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Abstract

The behaviour has been examined of piles installed in clay subject to a rapid load
testing method known as the Statnamic test. The Statnamic method is easier and quicker
to mobilise than a static test and is less complex to analyse than dynamic pile load tests.
This 1nvestigation consisted of a laboratory study of the effect of the rate of loading on
pile behaviour in clay and a field test of a pile in glacial clay to calibrate the findings of

the laboratory study.

The effects of penetration rate and Statnamic loading on model pile behaviour have
been studied using an instrumented clay calibration chamber. The effect of rate of
loading on the pile’s capacity was quantified using constant rate of penetration tests
(CRP) at different pile penetration rates. This allowed viscous soil damping
characteristics to be determined and a new Statnamic analysis method incorporating rate
dependant soil behaviour to be developed. This rate dependant behaviour can be
represented by modification of a non-linear rate law proposed by Randolph & Deeks

(1992).

A field pile testing facility was developed in glacial till. To test the success of the new
Statnamic analysis, a class A prediction of static pile behaviour from prototype pile load
testing was undertaken. Encouraging results were obtained for the prediction of ultimate
static pile behaviour, but the analysis method under predicted soil-pile stiffness. A soil
inertial component was added to the analysis, based upon instrumentation readings,
- which improved the predicted static soil-pile stiffness.

Results from prototype pile testing show that the stiffness during Statnamic and static
load tests was very similar up to 50% of the ultimate static pile capacity. Thus, rapid
load testing may be used for verification of pile settlements at working loads in clays.
At the present level of understanding of testing in clays, rapid load pile tests should not
be carried out in isolation. Ideally, tests should be used in conjunction with a static test
that will allow back figured parameters to be derived for analysis.

Keywords: pile testing, clay, rate effects, damping, Statnamic, static loading, rapid
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Chapter 1 Introduction

1.0 Introduction

1.1 Preface

It 1s normal when constructing piled foundations to undertake a design process that
results in specification of the pile length and cross sectional area. The main performance
criteria are the pile’s settlement under a working load and the ultimate bearing capacity.
Large factors of safety are often used due to factors such as natural ground variation,
differences in construction techniques and the accuracy of estimating axial capacity
based upon empirical correlations. To allow more efficient and confident design of
piles, it is common to carry out pile load tests prior to or during the design process.
Load tests are also carried out during and after the pile construction process to allow

verification of construction techniques and quality.

The main types of load test available fall into three categories; static, dynamic and
kinematic or rapid load tests. Static tests are slow and infrastructure intensive but have
the advantage of being simple to analyse. Conversely, dynamic tests are very fast with
little additional infrastructure but they need specialised analysis techniques. Rapid load
testing methods have been developed in an attempt to incorporate the advantages of
both static and dynamic tests, the most common being the Statnamic test which has a

loading duration between that of static and dynamic test.

The Statnamic test works by the rapid burning of a fuel that produces gas in a pressure
chamber, This gas accelerates a mass upwards that in turn imparts a downward load on
the test pile. The load is applied and removed by the controlled venting of the gas that
results in a load duration ~ 180 milliseconds which is thirty times that of dynamic load

testing,

For foundation design, it is necessary to derive the equivalent static load-displacement
curve from the Statnamic data due to damping or rate effects. Damping or rate effects
may be defined as the enhancement of soil resistance due to increasing rates of testing.

Current Statnamic analysis techniques consider both pile penetration rate dependent soil
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damping (viscous damping) and acceleration dependent pile damping (inertial
damping). However, the current analysis techniques make several assumptions that
influence the accuracy of derived static behaviour. These include assuming that the
viscous damping model is linear and that inertial effects are limited to the pile. In
addition, the effects of excess pore water pressure generation and dissipation during and

after loading are ignored.

Although existing methods of analysis have shortcomings, they generally provide
excellent correlation with static tests for sands and gravels, but may over predict pile
capacities by up to 35% (Holeyman et al., 2001 & Mullins, 2002) for fine grained soils
(clays). This is because the shear strength of clays increases significantly with
increasing rate of deformation. The rate effect or damping coefficient for clays is highly
non-linear resulting in a reluctance to adopt the Statnamic test method for piles installed
in clay. The commercial advantages of being able to use Statnamic testing in countries
such as the UK, which has large areas covered by fine grained soil deposits, would be
considerable. A programme of research was initiated at the University of Sheffield to

investigate Statnamic testing of piles in clay deposits.

1.1.1  Laboratory model pile study

An insight into the characteristics of pile-soil interaction during Statnamic and high
penetration rate testing was obtained through the development of a fully instrumented
model pile and clay bed. This study tackled the problems of Statnamic testing in clays
firstly by undertaking Constant Rate of Penetration (CRP) tests at different pile
penetration rates in a controlled and repeatable laboratory environment. This allowed
the viscous soil damping characteristics to be quantified and a new analysis method for
Statnamic testing incorporating non-linear rate dependant soil behaviour to be

developed. To verity the performance of the new analysis method, model Statnamic

tests were also undertaken.

1.1.2  Full scale field study

A prototype pile testing facility was developed in glacial lodgement till near Grimsby,
UK. In order to calibrate the findings of the laboratory study a class A prediction of
static pile behaviour from prototype Statnamic pile load testing was undertaken to

measure the success of the improved analysis method. Encouraging results were

2
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obtained for the prediction of ultimate static pile behaviour but it was recognised that
the new analysis method did not adequately predict soil-pile stiffness. A soil inertial
component was added to the new analysis method, based upon instrumentation

readings, which produced an improvement in the prediction of static pile-soil stiffness.

1.2 Aims and objectives

The aim of this study was to examine the equivalence of rapid (Statnamic) and static

pile load testing methods for fine grained soil types and geological conditions relevant
to the UK.

To meet this aim the following objectives were set;

1. To carry out model pile tests in a large clay calibration chamber to determine the
effects of rate of testing on effective stresses and pile bearing capacity in clay.

2. To develop a model and analysis method based upon the results of the model
pile tests to allow better prediction of static pile behaviour from rapid load tests
in clays.

3. To measure the success of the improved analysis by means of a class A
prediction of static pile behaviour from prototype Statnamic pile load tests on a
pile installed in typical UK clay.

4. To refine the analysis using the prototype load test data.

1.3 Thesis structure

A review of the background literature relevant to this study is presented in Chapter 2.
This chapter highlights the need for pile load testing and goes on to introduce some of
the common methods employed. Particular emphasis is placed on describing the rapid
load testing method known as Stathamic testing. The use, methods of analysis and
merits and shortcomings of the test are described. Details of previously undertaken
investigations into rate effects as well as analysis methods and models are presented.
The chapter ends with a summary of the areas of investigation that are required to

improve understanding of Statnamic and other rapid load tests.

Chapters 3 and 4 are concerned with the laboratory experimental investigation with

Chapter 3 presenting the programme of model pile testing, Chapter 4 describes the

3
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improvements to existing equipment along with the development of new equipment and

testing procedures. This chapter also presents preparation procedures and specification

for the materials used to produce clay beds in this study.

The results of Constant Rate of Penetration (CRP) testing at different pile penetration
rates and simulated Statnamic testing are presented and discussed in Chapter 5. In both
cases the influence of loading and penetration rate on the soil effective stress and the
components of pile capacity are investigated. This chapter also includes the selection of
a model along with parameters to allow the application of a new analysis method to

predict equivalent static pile behaviour from rapid load tests.

Chapter 6 describes the full scale pile testing facility established in glacial lodgement
till near Grimsby. This chapter looks at the development and specification of
instrumented prototype test piles. Results of Statnamic and top-down static load testing
are presented along with discussion of the load test and instrumentation results.
Emphasis is placed upon the differences in load transfer characteristics from test to test

along with the radial dissipation of accelerations away from the pile during Statnamic

testing.

Chapter 7 describes a class A prediction of equivalent static pile load-penetration
behaviour from full scale Statnamic load testing results based upon the laboratory
model study. This chapter proceeds to discuss the results of the prediction event and
presents an improved model for the analysis of Statnamic tests in fine grained soils.
This model incorporates both viscous and inertial soil damping components.

Recommendations are also made for the improvement of Statnamic field testing.

Chapters 8 and 9 summarise the key conclusions from this study and make suggestions

for future research.
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2.0 Literature Review

2.1 Introduction

Two comments made at Professor Mark Randolph’s (Randolph, 2003) Rankine lecture,

“Science and empiricism in pile foundation design”, reinforce the need for pile load

testing:

“Scientific approaches to pile design have advanced enormously in recent decades and
yet, still, the most fundamental aspects of pile design-that of estimating the axial

capacity-relies heavily upon empirical correlations.”

“,...s consistent with my belief that we may never be able to estimate axial pile

capacity in many soil types more accurately than about +£30%. We therefore need to rely

on pile tests to refine pile design.....”

Due to the inherent uncertainty associated with predicting both load capacity and
settlement behaviour of piled foundations (Chow, 1997, Anon, 1999 & Wheeler 2000),
based on existing design methods it is common to carry out load tests for verification
(Fleming et al., 1992). As noted by White (2002) the uncertainty in pile design methods
is recognised by Eurocode7 (EC 7:1997) where design methods that are either
analytical or empirical must be verified by static load tests. Although EC 7 states that
the static load tests must have been undertaken in similar conditions, it does not clarify
if a static test is necessary for each individual design case. It may be argued that all
empirical design methods are based upon static load tests at some point in their

development.

Poulos (2000) states that the information obtained from pile load testing may be used in

a number of ways including:

1. Construction and quality verification,

2. As a means of verifying design information,
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3. As a means of obtaining design data on pile performance, which may allow for a

more effective and confident design of the piles.

Pile load testing methods include static tests, dynamic tests and kinematic or rapid load
tests. There are also less frequently used static load test methods such as the Osterberg
Cell (O-Cell). Generally, static pile testing methods are expensive and time consuming
(Fleming et al., 1992 & SCI, 1997), but have the advantage of simple analysis and

interpretation. Conversely, dynamic and rapid load testing methods are quick to carry

out but require more specialised equipment and analysis.

This literature review aims to identify and introduce the main types of pile load testing
methods and highlight their advantages and disadvantages, as well as assumptions and
parameters required for analysis. The review will focus on the rapid pile load testing
method known as Statnamic and its’ current analysis method, which does not perform
well in clays or fine grained soils due to rate effects. Previous investigations into the
behaviour of these materials at elevated loading rates and the effect on soil behaviour
are identified. Where models for deriving equivalent low rate material behaviour have
been proposed, these are reviewed with key input parameters identified. The review will

then look at high loading rate model pile tests in fine grained soils.

2.2 Pile load testing methods

2.2.1 Top-down static load testing of piles

The most common method of pile load testing may take one of two forms. These are the
Maintained Load Test (MLT) and the Constant Rate of Penetration Test (CRP). The
names of the two tests are derived from their methodology. Since the invention of tests
such as the Osterberg Cell method, these types of testing are often referred to as top-

down as the loading is applied at the head of the pile.

The MLT works by applying and maintaining increments of load to the head of the pile
for a minimum specified time and until a specified rate of settlement criterion is
satisfied. At which point the load is either increased or reduced (Tomlinson, 1994). The
minimum time for holding of an increment typically varies from 30 minutes to 6 hours.

This results in a test that generally takes a minimum of 19 hours but may take much

6
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longer depending on the particular test specification (ICE, 1997). This neglects time
required for setting up the test equipment. The magnitudes of the applied load
increments are chosen to verify the ability of the pile to carry the design loads
associated with the structure to be constructed above the pile (working load). At the
same load, the pile settlement must be within acceptable limits. To allow for natural

variation of ground conditions, the load applied to the pile is taken to 1.5 or 2 times the

working load (Tomlinson, 2001).

Generally, this test method is not used to prove the pile ultimate load (Figure 2.1)
capacity or generate “plunge” as it is difficult to maintain constant load during rapid
penetration. Additionally, it is typical to increase the pile load in 25% increments of the
working load, which may mean the application of many hundreds of kN’s between load
increments. It is then possible for the actual ultimate load to be missed resulting in an

underestimation of ultimate capacity as the pile plunges at a higher load increment. To

avoid the underestimation, the load increment may be reduced to 12.5% of the working
load but this extends the duration of the test (Wood, 2003).

A typical reaction or anchor pile type arrangement for pile testing is shown in
Figure 2.2, Alternatively, the reaction to the hydraulic jack can be provided by placing
kentledge above the jacking arrangement. If the pile is a preliminary pile i.e. one that is
required to validate the pile construction performance prior to construction of the
working piles, then either arrangement of pile test would be suitable. Where load tests
are required on piles that will form part of the final structure (working piles) then the
test arrangement using kentledge would appear more appropriate, Unfortunately, if
several working pile tests were needed, multiple individual test arrangements would be
required to avoid time delays. Greater detail regarding pile testing procedure and

equipment arrangements are given by Weltman (1980).

The CRP test varies from the MLT test in that a varying load is applied to the pile under
a constant rate of penetration. The rate of penetration is chosen to reflect the
predominant soil type that the pile installation encounters (Table 2.1). Due to these
penetration rates, tests are completed relatively quickly, For instance a 600mm diameter
pile installed in clay pile can be taken to a penetration equal to 15% of the pile diameter

(90mm) 1n 2.5 hours. The pile load resistance at a pile penetration equal to 15% of the

.
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pile diameter is a commonly adopted definition of pile ultimate load capacity
(ICE, 1997). It can be seen in Table 2.1 that the rates used for CRP in US practice may
be 50% slower or faster than those specified for UK use. There are also differences in
the way MLT testing is undertaken in the US with an additional test referred to as the
Quick Load Test method (QLT) where load increments are only held for 2.5 minutes
(ASTM D1143-81:1994).

The CRP test is usually reserved for determining ultimate pile capacity and for research
purposes (Tomlinson, 2001). Although testing is faster, it requires greater capacity from
the loading and reaction systems to produce plunge. There are also reservations about
the relatively high penetration rates and short test duration especially where piles are
installed in clay. It has been shown that as the penetration rates in CRP increase so does
the ultimate pile capacity and stiffness (Burland & Twine, 1988, Lyndon et al.,, 1993,
Fleming, 1996, England, 2000 & King et al., 2000). Based upon laboratory triaxial
element testing Burland & Twine (1988) suggested that penetration rates during CRP
testing should be reduced from 0.01mmv/s to 1.6x10mm/s. England (2000) suggested
that the standard CRP penetration rate in clay soils should be reduced by at least two
orders of magnitude. The increase in shaft resistance with increasing rate of penetration
is shown in Figure 2.3 for a series of four CFA bored piles of 450 to 490mm average
diameter. These piles were installed at depths between 7.8 to 11.8m in soft silty clay at
the former EPSRC Bothkennar test facility (King et al., 2000). The rate of penetration
dependant ultimate capacity and stiffness were also noted in sands and granular soils,
but to a lesser degree, by Weele (1993) and Fleming & England (2001).

One drawback of static top-down load testing systems that is often overlooked is the

Influence of the reaction system on the ground surrounding the pile (Wood, 2003).

Poulos (2000) reports that the use of kentledge causes an increase in vertical and lateral
stresses acting along the test pile’s shaft and at the base. Non-linear finite element
modelling in sand suggested that pile ultimate capacity and stiffness might be increased
by 10-20% due to the presence of kentledge. Poulos & Davis (1980) showed that the
proximity of reaction piles subject to uplift might cause an enhancement of the test
pile’s stiffness. The influence of the reaction system arrangement may not be considered
a problem where the associated loading is similar to that of the final structure, but it

may cause problems when comparing pile load testing methods.

8
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2.2.2 Bi-directional static load testing of piles

The bi-directional static load test is an alternative to the top-down static load tests
described in Section 2.2.1 (England, 2003). The method varies from the top-down load
tests in that the major component of the system is a sacrificial purpose built high
capacity jack cast in the pile length. The most common form of this type of system is

referred to as the Osterberg Cell (O-Cell), which is claimed to have been deployed over
200 times a year (Loadtest, 2003).

The bi-directional method of testing was originally designed to load the pile from the
base rather than from the head as shown in Figure 2.4 (Schmertmann et al., 1998). On
inflating the jack, reaction is provided by the pile end bearing capacity to mobilise the
pile’s skin resistance and vice versa until the capacity of either the jack or the upper or
lower components of resistance are exceeded. More recently individual jacks or
multiple jacks have been installed at various levels within cast in situ piles to allow
testing of different sections of the pile length (England, 2003 & Randolph, 2003).

The system typically works by incorporating the jack within the reinforcement of a cast
in situ pile. When pile construction is complete, the jack is then inflated using a
hydraulic pump with the oil pressure monitored by a pressure transducer attached to the
hydraulic return line. The calibration of this system allows the required loads to be
applied. During testing, the separation of the jack is monitored by displacement
transducers (LVDTs) mounted between the two faces of the jack. Telltales are also
attached to the top of the jack that extend up to the head of the pile, which allow the
compression of the pile shaft to be monitored. The movement of the pile head is also
monitored. On completion of testing, the jacks can be grouted up to allow the pile to be
used as a working pile. The Osterberg Cells come in various diameters from 130mm to
870mm, with capacities from 0.76MN to 27.4MN. Test loads as high as 151MN have

been applied using several O-Cells installed at the same level.

The bi-directional type of load test has several obvious advantages over static top-down
methods described in Section 2.2.1. The systems require no large surface reaction thus
reducing space requirements, set up time and transportation costs. The system is also

safer with the loads being applied at depth. There are also reported cost savings with bi-
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directional load testing being comparable in cost with top-down static load tests at 5 to

10MN but then becoming much more cost effective at higher loads.

Several disadvantages of the system are reported by Wood (2003). For instance as the
test pile requires the jacking system to be pre-installed it is not possible to select a

random working pile. Where the jack is installed at the pile tip only, the test is limited
by the capacity of the sections being mobilised above the jack and the bearing capacity

below the jack. Thus making it difficult to mobilise the full capacity of both sections at
once and determine a pile’s ultimate capacity. By using multiple jack installations, it
should be possible to find individual capacities for both the base and the skin friction
components of shaft resistance. It is also assumed that the skin friction component of a
pile’s capacity is the same when the pile is displaced upwards rather than downwards as
s normally the case in working conditions. However, Wood (2003) found that the
direction of loading éffected both stiffness and ultimate pile behaviour. Poulos (2000)
also notes that when the jack 1s installed at the base it will interact with the shaft

resistance resulting in an overestimation of pile stiffness.

2.2.3 Dynamic load testing of piles

The pile load testing methods discussed typically have load application durations in
terms of hours. Dynamic pile load testing works by applying a very short duration
impact load (5 to 10 milliseconds) to the pile head (Middendorp et al., 1992 & Weele,
1993). If the pile is being installed by pile driving, the load may be applied by the
driving hammer (Figure 2.5a), or by large guided drop weights for other pile types.
Tests up to 30MN have been undertaken by dropping 20 tonne masses from 2.5m above
auger bored piles. Typical loads achieved are IMN for 1000-1500kg drop weight

systems (1.5 to 2% of the applied load) and 3MN for 4000kg drop weight systems.
(Holeyman, 1992 & Middendorp et al., 2000).

Measurements are taken during the hammer impact from a pair of accelerometers and
strain gauges mounted at the head of the pile (Figure 2.5b). The response of this
instrumentation is logged during and after the weight impact (Humpheson & Seaman,

1992 & Stain, 1992). Data from the instrumentation is used to derive the load applied to

the pile by multiplying the measured strain by the cross-sectional rigidity of the pile and

velocity by integrating the accelerometer readings.

10
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The stress wave produced by the weight impact travels down the pile (Figure 2.6) with
force and velocity which are assumed to be directly proportional to one another as 1n

Equation 2.1.

P,=2v (2.1)

where

P, , = force derived from pile head instrumentation

E A,
C

Z = pile impedance =

v = pile velocity

E, = Young’s modulus of the pile

4, = pile cross-sectional area

c = elastic wave velocity in the pile = _|—=
Pp

p, = pile density

Where the movement of the pile is resisted, or there is a change in impedance such as at
the pile tip, a wave will be reflected back up the pile. The total resistance of the pile to

the stress wave passing up and down the pile has been shown to equal the sum of the

downward travelling wave force plus the upward travelling force that arrives at the pile

head at time 2L/c (where L is the pile length) after the initial peak load (Rausche ef
al., 1985 & Randolph, 2003).

Several methods are available to analyse the stress wave data obtained from a dynamic
load test in order to derive an equivalent static pile capacity. These include signal
processing, numerical models and frequency analysis (Holeyman, 1992). One early
method of signal processing is referred to as the CASE method (Rausche et al., 1985).
This analysis uses close form solutions of one dimensional wave propagation and is

empirically correlated with static pile load tests. This approach utilises a soil damping

1

............
LS
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factor (J) to reduce the measured dynamic pile reaction to a static value. The formula
shown 1n Equation 2.2 is referred to as the CASE method capacity prediction

(Stain, 1992) and is similar in format to those discussed by Ferahian (1977) and
Rausche et al. (1985).

Rsratfc = Rdynamic o J((ZV + B:(tutal ) ) o Rdynamic) (2'2)
where
R.... = static pile capacity

R 4ome = dynamic pile capacity (derived peak dynamic reaction)

J = viscous damping constant for soil
v = pile velocity

D,y = total force at the time of impact

The equation above has its origins in the analysis of pile driving proposed by
Smith (1962). Smith (1962) proposed that static pile loading is represented by an initial
elastic compression to a certain penetration, followed by plastic deformation at constant
resistance as represented by the dotted line OABC in Figure 2.7a (Gibson &
Coyle, 1968). Smith (1962) then went on to develop a mathematical model that
accounts for both the static and dynamic soil behaviour represented by the rheological
model shown in Figure 2.7b. The model consists of an elastic spring and a plastic
friction block in series, connected in parallel to a viscous dashpot. Under rapid

compression the soil resistance 1n the elastic zone is described by Equation 2.3:

R, =Kx, +Cv (2.3)

where

R, = force resisting dynamic loading
K = soil spring constant

x, = elastic so1l deformation or quake (Q)

12
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C = viscous damping constant

To allow for pile shape and size effects, Smith (1962) defined the viscous damping

constant as:

C=KxJ (2.4)

As the pile velocity approaches zero then Equation 2.3 becomes:

R (2.5)

static

= Kx

e

If resisting force (R,) is assumed to equal the dynamic pile capacity (R,,,..) and

Equations 2.4 & 2.5 are substituted in Equation 2.3 then the peak dynamic pile capacity
is represented by Equation 2.6.

= R

static

R

dmamic (1+ ) (2.6)

Although Smith’s derivation was initially founded on explaining behaviour in the pile’s
elastic zone, Equation 2.6 was also used to describe behaviour in the plastic region.
Initially, Smith (1962) proposed that the soil viscous damping constant (J ) should have
a value of 0.15, pending further research. This assumption was later modified such that
the value of the viscous damping constant (J) was considered constant, with specific

values for certain soil types.

The most common methods of analysing dynamic load tests presently used are based
upon lumped parameter finite difference or finite element techniques where the pile is
modelled as an assembly of interconnected masses with varying properties. These
properties, predominantly soil parameters, are varied until computer simulated pile head
forces and velocities match those measured (Holeyman, 1992 & Randolph, 2003).
Several computer packages have been developed that utilise this “Signal matching”
method such as CAPWAP (Case Pile Wave Analysis Program, Rausche et al., 1983),
INOWAVE (Middendorp et al,, 1992) and SIMBAT (Stain, 1992).

13
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Dynamic load testing has benefits in that it is a relatively fast test with quick set up
time. In general, the equipment can be mobilised with a crane (30 tonnes capacity) and
multiple piles tested in a single day. For loads above 10MN, the testing rate is normally
two piles per day (Middendorp ef al,, 2000). The timesavings and simple equipment
result in test costs being two orders of magnitude lower than an equivalent static test
(Randolph, 2003). The system may be used to non-destructively test multiple working
piles but it is recommended that the method is first calibrated against a static pile test
(Fleming et al, 1992 & EC7:1997). Dynamic load testing is recognised in
BS 8004:1986, EC 7:1997, ICE (1997) and SCI (1997), albeit with limited guidance.
Where guidance is given, it relates to the need for calibration of dynamic load testing
with static load tests on similar piles under comparable ground conditions. Direct

mention of analysis methods is not made.

Claims regarding the accuracy of dynamic pile load testing report predictions within
10% of measured static pile capacity (Anon, 1996). The SCI (1997) report that analysis
by the CAPWAP program can produce psuedo-static pile head displacement curves that
fit static results to £10%. Early investigations of the CASE method by Ferahian (1977)

suggest far less accurate correlation with differences of 50-100%, especially for clay

soils.

Although the method is reported to have a relatively high degree of correlation with
static pile tests, there are many critics of dynamic testing (Anon, 1996 & 2000). This
criticism is generally levelled at the complex and specialist analysis of the test data. As
the analysis becomes more complex, there is greater need to input parameters for soil
and pile behaviour based upon experience or correlation (England, 2000). This leaves
the method susceptible to operator influence. The main focus of criticism is the
derivation of the input parameters for the viscous damping constant and the pile
material properties. Holeyman (1992) and Rausche et al. (1985) readily admit that large
conservative damping constant values have been used for clay soils. This is explained as
being due to less experience in these soil types. Paikowsky & Chernauskas (1996)
stated that the representation of soil dynamic resistance by viscous damping in the
analysis of dynamic load tests is inadequate and incorrect. They argued that doing so
results in damping constants that do not correlate to soil type because the models used

for dynamic analysis make no allowance for the influence of soil inertia. Furthermore,
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where viscous damping constants are defined empirically based upon comparison of
static and dynamic load tests carried out in the US, care should be taken when applying
in the UK. As discussed in Section 2.2.1, UK and US static testing procedures may vary
considerably. It would seem necessary to research the past calibration process for any

dynamic analysis method before it can be used in the UK.

Problems with test analysis also arise where the method requires knowledge of
parameters that relate to the dynamic performance of the pile. These may relate to
length, cross-section, mass, density and Young’s modulus. These parameters may be
relatively easy to define for a steel or a pre-cast concrete pile but they become more
uncertain for cast in-situ types where concrete quality and cross section may vary
(England & Fleming, 1994 & Middendorp ef al., 2000).

Dynamic load testing has also received criticism due to pile damage during the test.
This has been reported both for driven and cast in-situ piles (Anon, 2000 & Middendorp
et al., 2000). The damage can either be caused by eccentric loading of the pile head due
to a misguided impact or by tensile stresses resulting from stress wave reflection. This
may lead to piles that are to be tested requiring additional reinforcement or specialised

construction. This then limits the flexibility of pile choice for dynamic load testing.

2.2.4 Rapid or kinematic load testing of piles

The major alternative to static and dynamic load testing methods are rapid or kinematic
load tests, the most common of these being the Statnamic test (STN). The Statnamic test
was conceived in 1985, with the f{irst prototype tests carried out in 1988 through
collaboration between Berminghammer Foundation Equipment of Canada and TNO
Building Research of the Netherlands (Middendorp, 1993 & 2000%). The motivation for
the development of the equipment was to overcome problems associated with dynamic

testing whilst maintaining the advantages (Bermingham, 1999).

Statnamic testing works by the rapid burning of solid fuel that produces gas in a
pressure chamber (Figure 2.8a). The venting of this gas is used to accelerate a mass
upward that in turn imparts a load onto the foundation pile below the Statnamic device.
The load 1s applied and removed smoothly by the controlled venting of the gas which

results in a load application of 100 to 200 milliseconds. This is 30 to 40 times the
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duration of dynamic pile load testing (Bermingham et al., 1994 & Matsumoto et al.,
2000). As the duration of the loading is relatively long, piles less than 40m in length
remain in compression throughout resulting in negligible stress wave effects and
simpler analysis. This also minimises the chance of potentially damaging tensile

stresses developing in the pile (Reiding, 1992).

Statnamic devices have been used that are capable of applying loads from 0.1 to 30MN
with devices capable of applying 60MN under development (Middendorp, 2000%). The
reaction mass required to produce a load of 3.5MN is 18000kg, which is approximately
5% of the resulting load (Holeyman, 1992). Displacements occurring during the test are
measured by means of a photovoltaic cell mounted on the Statnamic device that is
excited by a remotely mounted laser reference beam. The load applied to the pile 1s

measured directly by a calibrated load cell mounted at the base of the Statnamic device.

The Statnamic load test has advantages similar to those outlined for dynamic testing in
that it is compact, quick to test and mobilise. A 3MN Statnamic rig (Figure 2.8b), as
used in this research can be mobilised with one articulated truck and a 70 tonne crane.
Use of Statnamic rigs incorporating hydraulic weight catch mechanisms allow 10
individual piles to be tested in a day or multiple load cycles to be carried out on an
individual pile with minutes between cycles (Middendorp et al., 2000). The method also
has other benefits in that it can be used to test pile groups and shallow foundations. The
system has been used to test inclined piled structures and horizontally to simulate ship
impacts on marine structures. Recent developments include over water testing devices
that use seawater as the reaction mechanism (Middendorp, 2000° & 2000%). It also has

the advantage over dynamic load testing, that for simple analysis, the measured data is

not influenced by pile cross section or material quality.

The data measured directly during the Statnamic load test includes the load applied at
the head of the pile and the displacement of the Statnamic device mounted on the pile.
From the measurements of displacement with time, it is possible to derive the pile
velocity and acceleration by successive differentiation. Maximum pile velocities
calculated during a test may be as high as 1000mm/s, with considerable variation of pile
velocity throughout the test. Typical measured and calculated results from a Statnamic

test carried out on a pile installed in clay are shown in Figure 2.9. It can be seen from
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Figure 2.10 that the Statnamic (STN) load deflection curve varies markedly from that of

the top-down static testing carried out on the same pile.

Middendorp (1993) first described a method of analysis to derive the static equivalent
load-displacement curve fr;)m the Statnamic test results. This simple method of
obtaining an equivalent static pile response is known as the Unloading Point Method
(UPM), which is described in its most commonly used form by Kusakabe & Matsumoto
(1995). In this method the pile and soil system are represented by the rheological model
shown in Figure 2.11a. The pile and the soil system are modelled as a single lumped
pile mass supported by a spring and dashpot in parallel, as often seen in the modelling

of single degree of freedom vibrating systems. The spring represents the load-

displacement behaviour under static loading (F,) and the dashpot represents velocity

(v) dependant viscous soil resistance ( F, ). It is assumed that the pile behaves as a rigid

mass (M ). The UPM method works by determining a constant damping coefficient
(C) that when multiplied by the velocity gives the viscous soil resistance. The equation

of force equilibrium is assumed to be:

Foy = F

saf!+1?a =F;+E*+Ma (2.7)

where

F. = measured Statnamic force

M =pile mass
a = pile acceleration

}?v — Cv (2'8)

Thus at a given time (¢):

Fou(t) = Fgy (6) - Ma(l) (2.9)
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The point of maximum displacement on the load-displacement curve in Figure 2.12 is

called the “Unloading Point”. At this point the pile is said to have zero velocity and

thus:

F =0 (2.10)

and
*. F,(t)= F,(t)~ Malt) = F,(¢) (2.11)

The value of F, at the unloading point is assumed equivalent to the maximum static pile

resistance obtained in the Statnamic test, F, ... The damping coefficient (C) is

determined at Fg .., by assuming F, (¢) is constant between Fgy g and £, . Thus

at Foryiman) ©

F, = FSTN(max) - K,

u{max)

= Mgy many (2.12)

substituting Equation 2,12 in Equation 2.8:
C = l.F STN (max) Ex(max) _MaSTN(max)J / vSTN(max) (2'13)

Simple software that incorporates the above approach referred to as Statnamic Analysis

Workbook (SAW) has been developed that can be used with Statnamic test data
(Garbin, 1999).

One of the major shortcomings of the UPM analysis is that it relies on the assumption of
the pile moving as a rigid body during Statnamic testing, However, if the pile length
increases the movement at the top of the pile may not be synchronised with that at the
base resulting in stress wave effects. This may also occur if the pile is installed with the
tip in stiffer material than is encountered along the shaft (Mullins et al,, 2002). To
investigate the applicability of applying UPM, Middendorp & Bielefeld (1995) defined
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a “Wave Number” (N, ) which is the ratio of wave length to pile length as shown 1n

Equation 2.14:

N =2t (2.14)

L
© L L
where

. = wave length
L = pile length
¢ = elastic wave velocity in the pile

T = duration of the load pulse

Based upon Statnamic analyses using UPM, Middendorp & Bielefeld (1995) &
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