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Abstract

Non-crystallographic symmetries are ubiquitous in physics, chemistry and biology.

Prominent examples are quasicrystals, alloys with long-range order but no translational

periodicity in their atomic organisation, and viruses, micro-organisms consisting of a pro-

tein shell, the capsid, that in most cases displays icosahedral symmetry. Group theory plays

a crucial role in understanding their structures and their physical and geometrical proper-

ties. In this thesis new group theoretical methods are introduced, to characterise virus

organisation and model structural transitions of icosahedral quasicrystals. It is shown that

these problems can be described via the embedding of non-crystallographic groups into the

point group of higher dimensional lattices. Indeed, the analysis of orbits of such embed-

dings, akin to the construction of quasicrystals via the cut-and-project method, provides

a rigorous mathematical construction of finite nested point sets with non-crystallographic

symmetry at each distinct radial level. In the case of icosahedral symmetry, it is shown that

the point arrays thus obtained can be used to provide constraints on the geometry of viral

capsids, encoding information on the organisation of the capsid proteins and the genomic

material collectively. Moreover, structural transitions of icosahedral quasicrystals can be

analysed in a group theoretical framework through continuous rotations in the higher di-

mensional space connecting distinct copies of the embedded icosahedral group, sharing a

common maximal subgroup. These rotations induce in projection continuous transforma-

tions between aperiodic point sets that preserve the symmetry described by the common

subgroup. Theoretical methods as well as applications are discussed, with emphasis on the

computational and geometric aspect of group theory.
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5.2 Nested point set with icosahedral symmetry induced by projection. . . . . 97

5.3 Blueprints for the capsid of Pariacoto Virus. . . . . . . . . . . . . . . . . 101

5.4 Blueprints for the capsid of Bacteriophage MS2. . . . . . . . . . . . . . . 103

8



List of Tables

2.1 Explicit forms of the irreps ρ3 and ρ′3 with Ĩ ' ρ3 ⊕ ρ
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Preface

Group theory is the mathematical language that describes symmetries in nature. Promi-

nent examples of solids with high symmetry are crystals, whose atomic arrangements form

periodic lattices in space. The symmetry groups of lattices, known as crystallographic

groups, correspond, in two and three dimensions, to the 17 wallpaper groups in the plane

and the 230 space groups, respectively, and were classified by Fedorov, Schoenflies and

Bravais in the nineteenth century [1]. These groups are characterised by the crystallo-

graphic restriction, which dictates that the order of their elements must be one, two, three,

four or six [2]. As a consequence, lattices with five- and n-fold symmetry, for n greater

than six, cannot exist in the plane or in 3D space. Therefore, discrete groups of isometries

containing elements of such orders are called non-crystallographic.

Quasicrystals and viruses are prominent examples of non-crystallographic symmetries

in nature. The former are solids whose atomic arrangements display long-range order

but no translational periodicity. They were first discovered experimentally in 1984 by

Shechtman [3], who found that the diffraction pattern of an aluminium-manganese alloy

possessed icosahedral point symmetry. Scientists realised, after an initial scepticism, that

this discovery had shaken the foundations of crystallography, since long-range order had

always been regarded as a synonymous to periodicity. Since then, physicists and mathe-

maticians have developed new mathematical tools to analyse aperiodic structures, and the

theory of quasicrystals has become an active field of research, which encompasses concepts

from metric geometry, algebra, number theory and condensed matter physics. Steinhardt

et al. [4, 5] were among the first to realise that quasiperiodic point arrangements could be

described mathematically via the projection into a suitable subspace of points of a higher

dimensional lattice. Later, Moody [6] provided a formal construction of quasilattices via

cut-and-project schemes and model sets.
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Viruses, micro-organisms that infect all types of life form, are striking examples of

ordered structures in biology. Indeed, a virus consists of a protein shell, called capsid,

that encapsulates the genomic material (RNA or DNA) inside, and in most cases displays

icosahedral symmetry [7]. This symmetrical property allows the use of mathematical tools

to describe and predict the structure of viral capsids. In this sense, the first mathematical

model for virus architecture was provided in 1962 by Caspar and Klug [8]. In their semi-

nal paper, inspired by Buckminster Fuller’s geodesic dome, they describe the construction

of a family of polyhedra with icosahedral symmetry, known as icosideltahedra, that pro-

vide constraints on the positions and relative orientations of the capsid proteins. Although

this theory remains a fundamental framework in virology, there is a significant number of

viruses whose structures fall outside of this construction. In 2004, Twarock [9] showed

how the mathematical principles of quasicrystals can be used to understand the geometry

of viral capsids, by solving a long-standing open structural puzzle in virology. The new

paradigm is the introduction of more general tessellations of the icosahedral net repre-

senting a planar embedding of the capsid surface. By construction, these tessellations are

similar to the Penrose tilings [10]. In this framework, Caspar-Klug theory corresponds to

tessellations with regular triangles. This novel approach in virology, known as Viral Tiling

Theory, has provided new insights into viral capsid assembly and dynamics; moreover, it

has strengthened the connection between viruses and quasicrystals, and opened up new

directions for mathematical applications of techniques from the area of quasicrystals in

virology. Indeed, Salthouse et al. [11] have recently developed a procedure to approximate

viral capsids via icosahedral tilings obtained with the cut-and-project method.

Besides providing insights into virus structure, group theory plays an important role

in modelling the thermodynamical properties of quasicrystals and viruses. Specifically,

the former undergo structural transitions as a consequence of changes of thermodynamical

parameters, such as temperature and pressure. Typically, quasicrystals transform continu-

ously into either higher ordered crystalline states, or other aperiodic structures [12], and a

symmetry breaking occurs. Such transformations can be characterised in the framework of

the phenomenological Landau theory for second-order phase transitions [13], by identify-

ing the order parameters that account for the symmetry breaking. Usually, some symmetry

is preserved, and this is described mathematically by a common subgroup of the symme-

try groups of the initial and final states. Similar transformations occur in virology: viral
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capsids undergo conformational changes as part of their maturation process, resulting in

an expansion of the capsid that creates openings on the protein coat through which the

genomic material is released. An example is given by the capsid of Equine Rhinitis A

Virus (ERAV), whose shape can be approximated by a dodecahedron, which undergoes an

expansion process resulting in an icosidodecahedral shape [14].

The aim of this thesis is to provide new group theoretical methods for the analysis of

structural transitions of icosahedral quasicrystals and the three-dimensional geometry of

viral capsids. Indeed, it is demonstrated that these problems can be addressed via a com-

mon mathematical framework, specifically the embedding of non-crystallographic groups

into the point group of higher dimensional lattices. Theoretical methods as well as appli-

cations are discussed, with emphasis on the computational aspect of group theory.

Caspar-Klug theory and viral tiling theory describe the capsid of a virus as a two-

dimensional object rather than in the three-dimensional space, predicting only the loca-

tions of the protein subunits on the surface of the capsid, and not providing information

about the organisation of the genomic material encapsulated inside. Indeed, experiments

have showed that a significant number of capsids display icosahedral symmetry at different

radial levels; prominent examples are the dodecahedral cage of RNA observed in Paria-

coto Virus [15], and the double-shell structure of the genomic material of Bacteriophage

MS2 [16]. These results suggest that mathematical approaches should be extended to in-

clude information on the three-dimensional organisation of the capsid, providing additional

information regarding material organisation at different radial levels. A first step towards

this goal was the principle of affine extensions, described in a series of papers [17–19]. In

this work, the generators of the icosahedral group have been extended by a non-compact

generator acting as a translation, with the additional requirement that the resulting words

of the group satisfy non-trivial relations. Such affine extensions can also be obtained via

a construction similar to the one of Kac-Moody algebras [20]. In this case, icosahedral

symmetry is extended via an extension of the Cartan matrix, resulting in the addition of

a non-compact operator to the generators of the icosahedral group [21–23]. The orbits

of the affine extensions thus constructed consist of infinite point sets that densely fill the

space, since the icosahedral group is non-crystallographic in 3D. Since viral capsids are

finite objects, a cut-off parameter must be introduced, that limits the number of monomi-

als of the affine group. In this way, finite subsets of the orbits are selected, which exhibit
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multi-shell structures, in which each radial level displays icosahedral symmetry. However,

such a cut-off implies that the point sets are not invariant under the extended group struc-

ture, which limits the use of these concepts in the formulation of energy functions with

symmetry invariance.

In this work a new method for the construction of finite nested point sets with non-

crystallographic symmetry is introduced, based on the crystallographic embedding of non-

crystallographic groups. Janner pioneered the idea of using points of higher dimensional

lattices to describe polyhedra with icosahedral symmetry in the context of virology [24–

26], and moreover he analysed double-shell structures with five-fold symmetry as projected

orbits of specific point groups in higher dimensions [27]. Here we present a systematic

study for general non-crystallographic symmetries. Akin to the construction of quasicrys-

tals, a non-crystallographic group G is embedded into the point group P of a lattice in the

minimal dimension where the cut-and-project construction is possible. Such an embed-

ding is, in general, not maximal; hence there exist G-containing subgroups of P which

extend the symmetry described by G into the higher dimensional space. The orbits of lat-

tice points under such subgroups, projected into a lower dimensional G-invariant subspace,

result in nested point sets, in which each distinct radial level displays G-symmetry. By con-

struction, such point sets have an underlying finite group structure, induced by the higher

dimensional embedding. As a first illustation of this approach, an analytical construction

is presented, in the case of non-crystallographic symmetries described by finite Coxeter

groups. Due to their geometrical interpretation as reflection groups, the orbit of the latter

can be characterised using the concepts of root systems and fundamental weights. The

convex hull of the projected orbits, constructed with the new method, define ensembles of

nested polytopes with non-crystallographic symmetry. These are further characterised in

the case of five-fold symmetry in two, three and four dimensions, described, in this context,

by the Coxeter groups H2 ⊆ H3 ⊆ H4, respectively.

In the case of icosahedral symmetry, the minimal dimension where the cut-and-project

construction is possible is six. In particular, the icosahedral group I leaves three six-

dimensional Bravais lattices invariant: the simple cubic, body-centered cubic and face-

centered cubic lattices [28]. Therefore, the icosahedral group can be embedded into the

point group of these three hypercubic lattices, which is the hyperoctahedral group in six

dimensions. The analysis of the subgroup structure of the latter is crucial for the appli-
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cations highlighted. Specifically, structural transitions of icosahedral quasicrystals can be

characterised by distinct copies H and K of the embedded icosahedral group sharing a

common subgroup G. In fact, these can be “connected" via continuous rotations in SO(6),

called Schur rotations since Schur’s Lemma is fundamental for their computations, that

preserve the symmetry described by G. Schur rotations were first introduced in this context

by Kramer [29] for transitions from cubic to aperiodic order. The Schur rotations induce,

via the cut-and-project method, continuous transformations between aperiodic structures

with icosahedral symmetry, and allow for the identification of the order parameters of the

transition. Therefore, the intersections and shared subgroups of the embedded copies of

the icosahedral group are analysed in detail here; for this, a new computational method in

group theory is introduced, which is based on results of graph theory and their spectra.

It is shown that the crystallographic embedding of the icosahedral group I can provide

blueprints for viral capsid organisation. In particular, the chains of I-containing subgroups

of the hyperoctahedral group are classified, and the results used for the construction of

three-dimensional point sets with icosahedral symmetry at different radial levels via the

projection of orbits of lattice points under such subgroups. Since the six-dimensional lat-

tice is infinite, a cut-off parameter must be introduced in order to select a finite number of

lattice points to which the orbits are computed. This results in a finite library of point sets,

that encode different ways in which material can be organised at different radial levels con-

sistent with this group theoretical construction, and that are then compared with the data

available on simple viral capsids. Specifically, two case studies are presented, the afore-

mentioned capsids of Pariacoto Virus and Bacteriophage MS2. Via a best-fit procedure, the

point sets are selected, which provide constraints on the organisation of these viral capsids,

encoding information on the structural organisation of the capsid proteins and the genomic

material collectively. These methods can be applied to a wider class of capsids, and these

results open up a new link between quasicrystals and viruses. Moreover, they provide for

the first time a finite group structure, albeit in a higher dimensional space, underlying the

geometry of the multiple layers of material in a virus, which lends itself better for the mod-

eling of its dynamical and physical properties than its infinite dimensional counterpart in

the framework of affine extensions.

The thesis is organised as follows. In Chapter 1 a review of the mathematical principles

underpinning the structure of quasicrystals and viruses is presented, with particular empha-
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sis on non-crystallographic symmetry as a common thread. Chapter 2 contains the analysis

of the subgroup structure of the hyperoctahedral group in six dimensions, as a prerequisite

to the applications in physics and virology. In Chapter 3, based on these results, structural

transitions in quasicrystals, preserving the symmetry described by a maximal subgroup of

the icosahedral group, are analysed, by defining and computing the possible icosahedral

Schur rotations. In Chapter 4 the new construction of finite nested point sets with non-

crystallographic symmetry is presented, and applications in virology are discussed and

analysed in Chapter 5.
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Chapter 1

An introduction to Quasicrystals and

Mathematical Virology

Deep inside us is geometry ... In the external world a perfectly formed snow crystal would

never exist. But in our consciousness lies the glittering and flawness knowledge of perfect

ice.

P. Høeg, Miss Smilla’s Feeling for Snow.

In this Chapter we revise the principles underpinning the geometry of viruses and the

structure of quasicrystals, emphasising non-crystallographic symmetry (in particular icosa-

hedral symmetry) as the common thread between these topics. We start by reviewing com-

mon definitions and notations from Mathematical Crystallography.

1.1 Lattices and non-crystallographic groups

Let B = {bi}
n
i=1 be a basis of Rn. A lattice in Rn is a Z-free module of rank n with basis B:

L(B) =

x =

n∑
i=1

mibi : mi ∈ Z

 . (1.1)

The matrix B ∈ GL(n,R), whose columns are given by the components of bi with respect

to the standard basis of Rn, is called the generator matrix ofL. Any other generator matrix

of L is given by BM, where M ∈ GL(n,Z), the set of invertible matrices with integral

entries [1]. The Gramm matrix (or metric) of L is the symmetric matrix N := BT B; L is

integral if Ni j ∈ Z, for all i, j, and is characterised (modulo rotations) by N [33].
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Let E(n) denote the group of isometries of the Euclidean space Rn. The symmetry

group Γ ⊆ E(n) of a lattice L in Rn with generator matrix B is the set of all isometries that

leave L invariant. It is a well-known result that Γ contains an infinite group of translations

T , which is normal, abelian and of finite index [34]. Therefore, the quotient group

Γ/T ' P := {Q ∈ O(n) : ∃M ∈ GL(n,Z) : QB = BM} (1.2)

is finite, and it is referred to as the point group of L. The lattice group of L is defined by

Λ(B) := {M ∈ GL(n,Z) : ∃Q ∈ P : M = B−1QB}, (1.3)

which constitutes an integral representation of the point group P in the lattice basis B. The

point group and lattice group of L are related via the equation

Λ(B) = B−1P(B)B. (1.4)

Moreover, the following identities hold [33]:

P(RB) = RP(B)R−1, P(BM) = P(B),

Λ(RB) = Λ(B), Λ(BM) = M−1Λ(B)M,
(1.5)

where M ∈ GL(n,Z) and R ∈ O(n). Following [35], we say that two lattices L and L′ in

Rn are equivalent if and only if the corresponding generator matrices B and B′ are related

via the identity

B′ = cRBM, c ∈ R \ {0}, R ∈ O(n), M ∈ GL(n,Z). (1.6)

If c = 1, then L and L′ are congruent. We point out that, using the relations (1.5), the

condition (1.6) is equivalent to the property of conjugation in GL(n,Z) of the lattice groups

Λ and Λ′ of L and L′, respectively [33]. A representative of a class of equivalent lattices

is often referred to as a Bravais lattice or Bravais type.

The notion of lattice symmetry leads to the following:

Definition 1.1.1. Let G be a (finite) group of isometries acting (irreducibly) on Rk. G is

said to be non-crystallographic in dimension k if it does not leave any lattice invariant in

Rk. Otherwise, it is called crystallographic.

In other words, G is crystallographic in dimension k if and only if is the subgroup of the

point group of a lattice L in Rk. We point out that the property of being crystallographic
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is relative to the action of G, i.e. G can be non-crystallographic in Rk, but leave a lattice

invariant in Rd, with d , k. This fact is crucial for the study of quasicrystals, as we are

going to explain in detail later in this chapter.

The following theorem is a milestone for mathematical crystallography (for the proof

see, for example, [2]):

Theorem 1.1.1 (Crystallographic restriction). Let G be a crystallographic group in two or

three dimensions. Then the order of the elements of G must be 1, 2, 3, 4 or 6.

In particular, five-fold symmetry is forbidden in the plane or space, and therefore any

group G containing elements of order 5 cannot be the point group of a two- or three-

dimensional lattice. We point out that there exists a generalisation of the crystallographic

restriction in higher dimensions [36], which states that the least value n such that a natural

number m occur as an element of the point group of a n-dimensional lattice is n = Φ(m),

where Φ is the additive version of the Euler function1.

1.1.1 Icosahedral symmetry

One of the most important examples of non-crystallographic symmetry is icosahedral

symmetry, since it occurs in a very wide range of physical and biological structures. Be-

sides the prominent examples of quasicrystals and viruses discussed in detail later in this

chapter, icosahedral symmetry appears in carbon chemistry in the atomic organisation of

fullerenes, molecules of carbon atoms arranged to form icosahedral cages [38]. The name

itself comes from Buckminster Fuller, the creator of the famous geodesic dome, which was

designed with an almost-spherical shape with icosahedral symmetry.

For applications in the natural sciences, it is important to distinguish between chiral

and achiral symmetry. In general terms, an object possesses chirality (or handedness)

if it does not correspond to its mirror image; otherwise, it is said to be achiral. Chiral

icosahedral symmetry is described by the icosahedral group I, which corresponds to the

1The Euler function ϕ(n) is the number of integers less than n and relatively prime with respect to n, i.e.

with no common divisors. Its additive version Φ is defined as [36, 37]:

Φ(n) =


ϕ(n) if n = pα, with p prime and α ∈ N,

Φ(n1) + Φ(n2) if n = n1n2 and g.c.d.(n1, n2) = 1.
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(a) (b)

Figure 1.1: Fundamental domains for (a) the icosahedral group I and (b) the Coxeter group

H3, corresponding to chiral and achiral icosahedral symmetry, respectively.

set of all the rotations that leave an icosahedron invariant. It has order 60 and it is the

largest finite subgroup of the special orthogonal group SO(3) [1]. It is isomorphic to the

alternating group A5, and has presentation

I = 〈g2, g3 : g2
2 = g3

3 = (g2g3)5 = e〉,

where g2 and g3 represent, geometrically, a two- and a three-fold rotation, respectively.

The element g5 := g2g3 is a five-fold rotation, hence I is non-crystallographic in R3.

Achiral icosahedral symmetry is described by the direct product I×Z2, and consists of

120 elements, given by 60 rotations and 60 reflections. It corresponds to the full symmetry

group of an icosahedron, and it is isomorphic to the Coxeter group H3 [39] (cf. Section

4.2 for a review of finite Coxeter groups). The direct product structure implies that the

representation theory for H3 easily follows from that of the icosahedral group I.

The symmetry properties of an object allow the construction of the whole object start-

ing from a smaller “building unit”. Mathematically, these are formally described by the

fundamental domains of the group action. Specifically, we have the following [34]:

Definition 1.1.2. Let G be a group of isometries acting on a metric space X. A fundamental

domain for the action of G on X is an open, connected subset D ⊆ X such that X = ∪g∈GgD,

and gD ∩ g′D = ∅, for g , g′ ∈ G.

The knowledge of a fundamental domain for the action of a group G is essential for the

study of orbits and related polytopes with G-symmetry, as we are going to study in Chapter

4. In Figure 1.1 we show examples of two fundamental domains for icosahedral symmetry

(projected into a plane), which are extensively used in virology, as explained in Section

1.3. We point out that these are referred to as asymmetric units in the biological literature.
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1.2 Quasicrystals

In 1984, Shechtman [3] announced the discovery of an aluminium-manganese alloy

whose atomic positions display long-range order and icosahedral symmetry, which is in-

compatible with translational periodicity. This discovery revolutioned the fields of ma-

terial science and condensed matter physics: before that, non-crystallographic symmetry

was regarded as a “forbidden" symmetry. After an initial scepticism, scientists realised

the importance of Shechtman’s work, and new such solids, later called quasicrystals, were

discovered [40].

Since the discovery of quasicrystals, the mathematical and physical communities have

developed new theoretical tools to analyse the properties of these structures. This the-

ory covers broad areas of mathematics and physics and combines elements of solid state

physics, discrete geometry, group theory and number theory. In this section we review the

basic results that we are going to use throughout this work; for a detailed treatment, we

refer to Baake & Grimm [2] and Senechal [37].

1.2.1 Cut-and-project schemes and model sets

In mathematical terms, the arrangement of atoms in a solid is modeled via infinite point

sets in a Euclidean space. The long-range order is encoded by point sets which are referred

to as Delone sets, and are defined as follows:

Definition 1.2.1. A point set Λ in Rn is a Delone set if it satifies the following properties:

1. It is uniformly discrete, i.e. there exists r > 0 such that |x − y| ≥ r, for all x, y ∈ Λ;

2. It is relatively dense, i.e. there exists R0 > 0 such that every ball BR(x) in Rn with

radius R ≥ R0 and centre x ∈ Rn contains at least one point of Λ.

Points of a lattice L in Rn form a Delone set, with the additional property that they

possess translational periodicity. The atoms of a quasicrystal, on the contrary, are arranged

to form Delone sets which are aperiodic, and these are referred to as quasilattices. The

standard way to construct quasilattices is via the so-called cut-and-project method. The

first approach to such objects was given by Steinhardt et al. [4,5]. Later, Moody provided a

formal construction of quasilattices using model sets [6]; here we review this construction.
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Let G be a locally compact Abelian group. A cut-and-project scheme is a collection of

maps and sets:

Rd π1
←− Rd ×G

π2
−→ G

∪

L

(1.7)

where L is a lattice2 in Rd × G, and π1 and π2 are surjective projection maps, with the

additional assumption that π1|L is injective and π2(L) is dense in G. Rd (resp. G) is

referred to as the physical (resp. orthogonal) space.

Let W ⊂ G be a subset of G satisfying the following conditions:

1. W is non empty and relatively compact, i.e. its closure W is a compact set.

2. The boundary ∂W has measure 0 and is such that ∂W ∩ π2(L) = ∅.

Given a cut-and-project scheme as in (1.7) , we define the model set Σ(W) as

Σ(W) := {π1(x) : x ∈ L, π2(x) ∈ W}. (1.8)

Then W is called the (acceptance) window. It can be proved that Σ(W) thus constructed

defines a Delone set in Rd [6]. We point out that the introduction of the window is crucial,

since otherwise the projection of the lattice points into Rd would not produce a Delone set

[2,37]. In Figure 1.2 we give the most common (and one of the very few easily visualisable)

example of a one-dimensional model set (the so-called Fibonacci chain). Specifically, we

consider the simple cubic lattice L ' Z2 in R2, and we take for Rd the straight line L with

irrational slope parallel to the vector v = (1, 1
τ ), where τ := 1

2

(
1 +
√

5
)

denotes the golden

ratio. The orthogonal space G is then the straight line perpendicular to L, parallel to the

vector v′ = (1,−τ). Due to the irrationality of τ [41], the projections π1 : L → L and π2 :

L → G are injective (as can be proved directly by straightforward analytic computations).

The window W can be taken as any relatively compact subset of the form [a, b) ⊂ G.

We point out that the model sets defined in (1.8) do not possess any symmetrical prop-

erties a priori. In this sense, this is the most general definition of quasicrystals, which

is purely topological. In most physical applications, however, it is necessary to construct

model sets with symmetry described by a non-crystallographic group G. In the next section

we review a standard method to achieve this.
2A (generalised) lattice L in Rd ×G is a discrete subgroup of Rd ×G such that Rd ×G/L is compact.
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Figure 1.2: Illustration of the cut-and-project method for a one-dimensional model set: the

lattice points within the stripe defined by the dashed lines are projected orthogonally onto

the blue line (the physical space). The result is an infinite Delone set which is aperiodic.

1.2.2 Crystallographic embedding of non-crystallographic groups

The cut-and-project method relies on the existence of a higher dimensional lattice

whose points can be suitably projected to form aperiodic Delone sets. Although it has

been proven that the projection formalism is not necessary for the construction of qua-

sicrystals [2,37], it still remains a fundamental framework, especially for the study of their

physical properties. In order to construct quasicrystals with defined symmetry properties

via projection, a few concepts from the representation theory of finite groups are needed

(cf. [42] for a detailed overview). Specifically, a representation of a finite group G is a

homomorphism ρ : G −→ GL(V), where V is a (finite) dimensional vector space over a

field K; the dimension of V is called the degree of ρ. In the following, we will mainly

consider K = R or C and representations that are faithful, i.e. injective. In other words, we

consider representations of G that are matrix subgroups of GL(n,K).

A representation ρ is irreducible if there are no proper G-invariant subspaces of V ,

otherwise it is reducible. A theorem due to Maschke states that any representation ρ :

G → GL(V) of a finite group G is completely reducible (over C), i.e. there exists the

decomposition

V =
⊕

k

V⊕ak
k , V⊕ak ≡ Vk ⊕ . . . ⊕ Vk︸          ︷︷          ︸

ak times

, (1.9)
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in which Vk are irreducible G-invariant subspaces of V , and ak are non-negative integers.

This induces the decomposition of representations:

ρ '
⊕

k

akρk, (1.10)

where ρk : G → GL(Vk) are irreducible representations (irreps) of G. The character of ρ

is the function χρ : G → K defined by χρ(g) := Tr(ρ(g)), for g ∈ G, where Tr denotes the

trace of ρ(g). Since similar matrices have the same trace, the character does not depend on

the basis of V and is constant on the conjugacy classes of G. From (1.10), it follows that

χρ(g) = Tr

⊕
k

akρk(g)

 =
∑

k

akχρk (g). (1.11)

Hence the decomposition (1.10) of ρ can be determined by means of the character table of

G. Moreover, the G-invariant subspaces Vk in (1.9) can be determined using the projection

operators Pk : V → V⊕ak
k given by

Pk :=
dimVk

|G|

∑
g∈G

χρk (g)ρ(g), (1.12)

where (·) denotes complex conjugation.

The construction of quasicrystals with non-crystallographic symmetry G via the cut-

and-project method relies on an underlying higher dimensional G-invariant lattice. For

this, based on [28], we introduce the following:

Definition 1.2.2. Let G ⊆ O(k) be a finite non-crystallographic group of isometries. A

crystallographic representation of G is a matrix group G̃ satisfying the following condi-

tions:

(C1) G̃ stabilises a lattice L in Rd, with d > k, i.e. G̃ is a subgroup of the point group P

of L;

(C2) G̃ is reducible in GL(d,R) and contains an irreducible representation ρk of G of

degree k, i.e.

G̃ ' ρk ⊕ ρ
′, deg(ρ′) = d − k. (1.13)

The condition (C1) implies that the matrices representing the elements of G̃ with re-

spect to a generator matrix B of the lattice are integral or, equivalently, B−1G̃B is a sub-

group of the lattice group Λ ⊆ GL(d,Z) of L (cf. (1.3)). As a consequence, the character
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χG̃ is an integer-valued function. The condition (C2) is necessary for the construction of

quasicrystals in Rk via the cut-and-project method.

The minimal dimension d > k for which a crystallographic representation Γ of G is

possible is called the minimal crystallographic dimension of G. The conditions χΓ ∈ Z

and (1.13) can be easily verified with the aid of the character table of G and formula

(1.11). The existence, and possibly an explicit construction, of lattices in Rd whose point

group contains a crystallographic representation of G is a more difficult task. In the case

of icosahedral symmetry, the minimal crystallographic dimension is six and the lattices

in R6 have been classified in [28] (this is explained in more detail in Section 2.1). For

planar non-crystallographic symmetries described by the dihedral groupsD2n, the minimal

crystallographic dimension is ϕ(n), the Euler function of n. We will go back to this example

in Section 4.2.2.

Let G̃ be a crystallographic representation of G of degree d. Let us denote by V (k) the

invariant subspace of Rd which carries the irrep ρk. Let Pk : Rd → V (k) be the projection

into V (k) given by (1.12). Having fixed a basis of Vk, Pk can be represented as a k × d

matrix, which we denote by π(k), that makes the diagramme

Rd G̃(g)
−−−−−→ Rdyπ(k)

yπ(k)

V (k) ρk(g)
−−−−−→ V (k)

(1.14)

commute for all g ∈ G, i.e.

π(k)(G̃(g)v) = ρk(g)(π(k)(v)), ∀g ∈ G, ∀v ∈ Rd. (1.15)

Let V (d−k) denote the orthogonal complement of V (k) in Rd, and π(d−k) : Rd → V (d−k)

the corresponding projection. We recall the following Proposition (for the proof, see [37],

page 55):

Proposition 1.2.1. If L is an integral lattice, then the following are equivalent:

1. π(d−k)(L) is dense in V (d−k);

2. V (d−k) is totally irrational, i.e. V (d−k) ∩ L = {0};

3. π(k) |L is injective.
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If L is not integral, then condition 1 in Proposition 1.2.1 is replaced by V (d−k) ∩ L∗ =

{0}, where L∗ denotes the dual of L, defined as

L∗ :=
{
y ∈ Rd : 〈y, x〉 ∈ Z, ∀x ∈ L

}
.

With these tools, we can define the cut-and-project scheme (cf. (1.7)):

Rk π(k)

←− V (k) ⊕ V (d−k) π
(d−k)

−→ V (d−k)

∪

L

(1.16)

In order to construct the associated model set, the standard choice for the window is

the projection into the orthogonal space of the Voronoi cell of the origin, defined by

V(0) := {x ∈ Rd : |x − y| ≥ |x|,∀y ∈ L}. (1.17)

In other words, V(0) consists of all points which are closest to the origin with respect to

any other lattice points. Letting W := π(d−k) (V(0)), we define the model set

Σ(W) = {π(k)(x) : π(d−k)(x) ∈ W, x ∈ L}. (1.18)

It follows from (1.15) that the model set Σ(W) thus defined is invariant under the group G,

and hence displays non-crystallographic symmetry.

1.2.3 Tilings

Tiling theory is the art of creating partitions of a space using a countable number of

shapes, called tiles. Besides its artistic value, it has attracted considerable interest by sci-

entists for its applications in the natural sciences. The mathematical theory of tilings roots

back to the work of Kepler in his book Harmonices Mundi, where tilings by regular poly-

gons are introduced [43]. In 1974, Penrose [10] described aperiodic tilings of the plane

with five-fold symmetry, which are since then known as Penrose tilings. It is remarkable

that these mathematical constructions were analysed years before the discovery of qua-

sicrystals by Shechtman. In the last years, tiling theory has become an important branch of

pure and applied mathematics; here we are interested in the construction of tilings based

on model sets created via the cut-and-project method. In Section 1.3.2 we show how tilings

play a crucial role in virology.

A formal definition of a tiling of a Euclidean space is the following:
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Definition 1.2.3. A tiling T of Rn is a countably family of closed sets T = {Tn}
∞
n=0 with

the properties that:

1. int(Ti) ∩ int T j = ∅, for i , j, where int denotes the interior of a set;

2.
⋃∞

n=1 Ti = Rn.

A tiling T is said to be normal if for every tile Ti ∈ T there exist positive numbers r0

and R0 such that (i) Ti contains a ball of radius r0 and (ii) is contained in a ball of radius

R0. In problems arising from crystallography, tilings usually consist of copies of a finite

set of tiles, called prototiles, together with a set of rules that encode the construction of

the whole tiling, denoted as matching rules. In the following, we will only consider tilings

whose prototiles are homeomorphic to a n-dimensional ball.

Let Σ(W) be a model set in Rn (cf. (1.8)). There are two natural tilings associated with

Σ(W): the Voronoi tiling and the Delone tiling. The former consists of the union of all the

Voronoi cellsV(x) of each point x ∈ Σ(W) (compare with (1.17)):

V(Σ(W)) :=
⋃

x∈Σ(W)

V(x), V(x) = {y ∈ Rn : |y − x| ≤ |x0 − x|,∀x0 ∈ Σ(W)}.

The tiling thus obtained will in general be made up of an infinite set of prototiles (since

any two Voronoi cells are in general not alike), but it is normal, since Σ(W) is a Delone set

(cf. Definition 1.2.1) [37].

The Delone tiling induced by Σ(W) is the “dual" of the Voronoi tiling, in the sense that

its tiles are centered at the vertices of the Voronoi tiles. Specifically, let v be a vertex of

the Voronoi tiling V(Σ(V)). Let S (v) denote the vertex star of v, i.e. the set of all tiles in

V(Σ(V)) that have v as a vertex:

S (v) := {T ∈ V(Σ(W)) : T ∩ v , ∅}.

By construction, the set S (v) ∩ Σ(W) is not empty. The Delone tiling is then given by⋃
v∈V(Σ(W))

Conv(S (v) ∩ Σ(W)),

where Conv(S (v)∩Σ(W)) denotes the convex hull of S (v)∩Σ(W), i.e. the smallest convex

set that contains S (v) ∩ Σ(W).

If Σ(W) is constructed via the cut-and-project method into a space invariant under a

non-crystallographic group G (cf. (1.18)), the corresponding Voronoi and Delone tilings
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Figure 1.3: Aperiodic tilings. (a) A patch of a Penrose tiling of the plane, and (b) the

corresponding rhombic prototiles with matching rules indicated by arrows
(
θ = π

5

)
.

possess G symmetry [37]. In particular, it can be proved that Penrose tilings of the plane

can be obtained from projection of points of the simple cubic lattice in five dimensions

[2, 37].

1.3 Mathematical Virology

Viruses are micro-organisms that infect every type of life form. Most viruses are made

up of a protein shell, called capsid, that protects the viral genomic material (RNA or DNA)

inside. Experimental observations have shown that viral capsids are, in most cases, almost

spherical objects and possess icosahedral symmetry [7]; in particular, they exhibit 15 two-

fold, 10 three-fold and 6 five-fold discrete rotational symmetry axes [44]. Their surface

consists of clusters of protein subunits, called capsomers, appearing in groups of three,

five or six centered at the symmetry axes of the virus (see Figure 1.4). The symmetry prop-

erties of capsids imply that their structures are highly ordered, and therefore mathematical

arguments can be applied to predict information regarding the locations of capsid proteins.

Viruses and quasicrystals share symmetry properties, in particular non-crystallographic

symmetry. Therefore, from a mathematical point of view, principles from the theory of

quasicrystals can provide information on the structure of viral capsids. In this sense, group

theory and tiling theory play a crucial role, as we are going to discuss in this section.
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Figure 1.4: Viral symmetry. Outside view of the capsid of Pariacoto Virus (PaV), seen

along (a) two-fold, (b) three-fold and (c) five-fold symmetry axis.

1.3.1 Caspar-Klug theory

The first mathematical model for viral capsid architecture was introduced by Caspar

and Klug in 1962. In their seminal paper [8], they present a theory to describe and predict

the locations and general orientations of the capsid proteins. Inspired by the structure of

Buckminster Fuller’s geodesic dome, they derive a series of polyhedra with icosahedral

symmetry by embedding an icosahedral net into a hexagonal lattice. Here we review this

constrution.

Let b1, b2 be a basis of the two-dimensional hexagonal lattice. A point of the lattice

can then be written as x = hb1 + kb2 ≡ (h, k), with h, k ∈ Z (cf. (1.1)). Having chosen the

point x, the embedding of the icosahedral net is achieved by requiring that vertices of the

triangles of the net meet the centres of the hexagons of the lattice. Therefore, we construct

an equilateral triangle having 0 and x as vertices (see Figure 1.5). By subdividing the

hexagons into triangles, one obtains a triangulation of the icosahedral net compatible with

icosahedral symmetry. The triangulation number T is defined as the number of triangles

each face of the net is divided into, and it is given by

T :=
area of the face

area of the small triangle
=

√
3

4 |x|
2

√
3

4

= |x|2 = h2 + hk + k2.

The polyhedra obtained from this construction, known as icosideltahedra, are made

up of 20T faces, 30T edges and, by Euler’s formula, 10T + 2 vertices. The blueprints for

the capsid are obtained by placing a protein in each corner of each triangular face (this is

called, in this context, the decoration of the tiles): thus the total number of proteins is 60T .

30



b1

b2

(0,0)

(1,1)

(-1,2)

(2,1)

(-1,3)

(a) (b)

(c)

Figure 1.5: Construction of the Caspar-Klug icosideltahedra. (a) Examples of two triangu-

lations obtained by embedding an icosahedral net into a hexagonal lattice: T = 3 (green,

an achiral case) and T = 7 (red, a chiral example of laevo type); the tesselation is induced

by the subdivision into smaller triangles (highlighted in blue). (b) Decoration of the trian-

gles: the dots represent the positions of three protein subunits. (c) The resulting tiling of

the icosahedral surface for a T = 3 triangulation.

Due to the requirement that vertices of the icosahedral grid meet vertices of the hexagonal

lattice, Caspar-Klug theory predicts the locations of 12 pentamers (clusters of five protein

subunits), situated on the five-fold axes of the grid, and 10(T − 1) hexamers (clusters of six

protein subunits) elsewhere.

We notice that when the point x ≡ (h, k) lies either on the line bisecting the triangu-

lar face identified by the lattice vectors b1 and b2, or is a multiple of b1 or b2, then the

corresponding tessellations are achiral, i.e. they are invariant under reflections and possess

full icosahedral symmetry. Instead, all the other tilings of the icosahedral surface induced

by the point x are chiral, i.e. they possess a mirror image. Hence, there exists two dis-
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4 7 12 19 28

9 13 19 27 37

b1

b2

Figure 1.6: Possible T -numbers in the Caspar-Klug classification: tessellations corre-

sponding to T -numbers not lying on the axes identified by the lattice basis or the bisecting

line (dashed) have a mirror image.

tinct tessellations with the same T -number, which correspond to the two case h > k > 0

and k > h > 0, denoted by laevo and dextro, and indicated by an “l" and a “d" after the

T -number, respectively (see Figure 1.6).

1.3.2 Viral tiling theory

Although Caspar-Klug theory predicts the locations of capsid proteins for a large class

of viruses correctly , there is a significant number of cases that fall out of this framework.

An example is the capsid of Simian Virus 40, which consists of 72 pentamers arranged into

a T = 7l icosahedral surface (see Figure 1.7 (a)). According to Caspar-Klug theory, the

capsid would be made up of 420 proteins, instead of the 360 actually observed. The prob-

lem is that the T = 7 triangulation of the icosahedral surface predicts the correct location

of the proteins, but not the right type, i.e. predicting hexamers instead of pentamers. The

conundrum of the structure of Simian Virus 40 was posed by Liddington [45]: “The puzzle

is how do the coloured pentamers (clusters of five) fit into the hexavalent holes?".

In order to solve this structural puzzle, Twarock [9] proposed a generalisation of Caspar-

Klug theory based on tiling theory. Specifically, the requirement that the surface of the

capsid is subdivided into triangles is relaxed, allowing for more general tesselations of

the icosahedral net, which still retain overall icosahedral symmetry, similar to the Penrose

tilings of the plane (cf. Figure 1.3). The locations of the proteins in the capsid are then

identified by placing a protein subunit in any tile only at corners around five-connected

32



Figure 1.7: Viral Tiling Theory. (a) The capsid of Simian Virus 40, and (b) the associ-

ated tesselation. Different colours correspond to different protein positions according to

icosahedral symmetry (adapted from [9]).

Figure 1.8: Prototiles for the tiling of Simian Virus 40 with decorations: black dots repre-

sent the location of the protein subunits.

vertices. In Figure 1.7 (b) the tesselation for Simian Virus 40 is shown, and the tiles and

locations of the proteins are given in Figure 1.8. Caspar and Klug’s icosideltahedra cor-

respond, in this framework, to tesselations of the icosahedral surface consisting of regular

triangles.

These first examples opened up a new chapter in virology, known as Viral Tiling theory,

which has since its introduction provided blueprints for a wide class of viral capsids, in

particular for the families of Polyoma-and Papillomaviridae [46], and new insights for

viral assembly [47] and normal mode analysis of viral capsids [48]. Moreover, it has paved

the way for the use of the mathematical principles underpinning quasicrystals in virology.

Indeed, Keef et al. [18] showed that the tilings for this family of viruses can be obtained via

the construction of quasilattices with icosahedral symmetry, based on the affine extensions

of H3 introduced in [49]. Specifically, icosahedral symmetry is extended via the addition
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of an affine reflection to the generators of H3, as a result of the extension of the Cartan

matrix of the root system of H3 (cf. Section 4.2 for a review of these concepts), similar to

the theory of Kac-Moody algebras [20]. More recently, Salthouse [11] constructed three-

dimensional icosahedral tilings via the cut-and-project method, that provide information

on the three-dimensional geometry of viral capsids.

1.3.3 Beyond Caspar-Klug: affine extensions of the icosahedral group

Caspar-Klug theory and generalisations thereof descibe the capsid of a virus as a two-

dimensional object rather than in the three-dimensional space. Therefore, they do not

provide information about other important features of the capsid, such as its thickness and

the organization of the genomic material encapsulated inside. Experiments showed that

many viruses exhibit order at different radial levels: examples are the dodecahedral cage

of RNA observed in Pariacoto Virus [15] and the double-shell structure of MS2 [16]. These

results suggest that symmetry techniques should be developed to include information on

the capsid proteins and the packaged genome collectively.

A first step towards this purpose was the introduction of affine extensions of non-

crystallographic groups. In general terms, such extensions are obtained via the addition

of a non-compact operator (a translation) to the group generators. We already mentioned

in Section 1.3.2 that affine extensions of non-crystallographic groups can be constructed

via the Kac-Moody algebras formalism. However, this approach is too restrictive for ap-

plications in virology; for this reason, new affine extensions were introduced in a series of

papers by Keef, Wardman et al. [17–19,50]. In this section we summarise this construction.

Let G be a non-crystallographic group in Rk, and let OG(v) be the orbit of v ∈ Rk under

G. Let w ∈ Rk and let Tw : Rk → Rk be the translation operator given by Tw(u) = u+w, for

all u ∈ Rk. The operator Tw is said to be an admissible translation if there exist (at least)

two points u1, u2 ∈ OG(v) such that Tw(u1) and Tw(u2) are located along some symmetry

axes identified by G. The resulting affine group G(aff) is defined by

G(aff) := {(g,Tw) : g ∈ G} ,

with multiplication given by

(g1,Tw) ◦ (g2,Tw) = (g1g2,Tg1w+w). (1.19)
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The orbit OG(aff)(v) is an infinite point set which is dense in Rk, since the group G is

non-crystallographic in Rk. For applications in virology or carbon chemistry, finite subsets

of these point sets must be selected, since viral capsids and carbon molecules are finite

objects. Indeed, let us define the setM(m)(G,Tw) of all the monomials (i.e. words in the

group) obtained by applying exactly m > 0 translations:

M(m)(G,Tw) = {g̃ ∈ G(aff) : g̃ = (g(1),Tw) ◦ . . . ◦ (g(m),Tw), g(i) ∈ G, i = 1, . . . ,m}. (1.20)

Let n > 0, and let v ∈ Rk. We define the set of all the points obtained from the action

on v of all the monomials of G(aff) of order m ≤ n:

Q(n) := {M(m)(G,Tw)(v) : m ≤ n}. (1.21)

The parameter n is called the cut-off parameter for the orbit of the affine extension

G(aff), and limits the number of monomials in the affine group. The set Q(n) in (1.21)

is a finite nested point set, each radial level displaying non-crystallographic symmetry

described by G. In Figure 1.9 we provide an example of this principle in the case of five-

fold symmetry in the plane.

In the case of icosahedral symmetry, the affine extensions of the icosahedral group

I have been classified in [17]. In Figure 1.10 (a) we provide an example of a point set

thus obtained. Each radial level displays icosahedral symmetry, and hence these point

sets are suitable to rationalise viral capsid architecture by providing information on the

capsid proteins and the material inside collectively. For a demonstration of this based on a

number of case studies covering viruses of different T -numbers, we refer the reader to [19].

In Figure 1.10 (b) we show the example of the capsid of Pariacoto Virus; we will study the

structure of this virus in detail in Chapter 5.

The introduction of a cut-off parameter, necessary to obtain a finite point set Q(n) as in

(1.21), implies the loss of an underlying algebraic structure to Q(n). Specifically, the set of

all monomials of order m in (1.20) is not, in general, a group, since it is not closed under the

operation ◦ of G(aff) defined in (1.19). In Chapter 4 we will describe a new method for the

construction of nested point sets with non-crystallographic symmetry, that is derived from

the projection of orbits of crystallographic embedding of non-crystallographic groups, and

demonstrate in Chapter 5 how this new group theoretical setup can be applied to viral

capsid architecture.
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(a)

T

(b)

(c)

Figure 1.9: Planar example of affine extensions of five-fold symmetry. The orbits of the

point (1, 0) under cyclic group Z5 in (a) is extended via a translation T along the vector

v = (τ, 0) in (b). The resulting point set in (c) consists of different radial levels, each

possessing five-fold symmetry.

Figure 1.10: Affine extended groups provide structural constraints on virus architecture. (a)

Example of a point set obtained via affine extensions of the icosahedral group. (b) Section

of the capsid of Pariacoto Virus: the points, derived from icosahedral affine extensions,

provide constraints on the overall capsid geometry (adapted from [19]).
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Chapter 2

On the subgroup structure of the

hyperoctahedral group in six

dimensions

Only connect!

E. M. Forster, Howards End.

In Chapter 1 it was shown that icosahedral symmetry is fundamental for understand-

ing the structure of quasicrystals and viral capsids. Since the icosahedral group I is

non-crystallographic in the three-dimensional space, the construction of quasilattices with

icosahedral symmetry with the projection formalism reviewed in Section 1.2.1 requires a

crystallographic embedding of I. In Section 2.1 we show, following [28], that the minimal

crystallographic dimension of I is six, and construct an explicit crystallographic repre-

sentation of I, subgroup of the hyperoctahedral group in six dimensions, which is the

point group of the three hypercubic lattices in R6. We then provide a classification of such

representations, and in Section 2.2 we analyse their intersections and shared subgroups,

thus paving the way for the study of structural transitions of icosahedral quasicrystals with

the Schur rotation approach described in Chapter 3. For this purpose, we present a new

computational group theoretical method, based on graphs and their spectra.
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2.1 Crystallographic embedding of the icosahedral group

Let τ := 1
2

(
1 +
√

5
)

denote the golden ratio, and let τ′ := 1−τ be its Galois conjugate1.

The character table of the icosahedral group I is given by (cf. [1]):

Irrep E C(g5) C(g2
5) C(g2) C(g3)

A 1 1 1 1 1

T1 3 τ τ′ -1 0

T2 3 τ′ τ -1 0

G 4 -1 -1 0 1

H 5 0 0 1 -1

where g5 := g2g3 is a five-fold rotation, and C(g) denotes the conjugacy class of g. The

notation A, T1, T2, G and H for the irreps of I is standard in the crystallographic lit-

erature. The two three-dimensional irreps T1 and T2 represent the standard action of I

as a finite subgroup of SO(3), and their characters have irrational values, in accordance

with the crystallographic restriction. We note that τ + τ′ = 1 and hence, using (1.11),

the representation T1 ⊕ T2 has integer characters and contains a three-dimensional irrep

of I. A straightforward geometrical argument allows for an explicit construction of a six-

dimensional crystallographic representation of I. Indeed, let {êi}
6
i=1 be the unit vectors

pointing to the six five-fold axes of an icosahedron (see Figure 2.1 (a)). The generators of

I act on these vectors by permuting them and in some cases also changing their sign. In

particular, with reference to Figure 2.1 (b), we obtain the following representation Ĩ of I:

Ĩ(g2) =



0 0 0 0 0 1

0 0 0 0 1 0

0 0 −1 0 0 0

0 0 0 −1 0 0

0 1 0 0 0 0

1 0 0 0 0 0


, Ĩ(g3) =



0 0 0 0 0 1

0 0 0 1 0 0

0 −1 0 0 0 0

0 0 −1 0 0 0

1 0 0 0 0 0

0 0 0 0 1 0


. (2.1)

We have Ĩ ⊆ GL(6,Z), and χ
Ĩ

(g2) = −2 and χ
Ĩ

(g3) = 0, so that, with reference to the

character table of I, we have χ
Ĩ

= χT1 + χT2 , which implies (cf. (1.11)) that Ĩ ' T1 ⊕ T2

in GL(6,R). Therefore, Ĩ is a crystallographic representation of I. Hence, according to

Definition 1.2.2, the minimal crystallographic dimension of I is six2.
1Note that τ and τ′ are the two solutions of the equation x2 = x + 1.
2In fact, there exist four dimensional lattices stabilised by I, classified in [51]. However, the representation

induced by this action is isomorphic to the irrep G, hence it is not possible, using these 4D lattices, to construct

3D quasicrystals with the cut-and-project method. Therefore in the following we neglect these lattices.
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Figure 2.1: An icosahedron, adapted from [28]: (a) the vectors highlighted correspond to

the six five-fold axes, which can be “lifted" to form a basis of the simple cubic lattice in six

dimensions; (b) projection onto a plane perpendicular to a two-fold axis, showing our la-

beling convention of the five-fold axes, necessary for the construction of a crystallographic

representation of the icosahedral group.

The lattices in R6 left invariant by I have been classified in [28]. There are three in-

equivalent Bravais lattices of this type, the simple cubic (SC), body-centered cubic (BCC)

and face-centered cubic (FCC) lattices (known as the hypercubic lattices) given by, respec-

tively:

LS C = {x = (x1, . . . , x6) : xi ∈ Z} ,

LBCC =

{
x =

1
2

(x1, . . . , x6) : xi ∈ Z, xi = x j mod2,∀i, j = 1, . . . , 6
}
,

LFCC =

x =
1
2

(x1, . . . , x6) : xi ∈ Z,
6∑

i=1

xi = 0 mod2

 .
A basis of the SC lattice is the standard basis of R6. Its point group is given by (cf. (1.2))

PS C = {Q ∈ O(6) : Q = M ∈ GL(6,Z)} = O(6) ∩GL(6,Z) ' O(6,Z), (2.2)

which is the hyperoctahedral group in six dimensions, denoted by B6 [52]. All three

lattices have point group B6, whereas their lattice groups are different and, indeed, are

not conjugate in GL(6,Z) [28]. Notice that Ĩ in (2.1) is a subgroup of B6.

In the remainder of this section we are interested in a classification of the crystallo-

graphic representations of I. For this purpose, we need to investigate the subgroup struc-

ture of the hyperoctahedral group. This group is quite large (it has order 266! = 46, 080),
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and we are therefore making use of the software GAP [53], which is designed for problems

in computational group theory [54]. Therefore, we need to be able to generate B6 and

obtain a permutation representation of it, i.e. embed B6 into a suitable permutation group.

This is possible since, by Cayley’s Theorem [55], every finite group is isomorphic to a

subgroup of a permutation group. This choice is convenient for computational purposes,

since it is often easier to work with permutation rather than matrix groups. In the following

section we briefly revise previous work on the representations of B6 based on [52].

2.1.1 Representations of the hyperoctahedral group B6

It follows from (2.2) that B6 consists of all the orthogonal integral matrices. A matrix

C = (ci j) of this kind must satisfy CCT = I6, the 6 × 6 identity matrix, and have integral

entries only. Since

(CCT )i j =

6∑
k=1

cik(ck j)T =

6∑
k=1

cikc jk,

the condition CCT = I6 is equivalent to

6∑
k=1

c2
ik = 1, i = j

6∑
k=1

cikc jk = 0 i , j.

i, j = 1, . . . , 6. (2.3)

Since ci j must be integers, the system (2.3) implies that any matrix C ∈ B6 admits only

six non-zero entries, which we denotes by ci(k),k, for k = 1, . . . , 6, belonging to {1,−1}, so

that each row and column contains 1 or −1 only once, all other entries being zero. These

matrices are referred to as signed permutation matrices. In fact, let d := (ci(k),k : k =

1, . . . , 6) be the vector of all the non-zero entries of C, ordered by columns. If D denotes

the diagonal matrix with diagonal d, and Q the 6 × 6 permutation matrix with entries

Qi j := |Ci j|, then C = QD. Writing ci(k),k = (−1)ak , with ak ∈ {0, 1}, we can associate

with each matrix in B6 a pair (a, π), where a = (a1, . . . , a6) ∈ Z6
2, and π ∈ S 6 is the

permutation associated with Q, defined by π(k) = i(k). The set of all these pairs constitutes

a group (called the wreath product of Z2 and S 6, and denoted by Z2 o S 6, [55]) with the

multiplication rule given by

(a, π)(b, σ) := (aσ +2 b, πσ),
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where +2 denotes addition modulo 2 and (aσ)k := aσ(k). Z2 o S 6 and B6 are isomorphic, an

isomorphism T being the following:

[T (a, π)]i j := (−1)a jδi,π( j). (2.4)

It immediately follows that |B6| = 266! = 46, 080. A set of generators is given by

α := (0, (1, 2)), β := (0, (1, 2, 3, 4, 5, 6)), γ := ((0, 0, 0, 0, 0, 1), idS 6), (2.5)

which satisfy the relations α2 = γ2 = β6 = (0, idS 6). Finally, the function φ : Z2 oS 6 → S 12,

defined by

φ(a, π)(k) :=


π(k) + 6ak if 1 ≤ k ≤ 6

π(k − 6) + 6(1 − ak−6) if 7 ≤ k ≤ 12,
(2.6)

is injective and maps any element of Z2 oS 6 into a permutation of S 12; it provides a faithful

permutation representation of B6 as a subgroup of S 12. In particular, applying φ to the

generators of B6 given in (2.5), we obtain

B6 ' 〈(1, 2)(7, 8), (1, 2, 3, 4, 5, 6)(7, 8, 9, 10, 11, 12), (6, 12)〉. (2.7)

Combining (2.4) with the inverse of (2.6) we get the function

ψ := T ◦ φ−1 : S 12 → B6 (2.8)

which can be used to map a permutation into a matrix element of B6.

2.1.2 Classification of the crystallographic representations of I

The permutation representation of B6 given in (2.7) allows the generation of B6 in GAP

and the subsequent analysis of its subgroup structure. Before we continue, we recall the

following [55]:

Definition 2.1.1. Let H be a subgroup of a group G. The conjugacy class of H in G is the

set

CG(H) := {gHg−1 : g ∈ G}.

We want to find all the subgroups of B6 isomorphic to I. For this, we use the following

procedure:
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1. List all the conjugacy classes of the subgroups of B6 and find a representative for

each class;

2. isolate the classes whose representatives have order 60;

3. check if these representatives are isomorphic to I.

We implemented these steps in GAP (see Appendix). There are three conjugacy classes of

subgroups isomorphic to I in B6. The representatives S i of the classes returned by GAP are

the following:

S 1 = 〈(1, 3)(2, 4)(7, 9)(8, 10), (3, 10, 11)(4, 5, 9)〉,

S 2 = 〈(1, 2)(3, 10)(4, 9)(5, 11)(6, 12)(7, 8), (1, 2, 4)(3, 12, 5)(6, 11, 9)(7, 8, 10)〉,

S 3 = 〈(2, 6)(4, 11)(5, 10)(8, 12), (1, 3, 5)(2, 4, 6)(7, 9, 11)(8, 10, 12)〉.

Using (2.8), we map the generators of S i, for i = 1, 2, 3, into matrix elements of B6. The

groups S̃ i := ψ(S i) therefore are integral representations of I; we compute their characters

and, using (1.11), the corresponding decomposition (1.10) into irreps in GL(6,R). The

results are:

χS̃ 1
(g2) = 2, χS 1(g3) = 3⇒ χS̃ 1

= 2χA + χG ⇒ S̃ 1 ' 2A ⊕G,

χS 2(g2) = −2, χS̃ 2
(g3) = 0⇒ χS̃ 2

= χT1 + χT2 ⇒ S̃ 2 ' T1 ⊕ T2,

χS̃ 3
(g2) = 2, χS̃ 3

(g3) = 0⇒ χS̃ 3
= χA + χH ⇒ S̃ 3 ' A ⊕ H.

This is a very interesting result. Indeed, we observe that only the second class S 2

contains representations of I which contains a three-dimensional irrep, and hence they

are crystallographic in the sense of Definition 1.2.2. The other classes contains integral

representations of I which contain a four- or a five-dimensional irrep of I. For physical

and biological applications we will restrict to the study of the second class, which contains

all the crystallographic representations of I. A computation in GAP shows that its order is

192. We thus have the following:

Proposition 2.1.1. The crystallographic representations of I in B6 form a unique conju-

gacy class in the set of all the classes of subgroups of B6, and its order is equal to 192.
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In what follows, we will consider the subgroup Ĩ in (2.1) as a representative of the class

of the crystallographic representations of I, and denote this class by CB6(Ĩ). Recalling

that two representations D(1) and D(2) of a group G are said to be equivalent if they are

related via a similarity transformation, i.e. there exists an invertible matrix S such that

D(1) = S D(2)S −1, then an immediate consequence of Proposition 2.1.1 is the following:

Corollary 2.1.1. The crystallographic representations of I are equivalent in B6.

We point out that the other two classes of representations of I in B6 have an interesting

algebraic interpretation. Indeed, the symmetric group S 6 is a subgroup of B6, as a conse-

quence of the wreath product structure of B6. Following [56], it is possible to embed the

symmetric group S 5 into S 6 in two different ways. The standard embedding is achieved

by fixing a point in {1, . . . , 6} and permuting the other five, whereas the other embedding

is by means of the so-called “exotic map" ϕ : S 5 → S 6, which acts on the six 5-Sylow

subgroups3 of S 5 by conjugation. Since the icosahedral group is isomorphic to the alter-

nating group A5, which is a normal subgroup of S 5, these embeddings induce two different

ways of embedding I into S 6. In the standard embedding, all the permutations represent-

ing S 5 have a fixed point, hence the induced permutation matrices in B6 have non-zero

trace. Therefore, this corresponds to the representation 2A ⊕ G in B6; on the other hand,

the representation A ⊕ H corresponds to the exotic embedding ϕ.

2.1.3 Projection into the 3D space

As already discussed in Section 2.1, a crystallographic representation of I leaves two

three-dimensional subspaces invariant, which carry the irreps T1 and T2 of I. These are

used to define icosahedral model sets with the cut-and-project method (cf. (1.16)). In order

to explicitly construct these model sets, we use the results from the representation theory

of finite groups revised in Section 1.2.2. Indeed, let Ĩ be the representative of the class of

crystallographic representations of I given in (2.1). The decomposition (1.10) implies that

there exists a matrix R ∈ GL(6,R) such that

Î := R−1ĨR = ρ3 ⊕ ρ
′
3, (2.9)

3A p-Sylow subgroup of a finite group G, where p is a prime number, is a maximal subgroup of G whose

order is a power of p.
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where ρ3 ' T1 and ρ′3 ' T2 in GL(3,R). This induces a decomposition of R6 into two

three-dimensional Ĩ-invariant subspaces, usually denoted by E‖ and E⊥ [57]. A basis

of each of these subspaces can be found using the projection operators given in (1.12);

specifically, we obtain:

P‖ =
1

2
√

5



√
5 1 −1 −1 1 1

1
√

5 1 −1 −1 1

−1 1
√

5 1 −1 1

−1 −1 1
√

5 1 1

1 −1 −1 1
√

5 1

1 1 1 1 1
√

5


, P⊥ =

1

2
√

5



√
5 −1 1 1 −1 −1

−1
√

5 −1 1 1 −1

1 −1
√

5 −1 1 −1

1 1 −1
√

5 −1 −1

−1 1 1 −1
√

5 −1

−1 −1 −1 −1 −1
√

5


.

The rank of these two matrices is three, and we have Im(P‖) = E‖ and Im(P⊥) = E⊥.

If {e j, j = 1, . . . , 6} is the standard basis of R6, then a basis of E‖ (respectively E⊥) can

be found by considering the sets {e‖j := P‖e j, j = 1, . . . , 6} (respectively P⊥) and then

extracting a basis B‖ (respectively B⊥) from it. The matrix R can then be written as

R =

e‖1, e‖2, e‖3︸   ︷︷   ︸
basis of E‖

, e⊥1 , e
⊥
2 , e

⊥
3︸     ︷︷     ︸

basis of E⊥

 . (2.10)

With a suitable rescaling, we can choose the matrix R ∈ O(6), i.e. R to be orthogonal. The

explicit form is given by

R =
1

√
2(2 + τ)



τ 1 0 τ 0 1

0 τ 1 −1 τ 0

−1 0 τ 0 −1 τ

0 −τ 1 1 τ 0

τ −1 0 −τ 0 1

1 0 τ 0 −1 −τ


. (2.11)

The explicit forms of the irreps ρ3 and ρ′3 are given in Table 2.1.3. Denoting by π‖ and

π⊥ the 3 × 6 matrices which represent P‖ and P⊥ in the bases B‖ and B⊥, respectively, we

have, by linear algebra

R−1 =

 π‖

π⊥

 . (2.12)

In particular, we have

π‖ =
1
k


τ 0 −1 0 τ 1

1 τ 0 −τ −1 0

0 1 τ 1 0 τ

 , π⊥ =
1
k


τ −1 0 1 −τ 0

0 τ −1 τ 0 −1

1 0 τ 0 1 −τ

 . (2.13)
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Generator Irrep ρ3 ' T1 Irrep ρ′3 ' T2

g2
1
2


τ − 1 1 τ

1 −τ τ − 1

τ τ − 1 −1

 1
2


τ − 1 −τ −1

−τ −1 τ − 1

−1 τ − 1 −τ


g3

1
2


τ τ − 1 1

1 − τ −1 τ

1 −τ 1 − τ

 1
2


−1 1 − τ −τ

τ − 1 τ −1

τ −1 1 − τ


Table 2.1: Explicit forms of the irreps ρ3 and ρ′3 with Ĩ ' ρ3 ⊕ ρ

′
3.

with k =
√

2(2 + τ). Since R−1Ĩ = ÎR−1 (cf. (2.9)), we obtain

π‖(Ĩ(g)v) = ρ3(g)(π‖(v)), π⊥(Ĩ(g)v) = ρ′3(g)(π⊥(v)), (2.14)

for all g ∈ I and v ∈ R6. This proves that icosahedral symmetry is preserved in projec-

tion (compare with (1.15)). With these results, we define the icosahedral cut-and-project

scheme (cf. (1.16)):

E‖
π‖

←− E‖ ⊕ E⊥
π⊥

−→ E⊥

∪

L

where L is one of the hypercubic lattices in R6. With this setup, it is possible to com-

pute model sets and induced tilings of R3 with icosahedral symmetry with the methods

described in Section 1.2.3. An example of such a tiling is given in Figure 2.2. In this case,

the window is the projection of the Voronoi cell of the origin of the simple cubic lattice

LS C in R6, whose convex hull is the so-called rhombic triacontrahedron [37].

Crystallographic representations of H3. In the case of achiral icosahedral symmetry,

the crystallographic representations of H3 are easily computed using the direct product

structure H3 ' I × Z2 (cf. Section 1.1.1). In fact, let Ĩ be a representative of the crystal-

lographic representations of I in B6 (cf. (2.1)), and let Γ = {1,−1} be the one-dimensional

non-trivial representation of Z2. Then the representation

H̃3 := Ĩ ⊗ Γ, (2.15)
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Figure 2.2: Patch of an icosahedral tiling around the origin obtained via projection from

the six-dimensional simple cubic lattice.

where ⊗ denotes the tensor product of matrices4, is a representation of H3 in B6 and it is

crystallographic in the sense of Definition 1.13. Indeed we have Ĩ ⊗ Γ = Ĩ ⊗ {1,−1} =

Ĩ ∪
(
−Ĩ

)
since, for every matrix A, A ⊗ (−1) = −A. Therefore

R−1(Ĩ ⊗ Γ)R = R−1
(
Ĩ ∪ {−Ĩ}

)
R =

{
R−1ĨR

}
∪

{
−

(
R−1ĨR

)}
={

ρ3 ⊕ ρ
′
3

}
∪

{
−

(
ρ3 ⊕ ρ

′
3

)}
= {ρ3 ∪ (−ρ3)} ⊕

{
ρ′3 ∪

(
−ρ′3

)}
= (ρ3 ⊗ Γ) ⊕ (ρ′3 ⊗ Γ).

(2.16)

The representations ρ3⊗Γ and ρ′3⊗Γ are two three-dimensional irreducible representations

of H3. Hence the parallel and orthogonal spaces E‖ and E⊥, spanned by the columns of R,

are both invariant under Ĩ ⊗ Γ.

2.2 Subgroup structure

As pointed out in the Preface, we are interested in the study of structural transitions of

icosahedral quasicrystals and viral capsids. These can be analysed in a group theoretical

framework as we are going to discuss in Chapter 3. For this purpose, we need to inves-

tigate the subgroup structure of the class of crystallographic representations of I in B6.

Indeed, we want to characterise their intersections and shared subgroups. In the context of

transitions, a shared subgroup of two distinct crystallographic representations encodes the
4This corresponds to the Kronecker product for matrices: given a m × n matrix A and a p × q matrix B, the

matrix C := A ⊗ B is the mp × nq matrix whose entries are given by Ci j = Ai jB.
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Subgroup Generators Relations Order

T g2, g3d g2
2 = g3

3d = (g2g3d)3 = e 12

D10 g2d, g5d g2
2d = g5

5d = (g5dg2d)2 = e 10

D6 g2d, g3 g2
2d = g3

3 = (g3g2d)2 = e 6

Z5 g5d g5
5d = e 5

D4 g2d, g2 g2
2d = g2

2 = (g2g2d)2 = e 4

Z3 g3 g3
3 = e 3

Z2 g2 g2
2 = e 2

Table 2.2: Non-trivial subgroups of the icosahedral group: T stands for the tetrahedral

group,D2n for the dihedral group of order 2n, and Zn for the cyclic group of order n.

symmetry which is preserved during the transformations, and hence allows for the identi-

fication of the order parameters of the transitions.

We start by listing all the non-trivial subgroups of I in Table 2.2, together with their

generators [58]. Note that T , D10 and D6 are maximal subgroups of I, and that D4, Z5

and Z3 are normal subgroups of T ,D10 andD6, respectively [1, 55].

The following definition, due to Soicher [59], will be particularly useful for our pur-

poses:

Definition 2.2.1. A subgroup H of a group G is a friendly subgroup of G if every subgroup

K of G isomorphic to H is conjugate to H in G.

Since I is a small group, its subgroup structure can easily be obtained in GAP by com-

puting explicitly all its conjugacy classes of subgroups, denoted by CI(G), for G subgroup

of I. (cf. Definition 2.1.1). The results are given in Table 2.3. In particular, there are 7

classes of non-trivial subgroups in I, which is equal to the number of non-trivial subgroups

of I (compare with Table 2.2). In other words, denoting by nG the number of subgroups

of I isomorphic to G, i.e.

nG := |{H < I : H ' G}|, (2.17)

then nG = |CI(G)|, and hence every subgroup of I is friendly in the sense of Definition

2.2.1. Geometrically, different copies of Z2, Z3 and Z5 correspond to the different two-,

three- and five-fold axes of the icosahedron, respectively. In particular, different copies of

D10 stabilise one of the 6 five-fold axes of the icosahedron, and each copy ofD6 stabilises
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Subgroup |CI(G)| |CB6 (G̃)|

T 5 480

D10 6 576

D6 10 960

D4 5 120

Z5 6 576

Z3 10 320

Z2 15 180

Table 2.3: Order of the classes of subgroups of the icosahedral group in I and B6.

one of the 10 three-fold axes. Moreover, it is possible to inscribe 5 tetrahedra into a do-

decahedron, and each different copy of the tetrahedral group in I stabilises one of these

tetrahedra.

2.2.1 Subgroups of the crystallographic representations of I

Let G be a subgroup of I, and let G̃ be a subgroup of Ĩ in (2.1) isomorphic to G. Let

us denote by CB6(G̃) the conjugacy class of G̃ in B6. The next lemma shows that this class

contains all the subgroups of the crystallographic representations of I in B6.

Lemma 2.2.1. Let Hi ∈ CB6(Ĩ) be a crystallographic representation of I in B6, and let

Ki ⊆ Hi be a subgroup ofHi isomorphic to G. Then Ki ∈ CB6(G̃).

Proof. Since Hi ∈ CB6(Ĩ), there exists g ∈ B6 such that gHig−1 = Ĩ, and therefore

gKig−1 = K ′ is a subgroup of Ĩ isomorphic to G. Due to the “friendliness" of the

subgroups of I, these subgroups are conjugate in Ĩ, hence there exists h ∈ Ĩ such that

hK ′h−1 = G̃. Thus (hg)Ki(hg)−1 = G̃, implying that Ki ∈ CB6(G̃). �

We next show that every element of CB6(G̃) is a subgroup of a crystallographic repre-

sentation of I.

Lemma 2.2.2. Let Ki ∈ CB6(G̃). There exists Hi ∈ CB6(Ĩ) such that Ki is a subgroup of

Hi.

Proof. Since Ki ∈ CB6(G̃), there exists g ∈ B6 such that gKig−1 = G̃. We define Hi :=

g−1Ĩg. It is immediate to see that Ki is a subgroup ofHi. �
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As a consequence of these Lemmata, CB6(G̃) contains all the subgroups of B6 which

are isomorphic to G and are subgroups of a crystallographic representation of I. Explicit

forms of G̃ will be given in Chapter 3, where their decomposition into irreps will be anal-

ysed. We point out that it is possible to find subgroups of B6 isomorphic to a subgroup G

of I which are not subgroups of any crystallographic representation of I. For example,

the following subgroup

T =

〈


1 0 0 0 0 0

0 −1 0 0 0 0

0 0 −1 0 0 0

0 0 0 −1 0 0

0 0 0 0 −1 0

0 0 0 0 0 1


,



0 0 −1 0 0 0

1 0 0 0 0 0

0 −1 0 0 0 0

0 0 0 0 0 1

0 0 0 1 0 0

0 0 0 0 1 0



〉

is isomorphic to the tetrahedral group T ; a computation in GAP shows that it is not a

subgroup of any elements in CB6(Ĩ). Indeed, the two classes of subgroups, CB6(T̃ ) and

CB6(T ), are disjoint.

Using GAP, we compute the size of each CB6(G̃) (see Table 2.3). We observe that

|CB6(G̃)| < |CB6(Ĩ)| · nG. This implies that crystallographic representations of I may share

subgroups. For the analysis of transitions of icosahedral structures, it is necessary to know,

given a subgroup G of I, if there exist elements in CB6(Ĩ) whose intersections is isomor-

phic toG. In order to classify the shared subgroups and intersections, due to the complexity

of the problem, we present here a new computational method in group theory based on re-

sults from graph theory and their spectra. To this purpose, we revise some concepts in the

next section.

2.2.2 Some basic results of graph theory and their spectra

In this section we recall, without proofs, some concepts and results from graph theory

and spectral graph theory. Proofs and further results can be found, for example, in [60]

and [61].

Let G be a graph with vertex set V = {v1, . . . , vn}. The number of edges incident with

a vertex v is called the degree of v. If all vertices have the same degree d, then the graph is

called regular of degree d. A walk of length l is a sequence of l consecutive edges, and it

is called a path if they are all distinct. A circuit is a path starting and ending at the same

vertex, and the girth of the graph is the length of the shortest circuit. Two vertices p and
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q are connected if there exists a path containing p and q. The connected component of a

vertex v is the set of all vertices connected to v.

The adjacency matrix A of G is the n × n matrix A = (ai j) whose entries ai j are equal

to 1 if the vertex vi is adjacent to the vertex v j, and 0 otherwise. It is immediate to see from

its definition that A is symmetric and aii = 0 for all i, so that Tr(A) = 0. It follows that A

is diagonalisable and all its eigenvalues are real. The spectrum of the graph is the set of all

the eigenvalues of its adjacency matrix A, usually denoted by σ(A).

Theorem 2.2.1. Let A be the adjacency matrix of a graph G with vertex set V = {v1, . . . , vn}.

Let Nk(i, j) denote the number of walks of length k starting at vertex vi and finishing at ver-

tex v j. We have

Nk(i, j) =
(
Ak

)
i j
.

We recall that the spectral radius of a matrix A is defined by ρ(A) := max{|λ| : λ ∈

σ(A)}. If A is a non-negative matrix, i.e. if all its entries are non-negative, then ρ(A) ∈ σ(A)

[62]. Since the adjacency matrix of a graph is non-negative, |λ| ≤ ρ(A) := r, where

λ ∈ σ(A) and r is the largest eigenvalue. r is called the index of the graph G.

Theorem 2.2.2. Let {λ1, . . . , λn} be the spectrum of a graph G, and let r denote its index.

Then G is regular of degree r if and only if

1
n

n∑
i=1

λ2
i = r.

Moreover, if G is regular the multiplicity of its index is equal to the number of its connected

components.

2.2.3 Applications to the subgroup structure

Let G be a subgroup of I. In the following we represent the subgroup structure of

the class of crystallographic representations of I in B6, CB6(Ĩ), as a graph. We say that

H1,H2 ∈ CB6(Ĩ) are adjacent to each other (i.e. connected by an edge) in the graph if

there exists P ∈ CB6(G̃) such that P = H1 ∩ H2. We can therefore consider the graph

G = (CB6(Ĩ), E), where an edge e ∈ E is of the form (H1,H2). We call this graph G-

graph. These graphs are difficult to visualise; however, by analysing their spectra, we can

study their topology in some detail, hence describing the intersection and the subgroups

shared by different representations.
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T -Graph D10-Graph D6-Graph Z5-graph

Eig. Mult. Eig. Mult. Eig. Mult. Eig. Mult.

5 1 6 6 10 6 0 192

3 45 2 90 2 90

-3 45 -2 90 -2 90

1 50 -6 6 -10 6

- 1 50

-5 1

D4-graph Z3-graph Z2-graph {e}-graph

Eig. Mult. Eig Mult. Eig. Mult. Eig. Mult.

30 1 20 2 60 2 60 1

18 5 4 90 4 90 12 5

12 5 -4 100 -4 90 4 90

6 15 -12 10 -4 90

2 45 -12 5

0 31 -60 1

-2 30

-4 45

-8 15

Table 2.4: Spectra of the G-graphs, with G a non-trivial subgroup of I and G = {e}, the

trivial subgroup consisting of only the identity element e. The numbers highlighted are the

indices of the graphs, and correspond to their degrees dG.

Using GAP, we compute the adjacency matrices of the G-graphs. The algorithms used

are shown in the Appendix. The spectra of the G-graphs are given in Table 2.4. We first

of all notice that the adjacency matrix of the Z5-graph is the null matrix, implying that

there are no two representations sharing precisely a subgroup isomorphic to Z5, i.e. not a

subgroup containing Z5. We point out that, since the adjacency matrix of theD10-graph is

not the null one, then there exist cystallographic representations, sayHi andH j, sharing a

maximal subgroup isomorphic toD10. Since Z5 is a (normal) subgroup ofD10, thenHi and

H j do share a Z5 subgroup, but also a Z2 subgroup. In other words, if two representations

share a five-fold axis, then necessarily they also share a two-fold axis.

A straightforward calculation based on Theorem 2.2.2 leads to the following:
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Proposition 2.2.1. Let G be a subgroup of I. Then the corresponding G-graph is regular.

In particular, the degree dG of each G-graph is equal to the largest eigenvalue of the

corresponding spectrum. As a consequence we have the following:

Proposition 2.2.2. LetH be a crystallographic representation of I in B6. Then there are

exactly dG representations K j ∈ CB6(Ĩ) such that

∃ P j ∈ C(G̃) : H ∩K j = P j, j = 1, . . . , dG.

In particular, we have dG = 5, 6, 10, 0, 30, 20, 60 and 60 forG = T ,D10,D6, Z5,D4,Z3,Z2

and {e}, respectively.

In particular, this means that for any crystallographic representation of I there are

precisely dG other such representations which share a subgroup isomorphic to G. In other

words, we can associate to the class CB6(Ĩ) the “subgroup matrix" S whose entries are

defined by

S i j = |Hi ∩H j|, i, j = 1, . . . , 192.

The matrix S is symmetric and S ii = 60, for all i, since the order of I is 60. It follows

from Proposition 2.2.2 that each row of S contains dG entries equal to |G|. Moreover, a

rearrangement of the columns of S shows that the 192 crystallographic representations of

I can be grouped into 12 sets of 16 such that any two of these representations in such a set

of 16 share aD4-subgroup. This implies that the corresponding subgraph of theD4-graph

is a complete graph, i.e. every two distinct vertices are connected by an edge. From a ge-

ometric point of view, these 16 representations correspond to “6-dimensional icosahedra".

This ensemble of 16 such icosahedra embedded into a six-dimensional hypercube can be

viewed as 6D analogue of the 3D ensemble of five tetrahedra inscribed into a dodecahe-

dron, sharing pairwise a Z3-subgroup.

We now consider in more detail the case when G is a maximal subgroup of I. Let

H ∈ CB6(Ĩ) and let us consider its vertex star in the corresponding G-graph, i.e.

V(H) := {K ∈ CB6(Ĩ) : K is adjacent to H}. (2.18)

A comparison of Tables 2.2 and 2.4 shows that dG = nG (i.e. the number of subgroups

isomorphic to G in I, cf. (2.17)) and therefore, since the graph is regular, |V(H)| = dG =
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nG. This suggests that there is a 1-1 correspondence between elements of the vertex star

of H and subgroups of H isomorphic to G; in other words, if we fix any subgroup P of

H isomorphic to G, then P “connects"H with exactly another representation K . We thus

have the following:

Proposition 2.2.3. Let G be a maximal subgroup of I. Then for every P ∈ CB6(G̃) there

exist exactly two crystallographic representations of I, H1,H2 ∈ CB6(Ĩ), such that P =

H1 ∩H2.

In order to prove this proposition, we first need the following lemma:

Lemma 2.2.3. Let G be a maximal subgroup of I. Then the corresponding G-graph is

triangle-free, i.e. it has no circuits of length three.

Proof. Let AG be the adjacency matrix of the G-graph. By Theorem 2.2.1, its third power

A3
G

determines the number of walks of length 3, and in particular its diagonal entries, (A3
G

)ii,

for i = 1, . . . , 192, correspond to the number of triangular circuits starting and ending in

vertex i. A direct computation shows that (A3
G

)ii = 0, for all i, thus implying the non-

existence of triangular circuits in the graph. �

Proof of Proposition 2.2.3. If P ∈ CB6(G̃), then, using Lemma 2.2.2, there exists H1 ∈

CB6(Ĩ) such that P is a subgroup of H1. Let us consider the vertex star V(H1). We have

|V(H1)| = dG and we call its elements H2, . . . ,HdG+1. Let us suppose that P is not a

subgroup of any H j, for j = 2, . . . , dG + 1. This implies that P does not connect H1 with

any of these H j. However, since H1 has exactly nG different subgroups isomorphic to G,

then at least two vertices in the vertex star, say H2 and H3, are connected by the same

subgroup isomorphic to G, which we denote by Q. Therefore, we have

Q = H1 ∩H2, Q = H1 ∩H3 ⇒ Q = H2 ∩H3.

This implies thatH1, H2 andH3 form a triangular circuit in the graph, which is a contra-

diction due to Lemma 2.2.3, hence the result is proved. �
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Chapter 3

A group theoretical approach to

structural transitions of icosahedral

quasicrystals

In nova fert animus mutatas dicere formas | corpora;

Ovid, Metamorphoses.

In this Chapter we show how the group theoretical analysis of the hyperoctahedral

group in six dimensions provides the starting point to study continuous phase transitions

between icosahedral aperiodic structures. Specifically, we define continuous rotations in

SO(6) that “connect" two crystallographic representations of the icosahedral group, and fix

their shared maximal subgroup. These rotations, called Schur rotations, induce a rotation

of the physical and orthogonal spaces invariant under the icosahedral group, and hence, via

the cut-and-project method, a continuous transformations of the corresponding model sets.

3.1 Schur rotations between icosahedral quasicrystals

The concept of Schur rotation was first introduced by Kramer et al. [29,63], where tran-

sitions between cubic and aperiodic order were analysed. These were then studied with the

phason strain approach [64], which was later proved to be equivalent to the Schur rota-

tion method [65]. In this section we study Schur rotations between icosahedral aperiodic

structures, and discuss comparisons with the Bain strain method given in [66, 67].
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Let G be a maximal subgroup of the icosahedral group I, namely the tetrahedral group

T or the dihedral groups D10 and D6, and let G̃ be a crystallographic representation of G

embedded into the hyperoctahedral group B6. Without loss of generality, we consider G̃ as

a subgroup of the crystallographic representation Ĩ given in (2.1). From Proposition 2.2.3,

there exists a unique crystallographic representation of I in B6, which we denote by ĨG,

such that G̃ is a subgroup of Ĩ and ĨG, i.e. G̃ = Ĩ ∩ ĨG. The matrix R in (2.11), which

reduces into irreps Ĩ as in (2.9), decomposes the representation G̃ as follows:

Ĝ := R−1G̃R = G1 ⊕ G2, (3.1)

where G1 and G2 are matrix subgroups of the irreps ρ3 and ρ′3 given in Table 2.1.3, respec-

tively. Notice that G1 and G2 are not necessarily irreducible representations of G̃.

The matrix R in general does not reduce the representation ĨG, since the subspaces E‖

and E⊥, which are invariant under Ĩ, are not necessarily invariant under ĨG. Let us denote

by RG ∈ O(6) the orthogonal matrix that reduces into irreps ĨG, i.e.

ÎG := R−1
G
ĨGRG ' T1 ⊕ T2,

where T1 and T2 are the two non-equivalent three-dimensional irreps of I (cf. Section 2.1).

This matrix carries the bases of a physical and a parallel space which are invariant under

ĨG. We denote these spaces by E‖
G

and E⊥
G

, respectively, and we write π‖
G

and π⊥
G

for the

corresponding projections. By (2.12), we have

R−1
G

=

 π
‖

G

π⊥
G

 .
The matrix RG is in general not unique. With a suitable choice of the basis vectors con-

stituting the columns of RG (compare with (2.10)), we assume det(RG) and det(R) have the

same sign, i.e. R and RG belong to the same connected component of O(6)1. Furthermore,

since G̃ is a common subgroup of Ĩ and ĨG, it is possible to choose RG ∈ O(6) such that

Ĝ = Î ∩ ĤG, i.e.

R−1GR = R−1
G

GRG, ∀G ∈ G̃ ⇒ (RGR−1)−1G(RGR−1) = G, ∀G ∈ G̃. (3.2)

1The orthogonal group O(n) splits into two (path) connected components, SO(n) and O(n)− = {A ∈ O(n) :

detA = −1}.
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Therefore RGR−1 belongs to the centraliser of G̃ in GL(6,R), i.e. the set

Z(G̃,R) := {A ∈ GL(6,R) : AG = GA, ∀G ∈ G̃},

which consists of all the matrices in GL(6,R) commuting with all the matrices of G̃. Hence

there exists a matrix MG ∈ Z(G̃,R) ∩ O(6), denoted as the Schur operator related to G,

such that RG = MGR. Since R and RG have determinants with equal signs by assumption,

we have that det(MG) > 0, hence MG is a rotation in SO(6). Let us consider a path

MG(t) : [0, 1] −→ Z(G̃,R) ∩ SO(6) (3.3)

that connects MG to the identity matrix I6, i.e. MG(0) = I6 and MG(1) = MG. Such a

path is referred to as the Schur rotation associated with G̃. The name comes from Schur’s

Lemma in Representation Theory, that gives constraints on the matrices that commute with

a representation of a group [68]. In Section 3.2 we prove the existence and determine the

explicit forms of (3.3) for all the maximal subgroups of the icosahedral group.

Let us consider the path RG(t) : [0, 1]→ O(6) defined by RG(t) := MG(t)R. Comparing

with (2.10), for every t ∈ [0, 1] the matrix RG(t) encodes the basis of a physical space E‖t

and an orthogonal space E⊥t that carry the representations G1 and G2 of G as in (3.1) since

RG(t)−1G̃RG(t) = R−1MG(t)−1G̃MG(t)R = R−1G̃R = G1 ⊕ G2. (3.4)

In particular, we have E‖t = MG(t)E‖ and E‖0 ≡ E‖, E‖1 ≡ E‖
G

(and similarly for the orthog-

onal spaces). For t ∈ [0, 1], the projections π‖t : R6 → E‖t and π⊥t : R6 → E⊥t are given by

(compare with (2.12)): π‖t

π⊥t

 = R−1
G

(t) = R−1MG(t)−1 =

 π‖

π⊥

 MG(t)−1 =

 π‖MG(t)−1

π⊥MG(t)−1

 . (3.5)

With this setup, we can define structural transitions between icosahedral quasicrystals

that keep the symmetry encoded by G preserved. Specifically, let L be one of the three

hypercubic lattices in R6 described in Section 2.1; if W := π⊥(V(0)) denotes the projection

of the Voronoi cell V(0) of the origin (cf. (1.17)), then we can define the model set Σ(W)

as in (1.18), which displays icosahedral symmetry by construction. Let us then consider,

for all t ∈ [0, 1], the projection Wt := π‖t ((V(0)) ofV(0) into the space E⊥t . We can define

the family of model sets

Σt ≡ Σ(Wt) :=
{
π‖t (v) : v ∈ L, π⊥t (v) ∈ Wt

}
. (3.6)
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β

Figure 3.1: Illustration of the Schur rotation for a one-dimensional quasicrystal (compare

with Figure 1.2). The physical space (straight line in red) and the orthogonal space (straight

line in blue) undergo a rotation of an angle β, resulting in the new physical and orthogonal

spaces (dashed lines). The two-dimensional lattice remains fixed throughout the rotation.

By construction, Σ0 ≡ Σ(W) and Σ1 possess icosahedral symmetry, whereas the intermedi-

ate states Σt, for t ∈ (0, 1), display G-symmetry since, by (3.4) (compare with (1.15)):

π‖t (G̃v) = G1π
‖
t (v), ∀t ∈ (0, 1). (3.7)

Hence, the Schur rotation MG(t) as in (3.3) defines a continuous transformation of the

model set Σ(W) into another icosahedral quasilattice, where G-symmetry is preserved. We

point out that, in the higher dimensional space, the lattice L is fixed and the transformation

is induced by the rotation of the physical and orthogonal spaces (see Figure 3.1). The

angle(s) of rotation correspond(s) to the degree(s) of freedom of the tranformation, and

can be chosen as the order parameter(s) of the transition in the framework of the Landau

theory [13].

Transitions of finite icosahedral point sets. In the context of virology and carbon chem-

istry, the arrangements of viral proteins and carbon atoms in fullerenes are modeled via

finite point sets (arrays) with icosahedral symmetry. The method developed here can also

be applied to analyse structural transitions between icosahedral arrays, creating finite point

sets via projection, as opposed to the infinite ones generated by the cut-and-project scheme,
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at every time t of the transformation. Indeed, let C = {π‖(vi) : vi ∈ L, i = 1, . . . , n} be a

finite point set in E‖, obtained via the projection of points of a hypercubic lattice L in R6.

Let us assume that C is closed under the action of the irrep ρ3 of I (cf. (2.9)), i.e. ρ3C ⊆ C.

The projection operators π‖t given in (3.5) can be used to define a family of arrays Ct, for

t ∈ [0, 1], given by:

Ct :=
{
π‖t (vi) : vi ∈ C, i = 1, . . . , n

}
. (3.8)

It follows from (3.7) that the point sets Ct are invariant under the representation G1 of G

(cf. (3.1)) for all t ∈ (0, 1), and moreover possess icosahedral symmetry for t = 0 and t = 1.

In Chapter 4 a new method will be introduced for the construction of finite point sets with

non-crystallographic symmetry via projection and studied in detail.

Connection with the Bain strain method. In crystallography and condensed matter

physics, the concept of Bain strain relates to deformations of three-dimensional lattices

that keep some symmetry preserved, described by a common subgroup of the point groups

of the lattices which constitute the initial and final states [33]. Indelicato et al. [66, 67]

provided a higher-dimensional generalisation of the Bain strain for lattices in Rn. In this

context, given two lattices L0 and L1 with generator matrices B0 and B1, respectively, and

a subgroupH of P(L0) and P(L1), a transition between L0 and L1 with symmetryH is a

path B(t) : [0, 1] → GL(n,R) such that, if Lt denotes the intermediate lattice with genera-

tor matrix B(t), thenH ⊆ P(Lt), for all t ∈ [0, 1]. If L0 and L1 are 6D hypercubic lattices,

andH = G̃ a maximal subgroup of Ĩ, then B(t) induces a continuous transformation

Σ̃t :=
{
π‖(vt) : π⊥(vt) ∈ π⊥(Vt(0))

}
, (3.9)

where vt := B(t)m, m ∈ Z6, is a point in the intermediate lattice Lt, and Vt(0) denotes

the Voronoi cell of Lt at the origin. The symmetry identified by G is preserved since,

again by (1.15), G1π
‖(vt) = π‖(G̃vt), and G̃vt ∈ Lt since G̃ ⊆ P(Lt) for all t ∈ [0, 1]. We

notice that in this approach the lattice undergoes a transformation, whereas the physical

and orthogonal spaces remain fixed.

As already pointed out in [66], the Schur rotation and the generalised Bain strain are

related. This can easily be proved with the mathematics developed so far. In particular, if

MG(t) is a Schur rotation associated with G as in (3.3), let us define the path B̂(t) : [0, 1]→
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GL(6,R) as

B̂(t) := MG(t)−1B0. (3.10)

We have, using (3.5),

π‖
(
B̂(t)

)
= π‖

(
MG(t)−1B0

)
= π‖t (B0),

and similarly for π⊥t . Therefore

Σ̃t =
{
π‖(vt) : π⊥(vt) ∈ π⊥(Vt(0))

}
=

{
π‖t (B0m) : π⊥t (B0m) ∈ π⊥t (V(0))

}
= Σt,

and moreover G̃ ⊆ P(Lt), since P
(
B̂(t)

)
= M−1

G
(t)P(B0)MG(t) (cf. (1.5)) and MG(t) ∈

Z(G̃,R) for all t. Hence the Schur rotation is equivalent to a Bain strain transfomation

between congruent lattices (compare with (1.6)). The advantage of the former is that the

use of Schur’s Lemma and tools from representation theory can be used in the computation

and allow a characterisation of such transitions in a purely group theoretical framework.

3.2 Computations and applications

In this section we compute the Schur rotations for the maximal subgroups of the icosa-

hedral group, and discuss applications and specific examples. First of all, we recall the

statement of Schur’s Lemma in the matrix form (for the proof see, for example, [68]):

Lemma 3.2.1 (Schur). Let D : G → GL(n,C) be an irreducible representation of a group

G. If B ∈ GL(n,C) is a matrix that commutes with all the matrix representatives of D, i.e.

BD(g) = D(g)B, ∀g ∈ G,

then B = λIn, with λ ∈ C, i.e. B is a multiple of the identity matrix In. Let D′ : G →

GL(n,C) be another irreducible representation of G which is inequivalent to D. If C ∈

GL(n,C) is such that

CD(g) = D′(g)C, ∀g ∈ G,

then C = 0n, the null matrix of size n.

In order to compute the possible Schur rotations associated with a maximal subgroup

G of I, we need to consider the matrix group Z(G̃,R) ∩ SO(6), where G̃ ⊆ Ĩ is a repre-

sentation of G in B6. Let us first focus on the groupZ(Ĝ,R)∩SO(6), which consists of all
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the rotations in SO(6) that commute with the matrices constituting the reduced represen-

tation Ĝ. A matrix in this group can be easily computed using Schur’s Lemma; the group

Z(G̃,R) ∩ SO(6) then easily follows since [55]

Z(Ĝ,R) = Z(R−1G̃R,R) = R−1Z(G̃,R)R. (3.11)

We now consider in detail the computations and examples for each maximal subgroup of

the icosahedral group.

3.2.1 Tetrahedral group T

The tetrahedral group T is the rotational group of a tetrahedron, generated by a two-

fold rotation g2 and a three-fold rotation g3d such that g2
2 = g3

3d = (g2g3d)3 = e (cf.

Table 2.2). It is isomorphic to the alternating group A4 and its character table is given by

(cf. [68]):

Irrep C(e) 4C3 4C2
3 3C2

A 1 1 1 1

E1 1 ω ω2 1

E2 1 ω2 ω 1

T 3 0 0 -1

where ω = e
2πi
3 . Note that the representations E1 and E2 are complex, while their direct

sum E := E1 ⊕ E2 is real and irreducible in GL(2,R). An explicit representation T̃ of T ,

which is a subgroup of Ĩ, is given by

T̃ =

〈


0 0 0 0 0 1

0 0 0 0 1 0

0 0 −1 0 0 0

0 0 0 −1 0 0

0 1 0 0 0 0

1 0 0 0 0 0


,



0 1 0 0 0 0

0 0 0 −1 0 0

0 0 0 0 0 −1

−1 0 0 0 0 0

0 0 1 0 0 0

0 0 0 0 −1 0



〉
,

The matrix R as in (2.11) is such that

T̂ := R−1T̃R = Γ1 ⊕ Γ2, (3.12)

where Γ1 and Γ2 are matrix subgroups of ρ3 and ρ′3 as in (2.9), respectively, and both are

equivalent to the irrep T of T . Due to this equivalence, there exists a matrix Q ∈ GL(3,R)
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such that Q−1Γ2Q = Γ1. The explicit forms of Γ1, Γ2 and Q are given in the Appendix.

Note that Q can be chosen to be orthogonal. Let us define Q̂ := I3 ⊕Q ∈ O(6,R), where I3

denotes the 3 × 3 identity matrix; then we have

T := Q̂−1T̂ Q̂ = Γ1 ⊕ Γ1. (3.13)

We consider the setZ(T ,R) ∩ SO(6). Writing a matrix N in this group as

N =

 N1 N2

N3 N4

 ,
where Ni are 3 × 3 matrices, for i = 1, . . . , 4, we impose NT = TN, i.e. N(Γ1 ⊕ Γ1) =

(Γ1 ⊕ Γ1)N. Using Schur’s Lemma and imposing orthogonality, we obtain

N = N(β) =

 cos(β)I3 −sin(β)I3

sin(β)I3 cos(β)I3

 ,
where β belongs to the unit circle S 1. Notice that N(α)N(β) = N(α + β). Putting together

(3.13) and (3.11) we obtain

Z(T̃ ,R) ∩ SO(6) =

(RQ̂)N(β)(RQ̂)−1 : N(β) =

 cos(β)I3 −sin(β)I3

sin(β)I3 cos(β)I3

 , β ∈ S 1

 .
It follows that the group Z(T̃ ,R) ∩ SO(6) is isomorphic to S 1, hence it is a compact and

connected Lie group. Therefore, the angle β ∈ S 1 can be chosen as an order parameter for

the transitions with tetrahedral symmetry.

In order to compute the Schur rotations between icosahedral quasicrystals with T -

symmetry, we need to fix the boundary conditions, i.e. imposing the end and the start of

the transition to have icosahedral symmetry. In particular, we consider the crystallographic

representation ĨT of I with the property that T̃ = Ĩ ∩ ĨT :

ĨT =

〈


0 0 0 −1 0 0

0 0 0 0 0 −1

0 0 −1 0 0 0

−1 0 0 0 0 0

0 0 0 0 −1 0

0 −1 0 0 0 0


,



0 0 0 −1 0 0

0 0 0 0 −1 0

0 −1 0 0 0 0

0 0 0 0 0 1

0 0 1 0 0 0

−1 0 0 0 0 0



〉
.

Given MT (β) ∈ Z(T̃ ,R) ∩ SO(6), we consider the matrix RT (β) := MT (β)R ∈ O(6) and

impose

RT (β)−1ĨTRT (β) ' T1 ⊕ T2, (3.14)
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We solve the equation 3.14 with respect to β; in other words, we look for angles β̂ ∈ S 1

such that the corresponding matrix RT (β̂) decomposes into irreps the representation ĨT .

Specifically, let M2 and M3 denote the generators of ĨT , and let us define the matrices

K j(β) := RT (β)−1M jRT (β), for j = 2, 3. Condition (3.14) is then equivalent to the follow-

ing system of 36 equations:
(K2(β))i j = 0, (K2(β)) ji = 0

(K3(β))i j = 0, (K3(β)) ji = 0
for i = 1, 2, 3 and j = 4, 5, 6. (3.15)

The solutions of (3.15) are given by:

β̂ ∈

{
−arctan

(
1
2

)
, −arctan

(
1
2

)
+ π, arctan(2), arctan(2) − π

}
=: S T .

Hence the number of Schur operators associated with T is finite; the elements in S T pro-

vide all the possible boundary conditions for the analysis of transitions with T -symmetry

between icosahedral order. Specifically, since S 1 is connected, we can consider any path

β(t) : [0, 1] → S 1 that connects 0 with β̂ ∈ S T , i.e. β(0) = 0 and β(1) = β̂. Then

the corresponding Schur rotation MT (t) is given by MT (β) ◦ β(t) = MT (β(t)) : [0, 1] →

Z(T̃ ,R) ∩ SO(6).

Example: tetrahedral transition with an intermediate cubic lattice. We consider as

an explicit example of a tetrahedral transition the path β(t) = β̂t, that connects 0 with

β̂ = −arctan
(

1
2

)
. The lattice L in R6 is taken as the simple cubic lattice with basis the

standard basis in R6. The matrix RT (t) = MT (β̂t)R encodes the projections π‖t and π⊥t as in

(3.5), that define the family of model sets Σt as in (3.6). In Figure 3.2 we show a patch of

the resulting quasilattices for t = 0, 0.5 and 1. These are very interesting results; indeed,

the starting and final states display icosahedral aperiodicity, as expected by the boundary

conditions, while for t = 0.5 the corresponding quasilattice is actually a three-dimensional

lattice, i.e. periodic. Hence such a transition has an intermediate periodic order, which

is in accordance to the previous result by Kramer [29]. From a group theoretical point of

view, this implies that there exists a subgroup of B6 isomorphic to the octahedral group O

(i.e. the symmetry group of a cube, with order 48), which contains T̃ as a subgroup.
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Figure 3.2: Example of a transition with tetrahedral symmetry. The model sets in (a) and

(c) correspond to the starting and final states, respectively, and display icosahedral sym-

metry. The intermediate state in (b) is compatible with octahedral symmetry and defines a

three-dimensional cubic lattice.

3.2.2 Dihedral groupD10

The dihedral groupD10 is generated by two elements g2d and g5d such that g2
2d = g5

5d =

(g2dg5d)2 = e (cf. Table 4.1). Its character table is as follows [68]:

Irrep E 2C5 2C2
5 5C2

A1 1 1 1 1

A2 1 1 1 -1

E1 2 τ − 1 −τ 0

E2 2 −τ τ − 1 0

An explicit representation D̃10 as a matrix subgroup of Ĩ is given by

D̃10 =

〈


0 0 0 0 0 −1

0 −1 0 0 0 0

0 0 0 1 0 0

0 0 1 0 0 0

0 0 0 0 −1 0

−1 0 0 0 0 0


,



0 0 0 0 0 1

0 1 0 0 0 0

0 0 0 0 −1 0

−1 0 0 0 0 0

0 0 0 1 0 0

0 0 1 0 0 0



〉
.

In order to compute the Schur rotations associated withD10, we proceed in a similar way

as in the tetrahedral case. The projection matrix R in (2.11) decomposes D̃10 as

D̂10 := R−1D̃10R = D1 ⊕ D2, (3.16)
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where D1 and D2 are matrix subgroups of ρ3 and ρ′3, respectively, that are reducible rep-

resentations of D10. In particular, from its character table we have that D1 ' A2 ⊕ E1 and

D2 ' A2 ⊕ E2 in GL(3,R). In order to find the Schur operators for D10, we first reduce

D1 and D2 into irreps, using the projection operators given in (1.12). In particular, we

determine two orthogonal matrices, P1 and P2, such that

D̂1 := P−1
1 D1P1 ' A2 ⊕ E1, D̂2 := P−1

2 D2P2 ' A2 ⊕ E2. (3.17)

The explicit forms of D1, D2, P1 and P2 are given in the Appendix. The matrix Z := P1⊕P2

is such that (cf. (3.16)):

Z−1(R−1D̃10R)Z = Z−1D̂10Z = D̂1 ⊕ D̂2 =: D10.

By Schur’s Lemma, a matrix M ∈ Z(D10,R) ∩ SO(6) must be of the form

M = M(β) =



cos(β) 0 0 −sin(β) 0 0

0 1 0 0 0 0

0 0 1 0 0 0

sin(β) 0 0 cos(β) 0 0

0 0 0 0 1 0

0 0 0 0 0 1


.

Combining these results, we obtain

Z(D̃10,R) ∩ SO(6) =
{
(RZ)M(β)(RZ)−1 : M(β) ∈ Z(D10,R) ∩ SO(6)

}
.

Hence, as in the tetrahedral case, the group Z(D̃10,R) ∩ SO(6) is isomorphic to S 1 and

therefore the Schur rotations associated with D10 are parameterised by an angle β ∈ S 1.

As in the T -case, in order to fix the boundary conditions of the transitions we consider

the unique crystallographic representation ĨD10 in B6 such that D̃10 = Ĩ ∩ ĨD10 , whose

explicit form is

ĨD10 =

〈


0 0 0 0 −1 0

0 0 0 1 0 0

0 0 −1 0 0 0

0 1 0 0 0 0

−1 0 0 0 0 0

0 0 0 0 0 −1


,



0 0 0 0 −1 0

0 0 −1 0 0 0

0 0 0 0 0 1

1 0 0 0 0 0

0 0 0 −1 0 0

0 −1 0 0 0 0



〉
.

Let RD10(β) := MD10(β)R, where MD10(β) ∈ Z(D̃10,R) ∩ SO(6). We impose

RD10(β)−1ĨD10RD10(β) ' T1 ⊕ T2. (3.18)
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Figure 3.3: Patch of a quasilattice with D10-symmetry, obtained from the Schur rotation

associated withD10 and corresponding to the intermediate state β = π
4 .

The corresponding systems of equations (compare with (3.15)) has only one solution,

namely β̂ = π
2 . Hence any path βD10(t) : [0, 1] → S 1 connecting 0 with π

2 induces

a Schur rotation as in (3.3) given by MD10(β) ◦ βD10(t) = MD10(βD10(t)) : [0, 1] →

Z(D̃10,R) ∩ SO(6). In Figure 3.3 we show the quasilattice corresponding to the inter-

mediate state β = π
4 .

3.2.3 Dihedral groupD6

The dihedral group D6 is isomorphic to the symmetric group S 3 and is generated by

two elements g2d and g3 such that g2
2d = g3

3 = (g2g3)2 = e (cf. Table 4.1). Its character

table is as follows (cf. [68]):

Irrep E 3C2 2C3

A1 1 1 1

A2 1 -1 1

E 2 0 -1

In order to compute the Schur rotations associated withD6, we proceed in complete anal-

ogy withD10. Indeed, let D̃6 be the representation ofD6 as a subgroup of Ĩ given by

D̃6 =

〈


0 0 0 0 0 −1

0 −1 0 0 0 0

0 0 0 1 0 0

0 0 1 0 0 0

0 0 0 0 −1 0

−1 0 0 0 0 0


,



0 0 0 0 0 1

0 0 0 1 0 0

0 −1 0 0 0 0

0 0 −1 0 0 0

1 0 0 0 0 0

0 0 0 0 1 0



〉
.
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The matrix R, given by (2.9), reduces this representation as

D̂6 := R−1D̃6R = S 1 ⊕ S 2, (3.19)

where S 1 and S 2 are representations of D6 that are reducible. Using formula (1.11), both

split into A2⊕E in GL(3,R), and therefore are equivalent in GL(3,R). Using the projection

operators in (1.12), we identify two matrices R1 and R2 in GL(3,R) that reduce into the

same irreps S 1 and S 2, i.e.

R−1
1 S 1R1 = R−1

2 S 2R2 ' A2 ⊕ E. (3.20)

The explicit forms of such matrices are given in the Appendix. Let V be the matrix in

GL(6,R) given by V := R1 ⊕ R2. We have

D6 := V−1D̂6V ' A2 ⊕ E ⊕ A2 ⊕ E.

Schur’s Lemma forces a matrix P ∈ Z(D6,R) ∩ SO(6) to have the form

P = P(α, β) =



cos(α) 0 0 −sin(α) 0 0

0 cos(β) 0 0 −sin(β) 0

0 0 cos(β) 0 0 −sin(β)

sin(α) 0 0 cos(α) 0 0

0 sin(β) 0 0 cos(β) 0

0 0 sin(β) 0 0 cos(β)


,

where (α, β) ∈ S 1 × S 1. Hence

Z(D̃6,R) ∩ SO(6) =
{
(RV)P(α, β)(RV)−1 : P(α, β) ∈ Z(D6,R) ∩ SO(6)

}
.

Therefore, contrary to the other maximal subgroups of I, the Schur rotations associated

withD6 are parameterised by two angles belonging to a two-dimensional torus T2 ' S 1 ×

S 1. In other words, the less the symmetry is preserved during the transition, the more the

physical and orthogonal space are free to rotate. As before, to fix the boundary conditions,

we consider the representation ĨD6 such that D̃6 = Ĩ ∩ ĨD6 :

ĨD6 =

〈


0 0 −1 0 0 0

0 0 0 0 0 −1

−1 0 0 0 0 0

0 0 0 −1 0 0

0 0 0 0 −1 0

0 −1 0 0 0 0


,



0 0 −1 0 0 0

0 0 0 0 1 0

0 0 0 0 0 1

0 −1 0 0 0 0

0 0 0 −1 0 0

−1 0 0 0 0 0



〉
.
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Let RD6(α, β) := MD6(α, β)R, where MD6(α, β) ∈ Z(D̃6,R) ∩ SO(6). We impose

RD6(α, β)−1ĨD6RD6(α, β) ' T1 ⊕ T2,

and solve for α and β. There are 8 distinct solutions (α̂, β̂) given by

(α̂, β̂) ∈
{(

arctan
(

1
2

)
, arctan(2)

)
,

(
arctan(2), π − arctan

(
1
2

))
,

(
arctan

(
1
2

)
, arctan(2) − π

)
,(

−arctan(2),−arctan
(

1
2

))
,

(
arctan

(
1
2

)
− π, arctan(2) − π

)
,

(
π − arctan(2),−arctan

(
1
2

))
,(

arctan
(

1
2

)
− π, arctan(2)

)
,

(
π − arctan(2), π − arctan

(
1
2

))}
=: SD6 .

Any path γ(t) : [0, 1] → T2 connecting (0, 0) with any (α̂, β̂) ∈ SD6 defines a Schur

rotation MD6(t) := MD6(α, β) ◦ γ(t) : [0, 1]→ Z(D̃6,R) ∩ SO(6).

Continuous transformation of an icosahedron into a hexagonal prism. Let us con-

sider the path γ : [0, 1] → T2 given by γ(t) = (tα̂, tβ̂), connecting (0, 0) with the point

(α̂, β̂) =
(
arctan

(
1
2

)
, arctan(2)

)
∈ SD6 , and let MD6(t) be the corresponding Schur rotation.

We consider the point set C0 given by the projection into E‖ of the orbit under Ĩ of the

lattice point e1 = (1, 0, 0, 0, 0, 0):

C0 := π‖
(
O
Ĩ

(e1)
)

=
{
π‖(Ae1) : A ∈ Ĩ

}
.

The points of C0 constitute the vertices of an icosahedron (see Figure 3.4 (a)). The Schur

rotation MD6(t) induces a continuous transformation of C0 via the corresponding projection

operators π‖t ; in particular, we consider the family of finite point set Ct as in (3.8). In Figure

3.4 we plot these point sets for t = 0, 0.25, 0.5, 0.75 and 1: we notice that the icosahedron

(t = 0) is continuously transformed into a hexagonal prism (t = 0.5), and the array for t = 1

forms the vertices of an icosahedron, that is distinct from the initial one. The three-fold

axis highlighted is fixed during the transition, and the point sets Ct are invariant under the

action of the representation S 1 ofD6 as in the decomposition (3.19). In analogy to the case

of the tetrahedral transition, the corresponding model set for t = 0.5 defines a lattice in E‖

(see Figure 3.5).
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Figure 3.4: Example of a structural transition with D6-symmetry of an icosahedral point

array. (a) Initial configuration for t = 0, corresponding to the vertices of an icosahedron.

(b) Resulting array for t = 0.25. (c) The intermediate point set (t = 0.5), forming the

vertices of a hexagonal prism. (d) Transformed array for t = 0.75. (e). Final state of the

transition (t = 1): the point set forms the vertices of an icosahedron, albeit different from

the initial one. The dashed red line corresponds to a three-fold axis of the arrays that is

fixed during the entire transition. The lines indicate the relative positions of the icosahedral

vertices during the transition.

Figure 3.5: The three-dimensional lattice obtained from the transition analysed in Figure

3.4 and corresponding to the intermediate state t = 0.5.
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Chapter 4

Construction of finite nested point

sets with non-crystallographic

symmetry

In that blessed region of Four Dimensions, shall we linger on the threshold of the Fifth,

and not enter therein? ... Then, yielding to our intellectual onset, the gates of the Sixth

Dimension shall fly open; after that a Seventh, and then an Eighth -

E. A. Abbott, Flatland.

In this chapter we introduce a new group theoretical method for the construction of

finite nested point sets with non-crystallographic symmetry, based on the crystallographic

embedding of non-crystallographic groups described in Section 1.2.2. As a first applica-

tion, we provide in Section 4.2 an analytical construction of such point sets in the case of

symmetries described by non-crystallographic irreducible Coxeter groups. The orbits of

the latter, due to their geometrical interpretation, can be characterised in terms of their root

systems and fundamental weights. The convex hulls of these orbits define compounds of

nested polytopes with non-crystallographic symmetry; we characterise such compounds in

the case of five-fold symmetry in two, three and four dimensions, described by the Coxeter

groups H2, H3 and H4, respectively.
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4.1 Nested point sets obtained from projection

Let G ⊆ O(k) be a finite non-crystallographic group of isometries acting on Rk, and let

G̃ be a crystallographic representation of G, subgroup of the point group P of a lattice L

in Rd (cf. Definition 1.2.2). G̃ is not, in general, a maximal subgroup of P, i.e. there exist

proper subgroups of P which contain G̃ as a subgroup. Therefore, we introduce the set:

AG̃ := {K ≤ P : G̃ ≤ K}, (4.1)

which consists of all the G̃-containing subgroups of P. The elements in AG̃ encode the

symmetry described by G plus additional generators that extend this symmetry. Let K be

an element of AG̃, and let n := [K : G̃] be the index of G̃ in K. Let T = (g1, . . . , gn)

be a transversal of G̃ in K, i.e. a system of representatives in K of the right cosets of

G̃ in K [54]. Let v ∈ L be a lattice point; v can be taken as a seed point for the orbit

OK(v) = {kv : k ∈ K} under K. Let V (k) be the subspace of Rd of dimension k carrying the

irrep ρk of G, and let π(k) : Rd → V (k) be the corresponding projection (cf. (1.14)). We

assume that the orthogonal complement V (d−k) of V (k) is totally irrational with respect to

the lattice L, so that, by Proposition (1.2.1), π(k)|L is injective. With this setup, we prove

the following theorem.

Theorem 4.1.1. Let Oi(v) ≡ OG̃gi
(v) = {hgiv : h ∈ G̃} be the orbit of v ∈ L with respect

to the coset G̃gi, and let us denote by Pi(v) := π(k)(Oi(v)) the orbit projected into V (k). We

have:

1. Pi(v) is well-defined, i.e. does not depend on the choice of the transversal T;

2. Pi(v) retains the symmetry described by G;

3. Pi(v) = P j(v) if and only if

g−1
j G̃gi ∩ StabK(v) , ∅, StabK(v) := {k ∈ K : kv = v}. (4.2)

4. If G̃ is normal in K, then all Pi(v) have the same cardinality.

Proof. 1. Let T ′ = (g′1, . . . , g
′
n) be another transversal for G̃ in K. This implies that

there exist ĥi ∈ G̃, for i = 1, . . . , n, such that g′i = ĥigi. We have

O′i(v) = OG̃g′i
(v) = {hg′iv : h ∈ G̃} = {hĥigiv : h ∈ G̃} = Oi(v), i = 1, . . . , n,

and the result follows.
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2. It follows from the commutative property in (1.15); in particular, we have

π(k)(Oi(v)) = {π(k)(hgiv) : h ∈ G̃} = {π(k)(G̃(g)giv) : g ∈ G}

= {ρk(g)π(k)(giv) : g ∈ G} = {ĥπ(k)(giv) : ĥ ∈ ρk} = Oρk

(
π(k)(giv)

)
,

for i = 1, . . . , n. The orbit Oρk

(
π(k)(giv)

)
has G-symmetry by construction.

3. We have

Pi(v) = P j(v)⇔ π(k)(Oi(v)) = π(k)(O j(v))⇔ Oi(v) =
(since π(k) |L is injective )

O j(v)

⇔ {hgiv : h ∈ G̃} = {hg jv : h ∈ G̃} ⇔ ∃h, k ∈ G̃ : hgiv = kg jv

⇔ g−1
j k−1hgiv = v⇔ g−1

j k−1hgi ∈ StabK(v),

which proves the statement.

4. Since G̃ is normal in K, the cosets G̃gi form the quotient group K/G̃ of size n.

Let X := {OG̃i
(v) : i = 1, . . . , n} be the set of all the orbits with respect to the

cosets G̃i ≡ G̃gi. We can define an action of K/G̃ on X as G̃i · OG̃ j
(v) := OG̃iG̃ j

(v).

This action is well defined since K/G̃ is a group, and it is transitive since, for every

element OG̃i
(v) ∈ X, we have G̃ j · OG̃−1

j G̃i
(v) = OG̃i

(v). Let S G̃ := StabK/G̃

(
OG̃(v)

)
denote the stabiliser of OG̃(v) under this action. Letting s := |S G̃ |, we have by the

orbit-stabiliser theorem

r := |X| =
|K/G̃|
|S G̃ |

=
n
s
,

and the elements of X are in bijection with the right cosets of S G̃ in K/G̃. We denote

these cosets by Ai, for i = 1, . . . , r. These form a partition of the quotient group

K/G̃, which we write as

G̃(1)
1 , . . . , G̃(1)

s︸          ︷︷          ︸
A1

, . . . , G̃(i)
1 , . . . , G̃

(i)
s︸         ︷︷         ︸

Ai

, . . . , G̃(r)
1 , . . . , G̃(r)

s︸          ︷︷          ︸
Ar

.

Let S =
(
G̃(1)

1 , . . . , G̃(r)
1

)
be a transversal for the cosets of S G̃ in K/G̃. The cor-

responding orbits OG̃(i)
1

are distinct by the orbit-stabiliser theorem, and moreover

OG̃(i)
j

= OG̃(i)
k

, for j, k = 1, . . . , s. Let us define the sets

K(i) :=
s⋃

j=1

G̃(i)
j ⊆ K, i = 1, . . . , r. (4.3)
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The set
{
K(i) : i = 1, . . . , r

}
constitutes a partition of K, since it is a union of cosets.

Moreover, they all have the same order:

|K(i)| = s · |G̃| =: N, ∀i = 1, . . . , r. (4.4)

It follows from the definition of K(i) given in (4.3) that OK(i)(v) = {kv : k ∈ K(i)} =

OG̃(i)
1

(v), and that k ∈ K(i) if and only if kv ∈ OG̃(i)
1

(v). To conclude, we observe

that each K(i) contains complete cosets of K/StabK(v). In fact, let kStabK(v) be a

coset in K/StabK(v). If k ∈ K(i), then an element in kStabK(v) is of the form kk̂,

with k̂ ∈ StabK(v), and belongs to K(i) since (kk̂)v = k(k̂v) = kv ∈ OG̃(i)
1

. Therefore,

each K(i) is partitioned into |K(i)|/|StabK(v)| sets: each of these sets corresponds to a

distinct point in the orbit OG̃(i)
1

. Since |K(i)| = N for all i due to (4.4), each orbit OG̃(i)
1

has the same number of points, and hence also each Pi(v), because the projection is

one-to-one.

�

As a consequence, the decomposition of K ∈ AG̃ into cosets with respect to G̃ induces

a well-defined decomposition of the projected orbit π(k)(OK(v)) (cf. (1.14)):

π(k)(OK(v)) =

n⋃
i=1

π(k)(Oi(v)) =

n⋃
i=1

Oρk

(
π(k)(giv)

)
. (4.5)

It follows that the point set defined by (4.5) consists of k-dimensional orbits situated at

different radial levels, since, in general, |π(k)(giv)| , |π(k)(g jv)| for i , j, where | · | denotes

the standard Euclidean norm in Rk . Hence the projected orbit is an onion-like structure,

with each layer being the union of the projected orbits corresponding to different cosets

of K. It follows that the number r of distinct radial levels is bounded by the index of

G̃ in K. In Figure 4.1 we show a one dimensional examples of nested set obtained with

this construction, where the connection with the cut-and-project method is highlighted

(compare with Figure 1.2).

Using these results, we can set up a procedure to extend the non-crystallographic sym-

metry described by ρk in V (k). In particular, let us consider the set π(k)(L) ⊆ V (k), i.e. the

projection of the lattice points into V (k), which is a dense set in V (k). Let x ∈ π(k)(L) be

a seed point for the orbit of ρk. The pre-image v =
(
π(k)

)−1
(x) is a point of the lattice L

by construction. Let K be an element of AG̃. The projection of OK(v) contains the orbit
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Figure 4.1: Illustration of our method for the construction of nested point sets. Lattice

points forming the vertices of a polygon are projected orthogonally into the physical space,

resulting in a finite nested point set, in this case one-dimensional.

Oρk (x), which corresponds to the coset G̃e in K, where e denotes the identity element of

G (compare with (4.5)), and possibly more layers with G-symmetry. The situation can be

summarised in the following diagramme:

OH (v) ⊆ L
extend
−−−−−→ OK1(v)xlift

yproject

Oρk (x) −−−−−→ π(k)(OK1(v))

(4.6)

This procedure can be iterated; let us consider the chain of subgroups inAH :

H ⊆ K1 ⊆ K2 ⊆ . . . ⊆ Km ⊆ Λ.

By ascending the chain we obtain a chain of orbits OKi(v) ⊆ OKi+1(v); the projection of

such orbits into V (k) induces a chain of nested shells.

We point out that, for computational purposes, it is often convenient to fix the generator

matrix B of L and consider the subgroup structure of the lattice group Λ in that represen-

tation. Indeed, if Γ := B−1G̃B denotes the representation of G̃ with respect to B, then the

set

AΓ(B) := {K ≤ Λ : Γ ≤ K} (4.7)

consists of the integral representations K ⊆ GL(d,Z) of the groups K, and is such that

B−1AG̃B = AΓ (cf. (1.4)). Note that a different choice of basis results in a set conjugate to

AΓ in GL(d,Z).
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4.2 Applications to finite Coxeter groups and polytopes

The nested point sets defined in the previous section display non-crystallographic sym-

metry G at each radial level. In particular, from (4.5) it follows that the G̃-orbits can be

characterised according to the coset decomposition of the G̃-containing subgroups K of

the point group P. Let Pi(v) = π(k)
(
OG̃gi

(v)
)

be the projected orbit in V (k) of v ∈ L

under the coset G̃gi. The convex hull Conv(Pi(v)) defines a polytope1 in Rk. Since

π(k)
(
OG̃gi

(v)
)

= Oρk

(
π(k)(giv)

)
, the vertices of Conv(Pi(v)) form a unique orbit under the

representation ρk of the symmetry group G. Polytopes with this property are referred to

as isogonal or vertex-transitive [70]. By considering the convex hull of each orbit with re-

spect to the coset decomposition (4.5), we obtain a compound of nested isogonal polytopes

with non-crystallographic symmetry G. We show in this section that such compounds can

be further characterised when G is a Coxeter group.

4.2.1 Finite Coxeter groups

In his celebrated book Regular polytopes [69], H.S.M. Coxeter gave a systematic study

of multi-dimensional polytopes, and introduced the concept of reflection groups to analyse

their symmetry properties. On a more abstract level, we have the following definition:

Definition 4.2.1. A Coxeter group W is a group generated by involutions si that admits a

presentation of the form

W = 〈si, s j | (sis j)mi j = 1, mii = 1, mi j = m ji ≥ 2, i , j〉. (4.8)

A detailed description of Coxeter groups can be found in [39]. In the finite case,

Coxeter groups correspond to groups generated by reflections. Specifically, let V be a

finite n-dimensional Euclidean space with inner product 〈, 〉, and let α ∈ V be a vector. The

reflection rα associated with α is the linear operator given by

rα(x) = x −
2〈α, x〉
〈α,α〉

α,

where x ∈ V . rα is an orthogonal transformation and it is involutive, i.e. r2
α = 1. A root

system φ is a finite set of vectors in V satisfying the following two conditions:

1There are many formal definitions of polytope in the literature. In this work, we will consider the “classic"

definition of polytope, i.e. a bounded convex region enclosed by a finite number of hyperplanes [69].
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An (n ≥ 1) E8

Bn (n ≥ 2)
4

F4
4

Dn (n ≥ 4) H3
5

E6 H4
5

E7 I2(n)
n

Table 4.1: Coxeter graphs corresponding to the irreducible finite Coxeter groups.

1. φ ∩ Rα = {α,−α}, for all α ∈ φ ;

2. rαφ = φ, for all α ∈ φ.

The group W ≡ W(φ) := 〈rα : α ∈ φ〉 is the finite reflection group associated with φ. A

subset ∆ of φ is called a simple system (and its elements simple roots) if

• spanR(∆) = spanR(φ);

• every α ∈ φ is a linear combination of elements of ∆ with all the coefficients of the

same sign.

The reflections associated with a simple system ∆ generate the entire group W. The number

k = |∆| is called the rank of W. Denoting by m(α,β) the order of the element rαrβ ∈ W,

W admits a presentation as in (4.8). Moreover, we can associate with W its Coxeter graph

Γ, which has k vertices linked by an edge if m(α,β) > 2, labelled by the number m(α,β)

(in general omitted if m(α,β) = 3). A Coxeter group W is irreducible if the corresponding

graph Γ is connected. These groups correspond to the infinite families An, Bn, Dn and I2(n),

together with the exceptional groups F4, E6, E7, E8, H3 and H4 (see Table 4.1).

The Cartan matrix of a Coxeter group W with simple system ∆ is a k× k matrix whose

entries Ci j are given by

Ci j =
2〈αi,α j〉

〈α j,α j〉
, αi,α j ∈ ∆. (4.9)

In analogy with Definition 1.1.1, W is crystallographic if Ci j ∈ Z, for all i, j = 1, . . . , k,
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otherwise it is non-crystallographic. In fact, if W is crystallographic, then the Z-module

Q =

k⊕
i=1

Zαi (4.10)

defines a lattice in Rk, called the root lattice of φ, whose point group is equal to W. In

this case, W is referred to as the Weyl group of the root system φ, following terminology

from Lie theory [20]. On the other hand, if W is non-crystallographic, the set (4.10) is

dense in Rk, hence not a lattice. All the irreducible Coxeter groups are crystallographic,

except for I2(n), with n = 5 and n > 6, in accordance with the crystallographic restriction

(cf. Theorem 1.1.1), and the expectional groups H3 and H4. The latter are associated with

icosahedral symmetry in three and four dimensions, respectively.

A Coxeter group W of rank k acts on Rk as an isometry group. Orbits of Coxeter groups

have been studied before [21,71–73]; in the crystallographic case, they provide a powerful

tool in the representation theory of Lie groups/algebras [74] and Kac-Moody algebras [75].

A crucial role for their description is played by the set

D+ = {x ∈ Rk : 〈x,αi〉 ≥ 0, αi ∈ ∆, i = 1, . . . , k}, (4.11)

which is referred to as the dominant chamber of W and is a fundamental domain of W

(cf. Definition 1.1.2). It is convenient to introduce the ω-basis ω1, . . . ,ωk of fundamental

weights defined by
2〈αi,ω j〉

〈αi,αi〉
= δi j, i, j = 1, . . . , k. (4.12)

The ω-basis is related to the simple roots via the Cartan matrix:

αi =

k∑
j=1

Ci jω j, ωi =

k∑
j=1

C−1
i j α j. (4.13)

Let x ∈ Rk, and let (m1, . . . ,mk) be the coordinates of x in the ω-basis. A straightforward

computation shows that

x ∈ D+ ⇐⇒ mi ≥ 0, i = 1, . . . , k. (4.14)

The unique point λ of the orbit OW(v), with v ∈ Rk, with non-negative coordinates in the

ω-basis is called the dominant point of the orbit. Its positive coordinates are referred to as

Wythoff positions [69] and completely determine the orbit.

With these preliminaries, we are able to apply the new method introduced in Sec-

tion 4.1 to construct nested point sets with symmetry described by an irreducible non-

crystallographic Coxeter group.
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4.2.2 Minkowski embedding of I2(n) and planar nested structures

Let n > 0 be a natural number. The group I2(n) is isomorphic to the dihedral group

D2n, the symmetry group of a regular n-gon, and consists of n rotations and n reflections,

with presentation [54]:

D2n = 〈Rn, S : Rn
n = e, S Rn = R−1

n S 〉, (4.15)

where Rn is a rotation by 2π
n and S is a reflection. It is useful to represent the root system

of I2(n) in the complex plane C ' R2 as follows:

φn =

{
exp

(
π j
n

i
)

: j = 0, . . . , 2n − 1
}
. (4.16)

The convex hull of φn is a regular 2n-gon. The simple roots can be chosen as

α1 = 1, α2 = exp
(
n − 1

n
iπ

)
, (4.17)

and consequently the Cartan matrix Cn is given by

Cn =

 2 −2cos
(
π
n

)
−2cos

(
π
n

)
2

 . (4.18)

Using the relations (4.13), we obtain the ω-basis:

ω1 =
1

2sin2
(
π
n

) (
α1 + cos

(
π

n

)
α2

)
,

ω2 =
1

2sin2
(
π
n

) (
cos

(
π

n

)
α1 + α2

)
.

The dominant point can be written as λ = aω1 + bω2 ≡ (a, b), where a, b ≥ 0. The orbits

and corresponding polygons are then easily classified:

1. If λ = (a, 0), a , 0, or λ = (0, b), b , 0, then the orbit OW(λ) consists of n points,

and its convex hull is a regular n-gon. Indeed, the reflection rα j associated with

the root α j perpendicular to the weight ωi fixes any point of the form aωi, hence

StabI2(n)(λ) = {rα j , e} ' Z2; by the orbit-stabiliser theorem, we have

|OI2(n)(λ)| =
|I2(n)|

|StabI2(n)(λ)|
=

2n
2

= n.

2. If λ = (a, b), a, b , 0, then no reflections in I2(n) fixes λ, and therefore OW(λ) is

made up of 2n points; its convex hull is a (not necessarily regular) 2n-gon.
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For the construction of nested point sets with dihedral symmetry, we need a crystallo-

graphic embedding of I2(n) into a higher dimensional lattice. This is achieved with the aid

of number theoretical tools, in particular via the Minkowski embedding of Z-modules. We

review this construction, following [2]. For the underlying number theoretical concepts,

we refer to [41] for a detailed description.

Let ξn = exp 2πi
n ∈ C be a primitive n-th root of unity, i.e. ξm

n = 1 if and only if n

divides m. Let Q(ξn) be the extension of Q obtained by adjoining ξn to Q. Q(ξn) is a field,

known as a cyclotomic field, which can be written as

Q(ξn) =

∑j

a jξ
j
n : j ≤ n, g.c.d.(n, j) = 1, a j ∈ Q

 .
Hence the degree of Q(ξn) over Q, i.e. the dimension of Q(ξn) as a vector space over Q, is

φ(n), the Euler function of n [41]. Let Z[ξn] denote the set

Z[ξn] =

∑j

m jξ
j
n : j ≤ n, g.c.d.(n, j) = 1, m j ∈ Z

 ,
which is the ring of integers of Q(ξn), and is a Z-module of rank φ(n). Using the isomor-

phism C ' R2, Z[ξn] can be seen as a point set in R2, and is dense for n = 5 and n > 6, as

a consequence of the crystallographic restriction.

Using Galois theory, we can construct a crystallographic representation of I2(n). Let

G denote the Galois group2 of Q(ξn). G is isomorphic to Z×n := {m ∈ Zn : gcd(m, n) = 1},

the multiplicative group of Zn, and therefore consists of φ(n) elements. Such elements are

automorphisms of Q(ξn) given by ξn 7→ ξm
n , where n and m are coprime, and they are

pairwise conjugate. We can then choose φ(n)
2 non-conjugate elements σi in G, where σ1 is

the identity. The Minkowski embedding of Z[ξn] is given by

Lφ(n) :=
{
(x, σ2(x), . . . , σ φ(n)

2
(x)) : x ∈ Z[ξn]

}
⊆ C

φ(n)
2 ' Rφ(n), (4.19)

which is a lattice in Rφ(n). The projection π(2) : Lφ(n) → C on the first coordinate is, by

construction, one-to-one on its image π(2)(Lφ(n)) = Z[ξn].

We can define an action of I2(n) on Z[ξn] as follows

Rnx := ξnx, S x := x̄,
2In general terms, the Galois group of an extension K of a field F is the set of all the automorphisms of K

that fix F.

78



where Rn and S are the generators of I2(n) ' D2n as in (4.15), and x ∈ Z[ξn]. This action

is well-defined as every element of I2(n) stabilises Z[ξn]. If g is an element of I2(n), g can

be lifted to an element g̃ via the action

g̃
(
π(2)

)−1
(x) :=

(
π(2)

)−1
(gx), (4.20)

which is well-defined since the projection is one-to-one. In particular, we have

R̃n
(
π(2)

)−1
(x) =

(
π(2)

)−1
(Rnx) =

(
π(2)

)−1
(ξnx) = (ξnx, σ2(ξnx), . . . , σ φ(n)

2
(ξnx)).

Similarly we have

S̃
(
π(2)

)−1
(x) =

(
π(2)

)−1
(S x) =

(
π(2)

)−1
(x̄) =

(
x̄, σ2(x), . . . , σ φ(n)

2
(x)

)
.

It follows that the transformations R̃n and S̃ are orthogonal and stabilise the lattice Lφ(n).

Therefore, the set

Ĩ2(n) := {g̃ : g ∈ I2(n)} (4.21)

is an embedding of I2(n) into the point group of Lφ(n). Furthermore, the action of Ĩ2(n) is

reducible since

π(2)(g̃v) = π(2)
(
g̃
(
π(2)

)−1
(x)

)
=

by(4.20)
π(2)

((
π(2)

)−1
(gx)

)
= gx = gπ(2)(v),

for v ∈ Lφ(n) and x ∈ Z[ξn]. Hence the diagramme

Lφ(n)
g̃

−−−−−→ Lφ(n)yπ(2)

yπ(2)

Z[ξn]
g

−−−−−→ Z[ξn]

is commutative (compare with (1.14)). As a consequence, having fixed a basis ofLφ(n), the

action of Ĩ2(n) on Lφ(n) induces a representation of I2(n) which contains an irrep of I2(n)

of degree two. Therefore, Ĩ2(n) constitutes a crystallographic representation of I2(n) in the

sense of Definition 1.2.2.

We point out that, although this construction is a priori possible and well-defined for

all natural numbers, it is difficult to find the explicit form of the point group of Lφ(n) in

(4.19) for general n. The explicit form is known, in particular, for n = 5, 8 and 12 [2].

We now prove analytically the existence of an extension K̃ of I2(n) embedded into

P(Lφ(n)), i.e. a subgroup K̃ of P(Lφ(n)) that contains Ĩ2(n) as a normal subgroup:

Ĩ2(n) C K̃ < P(Lφ(n)). (4.22)
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We start with some properties from group theory. We have already remarked that the group

I2(n) is isomorphic toD2n, with presentation given in (4.15). If 〈Rn〉 ' Zn is the subgroup

of rotations, then

D2n = 〈Rn〉 ∪ 〈Rn〉S .

D2n can be seen as a subgroup of the symmetric group S n, i.e. as acting on the vertices

of a regular n-gon. More precisely, let R′n = (1, 2, . . . , n) be an n-cycle and let S ′ be

the permutation defined by S ′( j) = − j mod n, for j = 1, . . . , n; then 〈R′n, S
′〉 defines a

permutation representation of D2n. Let T = 〈R′n〉 ' Zn, and define K as the normaliser of

T in S n:

K := NS n(T ) = {σ ∈ S n : σ−1Tσ = T }. (4.23)

K thus constructed is referred to as the holomorph of the group Zn, and denoted by Hol(Zn)

[76]. We have the following:

Lemma 4.2.1. D2n is a proper normal subgroup of Hol(Zn) when n = 5 or n ≥ 7.

Proof. We have

σ ∈ K ⇔ σTσ−1 = T ⇔ σRnσ
−1 ∈ T ⇔ σ(1, 2, . . . , n)σ−1 = (1, 2, . . . , n)m

for some m ∈ Zn with gcd(m, n) = 1, otherwise (1, 2, . . . , n)m

decomposes into disjoint cycles⇔ (σ(1), σ(2), . . . , σ(n)) = (1, 2, . . . , n)m

⇔ ∀ j ∈ Zn, σ( j) = m j + l for some m, l ∈ Zn with gcd(m, n) = 1.

To sum up:

K = {σ ∈ S n : ∃ m ∈ Z×n , l ∈ Zn : σ( j) = m j + l,∀ j ∈ Zn}.

K contains R′n and S ′, which correspond to m = 1, l = 1 and m = −1, l = 0, respectively.

It follows that D2n is a subgroup of K. We notice that |K| = φ(n)n, which is greater than

2n for n = 5 or n ≥ 7. Hence D2n is a proper subgroup of K for these values of n, which

correspond to the non-crystallographic cases.

In order to prove normality, we first of all notice that we can write

D2n ' 〈R′n〉 ∪ 〈R
′
n〉S

′ = T ∪ TS ′.

Let σ ∈ K defined by σ( j) = m j + l. We want to prove that σD2n = D2nσ. Clearly

σT = Tσ by definition of K (cf. (4.23)). We are then left to show that σTS ′ = TS ′σ. For
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s, j ∈ Zn we have ((R′n)sS ′)( j) = s − j; combined with σ−1( j) = m−1 j − m−1l, this implies

that
(
σ

((
R′n)sS ′

))
σ−1

)
( j) = ms − j + 2l. Therefore σ

((
R′n)sS ′

))
σ−1 = (R′n)ms+2lS ′, hence

σTS ′ = TS ′σ, and the result follows. �

We are now able to prove (4.22). In particular, we have the following:

Proposition 4.2.1. The point group P(Lφ(n)) of the Minkowsky embedding Lφ(n) contains

a subgroup K̃, isomorphic to Hol(Zn), extending Ĩ2(n).

Proof. Let us define the functions tm,l ∈ Aut(Z[ξn]) by

tm,l

n−1∑
j=0

a jξ
j
n

 :=
n−1∑
j=0

a jξ
m j+l
n , m ∈ Z×n , l ∈ Zn. (4.24)

Notice that the elements tm,0, with m ∈ Z×n , correspond to the Galois automorphisms σm,

which constitute the Galois group G of Q(ξn). Let K̃ :=
{
tm,l : m ∈ Z×n , l ∈ Zn

}
. K̃ is a

subgroup of Aut(Z[ξn]) which contains G. In particular, the composition of two elements

is given by

tm,l · tm′,l′ = tmm′,ml′+l, (4.25)

and the inverse of an element tm,l is tm−1,−m−1l. Let θ : Hol(Zn)→ K̃ be the function

θ(σ) := tm,l, σ( j) = m j + l.

θ is an isomorphism by construction. Writing the Minkowski embedding of Z[ξn] as

Lφ(n) =
{
ty1,0(z), . . . , tyφ(n)/2,0(z) : z ∈ Z[ξn]

}
⊆ C

1
2φ(n) � Rφ(n), where 1 = y1 < · · · <

yφ(n)/2 <
n
2 and gcd(y j, n) = 1, for all j, we can then lift tm,l with the projection π(2) as in

(4.20), and obtain:

t̃m,l
(
π(2)

)−1
(z) =

(
π(2)

)−1
(tm,l(z)) =

(
tm,0(tm,l(z)), . . . , tmyφ(n)/2,0(tm,l(z))

)
=

(by (4.25))

(
tmy1,y1l(z), . . . , tmyφ(n)/2,yφ(n)/2(z)

)
=

(by (4.24))

(
ξy1l

n tmy1,0(z), . . . , ξyφ(n)/2l
n tmyφ(n)/2(z)

)
.

Therefore, t̃m,l just rearranges the coordinates of
(
π(2)

)−1
(z), possibly converting some of

them to their complex conjugates and/or multiplying them by a power of ξn. Hence K̃

stabilises the lattice Ln, and this action is orthogonal, implying that K̃ is a subgroup of

P(Ln). To conclude, we observe that θ(D2n) is actually the embedding Ĩ2(n), and it is a

normal subgroup of K̃ by Lemma 4.2.1, hence the result is proved. �
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Since the embedding Ĩ2(n) is normal in K̃ ' Hol(Zn), the orbits of points of the lattice

Lφ(n) can be further characterised using Theorem 4.1.1. In fact, each point set obtained

by the decomposition into cosets of K̃ with respect to Ĩ2(n) as in (4.5) contains the same

number of elements, hence, given v ∈ Lφ(n), the projected orbit π(2)
(
OK̃(v)

)
consists of a

compound of r n-gons or 2n-gons, where r is at most

r ≤ [K̃ : Ĩ2(n)] =
φ(n)n

2n
=
φ(n)

2
.

Planar five-fold symmetry. To illustrate the theory developed so far, we consider the

case n = 5. In this context, the Coxeter group I2(5) ' D10 is usually denoted as H2,

due to the chain of inclusions of non-crystallographic Coxeter groups H2 ⊆ H3 ⊆ H4 as

pictorially seen by their Coxeter graphs:

5︸    ︷︷    ︸
H2︸              ︷︷              ︸

H3︸                       ︷︷                       ︸
H4

(4.26)

The Minkowski embedding of H2 is isomorphic to the root lattice of A4 [2] (cf. (4.10)),

which we denote by Q4 and whose roots are given by αi = ei − ei+1, for i = 1, . . . , 4, with

ei denoting the standard basis of R5. With respect to the basis of simple roots, we obtain a

representationH2 of H2 which is a subgroup of the lattice group Λ(Q4):

H2 =

〈


1 0 0 0

1 0 0 −1

1 0 −1 0

1 −1 0 0


,



−1 1 0 0

0 1 0 0

0 1 0 −1

0 1 −1 0


〉
. (4.27)

Comparing with the character table of D10 given in Section 3.2.2, and using formula

(1.11), we have thatH2 ' E1 ⊕ E2 in GL(4,R), inducing a decomposition R4 ' E(1) ⊕ E(2)

(cf. (1.9)), where E(1) and E(2) are both totally irrational with respect to the lattice Q4. This

decomposition can be explicitly found with the results from representation theory reviewed

in Section 1.2.2. In particular, the projection π(1)
2 : R4 −→ E(1) is given by

π(1)
2 =

1
√

2(3 − τ)

 −τ′
√

3 − τ
√

3 − τ 0 −
√

3 − τ

−1 2 − τ −2τ′ 2 − τ

 , (4.28)
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which induces the irrep Ĥ2:

Ĥ2 =

〈 1 0

0 −1

 , 1
2

 −τ′
√
τ + 2

√
τ + 2 τ′


〉
. (4.29)

With these results, we are able to construct nested point sets in E(1) ' R2 with five-fold

symmetry. In particular, with GAP we study the set AH2 of subgroups of Λ(Q4) contain-

ing H2 (compare with (4.1)). There is a unique chain of subgroups containing a proper

extension ofH2:

H2 CK2 ⊆ Λ(Q4),

where K2 is, in fact, isomorphic to Hol(Z5). We point out thay this group corresponds to

the point group 54 given in [27]. The explicit representation of K2 is given by

K2 =

〈


0 −1 1 0

−1 0 1 0

0 0 1 0

0 0 1 −1


,



0 0 0 −1

1 0 0 −1

0 1 0 −1

0 0 1 −1


,



1 0 0 0

1 0 −1 1

0 1 −1 1

0 1 −1 0


〉
.

In order to make computations easier, it is convenient to use as root system of H2 the set

φ̃5 := iφ5 = {±iξ j
5 : j = 0, . . . , 4}, and as simple roots (see (4.17))

α̃1 = (0, 1), α̃2 =
1
2

(√
3 − τ,−τ

)
.

The Cartan matrix C5 is the same as in (4.18) for n = 5. Using the relations (4.13) we

obtain the weights (see Figure 4.2)

ω̃1 =
1
2

(
τ

√
3 − τ

, 1
)
, ω̃2 =

(
1

√
3 − τ

, 0
)
.

We can then choose as a basis for the subspace E(1) the vectors

v1 =
2

√
2(3 − τ)

ω̃1, v2 =
1

√
2(3 − τ)

ω̃2.

Let Z[τ] = {a + bτ : a, b ∈ Z} denote the ring of integers of the field Q(τ), and let

π(1)
2 : R4 → E(1) be the projection as in (4.28). With this setup we have

π(1)
2 (Q4) = {c1v1 + c2v2 : c1, c2 ∈ Z[τ]} =

2⊕
i=1

Z[τ]vi
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α̃1

α̃2

ω̃1

ω̃2

Figure 4.2: The root system, simple roots and fundamental weights for H2. The area

highlighted corresponds to a patch of the fundamental chamber for the orbits of H2.

Hence the image π(1)
2 (Q4) of the root lattice Q4 is a Z[τ]-module in R2 of rank two3. Since

π(1)
2 is one-to-one on its image due to Proposition 1.2.1, it follows that any Z[τ]-linear com-

bination of v1 and v2 can be lifted to a unique point of the root lattice Q4. Notice that, since

v1 and v2 are parallel to the fundamental weights ω̃1 and ω̃2, respectively, they identify the

same dominant chamber D+ of H2 (see (4.11)). A dominant point x ∈ π(1)
2 (Q4) ∩ D+ can

be written as x = a1v1 + a2v2, with a1, a2 ∈ Z[τ] ∩ R+.

With reference to the scheme in (4.6), we consider a dominant point x ∈ π(1)
2 (Q4) ∩

D+ for the orbit O
Ĥ2

(x), and lift the point by taking its preimage w :=
(
π(1)

2

)−1
(x). By

construction, w is a point of the lattice Q4. We then extend the symmetry and consider

the orbit OK2(w). Let g ∈ K2 \ H2 be a representative of the coset H2g in K2/H2. The

projected orbit π(1)
2 ((OK2(w)) decomposes as in (4.5):

π(1)
2 ((OK2(w)) = O

Ĥ2

(
π(1)

2 (w)
)
∪ O

Ĥ2

(
π(1)

2 (gw)
)

= O
Ĥ2

(x)︸  ︷︷  ︸
P1(w)

∪O
Ĥ2

(
π(1)

2 (gw)
)︸            ︷︷            ︸

P2(w)

.

By Theorem 4.1.1, P1(w) = P2(w) if and only if H2g ∩ StabK2(w) , ∅ (cf. (4.2)). Since

K2 can be written as the disjoint union ofH2 andH2g, this condition is equivalent to

StabK2(v) ⊆ H2 ⇐⇒ P1(w) , P2(w). (4.30)

If (4.30) is true, then |P1(w)| = |P2(w)|, since H2 is normal in K2. Therefore, the pro-

jection π(1)
2 (OK2(w)) consists of compounds of (at most) two decagons or two pentagons.

3Here there is an interesting fact to point out. In general terms, given a free module M (i.e. one that admits

a basis) over a ring R, the rank of M corresponds to the number of linearly independent vectors that span M,

and depends on the base ring R [1]. In fact, π(1)
2 (Q4) can also be regarded as a Z-module in R2. In this case, its

rank is 4, and it is hence not a lattice in R2 (cf. (1.1)).
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(a) (b) (c)

Figure 4.3: Planar nested structures with five-fold symmetry. (a) Two regular pentagons

and (b) two irregular (but isogonal) decagons, resulting from the projection of orbits of

Q4-lattice points under the extension K2 ofH2 (the seed points in terms of the ω-basis are

given in the Appendix). (c) Projected orbit of the lattice point v = (1, 2, 4, 3) under the

lattice group Λ(Q4).

Specifically, writing x = a1v1 + a2v2, we have:

1. If a1 = 0 or a2 = 0, then π(OK(w)) consists of two distinct regular pentagons;

2. if a1 , 0 and a2 , 0, then π(OK(w)) consists of two distinct decagons, which are

isogonal but not necessarily regular.

We provide examples of double-shell structures with five-fold symmetry in Figure 4.3 (a)

and (b). If we consider orbits of points of Q4 under λ(Q4) ' S 5, then their projection into

E(1)
2 consists of at most |S 5|/|H2| = 120/10 = 12 radial levels, each displaying five-fold

symmetry. In Figure 4.3 (c) we show an example of a point set thus constructed.

4.2.3 Nested polyhedra with icosahedral symmetry H3

As already pointed out in Section 2.1, the group H3 is associated with achiral icosahe-

dral symmetry in R3. It has order 120 and is isomorphic to I × Z2. Its crystallographic

embedding has been analysed in Chapter 2; specifically, a crystallographic representation

H̃3 of H3 is given by Ĩ ⊗ Γ, where Ĩ is a crystallographic representation of I in B6 and

Γ = {1,−1} is the non-trivial irrep of Z2 (cf. (2.15)). In Chapter 5 icosahedral point sets

obtained from projection of Ĩ-containing subgroups of B6 will be analysed in detail, in

particular in the context of applications to viral capsid architecture. Here, instead, we pro-

vide, based on the results in Section 4.1, an analytical construction of nested polyhedra

with H3-symmetry in the framework of Coxeter groups.
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Polyhedron Wythoff positions Number of vertices

Icosahedron (0, 0, x3) 12

Dodecahedron (x1, 0, 0) 20

Icosidodecahedron (IDD) (0, x2, 0) 30

Truncated icosahedron (0, x2, x3) 60

Truncated dodecahedron (x1, x2, 0) 60

Rhombicosidodecahedron (RIDD) (x1, 0, x3) 60

Truncated icosidodecahedron (x1, x2, x3) 120

Table 4.2: Isogonal polyhedra with H3-symmetry.

We recall that τ′ = 1 − τ denotes the Galois conjugate of the golden ratio τ. The root

system φ of H3 can be expressed as [49]

φ =


(±1,±τ,±τ′) and all even permutations

(±1, 0, 0) and all permutations

 .
φ consists of 30 roots; its convex hull is an icosidodecahedron, a polyhedron which is made

up of 20 regular triangles and 12 regular pentagons [70]. The simple roots can be chosen

as

α1 = (0, 0, 1), α2 = −
1
2

(τ′, 1, τ), α3 = (1, 0, 0).

The Cartan matrix (4.9) is then given by

C =


2 −τ 0

−τ 2 −1

0 −1 2

 .
The ω-basis consists of the three fundamental weights

ω1 =
1
2

(τ2, 0, 1), ω2 = (τ, 0, 0), ω3 =
1
2

(τ, 1, 0). (4.31)

We denote by (a, b, c) the coordinates of a vector v ∈ R3 in the ω-basis. There are 7 dif-

ferent isogonal polyhedra with H3-symmetry [70, 77], which correspond to the 7 possible

Wythoff positions given in Table 4.2. We refer to Koca et al. [77] and Cromwell [70] for a

visual representation, and their geometric properties.

The set AH̃3
contains all the H̃3-containing subgroups of B6, and will be computed in

Chapter 5. Here we focus on the extensions of the embedded H3, i.e. the subgroups of
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B6 that contains H̃3 as a normal subgroup. These are easily classified. In particular, with

GAP we compute the normaliser NB6(H̃3) of H̃3 in B6; the explicit representation is given

in the Appendix. Its order is 240, which is twice the size of H3; hence [NB6(H̃3) : H̃3] = 2.

Therefore, K3 := NB6(H̃3) is the unique extension of H̃3 in B6, since the normaliser of a

subgroup H of a group G is the largest subgroup of G in which H is normal [1].

Let E‖ be the three-dimensional subspace invariant under H̃3, carrying the irrep ρ3 ⊗ Γ

of H3 (cf. Section 2.1.3 and (2.16)), and let π‖ : R6 → E‖ be the projection into E‖ given in

(2.13). Similarly to the case of H2, we classify the projected orbits of simple cubic lattice

points under the extension K3. Since [K3 : H̃3] = 2, the number of nested polyhedra in

projection is at most two. We choose as a basis of E‖ the vectors

v1 = c(τ2, 0, 1) = 2cω3, v2 = c(1, 0, 0) = −τ′cω2, v3 = c(τ, 1, 0) = 2cω1,

where c =

√
2
τ+2 , which are parallel to the weights in (4.31). With this choice, as in the case

of H2 we have that the image π‖(LS C) of the simple cubic lattice in R6 is a Z[τ]-module in

R3 of rank 3 (and a Z-module or rank 6):

π‖(LS C) =

3⊕
i=1

Z[τ]vi,

and moreover, since the projection π‖ is one-to-one with its image, any Z[τ]-linear combi-

nation of v1, v2 and v3 in E‖ can be lifted to a unique point belonging to the SC lattice in

R6 using the projection π‖.

Let x ≡ (x1, x2, x3) be the dominant point for the orbit Oρ3⊗Γ(x), written in the basis

v1, v2, v3, with xi ∈ Z[τ]≥0, and let w =
(
π‖

)−1
(x) ∈ LS C be the pre-image of x. Let then

g ∈ K3 \ H̃3 be a representative for the coset H̃3g ∈ K3. We define the first polyhedron as

Q1 := Conv
(
O
Ĥ

(x)
)
. The other polyhedron is then given by Q2 := Conv

(
Oρ3⊗Γ(π‖(gw))

)
;

as in the case of H2, since there are only two cosets in K3/H3, Q1 and Q2 are distinct if

and only if StabK3(w) ⊆ H3. In this latter case, |Q1| = |Q2| by Theorem 4.1.1. We have the

following possibilities (compare with Table 4.2):

1. If Q1 is an icosahedron, a dodecahedron, an icosidodecahedron or a truncated icosi-

dodecahedron, then Q2 is a polyhedron of the same type;

2. in all the other cases, |Q1| = |Q2| = 60; we have then six possible pairings {Q1,Q2}.

In order to test which pairings are possible, we solve

x̂ = π‖(gw) ≡ (x̂1, x̂2, x̂3), with w =
(
π‖

)−1
(x), x = (x1, x2, x3), (4.32)
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Inn: icosahedron.
Out: icosahedron.

Inn: rhombicosidodecahedron.
Out: truncated icosahedron.

Inn: dodecahedron.
Out: dodecahedron.

Inn: rhombicosidodecahedron.
Out: rhombicosidodecahedron.

Inn: truncated dodecahedron.
Out: truncated icosahedron.

Inn: icosidodecahedron.
Out: icosidodecahedron.

Inn: truncated dodecahedron.
Out: rhombicosidodecahedron.

Inn: trunc. icosidodecahedron.
Out: trunc. icosidodecahedron.

Inn: truncated icosahedron.
Out: truncated icosahedron.

Inn: truncated dodecahedron.
Out: truncated dodecahedron.

1

Figure 4.4: A visualisation of all the possible pairings of nested polyhedra with achiral

icosahedral symmetry, as projected orbits under the extension K3 of the embedding H̃3 of

H3. “Inn" stands for the inner polyhedron and “Out" for the outer one. The explicit forms

of the seed points for the orbits are given in the Appendix.

for different combination of x̂ and x such that precisely one x̂i and x j are zero (com-

pare with Table 4.2).

Representative solutions of (4.32) are shown in the Appendix and displayed in Figure 4.4.

4.2.4 Nested polychora with generalised icosahedral symmetry H4

The Coxeter group H4 is the four dimensional analogue of H3 and therefore represents

generalised icosahedral symmetry in R4. Its order is 1202 = 14, 400 and it contains the

groups H2 and H3 as subgroups (cf. (4.26)). Due to these inclusions, H4 is particularly

relevant in the construction of quasicrystals with five-fold symmetry in two, three and four
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dimensions, by means of the so-called icosian model sets [6, 37, 78]. Indeed, let H ' R4

denote the standard quaternionic algebra over Rwith basis {1, i, j, k} satisfying the relations

i2 = j2 = k2 = i jk = −1. Every element q ∈ H is in the form q = a+bi+c j+dk ≡ (a, b, c, d).

The 120 unit quaternions

J =



(±1, 0, 0, 0) and all permutations

1
2

(±1,±1,±1,±1)

1
2

(0,±1,±τ,±τ′) and all even permutations


form a group under quaternionic multiplication, called the group of icosians, which is

isomorphic to the binary icosahedral group4 2I. These can be chosen as a root system for

H4; as simple roots we take

α1 = (0, 1, 0, 0), α2 =
1
2

(0,−τ,−τ′,−1), α3 = (0, 0, 0, 1), α4 =
1
2

(−τ′, 0,−τ,−1), (4.33)

and the Cartan matrix is then given by

C =



2 −τ 0 0

−τ 2 −1 0

0 −1 2 −1

0 0 −1 2


.

The ω-basis is as follows:

ω1 =
1
2

(2 + 3τ, 1, τ2, 0), ω2 = (2τ + 1, 0, τ, 0), ω3 =
1
2

(3τ + 1, 0, τ, 1), ω4 = (τ, 0, 0, 0).

The standard crystallographic embedding of H4 is by means of the Weyl group E8 [2, 79,

80]. In view of this formalism, we construct, following [79,80], a simple system ∆8 for the

group E8 based on the simple roots of H4 given in (4.33). Specifically, we take

∆8 := {αi,−τ
′αi : i = 1, . . . , 4}. (4.34)

It can be proved that ∆8 form a basis of the root lattice Q8 of E8 [79]. By construction,

H4 stabilises Q8; therefore in the basis ∆8 we obtain a representationH4 of H4 of degree 8

(subgroup of the lattice group Λ(Q8) of Q8):

H4 = 〈R1,R2,R3,R4〉. (4.35)
4We recall that the group SU(2) of special 2 × 2 hermitian complex matrices is the double cover of the

rotation group SO(3), i.e. there exists a homomorphism α : SU(2)→ SO(3) whose kernel is isomorphic to Z2,

and therefore SO(3) ' SU(2)/Z2. The binary icosahedral group 2I is then defined as the preimage α−1(I).
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The explicit form of this representation is given in the Appendix. H4 is reducible and

induces a decomposition of R8 into twoH4-invariant subspaces of dimension four, denoted

by E(1)
4 and E(2)

4 , both totally irrational with respect to the lattice Q8. In particular, the irrep

Ĥ4 carried by the subspace E(1)
4 is given by

Ĥ4 =

〈


1 0 0 0

0 −1 0 0

0 0 1 0

0 0 0 1


,

1
2



2 0 0 0

0 τ −τ′ 1

0 −τ′ 1 −τ

0 1 −τ τ′


,



1 0 0 0

0 1 0 0

0 0 −1 0

0 0 0 1


,

1
2



τ′ 0 −τ 1

0 2 0 0

−τ 0 1 −τ′

1 0 −τ′ τ


〉
,

and moreover the projection π(1)
4 : R8 −→ E(1)

4 is as follows

π(1)
4 =

1
2

√
2 + τ′

5



0 0 0 τ 0 0 0 −τ2

−2 τ′ 0 0 2τ 1 0 0

0 1 −2 1 0 −τ 2τ −τ

0 τ 0 τ′ 0 −τ2 0 1


.

With these results, we are able to construct, via projection, nested four dimensional

point sets and related polytopes with generalised icosahedral symmetry. The standard name

for a four-dimensional polytope is polychoron [81]. There are 15 isogonal polychora with

H4-symmetry [82]; we list them in Table 4.3. We refer to Coxeter [69] and Möller [82] for

a detailed description of their geometrical properties.

The subgroup structure of Λ(Q8) ' E8 is extremely complex, and the classification

of all chains of its H4-containing subgroups is a difficult computational task. However, if

we restrict to the subgroups containingH4 as a normal subgroup, then the classification is

straightforward. Indeed, with GAP we find the normaliser ofH4 in Λ(Q8). Its explicit form

is given in the Appendix. As for H3, [NΛ(Q8)(H4) : H4] = 2, so that K4 := NΛ(Q8)(H4) is

the unique extension of H4 in Λ(Q8). The projection of the orbits under K4 consists of at

most two nested polychora Q1 and Q2, since the index of K4 in Λ(Q8) is 2, with |Q1| = |Q2|,

by Theorem 4.1.1. The classification method is the same as for H3. The basis of E(1)
4 was

chosen as

v1 = x(τ2, 2 − τ, 1, 0) = 2(2 − τ)xω1, v2 = x(τ, 0,−τ′, 0) = x(2 − τ)ω2,

v3 = x(2 + τ, 0, 1,−τ′) = −2xτ′ω3, v4 = x(1, 0, 0, 0) = −xτ′ω4, with x =

√
3 − τ

5
.

As before, with this choice we have π(1)
4 (Q8) =

⊕4
i=1 Z[τ]vi. There are 25 possible differ-

ent pairings of distinct polychora. Numerical examples are given in the Appendix.
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Polychoron Wythoff positions Number of vertices

600-cell (0, 0, 0, x4) 120

120-cell (x1, 0, 0, 0) 600

Rectified 600-cell (0, 0, x3, 0) 720

Rectified 120-cell (0, x2, 0, 0) 1, 200

Truncated 600-cell (0, 0, x3, x4) 1, 440

Truncated 120-cell (x1, x2, 0, 0) 2, 400

Runcinated 120-cell (x1, 0, 0, x4) 2, 400

Cantellated 120-cell (x1, 0, x3, 0) 3, 600

Bitruncated 120-cell (0, x2, x3, 0) 3, 600

Cantellated 600-cell (0, x2, 0, x4) 3, 600

Cantitruncated 120-cell (x1, x2, x3, 0) 7, 200

Runcitruncated 120-cell (x1, x2, 0, x4) 7, 200

Runcitruncated 600-cell (x1, 0, x3, x4) 7, 200

Cantitruncated 600-cell (0, x2, x3, x4) 7, 200

Omnitruncated 600-cell (x1, x2, x3, x4) 14, 400

Table 4.3: Isogonal polychora with H4-symmetry.

Sections. The polychora obtained from projection are four-dimensional objects. In order

to visualise them, we create 3D sections of them [69]. In general, for an n-polytope Q with

symmetry described by a Coxeter group H, let α1, . . . ,αn be the simple roots of H with

ω1, . . . ,ωn denoting the corresponding fundamental weights. Consider the hyperplane Li

through the origin and perpendicular to ωi, and define Q′ := Q ∩ Li. Q′ is by construction

an (n − 1)-dimensional section of Q. Then Q′ is invariant under all the reflections rα j with

j , i. To see this, note that a point v belongs to Li if and only if 〈v,ωi〉 = c, with c ∈ R.

Since α j ⊥ ωi by definition of fundamental weights (cf. (4.12)), we have

〈rα j(v),ωi〉 = 〈v − 2
〈α j, v〉
〈α j,α j〉

α j,ωi〉 = 〈v,ωi〉 − 2
〈α j, v〉
〈α j,α j〉

〈α j,ωi〉︸  ︷︷  ︸
=0

= 〈v,ωi〉 = c.

Therefore, Li is invariant under the reflections rα j , for j , i, and as a consequence the

section Q′ is invariant under the Coxeter group H′, whose Coxeter graph is obtained by

removing the node corresponding to the root αi to the graph of H.

In the case of polychora with H4 symmetry (•−−
5
•−−•−−•), we have:

1. Sections through L1 have A3 symmetry (•−−•−−•), which corresponds to the sym-
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1Figure 4.5: Sections of two nested polychora with H4 symmetry: 600-cell – 600-cell (top

row) and 120-cell – 120-cell (bottom row). The cross sections are taken through a hyper-

plane perpendicular to (from left to right): ω1 (tetrahedral symmetry), ω2 (symmetry of a

triangular prism), ω3 (symmetry of a pentagonal prism) and ω4 (icosahedral symmetry).

metry of a tetrahedron;

2. sections through L2 have A1 × A2 symmetry (• •−−•), which is the symmetry of a

triangular prism;

3. sections through L3 have H2 × A1 symmetry (•−−
5
• •), which is the symmetry of a

pentagonal prism;

4. sections through L4 have icosahedral symmetry H3 (•−−
5
•−−•).

In Figure 4.5 we display two examples of such sections in the case of two nested 120-

cells and two nested 600-cells.
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Chapter 5

Applications to viral capsid

architecture

The treacherous instrument is in thy hand,

Unbated and envenomed.

W. Shakespeare, Hamlet.

In this chapter we show that the group theoretical setup introduced in Section 4.1 can

be used to rationalise viral capsid architecture. Specifically, we classify all the chains

of subgroups containing the icosahedral group embedded into the hyperoctahedral group,

based on the analysis carried out in Chapter 2. We then consider the capsids of Paria-

coto Virus and Bacteriophage MS2, whose structures have been intensively studied experi-

mentally [15, 16], and show that the projected orbits of the groups provide constraints on

their three-dimensional organisation, encoding information on the structural organisation

of capsid proteins and the genomic material collectively. Contrary to the affine extensions

previously introduced, these orbits endow virus architecture with an underlying higher di-

mensional finite group structure via projection, which lends itself better for the modeling

of its dynamic properties than their infinite dimensional counterpart.

5.1 Nested point sets with icosahedral symmetry

In Section 4.2.3 we classified double-shell structures with achiral icosahedral sym-

metry H3 resulting from the projection of orbits of lattice points under the extension of
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H3 embedded into the hyperoctahedral group B6. For applications in virology, we need

to construct nested point sets with icosahedral symmetry which exhibit wider multi-shell

structures, possibly not invariant under reflections since viral capsids in general possess

chirality. Therefore, we consider the crystallographic embedding of the icosahedral group

I into the point group B6, analysed in Chapter 2, and classify all the chains of subgroups

of B6 containing the representative Ĩ of the class of crystallographic representations of I

(cf. (2.1)). Indeed, we consider the set (cf. (4.1)):

A
Ĩ

:= {G < B6 : Ĩ < G}. (5.1)

We compute this set with with GAP. To this purpose, we need to scan through all the con-

jugacy classes of subgroups of B6, in a similar way as was done in Section 2.1.2. In order

to make computations faster and more efficient, we use a “sieve" procedure to determine

a priori which classes of subgroups do not contain any subgroup isomorphic to the icosa-

hedral group. For this, some results from group theory are required. In particular, we use

the fact that if G is a soluble group1, then every subgroup H of G is soluble [55]. Since the

icosahedral group is isomorphic to the alternating group A5, it is not soluble [1]. There-

fore, any subgroup G of B6 containing Ĩ as a subgroup must not be soluble. Moreover, it

cannot be Abelian (since I is not) and the order of G must be divisible by |I| = 60, as a

consequence of Lagrange’s Theorem. With these considerations, we provide the following

algorithm.

Algorithm 5.1.1. In order to determineA
Ĩ

, perform the following steps:

1. Compute the conjugacy classes Ci of the subgroups of B6.

2. List a representative Ki for each class Ci.

3. Rule out those representatives which have one of the following properties:

• Ki is soluble;

• Ki is Abelian;
1We recall that a group G is soluble (or solvable) if there exists a chain of subgroups

G = M0 ⊃ M1 ⊃ M2 ⊃ . . . ⊃ Mr = e,

such that Mi is normal in Mi−1 and Mi−1/Mi is Abelian, for i = 1, . . . , r.
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Subgroup Order Index

G1 ' I 60 1

G2 ' H3 120 2

G3 ' NB6 (G2) 240 4

G4 1, 920 32

G5 3, 840 64

G6 3, 840 64

G7 3, 840 64

G8 7, 680 128

G9 11, 520 192

G10 23, 040 384

G11 23, 040 384

G12 23, 040 384

G13 ' B6 46, 080 768

Table 5.1: Classification of the subgroups of B6 containing the crystallographic represen-

tation Ĩ of the icosahedral group I as a subgroup.

• 60 - |Ki|.

4. For each Ki not ruled out, compute all the element Gi ∈ Ci. If Ĩ < Gi, then add Gi

toA
Ĩ

.

The algorithm was implemented in GAP (see Appendix), and the results are given in

Table 5.1. For the computations, we used the embedding of B6 into the symmetric group

S 12 described in Section 2.1.1. There are 13 elements in A
Ĩ

, which we denote by Gi,

for i = 1, . . . , 13. The generators of the groups Gi are given in the Appendix in terms of

permutations in S 12; the function ψ : S 12 → B6, given in (2.8), can then be used to map

a permutation into a matrix in B6. Clearly, G1 is the crystallographic representation Ĩ of

I, whereas G13 corresponds to the whole hyperoctahedral group. Moreover, the group G2

is Ĩ ⊗ Γ, the crystallographic representation H̃3 of H3 (cf. (2.15)), and G3 corresponds

to the normaliser NB6(H̃3) of H̃3 (see Section 4.2.3). In Figure 5.1 we show the graph of

inclusions of the groups Gi, that indicates the independence of different subgroup chains.

As explained in Section 2.1.3, the representation Ĩ leaves two three-dimensional sub-

spaces invariant, denoted by E‖ and E⊥, which carry the two irreps of I of degree 3,

denoted by ρ3 and ρ′3, respectively (see Table 2.1.3). The projection π‖ into the physical
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Ĩ

G2

G4 G3

G7G6G5G9

G11 G12 G10 G8

B6

Figure 5.1: Graph of inclusions of the subgroups of the hyperoctahedral group containing

the crystallographic representation Ĩ of the icosahedral group.

space E‖ is given in (2.13). In what follows, we will consider orbits of points of the simple

cubic lattice LS C in R6 (cf. Section 2.1). The projection into E‖ of orbits of such points

under the groups Gi produces nested point sets with icosahedral symmetry at each radial

level. An example is given in Figure 5.2. Every radial level is the union of cosets of Gi

with respect to Ĩ.

It is worth pointing out that every group Gi, for i > 3, contains H3 as well as I as

subgroups. From a geometrical point of view, this implies that the resulting orbits in pro-

jection are all invariant under reflections, i.e. each radial level possesses full icosahedral

symmetry H3. This observation provides a sharper bound on the number of distinct radial

levels in projection: in fact, this is given by n/2, the index of H3 in Gi, where n is the

index of I in Gi. On the other hand, this does not imply that the point sets thus obtained

do not provide constraints on viral capsids with chirality, since they do not fully determine

its structure, but rather provide structural constraints for the capsid organisation. Indeed,

viruses may realise these blueprints in an asymmetric way; an example, which we are go-

ing to discuss later in this chapter, is Bacteriophage MS2, whose genome organisation has

been shown to be asymmetric via graph theoretical analysis [83].
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Figure 5.2: The projected orbit of the lattice point v = (0, 0, 1, 1, 2, 1) under the group G4.

Each layer in the resulting nested point set possesses achiral icosahedral symmetry.

5.2 Projected orbits as blueprints for viral capsids

The classification of the subgroup chains of B6 extending icosahedral symmetry, de-

rived in Section 5.1, provides a suitable mathematical framework to understand structural

constraints on viral capsids. As a first step towards this goal, we identify a finite library of

point arrays, corresponding to the projected orbits of 6D lattice points under the groups Gi

previously classified. Elements in this library depend on two quantities: the group Gi ∈ AĨ

and the lattice point v ∈ LS C . The Gi are provided by our classification. As can be seen

from Figure 5.1 and Table 5.1, the smallest group containing I as a proper subgroup and

thus giving icosahedral nested shells in projection is G3. The index of G3 with respect

to H3 is 2, therefore the number of radial levels is at most 2: the double-shell structures

obtained as projected G3-orbits have been classified in Section 4.2.3. In order to obtain

deeper information about capsid geometry, more radial levels are necessary. Therefore,

we consider in the following the subgroups Gi, for i = 4, . . . , 13. Moreover, v is chosen

as follows: since the 6D lattice is infinite, we introduce a cut-off parameter N > 0 and

consider all lattice points within a six-dimensional cube:

I6
N := [−N,N] × . . . × [−N,N] = [−N,N]6 ⊆ LS C ,

containing (2N + 1)6 lattice points. In particular, we consider all orbits of the groups Gi

within a bounded area around the origin defined by N.
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Based on this set-up, the library of point arrays is obtained via the action of the group

Gi on the set I6
N , for i = 4, . . . , 13. This action is well-defined since Gi is a subgroup of the

point group of the lattice, and therefore lattice points are mapped into lattice points under

elements of Gi. Let D(i)
N = {v(i)

1 , . . . , v
(i)
ki
} be a set of distinct representatives for the orbits

of Gi in I6
N . Since G4 ⊆ Gi for all i = 5, . . . , 13, and thus their fundamental domains are

contained in that of G4, the set D(4)
N contains the sets of representatives D(i)

N for the groups

Gi, i = 5, . . . , 13, which are not necessarily distinct. Since we do not have information on

the group G4 apart from its generators, the set D(4)
N is computed numerically according to

the following procedure:

1. For v ∈ I6
N , compute OG4(v);

2. among all vi ∈ OG4(v) identify v̂ with the largest number of positive components,

choosing at random if two or more points fulfil this property;

3. add v̂ to D(4)
N and repeat from the start until all v ∈ I6

N have been considered.

In particular, D(4)
N thus obtained contains 47, 183 and 529 points for N = 2, 3 and 4,

respectively. With this setup, the library of constraints is given by

S(N) :=
{
{π‖(OG j(v))} : v ∈ D(4)

N , j = 4, . . . , 13
}
, (5.2)

which by construction consists of distinct point arrays.

Once the set S(N) is computed for a chosen value of N, we retrieve the information of

the viral capsid in consideration from the VIPER data bank [84]. These PDB files contain

structural data of viral capsids, such as the coordinates of the atomic positions of the capsid

proteins and in many cases also of the packaged genome. Following [85], we represent the

atomic positions of the proteins by spheres of radius 1.9 Å in the visualisation tool PyMol2.

In order to compare the point arrays with biological data, and hence find those point sets

which best represent the capsid features, we use the following procedure:

1. For any group Gi ∈ AĨ, we compute with GAP a transversal T (i) = (g(i)
1 , . . . , g

(i)
ni ) for

the right cosets of Ĩ in Gi, where ni denotes the index of I in Gi.

2. Given a point array π‖
(
OGi(v)

)
∈ S(N), we compute the set

L(i)(v) =
{
|π‖(g(i)

j v)| : j = 1, . . . , ni
}
.

2This is an approximation for the Van der Waals radii of the atoms.
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The cardinality of L(i)(v) corresponds to the number of distinct radial levels in the

point set π‖(OGi(v)). We denote by R(i)
max(v) := maxL(i)(v) the largest radial level

which corresponds to the outermost layer in the nesting. This is used to scale the

point set so that the capsid is contained in the convex hull of the projected orbit.

3. The rescaled orbit is then compared with the data in the PDB file. We start by

selecting those point arrays whose outermost layer best represents the outermost

features of the capsid. Specifically, we consider a coarse-grained representation of

the capsid surface by locating the most radially distal clusters of Cα atoms using the

procedure described by [85]. Denoting these clusters by Ck, k = 1, . . . ,M, the Ck can

be approximated by M spheres Bk(r̃) of radius r̃ (for the numerical implementation,

we chose the cutoff r̃ = 10Å). For any orbit π‖(OGi(v)), we isolate its external point

layer L(out) by computing the points situated at distance Rmax (introduced above)

from the origin. The orbit is then selected if, for every point x ∈ L(out), there exists

k ∈ {1, . . . ,M} such that x ∈ Bk(r̃).

4. Among the point sets thus selected, we determine those that best match the other

capsid features. For this, we isolate the inner radial levels using the decomposition

of orbits into cosets and compare them with the location of the genomic material and

the inner capsid surface. The cardinalities of the point arrays are not large enough

to match with atomic positions, but they rather map around material as in [19]; this

comparison can be achieved via visual inspection using the surface representation of

the capsid in PyMol.

We consider here two case studies: Pariacoto Virus and Bacteriophage MS2, both

T = 3 capsids in the Caspar-Klug classification. These were chosen in order to facilitate

comparison with [19], where point arrays derived from affine extensions of the icosahedral

group were used to generate blueprints for viral architecture.

Pariacoto Virus. Pariacoto Virus (PaV) is a single-stranded RNA insect virus, whose X-

ray crystal structure reveals approximately 35% of the RNA organised as a dodecahedral

cage of duplex RNA in proximity to the inner capsid surface [15]. A characteristic feature

of this capsid are the 60 protrusions of approximately 15Å around the quasi three-fold axes,

each formed by three interdigitated subunits. These are the outermost capsid features that
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we will match to the largest radial levels in the point arrays of our constraint library in order

to identify the best fit point array. For this we performed the procedure described above,

and found that the best fit for this capsid is given by the projected orbit of the lattice point

v̂ = (2, 1,−1,−1, 0, 0) under the group G6 (see Figure 5.3). This point set consists of 960

points, arranged into 8 radial levels. The outermost level is formed by 60 points which map

onto the spikes at the 60 local three-fold axes, see Figure 5.3 (b). The third radial level from

the origin describes the organisation of the RNA inside the capsid. This set is made up of

120 points forming a truncated icosidodecahedron, which maps around the dodecahedral

RNA cage, see Figure 5.3 (d). The fifth radial level from the origin, located between the

RNA and the spikes, consists of 120 points, organised into 10 and 12 clusters of 6 and 5

points each, which are located around the 3 and 5 fold axes, respectively. In particular, we

show in Figure 5.3 (c) a close-up view of the clusters with five-fold symmetry. Note that

these points provide constraints on the lengths of the protein helices and the positions of

the protein subunits of type C.

We point out that G6 is the group of smallest order in the setA
Ĩ

providing a blueprint

for PaV that captures the locations of both capsid proteins and the RNA collectively. The

orbit of v̂ under G4 in projection, which by construction is contained in π‖(OG6(v̂)), maps

around the spikes, but totally lacks information on the organisation of the genomic material

inside. Moreover, all the orbits of v̂ under the G6-containing Gk ∈ AĨ, i.e. G8 and G12, as

well as B6 (cf. Figure 5.1) coincide in projection, implying that they contain no additional

information on capsid architecture. Hence G6 can be chosen as the six-dimensional sym-

metry group that induces the three-dimensional structure of the PaV capsid in projection.

Bacteriophage MS2. Like PaV, MS2 is a single-stranded RNA virus, with a T = 3

capsid. Cryo-electron microscopy reveals a double-shell structure in the organisation of

the genomic RNA; the outermost shell lies closely underneath the capsid proteins, while

the innermost one is located at much lower radii [16]. With our procedure as above, we

found that the projected orbit of ṽ = (2, 1, 1,−1, 0, 1) under the group G4 is the point set that

provides the best blueprint for the capsid (see Figure 5.4). Specifically, this orbit contains

960 points, that are arranged, in projection, into 9 radial levels. The two outermost layers,

L(9) and L(8), map to the exterior of the capsid: L(9) consists of 60 points, arranged into

12 clusters of 5 points each, positioned around the five-fold symmetry axes of the capsid,
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(d) 

Figure 5.3: Blueprints for the capsid of Pariacoto Virus (based on pdb file 1f8v). (a) A

cross-section of the capsid superimposed on the projected orbit of v̂ = (2, 1,−1,−1, 0, 0)

under the group G6. The point set consists of 960 points, situated at 8 distinct radial levels,

which provide constraints on the capsid architecture. (b) A close-up view of the outermost

layer of the projected orbit, which encodes the locations of the spikes around the quasi

three-fold axes. (c) The layers between the spikes and the genomic material map around

the inner capsid surface. (d) The third farthest layer from the origin gives information on

RNA organisation: the 120 points, forming a truncated icosidodecahedron, map around the

dodecahedral RNA cage.

whereas L(8) has size 120 and is made up of 20 clusters of 6 points, located around the

three-fold axes. This is consistent with the quasi-equivalent structure of the T = 3 capsid.
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We point out that L(8) and L(9) are in fact almost situated at the same radial level (the ratio

of their radii is ' 1.064814), and collectively map around the capsid exterior as shown in

the close-up in Figure 5.4 (b).

All other points of the array are from a mathematical point of view related to these

outermost layers, and indeed map around material boundaries, capturing the double-shell

structure of the genomic material. To prove this, we compare the point array with the

icosahedrally averaged cryo-EM structure of MS2 at 8Å resolution in [16]. As shown in

Figure 5.4 (a), the innermost radial levels of the point array define the organisation of the

inner RNA shell. Moreover, there are points mapping around the outer and inner surfaces

of the outermost shell. There is a layer of points, positioned around the RNA, connecting

the outer and inner RNA shells (see the close-up in Figure 5.4 (c)). This icosahedrally

averaged data set has been obtained via a superposition of a large number of viral particles,

aligned according to their symmetry axes, in order to enhance the resolution. However,

in any individual particle, the RNA is organised in an asymmetric way, that is consistent

with the icosahedrally averaged density [83]. Therefore, we compare our model with the

asymmetric RNA density of a cryo-EM tomogram at about 39 Å resolution [83, 86] (see

Figure 5.4 (d)). Since the density is shown in a cross sectional view, the density in the two

shells cannot be seen in full. However, the density agrees with the radial levels defined

by the point arrays, showing that, although in a asymmetrical way, the points map around

genomic material, consistent with our hypothesis that the mathematical model indeed pro-

vides blueprints for this virus. Taken together, these results imply that the group G4 is

the group of smallest order in our classification that provides structural constraints on the

capsid proteins and the genome organisation of MS2, and is therefore the symmetry group

in 6D that describes the structure of this virus in projection.
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Figure 5.4: The projected orbit of ṽ = (2, 1, 1,−1, 0, 1) under the group G4 provides

blueprints for the capsid of Bacteriophage MS2 (based on pdb file 1aq3). (a) Cross section

of the virus: the point set consists of 9 different radial levels which encode information on

the position of capsid proteins and the genomic material of the virus. (b) Close-up view

of the outermost layers of the projected orbit which map around the outer capsid surface.

(c) Close-up view of the RNA density. The second and third innermost layers (in blue and

green, respectively) map around the five-fold symmetry axes and connect the two RNA

shells. (d) A cryo-tomogram of bacteriophage MS2, adapted from [86], superimposed on

the point array. The inner and outer RNA shells follow the blueprints of the array points,

but realise it in an asymmetric way.
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Conclusions

This thesis introduced new group theoretical approaches to characterise the three-

dimensional organisation of viral capsids and to model structural changes in structures

with non-crystallographic symmetry, such as the capsid transitions that are important in

the infection process of many viruses and transitions between different atomic organisa-

tions of icosahedral quasicrystals. Both structure prediction and the models for struc-

tural transitions rely crucially on a crystallographic embedding of non-crystallographic

groups into higher dimensional lattices. In particular, since the icosahedral group I is non-

crystallographic in 3D, we considered its embedding into the hyperoctahedral group in six

dimensions, and we developed a new group theoretical approach to classify its crystallo-

graphic representations and their intersections and shared subgroups. While of independent

mathematical interest, this analysis paved the way for the study of structural transitions,

here demonstrated for icosahedral quasicrystals. This was achieved via the computation

of the Schur rotations in SO(6) that induce, using the cut-and-project method, continu-

ous transformations of the corresponding model sets, while maintaining the symmetry de-

scribed by a common subgroup of two distinct representations of I. On the other hand,

we used this embedding to provide a novel way of characterising viral capsid architecture.

For this, we classified the chain of I-containing subgroups of the hyperoctahedral group,

and studied the orbits of 6D lattice points of such subgroups. The latter, projected into a

three-dimensional I-invariant subspace, resulted in finite nested point sets with icosahedral

symmetry at each radial level, that allow the formulation of simultaneous structural con-

straints on multiple layers of viral material, thus giving insight into the three-dimensional

geometry of viral capsids. As case studies, we considered the capsids of Pariacoto Virus

and Bacteriophage MS2, whose structures have been extensively analysed experimentally

and which are therefore excellent examples to validate model predictions.
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The biological and physical applications inspired the development of new mathemat-

ical techniques. In particular, for the analysis of the subgroup structure of the hyperoc-

tahedral group, we introduced a new computational method, based on graphs and their

spectra. Moreover, we provided a rigorous mathematical construction of finite nested ar-

rays for general non-crystallographic symmetries, and treated in detail the case of finite

irreducible Coxeter groups. In addition, we combined mathematical proofs with computa-

tional methods, developing algorithms with specific software, in particular using GAP for

solving problems in computational group theory.

The group theoretical analysis carried out in Chapter 4 allows for the first time a

characterisation of finite multi-shell structures with non-crystallographic symmetry that

is entirely based on the theory of finite groups. Contrary to the affine extensions of non-

crystallographic groups previously analysed, these point sets correspond to orbits of lattice

points in a higher dimensional space under finite groups extending non-crystallographic

symmetry. In the context of virology, this implies that the overall virus architecture is as-

sociated with an underlying finite group structure, albeit in a higher dimensional space,

that constrains the three-dimensional geometry of multiple layers of viral material simul-

taneously in projection.

The crystallographic embedding of non-crystallographic groups has already been used

in mathematical physics in the theory of integrable systems [87, 88]. In this context, the

crystallographic embedding of the non-crystallographic Coxeter groups H2, H3 and H4

allows the formulation of Hamiltonians that model the motion of the system in terms of a

Lie algebraic framework. In fact, as pointed out in Section 4.2.1, the Cartan matrix of a

non-crystallographic Coxeter group has irrational entries, and therefore the corresponding

root system cannot be associated with a Lie algebra [20], as would be required for the study

of many integrable systems. By analogy, we considered here the equivalent for biological

applications, in which the six-dimensional crystallographic embedding of the icosahedral

group allows the identification of symmetry groups whose orbits of lattice points describe,

in projection, the structure of a viral capsid.

This work opens up new directions for the study of thermodynamical properties of

viruses and quasicrystals. Indeed, as already mentioned in the Preface, structural transi-

tions of quasicrystals and viruses can be analysed in the framework of the Landau theory

for continuous phase transitions [13]. In particular, the transitions are modeled through
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Hamiltonians invariant under the symmetry group G of the system, depending on the order

parameter(s) of the transition that account(s) for the symmetry breaking, e.g. the Schur

rotation angle(s) computed in Chapter 3. Under certain assumptions of regularity, such

Hamiltonians can be expanded in terms of G-invariant polynomials [33], and the energy

landscape can then be analysed; the (local) minima correspond to (meta)stable phases of

the system, and possibly possess different symmetry than the initial state. In virology,

initial work in this direction can be found in [89], where structural transitions of Equine

Rhinitis A Virus (ERAV) are modeled via a polynomial energy function invariant under

the icosahedral group, and in [90], where the Landau theory is applied to predict the po-

sitions of the capsid proteins, both for viruses following the Caspar-Klug classification

and for those violating it. With the analysis carried out in Chapter 5, the Landau theory

can be applied to provide information on the three-dimensional structure and transitions

of viral capsids by formulating Hamiltonians invariant under the symmetry group in six

dimensions that describes the capsid in projection, in line with arguments given in [87,88]

for integrable systems. In the context of quasicrystals, the group theoretical approach to

structural transitions developed in Chapter 3 can be combined with the introduction of

Hamiltonians that depend on the Schur rotation angle(s) invariant under the icosahedral

group in order to analyse the possible transition paths between icosahedral model sets.

Besides applications in virology and quasicrystals, the mathematical tools developed

here can be used in carbon chemistry to analyse the structures of fullerenes, in particu-

lar the atomic positions in nested carbon cages with icosahedral symmetry called carbon

onions [38, 91]. Indeed, affine extensions of the icosahedral group were applied in this

context [50,92], thus creating a link between viruses and fullerenes that highlights the role

of group theory in these topics. The point sets derived in Chapter 4 and the classification

of the subgroups of the hyperoctahedral group extending icosahedral symmetry in Section

5.1 provide a suitable framework to model these structures, endowing them, as for viral

capsids, with a finite group structure induced by projection. The new mathematical struc-

tures developed here, originally inspired by applications in virology, are therefore likely to

have a much wider scope of applications in Science.
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Appendix

GAP codes

Algorithm 1. Classification of the crystallographic representations of I (see Section

2.1.2). The algorithm carries out steps 1-4 used to prove Proposition 2.1.1.

gap > B6:= Group([(1,2)(7,8),(1,2,3,4,5,6)(7,8,9,10,11,12),(6,12)]);

gap > C:= ConjugacyClassesSubgroups(B6);

gap > C60:= Filtered(C,x->Size(Representative(x))=60);

gap > Size(C60);

3

gap > s60:= List(C60,Representative);

gap > I:= AlternatingGroup(5);

gap> IsomorphismGroups(I,s60[1]);

[(2, 4)(3, 5), (1, 2, 3)]− > [(1, 3)(2, 4)(7, 9)(8, 10), (3, 10, 11)(4, 5, 9)]

gap> IsomorphismGroups(I,s60[2]);

[(2, 4)(3, 5), (1, 2, 3)]− > [(1, 2)(3, 10)(4, 9)(5, 11)(6, 12)(7, 8), (1, 2, 4)(3, 12, 5)(6, 11, 9)(7, 8, 10)]

gap > IsomorphismGroups(I,s60[3]);

[(2, 4)(3, 5), (1, 2, 3)]− > [(2, 6)(4, 11)(5, 10)(8, 12), (1, 3, 5)(2, 4, 6)(7, 9, 11)(8, 10, 12)]

gap> CB6s60:= ConjugacyClassSubgroups(B6,s60[2]);

gap> Size(CB6s60);

192

In the following, H stands for the class CB6(Ĩ) of the crystallographic representations

of I, i ∈ {1, . . . , 192} denotes a vertex in the G-graph (cf. Section 2.2.3) corresponding

to the representation H[i] and n stands for the size of G: we can use the size instead of
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the explicit form of the subgroup since, in the case of the icosahedral group, all the non

isomorphic subgroups have different sizes (cf. Table 2.2).

Algorithm 2. Computation of the vertex star of a given vertex i in the G-graphs.

gap> VertexStar:=function(H,i,n)

> local j,R,S;

> R:=[];

> for j in [1..Size(H)] do

> S:=Intersection(H[i],H[j]);

> if Size(S) = n then

> R:=Concatenation(R,[j]);

> fi;

> od;

> return R;

> end;

Algorithm 3. Computation of the adjacency matrix of the G-graph.

gap> AdjacencyMatrix:=function(H,n)

> local i,j,C,A;

> A:=NullMat(Size(H),Size(H));

> for i in [1..Size(H)] do

> C:=VertexStar(H,i,n);

> for j in [1..Size(C)] do

> A[i][C[j]]:=1;

> od;

> od;

> return A;

> end;
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Algorithm 4. Computation of the setA
Ĩ

(implementation of Algorithm 5.1.1 in Section

5.1).

gap> B6:=Group([(1,2)(7,8),(1,2,3,4,5,6)(7,8,9,10,11,12),(6,12)]);;

gap> c:=ConjugacyClassesSubgroups(B6);;

gap> s:=List(c,Representative);;

gap> Size(s);

7440

gap> I:=Group([(1,6)(2,5)(3,9)(4,10)(7,12)(8,11),

(1,5,6)(2,9,4)(7,11,12)(3,10,8)]);;

gap> sieve:=function(L)

> local M,i;

> M:=[];

> for i in [1..Size(L)] do

> if IsAbelian(L[i]) = true then

> continue;

> else if IsSolvable(L[i]) = true then

> continue;

> else

> M:=Concatenation([L[i]],M);

> fi;

> fi;

> od;

> return M;

> end;

function( L ) ... end

gap> M:=sieve(s);;

gap> Size(M);

55

gap> for i in [1..Size(M)] do

> S:=Concatenation([ConjugacyClassSubgroups(B6,M[i])],S);

> od;
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gap> Size(S);

55

gap> sgp:=function(G,S)

> local i,j,L,M;

> L:=[];

> for i in [1..Size(S)] do

> M:=[];

> for j in [1..Size(S[i])] do

> if IsSubgroup(S[i][j],I)=true then

> M:=Concatenation([S[i][j]],M);

> fi;

> od;

> if M = [] then

> continue;

> else

> L:=Concatenation([M],L);

> fi;

> od;

> return L;

> end;

function( G, S ) ... end

gap> L:=sgp(I,S);;

gap> Size(L);

13
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Numerical results

Computation of the Schur rotations

1. Explicit forms of the irreps Γ1 and Γ2 of the tetrahedral group and the matrix Q ∈

O(3) such that Q−1Γ2Q = Γ1 (cf. (3.12)):

Generator Irrep Γ1 Irrep Γ2

g2
1
2


τ − 1 1 τ

1 −τ τ − 1

τ τ − 1 −1

 1
2


τ − 1 −τ −1

−τ −1 τ − 1

−1 τ − 1 −τ


g3d

1
2


1 − τ 1 τ

1 τ 1 − τ

−τ τ − 1 −1

 1
2


1 − τ τ −1

−τ −1 1 − τ

−1 τ − 1 τ


Q = 1

4


3 − τ 1 τ + 2

−τ − 2 3 − τ 1

−1 −τ − 2 3 − τ



2. Explicit forms of the representations D1 and D2 and the corresponding reducing

matrices P1, P2 ∈ GL(3,R) (cf. (3.17)):

Generator Rep. D1 Rep. D2

g2d
1
2


−τ τ − 1 −1

τ − 1 −1 −τ

−1 −τ τ − 1

 1
2


−1 τ − 1 τ

τ − 1 −τ 1

τ 1 τ − 1


g5d

1
2


τ − 1 −1 τ

1 τ τ − 1

−τ τ − 1 1

 1
2


1 − τ −τ −1

−τ 1 1 − τ

1 τ − 1 −τ


P1 =


0 1 0√
τ+2

5 0
√

3−τ
5

2τ−1√
5(τ+2)

0 1−2τ√
5(3−τ)

 P2 =


√

3−τ
5

2τ−1√
5(3−τ)

0

1−2τ√
5(3−τ)

√
3−τ

5 0

0 0 1



3. Explicit forms of the representations S 1 and S 2 and the corresponding reducing ma-

trices R1 and R2 ∈ GL(3,R) (cf. (3.20)):

Generator Rep. S 1 Rep. S 2

g2
1
2


−τ τ − 1 −1

τ − 1 −1 −τ

−1 −τ τ − 1

 1
2


−1 τ − 1 τ

τ − 1 −τ 1

τ 1 τ − 1


g3

1
2


τ τ − 1 1

1 − τ −1 τ

1 −τ 1 − τ

 1
2


−1 1 − τ −τ

τ − 1 τ −1

τ −1 1 − τ


R1 = 1√

3


τ 0 1 − τ

0
√

3 0

τ − 1 0 τ

 R2 = 1√
3


0

√
3 0

τ 0 1 − τ

1 − τ 0 −τ


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Extensions of embedded non-crystallographic groups and related polytopes

1. Explicit form of the normaliserNB6(H̃3) = 〈a, b, c, 〉 of H̃3 of H3 (cf. Section 4.2.3):

a =



1 0 0 0 0 0

0 1 0 0 0 0

0 0 0 0 −1 0

0 0 0 0 0 −1

0 0 −1 0 0 0

0 0 0 −1 0 0


, b =



1 0 0 0 0 0

0 0 0 1 0 0

0 1 0 0 0 0

0 0 0 0 1 0

0 0 1 0 0 0

0 0 0 0 0 −1


, c =



0 1 0 0 0 0

1 0 0 0 0 0

0 0 0 0 1 0

0 0 0 1 0 0

0 0 1 0 0 0

0 0 0 0 0 1


.

2. Explicit forms of the representationH4 of H4 embedded in E8 (see (4.35)):

R1 =



−1 1 0 0 0 1 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 1 0 0 −1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1



, R2 =



1 0 0 0 0 0 0 0

1 −1 1 0 1 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

1 0 0 0 0 −1 1 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1



R3 =



1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 1 −1 1 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 1 −1 1

0 0 0 0 0 0 0 1



, R4 =



1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 1 −1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 1 −1



.

3. Explicit form of the normaliser NΛ(Q8)(H4) = 〈M1,M2,M3,M4,M5〉 of the repre-

sentationH4 in the lattice group Λ(Q8) (cf. Section 4.2.4):

M1 =



−1 1 0 0 0 1 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 1 0 0 −1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1



, M2 =



1 0 0 0 0 0 0 0

1 −1 1 0 1 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

1 0 0 0 0 −1 1 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1



,

M3 =



1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 1 −1 1 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 1 −1 1

0 0 0 0 0 0 0 1



, M4 =



1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 1 −1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 1 −1



,

M5 =



1 0 2 0 −1 0 −4 0

0 0 3 0 −1 1 −5 0

0 0 2 0 −1 1 −3 −1

0 0 1 0 −1 1 −2 0

0 0 2 0 −1 0 −2 0

1 −1 2 0 0 0 −3 0

1 −1 1 1 0 0 −2 0

1 −1 1 0 0 0 −1 0



.
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4. Numerical examples of the two possible polygonal nestings with five-fold symmetry

arising from the projection of orbits of the extension K2 (cf. Section 4.2.2):

Pairing # vertices Seed point in terms of . . .

Q1 Q2 . . . weights (2D) . . . roots (4D)

Pentagon pentagon 5 (0, 10) (2, 4, 1,−2)

Decagon decagon 10 (1 + 3τ,−10) (1, 2, 4, 3)

5. Numerical examples of the possible compounds of nested polyhedra with icosahe-

dral symmetry arising from orbits under the extension K3 (cf. Section 4.2.3):

Pairing # vertices Seed point in terms of . . .

Q1 Q2 . . . weights (3D) . . . roots (6D)

Icosahedron Icosahedron 12 (0, 0, τ) (1, 1,−1,−1, 1, 1)

Dodecahedron Dodecahedron 20 (1, 0, 0) (1, 1,−1, 1, 1, 1)

IDD IDD 30 (0, 1, 0) (0, 0,−1, 0, 0, 1)

Trunc. ico Trunc. ico 60 (0, 1, 1) (2, 0,−1, 0, 0, 1)

Trunc. ico Trunc. dodec 60 (0, 2, τ) (1, 1,−3,−1, 1, 3)

Trunc. ico RIDD 60 (0, τ, 1) (3, 0, 0, 0, 1, 0)

Trunc. dodec Trunc. dodec 60 (1, τ, 0) (2, 1,−1, 1, 2, 1)

Trunc. dodec RIDD 60 (1, 0, τ) (2, 2,−2, 0, 2, 2)

RIDD RIDD 60 (τ, 0, 1) (4, 0, 0, 0, 2, 2)

Trunc. IDD Trunc. IDD 120 (1, 1, 1) (3, 1,−2, 1, 1, 2)

6. Numerical examples of all the possible nestings of polychora with H4 symmetry

arising from the projection of orbits of K4 (cf. Section 4.2.4):

Pairing # vertices Seed point in terms of . . .

Q1 Q2 . . . weights (4D) . . . roots (8D)

600-cell 600-cell 120 (0, 0, 0, 1) −(5, 6, 4, 2, 3, 4, 3, 2)

120-cell 120-cell 600 (1, 0, 0, 0) −(4, 2, 2, 0, 2, 2, 2, 2)

Rect. 600-cell Rect. 600-cell 720 (0, 0, τ, 0) (2, 4, 4, 4, 2, 0, 0,−2)

Rect. 120-cell Rect. 120-cell 1,200 (0, 1, 0, 0) (3, 4, 4, 2, 2, 2, 2, 0)

Tr. 600-cell Tr. 600-cell 1,440 (0, 0, 1, 1) −(9, 10, 8, 4, 5, 8, 7, 6)

Tr. 120-cell Tr. 120-cell 2,400 (2, τ, 0, 0) −(10, 6, 6, 0, 5, 6, 6, 6)

Tr. 120-cell Runc. 120-cell 2,400 (1, 1, 0, 0) (−1, 2, 2, 2, 0, 0, 0,−2)

Runc. 120-cell Runc. 120-cell 2,400 (1, 0, 0, 1) −(9, 8, 6, 2, 5, 6, 5, 4)

Bitr. 120-cell Bitr. 120-cell 3,600 (0, 2, 1, 0) (2, 4, 4, 2, 2, 0, 0,−4)

Bitr. 120-cell Cant. 600-cell 3,600 (0, 1, 1, 0) −(1, 0, 0, 0, 0, 2, 2, 4)

Bitr. 120-cell Cant. 120-cell 3,600 (0, 1, 2, 0) −(5, 4, 4, 2, 2, 6, 6, 8)

Cant. 600-cell Cant. 600-cell 3,600 (0, τ, 0, τ) (1, 2, 1, 2, 1, 0,−1,−2)

Cant. 600-cell Cant. 120-cell 3,600 (0, τ, 0, 1) −(7, 8, 6, 2, 4, 6, 5, 4)

Cant. 120-cell Cant. 120-cell 3,600 (τ, 0, 0, 2) −(6, 6, 6, 2, 2, 8, 8, 10)

Cantitr. 600-cell Cantitr. 600-cell 7,200 (0, 1, 1, τ) (2, 4, 3, 2, 2, 0,−1,−4)

Cantitr. 600-cell Cantitr. 120-cell 7,200 (1, τ, τ, 0) −(4, 0, 0,−4, 1, 4, 4, 6)

Cantitr. 600-cell Runcitr. 600-cell 7,200 (1, 0, 1, τ) −(5, 2, 3, 0, 2, 4, 5, 6)

Cantitr. 600-cell Runcitr. 120-cell 7,200 (1, τ, 0, 1) −(11, 10, 8, 2, 6, 8, 7, 6)

Cantitr. 120-cell Cantitr. 120-cell 7,200 (1, 1, τ, 0) (1, 6, 6, 6, 2, 0, 0,−4)

Cantitr. 120-cell Runcitr. 600-cell 7,200 (2, 0, τ, τ) (−3, 4, 3, 6, 0,−2,−3,−6)

Cantitr. 120-cell Runcitr. 120-cell 7,200 (1, τ, 0, τ) −(3, 0, 1,−2, 1, 2, 3, 4)

Runcitr. 600-cell Runcitr. 600-cell 7,200 (1, 0, 1, 1) −(13, 12, 10, 4, 7, 10, 9, 8)

Runcitr. 600-cell Runcitr. 120-cell 7,200 (1, 1, 0, 1) −(6, 4, 2, 0, 3, 4, 3, 4)

Runcitr. 120-cell Runcitr. 120-cell 7,200 (2, τ, 0, 1) −(15, 12, 10, 2, 8, 10, 9, 8)

Omnitr. 120-cell Omnitr. 120-cell 14,400 (1, 1, 1, 1) −(10, 8, 6, 2, 5, 8, 7, 8)
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Subgroups of B6 extending icosahedral symmetry

Explicit forms of the groups Gi ∈ AĨ (cf. (5.1)), output of Algorithm 4, embedded into

the symmetric group S 12:

G1 =〈(1, 6)(2, 5)(3, 9)(4, 10)(7, 12)(8, 11), (1, 5, 6)(2, 9, 4)(7, 11, 12)(3, 10, 8)〉

G2 =〈(1, 6)(2, 5)(3, 9)(4, 10)(7, 12)(8, 11), (1, 5, 6)(2, 9, 4)(7, 11, 12)(3, 10, 8),

(1, 7)(2, 8)(3, 9)(4, 10)(5, 11)(6, 12)〉

G3 =〈(3, 11)(4, 12)(5, 9)(6, 10), (2, 3, 5, 4)(6, 12)(8, 9, 11, 10), (1, 2)(3, 5)(7, 8)(9, 11)〉

G4 =〈(1, 3)(2, 8)(4, 5, 10, 11)(7, 9), (1, 3, 4, 7, 9, 10)(2, 5, 12, 8, 11, 6)〉

G5 =〈(1, 8, 9, 7, 2, 3)(4, 6, 5)(10, 12, 11), (1, 2)(3, 5)(7, 8)(9, 11), (4, 10)〉

G6 =〈(3, 9)(6, 12), (3, 4, 5, 6)(9, 10, 11, 12), (1, 7)(6, 12), (1, 2, 9, 10, 11, 7, 8, 3, 4, 5)(6, 12)〉

G7 =〈(1, 7)(6, 12), (2, 8)(6, 12), (1, 2, 9, 10, 11, 7, 8, 3, 4, 5)(6, 12), (3, 4, 5, 12, 9, 10, 11, 6)〉

G8 =〈(1, 8, 9, 7, 2, 3)(4, 6, 5)(10, 12, 11), (1, 2)(3, 5)(7, 8)(9, 11), (3, 4, 5, 6)(9, 10, 11, 12), (4, 10)〉

G9 =〈(2, 8)(6, 12), (1, 7)(2, 5, 3)(6, 12)(8, 11, 9), (1, 3, 7, 9)(2, 12, 8, 6),

(1, 3, 2, 7, 9, 8)(4, 5, 12, 10, 11, 6)〉

G10 =〈(1, 2, 6, 4, 3)(7, 8, 12, 10, 9), (5, 11)(6, 12), (1, 2, 6, 5, 3)(7, 8, 12, 11, 9), (5, 12, 11, 6)〉

G11 =〈(1, 8, 9, 7, 2, 3), (1, 7)(2, 3, 4)(8, 9, 10), (1, 7)(2, 3, 5)(8, 9, 11),

(2, 6, 3, 5, 4)(8, 12, 9, 11, 10), (5, 11)〉

G12 =〈(2, 8)(6, 12), (1, 2, 6, 5, 3)(7, 8, 12, 11, 9), (5, 6)(11, 12), (1, 2, 6, 4, 3)(7, 8, 12, 10, 9)〉

G13 =〈(1, 2)(7, 8), (1, 2, 3, 4, 5, 6)(7, 8, 9, 10, 11, 12), (6, 12)〉
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[34] A. Szczepański. Geometry of crystallographic groups. World Scientific Publishing,

2012.

[35] J.H. Conway and N.J.A. Sloane. Sphere packings, lattices and groups. Springer-

Verlag, 1988.

[36] H. Hiller. The crystallographic restriction in higher dimensions. Acta Cryst. A,

A41:541–544, 1985.

[37] M. Senechal. Quasicrystals and geometry. Cambridge University Press, 1995.

[38] H.W. Kroto, J.R. Heath, S.C. O’Brien, R.F. Curl, and R.E. Smalley. C60: Buckmin-

sterfullerene. Nature, 318, 1985.

[39] J.E. Humphreys. Reflection groups and Coxeter groups. Cambridge University Press,

1990.

[40] W. Steurer. Twenty years of structure research on quasicrystals. part I. Pentagonal,

octagonal, decagonal and dodecagonal quasicrystals. Zeitschrift Fur Kristallogra-

phie, 219:391–446, 2004.

[41] R.A. Mollin. Algebraic number theory. Chapman and Hall/CRC Press, 1999.

[42] W. Fulton and J. Harris. Representation Theory: A first Course. Springer-Verlag,

1991.

[43] B. Grünbaum and G.C. Shepard. Tilings by regular polygons. Mathematics Maga-

zine, 50(1977):227–247.

[44] R. Twarock. Mathematical virology: a novel approach to the structure and assembly

of viruses. Phil. Trans. R. Soc. A, 364:3357–3373, 2006.

[45] R.C. Liddington, Y. Yan, J. Moulai, R. Sahli, T.L. Benjamin, and S.C. Harrison.

Structure of simian virus 40 at 3.8-Å resolution. Nature, 354:278–284, 1991.

[46] T. Keef, A. Taormina, and R. Twarock. Classification of capped tubular viral

particles in the family of Papovaviridae. Journal of Physics: Condensed Matter,

18:S375–S387, 2006.

118



[47] T. Keef, A. Taormina, and R. Twarock. Assembly models for Papovaviridae based on

tiling theory. Physical Biology, 2:175–188, 2005.

[48] K. ElSawy, A. Taormina, R. Twarock, and L. Vaughan. Dynamical implications of

viral tiling theory. Journal of Theoretical Biology, 252:357–369, 2008.

[49] L Chen, R.V. Moody, and J. Patera. Non-crystallographic root systems. In J. Patera,

editor, Quasicrystals and Discrete Geometry. Fields Institute Monographs, 1998.

[50] P-P. Dechant, J. Wardman, T. Keef, and R. Twarock. Viruses and fullerenes- symme-

try as a common thread? Acta Cryst., A70:162–167, 2014.

[51] F. Gälher. Quasicrystal Structures from the Crystallographic Viewpoint. PhD thesis,

ETH, 1988.

[52] M. Baake. Structure and representations of the hyperoctahedral group. Journal of

Mathematical Physics, 25(11):3171–3182, 1984.

[53] The GAP Group. GAP – Groups, Algorithms, and Programming, Version 4.7.2, 2013.

[54] D.F. Holt, B. Eick, and E.A. O’Brien. Handbook of computational group theory.

Chapman and Hall/CRC Press, 2005.

[55] J.F. Humphreys. A course in group theory. Oxford University Press, 1996.

[56] G. Janusz and J. Rotman. Outer automorphisms of S 6. The American Mathematical

Monthly, 89:407–410, 1982.

[57] A. Katz. Some local properties of the three-dimensional Penrose tilings. In M.V Jarić,
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