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Abstract 

Investigating the actin regulatory activities of Las17, the WASp 

homologue in S. cerevisiae 

Clathrin mediated endocytosis (CME) in S. cerevisiae requires the dynamic 

interplay between many proteins at the plasma membrane. Actin 

polymerisation provides force to drive membrane invagination and vesicle 

scission. The WASp homologue in yeast, Las17 plays a major role in 

stimulating actin filament assembly during endocytosis. The actin nucleation 

ability of WASP family members is attributed to their WCA domain [WH2 

(WASP homology2) domain, C central, and A (acidic) domains] which 

provides binding sites for both actin monomers and the Arp2/3 complex. In 

addition, the central poly-proline repeat region of Las17 is able to bind and 

nucleate actin filaments independently of the Arp2/3 complex. While Las17 is 

a key regulator of endocytic progression and has been found to be 

phosphorylated in global studies, the mechanism behind regulation of Las17 

actin-based function is unclear. Therefore, the aims of this study were to 

investigate the post-translation modification of Las17 by phosphorylation, 

and to determine how this modification impacts on Las17 function both in 

vivo and in vitro. Mass Spec analysis was employed and allowed 

identification of further phosphorylation sites in Las17. Through the studies 

described here I was able to demonstrate that Las17 is phosphorylated, and 

that one specific phosphorylation event was of importance in endocytosis. 

Ser588 mutants were shown to affect an early stage of endocytosis whereby 

S588D mutant had a negative impact on growth, actin organisation, and 

endocytic invagination. The overall results suggest a regulatory model in 

which Las17 is subjected to intramolecular interaction that supports Arp2/3-

independent actin nucleation mediated by its PP region. Phosphorylation 

must then be relieved to allow Arp2/3-dependent actin polymerisation to take 

place to drive invagination. These data establish a novel regulatory model of 

Las17 and have increased our understanding on the mechanism of actin 

nucleation during early endocytosis in yeast.   
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Chapter: 1 

1.1 Introduction 

The cytoskeleton is a network of protein filaments that function together to 

preserve the integrity and stability of the cell. The cytoskeleton in eukaryotes 

is composed of three major structures: microtubules, intermediate filaments, 

and actin filaments (figure 1.1). These ordered structures are evolutionarily 

conserved, but intermediate filaments are absent in yeast cells.  

Microtubules are thick structures, formed from an assembly of tubulin 

heterodimers, comprised of, alpha- and beta-tubulin (α/β-tubulin). 

Continuous polymerisation of the heterodimer results in chains of tubulin 

subunits called protofilaments. In microtubules, 13 protofilaments are joined 

side-by-side to form a hollow tube of 25 nm in diameter. Microtubules are 

polar, they have a minus (-) end containing α-tubulin, and positive (+) end 

containing β-tubulin. Polymerisation of microtubules occurs when subunits of 

β-tubulin bound ̶ GTP are assembled at the (+) end; this stimulates GTP to 

hydrolyse into GDP and phosphate, thus increasing microtubule instability. If 

the rate of polymerisation is faster than the rate of GTP hydrolysis, the 

microtubules grow, but if the rate of polymerisation is slower than GTP 

hydrolysis (i.e. the GTP-cap is lost) this leads to microtubules disassembly 

and therefore causing them to shrink. Microtubules are important for vesicle 

trafficking, movement of organelles and cell division (Erickson and O'Brien., 

1992; Howard and Hyman., 2009 and 2003).  

Intermediate filaments are composed of monomeric strands that can 

combine to form dimers and tetramers. Two α-helical strands of monomers 

join together to form a coiled-coil dimer, and two of these dimeric strands can 

join to form a staggered tetramer. Two tetramers are packed together 

laterally to generate rope-like filaments of 10 nm in diameter. Unlike 

microtubules, intermediate filaments are non-polar structures (Strelkov et al., 

2003). The main function of intermediate filaments is to provide a mechanical 

strength to the cells by bridging cell junctions within the nucleus (Herrmann

 et al., 2007; Dey et al., 2014).     
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Figure 1.1: Cytoskeleton in eukaryotic cells 

(A) A diagram of eukaryotic cell showing actin  ̶rich regions (red) organised into filopodia, and ruffling lamellipodia, and microtubules ̶ 

rich regions where microtubules radiate from the centrosome (green star) with their + ends directed towards the plasma 

membrane. Other actin structures in cells are include stress fibres (thick red lines), which are anchored to the substrate via focal 

adhesions (blue dots) (Manneville, 2004). 

(B) The subunit compositions of microtubules, intermediate filaments, and actin filaments (Walter and Boron, 2003).  

(A) 

(B) 
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Actin filaments also called microfilaments structures of 7nm in diameter. 

Actin filaments are composed of actin monomers (G-actin) that polymerise to 

form actin filaments (F-actin). Like microtubules, actin filaments are polar, as 

the ATP-G-actin assembles at the barbed end (the fast growing end) of the 

actin filament, whereas the loss of the ADP-G-actin primarily occurs at the 

pointed end (the slow growing end) of the filament. When the rate of G-actin 

addition and loss of an actin filament are at in equilibrium, this is called 

treadmiling (Pollard et al., 1986; Carlier and Pantaloni 1986; 1997; Pantaloni 

et al., 2001). More details about polymerisation of actin will be discussed in 

section 1.2.3. Various different structures that mediate cell movement are 

dependent on actin dynamics; these include lamellipodia (Ridley et al., 

1992), filopodia (Kozma et al., 1995), stress fibres, and focal adhesions 

(Baily and Condeelis, 2002). In cells, remodelling of actin filaments is 

controlled by a plethora of actin binding proteins (ABPs) that function in 

response to certain signals. ABPs are often highly conserved proteins and 

regulate different aspects of actin cytoskeleton assembly and architecture, 

including actin filament nucleation or, actin filament elongation, capping or 

severing of F-actin, actin monomer sequestering or, F-actin bundling or 

cross-linking (Pollard et al., 2003).  

Understanding the molecular basis of regulation of the actin cytoskeleton is 

the major focus of this study, which requires critical understanding of the 

molecular mechanisms of actin binding proteins (ABPs). This chapter will 

give insights into many aspects of actin remodelling and regulation by 

different ABPs. 
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1.2 Actin  

Actin is one of the most conserved proteins in eukaryotes, playing critical 

roles in the dynamics of the actin cytoskeleton. In mammalian cells, actin 

exists in different isoforms which are expressed in a tissue dependent 

manner. The actin isoforms include alpha (α)-actin isoforms, beta (β)-actin 

isoforms and gamma (γ)-actin isoforms. The α-actin is mainly expressed in 

muscle cells whereas; β-actin and γ-actin isoforms are expressed in both the 

muscle and the non-muscle cells (Tomasevic et al., 2007). The differences in 

properties of the actin isoforms are mainly attributed to processing and 

modification of their amino (N)-terminal end. The α-actin isoforms contain an 

N-terminal methionine residue followed by cysteine and then aspartate or 

glutamate. However, β-actin and γ-actin isoforms present terminal N-acetyl 

aspartic or glutamic acid residues. As with β- and γ-actin isoforms, the 

methionines and cysteines of α-actin isoforms are acetylated and then 

cleaved by specific enzymes, and the new terminus is then re-acetylated   

(Rubenstein et al., 1990; Herman, 1993).   

In cells actin can be present as monomers (globular (G)-actin) or polymers 

(filamentous (F)-actin). The transition from the G-actin to F-actin form is 

regulated by various factors including nucleotide hydrolysis, the presence of 

charged molecules, and its interaction with a number of actin binding 

proteins. 

1.2.1 Actin structures  

1.2.1.1Monomeric (G)-actin 

The actin monomer is 375 residues long with molecular weight of 42kDa. 

Straub and colleagues, were first to purify actin from muscle tissues (Straub 

et al., 1942). Since then, it has been extensively studied and many attempts 

were made to define its tertiary structure. Binding of actin to sequestering 

proteins allowed actin to stay in the monomeric state during crystallisation. 

Thus, the structure of rabbit actin determined using X-ray analysis at 6Å 

resolution (Suck et al., 1981). Four years later the same structural mode  
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 (skeletal actin:DNaseI complex) was produced but with an improvement in 

its resolution to 4.5Å (Mannherz and Suck, 1985). Since then, Kabsch and 

colleagues solved the tertiary structure of α-skeletal actin in ATP or ADP 

forms, at effective resolution of 2.8Å and 3Å respectively (Kabsch et al., 

1990). After this, the structures of the G-actin complexed with other proteins 

that prevent its polymerisation were solved such as the profilin:β-actin 

structure, which was determined at a resolution of 2.55Å (Schutt et al., 

1993), and the vitamin-D-binding protein (DBP):actin structure, solved to 

2.1Å resolution (Otterbein et al., 2001). 

Later, Otterbein and co-workers reported the crystal structure of ADP-G-actin 

after binding of the fluorescent probe tetramethylrhodamine-5-maleimide 

(TMR) to residue S374 in G-actin, which prevents polymerisation of actin 

(Otterbein et al., 2001; Hurley et al., 1996). The uncomplexed ADP-G-actin 

was solved to 1.45Å resolution and this model differed from that solved by 

Kabsch et al., (1990). Otterbein suggested that, in his model subdomain 2 

forms the correct conformation for ADP-actin (see figure 1.2). Thus, it is likely 

that the Kabsch ADP-actin model was possibly inaccurate, because the actin 

monomers were bound to ATP that was hydrolysed to ADP-Pi during 

crystallization, which may not reflect the true conformation of ADP-actin 

(Otterbein et al., 2001).   

The actin molecule is a flattened, bi-lobed structure consisting of two major 

domains (α/β domains) that are separated by a central cleft for nucleotide 

and divalent cation binding. Each lobe (or domain) can be subdivided into 

two distinct subdomains (shown in figure 1.2). Subdomain1 (residues1-32, 

70-144 and 338-375) revealed extensive conservation to subdomain 3 

(residues 166-169, and 286-289), therefore suggesting that both domains 

originated from a gene duplication early in evolution. However, subdomain 2 

(residue 40-45) and subdomain4 (residues 202-204, 243-245) can be viewed 

as a large insertion into subdomain1 and 3. In addition, the peptide sequence 

of subdomain 2 contains many non-conserved residues including the DNaseI  
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binding loop (D loop) (figure 1.2), in particular residues 39-5 (Kabsch et al., 

1990). The D-loop is a flexible structure that has two possible conformational 

states closed or open. The most recent model that represents the closed 

form of the nucleotide-dependent change of D- loop after ATP hydrolysis was 

reported in the Otterbein structural model of G-actin complexed with ADP 

(Otterbein et al., 2001). 

The two major domains (α/β) are joined by the hinge region, which is formed 

by a polypeptide chain that passes twice between the domains, generating 

two central clefts. The upper cleft provides a binding pocket for ATP and 

divalent cation (Mg2+ or Ca2+), whereas the lower cleft is rich in hydrophobic 

residues. The lower cleft is located between subdomains 1and 3, which 

provides a binding site for the association of ABPs and allows longitudinal 

contact between the actin subunits of actin filaments (Strzelecka-

Golaszewska, 2001; Dominguez, 2011).  
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Figure 1.2: Structure of monomeric actin. 

The actin monomer consists of 2 major domains that are subdivided into 

subdomains 1, 2, 3, and 4. The combination of these subdomains generates two 

clefts. The upper cleft is located between subdomains 2 and 4, provides a 

binding site for a nucleotide and divalent ion. The lower cleft (hydrophobic 

pocket) between subdomains 1 and 3 mediates the interaction of actin with 

ABPs. Upon nucleotide exchange, the actin monomer undergoes a 

conformational change, particularly in the D-loop. This alters the stability of the 

actin filament, which modulate the binding affinities of ABPs to actin and of actin 

monomers to each other within the filament.  

From: Lee and Dominguez, 2010     
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1.2.1.2 The actin polymer (F-actin) 

In 1960, Oosawa and Kasai (Oosawa and Kasai. 1962) first proposed the 

concept of actin monomers polymerising to form linear helical actin. Three 

years later, Hanson and Lowy used electron microscopy (EM) analysis of 

negatively stained muscles to describe the tertiary structure of actin 

filaments. In this model, F-actin was observed as a helical structure that 

could be viewed either as a two start right-handed, long pitch helix or as a 

single start, left-handed helix with each subunits spaced by 27.6Å (Hanson 

and Lowy 1964). The F-actin structure deduced by Holmes in 1990 

suggested a right-handed helix with a filament diameter of 90Å, which is 

equivalent to the parameters found in the Hanson model (Holmes et al., 

1990). For over 10 years, many F-actin models were established from the 

Holmes model, but the major challenge was to determine the correlation 

between the subunits to form the actin filaments backbone, since the actin 

monomers are subjected to conformational change due to nucleotide 

hydrolysis. Oda and his co-workers (2009) presented an F-actin model, 

which was obtained by high-resolution X-ray fiber diffraction of F-actin from 

rabbit skeletal muscle. The Oda model achieved a resolution of 3.3Å in radial 

direction and 5.6Å along the equator (13Å in total). This model revealed an 

F-actin structure with a slightly smaller radius of gyration of 23.7Å compared 

to 25Å in the Holmes model. The Oda model also revealed a conformational 

change that take place during actin polymerisation, which resulted in a 20˚ 

rotation of the two major domains, this causes flattening of actin protomers in 

F-actin by generating intra-strand connections, thus facilitating more contacts 

between the actin monomers to form polymer (Oda et al., 2009). A year later, 

Fujii and co-workers obtained an atomic model of F-actin using cryo-EM 

analysis, which allowed the structures of the actin domains, the D-loop and 

some of the extended polypeptide chains to be clearly resolved (Fujii et al., 

2010). This model was not too different from the F-actin structural model 

described by Oda et al., 2009, except that the D-loop was in a different 

conformation. Moreover, the Fujji model was fitted onto the crystal structure 

of the uncomplexed ADP-F-actin solved by Otterbein et al., (2001) (Oda et  
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al., 2010; Holmes et al., 2003).  The Fujji model offered good views of the 

axial symmetry of F-actin by rotation of the two halves of the actin subunit 

when fitted onto the Holmes model. The pocket dedicated to nucleotide 

binding is opened with 5˚ anti-clockwise rotation of domain 1, and such 

rotation allows the Gln137 residue to come closer to the γ-phosphate-binding 

site to facilitate ATP hydrolysis (Figure 1.3). In addition, it was shown that the 

connection between salt bridges formed between the major domains was not 

as extensive as it was thought to be in Oda model. However, subsequent 

rotation of domain1 by 20˚ would disrupt the hydrophobic interaction with 

subdomain 3, which would alter the actin conformation, but that would 

probably be stabilized by the longitudinal contact between the actin 

molecules of F-actin(Gelkin et al., 2001; reviewed in Bugyi and Carlier, 2010)..  

1.2.2 Actin polymerization  

Assembly and disassembly of actin filaments is a dynamic process that 

requires energy for ATP hydrolysis. In cells, it was found that actin 

polymerisation is enhanced by certain conditions including high 

concentrations of Mg2+, low concentrations of Ca2+, elevated temperature, 

high concentrations of KCl (˃50 mM) and neutral or slightly acidic pHs. Actin 

polymerisation in vitro is stimulated by similar conditions as those found 

physiologically (Strzelecka-Golaszewska et al., 2001; Carlier, 1991; Zimmer 

and Frieden, 1986; Frieden, 1983)  

Figure 1.4 shows the process of actin polymerisation which consists of three 

stages: Actin nucleation, F-actin elongation, and treadmiling. 
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Figure 1.3: Structural changes of the actin monomer associated with polymerisation and ATP hydrolysis 

(A) front (left) and side (right) view of the actin monomer in G-actin (yellow) and F-actin(cyan) states, the two structures are 

interconvertible between these two states by rotation of the two major domains (outer and inner domains) of actin around the axis. 

Subdomains are identified by numbers 1, 2, 3 and 4(gray circles). The red dotted box is enlarged in the top panel to show the D-

loop in G and F-actin states. Rotation of the two major domains brings Gln137 (spheres) closer to the γ-phosphate of ATP 

(sticks).  

(B) Structure of a 13-mer of F-actin derived from the Oda F-actin model.  

From: Bugyi and Carlier, 2010 

 

 

A. B. 
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1.2.2.1 Nucleation 

The first step of actin filament formation is nucleation of monomeric actin. 

Actin nucleation is a spontaneous process that involves assembly of actin 

monomers into dimers and then trimers or tetramers. This reaction is relatively 

slow (Ka = 3.4-12.3 µM-1s-1), and requires subsequent addition of actin 

monomers to initiate filaments (Pollard et al., 1986; Kuhn and Pollard, 2005). 

The formation of actin dimers is energetically unfavourable. However, 

incorporating a third subunit to the dimer results in a more stable complex 

called a nucleus, which promotes further addition of actin subunits to extend 

into filaments (F-actin). In cells, different nucleators are essential to drive actin 

nucleation, such as the Arp2/3 complex and formins (see section 1.4.6). 

These proteins facilitate the formation of stable nuclei from which actin 

filaments are developed. The formation of actin filaments can only occur when 

the level of actin monomers is above the critical concentration (Cc), otherwise 

the monomeric state of actin is favoured. The critical concentration is the level 

of G-actin at which the number of G-actin subunits is in equilibrium with the 

number of actin filaments. At actin concentrations below Cc no polymerisation 

takes place, whereas at monomer concentrations above the Cc, assembly of 

actin filaments can proceed (Wegner and Engel. 1975; Pantaloni et al., 1986). 

It was shown that addition of Mg2+ induces a conformational change in actin 

subunits, which promotes polymerisation. However, the dissociation constant 

of Mg2+ binding to actin is quite high (Kd = 5 mM) in the absence of Ca2+, 

suggesting weak affinity to the actin. However, Ca2+ addition prolonged the 

lag time of polymerisation (lag phase) prior to the onset of actin polymerisation 

(see figure 1.4). The lag phase of actin polymerisation is believed to occur 

partially due to the time taken for divalent Mg2+ to bind to the actin cleft in the 

absence of nucleators (Frieden, 1983).  

Determining the association and dissociation rate constants allows for 

characterisation of actin polymerisation kinetics using Brownian dynamics 

simulation (BD) applied on the Holmes model (McCammon et al., 2001, 

Holmes et al., 1990). BD showed that the disassociation constant of actin 
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dimers is considerably high (Kd = 4.6 mM) but when another actin subunit is 

added to the dimer, the dissociation value of the reaction dropped to Kd = 0.6 

mM. This suggests that, trimeric actin is the critical size of the nucleus 

(McCammon et al., 2001). This conclusion was in agreement with the 

experimentally estimated rate constant of the nucleation pathway that was 

previously described (Wegner and Engel. 1975; Frieden, 1983).  

The kinetics of actin filament assembly and disassembly were also 

determined in real time using total internal reflection fluorescence (TIRF) 

microscopy, allowing observation of nucleation and growth of filaments from 

both ends (Amann and Pollard, 2001; Fujiwara et al., 2002). Kuhn and Pollard 

estimated the rate of association and dissociation constants of both ends of 

single F-actin filament labelled with Oregon green at Cys374. Real-time 

(TIRF) measurements demonstrated that, the association constant (Ka) of the 

Mg-ATP-actin at the barbed end is approximately 10 times greater than that at 

pointed end (7.4± 0.5 µM -1s-1 at the barbed end and, 0.56± 0.10 µM -1s-1 at 

the pointed end) (Kuhn and Pollard, 2005). The estimated rate of monomers 

association at the barbed end was comparable to the value obtained by 

Pollard and co-workers (Ka = 3.4-12.3 µM -1s-1) (Pollard et al., 1986). In the 

same experiment, the dissociation constant of monomers at barbed end 

pointed ends of the filament were also measured in the presence of actin 

sequestering protein vitamin D. Mg-ADP-F-actin (aged filaments) were 

generated by mixing F-actin formed from Mg-ATP-G-actin: at this point ATP 

bound subunits catalyse nucleotide exchange within the filament to form Mg-

ADP-Pi-F-actin, as a result most of the filaments are converted to Mg-ADP-

actin. Thus, the mean dissociation constant (Kd) of Mg-ADP-actin was 1.4s-1 

at the barbed ends, which is identical to the value reported by Pollard (Pollard 

et al., 1986), whereas a Kd of ~0.16s-1 was estimated for a monomer 

dissociation from the pointed ends (Kuhn and Pollard, 2005).  
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1.2.2.2 Elongation 

Extension of actin filaments during actin polymerisation is called the 

elongation stage (depicted in figure 1.4). Elongation of F-actin involves 

continuous addition of actin subunits, which occurs preferentially at the 

barbed end. Addition of actin subunits to the opposite end is much less than 

that at the barbed ends (Pollard, 1986; Kuhn and Pollard. 2005). Incorporation 

of monomeric actin to the barbed end requires nucleotide exchange of ADP-

G-actin to ATP-G-actin. Conformational change of actin subunits due to ATP 

hydrolysis to ADP and Pi destabilise the contacts between the monomers in 

the filament resulting in up to 5-10 fold increase in actin dissociation from the 

barbed end. The dissociated monomers would then be recycled and used for 

further rounds of polymerisation (Carlier et al., 1991).  

During actin polymerisation, the rate of actin filament elongation is rapid and 

dependent on the availability of monomers in the actin pool (which must be 

above the critical concentration for elongation to take place).  In vitro, actin 

polymerisation occurs spontaneously, and as the number of actin monomers 

incorporated into filament increases, the rate of filament elongation increases 

to the stage at which the number of newly formed filament ends becomes 

greater than the number of the monomers in solution. At elongation stage, 

polymerisation of actin monomers proceeds until the concentration of actin 

pool reaches to critical concentration, which is equal to ~0.1 µM of 

unpolymerised G-actin (Oosawa and Asakura, 1962). At this point, the rate of 

actin elongation stays at a constant level leading to treadmilling stage.  
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Figure1.4: Representative graph showing the stages of actin polymerisation 

in vitro. 

Upon addition of salt, the dimeric form of G-actin assemble into oligomers (lag 
phase). The actin filament grows from either side in the growth phase. At the 
steady state the actin subunits within the filament start coming off and on at the 
same rate (equilibrium phase).  

Figure 16-10b Molecular Biology of the Cell (© Garland Science 2008) 
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1.2.2.3 Treadmilling  

The steady state of actin polymerisation is the period at which no further 

subunits are available to extend the filaments as the concentration of actin 

monomers is at the critical concentration of the barbed end, as shown in 

figure 1.4. At the steady state, the number of actin subunits assembling at the 

barbed end is equivalent to the number of the subunits disassembling from 

the pointed end, a process known as treadmilling (Wegner, 1976). 

Treadmilling can be controlled by the availability of free actin subunits added 

to the barbed end and the loss of actin monomers from the pointed end. As a 

result of treadmilling, no further growth of filamentous actin is observed.  

1.3  Cytoskeleton in prokaryotes  

Bacteria have a primitive cytoskeleton that plays several regulatory roles. Like 

the cytoskeleton in eukaryotes, the bacterial cytoskeleton provides a support 

to the cell shape and anchorage to cellular organella. Bork and colleagues 

were the first to determine the structure of bacterial actin-like proteins MreB, 

FtsZ, and ParM (Bork et al., 1992). Since then these actin-like proteins in 

bacteria were shown to posses conserved folds in their domain structures 

similar to those observed in eukaryotic actin (van den Ent and Lowe, 2000; 

van den Ent et al., 2001 and 2001). MreB, ParM, and FtsZ were therefore 

classified as members of the actin superfamily. However, because of the 

diversity of actin-like proteins sequences in bacteria more than 35 different 

families were discovered according to their phylogenetic and functional 

significances (Derman et al., 2009).  

MreB is an actin-like protein from Bacillus Subtitles, which maintains the 

integrity of the cell wall of rod-shaped-bacteria. MreB is able to form 

protofilaments under the same conditions as actin in vitro (Esue et al., 2005).  

Under EM, these polymers appear as two protofilaments, which are both 

single stranded helix. The spacing between the subunits is 51.1Å in the 

protofilament. Unlike human actin, MreB lacks the helical twist as shown in 

figure 1.5 (van den Ent et al., 2001). Depletion of MreB results in rounded-

shaped cells due to cell morphological defects (Daniel and Errington, 2003).  
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MreB was shown to form membrane-bound complexes in conjunction with 

other actin-like proteins including MreC, MreD, and RodZ. This complex is 

also required for cell shape in E. coli (Divakaruni et al., 2005; Kruse et al., 

2005; Shiomi et al., 2008). In addition, MreB appears to play a role in 

chromosome segregation (Gitai et al., 2005).  

ParM is a plasmid-borne bacterial actin-like protein that showed low sequence 

homology to MreB. ParM generates F-actin-like protofilaments. The crystal 

structure obtained from ParM protofilaments revealed twisted left-handed 

helices, which is the opposite twist direction to F-actin (depicted in figure 1.5) 

(van den Ent et al., 2002; Orlova et al., 2007). In cells, ParM shows different 

behaviours, it can be visualised as a filamentous structure along the cell span 

or can be distributed randomly at foci. ParM dynamics are directly associated 

with plasmid segregation during the cell cycle (Moller-Jensen et al., 2003; 

Campbell and Mullins, 2007).  

The bacterial homologue of tubulin, FtsZ is essential for E. coli cell division 

(de Bore et al., 1992). Like MreB, the FtsZ primary sequence has only 10% 

identity to its human homologue (tubulin), but it displayed significant folding 

homology to tub (Löwe and Amos, 1999). FtsZ depends on GTP hydrolysis 

during polymerisation, but is unable to form microtubule-like structures. 

Instead, the protofilaments generated by FtsZ are joined laterally to produce 

distinct structures in vitro (Bramhill and Thompson, 1994; Mukherjee and 

Lutkenhaus, 1994) 
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Figure 1.5: Prokaryotic actin-like proteins. 

The MreB monomer (left panel) has a similar tertiary structure to eukaryotic 

actin (left panel), but the two protofilaments formed by MreB appear as an 

untwisted helix- stands (red circles), unlike actin (orange circles) ParM (right 

panel and actin form similar helical structures with ParM twisted in a left-

handed direction (brown circles), whereas F-actin forms a right-handed twist 

(orange circles). 

From:  Wickstead and Gull, 2011 

 

MreB Actin ParM 
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In vivo, polymerised FtsZ forms a Z-ring during bacterial cytokinesis, at this 

stage FtsZ interacts with FtsA , a protein that belongs to the actin/HSP70 

family proteins (Bork et al., 1992) and recruits other components required for 

inner-membrane remodelling (Adam and Errington, 2009).  

1.4 Actin binding proteins (ABPs) 

An overview of how actin binding proteins (ABPs) influence actin assembly 

and disassembly is depicted in figure 1.6. Cellular actin is regulated by many 

ABPs that affect actin filament turnover, these proteins often contain distinct 

domains that allow them to interact with other proteins to modulate actin 

organisation. ABPs can be classified into different sub-groups according to 

their function, though some ABPs can be part of more than one sub-group.  

This section describes examples of the ABPs that have been shown to have 

pronounced effects on actin filament turnover in vivo and in vitro.       
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Figure 1.6: An overview of different types of actin binding proteins that influence actin dynamics.  
From:  Winder and Ayscough, 2005  
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1.4.1 G-actin binding proteins 

1.4.1.1 Profilin family 

Profilins are small proteins with a molecular mass of 19 kDa. Profilins are 

ubiquitous proteins required for actin filament elongation (Ampe et al., 1988). 

They bind to ATP-G-actin and deliver it to the barbed of filaments, thus 

allowing continuous growth of the filament and preventing the association of 

monomeric actin to the pointed end (Pollard and Cooper, 1985). Profilin-

mediated actin barbed end elongation is induced when the number of free 

ATP-G-actin subunits is higher than the critical concentration (Pantaloni et al., 

1993; Pollard et al., 2000). Profilin can also act as sequestering factor; when 

there are no free barbed ends available for polymerisation (e.g. when the 

barbed ends are capped) then profilin induces actin depolymerisation 

(Carlsson et al., 1977).  

Profilin exists in high molar concentrations at regions where actin turnover is 

active, and its biological importance is also attributed to the ability of profilin to 

interact with many F-actin nucleation ligands. Profilin interacts with the 

polyproline-rich domains of many actin regulatory proteins such as N-WASP 

and VASP, which allows ATP-G-actin delivery to drive actin filament formation 

(Witke, 2004; Pollard et al., 2003). Profilin activity is also regulated by the 

membrane lipids phosphatidylinositol 4-phosphate (PIP) and 

phosphatidylinositol 4,5-bisphosphate (PIP2). These phospholipids are 

thought to be responsible for dissociation of profilin from ATP-G-actin as the 

PIP binding site of profilin overlaps with its actin binding site 

(Lassing and Lindberg, 1990; Dos Remedios et al., 2003; Goldschmidt-

Clermont et al., 1990). 
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1.4.1.2 Thymosin β4 

Thymosin β4 (Tβ4) is an actin monomer sequestering protein with a molecular 

weight of 5 kDa. Tβ4 inhibits actin polymerisation when complexed with actin 

at a 1:1 stoichiometry through its conserved WASP homology 2 (WH2) 

domain (Safer et al., 1991). Hence, Tβ4 binds G-actin and prevents F-actin 

assembly from either end, but in the presence of profilin the Tβ4:actin 

complex can dissociate, allowing elongation of the actin filament (Ballweber, 

et al., 2000; Pantaloni and Carlier 1993). When, Tβ4 levels are at molar 

excess (≥ 20 µM) a weak cooperative interaction with F-actin is also 

observed, but the physiological significance of this interaction is unclear 

(Carlier et al., 1996). Tβ4 binds preferentially to the ATP-actin form and 

prevents nucleotide exchange on G-actin by preventing its conformational 

change (Goldschmidt-Clermont et al., 1992; Carlier et al., 1996). 

 1.4.1.3 Twinfilin 

Twinfilin is an actin binding protein that is present in eukaryotic cells ranging 

from mammals to yeast. However, this protein is not expressed in plants. 

Twinfilin contains two actin depolymerisation factor-homology (ADF-H) like 

domains (which are cofilin actins binding domain) that are separated by a 

linker region, followed by a C-terminal tail with 35 residues. Twinfilin can bind 

and sequester actin monomers and has a high affinity for ADP-actin (Kd = 

0.05 µM) (Palmgren et al., 2002). One of the ADF-H domains is at the N-

terminal end of twinfilin whereas the second one is at the C-terminal end. The 

N-terminal ADF-H acts as an actin entry domain that that promotes ADP-G-

actin delivery to the ADF-H in the C-terminus through a conformational 

change of the twinfilin molecule. Twinfilin also prevents actin filament 

assembly by inhibiting nucleotide exchange on actin monomers, forming a 

stable complex of with ADP-actin monomers (Palmgren et al., 2002).   
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1.4.2 F-actin binding proteins 

Upon actin nucleation, actin filaments grow rapidly due to continuous addition 

of actin monomers. The rapid extension of the filaments is controlled by 

various mechanisms including capping, F-actin depolymerisation, and 

severing of F-actin.     

1.4.2.1 Capping-CapZ 

CapZ is a heterodimeric protein composed of an α- and β-subunit. Each 

subunit has multiple isoforms, and both subunits are required for capping 

barbed ends of actin filaments (Casella, 1994). CapZ is one of the key factors 

that regulate the dynamics and organisation of actin filaments in cells. It binds 

tightly to the barbed ends of filaments, thereby allowing no further addition or 

loss of actin subunits at these ends. CapZ is mainly localised to barbed ends 

in the dynamic regions of cells. Therefore, upon certain stimulation, capping 

proteins can promote the rapid growth of non-capped filaments in areas 

where most filaments are capped (Pantaloni et al., 2001). CapZ can 

dissociate from the barbed ends of filaments upon binding of PIP or PIP2 to 

CapZ. As a result, a large number of free F-actin barbed ends are generated, 

which allows actin polymerisation to continue in areas where PIP or PIP2 are 

localised (Schafer et al., 1996).   

1.4.2.2 F-actin depolymerisation-ADF/cofilin 

Actin depolymerisation factor (ADF)/cofilin family members are small proteins 

(15-18 kDa), that play roles in enhancing actin depolymerisation (Lappalainen 

et al., 1998; Lappalainen and Drubin, 1997). ADF/cofilin contains a single 

ADF-homology domain (ADF-H), which can bind and sequester actin 

monomers (Nishida et al., 1984), and also has the ability to interact with F-

actin. Cofilin is a multifunction of protein which functions via two mechanisms: 

F-actin depolymerisation, and severing of actin filaments. The latter property 

will be described in section 1.4.2.3. Depolymerisation of F-actin by ADF is 

allowed when dissociation of the G-actin from the pointed ends of the 

filament, and the presence of profilin (which catalyses nucleotide exchange 
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on G-actin) accelerates the rate of pointed end dissociation by cofilin (Didry et 

al., 1998). Thus, the activity of ADF/cofilin causes the concentration of ADP-

G-actin to become elevated in the cytoplasm, and this ADP-G-actin is 

recycled by conversion to ATP-G-actin by profilin then reassembled at barbed 

end of the filaments (shown in figure 1.6). The depolymerising protein cofilin 

promotes ADP-G-actin disassembly from filament pointed ends, providing 

actin monomers to incorporate into free barbed ends. This effect stimulates 

the changing of ADP for ATP on the G-actin:profilin complex, which results in 

raised equilibrium rates of assembly and disassembly of actin filaments (Van 

Torys et al., 2008; Carlier et al., 1997; Didry et al., 1998).   

1.4.2.3 F-actin severing  

Actin severing activity breaks the actin filaments into short filaments. Two 

examples of severing proteins are gelsolin and ADF/cofilin. Gelsolin is an 

actin regulatory protein that belongs to the gelsolin superfamily. The 

molecular mass of gelsolin is 80 kDa, and gelsolin consists of two tandem 

homologous halves (segments G1-G3 and G4-G6). The N- linker joins the N- 

and C-terminal halves of gelsolin (Kwiatkowski et al., 1986). Gelsolin activity 

in cells is regulated by many factors including Ca2+ levels, the pH, and the 

presence of PIP2. Severing by gelsolin is initiated when it binds to the side of 

the filament, which leads to the generation of a new barbed end. However, its 

activity for severing is slow (Selden et al., 1998); the delay in severing may 

reflect the time required to re-arrange the gelsolin segments (McGough et al., 

1998). The severing mechanism of gelsolin is regulated by Ca2+ level in vivo. 

The N-terminus has a single Ca2+ binding site, whereas the C-terminal tail 

(which is named as the latch helix) contains two Ca2+ binding sites. After 

severing, gelsolin remains associated with the newly formed actin filament as 

a cap, which prevents filaments from reannealing at their barbed ends 

(Gremm and Wegner, 2000; Choe et al., 2002). The phospholipid PIP2 inhibits 

gelsolin by inducing uncapping of the filament barbed end, thereby permitting 
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actin polymerisation to proceed. Severing and capping by gelsolin can create 

many short actin filaments, which increases the number of barbed ends that 

can be elongated when the gelsolin cap is removed (Seldon et al., 1998).  

The severing activity of cofilin takes place when it binds to the side of an aged 

actin filament (ADP-F-actin). This process is accompanied by a 

conformational change of cofilin which causes a shift in the mean twist of the 

filament in the region where cofilin is bound. As a result, a longitudinal and 

lateral alteration takes place between the monomers of the filament takes 

place leading to filament destabilization (Bertling et al 2004; Bamburg, 1999; 

McGough et al., 1997).  ADF/cofilin activity is regulated by several ABPs that 

share similar actin binding sites. Gelsolin G1domain competes with 

ADF/cofilin for actin binding, suggesting that both proteins bind to the same 

region on actin (Ballweber et al., 1997). The mammalian protein coronin 

interacts with ATP-F-actin and prevents its severing by ADF/cofilin. Therefore, 

coronin increases the affinity of ADF/cofilin towards aged filaments rich in 

ADP-actin (Cai et al., 2007; Gandhi et al., 2010). ADF/cofilin also interacts 

with phospholipids, which inhibit its actin binding activity due to overlapping of 

the PIP binding site of cofilin with its actin binding site (Kusano and Obinata, 

1999). 
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1.4.3 Actin-crosslinking/bundling proteins 

The arrangement of actin polymers into higher order F-actin structure is 

achieved by two types of proteins: F-actin crosslinking proteins and F-actin 

bundling proteins (depicted in figure 1.6). Orthogonal networks arrays and 

bundles of F-actin are formed by these proteins, and these arrangements are 

found in subcellular protein complexes that coordinate cell migration and 

spreading. Examples of cellular architectures containing these higher order 

structures include lamellipodia, filopodia, and stress fibres (Tojkander et al., 

2012; Yang and Svitkina, 2011a; Yang and Svitkina, 2011b).   

Cross-linking proteins are responsible for generating orthogonal arrays of F-

actin. In these F-actin arrays, the actin binding domains of cross-linking 

proteins are separated by spacers, and arranged to organise actin filaments 

into arrays. Cross-linking proteins can be large dimeric structures such as 

filaments or tetrameric structures, like spectrin. The small monomeric protein 

transgelin is also involved in cross-linking actin filaments into a mesh-like 

network under certain conditions (Revenu et al., 2004).  

Actin bundling proteins are responsible for parallel and anti-parallel 

alignments of actin filaments into linear arrays. These linear arrays are formed 

either by a single protein containing two actin-binding domains or by multiple 

protein subunits each containing a single actin-binding domain (Chahabra and 

Higgs, 2007). Actin bundling proteins can be subdivided into those that 

generate loose or tight bundles. For example, microvilli structures are mainly 

formed by the actin bundling protein fimbrin. The two actin binding domains of 

fimbrin localised in close proximity to each other, allowing tight actin bundles 

to be generated. In contrast, actin stress fibres are loose, as they are 

constituted by the anti-parallel arrangement of the dimeric protein α-actinin.  

The actin-binding domain of each protein subunit is separated by a helical 

spacer region, which confers a looser connection between the actin filaments 

(Falzone et al., 2012).  
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1.4.4 Myosins  

Myosins are a large superfamily of motor proteins, which are functionally 

diverse. There are over 30 classes of myosins that were discovered and 

myosin class II was the first class identified, (also known as conventional 

myosin). The other classes are considered unconventional myosins (Foth et 

al., 2006). Most myosins use actin as a track to transport their ligands. The 

head domain of myosin is a force generating domain, which is capable of 

walking towards the barbed end of an actin filament (with the exception of 

myosin VI, which moves towards the pointed end). This activity requires ATP 

hydrolysis. The tail regions of myosin I and myosin V are associated with the 

plasma membrane and with membranes of organelles giving membrane-

related functions, such as myosin linkage at microvilli or filopodia. In contrast, 

the rod-like domain tail in myosin II arranges thick filaments in bipolar 

organisation, which builds contractile muscles (Tyska and Warshaw, 2002, 

2010).  

1.4.5 Actin stabilizers 

Tropomyosins (TM) are a family of F-actin binding proteins, which are 

classified into two groups: muscle tropomyosin isoforms and non-muscle 

isoforms (Helfman et al, 1986). Muscle tropomyosins regulate movement of 

the myosin head along the actin filament, and thus mediate muscle 

contraction. However, the function of non-muscle isoforms is less well 

understood, but they were shown to protect the filament from severing by 

gelsolin in vitro (Ishikawa et al., 1989). TM isoforms cooperate with actin 

filaments to generate more stable filaments, which are thought to regulate 

binding of other actin binding proteins along the actin polymer (Bryce et al., 

2003). Interaction of tropomyosin with the filament affects the overall rate of 

actin monomer polymerisation and depolymerisation (Lal and Korn, 1986). 

Tropomyosin inhibits the level of spontaneous addition of ATP-G-actin 

resulting in, reduction of barbed ends available for polymerisation (Hitchcock- 
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DeGregori et al., 1988). In addition, tropomyosin does not affect the rate of 

filament elongation but, stabilises the pointed end by lowering actin monomer 

dissociation (Broschat, 1990; Broschat et al., 1989).   

1.4.6 Actin nucleators 

De novo actin nucleation is a spontaneous process that is kinetically 

unfavourable. In cells several protein families are recruited to stimulate actin 

filament formation at specific times and sites. The best studied actin filament 

nucleating proteins are the Arp2/3 complex and formins (Pollard, 2007). Each 

actin nucleator promotes actin nucleation by a distinct mechanism. The Arp2/3 

complex generates branched actin filament networks from the side of pre-

existing filaments, whereas formins bind to the barbed ends of filaments to 

build a network of unbranched actin filaments (see figure 1.7).       

1.4.6.1 Arp2/3 complex 

The actin related protein 2/3 (Arp2/3) complex is the major actin nucleator in 

eukaryotic cells. This complex consists of seven subunits with a total 

molecular weight of 220 kDa. The protein subunits assemble as stable 

polypeptides, which are highly conserved in all eukaryotes. The Arp2/3 

complex is named after the main two subunits Arp2 and Arp3 and an 

additional five subunits called actin related complex 1-5 (ARPC1-5), shown in 

figure 1.8.A. 

The purified Arp2/3 complex is relatively inactive, as its activation requires 

nucleation promoting factors (NPFs) that provide an actin subunit to the 

Arp2/3 complex to initiate actin polymerisation. The activated complex 

assembles a new (daughter) actin filament by binding to the side of a pre-

existing (mother) filament at a 70˚ angle thereby forming a Y shaped branch 

(Amann and Pollard 2001). The Arp2/3 complex caps the pointed end of the 

newly branched filament, whereas addition of further actin subunits is 

permitted at the free barbed end of the branch (Mullins et al. 1998).  
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Figure 1.7: Paths of actin nucleation by Arp2/3 complex and 

formins.  

 

1. Spontaneous initiation of actin filament assembly requires the 

formation of an actin trimer (nucleus), 2. The Arp2/3 complex 

mimics an actin dimer and act as template for initiation of a new 

actin filament branch from a pre-formed filament, 3. Formin 

stabilizes actin trimer and allows continuous growth at the barbed 

end of the filament.   

Adapted from: Goley and Welch, 2006 
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The Arp2 and Arp3 subunits mimic two actin monomers, which can combine 

with an actin monomer to form a nucleus. The crystal structure of the inactive 

bovine Arp2/3 complex revealed a large separation between the Arp2 and 

Arp3 subunits which would prevent formation of an actin nucleus (figure 

1.8.B). 

In this configuration both subunits Arp2 and Arp3 contain a nucleotide binding 

cleft which in this case was open due to the absence of ATP (Robinson et al., 

2001). Cryo-EM and 3D reconstruction studies have demonstrated that, the 

Arp2/3 complex undergoes a conformational change when Arp2 and Arp3 

interact with the pointed end of the branched filament and Arp2 and ArpC4 

contact the mother filament. These observations are in agreement with the 

proposal that, NPFs stimulate a conformational change of the Arp2/3 

complex, which involves a subsequent rearrangement of Arp2 and/or Arp3 

subunits to form a nucleus (Beltzner and Pollard, 2004; Volkmann et al., 

2001). The Arp2/3 complex interacts with the acidic domain found in 

nucleation promoting factors (NPFs) such as those in WASP family. The 

Arp2/3 complex alone is a weak nucleator, but its nucleation and branching 

abilities are stimulated by three factors: binding to pre-existing filaments, 

phosphorylation of Arp2 and interaction with the WASP homology 2 (WH2), 

central and acidic (WCA) domains of NPFs (Suetsugu. 2013; Narayanan et 

al., 2011;  Rodal et al., 2005). The branched actin filament forms when actin 

monomer delivery occurs from the WH2 domain to the barbed ends of Arp2 

and/or Arp3. Upon Arp2/3 activation it was speculated that, the WCA 

dissociates from the complex to permit additional rounds of nucleation, but 

further studies are required to support this notion (Suetsugu et al., 2001; Ti et 

al., 2011).        

In mammalian cells, the Arp2/3 complex and its activators are essential for 

generating a network of cross-linked filaments near ruffling membranes, which 

pushes against these membranes to drive cell movement.   
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Figure 1.8: crystal structure of the Arp2/3 complex.  

(A) Ribbon diagram of the Arp2/3 complex with its subunits labelled and 

shaded by different colours.  

(B) The structural model of inactive bovine Arp2/3 complex (left panel) and the 

proposed active model of Arp2/3 complex (right panel). In the inactive 

structure, Arp2 and Arp3 are separated from each other. When activated, 

the complex undergoes a conformational change, so that Arp2 and Arp3 are 

brought close to each other.  

    From: Robinson et al., 2001 and Pollard, 2007  
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1.4.6.2 Formins 

Formins are another type of actin nucleator. They are evolutionarily conserved 

in all eukaryotes. The actin nucleation activity of formins is attributed to the 

presence of two formin homology -1-and -2 domains (FH1and FH2). Some 

formins lack the FH1 domain but the FH2 domain is the most conserved 

domain in formins. In addition to the FH1 and FH2 domains, many formins 

contain additional functional domains including, diaphanous inhibitory (DID) 

domain, diaphanous autoregulatory (DAD) domain, and GTPase-binding 

(GBD) domain. These domains play an important role in actin regulation by 

formins (Goode, 2007). The intramolecular interaction between the DAD and 

DID domains result in inhibition of actin assembly by the FH2 domain of 

formins (Evangelista et al., 2003). The autoinhibitory effect of formins is 

released upon binding of a Rho-family GTPase to the GBD domain, which is 

also a property of WASP (Wallar et al., 2006).   

The FH2 domains of formins can oligomerize, and two FH2 domains are able 

to stabilise actin dimer by binding to two actin subunits. Formins mediate 

unbranched-F-actin formation, which initiate by processive association of the 

G-actin at the filament barbed ends (Evangelista et al., 2003). Elongation of 

the barbed end bound by the FH2 dimer is relatively slow suggesting a 

transition state between the open state (where addition of actin monomer is 

permitted) and the closed state (where actin assembly is inhibited) (Kovar et 

al., 2006; Kovar and Pollard, 2004; Vavylonis et al., 2006). The transition state 

between the closed and open states of the formin dimer are believed to be the 

reason for the divergence in elongation rates between the eukaryotic species 

(Harris et al., 2005; Paul and Pollard, 2009). 
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Figure 1.9: Schematic representation of mammalian nucleation promoting factors (NPFs). 

WH1-WASP homology domain 1, B- basic region, GBD- GTPase binding domain, PRD- polyproline-rich domain, WCA-  includes : WASP 

homology domain 2 (WH2), central region ( C), acidic  domain (A). SHD- SCAR homology domain, WHD1- WASH homology domain  1, 

TBR- tubulin binding region, P- PIP2 binding motif, WMD- WHAMM membrane interaction domain, CC- coiled-coil region. N- N-terminal 

region of JMY, L- Linker. Central F-actin binding repeats (RxRxRxR) and SH3- Src homology domain of cortactin. 

Adapted from: Campellone and Welch, 2010 
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1.4.7 Nucleation promoting factors (NPFs)  

Nucleation of actin is mediated by the activity of the nucleation promoting 

factors (NPFs). In mammalian cells, NPFs interact with the Arp2/3 complex 

via the CA region at the C-terminus (Kelly et al., 2006; Marchand et al., 2001). 

The N-terminal regions of NPFs are diverse and modulate regulation of 

different functions in cells (Stradal and Scita, 2006). Figure 1.9 illustrates the 

structural domains of the mammalian NPFs, which can be categorised into 

two classes: 

i. Class I NPFs: e.g. WASP and N-WASP (WASP subfamily), Ena/VASP 

family, SCAR/WAVE (WAVE subfamily), WASH, WHAMM and JMY. 

ii. Class II NPFs: e.g. cortactin. 

1.4.7.1 Class I 

1.4.7.1.1 WASP and N-WASP 

The mammalian Wiskott-Aldrich syndrome protein (WASP) is 502 residues long 

and highly expressed in hematopoietic cells. Mutation of the WAS gene results 

in a severe X-linked immunodeficiency disease in mice and humans, which is 

characterised by defective cell migration, cell signalling and phagocytosis 

(Bosticardo et al., 2009). The neuronal (N)-WASP is expressed in most cell 

types. Deletion of the N-WASP gene is lethal for the mice embryos due to 

congenital defects in neurons and cardiac cells (Snapper et al., 2001).  

WASP and its homologue N-WASP serve as primary activators for the Arp2/3 

complex, which mediates actin nucleation. Both have multi-functional domains 

that are relatively similar (shown in figure 1.9). The N-terminal of the WASPs 

consist of WASP homology 1 (WH1) domain, which binds to several WASP 

interacting proteins (WIPs), followed by a cluster of basic residues (B domain). 

The B domain is targeted by PIP2, but this domain is not essential for PIP2 

binding (de la Fuente et al., 2007; Rohatgi et al., 2000). The GTPase binding 

domain (GBD) of WASP/N-WASP is 16 residues long, and comprises of CRIB 

motif (Cdc42/Rac-interactive binding) and its surrounding sequence. A CRIB  
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motif is also present in a number of GTPase and Rac activators (Tondeleir, et 

al., 2009; Burbelo et al., 1995). 

The region between the GBD domain and the C-terminal region is the 

polyproline-rich domain (PRD), which interacts with several Src homology 3 

(SH3) domain containing proteins such as Nck, Grb2 and cortactin. The C-

terminal end of WASP members contains the verprolin homology domain (V) 

(also called WH2), central motif (C), and acidic region (A) (Welch and Mullins, 

2002). The WH2 domain is important for actin monomer binding (Higgs et al., 

1999), whereas the CA region reportedly binds to the Arp2/3 complex with a 

1:1 stoichiometry (Marchand et al., 2001; Gaucher et al., 2012). However, 

another binding study suggested a 2:1 stoichiometry (Ti et al., 2011).  

WASP and N-WASP proteins are inactive in the absence of other proteins due 

to the autoinhibitory effect that results from the intramolecular folding of the 

WCA domain onto the CRIB motif. This intramolecular interaction occludes 

actin assembly by the Arp2/3 complex (Kim et al., 2000; Prehoda et al., 2000; 

Miki et al., 1998a). Structural analysis suggests that the GBD domain of WASP 

is able to form a complex with its CA region, which causes basic Argenine477 

and its surrounding residues to be buried into the intramolecular fold, causing 

this region to be inaccessible to the binding site of Arp2/3 complex (Kim et al., 

2000).  

Many accessory proteins serve as activators for WASP/N-WASP. The 

intramolecular interaction of WASP/N-WASP is inhibited upon Cdc42 binding 

to the CRIB motif. Cdc42 binding causes the GBD domain to change 

conformation to mediate the release of WCA to allow binding to the Arp2/3 

complex (Rohatgi et al., 2000; Miki et al., 1998b). Activation of WASP/N-

WASP can also occur through direct binding to single or multiple SH3 domain 

containing proteins such as the adaptor protein Nck, which induces the 

multimerization of N-WASP. This multimerization was proposed to regulate  
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the ordered activation of Arp2/3 complex, which could promote actin 

polymerisation (Ti et al., 2011), but this phenomena is yet to be described in 

vivo.  

The well-studied WASP interacting protein (WIP) has a key role in regulating 

the Arp2/3 complex activation by WASPs. WIP binds to the WH1 domain of 

WASP and N-WASP which then stabilise the autoinhibitory structure and 

therefore preventing actin polymerisation in vitro (Ho et al., 2004). In an actin-

based motility system in Vaccinia, WIP appears to mediate N-WASP 

recruitment to the sites of polymerisation in a Cdc42-independent manner 

(Moreau et al., 2000).      

PIP2 binding to the basic region (B) is thought to enhance Cdc42 binding to 

the GBD domain and counteracts the inhibitory conformation of the GBD-

WCA interaction. Phosphorylation of tyrosine residues in the CRIB region 

(particularly conserved residues Y291 of WASP and Y256 of N-WASP) by 

tyrosine kinases also activates WASP/N-WASP to stimulate actin 

polymerisation mediated by Arp2/3 complex (Torres and Rosen, 2003; 

Suetsugu et al., 2002, 2013).  

These factors collectively prime WASP/N-WASP activation of Arp2/3 complex, 

which in turn facilitates many cellular processes that are linked to actin 

polymerisation such as filopodia formation (Miki et al., 1998a), membrane 

ruffling (Buccino et al., 2004), and endocytosis (Qualmann and Kelly,2000).   
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1.4.7.1.1.1 Regulation of WASP by phosphorylation  

Phosphorylation of WASP is an essential process that regulates its Arp2/3 

complex-dependent actin nucleation activity. Phosphorylation of WASP by 

several Ser/Thr kinases is critical for regulating the autoinhibitory interaction 

caused by intramolecular folding between GBD and WCA domains (see 

section 1.4.7.1.1). The phosphorylation sites of WASP/N-WASP have been 

identified to tyrosine Y291 (Y291) in WASP and Y256 (Y256) in N-WASP. 

TheY291 and Y256 are important in filopodia formation and neurons 

extension in vivo (Cory et al., 2002; Suetsugu et al., 2002). Mass spec 

analysis identified additional serine residues at the C-terminal of WASP, which 

include S483 and S484. These residues are also contributed to optimal 

activation of Arp2/3 complex (Cory GO et al., 2003).  

Y291 in WASP and its analogue Y253 in N-WASP localise in the GBD 

domain, which mediates Cdc42 binding when WASP is active. However, Y291 

in the inactive WASP is buried in the autoinhibited conformation of GBD-WCA; 

this intramolecular binding protects Y291 from phosphorylation by kinases. 

Once Cdc42 binds to WASP, the WASP intramolecular interaction 

destabilises, which leads to opening the autoinhibited structure, and therefore 

allows the exposure of GBD to kinases (Torres et al., 2006; Torres and 

Rosen, 2003; Buck and Rosen, 2001; Kim et al., 2000). PIP2 interacts with the 

B domain of WASP and promotes GTP hydrolysis of GTP bound to Cdc42, 

and Cdc42 was shown to cooperate with PIP2 to activate WASP. However, 

destabilisation of the GBD-WCA interaction by Cdc42/PIP2 is not sufficient to 

stimulate WASP for activation of the Arp2/3 complex (Higgs and Pollard, 

1999, Rohatgi et al., 2000). This process requires further phosphorylation of 

WASP to be active and to prevent its dephosphorylation by the act of 

phosphatases. Interaction of WASP with the SH3 or SH3-SH2 domain of 

various kinases leads to high level of WASP activation, and thus stimulates 

actin nucleation mediated by Arp2/3 complex (Torres and Rosen, 2003; 

2006). In vitro, the SH3-SH2 domain containing kinases can activate WASP 

independently of Cdc42 in vitro. Figure1.10 shows a schematic model of  
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WASP activation mediated by Y291phosphorylation (Fukuoka et al., 2001, 

Rohatgi et al., 2000). The phospho-residues of WASP S483 and S484 lie at 

the junction that connects the C region to the A domain in WASP. This region 

is critical for binding and activation of Arp2/3 complex (Zalevsky et al., 2001), 

and also formation of the autoinhibited structure of WASP (Suetsugu et al., 

2001). Ser/Thr kinase, casein kinase 2 (CK2) mediated S483 and S484 

phosphorylation was shown to enhance the affinity of Arp2/3 complex to WCA 

and allowed optimal actin polymerisation mediated by activation of the Arp2/3 

complex in vitro and in vivo (Cory et al., 2003).  
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Figure1.10: Schematic model of WASP regulated by phosphorylation. 

(A) The autoinhibited WASP molecule can be recruited to the region of membrane receptor signalling via SH3 domain containing 

proteins such as Nck. (B) The inactive WASP is activated by Cdc42 and PIP2 and then phosphorylated by kinases such as Src 

kinases. (C) The phosphorylated species of WASP are regulated differently. They can be dephosphorylated by phosphatases which 

may undergo further cycles of phosphorylation, or be recruited for degradation. (D) Alternatively, in the absence of Cdc42 the 

phosphorylated species can be re-folded (to become an inactive structure) and then activated by SH2 and SH3 domain containing 

proteins, thus promoting actin polymerisation mediated by Arp2/3 complex. Model adapted from: Dovas and Cox, 2010.   

A. B. 

C. 

D. 
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1.4.7.1.2 Ena/VASP 

Ena/VASP family members were first discovered in platelets, and are 

substrates for cAMP kinases. The protein family includes the Drosophila 

protein Ena and the mammalian proteins vasodilator-stimulated 

phosphorylation (VASP), the Mammalian Enabled (Mena) and the Ena/VASP-

like (EVL) protein.  

The N-terminal region of Ena/VASP contains an Ena/VASP homology 1 

domain (EVH1) which is responsible for its recruitment by proteins that binds 

to its FPPP motif. In the centre of the Ena-VASP is a PRD, which binds to 

SH3 domain containing proteins. The C-terminus contains an Ena/VASP 

homology 2 domain (EVH2), which binds to actin monomers and F-actin, and 

a coiled-coil region, which is thought to mediate protein tetramerization. 

Additionally Ena/VASP contains multiple tyrosine and threonine residues, and 

phosphorylation of the sites was found to increase the stability of Ena/VASP 

bound to F-actin (Lanier and Gertler, 2000). Ena/VASP recruitment in vitro 

was found to be mediated by the binding of its PRD to short F-actin filaments, 

which allows processive actin filament elongation. The number of F-actin 

seeds was increased in the presence of cofilin, whereas actin elongation was 

enhanced by profilin in a concentration-dependent manner (Siton and 

Bernheim-Groswasser, 2014). The ability of Ena/VASP EVH2 domain to 

nucleate actin filaments is stimulated by addition of G- or F-actin seeds to the 

Arp2/3 complex (Skoble et al., 2001; Geese et al., 2002). Ena/VASP also acts 

as an anti-capping protein that prevents capping of filament barbed ends by 

capping proteins, suggesting that Ena/VASP is important in actin architecture 

during cell migration and ruffling formation (Samarin et el., 2004).    

  1.4.7.1.3 SCAR/WAVE  

The WASP family verprolin homologous proteins (WAVE)/suppressor of cAR 

/SCAR) proteins form a subfamily within the WASP family, which is conserved 

in animals, protists, and plants. In mammalian cells the WAVE protein exists 

in three isoforms (WAVE1, WAVE2, and WAVE3), that are ubiquitously 
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 expressed, with the highest expression in brain tissues (Stovold et al 2005). 

WAVEs show little sequence homology to WASP proteins, but multiple 

domains are conserved in all WASP family members. At the N-terminal end is 

the WAVE homology domain (WHD), which is followed by the B domain, PRD, 

and VCA (shown in figure 1.9). Like WASP proteins, the VCA domain is 

implicated in actin monomer and Arp2/3 complex binding which triggers actin 

polymerisation. The WAVE proteins lack the GBD domain, and are activated 

by Rac GTPase instead of Cdc42.  

Cellular WAVE1 is part of a complex containing multiple binding proteins 

which include HSPC300 (also called Brick 1), Abi-interactor 2 (Abi2), Nck-

associated protein1 (Nap1) and specifically Rac-associated1 (Sra1). This is 

called the WAVE regulatory complex (WRC), and WAVE is inactive in this 

complex. However, addition of active Rac causes subsequent disassembly of 

Abi2, Nap1, and Sra1 from the WRC complex. This is thought to release the 

trans-inhibitory state of WAVE resulting in a WAVE:HSPC300 sub-complex 

that activates the Arp2/3 complex to drive actin polymerisation (Derivery et al., 

2009a; Eden et al., 2002; Echarri et al., 2004; Stovold et al., 2005). Recently, 

it has been shown that, the EVH1domain of Ena/VASP interacts with Api2, 

which stimulates cell migration. This interaction enables WRC activation by 

Rac, thus promoting Arp2/3-mediated actin polymerisation (Bisi et al., 2013 

and Chen et al., 2014). 

1.4.7.1.4 WASH 

WASH is encoded by a human sub-telomeric gene and is conserved from 

vertebrates to protists (Linardopoulou et al., 2007). The modular organisation 

of WASH includes unique WASH-homology domain (WAHD1) and tubulin-

binding region (TBR) at its N-terminal. As WASP family members, WASH also 

contains a middle PRD region followed by a WCA domain at the C-terminal 

(depicted in figure 1.9). However, the WCA domain is absent in WASH from 

Trypanosomea species (Kollmar et al., 2012).  
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The cellular WASH protein localises to the sorting system of endosomes and 

exists as a multi-protein complex known as the WASH regulatory complex 

(SHRC) (Derivery et al., 2009b; Duleh and Welch, 2010). It was suggested 

that, at least four of five SHRC complex components are structural 

homologues to the WCR components of WAVE (Jia et al., 2010). WASH also 

act as a mediator that links the tubules in retromer-mediated cargo transport 

from early endosomes to the Golgi via the microtubules (Gomez and 

Billadeau, 2009). WASH protein recruitment to the tetramer is unclear but a 

proposed model suggested that the FAM21 component of the SHRC complex 

senses the retromers on the endosomal membrane then stimulates WASH 

recruitment to the retromer-enriched membrane (Jia et al., 2012). Drosophila 

WASH was shown to function downstream of Rho-GTPase and was able to 

bundle F-actin and microtubules in a Spire (unbranched F-actin) or Arp2/3-

dependent manner (Liu et al., 2012).   

1.4.7.1.5 WHAMM 

WASP homologue associated with actin, membrane, and microtubules 

(WHAMM) is only found in mammalian cells. WHAMM is able to activate the 

Arp2/3 complex and is involved in regulation of ER to Golgi transport 

(Campellone et al., 2008; Zuchero et al., 2009). The N-terminal of WHAMM 

consists of WHAMM membrane-interacting domain (WMD), which mediates 

Golgi membrane binding, and a coiled coil region, which binds to 

microtubules. The C-terminal contains two WH2 domains and a CA domain to 

mediate Arp2/3-mediated actin nucleation (shown in figure 1.9). WHAMM 

protein is constitutively active in vitro indicating that, like WAVE2, its activity 

may be regulated by a binding partner (Campellone et al., 2008).  

Overexpression of WHAMM causes Golgi disruption, and defects in vesicle 

and tubule movement, which suggests that, WHAMM supports Golgi 

morphology and regulates ER to Golgi transport. In addition, interaction of 

WHAMM with microtubules and actin filaments is able to provide the force 

required for membrane tubulation and dynamics (Campellone et al., 2008).  
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1.4.7.1.6 JMY 

The junction-mediating and regulatory protein (JMY) was discovered by 

sequence alignment of WH2 domain containing proteins. JMY was classified 

as a tandem actin monomer nucleator due to the presence of three WH2 

motifs. The F-actin nucleation activity of JMY is mainly Arp2/3 dependent. 

However, in the absence of Arp2/3 complex, JMY has lower levels of 

nucleation ability, which is mediated by its three WH2 domains or actin 

binding linker (Zuchero et al., 2009). The domain structure of JMY contains an 

N-terminal domain, a coiled coil region, followed by a central PRD (though 

some JMY isoforms lack this polyproline domain). Its C-terminus contains 

three repeats of WH2 domains and a CA domain (figure 1.9). The first two 

WH2 domains are separated from the third WH2 by a linker, which is also able 

to bind actin monomers. The WCA of JMY has 28% sequence identity with N-

WASP and the full length protein has 35% similarity to WHAMM (Campellone 

and Welch, 2010; Zuchero et al., 2009). JMY localises to the nucleus, and 

was first discovered as a co-factor to the tumour suppressor p35 (Shikama et 

al., 1999). In response to DNA damage, JMY is downregulated by the protein 

Mdm2 (ubiquitin ligase that targets p35) causing an increase in JMY, which 

promotes its degradation (Coutts et al., 2009). The actin nucleation activity of 

JMY in vivo is unclear. However, it has been shown to play a role in multiple 

actin related processes. Like WHAMM, JMY was found to localise at the Golgi 

and influence the trafficking of vesicles (Schlüter et al., 2014). JMY is also 

important for promoting Arp2/3-mediated cell migration (Coutts et al., 2009). 

Over-expression of full length JMY revealed weak actin nucleation activity 

compared with its WWWH2 domain alone, suggesting that JMY is regulated 

by an autoinhibitory mechanism (Firat-Karalar et al 2011).  

1.4.7.2 Class II- cortactin 

Cortactin is a class II NPF, and was identified as a major Src kinase substrate 

and an actin binding protein (Wu and Parsons, 1993). Later on, it was defined 

by its ability to promote Arp2/3-mediated actin nucleation (Weed et al., 2000). 
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Cortactin plays important roles in many cellular processes such as formation 

of the cadherin adhesive zone, membrane remodelling in lamellipodia, and 

membrane ruffling (Helwani et al., 2004; Kinley et al., 2003). Unlike NPF class 

I proteins, cortactin contains an N-terminal domain rich in acidic residues that 

binds the Arp2/3 complex, and also does not contain a WH2 domain. Instead, 

cortactin possess central F-actin binding repeats (RxRxRxR). The C-terminal 

has an SH3 domain that interacts with regulatory proteins including N-WASP 

(Weaver et al., 2002) and WIP (Kinley et al., 2003), see figure 1.9. The NPF 

activity of cortactin is relatively weaker than NPF class I proteins. 

Nevertheless, cortactin cooperates with the WCA of N-WASP and they appear 

to synergise in promoting actin nucleation. Cortactin was shown to inhibit loss 

of filament branches nucleated by Arp2/3 complex. This suggests that, 

cortactin promotes nucleus stabilization (Weaver et al., 2002). Another model 

was proposed, in which cortactin displaces WCA binding from the branch 

junction after Arp2/3-mediated nucleation, this was referred as a recycling or 

displacement model. In the model, cortactin has no effect on actin 

polymerisation or Arp2/3 complex stabilisation, but it enhances the 

detachment of N-WASP WCA from the newly branched site. This effect 

causes acceleration in the branch rate driven by WCA-bound Arp2/3 complex 

(Siton et al., 2011).  
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1.5 Yeast actin 

The Saccharomyces cerevisiae genome encodes a single essential actin 

(ACT1) gene (Shortle et al., 1982), which encodes actin-like protein Act1 that 

has 87-90% sequence homology to muscle actin (Gallwitz and Sures, 1980). 

Actin deletion revealed severe defects in yeast budding, vesicle trafficking, 

polarisation of actin patches during the cell cycle and chitin localisation, which 

reflects the key significance of the actin cytoskeleton for regulation of these 

processes (Gallwitz and Sures, 1980; Ng and Abelson, 1980). Yeast actin-like 

protein was purified from yeast cells, with a higher molecular mass of a 45kDa 

compared to 42 kDa for actin in mammals (Greer and Schekman, 1982). The 

polymerisation kinetic properties of yeast actin are relatively similar to those of 

muscle actin, but yeast actin has a faster rate of polymerisation when it is 

polymerised in the same conditions as mammalian actin. Generation of act1 

mutant alleles (1-119) or (R177A/D179A) using random mutagenesis made it 

possible to relate the cellular phenotypic consequences associated with act1 

mutants to actin polymerisation properties (Shortle et al., 1982). Drubin and 

co-workers analysed the effects of act1 (1-119) or (R177A/D179A) mutants on 

the yeast actin cytoskeleton and found that, assembled actin patches and 

cables could not be labelled by rhodamine phalloidin, suggesting that 

phalloidin may bind to monomers via R177/D179 in order to stabilise the 

filaments (Drubin et al., 1990). Purified (R177A/ D179A) mutants were 

analysed to determine their effects on actin polymerisation, these actin 

mutants displayed a slow rate of overall polymerisation of R117A/ D179A 

mutants compared to wild type actin, in which the rate of elongation was 3 fold 

higher than the act1 mutants. This indicates that, the difference in the overall 

rate of yeast actin and muscle actin polymerisation is due to a larger rate of 

nucleation for yeast actin rather than a difference in the rate of elongation 

(Belmont et al., 1999, Buzan and Frieden, 1996). In addition, the process of 

nucleotide exchange in yeast actin occurs more rapidly than for muscle actin 

under the same conditions. Phosphate (Pi) release in yeast actin occurs 

following ATP hydrolysis and is concomitant with actin polymerisation 
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whereas; muscle actin retains its Pi following ATP hydrolysis and actin 

polymerisation (Yao and Rubenstein, 2001; Carlier and Pantaloni, 1986).   

1.5.1 Actin architectures in yeast 

Actin organisation in yeast was first visualised in chemically fixed cells, and 

found in three forms of actin-rich structures: actin cortical patches, actin 

cables, and the acto-myosin ring (Adam and Pringle, 1984). These 

filamentous structures undergo rearrangement throughout the stages of the 

cell cycle in S. cerevisiae (shown in figure 1.11). 

1.5.1.1 Actin cortical patches 

Actin cortical patches are discrete foci formed by a combination of actin 

filaments and actin binding proteins (Adam and Pringle, 1984). In undivided 

yeast cells, the actin patches are distributed randomly, whereas the actin 

patches in budded cells are enriched at the region of bud growth. The actin 

patches are therefore polarised in the bud, and this polarisation is dependent 

on the stages of cell cycle. The actin patches are concentrated at the growth 

region (tip end of the mother) which is required for polarised growth of the 

new bud. The mother contains few patches, which cluster at the bud neck 

during separation of the new bud (daughter) from the mother bud (Pruyne et 

al, 1998). The yeast Arp2/3 complex is required for the integrity of the actin 

cortical patches which are involved in both endocytosis and cell wall 

remodelling (; Munn and Riezman, 1994; Munn et al., 1995; Winter et al., 

1997; Young et al., 2004). 

1.5.1.2 Actin cables 

Actin cables are polarised linear structures composed of actin filaments 

stabilized by various yeast proteins including: the fimbrin homologue (Sac6) 

and tropomyosin homologue (Tpm1 and Tpm2) (Adams and Pringle, 1984; 

Chant and Pringle, 1995). The Arp2/3 complex is not required for the 

assembly of F-actin in actin cables. Instead, Bni1 and Bnr1 (formin homologue 

in yeast) are responsible for nucleating actin filaments that align along the 

axis of the cell. Actin cables appear as slightly irregular long lines in unbudded 
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cells, but are more evident during bud growth (Adams and Pringle, 1984; 

Amberg, 1998). Actin cables are necessary for many cellular events, including 

mitotic spindle orientation (Theesfeld et al., 1999), vacuole inheritance, and 

vesicle trafficking supported by myosins (MyoV and Myo2) (Pruyne et al, 

1998). Actin cables also mediate mRNA delivery to the bud, which is a 

process enhanced by MyoV function (Beach et al., 1999).  

1.5.1.3 Acto-myosin ring 

The actomyosin ring is a transient structure that plays an essential role in 

mammalian and yeast cytokinesis (Balasubramanian and Glotzer. 2004). The 

acto-myosin ring is formed from assembled F-actin, myosin II and other actin 

binding proteins, such as actin nucleators, actin cross-linkers or bundlers, and 

actin stabilizing proteins. These components form a complex that is localised 

in the middle of the cell plane, which generates a force required for splitting 

the cell during cell division (Wu and Pollard, 2005). The nature of actin 

filaments in the actomyosin ring is unbranched and linear, which is attributed 

to nucleation of F-actin by the yeast formins Bni1and Bnr1 (Lord et al., 2005). 

Moreover, contractile ring recruitment and position at the division site is 

controlled by cell cycle regulatory kinases during cytokinesis 

(Balasubramanian and Glotzer. 2004). 
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Figure 1.11: Actin structures in S. cerevisiae. 

Diploid yeast cells were stained with rhodamine phalloidin and imaged 

with DeltaVision.  

From: Moseley and Goode, 2006  

 

Acto-myosin 
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1.6 Roles of actin in yeast endocytosis 

The clearest evidence for the link between actin and endocytosis comes from 

studies on budding yeast. Yeast is a good model system for studying 

endocytosis because most of its endocytic proteins are homologues to 

mammalian proteins, and it is easy to delete or alter these proteins at the 

genetic level, since yeast cells are haploid. To determine which proteins are 

essential for endocytosis, genetic screens have been performed on endocytic 

mutants (end --) in budding yeast. These mutants were defective in α-factor 

internalisation, and Lucifer yellow uptake, and exhibited aberrant trafficking 

phenotypes of FM4-64 dye. The majority of these mutants also showed 

defects in the actin cytoskeleton, which suggests a specific role of actin to 

achieve successful internalisation during endocytosis (Kübler and Riezman, 

1993; Raths et al., 1993). The importance of the actin cytoskeleton in yeast 

was also confirmed using the drug Latrunculin-A which sequesters actin and 

inhibits endocytosis (Ayscough et al., 1997). In another experiment, yeast 

cells were treated with the F-actin stabilizing drug Jasplakinolide, which 

showed that F-actin alone is insufficient to establish endocytosis in yeast 

(Ayscough, 2002). In addition to these studies, advance in live-cell imaging 

have elucidated the relationship between endocytosis and actin assembly in 

the actin patches. Studies on the actin binding proteins Abp1 and Cap2 

tagged with GFP have shown that cortical patches are very dynamic at the 

cell surface. Deletion of the ABP1, CAP2 and SLA1 genes caused severe 

defects in cortical patch movement at the endocytic sites indicating that other 

actin regulatory proteins may associate with cortical actin patches (Mulholland 

et al 1994; Waddle et al., 1996; Warren et al., 2002). Subsequently, more 

than 60 proteins associated with actin cortical patches have been identified to 

localise at sites of endocytosis (Galletta et al., 2010; Weinberg and Drubin, 

2012).   
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1.7 Endocytosis in yeast 

Endocytosis is a process in which the plasma membrane internalises to 

uptake molecules from the cell surface and then pinches off to produce a 

vesicle. The formed vesicle either can be delivered to lysosome for 

degradation or to recycle back to the plasma membrane. The functional 

significances of endocytosis lie on its ability to maintain cell membrane 

homeostasis and that through regulation of nutrient uptake, modulation of 

signal transduction, internalisation of cell surface receptors, lipids, or 

pathogens entry  (Goldstein and Drubin, 2003; Doherty and McMahon, 2009). 

Clathrin-mediated endocytosis (CME) is the most extensively studied of all 

endocytic pathways, which is highly conserved from yeast to mammals. In 

eukaryotic cells, CME is accomplished through sequential recruitment of 

clathrin, endocytic adaptors, and actin binding partners at the sites of 

endocytosis. Clathrin, adaptor proteins and other cargoes form a protein coat 

at the plasma membrane, and this coated membrane bends to form vesicle 

which can carry various cargoes. The coated vesicle then pinches off the 

plasma membrane and the protein coat that surrounds the vesicle is 

disassembled. The uncoated vesicle is released into the cell and fuses with 

the membrane of an endosome. The vesicle delivers its cargoes from the 

early endosome to the late endosome, which fuses with lysosome to allow 

degradation. However, at the early endosome, cargoes can also be recycled 

back to the plasma membrane. In yeast, Actin and actin binding proteins have 

been shown to localise at the actin patches where endocytosis takes place, 

these actin structures are highly dynamic due to constant F-actin remodelling 

(Doyle and Botstein, 1996; Waddle et al., 1996). Actin is a key factor required 

to initiate membrane invagination, and scission of coated vesicles at endocytic 

sites. CME in yeast is highly dependent on Arp2/3-mediated actin nucleation 

to generate force that can overcome the cytosolic turgor pressure of yeast 

cells (Galletta et al., 2009; Aghamohammadzadeh and Ayscough, 2009). The 

advent of total internal reflection microscopy and live imaging of the 

fluorescent tags GFP and mRFP made it possible to visualise the dynamic 

recruitment of the proteins that are associated with the endocytic patches, and 
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offer an indication of which stages of the endocytic pathway these proteins 

might function (figure1.12). 

Kaksonen and colleagues were the first to apply two-colour real-time imaging 

to observe various endocytic proteins and defined the change in patch 

dynamics during endocytic events (Kaksonen et al., 2003). Time lapse movies 

of fluorescently-tagged Abp1 and Sla1 expressed in 60 yeast deletion strains 

(each with a different constituent of actin patches deleted), revealed distinct 

recruitment of Abp1 and Sla1 at different stages of patch lifetime. The early 

recruitment of actin machinery at endocytic sites (including, Pan1 and Las17) 

was proposed to activate actin assembly at the stage that corresponds to 

membrane invagination and subsequent scission of the nascent vesicle 

(Kaksonen et al., 2003, 2005).  

1.7.1 Actin binding proteins (ABPs) in yeast  

Most of the actin binding proteins in yeast are homologues to many of the 

pivotal ABPs in mammals. The ABPs in yeast and their analogous in proteins 

in mammals are shown in table 1.1.  

1.7.2 Stages of endocytosis  

Cumulative data by Kaksonen and others led to the establishment of a 

molecular model that defines the functions and dynamics of each protein 

group at distinct stage of CME in yeast. Therefore, each stage is 

characterised by arrival of a discrete protein module (shown in figure 1.13). 

The first module is associated with early recruitment of clathrin, adaptor  
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Figure 1.12: Actin and endocytic markers in budding yeast.  

Left panel: Actin cortical patches visualised using rhodamine phalloidin 

(spots marked with arrows). Right panel: Kymographs generated from 

time lapse movies showing the kinetics of Sla1, Las17, and Ent1, which 

are recruited early and remain non-motile for most of their lifetime. 

Abp1 is an actin marker used to assess arrival of actin at the endocytic 

patch. Rvs167 arrives just after the onset of inward movement and is 

involved in vesicle scission.  

 

From: Robertson et al, 2010 
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Yeast protein Mammalian protein 

Early 

Ede1 Eps15 

Syp1 FCho1/2 

Early coat 

Chc1 Clathrin heavy chain 

Clc1 Clathrin light chain 

Yap1801/2 AP180 

Apl1/3 AP2 complex α/β subunits 

Apm4 AP2 complex mu subunit 
Aps2 AP2 complex σ subunit 

Intermediate coat 
Sla2 Hip1 

Ent1/2 Epsin 

Late coat 

Pan1 Intersectin 

Sla1 CIN85 

End3 Eps15 

Lsb3 SH3yl1 

Ysc84 SH3yl1 

Gts1 Small Arf GAP2 

WASP/Myo module 

Las17 WASP/N-WASP 

Vrp1 WIP/WIRE 

Bzz1 syndapin 

Scd5 -  

Myo3/5 Myosin type I 

Bbc1 - 

Aim21 - 

Actin module 

Act1 Actin 

Arc15/18/19/35/40 & 

Arp2/3 

Arp2/3 complex 

Abp1 ABP1 

Cap1/2 Capping proteins α/β 

Sac6 Fimbrin 

Scp1 Transgelin 

Twf1 Twinfilin 

Crn1 coronin 

Ark1/Prk1/Akl1 BMP2 inducible kinase/AP2 associated 

kinase1/AAK1 and GAK 

Cof1 cofilin 

Aip1 Aip1 

Pfy1 profilin 

Aim3 - 
Scission 

Rvs161 Amphiphysin 

Rvs167 Amphiphysin/endophilin 

Sjl2 Synaptojanin-1 

Vps1 Dynamin 

  

 
Table 1.1: Yeast endocytic proteins and their mammalian orthologues.  

Adapted from: Weinberg and Drubin, 2012 



 

53 
 

Chapter: 1 

proteins, and other endocytic proteins to form the endocytic coat at the site of 

endocytosis. At this stage the endocytic coat remains non-motile (stage 1). 

After 1-2 minutes, actin regulatory proteins start assembling F-actin, and this 

phase can be characterised by slow inward movement of the coated 

membrane (stage 2). Consequently, the deformed membrane undergoes fast 

inward movement, approximately 200 nm into the cell. This movement is 

proposed to correspond to invagination and vesicle scission (stage 3). The 

newly formed vesicle is released after arrival of the vesicle scission 

machinery, which include the amphiphysins Rvs161/167 and the yeast 

dynamin Vps1.  

1.7.2.1 Stage 1: non-motile stage 

The factors that drive recruitment of proteins to form the coat complex during 

endocytosis are still unclear. The first stage of CME involves the early arrival 

of clathrin (Chc1/Clc1 -heavy/light chain protein), Ede1, Ent1/2, and 

Yap1801/2 proteins at the site of endocytosis. The endocytic protein Ede1 is 

an adaptor protein and its deletion or inactivation of its ent1 interacting motif in 

yeast cells reduces the rate of invagination, causing defects in the process of 

endocytosis. This result suggests that, Ede1 might serve as a tag at the 

membrane to mark the site where the process of endocytosis takes place 

(Swanson et al., 2006; Aguilar et al., 2003). Clathrin forms the early coat but is 

not essential for establishing endocytosis, as clathrin deletion does not 

abolish endocytosis (Newpher et al., 2005; Kaksonen et al., 2003). However, 

clathrin was observed to localise at the distal tip of the patch, suggesting that, 

it may function to stabilize the curvature during invagination of the endocytic 

protein mesh (Idrissi et al., 2008). Similarly, the endocytic adaptor protein 

Yap1801/2 was also revealed to be important for stability of the endocytic 

protein complex (Maldonado-Báez et al., 2008). Accumulation of the clathrin 

and adaptor proteins at endocytic sites leads to recruitment of other endocytic 

proteins to join the endocytic coat network. The proteins that form this 

intermediate coat include Sla2 and Ent1/2 epsin-like proteins, which both bind 

to PIP2 via their ENTH domain and are key factors that induce membrane 
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Figure 1.13: Timeline of the modular organisation of endocytic proteins.  

The early and early coat proteins appear at the cell surface at different times. After cargo recruitment, actin polymerisation initiates 

by action of the WASP/MYO module which, generates a force together with BAR domain proteins to bend the membrane forming 

tubule. Sjl2p produces tension which helps to pinch off the vesicle.  

Modified from: Weinberg and Drubin, 2012 
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curvature (Sun et al., 2005; Aguilar et al., 2003; Wendland et al 1999). Later, 

the coat proteins Pan1, End3, and Sla1 arrive simultaneously as a protein 

complex that binds to the endocytic coat components (Tang et al., 2000). 

Endocytic complex disassembly is dependent on phosphorylation by the 

Ark1/Prk1 kinase family, which will be described in section 1.8.1.3. The other 

coat proteins include Lsb3, Lsb4/Ysc84, Lsb5, and Gts1 proteins, which are 

recruited along with the WASP/Myo coat module but have different roles. 

Lsb3 and Ysc84 play a significant role in F-actin polymerisation and bundling 

(Robertson et al., 2009). On the other hand, the Lsb5 and Gts1 regulate 

endocytic coat disassembly at the late stage of endocytosis (Costa and 

Ayscough, 2005).   

1.7.2.2 Stage 2: Slow movement (invagination) 

The slow movement stage of endocytosis is characterised by arrival of the 

Las17 and myosin module (WASP/Myo). This stage is proposed to coincide 

with the invagination stage of endocytosis which is characterised by the 

constant growth of the actin network to generate the force required for 

bending the membrane and pinching off the nascent vesicle. 

It was proposed that, slow movement of the endocytic coat is caused by the 

regular addition of actin monomers to polymerise actin at the plasma 

membrane rather than at the internalised vesicle (Kaksonen et al., 2003). 

Las17 is recruited prior to Myo3/5 and remains immobile at the plasma 

membrane for approximately 20 seconds (Kaksonen et al., 2005). A few 

seconds later, the myosin activator Vrp1 arrives then Myo3/5 is recruited just 

before invagination commences. Following Las17/Myo3/5 arrival, the actin 

module is recruited, which comprises actin monomers, the Arp2/3 complex, 

capping proteins, bundling proteins and depolymerising proteins. The onset 

of membrane invagination is stimulated as a result of F-actin polymerisation, 

which is induced by activation of the Arp2/3 complex via Las17 and Myo3/5 

(Galletta et al., 2008; Sun et al., 2006). At this stage the Las17 inhibitor Sla1 

moves inwards with the invaginated coat, which may remove an inhibition of 

Las17 (Sun et al., 2006). The Las17 and Myo3/5 module was observed to  
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remain in the plane of the membrane rather than being internalised with the 

invaginated coated vesicle (Kaksonen et al., 2005). However, immuno-EM 

analysis has shown that, Myo5 is located at the tip of the invaginated coat 

while Las17 and Bbc1 (a protein recruited with Myo5 that may inactivate 

Las17 and Myo5, Sun et al 2006) are localised on the sides of the tubular 

invagination. This suggests that, the membrane may bend prior to the onset 

of inward movement (Idrissi et al., 2008). However, more studies are 

required to support this proposal.   

The actin machinery is tightly connected to the endocytic coat component 

through the adaptor proteins Sla2 and Sla1. Sla2 interacts with actin via its  

talin homology domain and acts to connect the endocytic coat to the actin 

filaments. Cells lacking SLA2 displayed defective endocytosis but were able 

to form actin comet tails which resulted from continuous assembly of F-actin 

that was uncoupled from the plasma membrane. In these cells, the NPFs 

and endocytic coat proteins remain at the membrane whereas, actin, Arp2/3 

complex, capping and bundling proteins are associated with the comet tail 

(Kaksonen et al., 2003). Sla1 is a key actin regulator that binds to cargo 

proteins. Absence of SLA1 led to failure in NPFXD cargo uptake and actin 

dynamics in yeast cells, resulting in abnormal cortical patches (Ayscough et 

al., 1999; Holtzman et al., 1993). The interaction of Sla1 with Las17 may 

negatively regulate Las17 activity (Rodal et al., 2003).  

1.7.2.2.1 Regulation of actin polymerisation during endocytosis 

Actin polymerisation is required in yeast CME to support membrane 

invagination and subsequent vesicle scission. However, the mechanism of 

how the actin machinery is regulated at endocytic stages is still not clear. F-

actin assembly is marked by arrival of the actin machinery at the endocytic 

coat complex and activation of Arp2/3 complex by Las17/Myo5, (shown in 

figure 1.14). During CME several ABPs are involved in F-actin assembly and 

filament organisation. The onset of actin polymerisation at the endocytic sites 

might be associated with removing the inhibitory effect of Las17 inhibitors 

Sla1and Bbc1. This step would promote inward movement of the plasma 
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membrane. Sun and colleagues have shown that, the addition of the yeast 

syndapin-Bzz1 may contribute to release of the inhibitory effect by disrupting 

the Las17-Sla1complex (Sun et al., 2006). These findings were discovered in 

vitro, but have yet to be confirmed in vivo.  Abp1 and Pan1 have been found 

to localise at actin patches and activate the Arp2/3 complex with less 

potency than either Las17 or Myo5 in vitro (Duncan et al., 2001; Goode et 

al., 2001). Endocytic patches lacking Abp1 or Pan1 exhibit normal rates of 

invagination, suggesting that Las17 and Myo5 are likely to be the main 

activators of the Arp2/3 complex at actin patches (Sun et al., 2006). Many 

proteins require the presence of actin for their localisation and significantly 

contribute to actin polymerisation during invagination of the cell membrane. 

Capping proteins (Cap1and Cap2 dimer) are important for limiting further 

addition of monomers at the filament barbed ends. This is consistent with the 

idea that deletion of both CAP1 and CAP2 lead to a decrease in inward 

movement of the membrane (Amatruda et al., 1990; Kaksonen et al., 2005; 

Kim et al., 2006). Unlike the other ABPs, the bundling protein Sac6 (fimbrin 

homologue) is associated with both actin cortical patches and actin cables. 

Sac6 is important for stabilising the actin patch during internalisation, as 

deletion of SAC6 revealed a reduced rate of membrane invagination 

(Gheorghe et al., 2008; Kaksonen et al., 2005). Another actin bundling and 

crosslinking protein that localises at the actin module is Scp1 (transgelin 

homologue). Expression of Scp1 in cells lacking SAC6 caused abnormal 

actin organisation and defects in endocytosis indicating that Scp1 and Sac6 

function together to stabilise the actin patches (Goodman et al., 2003; 

Winder et al., 2003). Deletion of SAC6 and SCP1 blocked internalisation of 

the actin marker Abp1-GFP, which resulted in an increase in patch longevity. 

However Sac6 and Scp1 function at different stages of endocytosis, Sac6 is 

implicated in the slow inward movement stage, whereas Scp1 functions at 

the fast movement stage (post-vesicle scission) (Gheorghe et al., 2008). The 

actin depolymerising proteins, Cof1(cofilin homologue) and its binding 

partner Aip1, play crucial roles in modulating actin filaments and preventing  
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Figure 1.14: Schematic diagram showing the regulation of actin binding 

proteins during the invagination stage of endocytosis.  

Assembly of F-actin is initiated when the Arp2/3 complex is activated by Las17, 

then type I myosin (Myo3/5) arrives, which functions to aid internalisation of the 

cell membrane. At this stage, the endocytic protein Bbc1 may inactivate Las17. 

Capping proteins limit the addition of new actin monomers to barbed ends and 

cofilin promotes F-actin disassembly. The actin bundling protein complex 

Sac6/Scp1 generates higher order filamentous structures, which are required for 

successful endocytic events.  

From: Robertson et al., 2010 
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the elongation of aged F-actin (Moon et al., 1993; Quintero-Monzon et al., 

2009). 

1.7.2.3 Stage 3: vesicle scission and uncoating 

Scission of the endocytic vesicle occurs after the invagination stage. In 

mammalian cells, the GTPase dynamin is a key factor in the scission stage 

during CME. The dynamin-like protein, Vps1 in yeast is proposed to be 

involved in scission. Vps1 was previously shown to localise with Sla1 at actin 

patches, and it was shown to be required for normal actin organisation in 

yeast cells (Yu and Cai, 2004). A study from the Ayscough lab showed that, 

VPS1 deletion cells are defective in FM4-64 uptake and exhibit retracted 

movement of endocytic markers (Smaczynska-de Rooij et al., 2010). It was 

also shown that Rvs167 interacts with Vps1 in yeast two hybrid analysis, and 

Rvs167 induces disassembly of Vps1 oligomers in vitro (Smaczynska-de 

Rooij et al., 2010). Following actin polymerisation, both Rvs161 and Rvs167 

form a heterodimer that localise briefly at the site of endocytosis. The 

Rvs161/167 module remains stationary at the membrane then exhibits a 

rapid 100nm inward movement. This movement was suggested to 

correspond to vesicle scission during endocytosis (Kaksonen et al., 2005). 

Like the mammalian amphiphysins, Rvs161/Rvs167 in yeast possesses a 

BAR domain, which is evolutionarily conserved and has the ability to induce 

tubulation and generate membrane curvature in vitro (Dawson et al., 2006). 

The yeast amphiphysins interact with many actin regulatory proteins via 

binding of the SH3 domain of the Rvs167 to polyproline repeats. In the 

absence of RVS161/167, cells exhibited mild defects in scission, but in 

combination with VPS1 deletion, these defects were more severe indicating 

that Vps1 and Rvs161/167 function together in driving vesicle scission 

(Smaczynska-de Rooij et al., 2012). 

Following scission, the endocytic coat disassembles from the nascent vesicle 

and this step is essential for fusion of the vesicle with the endosomal 

membrane. The actin regulatory kinases Ark1/Prk1 are homologues to the  
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AAK and GAK kinases in mammals play a central role in vesicle uncoating 

(Smythe and Ayscough, 2003). The kinases Ark1/Prk1 arrive at endocytic 

sites after invagination and their recruitment is mediated by the SH3 domain 

of Abp1. Yeast cells lacking both ARK1/PRK1 were unable to disassemble 

the endocytic coat and had large aggregates containing many endocytic 

proteins and F-actin (Cope et al., 1999). At endocytic patches, the actin 

regulatory kinases Ark1/Prk1 phosphorylate proteins containing Lxx(Q/T)xTG 

motifs, including the early coat Pan1/Sla1/End3 complex. Phosphorylation of 

Pan1 by Prk1 down-regulates its activity to allow Arp2/3-mediated F-actin 

assembly and disrupts Sla1-Pan1 binding. This regulation may allow 

separation of the coat complex (Pan1/Sla1/End3) from the actin network. 

Point mutations at the Prk1 motif in Pan1 results in clumps of F-actin, a 

phenotype that was also seen in ARK1/PRK1 mutants (Toshima et al., 2005; 

Huang et al., 2003; Zeng et al., 2001).  

The PIP2 phosphatases, synaptojanin Inp51 and Inp52 proteins are also 

involved in disassembly of the endocytic coat by dephosphorylation of 

(4,5)PIP2 to (4)PIP which allows the ENTH and ANTH domain containing 

proteins (Sla2 and Ent1/2) to detach from the membrane (Sun et al., 2005; 

Wendland et al., 1999). In sjl∆, cells have failures in Sla2 and Ent2 

disassembly and exhibit inappropriate membrane invagination, which may 

indicate that, Sjl1 is important for uncoating PIP2-binding proteins and may 

serve as a signal for scission (Sun et al., 2007). Another lipid regulatory 

protein is yeast Arf3 (homologue of mammalian Arf6), the endocytic role of 

Arf3 is suggested due to its interaction with Lsb5 and Gts1. Lsb5 binds to 

Sla1 and Las17, whereas Gts1 binds to Sla1, Pan1 and YAP1801/2. All of 

these interactions suggest that Arf3 is associated with the endocytic 

machinery although no direct endocytic phenotype was observed upon its 

deletion. However, Arf3 is an essential factor for regulating the concentration 

of PIP2 (Smaczynska-de et al., 2008; Costa and Ayscough, 2005; Huang et 

al., 2003). Eventually, actin severing proteins including Cof1, Aip1, Crn1, and  
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Srv2 are recruited along with Ark1/Prk1 and Sjl2 to promote actin network 

disassembly. Cof1molecules bind to the sides of actin cables and develop a 

twist, leading to actin severing at the sites where it binds (McGough et al., 

1998). Cof1 interacts with Aip1, which is an actin binding protein that caps 

the newly formed barbed end and prevents its elongation. The yeast coronin 

Crn1 stimulates Cof1 to bind to aged ADP-actin filaments, whereas Srv2 

stimulates Cof1-mediated severing of actin filaments (Ono et al., 2007; 

Okreglak et al., 2007).         

1.8 The WASp homologue/ Las17 

The yeast protein Las17 (also called Bee1) is a homologue of mammalian 

Wiskott-Aldrich syndrome protein (WASP). Mutation of WASP in humans 

causes Wiskott-Aldrich syndrome (WAS), which is characterised by severe 

immunodeficiency and defects in blood cell morphology (Symons et al., 

1996, Kim et al., 2000). In budding yeast, Las17 is a component of actin 

cortical patches, where it co-localises and interacts with actin cortical 

proteins at the site of endocytosis (Madania et al., 1999; Li et al., 1997). 

Las17 is not an essential gene as its function can be compensated b other 

NPFs to activate Arp2/3 complex in vivo. However, las17 deletion causes 

defects in budding and cytokinesis due to abnormal actin organisation (Li et 

al., 1997). LAS17 deletion cells accumulate post-Golgi-like vesicles in the 

bud, and have defective fluid-phase endocytosis and actin patch polarisation 

(Li et al., 1997). This suggests that, Las17 plays a critical role in multiple 

cellular processes associated with the actin cytoskeleton in yeast.    

Furthermore, data from synthetic lethal arrays showed second site mutations 

which make LAS17 an essential gene. For example, combining arp2 and 

arp3 mutant alleles with las17∆ is synthetically lethal at 37˚C and the cells 

showed a depolarised actin organisation due to the loss of interactions with 

Arp2/3 (Madania et al., 1999; D'Agostino and Goode, 2005). The 

temperature sensitivity growth defects of arp2 and arp3 mutants can be 

suppressed by overexpression of Las17 which suggests that, Las17 is a key 

activator of the Arp2/3 corresponding to the functions of WASP in Arp2/3 
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complex activation (Madania et al., 1999).  

Las17 shares several functional domains with human WASP, but Las17 

lacks the GBD (containing the Cdc42 binding motif). The N-terminal of Las17 

contains a WASP homology-1(WH2) domain, followed by a central 

Polyproline (PP) rich region, which contains several repeats of five prolines. 

The C-terminal contains a WASP homology-2 (WH2) domain, central (C) 

domain and terminates with an acidic (A) region (depicted figure 1.15.A). 

Recent proteomic studies have identified multiple phosphosites across the 

Las17 primary sequence, which are either threonine or serine residues (Holt 

et al., 2009; Smolka et al., 2007). These phosphoresidues are located at 

different regions along the primary sequence of Las17, but their functional 

relevance has not been studied yet.  

The Las17WH1domain provides a binding site for the yeast homologue of 

mammalian WIP (Vrp1), which binds to the C-terminal of Las17. Vrp1 arrives 

after Las17 at cortical patches and forms a complex with Las17, and this 

complex is thought to be essential for Vrp1 function and localisation to the 

cortical patches (Naqvi et al., 1998; Rajmohan et al., 2006). Human WASP 

requires WIP to restore the temperature sensitive growth defects of LAS17 

knock out yeast cells (Rajmohan et al., 2006). However, the WAS mutations 

that are located within the WH1 of WASP (Imai et al., 1999), were unable to 

rescue the growth defects of LAS17 deletion at high temperature. This effect 

could be due to perturbing the WIP-WASP complex caused by misssense 

mutant which results in WAS disease in human (Rajmohan et al., 2006).   

Mapping the SH3 domain-mediated interactions in yeast using a combination 

of phage-display and yeast two hybrid analysis has identified a large number 

of interactions between multiple SH3 domain containing proteins with the PP 

region of Las17 (Tonikian et al., 2009). A recent study has shown that, Sla1 

mediates an interaction with Las17 class1/2 polyproline motifs to form a 

stable complex (called SLAC). Disruption of the SLAC complex leads to 

defects in Las17 recruitment to the site of endocytosis in vivo. These results  
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were confirmed by pyrene actin assembly assays, which revealed that, the 

SLAC complex restore the ability of Las17 to promote actin polymerisation, 

and sub-micromolar concentrations of the first and second SH3 of Sla1 (0.1-

0.3 µM) can negatively regulate Las17 activity potentially by a mechanism 

whereby the first and the second SH3 of Sla1 competes with actin monomers 

for binding to the actin binding site in Las17PP as suggested by Robertson et 

al., 2009 (Feliciano and De Pietro, 2012). Lsb7/Bzz1 is an SH3 domain 

containing protein that is dependent on Las17 for its localisation in vivo. 

Lsb7/Bzz1 was shown to interact with Las17PP through its SH3 domain and 

form part of the Las17-Vrp1-Myo5 complex in vitro, which suggests that Bzz1 

is involved in regulating actin polymerisation (Soulard et al., 2005; Lechler et 

al., 2000; Tong et al., 2002). Bzz1 may release the inhibitory effect that 

results from the Sla1-Las17 interaction (Soulard et al., 2002).  

Ysc84 and its related protein Lsb3 (Las seventeen binding 3) were shown to 

interact with Las17 by yeast two hybrid analysis (Madania et al., 1999). The 

N-terminal of Ysc84 was shown to interact with and bundle F-actin in vitro. 

However, full length Ysc84 did not show any binding to F-actin, suggesting 

possible binding with another protein that could alter the conformation of 

Ysc84 to expose its actin binding site. Thus, Las17PP (residues 300-422) 

was shown to interact directly with the full length Ysc84 in yeast two hybrid 

analysis, and shown to enhance the ability of Ysc84 to bind and bundle actin. 

These results clearly indicate that, Las17 could possibly serve as an 

activator for Ysc84.  This poly-proline rich fragment of Las17 was also shown 

to bind to the SH3 domain of Lsb3, which could suggest overlapping 

functions of Ysc84 and Lsb3. The interaction of Las17 with Ysc84 to activate 

actin bundling suggests a distinct model of actin regulation via Las17 that is 

Arp2/3-independent (Robertson et al., 2009). Recent work by the Ayscough 

lab suggest that, there are novel actin binding sites in the Las17PP region, 

which are able to bind and nucleate G-actin independently of Las17WCA 

domain (Urbanek et al., 2013). These results suggest a mechanism of actin  

,  
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polymerisation mediated by the Las17-Ysc84 interaction whereby, the actin 

monomer binding site of Las17PP delivers actin to Ysc84, which in turn 

generates bundles of F-actin that favour polymerisation in vitro. Rvs167 

contains an SH3 domain that interacts with Las17PP in yeast two hybrid 

screens (Tong et al., 2002; Madania et al., 1999). Phosphorylation of Rvs167 

was found to inhibit its interaction with Las17 in vitro (Friesen et al., 2003). 

This suggests that, the phosphorylated version of Rvs167 disassociates from 

Las17 and therefore activates the Arp2/3 complex for polymerisation 

(Friesen et al., 2003).      

The C-terminal of Las17 contains a WCA domain (residues 547-633), which 

is responsible for its NPF activity. Biochemical studies using a permeabilized 

cell assay revealed severe defects in actin assembly associated with yeast 

cells lacking LAS17 suggesting that, Las17 is required for actin assembly (Li 

et al., 1997). Both Las17 and the Arp2/3 complex localise at cortical patches, 

but Las17 is recruited at endocytic sites 10-15 seconds prior to Arp2/3 

complex suggesting, an Arp2/3-independent function (Urbanek et al., 2012). 

Interaction of Las17 with G-actin and Arp2/3 complex enhances actin 

polymerisation in vitro (Winter et al., 1999; Li et al., 1997). However, deletion 

of WH2 or CA domain of Las17 only displays a mild phenotype, and cells 

have normal actin organisation in vivo (Galletta et al., 2008; Sun et al., 

2006). Mutations of the PP and WCA result in defects in endocytosis and 

growth, suggesting sequential functions of these two domains (Urbanek et 

al., 2012).  
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Figure 1.15: The WASP homologue Las17 in yeast 

(A) Top panel: Schematic diagram of the domain structure of Las17. Bottom 

panel: Las17 protein sequence showing the phosphorylation sites (labelled 

in red), obtained from PhosphoGrid search.  

(B) The Las17 interaction network. The diagram displays physical interactions 

(purple lines) and genetic interactions (green lines) between Las17 (yellow 

circle), and its interactors (dark circles). This network is based on 

experimental data that support these interactions. Obtained from: 

Saccharomyces genome database (http://www.yeastgenome.org/) 

 

A. 
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1.9 Roles of Las17 in endocytosis 

Little is known about the regulation of Las17 during endocytosis but in vivo 

and in vitro studies have indicated that Las17 play distinct roles at different 

stages of endocytosis. Reconstitution of actin patch using Las17 

functionalised beads identified over 30 proteins that are recruited at the 

same time or later than Las17 arrival. These observations demonstrates the 

central role of Las17 in formation of the actin patch structure, and may also 

trigger recruitment of several proteins that are associated with the formation 

of the actin network in the endocytic actin-patch (Michelot et al., 2010). 

Regulation of Las17 activity by its interactions with various endocytic proteins 

is depicted in figure 1.15.B.    

Las17 arrives at early stage of endocytosis but it remains inactive due to 

binding to Sla1 and Bbc1. Syp1 protein can also negatively regulate Las17 

activity in vitro, and it was proposed to function with Sla1 to keep Las7 

inactive during the non-motile stage of endocytosis (Boettner et al., 2009). 

Las17 is considered to be the primary NPF that enhances Arp2/3-mediated 

actin polymerisation, which is the critical step for driving invagination of the 

membrane. Bzz1 arrives before the onset of membrane invagination and 

may release the inhibition from Las17 (Sun et al., 2006). Once the 

membrane invaginates, Las17 moves inward with the invaginated vesicle 

which is consistent with actin assembly taking place with the barbed ends 

oriented towards the invaginated vesicle (Idrissi et al., 2008; Galletta et al., 

2008). However, regulation of the Arp2/3 complex during endocytosis is not 

clear, but it is proposed that the presence of pre-formed F-actin might trigger 

the activity of Arp2/3 complex for branching. This theory was confirmed in 

vitro using Las17-coated beads which provide F-actin seeds to initiate 

polymerisation of F-actin branching by the Arp2/3 complex (Michelot et al., 

2010). On the other hand, the role of Las17 in post-scission vesicle 

movement is not obvious but, Las17PP was shown to mediate interaction 

with the SH3 domain of Rvs167. The yeast Amphiphysin (Rvs167) contains a  
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Bar domain which is important for connecting the membrane with the actin 

cytoskeleton to mediate membrane bending during scission (Friesen et al.,  

2003). Las17 was also observed at the scission site 100 nm away from the 

invaginated membrane, which could indicate that another possible role of 

Las17 is to couple actin dynamics to the vesicle after scission (Idrissi et al., 

2008).  

1.10 Summary     

Actin cytoskeleton is essential to regulate various process in the cells such 

as cell motility, membrane trafficking and endocytosis. These cellular 

processes are driven by the continuous actin filament turnover which must 

be performed at correct time at specific sites. Polymerisation of actin is 

modulated by several actin binding proteins (ABPs), that are able to bind 

either actin monomers (G-actin) or polymer (F-actin), or both. Assembly and 

disassembly of ABPs at the regions whereby actin turnover is active, is 

controlled by signal transductions. 

The fundamental requirement for actin in yeast endocytosis is more evident, 

whereas actin appears to be less critical in mammalian cell endocytosis. 

Over 60 different proteins in yeast endocytosis were found to have 

homologues in mammals, these proteins can interact and interplay spatially 

and temporally to produce distinct stages in the process. The endocytic 

stages include arrival of proteins that are needed for early coat assembly, 

late coat, membrane invagination, and membrane uncoating and vesicle 

scission. Actin polymerisation seems to be essential to generate a force 

required to drive membrane invagination into the cell against turgor pressure 

and also have a role in vesicle secession.  

The main focus of this study is studying the actin regulatory function of Las17 

in yeast. Las17 was shown to be important for regulation of actin 

polymerisation at the endocytic patches which binds and cooperates with the 

Arp2/3 complex to modulate the formation of branched-F-actin. In addition, 

Las17 can also nucleate actin and seeding filaments independently of the   
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Arp2/3 complex suggesting a second actin-regulatory function of Las17. 

Several phosphorylation sites have been discovered along Las17 sequence 

but their functional significance is not clear. Las17 lacks the GTPase binding 

domain, therefore it was suggested to be regulated similarly to Scar/WAVE 

family.   

1.11 Aims of the project 

At the outset of this project Las17 was shown to be a key activator of the 

Arp2/3 complex, and several Las17 binding partners were shown to be 

required for Las17 function during endocytosis. Regulation of Las17 by post-

translational modifications such as phosphorylation had not been addressed. 

The major aims of this study were to: 

  Investigate whether phosphorylation regulates Las17 function in vivo.  

 Determine the effect of phosphomutants of Las17 on G-actin and Arp2/3 

complex binding in vitro. 

 Test the possibility that, Las17 can undergo intramolecular binding to 

regulate its activation using in vitro approaches. 

 Define the phosphorylation species of recombinant Las17 using a western 

blot approach. 

 Identify further phosphorylation sites and investigate phenotypic 

consequences of their mutation in vivo. 
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2.1 Materials 

Chemicals used in this study come from Sigma, BDH, Fisher, Fluka, unless 

otherwise stated. 

2.2 Yeast strains, plasmids, oligonucleotides, and antibodies 

 All yeast strains, plasmids, and oligonucleotides and antibodies generated 

and used during the research of this study are listed in tables 2.2.1, 2.2.2, 

2.2.3, and 2.2.4 respectively. 

Table 2.2.1 Yeast Strains 

KAY Genotype Origin 

30 Mat a, his∆ D. Drubin lab 

31 Mat α, his∆ D. Drubin lab 

289 Mat a,ura3-52,leu2-3,112,his∆200,trp1-1,lys2-801 Dewar et al., 2002 

376 Mat a, ura3-52,leu2-3,112,his3,lys2,ark1::HIS D. Drubin lab 

380 Mat a, ura3-52,leu2-3-112,his3,lys2-801,prk1::LEU D. Drubin lab 

389 Mat a,Ura3-52,leu2-3,112,his3,trp1-1,lys2-801 Dewar et al., 2002 

452 Mat a/α, ∆las17::KanMx/LAS17, 
ura3∆/ura3∆,his3∆/his∆,leu2∆/leu2∆,met15∆/met1
5∆,lys2∆/lys2∆ 

Research genetics 

446 Mat a, hisΔ1, leu2Δ, ura3Δ Research genetics 

472 Mat a, hisΔ1, leu2Δ, ura3Δ, las17Δ::KanMx This study 

473 Mat α, hisΔ1, leu2Δ, ura3Δ, las17Δ::KanMx This study 

480 Mata/α,ura3∆/ura3∆,his3∆/his∆,leu2∆/leu2∆,met15
∆/met15∆,lys2∆/lys2∆ 

Research genetics 

711 pJ694, Mat a P. Piper 

712 pJ694α P. Piper  

1544 Mata, ura3∆,his3∆,leu2∆,met15∆,yck1::KanMx Ayscough 

1061 Mat a, Sla1-GFP::TRP Ayscough 

1644 KAY1061, Sla1-GFP::TRP, Las17::URA Ayscough 

1668 LRB758 wt, Mat a, his3,leu2,ura3-52 Ayscough 

1670 LRB1517 yck1::KanMx, Mat a his3, leu2, ura3-25 Ayscough 

1675 KAY446 +Las17-7xAla-3x HA::HIS Ayscough 

1676 KAY1668+Las17-7xAla-3xHA::HIS Ayscough 

1685 ∆Pho85  ThermoFisher, Fermentos 
Ltd. 
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Table 2.2.2 Plasmids 

Plasmid Construction Origin/ Reference 

pKA40 MCS-3xHA- term; LEU cen. Gift from E. Hettma  

pKA 61 pRS313 HIS,CEN  Sikorski and Hieter,1989 

pKA 64 pRS306 URA,CEN Ayscough 

pKA 168 pGBDU-C1, URA, CEN, empty binding domain James et al.,1996  

pKA 162 pGAD-C1,LEU,CEN,empty activation domain James et al., 1996 

pKA 260  pKA170 (pGBD) + sla1 SHD1+SHD2 2 hybrid bait Dewar et al., 2002 

pKA 263 pDW104 (pGAD) + LSB5 fragment Dewar et al., 2002 

pKA 325  pGAD- Las17 (292-536aa) (Costa and Ayscough, 2005)  

pKA 417 pGEX6P1 (GST fusion plasmid) GE Healthcare  

pKA 528 pKA527 with HA replaced by GFP from pKA525  LEU Lab collection 

pKA 475 pSM1023 4xGFP::KanMx Lab collection 

pKA 606 LAS17 (400bp 5’, 246bp 3’) in pKA61 HIS CEN Urbanek et al,. 2013 

pKA 607 Las17-GFP ,LEU in pKA528 (pEW416,pTpi – GFP) Smith and Ayscough,2009 

pKA670 pGEX6P1 + Las17 (300-aa end) Urbanek et al., 2012 

pKA 671 pGEX6P1 + Las17 (300-633aa end) Urbanek et al., 2013 

pKA 525 pAS52 * GFP Lab collection 

pKA 527 pEW416* pTpi - mcs - 3xHA  LEU Lab collection 

pKA 872 pKA 606 –Las17S586A This study 

pKA 873 pKA 606 –Las17S586D This study 

pKA 874 pKA 606 –Las17S588A This study 

pKA 875 pKA 606 –Las17S588D This study 

pKA 876 pKA 607 –Las17S586A This study 

pKA 877 pKA 607 –Las17S586D This study 

pKA 878 pKA 607 –Las17S588A This study 

pKA 879 pKA 607 –Las17S588D This study 

pKA 895 pKA 607 –Las17SS586.588,AA This study 

pKA 896 pKA607 –Las17SS586.588,DD This study 

pKA 898 pKA 606–Las17SS586.588,AA This study 

pKA 899 pKA606–Las17SS586.588,DD This study 

pKA 900 pKA 606 –Las17T380A This study 

pKA 901 pKA606 –Las17T380D This study 

pKA 1013 pGEX6P-1+Las17WCA This study 

pKA 1014 pKA168 pGBDU-C1+Las17WCA This study 

pKA 979  pRS306: LAS17 (400bp 5’ 246bp 3’) in URA CEN This study 

pKA 980 pRS306: LAS17 S588A (400bp 5’ 246bp 3’) in URA 
CEN 

This study 

pKA 981 pRS306: LAS17 S588D (400bp 5’ 246bp 3’) in URA 
CEN 

This study 

pKA 1036 pEH039 MCS-3xHA-PGKterm, URA CEN This study 

pKA 1037 pEH040 MCS-3xHA-PGKterm, LEU CEN This study 
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Plasmid Construction Origin/ Reference 

pKA1043 pKA671 mutant) pGEX6P1+Las17(300-633aa end) 
S588A 

This study 

pKA1044 (pKA671 mutant) pGEX6P1+Las17(300-633aa 
end) S588D 

This study 

pKA1054 pLAS17-LAS17-3xHA (LAS17 FL+400bp promoter 
in pKA1037); LEU, CEN 

This study 

pKA1056 pGAD-C1(pKA162)+Las17 WCA domain; LEU, CEN This study 

pKA1057 pGBD (pKA168) + Las17 PP domain This study 

pKA1059 pGEX6P1+Las17WCA S588A This study 

pKA1060 pGEX6P1+Las17WCA S588D This study 

pKA1083 pKA1054 –Las17T380A This study 

pKA1084 pKA1054 –Las17T380D This study 

pKA1085 pKA1054  –Las17S588A This study 

pKA1086 pKA1054 –Las17S588D This study 

pKA1087 pKA 606 –Las17S554A This study 

pKA1088 pKA 606 –Las17S554D This study 

pKA1089 pKA1054 –Las17S554A This study 

pKA1090 pKA1054 –Las17S554D This study 

pKA1091 pKA 606 –Las17T543A This study 

 

Table 2.2.3 Oligonucleotides 

OKA 5' to 3' Sequence Description 

1116 CTCCTTCCACAGGCCCATGGAAGAAGAGGGCC Las17T380D_forward 

1117 GGCCCTCTTCTTCCATGGGCCTGTGGAAGGAG Las17T380D_reverse 

1065 CAGGAAGCACTGGAGAAGCTGCTGCACC Las17586,588A_forward 

1066 GGTGCAGCAGCTTCTCCACGTGCTTCCTG Las17586,588A_reverse 

1067 GCAGGAAGCCGTGGAGAAGATGCTGATCCACCAG Las17586,588D_forward 

1068 CTGGTGGATCAGCATCTTCTCCACGTGCTTCCTGC Las17586,588D_reverse 

542 TGAATACGTGCGAGACGTCC Las17check_forward 

543 TCACTACCGCCTTTGAACC Las17check_reverse 

766 GATGGATCCGCTCCTTCAATGGGCATA Las17primer5nt900 BamH1 

784 GCTGCTGTCGACCCAATCATCACCATTGTCC Las17FLno stop codon 
_reverseˋ  

785 GCTGCTGGATCCTAACGCCGGCTGACGTGGACG Las17cloning_at389 
5ˋ+BamH1  

789 CAATTCGACAACAGCATCCG Las17check_5ˋ 618 to 637 
3ˋ  

790 CCACCTCCTCCAAGAGCATC Las17check_5ˋ 1162 to 
1181 3ˋ 

798 GCCTTATGXTTTGTAGTTGG Las17check_3ˋ1162 to 
1181 5ˋ 

928 GATGTCGACTTAGCCTCCGGATGTTGATG Las17cloning at 536 3ˋ+Sal1  

1034 GCACGTGGAGAATCTGCTGATCCACCAGCAGCGGC Las17S588D_forward 
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OKA 5' to 3' Sequence Description 

1036 GTGGAGAATCTGCTGCACCACCAGCAGCG Las17S588A_forward 

1037 CGCTGCTGGTGGTGGTGCAGCAGATTCTCCAC Las17S588A_reverse 

1061 TCCTTCCACAGGCCGCTGGAAGAAGAGGG Las17T380A_forward 

1062 CCCTCTTCTTCCAGCGGCCTGTGGAAGGA Las17T380A_reverse 

1118 GGCTCGACTATACATTGCATCTC Las17check_forward 

1119 CCTGCAAAGCATTCTTCCATCTC Las17check_reverse 

1120 GTGGTGCAGCACTCGTCGTCG Las17check_reverse 

1264 ACCTGCCCCTCTAATTGCAGCTAAAAGTGCATCAC Las17S544A_forward 

1265 GTGATGCACTTTTAGCTGCAATTAGAGGGGCAGGT Las17S544A_reverse 

1266 GCCACCTGCCCCTCTAATATCAGCTAAAAGTGCATCACGACC Las17S544D_forward 

1267 GGTCGTGATGCACTTTTAGCTGATATTAGAGGGGCAGGTGGC Las17S544D_reverse 

1272 ACGCCTGCATCTCCAGCAGTTTCAGCGAATGAAC Las17T543A_forward 

1273 GTTCATTCGCTGAAACTGCTGGAGATGCAGGTCGT Las17T543A_reverse 

1274 GAGGCGGTTCATTCGCTGAAACTGATGGAGATGCAGG Las17T543D_forward 

1275 CCTGCATCTCCATCAGTTTCAGCGAATGAACCGCCTC Las17T543D_reverse 

1183 CGCGGATCCCCAGCTACATCAACATCCGG Las17BamH1_P529_for 

1184 GCCGACGTCGACTTACCAATCATCACCATTGTCC Las17stop_Sal1_reverse 

 

Table 2..2.4 Antibodies 

Application Raised in Dilution Factor Source 

Anti –GFP monoclonal antibodies 
western 

mouse 1:5000 Roche 

anti-HA polyclonal antibody 
(Agarose conjugate) 
immunoprecipitation 

Goat 20-40 µl of gel slurry 
per 0.1-1mg protein 
lysate 

abcam® 

anti rat-HA α  primary 
antibodies(western) 

Mouse 1:1000 Roche 

Anti rat - alkaline  phosphatase, 
secondary antibodies (western)  

Rabbit 1:30000 Sigma 
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2.3 Molecular Biology Techniques 

2.3.1 DNA plasmid mini prep 

Isolation of plasmid DNA from bacterial lysates was carried out using Bioline-

isolate™ plasmid mini kit. All the steps were performed according to the 

manufacturer instructions. The protocol was based on alkaline lysis of 

bacterial cells, followed by neutralization of the lysate and adsorption of the 

DNA onto silica membrane. The DNA was then washed with a buffer 

containing ethanol and eluted using 40 µl distilled water.  

2.3.2 DNA Agarose Gel Electrophoresis 

DNA samples were separated and visualized using flat bed agarose gel 

electrophoresis. The agarose gel was made by melting 0.8% agarose in TAE 

buffer (10 mM Tris-HCl pH7.5, 1Mm EDTA pH7.5), 5 µl of a 5 mg/ml stock 

ethidium bromide (BioRad) was added per 50 ml of agarose solution. The 

solution was then poured into a casting tray containing a comb with the 

required number of teeth. To visualise DNA during and after electrophoresis, 

DNA samples were mixed with 6x gel loading buffer (0.25% Bromophenol 

blue, 0.25% Xylenecynol FF, 30% glycerol). Once the gel had solidified, the 

samples were loaded into the wells and then electrophoresed in 1x TAE 

buffer at 80-120 volts. Ethidium bromide stained DNA were visualised under 

UV transilluminator.  

2.3.3 DNA Extraction from Agarose Gel 

Extraction of DNA from agarose gel was performed using Qiagen plasmid 

purification kit. The DNA fragment was excised from the agarose gel using a 

clean scalpel, and transferred into 1.5 ml tube. Three volumes of QG buffer 

was added to one volume of the gel slice, followed by incubation of the tube 

in bloke heating at 95˚C for 10 minutes in order to solubilise the agarose. 

The sample was then applied to QIAGEN column, and centrifuged at 13000 

rpm for 30 seconds. The supernatant was carefully removed with a pipette, 

and column was washed with AP buffer, and then with buffer containing 

ethanol. The DNA was eluted with 30 µl distilled water.  
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2.3.4 DNA Restriction digestion  

All restriction enzymes used in this study were from New England Biolabs 

unless otherwise mentioned. The digest was carried out as stated in the 

manufacturer instructions using the supplied buffers. Single or double digests 

of a DNA plasmid was performed using 2-10U of enzyme per reaction and 

this was dependent on the enzyme activity. 1x BSA and distilled water was 

added to make up an appropriate final volume. The digestion reaction was 

incubated at 37˚C for 1-2 hours. The DNA digest was run on 0.8% agarose 

gel in order to visualise the desired DNA fragments digests. 

2.3.5 DNA Cloning  

DNA ligation was performed using the Quick ligation™ kit from New England 

Biolab. Linearised vector was combined with three fold molar excess of linear 

insert in 10 µl final volume.  10 µl of 2x Quick ligation buffer was added along 

with 1 µl of T4 DNA ligase as stated in manufacturer instructions. The 

reaction sample was mixed thoroughly and then incubated at 25˚C for 5 

minutes. 2 µl of ligation mix was transformed into ultracompetent XL10 Gold 

E. coli cells from Stratagene (see section 2.4.4).  

2.3.6 Site directed mutagenesis of plasmid DNA using QuikChange® 

lightning site directed mutagenesis kit (Stratagene).  

This method was used to generate Las17 phosphomutants in plasmids 

carrying either the full or truncations of LAS17 gene. Site directed 

mutagenesis was performed as stated in the manufacturer instructions. 

Forward and reverse complementary oligonucleotides containing the desired 

mutation were designed using the QuickChange® Prime Design software.  

PCR reactions were set up as below using the reagents provided with the kit: 
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10x reaction buffer 5 µl 

5ˋ primers (100 ng/µl) 1.25 µl 

3ˋ primers (100 ng/µl) 1.25 µl 

dNTPʼs mix 1 µl 

Quick solution reagent 1.5 µl 

ddH2O 39.5 µl 

Quick Change Lightning polymerase 1 µl 

Cycling Parameters: 

Cycle 
Temperature Time 

1 95˚C 2 min 

 
18 

95˚C 20 sec 

60˚C 10 sec 

68˚C 
30 sec/kb of plasmid 

length  

 

1 68˚C 5 min 

The resulting PCR product was treated with 2 ul Dpn1 restriction enzyme 

(100U/µl) provided with Stratagene kit. This step was crucial to digest the 

parental methylated and hemiethylated DNA. The digest was incubated at 

37˚C for 5 min, and then transformed into XL10-Gold ultracompetent cells 

from Stratagene (see section 2.4.4).  The DNA was mini prepped and sent to 

be verified by sequencing. 

2.3.7 Amplification of DNA using polymerase chain reaction (PCR) 

2.3.7.1 Generation of DNA for genome integration, tagging, or deletion  

This system was adopted from Longtine et al., 1998. The protocol was used 

to allow DNA plasmid carrying a cassette designed for deletion or tagging of 

gene within the yeast genome using specific oligonucleotide primers. These 

primers are complementary to the regions flanking the sequence of interest.  

For each PCR reaction the following elements were mixed in 0.5 ml thin-

walled PCR tubes. A ‘hot start’ reaction was required in which the Taq- 

polymerase was added immediately as the reaction mix had reached 94°C. 
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10xTaq  reaction buffer 10 µl 

MgCl2 (50 mM stock) 4 µl 

dNTPʼs mix(25 mM) 0.8 µl 

5′ primer (100 ng/µl) 1 µl 

3′ primer (100 ng/µl) 1 µl 

DNA plasmid (1:10) 2 µl 

Taq polymerase (5 U/µl) 0.4 µl  

ddH2O 80.8 µl 

A 30 cycles of amplification was occurred in a MWG Biotech Primus PCR 

machine as follow: 

Cycle Temperature Time 

Initial denaturation 94 ºC 3 min 

 
30x cycle 

94 ºC 1 min 

55 ºC 
(Tm -5 ºC; if Tm of two 

primers are different 
use Tm -5 ºC of lower)  

1 min 

72 ºC 
1 min/kb of plasmid 

length+ extra 30 sec  

Final extension 72 ºC 10 min 

hold 4 ºC 10 min 

The final PCR product was checked by running on 0.8% agarose gel 

electrophoresis. The amplified DNA was transformed into yeast cells allowing 

its incorporation into specific site in the yeast genome by homologous 

recombination. The grown colonies were then screened using colony PCR 

(see section 2.3.8).  

2.3.7.2 Introducing or deletion restriction sites  

Phusion ® Master Mix with high fidelity buffer (Bioline) was used to remove 

stop codon from 5′ to 3′ coding sequence of LAS17 under its own promoter. 

Instead, the SAL1 restriction site was inserted for cloning purposes. 

  



 

77 
 

Chapter: 2 

50 µl PCR reactions were set up as follow: 

Phusion Master mix 25 µl 

5′ primer (100 ng/µl) 1.25 µl 

3′ primer (100 ng/µl) 1.25 µl 

Template DNA 0.5 µl 

ddH2O 22 µl 

Two steps of annealing were used as both forward and reverse primers have 

melting temperature (Tm) of 72˚C and 71.8 ˚C respectively, thus annealing 

temperature for PCR reaction was set up at ≥72 ˚C.  

 Cycling condition for a routine PCR was as follow: 

Cycle Temperature Time 

Initial denaturation 98˚C 30 second 

 
25-35 cycle 98˚C 

45-72˚C 
 

10 seconds 
15-30 seconds per Kb 
 

Final extension 72˚C 10 minutes 

hold 4˚C Hold 

 

2.3.8 Screening for integration or deletion yeast strains by colony PCR 

The grown colonies were struck onto appropriate agar plate, and then 

incubated at 30˚C (25˚C for las17∆ strain) overnight. Using a yellow tip, a 

small amount of freshly growing cells was transferred into 1.5 ml tube 

containing 20 mM NaOH. The cell suspension was mixed and boiled at 

100˚C for 15 minutes. 2.5 µl of DNA genomic suspension was used as a 

template in standard PCR using primers designed to the regions flanking the 

insert region. 

 25 µl PCR reaction mix was set up as follow: 
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10xTaq  reaction buffer 2.5 µl 

MgCl2 (50 mM stock) 1 µl 

dNTPʼs mix (25 mM) 0.2 µl 

5′ primer (100 ng/µl) 0.5 µl 

3′ primer (100 ng/µl) 0.5 µl 

Taq polymerase (5U/µl) 0.2 µl  

ddH2O 17.6 µl 

 

Standard PCR cycle was employed as described in section 2.3.7.1, and the 

resulting products were electrophoresed in a 0.8% agarose. Yeast genomic 

DNA was used as a control in the PCR reaction. 

2.3.9 PCR clean-up 

To remove the contaminated materials from the PCR sample, QIAquick PCR 

purification kit to obtain a concentration of10 µg DNA. This method is based 

on assembly of DNA fragment into a silica membrane followed by several 

washing and elution steps with the buffers provided with the kit. Binding 

buffer containing pH indicator was applied directly to PCR sample so, if the 

sample had an increase in its pH the colour turns violet. In this case, 10 µl of 

3 M sodium acetate was added to reverse the colour into a yellow indicating 

that, PCR sample at pH≤7.5 and this is the optimal pH for DNA binding to the 

membrane. To bind DNA, the samples were applied to QIAquick spin column 

and centrifuged at 13.000 rpm for 30-60 seconds. The column was washed 

with 750 µl PE buffer, and the DNA was eluted with distilled water. The final 

volume of the elution is dependent on the desired concentration of the PCR 

product.  
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2.4 Bacterial Methods 

2.4.1 Bacterial growth media 

The following media were used for the growth and maintenance of various E. 

coli strains that are used throughout this study.  

2YT 1.6% tryptone 

 1% yeast extract  

 0.5% NaCl 

 and 2% agar for solid media. 

NZY+  broth 1% NZ amine (casein 

hydrolysate) 

 0.5% yeast extract  

 0.5% NaCl 

The media was brought to pH 7.5 with NaOH and then autoclaved.  Prior to 

use, the following supplements were added: 12.5 µM MgCl2, 12 µM MgSO4 

and 0.4% glucose. 

All media prepared for growth of E. coli strains transformed with a plasmid 

conferring antibiotic resistance. Ampicillin was added to the media as 

required to a final concentration of a 100 µg/ml. Liquid cultures were grown 

at 37˚C in an orbital shaking incubator (Certomat BD-1, B. Brown Biotech), 

whereas agar plates were grown at 37˚C Bider APT incubator.   

2.4.2 Preparation of Calcium competent DH5α and BL- 21 bacterial cells 

An overnight bacterial culture was diluted into 100 ml of 2x YT medium ,and 

incubated at 37⁰C with shaking until OD600 = 0.5 to 0.6. Cell culture was 

divided into two Falcon tubes and cooled on ice for 10 minutes. The tubes 

were then centrifuged at 2,500 rpm for 5 minutes at 4˚C. Supernatant of each 

culture was discarded whilst the pellet was resuspended in 50 ml pre- 
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chilled 100 mMCaCl2, and kept on ice for 30 minutes. After incubation, the 

cells were harvested as above, and the pellet of the tubes were combined 

and resuspended in 5 ml of pre-chilled 100 mM CaCl2 and 15% Glycerol. 

The suspension was aliquoted in 100 µl volume into 1.5 ml tubes and snap 

freezing in liquid Nitrogen. The tubes were then stored at ‒80°C until 

required. 

2.4.3 Transformation of Calcium competent DH5α and BL-21(DE3) cells 

Pre-prepared bacterial competent cells (see section 2.4.2) were thawed on 

ice for 2 minutes. 2 µl of DNA plasmid was added to the cells, mixed gently, 

and then incubated on ice for 30 minutes. After incubation, the cells were 

heat chocked at 42 ⁰C in water bath for 90 seconds, and then cooled on ice 

for 2 minutes. 500 µl of 2x YT media was added and cultured at 37˚C with 

shaking for an hour. The cells were centrifuged at 10.000 rpm for 1 minute, 

and the media was discarded while the pellet was resuspended in 150 µl 

2xYT. This was spread onto 2x YT agar plate containing Ampicillin, which 

then incubated at 37 ˚C overnight.  

2.4.4 Transformation of XL10- Gold Ultracompetent cells  

The protocol used was based on manufacturer instructions (Stratagene). The 

XL10-Gold ultracompetent cells were thawed on ice and 1 µl of β-

mercaptoethanol provided with the cells was added into 22.5 µl aliquots and 

incubated on ice for 2 minutes. 2 µl of DpnI treated DNA (see section 2.3.6) 

was added to the ultracompetent cells, the mixture was mixed gently and 

placed on ice for at least 10 minutes. Cells were then heat shocked at 42 °C 

in water bath for 30 seconds and then incubated on ice for 2 minutes.500 µl 

of pre-heated NZY+  broth medium was added to the cells and incubated at 

37°C for 1 hour with shacking (225 rpm). The transformation reaction was 

then plated onto 2xYT + Amp plate and incubated at 37°C overnight. The 

grown Colonies were inoculated onto 5 ml of 2xYT + Amp and incubated 

overnight at 37°C. Overnight grown transformants was DNA isolated (see 

section 2.3.1) and then sent for sequencing. 
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2.4.5 Glycerol stock of bacterial cells 

For long term storage of bacteria, 1ml culture was mixed with 1ml 50% sterile 

glycerol in a cryovial and then stored at ‒80°C freezer. 

2.5 Yeast methods 

2.5.1 Yeast Growth Media 

The following media were used for the growth and maintenance of S. 

Cerevisiae strains used throughout this study.  

YPD 1 % yeast extract (Difco) 

2 % peptone (Difco) 

0.02 % adenine (Sigma) 

For solid media, supplement with 2 % agar (Difco). 

Synthetic “drop out” is a minimal SD medium, was used as a selective media 

for growing yeast cells to verify the auxotrophic phenotypes. To select for a 

plasmid carrying a gene marked with auxotrophic marker, the relevant 

supplement was omitted from the media (i.e. dropped out) except those 

required for the auxotrophic plasmid’s selection. The relevant drop out mix 

was used following manufacturer’s instructions (Formedium, Norwich, UK). 

Drop-out media 0.67 % nitrogen base without amino acids (Difco)  

Drop-out mix (added as directed) 

For solid media, supplement with 2 % agar 

Sporulation media 1% potassium acetate 

2% agar 

Carbon Source: 

YPD and drop-out media were routinely supplemented with 40 % glucose 

(Dextrose) to 2 % final concentration.  
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2.5.2 Crossing of two haploid S. cerevisiae strains  

Small amount of freshly grown MAT a yeast strain were placed on top of an 

equal amount of MAT α strain on a fresh YPD plate, and then grown at 30 ˚C 

for 5 hours. Cells were then struck onto selective media that would allow the 

growth of diploids.   

2.5.3 Sporulation and tetrad dissection of diploids on solid media 

Tow strains of opposite mating type were grown overnight and then mated as 

described in section 2.5.2. Diploid strain to be sporulated was grown onto 

YPD plate overnight at 30˚C. Cells was patched onto sporulation plate and 

left on bench for up to 5 days. The plate was monitored daily to check for 

development of four-spored asci. Once four-spored asci had begun to 

develop, each asci was picked using a tooth pick, and resuspended in 100 µl 

sterile ice-cold 0.1M Potassium phosphate buffer (pH 7.4). Cells were kept 

on ice for 30 minutes and then spun down at 3000 rpm for 3 minutes (Boeco 

C-25) with the pellet being resuspended with 75 µl sterile ice-cold 0.1M 

Potassium phosphate supplemented with 0.5 mg/ml-100T zymolyase (ICN 

Biomedical). The cells were mixed and incubated at 37 ˚C for 4 minutes and 

then kept back to ice. Cells were diluted with 500 µl of potassium phosphate 

buffer and streaked on YPD plate. Tetrads were isolated using a Singer 

micromanipulator and dissected into rows of four spores on YPD plate using 

the X and Y coordinates. The plate was then incubated at 30˚C until the 

spores had germinated and became visible. The number of viable spores 

was noted and they were patched onto YPD or selective plates to test for 

genetic markers. 

2.5.4 Determination of Yeast cell Mating Type  

To determine mating type of the yeast cells, tester mating type strains 

(KAY30 and KAY31) were struck horizontally across his- plate. Each colony 

of unknown mating type was crossed vertically onto each tester mating type 

strain. The plate was then incubated overnight at 30˚C or 25˚C for the LAS17 

deletion strain, with only the cells having mated being able to grow on the 

plates.  
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2.5.5 Yeast Transformation 

2.5.5.1One step transformation method, (Chen et al., 1992)  

A 5 ml of overnight cell culture was refreshed by inoculation of 250 µl cells 

into 5 ml liquid media and then grown until OD600 = 0.6. Cells were harvested 

by centrifugation at 3000 rpm for 3 min, and resuspended with100 µl ONE-

STEP buffer containing 0.2 M Lithium Acetate, 40% PEG 3350, pH 5.0, and 

100 mM DTT. 5 µl (50 µg) of pre-boiled single stranded herring sperm 

(DNAssd), and 0.5-1 µl DNA plasmid were added. The tube was mixed 

briefly by vortexing and then incubated at 45˚C in water bath for 30 minutes. 

Cells were plated onto an appropriate selective agar plate and incubated at 

30˚C for 48 hours. This method is inappropriate for transformation of 

temperature sensitive (ts) yeast strains instead, high efficiency LiAc method 

was undertaken (section 2.5.5.2). 

2.5.5.2 High Efficiency Lithium Acetate method 

Modified method from Gietz and Schiestl (2007) 

An overnight culture was refreshed into 5 ml of YPD medium and grown at 

30˚C until OD600 reached 0.5-0.6. The cells were harvested by centrifugation 

at 3000 rpm for 5 minutes, media was discarded while cell pellet was washed 

once with 5 ml 1X TE buffer ,and then once with 5 ml of 1X Lithium Acetate 

in 1X TE buffer. The cell pellet was resuspended in 100 µl 1X Lithium 

Acetate in 1X TE buffer, and then 1 µl DNA plasmid (20 µl DNA cassette was 

added for mutants integration or gene deletion in yeast genome), 15 µl 

ssDNA were added respectively to the cells. The cells were mixed and 700 µl 

of 40 % PEG in 1X Lithium Acetate in TE buffer was added, followed by 

incubation at 30˚C with shaking for 1hour. The cells were pelleted after being 

spun down at 3000 rpm for 5 minutes, buffer was discarded, and cells were 

resuspended in 150 µl SD media as required. Cells were placed on an 

appropriate agar plate containing appropriate drop out medium and then 

incubated at 30˚C until the colonies had begun to appear.  
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2.5.6 Temperature sensitivity of yeast cells on solid growth media 

An overnight culture was diluted to 0.5 unites (U) with an appropriate 

synthetic medium, cells were1:10 serially diluted and 3 µl of each cell culture 

was spotted onto SD agar plates using multi-pipette. Plates were placed on 

bench to let dry and then incubated at either 30˚C or 37˚C for 48 hours. 

Temperature sensitivity phenotype had been characterised for the strains 

that were unable to grow at 37˚C. 

2.5.7 Yeast cells growth rate measurement 

To determine the doubling time of yeast strains, cells were grown overnight 

to stationary phase in synthetic medium. The OD600 was recorded for each 

cell culture which had being diluted to OD600= 0.2 with fresh medium and 

then grown at 30˚C with shaking. The DD600 was measured over 6 hour 

using Camspec–M501 Single Beam Scanning UV/Visible 

Spectrophotometer.  

2.5.8 β-galactosidase liquid assay of yeast (Kaisar et al., 1994) 

This assay is modified method from Guarente. (1983) 

Diploids carrying both Gal4-activation domain and Gal4-binding domain were 

grown overnight and refreshed next day by inoculation of 250 µl cells into 5 

ml SD media. Cells were grown until OD600= 0.5, and then harvested by 

centrifugation at 2000 rpm for 5 minutes. The supernatant was discarded and 

the pellet cell was resuspended in 1ml Z buffer. In the fume hood, three 

drops of chloroform and two drops of 1%SDS were added to the 

resuspended cells using glass pipette and then the cells were vortexed at top 

speed for 1 minute. The samples were incubated for 5 minutes at 28 ˚C and 

prior to addition of 0.2 ml o-nitrophenyl-β-D-galactoside (OPNG). Once 

OPNG added, the time was recorded until the samples had acquired pale 

yellow colour. At this stage, the reaction was stopped by adding 0.5 ml 

Na2CO3 stock solution; samples were centrifuged at 3000 rpm for 10 minutes 

in order to remove the cell debris. Cell pellet was discarded and OD420 of the 

supernatant was measured. β-galactosidase units were calculated using the 

following formula: 

http://www.ncbi.nlm.nih.gov/pubmed/?term=Guarente%20L%5BAuthor%5D&cauthor=true&cauthor_uid=6310321
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OD240 is the optical density of the o-nitrophenol product.OD600 is the optical 

density of the culture at the time of assay. Volume is the amount of the 

culture used in the assay in ml. Time is in minutes.  

Z buffer (Miller, 1972); per 100 ml: 1.61g  Na2HPO4.7H2O 

 0.55 g  NaH2PO4.H2O 

 0.075  KCl 

 25 mg MgSO4.7H2O 

 270 µl  β-mercaptoethanol 

The principal of the two hybrid assay is displayed below in figure 2.1. 

2.5.9 Glycerol Stock of yeast cells 

For long term storage 15% mixture of 750 µl yeast culture and 750 µl of 50% 

sterile glycerol was mixed in a cryovial tube and then stored at ‒80˚C.  

 

 

 

 

 

 

 

 

 

OD240 

     OD600 of assayed culture x volume assayed x time  

 

β-galactosidase activity = 

= 
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UCAS Reporter gene 

 

UCAS Reporter gene 

UCAS Reporter gene 

 

Figure 2.1 Theory of yeast two hybrids (Y2H). 

Fusion proteins either Gal4-DNA binding domain or Gal4-DNA activation 

domain alone is unable to activate expression of the reporter gene. 

Expression of the reporter gene can promoted only when the proteins of 

interest interact and bring binding domain and activation domain together. 

Binding domain Activation domain 

Expression 



 

87 
 

Chapter: 2 

2.6 Protein methods 

2.6.1 Small scale yeast whole cell extract prep using Glass Beads 

An overnight culture of yeast cells was refreshed till OD600 = 0.5-0.6, and 3U 

of the cells was harvested by centrifugation at 3000 rpm for 5 minutes. Cell 

pellet was washed once with 1ml of distilled water, the supernatant was 

removed, and then 125 µl of 2x sample Buffer was added to the pellet. The 

pellet mix was transferred into clean 1.5 ml tube containing 100 µl of Acid 

washed glass beads. The sample was vortexed using cell disrupter for 3 

minutes and then boiled in heat block at 100˚C for 3 minutes. The sample 

was left to cool on bench, centrifuged briefly to pellet the glass beads, and 

then stored immediately in ‒20˚C. 

2x sample buffer: 2.5 ml 0.5 M Tris pH 6.8 

 2.0 ml  Glycerol 

 2.0 ml 10% SDS (Sodium Dodecyl Sulfate) 

 2.0 ml ddH2O 

 0.5 ml bromophenol blue solution 

2.6.2 Protein extraction, using Liquid Nitrogen-Grinding method 

An overnight yeast culture was diluted into 100 ml of SD medium to OD600= 

0.6-1.0. The cells were harvested by centrifuging at 3000 rpm for 3 minutes. 

The cell pellet was washed with 1ml of ddH2O and spun down as above. The 

cell pellet was resuspended in 1ml of UBT Buffer freshly supplemented with 

protease and phosphatase inhibitors. The cell slurry was frozen drop wise 

into liquid nitrogen in 50 ml Falcon tube. Cells were ground in the presence 

of liquid nitrogen using a pestle and mortar. The yeast cell extract was 

collected into 1.5 ml tubes and stored at ‒ 80˚C until required. 

UBT Buffer : 50 mM KHEPES  pH 7.5 

 100 mM KCl 

 3 mM MgCl2 

 1mM EGTA 

 1% Triton X-100 
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Protease and phosphatases 

inhibitors : 

40 µl EDTA free protease inhibitor cocktails  

1 µM of 10 mM pepstatin-A 

 10 µM of 10 mM leupeptin 

 1mM of 500 mM NaF 

 0.5 mM of 100 mM Na3VO4 

  

2.6.3 Immunoprecipitation (IP) from S. Cerevisiae  

Cell extract was prepared using liquid nitrogen grinding method (see section 

2.6.2). Cell lysate was centrifuged at 14,000 rpm for 20 minutes at 4˚C in a 

TLA100 roter (Beckman™). The supernatant was transferred onto a clean 

tube and precleared with 20 µl IgG mouse–Agarose conjugate if required. 

The pre-cleared lysate was incubated with 40 µl of the Agarose conjugated 

antibody at 4˚C for 2 hours on spin-mixer. Beads were pelleted and the 

supernatant was transferred into clean tube and mixed with equal volume of 

2x sample buffer. Beads were washed 3x with 500 µl with UBT buffer 

supplemented with protease and phosphatase inhibitors, and kept cool 

during the washes. To elute the protein, the beads were resuspended in 40 

µl of 2x sample buffer and boiled at 100˚C for 5 minutes. The beads were 

briefly centrifuged and equal volumes of supernatant and pellet (beads) were 

loaded onto SDS-PAGE gel (see section 2.6.6). Proteins were then analysed 

by Immunobloting application (see section 2.6.11). 

2.6.4 Growing and induction of C41 (DE3) and BL21 E.coli for protein 

purification 

A plasmid expressing GST tagged protein of interest was transformed into 

C41 E. coli or BL21 E. coli (see section 2.4.3). Freshly grown transformants 

were scrapped from the plate using scraper and suspended in 1L 2xYT (+ 

Ampicillin) medium (see section 2.4.1). Bacterial culture was grown at 37⁰C 

until OD600 nm =0.6 to 0.8, at this point protein expression was induced by 

adding 0.1 mM isopropyl-β-D thiogalactopyranoside (IPTG) and cell 

incubation at the same conditions was continued overnight. For BL21 E.coli 

expressing GST fusion protein, induction condition was carried at 30 ⁰C  
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overnight. The overnight culture was harvested at 7700xg for 15 minutes at 

4˚C. The resulting bacterial pellet either used immediately or stored at ‒ 20˚C 

freezer until required.  

2.6.5 Purification of GST tagged proteins 

All buffers and reagents were pre-chilled and kept on ice during the whole 

procedures. Cell pellet was washed with 50 ml 1X PBS once and then 

resuspended in 10 ml of 1X PBS buffer supplemented with protease 

inhibitors. Whole cell lysate was prepared by 3x sonication on ice for 30 

seconds each in a cell sonicator (Sanyo Soniprep 150). The lysate was then 

centrifuged at 21000 xg for 42 minutes at 4˚C, the supernatant was removed 

filtered 3x through a 0.2 µm syringe filter (Sartorius). The supernatant was 

transferred into a clean Falcon tube containing 250 µl 1XPBS prewashed 50 

% slurry glutathione sepharose beads 4B (Amersham-EG Health care) and 

then incubated at 4˚C for 1hour on a rolling platform. Beads were 

sedimented by centrifugation at 500 g for 5 minutes. the beads pellet was 

washed with 10 ml of 1x PBS pH7.4, 1 % Triton x-100 , 300 mM NaCl and 

then with 1x PBS. 10 ml wash was performed with wash buffer (50 mM Tris 

pH7.0, 300 mM NaCl, 1mM EDTA pH8.0, 1 mM DTT), and then washed 3x  

with 10 ml elution buffer (50 mM Tris pH7.0, 50 mM NaCl, 1 mM EDTA 

pH8.0, 1 mM DTT) . Beads were then resuspended in 300 µl of elution 

buffer. GST tag cleavage was carried out when required using 10 µl pre-

purified Prescission Protease in 300 µl elution buffer. The Prescission 

Protease cleaves between Glycine and Glutamine residue of TEV 

recognition sequence. The reaction was incubated at 4˚C for 8 hours on 

roller platform. 
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2.6.6 SDS-PAGE Electrophoresis 

The appropriate percentage of acrylamide gel was poured according to the 

recipes below. 

Resolving gel: 

 6 %  10 % 

Sterile water 2.7 ml 2 ml  

30% acrylamide mix 1 ml 1.7ml 

1.5 M Tris (pH 8.8) 1.3 ml 1.3 ml 

10% APS 50 µl 50 µl 

10% SDS 50 µl 50 µl 

TEMED 4 µl 4 µl 

 

5% stacking gel: 

Sterile water 1.71 ml 

30% acrylamide mix 0.501 ml 

Stacking buffer  

    (0.5 M Tris-HCl (pH 6.8), 0.4 % SDS) 

0.75 ml 

10%  APS 35 µl 

TEMED 3.5 µl 

Running conditions: gels were run in 1x SDS running buffer at 70V through 

the stacking gel and then 140V in the BioRAD equipment until the dye 

reached the bottom edge of the gel. For purified proteins, precast BioRAD 

Criterion TGX precast gels (any kDa) and mini-PROTEAN TGX precast gels 

(any KD) were used. Criterion TGX gels were run in BioRAD Criterion cell for 
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35 minutes at 200 V and mini-Protean TGX gels were run in Mini protean 

Tetra cell for 26 minutes at 200 V in 1x SDS running buffer  

2.6.7 Phos-Tag SDS-PAGE electrophoresis 

A dinuclear manganese complex of acrylamide-pendant Mn2+–Phos-tagTM 

from NARD institute ltd., was used to test for Las17 phosphorylation which 

can be detected by observing mobility shift of the phosphorylated species of 

protein. The method based on binding of Manganese molecule to two 

vacancy sites on the PhosTag compound forming a stable complex with 

phosphate group at pH 9.0. 10 % SDS PAGE resolving gel was prepared as 

described in section 2.6.6, and 1:1 ratio of Phos-tagTM and 10 mM MnCl2 

solution were added subsequently to the gel mix. Protein extracts were 

loaded onto Mn2+–Phos-tag acrylamide gel and run in 1x running buffer, 

initially at 50 V through the stacking gel and then 150 V until the dye reached 

the bottom edge of the gel. The Las17-3x HA phosphorylation was detected 

by western blotting and visualised Alkaline phosphatase (see section 2.6.12). 

2.6.8 Coomassie staining of SDS polyacrylamide gels 

Proteins separated by SDS-polyacrylamide gel were detected using 

Coomassie Brilliant blue stain (Bio Rad). The electrophoresed gel was 

soaked in Coomasie stain solution (0.2 % (w/v) Coomasie Brilliant Blue 

R250, 7% (v/v) acetic acid) and then heated in the microwave for 30 seconds 

and left on a rocking platform with continuous movement. The gel was then 

destained overnight using several times changes of distilled water until the 

appropriate level of contrast between the protein bands and the gel was 

achieved. 

2.6.9 Determination of protein concentration  

Beerʼ Low method is based on determining the absorbance of the Cysteine 

and Tryptophan residues of protein at 280nm. However, this method would 

be inappropriate due to lack of tryptophan residues of Las17 peptide  
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sequence. Alternatively, the purified Las17 from sample containing 

contaminants was quantified using the following approach. 

2.6.9.1 Bradford protein Assay (Colorimetric Method) 

Bradford assay is based on binding of Comassie brilliant blue G-250 to 

unknown protein and compare this binding to that of different concentration 

of a standard Bovine serum albumin (BSA) protein. The Comassie solution is 

red-brown in its acidic solution, when the protein binds; the colour turns blue 

due to change in the pka value of the dye.  The assay was performed by 

preparing duplicate aliquots of 0.5 mg/ml BSA (5, 10, 15, and 20 µl) into 1.5 

ml tubes and the volume in each tube was brought to 100 µl with 0.15 M 

NaCl. 10 fold dilution of unknown protein was made up in the same buffer as 

standards protein and two blank tubes of 100 µl of 0.15 M NaCl were also 

included in the assay. 1 ml of Comassie solution was added to each tube, 

mixed thoroughly, and incubated for 2 minutes at room temperature. Each 

sample was A595nm measured using 1–cm path length cuvette (1 ml) and 

standard curve was generated by blotting absorbance versus protein 

concentration. The concentration of the unknown protein was calculated from 

the least squares of the line standard curve. This assay quantifies 1 to 10 µg 

protein concentration.  

2.6.9.2 Determining Las17 protein concentration by densitometry  

The concentration of the purified protein was also assessed by combination 

with standards from purified rabbit actin samples (see section 2.7.2). A series 

of rabbit actin was diluted in 2x sample buffer to final concentration of 0.25, 

0.3, 0.5..to 5 µM. 10 fold dilution of unknown protein sample to be measured 

was also prepared. These standards were run alongside with purified protein 

of unknown concentration on precast BioRAD Criterion TGX precast gels 

(any KD). The gel was then Comassie stained, destained, and then viewed 

using ChemiDoc™XRS+ (BioRad). Densitometric analysis of unknown bands 

were quantified using Image lab™ software (BioRad). Bands for protein 

bands were selected; intensity substraction of the background was applied, 
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 and the concentration of the standards was referenced. Graph line was 

generated using the values of the actin standards concentrations were 

blotted against the value of the relative intensity of the unknown protein on 

the line curve.  

2.6.10 Western Blotting 

Proteins were separated by SDS-PAGE electrophoresis as described in 

section 2.6.6. These proteins are transferred using two methods: semi-dry 

method and wet transfer method. Semi-dry method was used to transfer 

protein onto TransBlot®-Torbo™ mini PVDF membrane from BioRad. The 

transfer was carried out using TransBlot Turbo system from BioRad. Wet 

transfer method was carried out using poly-vinylidene difluoride (PVDF) 

membrane in which PVDF membrane was soaked in 100 % methanol, then 

in transfer buffer (10 mM [N-cyclohexyl-3-aminopropanesulfonic acid] 

CAPS,10 % Methanol pH11), along with two sponges and six pieces of 

Whatman filter paper cut to the same size as the acrylamide gel to be 

transferred. A sandwich containing a sponge, three pieces of wet filter paper, 

PVDF membrane, the remaining sponges, and the three pieces of filter paper 

were assembled and then placed in the BioRad blotting apparatus with the 

membrane closest to the negative pole (anode). A block of ice was placed in 

the apparatus to keep the temperature low and the transfer was done for 3 

hours at 300 mA.  

2.6.11 Western blot detection using Enhanced Chemi-Luminescence 

(ECL)  

This system is based on detecting antigen using horseradish peroxidise 

conjugated antibodies and the chemiluminescent substrate luminol. After 

plotting, the membrane was blocked in blocking solution (5% milk powder 

(Marvel) in 1x TBST (50 mM Tris, 50 mM NaCl, 0.05%Tween-20)) for 30 min 

at room temperature on rocking platform. The membrane was rinsed with in 

1x TBST and then placed in plastic bag with 2 ml of blocking buffer in the 

presence of recommended concentration of primary antibody (see table 
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 2.2.4), and incubated for 1 hour and room temperature or overnight at 4˚C. 

After incubation, the blot was washed with 1x TBST briefly and then 3x 

washes were carried out every 10 minutes. The membrane was placed in 15 

ml falcon tube and incubated with blocking buffer containing horseradish 

peroxidise (HRP) conjugated secondary antibody (see table 2.2.4) for 1 hour 

at room temperature on rocking platform. The membrane was then washed 

three times with 1x TBST for 5 minutes each. In the dark room equal 

volumes of western blotting detection Reagents (GE Healthcare 1ml of 

solution (A) and 25 µl of solution (B)) plus ECL reagents including: ECL I (2.5 

mM Luminol (3-Aminophthalhydrazide–Fluka no. 09253), 4.4 mM p-

Coumaric acid in DMSO, 100 mM Tris pH 8.5) and ECL II (0.0192 % H2O2, 

100 mM Tris pH 8.5) in 1:1 ratio were mixed and added to the membrane. 

The membrane in the developing solution was incubated for 1-2 minutes in 

dark. Solution mix was drained off, while the membrane was placed up side 

in plastic bag and developed for 30 minutes using ChemiDoc™XRS+ 

(BioRad). 

2.6.12 Western blot detection with Alkaline Phosphatase 

The blotted membrane was probed with antibodies carrying Alkaline 

Phosphatase marker (AP) with a visibly detectable colour change. The 

membrane was blocked with 5 % Bovine Serum Albumin (BSA) in 1x TBST 

Buffer and probed with primary antibody as described in section 2.8.2.2). 

After washing with TBST, the blot was incubated with alkaline phosphatase 

conjugated secondary antibody diluted in 1xTBST at the required 

concentration for 1 hour at room temperature. the membrane was washed 3x 

for 5 minutes each and then developed in 10 ml of developing solution (100 

mM NaCl, 5 mM MgCl2, 100mM Tris at pH9.5) 66µl NBT made of 0.5 g NBT 

powder in 10 ml 50 % DMF and 66µl 5-Bromo-Chloro-3-indolyl phosphate ρ-

toluidine salt (BCIP) stock of o.25 g in 10 ml 100 % DMF. The membrane 

was incubated in dark at room temperature until sufficient colour had 

developed. The reaction was then stopped by washing the membrane with 

water and allowed to dry on the bench overnight. 
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2.6.13 Two Dimensional Gel-Analyses (2D gel) 

2D gel electrophoresis is proteomic analysis that involves separation, 

identification, and quantification of many proteins simultaneously from a 

single sample. The principle of 2 D gel based on two steps: first dimension 

and second dimension. The first dimension step is isoelectric focusing (IEF), 

which separates proteins according to their isoelectric points (Ip), whilst 

second –dimension step required for separation of proteins according to their 

molecular weight by SDS-PAGE gel electrophoresis. Each spot generated by 

two dimensional gels potentially corresponds to a single protein species in 

the sample. 

The method described in this work is for 2-D electrophoresis using precast 

IPG strips (Immobiline DryStrip gels) from GE Healthcare. 

Immunopreciptated the 3x HA tagged Las17 was eluted with the hydration 

buffer to a concentration of 1mg/ml. Elution was carried out at room 

temperature for 30 minutes with gentle shaking. 3-10 pH Immobiline 

DryStrips gels (7cm) were incubated in dehydration buffer overnight in the 

reswelling try with the gel side down. The protein sample was reduced with 

1mM DDT at room temperature for 20 minutes and then alkylated with 0.5 % 

ampholites and 1.2 % Destreak buffer as above. The Isoelectric focusing IEF 

was carried out in Peter Sudbury laboratory using Ettan IPGphor3 and the 

IEF parameters were set up according to the length of the Immobiline Dry 

Strip gel as stated in the manufacturer guideline. 

IFF Program 

Hydratation 0h 20ºC 

300V 30 minutes  

1000V gradient 30 minutes  

5000V gradient 1 hour.20 minutes  

5000V step & hold 20 minute  

500V step & hold 2 hours  
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Prior to the second dimensional gel, the strips were reduced with 2%DTT in 

balancing buffer (6 M urea, 50 mM Tris pH8.8, 2 % SDS, 30 % Glycerol) for 

30min at room temperature with gentle shaking. Following this, alkylation 

step was performed with 2.5 % iodoacetamide in balancing buffer.  The Dry 

Strip gel was washed several times with distilled water then with 1x running 

buffer. The strip was loaded vertically on 12 % Precast gel (Bio-Rad) and the 

gel was sealed with 0.5 % agarose made in running buffer. Electrophoresis 

was carried out at 140 V for 1.5 hour. The gel was then analysed using 

western blotting application (see section 2.6.11). 

2.6.14 In-Gel Tryptic digests  

The SDS-PAGE gel containing protein of interest was stained with safe stain 

(from Invitrogen) for 1 hour at room temperature. After incubation, the gel 

was destained by applying several washes with Milli-Q water (at 18.2MΩcm-1 

at 25˚C) within the fume hood. Gel band containing protein of interest was 

excised into a siliconized eppendorf tube with clean scalpel blade, and 

covered with 200 µl solution I (200 mM ABC, 40 % ACN) followed by 

incubation at 37˚C for 30 minutes. This step was repeated 4 times with fresh 

solution I each time. Gel pieces were then dried down in a vacuum 

concentrator for approximately 15-30 minutes prior to reduction and 

alkylation steps. Reduction of gel pieces was carried out by adding 200 µl 

freshly made reduction buffer (10 mM DTT, 50 mM ABC in solution II) and 

then incubated at 56 ˚C for 1 hour. The samples were spun down at 13 Kg 

for 10 seconds, supernatant was discarded, and 200 µl alkylation buffers (55 

mM IAA, 50 mM ABC made in solution II) was added to the gel pieces and 

incubated at room temperature for 30 minutes in the dark. Gel pieces were 

washed twice with 200 µl solution II (50 mM ABC) for 15 minutes each, and 

then washed with solution III (50 mM ABC, 50 % ACN) for 15 minutes at 

37˚C. Samples were spun down at 13 Kg for 10 seconds, supernatant was 

removed, and the gel pieces were dried in vacuum concentrator for 15-30 

minutes.  
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The enzymatic digest for the gel pieces was performed by adding 20 µl of 

Trypsin (equivalent to 0.4 µg Trypsin dissolved in solution IV (40 mM ABC, 9 

% ACN)) and topped up with 50 µl of solution IV and then incubation at 37˚C 

was carried out overnight.  

To extract the peptides, the liquid resulted from gel digest was collected onto 

a clean siliconized eppendorf and labelled as supernatant collection tubes 

(SCT). The remaining gel pieces in the tubes were covered with 20 µl 

solution V (100 % ACN), briefly vortexed and then incubated at 37˚C for 

15minutes. After incubation, 50µl of solution VI (5 % FA) was added to the 

tubes, vortexed briefly and then centrifuged at 13 Kg for 15 minutes, 

supernatant was removed and then transferred into SCT. Washes with 

solution V and VI was repeated once more as described earlier.  

50 µl of solution VII (50 % ACN, 5 % FA) was added to the gel pieces, shortly 

vortexed and then incubated at 37˚C for 30 minutes. Samples containing gel 

pieces were vortexed and then centrifuged at 13Kg for 10 minutes, 

supernatant was transferred into SCT, and the gel pieces were discarded. 

The supernatant collection tubes were placed in vacuum concentrator and 

the extracted peptides were dried at low heat overnight. Next day, the 

resulting peptide extracts were stored at −20˚C prior to Mass Spectroscopy 

analysis. 
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2.7 Actin Methods 

2.7.1 Actin cytoskeleton Acetone powder Preparation 

The protocol is based on the methods described by Perry, 1955 Methods in 

Enzymology 2 pg 583.   

The hind leg muscles obtained from a maximum of four freshly killed rabbits 

was excised, sealed, and kept cool to preserve endogenous ATP. (Rabbits 

obtained from either the university of Sheffield animal house, University of 

Sheffield, or from Woldsway Foods Ltd., Spilsby, Lics., UK).  

All procedures were performed at 4˚C room with all the equipment and the 

reagents pre-chilled. Fat and connective tissues were removed from the 

rabbit muscles. The muscles were minced twice in a Porkert mincer and then 

extracted in 3 L of Guba Straub buffer (300 mM NaCl, 100 mM NaH2PO4, 50 

mM Na2HPO4, 1 mM NaN3, 1 mM MgCl2, 1 mM Na4P2O7, 0.05 mM PMSF, 2 

mM ATP, adjusted to pH 6.5) and the mixture was stirred for 10-15 minutes. 

The extracted mixture was then centrifuged using JLA8.1000 roter at 3000xg 

for 20 minutes at 4˚C. The prespun muscle residue of myosin prep was 

resuspended in 1 L of 10 volumes of 1 x Buffer (I [4% NaHCO3, 1mMCaCl2 

made up in 1L distilled water]) and stirred for 15 minutes. The residue was 

then filtered through four layers of cheese cloth and then resuspended in 1 L 

of 10 volumes of 1x buffer (II [10 mM NaHCO3, 10 Mm Na2CO3, 0.1 mM 

CaCl2, 50 µl of 2 M buffer (I) made up in distilled water]). The mixture was 

resuspended manually by agitation for 10 minutes and again filtered as 

above. The suspension was diluted into 10 L water and quickly squeezed 

through cheese cloth (this step is crucial as muscle swells at low ionic 

strength and changing of F-actin to G-actin would be lost otherwise). The 

residue was resuspended in 2.5 L cold acetone (Fisher Scientific), stirred, 

and left to stand for 15 minutes at room temperature. The residue was then 

filtered through cheese-cloth and the acetone washing/filtering step was 

repeated 3-4 times until the supernatant becomes clear. The acetone prep 

was spread out on filter paper (3mm Whatman paper) and dried under the 

fume hood overnight. The dried acetone powder was collected and stored 
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in a sealed container at ‒80˚C until required. 

2.7.2 Rabbit skeletal muscle actin preparation from acetone powder 

G-actin was purified from acetone powder made from rabbit muscle based 

on a modified method (Winder et al., 1995) of actin purification method in 

(Spudich and Watt, 1971).  

5 g of rabbit skeletal muscle acetone powder was resuspended in 100 ml 

pre-chilled G buffer (2 mM Tris-HCl pH 8.0, 0.2 mM CaCl2, 1 mM NaN3, 0.5 

mM DTT, and 0.2 mM ATP) in 250 ml beaker that had placed inside a larger 

beaker with ice was being filled around. The suspension was left stirring 

slowly and continuously at room temperature for 20 minutes. The contents 

was then transferred into 50 ml Falcon tube and spun at 20.000xg for 35 

minutes at 4˚C. Supernatant was filtered through two pinches of glass wool 

packed into the neck of a funnel, and then through a 4.5 µm filter and 0.22 

µm filter (Minisart). A final concentration of both 0.8 M KCl and 2 mM MgCl2 

were added to supernatant and left stirring gently at room temperature for 30 

minutes and then at  4˚C for extra 30 minutes. To pellet F-actin, actin was 

ultra-centrifuged at 35000 rpm using (Beckman Coulter Optima L-90K, Type 

45 Ti rotor) at 4°C for 2 hours.(to prevent any collapse during the 

centrifugation, the tubes were topped up with F- buffer [G-buffer ,KCl and 

MgCl2] until it is 3/4 full ). Supernatant was discarded and the F- actin pellet 

was extracted and placed into a 15 ml glass Teflon homogeniser and then 

resuspended with 10 ml G-buffer. Pellet was homogenised and then dialysed 

against G-Buffer, at 4°C, for 3 days with three changes during the day. Actin 

sample was then collected into 50 ml tube and centrifuged at 35.000 rpm 

(Beckman Coulter OptimaMax 130K, MLA80 rotor) for 2 hours. The clear 

supernatant (usually the top ~2/3 of the tubes) was carefully removed and 

gel filtered on a Sephacryl S300 gel filtration column (Amersham XK26), 

equilibrated in G-Buffer. The actin peak was collected in ~3 ml fractions 

using an Amersham LKB RediFrac collector and stored at 4°C.
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The purified actin solution contains ATP, and ATP absorbed at wave 

length=280 nm which adds to absorbance value given by actin. This can be 

avoided by using 290nm wavelength using spectrophotometer.  

The actin concentration was determined using the equation:  

µM actin= A290nm x dilution factor/ 0.0264 

Where 0.0264 is the extinction coefficient value of actin 

2.7.3 Pyrene Actin preparation 

All procedures were performed at reduced light at 4˚C. Pyrene (N-(1-pyrene) 

iodoacetamide) labelled actin was prepared using fresh actin prep from a 

column performed in G buffer without DTT. The peak and post peak fractions 

of G-actin were mixed and a concentration of A290. e= 0.63ml/(mg-cm) was 

determined using spectrophotometer. G-actin fraction mix was diluted to 1 

mg/ml with G buffer and then polymerised by adding 100 mM KCl and 2 mM 

MgCl2, and this was slowly stirred at room temperature for 20 minutes. 

Pyrene (MW385) was dissolved in DMF to make 10mg/ml and then added to 

polymerised actin at 10:1 molar ration while stirring. The vessel containing 

actin-pyrene mix was covered with foil and stirred continuously at 4˚C 

overnight. Dialysis step was carried out against G buffer in which 0.5 mM 

DTT added in smallest diameter tubing (~12-14kDa in size). For making actin 

more monomeric, several changes were done in hours which enable G actin 

be separated from pyrene precipitate. Actin-pyrene prep was spun down at 

5000 rpm using MAL80 roter for 5 minutes. Extra depolymerising and stirring 

steps were carried out as above and, actin-pyrene prep was centrifuged at 

40000 rpm at 4˚C in MAL80 roter for 1 hour. Supernatant was removed and 

the remaining yellow pellet was resuspended in G buffer containing DDT to 

final concentration of 5 mg/ml. Pellet was homogenized with loose fitting 

dunce plunger, and then went through gel filtration step. The pyrene-actin 

mixture was dialysed against G buffer at 4˚C with several changes was 

made. Pyrene-actin was then centrifuged at 25000 rpm for 2 hours in 

swinging bucket roter (Sw 41Ti). The 2/3 top of supernatant was removed 
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with a pipette and transferred to clean tube. The pyrene–actin was gel 

filtered on foil-wrapped G-150 column equilibrated with G buffer with DTT, 

and the prep was collected in the fraction collector covered with foil. The 

concentration labelling of Pyrene-actin prep was determined using the 

following formula: 

Actin/ pyrene µM = (OD290 (OD344 × 0.127) / 0.0264 

For pyrene: e at A344= 2.22×104/ (M-cm) 

For actin: corrected A290 for actin X*=X-0.127Y = 2.66×104/ (M-cm) 

Where X=A290, Y=A344 

% labelled= [pyrene] / [actin] 

Working aliquots of 20 µl were subjected to rapid freezing by dropping the 

pyrene/actin tubes in liquid nitrogen and then stored at – 80 ˚C. 

2.7.4 G-actin binding assay on GST beads 

Prior to actual experiment G actin was spun down at 90K rpm for 15 minutes 

and spun down at 100,000 rpm using Beckman Coulter Optima Max 130K, 

TLA100 rotor for 15 minutes at 4°C to remove any precipitate or polymerised 

actin.  Monomeric actin was then transferred into separate tube and left on ice 

to be used in the assay. GST fusion on beads were buffer exchanged by 

applying 3x washes with 10 ml of G buffer. GST fusion on beads was mixed 

with 5 µM G-actin to a final volume of 100 µl in G buffer, and then incubated 

at room temperature for 1 hour. After incubation, beads were spun down at 

5000xg for 3 minutes, supernatant was transferred into clean tubes, and 

equal volume of 2x sample buffer was added to the tubes. 100 µl G buffer 

was added to the beads and again equal volume of 2x sample buffer was 

added to the beads. Supernatant and beads samples were boiled at 100˚C 

for 3 minutes and 15 µl of each sample was loaded on SDS-PAGE gel. The 

binding between GST fusion and G-actin can be detected in the pellet lane 

which can be observed through staining the gel with safe stain.  
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2.7.5 Pyrene/Actin fluorimetry assay 

To determine the polymerisation kinetics of actin, pyrene-actin fluorimetry 

assay was carried out using a Cary Eclips fluorescence spectrophotometer 

(VARIAN). The fluorometer was set up as follow: 

λ Excitation wavelength- 365 nm 

λ Emission wavelength- 384 nm 

Excitation slit width- 10nm rounds, and Emission slit width- 20nm rounds 

 A clean 96 wells plate was set up in 300 µl assay containing 5 µM post peak 

G-actin, G buffer, and pyrene actin-10% of actin volume. The fluorometer 

was started for 5 minutes to check the fluorescence trace is steady, and then 

70 µl  mix (protein of interest, 10 x KME brought to 1x concentration , and G 

buffer) was added to each wells using multi-pipette and mixed thoroughly. 

The assay was run for 2 hours and the arbitrary per time (minutes) report 

was analysed using GraphPad 6 Software.  

2.7.6 Small scale thermophoresis (MST) 

MST analysis is based on measuring the changes of the mobility of 

fluorescently labelled molecules along temperature gradients (22-45˚C) by 

detecting the changes in intrinsic properties such as size, charge, and 

hydration shell of the labelled molecule. Las17-PWCA fragment was purified 

and GST cleaved and then dialysed into G-buffer. Protein was labelled using 

the Monolith™ protein labelling kit RED as stated in the manufacturer 

instruction. The binding experiment was performed by preparing an equal 

volume of a 1/10 dilution of fluorescently labelled PWCA and mixed series of 

2 fold dilution freshly purified G-actin in MST buffer (50 mM Tris pH 7.6, 150 

mM NaCl, 10 mM MgCl2, 0,05 % Tween-20, provided by the Monolith NT™ 

kit). Samples were loaded into glass capillaries and subjected to temperature 

gradients of 22-45˚C. The movement of the florescent molecule (G-

actin/LAS17-PWCA) was measured by monitoring the changes in the 

fluorescence distribution of the complex inside the capillaries using 

NanoTemper Monolit -115 instrument.  
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2.8 Microscopy methods 

2.8.1 Fluorescent microscopy 

The yeast cells were viewed using an Olympus IX81 inverted fluorescent 

microscope with a 100W mercury lamp and oil-immersion objective. Data 

was collected in acquisition mode, and 3D image datasets were 

deconvolved. 

2.8.2 Images deconvolution 

AutoQuant software (Media Cybernetics®) was used to enhance signal to 

noise ratio of Z-stack series or image time lapse series, and data were 

captured as Tiff format. Live cell images were taken for 90 seconds with 

1second time-lapse. The kymographs, the profile of intensity values and 

patch tracking were established ImageJ software by tracking the movement 

of a single patch on the plane of plasma membrane. Images were then 

assembled using image J-Fiji version and adjusted to 300 dpi using Adobe 

Photoshop. 

2.8.3 Viewing yeast cells by fluorescence microscopy  

Freshly growing yeast cells expressing a fluorescent tag were viewed after 

growing the cells to med-log phase in liquid SD media. 2.5 µl of cells was 

pipette into glass slide covered by cover slip and viewed under the 

fluorescence microscope. 

2.8.4 Rhodamine-phalloidin actin filaments staining 

1 ml actively growing yeast culture was fixed with 134 µl of 37% 

formaldehyde and incubated at room temperature for 30-60 minutes. Cells 

were spun down at 3000rpm for 5 minutes, supernatant was removed, and 

pellet was washed twice with 0.5 ml wash buffer I (PBS, 1mg/ml BSA, 0.1% 

Triton -100TX). The pellet was resuspended in 50 µl of wash buffer I and 5 µl 

of 40mg/ml Rhodamine phalloidin (from Molecular probes). The sample was 

then incubated in the dark for 30 minutes, and washed twice with 500 µl 

wash buffer II (PBS, 1mg/ml BSA) and then resuspended in 200 µl wash 

buffer II. 3 µl of suspension cells was placed on slide lid and covered with 
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cover-slip. Cells were viewed by fluorescence microscopy straight away or 

stored at 4˚C for later viewing.  

2.8.5 Yeast vacuoles staining using Lucifer Yellow 

This experiment is based on a method from Dulic et al., 1991. 

An overnight culture was refreshed in appropriate synthetic medium and 

grown until OD600=0.5-0.7. Cell pellet was spun down at 3000 rpm for 3 

minutes and then resuspended in 30 µl synthetic medium, and 10 µl of 

40mg/ml of lucifer yellow. The cells were incubated at 25˚C shaking. The 

duration of this incubation period is dependent on the stages of endocytosis 

to be assessed. Shorter incubation (30 min) time is required to assess the 

defect at early stage of endocytosis such as delay in dye internalisation. 90 

minutes incubation is used to assess end point of endocytosis for example 

vesicle transport and fusion with the vacuole. After incubation, cells were 3x 

washed with 1ml ice-cold succinate/azide buffer and then resuspended in 10 

µl succinate/azide buffer and left on ice until they are ready to be viewed by 

fluorescence microscopy. 

2.8.6 Yeast vacuoles staining using FM4-64 

FM4-64-N-(triethylammoniumpropyle)-4-(p-diethyleaminophynyl-hexatrienyl) 

pyridiniumdibromide is a lipophilic styryle dye which is used as a vital stain to 

follow bulk membrane internalization and transport to the vacuole in yeast 

cells (Vida and Emr, 1995). 1 ml of log phase culture (OD600= 0.5-0.6) was 

spun down at 3000 rpm for 3 minutes. The pellet was resuspended in 250 µl 

of synthetic medium and then transferred into 1.5 ml eppendorf tube. 0.25 µl 

of 16 Mm FM4-64 made in DMSO was added and the cells were incubated 

for 90 min at 21˚C room temperature rotating. This incubation time is to 

chase the late stage of endocytosis. Following the incubation cells were 

harvested at 3000 rpm for 3 minutes and the pellet was resuspended in 200 

µl of appropriate medium. 2.5 µl of cells were put on a slide and covered with 

cover-slip to be viewed under the fluorescence microscope. 
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3.1 Introduction 

Arp2/3 complex activation is dependent on its interaction with the WCA 

domain at the carboxyl terminal of WASP family members. In mammalian 

WASP, the activity of the WCA domain is autoinhibited by intramolecular 

interaction with the GTPase binding domain (GBD). This autoinhibitory effect 

can be relieved through phosphorylation/dephosphorylation of multiple 

Serine/Threonine residues following an interaction with Cdc42, PIP2 and 

several SH3 domain containing proteins (Cory et al, 2003; Kim et al., 2000;, 

Rohatgi et al., 2000; Kim et al., 2000).  

The yeast homologue of WASP, Las17 plays a major role in actin 

cytoskeleton regulation in conjunction with Arp2/3 complex. Complete 

deletion of LAS17 gene inhibits growth at high temperatures, disrupts actin 

cortical patch organisation, and blocks endocytosis (Madania et al., 1999; Li 

et al., 1997). Unlike mammalian WASP, Las17 in S. cerevisiae lacks a 

GTPase binding domain and therefore Las17 activity is subjected to other 

regulatory mechanisms. At the endocytic patches, Las17 interacts with the 

SH3-domain of several proteins; Sla1 and Bbc1, for example have been 

shown to inhibit Las17 activity (Rodal et al., 2003), but, the SH3 domain 

containing protein Bzz1 may relieve this negative effect and allow 

progression of membrane invagination (Sun et al., 2006). Invagination events 

at the endocytic sites are dependent on the activity of Las17 and Arp2/3 

complex, but genetic studies by Sun and co-workers revealed that, deletion 

of the Las17WCA domain resulted in mild phenotypic defects whilst the 

overall actin organisation appeared to be normal (Sun et al., 2006). Similar 

phenotypes were observed upon deletion of the entire acidic (A) domain of 

Las17 (Galletta et al., 2009), and this led to the suggestion that, other parts 

of Las17 contributes to the critical function of Las17. The Ayscough lab has 

demonstrated that, tracts of Las17 poly-proline rich region (PP) mediate actin 

binding and filament nucleation independently of Arp2/3 complex suggesting 

that, actin binding functions of PP and WH2 domains of Las17may occur 

sequentially (Urbanek et al., 2013).  
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Multiple phosphorylated residues serine (S) and threonine (T) were identified 

through a PhosphoGrid search conducted along the Las17 protein sequence 

(www.phosphogrid.org), (depicted in figure 1.18.A). In phosphoproteomic 

study, Las17 was identified as a target of the DNA damage checkpoint 

kinases in the budding yeast. Kinases were found to target Ser586 and 

Ser588 residues present in the Las17 WCA domain (Smolka et al., 2007). 

Another study has also identified S586 and S588 as phosphorylation sites for 

cyclin-dependent kinase1 (Cdk1) in yeast and this was identified through 

combining chemical inhibition of Cdk1 with mass spectrometry (Holt et al., 

2009). 

In an attempt to learn more about the regulation of Las17 function through 

phosphorylation, phosphomutants of S586 and S588 were generated in 

order to analyse their phenotypic effects at the cellular level using various in 

vivo approaches. These included investigating the ability of phosphomutants 

to grow at different physiological conditions such as, elevated temperature, 

osmotic stress, and tolerance to the salt. The actin phenotype and endocytic 

functions of phosphomutants mutant cells were addressed using 

Rhodamine-phalloidin, Lucifer yellow and FM4-64 staining respectively. To 

determine at which stage of yeast endocytosis the phosphomutants are more 

defective, the behaviour of Sla1- GFP endocytic reporter was analysed using 

live-time imaging.  

3.2 Generation of Las17 phosphomutants 

The function of the identified Las17 phosphorylation sites S586 and S588 

were investigated by generating phosphomutants. Both serines were 

mutagenised to Alanine (A) to generate a non-phosphorylatable protein or to 

aspartate (D) to create a phosphomimetic form of protein (shown in figure 

3.1). The point mutation of phosphosites S586 and S588 singly or together 

was carried out using mutagenesis on a centromeric plasmid  (pKA606) 

carrying full length LAS17 under its own promoter; and the pKA607 plasmid 

that expresses GFP tagged full length LAS17 under a Tpi promoter (see 

table 2.2.2 for plasmid description). The resulting mutagenised plasmids  

http://www.phosphogrid.org/
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were transformed into bacterial competent cells (see section 2.4.4). The 

transformants were grown into colonies from which plasmid DNA were 

isolated and verified by sequencing at Dundee sequencing DNA services. 

The verified phosphomutant plasmids were then re-struck, and a stock was 

made before analysing the effect of the mutations on yeast cells through in 

vivo assays.  

3.3 Temperature sensitivity of Las17 phosphomutants 

Deletion of LAS17 gene from yeast genome causes the cells to be sensitive 

at elevated temperatures. To determine whether  S586 or S588 

phosphomutants affect the growth of yeast cells, the las17 deletion strain 

was transformed with an empty plasmid (pKA61) as a negative control, and a 

plasmid carrying LAS17 wild type (pKA606) as a positive control. Plasmids 

expressing the following phospho-mutations S586A/D (pKA 872/873), 

S588A/D (pKA 874/875), or double SS586, 588AA/DD (pKA 898/899) were 

also transformed. Overnight cultures of cells were serially diluted, and 

spotted onto plates containing selective synthetic media (see section 2.5.1). 

The temperature sensitivity properties of the phosphomutants were assessed 

by incubation of the plates at the permissive 30˚C and restrictive temperature 

37˚C for 48 hours.  

Figure 3.2.A shows that, the las17 deletion strain expressing LAS17 plasmid 

was able to grow at both permissive and restrictive temperatures. Cells 

expressing an empty plasmid were able to grow at 30˚C, but these cells did 

grow at 37˚C and this was predictable as las17 null strains are temperature 

sensitive. Cells expressing single S586A/D mutations had similar growth to 

cells expressing wild type protein at both temperatures. This suggested that, 

the S586 residue is not essential for overall cell growth. The growth of cells 

expressing las17-S588A mutant was similar to that seen in wild type cells. 

However, cells expressing las17-S588D mutants were unable to grow at 

37˚C, more similar to cells lacking las17 (Figure. 3.2. A). This would indicate 

that, changing of S588 into alanine is important for growth at 37˚C. Cells 

expressing the double mutant las17-SS586,588AA at elevated temperature  
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Figure 3.1: generation of Las17 S586 and S588 phosphomutants 

in WCA domain used in this study. 

S586 and S588 phosphoresidues (labelled in magenta) localise in the 

junction between the WH2 domain and A domain of Las17 wild type 

(WT). The residues S586 and S588 respectively were changed into 

alanine (A) or non-phosphorylatable form, or into aspartate (D) which is 

the phosphomimetic form of protein. Mutations were individual in las17-

S586A/D, las17-S588A/D or double in las17-SS586,588AA/DD.    
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was comparable to cells expressing LAS17 wild type, but the growth of 

las17-SS586,588DD mutant was completely defective at 37˚C. This again 

suggests that, S588 site play a role in maintaining growth at elevated 

temperature.  

To further analyse the growth of cells expressing Las17 phosphomutants, it 

was examined whether the growth defects caused by S588D mutants might 

be associated with actin. Thus, the las17 deletion strains expressing the 

phosphomutants described above were grown in a medium containing 

sorbitol. Addition of sorbitol to yeast cells can alleviate phenotypes 

associated with actin defects (Aghamohammadzadeh and Ayscough, 2009; 

Whitacre et al., 2001). This has been shown to be because sorbitol acts to 

balance the effect of turgor pressure at the plasma membrane and reduce 

the requirement for actin in endocytosis. Sorbitol was added to growth plates 

and the plates were then incubated at 30˚C and 37˚C respectively for 3-4 

days.  

As depicted in figure 3.2.B, the las17 null strain expressing wild type plasmid 

was grown normally either at low or elevated temperature. The las17 null 

strains carrying the empty plasmid was able to grow at 30˚C, and the 

temperature sensitivity of these cells was slightly rescued at 37˚C in the 

presence of 1 M sorbitol. The growth of cells carrying S586A or S5868 

strains was not affected by addition of sorbitol.  Cells expressing las17-

S588A grew comparably to the wild type cells but the growth of cells 

expressing las17-S588D was fully rescued in the presence of sorbitol at 

37˚C. This suggests that, S588D requires actin to overcome the temperature 

sensitivity phenotype.  

In contrast, the temperature sensitivity of cells expressing the double las17-

SS586,S588DD mutant was not fully rescued as the cells expressing this 

mutation showed little growth which may suggest that, S586 contributes to 

the overall phenotype when mutated together with S588. 
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A. B. 

C. 

Figure 3.2: Growth analysis of LAS17 phosphomutants. 

Serial dilution of las17 deletion strains carrying wild type, an empty plasmid or 

phosphomutants: either with single S586A/D, S588A/D mutations or double 

mutations S586,588AA/DD. Cultures were spotted onto selective SD plates (A), 

supplemented with either 1 M sorbitol (B) or 0.9 M NaCl (C). The plates were 

incubated at 30˚C and 37˚C for up to 48 hours. Interpretable results were 

obtained from three assays.  

 

 

 

Overall results suggested that, S588D mutants are temperature sensitive and 

required for the cells growth at high osmolarity conditions.     
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One more growth test of the above culture cells was undertaken. In this test 

the salt tolerance of the Las17 phosphomutants was assessed at 30˚C and 

37˚C. Cells were diluted and spotted onto plates containing 0.9 M NaCl, as 

described above. Salt stress can alter the nature of actin cytoskeleton and 

normal actin function is required for yeast cells to grow in high osmolarity 

environment (Novick and Botstein, 1985; Chowdhury et al., 1992)  

As shown in figure 3.2.C., cells expressing LAS17 wild type were resistant to 

the hypertonic condition at either permissive or elevated temperatures. In 

contrast, las17 null cells with an empty vector grew poorly grown at 30˚C, 

and when the temperature shifted to 37˚C they were unable to grow. Neither 

S586A nor S586D expressing cells were affected by the hypertonic 

conditions.  Growth of S588A cells was similar to the wild type cells, while 

those expressing S588D grew very slowly at 30˚C, but at 37˚C their growth 

was completely abrogated. The salt tolerance of las17-SS586, 588AA mutant 

was similar to cells expressing LAS17 wild type, but las17-SS586,588DD 

expressing cells grew poorly at 37˚C comparable to the S588D mutant. 

Overall, these results suggest that S586 residue mutation has no effect on 

growth at elevated temperatures or in high osmolarity medium. Although 

when mutated together with S588 into aspartate, it did appear to impair 

growth rescue in sorbitol medium. S588D and the double SS586 588DD 

mutants confer temperature and osmotic sensitivity to the cells. However, 

only the S588D single mutant was rescued by sorbitol at 37˚C possibly 

indicating the importance of this residue for actin based function in 

endocytosis. 

 3.4 Growth rate of yeast expressing phosphomutants 

 The growth rate of cells expressing LAS17 phosphomutants was assessed 

by investigating their ability to grow and divide in liquid drop-out synthetic 

medium at 30˚C. As previously described, las17 deletion cells expressing 

wild type plasmid, an empty, and phosphomutants (S586A/D, S588A/D, and 

S586, 588AA/DD) plasmids, were grown to exponential growth phase. The  
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cell cultures were then diluted to the same optical density as one another 

and incubated at 30˚C with shaking. 

The OD600 was measured every hour for 6 hours. The top graph shown in 

figure 3.3 revealed that, las17 deletion cells expressing wild type plasmid 

started to divide and duplicate after 4 hours and the doubling time for the wild 

type cells was 150 minutes. In contrast, las17 null cells displayed a 

prolonged doubling time of 223 minutes indicating that, they grew slower. 

The growth rate of las17-S586A, las17-S586D, las17-S588A, and las17-

SS586,588AA was robust revealing identical generation time as the wild type 

cells. In contrast, the growth rate of cells expressing S588D and 

SS586,588DD was reduced showing a doubling time of approximately 202 

minutes. The growth rate assay was repeated with cells expressing S588A/D 

mutants only in order to confirm the phenotype. Thus, the overall growth 

assay would suggest that S588D, either single or double affected the growth 

rate of yeast cells, supporting the idea that, phosphorylation at S588 plays an 

important role in Las17 functions in vivo.  

As changing of the Ser588 into aspartate revealed the most significant 

phenotype, the subsequent in vivo analysis was only carried on S588A/D 

phosphomutants. Single S586A/D or double phosphomutants were not 

studied further. 
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Figure 3.3: Growth rate of LAS17 phosphomutants 

Optical density of las17∆ strain carrying wild type, an empty plasmid or 

phosphomutants: S586A/D, S588A/D and SS586 588AA/DD was measured 

every hour for 6 hours at 30˚C. The graph was generated using Graphpad 

Prism6. The growth assay in liquid media was repeated twice, once in the 

presence of all the mutants (top graph) while the second assay was with 

S588A/D mutants only (bottom graph).   
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3.5 S588 is important for actin cortical patch assembly 

From the analysis described, the S588D mutant was shown to be critical for 

growth of yeast cells at 37˚C and also in high osmolarity medium. Rescue of 

temperature sensitivity at 37˚C by sorbitol suggests a possible link to actin in 

endocytosis. Therefore, to determine whether S588A/D mutations affect actin 

organization in yeast, cells were stained with Rhodamine-Phalloidin. 

Phalloidin is a toxin with high affinity for filamentous actin and rhodamine is a 

red fluorophore conjugated to phalloidin to help visualizing of F-actin. As 

previously, las17 deletion cells carrying wild type, an empty or the mutants 

S588A/D were grown to logarithmic phase, fixed with 37% formaldehyde for 

an hour, and then stained with Rhodamine-Phalloidin as described in section 

2.10.1. 

As shown in figure 3.4.A, actin cortical patches in wild type cells appeared as 

bright spots, more concentrated in the bud, whilst defined actin cables could 

be observed along the mother-bud axis (arrows indicated). In the las17 

deletion strain the actin organisation was markedly disrupted and actin 

appeared non-polarised in large and less numerous clumps compared to 

those patches found in the wild type cells. The actin cables were less defined 

or absent in the majority of las17 deletion cells.  

Cells expressing the S588A mutant exhibited wild type actin morphology, in 

which most of the cells contained polarized patches in the bud and visible 

cables in the mother cell (arrows). In contrast the cortical actin patches in 

cells expressing S588D mutant displayed an aberrant actin phenotype. 

Similar to the null cells, the cortical patches were large, few and dispersed 

throughout the mother and the bud (arrows). The actin cables were observed 

in some cells, but they appeared thicker than in wild type cells.  
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A. Rhodamine-phalloidin staining of las17 null strains  

B.  Distribution of actin cortical patches in las17 null strains 

Figure 3.4: Actin cytoskeleton of LAS17 deletion strains expressing 

phosphomutants.  

(A) Representative images showing Rhodamine-Phalloidin staining of las17∆ cells 

carrying wt, empty plasmids, and mutants S588A/D, scale bar 2µm.  

(B) Bar graphs showing percentage of actin patch polarisation of the above strains 

expressing phosphomutants (n=100).  Quantifications were based on 2 sets of 

data obtained from 2 experiments. 
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To determine the extent of the defect in actin organisation caused by the 

S588D mutant, the distribution of actin cortical patches in budded yeast cells 

was quantified. Data from the first experiment was shown graphically in 

figure 3.4.B (left panel) in which the percentage of las17 null cells with non-

polarised actin patches was significantly increased up to 90 % (n=100). 

However, 78% of cells expressing LAS17 wild type displayed polarised actin 

patches while less than 20% of these cells exhibited non-polarised patches. 

Above 75% of cells expressing S588A mutants showed polarised actin 

patches but 22% exhibited non-polarised phenotype. The number of cells 

expressing S588D was markedly increased to 97% with marked decrease in 

the number of cells with polarised actin patches (13%).       

The bar graph in figure 3.4.B (right panel) showed quantification of the 

second experiment replicate in which 86% of las17 null cells revealed non-

polarised actin patch (n=100) whilst 14% of cells had their patches 

positioned in the mother only and one or no patches can be seen in the 

emerging bud (arrows in figure 3.4.A). Again, the percentage of cells 

expressing LAS17 wild type increased to 87% whereas, 13% of these cells 

showed non-polarised actin patches. Cells expressing the S588A mutant 

exhibited marked increase in polarised actin patches (88%) but, 12% of 

these cells carried non-polarised actin patches. In contrast, cells expressing 

the S588D mutant showed a significant decrease in actin patch polarisation 

as 20% of these cells had their patches shifted into the mother cell (left 

graph), whereas 80% of these cells exhibited non-polarised actin patches.   

These results would suggest that, S588 may play a role in maintaining intact 

actin organisation in yeast cells.  

3.6 Effect of S588 phosphomutants on fluid phase endocytosis 

The actin cytoskeleton in yeast is linked with endocytosis, and deletion of 

genes encoding one or more proteins that forms the cortical patches often 

leads to perturbations in both actin cytoskeleton and endocytosis (Munn et al 

1995; Benedetti et al., 1994; Kübler and Riezman, 1993). The aspartate  
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A. Lucifer –yellow staining of las17 null strains 

B.  Quantification of LY uptake by las17 null strains after 90 mins. 

Figure 3.5: Fluid phase endocytosis of expressing phosphomutants.  

(A) Representative Images shows Lucifer yellow uptake of las17∆ cells carrying wt, empty 

plasmid, S588A and S588D, scale Bar 2µm. images were obtained from two experiments.  

(B) Bar graph showing percentage of Lucifer yellow uptake by cells in (A) (n=100). Phenotypic 

categories reflect LY uptake by the cells under fluorescent microscope (see figure 3.5.A). 

Quantification was based on a single set of data. 
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mutant S588D perturbed the actin cytoskeleton in yeast cells, thus it was 

considered worthwhile to examine whether las17-S588A/D phosphomutants 

affect fluid phase endocytosis. Lucifer yellow (LY) is a non-toxic hydrophobic 

molecule that was used to assess fluid-phase endocytosis in a time 

dependent manner. The las17 deletion strain carrying wild type, an empty, 

S588A and S588D plasmids were grown to log phase and stained with 

Lucifer yellow for 90 minutes to allow uptake of the dye by yeast cells and 

accumulation into the vacuole (Dulic et al., 1991).  

As shown in figure 3.5.A, in wild type cells the dye was internalised after 90 

minutes and accumulated into a large vacuole in the mother cell, and a 

smaller vacuole in the daughter. In the absence of las17, there was a marked 

decrease in Lucifer-yellow uptake and the vast majority of cells still had 

stained plasma membrane. In addition punctate endosome structures were 

also observed in some of the las17 null cells, indicating a delay in trafficking 

of the dye from the membrane into the vacuole. Cells expressing the S588A 

mutant had a similar phenotype to that observed in wild type cells. In 

contrast, cells expressing S588D mutant exhibited reduced lucifer-yellow 

uptake, similar to that seen in the null strain. 

Subsequent quantification of Lucifer yellow internalisation was assessed as 

shown in the graph bar in figure 3.5.B. The phenotypic LY uptake of the 

above cells was divided into four categories: predominantly vacuolar; 

vacuolar plus endosomes; plasma membrane plus endosomes, and plasma 

membrane only. As shown in figure 3.5.B, 75% of cells expressing wild type 

LAS17 had predominant vacuole staining but 23% of these cells revealed 

slower uptake with endosomes still staining. In contrast, only 4% of las17 null 

cells showed vacuolar uptake of the dye. The total proportion of cells taking 

up LY in cells expressing the S588A mutant was mostly restored as 29% of 

these cells displayed predominant vacuole and 63% with vacuoles + 

endosomes. This would suggest a mild delay in LY trafficking to the vacuole. 

In contrast, cells expressing the S588D mutant showed similar proportions to  
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the las17 null cells, with 52% of cells exhibiting plasma membrane and 

endosomal staining, and 40% of cells with no uptake.     

These results would suggest that, S588 is important for trafficking from the 

membrane to the vacuole during endocytosis in yeast. 

3.7 Effect of las17-S588 mutants on yeast vacuolar morphology  

Given the major defects in LY uptake caused by S588D mutants, further 

analysis of vacuole morphology was performed by staining the cells with 

FM4-64 dye.  

FM4-64 is a lipophilic stain used to monitor membrane trafficking to the 

vacuole. As with Lucifer yellow, the uptake could be tracked over time. 

Logarithmic phase las17 null cells carrying wild type, an empty plasmid, 

S588A and S588D were stained with the dye and incubated at room 

temperature for 90 minutes (see section 2.8.2).  

The las17 deletion cells carrying LAS17 wild type, empty and S588A/D 

mutants showed a similar level of FM4-64 uptake as presented in figure 3. 6. 

A. However, cells exhibited different vacuolar structure, and therefore was 

classified as follow: normal vacuoles typical for the wild type cells, 

heterogeneous and fragmented-vacuoles were characteristic for las17 null 

cells. 

The predominant vacuolar morphology of cells expressing LAS17 wild type 

was normal as the majority of these cells contained 1-3 comparable 

vacuoles. This phenotype was also dominant in the cells expressing S588A 

mutant (figure 3.6.A, arrows indicated). In contrast, the vacuolar system of 

las17 null cells was much smaller and mostly classed as fragmented 

(arrows). The fragmented vacuoles are numerous-small clustered 

components. This phenotype was also observed in the majority of 
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B. Quantification of las17 null strains strained with FM4-64 

A. FM4-64 staining of las17 null strains 

Normal morphology 

Heterogeneous 

vacuoles 

Figure 3.6: Vacuolar morphology of S588 phosphomutants. 

(A) The vacuolar phenotype was assessed by FM4-64 staining of las17∆ cells carrying 

wild type, an empty and, S588A/D mutants. Images were taken by fluorescent 

microscopy, scale bar 2µm.  

(B) Bar graph representing the percentage of normal vacuolar morphology and 

aberrant phenotype in the above cells (n=100). The Quantification was based on 

single experiment and categories were decided by observing the FM4-64 uptake 

phenotype in each strain. FM4-64 assay was don) e only once. 

 

 

Normal morphology 

Fragmented 

morphology  

Fragmented 

morphology  



 

121 
 

Chapter: 3 

las17∆S588D population (figure 3.6.A arrows). As well as fragmented 

vacuoles, heterogeneous vacuoles were seen in those cells in which the 

vacuolar system appeared as a large vacuole in the middle of the mother 

surrounded by smaller ones (figure 3.6.A, arrows). Quantification analysis of 

FM4-64 staining is depicted in figure (3.6.B) in which, 77% of the cells 

expressing LAS17 wild type and 81% of las17-S588A mutants exhibited 

homogeneous vacuolar morphology. The percentage of las17 deletion cells 

with fragmented vacuoles increased to 78%, whilst the number of cells 

expressing S588D mutation with fragmented vacuolar phenotype increased 

to 56%. 

The FM4-64 staining data shown that, the vacuolar system of cells 

expressing S588D was severely disrupted which would indicate defects in 

vacuolar fusion and maybe as a consequence of the abnormal actin 

phenotype observed in these cells. 

3.8 Effect of las17-S588 mutants on the behaviour of Sla1-GFP marker  

Live cell imaging analysis provides a useful tool to examine the dynamic 

behaviour of proteins at sites of endocytosis. To investigate whether 

S588A/D phosphomutants have an effect on individual endocytic events, the 

behaviour of the early endocytic coat marker Sla1-GFP was analysed in 

las17 deletion cells harbouring wild type, an empty and S588A/D plasmids. 

Cells were grown to logarithmic phase and then viewed under fluorescent 

microscopy and time-lapse movies were acquired over a period of 90 

seconds (section 2.8.4). The lifetime of Sla1-GFP patches was measured 

from the time when the patch appears to the time when it is no longer visible. 

The mean of at least 30 patches from 8 different cells of each strain were 

analysed. Kymographs patches from the same movies were generated using 

ImageJ; these kymographs track the movement of Sla1-GFP at the plasma 

membrane over time. All results were obtained from a single experiment. 

As shown in figure 3.7.A. the Sla1-GFP lifetime in cells expressing LAS17 

(WT) was approximately 25.6 seconds and this value was comparable to 
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B.   invagination of Sla1-GFP patches in las17∆ cells 

 

Figure 3.7: The behaviour of Sla1-GFP endocytic marker in las17 null strains 

expressing phosphomutants.  

(A)    Analysis of Sla1GFP life time of cells expressing wt, S588A and S588D.  Error bars   

represented standard deviation of the mean. The statistical test carried out was one tailed 

student’s t-test, p<0.0001. 

(B) Right panel shows representative kymographs of Sla1-GFP patch movement over 90   

seconds in las17 null cells carrying wt, an empty, S588A and S588D plasmids.  Left panel 

shows the percentage of at least 30 patches was quantified and graph bar was generated 

using prism 6 GraphPad in order to reveal the phenotype at invagination stage. 
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A. Sla1-GFP life time in las17 phosphomutants  
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those determined by other authors (Kaksonen et al., 2003; Urbanek et al., 

2013). As the majority of Sla1 patches in a null strain were non-motile and 

had life span longer than the duration of the movie (90 seconds), these were 

not evaluated. In contrast, the lifetime of Sla1-GFP in cells expressing S588A 

mutants was around 28.1 seconds, whereas cells expressing S588D had 

their Sla1-GFP patches with a life time of 21.1 seconds suggesting a defect 

in Sla1-GFP function and premature disassembly of the patch.  

The patch in figure 3.7.B, right panel shows kymographs from single Sla1 

patches in the above cells. In cells expressing LAS17 (wild type), the Sla1-

GFP marker was stationary for several seconds followed by a subsequent 

steep movement. In contrast, the Sla1-GFP marker in las17 null strain 

remained stable and non-motile over 90 seconds, showing no inward 

movement. Cells expressing S588A exhibited similar behavior to that in wild 

type cells but Sla1-GFP patch internalization in cells expressing S588D was 

defective. The extent of defect in Sla1-GFP patch internalization in each 

strain was analyzed statistically as shown in figure 3.7.B, left panel. The 

graph shows that, in wild type cells around 90% patches were able to 

internalize from the membrane. Similar to wt, the number of internalized 

Sla1-GFP patches in S588A mutant was increased to 80% but only 46% in 

S588D mutant exhibited some inward movement whereas over 50% 

persisted on the membrane. This would indicate that, S588D mutation 

caused a defect at the invagination stage of endocytosis. 

To investigate the defects in Sla1-GFP lifetime in cells expressing S588A/D 

mutants further, patch tracking of a single Sla1-GFP patch was followed in 

strains expressing LAS17 (wt), and S588A/D mutants using manual tracking 

in Image J.  Figure 3.8.A showed patch tracking of Sla1 patches in wild type 

cells in which small lateral movements at the plasma membrane were 

observed prior to rapid invagination. In contrast, the Sla1 patch movement in 

cells expressing S588A showed patches with multiple steps at different time 

points during the invagination events (blue arrow heads). These observations  
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Figure 3.8: Analysis of the dynamic of Sla1-GFP endocytic marker 

 (A) (Left panel) patch tracking analysis of four independent Sla1 patches in each 

strain was plotted indicating the initial (green spot) and ultimate (red spot) patch 

positions at the plane of membrane connected by a line. 

(B) Intensity profile analysis of Sla1-GFP over time in cells expressing wild type, 

and S588A and S588D phosphomutants. Dashed line represents the time when 

the endocytic patch reached to the maximum intensity until they disassembled 

into the cytosol.  

B. Patch intensity profile of LAS17 (wt) and S588A/D mutants 

A. Sla1-GFP patch tracking 

204 µm 

267 µm 

81.3 µm 

Distance from the 
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would indicate that, Sla1-GFP in cells carrying S588A mutation had a slower 

level of invagination. Sla1 patch movement was markedly affected in cells 

expressing S588D showing more extensive lateral movement at the plane of 

the membrane, followed by reduced inward movement (headed arrow). 

Furthermore, the behaviour of patch internalisation in each strain was 

observed by measuring the distance the distance from the initial position of 

the spot to its final position. The Sla1 patches in S588A revealed a slow 

invagination and this was confirmed as the distance between the initial and 

the end point of Sla1 patch tracking was increased to 276.5 µm. in contrast, 

patches movement was markedly narrowed to 81.3 µm in S588D mutants. 

These results would suggest that, the internalisation of Sla1 patches was 

affected by S588A/D mutations but the phenotype was more predominant in 

S588D allele mutant.  

As well as a defect in patch behaviour, mutations in components of the 

endocytic machinery can affect the assembly and disassembly of different 

proteins at the endocytic sites. This can be detected by following the 

fluorescence intensity of proteins. Therefore, to determine the changes in 

Sla1-GFP patch components in the presence of las17 phosphomutants, an 

alignment of averaged and normalized intensity of 8 patches was generated 

using manual tracking tool in ImageJ alogarithm.  

Figure 3.8.B showed that, the Sla1 patches in cells expressing LAS17 (wt), 

S588A and S588D mutants were assembled at the plasma membrane at a 

similar rate (~10-11 seconds), In S588D expressing cells, once these 

patches reached maximum intensity, they rapidly moved a short distance 

before disassembling. This finding, would suggest a defect in patch ability to 

remain stable at the membrane and perform its function (3.8.B). The S588A 

expressing cells in contrast, showed a slower rate of disassembly indicating 

distinct defects in patch function. 
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Overall, as judged by patch tracking the S588A mutation causes minor 

defects in its behaviour but the patch can still internalise. In contrast, S588D 

seems to cause more marked effects on both patch behaviour and patch 

internalisation suggesting a link between phosphorylation state and 

progression through endocytosis.  

3.9 Localisation of -GFP tagged Las17S588A/D mutants  

To determine whether Las17S588A/D interact directly with actin, the cellular 

localisation of these mutants was examined using a multi-copy plasmid 

expressing GFP tagged Las17. Before analysing localization, the effect of 

GFP tagging Las17 on overall cell growth was assessed to determine 

whether tag addition was detrimental. las17 deletion strains expressing 

Las17-GFP wild type or Las17-GFP bearing S588A/D mutations were grown 

to log phase and 1:10 serially diluted. Cells were spotted into plates 

containing synthetic media and incubated at 30˚C and 37˚C for 48 hours. As 

shown in figure 3.9.A, overexpression of las17 carrying S588D mutation was 

able to rescue the cell growth at elevated temperature as the cells exhibited 

similar growth to that seen in the wild type cells. This would suggest that, 

overexpression of Las17-S588D is required to complement the temperature 

sensitivity growth of las17 null. 

Further analysis was undertaken in order to determine the affect of S588A/D 

mutations on protein stability. Whole cell yeast extracts from the above set of 

cells was prepared as described in section (2.6.1). Each cell extract was 

loaded into SDS-PAGE gel, electrophoresed and, then western blotted. 

Production of the GFP tagged proteins from each cell extract was detected 

using primary antibodies against GFP. Immunobloting analysis in figure 3.9.B 

revealed that, extracts prepared from cells expressing S588A and S588D 

mutants were able to express the protein to a similar level as that 

synthesized in wild type cells. This would indicate that, overproduction of 

S588A/D mutants did not alter protein stability.    
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A. the temperature sensitivity of S588D mutants was fully rescued  

Figure 3.9: Overexpression of Las17- S588 phosphomutants in vivo  

(A) Log phase las17 deletion strains carrying wild type, an empty plasmid or 

S588A/D mutatans were diluted 10 folds and then spotted onto selective SD 

plates. The plates were incubated at 30˚C and 37˚C for up to 48 hours.   

(B) Immunobloting analysis of total extracts from yeast control strain (KAY446) or 

strains expressing wild type Las17-GFP, and S588A/D mutants.   
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Figure 3.10: Localisation of Las17- S588 phosphomutants in vivo  

las17 deletion strains carrying wild type, an empty plasmid or S588A/D 

mutants were grown to logarithmic phase and viewed under fluorescent 

microscope. Z-stacks images were acquired at 100x magnification.  
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To investigate whether the Las17-S588A/D mutants have an impact on the 

localisation of actin cortical patches, the localisation of fluorescently GFP 

tagged Las17 in the above cells was assessed using fluorescence 

microscopy (described in section 2.8.4). Figure 3.10 shows the projection of 

Z stacks images of Las17-GFP in the wild type and S588A/D mutants. In all 

of these cells Las17-GFP localisation appeared as bright punctate localising 

at the cortex of the cell which would suggest that, overexpression of S588D 

mutant is required to rescue cell growth at high temperature but does not 

affect Las17 localisation at the endocytic patches. 

3.10 Discussion  

The carboxyl-terminal region of Las17 in yeast plays a major role in 

regulating the actin cytoskeleton through binding of monomeric actin and the 

Arp2/3 complex. In this chapter, the aims were to investigate whether the 

phosphorylation sites S586 and S588 in the WCA domain contribute to the 

regulation of Las17 activity in vivo. Initial work was carried out by generating 

phosphomutants on a plasmid expressing Las17 from its own promoter. 

Point mutations were generated to substitute S586 and S588 into non 

phosphorylatable alanine and phosphomimetic aspartate. The temperature 

sensitivity phenotype associated with LAS17 deletion cells was examined in 

the presence of single or double versions of S586A/D or S588A/D 

phosphomutants. It was shown that, cells expressing las17-S586A or las17-

SS586,588AA mutants can grow at elevated temperature, but the cells 

carrying las17-S588D or las17-SS586,588DD mutants were temperature 

sensitive at 37˚C highlighting a temperature sensitivity phenotype caused by  

the S588D mutation. Temperature sensitive growth of yeast strains is a 

common phenotype associated with mutations in proteins involved in the 

regulation of the actin cytoskeleton (Novick and Botstein, 1985; Li et al., 

1986), 1 M Sorbitol was added to the growth media to analyse whether this 

phenotypic defect can be rescued by reducing the effects of turgor pressure. 

Addition of sorbitol has been shown to reduce the need for actin cytoskeleton 

to support endocytosis in yeast (Agamohammadzadeh and Ayscough et al., 
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2009). interestingly, the temperature sensitivity of cells expressing las17-

S588D mutants was fully rescued. The temperature sensitivity phenotype of 

the double las17-SS586,588DD mutant persisted as the growth of cells 

expressing this mutation was impaired. This observation led to the idea that, 

in addition to the role of S588D mutant, mutation of S586 to aspartate may 

also contribute to the cell growth at elevated temperature/osmotic pressure 

whereby the function of S586 could be regulated by a different pathway or 

mechanism to that which contributes to S588 regulation.  

In addition, the growth test assessment of the phosphomutants was further 

analysed by addition of 0.9 M NaCl to the media. In these conditions the 

growth of cells expressing las17-S588D mutants was severely abrogated at 

30˚C and 37˚C. Addition of salt can trigger activation of a cell integrity kinase 

pathway which may impact more indirectly on actin and cell organization, but 

this phenotype can be rescued by growing the cells on media containing 

sorbitol. Furthermore, cells expressing las17-S588D mutant were slow 

growing in liquid media as the cells displayed a prolonged generation time 

(202 min) comparable to null strain growth (Li et al., 1997).  

in the next chapter, the connection between actin cytoskeleton and 

endocytosis in yeast has been widely studied and demonstrated (Munn et al 

1995; Benedetti et al., 1994). Given the major defects in actin patch 

assembly due to the S588D mutation, the endocytic functions of S588A/D 

were assessed using vacuolar dyes: Lucifer yellow and FM4-64. The former 

dye was used to assess fluid-phase endocytosis. Vacuoles are membrane 

bound organelles which form part of the endocytic trafficking system in yeast, 

and incubation with lucifer yellow caused vesicles to internalise, fuse with 

endosomes and subsequently traffic contents to the vacuole. In this study, 

the majority of cells expressing S588A were able to accumulate lucifer-yellow 

(LY) into a vacuole with minor defects in trafficking to the early endosomal 

system. In contrast, S588D mutants were unable to uptake LY into a vacuole 

as well as trafficking to the vacuole seems to be severely disrupted.  
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The delay in trafficking of the dye from the membrane to the vacuole was 

judged by the prevalence of stained endosome structures. In fact endosome 

delivery to the vacuole also requires the ability of Las17 to stimulate Arp2/3 

complex under conditions in which endocytic internalisation and actin 

cytoskeleton are normal (Shang et al., 2003, 2005). As cells expressing 

S588D exhibited abnormality in actin patch polarisation (see section 3.5) this 

would explain the extent of defects associated with endosomal and vacuolar 

membranes by S588D mutant. In addition, problems with vacuolar fusion 

which also was defective in S588D mutants pre-incubated with FM4-64. The 

majority of S588D mutants exhibited abnormal vacuolar phenotype either 

heterogeneous or fragmented vacuoles. The later phenotype was also 

observed in las17∆WCA mutant in which the actin organisation was 

completely normal (Eitzen et al., 2002). The same study showed that, 

defects in purified yeast vacuoles can be reversed by excessive levels of 

either Las17WCA domain or calmodulin, factors that are known to interact 

with and stimulate Arp2/3 activity. Thus, Las17 and Arp2/3 activation was 

proposed to act downstream of the Rho GTPase Cdc42 and that to modulate 

actin assembly required for vacuole fusion (Eitzen et al., 2002). Overall 

results would suggest that S588 is a key residue to regulate many aspects of 

Las17 function.  

A further in vivo study was carried out to investigate the consequences 

effects of S588A/D mutations through investigating real time association of 

Sla1-GFP patches that assess the invagination stage of endocytosis. 

Although the average timing of las17S588A patch appeared slightly high 

(28.1 seconds) from that in wild type, the difference is not statistically 

significant. However, as judged by monitoring individual patch tracking of 

Sla1-GFP in the S588A mutant, a patch revealed multiple invagination steps 

suggesting a defect in the ability to undergo effective membrane 

invagination. In contrast, changing S588 to aspartate caused a significant 

decrease in Sla1 lifetime with a clear defect in the ability of patches to 

internalise. The internalisation defects of the patches was confirmed by patch  
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Tracking whereby the distance from the initial and final position of the patch 

was reduced to 81.3 µm and this value reflects the extent of defects of Sla1 

patches ability to perform intact internalisation compared to the patches in 

wild type cells. The data suggest that phosphorylation of Las17-S588 may be 

required at an early stage of endocytosis and the pronounced defects of 

patch movement associated with the S588D mutation suggest that, 

phosphorylation of this residue is inhibitory to protein function.  

Overexpression of Las17S588D mutant allele as a GFP tagged protein was 

able to rescue the temperature sensitivity phenotype associated with the 

las17 null strain and revealed that the mutation does not prevent Las17 

localisation at the actin cortical patch. Li et al., (1997) showed that, Las17-

GFP localisation was preserved at the cortical actin patches even in the 

absence of actin cytoskeleton needed for polarised growth, suggesting that 

Las17 act as stabiliser or scaffold for the actin cytoskeleton and that through 

its interaction with actin and other patch components (Li et al., 1997; Winter 

et al., 1999). This is also comparable to overexpression of WASP in tissue 

culture as it stimulates formation of actin rich structures at which the 

overexpressed WASP is localised (Symone et al., 1996). This would suggest 

that, generation of S588D mutation that inactivates perhaps one function of 

Las17 might restore the ability to interact with actin cytoskeletal proteins and 

that overexpression would elevate the likehood of this mutant to cause 

temperature sensitivity phenotype.  

Actin nucleation associated with endocytic machinery in yeast is considered 

to be mainly mediated by the Arp2/3 complex and its strong activator the 

yeast WASP homologue Las17. Together these proteins promote initiation of 

branched actin filaments. The Las17 and Arp2/3 complex localises at the 

cortical actin patches in yeast, and Las17 depletion resulted in a temperature 

sensitive phenotype and abnormal actin organisation. Considering all the 

data, the mutation S588D in the WCA domain of Las17 negatively regulates 

the overall function of Las17 in cells and is possibly a major regulatory post-

translational modification during yeast endocytosis. 
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4.1 Introduction 

In cells actin nucleation is mediated by various nucleators such as Arp2/3 

complex, and formins (section 1.4.6.1). Arp2/3 complex alone is a weak 

nucleator and its activation is dependent on NPFs. WASP is the main 

activator of Arp2/3 complex, and together they mediate the formation of 

branched actin filaments (Pantaloni et al., 2000). The C-terminus of WASP 

family proteins share similar domain structures, which may contain 1 or 2 

WASP homology2 (WH2) domain, followed by a central (C) and an acidic 

domain (A). The WH2 domain mediates binding of the actin monomers 

whereas the (A) is the recognition motif for Arp2/3 complex (Winter et al., 

1999). The central region is thought to interact with both actin monomers and 

Arp2/3 but it less well studied (Kelly et al., 2006).  

In vitro experiments based on biochemical assays of actin polymerisation 

have been central in developing our understanding of the role of specific 

actin binding proteins in the regulation of actin dynamics. Previous work by 

the Ayscough lab (Urbanek et al., 2013) had shown that the proline-rich 

region of Las17 can function independently of Arp2/3 in actin nucleation 

which raises questions of how the Arp2/3 independent function of Las17 

governed by Las17PP domain activity and that dependent on Arp2/3 activity 

are able to be modulated and function sequentially.  

In vivo results presented in chapter 3 of this study showed that, mutation into 

aspartate at the S588 resulted in major defects in growth at 37 ˚C, and in 

endocytosis. These cellular processes are regulated by actin turnover 

suggesting that, the phosphorylation site at S588 in the Las17-WCA domain 

may regulate Las17 function in vivo. This chapter focuses on understanding 

the biochemical properties of the S588 phosphomutants through analysing 

the possible physical interaction of Las17 phosphomutants (S588A/D) with 

G-actin, and on the overall rate of actin polymerisation in the presence and 

absence of Arp2/3 complex. Additionally, in order to investigate whether an 

autoinhibitory effect is possible in Las17 similar to that found in other WASP  
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family members, the intramolecular interaction between the PP region of 

Las17 and its C-terminus (WCA) domain was experimentally tested in vitro 

and in vivo.  

4.2 Analysis of the effect of Las17-PWCA-S588 mutants on G-actin 

binding using GST fusions 

Recent work conducted by the Ayscough group has demonstrated that tracts 

of poly proline (PP) region of Las17 can trigger nucleation and 

polymerisation of actin (Urbanek et al., 2013). The S588 residue lies in the 

relatively poorly understood central region of WCA domain. To investigate 

whether phosphorylation at S588 contributes to the actin binding ability of 

Las17, glutathione S-transferase (GST) fusions of Las17-PWCA (300-633 

a.a) wild type, and Las17-PWCA-S588A/D mutants were expressed and 

purified from C41 bacterial cells. The GST fusions on beads were incubated 

with 5 µM a freshly purified muscle G-actin (section 2.7.2). Interaction of the 

GST fusions with G-actin was detected following centrifugation of the beads 

as the monomeric and un-bound actin would remain within the supernatant 

fraction.   

As shown in figure 4.1.A, when G-actin was incubated with GST only on 

beads, the majority of G-actin remained in the supernatant (S) fraction and 

did not pellet with beads indicating lack of binding. Figure 4.1.B shows that, 

addition of G-actin to the GST-Las17-PWCA (wt) fusion resulted in clear shift 

of G-actin and GST-PWCA fusion from the supernatant into the pellet (P) 

fraction. This binding was expected due to the presence of actin binding 

WH2 domain. The mutation of S588A in PWCA fragment did not appear to 

affect the ability of WCA to bind actin as the level of G-actin shifted to the 

pellet was comparable to that observed with the GST-PWCA wild type. 

Incubation of G-actin with the GST fusion PWCA-S588D seemed to result in 

a slightly reduced level of actin in the pellet possibly suggesting lower 

binding affinity. However, due to technical problems in accurate pipetting of 

beads for this assay an alternative approach was sought to investigate 

binding.  
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A. GST binding assay with G-actin 

B. Binding of GST fusion PWCA and G-actin 

Figure 4.1: GST binding assay of Las17-PWCA phosphomutants   

(A) GST only cannot bind to G-actin: 5µM of G-actin was incubated with the bead for 

an hour and washed with G-buffer; supernatant (S) was separated from beads 

pellet (P) and run on SDS-PAGE gel.  

(B) GST-Las17-PWCA (wt) fragment or PWCA-S588A/D mutants on glutathione 

beads were incubated with G-actin as in A.  The supernatant and the pellet 

fractions were separated on SDS as above. Variations in loading were due to 

inaccurate pipetting.  

          Results were obtained from a single experiment.   
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4.3 Analysis of the effect of Las17-PWCA-S588D mutant on actin 

binding using microscale thermophoresis 

To further investigate whether the binding between the PWCA-S588D and G-

actin was affected by the mutation, Microscale thermophoresis (MST) 

technique was used. MST analysis is based on measuring the changes of 

the mobility of fluorescently labelled molecules along temperature gradients 

(22-45˚C) by detecting the changes in intrinsic properties such as size, 

charge, and hydration shell of the labelled molecule. 

In this experiment, the GST fusions of Las17-PWCA (wt) and PWCA-S588D 

phosphomutant were purified and cleaved from the GST tag using precission 

protease. The wild type and S588D proteins were dialysed into G-buffer, and 

then labelled using the Monolith™ protein labelling kit RED. The binding 

experiment was performed by preparing 2 fold dilution series of G-actin 

(unlabelled) in MST buffer an equivalent volume of a 1/10 dilution of 

fluorescently labelled Las17-PWCA wild type fragments or PWCA-S588D 

mutant was added (section 2.7.6). Samples were loaded into glass 

capillaries and the movement of the fluorescent molecules (G-actin/Las17-

PWCA or G-actin/PWCA-S588D) was measured by NanoTemper Monolit -

115 instrument.  

Data were obtained from experiment that has been done once.   

Figure 4.2.A, shows curve fits for Las17-PWCA (wt) and G-actin which 

allowed a Kd of 0.27 µM to be calculated for the binding affinity of Las17-

PWCA to the monomeric actin. This value was comparable to the affinity of 

WCA domain of WASP to actin monomer with affinity of 0.4 µM (Higgs and 

Pollard, 1999).  

In contrast, MST analysis of PWCA-S588D showed that, the PWCA-S588D 

fragment had a lower affinity for G-actin with a Kd value of 2.1 µM (shown in 

figure 4.2.B). This data and the GST pull down assay confirmed that, S588D 

is essential for G-actin binding.  
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Figure 4.2: Thermophoretic analysis of the interaction of Las17-PWCA and 

S588D mutant with G-actin 

(A) MST traces and curve fits for a1/10 dilution of Las17-PWCA (wt) into the 

titration of actin monomers. A kd of 0.27 µM can be derived from the MST 

assay. Inset triangle (on the right) showed normalised fluorescence of imaged 

fluorescence inside capillaries that is plotted against time. At the initial state, IR-

laser is switched on at t = 5 sec., and the fluorescence decrease as the 

temperature increases, and the labelled complex diffuses away from the heat 

spot due to thermophoresis.  

(B) MST traces analysis of the interaction of PWCA-S588D and G-actin, fitting of 

the data allowed to determine a kd of 2.1 µM.  

A. MST of Las17-PWCA  

B. MST of PWCA-S588D  
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4.4 Analysis of the effect of Las17-PWCA-I555D mutant on the kinetics 

of actin polymerisation  

The process of actin polymerisation can also be studied by following the 

incorporation of pyrene-actin into actin filaments in the presence of salt. 

Incorporation of pyrene-actin into a filament produces fluorescence signals 

that can be detected fluorimetically (Cooper and Pollard, 1982).  

Before analysing the effect of the S588 mutants on actin polymerisation, it 

was important to know what effect of G-actin non binding contributed by 

Las17PWCA-I555D mutant would have in these experimental conditions. 

This would allow us to determine whether the S588 reduced actin binding 

has a similar effect on G-actin polymerisation. A previous PhD student from 

the Ayscough lab confirmed that, like S588D the I555D at WH2 domain of 

Las17 inhibited the ability of Las17-PWCA to bind actin in GST pull down 

assay. Suggesting that, mutation into aspartate at I555D contributes to the 

majority of actin binding ability of Las17.   

Las17-PWCA (wt) and Las17-PWCA-I555D fragments were purified and 

cleaved from GST-tag. The proteins were buffer exchanged into G-buffer and 

mixed with, 3 µM G-actin and 3% pyrene-actin in G-buffer or in the presence 

or absence of 2 nM of Arp2/3 complex. Prior to salt addition, measurements 

were taken by fluorescence spectrophotometer (Cary Eclipse VARIAN) for 5 

minutes to ensure that, there was no polymerisation taking place before the 

actual experiment. The fluorimeter experiment of the tested proteins was 

started upon addition of 1x KME salts and the measurements were taken for 

120 minutes (section 2.7.6). The polymerisation assays were analysed using 

two parameters, lag time (first 2 min) and elongation time up to 10 minutes.  

Figure 4.3.A, shows the polymerisation profile of the control G-actin+ salt 

exhibited a lag of about 2 minutes followed by polymerisation. Addition of G-

actin+ salt to Arp2/3 complex caused a marked increase in polymerisation 

rate but no significant effect on nucleation as demonstrated previously (Higgs 
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and Pollard, 2001).  

The effect of addition of Las17-PWCA is also shown in figure 4.3.A. left 

panel. In this case PWCA causes an increase in polymerisation rate while 

addition of Arp2/3 is accompanied by a reduction in the lag and therefore 

nucleation was enhanced. The graph on the right depicted the initial 10 min 

of actin polymerisation whereby Las17-PWCA solely did not affect the lag 

and the elongation phase of actin polymerisation. However, the presence of 

Arp2/3 complex caused a noticeable decrease in the lag time, and the 

elongation of actin was greatly elevated. This indicates that, the nucleation 

ability of Arp2/3 complex was enhanced by PWCA fragment of Las17. 

Figure 4.3.B depicts the effect of the non G-actin binding mutant Las17-

PWCA-I555D, in this case PWCA-I555D addition appeared to decrease the 

lag in the absence of Ap2/3, but addition of Arp2/3 did not have an effect. 

Therefore if WH2 can not bind actin, the PWCA fragment cannot activate 

Arp2/3 complex but its Arp2/3 independent function for nucleation of F-actin 

is promoted.   

4.5 Analysis of the effect of Las17-PWCA-S588 mutants on actin 

polymerisation 

The mutant S588D inhibited binding of G-actin, but the S588A mutant 

exhibited normal actin binding broadly similar to wild type as judged by GST 

pull down assay (section 4.2). To investigate whether the binding effects of 

the phosphomutants (S588A/D) impact on actin-nucleation and filament 

formation, a pyrene-actin assay was undertaken as described in section 4.4.   

As shown in the left graph in figure 4.4.A, the polymerisation level of PWCA-

S588A alone was not affected, but the polymerisation rate was slightly 

enhanced in the presence of Arp2/3 complex. To analyse the effect S588A in  
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A. 

B. 

Figure 4.3: G-actin polymerisation of Las17-PWCA and PWCA-I555D mutant.  

Polymerisation 5 µM of G-actin (A) (10% labelled pyrene) in the absence or presence of 2 

nM of Ap2/3 complex. (A) In the left panel, Las17-PWCA was added to 32 nM (the 

optimum concentration to investigate the changes of the tested parameters) alone causes 

a small shift of actin polymerisation, but the addition of 2 nM Arp2/3 complex (Arp) 

enhances the Las17-PWCA to nucleate actin monomers. The right panels are expansions 

part of figure in the left panels, but the changes in polymerisation kinetic were observed at 

the first 10 minutes of the assay and this was important to determine whether 

lag/elongation phases were affected. Upon addition of Arp2/3 complex there was a 

noticeable decrease in the lag time, and it increases the rate of actin elongation by Las17-

PWCA (wt). (B) Graph line of polymerisation activities of I555D mutants which revealed 

similar effect as Las17-PWCA wild type, but it has no additive effects on the 

polymerisation rate of actin in the presence of Arp2/3 complex (left panel). The right panel 

showed the changes on actin polymerisation at 10 min of pyrene-actin assay.  

The data shown were obtained from a single experiment 
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Figure 4.4: G-actin polymerisation of the phosphomutants S588A/D. 

(A) Pyrene–actin assay of Las17-PWCA- S588A mutants which showed similar 

rate of actin nucleation and F-actin elongation as the PWCA (wt) fragment 

(figure 4.3.A). 

(B) Pyrene-actin assay in the presence of Las17-PWCA-S588D.   

The data shown were obtained from a single experiment 

B. 

A. 
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more details, the first 10 min of the reaction was observed. As shown in the 

right graph, neither the PWCA-S588A alone nor the PWCA-S588A+Arp2/3 

revealed any alteration in the lag time, but the elongation of F-actin by 

S588A+Arp2/3 was visible at approximately 5-6 minutes of the reaction. 

Figure 4.4.B (left panel) showed that, PWCA-S588D alone had a prolonged 

lag time and a delay in elongation. PWCA-S588D showed no additional 

increase in polymerisation rate when Arp2/3 was added.  

The overall data suggested that, introducing of the S588D mutation reduces 

actin binding and similar to the I555D mutation does not activate Arp2/3 

complex. However, unlike the I555D mutation in the absence of Arp2/3 the 

S588D also reduces the polymerisation rate. Given the low concentration of 

All PWCA fragments in this assay, the reason for PWCA-S588D inhibitory 

effect on polymerisation kinetic is currently unclear.  

4.6 Analysis of the effect of Las17-WCA-S588 mutants on actin 

polymerisation 

Given the overall polymerisation rate of Las17-PWCA was impaired by 

S588D mutation, it was important to determine whether this defect is due to 

inability of Las17-WCA domain to function. To address this, the coding 

sequence of LAS17-WCA domain was amplified using oligonucleotide OKA 

1183 and OKA1184. Sequence corresponds to DNA encoding Las17-WCA 

(529-633 a.a) was cloned into pGEX6P-1 plasmid (pKA114) using BamH1 

and Sal1 restriction enzymes and then verified by sequencing.   

In order to examine whether S588A/D phosphomutants influence the ability 

of Arp2/3 to nucleate and polymerise actin, Mutations at S588 to alanine 

(S588A) or Aspartate (S588D) were generated in plasmids carrying GST 

fusion of Las17-WCA and prepared as above.  

The effect of S588A/D on actin polymerisation was assessed fluorimetically 

in the presence of different concentrations of Arp2/3 complex. The 

polymerisation assay was monitored for up to 150 minutes, and the rate of  
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actin polymerisation was quantified for each WCA fragment in the presence 

of Arp2/3 complex. The differences between the tested variants were 

analysed by quantifying the fitted linear regression of each variant obtained 

from 2 experiments. Statistics were performed using PrismPad 6 software.  

Figure 4.5.A (left panel) showed that, Las17-WCA alone inhibited the actin 

polymerisation due to the presence of the actin binding domain (WH2). Upon 

addition of Arp2/3 complex in a concentration dependent manner, the lag 

phase was reduced resulting in an increase in the polymerisation rate of 

actin. As displayed in the right graph, the rate of actin elongation of Las17-

WCA+Arp2/3 showed a 2 fold increase in the fluorescent intensity indicating 

effective polymerisation.   

Figure 4.5.B, revealed that, WCA-S588A alone appeared to sequester G-

actin to a greater extent but it could function with Arp2/3 to increase 

polymerisation to similar extent as wild type WCA.  

Figure 4.5.C showed that, the sequestering ability of Las17-WCA-S588D 

truncation was similar to that observed in the wild type (figure 4.5.A). In 

contrast, the rate of polymerisation of actin in the presence of WCA-S588D 

and Arp2/3 complex was decreased even at higher levels of Arp2/3. Graph 

on right panel showed that, the rate of actin elongation shown by addition of 

the WCA-S588D mutant was significantly inhibited, which would indicate 

that, mutation to aspartate may preclude nucleation and actin filament 

formation by inhibiting binding of actin and Arp2/3 complex accordingly the 

rate of actin polymerisation was significantly slowed down. 

These data would suggest that, Las17-S588D negatively regulates the 

function of the WCA domain possibly by inhibiting the Arp2/3 complex 

binding.  

 

 

 

 



 

144 
 

 

 

 

 

 

 

 

 

Figure 4.5: Pyrene actin assay of Las17-WCA (A) polymerisation of Las17-

WCA wild type, (B) LAS17-WCA-S588A, and, (C) Las17-WCA-S588D in the 

presence of two different concentrations of Arp2/3 complex (Arp) 2 nM and 5 nM. 

Graph bars revealed the elongation rate of each fragment once Arp2/3 was 

added (average elongation rates were obtained from three data sets).  

A. 

B. 

C. 
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4.7 Investigation of the intramolecular binding between the PP region 

and the WCA domain of Las17  

The recognition of Arp2/3 independent mechanism activity through the poly-

proline (PP) domain indicated possible interplay between PP and the Las17 

C-terminal region (WCA domain). In this report it was hypothesised that, 

Las17 might undergo conformational change which might regulate its Arp2/3 

dependent and independent actin-based function. The intramolecular 

interaction of Las17 was investigated using in vitro and in vivo binding 

approaches.  

4.7.1 Determination of WCA-PP intramolecular binding in vitro  

The intramolecular interaction of Las17-WCA domain and its central PP 

region was examined using GST pull down assay whereby, GST fusion of 

Las17-PP (a.a 300-536) and Las17-WCA (a.a 529-633) were expressed in 

BL21 (DE3) cells and purified as described in materials and methods. The 

GST tag was cleaved from the WCA while GST fusion of Las17-PP fragment 

was left attached to the beads.  

To investigate WCA-PP intramolecular interaction, an equivalent volume of 

Las17-WCA and Las17-PP immobilised on GST beads were mixed and 

incubated for 1 hour. The protein samples were sedimented by centrifugation 

at 3000xg for 3 minutes. The supernatant was removed and transferred into 

separate tubes, and the beads were washed with buffer to remove the 

unbound material. Supernatant and pellet were separated by SDS-PAGE 

gel. As shown in figure 4.6.A, the GST control was unable to bind WCA. In 

contrast, addition of Las17-WCA fragment to GST-PP fusion resulted in a 

marked shift of   WCA fragment into the pellet fraction along with the GST-

PP beads which suggested a binding of these two Las17 domains.  
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A. 

B. 

Figure 4.6: Las17-WCA truncation binds to Las17-PP fused GST 

(A) GST only and Las17- WCA were purified using GST purification, GST was 

left on beads while LAS17-WCA fragment was eluted and GST tag and eluted 

using precession protease enzyme to be detached from GST beads. The gel 

on the left shows the individual proteins. Gel on the right shows proteins after 

incubation and serial washes with Las17 buffer.  

(B) Las17-PP-GST fusion was left bound to glutathione sepharose beads. The 

gel on the right showed the proteins individually, whereas the gel on the right 

clarify Las17-WCA (wt) bound to Las17-PP on GST beads.  

Pull down assay was done twice and similar results were obtained in each run.  
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4.7.2 S588D is essential for intramolecular binding  

Results presented above provided evidence of intramolecular interaction of 

Las17-PP and WCA domains. Therefore, it was of interest to determine 

whether S588A/D mutants contribute to the WCA-PP intramolecular binding 

and this was examined in the presence of Las17-WCA with S588A and 

S588D mutations. Binding assay of the WCA-S588 mutants and PP fused 

GST was performed as described in 4.7.1.  

Figure 4.7.A shows binding of the WCA-S588A fragment with GST fused 

Las17-PP on beads where a fraction of WCA-S588A truncation is shifted 

along with GST-PP fusion into the pellet (arrow), suggesting that, S588A did 

not affect WCA-PP interaction. In contrast, Las17-WCA-S588D truncation 

displayed a reduced level of binding as the majority of WCA-S588D 

remained in the supernatant whilst, GST-PP fusion and traces of Las17-

WCA were shifted into the pellet fraction (arrow). This indicates that the 

S588D inhibits an intramolecular interaction between WCA and PP regions 

of Las17.  

4.7.3 Testing WCA-PP intramolecular binding using Yeast Two Hybrid 

analysis  

The mutation S588D in the WCA domain of Las17 inhibited the 

intramolecular interaction with Las17-PP region in vitro. Therefore to 

corroborate these results in vivo, yeast two hybrid assays were used. A 

plasmid expressing Las17-PP fused to Gal4-activation domain (pGAD) was 

obtained from the lab plasmid collection, whereas Las17-WCA fragment was 

amplified, and sub cloned into pGBDU-C1 plasmid (pKA168) expressing 

Gal4-binding domain (pGBD) and verified by sequencing.  

Las17-PP fused pGAD plasmid was transformed into MAT a yeast 2 hybrid 

strain (KAY 711), and the pGAD fusion of Las17-WCA was transformed into 

α strain (KAY 712). The transformation of each strain was performed using 

Lithium acetate method and then selected on suitable synthetic drop out  
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Figure 4.7: Binding assay of WCA-S588 mutant and Las17-PP fused GST 

Las17-WCA containing S588A and 588D mutations were purified as GST fragments 

together with Las17-PP fragment. GST tag was removed from WCA-S588A/D 

fragments while Las17-PP was left attached to GST beads. Gel on the left shows 

proteins before binding while gel on the right, shows proteins after interaction. This 

might suggest that, S588 phosphorylation is important for the stability of the PP-

WCA intramolecular interaction.  
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media. MAT α strain expressing pGAD fused Las17-PP was mated with MAT 

a strain expressing pGBD fused Las17-WCA, and the grown cells were 

selected on drop out uracil, leucine plates to select for diploid strain that 

carried both plasmids. The cells were inoculated into SD liquid media and 

grown until OD600 = 0.6. the culture was then 1/10 serially diluted and spotted 

into drop out Histidine, uracil, leucine (HUL) plates containing  4 mM or 8 mM 

of 3-amino1, 2,4-triazole (3AT). 

An interaction between the proteins can be determined when the cells are 

able to grow on a media lacking histidine due to the presence reporter genes 

which can only be activated upon interaction of the Gal4 activation and 

binding domains which are fused to the proteins of interest (see figure 2.1, 

page 86). In this case, the reporter genes used were for histidine 

biosynthesis and β-galactosidase biosynthesis. Therefore, by growing the 

cells on drop out his, ura, leu (HUL) plate and interactions can be detected 

due to the ability of cells to make histidine. However, growth cannot occur if 

interactions are lost.  3-AT is a competitive inhibitor of Imidazoleglycerol-

phosphate dehydratase enzyme required for histidine biosynthesis pathway. 

3-AT is commonly used in yeast two hybrid screens to examine for the 

strength of the interaction between the tested proteins, and also to check for 

protein-self activation. Alternatively, β-galactosidase assay was also used to 

screen for β-galactosidase reporter gene whereby the strength of the 

interaction can be investigated by measuring absorbance at OD420nm of o-

nitrophenyl-β-D-galactoside (OPNG) products including O-nitrophenol 

(yellow product) and galactose.  

All figures show representative data obtained from at least three independent 

experiments. 

Figure 4.8.A shows that, except the  control cells (Sla1 and Lsb5 hybrid), all 

the tested strains were unable to grow on plates lacking histidine + 4 mM or 

8 mM of 3-AT, which may suggest that, the level of interaction between the 

tested proteins is insufficient to be detected using this approach. Thus, it was  
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Figure 4.8: Yeast two hybrid analysis of Las17-PP interaction with 

Las17-WCA domain   

Plasmid expressing Las17-WCA fused to Gal4-activation domain (pGAD) 

truncation or LAS17-PP fused to Gal4-binding domain (pGBD) fragment was 

transformed into pJ-69-4 (a) and (α) strains and grown on selective media. 

Strains containing the following hybrid: pGAD x pGBD, LAS17-WCA x 

pGAD, Las17-PP x pGBD, Sla1xLsb3 (as a positive control), and LAS17-

WCA x LAS17-PP were grown until OD600= 0.5 and then 1:10 serially diluted 

onto drop out (-his, -ura, -leu) plates containing 4 µM or 8 µM 3-AT and 

incubated at 30˚C for 48 hours. Strain expressing Sla1 xLsb5 was the 

growth was seen on the tested plates.  
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thought to quantify the expression level of β-galactosidase activity which 

might be more sensitive to inspect for this interaction.    

Diploid strains expressing the following crosses: empty, Las17-WCA x 

pGAD; Las17-PP x pGBD; Sla1 x Lsb5; and WCA x PP hybrids were grown 

in an appropriate liquid media and OD600 = 0.6 was taken to account for all 

numbers. Cells were assayed for β-galactosidase activity as described in 

section 2.5.9.  

As shown in figure 4.9.A, there was a high level of Ortho-nitrophenol 

production from cells expressing WCA x pGAD, Sla1 x Lsb5, and WCA x PP. 

However, cells expressing the negative control: WCA x pGAD and PP x 

pGBD exhibited low activity of β-galactosidase. These result suggested self 

activation as judged by increasing rate of β-galactosidase activity of the 

strain harbouring the empty Gal4 DNA binding domain fused Las17-WCA.  

To optimise the conditions for protein self-activation, the WCA truncation of 

Las17 was fused into Gal4-activation domain, whereas the Las17-PP 

truncation was amplified using PCR and cloned into pGBDU-C1 plasmid. 

Plasmids were sent to be verified by sequencing. Each successful clone was 

transformed into the recommended strains above and, then tested for β-

galactosidase activity. Results obtained from at least 2 different experiments 

were shown in figure 4.9.B. 

 Although the level of O-nitrophenol production was significantly increased in 

the cells expressing Sla1 x Lsb5, which reflect the validity of the assay at 

least for this interaction, there was low level of β-galactosidase activity in 

cells expressing WCA x PP cross which would suggest no interaction 

between WCA domain and PP region of Las17. Therefore it was concluded 

that, yeast two hybrid analysis is perhaps inadequate method to be 

undertaken to analyse for this interaction. The reason for this could be that, 

PP-WCA interaction is too weak to be detected, or could be that the binding 

domain (BD) or the activation domain (AD) interferes with the interaction and 

thus an interaction between the two domains though was not possible.  
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Figure 4.9: β-galactosidase of Las17-PP interaction with Las17-WCA 

domain   

(A) Strains in figure 4.7 were grown in drop out (-ura and -leu) liquid media 

and assayed for β-galactosidase. Results confirmed self activation. 

(B) Plasmid expressing Las17-WCA truncation fused to Gal4-AD and or 

Las17-PP fused to Gla4-Binding domain were transformed into pJ-69-4 a, 

and α strains. These cells along with PP x pGBD, Sla1xLsb3, and WCA x 

PP were grown in SD liquid media and β-galactosidase was assayed. 

Error bars are standard deviation.  
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4.8 Discussion 

As in mammalian WASP, Las17 in yeast has WCA domain at its C-terminal 

which is involved in G-actin binding, and nucleation of actin monomers 

mediated by Arp2/3 complex activation (Winter et al., 1999). In addition, 

Las17 contains a region with multiple proline tracts and within this the last 36 

amino acids (500-536 a.a) were shown to exhibit the greatest contribution for 

actin binding. This region contains novel actin binding sites that are able to 

bind either G-actin or F-actin, and allow nucleation and actin filament 

assembly through a mechanism independent of Las17 –WCA (Robertson et 

al., 2009; Urbanek et al., 2013).  

4.8.1 S588D inhibits binding of monomeric actin 

One of the purposes of this work was to determine whether the S588A/D 

phosphomutants contribute to Las17-WCA domain ability for actin binding, 

and also to examine whether presence of Arp2/3 complex is essential for 

actin nucleation and stimulation of actin polymerisation. In this study, it was 

suggested that, S588 is crucial for the majority of actin based-Las17 

functions as changing S588 into aspartate in the Las17PWCA perturbed G-

actin association to the Las17-WCA domain, and this may inhibit actin 

nucleation mediated by Las17-PP region. This conclusion was further 

validated by MST analysis in which the Las17PWCA-S588D interacting with 

G-actin revealed reduced disassociation constant (to 2 µM) which might 

suggest that, S588D hampered the Las17-PWCA ability to bind G-actin. How 

this binding is affected is however still unknown. It is possible that the 

conformation of the region allows the ser588 residue to directly affect actin 

binding at the WH2 domain. Alternatively, there could be another actin 

binding site that is available in the central domain. 

4.8.2 The effect of I555D mutation on Las17-PWCA on Arp2/3 

independent and dependent function 

Before testing the effect of S588A/D mutants on Las17 NPF activity in vitro, it 

was of interest to determine the effect of I555D mutation on the kinetics of 

actin polymerisation mediated by Arp2/3 complex. As judged by pyrene-actin 
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assay it was found that perturbing the WH2 domain actin binding site through 

I555D did not disrupt the ability of Las17PWCA to nucleate actin filaments. 

However, it was absolutely required to enhance actin polymerisation 

mediated by the Arp2/3 complex. This means that Arp2/3 can only increase 

polymerization if actin is present at the WH2 site (Urbanek et al., 2013).  

4.8.3 S588D inhibits actin nucleation mediated by Arp2/3 complex 

activity 

If S588 mutations affected actin nucleation by blocking actin binding at the 

WH2 site, this would be expected to mimic the I555D mutation described 

above. Changing S588 to alanine in Las17PWCA exhibited a relatively mild 

effect and the addition of Arp2/3 continued to induce an increase in 

polymerization rate. In contrast, Las17-PWCA-S588D fragment showed a 

striking inhibition of actin polymerisation mediated by Arp2/3 complex. This 

would confirm that phosphorylation of S588 is important to enhance Las17 

NPF to activate Arp2/3 complex. The Las17 polymerisation activity mediated 

by Arp2/3 complex was further examined by introducing S588A/D mutations 

into Las17–WCA fragment. The G-actin binding ability of Las17-WCA wild 

type and S588A/D mutants were similar suggesting that in this context there 

was little or no effect on the interaction of S588A/D mutants with G-actin. 

This was surprising as the GST pull down and MST data indicated that 

S588D affected the interaction with actin, at least in the context of the PWCA 

fragment. This might suggest that the proline rich region was somehow 

influencing the actin binding properties of the WCA region. 

4.8.4 Intramolecular interactions of Las17-PP region and Las17-WCA 

domain can be detected 

Regulation of actin and Arp2/3 interaction with Las17 based on data 

presented in this chapter led to the hypothesis of a possible intramolecular 

binding between PP and WCA domains. As shown by pull down assay the 

Las17-WCA fragment was shifted into the pellet with PP fragment which 

would suggest a binding between the two domains. Furthermore, MST assay  
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was performed by Dr. Ellen Allwood in the Ayscough lab in which an 

interaction between PP and WCA domains was suggested with a Kd in the 

nM range. However, further experiments would be required to confirm this 

result. The possible role of phosphorylation in regulation of the WCA-PP 

intramolecular binding was investigated in the presence of WCA fragment 

containing S588A and S588D mutations. It was found that, the binding was 

not altered by S588A mutation. However, S588D mutation, which mimics the 

constitutively phosphorylated Las17-WCA, disrupted binding to the Las17-PP 

region. This result leads us to build a preliminary conclusion in which the 

WCA-PP intramolecular binding of Las17 is possibly regulated by 

phosphorylation of S588 which is required to modulate binding of actin 

monomers and Arp2/3. 

 

 

 

 



 

 
 

 

 

Chapter 5: 

Further Analysis of Las17 

Phosphorylation 

 

 

 

 

 

 

 

 

 

 

 



 

156 
 

Chapter: 5 

5.1 Introduction 

Endocytosis involves sequential recruitment of more than 60 proteins that 

form the endocytic patch and regulate membrane invagination, and vesicle 

scission. Actin polymerisation is required during endocytosis to provide the 

force that drives membrane internalisation and vesicle scission. In 

eukaryotes the Arp2/3 complex is central to regulate remodelling of the actin 

filaments at sites of endocytosis. The Arp2/3 complex activation in yeast is 

dependent upon various NPFs including Las17, Myo3/5, and Pan1. 

However, the WASP homologue, Las17 is considered to be the prime 

activator of the Arp2/3 complex that promotes actin polymerisation during 

endocytosis. As well as the G-actin binding WH2 domain, the presence of 

additional actin binding regions in its poly-proline PP region has been shown 

to add to Las17 NPF activity (Urbanek et al., 2013). As shown in chapter 4, 

unlike the WCA domain, the actin binding motifs in the PP region can 

nucleate actin independently of Arp2/3 complex activity (figure 4.3.B). This 

may suggest that, Las17 functions in a sequential manner whereby actin 

nucleation mediated by Las17PP region occurred independently of Arp2/3 

activity at early stage of endocytosis while actin nucleation mediated by WCA 

domain and Arp2/3 complex exhibits the major NPF activity of Las17. The 

mechanism whereby these functions are regulated is not clear. Unlike WASP 

itself, the GBD domain is absent in the WAVE protein similar to Las17. 

WAVE is believed to exist in trans-inhibitory state forming a complex with 

other ligands and it acts downstream of the Rac GTPase pathway (see 

section 1.4.7.1.3). Thus, it seems likely that regulatory routes, other than 

GTPase binding are involved in activating and modulating Las17 and 

probably other WASP family proteins such as WAVE. However, the role of 

Las17 activation by signalling pathway has not been shown in yeast 

endocytosis. The major aim of this part of the study was to investigate the 

phosphorylation state of Las17 and to identify the possibly kinases that 

phosphorylate Las17.  
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5.2 Generation of Las17 antibodies 

Western blotting is a frequently used analytical technique that recognises 

specific proteins when blotted onto a membrane. A specific antibody against 

the protein of interest is required to visualize the protein. Both levels of 

expression and post translation modification can be indicated by this 

approach. Often proteins are tagged with epitopes in order to facilitate 

western blotting; such tag can however interfere with protein function. 

Therefore, in order to avoid the use of epitope tags and to investigate the 

possibility of Las17 phosphorylation, polyclonal antibodies were raised 

against the PWCA fragment of recombinant Las17. The PWCA region was 

chosen as it is relatively easy to purify in comparison to the full length version 

of the protein.  

5.2.1 Purification of recombinant Las17-PWCA fragment 

The Las17 PWCA (amino acids 300-633) fragment was overexpressed in 

C41-(DE3) E. coli strain and then purified using a GST fusion purification 

method (section 2.6.4). The use of commercial C41-(DE3) competent cells 

was effective for induction of the recombinant Las17 protein and reduced the 

toxicity caused to the host cells. However, the recombinant Las17 fragment 

was commonly co-purified with a higher molecular weight protein. The co-

purified contaminant was about 70 kDa and was considered most probably a 

chaperone (70kDa Heat shock protein) expressed in E. coli strains (5.1. left 

panel). The co-purification of the chaperone in E. coli may facilitate the 

correct folding of proteins and maintain protein in the native state. However, 

co-purification is also a possible indication that the protein alone might have 

folding or solubility problems.   

As purified material was preferable for raising antibodies; it was important to 

remove the contaminating band from the protein. Several different methods 

were used, including gel filtration which was performed by a post doctoral 

research assistant in the lab (Personal communication with Dr. Ellen 
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Allwood). Elimination of the chaperone band however also resulted in loss of 

a vast majority of Las17. 

An alternative method was undertaken in which Las17 was separated from 

the contaminating band by SDS-PAGE. The band corresponding to Las17 

(~45 kDa) was excised from the gel and then subjected to the electro-elution. 

The electro-elution of the protein was carried out in a horizontal gel tank in 

the presence of detergent (1x SDS PAGE running buffer). The gel slices 

containing Las17-PWCA bands were electrophoresed at 20mA overnight at 

4˚C. Prior to analysing the purity of the electro-eluted Las17-PWCA, the 

dilute protein mixture was concentrated by mixing the protein sample with 

Strata Clean resins (Stratagen), briefly centrifuged, and then analysed on 

SDS-PAGE gel (figure 5.1, right panel).   

Several Las17-PWCA purifications were performed with the purpose of 

obtaining a final concentration of 1 mg/ml protein cleaved from GST. To this 

end, the electro-elution method led to very significant loss of Las17, and was 

therefore considered to be unsuitable.  

Eventually it was decided to raise the antibodies by injecting post-mashed 

gel slice containing Las17 fragment into the host animals directly.  
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Figure 5.1: Purification of Las17-PWCA fragment to generate 

Las17 antibodies.  

Las17-PWCA was GST purified from E.coli bacterial cell, the GST tag 

was cleaved using by incubation GST-LAS17 fusion on beads with 

precission protease overnight at 4˚C. The cleaved Las17 –PWCA was 

run on SDS-PAGE and the gel was stained with Coomassie and 

destained to visualise the protein (left panel). Las17-PWCA band was 

excised from the gel and the protein was electro-eluted in the presence 

of SDS buffer at 20mA overnight at 4˚C. The protein was concentrated 

using strata resins. Fractions of Las17-PWCA were checked for purity 

by running on SDS-UV gel (right panel). The Las17-PWCA was then 

buffer exchanged into PBS buffer.   

Contaminant 

PWCA 
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5.2.2 Immunization of the antigen  

The procedures for producing Las17 antibodies were carried out in 

Cambridge Research Biochemical institute. Three rats were chosen for 

raising Las17-PWCA polyclonal antibodies. Three rats were injected in a 

period of 4 weeks intervals so that a total of 8 immunizations were performed 

and 3 bleeds were harvested subsequently. The pre-immune bleed was also 

collected to serve as negative control in the tests.  

Three week gaps were allowed between the first and the second injections to 

ensure that the response of the IgG antibodies to the antigen is boosted. 

One week later the rats were subjected to the third injection and 0.5 ml of the 

first bleed was harvested. The fourth and the fifth immunization were carried 

out in 2 week intervals and 2 ml of the second bleed was collected 

afterwards. The rats were injected once more and a test blot at this stage 

revealed no specific antibody binding and so a one month rest period was 

allowed before proceeding with further injections. Next, subsequent 

immunization was performed with Las17PWCA in solution instead of the post 

mashed-gel materials. This step was carried out to test whether this would 

induce the immune-system of the hosts further. The rats were injected twice 

with a one week interval between injections and 8 ml of the third bleed was 

harvested.   

The sera of the second and the third bleeds obtained from the three rats 

were examined against different fragments of Las17 as described below.  

5.2.3 Testing the rat sera for Las17 antibodies 

To determine the specificity of the purified polyclonal antibodies against the 

PWCA fragment of Las17, whole yeast cell extracts were prepared from 

yeast strains expressing the endogenous LAS17 as a positive control 

(KAY446) and from  a strain lacking las17 (KAY 472). This acted as a 

negative control. The purified Las17-PWCA fragment cleaved from GST was 

examined alongside. 200 µl of each sample was loaded across the width of a 

single lane 10% SDS-PAGE. The electrophoresed proteins were then 
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transferred onto PDVF membrane and subjected to a titration experiment.  

To determine the optimum concentration of the antibodies, 10 fold dilutions 

were prepared from the pre-immunized, and bleed 2 sera of the three rats. 

Dilutions of 1:1000, 1:5000, 1:10000, and 1:20.000 were made up in blocking 

buffer (depicted in figure 5.2). The membranes were placed on top of the slot 

blotter and 500 µl of each dilution bleed was loaded onto a separate well and 

incubated for an hour at room temperature with shaking. The membranes 

were washed and then incubated with HRP conjugate secondary antibodies 

for an hour. The proteins on each membrane were then detected using ECL 

reagents (see section 2.6.10). 

The blot of the wild type extract in figure 5.2.A showed that, 1/1000 

concentration of the Las17 antibodies obtained from the second bleed of rat 

1 and rat 2 were able to recognise a band which corresponded to the Las17 

full length size (67 kDa). In contrast, the 67 kDa band was completely absent 

in the negative control (arrow indicated in figure 5.2.B).  

In addition, the antibodies detected further higher molecular Weight bands 

suggesting that, other proteins are recognised by the antibodies. 

The sera obtained from rat 3 did not show antigenicity to any of the tested 

extracts, therefore it was not examined further. 

Figure 5.3 shows blotting analysis of the Las17 antibodies against the 

purified recombinant Las17-PWCA fragment. The antibodies obtained from 

rat 1 and 2 were able to recognise a protein at ~34kDa and this band is 

comparable to the size of Las17-PWCA fragment (arrow). As in the control, 

other high molecular weight bands were detected.  

The Las17 antibodies obtained from the third bleed of rat 1 and 2 were also 

analysed as described above. Various different dilutions were prepared 

(1:500, 1:1000, 1:2000, and 1:3000) and tested against different parts of 

recombinant Las17 including PWCA, PP, and WCA fragments.  
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Figure 5.2: Immunobloting analysis of Las17PWCA antibodies  

(A) Analysis of yeast extracts prepared from the wild type strain;  

    Serial dilutions were prepared from the antiserum of the second bleed 

and the pre-immunized anti sera (control) from rat 1,2 and 3.  Band 

between 35 and 55 kDa correspond to Las17PWCA size can be 

observed from 1:1000 of the second bleed from rat1,rat 2 but this band 

was absent in rat3 

(B) Immunobloting analysis of yeast extract prepared from las17 deletion 

strain as in (A). 

 

B. 

A. 
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As shown in figure 5.4.A, the Las17 antibodies of the third bleed recognised 

the 34 kDa band corresponded to Las17-PWCA fragment (arrow). As well as 

detecting likely chaperones, lower molecular bands can be observed which 

may be degradation of Las17.  

Immunobloting in figure 5.4.B shows analysis of Las17 antibodies against the 

central polyproline (PP) region of Las17. A protein band corresponding to 

Las17-PP size = 24 kDa was visible in each lane (arrow). However, the 

Las17 antibodies from rat 2 at 1/500 and 1/1000 dilution exhibited higher 

immunogenicity against the PP fragment as  the intensity of the band was 

elevated (arrow).  

Immunobloting analysis of Las17-WCA fragment in figure 5.4.C shows that 

Las17 antibodies obtained from rat1 had no antigenicity against WCA 

fragment as only the chaperone bands were observed on the blot. In 

contrast, a small molecular weight band at 10.5 kDa was recognised by the 

Las17 antibodies from rat 2. These bands are the expected size of Las17-

WCA (arrow) indicating that the Las17 antibodies can detect the Las17-WCA 

fragment.       

Due to time constraints of the study and the problem of visualization of the 

non-Las17 bands using the antibodies an alternative strategy was 

considered, in which the full length LAS17 gene was cloned into a plasmid 

bearing 3 copies of Influenza Hemagglutinin epitope (3x-HA). The plasmid 

Las17-3x-HA (KAY1037) expressed LAS17 under its own promoter and this 

would then allow for the use of the commercial HA antibodies. 
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Figure 5.3: Immunobloting analysis of the Las17 antibodies from 

the second bleed of rat1 and rat 2. 

Serial dilutions of the second bleed were prepared and tested against 

the recombinant Las17PWCA. A protein band corresponded to the size 

of PWCA fragment was detected and, higher and lower molecular weight 

bands were also observed.   
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Figure 5.4: Immunobloting analysis of the third bleed of rat 1 and rat 2. 

(A) 1:500, 1:1000, 1:2000, and 1:3000 Serial dilutions of the final bleed was 

prepared from rat1 and rat2 and the specificity of the Las17 antibodies 

were examined against   the recombinant Las17PWCA  

(B) The Las17 antibodies tested against the recombinant Las17PP as in A.   

(C) Immunobloting analysis of small WCA fragment of Las17.  
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5.3 Visualization of Las17-3xHA from yeast extract 

Activation of human WASP through phosphorylation is well studied but 

phosphoregulation of the WASP homologue Las17 in yeast is yet to be 

specifically reported therefore, in this report it was sought to investigate the 

phosphorylation status of Las17 in vivo.  

Wild type strain expressing Las17-3xHA plasmid or las17 deletion strains 

carrying either 3xHA empty plasmid or Las17-3xHA plasmid were grown to 

late log phase OD600= 0.8-1. Pellet of each strain were treated with proteases 

and phosphatase inhibitors to prevent protein degradation and 

dephosphorylation by endogenous enzymes. The whole cell extract of the 

above yeast strains were prepared as described in section 2.6.1 and an 

equal amount of each lysate was then separated on 6% SDS-PAGE gel. To 

determine possible modification of Las17, the proteins were transferred onto 

nitrocellulose membrane and detected by western blot using alkaline 

phosphatase conjugated secondary antibodies. Figure 5.5.A shows 

immunobloting analysis of Las17-3xHA expressed in wild type strain or las17 

deletion strain whereby the Las17 appeared as a broad band (lane 1 and 

lane 2). The appearance of this band suggested the possibility of a doublet 

which would suggest that Las17 may be modified by phosphorylation.  

To investigate whether this hypothesis is true the migration of Las17-3xHA 

expressed in the above strains was examined using Phos-tag Mg2+ -SDS-

PAGE.  The Phos-Tag is 1, 3-bis [pyridine-2-ylmethyl) amino] propan-2olate, 

which contains two sites for binding of divalent such as Mn2+ or Zn2+. In 

aqueous solution the complex Mn2+-Phos-Tag forms a phosphomonoester 

bond with the phosphate group bound to serine (S) or threonine (T) residue 

at pH ≥7. Following Phos-Tag binding, the migration of the modified proteins 

is retarded, permitting the phosphorylated proteins to be separated from their 

non phosphorylated counterparts.     
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 Figure 5.5: Analysis of Las17 phosphoforms in vivo 

(A) Yeast crude extracts were prepared from late log phase las17 deletion cells 

expressing HA- plasmid (negative control (lane 1), lane 2 wild type cells 

expressing HA-empty plasmid (positive control), and las17 deletion cells 

expressing LAS17 (lane 3). Samples were loaded on 6% SDS-PAGE and 

analysed by western blot using α-rat a primary antibodies and alkaline 

phosphatase conjugated secondary antibodies. 

(B) Western blot analysis of set of samples in (A) were analysed on a 10% 

Phos-tag+2Mn gel. Experiment was repeated at least 3 times.   

 

 

 

 

(B) Analysis of Las17 phospho-species on Phos-tag gel  

(A) Analysis of Las17 phospho-species on SDS-PAGE 

 

 

 



 

168 
 

Chapter: 5 

As shown in figure 5.5.B, Las17-3xHA expressed in wild type strain 

appeared as two major bands in the blot whereby bands were separated due 

to phosphate binding indicating phosphorylation (arrows). In contrast, Las17-

3xHA expressed in las17 deletion strain showed three major bands can be 

observed (arrows). This pattern indicates that other species of Las17 are 

present. These data support the idea that, Las17-3xHA is phosphorylated in 

vivo. In addition to the major bands there is also a higher molecular weight 

smear possibly indicating further minor phosphorylation events. The reason 

for the presence of extra phosphoforms of Las17-3xHA expressed in las17 

null background is unclear but it could be that, these cells undergo 

compensatory changes due to the loss of the endogenous LAS17 or that, the 

HA tag potentially interferes with the normal function of Las17 and in these 

cells there is no endogenous Las17 present.    

To examine the second possibility, the function of the actin marker Abp1-

GFP was assessed in cells carrying just the HA tagged Las17.  

5.4 Effect of the 3xHA tagged Las17 expression on the behaviour of 

Abp1-GFP actin marker  

As described in section 5.1.2, the number of Las17 phosphorylated forms 

was different in wild type and las17 null strains which could be attributed to 

the defects in a number of cellular functions. Las17 is a component of actin 

cortical patches where the process of endocytosis actively occurs, therefore 

the impact on the Abp1-GFP lifetime and movement was assessed in wild 

type or las17 deletion strains carrying the Las17-3xHA plasmid.  

The wild type (KAY 446) or las17 null (KAY472) yeast strains expressing 

Las17-3xHA plasmid were transformed with plasmid carrying Abp1-GFP 

marker (pKA88). An overnight culture was prepared from the grown colonies 

of each strain and refreshed next day in SD medium until the cell growth 

reached to the logarithmic phase. The yeast strains (wild type and las17 null)  
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expressing both Las17-3xHA and Abp1-GFP marker were then visualised 

and time lapse movies of Abp1-GFP patches were recorded over periods of 

90 seconds. Kymographs of single patches were generated which showed 

the movement of an endocytic patch at the plasma membrane followed by 

invagination into the cell.   

Figure 5.6.A showed that the Abp1-GFP marker expressed in the wild type 

had an average lifetime of 19.6 seconds a value comparable to that 

published elsewhere (Aghamohammadzadeh, et al., 2014; Kaksonen et al., 

2005). In contrast, the Abp1-mRFP marker in las17 null strain carrying 

Las17-3xHA exhibited a significant increase in the patch lifetime to 31.1 

seconds. This indicates that the absence of the endogenous LAS17 leads to 

a delay in the assembly and disassembly of components at the endocytic 

site.  

Figure 5.6.B showed kymographs of Abp1 patch in wild type strain in which 

an individual endocytic patch revealed a small steep movement at the 

membrane indicating invagination. Around 76% of Abp1 patches in wild type 

cells exhibited invagination (n=25). In contrast, the Abp1 patches in null 

strain exhibited pronounced defects in patch movement with only 36% of the 

patches showing normal invagination. This suggested that, internalisation of 

Abp1 actin marker was severely defective in the cells in which Las17 was HA 

tagged. For this reason it was considered most appropriate to investigate 

phosphorylation in strains also expressing endogenous protein.  
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Figure 5.6: Analysis of Abp1-GFP behaviour in wild type and null strains 

expressing Las17-3xHA plasmid. 

(A) The lifespan of Abp1-GFP patches in wild type and las17 null strains 

carrying Las17-3xHA plasmid. Error bars are standard deviation.  

(B) Time lapse movies of wild type or las17 deletion strains expressing Las17-

3xHA plasmids were acquired and kymographs of a single Abp1-GFP 

patch in each strain were generated using ImageJ software.  

 

B. Kymographs of the endocytic reporter Abp1-GFP   
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5.5 Determination of the kinases responsible for Las17 phosphorylation  

Protein kinases in S. cerevisiae play an important role in regulation of 

multiple signalling pathways by phosphorylating specific threonine/serine 

residues of their substrates. Results in section 5.1.5 confirm that, in cells 

Las17 can exists in multiple states as the band patterns of Las17 was altered 

on Phos-tag-SDS gels. To identify the possible kinases that are involved in 

Las17 phosphorylation in vivo, cells carrying deletion of kinase genes ark1, 

prk1, pho85, yck1/2, and yak1 were transformed with plasmid bearing Las17-

3xHA alongside a wild type strain (KAY446) to serve as a positive control. 

The cells were grown to log phase, Lysates of each strain was prepared as 

described in section 2.6.1. Proteins were separated on 10% Mn2+-Phos-tag 

gel and then analysed by western blot and visualised using alkaline 

phosphatase. 

Most of the kinases investigated had previously been shown to interact 

genetically or physically with Las17 (Spoko et al., 2006, Michelot et al., 2010; 

Mok et al., 2010; Ptacek et al., 2005). Yak1 interaction with Las17 has not 

been reported yet, but the yak1 deletion strain was in our lab collection. 

Table (A) in figure 5.7 shows a brief description of the kinases used in this 

study. 

Figure 5.7.B shows western blotting analysis of Las17-3xHA in a wild type 

strain alongside the kinase deletion backgrounds. In the wild type strain, 

Las17-3xHA appears as two separated bands indicating phosphorylation. 

Neither ark1 nor prk1 deletion strains revealed any change in Las17 band 

pattern compared to the wild type strain (lane 2 and 3). In contrast, the loss 

of pho85, yck1 and its paralogue yck2 and yak1 caused changes in the 

Las17-3xHA band pattern (lanes 3, 4, 5, and 6). The characteristic 

phosphorylation bands in Las17-3xHA in these kinase backgrounds were 

more similar to las17 null strain bearing La17-3xHA plasmid as a sole source 

of Las17 with 3 main bands.  
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It is not clear why kinase deletion of phos85, yck1/2, and yak1 leads to an 

increase in the phosphorylation state of the Las17-3xHA. It may indicate that 

phosphorylation by these kinases is required for progression through 

endocytosis and that their absence might cause a block in the pathway 

allowing accumulation of a minor phosphorylated species.  

5.6 Separation of Las17 phosphoforms using 2D gel  

Distinct phospho-species of Las17 were observed upon expression of Las17-

3xHA in las17 null strain. To investigate these Las17 phospho-species 

further, 2 dimensional PAGE (2D gel) was undertaken. 2D-gel analysis is 

used to investigate post translational modifications such as phosphorylation 

of proteins in more details. The 2D gel mapping system allows separation of 

the phosphorylated proteins from the protein mixture by generating spots of 

focused protein. Therefore, the las17 deletion strain expressing Las17-3xHA 

(wild type) plasmid was grown to logarithmic phase and then crude extracts 

were prepared using liquid nitrogen grinding method ( described in section 

2.6.2). Las17-3xHA was immunopreciptated using anti HA Agarose 

conjugate and eluted with the hydration buffer. The isoelectric focusing 

electrophoresis (IEF) was performed with 7 cm neutral dry gel strips (pH 3-

10) using Ettan IPGphor3. Proteins were separated on 12% SDS-PAGE gel 

and then transferred onto PDVF membrane followed by immunobloting using 

anti HA-rat antibodies. The Las17-3xHA was probed using ECL reagents. 

The focusing position of the phospho-species in the immobilized pH 

gradients was first predicted from the Las17 amino acids sequence using the 

website http://scansite.mit.edu/calc_mw_pi.html  where a maximum of 8 of 

SP or ST forms were suggested. These CdK consensus motifs were 

searched along the peptide sequence of Las17 (table (A) in figure 5.8).   

 As shown in figure 5.9, the Las17-3xHA appeared as 2 major spots and a 

more minor spot similar to bands on the 1 D gel towards the more acidic (+) 

pI of the gel. However, due to problems optimising spot resolution in each 

experiment as well as time limits, this approach was not examined further. 

http://scansite.mit.edu/calc_mw_pi.html
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Kinase orthologue family Function 

Ark1/Prk1 AAK/GAK Ark1/Akl1/Prk1 

Regulating actin cortical patches 
and endocytosis 

Pho85 CDK5 cyclin dependent kinase 
(CDK) 

Regulating the cellular response to 
nutrients and cell cycle 
establishment 

Yck1/2 CKᵞ1/2 casein kinase1 (CK1) 

Endocytosis, and glucose sensing  

Yak1 DYRK1A casein like kinase(CLK) 

functions downstream to Ras/PKA 
signalling pathway in response to 
glucose sensing 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.7: Effect of various deletion kinases on Las17-3xHA phosphorylation 

forms. 

(A) A table represents identification of the kinases used in this study.  

(B) Las17-3xHA plasmid was transformed into wild type strain (1), or deletion 

kinases strains such as pho85∆ (2), ark1∆ (3), prk1∆ (4), yck1∆ (5), yck2∆ (6), and 

yak1∆ (7). Log phase cells were collected, treated with protease and phosphatase 

inhibitors, and then lysed. 15 µl of each crude extract was loaded and run on 10% 

phos-tag gel. The proteins were probed with alpha HA antibodies and detected using 

alkaline phosphatase. 

A. Kinases used in this study 

B. deletion kinases expressing Las17-3xHA 
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Phosphate Molecular Weight Isoelectric Point 

0 67589.0690 9.25 

1 67667.0330 9.04 

2 67744.9970 8.73 

3 67822.9610 8.13 

4 67900.9250 7.52 

5 67978.8890 7.16 

6 68056.8530 6.91 

7 68134.8170 6.72 

8 68212.7810 6.55 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

B. separation of Las17 phospho-species using 2D gel electrophoresis 

Figure 5.8: two dimensional gel analysis of Las17-3xHA. 

(A) Table shown the pI of the potential phosphoresidues within Las17 

peptide sequence. 

(B) Las17-3xHA was immunopreciptated from las17 null strain and then 

separated according to its charge (first dimension) and then to its MW in 

the second dimension. The Las17-3xHA was probed by rat anti-HA 

antibodies and the resulted spots 1 and 2 were indicated in the figure. 

2D results were based on 3 experiments but interpretable data was 

obtained only once.   

 

 

1 2 

IPG 3-10 

Las17-3xHA 
3 

A. pI of predictable phosphosites within Las17 protein 
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5.7 Identification of a novel Las17 phosphosites by Mass Spectrometry   

(MS) analysis 

Whole phosphproteome mass spec studies have reported that Las17 

phosphorylation takes place at multiple serines or threonines (Swaney et al., 

2013; Holt., et al 2009; Smolka., et al 2007), but the functional relevance of 

Las17 phosphorylation has yet to b fully investigated. In conjunction with 

protein database alogarithms, Mass spectrometry (MS) is used for mapping 

multiple phosphosites within proteins and has contributed greatly to our 

understanding of protein regulation. The aim of this section was to verify or 

detect phosphoresidues within Las17 using MS approach.   

Crude extracts were prepared from a large scale culture of las17 null cells 

expressing LAS17- 3xHA plasmid, followed by an immunoprecipitation step. 

The protein was eluted with sample buffer and then run on SDS-PAGE. The 

gel was stained with Coomassie safe stain™ followed by destaining by 

several changes with Milli-Q water. The band corresponding to Las17-3xHA 

was excised and subjected to Trypsin digestion (see section 2.6.14). The 

extracted peptide mixture was concentrated with formic acid and then 

analysed by liquid chromatography-tandem mass spectrometry (LC-MS/MS) 

in cooperation with the biological mass spectrometry facility (biOMICS), 

Faculty of Science at the University of Sheffield. 

In order to boost the analysis for phosphorylated peptides, two mass 

spectroscopic experiments were employed: multidimensional protein 

identification technology (MudPIT) and neutral loss multi stage activation 

(MSA) (Macek et al., 2009; Wu and MacCoss, 2002). In the first mass 

experiment MudPIT analysis was performed whereby the complex peptide 

mixture was separated by a triphasic micro-capillary column (reverse 

phased, cataion exchange, and reversed phase HPLC) and this was placed 

in line with the tandem mass spectroscopy. The tandem mass spectra 

generated by the MudPIT were then searched by matching the spectral data 

and the peptide sequence databases. The MSA method was undertaken as 

second mass trial in which the search was more directed towards serine (S)  
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and threonine (T) phosphopeptides if present. S/T peptides can be identified 

through the loss of H3PO4 group which results in 89 Dalton a loss shift from 

phosphorylated S/T residues while 80 Dalton loss shift occurs by 

phosphorylated tyrosine. Phosphorylation site localisation probabilities for all 

peptide match spectra were calculated by phosphoRS algorithm, where the 

sum of all sequence probabilities had to be equal to 100%.  

The raw MS/MS spectra was searched against the Swissprot database with 

a taxonomy filter of S. cerevisiae and interpreted with either Sequest or 

Mascot for peptide identification. The search applied forward and reverse 

(decoy database) to allow an estimate of the false positive rate, with mass 

tolerance of 10 ppm and 0.8kDa for MS1 and MS2. Up to 2 missed 

cleavages sites per tryptic peptide were allowed in each search. During 

protein degradation semi tryptic peptides can be generated. Therefore, the 

analysis was re-run for the second data set with Semi-Trypsin. The search 

included methionine for oxidation and peptide phosphorylation of serine, 

tyrosine, and threonine.  All the results were filtered to reporter proteins with 

a minimum of 2 peptides per protein of at least 95% confidence. 

The presence of multiple proline repeats within Las17 peptide sequence 

prevents Trypsin digest. Trypsin digestion occurs effectively after Arginine 

(K) or Lysine (R) residues, but proline (P) residue can bind to the carboxyl 

side of either K or R residues thereby inhibiting Trypsin activity. For this 

reason the outcome of peptide coverage in both experiments was low (25%). 

The resulting tryptic peptides of Las17 are shown in figure 5.9.A, in which 5 

peptides were shown to be phosphorylated at single or multiple sites 

(headed arrows). MudPIT analysis detected an individual phosphorylated 

peptide, but the other 4 phosphopeptides were identified by neutral loss 

search (described below). The Localisation probabilities of the 

phosphorylated sites by PhosphoRS are depicted in the schematic diagram 

of Las17 in figure 5.9.B.   
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Figure 5.9: Detection and identification of phosphosites in Las17. 

(A) Amino acids sequence of Las17 shows the proteolytic tryptic peptides resulted 

from this study (arrows). The residue labelled in red represents the MS identified 

phosphosites detected in this study. 

(B)  Schematic diagram of Las17 domain structures, the layout below illustrates the 

phosphoresidues recovered from MudPIT or Neutral Loss alogarithms. The 

phosphoRS software was utilized to find the potential phosphosites localisation 

of sum of 100 probabilities in each sequence. The colour line in each group set 

was matched to the Las17 domains through which these residues are 

positioned.  

 

B. Position of phosphorylation sites within the domains of Las17   

A. Las17 peptides resulted from in gel tryptic digestion  



 

178 
 

Chapter: 5 

As shown in figure 5.9.B, just after the end of WH1 domain two threonine 

residues (T131/141) in a single peptide were scored for phosphorylation. In 

this case the phosphoRS probability of T141 was indicated as 100% 

confidence of phosphorylation. Further residues were identified as 

phosphosites including T531/S532/T534/S535, 538, and T542/543. These 

residues located within a large peptide that initiate from the C-terminus of PP 

region and terminates prior to the beginning of the WH2 domain. Among all 

of these residues, the T543 was rated as the phosphorylated residue with the 

highest phosphoRS scores (95.2%) suggesting that it is most likely to be 

phosphorylated.  

One peptide containing the conserved RDALLASIR motif lies within the WH2 

domain, this was the only phosphopeptide identified by MudPIT and was 

given a score of 100% at Ser554 as a phosphorylated residue.  

The residues S586/588, T598, and S605 were found within the tryptic 

peptide GESASPPAAAGNGGTPGGPPASL and were scored for 

phosphorylation. The residues S586/S588 were previously reported as 

Las17 phosphorylation sites (Holt et al., 2009; Smolka et al., 2007), while the 

phospho T598 and S605 were not previously reported in this region. S605 

displayed the highest confidence of phosphorylation (98.6%) possibly 

suggesting that, S605 is functionally significant.  

The overall MS data would suggest that, the residues T141, T543, S554, 

S586/588, and S605 are likely to be phosphorylated and might contribute to 

regulation of Las17 function.   
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5.8 In vivo analysis of T543 and S554 phosphomutants 

Two of the phosphoresidues (T543 and S554) identified lie within the G-actin 

binding WH2 domain. The conserved I555 residue is also in this region 

(figure 5.10.A), and I555 mutation into aspartate was shown to be 

detrimental in nucleation of G-actin in vitro (unpublished work has been done 

by previous PhD student Adam Smith). Therefore, it was thought valuable to 

assess the functional importance of these amino acids through changing 

T543 or S554 into non-phosphorylatable alanine (A) and phosphomimetic 

aspartate (D). Point mutations were made on a centromeric plasmid carrying 

Las17 full length expressing Las17 under its own promoter. The 

phosphomutants (T543A/D and S554A/D) were verified by sequencing and 

then transformed into las17 deletion strains to be analysed in vivo. Due to 

time constraint all experiments have been done only once.  

The temperature sensitivity of T543A/D and S554A/D mutants was assessed 

by growing las17 deletion strains carrying an empty, wild type, T543A/D, and 

S554A/D plasmids to logarithmic phase. 1:10 serial dilution of each cell 

culture was prepared and spotted onto plates containing synthetic media.   

 Figure 5.10.B. (on the left panel) reveals that, neither las17-T543A/D nor 

S554A/D mutant was temperature sensitive as the mutants exhibited similar 

pattern of growth at 30˚C and 37C˚. As well as growing on plates, the same 

set of cells were grown in SD liquid medium to investigate their growth rate 

over time. In all cases cells exhibited wild type or near wild type growth. 

Indicating that, las17-T543 and las17-S554 mutants are not temperature 

sensitive as they were able to grow normally at 37˚C.   
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WASP     LAPGGGRGALLDQIRQG-----------IQLNK--- 446 

N-WASP   PVSCSGRDALLDQIRQG-----------IQLKS--- 449 

Las17    TTGDAGRDALLASIRGAGGIGALRKVDKSQLDKPSV 577 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

B. Growth of T543A/D and S554A/D mutants 

C. Growth curve of T543A/D and S554A/D mutants 

Figure 5.10: in vivo analysis of las17-T380 phosphomutants 

 (A) Sequence alignment of WH2 domain of human WASP/N-WASP and 

homologue in yeast Las17. Conserved DALLAS motif was highlighted (yellow) 

and T543 and S554 (arrows) and the conserved I555 residue were labelled in 

red.    

 (B) log phase las17 deletion cells carrying wild type, empty, T543A/D, and 

S554A/D  plasmids were serially diluted (1/10) and then spotted onto SD agar 

plates, and then incubated at 30˚C and 37˚C for 48 hours. 

 (C) Growth curve of cells in (B) on SD liquid medium at 30˚C over a period of 8 

hours. 

 

 

 

 

 

 

A. Sequence alignment of WH2 in WASP family members  

WH2        PP 
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Further investigations were undertaken in which the effects of las17 

phosphomutants T543A/D and S554A/D on the actin cytoskeleton was 

examined. As above, yeast stains lacking las17 carrying LAS17, empty, 

T543A/D, and S554A/D plasmids were grown to OD600=0.5-0.6. 1 ml of the 

actively grown culture of each strain was stained with Rhodamine-Phalloidin 

for 30 minutes. The cell pellet was washed several times with the 

recommended buffers and then viewed under fluorescent microscope 

(described in section 2.8.1). 

Again the actin organisation of the cells carrying  T543A/D and S554A/D 

mutations was not affected as shown in figure 5.11.A. Cells expressing 

T543A/D and S554A/D mutants exhibited normal actin patches whereby the 

majority of these cells had polarised actin cables in the bud and actin cables 

aligned along the mother. The graph bar in figure 5.11.B, revealed the 

percentage of cells in las17-T543A/D and las17-S554A/D mutants with and 

without polarised actin patches thus confirming neither T543A/D nor 

S554A/D mutants have an effect on the actin cytoskeleton in yeast cells.     
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  Figure 5.11: Actin cytoskeleton of T543A/D and S554A/D mutants. 

(A) Images showed the actin cytoskeleton of las17 null strains carrying 

LAS17 (wt), an empty, T543A/D and S554A/D plasmids. Cells were 

grown to log phase at 30˚C and then stained with rhodamine-phalloidin 

for 30 minutes and then viewed. Scale bar 2 µm. 

(B) Percent representation of the actin patches polarity for the cells in (A) 

n=100. Graph bar was generated using Prism graph-Pad 6 software. 

. 

 

 

A. Rhodamine-phalloidin staining of T543A/D and S554A/D 

mutants  

 

 

 

 

 

B. 
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5.9 In vivo study of T380 residue as a potential phosphorylation site 

The actin regulating kinases Ark1/Prk1 kinases in yeast are the homologue 

of the AAK/GAK family in mammals. Ark1/Prk1 kinases localised at actin 

cortical patches and play an important role in regulation of the endocytic coat 

disassembly during scission. The Ark1 consensus phosphorylation site 

(L(I)xxQxTG) is similar to that of Prk1 suggesting that, both Ark1 and Prk1 

are functionally redundant (Cope et al., 1999; Zeng et al., 2001). The Las17 

amino acids sequence was searched for LxxQxTG Prk1 recognition motif 

and a single Prk1 recognition motif was found within Las17-PP region (see 

figure 5.12.A). Prk1 kinase regulates several endocytic proteins by 

phosphorylating threonine residue within its recognition motif (Mok et al., 

2010).  

5.9.1 Temperature sensitivity test of las17-T380A/D mutants 

Las17 contains a single Prk1 recognition motif which lies within the poly-

proline (PP) region of Las17 (figure 5.12). The T380 residue lies within the 

Prk1 motif was previously reported as a site of phosphorylation (Swaney et 

al., 2013), though it was not found in the MS analysis carried out in this 

study. Phosphomutants were generated using site directed mutagenesis to 

change the T380 to non phosphorylatable alanine (T380A) or to aspartate 

(T380D) to mimic the constitutive phosphorylation of Las17. Mutations were 

made on a plasmid harbouring Las17 full length that expresses LAS17 under 

its own promoter. The mutants were verified by sequencing and then 

transformed into las17 deletion strains. Cells were grown to logarithmic 

phase, and the effects of T380A/D mutants on growth at 37˚C was assessed 

by spotting 1/10 dilution of each cells on SD plates, SD with 1M sorbitol or 

0.9M NaCl. Plates were incubated at 30˚C and 37˚C for 48 hours.        

As shown in figure 5.12.B, in las17 deletion strain complemented with LAS17 

wild type was able to grow at permissive and restrictive temperature (left 

panel) and the growth was normal also at hyper osmotic pressure (right 

panel) as well as hypertonic shock (bottom panel).  
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  Figure 5.12: in vivo analysis of las17-T380 mutants 

(A) Schematic diagram of Las17 showing the location of the putative phospho 

threonine 380 in Prk1 recognition motif LxxQxTG. The amino acid sequence 

of the poly proline region (PP) was depicted as well.   

(B) The las17 null strains were transformed with the plasmids as indicated. 

The resulted cells were grown to log phase and 10 fold dilution of the cell 

culture was spotted onto SD medium (top left), + 1M sorbitol (top right) and 

0.9M NaCl (below). The plates were then incubated at 30 and 37˚C for 48 

hours.  Results were based on a single experiment.  

 

 

B. Growth assay of T380A/D mutants 

A. Prk1kinase recognition motif in PP region  
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In contrast, cells carrying an empty plasmid were temperature sensitive at 

37˚C (right panel) and the growth was partially rescued in the presence of 

1M sorbitol at 37˚C (left panel). The growth of Las17 null cells was impaired 

at 37˚C in the presence of salt (bottom panel). Cells expressing las17-

T380A/D mutants were not temperature sensitive as the mutants were able 

to grow at 37˚C. In addition both T380A and T380D mutants exhibited similar 

growth as that observed in wild type cells in the presence of sorbitol or salt, 

suggesting that, T380 is not required for cell growth at restrictive conditions.   

5.9. 2 Effect of T380 mutants on actin cytoskeleton  

The effect of las17-T380A/D mutants on actin organisation of las17 null cells 

was examined. Images of T380A/D mutants stained with rhodamine-

phalloidin are depicted in figure 5.13.A. Both las17-T380A/D mutants 

exhibited normal actin organisation similar to that observed in wild type cells. 

Likewise the number of cells expressing T380A/D mutants with polarised 

actin patches was over 70% for each mutant, but the percentage of mutants 

with no-polarised actin patches was less than 30% (figure 5.13.B). Indicating 

that, neither T380A nor T380D mutants is essential for actin cytoskeleton in 

yeast cells.   

5.9.3 Effect of T380A/D mutants on lucifer yellow uptake 

To further extend the analysis for T380A/D mutants, the uptake of the 

fluorescent Lucifer yellow dye was determined. The Lucifer yellow is a 

soluble dye that is able to enter cells by endocytosis and accumulate into the 

vacuole. The extent of a defect in fluid phase endocytosis can be monitored 

microscopically (Munn and Riezman, 1985). The above set of las17 null 

strains were stained with lucifer yellow and incubated for 30 and 90 minutes 

to follow internalisation and trafficking into the vacuole (described in section 

2.8.2).      
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Figure 5.13: Rhodamine-Phalloidin staining of las17-T380 mutants. 

(A) The las17 deletion strains carrying LAS17, an empty, T380A and T380D 

plasmids were grown to logarithmic phase and stained with Rh-Ph stain 

for 30 minutes. The cells were then viewed under the fluorescent 

microscope. Scale bar 2µm. The T380A/D phosphomutants showed wild 

type phenotype. 

(B) Quantification of actin cortical patches of the same sets of cells in (A). 

The graph bar was generated using Prism graph-Pad programme.  

Results are based on a single assay.  

A.  Actin organisation of las17-T380A/D 

mutants 

B. 
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Lucifer yellow (LY) uptake into cells expressing LAS17 as well as the 

T380A/D mutants was assessed graphically as represented in figure 5.14 

(upper panel). After 30 minutes incubation, the number of cells expressing 

LAS17 (wt) that were able to internalise LY into vacuole was increased to 

53%. Other cells showed endosomal or plasma membrane staining. In 

contrast, the majority of las17 null cells exhibited a bright membrane with 

some endosomal staining (59%) and a much lower number of cells that had 

stained vacuoles (4%). Around 16% of cells expressing the las17-T380A 

mutant had vacuolar staining, whereas 23% of las17-T380D mutants were 

trafficked the dye into the vacuole. This suggests that, both T380A/D mutants 

affect endocytosis due to delay in LY trafficking from the membrane to the 

vacuole.   

At 90 minutes neither las17-T380A nor las17-T380D expressing cells 

exhibited any phenotypic effect on lucifer uptake (figure 5.14. right lower 

panel). This would suggest that the mutations cause a delay in uptake and 

trafficking rather than a complete block. 
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Figure 5.14: Rhodamine-Phalloidin staining of las17-T380 mutants. 

Quantification of the LY uptake of las17 null cells carrying LAS17, empty, 

T380A/D plasmids. Cells were grown to log phase and then incubated 

with 4mg/ml of Lucifer yellow for 30 minutes or 90 minutes at 30˚C. The 

graph bar was analysed using Prism graph-Pad 6. 

Quantifications were based on a single assay. 
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5.10 Discussion 

This chapter focussed on further analysis of the phosphorylation of Las17 

both to determine effective ways to analyse the phosphorylation and to map 

specific phosphorylated residues. The data presented in chapters 3 and 4 

indicated that phosphorylation of serine 588 is important in regulating Las17 

function in vivo. This mechanistic insight into regulation is important because 

like other WASP family members such as Scar/WAVE, Las17 does not have 

a GTPase binding site involved in its regulation, thus must rely on alternative 

mechanisms such as phosphorylation to ensure that it is active only at the 

correct places in the cell.  

The major achievements outlined in this chapter are -  

1. Generation of Las17 antibodies 

2. Demonstration of Las17 phosphorylation using gel based approaches and 

use of these methods for investigating kinases that might be involved in 

Las17 regulation. 

3. Identification of previously unknown phosphorylation sites and preliminary 

analyses on the importance of these 

Generation of Las17 antibodies 

The first aim of this chapter was to generate Las17 antibodies in rat in order 

to allow clear in vivo analysis of Las17 phosphorylation. There are no 

reported antibodies to Las17 in the literature so such tools would allow 

analysis of Las17 in the absence of tagging. Given the importance of the C-

terminal region for key interactions of Las17 it would be preferable to use 

untagged Las17 in studies. Antibodies were raised to the PWCA region of 

Las17 and antisera obtained were tested against PWCA, the PP fragment or 

with WCA alone. The 3rd bleed of rat 2 seemed to show recognition of 

epitopes in PP and in WCA, while the recognition of WCA by the rat 1 

antisera was less clear. Attempts to use antibodies against yeast extracts did 

not show clear differences between extracts from wild type or las17 null 

strains. Work is currently being carried out in the Ayscough lab to purify the 

antibodies for future studies.  
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Demonstration of Phosphorylation using HA tagged Las17 in gel based 

assays 

Because of the problems with the antibodies raised directly to Las17, it was 

decided that investigations would proceed using Las17 HA-tagged at its C-

terminus that could be detected with commercial anti-HA antibodies. Extracts 

were made from cells expressing Las17-HA from a plasmid. On our normal 

SDS-poly acrylamide gels it was difficult to discern distinct bands. However 

use of PhosTag, which binds to phosphate groups on proteins and retards 

their movement in gels, allowed distinct phosphorylated forms of Las17 to be 

distinguished. The fact that different bands could be seen in the presence of 

the PhosTag additive is good evidence that the Las17 protein in the extracts 

is phosphorylated. Another experiment that could be done to demonstrate 

phosphorylation would be to make extracts and then to treat them with 

lambda phosphatase. This should lead to the dephosphorylation and should 

result in a single band on a gel, if the others were due to this modification. 

The reason that this was not done was that the conditions required for the 

lambda phosphatase affected running on the PhosTag gels.  

An unexpected result was that extracts from cells containing endogenous 

LAS17 or cells in which LAS17 had been deleted carried different number of 

Las17 bands. This suggested that when HA tagged Las17 was the only 

Las17 in cells, it was differentially exposed to kinases than when it was co-

expressed with endogenous protein. To determine whether this difference 

had functional consequences the behaviour of an endocytic reporter Abp1-

GFP was analysed. Interestingly the lifetime of this protein in patches at the 

plasma membrane increased in the absence of endogenous Las17. The 

exact reason for the difference is not clear, but it would be of interest to 

immunoprecipitate the HA-tagged protein from the wild type and deletion 

strain to determine what the phosphorylation difference between the proteins 

is as it is clear that this difference impacts on endocytosis. At this time 

however it is not known whether the differences observed are because the  
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HA tagged protein is not having to function in the wild type cells so is less 

exposed to relevant kinases, or whether the HA tag causes a defect which 

means that when this protein is having to function in all aspects of Las17 

function its exposure to kinases is increased (or to phosphatases is 

decreased).  

The presence of multiple phosphorylation forms of Las17-3xHA suggests the 

possibility of action of more than one kinase. Phosphorylation sites of protein 

commonly fall within a consensus peptide sequence that is defined for a 

specific kinases. Genetic and physical studies have identified several 

kinases that may act on a number of endocytic proteins including Las17. 

Therefore several kinase deletion strains were obtained and tested for their 

effect on the Las17-HA phosphorylation pattern. Specifically, extracts from 

ark1/prk1, pho85, yck1/2, and yak1 null strains were tested using phos-tag 

gel approach. In all cases the strains contained endogenous LAS17. The 

Ark1/Prk1 kinases have been shown to link the actin cytoskeleton to 

endocytosis as mutations in the catalytic domain of Prk1 led to formation of 

large endocytic clumps in the cytosol (Zeng and Cai, 1999). Here, expression 

of Las17-3xHA in either ark1 or prk1 deletion background exhibited a Las17 

wild type phosphorylation pattern (figure 5.7). This result was unexpected as 

Las17 contains a consensus site for these kinases (T380) and 

phosphorylation has been previously suggested (Mok et al., 2010). However, 

it is possible that phosphorylation is very transient and difficult to capture by 

this approach. In addition, if the HA tagging affects incorporation of the 

Las17 into endocytic complexes in the presence of the untagged protein, we 

simply might not be able to see the effect of the kinase deletion in these 

cells. The other kinase deletions (pho85, yck1/2, and yak1 (figure 5.7) lead to 

an increase in the number of bands compared to wild type and in fact the 

pattern was more similar to that obtained in the absence of endogenous 

protein. An increase in number of phosphorylated bands might indicate that 

the kinase deletion has directly or indirectly affected the progress of 

endocytosis such that there is an accumulation of a Las17 species specific 
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for that endocytic stage. Further analysis of phosphorylated residues would 

indicate whether these mutants are likely to be enriched for the Las17 at a 

certain endocytic stage, rather than resulting from distinct differences in the 

kinases present in the cells. 

Mapping of Las17 phosphorylation sites using Mass spectrometry 

The mass spectrometry (MS) analysis allows us to reveal the presence of 

further phosphorylation sites in the Las17 amino acid sequence. Following 

the WH1 domain a phospho-peptide containing T131 and T141 was detected 

and the localisation probability calculated using PhosphoRS was 100% for 

T141 modification. Thus, confirming that, T141 residue is phosphorylated. 

This site is close to where the yeast homologue of WASP interacting protein, 

WIP (verprolin, Vrp1) is thought to bind (Naqvi et al., 1998). In the analysis 

peptide coverage of the polyproline region was not very high so it is possible 

that if alternative approaches were used to cleave the protein, further 

phosphorylation sites would be identified in this region. Beyond the PP 

region of Las17, multiple serine, or threonine residues were identified. One of 

the sites with highest probability from the phosphoRS was at T543 (figure 

5.9.B). It was hypothesized that T543 might contribute to Las17 function as it 

located within a motif that links the PP region with WH2 domain. Additionally, 

the MudPIT analysis revealed that the S554 residue as a phosphorylation 

site. S554 lies within the highly conserved RDALLASIR motif in the WH2 

domain. Given the importance of WH2 for actin binding it is of interest to 

determine whether phosphorylation at this site affects the actin binding 

proteins of this domain. Interestingly, we were able to demonstrate that S586 

and S588 are phosphosites and this result corresponded to the previously 

published phosphoproteomic data (Holt et al., 2009; Smolka et al., 2007). 

Although the phosphorylation probability of S588 was lower than some of the 

other sites. This may reflect its transience or the fact that it functions only at 

specific stages in the cell cycle or life span. The in vivo and in vitro analysis 

of S588 mutants showed clear detrimental phenotypic consequences 

(chapter 3 and 4). Finally, a peptide carrying T598 and S609 
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was also detected by MS with the PhosphoRS indicating a probability of 

100% for S609 modification. As with S586 and S588, this residue lies in the 

central (C) motif. This region has been suggested to be involved in both actin 

and Arp2/3 binding but the exact function of the region is not well defined 

(Kelly et al., 2006).  

Having established that the Las17 Thr543 and Ser554 are phosphorylated 

based on our MS data; the effect of the T543A/D and S554A/D mutants was 

assessed in vivo (section 5.1.7). The growth assays revealed that each 

mutant was able to complement the growth defect in las17 null strain at 

elevated temperatures and that actin organisation was normal. Therefore, it 

was concluded that single mutations at T543 or S544 are not sufficient to 

cause any detectable change in Las17 activity. However, assays 

investigating the behaviour of individual endocytic events might reveal more 

subtle defects. 

Finally, Ark1/PrK1 kinases are known to be involved in regulating actin 

assembly. At the endocytic sites Las17 localises to cortical patches and 

contains single repeat of Prk1 recognition motif (figure 5.12.A). The 

recognition Prk1 motif in Las17-PP region contains T380 residue that has 

been shown to be phosphorylated (Sawayn et al., 2013). Despite not being 

identified in our MS analysis it was considered appropriate to investigate the 

effect of T380 mutants on Las17 function. Phenotypic analysis of growth and 

actin cytoskeleton organization indicated that T380A/D mutants do not 

behave significantly differently from wild type cells. Preliminary data did show 

that both mutants (T380A/D) caused a mild phenotype in lucifer-yellow 

internalisation during a period of 30 min incubation thus further experiments 

using this approach and also those analysing endocytic reporters might 

indicate further defects. 
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6.1 Functional significance of Las17 phosphorylation 

Regulation of the endocytic machinery through post translation modification 

is still not well understood. The key Arp2/3 complex activator, Las17 in yeast 

is required to drive the formation of membrane invaginations at endocytic 

sites. The Las17 N-terminal region is known to bind the WIP homologue 

Vrp1 which can bind actin monomers but is itself unable to bind Arp2/3 

complex (Takenawa and Miki, 2001) while the C-terminal WCA region is 

crucial for its NPF activity mediated by monomeric actin and Arp2/3 binding. 

The main aim of this work was to investigate whether phosphorylation plays 

a role in modulating Las17 function in S. cerevisiae. I have shown that Las17 

is indeed phosphorylated at a number of Ser/Thr sites. Currently the kinases 

responsible for Las17 phosphorylation are not yet clear. However, attempts 

have been taken to define these kinases (see section 5.5). Preliminary data 

indicate some differences in Las17 phosphorylation status when analysed in 

some of the kinase deletion strains. However, further analysis will be 

required to determine which kinase(s) function in modifying Las17 at distinct 

sites. 

One specific phosphorylation event was investigated in more detail and 

experiments indicated that Ser588 phosphorylation plays a significant role in 

regulation of Las17 function during endocytosis. Ser588 within the 

Las17WCA domain was previously identified in global phospho-proteome 

studies as a phosphorylation site but the significance of the modification had 

not been investigated (Smolka et al., 2007; Holt et al 2009). It is likely that 

some phosphorylation events are more central to specific regulatory events 

than others. For example, the initial analysis investigated both Ser586 and 

Ser588. However, changing Ser586 to alanine or aspartate did not make any 

marked changes that were detectable in growth, or other assays. In the 

context of the Ser588 mutation the additional S586 mutation did appear to 

slightly increase the extent of temperature sensitivity phenotype suggesting 

that the additional charge in this region did influence function, but alone was 

not sufficient to cause any changes. 
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Chapter 3 in this study describes the major effects of S588 mutations in vivo. 

The phosphomimetic las17-S588D mutation caused the cells to be unable to 

grow at elevated temperature similar to cells with a deletion of LAS17 gene 

(Li et al., 1999). Las17-S588D mutants have also shown striking changes in 

actin patch polarisation as judged by rhodamine-phalloidin staining, though 

this was not as severe as the complete null strain (Li et al., 1997; Madania et 

al,. 1999). Las17-S588A/D mutant proteins are still able to localize to 

endocytic sites and there is some rescue of Lucifer yellow uptake supporting 

the idea that some interactions may still happen appropriately. Previously 

published data revealed that, as opposed to deletion of the entire LAS17 

gene, neither las17∆WCA nor ∆CA mutants has a severe cellular phenotype 

suggesting that, Las17 does not function solely through its interaction with 

the Arp2/3 complex but there are other factors that act redundantly with 

Las17 to activate Arp2/3 (Winter et al., 1999; Sun et al., 2006; Galletta et al., 

2008). The Las17Nt (a.a 1-368) which interacts with Vrp1 is able to suppress 

the growth defect associated with las17∆ cells at 37˚C in vivo (Takenawa 

and Miki, 2001). This raises a question as to why Ser588D has such a 

significant impact in vivo as this mutation lies in the regions deleted in these 

various mutations. It suggests that the presence of Ser588 has a dominant 

effect and is more severe than when the region is completely removed. 

Urbanek et al., (2013) showed that, a combination of mutations that affect 

actin binding by both the WH2 domain and the PP region causes a severe 

phenotype similar to the defect caused by las17-S588D (see section 3.6 for 

further details).On the other hand, the defect caused by S588A mutant was 

relatively mild but erratic movement of the Sla1 marker was seen in the plane 

of the plasma membrane and also a delay in Sla1 patch inward progression 

and this would indicate a defect in actin polymerisation after Las17 

recruitment to the endocytic site (see figure 3.8.A). From these data it can be 

suggested that phosphorylation of S588 might affect the ability of the Sla1 

reporter to remain at the site and that the negative charge of the phosphate 

group needs to be neutralised (presumably by removal of the group) for 

Las17 to function. 
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Overall the in vivo data suggest that Ser588 is a key regulatory residue of 

Las17and its phosphorylation could be function at early stage of endocytosis 

to influence the Arp2/3-independent function of Las17.  

The effect of S588A/D in vitro was more subtle than the effects observed in 

vivo. As judged by GST-pull down assay and MST analysis, the 

Las17PWCA-S588D showed reduced binding to G-actin, but this result 

conflicts with that observed using the pyrene-actin polymerisation assay.  

Polymerisation of actin in the presence of S588D mutation either in 

Las17PWCA or WCA showed actin sequestering ability in the mutants 

comparable to the wild type. The exact reason for the differences is not clear 

but may lie in the buffer conditions during the specific assays which might 

stimulate nuclei formation and thus allowing further actin monomers to 

incorporate into filaments. However, the impact of S588D mutant was 

predominant upon Arp2/3 addition (section 4.5 and 4.6). One possible 

reason for the lack of a strong phenotype in vitro is that simply the proteins 

most affected by the mutation were not present in the assay but they are 

present in vivo.  

The C-terminus of all WASPs is well-conserved and is composed of the WH2 

G-actin binding domain followed by CA domain. The function of the C region 

is less well understood but it was suggested to have affinity for G-actin and it 

may play a role in the transfer of the actin monomers to the Arp2/3 binding 

(A) domain (Kelly et al., 2006). The region that connects WH2 with CA 

domain called a linker is not conserved among WASPs. The linker region in 

human WASP contains multiple proline residues that are known to break the 

secondary structure of this region of the protein thus acting as a spacer (see 

Figure 6.1) (Veltman and Insall, 2010). On the other hand, the linker region in 

yeast WASP (Las17) seems to extend to be part of the central domain and 

interestingly encompasses the Ser588 residue.  
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SCAR            G-----------------------------------ASDIKPKASGARSVEAIRKGIQLRKV-----------------------       
WASP            ------------------------LAPGGGRGALLDQIRQG-----------IQLNK---  

N-WASP          GNKAALLDQIREGAQLKKVEQNSRPVSCSGRDALLDQIRQG-----------IQLKS---  

LAS17           GAPAPPPPPQMPATSTSGGGSFAETTGDAGRDALLASIRGAGGIGALRKVDKSQLDKPSV 

 

 

SCAR            -EEQREQ-------EAKHERIENDVATILRSS-IAVEYSDSEFDEVD---------DLE 

WASP            -TPGAPESSALQPPPQSSEGLVGALMHVMQKRSRAIHSSDEGEDQAGDE--DEDDEWDD 

N-WASP          -VADGQESTPPTPAPTS--GIVGALMEVMQKRSKAIHSSDEDEDEDDEEDFEDDDEWED 

LAS17           LLQEARGESASPPAAAGNGGTPGGPPASLADALAAALNKRKTKVGAHDD-MDNGDDW— 
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P; prolines distribution in the Las17 C domain  

 

 

Figure 6.1: Multiple sequence alignment of the WASPs WCA domain 
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The data in chapter 4 indicate that an intramolecular interaction between PP 

and WCA domains might occur in Las17 which has been shown 

experimentally to be inhibited upon addition of S588D mutant (see figure 

4.7). If this interaction is favoured in the presence of another protein, for 

example an SH3 domain binding protein or Vrp1 then the mutation might 

preclude their binding in vivo. Future experiments aim to determine whether 

other endocytic proteins known to bind to Las17 are mislocalized in the Ser 

588 mutant strain.  

Based on data available so far a molecular model could be suggested, in 

which S588 phosphorylation regulates the WCA domain function by 

promoting a conformation whereby the WCA domain folds on the PP domain 

.This structure might favourLas17PP driven actin nucleation. This disposition 

of the WCA domain maybe responsible for reducing the affinity towards the 

G-actin monomers by reducing the exposure of G-actin binding sites within 

the WH2 domain and this would therefore leads to a subsequent decrease in 

the transfer of the actin monomers to the Arp2/3 complex. This S588 

inhibitory model does not seem to affect F-actin assembly by PP506/507 

actin binding sites published by Ayscough lab (Urbanek et al., 2013). Again, 

in support of this assumption, the Las17 G-actin Motif (LGM) suggested by 

Feliciano et al., 2015 whereby the second actin binding site in the PP (300-

404 a.a) is important to facilitate actin monomer transfer to the WCA domain 

but existence of Sla1-binding site in this region may reduce G-actin binding 

and thus preventing actin polymerisation mediated by the Arp2/3 complex 

(Feliciano et al., 2015). This is possible as the concentration of the 

cytoplasmic G-actin pool in yeast is relatively smaller than that in the 

mammalian cells (Karpova et al., 1995). Concerning our model, Las17 might 

then need to be dephosphorylated by unknown phosphatases to allow a 

conformational change in Las17 which then enhances the ability of Las17 to 

activate Arp2/3 complex and increase the rate of actin polymerisation to drive 

membrane invagination.  
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Ark1/Prk1 kinases target endocytic coat model components such kinases 

target endocytic coat model components such as Sla1, and Pan1 and 

phosphorylation is important for disassembly and dissociation of these 

proteins from the endocytic site (Zeng et al., 2007). Sites phosphorylated by 

these kinases are then dephosphorylated by Glc7 a yeast PP1 phosphatase 

and its targeting adaptor Scd5 (Chiet al., 2012). This dephosphorylation of 

the patch components is necessary to allow new rounds of endocytosis. Our 

preliminary data provide evidence that indicates how Las17 is negatively 

regulated by phosphorylation but it is also important in the future to consider 

its dephosphorylation 

With regards to available data, one possible model for phosphoregulation of 

Las17 can be suggested (depicted in figure 6.2). (1) Upon Las17recruitment 

to the endocytic site phosphorylation at S588 by kinases takes place and this 

would trigger an intramolecular interaction of the Las17 molecule. 

Preliminary data shows that Sla1 might play a role in holding intramolecular 

conformation of Las17 but further investigations are required to support this 

idea. At this stage however, Las17 is able to generate new unbranched-actin 

filaments mediated by its poly-proline rich region. These filaments have been 

proposed to stabilise the endocytic site and provide a platform for membrane 

invagination and would be responsible for Arp2/3 complex recruitment to the 

site (Urbanek et al., 2013). After a few seconds, S588 dephosphorylation by 

unidentified phosphatases occurs and this would stimulate Arp2/3-driven 

branched actin formation (step 2). Together, preformed filaments and the 

branched F-actin would generate a force to drive membrane invagination 

against turgor pressure. (Steps 3 and 4) pathway of S588A/D mutations 

based on in vivo and in vitro data whereby both mutants affect invagination 

due to defects in actin assembly but this affect was major by S588D.       
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Figure 6.2: model of Las17 endocytic function and regulation of actin assembly. 

(1) New actin filaments generated stabilize endocytic site and provide a platform for 

invaginationSer588 phosphorylation may not affect this step. (2) Arp2/3-driven branched 

actin filaments drive membrane invagination. (3) Constitutive phosphorylation of S588 

inhibits step (2) so inhibits invagination. (4) Inappropriate invagination due to defects in 

actin assembly resulted from S588A.   
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6.2 Future investigations of Las17 regulation and function 

Testing the model 

This work and the suggested model allow a new hypothesis to be proposed 

and tested. For the model to represent the situation in cells, we would have 

to demonstrate that Arp2/3 binding is affected in the S588A/D mutants. 

Given that both Ser588 and Ser 605 were identified in the mass spec 

analysis it will be worth making both mutants singly and together to 

investigate this interaction. An epitope tag on an outer subunit of the Arp2/3 

complex (e.g. Arc40) would allow immunoprecipitation of Arp2/3 and 

subsequent western blotting could be used to determine whether Las17 and 

the mutants interact to similar levels. 

Integration of mutants 

The work outlined in the project has used mutant versions of Las17 carried 

on plasmids but under control of the Las17 promoter. The expression levels 

do not look very different from the wild type endogenous protein levels but to 

ensure that phenotypes are not due to slight overexpression of the mutants 

from plasmids the S588A/D mutations can be generated within the genome 

by allele replacement strategies. In order to do this a strain carrying LAS17 

with URA3 marker has now been generated and DNA cassettes with Ser588 

mutations were amplified. This work has been completed by Dr. Aga 

Urbanek who integrated the las17-S588D/A mutants successfully. The 

integrated mutant las17-S588 showed similar temperature sensitivity for the 

growth as that observed when this mutation expressed by a centromeric 

plasmid (pKA 606).This supports the current data associated with Ser588 as 

a key regulatory residue in Las17. 

Use of Las17 antibodies 

Chapter 5 focused on investigating whether Las17 is phosphorylated in vivo 

and work was carried to generate Las17 antibodies. Preliminary testing 

suggested antibodies from the third bleed of rat 2 against recombinant Las17 

fragments might be useful for further studies. Now this has been 
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demonstrated as Las17 antibodies were further examined against crude 

whole cell extracts prepared from a wild type strain or las17 null strain. were 

further examined against crude whole cell extracts prepared from a wild type 

strain or las17 null strain. 

 

Figure 6.3 shows that, Las17 antibodies at 1:2000 dilution is sufficient to 

recognise Las17 from wt extracts. The protein band appears to run higher 

than the predicted Las17 size but this is frequently seen with other endocytic 

proteins Sla1 runs at 175kDa but is calculated size is136 kDa. The absence 

of this band in the null strain extracts supports the specificity of the 

antibodies.  

This finding is important as studies published on Las17 interaction and 

localization so far have all used tagged protein. Now it is possible to 

investigate Las17 phosphorylation forms without the need of tags as the 

detection will be direct against the endogenous Las17. In the future It would 

be interesting to determine whether Las17 phosphorylation varies under 

different conditions e.g. of stress, in stationary cells or in mitosis as these 

might all be conditions in which endocytosis might be reduced.  

Identification of Las17 interactions by mass spectrometry analysis 

The mass spec data generated in this study to determine phosphorylation 

sites also allowed us to investigate the proteins that interact with Las17. Due 

to time constraints, the controls for this analysis to eliminate false positive 

binding have not been completed and so the data were not presented as part 

of the main body of this thesis. However, many of the proteins identified as 

interacting have previously been found to interact genetically or physically 

with Las17 (table 6.1) and also include a number of kinases (table 6.2). 

Future studies however would need to complete the necessary controls and 

also to use other methods such as immuno-precipitation or yeast 2-hybrid  
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Figure 6.3: Immunobloting analysis of the Las17 antibodies 

from the 3rd bleed of rat 2. 

That was prepared and tested against the crude extract made 

from wild type strain (KAY 389) or null strain (KAY1801) and 

run on 8% SDS-PAGE. Las17 was probed by preparing 1:2000 

dilution of Las17 antibodies obtained from 3rd bleed of rat1 and 

1:10000 secondary anti-rat antibodies. Blot was obtained from: 

Dr. Aga Urbanek   
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analysis to confirm these interactions. Confirmation of the significance of 

kinase interactions would use in vitro kinase assays to determine whether 

certain kinases are able to phosphorylate Las17 on specific residues. 

Overall the data presented in this thesis have demonstrated that Las17 is 

phosphorylated in vivo and that phosphorylation at position serine 588 is 

important for its function during endocytosis. Future studies will allow us to 

determine how phosphorylation at Ser588 and other residues influence the 

molecular mechanism of Las17 function on the absence and presence of 

Arp2/3 complex. 
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          Table 6.1: Las17 interactors detected by MS analysis in this study 

 
Interactor  Cellular process Type of interaction Reference 

Abp1 endocytosis Genetic and physical D´Agostino & good, 2005; Michelot et al., 
2010 

Act1 endocytosis Genetic and physical Michelot et al., 2010; Madania et al., 
1999; Li et al., 1997 

Bbc1 endocytosis Physical Michelot et al., 2010; Rodal et al., 2003; 
Tong  et al., 2002 

Bzz1 endocytosis Genetic and physical Kishimoto et al., 2012; Michelot et al., 
2010; Ho et al., 2002; Tong et al., 2002, 
Soulard et al., 2002 

Chc1 endocytosis genetic Gavin et al., 2002; Feliciano & De Pietro, 
2012 

Cof1 endocytosis physical Li et al., 1997 

Crn1 endocytosis physical Michelot et al., 2010 

Myo1 cytokinesis genetic Roumanie et al., 2002 

Myo3 endocytosis Genetic and physical Galletta et al., 2008; Lechler et al., 2000; 
Tong et al., 2002; Michelot et al., 2010 

Myo4 mRNA transport physical Ho et al., 2002 

Pan1 endocytosis Genetic and physical Galletta et al., 2008; Feliciano & E Pietro, 
2012 

Rsp5 endocytosis Genetic and physical Kaminska et al., 20011; Tong et al., 2002 

Sac6 endocytosis physical Michelot et al., 2010 

Sec16 exocytosis Physical Michelot et al., 2010 

Sla1 endocytosis Genetic and physical Chi et al., 2012; Michelot et al., 2010; 
Tonikian et al., 2009; Li et al., 1997 

Sla2 endocytosis physical Gavin et al., 2002 

Syp1 endocytosis physical Michelot et al., 2010 

Vps5,13 Vacuolar sorting physical Michelot et al., 2010; Tong et al., 2002 

Vrp1 endocytosis Genetic and physical Ho et al., 2002; Soulard et al., 2002; 
Evangelista et al., 2000; Roumanie et al., 
2000; Naqvi et al., 1998 

Ypp1 Cargo transport physical Michelot et al., 2010 

 
 
 
Table 6.2: Kinases identified by MS analysis in this study 
 
Interactor  Cellular process interaction Modification Reference 

Gin4 Bud growth genetic - Sharifpoor et al., 2012 

Akl1(Ark1
/Prk1) 

endocytosis physical phosphorylation Michelot et al., 2010; Mok 
et al., 2010 

Yck1/2 endocytosis physical phosphorylation Ptacek et al., 2005 

Tor2 Cell cycle physical - Michelot et al,. 2010 

Pho85 
/pho81 

cell cycle , osmotic 
tolerance 

physical - Ho et al., 2002 

Ksp1 DNA replication physical phosphorylation Ptacek et al., 2005 
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