 8 6 (75%) 2 (25%) 4 (50%) 0 
Siskin 20 0 0 0 0 
Wren 13 4(31%) 2(15%) 4(31%) 2(15%) 
c. Birds ringed as adults in breeding season 
Species Ringed RE REb REW REn0th 
All 11 species 225 75(33%) 58(26%) 45 (20%) 28 (12%) 
Blackbird 30 10 (33%) 8 (27%) 5 (17%) 3 (10%) 
Blue Tit 43 24 (56%) 16 (37%) 17 (40%) 9(21%) 
Coal Tit 2 2 (100%) 1(50%) 1(50%) 0 
Dunnock 21 9 (43%) 8 (38%) 3 (14%) 2 (10%) 
Great Tit 11 5 (45%) 4 (36%) 4 (36%) 3 (27%) 
Greenfinch 35 14 (40%) 12 (34%) 10 (29%) 8 (23%) 
House Sparrow 64 8(13%) 7(11%) 4 (6%) 3(5%) 
Long-tailed Tit 6 0 0 0 0 
Robin 5 2 (40%) 1 (20%) 1 (20%) 0 
Siskin 0 0 0 0 0 
Wren 8 1(13%) 1 (13%) 0 0 
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If the re-encounter rates as adults for birds ringed as juveniles were significantly 
different between species, this would show that dispersal and/or survival varied between 

species and hence that the avifauna was unlikely to remain stable in composition over 

time. For ringing and re-encounter records within the breeding season only, there was 

no significant difference between re-encounter rates for birds of five species ringed as 
juveniles (Blue Tit, Coal Tit, Dunnock, Great Tit and Greenfinch, )? =1.035, DF = 4, P 

0.904, data from table 10.3. c). However, for ringing and re-encounter records in winter 

only there was a highly significant difference among nine species (Blackbird, Blue Tit, 

Coal Tit, Dunnock, Great Tit, Greenfinch, Robin, Siskin and Wren) for birds ringed as 
juveniles (ý = 70.23, DF = 8, P <0.001, data from table 10.3. b). 

If the re-encounter rates of birds ringed as adults did not differ between species, this 

would indicate that all species in the avifauna had similar overall dispersal and mortality 

rates, a further indication of stability in the avifauna. For ringing and re-encounter 

records within the breeding season only, there was no significant difference between re- 
encounter rates of the five species providing adequate data for birds ringed as adults 
(Blackbird, Blue Tit, Dunnock, Great Tit and Greenfinch, = 1.09, DF = 4, P 0.895, 
data from table 10.4. c) although if House Sparrow was included the difference became 

significant ()? = 13.41, DF = 5, P 0.0198) but this is probably influenced by the 

notorious trap-shyness of this species (Summers-Smith 1963). In contrast, for ringing 
and re-encounter records in winter only, there was highly significant variation among 
eight species (Blackbird, Blue Tit, Dunnock, Great Tit, Greenfinch, Long-tailed Tit, 
Siskin and Wren) in re-encounter rates for birds ringed as adults ()= 22.94, DF = 7, P 
0.002) and somewhat more variation if House Sparrow was included ()= 25.5, DF = 8, 
P 0.00 13, data from table 10.4. b). 

This would suggest that the breeding avifauna is relatively stable in composition. In 

contrast, the winter population would appear to contain variable proportions of 
transients, but for the fact that if the winter analyses were restricted to data for only the 
same five species as were used for the breeding season comparisons, there was no 
longer significant inter-specific variation in winter re-encounter rate for birds ringed as 
adults in winter ()? = 7.43, DF = 4, P 0.115). However, for birds of these five species 
ringed as juveniles in winter the inter-specif ic variation in winter re-encounter rate 
retained significance (ý = 22.15, DF = 4, P <0.001), suggesting that interspecific 
variation in proportions of winter transients is mostly accounted for by juveniles. 
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Comparing re-encounter rates between age classes, sufficient data on the proportions of 

ringed juveniles re-encountered as adults were available for six of the species in table 

10.5, Blue Tit, Coal Tit, Dunnock, Great Tit, Greenfinch and House Sparrow; the 

difference was highly significant ()? = 37.6, DF = 5, P <0.0001). Juvenile Greenfinches 

had an exceptionally high probability (28%) of being re-encountered as adults; re- 

encounter probability for Dunnock at 15% was more than twice the mean re-encounter 

probability of the six next most re-encountered species (6.3%). 

Table 10.5 Between age class re-encounter rates: proportions of birds ringed as 
juveniles that were subsequently re-encountered (at any time) as adults. 

Individuals Individuals Individuals Individuals 
Species ringed as re-encountered Species ringed as re-encountered 

juveniles as adults juveniles as adults 
Blackbird 29 1 (3%) Great Tit 100 9 (9%) 

Blue Tit 491 31 (6%) Greenfinch 71 20 (28%) 

Bullfinch 5 1 (20%) House Sparrow 67 5 (7%) 

Chaffinch 6 0 (0%) Long-tailed Tit 4 0 (0%) 

Coal Tit 51 4 (8%) Robin 26 1 (4%) 

Dunnock 33 5 (15%) Siskin 49 0 (0%) 

Goldcrest 28 0 (0%) Starling 12 0 (0%) 

Goldfinch 41 0 (0%) Wren 23 1 (4%) 

Relatively few birds were recovered dead; four long-distance recoveries are discussed in 

section 10.3.2. Of the 17 birds recovered within or near SK3388, seven (42%) were 
killed by cats with another four found freshly dead, cause unknown. Two Blue Tits 

(almost certainly a nesting pair) were road casualties, two were pulli found dead near 
boxes post-fledging (one drowned) as was one Great Tit. One adult female Blackbird 

ringed in at least her second winter on 21/02/2002 was found headless and freshly killed 

on the pavement over two years later in breeding condition and 1.5 km away. 

10.3.2. Movements 

Figure 10.5 maps the nominal linear trajectories of bird movements between feeding 

sites at which regular observations were made (i. e. excluding `one-off, casual records) 
as vectors of varying colours and thicknesses according to the relative frequency of the 

movement in the dataset (see figure 10.5 legend). Figure 10.6 repeats this mapping but 
for numbers of individual birds, i. e. counting only one record per individual per 
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movement. Comparing figures 10.7 and 10.8 reveals several cases of 51 - 100 

movements and one of > 100 movements that were accounted for by only 5- 20 birds. 

Figure 10.5. Bird movements between the primary ringing and observation sites within 
and near (< 500 m) SK3388, February 2002 - June 2005. All species, each repeat 
observation of same individual counted as one movement. 

To map movements for all logged re-encounters including 'one-off and casual records 

would have greatly cluttered figures 10.5 and 10.6 Instead, their frequency distributions 

were plotted as histograms, again both in terms of individual birds (figure 10.7 a) and 

total numbers of movements including repeated observations of the same individuals 

(figure 10.7 b). Close proximity of two productive ringing and re-sighting sites 

generated a bias in the distribution of movement distances (figure 10.7 b) towards short 

distance movements; when only one record per individual per movement was 

considered, the distribution of numbers of movements across distance classes was more 

even ( figure 10.7 a). 
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Figure 10.6. Movements of individual birds between the primary ringing and 
observation sites within and near (<500 m) SK3388, February 2002 - June 2005. All 
species, each individual counted once only. 

Figure 10.8 shows the numbers of different sites at which individual birds of the nine 

most-re-encountered species were located. Of the most territorial species, Dunnock is 

the least mobile (figure 10.8 c) while Robin (figure 10.8 d) has a somewhat higher 

proportion of individuals found at two sites and Blackbird (figure 10.8 h) was more 

mobile with only slightly fewer single-site birds than Blue Tit (25% vs 27%) but again 

no birds using more than three sites, as was also the case for Long-tailed Tit (figure 10.8 

e). A higher proportion of Blue Tits (figure 10.8 a) used only single sites than Great Tits 

(figure 10.8 b) although more of the former species were ringed. Both occurred at up to 

four sites, as did Coal Tit (figure 10.8 i) although far fewer of the latter were ringed. 

Among granivores, individual House Sparrows occurred at up to four different sites 

(figure 10.8 g) but Greenfinch was the most mobile of the nine species considered and 

the only one of which some individuals (3.2%) were re-encountered at five different 

sites during the study period (figure 10.8 f). 
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Figure 10.7. a. - b. Frequency distributions of movement distances reported: (a) 
numbers of individual birds in each distance class and (b) total numbers of reported 
movements in each distance class. Long distance movements (> 2 km) excluded. 

Movements of more than 1 km were recorded for 18 individual birds, 11 of these were 

birds ringed within or nearby the core study area and re-encountered elsewhere, seven 

were birds ringed some distance from the study area but re-encountered within it. Four 

of these 18 mobile individuals were recovered dead (another 17 local dead recoveries 

are discussed in section 10.3.1). One Wren which was ringed as a juvenile in November 

2003 was freshly dead in Berwick on Tweed (264 km) 193 days later, a nationally 

exceptional movement for this species although vehicle assistance is suspected. A 

female Greenfinch ringed in her first breeding season on 16/06/2004 was killed by a cat 

a few weeks later in a suburban Nottinghamshire garden 26 km away on 27/08/2004. 

Two Siskins were recovered, both showing movements typical of birds ringed in the 

Sheffield area (Sorby Breck Ringing Group pers. comm). First winter male R606724 

was ringed on 24/03/2004 and recovered `long dead' a few weeks later on 09/05/2004 in 

Dumfries and Galloway (296 km), another bird ringed just south of Sheffield made an 

almost identical movement in the same spring. First winter male R088379 was ringed 

on 12/02/2003 and recovered just over one year later on 27/03/2004 27 km away in 

northeast Derbyshire. Even more regularity of movement in Siskins was demonstrated 

by first winter female R088383 which was ringed on 12/02/2003 and re-trapped at 

exactly the same SK3388 feeding station a year later on 21 /01 /2004. 
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Figure 10.8. Relative mobility of re-encountered individuals of the nine most-ringed 
species, illustrated by the proportions of ringed birds encountered at varying numbers 
of different sites within the SK3388 study area. Birds re-encountered at least once only. 

Fourteen long-distance colour-ring sightings were obtained. A Dunnock ringed as an 

adult male on 16/04/2002 just northwest of SK3388 was observed in January 2003 in a 

garden to the southeast, around 1.5 km away. A juvenile Blue Tit ringed on 21/06/2002 

was observed two years later on 07/06/2004 in Sheffield Botanical Gardens some 2 km 

away; a longer-distance export was another juvenile Blue Tit, ringed on 04/09/2002 and 
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sighted (again roughly two years later) 21 km away at Alport (Derbyshire). Finally, a 
first winter Blue Tit ringed on 21/11/2003 was re-trapped a few weeks later 

(25/01/2004) in a rural garden 5 km away. Movement of Blue and Great Tits was not 

unidirectional, some tits were also imported into the study area. One first winter bird 

ringed in a suburban garden 4 km from SK3388 on 11/01/2003 was re-sighted within 

the study area the following breeding season on 21/06/2003, and an adult Blue Tit 

ringed in the same garden on the same day was also re-sighted in SK3388 but in the 

following winter on 24/11/2003. Even more remarkably, a third Blue Tit ringed as a 
first year bird in the same ringing session reappeared in SK3388 two years later, on 
23/01/2005. From the same suburban garden, a juvenile female Great Tit ringed on 
06/09/2003 bred the following spring in SK3388 where she was re-sighted on 
25/03/2004 and 27/04/2004. Perhaps more unexpectedly, two House Sparrows from this 

garden also appeared in SK3388, a male, age unknown, ringed on 11/01/2003 was 

sighted one year later on 07/02/2004, while a juvenile female ringed on 06/09/2003 was 

seen within the study area the following spring on 28/04/2004. Although some 

uncertainty always hangs over all such movement records based on colour ring 

sightings, due to the possibility of error, one notable incomer confirmed beyond doubt 

was female Blue Tit, ringed as a juvenile on 20/09/2003 at a moorland site 9 km 

northwest of SK3388 and re-trapped by the author while brooding her chicks in an 
SK3388 box on 28/05/2004. 

As suggested by figure 10.8 f, finches might be expected to show more mobility and in 
fact two interesting Greenfinch movements were recorded in addition to the 26 km 

recovery noted above. A first winter female ringed on 04/01/2003 was re-trapped 14 

months later on 28/03/2004 in a rural garden 5 km away while a juvenile male ringed on 
04/12/2003 was re-sighted twice later in the same winter on demonstration feeders at a 
non-urban bird reserve 17 km away, on 02/01/2004 and 20/03/2004. One juvenile 
female Goldfinch ringed on 11/11/2002 was re-trapped in a rural garden 5 km away two 

winters later on 04/01/2004. 

10.4. Discussion 

Colour-ringing doubled the productivity of the study; approximately the same number 
of re-sightings was logged (1833) as birds were mist-netted (1785). However, sightings 

210 



were heavily biased towards a few regular observers at fixed sites, the four most regular 

observers contributing 85% of the sightings received from the public, furthermore a few 

individual territorial birds contributed large numbers of repeat sightings at these sites 

and the true frequency of their numerous visits to the sighting locations was unknown. 
These regularly-sighted birds were generally present year-round and would have 

generated many more records had their territories been observed daily. In practice, 

regular observers tended to log birds roughly fortnightly and no systematic protocol 

could be imposed given variation in volunteers' lifestyles and availability. 

Once re-sightings had gathered pace around month 13 (the keenest observers were also 

recruited around this time), the re-encounter rate started to converge with and eventually 

overtook the new bird trapping rate. In fact, the time series plot of cumulative re- 

encounters (figure 10.1. ) shows the form that would be expected if survival of ringed 
birds over the three year study period exceeded mortality. This is encouraging in terms 

of the feasibility of acquiring data via colour ring sightings; however it actually means 
little in quantitative terms as the re-sighting rate data are not controlled for observer 

effort and are not adjusted for repeat re-sightings of the same birds in the same month or 
for differing recording protocols between observers. The original objective of studying 

spatial distribution and movement through the acquisition of large numbers of sightings 
over a wide area was not realised due to the acquisition of a small number of regular 
observers at fixed locations rather than a larger number of more widely-distributed and 
perhaps more mobile observers as was envisaged (despite considerable efforts to 

publicise the project). Furthermore, many `one-off records received from casual 
observers proved to be inaccurate; the difficulty of accurately re-sighting identifiable 
individuals for amateurs was under-estimated at the outset, in practice, only a few keen 
birdwatchers were able and willing to correctly resolve colour ring combinations on 
fast-moving birds and practice was evidently required before acceptable accuracy could 
be obtained. 

Error rates in colour ring sightings decline with observer experience (Milligan et al. 
2003) but even with motivated observers, error rates can be high. Milligan et al. (2003) 
found mean error rates of 16% ± 10.7% for untrained observers but still 5% ± 0.9% 

post- training and noted that one of their observers retained error rates of around 60% 

even after training; furthermore these were conservative estimates based on experiments 
in ideal laboratory conditions. In the present study only one of the regular observers 
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produced records in a format that made error estimation straightforward, her proportion 

of invalid combinations (30 out of 534 records, including same-day repeat sightings 

which were not formally logged as re-encounters) was 5.6% overall with a mean error 

rate per data submission of 7.5% 12% (SE), which suggests that out of the 504 

apparently valid records, another 38 could be erroneous giving a maximum total error 

rate of around 13%. In a colour-ringing study the error rate can only be measured by 

invalid combinations reported, however as Milligan et al (2003) also observe, the true 

error rate increases as more birds are ringed because increasing numbers of 

combinations reported incorrectly are nonetheless accepted because they have been 

fitted to other birds of the same species and are hence not recognised as invalid. In both 

the present study and the experiments of Milligan et al. (2003) apparent error rates also 

increased as more birds were marked and less distinctive colours had to be used. Errors 

are also much higher in studies that mark both legs than in studies that mark a single 

leg; Milligan et al. (2003) found that 57% of their errors were right/left leg switches. 

Colour-ringing is generally considered not to significantly impact bird behaviour 

(Milligan et al. 2003; Redfern & Clark 2001; Weiss & Cristol 1999); the only 

documented effects concern sexual selection, particularly with regard to symmetry 

(Johnsen et al. 2000; Ligon 1999). Accordingly, although it increases handling time and 

so needs to be managed carefully in cold weather, it does not require additional 
licensing or welfare assessment, nor should it bias re-encounter probability with respect 

to birds wearing only metal rings. Nonetheless, some birds are clearly aware of their 

colour rings and in the present study, Greenfinches in particular appeared keen to 

remove them, as was also observed by Kosinski (2004), hence the need for heat-sealing. 

One territorial female Blue Tit was observed to ignore her rings for most of the year but 

during a period of around two weeks at the start of the breeding season, to make 

strenuous attempts to remove her orange ring only, neglecting the others. One possible 

explanation is that she perceived her visibility to predators at the nest might be 

increased (Kosinksi (2004) reported that female Greenfinches were also keener to 

remove colour rings than males) but the true cause of this behaviour remains unknown, 

particularly as birds' colour vision and hence their perception of their own colouring 
differs markedly from that of humans (e. g. Eaton 2005). 

In terms of generating data for formal mark-recapture modelling of survival rates, 
focusing observation effort at a few key sites proved over time to be a more sustainable, 
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productive, and probably more reliable approach to colour ring re-sighting in this study 

than soliciting casual observations over a wide area. Had this been realised at the outset, 

more formal sampling protocols at such key sites might have enabled the formal 

estimation of survival rates for the few birds using them, although over a timescale of 

just three years they would probably still have failed to contribute the volume of data 

required for adequate goodness of fit in formal models. As Anderson & Burnham 

(2004) have observed, with respect to formal modelling "relatively little can be learned 

from only 3-4 years of ringing". 

Re-encounter rates of the 11 frequently re-encountered species were virtually identical 

for birds ringed as adults (35%) and as juveniles (36%). The similarity of re-encounter 

rates among the major species ringed and re-encountered in the breeding season 

suggests that the composition of the breeding avifauna is fairly stable. The variability of 

re-encounter rates among species for winter-ringed birds suggests that, in contrast, there 

is inter-specific variation in the dynamics of the winter assemblage, notably among 
juveniles. This difference in the degree of inter-specific variation in dynamics between 

the winter and breeding assemblages might be largely accounted for by differential 

emigration and immigration rates of juveniles, among resident species, and perhaps also 
influenced by the annually-varying dynamics of species that are predominantly winter 
visitors to SK3388 and hence were not caught in adequate numbers for the breeding 

season analyses, notably Long-tailed Tit and Siskin. Life history differences, for 

example between hole- and open-nesting species, may confound these comparisons. 

Patterns in re-encounter data are also highly likely to be affected by behavioural 
differences between species, as suggested by figure 10.3. For example, highly territorial 
Robins are often re-encountered immediately after ringing (figure 10.3 h), whereas all 
the other species considered show a short post-ringing refractory period in which nets 
and/or observers may be avoided. The difference in the patterns of re-encounter 
durations between Robin and other resident territorial species such as Dunnock (figure 
10.3 d) and Blackbird (figure 10.3 c) that lack anniversary peaks is striking, although 
winter use of `sunflower heart' feeders by Robins was regularly observed (pers. obs. ) 
Dunnocks and Blackbirds are less directly interested in the seed and peanut feeders that 
form the dominant winter resource in SK3388 for more granivorous species. 
Detectability of the behavioural difference between Robin and Dunnock may be biased 
by the larger numbers of Dunnocks ringed and the dominance of one individual Robin 
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in the re-encounter data for that species. Nonetheless, these data (and anecdotal support) 

suggest that some Robins use the same feeders annually in winter but do not seek their 

assistance (or are less conspicuous) during the breeding season. In contrast, Dunnocks 

and Blackbirds are visible around feeding stations throughout the year. Another 

different behaviour pattern is that of the mobile and non-territorial Greenfinch which 

also shows a striking peak in re-encounter frequency around the second anniversary of 

ringing (figure 10.3 e). Greenfinches were only scarce breeders in SK3388 yet 

nonetheless numerous at feeders, the anniversary peak is probably due to the re- 

appearance of non-resident winter visitors the winter following ringing. The presence of 

an anniversary peak in Blue Tit (figure 10.3 b) but not in Great Tit (figure 10.3 f) is 

similarly of interest but Great Tits were relatively scarce and appeared to be newly in 

the process of colonising the study area; typical non-urban winter tit flocks were not 

observed in SK3388 during the study period. Figure 10.3 underlines the importance of 
interspecific behavioural differences in evaluating ringing re-encounter rates. 

Insufficient data from recoveries were available to assess either relative mortality or its 

causes either generally or by age class or species. Of eight known cat kills (including 

one long-distance recovery), four were birds ringed as juveniles and killed within one 
year of ringing, four were either birds ringed as adults or killed more than one year after 
ringing i. e. individuals killed despite at least a year of life experience. The general re- 
encounter rates of 8- 18% for tits are not atypical; juvenile survival rates in Great Tits 

vary between 3% and 21% (Gosler 1993). 

The numbers of movements logged between pairs of observation sites appears to vary 
negatively with distance and are confounded by observer effort (figure 10.5), 

nonetheless, figure 10.6 suggests that in general individual birds move fairly freely 

within the plot, certainly within a range of around 500m and in some cases further. The 

general negative association with relative mobility and territoriality seen in figure 10.8 

also suggests that the normal territorial and seasonal behaviours of the major species are 
not over-ridden in major or unexpected ways by abnormal habitat characteristics, 
although the absence of mobile winter tit flocks from SK3388 is striking. Long-tailed 
Tits are a frequent component of such flocks in other habitats, their apparent relative 
immobility is probably confounded by the very small numbers of this species breeding 
in SK3388; 75 out of 85 birds ringed were caught in winter and were therefore, in fact, 
probably relatively mobile individuals. In further evidence of winter mobility in this 
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species, one breeding Long-tailed Tit caught in May in an urban garden 1 km from the 

main study site was a re-trap originally ringed in March of the same year in a rural 

garden some 3 km away. Furthermore, breeding individuals colour-ringed in another 

study approximately 7 km away started to appear in SK3388 during the winter of 2004- 

05, confirming that Long-tailed Tits exploiting the study area in winter may originate 

from a wide surrounding area. A similar inference can be drawn for Coal Tit from the 

fact that 43 out of the 58 birds ringed were caught in winter and SK3388 breeding 

numbers were very low, although notably increasing over the survey period. This 

increase, plus the colonisation of Great Tit, and the new arrival of Nuthatch in 2004 

underscores an important caveat in the assessment of mobility and population dynamics 

in SK3388. It appears that though this is avifauna is generally stable, it was nonetheless 

undergoing some important changes in composition during the study period; 

unfortunately only three years' data are insufficient to evaluate their significance. 

Relatively few records of bird movements beyond the immediate area of the study site 

were acquired but those few that were forthcoming tell some interesting stories. The 

winter-visiting Siskin provides one of the few examples of a species clearly using the 

study area as a single-season resource in appreciable numbers; the small numbers of 

recoveries and re-traps available hint at a rather regular seasonal pattern of movement 
between the Sheffield area and a breeding area elsewhere, although some Siskins do 

breed in the Peak District so considerably more records would be required to evaluate 
this. From the perspective of the present study what the Siskin records do suggest is that 

SK3388 is not a last-resort, emergency-only, refuge for occasional, transient Siskins but 

a regularly-used winter habitat that forms part of a normal seasonal movement pattern 
for this species. In 2003 they were accompanied in SK3388 by Lesser Redpolls, 

generally not considered an urban species, which did not merely pass through but 

remained in the study area for several weeks, clearly finding useful food resources 

among the small Birch and Alder street trees (pers. obs. ). In fact, the general stability of 
the avifauna suggested by the re-encounter data and the general site-fidelity of the 

common species suggested by figure 10.8 leads to a conclusion that it is not just the 

winter visitors using SK3388 in a predictable, regular way. Despite scoring very highly 

on most conventional metrics of relative urbanisation, the study area shows every sign 
of supporting a sustainable breeding avifauna of stable composition, augmented by 

variable numbers of winter transient conspecifics in exactly the same manner as 
suburban and rural garden habitats. 

215 



11 Biometrics and condition of wild birds in SK3388 

Abstract 

Body weights and measurements of wild birds ringed in the SK3388 study area were analysed 
for evidence of ecological opportunities or constraints. Breeding season Blue Tits and juvenile 
Robins were heavier in SK3388 than at adjacent non-urban sites; urban Dunnocks and Long- 
tailed Tits were lighter, as were urban winter House Sparrows, while Blackbird, Greenfinch and 
Great Tit showed no inter-habitat variation. Resident juvenile Blue Tits had lower fat scores in 
winter than transients, suggesting they can optimise their body condition; a conclusion 
supported by generally negative associations between winter temperature and Blue Tit fat score. 
The bills of urban Great Tits appear to lengthen through the winter, suggesting that birds with 
access to feeders may not have to work as hard for their winter diet as woodland conspecifics. 

11.1. Introduction 

In this chapter, biometric data for birds caught by mist-netting in SK3388 during the 

study period are examined with specific reference to the question of whether this habitat 

provides ecological opportunities or imposes ecological constraints. Resource 

availability in urban ecosystems is likely to be very different from that of the natural 
habitats of their wild birds, both generally and in terms of seasonal variation. Perhaps 
the most apparent difference is that of food availability which is highly modified, 
primarily through anthropogenic supplementation. Consequently, the physiological 
and/or nutritional status of urban birds might differ with respect to non-urban 
conspecifics, may vary according to whether individuals are resident or transient users 
of the urban habitat and may change with time in ways that reflect the opportunities or 
constraints applicable to the bird species exploiting it. 

Variations in weight and fat deposition are particularly valuable indicators of ecological 
status in small birds. The weights of small passerines show very significant diel 

variations that are linked to food availability and can be adjusted strategically by the 
bird according to environmental conditions, including perceived predation risk 
(Cresswell 1998; Gosler 2002; Gosler et al. 1995b; Macleod et al. 2005; Thomas 2000). 
If birds of the same species differ between urban and non-urban habitats in their 
weights, this would indicate the balance of food availability and perceived predation 
risk differed between the two habitats. Birds can be lighter, i. e. carry less fat, if food 
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supplies are reliable; equally, if there is a very low perceived risk of predation and food 

is abundant, they may be generally heavier. Also, with ad lib food available, birds in 

SK3388 might need to vary their weights less with time of day than non-urban 

conspecifics, and this might be detectable as an interaction between habitat and time of 

weighing as predictors of weight /wing length ratio. 

Four analyses are presented. Firstly, body weights of the ten most-ringed species caught 

within the SK3388 study area are compared with weights of conspecifics caught locally 

but outside the city of Sheffield over the same time period. Secondly, relationships 

between biometrics and re-encounter probability are examined for seven species. A 

third analysis examines the relationship between body fat deposition and temperature in 

SK3388 Blue Tits for evidence of ecological constraint in body condition regulation. 

A fourth analysis considers a different issue, that of variation in winter diet between 

urban and non-urban birds. Seasonal variation in the bill shape of Great Tits reflects 

seasonal changes in their diet. The pattern of variation over the winter of 2003 - 2004 is 

examined for any differences with respect to the generally accepted pattern in woodland 
birds which might indicate that the winter diet of SK3388 birds differs from that in 

more natural habitat. 

11.2. Methods 

Birds were caught in mist nets, in SK3388 as described in chapter nine, in the case of 
the urban sample. The non-urban birds were mist-netted and ringed at a wide range of 
exurban sites within a 50 km radius of Sheffield during the study period, by volunteers 

of the Sorby Breck Ringing Group (R. D. R. Williams 2005, unpublished data). Mist- 

netted birds were weighed with Pesola spring balances (or electronic balances in the 

case of some non-urban birds) and measured with standard BTO wing rules and/or 
digital callipers as appropriate, wing lengths were maximum chord, bill length to skull, 
bill depth to distal edge of nostril. Fat scores representing the relative quantity of 
subcutaneous fat deposited within the furcular depression and upon the lower abdomen 
and visible upon parting feathers by blowing were recorded using the ESF scoring 
system (0 - 8, resolution of 0.5). Pectoral muscle condition was recorded on a four point 
scale (0 - 3) (see Redfern & Clark 2001; Svensson 1992 for measurement methods). 
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Weight and wing length were the only biometrics available for the non-urban sample, 

the ratio of weight to wing length was therefore used in the urban / non-urban 

comparison. Wing length effectively calibrates body weight to give a more accurate 

reflection of condition (Gosler et al. 1995a) and the use of a ratio avoids some of the 

interpretation issues applicable to univariate metrics of avian body size (Freeman & 

Jackson 1990). For the comparison of urban and non-urban weights, ANCOVA models 

were used of weight / wing length ratio against four categorical factors, (age and sex of 
birds and the season and habitat in which they were trapped), together with time of 

weighing (seconds after midnight) as a covariate. Data for 3024 non-urban individuals 

of the ten species most ringed in SK3388 during 2002 - 2004 were available for 

comparison. 

All bird records, both SK3388 and non-urban, were classified into one of three age 

classes, adult, juvenile or unknown, and two classes of habitat, urban (i. e. SK3388) and 

rural. All captures were also designated as either breeding season (April - September) 

or winter season (October - March). For some species, factors such as sex or ageclass 
could not be used as adequate data were not available. Main effect sex was not used in 

species for which most individuals are unsexed, such as Blue Tit. Generally, only birds 

that were aged as either adult or juvenile at time of capture were included in the 

analyses, except where this caused severe loss of data as in, for example, House 
Sparrow and Long-tailed Tit which cannot be aged in autumn and spring, and Dunnock 
for which ageing is often difficult; birds of ageclass unknown were included only when 
overall model fit was inadequate without these data. To avoid pseudoreplication, only 
newly-ringed birds were included in the analyses, data from re-traps were discarded. 

As the data were unbalanced, SAS procedure GLM was used rather than PROC 
ANOVA (SAS Institute Inc. 2004). Maximal models with weight / wing length ratio 
(wtwing) as the dependent biometric variable, ageclass, habitat class, season and sex as 
factors, time of weighing as covariate and all interaction terms were refined to minimal 
adequate models (MAM) by the successive removal of least-significant terms 
(backward selection) rather than forward or stepwise term selection methods which are 
not appropriate to unbalanced data (Crawley 2002). This initial backward model 
selection was performed automatically using experimental SAS procedure PROC 
GLMSELECT which selects terms based on the Schwarz Bayesian Information 
Criterion (SBC), an information-based parameter which overcomes some of the 
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problems of model term selection using F- and P- based hypothesis testing (for 

discussion see e. g. Anderson & Burnham 2004; Der & Everitt 2002). The option 

HIERARCHY was set to `single' such that model terms were removed in the 

conventional sequence, i. e. all the interactions of a higher order before any of the next 

lower order. To examine the directions and significances of variations in weight / wing 

length between factor levels, a further unbalanced multiway ANCOVA was then 

performed using PROC GLM in SAS following Der & Everitt (2002) for each of the 

MAMs. Plots of residuals against predicted values were checked for excessive 
heteroscedasticity and Tukey-Kramer studentised range tests for unbalanced groups 

were applied to the means of wtwing within levels of the main effects to determine 

significance and direction of any pairwise variance, and further applied to the least- 

squares means of all significant effects in the MAMs (main and interactions) to examine 
directionality and significance of interaction effects on the means of wtwing (SAS 

Institute Inc. 2004). 

To examine the possibility of predictive relationships between biometrics and 

persistence of individual birds within the study area, logistic regression of the log-odds 

of the binary response variable reenc (set to one for each individual if bird re- 

encountered at any time subsequent to ringing, otherwise zero) against three biometric 

predictors (weight/wing length ratio, fat score and muscle score) was performed using 
PROC GENMOD in SAS (e. g. Der & Everitt 2002). Regressions were performed 

separately for birds ringed as adults and birds ringed as juveniles. With the exception of 
Blue Tit, for which winter ringed and breeding season ringed juveniles were modelled 
separately, insifficient data were available to segment this analysis any further. 

To determine the direction of any relationship between Blue Tit fat score and 
temperature, 359 records of Blue Tit captures between October and March in the two 

complete winters 2002 -03 (winter! ) and 2003 - 04 (winter2) were examined. Hourly 

meteorological data were available from the University of Sheffield weather station 
located 1.2 km from the centre of the SK3388 study area. For each one hour period the 

median of the minimum and maximum temperatures medtemp was used as the primary 
covariate. Fat scores had values of between zero and 45 in increments of 5, they were 
not normally distributed (Kolmogorov-Smirnov test P<0.01) and so were transformed 

using a Box-Cox transformation with ?=0.64 and 0.5 added to each fat score value, to 

219 



achieve a normal distribution (Kolmogorov-Smimov test P>0.15). The value of ), was 

determined automatically using MINITAB v14. 

After exploratory simple linear regression analysis of the likely form of the relationship, 

the transformed fat scores (transfat), were analysed by using PROC GLM in SAS to 

construct an ANCOVA model with ageclass (adult or juvenile) and winter (winterl or 

winter2) as factors and time of day (seconds after midnight, designated GMT) as an 

additional covariate as this is known to be a strong predictor of observed fat scores 

(Gosler 2002). Wing length and weight were also available as additional covariates and 

pectoral muscle condition score (0- 3) as a factor. However, due to the large number of 

such possible predictors of transfat, SAS experimental procedure GLMSELECT was 

used to automatically select significant model terms, as previously described, with 

backward selection from maximal models and the hierarchy option set to `single' (SAS 

Institute Inc. 2005b). 

In the analysis of Great Tit bill shape, the ratio of bill depth to length was calculated, 

following Gosler (1987a), as an index of relative bill shape for Great Tits caught in 

SK3388 and measured after June 2002; measurements prior to that were anomalous due 

to issues of familiarisation and standardisation of the procedure. Values of this index 

were plotted against date of capture and simple linear regression used to examine trends. 

11.3. Results 

11.3.1. Inter-habitat variation In weight per wing length 

Results of the minimum adequate ANCOVA models comparing the urban and non- 
urban weight/wing ratios (wtwing) are presented in the following tables, 11.1 -11.9. 

For Blackbird, table 11.1 shows that there was no significant effect of habitat on weight 
/ wing length ratio. Across both habitats, females were generally heavier for their size 

than males and adults were heavier in winter than in the breeding season; winter 
juveniles were also significantly lighter than breeding adults. Weight per wing length in 
Blackbirds generally increased with time of day (parameter estimate = 1.41 x 10-6 ± 0.7 

x 10-6 P=0.0449) although significantly less so in adults in the breeding season. 
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Table 11.1. ANCOVA model results for Blackbird. DF = degrees of freedom, SS = 
sums of squares. Observations used: 227. F8 218 = 10.55, P<0.0001. r2 = 0.279 
Source DF Type 3 SS Mean Square F value Pr> F 

time 1 0.070917 0.070917 20.55 <. 0001 
ageclass 1 6.34E-05 6.34E-05 0.02 0.8923 
sex 1 0.027035 0.027035 7.83 0.0056 
season 1 0.000408 0.000408 0.12 0.7313 
time*ageclass 1 7.71 E-05 7.71 E-05 0.02 0.8813 
time*season 1 0.000966 0.000966 0.28 0.5973 
ageclass*season 1 0.023207 0.023207 6.72 0.0102 
time*ageclass*season 1 0.031157 0.031157 9.03 0.003 
Least squares means of wtwing and P values adjusted for multiple comparisons 
effect level LS mean level LS mean P value 

ageclass adult 0.767 juvenile 0.7678 0.936 NS 
season breeding 0.749 winter 0.7858 0.0002*** 
sex female 0.7788 male 0.7562 0.0056** 

adult breeding 0.7385 adult winter 0.7957 <0.0001*** 
adult breeding 0.7385 juvenile winter 0.776 0.0009** 

All other pairwise comparisons Pa 0.05 , NS 

For Blue Tit, table 11.2 shows a highly significant effect of habitat that was interactive 

with season. Weight per wing length generally increased with time of day (parameter 

estimate = 3.3x 10"7 ± 0.3 x 10"7 P<0.0001). 

Table 11.2. ANCOVA model results for Blue Tit. DF = degrees of freedom, SS = sums 
of squares. Observations used: 1063. F4.1058 = 40.2, P<0.0001. r2 = 0.132 
Source DF Type 3 SS Mean Square F value Pr >F 

time 1 0.007694 0.007694 103.49 <. 0001 
season 1 0.001741 0.001741 23.42 <. 0001 
habitat 1 0.003086 0.003086 41.51 <. 0001 
season*habitat 1 0.003218 0.003218 43.28 <. 0001 
Least squares means of wtwing and P values adjusted for multip le comparisons 
effect level LS mean level LS mean P value 
season breeding 0.1713 winter 0.1685 <0.0001*** 
habitat rural 0.1681 urban 0.1716 <0.0001*** 

breeding rural 0.1677 breeding urban 0.1748 <O. 0001*** 
breeding urban 0.1748 winter rural 0.1686 <0.0001*** 
breeding urban 0.1748 winter urban 0.1685 <O. 0001*** 

All other pairwise com parisons PZ0.05, NS 

Generally, breeding Blue Tits are heavier than winter birds, and urban Blue Tits are 
heavier than rural. Urban Blue Tits in the breeding season were significantly heavier for 

their size than rural birds in the breeding season but in winter, the weight / wing length 

ratios for urban and rural birds were virtually identical (P = 1). Incorporation of the 

effect sex reduced the sample size from 1063 to 97 observations and effectively limited 
it to breeding season adults; no effects incorporating sex were significant. 

221 



For Coal Tit, table 11.3 shows that habitat is significant in its interaction with time and 

season. Weights of rural breeding birds respond more positively to time of day than 

those of urban and winter birds (time * season*habitat parameter estimates: breeding 

rural 1.78 x 10-6 ± 0.6 x 10"6, others 0). All pairwise comparisons between levels of 2nd 

order interactions had adjusted P values >_ 0.05 (although the comparison between 

winter rural and winter urban was only marginally non-significant, P=0.0541). 

Table 11.3. ANCOVA model results for Coal Tit. DF = degrees of freedom, SS = sums 
of squares. Observations used: 122. Flo,,, = 3.75, P=0.0002. t2 = 0.252 
Source DF Type 3 SS Mean Square F value Pr >F 

time 1 0.000179 0.000179 3.32 0.0713 

ageclass 1 0.000199 0.000199 3.69 0.0574 

season 1 0.000299 0.000299 5.53 0.0204 
habitat 1 0.000215 0.000215 3.97 0.0487 
time*ageclass 1 0.000273 0.000273 5.05 0.0266 
time*season 1 0.000262 0.000262 4.84 0.0298 
season*ageclass 1 0.000243 0.000243 4.5 0.0361 
time*habitat 1 0.000176 0.000176 3.25 0.0742 
season*habitat 1 0.000431 0.000431 7.97 0.0056 
time*season*habitat 1 0.000486 0.000486 8.99 0.0033 
Least squares means of wtwing and P values adjusted for multip le comparisons 
effect level LS mean level LS mean P value 
ageclass adult 0.1471 juvenile 0.1439 0.1143 NS 
season breeding 0.1453 winter 0.1456 0.9022 NS 
habitat rural 0.1454 urban 0.1456 0.8837 NS 

All other pairwise com parisons Pa0.05, NS 

For Dunnock, table 11.4 shows that habitat has a significant effect on wtwing. Rural 

Dunnocks are significantly heavier than urban birds, in contrast to Blue Tits. Dunnocks 

increase their weight with time of day (time parameter estimate 1.22 x 10"6 f 0.26 x 10" 
6) but less positively in the breeding season than in winter (time parameter estimates: 
breeding - 9.3 x 10'7 ± 3.0 x 10"7, winter 0), when they are also heavier in general. 

Table 11.4. ANCOVA model results for Dunnock. DF = degrees of freedom, SS = sums 
of squares. Observations used: 246. F4.241 = 11.76, P<0.0001. r2 = 0.163 
Source DF Type 3 SS Mean Square F value P, >F 

time 1 0.009004 0.009004 25.82 <. 0001 
season 1 0.001579 0.001579 4.53 0.0344 
habitat 1 0.001996 0.001996 5.72 0.0175 
time*season 1 0.003462 0.003462 9.93 0.0018 
Least squares means of wtwing and P values adjusted for multiple comparisons 
effect level LS mean level LS mean P value 
season breeding 0.2878 winter 0.2964 0.0009** 
habitat rural 0.2953 urban 0.2890 0.0176* 

All other pairwise com parisons Pz0.05 , NS 
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For Greenfinch, table 11.5 shows that there is no significant effect of habitat on weight / 

wing length ratio. The effects of ageclass, sex and season are highly interactive and 

pairwise comparisons are not tabulated in detail in table 11.5 as they have no bearing on 

the question of variation between the two habitats. In summary, pairwise comparisons 

showed that for their wing length adults are heavier than juveniles (P< 0.0001), females 

are heavier than males (P< 0.000 1) and winter birds are heavier than those caught in the 

breeding season (P= 0.0015). For example, adult females are heavier than juvenile 

females (P< 0.0001), but adult males are not heavier than juvenile males (P= 0.8485). 

Breeding season adult females are significantly heavier than winter adult females (P< 

0.000 1), but breeding season juvenile females are significantly lighter than winter 
juvenile females (P< 0.0001). Breeding season adult males are almost identical to 

winter adult males (P =0.9449), but breeding season juvenile males are lighter than 

winter juvenile males (P< 0.0001). 

Table 11.5. ANCOVA model results for Greenfinch. DF = degrees of freedom, SS = 
sums of squares. Observations used: 879. F8_870= 48.86, P<0.0001. r2 = 0.309 
Source DF Type 3 SS Mean Square F value P,, > F 
time 1 0.006065 0.006065 23 <. 0001 
ageclass 1 0.021453 0.021453 81.37 <. 0001 
sex 1 0.035747 0.035747 135.59 <. 0001 
season 1 0.001873 0.001873 7.11 0.0078 
sex*ageclass 1 0.01684 0.01684 63.87 <. 0001 
season*ageclass 1 0.02111 0.02111 80.07 <. 0001 
season*sex 1 0.002447 0.002447 9.28 0.0024 
season*sex*ageclass 1 0.007617 0.007617 28.89 <. 0001 

For Great Tit, table 10.6 shows that there is no significant effect of habitat on the ratio 
of weight to wing length. In general, males are heavier for their size than females and 
breeding season birds heavier than in winter. 

Table 10.6. ANCOVA model results for Great Tit. DF = degrees of freedom, SS = sums 
of squares Observations used: 221. F3.2� = 18.28, P<0.0001. r2 = 0.201 
Source DF Type 3 SS Mean F value P >F Square r 
time 1 0.002541 0.002541 21.47 <. 0001 
sex 1 0.002932 0.002932 24.77 <, 0001 
season 1 0.00114 0.00114 9.63 0.0022 
Least squares means of wtwing and P values adjusted for multiple comparisons 
effect level LS mean level LS mean P va111A 

season breeding 0.2471 winter 0.242 0.0022* 
sex female 0.2409 male 0.2890 <0.0001*** 

All other pairwise com parisons Pz0 
. 05, NS 
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For House Sparrow, table 11.7 shows the results of two different models. Analysis for 

this species is complicated by the fact that birds cannot be aged in autumn or winter and 

that most birds caught are juveniles which cannot be sexed. 

Table 11.7. ANCOVA model results for House Sparrow. 
DF = decrees of freedom, SS = sums of squares 

Source DF Type 3 SS Mean 
Square 

F value P, >F 

i including ageclass but not sex. Observations: 160. FZ 15, = 32.96, P<0.0001. r2 = 0.296 

time 
habitat 

1 
1 

0.025989 0.025989 
0.004896 0.004896 

57.47 
10.83 

<. 0001 
0.0012 

Least sq uares means of wtwing and P values adjusted for multi ple comparisons 
effect level LS mean level LS mean P value 
habitat rural 0.338 urban 0.349 0.0012** 

P<0.0001. r2 = 0.24 Observations: 236 F eclass 230 =14.5 sex but not a din i l ii u nc . . g g . 5, , 
time 1 0.02296 0.02296 47.27 <. 0001 
sex 1 0.006538 0.006538 13.46 0.0003 
season 1 0.000469 0.000469 0.97 0.3269 
habitat I 2.2E-07 2.2E-07 0 0.9829 
season*habitat 1 0.004844 0.004844 9.97 0.0018 
Least sq uares means of wtwing and P values adjusted for multi ple comparisons 
effect level LS mean level LS mean P value 

sex female 0.3517 male 0.341 0.0003*** 
breeding urban 0.1748 winter urban 0.1686 0.0008**, 

All other pairwise comp arisons PZ0.05, NS 

Habitat was significant as a main effect in the initial model with ageclass specified but 

birds unsexed. However, when the requirement to specify ageclass, which was not a 

significant effect, was relaxed, increasing the sample size by almost 50%, habitat then 

only had a significant effect on weight per wing length in House Sparrows in its 

interaction with season. Breeding urban birds were heavier than winter urban birds but 

there were no significant pairwise differences between urban and rural birds. House 

Sparrows significantly increased their weight per wing length with time of day (time 

parameter estimates 8.8 x 10'7 ± 1.2 x 10-7, model i, 9.3 x 10'7 ± 1.3 x 10'7, model ii) 

and, in general, females are heavier for their size than males. 

Most Long-tailed Tits are ringed in winter when they can be neither aged nor sexed, but 
despite the low number of observations (25) available for a fully parameterised model, 
table 11.8 shows that both habitat and sex were significant predictors of wtwing. 
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Table 11.8. ANCOVA model results for Long-tailed Tit. DF = degrees of freedom, SS = 
sums of squares Observations used: 25. F4.20 = 4.0, P<0.0152. r2 = 0.445 
Source DF Type 3 SS Mean Square F value Pý >F 

sex 1 0.000134 0.000134 6.12 0.0224 
season I 7.24E-05 7.24E-05 3.32 0.0836 
habitat 1 0.000162 0.000162 7.42 0.0131 
season sex 1 0.000128 0.000128 5.84 0.0253 
Least sq uares means of wtwing and P values adjusted for multip le comparisons 
effect level LS mean level LS mean P value 
sex female 0.1252 male 0.131 0.0224* 
habitat female 0.1313 male 0.1249 0.0131* 

breeding female 0.1258 winter male 0.1354 0.0177* 
breeding male 0.1266 winter male 0.7761354 0.0451*, 

All other pairwise com parisons P? -- 0.05, NS 

Males were generally heavier than females and rural birds generally heavier than urban. 

Winter males were heavier than breeding season birds of both sexes although the 

samples were very small (10 winter, 15 breeding) and the fact that these birds were 

sexed means they were in breeding condition. When a simplified model with only 

season and habitat was run (F2,300 = 16.51, P<0.000 1, r2 = 0.099), only season was a 

significant predictor of weight per wing length (P< 0.0001). Breeding season birds were 

heavier for their size (adjusted mean 0.1325) than winter birds (0.1268, P< 0.0001). 

For Robin, table 11.9 shows that there was no significant effect of habitat, except in its 

interaction with ageclass. Adults are heavier than juveniles in rural habitat but in urban 
birds there was no significant difference between the age classes. 

Table 11.9. ANCOVA model results for Robin. DF = degrees of freedom, SS = sums of 
squares Observations used: 171. F8.184 = 8.84, P<0.0001. r2 = 0.244 
Source DF Type 3 SS Mean Square F value P, >F 
time 1 0.008208 0.008208 18.3 <. 0001 
ageclass 1 0.000865 0.000865 1.93 0.1667 
season 1 0.001628 0.001628 3.63 0.0585 
habitat 1 0.00017 0.00017 0.38 0.5386 
time*season 1 0.00425 0.00425 9.48 0.0024 
ageclass*habitat 1 0.003021 0.003021 6.74 0.0103 
Least squares means of wtwing and P values adjusted for multi ple comparisons 
effect level LS mean level LS mean P value 
ageclass adult 0.2628 juvenile 0.2566 0.1667 NS 
season breeding 0.2537 winter 0.2658 < 0.0005** 
habitat rural 0.2612 urban 0.2583 0.5386 NS 

adult rural 0.2701 juvenile rural 0.2522 < 0.001**, 
All other pairwise com parisons P; >- 0.05 , NS 

Birds caught in winter increase their weight per wing length more positively with time 

of day than birds in the breeding season (time * season parameter estimates: breeding - 
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1.04 x 10"6 ± 0.34 x 10-6, winter 0); this time *season interaction accounts for the 

significant adjusted pairwise difference between winter birds and breeding season birds, 

the former are generally heavier for their size in the pairwise test despite the marginal 

non-significance of the season main effect. Again, most Robins are not sexed outside 

the breeding season; invoking sex in the models produced a sample of only 39 birds; a 

model could be fitted to this sub-sample (F4,24 =11.4, P<0.0001,1.2 = 0.655) but the 

distribution of residual variances was poor and neither habitat not any interaction with it 

were significant predictors of weight per wing length. 

Wrens cannot be sexed outside the breeding season; when sex was included only 17 

birds were available and no significant model terms were resolved. The fit of a model 

without sex was rather poor (F1.169 = 5.97, P=0.0156, r2 = 0.034) and the only 

significant predictor of weight per wing length was ageclass (P = 0.0156). Adult Wrens 

were significantly heavier per wing length (least squares mean 0.2052) than juveniles 

(0.1961, P=0.0156). As this is a well-known result (Svensson 1992) and has no 
bearing on the question of inter-habitat variation, no ANCOVA table is presented. 

11.3.2. Re-encounter probability in relation to biometrics 

Logistic regression models of re-encounter probability against biometrics for adult- 
ringed and juvenile-ringed birds converged with reasonable data dispersion (0.5 < 
deviance/degrees of freedom < 1.7) for seven species, Dunnock, Blue Tit, Blackbird, 
Greenfinch, Great Tit, House Sparrow and Robin. Data for other species were 
inadequate for this type of model. Within the 14 models run, only two of the possible 42 

predictive relationships were significant. In Dunnocks ringed as juveniles, muscle score 
was a significant negative predictor of overall re-encounter probability (logit parameter 
estimate = -2.477 f SE 1.03, P (type 3) = 0.0046, 'deviance/DF = 1.07, N= 31). In Blue 
Tits ringed as juveniles, fat score was a significant negative predictor of overall re- 
encounter probability (logit parameter estimate = -0.0337 ± SE 0.135, P (type 3) = 
0.0108, deviance/DF = 1.38, N= 360). This predictive relationship remained significant 
when only Blue Tits ringed as juveniles in winter were considered (logit parameter 
estimate = -0.05 ± SE 0.0178, P (type 3) = 0.0037, deviance/DF = 1.37, N= 228) but 
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was not significant for Blue Tits ringed as juveniles in the breeding season (parameter 

estimate = -0.0334 E SE 0.0276, P (type 3) = 0.2169, deviance/DF = 1.39, N= 132). 

11.3.3. Relationship between fat score and temperature in Blue Tits 

Transformed Blue Tit fat score (transfat) had a distribution approximating closely to 

normal and was significantly correlated with wtwing (Pearson r=0.302, DF = 331, P 

<0.000 1) and pectoral muscle score (Spearman's rank correlation r3 = 0.181, N= 374, P 

= 0.0004), so these biometrics were not included in the model. Linear regression 

suggested an overall negative, significant but weak relationship between transfat and 
hourly median temperature (transfat = 8.84 - 0.189 medtemp, F1,331=13.95, P<0.001, 

r2 = 0.035) but also that when the two winters were considered separately the slope of 
the relationship varied between them (figure 11.1); this apparent difference is tested for 

significance in the ANCOVA model (see below). The regression relationship for 

winter2 catches only was more steeply negative (transfat = 11.1 - 0.327 medtemp, F1,146 

= 11.8, r2 = 0.075, P=0.001) than that for winterl catches only (transfat = 7.8 - 0.162 

medtemp, F1,209 = 9.76, r2 = 0.045, P=0.002). Across all 26 weeks of each winter, 
hourly median temperatures did not differ significantly between winter 1 and winter 2 
(winterl mean 6.69° ± 0.057°, winter2 mean 6.82° ± 0.055°, t test, t= -1.58, DF = 
8742, P=0.114). Furthermore, the median temperatures of the hours in which Blue Tits 

were caught did not differ significantly between the two winters either (winterl mean 
6.89° f 0.24°, winter2 mean 7.3 1° ± 0.28°, t test, t= -1.13, DF = 323, P=0.258). 

An ANCOVA model of transfat with medtemp and GMT as covariates and ageclass, 
and winter as factors, together with all their interactions, showed that a greater 
proportion of the variance in transfat than that explained by medtemp in isolation (r2 = 
0.043) was due to other predictors and their interactions with medtemp and with each 
other. Table 11.10. shows the terms from this model that were selected by PROC 
GLMSELECT for the MAM. 
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Figure 11.1. Scatterplot and OLS linear regression lines of transformed fat score in 
Blue Tits against hourly median temperature for wintert (black) and winter2 (red) 

Table 11.10. ANCOVA model results for transformed fat scores in Blue Tits (transfat). 
N= 359. F5.353 = 48.33, P<0.0001. r2 = 0.406 

Parameter DF Estimate 
Standard 

Error t value Pý > Itl 

medtemp 1 48.88628 48.88628 6.67 0.0102 
ageclass 1 64.32038 64.32038 8.78 0.0033 
winter 1 98.4466 98.4466 13.43 0.0003 
GMT 1 1081.243 1081.243 147.51 <. 0001 
GMT winter 1 203.0096 203.0096 27.7 <. 0001 

Table 11.10 shows that generally there was a significant negative effect of mediemp on 

transfat. Fat scores were generally higher in adults than juveniles (least squares means 

of transformed scores adjusted for Tukey test 8.82 vs 7.81, P=0.0033) and generally 
increased with time of day. A Tukey test also showed fat scores were generally higher 

in winter2 than in winterl (9.97 vs 6.66, P<0.0001) but they varied significantly more 

negatively with GMT in winter I than in winter2. 

11.3.4. Seasonal variation in bill shape in Great Tits 

Bill index values for 63 Great Tits captured between September 2003 and October 2004 

are plotted in figure 11.2. Only one bird was measured twice, all other points plotted are 
unique individuals. The negative linear regression coefficient for bill index against 
month number (April = 0, February = 10) is -0.00127 (F 1,61 = 2.12, r2 = 0.034, P= 
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0.0151). A quadratic regression was not significant (F2 60 = 2.62, r2 = 0.08, P=0.081). 

Summer catches are dominated by fledglings (EURING age code 3J) which have widely 

varying bill ratios; for just the 26 birds caught between September and February the 

magnitude of the negative linear regression coefficient is an order of magnitude larger at 

- 0.0114 than that for April - February and the model fit much better (F 1,24 = 33.51, r2 = 

0.583, P<0.001). 
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Figure 11.2. Bill depth to bill length ratio against month of capture for SK3388 Great 
Tits. Captures labelled with EURING age codes; 5= hatched previous year, 6= 
hatched year before previous, 3J = juvenile, 3= hatched same year, 4= hatched 
before current year. 

11.4. Discussion 

For three of the ten most-ringed species, Blackbird, Great Tit and Greenfinch, there was 

no significant difference in weight per wing length between SK3388 birds and birds 

from the surrounding non-urban area. This is perhaps unsurprising for the latter two 

given the relatively recent build-up of the SK3388 Great Tit population (Chapter 7), 

presumably from exurban immigrants, and the high relative mobility of the Greenfinch. 

It is possibly more surprising for Blackbird given the putative candidacy of this species 
for behavioural and/or genetic differentiation of its urban populations (Faivre et al. 
2001). Also, it is one of the few species for which differences in body condition 
between urban and non-urban populations have been shown; urban Munich Blackbirds 

in spring had lower fat scores than non-urban conspecifics (although there was no inter- 
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habitat difference in actual body mass within seasons) (Partecke et al. 2005). However 

there is substantial movement and population exchange of British garden Blackbirds, 

notably in a south-westerly direction between summer and winter (Chamberlain & Main 

2002) and several of the birds caught in SK3388 in winter had plumage characteristics 

of Scandinavian winter immigrants which are typically larger than resident individuals 

and so would be likely to obscure any winter weight decline in the SK3388 birds, given 

the small sample of this species. 

In Dunnock and Long-tailed Tit, two small-billed and substantially insectivorous 

species, rural birds were heavier than those in the study area. In the smallest-billed of 

the tits, Coal Tit, SK3388 birds did not appear to gain weight through the day to the 

same extent as rural conspecifics, in fact Coal Tit was the only species to show 

significantly different diel variation in weight between SK3388 and non-urban habitats. 

This might reflect lower prevalence of small, soft-bodied invertebrate prey in the urban 
habitat. House Sparrows in SK3388 were lighter in winter than in the breeding season, a 

variation not shown by non-urban conspecifics; a contributory factor to this could be 

that most House Sparrows trapped by Sorby Breck Ringing Group outside the city of 
Sheffield are caught either on farms or in large rural gardens with superabundant food. 

Winter food is also available ad lib in SK3388 but anecdotal reports suggest that House 
Sparrow populations in urban Sheffield have been under pressure and declining for 

several years; perhaps poor winter condition of urban birds has contributed to this. 

In Blue Tit and Robin, arguably the two most confiding and regular garden-feeding 
species in SK3388, the urban habitat seems to confer a weight advantage. Juvenile 
Robins in SK3388 are as heavy as their parents, whereas in the non-urban sample 
juvenile birds are significantly lighter than adults suggesting they experience a 
nutritional disadvantage from which urban conspecifics may be protected. In the 
breeding season, the Blue Tits of SK3388 weigh more than non-urban conspecifics, 
possibly exploiting supplementary food to maintain their condition while provisioning 
generally smaller urban broods. In winter there is no difference in weight between urban 
and non-urban birds, understandable if winter Blue Tits are moving over a wider area in 

search of food and urban and non-urban populations are mingling at feeders. The winter 
increase in body mass seen in tits having access to supplementary food (Brittingham & 
Temple 1988b) does not differentially occur in SK3388 birds because all tits trapped in 
the Sheffield area, urban or exurban, probably have at least some access to feeders in 
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winter. There can be issues with errors (compounded in ratios) and comparability 
between observers in volunteer ringers' biometric data (Morgan 2004) which may 

confound these analyses, nonetheless, the weighing and measuring procedures of Sorby 

Breck Ringing Group are performed conscientiously and supervised by highly 

experience ringers (pers. obs. ) so are probably as reliable as any ringing data obtainable 
from national schemes. 

The negative association of fat score with re-encounter probability among winter-ringed 
juvenile Blue Tits is consistent with the idea that fat is associated with higher predation 

risk and subordinate status (Gosler et al. 1995b). Winter juveniles with lower fat scores 

could be local birds that have recognised the availability of ad lib food and hence that 

they do not need to carry costly emergency fat reserves, possibly also individuals that 

have already become dominant and hence are likely to remain in the area. Birds with 
higher fat scores could be transient individuals unable to rely on ad lib food due to their 
higher mobility between habitat types, or sub-dominant local individuals, more likely to 
disperse out of the area than dominants. Hypothesis construction from the negative 

relationship between muscle score and re-encounter probability in juvenile-ringed 

Dunnocks should be more cautious, given the low numbers of birds, the low resolution 

of the ordinal 0-3 muscle scores and the complex behaviour of this species. Birds with 
low muscle scores may have been recent fledglings, or perhaps young residents 
expending energy on territory acquisition or in competitive polyandry (Davies 1992), 

whereas transient juveniles wintering near feeding stations might be expected to have 

good muscle condition but would be likely to disperse away from the area in spring. 

The analysis of Blue Tit fat scores in winter clearly indicates a negative association with 
temperature, which suggests the birds of SK3388 are able to optimise their body fat, 
trading off food reserves against predation risk (Cresswell 1998; Gosler et al. 1995b; 
Macleod et al. 2005). According to Gosler (2002), a positive association, fat increasing 

as temperatures rise, would imply that the birds were severely nutritionally constrained, 
barely maintaining body weight at lower temperatures and only able to acquire fat as 
conditions improved. In contrast, these urban Blue Tits have sufficient resources to be 

able to `plan ahead', maintaining higher fat reserves at lower temperatures and losing fat 

when they can afford to as temperatures rise. It would have been desirable to include 

sex as a factor in the ANCOVA of fat score against temperature but the majority of 
winter-caught Blue Tits cannot be sexed (except by specialists e. g. Harper 2000). 
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Comparing the difference between the two winters in the linear relationships between 

fat score and temperature (figure 10.3.4. ) with the differences between the two winters 

in catch and re-trap rates (figure 9.3.3. ) suggests some interesting hypotheses for further 

research. In February 2003 (winterl) catches were high but the re-trap ratio was low, 

while fat score varied less negatively with temperature, suggesting that abundant un- 

ringed birds, perhaps hungry winter immigrants, were more constrained in their energy 

budget management. In contrast, in February 2004 (winter 2), catches were low and re- 

trap ratios high, while the Blue Tit fat scores varied more negatively with temperature, 

suggesting there may have been fewer hungry transients and the assemblage was 

dominated by already-ringed residents, less constrained in their energy budget 

management. 

Bill ratio in Great Tits caught in SK3388 shows a general decrease (bills lengthening) 

from spring through winter and a sharp and significant decrease from autumn to early 

spring. Summer fledglings probably obscure the overall pattern in this small sample but 

the autumn - winter lengthening trend is interesting as it occurs at a time of year in 

which the bills of woodland Great Tits become shorter and stouter in order to process 

their much harder winter food, primarily beech mast (Gosler 1987a). Seasonal variation 
in bill shape arises due to the continuous growth of the rhampotheca, the keratin sheath 

of the bill, which is affected by seasonal changes in hardness and pigmentation (Bonser 

& Witter 1993), can be manipulated by the bird through wiping and honing; variation in 

its growth/wear balance is most strongly associated with seasonal dietary variation (e. g. 
Davis 1954). If the autumn transition to hard foodstuffs in woodland Great Tits is 

reflected in a seasonal increase in rhampothecal growth rate, urban birds feeding on 
much softer foods such as sunflower hearts would not experience the same bill wear as 

woodland conspecifics and hence their adaptively growing bills might continue to 
lengthen through the winter, as in the SK3388 data, rather than being kept short by wear 
(A. G. Gosler 2005 pers. comm. ). It remains a mystery why the birds' bills appear to 

suddenly shorten in late spring, unless they are used to enlarge nesting cavities. Clearly, 

it would be necessary to compare bill shapes of the same individuals repeatedly 

captured at different seasons in order to investigate this in any satisfactory depth, but the 
observations analysed suggest an intriguing possible difference in winter feeding 

ecology between urban and non-urban birds. 
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12. Specific opportunities and constraints affecting wild birds in SK3388 

Abstract 

Three investigations of factors affecting breeding and feeding birds in SK3388 are reported. The 
numbers and masses of caterpillars fed to their nestlings by Blue Tits and Great Tits in SK3388 
was determined by counting lepidopteran mandibles in chick faecal sacs and comparing these 
data with samples from nearby but non-urban locations. Urban and rural birds provided similar 
numbers of caterpillars but those obtained by urban Great Tits were larger than in rural habitats. 
The daily energy expenditure of female Blue Tits and Great Tits provisioning broods was 
measured using doubly-labelled water; no clear differences were found between SK3388 birds 
and conspecifics in other habitats. Bird feeding stations in SK3388 were sampled during 2002 
for contamination with pathogenic Salmonella; none was found. 

General Introduction 

A frequently-reported characteristic of urban avifaunas is lower breeding productivity 
than that observed in non-urban conspecifics (Chapter 1) and many experiments have 

confirmed that food supply influences the production of young in a wide range of 

species (Newton 1998). Given that supplementary food suitable for adult birds is 

available in many urban areas, including SK3388, year-round, it follows that quality and 
appropriateness of food available for chicks is likely to be a more limiting constraint on 

productivity than simple dietary energetics. Constraints on chick food quality might be 

manifest in two ways; firstly, through differences in the nature of the actual food 

provided compared to non-urban habitats, and secondly in the parent birds having to 
expend more energy than non-urban conspecifics in locating and providing adequate 
supplies. A third possible constraint on productivity may be bacterial contamination, 
which can cause high rates of egg failure in nestbox-using sparrows, for example 
(Kendeigh 1942; Kozlowski et al. 1988). 

This chapter is presented in three sections, each reporting a field investigation into a 
specific ecological opportunity or constraint that may be applicable to birds breeding 

and feeding young within the SK3388 study area. Section 12.1 reports a field 

assessment of relative chick diet quality in Blue and Great Tits, based on numbers and 
sizes of lepidopteran mandibles in faecal samples. Section 12.2 reports the use of 
doubly-labelled water (DLW) in field measurement of the daily energy expenditure of 

233 



provisioning females in the same species. Section 12.3 documents the prevalence of 

Salmonella spp. at SK3388 feeding stations as determined from field sampling during 

the breeding season. 

12.1. Chick diet quality in urban and rural Blue and Great Tits 

12.1.1. Introduction 

Generally, tits breed earlier in gardens but with lower productivity (Cowie & Hinsley 

1987), and although in Blue Tits supplementary food advances laying it has no effect on 

breeding performance unless of very high quality (Ramsay & Houston 1997). Studies of 

urban gulls and Jays found that anthropogenic supplementary food was of insufficient 

quality for chick rearing (Pierotti & Annett 1990; Schoech & Bowman 2001). There is 

no obvious reason why it might be any more appropriate for tits in SK3388, given the 

strong relationship between breeding success in tits and the numbers of caterpillars 

available for provisioning their young (Perrin 1991; Riddington & Gosler 1995) and 

that the survey of feeders (Chapter 8) did not detect any provision of live food in the 

study area. As urban and non-urban invertebrate faunas are known to differ (Chapter 1), 

a comparison of the availability of caterpillars to parent tits provisioning young in 

SK3388 with that in non-urban habitats was undertaken, as a further contribution to 

assessing the sustainability of the SK3388 breeding avifauna. 

12.1.2. Methods 

Altricial passerine chicks frequently defecate when handled for ringing. The droppings 

are drier than those of adults and surrounded by a slightly sticky gelatinous envelope, 
forming the characteristic faecal sacs that enable their removal from the nest by the 

parent birds and hence also easy removal of the complete intact faecal sample for 

laboratory examination by a human investigator. In total, 98 faecal sacks were collected 
during May and early June 2004,38 from Great Tits and 60 from Blue Tits. Fifty-four 
`urban' samples were obtained from the SK3388 study area, from eight Blue Tit and 
two Great Tit nests. ̀ Rural' samples from 13 Blue Tit and 19 Great Tit nests were 
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collected by volunteer bird ringers as a by-product of normal chick ringing, 32 from 

woodland nestboxes in the Rivelin Valley approximately 3-5 km from the urban site (by 

Phil Lawson) and 12 from woodland nestboxes south of Dronfield, Derbyshire, 

aproximately 20 km from the urban site (by Ray Knock). Dates of sample collection are 

shown in figure 12.1.3. In the case of the urban broods, if no samples had been provided 

voluntarily by a particular brood, chicks were stimulated to defecate by the provision of 

a small food item, either a mealworm (larval Tenebrio molitor) or small earthworm 

(Lumbricus terrestris), upon which most defecated immediately. The number of 

samples per brood was variable, determined by constraints of safe chick handling 

(primarily temperature maintenance). Because of the need to handle broods speedily, 

samples were not acquired from chicks selected in any way but simply from those that 

chose to provide them during an acceptable handling time. 

Samples were placed individually and immediately in colourless denatured ethanol 

(Industrial Methylated Spirit (IMS), 94% alcohols), in which they were then stored at 

normal room temperatures for variable time periods up to approximately one year, 

during which there were no visible changes nor obvious deterioration of arthropod 

exoskeletal or other chitinous material. Samples were dried in a fan-ventilated drying 

cupboard at 40°C for at least 48 hours, this having been found an adequate period to 

establish stable dry weights in pilot testing. After dry weighing, samples were re-wetted 

with tap water for at least 24 hours before being gently dissected into a mixture of water 

and IMS in a 36-segment inspection dish under a binocular dissecting microscope. 
Some samples had large caps of white uric acid, which clouds the re-wetting fluid and 

obscures mandibles; this was partially removed with a dissecting needle prior to re- 

wetting. Each lepidopteran mandible found was logged and digitally photographed with 

an accompanying photograph of a 0.01 mm resolution stage graticule slide also taken at 

the same magnification and camera zoom settings; mandible lengths at longest point 

were then measured by superimposition of these image pairs on a computer (using 

imageJ, http: //rsb. info. nih. gov/ij/). 

Most samples contained other arthropod remains, but time constraints prevented 
detailed investigation of these. However, three sets of simple subjective categorical data 

on basic sample composition were additionally recorded. It was observed in pilot 
examinations of samples that the quantity of minerals, primarily small quartz grains, 
varied greatly between them. One hypothetical explanation for this might be that urban 
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birds, rather than foraging in the branches of large native trees, as in woodland, are 

forced to search for food among suboptimal substrates such as roadsides. To test 

whether this might be the case, negligible, moderate or high relative mineral content per 

sample was recorded. Another hypothetical constraint on urban birds foraging among a 

depauperate invertebrate community might be that in the absence of a wide range of 

prey taxa they are forced to disproportionately exploit particular types of prey, therefore 

it was also recorded if a sample was visibly dominated by any one particular taxon of 

natural prey remains, such as arachnid legs or coleopteran elytra. Thirdly, a binary 

variable was recorded representing the presence or absence in samples of unusual items 

clearly not typical of natural chick food, including anthropogenic items such as plastic, 

large or unusual plant material, identifiable artificial food such as sunflower seed, large 

stones, etc. Hypothetically, birds constrained by poor natural prey availability in urban 
habitats might be forced to resort to presenting these less suitable items to their chicks. 
To avoid investigator bias samples were examined ̀ blind', numbered anonymously then 

mixed and drawn quasi-randomly for dissection. 

The biomass of each predated caterpillar was estimated using regression equation 12.1. 

which was obtained from three years of undergraduate project work on allometry in 

lepidopteran larvae at Cardiff University (P. Ferns 2005 pers. comm. ). 

Log (caterpillar biomass (mg)) =1.73 + 2.39 log (mandible length (mm)) (12.1. ) 
(r2=0.4569, F1,94=79.09, P<0.0001) 

Biomass estimates for all the single mandibles extracted from all the samples (N = 202) 

were pooled and their means compared using t-tests with critical P values Bonferroni- 

corrected to P: 
50.01 

for five non-orthogonal comparisons (Sokal & Rohlf 1995). 
Caterpillars having two mandibles, caterpillar biomasses were calculated by dividing 
individual caterpillar estimates by two for the comparisons of means of individuals, and 
for the per-sample biomass models (below) by summing the biomasses estimated from 

single mandibles in each sample then dividing that sum by two. All means are quoted ± 

standard error. ý tests were used to examine associations within categorical variables. 

Caterpillar biomasses were plotted against dates of sampling to examine their degree of 
independence. Date is a potential confounding variable in this analysis as the samples 
were collected opportunistically as a by-product of other fieldwork rather than in a 
planned program with regard to date. The biomass of caterpillars available to breeding 
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tits varies as the season progresses, caterpillars get larger with time and their availability 

rapidly decreases when certain abundant species pupate (Perrins 1991). 

To test whether urban and rural birds differed in the numbers and/or masses of 

caterpillars per sample, PROC MIXED in SAS (SAS Institute Inc. 2004) was used to fit 

generalised linear models with nest as a random effect (Der & Everitt 2002), with 

species (Blue Tit or Great Tit) and habitat (urban or rural) and their interactions as 
factors and per sample mean individual caterpillar biomass, number of mandibles per 

sample, total caterpillar biomass per sample and total caterpillar biomass per weight of 

sample as dependent variables. Least-squares means were calculated for all model 

effects and their pairwise differences evaluated for significance using Tukey-Kramer 

corrected P values. 

12.1.3. Results 

There was a highly significant overall difference in the dry masses of the faecal samples 
from Blue Tits (0.03g ± 0.0021) and Great Tits (0.0522g ± 0.0052) (t-test, t= -5.07, P< 
0.001, N= 88), as would be expected since Great Tits (mean adult weight 18.61 g :h 
2.78) are heavier than Blue Tits (10.88g ± 0.78) (Robinson 2005). Urban samples (both 

species) were significantly more highly mineralised (primarily with quartz grains) than 

rural (y = 12.4, DF = 2, P=0.002, figure 12.1.1). There was a significant association 
between species and relative mineralisation (ý = 6.04, DF = 2, P=0.049), with more 
Blue Tit than Great Tit samples in higher mineralisation categories. Out of all 98 
samples, 25 (26%) had one particular prey type obviously dominant (15 rural and 10 
urban) but there was no significant difference between the frequency of dominance in 

urban and rural samples (=3.09, DF =1, P=0.079). However, urban samples were 
significantly more likely than rural samples (24/54 compared to 11/44, ý=3.99, DF = 
1, P=0.046) to contain items subjectively logged as ̀ unusual'. There were no 
significant differences between the species in frequencies of single taxon prey 
dominance or unusual items 
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Figure 12.1.1. Proportions of faecal samples with negligible, moderate and high 
relative mineral content (subjective categories) obtained from urban and rural sites, 
both species. 

Figure 12.1.2. Lepidopteran larval mandibles from chick faeces. Scale: 0- 100 =1 mm. 

Figure 12.1.2 shows extreme examples of the sizes and shapes of mandibles that were 

present. Figure 12.1.3. shows that except for one very early rural Great Tit brood, urban 

samples were generally collected earlier than rural. Within each speciesihabitat class, 
there is no obvious confounding trend in available prey sizes; generally, urban 

caterpillars were both larger and earlier than non-urban. Altogether, 202 mandibles were 
found in 61 out of the 98 samples (62%), of which 94 were found in 31 out of 54 urban 

samples (57%) and 108 in 31 out of 44 rural samples (70%). The proportions of rural 
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and urban samples containing mandibles were not significantly different (=1.792, DF 

= 1, P=0.181). 
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Figure 12.1.3. Scatterplot of individual caterpillar biomasses (calculated on single 
mandible basis) against date of faecal sample collection. N= 202. 

As would be expected from figure 12.1.4, comparing individual caterpillar biomasses 

showed that urban caterpillars (mean 15.05 mg ± 0.77, N= 94) were generally larger 

than rural (mean = 5.35 mg ± 0.28, N= 108) (t-test, t= -11.84, P<0.001, N= 202). 

Mean biomasses of individual caterpillars taken by urban Blue Tits were larger than of 

those taken by rural Blue Tits (1-test, t= -5.07, P<0.001, N= 94) and individual 

caterpillars taken by urban Great Tits were larger than those taken by rural Great Tits (t- 

test, t= -16.47, P<0.001, N= 108). Caterpillars taken by urban Great Tits were larger 

than those taken by urban Blue Tits (t-test, t= -7.69, P<0.001, N= 94), but there was 

no difference between caterpillars taken by rural Great Tits and those taken by rural 

Blue Tits (t-test, t= -0.92, P=0.36, N= 108). In the more conservative per sample 

models with nest as a random effect, species (P = 0.0054), habitat (P = 0.0004) and 

species * habitat (P = 0.0051) were all significant predictors of per sample mean 
individual caterpillar biomass (AIC = 724.0. DF = 57, all P values type 3). Table 12.1 

shows the differences between the estimated least squares means for main effects and 
interactions and their P values, adjusted for pairwise comparison. 
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Figure 12.1.4. Boxplot of individual caterpillar biomass (mg) by species and site type. 
Bar = median, box = Q2 - Q3, whiskers = highest value within Q3 + 1.5(Q3 - Q1), 
lowest value within Q1 -1.5(Q3-Q1), asterisks = outliers. 

Table 12.1. Estimated differences of least squares means of per sample mean 
individual caterpillar biomass (mg) when modelled against species and habitat, nest as 
random effect. P (T-K) = Tukey-Kramer adjusted P value for pairwise comparison. 

species habitat species habitat Difference SE t Pr>jtI P (T-K) 

Blue Tit both Great Tit both -8.3674 2.8925 -2.89 0.0054 0.0054 
both rural both urban -10.8962 2.8925 -3.77 0.0004 0.0004 
Blue Tit rural Blue Tit urban -2.4749 3.3984 -0.73 0.4694 0.8854 
Blue Tit rural Great Tit rural 0.05399 3.4824 0.02 0.9877 1 
Blue Tit rural Great Tit urban -19.2636 4.804 -4.01 0.0002 0.001 
Blue Tit urban Great Tit rural 2.5289 3.2229 0.78 0.4359 0.8611 
Blue Tit urban Great Tit urban -16.7887 4.6194 -3.63 0.0006 0.0033 
Great Tit rural Great Tit urban -19.3176 4.6815 -4.13 0.0001 0.0007 

From table 12.1, pairwise tests show that overall rural caterpillars were smaller than 

urban caterpillars and that those taken by Blue Tits were generally smaller than those 

taken by Great Tits. In this model, the caterpillars taken by urban Blue Tits were not 

significantly different in mass from those taken by either rural Blue Tits or rural Great 

Tits, nor were those taken by rural Blue Tits and rural Great Tits significantly different. 

However, caterpillars taken by urban Great Tits were significantly larger than those 
taken by rural Blue Tits, rural Great Tits and urban Blue Tits. Figure 12.1.5 clearly 
shows from a boxplot of the per sample means how these results arise. 
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Figure 12.1.5. Boxplot of per sample mean individual caterpillar biomass (mg) by 

species and site type. Symbols as in figure 12.4. 

Neither species (P = 0.0648), habitat (P = 0.5003) nor species * habitat (P = 0.1364) 

were significant predictors of mandibles per sample, modelled with nest as a random 

effect (AIC = 443.5. DF = 57). Table 12.2 shows the differences between the estimated 

least squares means and their P values, adjusted for pairwise comparison; none are 

significant. 

Table 12.2. Estimated differences of least squares means of numbers of mandibles per 
sample when modelled against species and habitat, nest as random effect. 
P (T-K) = Tukey-Kramer adjusted P value for pairwise comparison. 

species habitat species habitat Difference SE t Pr>ItI P (T-K) 

Blue Tit both Great Tit both -1.1887 0.7427 -1.6 0.115 0.115 
both rural both urban 0.2951 0.7427 0.4 0.6926 0.6926 
Blue Tit rural Blue Tit urban 1.417 0.8493 1.67 0.1007 0.3497 
Blue Tit rural Great Tit rural -0.06677 0.8376 -0.08 0.9367 0.9998 
Blue Tit rural Great Tit urban -0.8935 1.2487 -0.72 0.4772 0.8905 
Blue Tit urban Great Tit rural -1.4838 0.8046 -1.84 0.0704 0.2638 
Blue Tit urban Great Tit urban -2.3105 1.2268 -1.88 0.0648 0.2466 
Great Tit rural Great Tit urban -0.8267 1.2187 -0.68 0.5003 0.9049 

Species (P = 0.001), habitat (P = 0.0031) and species * habitat (P = 0.0017) were all 

significant predictors of total caterpillar biomass per sample (AIC = 1048.0. DF = 57). 

Table 12.3 shows the differences between the estimated least squares means for main 

effects and interactions and their P values, adjusted for pairwise comparison. 
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Table 12.3. Estimated differences of least squares means of total caterpillar biomass 
(mg) per sample when modelled against species and habitat, nest as random effect. 
P (T-K) = Tukey-Kramer adjusted P value for pairwise comparison. 

species habitat species habitat Difference SE t Pr>Itl P (T-K) 

Blue Tit both Great Tit both -58.0533 16.7423 -3.47 0.001 0.001 
both rural both urban -51.6369 16.7423 -3.08 0.0031 0.0031 
Blue Tit rural Blue Tit urban 3.4055 19.4287 0.18 0.8615 0.9981 
Blue Tit rural Great Tit rural -3.0109 19.5689 -0.15 0.8783 0.9987 
Blue Tit rural Great Tit urban -109.69 27.966 -3.92 0.0002 0.0013 
Blue Tit urban Great Tit rural -6.4164 18.4152 -0.35 0.7288 0.9853 
Blue Tit urban Great Tit urban -113.1 27.1712 -4.16 0.0001 0.0006 
Great Tit rural Great Tit urban -106.68 27.2716 -3.91 0.0002 0.0014 

Unsurprisingly, total caterpillar biomass per sample was generally lower in the smaller 
Blue Tits, it was also lower in rural habitat than urban overall but this is clearly due to 

the urban Great Tits which have significantly greater total biomass per sample than both 

rural Blue Tits and urban Blue Tits; perhaps more surprisingly, they also had greater 
total per sample biomass than rural Great Tits. 

However, neither species (P = 0.4673), habitat (P = 0.0880) nor species * habitat (P = 
0.0542) were significant predictors of total caterpillar biomass per mass of sample (AIC 

= 1355.4. DF = 50). Table 12.4 shows the differences between the estimated least 

squares means and their P values, adjusted for pairwise comparison; none are 
significant. 

Table 12.4. Estimated differences of least squares means of total caterpillar biomass 
per mass of sample when modelled against species and habitat, nest as random effect. P (T-K) = Tukey-Kramer adjusted P value for pairwise comparison. 
species habitat species habitat Difference SE t Pr>jtj P (T-K) 
Blue Tit both Great Tit both -126.71 173 -0.73 0.4673 0.4673 
both rural both urban -301.06 173 -1.74 0.088 0.088 
Blue Tit rural Blue Tit urban 40.0707 226.36 0.18 0.8602 0.998 
Blue Tit rural Great Tit rural 214.42 245.66 0.87 0.3869 0.8188 
Blue Tit rural Great Tit urban -427.77 285.92 -1.5 0.1409 0.4474 
Blue Tit urban Great Tit rural 174.35 194.86 0.89 0.3752 0.8076 
Blue Tit urban Great Tit urban -467.84 243.67 -1.92 0.0606 0.2329 Great Tit rural Great Tit urban -642.19 261.69 -2.45 0.0177 0.08 
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12.1.4. Discussion 

These results show the importance of caterpillars as chick food for Blue and Great Tit. 

When these species urbanise, they do not appear to substitute other foods in their 

chicks' diets; caterpillars are present in the same proportions of the droppings of both 

urban and rural birds and in the same numbers per sample. The urban habitat enables 

them to provision chicks in a similar way to rural broods, rather than forcing them to 

radically adapt their diet. Furthermore, Blue Tits that colonise the urban habitats do not 

adjust their caterpillar size preference compared to the rural habitat, in which Blue Tits 

and Great Tits provision their chicks with small caterpillars of similar sizes. 

However, urbanising Great Tits do switch to significantly larger caterpillars than rural 

conspecifics and actually provide a greater biomass of caterpillars per faecal sample, 

although caterpillar biomass as a proportion of sample dry mass is not significantly 
different after Tukey-Kramer adjustment of the P value (table 12.4). The fact that urban 
Great Tits do not differ from rural conspecifics in the numbers of caterpillars per sample 

provided to their young, despite their larger prey size, implies that the lepidopteran diet 

component in the chick diet of urban Great Tits may be significantly more important. 

This is perhaps surprising in view of the general view that a contributory factor to 
lower avian productivity in urban habitats might be lower availability of suitable 
invertebrate prey for feeding the young; it also differs from the results of Riddington & 
Gosler (1995) who found significantly fewer caterpillar remains in `marginal' habitat 
faecal samples than in those from woodland (although they report that, unlike in 
SK3388, there was little supplementary food in their `marginal' habitat). On the other 
hand, there is virtually no difference between the caterpillar component of chick diet in 

urban and rural Blue Tits, although the individual caterpillar t-tests (N = 202 both 

species) did show that urban Blue Tits were also taking significantly larger individual 

caterpillars than rural conspecifics, with aP value well within Bonferroni-corrected 
limits. However, this result was not sufficiently robust to be supported by the more 
conservative model of per sample data with nest as a random effect (N = 95 both 

species), which controls for the non-independence of samples from the same broods. 

It is notable from figure 12.1.6 that rural Great Tits take caterpillars from a very similar 
range of sizes to those taken by rural Blue Tits, whereas urban Great Tits exploit a much 
larger range of prey sizes. It would be interesting to determine prey availability in both 

243 



habitats, as the obvious issue arising from this is whether Great Tits prefer large 

caterpillars but they are not available in rural habitats, or whether conversely they prefer 

small caterpillars but these are not available in urban habitats. Lower urban productivity 
in Great Tits despite larger prey might be explained by it being energetically more 

efficient to glean numerous small caterpillars from a large native tree on which the 

nestbox is located, than to search a wider area of urban gardens for large caterpillars. 
Another contrasting possibility is that urban adults may be exploiting superabundant 

artificial foods and are hence able to provision their chicks with the large caterpillars 

that in rural habitats they would need to eat themselves, hence they do not need to 

collect the less efficient smaller caterpillars. In a Finnish study area where typically 

caterpillars made up more than 70% of Great Tit nestling diets was but were nonetheless 

scarce, Great Tits had poorer breeding success than in a more southerly site where 

caterpillars were more abundant (Rytkönen & Krams 2003) and the birds changed their 

foraging niche to widen the search. Northern Blue Tits foraging in the outer canopy had 

higher breeding success than the Great Tits, which were clearly dependent on 

caterpillars but were unable to emulate the Blue Tits in gleaning small prey from branch 

tips. In SK3388, they may make up for this inability by finding larger caterpillars in 

other kinds of habitat such as gardens. Native trees such as Oak which are a major 
foraging site for tits are scarce in the SK3388 study area; in contrast, large caterpillars 
might be scarce in rural woodland but easily found by a species able to shift its foraging 

niche among domestic garden plants such as Brassica spp. 

The higher mineral content of Blue Tit chick faeces compared to those of Great Tits is 

perhaps surprisingly as the latter is generally considered to be more of a ground feeding 

species. The larger proportion of unusual items in urban faeces does suggest that some 
degree of flexibility in attempting to exploit foodstuffs not typical of woodland habitats 
is required of the urban birds. Figure 12.1.3 suggests that any confounding effect of 
sampling date would tend to counterweigh the overall result; urban sampling was 
generally earlier than rural and so might be expected to record smaller prey, not larger 

as was observed. This may reflect not only relative phenological advancement in urban 
habitats but perhaps also that tits are taking different prey species in the two habitats. 

In rural Great Tits in Oxfordshire, 3.62 mandibles were found per faecal sac in 1984 and 
4.73 in 1985 (Gosler 1987b). These figures are comparable with those for urban Great 
Tits in this study (mean 3.71 per sac) but rather higher than those for rural birds (2.54 
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per sac). This may just reflect annual variation in prey availability; it is notable that the 

means between 1984 and 1985 in the Oxfordshire study vary by 23%. The present 

results are a ̀ snapshot' of a single breeding season and it may not be valid to generalise 

without replication over a number of years. One possible bias in the size distribution of 

caterpillar mandibles in faecal samples is that birds may remove the heads of some 

caterpillars before presentation to chicks, for example if the mandibles of larger 

caterpillars are perceived as a threat to the chicks' wellbeing. However, it is unlikely 

that rural birds should be doing this but not their urban conspecifics and in this study 
large caterpillar mandibles were more prevalent than small in the urban samples. 
Furthermore, Gosler (1987b) found strong correlation between numbers of caterpillar 

mandibles and spiracles in tit faecal samples, suggesting that no systematic bias of this 

nature is present, at least in Great Tits, which would be expected to be most affected as 

they take larger caterpillars. 

Overall, these results suggest that urban Blue and Great Tits are not sufficiently 

constrained in their chick diets that they are forced to switch to novel prey or in the case 

of Blue Tits, to vary the lepidopteran component of chick diets significantly. Great Tits, 

however, are able to provide their chicks with significantly larger caterpillars in urban 
habitat; the costs and benefits of their doing so would be well worth further 
investigation particularly as other studies have shown this species has difficulty 

maintaining breeding performance in sub-optimal (Rytkönen & Krams 2003) and urban 
(Bezzel 1985) habitats. 

12.2. Energy expenditure of female Blue & Great Tits provisioning young 

12.2.1. Introduction 

This section reports an investigation into the daily energy expenditure (DEE) of female 
Blue and Great Tits provisioning young in SK3388. There are a number of reasons why 
the DEE of these birds might differ from that of rural conspecifics. Generally in urban 
garden habitats anthropogenic supplementary food is abundant even in the breeding 

season; this is certainly the case in SK3388 but, nonetheless, urban clutch sizes are often 
smaller than non-urban (chapter 1). For hole-nesting species such as Blue Tit and Great 
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Tit low occupancy of newly-provided nest boxes suggests that nest sites are not a 

limiting resource. Only 10 out of 76 provided by this study were used in SK3388 but, 

nonetheless, urban breeding densities of these species are relatively low (chapter 1). 

Urban and rural birds maintain similar rates of caterpillar supply to their chicks (section 

12.1), hence one possible explanation for smaller broods and low densities despite 

abundant food and nest sites might be that in urban habitats this natural invertebrate 

food for rearing chicks is less abundant, in which case, parent birds would have to 

expend more energy foraging. 

Even though tits normally overcome the problem of variable food supply by adjusting 

their clutch sizes (certainly it is correlated with caterpillar numbers in Great Tits 

(Perrins 1991) and with habitat quality in Blue Tits (Stauss et al. 2005)), their 

perception of resource availability in an urban environment may be distorted by either 

the effects of artificial food, phenotype/habitat mismatch (the `ecological trap' scenario) 

or both. It may seem surprising that clutch size in Blue Tits is unaffected by 

supplementary feeding (Ramsay & Houston 1997), given the adaptability of urban 

adults to a diet largely composed of anthropogenic supplements but, as suggested by 

Cowie and Hinsley (1988), it may be that parent tits prefer to rear their chicks on a more 

appropriate invertebrate diet and that, as Perrin (1991) points out, supplementary food 

might not be perceived as appropriate compensation for a shortage of natural food; birds 

may therefore discount its availability when assessing food abundance. If parent birds 
ignore artificial food completely when `budgeting' but nonetheless, as is clearly the 

case, exploit it themselves while provisioning chicks, their energy expenditure per chick 
might be expected to be less than in non-urban habitats where the subsidy of artificial 
food was not available and hence the `budget' calculation precise. Conversely, if adult 
birds do take the availability of an artificial subsidy into account when `calculating' 
their overall brood provisioning `budget' but feed their chicks selectively on the most 
appropriate food items within it, their energy expenditure per chick would be expected 
to be greater than in non-urban habitats, the subsidy fuelling the extra foraging effort to 
find the scarcer natural prey items. A further cause of variation in DEE in tits is that 
phenotypes mismatched to habitat have higher energy expenditure than habitat-matched 

phenotypes (Thomas et al. 2001). 

It might be possible to study these effects experimentally by manipulating food 
availability, but in urban habitats the supplementary food supply is inherently 
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uncontrollable. However, an alternative approach is to directly measure the daily energy 

expenditure (DEE) of actively provisioning adult birds in different types of habitat. In 

this section, the results of a doubly-labelled water (DLW) study of the energy usage 

rates of female Blue and Great Tits provisioning chicks in SK3388 are reported, and 

compared with results from similar studies in other habitats of varying relative 

urbanisation. 

12.2.2. Methods 

During autumn of 2002,50 standard tit nestboxes with internal volume of aproximately 

1.5 1 and 32 mm diameter entrance holes were installed in the SK3388 study area, 

unfortunately none were used by Great Tits. For the 2003 breeding season 26 additional 

nestboxes were installed, of somewhat better quality (donated by CJ Wildbird Foods 

Ltd), and the project extended within SK3388 to include Blue Tits. Of the 76 boxes, 

seven were occupied by Blue Tits and three by Great Tits (in addition, one was 

occupied by Nuthatches, a new breeding species for the study area). Four additional nest 

sites (three Blue Tit boxes and one Great Tit wall nest) at which trapping appeared 
feasible were also identified, giving a total possible sample of ten Blue Tit and four 

Great Tit nests. Of these, eight Blue Tit and three Great Tit females were successfully 

sampled. 

The DLW method is documented in Speakman (1997); it measures energy consumption 

of live animals indirectly by determining the CO2 produced by an organism in a known 

time period, ideally a multiple of 24 hours in the case of DEE estimation. Essentially, 
both the oxygen and hydrogen in the blood are labelled with stable (i. e. not radioactive) 
isotopes (2H and 180) and the difference between their turnovers indicates the quantity 

of CO2 produced, which can be equated to DEE. In this case, birds were dosed by 

intraperitoneal injection with a known mass of water (around 0.08g, weighed to 0.0001 

g accuracy) whose 2H and 180 isotope content had been artificially increased to 

adequate (known) levels that would enable their detection in a mass spectrometer. Initial 
blood samples were taken after the dose had equilibrated throughout the circulatory 
system for 30 minutes. From these, the initial isotope concentrations were subsequently 
measured. A second blood sample was taken after a period as near to 24 hours as 
possible (exact times were recorded) and the change in blood isotope concentration 
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subsequently determined by comparing the two samples (samples were processed by 

J. R. Speakman et al. at the University of Aberdeen). 

All nests were monitored during laying to establish hatch dates; blood samples for the 

DLW procedure were taken on days 10 and 11 post-hatch (hatch date = day 0). Blood 

samples were extracted from brachial veins pierced with a small hypodermic needle, 

using non-heparinised capillary tubes, the second sample from the wing that was not 

sampled the previous day. In Blue Tits approximately 40 µl was collected each day, 

generally as a single sample. In the larger Great Tits duplicate samples each of 

approximately 35 µl were taken on each day. An evaporation check syringe was carried 

with the dosing syringes and re-weighed after all fieldwork sessions, however because 

in the urban environment field sessions were fairly short, shade was available and return 

to base between birds was possible, no measurable evaporation occurred. The procedure 

was performed after training under UK Home Office licence PIL 80/8559 and English 

Nature licence 20040579, the birds were kept for an additional 30 minutes recovery 

period after sampling before being released upon confirmation that bleeding had ceased 

and they were apparently fit and well. 

This method imposed the demanding requirement that the same individual bird be 

caught twice, as near to exactly 24 hours apart as practicable. Consequently, all 
nestboxes were fitted with permanently-installed traps to which birds would be 
habituated and hence repeatedly trapped. These consisted of aluminium trapdoors 

supported above the entrance hole by lengths of brazing rod (figure 12.2.1). In the case 
of boxes used for nesting, the retaining rod was removed prior to trapping and replaced 
with a shorter trigger pin that could be withdrawn from a distance via a length of nylon 
fishing line in order to trap the required bird. An elasticated cloth sleeve that fitted over 
arm and box was used to withdraw the trapped females from the boxes without risk of 
escape. After the first catch and blood sample, the females generally became very wary 
and even at the boxes with traps, a camouflaged hide was necessary to ensure re- 
trapping within a reasonable time. 
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All the broods of sampled females fledged either totally or with low levels of mortality 

typical for urban nestboxes. Females were identified by the presence of a brood patch 

and in most cases carried previously-fitted colour rings. At the first catch, any unringed 

females were colour-ringed and in addition females were marked with white correcting 

fluid on the tail to avoid catching the male in error the following day. Females and 

chicks were weighed to 0.01 g using a battery-powered laboratory balance (Adam 

equipment ACB 300). 

Figure 12.2.1. Permanently-installed nestbox trap, from above. The wooden block on 
the left secures the retaining bar which prevents the aluminium trapdoor from dropping 
when the not in use. In use, this is replaced with a shorter trigger pin which is removed 
remotely via fishing line causing the door to drop, trapping the adult female bird inside 
the box. 

12.2.4. Results. 

One Blue Tit sample failed in processing, DEE values from a total of seven Blue Tits 

and three Great Tits are shown in table 12.5 and plotted against brood biomass in figure 

12.2.2. For Great Tits, only three samples were obtained and one of these was a clearly 

atypical brood (very late, very sickly, only one chick remaining alive by second blood 

sample). Therefore, comparisons with other locations are rather weak. However, figure 

12.2.3. shows that the values for SK3388 lie at the lower end of the general range, 

particularly if the atypical brood (which had the highest of the three DEE: values 

obtained) is ignored. 
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Table 12.5. Summary of results of DLW procedure for measuring Daily Energy 
Expenditure in female Blue and Great Tits provisioning young 

Species adult mean 
weight (g) 

brood size mean chick 
weight (g) 

chick 
biomass (g) 

date 
(2004) 

DEE kJ 
24h"1 

Blue Tit 9.53 8 8.70 69.6 18/5 58.64 

Blue Tit 10.45 8 10.30 82.2 20/5 56.30 

Blue Tit 10.91 8 8.91 67.1 20/5 70.47 

Blue Tit 10.72 8 10.20 81.7 20/5 58.63 

Blue Tit 10.52 8 9.70 77.7 22/5 56.07 

Blue Tit 10.25 12 7.71 92.5 24/5 54.55 
Blue Tit 10.5 6 10.00 60.0 28/5 39.39 
Great Tit 16.38 9 17.50 157.1 13/5 75.50 
Great Tit 16.94 5 14.60 73.0 18/5 59.82 
Great Tit 18.35 1 15.10 15.1 4/6 86.03 

N L 

0 

C4 
N 

a 

9 

Figure 12.2.2. Relationship between daily energy expenditure (DEE) and brood 
biomass in SK3388, both species. 

The difference between Monks Wood (rural woodland in Cambridgeshire) and Bute 

Park (urban park in Cardiff) is not significant (t = 2.07, P=0.093, DF = 5). The values 
for the Vlieland site as reported in Verhulst and Tinbergen (1997), an area of continuous 

woodland in Holland (S. Verhulst pers. comm. ) were significantly greater than those 

from woodland birds at Monks Wood (t = 7.06, P<0.001, DF = 36), perhaps 

suggesting that habitat is not the primary factor affecting DEE in this species. There was 

no significant difference between Great Tit DEE values for Holland and Bute Park (I _- 
1.25, P<0.257, DF = 6). 
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Figure 12.2.3. Boxplot of Daily Energy Expenditure (DEE) in female Great Tits at four 
different locations. Bute Park N=6, Monks Wood N=9, both S. E. Hinsley pers. comm. 
Holland N= 31, S. Verhulst, pers. comm. 

For Blue Tits, there was no significant difference between DEE values for SK3388 (N = 

7) and Bute Park (N = 6) (T = -1.06, P<0.314, DF = 10). However, figure 12.2.4. 

shows that DEE in both these UK urban sites tended to be lower than that for French 

Blue Tits, both continental and Corsican. For SK3388 birds, there was no significant 

correlation between DEE and adult weight, mean chick weight or brood biomass. 
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Figure 12.2.4. Boxplot of Daily Energy Expenditure (DEE) in female Blue Tits at four 
different locations. Figures for France (N = 13) and Corsica (N = 14) read from graph in 
Thomas, Blonde) et al. (2001), Bute Park (N = 6) S. E. Hinsley pers. comm. 
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Figure 12.2.5. Relationship between daily energy expenditure (DEE) against total 
brood biomass in female Blue Tits at SK3388 and Bute Park sites. 

There was a significant negative correlation between DEE and date (r5 = -0.889, P= 

0.007, N= 7) but this is probably due to two outlying DEE values. Combining SK3388 

and Bute Park data, there was still no significant correlation between DEE and brood 

biomass although figure 12.2.4 suggests that if outliers are ignored Bute Park birds had 

generally lower DEE and larger broods than in SK3388. Small samples and lack of 

formal significance prevent this from being definitively demonstrated. 

Figure 12.2.6 suggests that the SK3388 birds presenting larger caterpillars to their 

chicks (from section 12.1. ) might have had correspondingly higher DEE; this might be a 

reasonable expectation but due to paucity of data the suggestion must be treated with 

caution. Nonetheless, for both species combined the correlation between per-sample 

mean caterpillar biomass and DEE is highly significant (Spearman's rank-order 

correlation rs = 0.754, P <0.001 N= 38). Some of the plotted points on figure 12.2.6 

represent overlapping multiple data. 
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Figure 12.2.6. Relationship between mean per faecal sample biomass (mg) of 
caterpillars fed to young (section 12.1. ) against DEE for female Blue Tits (5 birds, 24 

samples) and Great Tits (2 birds, 14 samples) at SK3388 site. OLS regression lines 
shown, for Great Tit F, 12 = 10.77, r2 = 47,3%, P=0.007. For Blue Tit F122 = 14.31, r2 _ 
39,4%, P=0.001. 

12.2.5. Conclusions 

There is little in the DEE comparisons to suggest that the birds of SK3388 are 

struggling to provision their chicks, neither are they obviously energetically subsidised. 

For Great Tits in SK3388, which adapt the diets of their chicks to larger caterpillars 
(section 12.1), DEE is at the lower end of the observed range whereas for SK3388 Blue 

Tits which provide similar sized caterpillars to rural conspecifics, DEE is somewhat 

higher than in Bute Park; lack of formal significance means these observations must be 

treated with caution. Comparisons with birds from other countries should be treated as 

for interest only; Corsican Blue Tits, for example, are genetically distinct from north 

European conspecifics (Kvist et al. 2004). 
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12.3. Prevalence of infectious disease at bird feeding stations 

12.3.1. Introduction 

There is increasing concern that aggregations of birds at point sources of anthropogenic 
food, notably garden bird tables and feeding stations, may facilitate transmission of 

pathogenic organisms among the feeding birds, thereby possibly constituting a 

constraint upon the wellbeing and survival of urban garden birds. This concern 

culminated in 2003 in the formation of a working group of British bird conservation 
NGOs and bird food industry representatives to advise the public on what is now seen 

as a potentially serious issue (UFAW Feeding Garden Birds Working Group 2005). 

Ground-feeding finches such as the Greenfinch seem particularly susceptible and 

evidence available so far (Kirkwood 1998; Kirkwood et al. 1995; Pennycott et al. 1998) 

suggests that the main infection threats at British bird feeding stations are Escherichia 

coli (Migula 1895) Castellani and Chalmers, 1919 and Salmonella spp., particularly 
Salmonella typhimurium (Loeffler 1892) Castellani and Chalmers, 1919. 

Salmonella shed by infected birds can remain viable in dry environments outside its 
host organisms for weeks or months (International Commission on Microbiological 
Specifications for Foods 1996) and is likely to be easily transmitted by ingestion or 
inhalation of fresh or dried faecal material, especially in crowded environments such as 
busy bird tables. Another transmission mode prevalent in poultry is via infected crop 
contents passed from adults to young. It can also be transmitted from adult birds to 
eggs, the embryo dying if levels become too high (Kozlowski et al. 1988). The 
persistence of Salmonella in the environment facilitates environmental sampling for this 
organism using relatively simple protocols. In this section the prevalence of Salmonella 

at feeding station in the SK3388 study area during the 2002 breeding season, as 
determined by field sampling, is reported. 

12.3.2. Methods 

During May and June 2002 twenty-five bird feeding stations in private gardens were 
sampled, one in each 200m square of the 1 km2 SK3388 study area (figure 12.3.1) At 
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each feeding station a sample of faecal material was obtained by rolling a sterile 

transport swab in fresh material and adding any adjacent dryer material to form 

wherever possible a composite sample of several grams following Pennycott, Cinderey 

et al (2002). Transport swabs were placed in Amies transport medium (with charcoal) 

and kept in a normal domestic refrigerator before being collected by staff of the Institute 

of Zoology, London (IOZ) where they were cultured and screened for Salmonella as 

part of a larger study. In addition, nine cloacal samples were collected during June 2002 

from adult House Sparrows (6), Blue Tits (2) and Greenfinch (1) using small sterile 

transport swabs. again with Amies medium and similarly screened at the IOZ (by 

M. Pinches, S. K. MacGregor et al). 

Figure 12.3.1. Locations of the 25 sampled bird feeding stations within the 1km2 
SK3388 study area. Grid squares are 200m x 200m. 

12.3.3. Results 

All samples submitted to the Institute of Zoology were negative for Salmonella spp. 
(M. Pinches 2002pers. comm. ). 
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12.3.4. Conclusion 

This investigation suggests that the transmission of Salmonella at garden feeding 

stations was not a serious problem for birds in SK3388 during 2002. This is supported 

by the fact that no sickly birds with symptoms characteristic of Salmonella infection 

were observed, trapped or reported during three years of fieldwork in the study area. 
Nonetheless,, according to Friend et al. (2001) Salmonella spp. at feeding stations is a 

problem of international importance and urban feeding increases opportunities for 

zoonosis. In Wisconsin, 36% of feeding stations had recurring mortality incidents 

(Brittingham & Temple 1988a); although the mean death rate through disease and 

unknown causes was insignificant for a single bird feeder at 1 bird per 21.5 feeder 

years, the same rate would predict 3,995 cases in Milwaukee and approximately 35 

cases in SK3388 in one winter, although urban feeders had lower mortality than busier 

rural feeders (Brittingham & Temple 1988a). At feeding sites in Scotland, 94 out of 103 

deaths were associated with either Salmonella typhimurium or Eschericia coli 
(Pennycott et al. 1998) and of 60 incidents of mortality or welfare problems at British 

feeding stations, 50 were linked to infectious disease (Kirkwood 1998). Many wild bird 

mortalities go undetected and their true incidence may be higher than realised; despite a 

negative result in a ̀ snapshot' sample, this issue should nonetheless be monitored. 
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13. Synthesis & Conclusions 

Abstract 

This chapter briefly summarises and brings together the key messages arising from the 
investigations presented in this thesis, and proposes some future research themes that might 
build on them effectively. Primary discussions of methodology and conclusions are included 
within each of the separate analytical chapters. 

There are no universal answers to the questions of whether urbanised habitats either 

presently or potentially support sustainable, representative avifaunas and whether they 

contribute meaningfully to bird populations and their conservation. This thesis adopted 

a multi-scale approach, examining on a national scale which birds urbanise and why, 
then focusing on a particular type of habitat, private gardens, that has been very little- 

studied, both generally and in an urban context. Fieldwork within this habitat in 

Sheffield then provided community- and individual-level insights into the ecological 
opportunities and constraints in operation. Several of the investigations reported are the 
first of their kind and, as such, point the way for future work. 

Chapter two presents the first national scale analysis of relative avian urbanisation 
accounting formally for spatial autocorrelation. At first sight, the species which did not 
urbanise are unsurprising but some of the positive species associations seem counter- 
intuitive, until the marginal habitats associated with urbanisation at the landscape level 

are considered. Whitethroat is more urban than Feral Pigeon in this analysis but breeds 

among urban tramlines in Sheffield and in scrub and allotments on the edges of many 
small towns in which pigeons are scarce (pers obs). Mallard and Moorhen are 
ubiquitous in urban parks, while Little Ringed Plover breeds among urban mining 
flashes and gravel pits. This analysis shows that more species associate with 
urbanisation than previously realised. It also provided, for the first time, a systematic 
continuous measure of relative urbanisation, which enabled the first comparative 
analysis of relative urbanisation and brain size that both formally controlled for 

phylogeny and was not based on simple occurrence data, as reported in chapter three. 
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This showed that successful urbanisation is not restricted to a handful of the most 

overtly `intelligent' species; on the contrary, birds of a wide range of capabilities and 

lifestyles exploit the opportunities provided by urban habitats. This interpretation is 

supported by the fact that further preliminary analyses (unpublished) have so far failed 

to relate the measure of relative urbanisation derived in chapter 2 to any particular 

ecological traits; this is an obvious avenue for future research. 

Turning to private gardens as a particular resource available to birds among human 

habitation, chapter four shows how trends in their usage rates are related to national 

population variation for 15 species. For many birds, gardens are an extension of 
`natural' habitat, although why a few species such as Greenfinch appear to use them in a 
different manner remains an open question. Considering urban gardens specifically, 

chapter five documents a general tendency for reporting rate trends to be more negative 
in urban gardens than elsewhere (figure 5.1), although urban Dunnocks are doing better; 

it would be fascinating to discover why. Perhaps even more important would be greater 

understanding of why the red-listed Song Thrush is apparently doing so poorly in urban 

gardens, certainly they struggle in SK3388. It may be that factors such as predation by 

Magpies, which are ubiquitous and still increasing in SK3388, are important issues 

within urban landscapes, despite the known absence of any significant association of 
their numbers with declines of their prey species nationally. Researching urban 
predation is challenging in many ways but is potentially a very important future line of 
enquiry. Among rural, suburban and urban landscapes, there is notable seasonality in 

the exploitation rates of gardens. This suggests that a proportion of the birds that use 
them do not do so all year round, their apparent use by both breeding residents and 
winter transients is supported by the results of the SK3388 ringing study (below). 

Chapter seven presents one of the most detailed studies ever attempted of the breeding 

avifauna across a substantial area of highly-urbanised residential habitat. It is also one 
of very few studies that focus on a uniform plot of `secondary urbanisation' (section 
7.2.1), rather than park, city centre or a suburban garden habitats. In this study area, 
territorial species generally had higher densities than in more highly urbanised habitats 
but the overall bird density was lower, in particular there were very few pigeons and 
Starlings compared to city centre study sites. Rapid changes made some densities hard 
to assess; Magpies were increasing, in opposition to the national trend, Great Tits 
actively colonising and House Sparrows in rapid decline. Nonetheless, it is clear that 
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SK3388 supports a viable avifauna but is an intermediate habitat with an assemblage 

showing characteristic urban duality of stenotopic and eurytopic species; it supports 

more ̀ garden' birds but fewer `urban' birds than core urban habitat. 

In view of the rather low overall bird density, further investigation of the ecological 

constraints that may be limiting this would be extremely valuable. Low take-up of 

provided nestboxes suggests that holes for tits are not in short supply in SK3388. 

Negligible use of additional bird feeding stations, experimentally introduced into the 

study area, and observations during the field survey of numerous unused feeders suggest 

that energy-rich supplementary food for adults is superabundant. An estimate 

(unpublished) of daily energy expenditure based on body mass for the entire breeding 

avifauna of SK3388 (from table 7.18) indicated that all the study area's adult birds of all 

species could be sustained by just 7 kg of peanuts per day, the total theoretical 

maximum post-breeding population by 39 kg of peanuts per day. Casual observations 

suggest that far more than 7 kg of supplementary food is freely available in SK3388 on 

any one day of the year, but the true provisioning and consumption rates at garden 
feeding stations remain to be quantified. 

The exhaustive mapping of the breeding avifauna undertaken for chapter seven enabled 

the first spatial analysis of breeding species richness against habitat variables across a 
large urban study area that controlled formally for spatial autocorrelation, as reported in 

chapter eight. Cats are often blamed for disrupting the lives of urban birds but their 

presence does not appear to affect choice of nesting location, although whether they 

affect subsequent productivity would be another fruitful line of enquiry. The role of 
supplementary food in the breeding season has also been hotly debated; this study 

presents, for the first time, clear evidence of a spatial relationship between the presence 

of year-round food and breeding species richness, controlling for other environmental 

variables. Even if the habitat is depauperate in, for example, invertebrate prey or nesting 

cover, introducing high-quality year-round food supplementation may well nonetheless 
have a substantial effect on bird distribution and perhaps density; a controlled 
experiment is badly needed. 

The work presented in chapters nine to 11 represents an ambitious multi-species 
investigation into the use of an urban garden habitat by individual birds. Inter-species 

comparisons of catch rates show that in SK3388 the breeding avifauna is also the 
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feeding avifauna and its composition is rather stable, but transient foragers boost feeder 

traffic in winter. In other words, birds exploit these gardens exactly as they do larger 

non-urban gardens, albeit at somewhat lower densities, with the same seasonal pattern; 
SK3388 is not simply a ̀ larder' for birds breeding elsewhere. It is also not a habitat in 

which birds, perhaps attracted by artificial food, simply disappear. Individuals were 

very persistent at feeders, some generating numerous repeat sightings and individuals of 

seven species persisting for more than two years. Nor did birds move around the site 

randomly, they appeared to operate normal territoriality with most re-encountered 
individuals faithful to particular feeders. At the same time, there clearly is some 

population exchange with other habitats; the avifauna of SK3388 is not isolated. 

Finally, the investigations presented in chapter 12 show how Blue and Great Tits adapt 

well to urban garden habitats but perhaps in somewhat different ways; an intriguing 

difference between two species both scoring very highly on the relative brain size scale 
developed for chapter three (ranked 19/104 and 24/104 respectively), but nonetheless 

showing differing aspects of ecological versatility in SK3388. Great Tits, newly 

colonising the study area, seemed to be urbanising through flexibility. Compared to 

non-urban conspecifics they feed their chicks on caterpillars of very different sizes and 
their bill shape variation suggest the winter diet of this species in urban habitats may 
also differ from that in other habitats, the latter result requires confirmation via inter- 

season comparison of repeat-caught individuals, potentially a fascinating project for any 
garden ringer. 

In contrast, Blue Tits seem to be well-adapted a priori to SK3388; their population in 
the study area is remarkably stable, they maintain higher weights than non-urban 
conspecifics in the breeding season and manage their weights optimally in winter. In 

addition, they feed their young with the same sizes and quantities of caterpillars as non- 
urban birds and do not seem to be struggling to provision their broods, according to 
DEE measurements. Their main mechanism of adaptation to urban garden habitats is 

probably regulation of density, which is much lower in SK3388 than the maximum 
they attain in other habitats. Chapter eight suggests that they and the other territorial 
species take feeders into account in their spatial distribution; feeders which, according 
to the last, smallest and simplest investigation reported in chapter 12, are not hotbeds of 
infectious disease as suggested in some reports, but in fact reasonably hygienic. 
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In conclusion, the work presented in this thesis further challenges the prevailing 

anthropomorphic characterisation of urban birds as ̀ poor little things', `stuck' in an 

unfavourable habitat because they have nowhere better to go. Thousands of humans 

move to cities every day because they perceive better opportunities within them for 

themselves and their offspring. There is no reason to suppose that birds urbanise any 
less rationally than humans do, arguably more so, their rationality being ecological 

rather than sociological. Many cities support high densities of commensal birds and 

even high-density urban residential areas, if they contain private gardens, can support 

assemblages of non-urban species of low density but nonetheless similar seasonality, 

stability and sustainability to the avifaunas of non-urban garden habitats. Furthermore, 

attempts by human residents to assist these birds with food are apparently neither 

wasted nor disregarded by the birds in their resource assessments. They clearly 
influence breeding species' distributions, and the fact that primary feeder-using species 

such as Blue Tit breed successfully and sustainably in SK3388 casts doubt on 

suggestions that supplementary food amounts to an ecological trap in urban habitats. 

This is not to say that urban birds can be taken for granted, as reported in chapter five a 

number of species have negative reporting rate trends in urban gardens and two core 

urban species are now red-listed in the UK, House Sparrow and Starling. Some of the 

more charismatic species that frequently use suburban gardens, such as Great Spotted 
Woodpecker and Sparrowhawk, do not breed in SK3388; there is clearly more that can 
be learnt, and more that can be done. Throughout Sheffield, it is apparent that the 

regeneration and enhancement of urban quality of life is a grand theme for city planners 
and residents in the 21St century, yet chapter 6 suggests that urban birds may not be 
directly benefiting from conservation successes that have improved their lot in other 
habitats. If urban enhancement can include resources such as good quality year-round 
food for birds, and regeneration does not cover areas like SK3388 with luxury flats, 

commanding higher prices than traditional terraced homes with their mosaic of small 
gardens, then sparse but sustainable avifaunas like that of SK3388 are safe. Not all the 
signs in Sheffield and other cities are encouraging, but if the garden bird enthusiasts 
who made the fieldwork reported in this thesis possible have their way, the density, 
diversity and sustainability of the avifauna of SK33388 are secure and likely to 
improve. 
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Appendices 

A. Abbreviations and acronyms 

ANOVA Analysis of Variance 
AUTOCAT Program suite for autologistic regression (He et at. 2003) 
BBS BTO/JNCC/RSPB Breeding Bird Survey www. bto. org/bbs 
BLABI Blackbird Turdus merula. 
BLUTI Blue Tit Parus caeruleus 
BTO British Trust for Ornithology. www. bto. org 
CAIC Program suite: Comparative Analysis via Independent Contrasts www. bio. ic. ac. uk/evolve/software/caic/ 
CBC Common Birds Census www. bto. org/survey/cbc 
CEH NERC Centre for Ecology & Hydrology www. ceh. ac. uk 
COATI Coal Tit Parus ater 
DFA Discriminant Function Analysis 
EDINA JISC National Data Centre at Edinburgh www. edina. ac. uk 
ESF European Science Foundation. (Bird fat scoring system, Redfern & Clark (2001)) 
GBW BTO/CJ Wildbird Foods GardenBirdWatch. www. bto. org/gbw/ 
GEE Generalised estimating equations (in regression analysis) 
GIS Geographic Information System 
GOLDF Goldfinch Carduelis carduelis 
GRETI Great Tit Parus major 
HOUSP House Sparrow Passer domesticus 
IPMR Integrated Population Monitoring Recorder. Database package used by bird ringers. 

www. bto. org/ringingtringsoft/ipmr/index. htm 
IWC Irish Wildbird Conservancy (now BirdWatch Ireland www. birdwatchireland. ie ) 
JISC Joint Information Systems Committee www. jisc. ac. uk 
JNCC Joint Nature Conservation Committee www. jncc. gov. uk 
LCM2000 Land Cover Map 2000 www. cs2000. org. uk 
LOTTI Long-tailed Tit Aegithalos caudatus 
MCL Monte Carlo Likelihood (in regression analysis) 
MCMC-SA Markov Chain Monte Carlo Stochastic Approach (in regression analysis) 
ML Maximum Likelihood (estimation method in regression analysis) 
MPL Maximum pseudo-likelihood (estimation method in regression analysis) 
NERC Natural Environment Research Council www. nerc. ac. uk 
OLS Ordinary Least Squares (estimation method in regression analysis) 
OS/OSGB Ordnance Survey of Great Britain. www. ordnancesurvey. co. uk 
RSPB Royal Society for the Protection of Birds www. rspb. org. uk 
SISKI Siskin Carduelis spinus 
SOC Scottish Ornithologists' Club www. the-soc. zenwebhosting. com 

B. Scientific names of organisms 

Vernacular name Scientific name 
American Goldfinch Carduelis tristis (L. ) 
Australian Magpie Gymnorhina tibicen (Latham, 1802) 
Bam Owl Tyto alba (Scopoli, 1769) 
Black Grouse Tetrao tetrix L. 
Black Guillemot Cepphus grylle (L. ) 
Blackbird Turdus merula L. 
Blackcap Sylvia atricapilla (L. ) 
Black-headed Gull Larus ridibundus L. 
Black Redstart Phoenicurus ochruros (S. G. Gmelin, 1774) 
Blue Tit Parus caeruleus L., Cyanistes caeruleus (Sangster et al. 2005) 
Brown Rat Rattus norvegicus (Berkenhout, 1769) 
Bullfinch Pyrrhula pyrrhula (L. ) 
Buzzard Buteo buteo (L. ) 
(Greater) Canada Goose Branta canadensis (L. ) 
Carrion Crow & Hooded Crow Corvus corone L. & Corvus cornix L 
Chaffinch Fringilla coelebs L. 
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Chiffchaff Phylloscopus collybita (Vieillot, 1817) 
Coal Tit Parus ater L., Periparus ater (Sangster et al. 2005) 
Collared Dove Streptopelia decaocto (Frivaldszky, 1838) 
Common Gull Larus canus L. 
Common Sandpiper Actitis hypoleucos L. 
Common Tern Sterna hirundo L. 
Coot Fulica atra L. 
Corn Bunting Miliaria calandra L. 
Crossbill & Scottish Crossbill Loxia curvirostra L. & Loxia scotica Hartert, 1904 
Cuckoo Cuculus canorus L. 
Curlew Numenius arquata L. 
Dipper Cinclus cinclus L. 
Domestic Cat Felis silvestris Schreber, 1775 
Dunlin Calidris alpin L. 
Dunnock Prunella modularis L. 
Dusky Warbler Phylloscopusfuscatus (Blyth, 1842) 
Eastern Screech Owl Asio otus (L. ) 
Eider Somateria mollissima L. 
Feral pigeon Columba livia J. F. Gmelin, 1789 
(Common) Fig (tree) Ficus carica L. 
Fulmar Fulmarus glacialis L. 
Garden Warbler Sylvia borin (Boddaert, 1783) 
Goldcrest Regulus regulus L. 
Golden-cheeked Warbler Dendroica chrysoparia Sclater & Salvin, 1860 
Golden Plover Pluvialis apricaria 
Goldfinch Carduelis carduelis L. 
Goosander Mergus merganser L. 
Grasshopper Warbler Locustella naevia (Boddaert, 1783) 
Great Black-backed Gull Larus marinus L. 
Great Crested Grebe Podiceps cristatus L. 
Great Spotted Woodpecker Dendrocopos major L. 
Great Tit Parus major L. 
Green Woodpecker Picus viridis L. 
Greenfinch Carduelis chloris L. 
Greenish Warbler Phylloscopus trochiloides (Sundevall, 1837) 
Grey Heron Ardea cinerea L. 
Grey Partridge Perdix perdix L. 
Grey Squirrel Sciurus carolinensis Gmelin, 1788 
Grey Wagtail Motacilla cinerea Tunstall, 1771 
Greylag Goose Anser anser L. 
Hen Harrier Circus cyaneus L. 
Herring Gull Larus argentatus Pontoppidan, 1763 
Holly Blue (butterfly) Celastrina argiolus (L. ) 
House Crow Corvus splendens Vieillot, 1817 
House Finch Carpodacus mexicanus (Muller, 1776) 
House Martin Delichon urbica L.. Delichon urbicum (Sangster et al. 2005) 
House Sparrow Passer domesticus L. 
House Wren Troglodytes aedon Vieillot, 1809 
Indigo Bunting Passerina cyanea (L. ) 
Italian Sparrow Passer domesticus italiae 
Jackdaw Corvus monedula L. 
Jay Garrulus glandarius L. 
Kestrel Falco tinnunculus L. 
Kingfisher Alcedo atthis L. 
Lapwing Vanellus vanellus L. 
Large White (butterfly) Pieris brassicae (L. ) 
Lesser Black-backed Gull Larusfuscus L. 
Lesser Redpoll Carduelis cabaret L. 
Lesser Spotted Woodpecker Dendrocopos minor L. 
Lesser Whitethroat Sylvia curruca L. 
Linnet Carduelis cannabina L. 
Little Grebe Tachybaptus ruficollis (Pallas, 1764) 
Little Owl Athene noctua (Scopoli, 1769) 
Little Ringed Plover Charadrius dubius Scopoli, 1786 
London Plane (tree) Platanus x acerifolia (Aiton) Willd. 
Long-eared Owl Asio otus L. 
Long-tailed Tit Aegithalos caudatus L. 

263 



Magpie Pica pica L. 
Mallard Anasplatyrhynchos L. 
Marsh Tit Parus palustris L., Poecile palustris (Sangster et at. 2005) 
Meadow Pipit Anthus pratensis L. 
Merlin Falco columbarius L. 
Mistle Thrush Turdus viscivorus L. 
Moorhen Gallinula chloropus L. 
Mourning Dove Zenaida macroura (L. ) 
Mute Swan Cygnus olor (J. F. Gmelin, 1789) 
Nightingale Luscinia megarhynchos (Brehm, 1831) 
Nightjat Caprimulgus europaeus L. 
Noisy Miner Manorina melanocephala (Latham, 1802) 
Northern Cardinal Cardinalis cardinalis (L. ) 

Nutcracker Nucifraga caryocatactes (L. ) 
Nuthatch Sitta europaea L. 
Oriental Plane (tree) Platanus orientalis L. 
Oystercatcher Haematopus ostralegus L. 
Peregrine Falco peregrinus Tunstall, 1771 
Pheasant Phasianus colchicus L. 
Pied Flycatcher Ficedula hypoleuca (Pallas, 1764) 
Pied Wagtail Motacilla alba L. 
Raven Corvus corax L. 
Red-breasted Merganser Mergus serrator L. 
Red-legged Partridge Alectoris rufa L. 
Red-winged Blackbird Agelaius phoenicius (L. ) 
Redshank Tringa totanus L. 
Redstart Phoenicurus phoenicurus L. 
Reed Bunting Emberiza schoeniclus L. 
Reed Warbler Acrocephalus scirpaceus (Hermann, 1804) 
Ring-billed Gull Larus delawarensis Ord, 1815 
Ring Ouzel Turdus torquatus L. 
Ringed Plover Charadrius hiaticula L. 
(Greater) Roadrunner Geococcyx californianus (Lesson, 1829) 
Robin Erithacus rubecula L. 
Rock Pipit Anthuspetrosus (Montagu, 1798) 
Rook Corvus frugilegus L. 
Rufous collared Sparrow Zonotrichia capensis (Muller 1776) 
Sand Martin Riparia riparia L. 
Sedge Warbler Acrocephalus schoenobaenus L. 
Serin Serinus serinus (L. ) 
Shag Phalacrocorax aristotelis L. 
Shelduck Tadorna tadorna L. 
Short-eared Owl Asioflammeus (Pontoppidan, 1763) 
Siskin Carduelis spinus L. 
Skylark Alauda arvensis L. 
Small White (butterfly) Pieris rapae (L. ) 
Snipe Gallinago gallinago L. 
Song Sparrow Melospiza melodia (Wilson, 1810) 
Song Thrush Turdus philomelos Brehm, 1831 
Sparrowhawk Acctpiter nisus (L. ) 
Spotted Flycatcher Muscicapa striata (Pallas, 1764) 
Speckled Pigeon Columba guinea L. 
Starling Sturnus vulgaris L. 
Stickleback Gasterosteus aculeatus L. 
Stock Dove Columba oenas L. 
Stonechat Saxicola torquata L. 
Swainson's Hawk Buteo swainsoni Bonaparte, 1838 
Swallow Hirundo rustica L. 
Swift Apus apus L. 
Tawny Owl Strix aluco L. 
Teal Anas crecca L. 
Thrush Nightingale Luscinia luscinia (L. ) 
Torresian Crow Corvus orru Bonaparte, 1850 
Tree Pipit Anthus trivialis L. 
Tree Sparrow Passer montanus L. 
Treecreeper Certhiafamiliaris L. 
Tufted Duck Aythyafuligula L. 
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Turtle Dove 
Twite 
Wheatear 
Whinchat 
White-collared Pigeon 
Whitethroat 
Willow Tit 
Willow Warbler 
Willow/Red Grouse 
Wood Duck 
Wood Mouse 
Wood Warbler 
Woodcock 
Woodpigeon 
Wren 
Yellow Wagtail 
Yellowhammer 

Appendix C. 

Streptopelia turtur L. 
Carduelis favirostris L. 
Oenanthe oenanthe L. 
Saxicola rubetra L. 
Columba albitorques Ruppell, 1837 
Sylvia communis Latham, 1787 
Parus montanus L., Poecile montanus (Sangster et al. 2005) 
Phylloscopus trochilus L. 
Lagopus lagopus L. 
Aix sponsa (L) 
Apodemus sylvaticus (L. ) 
Phylloscopus sybillatrix (Bechstein, 1793) 
Scolopax rusticola L. 
Columba palumbus L. 
Troglodytes troglodytes L. 
Motacilla fava L. 
Emberiza citrinella L. 

Supplementary figures for chapter 4. 

Figures S1.1 - S1.40. Weekly reporting rates calculated from original data ('noisy' 
plots) and probabilities of occurrence predicted by'minimum adequate' GEE models 
('smooth' plots). Week numbers 1- 416 run from January 1995 to December 2002. 
Models using 'all sites' data (black) are plotted for all species. Raw data and model 
results using 'species positive' data (dotted) are additionally plotted for species in 
which there is either a gain or loss of formal significance in the year term or an 
improvement in data dispersion, or an interesting difference in the form of the two 
plots. 
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