'Late Iron Age regionality and early Roman trajectories (100BC-AD200): a landscape perspective from eastern Yorkshire'

Volume 1 of 2

Michael Atha

In part fulfilment of the requirements for the degree of
PhD in Archaeology

University of York, Department of Archaeology
November 2007
ABSTRACT

M. Atha, Late Iron Age regionality and early Roman trajectories (100BC-AD200): a landscape perspective from eastern Yorkshire. Submission of thesis for PhD. Bibliographic details: 514 pages; 105 figures, 10 in colour; 30pp. bibliography.

The Iron Age-Roman transition has typically been studied in relation to the rich archaeological resource in south-east England and has invariably focused upon the study of elite consumption practices evidenced at central sites – be they LIA oppida or Roman towns. However, such sites and the traditional 'core' zone they are taken to characterise are, almost by definition, atypical of settlement patterns and levels of social stratification evidenced across much of what became Roman Britain.

This thesis sought to offer a more balanced study of LIA regionality and early Roman impacts through the examination of alternative regions and different modes of analysis, in particular, landscape archaeology. Moreover, both LIA and ER societies in Britain were founded upon the productive capacities of agricultural communities. Instead of relying on a few exceptional centres, this study adopts an integrated landscape approach to a region with a rich archaeological data set comprising a number of large landscape studies which, through time, are being dramatically enhanced through developer-funded fieldwork.

The thesis therefore uses eastern Yorkshire as its main research focus and integrates intra-regional and inter-regional comparative studies to provide a multi-scale, discursive re-analysis of the Iron Age-Roman transition.
LIST OF CONTENTS

Volume 1

Abstract 1

List of Contents 2

List of Figures 5

List of Accompanying Material 8

Acknowledgements 9

Author's Declaration 11

Chapter 1: Introduction: intellectual foundations, archaeological questions and structural responses

1.1 Intellectual context 12
1.2 Why the Wolds 13
1.3 Regional research background

Chapter 2: Theorising the social circumstances of landscape change

2.1 Introduction 24
2.2 Separated but not divorced: reconciling nature and culture 26
2.3 Landscapes from the outside 29
2.4 Landscapes from the inside 33
2.5 Discursive approaches and the reunification of landscape 36
2.6 Structuration theory, habitus and practice 39
2.7 Social archaeology of landscapes 45
2.8 Households, communities and the productive landscape 48
2.9 Conclusions 53
List of Contents

Chapter 3: Ancient Britons becoming Romans? Shifting notions of socio-cultural change

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1</td>
<td>Introduction</td>
<td>55</td>
</tr>
<tr>
<td>3.2</td>
<td>Conceptualising socio-political transition to Roman hegemony</td>
<td>57</td>
</tr>
<tr>
<td>3.3</td>
<td>Modelling the LIA-ER socio-political transition</td>
<td>61</td>
</tr>
<tr>
<td>3.4</td>
<td>Agriculture and the reproduction of society</td>
<td>67</td>
</tr>
<tr>
<td>3.5</td>
<td>Conclusions</td>
<td>78</td>
</tr>
</tbody>
</table>

Chapter 4: Regional trajectories in LIA-ER social landscapes

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1</td>
<td>Introduction</td>
<td>81</td>
</tr>
<tr>
<td>4.2</td>
<td>The Upper Thames Valley</td>
<td>84</td>
</tr>
<tr>
<td>4.3</td>
<td>The Fenland</td>
<td>97</td>
</tr>
<tr>
<td>4.4</td>
<td>Cumbria and the Solway Plain</td>
<td>110</td>
</tr>
<tr>
<td>4.5</td>
<td>Conclusions</td>
<td>126</td>
</tr>
</tbody>
</table>

Chapter 5: A Parisian sideshow? Putting eastern Yorkshire into context

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.1</td>
<td>Introduction</td>
<td>134</td>
</tr>
<tr>
<td>5.2</td>
<td>Regional research background</td>
<td>135</td>
</tr>
<tr>
<td>5.3</td>
<td>The changing structure of the landscape</td>
<td>140</td>
</tr>
<tr>
<td>5.4</td>
<td>Changing patterns of landscape exploitation</td>
<td>152</td>
</tr>
<tr>
<td>5.5</td>
<td>The reproduction of elite authority</td>
<td>161</td>
</tr>
<tr>
<td>5.6</td>
<td>Conclusions</td>
<td>173</td>
</tr>
</tbody>
</table>

Chapter 6: From artifact to landscape: productively integrating data of different scales and resolutions

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.1</td>
<td>Introduction</td>
<td>181</td>
</tr>
<tr>
<td>6.2</td>
<td>The eastern Yorkshire case studies</td>
<td>182</td>
</tr>
<tr>
<td>6.3</td>
<td>Research questions and case study data sets</td>
<td>185</td>
</tr>
<tr>
<td>6.4</td>
<td>WGC detailed methodology</td>
<td>198</td>
</tr>
</tbody>
</table>

Chapter 7: Wharram Grange Crossroads (WGC): generating a research dividend from student training

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.1</td>
<td>Introduction</td>
<td>211</td>
</tr>
<tr>
<td>7.2</td>
<td>Wharram research background</td>
<td>212</td>
</tr>
<tr>
<td>7.3</td>
<td>The origins and structure of the Wharram landscape</td>
<td>214</td>
</tr>
<tr>
<td>7.4</td>
<td>Interpreting the detail of the LIA-LR landscape</td>
<td>220</td>
</tr>
</tbody>
</table>
List of Contents

Chapter 7: Wharram

7.5 Wharram Grange Crossroads (WGC) 221
7.6 Wharram Percy (WP) 283
7.7 Wharram Grange Villa (WGV), Birdsall High Barn and Birdsall Brow 300
7.8 Conclusions 307

Chapter 8: Supporting studies — Garton-Wetwang Slacks (GWS), Melton South Lawn (MSL) and West Heslerton (WH)

11 Introduction 318
21 Garton-Wetwang Slack (GWS) 319
31 Melton South Lawn (MSL) 335
41 West Heslerton (WH) 342

Chapter 9: Conclusions

9.1 Eastern Yorkshire: refining the synthesis 351
9.2 Broader Lessons 355

List of References 357

Volume 2

List of Contents 387

List of Figures 388

Appendices

1. Wharram archives 391
2. Access database design 391
3. Feature concordance data 392
4. Some ceramic issues 395
5. Wharram type series 399
6. Wharram fabric series 402
7. Excel colours for ceramic periods 408
8. Wharram archive digitisation procedures 409

Figures 410
Figure 1	The study region: eastern Yorkshire	410
Figure 2	Cunliffe's core-periphery model of the Roman economy	411
Figure 3	Core-periphery model of LIA Britain showing location of regional case studies	412
Figure 4	Location of sites in the Upper Thames Valley	413
Figure 5	Hingley's model of lowland groups and upland communities	414
Figure 6	Patterning of Romano-British small towns and villas	415
Figure 7	Dyke Hills, Dorchester	416
Figure 8	Iron Age landscape at Yarnton	417
Figure 9	The fenland during the Iron Age	418
Figure 10	The fenland during the Roman period	419
Figure 11	Wardy Hill, Coveney	420
Figure 12	The central Fenland during the Roman period	421
Figure 13	Stonea Grange	422
Figure 14	Cumbria study region	423
Figure 15	Eller Beck	424
Figure 16	Dobcross Hall, Dalston	425
Figure 17	Bell Slack square barrows	426
Figure 18	Wolds ladder showing different components	427
Figure 19	Wardy Hill, Coveney	428
Figure 20	Burnby Lane, ladder settlement	429
Figure 21	Sewerby Cottage Farm ladder settlement	430
Figure 22	Lingcroft Farm co-axial field system with farmstead	431
Figure 23	Bursea House nucleated industrial farmstead	432
Figure 24	WGC study region	433
Figure 25	WGC study region: close-up view	434
Figure 26	WGC magnetometry results, trench locations and anomalies	435
Figure 27	WP magnetometry results, and Trench WP05-92	436
Figure 28	WGV magnetometry results	437
Figure 29	WGC, BB and BHB magnetometry results	438
Figure 30	WGC Fields 16 and 96 surface artefact scatters	439
Figure 31	WGC Field 96 10 meter collection grid and results	440
Figure 32	WGC Field 5 surface collection surveying	441
Figure 33	WGC97 Post-exavation plan	442
Figure 34	WGC98C Post-exavation plan	443
Figure 35	East and west facing sections WGC97 and east facing section WGC98C	444
Figure 36	WGC97 and WGC98C combined matrix	445
Figure 37	WGC97/98C % Rim EVE by feature (contexts) and period	446
Figure 38	WGC97/98C Ceramics data by interpreted feature	447
Figure 39	WGC98A Post-exavation plan and sections	448
Figure 40	WGC98A Harris matrix	449
List of figures

Figure 41 WGC98A % Rim EVE by context and period 450
Figure 42 WGC98A Ceramics data by interpreted feature 451
Figure 43 WGC04-7 East facing section of ditches F8 and F9 452
Figure 44 WGC04-7 East facing section of ditches (western sondage) 453
Figure 45 WGC04-7 Post-excavation plan 454
Figure 46 WGC04-07 Harris matrix 455
Figure 47 WGC04-07 % Rim EVE by feature (contexts) and period 456
Figure 48 WGC04-07 Ceramics data by interpreted feature 457
Figure 49 WGC04-09 West facing section of ditch F17 458
Figure 50 WGC04-8 Post-excavation plan 459
Figure 51 WGC04-8 Harris matrix 460
Figure 52 WGC04-8 % Rim EVE by Feature (Contexts) and Period 461
Figure 53 WGC04-8 Ceramics data by interpreted feature 462
Figure 54 WGC95A Post-excavation plan 463
Figure 55 WGC95A West facing section of Enclosure Ditch 30 464
Figure 56 WGC95A Harris matrix 465
Figure 57 WGC95A % Rim EVE by Feature (Contexts) and Period 466
Figure 58 WGC95A Ceramics data by interpreted feature 467
Figure 59 WGC95B Post-excavation plan 468
Figure 60 WGC95B West facing section of Enclosure Ditch F53 469
Figure 61 WGC95B West facing section of MIA pits and LIA-ER Enclosure Ditch F53 470
Figure 62 WGC95B Harris matrix 471
Figure 63 WGC95B % Rim EVE by Feature (Contexts) and Period 472
Figure 64 WGC95B Ceramics data by interpreted feature 473
Figure 65 WGC98B Post-excavation plan 474
Figure 66 WGC98B Harris matrix 475
Figure 67 WGC98B % Rim EVE by Feature (Contexts) and Period 476
Figure 68 WGC98B Ceramics data by interpreted feature 477
Figure 69 WGC99A Post-excavation plan 478
Figure 70 WGC99A West facing ditch sections 479
Figure 71 WGC99A East facing ditch sections 480
Figure 72 WGC99A Harris matrix 481
Figure 73 WGC99A % Rim EVE by Feature (Contexts) and Period 482
Figure 74 WGC99A Ceramics data by interpreted feature 483
Figure 75 Wharram Percy excavation areas 484
Figure 76 Wharram Percy Sites 45 and 60: LIA-ER 485
Figure 77 Wharram Percy Sites 45 and 60: LR period 486
Figure 78 Wharram Percy NW Enclosure magnetometry 487
Figure 79 Wharram Percy NW Enclosure Site 91 Post-excavation plan 488
Figure 80 Wharram Percy NW Enclosure Site WP05-92 Post-excavation Plan 489
Figure 81 WP05-92 Harris matrix 490
Figure 82 WP05-92 % Rim EVE by Feature (Contexts) and Period 491
Figure 83 WP05-92 Ceramics data by interpreted feature 492
List of figures

Figure 84 WGV Surface collection plots: pottery, roof tile and tesserae 493
Figure 85 WGV Surface collection plots: samian, amphorae, box-flue tile, lava quern and Saxon (Anglian) pottery 494
Figure 86 WGV Patterning of test pits 495
Figure 87 BHB Magnetometry results and survey grid 496
Figure 88 BHB Patterning of test pits 497
Figure 89 GWS case study region 498
Figure 90 GWS Excavation areas and overall plan of excavated features 499
Figure 91 GWS Overview of excavated features: A: MIA, B: LIA-ER 500
Figure 92 Blealands Nook detail 501
Figure 93 LIA-ER ladder in GS8/10 502
Figure 94 LIA-ER roundhouse in ladder enclosure GS10 503
Figure 95 MSL case study region 504
Figure 96 MSL geophysics results and evaluation trenches 505
Figure 97 Melton South Lawn ladder 506
Figure 98 MSL Excavation Areas 3-9 507
Figure 99 MSL Excavation Areas 6-9 508
Figure 100 MSL Excavation Area 5A 509
Figure 101 WH case study region 510
Figure 102 WH Magnetometry data 511
Figure 103 WH Magnetometry result: detail 512
Figure 104 WH Magnetometry results: detail 513
Figure 105 WH Magnetometry results: detail 514
LIST OF ACCOMPANYING MATERIAL

The Microsoft Access databases created during the research are stored on a CD-ROM, which can be found in a pocket at the rear of Volume 2.
ACKNOWLEDGEMENTS

I am indebted to the University of York for providing doctoral funding and to the Department of Archaeology and, more specifically, my supervisor Steve Roskams for arguing that it should be steered in my direction. Steve provided support way above and beyond the call of academic duty, true friendship, deep calm, unflappable patience, and an uncannily incisive mind that always found some order and meaning in my, at times, befuddled prose. Similarly, Mel Giles was a great support in terms of her knowledge of the eastern Yorkshire Iron Age and in her enthusiasm regarding my use and re-interpretation of the Wharram archives. Through her management of the post-excavation process, Madeleine Hummler was instrumental in converting the WGC04 and WP05 field archives into useable research resources. Ben Gourley dispensed West Coast charm and technical support throughout my research. Peter Didsbury was a kind and patient tutor when help was needed negotiating the morass that is late Iron Age to Roman ceramic studies in eastern Yorkshire. Chris Fenton-Thomas was kind and generous with his ideas and time... Rod Mackey was generous with his advice and deep knowledge of late Iron Age eastern Yorkshire. Adrian Chadwick provided very useful commentary on my research ideas at an early stage and I am indebted to him for his observations. Terry Manby, on behalf of the East Riding Archaeological Research Trust, kindly provided me with a paper copy of Brewster's Garton-Wetwang archive, which otherwise would have had to have been viewed via microfiche. Dominic Powlesland was a source of lively discussion regarding the origins and development of the eastern Yorkshire landscape and kindly provided remote sensing data on settlement and landuse in LIA-LR periods...

Nick Boldrini, Neil Campling and Gail Falkingham at the North Yorkshire County HER and Ruth Atkinson, Hanna Saxton and Dave
Evans at the Humber SMR helped illuminate the ever growing body of evidence for Iron Age and Romano-British activity in eastern Yorkshire. I am indebted to Dave Evans, Martin Pitts, Rob Collins, Emma Waterton and Dan Hull for having read and commented upon various parts of the thesis and it is much the better for their input (any remaining errors of fact or expression remain my own).

Computer wizard Michael Charno reinstalled my operating system and saved most of my data when, well into the write-up, the hand of Bill Gates intervened. Technical support of a GIS nature was provided by Pat Gibbs. Emma Waterton was a constant source of lively and productive discourse on the nature of landscape, postmodernism and all things theoretical. She also provided me with a rigid write-up timetable, to which I spectacularly failed to adhere, but I nevertheless used it religiously to chart the magnitude of my backlog! I also extend my warmest thanks to my fellow PhD students at the King’s Manor for providing a stimulating environment in which to work, in particular, Martin Pitts, Dan Hull, Jamie Andrews and Mike Berry.

Special thanks to the members of the Alcohology Cricket Club for sporting services rendered. Nicky and Ian Milsted offered constant and boundless support throughout the PhD — true friends indeed! Holly Wright provided technical support as well as much needed words of encouragement, moreover, when things were looking tight at the end, she helped with all the tedious checking and cross-checking and supervised the surprisingly odious (and time-consuming) task of printing the thesis — but for her this project would probably not have been completed. Ms Kennis Yip gave me a reason to keep going when times were tough and my gratitude for her unconditional love and encouragement cannot adequately be expressed in words. A final and heartfelt thank you is reserved for my ever-supportive Mum and Dad, Dorothy and Reg Atha: thank you for giving me life, providing me with a half-decent intellect, for fostering an inquisitive mind, and a love of landscape and the great outdoors. This thesis is dedicated to them.
AUTHOR'S DECLARATION

This thesis is based upon original work and research, and as such, responsibility for any errors is entirely my own. While some aspects of this work have been expanded upon and published by the author elsewhere (Atha 2005; Hummler and Atha 2005), the majority of the data analysis, discussions and conclusions are presented here for the first time.

INTRODUCTION: INTELLECTUAL FOUNDATIONS, ARCHAEOLOGICAL QUESTIONS AND STRUCTURAL RESPONSES

1.1 INTELLECTUAL CONTEXT

The impact and nature of Roman colonisation in Britain is a time-honoured question, but one invariably approached and answered by studying central sites such as Iron Age hillforts and oppida and Roman forts and towns. Moreover, at a larger scale still, such research has tended to have a quite limited and predictable geographical focus, in particular, on the South-east of England. These approaches have therefore tended to emphasise elite consumption practices in the region evidencing the most intense archaeological patterning relating to early contacts and trade with the Roman world. This is not a new problem in archaeology and, almost inevitably, the richest resources have traditionally received the most attention.

I was interested to explore the impact of Rome on late Iron Age societies in Britain, but wanted to do so by drawing upon my past experience of using landscape archaeology in the study of rural settlements (Atha 2000; 2003). My approach, therefore, was to address the issue of the late Iron Age (LIA) to early Roman (ER) transition by studying neither the South-east nor major centres but, rather, the rural landscape of eastern Yorkshire and three contrasting regions. Furthermore, by adopting such an approach I was able to examine the evidence for LIA regionality and ER trajectories through the agricultural landscapes of farming communities whose productive output fuelled the LIA and imperial economy alike.

A focus on landscape also encourages an interest in biographies and the charting of developmental processes through time and space. The
LIA-ER rural landscape of eastern Yorkshire evidences a complex interplay between the inheritance of earlier landscape features and their rearticulation within new landscapes during the core study period (100BC-AD200). Thus LIA-ER landscapes emerged out of a long process of change: from early Bronze Age (EBA) barrows and trackways; through a period of late Bronze Age to early Iron Age (LBA-EIA) territorialisation associated with the use hilltop defended sites; the emergence of middle Iron Age (MIA) square barrow cemeteries and associated settlements; the LIA-ER enclosure of the landscape as characterised by ladder settlements; and, finally, the late Roman (LR) reorganisation of the landscape coinciding with the emergence of villas. A central aim of this project was to relate these structural changes to the agricultural economy and changing expressions of social differentiation associated with the reproduction of elite authority.

1.2 Why the Wolds?
Archaeology in eastern Yorkshire or, more specifically, the Yorkshire Wolds has a long history of research bias relating to the study of MIA burials and Roman structures. In this context the LIA has often been defined almost in absentia in terms of it lacking mortuary evidence and being 'not Roman'. The region has a rich research resource, but it is both very diverse and of highly variable quality. There was thus a real need to devise a way of making the most of the data sets available by employing an artefactual to landscape scale of analysis.

The LIA-ER period is quite well differentiated from the MIA and LR periods, but it can be extremely problematic when attempting to address the pre- or post-conquest debate. Ceramics remain the primary dating medium used in the analysis of rural settlements of this period, although brooches and coins, whilst rare, can also be useful dating media. In reality, most commentators continue to rely on mass-produced Roman types to determine whether LIA-ER calcareously tempered ware (CTW)
assemblages are ascribed a LIA or ER date. On that basis, the present consensus places the origins of ladder settlements and landscape enclosure firmly in the LIA (Mackey 2003, 119). The argument in favour of a LIA date for the beginnings of ladder settlements has also been made on the basis of brooch finds (M Giles 2007, 239). However, the same brooches at Dragonby, just south of the Humber were considered to be LIA and ER in date (May 1996, 237-249). There is of course the small matter of a 25 year difference in starting point between the ER period north and south of the Humber, which complicates such arguments. In Chapter 7 and 8's case studies dating ultimately comes down to a combined assessment of stratigraphic relationships, deposit and feature characteristics, and finds assemblages. One point of this thesis, of course, is to highlight the very fact that the LIA and ER periods in rural eastern Yorkshire are difficult to differentiate.

Hayfield's (1987, 3) use of the terms "ladder", "farmstead" and "villa" is adopted, but some modification of his definitions is perhaps appropriate (See Chapter 5). He suggested that ladders are "a linear alignment of enclosures, often fronting onto a road or trackway" and fulfilling a "principally agricultural" function whilst "occasionally incorporating settlement sites"; that farmsteads "are characteristic of a dispersed settlement pattern, comprising a settlement enclosure, or enclosures, forming the living space of a family and/or dependent workers"; and that a villa was a Romano-British "estate centre" with living quarters of significantly higher status than local farmsteads (Hayfield 1987, 3). It should be made explicit at this juncture exactly what is meant by the term 'villa' in this project. These are sites that were materially different to the bulk of Romano-British farmsteads examined in this study, in that they evidence a combination of some, but not necessarily all, of the following: Roman-style architecture and building materials, under-floor heating, painted wall plaster, mosaic floors, bath-houses, and an unusually high incidence of coinage, imported ceramics and luxury artefacts such as glass vessels.
A timely study?

In 2001 a pair of publications, one produced by Prehistorians and the other by Romanists, presented discussions of a series of key research themes, which addressed gaps in knowledge and suggested means by which these might be filled. In *Understanding the British Iron Age* (Haselgrove *et al.* 2001), the following strategic research areas were identified: "chronological frameworks, settlement patterns and landscape history, material culture studies, regionality, and the nature of socio-economic changes during the period". Whereas in *Britons and Romans* (James and Millett 2001a), emphasis was placed upon, amongst other things: "the Iron-Age to Roman transition; Romanisation...material approaches to the identification of different Romano-British site types...[and] rural society". Both publications highlighted the importance of exploring the evidence for regionality in patterns of archaeological materials (Haselgrove *et al.* 2001; James and Millett 2001a). They similarly highlighted the lack of research effort being directed towards the deeper understanding of agricultural production and its role in the transformation of society in LIA-ER Britain. My response, therefore, was to devise a two-tier structure of case studies: three regional studies for comparison with my eastern Yorkshire (EY) study region, and then a main EY case study, which would be compared and contrasted with three subsidiary examples from the same region.

Both the above volumes also stressed the importance of exploiting a range of archives, old and new and, in particular, the need to make fuller use of the developer-funded, grey literature, resource. It is extremely likely that archaeology in the 21st century will continue to become increasingly reliant on non-invasive methods. Developer-funded projects will continue churn out grey literature reports, but there is an ever-increasing need to revisit old archives and ask new questions of them. With this in mind, four very different EY case studies were selected for use in this thesis. First there is Wharram Grange Crossroads (WGC), a long-term research project and the subject of seven separate field school excavation campaigns by the universities of Sheffield and York. Garton-
Wetwang Slack (GWS) was excavated ahead of gravel quarrying during the 1970s rescue movement. Melton South Lawn (MSL) was a recent developer-funded excavation associated with a new junction on the A63 trunk road west of Hull. Finally, West Heslerton (WH) began as a rescue excavation in the late 70s and has developed into an exemplar of remote sensing-focused landscape research. All four have investigated LIA-RB ladder settlements, but each archive is quite different.

1.3 Regional research background

The Study Region

Geographically, the study region encompasses the north bank of the Humber from Spurn Point to the Ouse, then upstream to York, branching with the Foss north to the Howardian Hills, and curving east following the northern edge of Tabular Hills to Scarborough and, finally, south down the east coast back to Spurn (Fig. 1). This unit of study has geographical validity in that it encompasses the chalk Wolds and their surrounding flatlands reaching out to the physical boundaries outlined above. More importantly, though, it also reflects the core region of the La Tène square barrow tradition which, I have argued previously, largely prefigures the patterning of LIA-RB ladder settlements (Atha 2005). The region in question here, eastern Yorkshire, is characterised archaeologically by the patterning of middle Iron Age (MIA) square barrows of Stead’s (1979) Arras Culture which, based on Roman historical sources, was correlated by Ramm (1978, 21) and later Dent (1983a, 39) and Millett (1989, 38) with the late Iron Age (LIA) eastern Yorkshire tribe the Parisi. However, there are issues attached to both the culture-historical definition of the MIA Arras Culture and the historically identified Parisi. In terms of the former, occasional square barrows are recorded as cropmarks as far away as North Nottinghamshire, whilst the related high status cart burials have occurred immediately outside the region at Ferrybridge and further afield at Newstead. Similarly, the earliest historical mention of the Parisi was by Ptolemy in the 2nd century, which questions whether we can make any connection
Chapter I Introduction: intellectual foundations, archaeological issues and structural organisation

between the MIA and LIA-ER groups. Nonetheless, throughout these periods the households and communities of rural producers at the heart of this study operated in relation to some form of higher authority – be that tribal or Roman. I therefore refer to the Parisi and other tribal groups in the full knowledge of the geographical and historical limitations of such usage.

Historiography of IA-RB research in eastern Yorkshire
In the late 19th and early 20th century, the overriding focus of research into the Iron Age and Roman periods was on the most prominent physical remains in the landscape: square barrows and ‘entrenchments’ (LBA and later ditch-and-bank linears) in the former (e.g. Greenwell 1890; Mortimer 1905) and forts, roads, towns, villas and potteries in the latter (e.g. Corder and Kirk 1928; 1932; Corder 1930a and 1930b; Hornsby and Laverick 1932; Richmond 1932; Corder and Romans 1938; Kitson Clark 1935). On sites such as Langton Villa, where a pre-villa enclosure with a mixture of ER mass-produced ceramics and handmade coarsewares was found, the excavators saw a military “fortlet” rather than a civilian farmstead (Corder and Kirk 1932, 17). The presence of ‘native’ coarsewares was explained away as the expedient use of such material by an army on the move – the possibility of LIA-ER continuity was too ‘left-field’ to be seriously considered. Despite such attitudes and the dearth of AP evidence available at the time, Kitson Clark (1935, 16) recognised that there had to be countless Romano-British rural settlements waiting to be discovered.

Despite being very much of their time, Mortimer and Kitson Clark’s publications remain important points of reference for their respective subjects and both repay closer examination. Although archaeological techniques and methods had advanced considerably from the pre-war years, researchers attached to the British Museum and various earlier incarnations of English Heritage perpetuated the periodic obsessions outlined above throughout the 60s, 70s and 1980s. This is not too surprising as ‘treasure’ and ‘monuments’ respectively remained the main
interests of these institutions, although in the latter case at least this is now changing. Thus, if anything, the British Museum intensified its search for MIA high status burials during the 1960s, 70s and 80s (Stead 1976a; 1979; 1986, 1989, 1991). As a consequence of this the EY LIA, like that of other regions, became defined in terms of the Roman period and the more distinctive LIA of the South-east, and therefore lacked a strong archaeological identity of its own.

Roman research had similarly remained stuck in its urban-military-elite mindset. Given their location under modern urban centres, the continued investigation of Roman towns and forts at Brough-on-Humber, (Wacher 1969), Malton (Wenharn and Heywood (1997) and York – summarised in Ottaway (2004) – was unsurprising. However, the resources devoted to the excavation of rural sites in the shape of villas at Beadlam (Neal 1996) and Rudston (Stead 1980) in the 1960s and Hayton Roman Fort (Johnson 1978) in the 1970s certainly reflect the research biases of the time. The separation of material remains into those that were diagnostically ‘Iron Age’ or ‘Roman’ reflected what was still an essentially culture-historical approach to these periods. Similarly, the trajectories of LIA societies continued to be addressed in terms of the growing influence of Rome, thus perpetuating functionalist modes of explanation, which have until very recently remained dominant in LIA-ER research.

After WWII there had been a growing awareness of the need for statutory protection for archaeology in the face of a rapidly accelerating rate of site destruction, which led to the development of a government-funded rescue movement. Critically, this began the breakaway from a traditional archaeology focused on monuments perceived to be periodic ‘type-fossils’. During the 1970s this resulted in a series of large-scale, open-area excavations, many preceding aggregates quarrying, which changed forever our understanding of prehistoric and Roman rural landscapes. In eastern Yorkshire this was epitomised by work at West Heslerton (WH) (Powlesland et al. 1986), Garton-Wetwang Slacks (GWS) (Dent 1978; Brewster 1980), and Welton Wold villa (WWV) (Mackey 1999).
Although landscape archaeology was yet to be established as a distinct approach to the past, in scale and outlook these projects were heralding its arrival and, since 1977, WH has developed into an exemplar of multi-technique, multi-period landscape research. Importantly, the WH and GWS projects both revealed multi-period landscapes with good evidence for continuity, which began to challenge the traditional compartmentalised view of the past.

Running in parallel with the above projects were two other landscape studies of rather different character: on the High Wolds, the Wharram Research Project (Beresford and Hurst 1990) responded to the opportunities presented by an emerging landscape perspective to expand from its medieval village core back into prehistory and out into the landscape; whilst in the south-eastern VoY, Iron Age and Romano-British settlement and industry was investigated in a research project centred upon an 8km square covering Holme-on-Spalding Moor (HoSM) and the Foulness Valley (Halkon and Millett 1999). This project ultimately expanded to explore the Romano-British roadside settlements at Hayton (Halkon et al. 1999) and Shiptonthorpe (Millett 2006), as well as LIA-RB remains revealed during the construction of the Market Weighton Bypass (Halkon and Millett 1999). The Humber Wetlands Project (van de Noort and Davies 1993) provided a contrasting landscape study that investigated the huge expanse of former wetlands in the south of the region, thereby complementing the WH and HoSM work and further increasing our knowledge of the palaeoenvironment and human exploitation of such areas.

The aforementioned Market Weighton Bypass excavation was just one of many resulting from the implementation of PPG16 and the era of developer-funded archaeology. PPG16 has proved a double edged sword for researchers in that it has generated huge volumes of so-called 'grey literature', but this is only available through Historic Environment Records (HERs), and there can be a significant delay before the larger, more interesting, projects become available. Having said all that, as
shown below and in the Melton South Lawn (MSL) case study in Chapter 8, commercial fieldwork has added considerably to our understanding of LIA-LR landscapes in the region.

A further massive injection of new data, in this case from aerial photography, resulted from the national survey undertaken during the Royal Commission/English Heritage’s National Mapping Programme (NMP). This resulted in Stoertz’s (1997) seminal study of cropmark and soilmark sites in and around the Wolds. Her publication single-handedly altered the trajectory of prehistoric and Roman research in eastern Yorkshire by encouraging a generation of researchers to use, challenge and investigate further the settlement, communication, agricultural and funerary monuments presented therein (Bevan 1997; 1999c; M Giles 2000; 2007; Atha 2003; 2005; Fenton-Thomas 2003a; 2005; Ferraby 2005). Many of these studies looked beyond the generalising, ‘top-down’ view of landscape presented in past regional syntheses (Wilson et al. 1984; Price and Wilson 1988; Ellis and Crowther 1990; Manby et al. 2003) and attempted to interpret the landscape from a variety of post-modern ‘inside-out’ perspectives. Fenton-Thomas (2003a; 2005), in particular, highlighted the importance of viewing settlement on the Yorkshire Wolds in terms of long-term biographies within which persistent features were inherited and rearticulated in successive landscape reorganisations.

1.4 Research questions and structural responses

Research questions from the general to the specific:

1) In overview, between 100BC and AD200, how does the trajectory of settlement and landuse in eastern Yorkshire compare with other regions in what became the Roman province of Britannia?

2) Based on the combined analysis of remote sensing and excavation data is it possible to characterise how the emergence of ladder settlements related to wider changes in the structure and
organisation of the agricultural economy from the LIA to ER period?

3) The MIA square barrow inhumations of the so-called Arras Culture are conventionally taken to express social status and differentiation through the mortuary context but what evidence is there for such hierarchical markers in the social landscapes of the study period?

4) Can we approach a deeper understanding of the relationships between large-scale landscape change and household-community social action using the kinds of archaeologically imperfect data sets that result from plough-truncated sites excavated as part of undergraduate training or within the constraints of Rescue/commercial archaeology?

Thesis structure

Chapters 2 and 3 respectively provide the landscape and period-based theorisation underpinning the thesis. The former provides a critique of both etic and emic approaches to landscape and then attempts to transcend their limitations by adopting what I have termed a discursive landscape approach. This is designed to facilitate the conceptual integration of spatial, temporal and social variables and is centred upon the household as the key socio-economic unit underlying the spatial, temporal and social transformation of the landscape. Chapter 3 explores the conceptual and contextual foundations of traditional and more radical treatments of the process of cultural change or ‘Romanisation’ as it was once known. The South-east, with its traditional role as the central region in core-periphery models, is explicitly used as the basis for this overall discussion so that it can then be used for general comparison with later case studies. The agricultural economy and, more specifically, the farming communities driving it forward, are repositioned at the heart of my approach to the LIA-ER transition.
Chapters 4 and 5 explore the issue of LIA regionality and ER trajectories through the examination of four regional case studies: three in the former chapter investigate the Upper Thames Valley (UTV), the Fenland and Cumbria regions, and these are then compared and contrasted with a synthetic discussion of the eastern Yorkshire study region. By traditional reckoning, the three comparative regions are located at the core-periphery interface (UTV), in the periphery proper (Fenland) and in the outer zone (Cumbria), whilst eastern Yorkshire lies at the northern limit of the periphery. Whilst the three smaller studies in Chapter 4 focus mainly on the LIA-ER period, Chapter 5 is much more multi-period in scope. This approach is designed to ensure that when detailed evidence for multi-period landscape development is identified in the eastern Yorkshire case studies, adequate larger-scale contextualisation will have already been provided.

Chapter 6 takes the conceptual and contextual foundations established in the earlier chapters and sets out a methodology that exploits the potential of WGC data sets and the three supporting studies at GWS, MSL and WH in order to answer the research questions.

This leads directly into Chapter 7, which examines a diverse group of raw fieldwork archives and published reports, working from the remote sensing overviews of landscape structural development down through the surface collection data and into the stratigraphic and assemblage-based detail of the excavation archives. Then, in each trench/area my focus expands back out from the analysis of artefactual material, especially pottery, in order to refine chronologies, identify function and explore the evidence for patterns of landscape exploitation and the reproduction of elite authority. Finally, Chapter 8 presents discussions of the evidence embodied in the three supporting case studies. In contrast to Wharram’s High Wolds’ location and focus on training and research, the others are located within different environmental zones and represent ancient (GWS) and modern (MSL) approaches to rescue archaeology, and a more remote sensing-based emphasis in landscape research (WH). My approach with
the four case studies was to summarise each individually and then draw together all the strands of evidence in my concluding discussion in Chapter 9. I begin, then, in the landscape and with an exploration of its importance as the conceptual foundation for a study of the LIA-ER transition in eastern Yorkshire.
CHAPTER 2

Theorising the social circumstances of landscape change

2.1 Introduction

The extensive enclosed landscapes and settlement complexes, which characterise the LIA-ER period in eastern Yorkshire, embody the results of human interactions with the physical environment that operated across a diversity of spatial and temporal scales. As a consequence, their collective investigation demands a similar degree of flexibility which, I will argue, is best served by the application of a discursive landscape approach. Such an approach must embrace the materiality of landscape, from artefacts to entire settlements and field systems whilst, at the same time, considering the social contexts of their creation and use through time. This is not as straightforward as it might seem because, in my view, it foregrounds the dualism of landscape's physical and conceptual embodiment, which has enjoyed radically different treatment in processual-influenced landscape archaeology and its postmodern alternatives. Both, individually, are incapable of providing what I need and both, therefore, are deconstructed in an attempt to overcome their limitations. The result is what I have termed a discursive archaeology of landscape.

With this in mind, I begin in Section 2.2 with a brief examination of the origins and development of the conceptual separation of nature and culture in landscape research. This discussion highlights an important issue linked to these conceptual divisions of the world: that of the objectification of landscape through ‘outside-in’ or etic analyses (2.3), versus the subjectification of landscape promoted by ‘inside-out’ or emic viewpoints (2.4). These divergent positions are closely allied to culture-historical and functionalist-processual paradigms in the former case and
postprocessual theorising within a broadly postmodern approach to landscape in the latter.

On a fundamental level my theorisation of landscape is shaped by a need to conceptualise my research around specific questions, which address the relationships between social, spatial and temporal variables. These relate to: households, communities and regional polities; enclosed farmsteads – which I will argue accumulatively resulted in larger agglomerations, ladder settlements and the wider productive landscape; and daily, seasonal and longer-term cycles of inhabitation. My critique of established landscape conceptualisations brings into question the relationships between different theoretical models, methodological approaches and associated analyses. These sections on the origins of and archaeological responses to Modernist conceptions of the world are brought together in a synthetic discussion in Section 2.5.

Section 2.5 develops the general theoretical position of the thesis, beginning with the creation of a more unified conception of human-landscape interaction in line with the approach advocated by Lesley Head (2000). Such an approach acknowledges the desirability of viewing the remains of past human interactions with the physical environment at a landscape level. This takes into account the need to conceptualise such interactions operating across a wide range of scales, with varying intensity across space and time.

Once established, this unified but overarching conception of human-landscape interaction demands a deeper exploration of sociological issues surrounding the relationship of structure, agency and practice and their roles in this interactive process. Giddens’ structuration theory and Bourdieu’s theory of practice are taken as a starting point in Section 2.6. This is then developed further in Section 2.7 through a discussion of John Barrett’s pioneering fusion and application of these theories in what have come to be known as social archaeologies of landscape. The household is identified as a crucial archaeological unit of analysis which,
Chapter 2

Theorising the social circumstances of landscape enclosure

unlike the biological and gendered basis of families, is widely applicable as a fundamental socio-economic unit in agricultural societies. It thus forms the fundamental social unit of analysis in the thesis which, when aggregated, forms the basis of agricultural communities and, ultimately, tribal polities.

In Section 2.8 I foreground people’s capacity for collective agricultural production, in defined social groups, as a critical factor in the structuring of household-community relations and their material residues. Of course, relative intangibles such as ideological and religious concerns would also have influenced past social practice, hence the need for, and obvious value of, Hill’s (1995a) *Ritual and rubbish* and similar research. Nonetheless, members of agricultural communities would have had to work cooperatively; perhaps routinely in household groups but, periodically, as entire communities. This therefore makes household ‘collectivities’ an extremely useful theoretical and analytical category in terms of their interactions within, and between, the spaces they created and inhabited. However, if we are to approach an understanding of the socio-economic and political circumstances of settlement and landscape enclosure, we have to address the question of power relations embodied in such changes.

Finally, section 2.9 provides a concluding review of the basis for, and development of, the theoretical position employed in this project.

2.2 Separated but not divorced: reconciling nature and culture

Many recent publications discussing landscape perception and conceptualisation have noted the nature-culture dichotomy in modern, Western notions of landscape and some have explicitly set out to challenge it (e.g. Bender 1999, 31; Head 2000, 4-5; Thomas 2001, 167). This so-called ‘Western Gaze’ has been associated with gendered notions of a female, passive nature, actively viewed from a male cultural
perspective (Bender 1999, 31; Thomas 2001, 169). As will be shown in 2.4 below, the problematisation of such viewpoints by Bender and others, contrasts sharply with, and is a reaction to, the more prosaic theoretical issues raised in what might be termed 'traditional', empirical approaches to landscape (e.g. Hoskins 1970; Aston 1985; Bowden 1999; Muir 2000b; Rippon 2004).

The important point to recognise is that all these approaches, whether openly championing objective reasoning, tacitly implying it or explicitly denying any possibility of it, were written in a world still heavily influenced by a philosophical framework established in the 18th-century Enlightenment. This philosophical movement placed science, reason and progress as the cornerstones of an increasingly anthropocentric view of the world (Thomas 2001, 167). It encouraged an essentialist view of a 'real world', whose properties existed beyond subjective analyses and could therefore be measured and, given their supposed fixity of meaning, could also be understood (Johnson 1999, 163).

Significantly, the emphasis on progress through the application of reason suggested movement in relation to an underlying grand process towards a "perfect 'scientific' knowledge of the natural world" and a Utopian future (Johnson 1999, 163). Enlightenment thinking was therefore evolutionary and promoted "cultural progress as the dominant feature of human history" (Trigger 1989, 57-8). Thus the division of science, nature and culture in academic discourse, and for that matter in modern life more generally, is also a direct consequence of Enlightenment scholars' disciplinary separations of the world into physical, chemical and biological components (Johnson 1999, 164).

The Modern era strongly reflects Enlightenment ideals, characterised by the rise and fall of European colonialism and the pre-eminence of science and technology (Cosgrove 1990, 351; Plachter and Rössler 1995, 15). Such ideals found material expression in a capitalist system, where those controlling production positioned themselves outside the process in
order to modify the relationship of nature and culture. As a consequence of this objectification, the modern era is indelibly marked by the solidification of nature as culture's 'other'. Landscape, lying as it does at the intersection of culture and nature, is the battleground upon which this conceptual division is presently being fought (von Droste et al. 1995; Ucko and Layton 1999; ICOMOS-UK 2001). My own attempt to address this issue is outlined in the remainder of this chapter.

According to Heidegger (1977, 129-30), the philosophical replacement of God by humans as the sole arbiters of reality created an 'objective' separation which allowed people to observe, conceive and understand their world in a remote, analytical manner. This fundamental shift has had some important theoretical consequences:

"...vision has become the dominant metaphor for the acquisition of knowledge, and observational science has gained a pre-eminent position in the definition of reality and truth...[and it is this] combination of the conception of the world as image and object, and that of human beings as external observers, that provides the conditions for the creation of the modern western notion of landscape" (Thomas 2001, 167).

In archaeology the postmodern (postprocessual) backlash to such an essentialist viewpoint argued for a more fluid subject-object relationship, the mutability of meanings and pasts that emerged from the interplay of competing texts (Johnson 1999, 166). The deconstruction of modernist grand theories and meta-narratives in postmodern writing in the Humanities raised the spectre of extreme relativism and caused what Moore (1999, 5) termed a "crisis of representation". In anthropology, this led some researchers to retreat from the inherent complexities of the subject and turn instead to the more empirical, practical pursuit of fieldwork (Moore 1999, 5) – if in doubt, gather more data. Archaeological texts on landscape are similarly polarised between pseudo-objective 'readings' of the landscape based on fieldwork and
Chapte 2 Theorising the social circumstances of landscape enclosure

'hard' data, and openly subjective and highly theoretical postprocessual treatments of the subject. In simple terms these might respectively be termed landscape from the outside or etic approaches and landscape from the inside or emic approaches.

The Enlightenment project continues to have far-reaching and long lasting impacts on archaeological research and, despite the ongoing criticism of its principles in postprocessual and, more prominently, in postmodern literature, nature and culture remain disunited concepts. Moreover, the arguably false detachment of landscape theory from archaeological theory adds a further unnecessary level of conceptual obfuscation. The remainder of this chapter will review existing theoretical approaches to landscape and explore how the diverse strands of theory presently in use might be drawn together to create a more united conceptualisation of human-landscape interaction.

2.3 Landscapes from the outside

Etic views of landscape are employed by landscape historians focused on surviving surface remains of past human activity — 'the look of the land' or its essential character — and landscape archaeologists concerned with assessing loci of interaction or 'sites' in relation to longer-term processes of landscape change as evidenced collectively in buried and surface remains. Interestingly, given their veneer of objectivity and empiricism, it is perhaps unsurprising that etic approaches have been deeply implicated in debates, legislation and policy on heritage in general and cultural landscape in particular — a situation increasingly being challenged in print (Plachter and Rössler 1995; Fairclough 1999; ICOMOS-UK 2001).

The idea of "landscape" as a natural area, within which human actions left distinct "cultural" traces, can be strongly associated with the eminent cultural geographer Carl Sauer (Head 2000, 14). Sauer is synonymous with the term "cultural landscape" and his conceptualisation below has influenced much 20th-century writing on landscape:
“The cultural landscape is fashioned from a natural landscape by a cultural group. Culture is the agent, the natural area the medium, the cultural landscape the result” (Sauer 1925 in Leighly 1969, 343).

Here, Sauer is actively challenging environmental determinist standpoints, which suggested that people had gradually adapted to their particular environments rather than playing an active role in their transformation (Head 2000, 15). In many ways, though, his definition was as misguided as the environmentally deterministic models of human-landscape interaction he was criticising. It implies the existence of an entirely natural, ‘virgin’ landscape which, when exploited by a particular cultural group, produced a landscape identifiable with those people. Admittedly, Sauer may have had the first peopling or colonisation of landscapes in mind when he wrote the above definition. Yet, even here, such landscapes were not static, inert backdrops to human action but, rather, they existed as physically dynamic phenomena.

Landscape archaeology emerged as a reaction to a perceived site-focused myopia in the discipline and provided a way of examining the operation and development of entire ‘cultural systems’ across multiple sites and wide geographical areas through time (Thomas 2001, 165). Given its development during the scientific revolution of the New Archaeology, landscape archaeology emerged as inherently processual and materialist, privileging the identification of overarching social structures through the analysis of patterning in the archaeological record. Thus, from a systems standpoint, processual approaches sought to “discover how the interaction of human subsistence systems and environmental systems is reflected in the organization of archaeological remains” (Rossignol 1992, 5).

There is a strong thread of environmental determinism in such approaches in that human behaviour is seen as an adaptive response to environmental constraints (Brumfiel 1992, 551-2). An emphasis on
biological evolution allowed the balance between human subsistence and natural resources to be assessed in terms of "optimal foraging theory" (Johnson 1999, 103) or the "carrying capacity" of a landscape (Kelly 1995, 227-9). Thus landscape archaeology evolved under the influence of a burgeoning environmental archaeology that was concerned with examining relationships between people and ecosystems (Evans and O'Connor 1999, 5-8) - hence the term widely used in North American archaeology: "ecosystem approach" (Brumfiel 1992, 551). This approach routinely overlooked human agency. Consequently people were subsumed within notional societies operating almost as a subset of Childe's cultures. Landscape archaeology therefore developed within a functionalist-processual school of thought whereby generalisation, description and the objectification of landscape were promoted.

These early theoretical influences on landscape archaeology have resulted in a strongly etic investigative approach, which privileges external observation and ascription of meaning (Melas 1989, 137-39). Archaeological projects applying such an approach place the study region at the top of an analytical hierarchy, cascading down through inter-site to site level analyses, targeted excavations being used to test specific hypotheses (e.g. Flannery 1976; Gaffney and Tingle 1989, Van de Noort and Ellis 1995, 1999, 2000). Unfortunately, many such studies progress little further than descriptive overviews of human exploitation of the landscape supported by "dots-on-maps" periodic distributions.

However, an emphasis on the material remains of society-level political, social and economic changes, results in reports which, as Barrett (1999a, 26) put it, "describe the landscape as a history of things done to the land". Thus the complex and dynamic processes of landscape exploitation across space and through time are fossilised in static cultural layers. Moreover, the veneer of objectivity created by those employing such an approach belies their inherently modern, Western ideological perspective, which they inadvertently project onto the past (Melas 1989, 141). This criticism of processual landscape studies can
equally be applied to the more descriptive approach employed by landscape historians.

Using an etic perspective, landscape historians have conceived the landscape as an artefact of millennia of human interactions with the environment; a palimpsest of superimposed ‘texts’ that can be ‘read’ and interpreted by skilled landscape investigators (e.g. Hoskins 1970, 10-16; 6-27; Allison 1976; Muir 2000a, 5-7, 2000b, xiv-xv). The textual metaphors dominant in the writing of these, and other, authors clearly reflect the pre-eminence of visual apprehension in Enlightenment-influenced epistemology, as noted above by Thomas. I find the ‘readings’ of surface remains in such approaches deeply problematic, particularly when empirical data are discussed as ‘facts’ beyond theoretical discourse (Johnson 1999, 160). Hoskins’ (1970, 298-303) readings in *The making of the English landscape*, for example, are couched in terms of a remote, objective appreciation of the landscape but he patently felt an intensely emotional and personal (i.e. subjective) connection with the English countryside. Reading is, of course, inherently subjective and I would maintain that the use of such metaphors in discussions of landscape is unhelpful, inappropriate and misleading, particularly if those using them claim a clinical objectivity in their observations. Indeed, the idea of remotely, impartially and accurately ‘reading the landscape’ (Muir 2000b) is a problematic enough concept when referring to the surface remains of past activity in modern landscapes, never mind when the landscapes in question are buried and only visible through their partial and atemporal remote sensing signatures.

The ambiguities in the concept ‘landscape’ provide a means of engaging with the complexities and challenges of drawing meaning from the spatio-temporal interactions of people and their environment. They do not, however, provide the scope for an interpretive free-for-all – on the contrary, I would emphasise the opportunities presented by a landscape approach for a more rigorous and effective integration of data and theory.
It is interesting to note that the aforementioned 'readings' by landscape historians might easily be deconstructed in postmodern critiques, however, visual, textual and linguistic analogies are also central to postprocessual writing on landscape and archaeology (e.g. Thomas 1993; Tilley 1994; Johnson 1999, 105-6). The important difference is that the subjectivity of the latter accounts is more overt and not left unacknowledged or, even worse, passed off as something approaching objectivity.

2.4 Landscapes from the inside
Postprocessual and postmodern archaeologies of landscape developed from a deep dissatisfaction with the totalising, evolutionary and deterministic models of human-landscape interaction promoted by functionalist-processual archaeology, where people were only represented as anonymous constituents of societies reacting to 'external' pressures against a passive backdrop – the landscape (Barrett et al. 1991, 6). Researchers have attempted to address social aspects of landscape development by positioning human agency at the centre of an emic or 'inside-out' avenue of enquiry (e.g. Barrett et al. 1991; Hirsch 1995; Barrett 1999a; Cooney 1999; Ucko and Layton 1999; Head 2000, 58-65; Thomas 2001).

Such an approach seeks to understand past landscapes from the perspective of the people who inhabited and interacted with them (Melas 1989, 137-9). Further, individual and collective knowledgeable action is privileged over concepts such as 'late Iron Age society' evolving in response to external influences such as population growth, economic changes or a shift to Roman hegemony. This then allows questioning of why people's relationships with their kin, community and landscape changed, how this was materially expressed and what such changes might have meant – not in terms of over-arching, archaeologically invisible 'pressures' but rather in terms of changing social dynamics within communities.
The material remains we encounter as archaeologists reflect activities occurring at a human scale and, although such remains represent an incomplete ‘record’ of accumulated moments and longer-term processes, we diminish their value further by conflating them into generalised periodic overviews. Further damage is done if such overviews are then situated within a landscape that is presented as nothing more than a cartographic, spatial backdrop. Landscape, on the contrary, is a phenomenon constituted within specific socio-historic circumstances and generalised overviews arguably represent a fundamental failure to engage archaeologically with the material expressions of past human-landscape interactions. Admittedly, establishing social contexts and settlement chronologies in prehistoric landscapes which, iceberg-like, hide most of their true extent beneath the surface is, both practically and theoretically speaking, a difficult task. Hence, perhaps, the postprocessual emphasis on theorising the social landscapes of major megalithic monuments rather than those of the largely invisible settlements of their builders (e.g. Bender 1998; Tilley 1994). In well-studied blocks of landscape such as Cranborne Chase (Barrett et al. 1991) and around Avebury and Stonehenge (Barrett 1994a) more holistic, emic archaeologies of landscape have been attempted. Nonetheless, my criticism of Bender and Tilley is a little unfair, in that there has to be something physical upon which to base interpretation; otherwise we are arguably departing from archaeology and entering the realm of creative writing. Edmonds (1999) addressed this issue head on, combining in Ancestral Geographies sections that explored the archaeological evidence for Neolithic social landscapes with more imaginative ‘sketches’ — stories woven around that more ‘rigorous’ academic core.

An acknowledgement of the importance of an emic manner of enquiry logically points toward experiential and perceptual archaeologies, particularly the embodied approaches central to phenomenology. It should be noted that the phenomenology of postprocessual writing is not that of Husserl’s philosophy, which sought to describe the world in the existential moment of apprehension and explicitly avoided “recourse to
Chapter 2 Theorising the social circumstances of landscape enclosure

explanation, metaphysical assumptions, and traditional philosophical questions” (HarperCollins 1994, 1168). In archaeology it has a clear interpretive dimension, which attempts to transcend the divide between the modern and past observer of the same phenomena.

In postprocessual texts, phenomenological meaning is described as being drawn from the experience of moving through a landscape, during which material features act as referents, reminders of narratives that re-connect the observer to people, places and activities (Tilley 1994, 27-28; Bender 2001, 4-5). A phenomenological approach also advances the idea that landscapes are reified during the relational experience of “being in the world” (Tilley 1994, 11-12; Thomas 2001, 172). Thomas (2001, 173) stressed the importance of distinguishing between the external objectification of landscapes and the internal relational view of landscapes or “conceptual ordering” (Tilley 1994, 34) as experienced by those dwelling therein. This ‘dwelling perspective’ is perhaps best attested through the day-to-day lives of people within ‘traditional’ cultures who exhibit a deeply embedded connection with and draw a multiplicity of meanings from their landscapes (Thomas 2001, 174-177).

The links between movement, time and meaning in phenomenology are closely related to Ingold’s idea of temporality. While Daniels and Cosgrove (1988, 8) effectively clothed the landscape in layers of iconographic meaning, in some ways reiterating the culture-history ‘landscape as palimpsest’ idea, Ingold (1993, 171) suggested that meaning was revealed by physical clues in the landscape through the temporal experience of dwelling. Temporality stresses how dwelling provides the necessary time frame and perspective for meaning to be visually absorbed (Ingold 1993, 172).

Phenomenological discussions of landscape are intrinsically framed within the perspective of the individual and, as such, are perhaps less easily applied to the wider interpretative framework of landscape when viewed as socially (i.e. collectively) constructed space, as perceived by
Barrett (2001, 158-159). Moreover, phenomenology overlooks the fundamentally different material conditions and socio-historic context of the past and is, in effect, ahistorical.

Both modernist and postmodern approaches to landscape fail to address the underlying disunity of culture and nature in their conceptualisations. Furthermore, the opposition between etic, modernist views of the world and emic, postmodern alternatives is, I would suggest, a fragile one. Landscape, whether viewed from an etic or emic standpoint, is at once a means of exploring the materiality of human-environment interaction and of conceptualising the world in abstract perceptual terms. The conflict does not, therefore, reside in landscape per se but is more a construct of our making, relating to ways of looking, research emphases and our processes of conceptualisation. As Ashmore (2004, 259) commented:

"Most archaeologists consider landscape a product of human interaction with the environment. It is in the nature of that interaction, and of its results, that scholars differ along theoretical lines. This is the crux for recognition of social archaeologies of landscape".

The social archaeologies discussed at the beginning of this section appear to provide the means of transcending these conceptual divisions. It is therefore to these conceptions that I now return as a means of reuniting culture and nature, theory and practice in landscape research.

2.5 Discursive approaches and the reunification of landscape

Debates over the relationship of people and landscape have taken in a broad sweep of archaeological theory: from that accepting, often tacitly, the separation of nature and culture espoused in Enlightenment philosophy, through to approaches explicitly designed to subvert what, for this thesis, is an unhelpful and false division. This is not simply a question of theoretical stance though, as archaeological remains,
particularly when viewed from a landscape perspective, present complex challenges in terms of their physical relationships which, in turn, influence the ways archaeologists interpret them. In particular, archaeological landscapes are re-constructed from data gathered and analysed at many scales and often with widely varying resolutions. In landscape research, the relative costs of investigating large geographical areas using remote sensing techniques, versus the smaller-scale but more detailed results offered by targeted excavations, have almost inevitably led to an over-interpolation of data from the former and an over-extrapolation of that from the latter. In ensuing chapters, most of the problems associated with earlier interpretations of LIA-ER enclosed landscapes stem from a failure to fully acknowledge these confounding factors.

In bringing these threads together, we are apparently faced with something of a dilemma: a choice between functionalist-processual conceptions of landscape as a series of static cultural layers, upon which meanings are almost paternalistically ascribed, or a postprocessual alternative, which presents a past peopled with social actors dynamically interacting with their environment but identifiable only at a sub-landscape or site level. It would clearly be of enormous benefit if these analytical and interpretive ambiguities of landscape research could somehow collectively be addressed.

Such an approach would require that data gathering, analysis and interpretation be integrated conceptually from the outset. In other words, landscape projects must be created and designed around specific questions, answerable using data sets gathered at many scales and with varying qualities and resolutions which, nonetheless, can be drawn together within a common analytical and interpretive framework. Far better perhaps to view the whole landscape as a valid unit of study, characterised by activity zones of varying function, intensity and meaning through space and time.
Lesley Head (2000, 6) helpfully outlined such a notion of human-landscape interaction in her “recursive conceptualization of landscape”, which forms a central thread in what follows. She envisions zones of activity that are loci of interaction between human actors and their physical environment; such interactions operate recursively through time and the underlying relationships are intrinsically organic, socially embedded and transformational. This is fundamentally so if one accepts that agency functions through recursive interactions between different cultural components and natural processes. Human agents knowingly seek to modify and reorder the landscape to suit their needs but do so under the influence of, and with reference to, social structures and environmental factors. Thus, although landscapes may appear stable for long periods within archaeological timescales, they were in a state of more or less flux depending upon the relative influence of human and environmental factors. The disparity between this observation and the fossilisation of landscape evidenced in cropmark transcriptions (e.g. Riley 1980; Stoertz 1997) cannot, I would suggest, be over-emphasised.

For this project, then, landscape is seen as a phenomenon constituted and modified through the ongoing interaction of natural processes and cultural agency operating across a wide range of spatial and temporal scales. Notionally such scales might be temporally associated with the ‘daily round’, seasonal cycles and periodic events, or, in socio-political terms, with the activities of individual households, communities and tribal polities. The relationships of these interlocking scales of analysis are explored more fully in section 2.7. This is somewhat akin to Braudel (1980, 27-8) and the Annales School’s notion of overlapping cycles of momentary events, conjunctures or generational occurrences and the longue durée spanning centuries or more. Knowledgeable human actors, living and working in past landscapes, brought this agency into being and, whilst so doing, were both influenced by, and had impacts on, their physical environment and the processes at work within it – thus creating a “social landscape” (Gosden and Head 1994, 113).
Those researching social landscapes have viewed “the environment as a space in which human skills are deployed” (Layton and Ucko 1999, 8) and the materiality of landscape as socially constituted and shaped by human agency (Gosden and Head 1994, 113-4). Gosden and Head (1994, 113) summed up the value of such an approach in their comment, “the notion of landscape...can help give the social a geomorphological timescale”. This conceptualisation therefore explicitly acknowledges natural processes in the landscape, thus obviating the need to exorcise the “ghosts of environmental determinism” (Head 2000, 54) – from this perspective, they are no longer an issue.

Such notions of human-landscape interaction reflect a wider theoretical movement in the humanities away from the slavish adherence to the ‘rules’ of particular paradigms and towards more inclusive conceptualisations, based on the identification and combination of strands of theory appropriate to the questions at hand (Moore 1999, 5). In this case I aim to elucidate the social circumstances of landscape enclosure through the analysis of a spatial hierarchy of evidence – residing in archaeological contexts, sites and landscapes, and in the social entities of households, communities and tribal polities. Thus I began above by theorising the role of culture and nature in notions of landscape and then explored the diversity of ideas surrounding the complex interactions of people and landscape. It now remains to take my notion of a social landscape and explore its underlying relationships of structure, agency and social practice. One such approach has gained particular favour in archaeological research and it involves the combination of the key theoretical developments of Anthony Giddens (1971; 1979; 1984) and Pierre Bourdieu (1977).

2.6 Structuration theory, habitus and practice

This section proposes that the material transformations of the eastern Yorkshire landscape had their basis in the constitution of LIA society: its social structures, the human agents interacting with them, and the
practices underlying them. Whilst a combination of environmental and social factors is implicated in these changes to landscape and settlement architecture, they were effected by the recursive interaction of human agency with socially embedded structures during the habitual practices of daily life. This point catches the essence of the connection between Giddens' (1984) notion of a social interaction between structure and agency as laid out in his "theory of structuration", and Bourdieu's (1977) complementary emphasis on the material expression of such relationships embodied in the *habitus*.

Agency provides the transformative impetus in both Giddens and Bourdieu's projects; however, the use of agency theory has not been without its critics. Dobres and Robb (2000b, 3), for example, suggested that "agency in archaeology is not a theoretically sophisticated paradigm, but rather a *lingua franca* – an ambiguous platitude meaning everything and nothing". That depends, I feel, on how notions of agency are applied to the past and, despite such negativity, they quite correctly went on to suggest that if we are to realise agency theory's potential to illuminate the contribution made by past people to "large-scale processes of cultural change" then "we must integrate theoretical discourse, archaeological practice, analytic methodologies and concrete case studies" (Dobres and Robb 2000b, 4). Indeed, this is precisely the integrated approach used in this project, as is outlined more fully in chapter 6.

Giddens' (1971) seminal critique of the writings of Durkheim, Weber and Marx provided the basis for what became his theory of structuration (K Giles 2000, 9). Despite his efforts to deconstruct the grand narratives of classical sociology, Giddens acknowledges his debt to Marx through his use of the statement "*Men (sic) make history but not in circumstances of their own choosing*", as a core notion in the development of his theory (Cassell 1993, 4-5). The original version of Marx's statement reveals the deeper resonances of his thinking in Giddens' and Bourdieu's writing and this carries through into my theoretical position developed below:
"Humans make their own history, not on the basis of free choice, but rather on the basis of circumstances encountered, given, or inherited. The traditions of all previous generations weigh like a nightmare on the brains of the living. And if they appear to be busy changing things, busy creating something that has not existed before, it is, in particular, in those periods of revolutionary crisis that, in fear, they summon the ghosts of the past to do their bidding. They borrow their names, their slogans and costumes to add in this disguise, a new scene to the play called world history" (Marx and Engels 1961, 115 as cited in Giddens 1984, xxi, translated by Sven Grabow).

In essence, whilst change is initiated by human agency, be that in the form of elites’ power over resources or subordinate groups, or such groups’ power to act relative to such demands, legitimation is found in the established institutions of the habitus, which draw ideological support from the past.

In bringing together structure and agency, Giddens actively sought to overcome what he saw as their misleading treatment in functionalist writing, which situates structure as an external social constraint on the agency of human subjects (Giddens 1984, 16). This was a direct critique of functionalist sociologies such as that of Talcott Parsons (1949), which saw institutions as all-pervasive mechanisms that restricted human choice. Contrastingly, in structuralist and post-structuralist conceptions, structure is typically seen as occurring "as an intersection of presence and absence" where "underlying codes have to be inferred from surface manifestations" (Giddens 1984, 16). For Giddens (1984, 17), then, "structure" and "system" are conceptually separate, such that structure refers to the:

"...structuring properties allowing the 'binding' of time-space in social systems, the properties which make it possible for discernibly similar social practices to exist across varying spans of
space and time and which lend them systemic form”.

This brings us to the central tenet of Giddens’ theory of structuration – “the duality of structure”, where:

“...the rules and resources drawn upon in the production and reproduction of social action are at the same time the means of social reproduction” (Giddens 1984, 19).

This provides a means for the reproduction and maintenance of habitual social practices but what of the possibility for change in such conceptualisations? Giddens (1984, 15) sought to avoid the subject-object dualism evident in many sociological discussions of power and he consequently defined power neither as the intent, will or capacity to act purposively, nor simply as “a property of society or the social community”. Instead, power resides in the ability of knowledgeable agents to exploit and reproduce “structured properties of social systems” or resources, during social interaction (Giddens 1984, 15), and logically following from that:

“Power within social systems which enjoy some continuity over time and space presumes regularized relations of autonomy and dependence between actors and collectivities in contexts of social interaction” (Giddens 1984, 16).

As Graves pointed out, power is not a given but rather is negotiated through social discourses such as those surrounding authority, age, gender and status. Moreover, she suggested that:

“...all social interaction involves the negotiation of power, the capacity to mobilise resources as a ‘means’ to achieve outcomes. The analytical recognition of human agency prevents the relegation of the subject to a helpless cultural dupe, whilst at the same time avoiding overemphasis of the individual” (1989, 298).
Giddens (1984, 118-9) described the physical contexts of social interactions as "locales", these being bounded, socially meaningful spaces within which "institutionally embedded social encounters and practices" occurred. According to Giddens (1984, 110), such locales are subject to "regionalisation", dependent on the spatio-temporal zoning of social practices within them. For example, depending on the time of day, or perhaps the stage of the agricultural cycle, the social meaning of particular spaces would vary.

Unfortunately, 'regions', 'regionality' and 'regionalisation' are widely use concepts in studies of socio-political organisation and material culture patterning in the LIA and, more particularly, Roman period (e.g. Cunliffe 1991, 60, 94; Millett 1990a, 11). To avoid confusion, these terms will only be used in their conventional geographical sense, as exemplified in the title of this thesis, and instead Bourdieu's concept of the "field" will be used to describe the social dimension of inhabited practices in time-space. The inhabitation of spaces by different groups at particular times also affects the structuration of social systems by creating 'front' (public) and 'back' (private) zones (Goffman 1959, 109-40; K Giles 2000, 10). In terms of this project, a hierarchy of locales might be envisaged within the landscape, moving from the public arena of trackways and fields, to the increasingly more private arenas of household enclosures and individual roundhouses. The architecture of such spaces thus provides a resource, which might be exploited by different groups in the enforcement and/or negotiation of socio-political control.

Giddens has been criticised for failing to explore these material consequences of structuration through space and time (Barrett 1988, 9; Graves 1989, 299; K Giles 2000, 10); although, to be fair, his was a sociological project. However, at around the same time as Giddens was formulating his theory of structuration, Bourdieu (1977) was already developing his connected notions of "habitus" and "practice", which more effectively address the materiality of social practice. Bourdieu
described habitus as:

"... systems of durable, transposable dispositions... as principles of the generation and structuring of practices and representations which can be objectively "regulated" and "regular" without in any way being the product of obedience to rules" (Bourdieu 1977, 72).

Thus habitus does not reflect an adherence to social rules but rather is based on strategies, or knowledgeable decision-making, which creates an habitual state of knowing how to proceed in life and deal with situations as they arise (Bourdieu 1977, 72). There is a fundamental difference between individual and group habitus in that:

"The first is acquired through personal experience and socialisation, and reflexively adjusted over the individual’s lifetime in relation to objective reality. The second is a shared body of generative schemes and cultural dispositions which form a collective homogenous phenomenon uniting particular groups in society" (K Giles 2000, 10-11).

This sets up "a dialectical relationship between collective history inscribed in objective conditions and the habitus inscribed in individuals" (Jenkins 1992, 80). In this sense habitus is both "socially constituted and materially continuous" (Graves 1989, 299), such that it provides a means of "theorising the materiality of social practice" (K Giles 2000, 10) as fostered by enculturation during daily routines. Habitus is thus reproduced by, and produces, social practices (Jenkins 1992, 80), and Bourdieu’s notion of social practice, like that of Giddens, is fundamentally positioned in time and space, such that "time is both a constraint and a resource for social interaction" (Jenkins 1992, 69). The temporality of practice is thus brought into being through the social ‘construction’ or appropriation of natural cycles such as days, seasons and lifetimes (Jenkins 1992, 69). Bourdieu uses his metaphor of the ‘field’ to describe social arenas within which power relations are played
out in the struggle over material and cultural resources (Jenkins 1992, 85). Thus “the constitution of society is spatial and temporal, [and] social existence is made concrete in geography and history” (Soja 1989, 127).

The recursiveness inherent in Giddens’ duality of structure and Bourdieu’s interrelationship of habitus and practice is also, as suggested by Head (2000), at work in the landscape. Thus, the transformational relationship of people with their physical environment brings about both material alterations to landscape and the reinforcement and monitoring of social practice. There is, thus, a clear conceptual link between Giddens’ and Bourdieu’s social theory and Head’s (2000, 6-7) “recursive conceptualisation of landscape”. Importantly for archaeological application, Bourdieu’s emphasis on the materiality of social practice serves to balance and ground Giddens’ valuable, but more abstract, ideas on the nature of social reproduction.

Given the upsurge in interest in agency theory, it is perhaps not surprising that the interrelated aspects of Giddens’ and Bourdieu’s theories have increasingly been combined and applied in archaeology to questions of social reproduction and its material outcomes: in relation to the social use of buildings (Graves 1989; Johnson 1993; K Giles 2000); landscape and identity (M Giles 2000); and agency theory and landscape (Barrett 1988, 1991, 1994a; 1999a; 1999b; 2001).

2.7 Social archaeologies of landscape
As is evident in the foregoing discussion, Giddens and Bourdieu’s theories have a particular relevance for archaeologists concerned with theorising the social circumstances underlying material transformations to buildings, settlement and landscape. The first archaeologist to recognise the interpretive potential of their ideas was John Barrett, who has since gone on to develop and apply them in a series of publications spanning more than a decade (Barrett 1988; 1991; 1994a; 1999a; 1999b;
In his paper, *Fields of Discourse*, Barrett outlined how such a combination of theories might be used to overcome the limitations of a functionalist archaeology that placed the forces of social change outside "the material conditions and the control of social agency" (Barrett 1988, 7-9). Instead, he argued that material remains might more productively be viewed as "evidence for particular social practices" (Barrett 1988, 6: italics in original). When faced with Giddens' lack of engagement with the material implications of his theories, Barrett (1988, 9) turned to Bourdieu who, through his ethnographic work with the Berbers, had explored the powerful influence of the material world on social practice (Bourdieu 1973). Thus bounded spaces associated with structures, those in the wider landscape, as well as more portable material culture, function through time to define material "locales within which meaningful and authoritative forms of discourse can be sustained" (Barrett 1988, 8: italics in original). For Barrett (1988, 11), such locales provide the physical spaces which, when occupied in time-space during the practice of particular discourses, are transformed into fields (of discourse). Thus the materiality of the landscape was actively involved in the reproduction of social discourse – and in the making of history.

In the prehistoric and early historic landscapes of eastern Yorkshire, as elsewhere, a significant proportion of landscape features were inheritances from beyond living memory. Barrett (1999a) addressed the issue of landscape inheritance and reanimation in his paper *Chronologies of landscape*, in which he questioned the archaeological treatment of features used, or at least acknowledged, for centuries, perhaps millennia, beyond their period of primary use. In particular, he noted that, by attempting to situate successive landscape developments on a rigid timeline, archaeologists invariably privilege the date of monuments' creation over the period of their use/reuse (Barrett 1999a, 22). Similarly, in his discussions of prehistoric Ireland, Cooney (1999, 52) stressed how megalithic structures, through their long-term occupancy of the
landscape, may have contributed to an enduring "sense of place" for successive generations of people. In their study of late prehistoric and early historic Downland communities, Gosden and Lock (1998, 4-6) suggested the co-existence of genealogical histories, reinforced through strong lineage-landscape affiliations and mythical histories relating to more impersonal, distant pasts. They thus provided a useful means of theorising the socio-ideological contexts of material changes to past landscapes based on the cyclical nature of human inhabitation and remembrance all set within the multi-generation timescale of the longue durée. These ideas have subsequently been explored in more general terms by Bradley (2002).

Barrett was instrumental in the development of a social archaeology of landscape; as outlined in his collaborative work on the prehistoric landscapes of Cranborne Chase (Barrett et al. 1991, 6) and further explored in Fragments from antiquity (Barrett 1994a). In the former he addressed a range of historical issues surrounding social reproduction and practice: how people's interactions with their environment influenced the reproduction of their material conditions; how the maintenance and negotiation of social discourse reproduced the social system; and how people situated and understood their social practices through their habitus (Barrett et al. 1991, 7). When viewed together, these ideas constitute an extremely useful example of structuration theory and practice applied to real archaeological situations.

The role of power relations and associated ideological formations in the social transformation of landscape were similarly well conceived. They argued that, to meet demands and obligations during social practice, people use what authority they have to ensure that their actions are both meaningful and effective and "thus social practices reproduce structures of authority" (Barrett et al. 1991, 7). On ideology it was suggested that, whilst practical knowledge is open to subversion, ideologies reflect discursive knowledge and thereby preserve cultural values embedded in daily practices and thus "serve the interests of dominant groups" (Barrett
Chapter 2 Theorising the social circumstances of landscape enclosure

et al. 1991, 7). These ideas were then applied to the landscape which, with “its form constructed from natural and artificial features, became a culturally meaningful resource through its routine occupancy” (Barrett et al. 1991, 8). Thus landscape, for Barrett, rather than being a passive backdrop to human action, becomes an active component in the constitution of society and the enforcement of power relations. This recursive relationship between human agency, social practice and the materiality of the landscape can equally be applied to my smaller analytical categories of ladder settlements and farmsteads and the communities and households inhabiting them.

For Melanie Giles (2000, 21), the communal effort of working on the excavation of ladder enclosure ditches helped to cement people’s connection with their household group, the wider community and the land. Such agency occurred within the “political constraints and material conditions of their life-world” and “identity is constituted through a network of relations between people...places, things and times” (M Giles 2000, 21). She thus proposed that “the household” was at the core of the construction of identities, indeed the “close knit – open weave” of her thesis title respectively implicates the roles of household and community affiliations in this process (M Giles 2000, 202). Useful though her theorisation of communal work and identity may be, it rather glosses over the critical issue of asymmetrical power relations, within which such work took place. Nevertheless, the relationship between households and larger social formations, both in terms of agricultural production and socio-political interactions, is central to this project.

2.8 Households, communities and the productive landscape

Thus far, for a variety of reasons, 'the household' has been carefully identified as the focus of my theorising and analyses rather than 'the family'. This choice reflects the acknowledgement of both the sociological and archaeological implications of these terms. Donald Bender (1967, 493) outlined what for him were the key social
distinctions between the two by suggesting that 'the family' is a strictly kin-based and gendered grouping, whilst 'the household' also relates to propinquity or co-residence. An alternative view might see families in socio-biological terms and households as socio-economic groups. Such socio-economic household groups might usefully be termed *collectivities* – by which I mean discrete social units living, working and negotiating as a group within their community and tribal society as a whole. Whilst household as an analytical category could, in theory, be further reduced, for my purposes there are no practical reasons for doing so.

This avoids the need to overcome such problematical issues as the assessment of the size and gendered composition of 'the average Iron Age family'. If assessments based around families require prior knowledge of their kin-based constitution, those formulated around households do not; this distinction is critically important to the development of a meaningful social archaeology of ladder settlements. Whilst, in general terms, we can quite safely assume that kin-based affiliations were important in Iron Age families and households, only the latter provides a conceptual bridge between social practice, archaeological analysis and interpretation. Thus individual enclosures and entire ladder settlements might be analysed in terms of households through the residues of their collective actions and production. Even if such households remain of indeterminate constitution, they arguably form the most meaningful way into the social landscapes of late Iron Age and Roman eastern Yorkshire.

While Mel Giles (2000, 182) saw Iron Age household identity being reproduced through the communal effort involved in the excavation of enclosure ditches, Brück (1999, 153) went further to suggest that enclosures "created and defined the co-resident group" and such acts also defined the function and meaning of spaces. Both Brück (1999, 153) and Mel Giles (2000, 192), however, acknowledge that such independence of enclosed households was largely illusory as the...
inhabitants would periodically have been economically reliant on their wider agricultural communities. In contrast to Mel Giles and Brück, I do not believe that household enclosures were consciously dug to define and identify those within — indeed, group definition, identity and solidarity facilitated their excavation. Brück’s (1999, 149) important examination of middle Bronze Age houses and lifecycles proposed that single-phase houses related to the generational cycle of their occupants and marriage-residency practices within the wider communities. She further suggested that the placed deposition of querns, animals and grain within houses, household enclosures and their peripheral ditches was similarly linked to the reproduction of the household and its economic activities (Brück 1999, 153-4).

Barrett (1994a, 147) drew on Bell’s (1983) study of human impacts on chalkland erosion rates, to suggest that the second millennium BC evidenced a significant intensification of arable production. He went on to posit a model in which, contrary to the movement-monument foci of earlier, more mobile groups, fully sedentary “households or household clusters” (Barrett 1994a, 147) envisaged their abodes as the private core of a domain, the boundaries of which became loci of religious significance. This represents an important change of emphasis within communities, from the marking out of key locations in a mobile landscape to the reinforcement of domestic space in more permanent, nucleated settlements.

This embedding of socio-political significance within the structure of the agricultural landscape is worth exploring further. Rapoport (1969, 80) has written about the critical architectural importance of thresholds as points where public space gives way to more private space. The location and patterning of such thresholds in the architecture of enclosed LIA-ER settlements appear to have been radically different to earlier unenclosed examples. Based on the surviving evidence, it would appear that, in open settlements, private space was confined to the interiors of roundhouses. This does not deny, for example, that slight wattle fences may have
Chgj2ter 2 Theorising the social circumstances of landscape enclosure

existed between houses but these seldom survive to be recognised during excavations. Moreover, it should also be acknowledged that, on the Wolds, such 'open' settlements existed within large enclosed spaces bounded by dykes, ditches and trackways, as at Wetwang Slack (Dent 1978; see also Chapter 8 below). In contrast, in LIA-ER enclosed settlements a hierarchy of thresholds may have existed. These might notionally be identified as: a settlement threshold where, for example, a trackway entered the enclosed settlement zone, a household compound threshold at the edge of individual enclosures, and a household domestic threshold at the door of dwellings. Thus three basic tiers of privacy can be envisaged within the architecture of ladder settlements. If we add to that the potential for household enclosures to form the core of larger groups of enclosures of variable function, effectively farmsteads within larger settlements, we have a further intermediate tier of socio-economically significant space. Moreover, it seems extremely likely that the morphological category 'ladder settlement' is in fact a composite of multiple household enclosure clusters added at different times. In the context of this project, there is thus a particular imperative to chart structural changes evidenced across households, settlements and productive landscapes in the LIA and ER periods, in order to differentiate each from the other, and from the MIA and LR periods.

Beyond settlement foci, the wider landscape would have contained for its inhabitants the economically important, but archaeologically less visible, productive zones of arable in-fields and grazing land. These were interconnected by trackways which, as persistent long-lived features, provided the framework about which multiple landscapes developed.

Households are thus one, albeit central, component to our understanding of the social processes underlying the LIA-ER transformation of the landscape. However, what many social archaeological perspectives seem to lack when discussing the interactions of households, communities and regional polities is any useful theorisation of the relationship between material resources and power relations. Whilst commenting on recent
debates in anthropology regarding cultural relativism and its reaction to
the apolitical nature of much postmodern theorising, Henrietta Moore
observed:

"In order to understand what is happening to people's lives, it is not
enough to focus on fragmentation and particularism, there has to be
some acknowledgement that hierarchical relations of power and
domination set a larger context within which the particularities of
lives are lived. If individuals and collectivities are to challenge the
relations of power, they cannot do so by asserting that each
situation is unique and that there are no common discourses or
understandings to link experiences and situations" (Moore 1999, 13-
14).

In other words, if social factions were to have had any influence in
political negotiations they had to be part of and engage with the
dominant discursive formations of their day. This is important, as in
some respects the postprocessual focus on local, small-scale issues such
as the internal dynamics of households and the relationships between
materiality, ideology and identity can appear decidedly disarticulated
from larger-scale analyses and broader questions concerning the inter-
relationships between socio-political and landscape change.

In contrast, my theorisation of the circumstances of LIA-ER landscape
change has placed household collectivities socio-economically and
politically at the heart the matter. They collectively constitute and
politically interact with the larger social groupings of communities and
regional polities. They also correlate with and inhabit the spatial
category farmstead which, when aggregated, create communities
inhabiting ladder settlements and local polities reproducing themselves
through the exploitation of the landscape and the productive output of
that most basic but essential of groups – the household.
2.9 Conclusions

This chapter has sought to develop a theory of human-landscape interaction compatible with both the physical remains and the supposed historical social context of the study region. The absence of such a unified theoretical position in landscape research was shown to have originated in the separation of culture and nature, people and landscape during the Enlightenment. It was argued that all discussions of landscape, of whatever theoretical stripe, were written under the influence of, or as a reaction to, this dominant modernist paradigm. Despite claims of 'difference', the positivist, etic approaches of landscape archaeology and landscape history, and postmodern, emic reactions to them, have both failed to effectively integrate landscape's material and interpretive dimensions. As a consequence of this, many landscape researchers have either presented data as 'facts' beyond theoretical discourse or theoretical models as abstractions disarticulated from their material basis.

In contrast, the recursive conceptualisation of structure and agency and human-landscape interaction in social landscapes, as conceived by Head and Barrett, provides a theoretical approach in which multiple scales of analysis are possible. It also encourages connections to be made between the social hierarchy of household, community and tribal polity, the spatial dimensions of enclosure, settlement and the productive landscape, and the temporal cycles of days, seasons and periodic events. Household collectivities constitute the ideal social unit for interconnecting spatial and temporal scales in the available data, and thus provide the basic analytical unit for this project. Moreover, it was hypothesised that the aggregation of multiple household enclosure clusters through time produced the features that have come to be known as ladder settlements.

In sum, landscape provides a conceptual tool with which to approach the investigation of LIA-ER enclosed landscapes and the socio-political relations underlying their creation and transformation through time. What this chapter has not addressed, however, is the specific socio-
Chapter 2 Theorising the social circumstances of landscape enclosure

historic context within which the landscapes studied in this thesis were created. That is a job for Chapter 3, which provides the necessary periodic context by examining the nature of LIA societies in Britain and the process of cultural change resulting first from contact with Rome, then conquest and, ultimately, consolidation within the province of Britannia. Crucial to this process was the agricultural economy whose productive output guaranteed the reproduction of LIA hierarchical societies, but also indirectly ensured the successful incorporation of Britain within the Roman imperial system.
CHAPTER 3

Ancient Britons becoming Romans?
Shifting notions of socio-cultural change.

3.1 Introduction
This chapter provides a periodic focus for the general theoretical approach set out in the previous chapter. It compares and contrasts ‘traditional’ and more recent accounts and models concerning the nature of LIA societies in Britain, the character and impact of Roman imperialism, and the diversity of response to contact, then conquest and, finally, consolidation of Roman rule. The south-east of England, the supposed ‘core zone’ of LIA Britain, has traditionally formed the basis of much of this debate and is therefore almost unavoidably foregrounded in this chapter. Despite the geographical, elite, and materialistic bias inherent in such an approach it does, nonetheless, allow the general conceptual issues of cultural change to be explored against a sizeable and well-explored data set. Moreover, a conscious focus on the south-east as the basis for this chapter’s main discussion of cultural change then establishes a baseline model and sound justification for my complementary focus on regional case studies outside the perceived core in the following chapter.

I begin with a brief historiography of the last 25 years of archaeological debate on the process formerly known as Romanisation or, in present parlance, LIA to ER cultural interaction and change. This leads into a critical discussion of the Iron Age-Roman transition, in particular drawing on the wealth of recent publications challenging the received wisdom concerning the nature of late Iron Age society in Britain and its transformation under Roman influence, conquest and rule (3.2). This demonstrates that much that is supposedly new in archaeological theory owes significant debts to earlier developments, particularly with respect
Section 3.3 then draws on the pivotal work of Colin Haselgrove and Barry Cunliffe to examine and critique their models of LIA society and the ways in which pre-existing social structures were exploited by Rome. In essence they suggest that LIA societies in south-east England were characterised by increasing social complexity, a changing political economy and core-periphery relations within which the trade in prestige goods became increasingly pivotal to the reproduction of elite authority. Importantly, rather than attributing cultural change to an homogenous, progressive, one-directional process of Romanisation, my aim is to present Roman imperialism as one, albeit significant, factor influencing longer-term socio-political and economic trajectories in Britain. The regional diversity of late Iron Age tribal societies is seen as a fundamentally important factor that must be acknowledged in our attempts to explain the diversity of response to Rome before, during and after the conquest; hence Chapter 4’s exploration of regional trajectories in LIA-ER society.

Section 3.4 then discusses the importance of agricultural production during the study period and considers its role in the maintenance and reproduction of social hierarchies in LIA and Roman Britain. This includes a discussion of the possibilities for the socio-political organisation of LIA-ER tribal groups with respect to centralised and decentralised societies and their reliance on reciprocal, redistributive and tributary systems in the control of resources and power relations. The archaeological implications of such systems are then explored in terms of the ecofactual, artefactual and structural evidence.

The chapter is rounded off with a short concluding discussion (3.5), which reviews the key messages regarding the nature and value of ‘traditional’ and more recent versions of the Iron Age-Roman transition. These over-arching conceptual issues are then contextualised in terms of the more detailed models for the control of resources and power relations.
and their corresponding range of material markers, which might be evidenced in the regional (Chapters 4 and 5) and intra-regional (Chapters 7 and 8) case studies. These material markers are, of course, explored in greater detail in Chapter 6’s methodology.

3.2 Conceptualising the socio-political transition to Roman hegemony

Traditional viewpoints and recent theoretical trends

The last decade has seen archaeological theorising become increasingly influenced by social theory and postmodern, interpretive approaches to the human past (e.g. papers in Hodder et al. 1995; Thomas 2000; Hodder 2001a). This has been strongly reflected in late Iron Age studies (e.g. papers in Hill and Cumberpatch 1995; Gwilt and Haselgrove 1997a; Bevan 1999a; Haselgrove et al. 2001; Woodward and Hill 2002a; Haselgrove and Moore 2007a) and is having a growing influence on Roman research directions (see papers in Webster and Cooper 1996; Mattingly 1997a; James and Millett 2001a; Keay and Terrenato 2001a; Merryweather and Prag 2003a).

Of course, any meaningful discussion of cultural change during the late Iron Age and early Roman periods should reflect on the more traditional models of the transition (e.g. Bradley 1984; Darvill 1987; Frere 1987; Cunliffe 1988; 1991; Salway 1993); not simply as an opportunity for deconstructive ‘cheap shots’ at the established consensus but, rather, as a useful means of contextualising the development of more recent ideas. As an archaeologist trained under the influence of postmodern theory I am duly sceptical of the received wisdom cleverly repackaged in the grand, predominantly, functionalist narratives of cultural change. However, despite such reservations, works such as Cunliffe’s *Greeks, Romans and barbarians* (1988) and *Iron Age communities in Britain* (1991) remain important contributions based on decades of careful scholarship and, even if the interpretive frameworks used seem rather dated, they deserve better than dismissive caricature.
We should not be surprised nor particularly disappointed to find that the established historical narratives of LIA and Roman Britain concern themselves with, amongst other things, the relations and mechanisms of elite power, the spread of civilisation, militarism, conquest, colonialism and the expansion of trade and so-called market economics (Frere 1987; Cunliffe 1991; Salway 1993). That is what the classical histories themselves largely promoted – the reinforcement of particular socio-political narratives important to the maintenance and growth of the imperial system. Thus Roman historians, ancient and modern, wrote the idea of a unified, homogenous empire into existence as a means of reifying the division between Romans and barbarians. This process was widely highlighted and critiqued during the postmodern review of Roman studies begun in the 1990s (Hingley 1996, 35ff; Barrett 1997, 59; Freeman 1997, 28; Hill 2001, 12).

The title of this chapter refers to the deconstruction and reconfiguration of the notion 'Romanisation' and its changing conceptualisation with respect to issues of identity and 'Romans' and 'Natives' (Webster 2001; James and Millett 2001; Mattingly 2004; Pitts 2007), post-colonial theory, domination and resistance (Webster and Cooper 1996; Mattingly 1997a; 2004; 2006), and core-periphery models, world systems theory and globalisation (Woolf 1993; Rowlands 1998; Hingley 2003; 2005). The content of these volumes owes much to Martin Millett's (1990a) seminal book *The Romanization of Britain* which, as the title suggests, was a critical review of and response to Haverfield's (1912) earlier exploration of the subject. As Grahame (1998, 1) noted, Millett's book presents views of the process of cultural change that "have come close to becoming the orthodoxy in Romano-British studies". The irony of this statement cannot have been lost on Millett (1990, xv) whose express intent was to avoid such an outcome. Many younger Roman archaeologists of the "TRAC generation" (James and Millett, 2001, 3) have sought to challenge this perceived Romano-centrism by exploring the possibility of alternative histories drawing, for example, on the post-colonial theories of Scott (1990, 1ff) and Said (1993, xi-xiii), which
heavily influenced Mattingly’s (2006) recent volume on Roman Britain. Underpinning the academic discourse on Romanisation is a fundamental dichotomy of viewpoint between those who envisage cultural change resulting from an interactive process between an indigenous population and imperial power (e.g. Millett 1990a; 1990b; Woolf 1995; 1998) and those seeing Roman intent and interventionism writ large in the historical records of the Empire (e.g. Frere 1987; Salway 1993; Hanson 1997; Whittaker 1997). Woolf (1995, 339) added further definition by suggesting that even attempts to revise the agenda by Millett and others retained, in some sense, a culture-historical view of imperialism as an interaction between two ethnic cultures. Instead, Woolf presented “Roman imperial culture as a structured system of differences that was highly differentiated, by region, class, social locale, age and gender among other dimensions of variability” (Woolf 1995, 339-41).

Woolf’s (1998) Becoming Roman represents a signal contribution to the discourse on cultural interaction. His exploration of the cultural transformation of Gaul under the late Republic and early Empire drew on almost a decade’s worth of research during which he had come to question the grand theories of La Tène society and Roman imperialism (Woolf 1993; 1995). He distilled such theories into three central themes:

“first the idea of Europe as an economic hinterland of the Mediterranean before the Roman conquest, second the idea that late La Tène societies were organised around prestige-goods economies dependent on the supply of Mediterranean imports, and third the thesis that Roman expansion was limited by the extent of late prehistoric social complexity in Europe” (Woolf 1993, 18).

This questioning has developed into a major research focus structured around attempts at a redefinition and clarification of the geographical and chronological diversity of cultural change under the influence of the Roman Empire (e.g. Creighton 2000; Burnham et al. 2001; James 2001; Taylor 2001; Slofstra 2002).
Woolf and Millett’s influence on a generation of postgraduate archaeologists is well attested in the proceedings of the Theoretical Roman Archaeology Conferences (TRAC), which are now in their 17th year. As a consequence, Romanisation has been widely discussed and deconstructed at TRAC. Yet the conferences have also helped to move debates in other, more interesting, directions (e.g. Chadwick 2004; Pitts 2005a), broadening debate to include, for example, the study of non-elites in rural, civilian contexts and the troublesome relationship between material culture and identity. This is part of a long overdue expansion of Roman research beyond traditional emphases (see papers in James and Millett 2001a). Despite such moves, and Taylor’s (2001, 46) specific call for a refocusing of attention on rural settlement, the role of agricultural producers in the development of the Roman province has remained an under-studied arena for archaeological research.

In much the same way as feminist archaeology went through a phase of searching for the ‘missing’ women in traditional accounts of the past (Conkey and Spector 1998), Iron Age-Roman studies have, in similar vein, begun to seek out the ‘hidden’ masses of the rural landscape. The focus of feminist archaeology subsequently switched from the deconstruction of the ‘androcentric edifice’ and on to a search for diversity and difference (Moore 1994; Gilchrist 1999, 2-3). With the ‘Romano-centric edifice’ similarly identified and, to some degree at least, disassembled, the way is open for alternative histories of the Iron Age-Roman transition. Indeed, the time is now ripe for a major new synthesis focussed specifically on this period in Britain, which draws on the diverse material evidence and wide ranging theoretical discourse on cultural change. Creighton’s (2006) Britannia represents a useful first step in this process, although it further reinforces the focus on south-east England. A further important contribution has just been published by Richard Bradley (2007), which draws upon the huge volume of data generated by commercial fieldwork to challenge and reconfigure the underlying chronologies of cultural change.
Archaeologists, myself included, are drawn to transitions as periods of change and interaction, occasions when we might hope to recognise in the material record the socio-political and economic expressions of a 'clash of cultures'. The incorporation of Britain within the Roman Empire has, not without reason, been viewed as an exemplar of this process. Whilst the word 'Romanisation' is laden with interpretive baggage, the ideas behind it are fundamental to formulations of culture change and guide the ways we conceive and interpret the diversity of response possible when different socio-political structures and ideologies interact. The main paradigm shift in such debates, which I find of particular value, concerns this diversity of response, its propulsion through human agency and creative expression in the use of material culture. The passages below aim to provide a conceptual and contextual bridge between the established models of LIA to ER Britain and recent theorising on culture change, which draws upon the material evidence and questions of regionality and diversity of response to Roman economic, political and ideological formations.

3.3 Modelling the LIA-ER socio-political transition

The British LIA, c.100BC-AD43, is conventionally modelled in terms of "the evolution of 'Celtic society' on the periphery of an expanding Roman world" (see Fig.2) where "communities were more developed and politically evolved the closer they were to the Roman world" (Creighton 2000, 11). This notion of increasing social complexity, a changing political economy and core-periphery relations within which the trade in prestige goods became increasingly important was cemented as the periodic orthodoxy through its repetition and reinforcement in the writings of influential researchers of the period (Haselgrove 1982; 1984a; 1989; Bradley 1984, 144-56; Collis 1984; Darvill 1987, 163-70; Cunliffe 1988; 1991).

Darvill's (1987) influential and widely used text book *Prehistoric Britain*, which drew mainly on Cunliffe (1978) and, to a lesser degree,
Haselgrove (1982; 1984a), portrayed the British LIA in terms of three zones: a 'core zone' in the southeast of England, a 'peripheral zone' east of line stretching from the Severn to the Tees and an 'outer zone' comprising the remainder of mainland Britain (see Fig. 3). The core zone was characterised by its evidence for continental contact and trade, unenclosed and enclosed villages and farmsteads, lowland oppida, wheel-thrown pottery production, the use of coinage, imported luxury goods linked to prestige, feasting and display and high status richly furnished burials (Darvill 1987, 167-71). The periphery and outer zones were then defined by their relative lack of evidence for such socio-economic markers and interpreted in terms of the more progressive, dominant core. For example, in areas adjoining the core, the refortification of hillforts and enclosure of settlements and farmsteads was tentatively linked to the threat of raiding for food and slaves to fuel trade from the core with continental Europe and the threat of direct intervention by Rome (Darvill 1987, 173). Such a model is quite explicitly built around the idea that Iron Age tribes and, in particular, their elites were more or less 'prestigious' and powerful dependent on their access to and control of Mediterranean/Roman goods (Haselgrove 1982, 81).

The expansion of the Roman Empire to the Continent’s western coastline created new opportunities for display and aggrandisement using imported exotics, in particular Italian wine, which may have been paid for through reciprocal trade in, for example, slaves, cattle, hides, metals and corn – all of which were listed by Strabo as British exports (Geog. 4.5.2 as cited in Haselgrove 1982). Additionally, the coastal salterns of eastern and south-eastern England would have produced another extremely valuable tradable commodity (see Fenland in Chapter 4).

Beneath such synthetic overviews of LIA Britain, Cunliffe’s benchmark volume, Iron Age Communities (1991, 541ff.), offers a more detailed examination of some key changes of cultural trajectory. Cunliffe’s emphasis on core-periphery modelling and the centrality of inter-regional trade and exchange in late Iron Age social systems is, needless
to say, a direct reflection of his processual viewpoint. Moreover, his reliance on extra-systemic factors, such as long-distance trade, to explain the transformation of society is pure functionalism – the social system remains in balance until disturbed by external forces. There is, however, a growing body of evidence which, when examined from alternative theoretical positions, is challenging traditional narratives, but first it is Cunliffe’s turn.

Cunliffe divides the LIA into three periods which, for the south-east at least, seem to hold good: the “contact period” (c. 120-60BC); the “Caesarean episode” (c. 60-50BC); and the “impact period” (c.50BC-AD43) (Cunliffe 1991, 541f).

The contact period relates to the decades during which the southern Gallic colonies were established and began to funnel Roman and Mediterranean goods north into barbarian Gaul and Britain creating a “bow-wave effect of Romanization” (Cunliffe 1991, 543). During this period the main flow of trade seems to have been between Armorica via the Channel Islands to ports on the south of England at Poole and Hengistbury Head (Cunliffe 1991, 543). This intensification of trade is situated “within existing social systems” but it is argued that the imported Mediterranean wine and exotic goods provided “an entirely new means of displaying prestige” (Cunliffe 1991, 543).

Cunliffe (1991, 543-4) linked the abandonment of southern hillforts and the establishment of lowland oppida during this period to a new form of aristocratic display based not on warfare but negotiated through access to prestige goods. The positioning of oppida at key communications loci in the landscape, often where roads and navigable rivers coincide, certainly suggests an emphasis on inter-regional trade.

The increasing use and evident social significance of Mediterranean goods during the 1st-century BC has been termed “‘Romanization’ before the conquest” (Haselgrove 1984a, 5). One has to be careful not to equate
Haselgrove’s use of this term with his acceptance of the notion of a one-directional, uniform process of Romanisation – purposive, directed and managed by Rome. In reality his central argument is that:

"Rome not only exploited indigenous political divisions and tendencies to the full in the immediate process of conquest and incorporation, but looked to adopt intact whatever of the existing structure she could, and to alter or abolish only those features which ran counter to her long-term interests. The nature of indigenous society was therefore a key factor in the Roman expansion, and also in the occasional check she experienced, as in Germany.” (Haselgrove 1984a, 6, emphasis mine).

Furthermore, Haselgrove (1984a, 6) was also at pains to explain that he was against the idea “that Roman involvement ever amounted to anything approaching social engineering, as her expansion was inherently erratic, the product of individual warlords’ aspirations as much as of economic necessity”. It is nevertheless interesting to consider how different social groups in Britain might have responded to the process of Roman expansion, initially in terms of socio-economic contacts and, later, as a political and ideological phenomenon. Certainly, contacts between the Roman world and south-eastern England hugely intensified following Caesar’s campaigns of 55-54BC.

The second of Cunliffe’s periods covers the decade within which Caesar conquered much of Gaul and carried out his two incursions into south-eastern Britain. As in Gaul, it would seem that society in LIA Britain revolved around personal, perhaps kin-based, alliances and gift-exchange between tribal leaders. Low-level inter-group conflict is assumed to have perennially, if sporadically, occurred and only when faced with the possibility of a permanent disruption of such socio-political formations did tribes unite against a larger foe – Rome. Caesar’s campaigns are increasingly being considered not in purely military terms but, rather, for their impact on longer-term socio-political trajectories relating to the
creation of client kingdoms at that time (Creighton 2000). In the period between Caesar’s subjugation of Gaul and his establishment of treaties with the tribes of south-eastern England, the axes of trade and exchange between the Roman continent and Britain were fundamentally altered. Quite suddenly, in archaeological terms, the Armorica-Hengistbury trade route went into decline as the flow of Roman-style goods into Britain was ‘redirected’ via Belgic Gaul.

Cunliffe’s ‘contact period’ deals with the decades before the Claudian conquest and explores the consequences of Caesar’s alliance building in Britain and the Augustan consolidation of Gaul. The dramatic cultural changes evidenced in southeast England in the decades after Caesar’s campaigns of 55-54BC have justifiably received a great deal of attention (e.g. Haselgrove 1982; 1984a; 1989; Creighton 2000; 2006; Hill 2007). The early date and intensity of socio-political and economic contacts between Belgic Gaul and the southeast, both before the time of Caesar and, in particular, afterwards is taken to indicate cross-channel kinship ties between tribal groups (James 2001, 195a). Additionally, as Creighton (2000, 89-92) has underlined, it is possible that Caesar took junior members of aristocratic/royal families as hostages or obsides who, after being educated in Roman ways, might later return to Britain to encourage ongoing friendly relations between the region’s tribes and Rome. Creighton’s (2006) recent book develops these ideas further to suggest that post-Caesarean dynasts in south-eastern England may, following their education in Rome, have also spent time in the army and thereby became more fully imbued with a sense of what ‘being Roman’ meant. In the decades after Caesar’s alliances were cemented in southeast England, client kings were producing coinages carrying classical imagery, which would probably have been unintelligible to all but an aristocratic few (Creighton 2000, 124). Interestingly, in the last years before the Claudian conquest, rulers such as Cunobelin and Verica had adapted the imperial iconography of Augustus to produce coins carrying messages more intelligible to a far wider section of society (Creighton 2000, 125).
This copying could be taken to support the argument that the spread of Roman ideology and culture was driven forward by the emulatory instincts of regional tribal aristocracies using such material symbols. However, the notion that such kings were identifying themselves with powerful Roman emperors, whose symbols were recognised by tribal leaders on both sides of the Channel, might simply reflect the transmission of a commonly understood message of power and status between contemporaries rather than one, necessarily, of Romanitas. In addition to the iconographic coin evidence, this south-eastern region of client kingdoms also contains several Roman towns with roads and buildings that seem to align with pre-Roman, high status burials, but ones furnished almost exclusively with Mediterranean goods (Creighton 2006). (In the north of England the evidence for the pre-Flavian use of Roman materials in any context is rare but the intriguing site of Redcliff-on-Humber is discussed in Chapter 5).

So from the time of Caesar and, particularly during Augustus' reign and the half-century thereafter, the southeast of England clearly evidences intensified links with Belgic Gaul and the use of Roman-style goods in the construction and maintenance of elite identities. The mechanisms through which those goods were obtained, passed on and consumed require careful consideration and, with this in mind, Woolf (1998, 14-15) drew an important distinction between the consumption of Roman goods *per se* and Roman styles of consumption. This observation foregrounds the key difference in perception between researchers seeing a direct correlation between material culture and social identity and those, like Woolf, stressing the importance of understanding the mechanisms through which Roman goods were obtained and the indigenous social contexts within which they were consumed or deposited, for example, at the feasts or funerals of wealthy individuals.

The pre-conquest socio-political trajectories outlined above help clarify the ways in which Claudius was able, early in the occupation, to
establish Roman authority in south-eastern England, largely built around the “peaceful incorporation of the large southern state ruled by Cogidubnus” (James 2001a, 194). The subsequent patterning and development of cultural change in the province has conventionally been seen in terms of the “self-governing civitates of the lowlands” and the “military-dominated uplands” (James 2001, 196). The pivotal role of tribal elites in the cultural ‘conversion’ of the masses does not seem to have been operable in the North, where retardation of urban development, scarcity of villas and limited quantities of Roman goods reaching rural settlements are linked to the lasting presence of the military. As I will argue in later chapters, this phenomenon is not simply related to the long-term militarisation of regions, nor is it uniformly expressed within the supposed military zone.

Of course, the above discussion is almost entirely concerned with elite consumption practices and power relations, but in trying to understand how this ‘superstructure’ operated we must not lose sight of the myriad agricultural producers whose agency, we assume, provided the means by which it was maintained. Therefore, in contrast to Cunliffe’s functionalist emphasis on change due to external factors, for me the key to understanding the mechanisms of landscape change requires a focus on the diversity of internal relationships between producers and elite consumers which, dependent on the regional circumstances of conquest and consolidation, were more-or-less transformed by the imposition of Roman authority.

3.4 Agriculture and the reproduction of society

Archaeological fashion and the neglect of the ‘humble’ farmer: the engine room of the Roman economy

The research emphasis in studies of the Iron Age and Roman transition has thus, until recently, been overwhelmingly ‘top down’ or etic in nature. However, a variety of alternative viewpoints and approaches are fundamentally changing our perspectives of society during the transition.
Issues such as regionality, identity and social rather than purely economic approaches to landscape are coming to the fore (e.g. see papers in Gwilt and Haselgrove 1997; Davies and Williamson 1999a; James and Millett 2001). This reinvigoration of debates surrounding the social context of the Iron Age-Roman transition has, nonetheless, been inadequate in its consideration of the importance of agricultural communities and the rural economy (Taylor 2001, 46) — but why? Certainly, the recent research interest in emic, contextual and social archaeologies of landscape has rendered ‘traditional’ topics such as ‘rural settlement’ and the ‘agricultural economy’, which previously attracted etic, top-down and functionalist-processual treatment, deeply unfashionable. Secondly, there has been an active movement towards more theoretical research concerned, in particular, with the question of identity, but without an attendant consideration of the asymmetrical power relations inherent to the ancient economy (Pitts 2007, 17) and operative within the lives of rural producers whose lot it was to fuel the ‘system’.

The Roman historical sources offer little insight into the nature and significance of the agricultural economy of LIA and ER Britain (Greene 1986, 68), save for characteristically generalised references such as Strabo’s listing of British exports mentioned in Section 3.3 above. This might, if it were assumed to refer to a sustained trade, at least suggest production beyond subsistence but this is unclear. What is clear, however, is that significant cultural change did occur and, although its pace, intensity and means of expression varied between town and country and one region or province and the next, it was sustained over many generations and wide geographical areas. This capacity for socio-political and cultural change was built upon a highly significant constant — namely, the productive capacity of farming communities who, collectively, provided the backbone of the Roman economy (Finley 1973, 139; Greene 1986, 14-16) and its LIA counterpart.

Our knowledge of the organisation of the Romano-British agricultural
Chpter 3 Ancient Britons becoming Romans? Shifting notions of socio-cultural change

economy is similarly reliant on the archaeological evidence. Hopkins’ (1983, xiv-xv) revision of what Greene (1986, 14) termed “The Finley/Jones model”, acknowledged the significance of farming but, crucially, instead of seeing a stable but effectively static imperial economy, saw evidence for widespread economic growth in the study period. Therefore, between 100BC-AD200, Britain was on the edge of, in contact with and eventually incorporated within a dynamic imperial economy that needed a growing agricultural surplus to support an extensive, urban-based administrative system and a large standing army (Hopkins 1983). It was against this backdrop that Collingwood suggested that Roman towns enjoyed a parasitical relationship with farming communities in the surrounding countryside; an observation backed up in a more recent review of the evidence, at least with respect to larger towns (Fulford 1982, 417). However, this process is associated with the maturation of the Romano-British economy and the emergence of villa clusters around such towns which, away from the south-eastern core, is very much a later Roman phenomenon. Moreover, accounts argue for the existence of a predominantly administered or, alternatively, market economy in Roman Britain but, either way, rural production is marginalised. Nevertheless, whether we choose to consider cultural change in abstract theoretical terms or through the material evidence for regionality or group identities, the fact remains that most people living in Britain between 100BC and AD200 worked in the ‘engine room’ of the agricultural landscape. It is therefore striking how unfashionable the reconsideration of such ‘mundane’ topics as the agricultural economy now is; but such reconsideration is absolutely essential and, by exploiting recent theoretical developments in Iron Age-Roman studies, this project addresses the issue directly.

Despite their over-emphasis on elite groups, core-periphery relations, territoriality and the trade in exotic goods, most synthetic discussions of the later British Iron Age do acknowledge somewhere within their pages that LIA society, like that of Roman Britain, was based on a mixed farming economy (e.g. Harding 1974, 77-95; Cunliffe 1991, 371-404).
Indeed, there have been many attempts to understand the nature of agricultural settlements and the rural economy across the uplands and lowlands of Britain in the LIA and Roman periods (although, it should be noted, that such research has been in decline since the 1980s: e.g. Jones and Dimbleby 1981; Taylor 1982; Cunliffe and Miles 1984; Hingley 1989; Miles 1989; Taylor 1997; 2001). Romanists have also long-acknowledged the importance of agriculture; for example, Collingwood (1936, 208) estimated that “at no time during the Roman period did agriculture occupy less than two-thirds of the inhabitants of Britain” whilst Hopkins (1978, 37) guessed a figure for the wider Empire closer to 90%. Agriculture was thus the “main avenue for investment and source of wealth” across the Roman world (Garnsey and Saller 1987, 43).

We should remember at this point that, throughout the protracted discourse on the Romanisation of Britain, modern historians – and their Roman counterparts – have viewed LIA societies and incoming Roman soldiers and administrators as culturally very different ‘animals’ but, at a quite fundamental level, there would probably be a good deal of understanding when it came to matters of socially-embedded trade and commerce, reciprocity and obligation. These processes, we assume, were central to the reproduction of an agriculturally-based LIA society and would be thoroughly understandable to Roman traders, administrators and soldiers (Garnsey and Saller 1987, 148-9) whose responsibility it was to negotiate the supply of agricultural produce to the military garrisons and towns.

Beyond agricultural products there were, of course, many other commodities extracted, processed and consumed, for example, metals, minerals, salt, and building materials such as timber and stone – all of which were exploited throughout the study period, but with an increased intensity and scale during the Roman occupation. Many of these commodities would have had a much higher intrinsic value than agricultural produce and there is evidence to suggest that the trade in these non-agricultural resources was, at least initially, centrally
controlled and administered by imperial procurators (Frere 1974, 282ff.). Although agricultural products and higher value commodities would have been redistributed to both LIA oppida and Roman military and urban centres, such centres tell only a very partial and incomplete story of the socio-economic basis of settlements in their rural hinterlands.

Hill (1995b) used a contextual approach to critique some of the key functionalist generalisations underpinning Cunliffe's (1991) emphasis on the function of hillforts and oppida as pivotal nodes of consumption in the landscape. In his revised account, agricultural producers were identified as the key to understanding processes of societal and landscape change (Hill 1995b, 55). In contrast to Cunliffe's emphasis on elites, then, it could be argued that the vast majority of the population would have devoted their energies to the maintenance of households and communities, local political alliances and, above all, agricultural production. This is an obvious but perhaps necessary observation; farming communities were not just the anonymous means by which elite groups and their hillforts, oppida, villa estates or Roman towns were economically provisioned – they should also be considered as socio-political players in their own right. After all, it was precisely because of their economic position that they were able to exercise some political power in the relations of production.

Hill's alternative viewpoint not only marks a shift from elite consumer to agricultural producers, but also introduces the possibility for more diverse, bottom-up readings of the evidence. An emphasis on diversity in LIA-ER landscapes, be that intra- or inter-regionally defined, is thus by no means simply a product of 'postmodern thinking' in archaeology – it really appears to be present in our data and demands acknowledgement and explanation. The fundamental challenge, therefore, is to satisfactorily explain diversity of response across the Empire in terms of the struggle over material circumstances. In other words, we need to understand how the agricultural economies of subject peoples in different regions affected their degree of integration within the imperial
system.

Part of the problem of interpreting the evident regional diversity in agricultural landscapes stems from our poor understanding of the ways in which society was organised between the level of regional polities and households. There is general acceptance that the Roman Empire was built around a central authority, which operated within a dominant ideology mediated and articulated through language, literature and material culture—be that portable artefacts or architecture (Frere 1987; Salway 1993; Millett 1990a; Woolf 1998). It is less clear, however, whether shared ideologies and common exploitative mechanisms were used by Iron Age elites to facilitate the extraction of surplus in tribute across entire tribal regions. Having said that, the issue at hand is less one of identifying ideological formations controlling horizontal exchanges of material and more one of conceptualising vertical relations associated with the extraction of agricultural surplus. It is therefore important to consider how the control of rural production and the redistribution of surplus might have differed in the LIA and Roman periods.

First, however, a more general review might be appropriate. Greis' (2002) recent study *Relations of production* provides a valuable synthesis and discussion of the differences between reciprocity, redistribution and tributary-based socio-political systems. Reciprocity implies that the society is essentially decentralised and goods move between semi-specialised producers, each effectively 'swapping' commodities for others they cannot or choose not to produce (Greis 2002, 28). Redistribution revolves around a "central organizing authority" (Greis 2002, 28) that gathers and stores a range of goods from subordinate producers and then redistributes them through feasting, gift giving or as famine relief. In contrast, a tributary system involves an explicitly one-way flow of goods, effectively taxation in kind, from subordinate producers to central elites who are under no obligation to reciprocate (Greis 2002, 29). According to Smith (1976, 311), the stratification of agrarian societies is based on an elite’s control over a key resource,
which could be “a means of production, such as land...a means of destruction, such as fire power” or a subsistence commodity “such as salt, that cannot be locally procured or produced”. This process is based upon “institutionalized social inequality and is a manifestation of the power structure, reinforcing the superior social position of the elites relative to that of the producers” (Greis 2002, 29 after Smith 1976, 311). The tribute might then be used for elite subsistence, to support a warrior class or aristocracy, or to trade for prestige goods.

These three different systems should create particular socio-economic markers in the archaeological evidence, in terms of zooarchaeological and palaeobotanical remains, artefactual materials, and in the structural organisation of the landscape. Greis (2002, 100) provides two models that help in this regard; one for decentralised tribal economies and the other for centralised chiefdom-type economies:

“(A) decentralized economy has two main characteristics: a non-hierarchical social organization, and an absence of resource specialization...such an economy would be defined by a diversified strategy of self-sufficient production, engaging in reciprocal exchange...The community will form part of an economically and socially undifferentiated landscape populated by other communities like itself, each producing what it needs and not relying on the flow of goods within the region to supply it with necessities” (Greis 2002, 100).

Whereas:

“a community participating in a centralized economy can be represented as a specialist producer producing a surplus of a specific resource to feed into a redistributive or tribute system. Such a community would function within a hierarchical landscape, in which the productive communities clustered around an administrative/political center (sic). This central site would mediate and regulate the flow of goods within the territory and would
organize any reallocation of resources made necessary by variations in annual productivity; within the production network it would function as a consumer" (Greis 2002, 100).

Late Iron Age societies across Britain can be argued to have fallen into one or other of the above categories, with centralisation being characteristic of many regions in the south and east whilst, in the north and west including eastern Yorkshire, a more decentralised but, probably still to some degree, hierarchical social structure seems likely. This simplistic overview masks significant inter-regional diversity which, during the Roman occupation, was further complicated by Rome’s tactic of dealing with the conquest of the Province on a region-by-region, tribe-by-tribe basis (Millett 1990a, 44). Thus not only do we have LIA regionality to contend with, but also each tribal group ‘enjoyed’ quite different histories of contact, conquest and consolidation by Rome. In the LIA tributary relations were probably reinforced and articulated between elites and producers through seasonal social events, feasts, and harvest gatherings – a vertical, hierarchical but essentially communal and kin-based process of allegiance renewal. The extraction of agricultural surplus thus formed one element within socially-embedded tribal economies. Inter-regional elite-level trade and exchange networks in LIA Britain were probably retained, but realigned, after the conquest.

Under Roman imperialism the obligations of tribal leaders to their Roman overlords were ‘horizontally’ articulated through patronage networks that formed the social and exploitative basis of “the empire of cities and the empire of friends” (Woolf 1998, 35). Although tribal elites across the province are thought to have taken on these new administrative roles, their ability to perform such roles was dependent on their continued exploitation of pre-existing socio-political structures associated with the extraction of tributary surplus. As Haselgrove (1984a, 5) has argued, the successful expansion of Roman authority was largely dependent on the pre-existence of such mechanisms within tribes conquered and incorporated within the Empire. Each tribe’s history of
conquest and incorporation – whether they were hostile or friendly towards Roman – has implications for subsequent developments, as has the related factor of the duration of military control in each region. This is why an attempt must be made to identify pre-conquest regional patterning if we are to have any real grasp of the socio-political and economic underpinnings of observed ER trajectories in agricultural landscapes and communities.

Given their perennial economic importance in both LIA and Romano-British society, the remains of rural settlements should constitute a singularly important barometer of cultural change. It should be acknowledged, however, that in societies such as those envisaged in LIA Britain the physical evidence for such change may be difficult to discern given that “(T)ributary extraction is usually more visible on those sites that receive the tribute, rather than on those which produced the surplus” (Condron et al. 2002, 13). This factor directs us once again towards elite consumption and thus represents a further challenge to our desire to understand ‘grass roots’ change amongst rural producers. That said, it is in the productive landscape that the struggle over resources was played out and, despite the above difficulties, it is there that we must look for changing patterns of agricultural change.

Nonetheless, many lower status agricultural settlements have been excavated and yielded ecofactual assemblages that have undergone analysis by environmental archaeologists. We must now review the possibilities for the identification of economic change between the LIA and ER periods using these ecofactual data, backed up with artefactual and structural evidence.

Evidencing LIA-ER agricultural economies

Environmental archaeology or, more specifically, zooarchaeology and palaeobotany, have provided invaluable insights into the issue of change in agricultural economies during the study period (Jones 1981; 1982; 1989; 1996; Grant 1989; Van der Veen 1992; Huntley and Stallibrass
1995; Maltby 1996; Van der Veen and O'Connor 1998; Hambleton 1999; Dobney 2001; Hall and Huntley forthcoming). However, a major challenge with the ecofactual evidence is its extreme variability within and between regions, and it is often the patterning of "presences and absences and change through time" that allows an overall appreciation of changes in trajectory (Fulford 2004, 313).

Van der Veen and O'Connor (1998) specifically addressed the question of LIA to Roman agricultural expansion, intensification and extensification. They characterised the period as one in which a growing number of people in hillforts, oppida, the Roman military and towns were not directly involved in agricultural production (Van der Veen and O'Connor 1998, 127). The surplus production this demanded would require rural producers to either intensify their use of existing landholdings or expand on to new territory in a process of extensification. There are clearly questions as to the timing, intensity and cause of these changes across Britain and the degree to which the military were locally supplied or provisioned using imported foodstuffs, particularly in the 1st century AD. It is thought that ER demands for military provisioning might initially have required some importation of grain but, with the establishment of forts at fairly regular intervals across the province, this would later have become a matter for local negotiation and supply (Millett 1990a, 56-7).

Van der Veen's (1992, 159) study of crop regimes on six LIA sites in northeast England revealed two distinct groupings falling within different tribal/environmental sub-regions: between the Tweed and the Tyne (Votadinian territory) there was continued use of emmer wheat and small-scale intensive cultivation from the LBA onwards, whereas in the Tees lowlands (Brigantian territory) spelt wheat displaced emmer as early as 300BC and remained the dominant crop during the LIA extensification of arable farming. The regionality of LIA crop husbandry was thus demonstrated by two regions that had apparently responded to an increase in demand through processes of intensification (Tweed-Tyne)
and extensification (Tees lowlands). It is also interesting to note the difference of trajectory suggested by the dearth of LR villas in the Tweed-Tyne region and their relative abundance in the north-central part of Brigantian territory, of which the Tees lowlands form the north-eastern part (Branigan 1980, Fig. 3.1).

Based on King’s (1978) survey, the faunal evidence shows that “(R)oman sites with a military connection typically produce bone assemblages with a very high relative abundance of cattle bones, whereas Iron Age sites and Romano-British sites in less ‘Romanised’ areas typically show a higher proportion of sheep bones” (Van der Veen and O’Connor 1998, 132). Albarella (2007, 391) has recently revisited this question and found that his sample of sites from various points south of the Humber, including Dragonby, showed that cattle were the main species in the E-MIA and ER periods, whilst sheep predominated in the LIA. The dominance of cattle bones in Roman assemblages has been linked to intensification and cereals production and the need for traction and manuring, but the shortage of sites spanning the study period, with well-stratified and sizeable ecofactual assemblages, remains a problem (Van der Veen and O’Connor 1998, 132). A more intensive use of arable land, particularly on thin chalky soils, would have required a concomitant increase of effort in terms of the maintenance of soil fertility. In such areas an emphasis on sheep rearing might relate to their role in direct manuring using sheepfolds as well as their calorific value in terms of meat.

Arable intensification can also be evidenced, in uplands and lowlands alike, through pottery manuring scatters, which have been identified in several regional studies in Roman Britain (e.g. Williamson 1984; Hayfield 1987; Henig and Booth 2000, 98). Artefactual evidence for crop processing is typically related to the presence of saddle and rotary querns and mortaria which, in the last case, may have been adapted in the ER period to suit local styles of food processing and preparation. The storage of surplus grain is widely recorded on Iron Age sites from
charred remains in pits or linear ‘silos’ or as above-ground ‘four-post’ structures inferred from patterns of postholes, although this may “represent evidence for risk-buffering rather than true surplus-production” (Van der Veen and O’Connor 1998, 135). In his seminal overview of the development of crop husbandry, Martin Jones’ (1981) emphasised that it was the LIA and LR periods, as well as the LBA-EIA (note developments at this time in eastern Yorkshire in Chapter 5), that were times of agricultural innovation and change, not the ER period. The LIA evidenced an expansion of arable onto damper and heavier ground which, with advancements in plough technology, allowed full exploitation of heavy loams by the LR period (Jones 1981, 119). In contrast, the decades following the conquest saw the introduction of mechanical mill and large granaries, but these are both evidence for mass storage and processing not production. What we do see on Roman period rural sites is the introduction of new storage structures such as aisled barns and the increasing use of crop dryers. The latter are often, but not always, associated with higher status farmsteads or villas which, although not the residences of the average farmer, are of particular interest here when they developed from LIA-ER farmsteads (see Chapters 4 and 5). The changing structure of rural landscapes in the LIA and ER periods, encompassing settlements, field systems and trackways, provides a central tier of analysis in this project. Such changes reflect economic and socio-political decision-making regarding the exploitation and management of agricultural production which, when explored across several regions, can provide significant insights into the nature of LIA regionality and ER trajectories on a region-by-region basis.

3.5 Conclusions

This chapter has provided a chronological context for the general theoretical approach set out in the previous chapter. The historiographical account examined the development of ideas surrounding the nature of and mechanisms underlying processes of cultural change associated with the integration of LIA tribal societies
with the Roman imperial system. It was acknowledged that the vast majority of effort in this regard had been focused on south-east England which, with its well-studied and sizeable data set, provided the main geographical focus for discussions in this chapter. The south-east was viewed in traditional culture-historical and functionalist-processual accounts as the core area in core-periphery models of LIA Britain. Such models and the LIA trade in prestige goods were critiqued in light of alternative readings of the evidence in postmodern-influenced, contextual accounts of the period. The latter have attempted to reverse the generalising top-down, elite consumer-level of focus of most traditional accounts of the LIA-ER transition and, instead, have promoted regionally-focused, bottom-up, non-elite perspectives including a renewed interest in the agricultural producers and the rural economy.

As Chapter 4 explores further, there is good evidence emerging for regional diversity in the landscapes and rural economies of different LIA tribes. Haselgrove has stressed the important role played by LIA elites who, through their control of agricultural production and surplus, were pivotal to the successful integration of regions within the imperial economy. Moreover, if we are to understand the basis for diversity of response to Rome, as evidenced in rural landscapes, we must consider pre-conquest patterning, the circumstances of conquest, and the duration of military control on a region-by-region basis.

The pre-conquest socio-political and economic organisation of tribal groups provides a critical baseline against which to explore the impact of Roman colonisation. Therefore the characteristics of centralised and decentralised societies were explored in terms of reciprocal, redistributive and tributary economic systems. It was noted that an emphasis on rural producers was unlikely to provide absolute evidence of surplus extraction, which might best be evidenced at the settlements of elite consumers. Despite this, there are still a range of material signatures that might help elucidate the nature of LIA societies and their
Chapter 3 Ancient Britons becoming Romans? Shifting notions of socio-cultural change

Economies in each region which, when examined through time, may highlight potential changes of trajectory between the LIA and ER periods.

For example, in a more centralised LIA region we might expect to see a hierarchical settlement structure, evidence for elite mortuary display, the presence of imported prestige goods, signs of feasting, substantial grain storage facilities, and specialised rural producers clustered around elite settlement foci. In a decentralised area in contrast, there would be a tendency towards an undifferentiated settlement pattern, a lack of evidence for agricultural specialisation, and little or no sign of higher status groups either in domestic or mortuary contexts.

The latter overview of the material markers of centralised and decentralised tribal societies now requires testing in more detail in the regional case studies in Chapters 4 and 5, and the intra-regional studies in Chapters 7 and 8. The markers themselves are explored in much more detail in Chapter 6, discussing methodology.
CHAPTER 4

Regional trajectories in LIA-ER social landscapes

4.1 Introduction

This chapter builds upon my discursive landscape approach (Chapter 2) and the socio-political and economic models of the LIA-ER transition (Chapter 3), to explore the diversity embodied within three very different regions of Roman Britain. The three regions span the core/periphery interface (Upper Thames Valley), periphery (Fenland), and outer (Cumbria) zones and, collectively, offer some invaluable environmental, archaeological and intellectual contrasts with each other and the much-studied core. Figure 3 shows the geographical location of the three regions (marked ‘UTV’, ‘F’ and ‘C’) and eastern Yorkshire (‘EY’) in relation to the notional core, periphery and outer zones. It should be reemphasised that a regional case study was not selected from within the ‘core zone’ as this area has been and continues to be heavily studied (e.g. Creighton 2000; 2006; Pitts 2007). Indeed, as Chapter 3 showed, the basic LIA-ER core-periphery model and much of the general discussion of LIA society and Roman influence upon it draws on the rich archaeological resource from south-east England. Moreover, as our understanding of LIA Britain as a whole has improved, it has become increasingly evident that regionally distinctive patterns of settlement and material culture are the norm and that “the ‘classic’ features of the British Iron Age” as embodied in the south-east “are exceptions rather than the rule” (Hill 1999, 186). My selections should therefore not be taken to represent all regions in such zones — instead, they offer exemplars of different theoretical approaches applied to contrasting archaeological data sets.

In contrast, my examination of regional trajectories across wider areas of what became the province of Britannia provides a more balanced
archaeological and socio-historic context against which the eastern Yorkshire evidence can then be discussed in Chapter 5.

As well as characterising the regionality of settlement and landuse across Britain during LIA-ER periods, an attempt is also made to elucidate the degree of socio-political and economic heterogeneity implied by the different patterns observed. The different archaeological theories and methods used in each region are also assessed in terms of their likely influence on ensuing analyses and interpretations. This approach is applied on a region-by-region basis through the case studies and in overview to the 300-year transitional period as a whole. My aim, therefore, is to explore both the conceptual and contextual foundations of past and present versions of the Iron Age-Roman transition.

Each case study begins with a short overview of the region’s environmental setting, followed by a discussion of the palaeoenvironment and palaeoeconomy operative during the study period. Next, the archaeological research framework within which each region has been investigated is discussed. This includes an examination of the contexts of data generation – effectively the scale and patterning of investigation and the methods used – and their impact upon ensuing overviews. Thereafter, the circumstances of incorporation of the region within the Roman Empire are examined to provide an historical context for the more detailed discussion of the archaeological evidence that follows. The latter examines how the evidence for LIA-ER landscape change and the palaeoeconomy has been used to assess the nature of LIA society in each region and its diversity of response to Roman conquest. Millett’s (1990a, 50-1) discussion of the relationship between the patterning and intensity of militarisation, the inferred levels of conflict involved in incorporation, and what these may tell us about the sept-based structure of LIA tribes is informative here. However, as noted in Chapter 1, caveats regarding the identification and geographical extent of LIA tribes and tribal territories apply here as elsewhere in the thesis.
My interest here is not just in identifying and characterising regionality across England between 100BC and AD200, but also in clarifying the relationship between changing intellectual frameworks and archaeological narratives. The aim being to unpack the different regional ‘stories’ in order to establish to what degree they reflect real divergences in the evidence and historical situation, and how much is a consequence of past research emphases and the interests of particular archaeologists. Thus, region-by-region, landscape-by-landscape we need to ask: what was the social trajectory before the Roman conquest, how was Roman hegemony realised there, and what changes are observable as Roman authority was consolidated and achieved maturity?

As with eastern Yorkshire, all three regions have substantial datasets and, although Cumbria is much the poorest in terms of the absolute volume of data relating to rural settlement, each combines a challenging mix of remote sensing and excavation evidence. All provide opportunities for modelling the nature of the palaeoenvironment and the agricultural economies in operation throughout the study period (indeed Cunliffe and Miles (1984) was a pioneering study in this regard). The regions also offer useful theoretical and methodological contrasts: Hingley's (1984a) functionalist-processual treatment of the UTV evidence was, for its time, a novel study, which had a wider influence on research into rural settlement patterns. The Fenland formed a substantial part of Fox's (1923) pioneering study of the Cambridge region, which established a new intellectual scale of analysis. More recently, the LIA and Roman Fenland has been the subject of a post-colonial reanalysis, which offers alternative readings of the evidence (Fincharn 2002). In contrast, Cumbria represents an archetypal militarised region which, not surprisingly, has fostered a very traditional research agenda focused on the interactions of military and civilian (Higham and Jones 1975; Higham and Jones 1985; Bewley 1994; McCarthy 2002).

In terms of structure, then, the Upper Thames Valley (UTV) is dealt with first (4.2), followed by the Fenland (4.3) and, lastly, Cumbria (4.4) –
effectively moving ever further away from the south-eastern core. The concluding discussion in Section 4.5 then summarises the findings of the case studies before moving on to explore the intellectual frameworks underlying the three different interpretations of LIA regionality and ER trajectories embodied therein.

4.2 The Upper Thames Valley

The region
The UTV is a region similar to the Fenland, in that it is not defined primarily by ancient and modern political boundaries but, instead, has become reified as an archaeological region because of its distinctive environment and history of research. Like eastern Yorkshire, the UTV incorporates strong environmental contrasts between the limestone Cotswold Hills to the north-west, the limestone and sandstone of the Oxford Uplands to the north, the low-lying clays and gravel terraces of the River Thames in the centre, and the chalk of the Berkshire Downs and Chilterns to the south and east respectively (Fig. 3 'UTV' and Fig. 4). The region thus encompasses the "the entire drainage basin of the River Thames above the Goring Gap" (Robinson 1984, 4). The hills vary in scale from the 200m-plus heights of the Cotswolds, to the higher areas of the Berkshire Downs at around 150m AOD and the gentler, sub-100m AOD expanse of the Oxford Uplands (Robinson 1984, 1-4).

Regional approach to the LIA-ER transition

Approach to data gathering
In a recent discussion of Iron Age research agendas this region was identified as one of a small group, including East Yorkshire, which had an established regional research framework and "abundant data sets" (Haselgrove et al. 2001, 24-5). The same might equally be said of the Roman period in the region (Henig and Booth 2000, xi). The basis for the region's rich archaeological database is twofold: firstly, its calcareous uplands and extensive gravel terraces are highly receptive to airborne remote sensing such that the extent of LIA-ER enclosed
landscapes was laid bare. Secondly, when these latter areas began to be exploited by the aggregates industry, a series of massive open-area excavations produced exciting results, which “encouraged a wider perspective to be taken of settlement patterns and land use” (Hey 2007, 156). It was also during such projects that Martin Jones and Mark Robinson of the Oxford Archaeological Unit pioneered the systematic use of environmental sampling for the reconstruction of past economy, land use and diet. The development-driven focus on the lowland settlements and fields of agricultural producers on the river gravels has meant that our understanding of hillforts and oppida, which both exist in the region, is relatively poor but improving (Hey 2007, 156-7). Commercial fieldwork has added definition to the regional data set but, despite many new discoveries, the focus of LIA-ER settlement and agriculture still appears to have been firmly on the gravel terraces.

Interpretive frameworks

Our fuller understanding of this region dates back to Cunliffe and Miles’ (1984) synthesis of the archaeological evidence then available. Within this volume, Hingley and Miles’ two contrasting studies of settlement in the Upper Thames Valley are, for a variety of reasons, an interesting comparative case study for use in this thesis. Hingley’s (1984, 72-3) paper in the same volume used, what was for the time, a novel contextual approach in an attempt to understand the social background to the intensification of agricultural production evidenced in the region in the Iron Age. His theoretical stance regarding Iron Age communities in the UTV was later restated with respect to the reuse of Neolithic and Bronze Age ceremonial landscapes (Hingley 1999). Hingley and Miles’ publication constitutes a pioneering attempt to integrate theory and practice and present the archaeological evidence for settlement and landuse in its regional, landscape and palaeoenvironmental context. Henig and Booth’s (2000) recent synthesis of Roman Oxfordshire provides an updated view and some contrasting interpretations of the regional data set, pre- and post-conquest. More recently, Hey (2007) has also provided an updated summary of the Iron Age archaeology of the
Chapter 4
Regional trajectories in LIA-ER social landscapes

UTV.

The circumstances of conquest
The UTV encompasses parts of three tribal territories: to west the Dobunni, to the south the Atrebates and to the east and north the Catuvellauni (Salway 1993, 29). The former two tribes are thought to have fairly peacefully submitted to Rome whilst the latter, although initially hostile, is thought to have followed suit soon after the Claudian invasion (Millett 1990a, 46-8). The region thus seems to have enjoyed a fairly rapid and peaceful transference of power, which is perhaps also supported by the presence of just four military bases at Cirencester, Wanborough, Dorchester-on-Thames and Alchester, two being definite and two possible auxiliary forts (Millett 1990a, 63). The trajectories of rural settlements discussed below similarly attest to continuity in socio-political structures in the agricultural landscape, although there is a clear reorganisation in the 2nd century.

Palaeoenvironment and palaeoeconomy
The use of systematic environmental sampling during excavations in this region during the late 70s and 80s yielded then exceptional palaeoenvironmental (Robinson 1984) and palaeoeconomic (Grant 1984; Jones 1984) data sets. Such data suggested that clearance in the region was underway by the late Bronze Age and that by the LIA the Thames' gravels were virtually treeless (Robinson 1984, 4). Patches of woodland seem to have survived in the valleys of the Thames' tributaries whilst clayland areas may have retained dense woodlands (Robinson 1984, 5). On the nearby Berkshire Downs, so-called 'Celtic' fields were extensively in use from as early as the MBA (Robinson 1984, 5), while the upland landscape, like the Yorkshire Wolds, seems to have been divided up by linear boundaries by the early Iron Age (Allen 2000, 15). The molluscan evidence from the primary silts of one such linear boundary, Grim’s Ditch, evidenced an open, grassland landscape (Robinson 1984, 5). Environmental markers such as increased soil erosion on the chalk downland and more frequent inundation and
Chaprer 4 Regional trajectories in LIA-ER social landscapes

Alluviation of the Thames floodplain are both linked to an intensification of woodland clearance and an expansion of arable farming (Robinson 1984, 9). Robinson (1984, 9-10) saw these phenomena as a regional expression of the agricultural intensification widely evidenced across lowland Britain from the LBA onwards.

The Upper Thames region seems to evidence an expansion on to poorer soils during the Iron Age, which necessitated the use of crops better suited to the tougher conditions (Jones 1984, 121). Such overall trends belie the contrasts evident in palaeobotanical assemblages from different sites; the proportions of weeds, chaff and grain suggested that some communities on the first terrace gravels specialised in primary processing of grain while others on the second terrace were primarily consumers (Jones 1984, 122-3). Although an emphasis on particular crops such as bread wheat was initiated on some sites in the LIA, truly specialised production only developed in the historic period (Jones 1984, 124). Jones’ methodology and ensuing models have recently been challenged by Van der Veen and Jones (2007, 427), who suggested that patterns of consumption and production are only identifiable at the regional not site level. However, they acknowledged that the proportions of weeds, chaff and grain do differ on a site-by-site basis. Such differences, when contrasted with archaeofaunal, structural and artefactual evidence might, nevertheless, assist in the identification of economic networks, social hierarchies and, perhaps, even the flow of tributary goods.

Grant’s (1984) review of Iron Age animal husbandry in the Upper Thames Valley and Wessex highlighted some very interesting general patterns in the evidence. Sheep were the most commonly raised livestock and had a particular dominance on chalk downland sites, cattle were present on sites throughout the region but with a preference for lowland sites in the river valleys and pigs were evidenced at all sites but in relatively small numbers (Grant 1984, 116). A mixed, non-specialised economy is represented at the vast majority of sites, but the subtle
differences between sites located in different environments prompted Grant (1984, 117) to suggest that some small-scale specialisms may have existed in terms of stock rearing. It is thus possible that different areas were able to meet their own needs but also produced and received a tradable surplus through local supply networks (Grant 1984, 117). Publication of the results from excavations of the oppidum at Abingdon is still awaited but, when available, should offer opportunities to explore the settlement's socio-economic and political relationship with surrounding agricultural producers.

LIA patterning and ER developments
The archaeology of the Upper Thames Valley is discussed below with reference to the three regional overviews of settlement and landuse (Hingley and Miles 1984; Henig and Booth 2000; Hey 2007) but first Hingley's (1984) more theoretical discussion of the social contexts of settlement change is explored.

In his study, Hingley (1984) embraced a top-down functionalist-processual approach in order to avoid the remote ascriptions of meaning typical of bottom-up culture-historical accounts, and suggested that archaeologists "should adopt classifications that relate to the organisation of the past societies they study". This is, on the face of it, a statement compatible with my desire to approach the social landscapes of eastern Yorkshire using scales of analysis relevant to their operation in the past. However, Hingley posited a fixed relationship between enclosures and social groups, thus fossilising potentially fluid social meanings attached to physical boundaries and, in the process, promoted a static view of both landscape and society (Haselgrove 1984b, 29).

In Hingley's study, settlements were categorised as either open or enclosed, with banjo enclosures forming a subset of the latter. He examined the ways in which space and spatial relations were structured as a means of inferring social organisation; this required an understanding of how Iron Age people ordered, differentiated and gave
meaning to space (Hingley 1984, 75). Marx’s concept of the “mode of production” was deemed appropriate to the investigation of social groups practising intensive agriculture. Moreover, to achieve such production would by necessity require an increased emphasis on social reproduction linked to the land and territoriality – rather than as in earlier times, focused on involvement in regional exchange networks (Hingley 1984, 75). He was nevertheless careful to add that in southeast England in the late Iron Age this earlier emphasis, if anything, increased in importance.

Drawing on the ethnographic work of Bodelier and Bonte, a model was proposed which positioned kinship as central to the control of territory and agricultural production – thus kinship controlled the relations of production (Hingley 1984, 76). Importantly, on kinship Hingley commented that it “will not act to dominate production in independence from the forces of production and the environment” (Hingley 1984, 76). He then went on to suggest, in true evolutionary, processual style, that:

“...in order to understand the importance of kinship as the social relations of production in Iron Age society it is necessary to view kinship as a product of past/present social conventions of a society developed through adaptation to the material environment that constrains the group” (Hingley 1984, 76).

This statement is redolent of the ecosystems approach (Brumfiel 1992, 551) that I criticised in Chapter 2, which was popular in 1980s landscape archaeology (see below for further discussion). Hingley (1984, 76) identified what he termed “corporate social groupings” as a key analytical category around which spatial organisation and kinship might be related to the archaeological evidence. These groups are simply defined as social entities rendered discrete from others by mutually acknowledged spatial boundaries (Hingley 1984, 76). By this means, the spatial characteristics of different settlement types and patterns were ascribed a social dimension.
On superficial examination, the Iron Age settlement pattern of the UTV was characterised by two zones: one of quite dense but mostly open settlement on the lowland gravels and the other of more dispersed, enclosed settlement on the calcareous uplands. Hingley (1984, 80) advanced a model in which upland corporate groupings were isolated from one another and society more widely, both by the distance of their separation and their peripheral enclosures, whilst lowland groups were socially integrated into larger communities (Fig.5). I include this figure as a classic example of a processual, systemic analysis of settlement patterning, which masks a range of underlying assumptions. For example, it is somewhat perplexing how, after highlighting the problems of archaeological visibility and research bias in one paper in the collection (Hingley and Miles 1984), Hingley (1984) largely ignored the issues or chronology and resolution in his own reliance on cropmark data (see further comment under “Discussion” below). However, despite such biases, Hingley made a useful point by contrasting the patterning of Romano-British villas and small towns in the region with the distributions of agricultural settlements shown in Figure 5 (Fig.6). The villas and small towns, which were hypothesised as performing an exchange function, were mostly restricted to the upland areas, where they were argued to have emerged out of the more competitive social structure in those areas (Hingley 1984, 83).

Haselgrove (1984b, 29) was rightly concerned that these confounding factors had been overlooked and, in his desire to study whole societies, Hingley had inadequately considered the possibility for transhumance between uplands and lowlands – a point reiterated by Allen (2000, 11). Thus the upland and lowland ‘societies’ supposedly comprised of different ‘corporate groups’ may have been one and the same. In the intervening 20 years, fieldwork off the gravel terraces has demonstrated a wider distribution of open settlements hitherto invisible from the air and confirmed the complex processes by which enclosed settlements came into being (Allen 2000, 14).
Chapter 4 Regional trajectories in LIA-ER social landscapes

In contrast to Hingley’s quite focused theoretical discussion of the social contexts of landscape change, Hingley and Miles (1984, 52), by drawing on cropmark data and the results of a series of substantial open area excavations, were able to present a more integrated review of settlement and landuse across the region. They identified a significant research bias towards the Thames gravels, which had resulted from a combination of enhanced site visibility on the freer draining soils and the relative intensity of development there (Hingley and Miles 1984, 52). This latter factor, in particular, had diverted attention away from the highly visible enclosed settlements of the uplands and towards their gravel-sited, lowland counterparts (Hingley and Miles 1984, 54). To ameliorate the impact of such factors, an innovative multi-period, regional and landscape approach was advocated, utilising data from open-area excavations, aerial and surface survey, and intensive environmental sampling (Hingley and Miles 1984, 52-4).

This methodology brought to light the settlement diversity concealed within the cropmark landscapes of the region. The authors thus identified several types of settlements linked to specific landscape zones (Hingley and Miles 1984, 57). For example, at Farmoor, seasonally occupied MIA ‘shielings’ on the Thames’ floodplain were succeeded in the 2nd-century AD by stock enclosures alongside a droveway on the first river terrace (Lambrick and Robinson 1979, 1). In contrast to their early appearance in eastern Yorkshire, ditched trackways linking settlements are predominantly a Romano-British landscape development in Oxfordshire (Allen 2000, 9). Coleoptera and pollen data from Farmoor indicated an open, grassland landscape, which had been maintained through seasonal grazing (Lambrick and Robinson 1979, 136). Further floodplain and gravel-edge sites at Claydon Pike and Mingies Ditch similarly attested to the dominance of pastoral land in such locations (Robinson 1984, 5). On the first terrace gravels, enclosed farmsteads, occasionally with annexes, have been interpreted as the homes of pastoralists dispersed across a grassland landscape (Allen 2000, 10).
The higher gravel terraces reveal a diversity of settlement types. At Ashville, an unusually large aggregation of unenclosed roundhouses associated with myriad pits resembled a nucleated 'village' and, although 15 or more properties were simultaneously occupied, the settlement was undifferentiated and of no greater status than others in the area (Allen 2000, 11). Lambrick (1992) hypothesised that a halo of "linear pit settlements" (Allen 2000, 12) around the Neolithic henge, the Devil's Quoits, may reflect the past existence of a huge area of communal grazing centred on the earlier monument. It was suggested "that traditional grazing areas, probably held in common, were the controlling factor in the organisation of these later Iron Age settlements" (Allen 2000, 13). The importance of the traditional use of this landscape seems to have been such that the settlements followed a similar trajectory into the 2nd century AD (Allen 2000, 13).

The M-LIA transition saw a series of changes to agricultural practices, settlement and society which, although occurring at different rates in different places, marked a real change of trajectory for communities in the region. Indeed, one of the few constants from the M-LIA is the perennial paucity of funerary activity; a few disarticulated bones and occasional complete inhumations, usually placed in pits, being the norm throughout (Allen 2000, 19). On the other hand, open settlements gave way to enclosed farmsteads, post-built roundhouses were replaced by something much less archaeologically visible – possibly using ground beams or cob walls but often still circular or, less often, sub-rectangular in shape, cylindrical storage pits went out of use, wheelmade pottery replaced handmade, cattle and bread wheat were increasingly preferred to sheep and spelt wheat and, perhaps most significantly, enclosed oppida-like settlements up to c.30ha in area appeared in strategic locations by the Thames and its tributaries (Allen 2000, 21-5). Good examples of such major LIA settlements are to be found at Abingdon Vineyard (Hey 2007, 162-3) and Dyke Hills, Dorchester (Fig.7), although the latter remains poorly understood. Unlike examples further southeast, these settlements are not rich in Roman imports nor are they
associated with new funerary practices but, instead, they evidence an inter-regional trade in querns, pottery and briquetage (Allen 2000, 25-6) – the latter presumably as containers for salt. Significant numbers of Iron Age coins also appear at these sites but it is likely that they indicate elite-level exchange rather than the emergence of market economics.

The Roman conquest of the region appears to have had little immediate impact on the rural communities of the Upper Thames region and it may be that the momentum of change, initiated in the preceding decades, was capable of absorbing new demands without significant alteration. Villa-type buildings appear across the region certainly during the 2nd-century AD, but occasionally as early as the late 1st-century AD as at Barton Court Farm (Henig and Booth 2000, 84). This site and another at Appleford both developed from enclosed farmsteads originating in the late Iron Age. Henig and Booth (2000, 80) revisited the distribution of villas in the Upper Thames Valley and confirmed Hingley’s observation that they appeared to avoid the river gravels and cluster in the calcareous uplands (Fig. 6). These upland areas are conventionally associated with sheep and arable farming, whereas the gravel terraces have been associated with LIA arable and cattle husbandry. At several Romano-British villas in the region, round structures were used alongside rectangular buildings well into the Roman period (Henig and Booth 2000, 93-5).

LIA and ER rural settlement in the Thames Valley is typified by rectilinear enclosed farmsteads, perhaps often representing single households, while some examples such as that at Gravelly Guy, which was occupied until the 2nd-century, comprised a group of similar sized enclosures, but their function remains unknown (Henig and Booth 2000, 92). Another string of ER, predominantly domestic, enclosures at this site functioned as a barrier between arable fields and an area of grazing located on earlier prehistoric burial grounds (Henig and Booth 2000, 98). This connection between pasture and areas historically used for funerary activity is further explored in relation to eastern Yorkshire in Chapters 5,
Two general trends are observable in the settlement record: many enclosed farmsteads were established in the LIA and survived until the first half of the 2nd-century AD, at which time a significant number of new settlements appeared and may have replaced some of the earlier examples (Henig and Booth 2000, 106-7).

The extent of excavations and intensity of environmental sampling used on many UTV sites has allowed whole productive landscapes to be reconstructed as shown in Figure 8 around Yarnton. Here the use of drainage ditches allowed ER arable fields, identified through a buried ploughsoil with abraded, manuring-related potsherds, to extend from the first terrace gravels out into the floodplain; droveways ran between the fields connecting settlements and water meadow grazing land (Henig and Booth 2000, 98). Manuring is evidenced elsewhere in the Thames Valley and on the Berkshire Downs, providing some support for an intensification of crop production in the ER period (Henig and Booth 2000, 98-102). Although taphonomic factors, such as the relative survivability of Iron Age pottery, may have limited the visibility of earlier activity of this sort, the supporting environmental evidence suggests that the Downs were mostly grazing land in the LIA. Before moving off the topic of field systems, it is worth mentioning some intriguing cropmark evidence from around the Roman town of Alchester; two blocks of rectilinear fields appear to have been laid out relative to Roman roads south and north of the town, respectively dating from the late first and mid-second centuries AD (Henig and Booth 2000, 99-100). The military term “centuriation” is avoided but some connection with the civil administration is inferred (Henig and Booth 2000, 100-1). Alchester is also interesting because its Claudian fortress has provided evidence for the importation of grain (Fulford 2004, 314) during this crucial, supply-dependent phase of the Roman consolidation of southern Britain.

The collective evidence for the enclosure of settlements and fields, the
bounding of trackways with ditches, and the shifts in the types and proportions of livestock and cereals can be variously interpreted. It has been suggested that “(T)he expansion of arable in the Roman period is likely to have been at the expense of sheep pasture” (Henig and Booth (2000, 102). Surviving areas of calcareous upland grazing would, nonetheless, have remained better suited to sheep than cattle and it was perhaps in the water-rich lowlands and at upland peripheries that cattle would have been raised. At a more general level, the proliferation of enclosures and expansion of arable have respectively been seen as indicators of population growth and agricultural intensification. It is difficult to say whether these ‘new’ enclosed settlements were indeed colonising previously unsettled land or were simply redefining areas formerly occupied by low-visibility open settlements. Certainly, the dearth of evidence after the MIA for open settlements on the extensively investigated gravel terraces is perhaps compelling enough – ditches became a universally accepted means of satisfying socio-political, economic and/or ideological demands for spatial segregation.

Interpretive summary

Our present understanding of the LIA-ER archaeology of the UTV is based upon perhaps one of the largest regional data sets in Britain. However, as with all things archaeological, it is a biased data set that reflects the developer-funded excavation focus on the gravels and a reliance on AP cropmark evidence on the calcareous uplands. Nonetheless, there are some clear indications of the ways in which LIA communities in the region responded to their incorporation within the Roman world. The LIA settlement pattern is interesting for a location supposedly at the core-periphery interface: there is good evidence for a hierarchical, centralised social structure in the region, with small oppida surrounded by myriad enclosed farming settlements, which vary between larger and longer-term examples on the gravels and simpler enclosed farmsteads on the calcareous uplands. However, the UTV oppida are quite different to their much richer cousins to the east and south-east, which evidence elite-level display using Roman/Mediterranean goods; in
contrast, the UTV examples record an inter-regional trade in salt, ceramics and querns, which suggests perhaps an interest in exchanging locally scarce, and therefore valuable, materials for agricultural surplus. In contrast, the presence of LIA coinage at such sites probably reflects the inter-elite socially-embedded exchange rather than a monetary-based market economy. There is a general trend towards enclosure of settlements in the LIA but, intriguingly, many in existence at the conquest went out of use in the early 2nd century, to be replaced by similar settlements nearby. A mixed economy is suggested throughout with a move from a MIA emphasis on sheep towards cattle in the LIA. However, cattle bones continued to dominate riverine settlements into the Roman period, just as sheep remained the commonest species at upland sites.

An ER intensification of arable farming was evidenced on the gravel terraces and there was also an expansion out into the floodplain with the aid of drainage ditches and trackways. Villas began to appear in the region from the late 1st century and by the 2nd century were a widespread phenomenon although, as Hingley noted, their distribution is very much focused on the uplands. This he suggested was as a result of the more competitive social structures in those areas when compared with the larger, more integrated corporate groups on the gravels. Whether this relates to socio-political, economic or other factors remains unclear, however, the timing is important and indicates both an early integration within Roman supply networks and receptiveness to new ideas. This evidence of quite rapid cultural change probably reflects the pre-existence of LIA centralisation and an associated smooth transition to Roman exploitative mechanisms. The region’s agricultural settlements also give an impression of a relatively untroubled transition to Roman control of the area. Although there were ER changes, these can be viewed against a trajectory of change and innovation initiated in the LIA. Nonetheless, there is a fascinating coincidence between the abandonment and relocation of many LIA-ER settlements on the gravel terraces just when villas began to be built on the uplands. The correlations between
changes in these different areas find intriguing parallels in eastern Yorkshire, but at a later date in the North (see Chapter 5).

4.3 The Fenland

The region
The Fenland is a low-lying area of former wetlands bordering The Wash on the North Sea coast of England and encompassing parts of modern-day Lincolnshire, Cambridgeshire, Suffolk and Norfolk (see Fig. 3 'F' and Fig. 10). Today the area is prime agricultural land characterised by large regular fields surrounded by drainage ditches, across which canalised rivers and catchwater drains flow in raised levees. Four environmental zones exist within the region: the higher, drier ground of the fen-edge; the low-lying and increasingly deflated landscape of the peat fen, which lies between the fen-edge and the silt fen bordering The Wash; and, finally, there are the gravel 'islands' of the southern Fenland (Fig. 10).

Regional approach to the LIA-ER transition

Approach to data gathering
A more holistic approach to Fenland archaeology can be traced back to the publication of Fox's (1923) *The archaeology of the Cambridge region*. In this seminal volume, Fox (1923, xxi-xxv) defined a study region 44 miles square centred on Cambridge, in which he attempted to reconstruct the Neolithic to Anglo-Saxon landscape and its settlements and land use. During the 1930s the Fenland Research Committee built upon Fox's work to set a benchmark for inter-disciplinary research in the region. This later culminated in Phillips' (1970) *The Fenland in Roman times*, which attempted to place the Roman colonisation of the Fenland in its contemporary environmental context. The Fenland Survey of 1981-8 included the systematic fieldwalking of huge areas of the Fenland. This brought to light much new archaeological evidence, in particular, relating to Iron Age activity which, previously, had been missing from the record (Hall and Coles 1994, 92). It should be noted that the Fenland
Survey was able to draw on data from just three substantial modern excavations: Grandford (Potter and Potter 1980; 1982), Stonea Grange (Jackson and Potter 1996), and Orton Hall Farm (Mackreth 1996). The remainder of the regional archive consisted of either very early or very small-scale amateur investigations – hence the Fenland Survey's reliance on surface collection and remote sensing evidence. The Fenland Survey added considerably to our knowledge of the approximate date, character and patterning of settlement in the region, but only through excavation was it possible to differentiate between MIA, LIA and Roman sites and phases of occupation.

Interpretive frameworks

Fox's (1923) study emphasised the close relationship between the history of the southern Fenland environment and the chronological patterning of settlement and land use using an artefact-based culture-historical approach. Salway's chapter in Phillips (1970) set out his much-repeated notion that the Fenland was an imperial estate in Roman times, although the evidence for this remains inconclusive. The Fenland Survey (Hall and Coles 1994) redefined the nature of Roman exploitation of the Fenland, both in terms of its extent and intensity and, crucially, its relationship to LIA and earlier activity. Overall, the lack of large-scale development and reliance on the small-scale investigation of discrete settlements rather than landscapes has rather limited our understanding of social organisation in the Fenland. A recent study of Roman and 'native' interaction in the Fenlands (Fincham 2002) has synthesised and reinterpreted the results presented by a range of authors, but mainly Salway (1970) and Hall and Coles (1994), from a post-colonial perspective. Fincham's project sought to challenge what he perceived to be the Romano-centric, top-down, functionalist accounts presented in these and other overviews of the Fenland region.

The circumstances of conquest

The Fenland, like the UTV, is a region that transcends LIA-ER tribal boundaries: the western fen-edge appears to have formed a notional
boundary between the Corieltauvi to the north-west and the Iceni to the southeast, whilst the Catuvellauni occupied the area to the south of the River Nene (Fincham 2002, 71). As discussed above with regard to the UTV, the latter tribe is thought to have become pro-Roman very soon after the Claudian invasion. The leaders of the Iceni are generally considered to have been one of a group of eleven kings who submitted to Claudius when he arrived in Britain (Millett 1990a, 46). In contrast, the Corieltauvi appear to have been hostile to Rome and their territory has a relatively dense distribution of forts including the example at Longthorpe west of Peterborough. The fort's positioning, at the supposed junction of Catuvellaunian and Iceni territory, provides an ideal base of operations at the north-western edge of friendly territory, from which campaigns could be launched against the Corieltauvi (Millett 1990a, 50). The Boudiccan revolt of AD60-1 must also be mentioned here, although we have little definite evidence of a military reoccupation of the area or any clear signs of a negative impact on rural settlement in its aftermath. However, at Grandford on March Island finds of pre-Flavian samian and coins dating between AD65-75 may relate to two superimposed forts identified using aerial survey (Potter and Robinson 2000, 31-2).

Palaeoenvironment and palaeoeconomy

It is thought that the Fenland basin was formed by glacial action during the Devensian, which also created the gravel spreads of the fen-edge (Hall and Coles 1994, 13). Since the last glacial episode up to 30m of drift deposits have formed in the Fenland basin, comprising freshwater and marine alluvium in the form of silts and clays and extensive areas of peat which, as a result of drainage, have now become dramatically desiccated and deflated (Hall and Coles 1994, 13-14). Modern drainage has thus converted much former wetland into farmland, but during the study period the region was characterised by the following ecological sequence: open sea, mud flats, salt marsh, reed swamp/sedge fen, fen carr, transitional woodland and, finally, dry land (Hall and Coles 1994, 22). Within the wetlands there are several raised 'islands' such as Ely ("eel island") which, together with the fen-edge gravels, have been
important foci for human settlement since prehistoric times. Prior to the Fenland Survey, the lack of Iron Age sites was usually attributed to a major marine transgression in that period, which caused extensive inundations, but did leave substantial 'islands' of dry land, especially in the south (see Chapter 5.2 for corroboratory evidence in eastern Yorkshire).

As I have argued elsewhere (Atha 2005, 99), the mosaic of ecological niches and resources present in and around former wetlands meant that, whilst there were limitations to the extent and character of mixed farming possible, the Fenland as a region would have supported a diversified economy including, beyond grazing and some arable, activities such as salt extraction, fishing, reed-gathering and wildfowling. The latter is well-evidenced at the M-LIA Haddenham V site, where large numbers of pelican, swan and crane bones were recovered along with those of beaver (C Evans 1997, 224). Mixed farming is evidenced at sites along the fen-edge, especially around Durobrivae and there is good evidence for stock rearing focused on sheep in the Fenland proper. Salt making constituted a significant component of the regional economy throughout the Iron Age and Roman periods, and the exploitation of this commodity is discussed further below (Hall and Coles 1994; Lane and Morris 2001). It seems likely, from the evidence at Stonea Grange, that salted lamb formed a key economic product of the region in the Roman period and may also have formed a significant element of the LIA economy. Before the Fenland Survey, it was the apparent absence of Iron Age settlement, added to the presence of this valuable commodity that, together, encouraged Salway (1970) to develop his idea of a Fenland imperial estate claiming 'virgin land' (Fincham 2002, 8) for a centrally-controlled salt extraction industry. This notion has been further developed, for example, in Potter's (1981) important study of Roman activity on the central Fenland 'islands' of March and Stonea. The Fenland Survey's findings, particularly with respect to pre-Roman activity, have rather derailed Salway's neat functionalist model, but does Fincham's post-colonial critique offer a convincing alternative?
Chapter 4 Regional trajectories in LIA-ER social landscapes

LIA patterning and ER developments

In contrast to earlier studies, the Fenland Survey's integrated landscape approach was successful in demonstrating the presence of a significant LIA occupation of the fen-edge and 'islands' (see Fig. 9). Moreover, it also showed that the apparent absence of LIA sites had been partly the result of settlement on heavy, clay soils unresponsive to aerial reconnaissance and partly due to the undiagnostic character of many forms of late prehistoric ceramics recovered during excavations (Hall and Coles 1994, 92). Staying with ceramics for a moment, there is a striking contrast between LIA ceramic traditions in the Suffolk and Cambridgeshire Fenland and the Lincolnshire and Norfolk Fenland: the former areas record LIA wheelmade ceramics, as evidenced across most of eastern England at that time, whereas the latter areas continued with an insular, conservative tradition of handmade ceramics into the Roman period (Hall and Coles 1994, 92). To the northwest, non-Fenland Lincolnshire follows the LIA pattern in eastern England of wheelmade pottery use. There are thus interesting parallels to be drawn between these different parts of the Fenland and the inter-regional contrasts to either side of the Humber - of which more below.

The economic importance of Iron Age salt-extraction sites or salterns in the region is yet to be resolved as either a subsistence-level or industrial-scale activity. Salterns are sites where salt was extracted from sea water through boiling and evaporation and it is the coarse ceramic vessels and supports, the briquetage, as well as the less commonly recorded hearths and fuel residues, that are diagnostic of the process (Lane and Morris 2001, 8). Salterns are first recorded at Bronze Age sites at Northey and Fengate in Cambridgeshire, but it was not until the MIA in the Lincolnshire fens that it became a significant part of the fenland economy, production later intensifying and expanding south and eastwards in the Roman period (Lane and Morris 2001, 8-9).

With respect to settlement and landuse, there are distinctive patterns in different parts of the Fenland. In the Lincolnshire fens all known MIA
sites appear to continue without break into the Roman period (Hall and Coles 1994, 92), although given the ceramic issues noted above this does seem a rather bold assertion. In contrast to the apparently sparsely populated northern fens, the western fen-edge in Lincolnshire is rich in MIA settlements and salterns and there are further clusters on raised ridges in the fen proper. Around Billingborough "settlements were strung out along a complex of enclosures connected by a single meandering ditch running parallel to the fen", but these could only be "shown to post-date an early Iron Age phase" (Hall and Coles 1994, 94). Based on parallels elsewhere, one might reasonably suspect a LIA-ER date for these features. The southern Fenland was previously thought to be devoid of Iron Age settlement but, when surveyed in detail, revealed a pattern and intensity close to that of the Roman period – the southern 'islands' being particularly densely occupied. To the southwest, the Cambridgeshire fens were settled throughout the Iron Age (Hall and Coles 1994, 94).

In addition to the salterns and farmsteads noted above, there are also a small number of LIA-ER defended 'ringworks' sites dotted around the region which, on excavation, have revealed some clues as to the levels of social differentiation operative in the region. Interestingly, such ringworks, for example at Wardy Hill, Coveney (see Fig. 11), were often not sited on peripheral 'hills' beyond the fen-edge but instead were located within the fens, making best use of the protection afforded by the local topography and wetlands (Hall and Coles 1994, 103). The Wardy Hill enclosure was thus surrounded by wetlands on all sides except the west, which was itself elaborately protected by a complex of ditched defences (Hall and Coles 1994, 98). At 50m diameter, the site amounted to little more than a farmstead with four roundhouses in two paired phases, but excavation yielded 28,000 finds including MIA-ER handmade pottery (80%) intermixed with LIA wheelmade types, whilst "(H)igh status pottery of samian and La Tène-style vessels came from the buildings" (Hall and Coles 1994, 98). The positioning of these potentially higher status households in amongst their lower status
neighbours is interesting and may be indicative of socio-political institutions built upon a close-knit, kin-based web of relations. However, the excavator questioned whether at present we can usefully locate such "dispersed and pocketed communities" within a single overall settlement system (C Evans 1997, 225).

Two sample-excavated larger LIA settlements, both in Cambridgeshire and both c.10ha in area, provide an as yet sketchy picture of what might, with fuller investigation, prove to be important centres. Both have produced Icenian coins and the first, at Langwood, is seemingly unenclosed but positioned with one side bordering the fen-edge, whilst the other, Stonea Camp on the island of the same name, is defined by a substantial, multi-vallate D-shaped enclosure. The latter produced materials from ditch sections suggesting a date range of c.130BC-AD50 (Hall and Coles 1994, 97, 103), but the apparent lack of occupation evidence within such larger enclosed sites has been used to suggest a periodic/ritual function more akin to earlier causewayed enclosures or henges (Hall and Coles 1994, 104). The presence of Icenian coins on Stonea Island, added to the enclosure's Suffolk and Essex morphological parallels, have been used to suggest an Icenian expansion into the fens. The LIA elite focus on 'islands' in the southern Fenland is probably not accidental and one could imagine, during the earlier inundations, that such 'islands' would increasingly have become both desirable and contested locations in the wetland landscape.

In overview, the Fenland Survey seems to confirm conventional wisdom (for example as expressed by Salway in 1970) that Roman authority brought about the reorganisation and improvement of LIA landscapes and the regional economy: canals/drains and roads were created, enclosed nucleated settlements and salterns proliferated, and, for the first time, the marine silts were settled (Hall and Coles 1994, 105). The overall pattern of Roman settlement confirms some continuity from the M-LIA pattern but with an increasing density of settlement and an expansion onto the silt fen (Figs.9 and 10). Much of the Fenland Survey's
overview is based on remote sensing evidence, including surface collection, or tiny sample excavations and is therefore open to question and reinterpretation (see Chapter 6's discussion of surface collection as remote sensing). Figure 12 shows the main features of the Roman Fenland and the key sites dealt with in connection with that period.

Looking at the issue of communications first, one's eye is immediately drawn to the massive L-shaped routeway formed by the intersection of the Car Dyke and Fen Causeway near Peterborough. The former has been interpreted as a discontinuous canal (Frere 1974, 275-6; Hall and Coles 1994, 109) or catchwater drain (Simmons 1979; Salway 1993, 384) following the fen-edge between Peterborough and the legionary fortress at Lincoln 65km to the north. The latter, in contrast, took the form of a raised gravel roadway running eastward from Peterborough to the eastern edge of the Fenland ‘island’ chain, after which it became a canal and later, after silting-up, a road, which crossed the eastern peat fen to Denver in Norfolk – some 40km in total (Hall and Coles 1994, 105-7). At both extremity the Fen Causeway intersected with major Roman roads and thus, although the imperial Fenland probably retained the essentials of the LIA economy, the region became far better integrated within the wider Roman communications network of eastern England. Changing perspective, one could imagine that as well as creating an E-W routeway across the wetlands, the Fen Causeway might also have formed a barrier to more localised waterborne transport in a N-S direction. Dating such features is always difficult but the Norfolk Fen Causeway has produced ceramics of first and second century date (Hall and Coles 1994, 108). Several other gravel roads are known within the Fenland as are numerous canals, many now appearing as raised, silt-filled palaeochannels or ‘roddons’ in the deflated peatlands. The importance of waterborne transport in the Roman Fenland is well attested in palaeochannel finds of what were probably the cargoes of barge-like vessels including: querns, ceramics, oil lamps and building stone (Hall and Coles 1994, 109).

The overall picture of Roman-period rural settlement was built up during
the Fenland Survey using aerial photography as a prospection tool backed up by surface examination of artefact scatters. In a continuation of the LIA pattern, rural sites in the northern Fenland were judged, on ceramic grounds, to be poorer than those to the south. Sites on responsive, mostly silty and gravel, soils appeared as cropmarks or soilmarks but in some locations there were remarkable survivals of Roman settlements in earthwork form, for example, at Horbling. Few of these rural settlements have been excavated but the patterning of particularly dense surface artefact scatters was used to differentiate between enclosures used for occupation and those with agricultural functions (Hall and Coles 1994, 111-2). The Romano-British fen-edge settlement at Orton Hall Farm near Peterborough (Mackreth 1996) developed from a LIA farmstead but, by the later 2nd century had become a Romano-British farm of some substance. At the north-west tip of March Island, the village of Grandford evidenced late 1st-century timber-framed buildings with ceramic tiled roofs (Potter 1981, 88). The settlement, like others in the southern and central Fenland, appears to have survived until the mid-3rd century, when severe flooding resulting in the deposition of 0.6m of gravel and silt. In contrast to the permanent abandonment of many smaller settlements, after a hiatus buildings at Grandford were rebuilt with ragstone imported from the East Midlands, which was used for the footings of large timber-framed buildings that continued in use until the mid-4th century (Potter 1981, 88).

There are no villas in the Fenland proper, but substantial villas such as Toft Hills and Heckington, as well as several smaller examples, are located around the fen-edge in the four Fenland counties. Several of the region's main towns, such as Durobrivae near Peterborough with its associated pottery industry, Bourne and Horncastle, are located at the fen-edge, the latter having Iron Age origins (Hall and Coles 1994, 109). At Stonea Grange a unique 16m² apsidal building was discovered and, based on its huge foundations, was interpreted as having two or even three storeys (Fig.13). The building was constructed in the first half of the 2nd century from stone brought some 30km from the Peterborough
area, and a hall and corridor were added shortly thereafter. Marble-effect painted wall plaster, glazed windows and a hypocaust further confirm its status. The building sits within a regular, gravel-surfaced street grid, forming *insulae* within which timber buildings, wells and pit clusters were located and there is a nearby temple. The positioning of this important building within sight of the LIA Stonea Camp, coupled to the lack of villa, i.e. private, estates in the region, was taken to support Stukeley's notion that the Fenland was an imperial estate perhaps administered from Stonea Grange (Hall and Coles 1994, 121). In contrast, Mackreth (1996) and Fincham (2002) both argued for a Roman economic focus centred on the town of Durobrivae (see below).

Putting salt-extraction to one side, there is limited evidence supporting the presence of a mixed farming economy, but stock rearing seems to have gone hand-in-hand with salt production, with sheep being the dominant species represented on central Fenland sites. Age-at-death profiles from bone assemblages, added to finds of loom weights, suggest that sheep rearing for wool was important at sites such as Grandford (Potter 1981, 130; Stallibrass 1996, 604). Stonea Grange is an exception to this pattern in that it appears to have functioned as a sheep butchery site with joints of meat being shipped elsewhere (Stallibrass 1996, 604), perhaps preserved using salt extracted locally.

The Roman-period expansion onto the silt fen took two forms: non-salten settlements "that lie on the high flat silts nearer the Wash, and salterns which lie mainly on the edge of the Roman fen, closely associated with roddons" (Hall and Coles 1994, 115). The former sites show a chronological progression eastward throughout the Roman period but remain elusive as to their function, although stock rearing seems likely. The above division is, in reality, over-simplistic in that several roddon-sited settlements have no *briquetage* and based upon their patterns of droveways and enclosures have been interpreted as stock-rearing farms (Hall and Coles 1994, 117). There are also extensive areas of co-axial fields, such as the 85ha block at Christchurch, which is
aligned north-south, east-west in the angle of the Fen Causeway and Old Croft River (Hall and Coles 1994, 119). The size and regularity of the enclosures has been related to standard Roman measures used for establishing limitatio, a kind of land division used in imperial estates. A pastoral function was again inferred based on the absence of surface artefact scatters, however, the presence within this field system of many 'fen-circles', interpreted as corn stack stands (Hall and Coles 1994, 119-20), rather contradicts that interpretation.

The integrated approach of the Fenland Survey was able to demonstrate that the many Roman salterns in Lincolnshire were also present in the two other siltland counties of Cambridgeshire and Norfolk – they had simply been less visible due to post-Roman alluviation. Many of the salterns made use of natural islands or fen-edge roddons as a means of combining flood-free living with ready access to adjacent, low-energy brackish creeks. The exploitation of such topographic locations created settlements, such as the example at Upwell, with cropmark signatures reminiscent of eastern Yorkshire ladder settlements. The scale of some Roman salterns was impressive and could reasonably be termed 'industrial', for example, the large production site at Dairy House Farm, Littleport covered 3.2ha and that at Flaggrass on March has up to 2m-deep deposits of briquetage (Hall and Coles 1994, 116). Both salterns and linear peat cuttings or 'turbaries' are associated with the Fen Causeway, suggesting that the latter are more likely to relate to Roman salt-extraction rather than medieval activity.

Against this regional background, Fincham sought to carry out a post-colonial reanalysis of the evidence. He began by creating a tripartite division of the Fenland into the fen edge, silt fens and central fens (including peat fen and islands), across which nine discrete 'communities' were defined along processual lines not dissimilar to the methodology employed by Hingley (1984) in the UTV. The different developmental trajectories of communities in these zones were then explored across five time periods in terms of the social contexts
underlying the diversity of response to Roman rule. Settlement hierarchies and site status were assessed and scored in terms of evidence for portable wealth and building materials. Fincham (2002, 20) recognised the difficulty of assessing status or wealth from a native, bottom-up, social perspective when overtly Roman material signatures were the only assessment criteria used. Somewhat bizarrely, though, he elected to not use that most ubiquitous of material markers of integration or exclusion from Roman supply networks – ceramics.

Fincham’s periodisation is somewhat at odds with any conventional breakdown of the LIA and Roman periods and is, in effect, a strange mixture of historically, environmentally and culture-historically determined time periods. For example, we have a LIA (AD146), which has an end-date reflecting the time of conquest of the region, but what significance AD1 has to either the expansion of Roman imperialism or the M-LIA transition is unclear. Similarly, the discussion of his second period “After the Icenian Revolt: AD61-100” begins by saying that “important changes in the organisation of the area appear to have occurred the mid-first century”, but “there is no direct evidence linking the two events” (Fincham 202, 72). Why, then, imply such a link by labelling the period thus?

His Communities 1-5 provide a useful reassessment of LIA salterns on the Lincolnshire silt fen which, it was suggested, may have produced salt and salted meat for trade with centres such as Old Sleaford to the west. These communities continued, under Roman domination, and expanded in number during the Roman period. The supposed Icenian ritual centre at Stonea Camp lay at the heart of Community 6 (the Central Fens) and flourished until the Boudiccan revolt, when the area is argued to have come under direct military control as evidenced by the “closure” of the Camp and the creation of the western arm of the Fen Causeway linking the early fort at Longthorpe with a new example at Grandford (Fincham 2002, 73). The settlement and tower at Stonea Grange was constructed as a centre of authority to oversee the production of salt and salted meat in
Chapter 4 Regional trajectories in LIA-ER social landscapes

the area. Fincham’s thesis eventually develops into an argument surrounding the development of markets centred on the Roman town of Durobrivae and its pottery industries, its wealthy villa owners and their economic interests in the Fenland salt and salted meat industries (75-6). It is therefore on the basis of private estate ownership centred on Durobrivae, that, ultimately, the idea of a Fenland imperial estate is challenged. Thus some natives continued along similar trajectories on the silt fen and islands, whilst communities at the fen-edge bought into the Roman economic system and prospered. His post-colonial reading of his findings appears as an appendage to his study.

Interpretive summary
A balanced examination of the LIA-ER transition in the Fenland is rather hindered by the inherent environmental and archaeological biases in the data available and the patchy approach to data gathering. However, we have evidence for LIA settlements along the western fen-edge and on the southern islands, and salterns along the peat and silt fen interface and around the island peripheries. The LIA Fenland may have been a quite fragmented socio-political region in that the western fen-edge salt-making communities may have supplied Corieltavian centres such as Old Sleaford, whereas the central fen islands may have constituted the core territory of a fen-based tribal sept, perhaps of the Iceni. Some evidence for such a group is provided by materially-rich defended ringworks sites and the enigmatic ritual centre at Stonea Camp. Whether, given the relative isolation of communities, particularly on the islands, we can consider the ringworks sites and Stonea Camp as evidence for centralisation is debateable. The problem is that we have an inadequate grasp of the levels of socio-economic and political cohesion present in the LIA which, without the communications network of the Roman period, may perhaps seem less integrated than it really was. For example, waterborne transport may have been pivotal to the exploitation of the LIA Fenland but, as yet, we have little evidence for it (cf. the implied importance of waterways to the economy of the south-eastern Vale of York in Chapter 5).
Four phenomena seem to have differentiated Roman rural settlement and economic activity from that of the LIA: there was a proliferation of settlement enclosure and nucleation associated with use of trackways – intensifying settlement in areas occupied in the LIA; there was a dramatic expansion onto the silt lands, an industrialisation of salt extraction – perhaps associated with large-scale salted meat production – and large-scale peat cutting; ceramics production was developed, especially around Durobrivae; and there was an accompanying expansion of the road and, in particular, canal/drainage networks. One can see how the idea of a Roman imperial estate came about; this is a region physically, economically and socio-politically transformed during the Roman period, but questions remain as to the degree of local (tribal) versus imperial control over this process. There is clearly significant economic continuity in terms of LIA and ER salt production, whilst the Roman fort at Grandford, March and tower and settlement at Stonea Grange are perhaps indicative of targeted Roman impositions upon the LIA elite focus of the southern islands. The creation of the Fen Causeway, which linked the central islands to Durobrivae and the wider Roman province, may thus have transcended earlier socio-political boundaries.

4.4 Cumbria and the Solway Plain

The region

Geographically speaking, the region considered here comprises the uplands of the central Lakeland massif and northwest Pennines including the western end of the Stainmore Pass, the valleys of the Eden and Upper Lune, and the lowlands of the Cumbrian west coast strip and the extensive Anglo-Scottish plain surrounding the mudflats and estuaries of the Solway Firth (Figs. 3 ‘C’ and 14).

Although the Cumbria-Solway region, like eastern Yorkshire, is one constituted of distinct topographic zones, when the region’s north-western oceanic position, 600-900m fells and high rainfall levels are
factored in, the environmental contrast between uplands and lowlands is greatly accentuated. This was ably demonstrated in Higham's (1989, 156) comparison of MAFF data for the length of growing and grazing seasons, excess winter rainfall and potential transpiration figures for various northern regions. For example, the Cumbria-Pennine uplands have six times and the Solway Plain three times the rainfall of the East Riding of Yorkshire; consequently the growing season is comparatively short and the grazing season even more markedly so. Thus, the environment, whilst not all-determining, has significantly shaped the cultural trajectory of the region (Higham 1987a, 35-6). It is perhaps useful to note that, despite the effects of drainage and deep ploughing, the modern landscape of the Solway Plain is still 84% grassland (Bewley 1994, 79).

Regional approach to the LIA-ER transition

Approach to data gathering

In 1966 the leading researcher of the Iron Age and Roman periods in northern England, George Jobey, commented that:

"The military zone, although primarily a highland area, is not uniformly so. Some spacious valleys and varying expanses of coastal plain lend themselves to intensive modern usage, thereby presenting a bias in favour of the uplands in the survival pattern of early settlements. In addition, certain inequalities in the amount of field work carried out in the various localities have yet to be remedied" (Jobey 1966, 3 as cited in Jones and Walker 1983, 1).

While Jobey's focus was on the north-east, it is clear from the subsequent trajectory and findings of archaeological research in the north-west, that his observations were both well respected and accurate. His statement also hints at the two main issues attending studies of the Iron Age-Roman transition in the Cumbria-Solway area: the remains of Roman military activity have absorbed a disproportionate amount of the research effort so far directed at the region, and the dramatic environment of high fells and flatlands has hugely influenced the history of settlement and, more importantly, landuse which, in turn, has led to
the differential survival and visibility of archaeological remains depending on their type and location.

As this chapter’s case studies have more widely demonstrated, before the application of an integrated landscape approach, the regional patterning of prehistoric and Roman sites had more to do with geology, topographic location, building materials and subsequent landuse than it did past human settlement. Thus in the Cumbria-Solway region, the most densely settled, agriculturally productive and therefore intensively farmed lowland zones of the modern landscape were precisely those apparently lacking in pre-medieval settlement. Such agricultural settlements were probably constructed in timber not stone and had been removed as surface remains by later landuse; however, in responsive areas, the potential was there for the aerial detection of sub-surface remains.

Like eastern Yorkshire, our knowledge of the archaeological landscapes of the northwest has been greatly enhanced through the application of aerial photography (AP) which, during the drought years of 1975-6, revealed a wealth of lowland settlement showing as cropmarks in the Solway basin (Jones and Walker 1983, 186). Whilst the AP evidence has added greatly to our understanding of lowland civilian settlement it has also significantly refined our understanding of non-masonry, defensive and communications features associated with the western extension of Hadrian’s Wall (Higham and Jones 1975, 20-23). The Solway Plain received further attention through Bewley’s (1994) critical synthesis of the AP and environmental evidence.

Interpretive frameworks

One could reasonably argue that in British archaeology the study of the Roman period has historically been the research area most resistant to the tides of theoretical change. Worse still, the study of the Roman army and the frontier zone surrounding Hadrian’s Wall has, not surprisingly, come to epitomise the classical, militaristic and Romano-centric viewpoint so disparaged in recent TRAC volumes.
Thus, until quite recently, the dramatic Roman remains of Hadrian’s Wall and the network of roads, forts and their associated civilian settlements or *vici* have been studied almost to the exclusion of all other aspects of Iron Age-Roman research in the Northwest (Higham and Jones 1985, 3) – that was 22 years ago. As far as civilian, agricultural settlements were concerned, researchers were drawn to the many stone-built hut circles, enclosures, earthen dykes and cairn fields of the northwestern Pennines and southern Lakeland’s limestone uplands (e.g. see plates viii-x in Higham and Jones 1975). However, dating such remains was a particular problem given the lack of excavation and the apparent continuity of what was effectively a ‘Bronze Age’ cultural tradition well into the Roman period (Higham and Jones 1985, 7-8). Higham and Jones (1985, 3) were thus moved to comment that: “there has not been excavated a single site that has provided unequivocal evidence of occupation in the pre-Roman iron age” but, as Bewley (1994, 77) countered, “neither is there a watertight case for the majority of agricultural settlements in the Solway Plain being Romano-British”. In a recent review of Iron Age research agendas, Cumbria was revealingly ascribed to the ‘Black hole’ category of regions “where site types are still ill-defined or unknown, and which have still seen little modern research beyond the site specific” (Haselgrove *et al.* 2001, 24). It is thus almost by default that the Iron Age-Roman transition in the Northwest been relegated to a question of identifying military and civilian within the Roman period (Higham 1982, 105).

During the last three decades, the emergence of landscape archaeology, added to a growing desire to consider the Wall’s wider socio-political and economic contexts, has also led to a considerable widening of the spatial and temporal scope of enquiry. The heightened ‘landscape-consciousness’ of recent research has begun to address the problem of differential site visibility (Higham and Jones 1975; Jones and Walker 1983; Higham and Jones 1985; Bewley 1994) and, in so doing, has also provided new evidence that has the potential to at least temper, if not
deconstruct, the militarism of earlier accounts. Nevertheless, as James (2001b, 82) was forced to acknowledge, the region remains locked into an intellectual focus on the military, which relegates the army’s interactions with rural producers to the realm of comparative speculation based on the evidence from other regions (Shotter 1997, 84-9 – see also below). Given what we already know of the diversity of LIA-ER regionality in Britain, this is clearly a problem.

The circumstances of conquest

Despite the difficulties of identifying the LIA in the region, one cannot realistically discuss the impact of Rome without first establishing what we know of the pre-conquest situation. The Cumbria-Solway region as shown in Figure 14 is thought to represent the territory of the tribal group known as the Carvetii (Higham and Jones 1985, 9). Carvetian territory was presumed to have included the area to the east and south of the Solway Firth as well as the Cumbrian and northwest Pennine uplands. If this were the case, some tribal territory may have been ‘lost’ when Hadrian’s Wall was built. The traditional historical accounts tell us that by the early AD50s the Brigantes, of whom the Carvetii were thought to be clients or a sept, were a friendly tribe or client kingdom that formed a ‘buffer state’ beyond the northern frontier of the Roman province which, at that time, stretched from the Humber to the Mersey (Higham 1987b, 1). The oppidum at Stanwick, at the eastern end of the Stainmore Pass, is thought to have been the tribal centre of the Brigantes and the seat of queen Cartimandua (Haselgrove 1984c, 21). The existence of such a centre, a ‘royal family’ and the evidence for Claudio-Neronian fineware imports at Stanwick together indicate the presence of a wealthy and powerful elite; however, such markers of social differentiation are decidedly elusive in the North-west. Following an internal rift between pro-Roman Cartimandua and her consort Venutius in c.AD69, it was his hostility to Rome that led to Petillius Cerialis initiating the conquest of the North in the early AD70s (Higham 1987b, 1). Fuller accounts of the political and military background to these events already exist (e.g. Hartley 1980; Higham 1987b; Turnbull and Fitts 1988) and need not be
Chaper 4 Regional trajectories in LIA-ER social landscapes

repeated here. Having said that, it is important to note that the supposed geographical extent of early Flavian conquests are reflected in military sites spanning perhaps the full extent of Brigantia – from eastern Yorkshire to Dumfriesshire (Hartley 1980, 4). At the heart of the Solway basin lays Carlisle, the site of an Agricolan fort and the supposed 3rd-century AD civitas capital of the Carvetii (Higham and Jones 1985, 55-57; Shotter 1997, 67).

We are thus presented with a region whose LIA tribe, we think, was part of a larger confederation, which was aggressively conquered and thereafter subject a permanent garrisoning of the region and direct military rule.

Palaeoenvironment and palaeoeconomy

Before modern drainage, peat bogs or mosses dominated the Solway Plain and it was only on raised sandy ridges, or eskers, that settlement became established in this area (Higham and Jones 1985, 70). The region’s bogs and their acidic, peaty soils provide excellent conditions for pollen survival and it is primarily from this resource that our, albeit limited, understanding of the environment of the LIA-ER transition is derived.

The pollen evidence suggests that by the LIA significant woodland clearance had occurred in the river valleys of the upper Lune and Eden and higher parts of the Solway Plain as well as in southern parts of the central massif (Pennington 1970, 77). During the climatic optimum of the LIA and Roman periods it was in such areas that arable farming was possible (Higham 1987a, 41). Although the process of clearance was already well in train, it seems probable that the majority of lower-lying parts of Cumbria-Solway were “still heavily forested” at the time of the Roman conquest (Higham 1987a, 42) but:

“(D)uring the next two centuries, the process of deforestation was extended to most areas, followed by the stabilisation of the
proportion cleared, grazed and cultivated within the Roman period, but pastoralism remained the mainstay of the local economy throughout" (Higham 1987a, 43).

This likely emphasis on pastoralism is borne out in ubiquitous presence of cattle bones in civilian and, more particularly, military sites in the North (Higham 1982, 110; 1989, 166). Further, when considering the patterning of settlement and field systems across topographic zones, we must recognise the potential importance of seasonal transhumance, particularly in the more challenging landscapes of the North. As discussed below, there are some slight indications of higher status settlements in the region whose residents, we presume, relied upon a regular supply of agricultural surplus. What form that surplus and the economy behind it might have taken has been a source of protracted debate; although most writers accept the notion of an essentially mixed economy, recent emphases have switched back and forth between arable/cereals (Fowler 1983, 119; Higham and Jones 1985, 103) and pastoralism/beef/dairy products (Bewley 1994, 77-80).

A multi-period review of the zooarchaeological and palaeobotanical remains from sites in northern England offers some more specific insights into the Cumbria-Solway data sets (Huntley and Stallibrass 1995). The well-attested dominance of cattle bones in assemblages from Roman military and associated civilian settlements such as Carlisle was further confirmed (Huntley and Stallibrass 1995, 139). With regard to plant exploitation, it was suggested that based on experimental work the Roman army could have been locally provisioned with cereals, although properly sampled contemporary production sites were, as yet, lacking (Huntley and Stallibrass 1995, 82). They also recognised the difficulty of dating pre-Roman sites and depressingly observed that:

"almost nothing is known regarding either the plants or the animals exploited during the Iron Age to the west of the Pennines, which severely hampers any studies of the impact of the Roman
occupation upon the region". (Huntley and Stallibrass 1995, 201).

On that cheerful note I will attempt to explore the evidence for LIA landscape structure, exploitation and social organisation and the impact of Roman conquest and occupation upon them.

LIA patterning and ER developments

Based on a growing body of landscape research, it is now clear that the cropmark and earthwork landscapes of the Cumbria-Solway region are constituted of dispersed, enclosed settlements which, in some upland locations such as Yanwath Woodhouse, Crosby Garrett and Eller Beck (Fig. 15), are articulated within quite extensive field systems (Higham and Jones 1985, 81-92). The integration of large-scale earthen dykes with stone-walled rectilinear field systems, trackways and isolated settlements, as exemplified at Waitby Intake and Crosby Garrett Fell (Higham and Jones 1985, is reminiscent of many parts of the Yorkshire Wolds although, here, the patterns are defined by the cropmarks of ditch-and-bank features not stone walls. In the Wolds such landscapes can span the LBA to LR period and, although a multi-phase sequence of development is evident in the Cumbrian examples (Higham and Jones 1985, 88), the multi-period nature of the landscape is rather de-emphasised.

In the lowlands of the Solway Plain there appear to be differences in the density and composition of settlement types north of the Wall when compared with those south of the Solway Firth: the settlement density to the north is roughly one third that to the south, the latter regularly have at least a few associated fields whereas the former seldom have any, and the northern sites more frequently have multi-vallate enclosures (Higham and Jones 1985, 74-80). Without better dating evidence, the historical context for these patterns remains a matter for conjecture but, despite this, the Wall nevertheless continues to be foregrounded as the main causative factor behind the north-south contrast (Jones 1999, 92). Moreover, the date and distribution of such farmsteads have been
somewhat uncritically linked to the demands of the Roman military (Bewley 1994, 77). Higham's (1982, 111) conviction that the latter settlements were Romano-British which, it must be said, was based on a small excavated sample perhaps encouraged him to attribute their striking morphological diversity to local landuse strategies and topographical constraints. Bewley (1994, 77), in contrast, emphasised the limitations of morphological analysis and suggested instead that such diversity probably related to different site functions and, more particularly, dates of occupation. Too few of these sites have been investigated to adequately test these ideas and, as a result, such arguments have been confined to the presentation of largely untestable but firmly contradictory hypotheses.

In common with other regions, the archaeological texts discussing the LIA in Cumbria present a hierarchical, martial, society whose warrior elite maintained their position through gift-exchange, inter-group raiding and warfare (Higham 1982, 106). More fundamentally, though, such ruling castes could only guarantee to reproduce their structures of authority under such a system if those responsible for their provisioning, the farming underclass, continued to produce a sustainable agricultural surplus (Higham 1982, 106). The model then suggests that this exploitative process was then adopted, rearticulated and supposedly intensified in the Roman period through the integration of elites within the imperial administration of the region (Higham 1982, 106).

It is perhaps stretching the evidence somewhat when the few passing references to British Iron Age society in classical texts are applied equally and uncritically to south-east England, a region exhibiting quite strong material evidence for elite residences, burials and associated consumption practices, and Cumbria where virtually no such evidence exists. Moreover, if the classical texts are only vaguely useful, is the often-cited evidence from early historic Ireland (e.g. Jackson 1964 as cited in Higham 1982) any more reliable, particularly given the temporal, spatial and potential socio-economic/political distances involved? I am
frankly sceptical, and therefore, beyond such ahistorical generalisations about 'Celtic societies', what can we say about social organisation in the Northwest between roughly 100BC to AD75 based on the material evidence alone?

Not much, or at least not much with any confidence. This is due to a combination of the history of archaeological research, a lack of reliable dating evidence and the apparent structural conservatism of rural settlements throughout the transitional period in the region. For a period traditionally dated using ceramics, backed up by brooch and coin evidence, an aceramic region with no Iron Age coinage and few diagnostic metalwork finds rather hinders the differentiation of this 175-year interval from the preceding centuries. The same uncertainties are not perceived to exist during the Roman period where morphologically 'Iron Age' farmsteads have been dated to the 2nd-century AD by the presence of small quantities of Roman-style artefacts more usually associated with military sites. That said, an exclusive reliance on Roman ceramics to identify and date Roman period features in what was possibly an even more socially differentiated society in the North after the conquest is surely a mistake. As one leading researcher cautioned:

"It would be very dangerous to assume without good cause [for example supporting 14C dates] that native sites elsewhere were not occupied at some stage during the Roman period just because no recognisable artefacts reached the site" (Higham 1989, 166)."

There are several small so-called hillforts recorded in Cumbria of which the largest stone built example on Carrock Fell, although seen by Collingwood as a centre of Brigantian resistance is, like the rest, undated and may pre-date the Roman conquest (Higham and Jones 1985, 4). Although the absolute dating evidence is inadequate, there are potential lowland sites in the AP settlement data, which, through morphological analogy with sites of known LIA date from elsewhere, have been argued by the latter researchers to tell us something of pre-
Chapter 4 Regional trajectories in LIA-ER social landscapes

Roman social organisation. A 3ha enclosed settlement at Clifton Dykes, strategically located on the best agricultural land and 1km south of a key crossing of the river Eamont, has been likened to lowland oppida further south (Higham 1978, 2; Jones and Walker 1983, 185-6). Excavations at Dobcross Hall, Dalston, a bivallate enclosed settlement also of 3ha area (Fig.16), have revealed occupation in the central enclosure during the 2nd-century AD but, given the scarp-top position and defensive outer ditch, an Iron Age origin was inferred (Higham and Jones 1985, 6). This site is particularly noteworthy for its radiating pattern of ditches which, it has been inferred, relate to the settlement's use by pastoralists (Higham and Jones 1985, 6). If, through the use of 14C dating, these supposedly higher status sites prove to be LIA in origin, and examples of the more ubiquitous, smaller farmstead sites are found to be of similar date, then we may have some evidence for a stratified, tributary society.

As things stand, the LIA of Cumbria is a period defined by supposition and conjecture regarding the likely pre-conquest component embedded within the rural settlement pattern of the Roman period. Bewley (1994, 74-81) highlighted some of the assumptions underlying Higham's comments regarding the supposed Roman origins of the lowland landscape of the Cumbria-Solway region. He convincingly argued that the inadequacies of the excavation record, added to the morphological diversity of cropmark sites, brought into question the chronologies and functions of such settlements and opened up the possibility of far greater continuity than had hitherto been acknowledged (Bewley 1994, 74-81).

The Iron Age-Roman transition in the Northwest is thus a period where the chronological boundaries between the Iron Age and Roman period in the countryside are decidedly blurred. Contrary to the popular emphasis on Roman period rural development, Bewley (1994, 78) commented of Higham's 'Romano-British farmsteads' that "(T)heir settlement histories may well have origins in the Bronze Age and may continue beyond the Roman occupation". One could indeed argue that, during the period c.100BC-AD200, the lack of locally produced handmade ceramics to the
west of the Pennines and perennial presence of such artefacts to the east might be different material reflections of the same processes of cultural continuity operating throughout the transition in the North. The implications of this notion for Iron Age to Roman research in the North of England are far-reaching, and the issues of differential visibility and dating are further explored below and, more particularly, in ensuing chapters.

Turning to the Roman period, what is immediately striking, particularly for someone more conversant with the archaeology of eastern Yorkshire, is just how dominant Roman military monuments are within the landscape of northwest England (Fig. 14). All the evidence supports the idea that the Northwest was to all intents and purposes a militarised zone throughout the Roman period. Convincing arguments have been made that the garrisons represented by the military infrastructure would potentially have placed a heavy burden on the region’s agricultural economy but that provisioning of grain, in particular, may have occurred from outside, probably by sea (Higham 1982, 107-8; Breeze 1984). It has also been suggested that even if this were the case, "(T)he onus placed on the inland garrison to obtain foodstuffs locally is obvious" (Higham 1982, 108). The Vindolanda tablets record many perishable foodstuffs, but whether these were items traded with local agricultural communities through vici (Higham 1982, 111), by direct links with the military, or were supplied from further afield through different mechanisms is open to question.

At the coarse level of analysis to which the regional data set perhaps most easily lends itself, the degree of integration of military/urban and civilian/rural socio-economic spheres seems to have been very limited in the Roman period (Jones and Walker 1983, 192). Thus although several forts in the region developed substantial vici, that at Carlisle probably being laid out in the late 2nd-century, the overriding impression is one of urban, civilian development inextricably linked to the supply and support of the military (Salway 1980, 9; Higham 1989, 155). One notable
exception is Old Carlisle, where a system of curving strip fields is attached to the edge of the *vicus* and connected to further small settlements via ditched trackways (Higham and Jones 1985, 74). There is, otherwise, very little physical evidence to suggest close or intensive socio-economic ties between agricultural producers and urban consumers. The region has no roadside settlements and the nearest villas are at Holme House in County Durham and at Snape and Kirk Sink in North Yorkshire (Ottaway 2003, 126). Given the recent aerial surveys and the widespread evidence for other types of settlement, this pattern seems to be a cultural not archaeological phenomenon (Higham 1989, 155). The overall lack of integration prompted Higham to comment:

"There is little evidence of a local aristocracy taking up residence in the *vici* and less of a Romanised community outside. Did the indigenous populations not perceive a need for Roman culture; was access to it feasible, and, if so, did they not have available the resources by which to invest in that cultural package?" (Higham 1989, 155).

If local supply networks, perhaps focusing on the supply of beef rather than grain, did create the main axes of interaction between the military and local farming communities, then we might expect to find material evidence of exchange in civilian settlements (Higham 1982, 110). So does Roman material culture occur on farmstead sites and, if so, how do the assemblages compare with those of the *vici*?

Although mostly undated, the myriad enclosed farmsteads revealed by Higham and Jones' aerial surveys have, where tested on the ground, all produced a scattering of Roman artefacts often dating the 2nd-century AD (Higham 1980, 46; 1982, 111). Similarly, when upland field systems such as those at Eller Beck were tested by excavation, Roman period usage was indicated (Higham and Jones 1985, 91). Whilst roundhouses clearly continued in use into the later Roman period, some sites indicate a move toward rectilinear forms from the 3rd-century onwards (Higham
The fact that all farmsteads so far investigated record Roman-period usage is significant and, moreover, finds agreement in eastern Yorkshire (see Chapter 5); however, there are few if any farmsteads in Cumbria-Solway evidencing LR occupation. Given the intensity of LR ceramics supply to forts and vici along Hadrian's Wall - much of it from eastern Yorkshire - the almost complete absence of such material in the rural hinterland suggest a remarkable lack of economic integration or, at the very least, contact between rural producers and urban/military consumers at that time. The presence of Roman ceramics, in itself, only confirms occupation in the Roman period and certainly does not, as argued above, preclude either the existence of earlier, aceramic phases of occupation on such 'Roman' sites or the possibility that other farming communities lacking access to Roman material culture existed throughout the transition. Thus Jones and Walker's (1983, 191) post-conquest settlement hierarchy of fort, vicus and farmstead may, by basing interpretation on morphological data and Roman goods, be ignoring the possibility of further social differentiation within their "farmstead" category into those with access to Roman material culture and those without.

Traditional attempts to explain this lack of cultural integration have fallen back on an ecosystems perspective (e.g. Higham 1982, 106-111; Bewley 1994) within which, for example, the limited carrying capacity of the region (Higham 1987a, 36) has been highlighted as an important factor in the failure of local elites to become more fully 'Romanised' (Higham 1989, 158). Certainly, the dispersed settlement pattern and dearth of evidence for social differentiation in the countryside, pre- and post-conquest, has quite reasonably been taken to indicate:

"that in many localities the social elite...could not command the resources adequate for the adoption of the villa or townhouse, even when the assimilation of the area into the Roman world may have placed these cultural trappings at their disposal, and created a social and economic environment in which to adopt them was
However, whether this patterning is taken to reflect environmental factors or more culturally and ideologically determined proscriptions is really a question of one’s theoretical perspective. From my personal viewpoint, people always had cultural choices however harsh the environment and, if social hierarchies did exist pre-conquest, one might logically expect to find some evidence for their existence within the new social order. That such evidence is as yet lacking raises some intriguing possibilities: 1) that largely due to a subsistence-based economy there existed a very flat pre-conquest social structure which persisted after the conquest, or 2) that a regional elite hostile to Rome was somehow removed from the scene or otherwise rendered politically impotent so that the military or their administrators effectively dealt directly with producers, or 3) that local elites existed throughout the transitional period but expressed their status in ways that, whilst meaningful in contemporary social contexts, are as yet unrecognisable archaeologically.

According to Tacitus (Histories 3.45), the Flavian conquest of the region was driven by the need to suppress an openly hostile tribe. It is therefore interesting in that context to note the epigraphic mention of a *centurio regionarius* at Carlisle in the late 1st-century AD – such officials “operated in areas where direct Roman supervision was deemed necessary and their duties included the maintenance of peace and enforcement of tribute arrangements” (Turnbull and Fitts 1988, 380). Furthermore, although subdued and then peaceful for several decades, the Brigantes appear to have revolted again during the AD150s, seemingly following the movement of garrisons north from Hadrian’s frontier to the Antonine Wall (Hartley 1980, 5-6). Did the presence of 2nd century Roman ceramics on rural settlements relate to a developing pattern of trade which, as a result of this second period of revolt, led to a shutting down of nascent supply networks and a consequent dearth of later Roman material at such sites?

It could therefore be the case that elites, whether hostile or not, simply
never had the opportunity to establish themselves in a region that was never free of the direct control of military administrators. Thus the function of tribal elites as economic middlemen, envisaged in other demilitarised areas of the province, may not have applied in the frontier zone. In a military controlled region, the density of forts/vici relative to rural settlements might have also meant that the former provided the main points of interaction; the role of small towns in the mediation of flows of goods between rural producers and urban/military consumers in areas further south was therefore made redundant. Similarly, the evidence from eastern Yorkshire suggests that villas developed out of a pre-existing LIA landscape structure, which survived and prospered in such de-militarised regions where, we presume, such community leaders liaised between lower status producers and local urban consumers. Thus, until there are modern excavations of rural settlements and their field systems we will, almost inevitably, be forced to discuss LIA-ER agricultural producers in Cumbria-Solway in terms of the evidence for similar groups in other regions and military/urban consumer sites within the region.

Interpretive summary
Cumbria is clearly a difficult region within which to develop anything other than a referential understanding of the impact of Roman conquest and its aftermath on rural producers. In other words, we must use the military/urban sphere of consumption to make inferences about the nature of rural production. Similarly, the region’s largely aceramic Iron Age has almost certainly led to an under-representation of LIA phases of activity in settlements and field systems which, based on a few scraps of 2nd century pottery, have been identified as ER developments. Once again we use the Roman evidence as a reference to the possibility of LIA activity. There are a few larger defended sites that, again, have produced ER ceramics, but we remain ignorant of their origins. We assume that, as with the wider evidence for farmsteads and fields systems, some of these larger sites might have LIA phases of occupation, which await discovery. In contrast, we have an excellent understanding of the geographical
progress, timing, and character of conquest, consolidation, advance, retreat and re-consolidation of the frontier centred upon Hadrian's Wall. In order to explain the processes of economic and socio-political interaction associated with these military developments we need a LIA material baseline from which to work – in Cumbria, at present, it is just not available. In summary, we can speculate that a decentralised LIA society in Cumbria-Solway was characterised by a dispersed settlement pattern of largely subsistence farmsteads which, nonetheless, were able to support a regional elite through the payment of tribute perhaps in the form of livestock. The combination of a regional subsistence economy and the tribe's repeated hostility to Rome meant that, after the conquest, there may have been a 'flattening out' of the social structure whereby the military dealt directly with producers. As a result, social hierarchies failed to re-emerge under Roman military rule and rural communities were never willing or able to engage more than superficially with Roman materials and cultural practices.

4.5 Conclusions

This chapter has used three contrasting regions within Roman Britain to explore the ways in which past and present environmental factors, archaeological research agendas and conceptual frameworks, historical processes of imperial expansion, and the archaeological evidence have all contributed to our understanding of LIA regionality and its effect upon ER trajectories. Despite the variability of the data sets and approaches employed in each of the regions, some useful and interesting patterns have emerged concerning the nature and interpretation of the archaeological evidence. In other words, regionality really existed in LIA Britain and had a significant influence on ER trajectories.

Firstly, the LIA-ER landscape structure and patterns of exploitation in the three regions were clearly influenced, but not absolutely determined, by their very different physical environments. Certainly, our understanding of archaeological patterning between calcareous or gravel
areas and clays and alluvium has been affected by their influence on site visibility. This factor has led to gross biases in our understanding of past settlement in large areas of the Fenland and Cumbria whereas, in the UTV, the issue has been mainly one of appreciating the differential visibility of open and enclosed settlements within such environmental zones. Large expanses of the UTV readily produce cropmarks and, added to that, there has been a huge volume of large-scale, open-area developer-funded fieldwork. By comparison, the Fenland and Cumbria have very limited areas responsive to aerial survey, although the limestone uplands of the latter have well preserved settlements and field systems. Crucially, neither the Fenland nor Cumbria have experienced significant developer-funded archaeology and certainly nothing approaching the scale of investigation typical of sites in the UTV or, for that matter, eastern Yorkshire. Added to that, the Romano-centric bias in Cumbria (military) and the Fenland (Roman-period military and civilian) has produced seriously skewed regional data sets. It was the very focus on major Roman-period developments that encouraged the notion of an unoccupied Iron Age Fenland within which an imperial estate could be created; this self-reinforcing argument has only been seriously challenged since the discovery of new Iron Age sites during the Fenland Survey. Despite Bewley’s efforts, Cumbria still requires a significant level of research input directed at its rural hinterlands if we are to generate a meaningful LIA baseline against which to test ER developments.

Contextually-speaking, the UTV is a classic case of a region with a centralised, tributary-based LIA society built upon an expanding, semi-specialised agricultural base, which supported local elites based at oppida. A relatively smooth transition to Roman control ensured the continuation of existing socio-political relations, an upward economic trajectory, a full integration within Roman supply networks and the early development of villas and small towns in the region.

In contrast, the LIA Fenland may have been a socio-politically
fragmented region, lying as it did at the edge of three tribal territories. The Fenland economy seems to have centred upon salt-making and pastoralism, with mixed farming at the upland periphery. The defended settlements located on the Fenland islands suggest the existence of social hierarchies, perhaps even centralisation, although how these communities interacted with others in the region is unclear. Certainly, the expansion of Roman authority in the region paid particular attention to the islands which, when viewed against the Boudiccan revolt, perhaps points to a punitive response as evidenced in the placement of Grandford fort and Stonea Grange. Whether the Fenland ever was an imperial estate is at present impossible to establish; however, the region's economy seems to have been dramatically expanded under Roman authority, but following the LIA template. The absence of villas in the Fenland may relate to the presence of Durobrivae at the western fen-edge, which provided the necessary urban focus for their development.

Cumbria currently lacks an archaeologically robust LIA context against which to judge its ER trajectory, but I have speculated that a largely subsistence-based pastoral economy supported a hierarchical, but decentralised, LIA regional polity. The region, we think, suffered a hostile process of conquest, which was reprised in a further period of tribal suppression following a revolt in the mid-2nd century. The permanent militarisation of the region seems to have stimulated economic activity across regions (much further) to the south but, if crops and livestock were supplied from within Cumbria, we have little material evidence for local economic contacts and a consequent creation of wealth. Indeed, beyond occasional finds of 2nd century Roman pottery, there is a total lack of evidence for cultural integration on rural settlements in a region where villas and small towns never developed.

In sum, the above contextual summaries confirm that all three regions are, by degrees, distinct from the south-east in terms of their LIA archaeological patterning and ER trajectories. Superficially, the UTV was the most similar, the Fenland somewhat less so, whilst Cumbria was
very different; however, what this is mostly telling us is that the south-east was genuinely unique in the LIA-ER period and, as a result, has received an unprecedented level of archaeological attention. The latter has created an ever-widening intellectual divide which, in many ways, has outstripped the already considerable material differences between the south-east and other regions. Therefore Hill (1999, 186) was absolutely correct in implying that we will only get a really meaningful grasp of LIA regionality and ER trajectories by focusing on the comparison of multiple regions outside the conventional core.

At first sight, the three regions embody very different approaches to theorising the processes by which LIA regionality came to be expressed in ER trajectories: Cumbria has been studied from a culture-historical and functionalist perspective focusing on the interactions of soldier and civilian; the UTV represents a prime example of a processual approach to regional analysis; whereas the Fenland’s traditional functionalist interpretive framework has been subjected to postprocessual reanalysis from a post-colonial perspective.

In light of the region’s archaeological shortcomings discussed above, was Cumbria-Solway a poor choice of case study for this thesis? I think not, because it offers an insight into one extreme (and problematic) example of the difficulties created by a research agenda which, historically, has been focused upon one particular class of material evidence (Roman military remains) associated with one social group (the Roman army), and has been intellectually moribund in its consideration of alternative pre-Roman and ‘native’ civilian contexts. In effect the often mentioned research category ‘Military and civilian’ as applied to Cumbria has, in reality, been ‘Military and Romano-British civilian (living outside forts)’. When LIA socio-political organisation has been considered, it has tended to rely on flimsy morphological analogies drawn between defended sites in Cumbria and oppida in the south-east. This practice reflects a desire to seek legitimation for archaeological claims using a well-accepted model rather than any provable or likely
similarity in past social organisation in what were probably very
different regional societies. Furthermore, the other dominant research
strand demonstrated above takes the form of an overwhelmingly regional,
top-down and functionalist interpretive framework; which, when wedded
to a predominantly remote sensing-based non-military data set, has led to
decades of generalised and speculative debate (to which I have added my
own), but little progress. Ultimately, although my particular interests
were in some ways poorly served by this region, there is sufficient
material of contextual and conceptual interest to merit its inclusion.

In general, chronological and functional interpretations of the LIA-ER
Fenland rely far too heavily on remote sensing and surface collection
data. As a result, the Fenland Survey’s discussion of non-salten rural
settlements and field systems is sketchy and contradictory. Absences of
surface artefact scatters have been used to define ‘pastoral’ enclosure
patterns but such patterns also include features that Hall and Coles (1994,
120) were happy to interpret as the remains of crop stack stands.
Moreover, there are potentially serious environmental and Romano-
centric biases underlying several of the Fenland Survey’s findings. For
example, based on scant excavation evidence, the extensive enclosed
landscapes of the West Water’s gravel terraces were interpreted as mixed
farming settlements because “cereal production would certainly have
been possible” there (Hall and Coles 1994, 121). In contrast, the
distribution of salterns on the silt fen was taken to indicate that similar
enclosures there were linked to pastoralism, as the “hostile, brackish
environment” rendered “large scale cereals production was unlikely”.
The second bias is reflected in the implicit notion that different areas of
the Fenland were being managed, not to suit local needs, but as part of a
larger imperial estate. However, after devoting 16 pages to a discussion
of the data available, Hall and Coles (1994, 121) conclude that “(T)here
is inadequate excavated and environmental evidence for the
understanding of the economy of the Roman Fenland”.

Fincham’s five-fold division of the silt fen appears rather arbitrary and,
although his analyses detect interesting patterning, we have no way of
testing whether his findings had any real meaning or relevance for the
communities involved. Despite his focus on structures of domination and
resistance, there is a real lack of consideration of power relations and
how they were expressed materially. Fincham's treatment of the ceramics
evidence – ignored on sites with other "more obvious" measures of status,
and used as the main evidence for status when all other categories of
evidence were absent – is, despite Cooper's (1996) reservations
concerning ceramics use, seriously flawed in that it prevents any
possibility of detecting meaningful contextual associations between
different classes of materials. Moreover, by removing ceramics in this
way he inadvertently limited his options for the elucidation of lower
status attitudes towards Roman material culture. Thus Fincham's
inability to elucidate native social perspectives and "responses" from the
available data comes down to their fundamental inadequacies and
incompatibility with his theoretical approach. This is why he was
compelled to construct his analyses around periodic, geographic and
social categories, which had little provable relevance to his stated aim –
the elucidation of the lived experience of the Roman Fenland.

Hingley's (1984) classic New Archaeology-style landscape study
embodies every assumption one could hope to see in terms of issues of
topographically-based differential visibility, the dating and contemporaneity
of distributions of cropmark sites, the remote attribution of socio-
economic zonation onto the landscape and then the identification of such
archaeologically ascribed zones with socio-political groups. It is a
classic but, as identified in Chapter 2, it is also 'old-school' processual
landscape archaeology of the etic, top-down variety and not, by our
present understanding of word, 'contextual'. Hingley's settlement
dichotomy does not exist in reality and, as is usual in archaeology,
further research has shown it to be an over-generalisation. His atemporal
and geographically-specific categories of open and enclosed sites have
since been challenged; open sites are both invisible to aerial survey on
the uplands and often develop into enclosed forms in the lowlands. He
also failed to adequately consider the role of such producer settlements within the wider region's settlement hierarchies - both pre- and post-conquest. We must not get carried away here, though; Hingley's model was described 23 years ago when archaeology was still in the process of losing its innocence. Perhaps most importantly, Hingley identified a difference in upland lowland character and patterning of agricultural settlements which, although now subject to significant clarification in terms of date and the sharpness of such divisions, was reflected in the distribution of high status LR rural sites - villas. Hingley thus outlined an approach which, although now outmoded, established a baseline that is still being actively examined and challenged in this project and elsewhere (e.g. Hey 2007, 160).

The most striking finding of my conceptual analysis of the three case studies above is that they actually have a great deal in common. Perhaps the most obvious criticism of all the above accounts, Fincharn included, is their over-reliance on culture-historical interpretive frameworks. The prime example was Fincham's use of Icenian coins and inter-regional analogies of site morphology to suggest that Stonea Camp was the result of an Icenian expansion into the fens - this is, of course, possible but one only has to examine coin distribution maps to find agreement with Creighton's (2000) idea that coinage was probably primarily an item of elite level trade and exchange. Therefore Icenian coins could simply indicate inter-regional contact and trade rather than the presence of members of the Iceni at Stonea. Equally, D-shaped enclosures like Stonea Camp are a feature of many regions of LIA England and probably indicate parallel developments rather than an Icenian-led diffusion of a design template. A comparison of Hingley and Fincham's studies reveals some conspicuous similarities which, despite their very different theoretical standpoints, involve a thoroughly processual methodology for the identification of 'communities' using a 'dots-on-maps' approach and ascribing territories around them with little regard to the ahistorical nature of the underlying data sets. As Chapter 2 noted, this is a fundamental failing of many regionally-focused landscape studies which,
by my reckoning, are not actually landscape studies at all. A meaningful landscape approach must acknowledge the different scales and resolutions of the data involved, utilise the excavation evidence to add time-depth, and consciously attempt to integrate the research agenda, material remains and interpretive frameworks from the start. In Chapters 5 to 9 that is precisely my approach to eastern Yorkshire: working first through a regional overview (Chapter 5), then setting out a more focused methodology (Chapter 6) for the intra-regional studies (Chapters 7 and 8) and, finally, drawing all the strands together in my conclusions (Chapter 9).
CHAPTER 5

A Parisian sideshow?
Putting eastern Yorkshire into context

5.1 Introduction

This chapter aims to build on the foundations established in the previous three chapters in order to create a more securely situated understanding of the archaeology of eastern Yorkshire. The Wolds and their surrounding lowlands provide the bulk of the evidence discussed below; however, where possible an effort is made to draw parallels with the archaeologically less well-known calcareous uplands across the Vale of Pickering – the Tabular and Howardian Hills. As the chapter title intimates, my focus falls on the LIA-ER period between the end of the 1st century BC and the beginning of the 3rd century AD – a time during which archaeologists have seen eastern Yorkshire as the heartland of a group known as the Parisi (Ramm 1978; Dent 1983a; Millett 1989). However, as discussed in Chapter 1, the use of such tribe names and their association with particular regions is not without its detractors, but I use such labels advisedly and in the full knowledge of their limitations. My aim, after all, is not to identify the territory of the Parisi any more than it is to equate such historically-noted groups with earlier Iron Age ‘cultures’ defined by the patterning of archaeological phenomena.

In order to provide a suitable historical context for this core period, an overview of LBA-MIA (900-100BC) landscape changes is presented. Indeed, the patterning of linear boundaries, trackways and funerary monuments dating to the former period appears to embody socio-political and economic structures whose influence carried through into later centuries. In contrast to the clear relevance of these earlier influences on LIA-ER trajectories, the LR period is well and truly beyond the scope of this study. However, there is a good argument for including at least a
summary of LR developments at the end of the section concerned with the reproduction of elite authority (5.5). Moreover, the Wharram case study (see Chapter 7) included LR components that could not be ignored and were, anyway, useful as a means of highlighting the fact that the early 3rd century marked a genuine change of trajectory in the organisation and operation of the Romano-British countryside; but that, frankly, is the subject of a different project.

In line with Chapter 4’s comparative regional case studies, Section 5.2 opens with an overview of the region’s geographical setting and palaeoenvironment. The following three sections then draw on the regional research background as introduced in Chapter 1 to explore the development of social landscapes between the LBA and ER periods. A tripartite structure is adopted for this purpose: first the overall development of landscape structure through time is examined (5.3); next, drawing more heavily on the excavated evidence, changes to the patterning and layout of settlements, field systems, linear boundaries and trackways are discussed in terms of their implications for the socio-political and economic exploitation of the landscape (5.4); then, the evidence for changing landscape structure in relation to patterns of exploitation is considered in terms of social hierarchies and the reproduction of elite authority (5.5). Whilst passages dealing with the LBA-MIA and, in particular, the LR periods are more generalised and make extensive use of secondary sources, the core LIA-ER period is discussed in overview and then examined in detail using exemplars drawn from the primary published and unpublished material. The final section (5.6) then summarises the evidence from eastern Yorkshire in light of the patterns and themes identified in the Cumbria, Upper Thames Valley and Fenland case studies.

5.2 Regional research background
The eastern Yorkshire palaeoenvironment
Eastern Yorkshire, as defined in Chapter 1 (Fig.1), is a region
characterised by its geological and topographic contrasts, which shaped the patterning of soils and drainage, creating distinct environmental-ecological zones. The Wolds form both the topographic and archaeological core of the study region and, together with the Howardian and Tabular Hills, presented in the past a dramatic environmental contrast with the surrounding lowlands of Holderness, the Hull Valley, the Vale of York and Vale of Pickering. The influence of such environmental patterning on early settlement and its archaeological visibility in the region was the subject of a preparatory piece of research undertaken as part of a Masters project (Atha 2003). This showed that before drainage improvement schemes, chemical fertilisers and mechanisation had radically altered the region’s agricultural potential, the patterning of settlement and landuse had responded more directly to the opportunities and limitations of a more challenging, but also much more diverse, environment.

Looking at the ancient landscape in rather more detail, then, the Yorkshire Wolds’ rolling plateaux and sinuous dry valleys (locally called slacks) were shaped by peri-glacial processes during the last Ice Age (Catt 1990, 23). Many of the valleys have deep deposits of chalk gravel, which may have resulted from freeze-thaw action and glacial outwash, although later headward erosion by streams has also been implicated in this process (Lewin 1969, 52ff.). In addition, upland soil loss due to tree-clearance and subsequent arable-induced colluviation or hillwash is well documented in the region (Ellis 1990, 34-5). Environmental records indicate that, by the Iron Age, the Wolds were already extensively and permanently deforested; indeed this process is actually well-evidenced in the pollen record for the early Bronze Age (EBA) (Flenley 1990, 51). Once cleared, the light and free draining soils of the Wolds and nearby calcareous uplands were well-suited to growing cereals or raising sheep and, where water supplies allowed, cattle. A mixed agricultural economy was the norm across the entire region, but there is good evidence for intra-regional variation within that general pattern. Water has always been at a premium in the region but, during
the study period, the Gypsey Race, which is now the only regularly flowing surface stream in the Wolds, was perhaps just one of several examples in the region (Hayfield et al. 1995, 393). In addition, the Wolds boast a scattering of natural or semi-natural ponds that probably formed in clay-filled peri-glacial hollows, some of which survive in modern villages, and these would have been an obvious focus for early settlement (Hayfield et al. 1995, 404; Fenton-Thomas 2005, 18-20).

The LBA-EIA was a period of climatic deterioration characterised by colder mean temperatures and more rainfall which, in the Wolds, may have ameliorated seasonal drought risk and encouraged a more intensive exploitation of the region (Higham 1987b, 2). During MIA-LR period the wetlands of the Hull Valley, central Vale of Pickering, and parts of the Vale of York had extensive carrlands, reed fens and stretches of open water. In the two latter areas these reflected the former presence of extensive post-glacial lakes (Catt 1990, 19-20). Although sea-levels at this time were as they are now, the lower Hull Valley and southern Vale of York have evidence for an extensive marine transgression c.500BC-AD200+, which moved the MIA-LR northern Humber foreshore from 0.5km (at Melton) to more than 1km (Hull Valley) further inland than today (D Evans 2000), and created a tidal inlet stretching some 12km north of what is now Walling Fen (Millett and McGrail 1987, 99). This expansion of the estuarine environment also seems to have created opportunities for the development of salterns of suspected Iron Age date in Hull (D Evans 2000, 196) and Roman date at Faxfleet ‘A’ (Sitch 1989, 14), whilst further fragmentary evidence is known from Easington and North Cave (Dave Evans pers. comm. October 2007). In drier locations around and within such wetlands, communities made good use of the available resources: grazing cattle around the wetland edge and managing woodlands to support iron working and pottery production on sand and gravel ‘islands’ amongst the dendritic creek systems of the southern Vale of York (Millett and McGrail 1987, 98; Millett 1999, 226); clearing woodlands and using improved technologies to bring the heavier boulder clays of Holderness under the plough (Flenley 1990, 51); and
making intensive use of the sandy soils along the southern and northern sides of the Vale of Pickering for settlement, agriculture and cemeteries (Powlesland 2003a and b). The latter pattern is also reflected along the eastern dip-slope and, to a lesser extent, on the outcropping Jurassic rocks below the western Wolds' scarp.

Archaeological visibility
A key aim of my initial research was to establish to what extent the known LIA-RB settlement pattern might be the result of differential visibility caused by geological, agricultural and archaeological factors (Atha 2003, 64-70). Not surprisingly, the patterning of cropmark-inhibiting clay-rich soils in Holderness, the Hull Valley and the Vales of Pickering and York appeared to be masking settlements, which were proven to exist by fieldwalking, geophysics and excavation. In the Vales, raised islands of sand and gravel provided hints of what might eventually prove to be more intensively exploited zones than was formerly imagined (Halkon and Millett 1999; Powlesland 2003). Even in favourable areas such as the arable dominated Wolds, sites could be seen 'disappearing' under areas of permanent pasture or colluvium. The limited cropmark record from the Tabular Hills relates, at least in part, to the extensive areas of permanent grazing there. In sum, if the patterning of settlement was biased by archaeological and natural factors, it appeared to be predictably so; such that, for example, we should anticipate developer-funded discoveries on the lowland clays and new cropmark sites from arable expansion on the calcareous uplands.

A few issues of chronology and resolution
On the question of establishing a chronology of enclosure, we run into the problem of differentiating between LIA and ER phases of activity based on a suite of handmade CTW pottery forms, which was in use between c.100BC-AD200. In the main WGC case study in Chapter 7 the label 'LIA-ER' is used for assemblages dominated by this material; this complies with the approach used in the Wharram IX volume, which presented the main Iron Age and Roman findings from the site (Rahtz
and Watts 2004). However, the excavators of most of the sites discussed below dated such material as pre- or post-conquest respectively on the absence of presence of more closely dateable Roman pottery. Therefore, where the label ‘LIA’ or LIA dates (100BC-AD71) are used below it is assumed that the features in question produced no Roman ceramics or the odd intrusive sherd; the general caveat that such features could be ER, but were created by people who, for whatever reason, did not use Roman ceramics, can then be applied. Furthermore, the whole issue of ceramics-based dating in eastern Yorkshire is explored in some detail in the following chapter.

The inherent problem of achieving an adequate and representative sample of ladder settlements, which in many cases extend over many hundreds of metres, was highlighted during preparatory research (Atha 2003, 59). It was with this issue in mind that the extensively excavated WGC, GWS and MSL ladders were selected as case studies for more detailed study, whilst WH provided a contrasting remote sensing-focused study. The discussion below intentionally avoids placing too much emphasis on the dating of inadequately sampled sites such as Wheldrake-2, which despite a miniscule 1% excavation sample was declared to be “clearly a Romano-British settlement of some size and importance” (Van de Noort and Ellis 1999, 187). However, whatever its date of origin, the latter is an interesting outlier of the main distribution of ladder settlements. More appropriate excavation samples have demonstrated that the morphological category ‘ladder settlement’ is characterised by sites with complex, multi-period and functionally diverse histories (see case studies in Chapters 7 and 8). Many excavated ladders have revealed phases of enclosure lacking Roman-style ceramics (e.g. Brewster 1980, 27-8; Bishop 1999, 27), as well as ones of clear Roman date, which has reinforced the notion that they are firmly a phenomenon with pre-Roman origins (Mackey 2003, 119; M Giles 2007, 239). This may indeed be the case; however, significant questions exist regarding the socio-historic contexts within which local handmade coarsewares were produced and consumed (see further discussion in Chapters 6-8).
With this summary of the region's palaeoenvironment, its influence on general trends in settlement and landuse, and the impact of natural and cultural factors on archaeological visibility in mind, we must now explore in greater detail the development of later prehistoric landscape structure, its relationship with patterns of agricultural exploitation, and the evidence for the reproduction of social hierarchies in the region.

5.3 The changing structure of the landscape

Late Bronze Age to Middle Iron Age (900-100BC)

LBA-EIA territorialisation

The aim in what follows is to argue that, between the LBA and MIA, a process of increasing landscape territorialisation occurred, which more formally delineated areas of upland grazing from arable fields and settlement. The remote sensing archive allows us to perceive the overall structure of LBA-EIA territories defined by linears (Stoertz 1997, Fig.33), whilst the widespread patterning of EBA round barrows, with which they articulate, provides some hint as to earlier claims made on the landscape (Stoertz 1997, Fig.13). When viewed together the numbers of mortuary monuments and sheer scale and extent of linears suggest the existence a substantial population whose settlements, as yet, remain undetected in the landscape. The excavated evidence, limited as it is, suggests that the longer-distance and/or more substantial ditch-and-bank features of the eastern Yorkshire landscape tend to be the earliest, with the bulk perhaps dating to the earlier part of the period under consideration here (Manby 1980, 327-8; Dent 1984b, 32; Spratt 1989; Fenton-Thomas 2005, 38-9; M Giles 2007, 236; Manby et al. 2003, 77).

Such large-scale linear divisions also occur on the chalk downs of southern England, Salisbury Plain and on the uplands west of the Fenland (Bradley et al. 1994, 3-16). When first encountered by Mortimer and other antiquarians, many of these features were still upstanding monuments and therefore became known as 'entrenchments', 'dykes' or simply 'earthworks'. Unfortunately, the landscapes of the entire LBA-ER
period are characterised by ditch-and-bank boundaries and enclosures, all of which were ‘earthworks’ when first constructed, although most are now ploughed flat. Therefore, to avoid confusion, the majority of such features are referred to as either linear ditches or enclosure ditches – only the longest and largest being shortened simply to ‘linears’ in line with Fenton-Thomas’ (2005) nomenclature. It must be emphasised, however, that it is only the very extensive linears such as that now followed by the Sledmere Green Lane (see GWS case study in Chapter 8), or the shorter but usually more massive multi-vallate cross-ridge types such as the Wolds’ Huggate Dykes and Tabular Hills’ Scamridge Dykes, which fall with any confidence into this category (Dent 1984b, 33; Spratt 1989, 16-18; Fenton Thomas 2005, 47). The latter type typically block off the neck of land between the heads of two dry valleys and, in the classic case of Huggate Dykes, also join with single bank-and-ditch linears, which then follow the plateau edge probably marking the lines of routeways. As a general rule, the long-distance examples are usually simpler in design and less massive in section and many appear to have also functioned as, or mirrored the route of, trackways. As demonstrated in the EY case studies below, these last types are often, but not always (see Bell Slack and Cowlam discussions below), the earliest components around which later square barrow cemeteries and enclosed settlements developed, whilst other linear ditches of more localised, settlement function are often LIA-ER additions.

Across the Wolds there is a scattering of small, ditched and palisaded enclosures dating to the LBA-EIA (Stoertz 1997, 46), which appear to be associated with the process of territorialisation. Some of these, such as Grimthorpe, Staple Howe (Brewster 1963) and Devil’s Hill, can reasonably be termed hillforts, whereas others are defined by much slighter boundaries and may have served as stock enclosures of some sort. Brewster’s (1963) excavation of Staple Howe still serves to characterise the LBA-EIA transition in eastern Yorkshire, although the enigmatic site at Castle Hill, Scarborough has also produced finger-tip impressed pottery of the same date (Rigby 2004, 220-3). In contrast to such
enclosed hillforts, Powlesland’s pre-quarrying excavations at West Heslerton (1986) showed that contemporary settlements were located within the wider bounded landscape, but comprised unenclosed houses and post-built features invisible to aerial reconnaissance and conventional geophysical approaches.

By the MIA, then, the landscape was already divided up and settled, open settlements continued in similar form, but the small hillforts had been abandoned, whilst formalised cemeteries were adding a new structure to the landscape.

MIA structural continuity and mortuary bias

On reading most accounts of the eastern Yorkshire MIA, one could be forgiven for not recognising continuity from the preceding period; nevertheless, the LIA-ER evidence for landscape exploitation points toward continuity with the MIA. As noted in Chapter 1’s discussion of the regional research background, the MIA of eastern Yorkshire suffered archaeologically from a century-long myopic fixation on rich dead people and the ‘treasure’ with which they were buried: the so-called Arras Culture (Stead 1979) and its unique regional identity established, between the early 4th and 1st centuries BC (La Tène I-III), through the use of square barrow burials. These occur from the Ouse to the East Coast and from the Humber to the Howardian and Tabular Hills, with particular accumulations down the western side of the Hull Valley, in the Great Wold Valley, Vale of Pickering and south-eastern Vale of York (Fig.17). Although Stoertz (1997, 34ff.) confirmed that there are literally thousands of square barrows in the region, more recent research, for example in the Vale of Pickering (Powlesland 2003a, 25), has hugely added to that number. Whilst La Tène-style square barrows and the distinctive cart or chariot burials have clear parallels in NW Europe, the grave goods in eastern Yorkshire barrows are locally manufactured and define a regionally distinctive tradition (Stead 1979). Similarly, funerary conventions regarding the placement of bodies in graves reflect long-standing British traditions, such that the extended burials common in
continental La Tène graves are rare, and crouched, flexed or contracted burials are the norm (Stead 1991, 186). The implication, therefore, is that eastern Yorkshire elites were conscious of continental La Tène mortuary practices, but incorporated them within pre-existing material traditions and belief systems.

The Arras Culture burial practice began in the latest 5th or early 4th century BC (Mackey 2003, 119) with small groups of large barrows such as the five at Cowlam dug by Greenwell and re-investigated by Stead (1986), which produced a La Tène I brooch (Mackey 2003, 118). The MIA or later date of some major linears was also demonstrated here, when Barrow D was clearly cut by the two ditches of a cross-ridge dyke (Stead 1986, 9-11). This important physical relationship was paralleled at Bell Slack, which is a site worthy of closer examination (Fig. 18): here barrows in the centre of the trackway are large, early types (labelled ‘A’) seemingly constructed when corridors of movement down the slack were unconstrained by ditches. A trackway was subsequently formalised with ditches, which overrode the large barrows, whereas, in contrast, all the smaller, later square barrows (labelled ‘B’) are laid out relative to it. Bell Slack is also used to illustrate later landscape developments, which are discussed below.

Whilst some of these early clusters on the High Wolds barely grew from this starting point, many lowland examples in the Vale of Pickering, Hull Valley and Great Wold Valley eventually became subsumed within extensive, closely-packed cemeteries (Stead 1991). Some of the small upland clusters are in locations reminiscent of EBA barrow groups, such as that beside the multi-vallate cross-ridge dyke on Raisthorpe Wold (Fig. 24 ‘F’). Contemporary open settlements are rare and one was only discovered at GWS (see Chapter 8 case study) when wide areas, well beyond the cemetery, were stripped before quarrying (Brewster 1980). Developer-funded work is, however, helping here and at Creyke Beck an unenclosed cluster of roundhouses was discovered associated with a series of small stock enclosures (D Evans and Steedman 2001, 67-9); as
discussed below, the latter are a common feature of later enclosed landscapes.

When systematic research has taken place on supposedly LIA-LR settlements on the High Wolds, such as at WGC (see Chapter 7 case study), unequivocal evidence for MIA settlement activity – in this case spanning 600-100BC – has also been produced. Moreover, although on casual observation the Wharram area appears to lack MIA square barrow cemeteries, they actually do exist, but just in smaller clusters or as singletons. Admittedly, the evidence is patchy, but then we are dealing with low-visibility archaeological phenomena towards which little research effort has been directed.

Beyond the Wolds and their immediate lowland edge, the calcareous uplands of the Tabular and Howardian Hills also have small barrow cemeteries which, in the latter area in particular, mirror the Wolds' pattern of association with trackways (Carter 1995), although here too settlement is poorly understood. In contrast, the southern Vale of York around the Foulness Valley has provided good evidence for a dispersed pattern of MIA settlement on raised 'islands' within the wetlands associated with iron smelting (Halkon and Millett 1999). Further east in the Vale of York, MIA open settlements are also recorded, for example, at North Cave (Mackey 2003, 119).

In sum, EBA round barrows were situated in prominent locations across the upland and lowland areas of the regions, laying claim to blocks of landscape and marking the routes of early trackways. When LBA territories were formalised by linear ditch-and-bank boundaries, these respected the route of the trackways and incorporated lines, clusters and individual barrows within their layouts. It seems that many trackways remained unbounded by ditches until the MIA, such that early square barrows can appear to be incongruously sited in the middle of trackways later formalised with ditches. Early upland clusters of MIA square barrows tend to mirror the locations of EBA barrows beside ridgeways.
and across watersheds. In the lowlands major cemeteries developed around early barrows and alongside trackways which, in many cases, became foci for LIA-ER enclosed settlements and, occasionally, also evidence MIA open settlement. Of particular note is the persistence of major territorial boundaries and interconnecting trackways as key socio-political and economic structures between the LBA and ER periods.

Late Iron Age to Early Roman structural change (100BC-AD200)

Spatial coincidences and temporal overlaps?

From around 100BC, as the cemeteries fell into disuse, the long-distance linear ditches and trackways, which formed the skeleton of the MIA landscape, began to accumulate strings of contiguous rectilinear enclosures, forming what have come to be known as ladder settlements (Atha 2003). The definition and character of ladders is dealt with below but, first, there are some more general issues to discuss concerning the spatial and temporal relationship of MIA cemeteries and LIA-ER settlements.

Intriguingly, on the Wolds there is an undoubted spatial correlation between the overall patterning of square barrow cemeteries and that of LIA-LR ladder settlements – both occupy the same LBA-EIA territories. At a more local level, there are several examples where MIA cemeteries and LIA-LR ladders spatially overlap. At Bell Slack and Blealands Nook, Dent (1983a, Fig.2) highlighted groups of “Late Arras Burials”, which he considered, based on remote sensing data, to be contemporary with the enclosed settlements. However, when Stead (1991, 17; 2003, 1-3) excavated at Bell Slack, he found that the clusters of smaller, later square barrows (Fig.18 ‘B’) ranged along the eastern side of the trackway were cut by the ditches of the ladder settlement, which appeared to have been laid out in the 2nd to 3rd centuries. The ladder enclosures also cut an unenclosed roundhouse dated by pottery to the LIA (Stead 1991, 17) which, if true, would place it in that ‘grey area’ of potential use overlap when the last barrows were being cut, new forms of pottery were coming in, but dwellings were as yet unenclosed. The
relationship between ladder enclosures and barrows demonstrated at Bell Slack is reflected at GWS (see Dent 1983b, 8; Chapter 8); however, as these sites have shown, the chronological relationships between linear ditches and trackways, cemeteries and enclosed settlements can be complex.

Many of the earlier stories concerning the development of LIA-ER enclosed landscapes and their relationships with MIA patterns and LR trajectories now appear unconvincing, especially when one recognises their degree of reliance on ahistorical remote sensing data or tiny sample excavations. For example, a fraction of one percent of the 1.5km-long, multi-period Bell Slack ladder complex has been excavated – no basis for anything other than a tentative, generalised overview. However, there are more comprehensively investigated blocks of the eastern Yorkshire landscape about which more can be said and these form the basis of Chapters 7 and 8’s case studies, but that is leaping ahead somewhat; first there are the general patterns to consider.

The character of the LIA-ER agricultural landscape

The defining characteristic of ladder settlements is that they incorporated two or more contiguous enclosures attached to an axial linear feature, which was occasionally a single ditch but more often a trackway, about which everything else was articulated (Atha 2003, 3). The ‘everything else’ comprises any combination of four distinct enclosure types. Firstly, domestic-type ladder enclosures within the c.0.2-0.5ha size range (Figs. 18 and 19); strings or groups of very small c.0.02-0.05ha paddocks, sheepfolds or even kitchen gardens (Figs. 18 and 19); large arable in-field enclosures at c.2-5ha (Figs. 18 and 19); and, finally, more prominently defined domestic-type enclosures. The last comprise three sub-groupings: large sub-divided (Figs. 18 and 19), large-ditched and double-ditched types (Atha 2003, 46-7). Many ladder settlements also appear to be well-integrated within a wider landscape of field systems. Like the two categories of domestic-type enclosures, the blocks or strings of very small paddocks or sheepfolds are often tightly
embedded within the settlement structure (Atha 2003, 47). In contrast, the supposed in-fields, whilst always contiguous with settlements, are usually attached to the outer edge of domestic-type enclosures (Atha 2003, 45). By way of clarification, the term in-field is used to define blocks of enclosed land attached to settlements, whose fertility was intensively managed using direct manuring by grazing animals or midden/manure spreading by people. In-fields thus defined what was probably an intensively managed strip of land between the settlement proper and grazing land beyond. As their labels imply, these different components appear to have clear functional, and even chronological, connotations, which are discussed in terms of changing patterns of landscape exploitation in 5.4 below.

It should be noted that, on excavation, many ladders are revealed to have developed through the successive addition of what could have been a series of farmsteads with ancillary enclosures. It is thus intriguing to note the presence within the latest MIA and LIA settlement pattern of individual farmstead enclosures: some with individual roundhouses as at Welton Wold villa (Mackey 1999, 21), whilst others at Aldbrough Gas Reception Facility and Bempton Lane had multiple roundhouses – some of which were successive, others perhaps contemporary (D Evans and Atkinson forthcoming). The size of these enclosures corresponds well with the 0.25ha lower limit of domestic ladder enclosures. A further M-LIA settlement type from the Hull Valley takes the form of a polygonal cluster of irregular enclosures as found at Salthouse School (D Evans 2000, 197).

In terms of their distribution, it was recognised that such settlements, most notably in the Great Wold Valley and along the edges of the Vale of Pickering, were positioned to exploit resource-rich interface zones. The linear arrangements of settlements in such locations was argued to reflected three things: firstly, the importance of movement along such corridors parallel with the upland-lowland interface – most visible as cropmarks in the valleys but also hinted at along the upland edge (see
WH case study in Chapter 8); secondly, that linear features defining such corridors were invariably the earliest components around which settlements had developed (see Section 5.4); and, finally, that ladders in such locations reflected the socio-political and economic importance of having access to territorial strips connecting upland grazing, the productive soils of the spring-fed vale edge and wetlands proper (Atha 2003) (see Sections 5.4 and 5.5).

A significant proportion of the LIA-ER settlement pattern on the Wolds thus developed around the pre-existing structure of long-distance trackways, which followed the vale edges and valleys and reached across the plateaux to interconnect blocks of upland grazing defined by ditch-and-bank linears. However, Stoertz (1997) was important because it also demonstrated that settlements made up of rectilinear enclosures were a feature not just of the Wolds, but also of their immediate lowland periphery. When added to the results of neighbouring remote sensing-based studies in the wider lowlands and nearby calcareous uplands, the presence of such settlements was confirmed across the entire study region (Carter 1995; Taylor 1995, 14ff; Van de Noort and Ellis 1995; 2000; Jones forthcoming). Interestingly, beyond the wold-edge many lowland ladders appear to have been occupied entirely within the Roman period which, overall, confirms the longevity of the settlement type in the region. It also demonstrates a lowland economic focus on the ER communications network made up of roads and, as is becoming increasingly evident, waterways.

Whilst ladders occur in lowland and upland areas alike (Atha 2003, Fig.6), those at the lowland edge, in the Vale of York, on the gentle rolling country of the Wolds’ eastern dip-slope and in the larger valleys tend to be more regular and extensive linear agglomerations. The effect of topographic interface zones on the patterning of ladders in the region is exemplified by the remarkable 10km-long ladder following the southern edge of the Vale of Pickering (see Chapter 8). This and other similarly-sited examples often articulate with side trackways reaching up
onto the calcareous grassland or out towards water courses and wetlands. The WH pattern is also mirrored along the northern edge of the Vale of Pickering, whilst a string of ladders exists below the western Wolds' scarp between the Humber and Pocklington (Atha 2003, Fig. 6). The wide, open uplands to the south of the Great Wold Valley also evidence extensive ladders such as the example presently under investigation to the south-east of Thwing (Ferraby 2005). In contrast, the more restricted plateaux of the High Wolds (Fig. 24; Chapter 7) and smaller valleys punctuating the north-south 'spine' of the chalk massif typically have smaller ladders with more irregular morphologies and fewer enclosures. To the north-west on the Howardian Hills, ladders are recorded stretching from the base of the dip-slope to the scarp edge (Carter 1995, 15). In the Vale of York there are some very extensive blocks of regular enclosed strips, each with a roundhouse, and bordered by trackways, whilst other examples there are more reminiscent of classic Wolds ladders (Jones forthcoming). In sum, ladders are a very widespread and long-lived settlement type, which evidence a good degree of morphological variation.

Also present in the region's cropmark data are blocks of co-axial fields similar to those identified by Riley (1980) and investigated by Chadwick (1997; 1999) south of the Humber (Atha 2005, 103). Like the aforementioned ladder settlement in-fields, an arable function is also likely here. In line with Riley's findings, these co-axial fields invariably have domestic-sized ladder enclosures and occasional paddock-type enclosures embedded within them. The key structural difference from ladders is the emphasis placed on the regularity of the field system in the overall pattern; enclosures and any associated movement corridors appear to be fitted within the field system, whereas with many ladders the impression is that the trackway provided the focus for settlement, about which fields were then laid out. Whilst both areas would almost certainly have employed mixed agricultural regimes, this gross difference can be related to an emphasis on the movement of large numbers of livestock in the Wolds and an emphasis on arable in the
better drained parts of the vales.

These co-axial fields are predominantly a feature of the flatlands and are particularly common in the southern and eastern Vale of York, as exemplified by those at Wheldrake Wood (Jones *forthcoming*) and Lingcroft Farm, Naburn (Jones 1988, 163). The former is a fan-shaped block some 0.8 by 2km in extent, with a central trackway and regular strips c.30m wide by around 450m long with sub-divisions and occasional embedded roundhouses, presumably in enclosures (Jones *forthcoming*). Lingcroft Farm (see 5.4 below) is similar in form to a rare chalkland block of co-axial fields on the Wolds’ eastern dip-slope between Garton Slack and Elmswell (Stoertz 1997, 70). Further fragments of co-axial fields were also recorded at Brigham and Watton in the upper Hull Valley during the Humber Wetlands Survey (Van de Noort and Ellis 2000).

In Halkon and Millett’s (1999) HoSM study region, the dispersed settlement pattern of nucleated rather than linear enclosure agglomerations with few if any fields appeared to relate to the network of meandering creeks, which afforded a means of communication provided by trackways elsewhere in the region. The compact morphology of these settlements was probably partly a response to the physical constraints of their locations on raised islands and spurs within a wooded wetland landscape, but was also perhaps partly economic in origin (see 5.4 below). A further category of dispersed individual enclosures was noted by Jones (*forthcoming*) between the Ouse and Derwent, with good examples being found near Kelfield. Fieldwalking over such enclosures in Halkon and Millett’s Holme landscape block suggested that a pre-Roman date was likely (Taylor 1999, 33). Several examples in the last area have double-ditched boundaries which, if really a pre-Roman feature here, shed some doubt on the wider association of such enclosures with LR villas on the Lincolnshire and Yorkshire Wolds (Jones 1988, 23; Stoertz 1997, 53). In addition, it seems probable that many of the aforementioned multiple agglomerations were the products
of mainly Romano-British developments, but had been initiated by single enclosures of pre-Roman date (Taylor 1999, 35).

There is one final category of relatively large-scale, but probably LIA-ER, linear boundaries, which sub-divided the territories defined by LBA-MIA linears to perhaps formalise smaller-scale inter-community claims on the landscape. Nonetheless, this last type of linears still seems to be part of the same process of intensified demarcation within the framework of the LBA-MIA landscape. What we do not know at present is whether the LIA-ER enclosure of domestic, stock-management and in-field zones simply formalised a pre-existing, but archaeologically less-visible, socio-economic structuring of settlement space. At this juncture, the overall impression is one of continuity of landscape structure between the MIA and LIA-ER periods, however, the GWS case study provides an opportunity to test this notion further (see Chapter 8).

In sum, the LIA-ER landscape structure essentially incorporates five components: larger complex mostly lowland ladders, a group of later lowland examples focused on riverine locations; smaller mostly upland ladders sometimes with strings or small clusters of paddock-like features; lowland co-axial field systems with low density settlement; and small nucleated wetland ladders with limited field systems. Although the first two categories are broad and overlapping, they appear to make sense when the patterns of both are considered together on a sub-regional scale. In addition to these four categories, there are the individual enclosed farmsteads, which seem to overlap in date with the beginnings of ladder settlements.

The above discussion of LIA-ER landscape structure has one obvious omission and that is the definitively Roman-period military and proto-urban infrastructure imposed, in particular, down the western side of the regional landscape in the late 1st and 2nd centuries AD. However, these developments fall firmly within a changing pattern of landscape exploitation associated with the expansion and consolidation of Roman
authority in the region and are therefore best located within Sections 5.4 and 5.5 below.

5.4 Changing patterns of landscape exploitation
LBA-EIA settlement permanency and intensified landuse

The large-scale enclosure of the LBA-EIA landscape is a pivotal chapter in the story of the Wolds’ social landscape, which would benefit from additional contextualisation. Drawing heavily on Boserup’s (1965) earlier work, Barrett (1994a, 132ff.) argued that a system of ‘long fallow’ agriculture had characterised EBA landuse. This non-intensive form of cultivation was employed by mobile communities and involved the cyclical clearance, use, abandonment and reuse of arable plots, typically at forest margins (Barrett 1999c, 497).

“[T]he land would not thus have been owned by some portion of the living community, merely used, and the symbols of a more permanent occupation would not have been those of settlement but of ritual activity, ancestral veneration and burial” (Barrett 1999c, 497).

It is with this context in mind that the patterning of EBA round barrows in eastern Yorkshire is best considered. Such barrows are occasionally found in the lowlands when ploughed-out examples are encountered near trackways as at Cook’s Quarry, West Heslerton (see below). In the Wolds, EBA barrows mark hilltops, watersheds and coincide with the routes of early ridgeways, sections of which became rearticulated within a succession of later landscapes – some indeed have survived as components of modern socio-political boundaries marking the lines between parish and township (see examples in Chapters 7 and 8). The frequency and extent of the aforementioned major linears implies four things: firstly, that a substantial workforce was available; secondly, that agricultural production was at a sufficient level to produce a regular surplus that allowed such non-agricultural use of labour; thirdly, that such a workforce could be organised to construct monuments that must
have transcended inter-community boundaries; and finally, that groups or individuals existed with the resources and political power to plan and implement such vast undertakings.

As the Overton Down experimental earthwork showed, even untended, the white upcast banks of Wolds' linears would have remained striking landmarks for perhaps a generation or more. Moreover, the effort and impact of their original construction – inscribing territoriality on the landscape – was underlain by a socio-political message of power and control that persisted across many generations. The contrast between the evidence for regular human intervention visible in LIA-ER enclosure ditch sections could not be greater as the early linear ditches seem to have been allowed to naturally silt up probably over a period of many decades (Bell et al. 1996, 66ff.). Perhaps to interfere with the linears was tantamount to challenging the political authority with which they were imbued.

Fragmentary evidence for MIA landscape exploitation

There is strong evidence to suggest that the unenclosed trackways of the LBA-EIA landscape were increasingly defined by parallel pairs of flanking ditches during the MIA (see case studies in Chapters 7 and 8). Bevan (1997, 184) proposed that such trackways operated as inter-community 'rights of way', which allowed people and their livestock to move through the landscape without risk of transgression or conflict. Several of these trackways have funnel-shaped ends, which have been linked to the movement of livestock to and from grazing land (Bevan 1997, 184; Stoertz 1997, 43-5; English Heritage 2002). Their formalisation at this time appears to continue a process begun with the large-scale territorialisation in preceding centuries.

Given the issues set out above, Fenton-Thomas' (2005, 56) notion that the Wolds were a depopulated "landscape of the dead" in which the cemeteries claimed for the living grazing land for their sheep does not stand close scrutiny. There was certainly a difference in the scale and
trajectory of cemeteries in the uplands and lowlands, which cannot simply be explained in terms of the size of communities in those areas. Upland and lowland cemeteries alike began with small groups of large square barrows but, in contrast to the limited development of upland cemeteries beyond that stage, lowland examples invariably accumulated dozens and sometimes hundreds of later barrows around the early 'core' burials.

Doubtless the richer soils and more diverse resource base of the lowlands, in the form of better water supplies and arable land, access to wetlands and upland-edge grazing, encouraged the development of larger settlements (and cemeteries); the best example being GWS, which is discussed at length in Chapter 8. We should not, however, become too distracted by these prominent clusters of large cemeteries (and later ladder settlements) occupying such lowland-upland edge positions – the upland plateaux and lowland wetlands demand closer scrutiny.

It seems probable that the upland territories created in earlier centuries were largely concerned with the definition of areas of pasture, but they also incorporated settlements as well. Any obligations for surplus would be met largely through the supply of livestock, presumably on the hoof. In the south-eastern Vale of York, the picture is somewhat similar: here a scattering of small communities seem to have focused on iron production, perhaps using bog ore. The tidal creek system was exploited for transport (Millett and McGrail 1987), woodland resources were managed for fuel, and a predominantly subsistence-based mixed agricultural regime was in operation (Millett 1999, 221-4). Thus, although the High Wolds and Foulness Valley could hardly be more different environments, in the MIA they may each have been characterised by economic specialisation. The following section explores what, if anything, of the MIA pattern of exploitation continued into the LIA and ER periods.
LIA-ER landscape exploitation
In contrast to the limited evidence for earlier patterns of landscape exploitation, this period is blessed with a relative abundance of remote sensing and excavation data in eastern Yorkshire. The following discussion draws on these contrasting data sets to add time-depth and resolution to the largely atemporal remote sensing based overview of LIA-ER landscape structure presented above.

Beside WGC and GWS (see Chapters 7 and 8 respectively), evidence for MIA to LIA-ER settlement continuity is rare, although excavations have shown unequivocally that axial linears of MIA or earlier date, be they trackways or single ditch-and-bank boundaries, were pivotal in the process of LIA-ER landscape enclosure, forming the spine about which domestic enclosures, small paddocks and in-field blocks were laid out (see case studies in Chapters 7 and 8).

Whilst in overview the relationship of ladders and their field systems to the LBA-MIA landscape structure seems obvious enough, too few have been sufficiently well investigated to provide the kind of detailed socio-economic analysis achievable, for example, in the UTV as summarised recently by Hey (2007). That said, there are some general trends observable between the MIA and LIA-ER periods, which suggest that patterns of landscape exploitation did alter over time.

The public and private dead
Perhaps the most remarkable change at the beginning of the LIA concerns the fundamental shift in attitudes towards the dead and their supposed role in the reproduction of socio-political structures of authority with respect to social hierarchies and land rights (see 5.5 for further discussion). Having seemingly invoked the authority of the dead for centuries, we find that by the end of the 1st century BC square barrow cemeteries, for example at Danes Graves, were being turned over to agricultural use (Dent 1984a). Moreover, the argument that ladder settlement enclosures represent a turning inward and emphasis on
households (M Giles 2000, 184), finds further support in the shift from collective mortuary display to the placement of the dead in ditches defining domestic space. Such burials were recorded in ditches beneath Rudston villa, where three flexed and one crouched burial were found, the latter being dated by a bronze penannular brooch to the LIA (Bayley 1980: 146), whilst further examples occurred at Garton Slack (DoE 1973, 34) and Eastburn (Sheppard 1939, 35).

Bringing the LIA-ER landscape to life

The LIA-ER landscape structure described in 5.3 above broke down into five main components: extensive and complex mainly lowland ladders suggestive of a well-integrated mixed economy; an ER category of lowland riverside ladders perhaps associated with cattle husbandry; smaller mostly upland ladders with paddocks probably relating to sheep rearing; lowland co-axial field systems associated with arable production; and compact wetland ladders specialising in industrial production. Space prevents the discussion of every excavated site in the region and several of the better examples have been selected for discussion as case studies in later chapters, however, the key characteristics are explored below.

A classic example of a lowland ladder is that investigated by Powlesland in the Vale of Pickering (see Chapter 8) and a summary of key elements follows. This type is characterised by complex and extensive arrangements of domestic, paddock and in-field type enclosures, which cluster along an axial trackway. Subsidiary trackways branch off the main routeway, reaching from the settlement core down into what were probably carrland cattle pastures and up onto wold-edge sheepwalks. The latter are tentative functional interpretations, but there are good physiological reasons for associating wet grazing with cattle and dry calcareous grasslands with sheep. Some degree of seasonal transhumance is likely for settlements located at such upland-lowland interfaces. For obvious reasons of logistics, scale and cost, none of the larger examples of this type have been extensively excavated, and we are reliant on the results from smaller examples, such as Burnby Lane, Hayton for clues as
to their economy.

The Burnby Lane ladder (Fig. 20) was located in the south-eastern Vale of York, immediately to the east of Hayton and some 2km west of the Wolds’ scarp. The settlement was orientated east-west down both banks of a stream, which ran from the Wolds and out into the Vale of York (Halkon et al. 1999). The layout, although contrary to the model of settlements running parallel with resource interfaces as exemplified at WH, is nevertheless sited to exploit a resource-rich transect of land encompassing wetland edge to chalk wold grazing. The spatial association of MIA mortuary and LIA-ER settlement evidence is repeated here; a square barrow cemetery is visible from the air just 200m to the north-west (Halkon et al. 1999, 5).

The ladder originated in the LIA when the two enclosures sampled were both in use for domestic occupation: the westernmost included a large 13.5m diameter well-appointed roundhouse, whilst the eastern enclosure was sub-divided by an E-W ditch to the south of which were two intercutting smaller roundhouses associated with bronze working (Halkon 2004). An articulated cow burial was incorporated in the N-S ditch dividing the two enclosures. The care taken over the burial of domestic animals at this time may reflect both their economic importance and potential role in rituals associated with agricultural success and the reproduction of households and communities. The crouched burial of a young adult was discovered in the corner of the western enclosure, which also produced several infant burials (Halkon et al. 1999, 5; Halkon 2004). Although partially backfilled by the ER period, the main N-S ditch between the two enclosures continued in use, but the roundhouses to the east were replaced and directly overlain by a large rectangular timber building constructed using sill-beams (Halkon et al. 1999, 8). A further rectilinear enclosure was added to the east of the building, which redefined the area of the eastern LIA enclosure. A group of three cremation burials in pots appeared to be associated with the latter building. Looking beyond our core period of interest, the
settlement reflects the wider regional pattern of 3rd and 4th century change: in the early 3rd century a small bath-house was added to the building which, in the 4th century was rebuilt in stone and provided with a well whilst, in an adjoining enclosure an oven and crop-dryer were constructed.

Detailed results concerning the site’s economy await publication; however, the site clearly demonstrates an earlier integration within Roman supply networks than the Hawling Road settlement a few kilometres to the south-east (J Evans 1999, 196). The impact of the Roman army on this agricultural landscape, albeit short-lived, appears to have had lasting consequences: Hayton Roman fort was established just 1km south-west of the Burnby Lane ladder and was occupied for roughly a decade (Johnson 1978), but it was the Brough to York military road and its roadside settlements that perhaps most influenced the ladder’s development. Indeed, access to the Roman communications network of roads and navigable rivers appears to have been pivotal in the process of early socio-economic integration of indigenous communities across the entire region. This process and its effect in terms of later Roman developments around Hayton and elsewhere are explored further in 5.5 below.

Turning now to the upland-type ladders with paddocks, the size and more scattered distribution of these may reflect an emphasis on animal husbandry, although it is likely that some arable crops were grown, but at a subsistence level. The developer-funded excavation at Sewerby Cottage Farm (Fig. 21) provides a good example of the smaller types of ladder with stock enclosures (Fenton-Thomas 2003b). Its location on the Wolds’ dip-slope just north of Bridlington emphasises the fact that such settlements are not strictly a phenomenon of the higher Wolds but, rather, they occupy the areas in-between the main settlement zones defined by large complex ladders – in this case to the west around Burton Fleming, although we should not forget the possibility of further foci to the east, lost to coastal erosion.
Chapter 5 A Parisian sideshow? Putting eastern Yorkshire into context.

The Sewerby Cottage Farm site comprised an intriguing range of multi-period features, some very unusual for their date. The start of my period of interest was marked by a M-LIA square barrow burial accompanied by a dagger, which was positioned beside an earlier N-S orientated linear ditch. The barrow was adjoined on one side by an unusual square enclosure with evidence for some kind of screen between the two features, whilst nearby a small round barrow of M-LIA type was also recorded. (Fenton-Thomas 2003b, 4-5). The remaining features were all dated to the LIA-ER period. An E-W orientated V-shaped ladder-type ditch, c.2m wide by 1m deep, articulated with the N-S linear to form an enclosure on its western side, which had some evidence for occupation in the form of post-built structures and pits and also included a cluster of three cremations. Nearby was a string of six small ER rectilinear paddocks with gapped corners associated with a curving ditch and various post-settings, which together were related to the management of sheep (Fenton-Thomas 2003b, 6-8). Finally, there was an intriguing group of three crop dryers, each with a different design, one of which was archaeomagnetic dated to AD40-90. The settlement thus suggested the possibility of a chronological overlap between the square barrow tradition and the creation of ladder enclosures, some indications of domestic occupation and good evidence for stock rearing, whilst the use of crop dryers had occurred at an exceptionally early date.

Moving back to the lowlands again, the only substantially sampled co-axial field system is that at Lingcroft Farm, Naburn (Fig. 22), which was located just 5km south of York between the rivers Ouse and Derwent. The fairly irregular co-axial field system includes a scattering of embedded farmstead enclosures and one cluster of paddocks, which together provide a fascinating comparison with the evidence from excavated ladders. The co-axial fields averaged c.0.9ha in size and, although the domestic enclosures were small by ladder standards (c.0.12ha), each contained a substantial c.15m diameter roundhouse, one of which was associated with a smaller 5m diameter structure (Jones 1988, 163-4). Charred wheat and barley were taken to indicate an arable
use for the fields and, although mammal bone did not survive due to the acid conditions, the presence of small paddocks pointed towards animal husbandry on site, perhaps at least for purposes of traction. Artefactual evidence suggested a LIA origin for the settlements, whilst an ER phase of activity, which involved the removal of the roundhouses, was dated to the early 2nd century by a small but remarkable finds assemblage that included Ebor ware, samian, mortaria, amphorae, tegulae and glass vessels (Jones 1988, 168). This ER assemblage was accompanied by some continued use of LIA-tradition handmade ceramics; however, the Roman component is strikingly ‘military’ in character and was interpreted as evidence for contact and trade with the army in York (Jones 1988, 168).

The fourth category of enclosed settlement, located on gravel spurs and islands in the former wetlands of the south-eastern Vale of York, includes M-LIA iron-smelting sites, small agricultural settlements of perhaps similar date, and early 3rd to 4th century greyware pottery production sites (Halkon and Millett 1999). Few of these sites have been systematically excavated and, of those that have, key areas remained unsampled because ancient and modern settlements both occupied the highest ground. This section will therefore provide just a short summary of excavation results which, for example, at Bursea House (Fig. 23) and Hasholme Hall suggested that enclosures there appeared to originate in the LIA and continue into the ER period (Taylor 1999, 32-3). Later enclosures associated with pottery production, which flourished in the LR period, fitted in and around the pre-existing pattern, thus creating the sub-divided appearance visible in cropmarks and the complexity observed during excavation. Thus, each nucleated enclosure complex appears to have comprised an inner, more structured, zone of larger domestic enclosures and smaller ones often used for pottery production, whilst an outer, more open, area along the wetland edge included woodland, pastures and areas set aside for iron smelting (Taylor 1999, 42). The Hasholme logboat and its cargo, although MIA in date, point to the importance of waterborne transport and cattle rearing in the area,
both of which complemented the industrial use of the wetland landscape. Although the emphasis changed from iron to pottery production during the LIA-ER period, there seems every reason to see a very strong thread of economic and socio-political continuity in this sub-region.

We must now explore how the region's diverse socio-economic structures and patterns of landscape exploitation can be related to the operation and reproduction of social hierarchies and elite authority. In line with the preceding two sections a chronological order is employed which, in this section concerned with authority and the exercise of political power, also incorporates a discussion of ER military/urban impacts as well as a brief summary of LR rural change.

5.5 The reproduction of elite authority
Late Bronze Age to Middle Iron Age (900-100BC)
As introduced above, there is good reason to suspect that the LBA large-scale territorialisation of upland landscapes cemented earlier land claims marked by EBA barrows. This was physically reflected in the integration of such barrows within the layouts of LBA linears, but also politically reinforced by the construction of small hillforts overlooking key intersections of major linears and trackways – as exemplified at Paddock Hill (Stoertz 1997, 64-5). Below this social stratum, the evidence for LBA settlement in the region is patchy but, where it exists, the connections between farming communities, the intensification of large-scale enclosure and the organisation of elite authority have been collectively considered.

LBA territoriality and the imposition of structures of authority
At Cook’s Quarry in the southern Vale of Pickering (Powlesland et al. 1986, 156-9) a LBA open settlement, bounded by a pit-alignment and a trackway with wheel ruts, produced traces of dwellings and good evidence for grain storage. The pit alignment could be traced for 2km across the landscape and seemed, with other ditch-and-bank boundaries
reaching up on to the Wolds, to form substantial territorial units. Overlooking this settlement on the northern Wolds’ scarp are the LBA-EIA palisaded enclosures of Staple Howe (Brewster 1963) and Devil’s Hill. Manby (1980, 327-8) noted how these and other similar hillforts in the Wolds appeared to be well-articulated with the patterns of major linears. Powlesland had the presence of mind to bring the linears, open settlement and hillforts together in a unifying interpretation that envisaged LBA elite groups controlling the exploitation of territories built around resource-rich upland-lowland transects. Further examples of hillforts in similar interface zones are located overlooking the Vale of York at Grimthorpe and the Great Wold Valley at Paddock Hill. Grimthorpe, Devil’s Hill and Staple Howe all evidenced large-scale storage of grain (Manby et al. 2003, 106), which may have been received as tribute from producers such as those living at West Heslerton where several smaller ‘four-poster’ granaries were recorded (Powlesland et al. 1986, 137-9).

These LBA-EIA hillforts thus seem to fit both physically and socio-politically into a model of a mobile elite controlling and reordering the landscape and its farming communities. Those intentionally partitioning the landscape at this time also drew legitimation for their acts by incorporating earlier barrow clusters at key nodes within the systems of linear boundaries. In this context, the larger-scale LBA-MIA boundaries can be taken to indicate a concern with “the long-term control of resources by particular communities, and the means by which that control was passed from one generation to the next” (Barrett 1999c, 497). In other words, the reproduction of elite authority relied upon a stable productive base which, in turn, required the ongoing recognition of tenurial rights relating to arable and grazing land.

MIA mortuary practices and the reproduction of power structures

The above notion that blocks of land could more legitimately be ‘claimed’ by making reference to earlier landscape markers is probably relevant to the patterning of small early clusters of large MIA barrows.
The impression created is that, initially, the rite was reserved for a few individuals – the small groups of such barrows perhaps relating to the activities of dominant families or clans. The early clusters of large barrows may represent a restatement of land claims harking back to those of ancestral groups who used round barrows for the same purpose. A good example of this is provided in Wetwang Slack (Dent 1978) where the large cemetery developed around an EBA round barrow; a further attempt to draw legitimation and support from long-dead, mythical ancestors. Of the c.450 burials recorded in Wetwang Slack some 200 were under barrows and, of those, approximately 20% were buried with grave goods (Dent 1982, 437; 1983b, 5). This perhaps provides a coarse measure of the marking of differential status in such cemeteries, where just 9% of individuals were interred in barrows and with grave goods. In core lowland settlement areas such as Wetwang Slack, where the inheritance of rights with respect to prime resource-rich land with water supplies was perhaps pivotal to the ongoing success of clan-based groups, cemeteries understandably accumulated large numbers of burials, including those of both elites and producers. Elite groups positioned their dead to highlight recent and ancient authority claims and marked out their burials using specific grave goods and orientations (Parker-Pearson 1999). The relationship between elites and producers can be thought of as socially-embedded but differentiated; both groups used the large cemeteries but, unlike elites, the producers used the cemeteries to ensure their continued access to prime resources, which would guarantee the socio-economic reproduction of their household and allow their obligations to elite groups to more easily be met. In contrast, the smaller upland communities focused mainly on animal husbandry, although subject to the same socio-political structures, were perhaps not subject to the same intensity of competition. The small cemeteries may not directly relate to the communities of relatively low status herders but, instead, may record a perhaps generational addition of single barrows, which cemented a mobile elite’s claim on upland grazing and reminded local communities of their obligations to such groups.
Despite the dearth of settlement-based evidence for social differentiation (although see GWS case study in Chapter 8), some sense of social hierarchies is evidenced by grave goods. These included pottery vessels — sometimes containing joints of pork or mutton — iron brooches and, very occasionally, disassembled wheeled vehicles, interpreted either as chariots or carts (Stead 1979; 1991). Towards the end of the barrow tradition, in roughly the 1st century BC, a different pattern of burial emerged; in some graves pots with food were replaced by weapons, frequently swords, and there was a more consistent use of E-W orientations, rather than the earlier preference for N-S, in such burials. This can be interpreted, perhaps, as the emergence of a warrior caste, and clearly implies a reduced interest in domestic provision for the afterlife in favour of more martial considerations. Moreover, swords would have been very expensive, status-related objects and their burial represents a striking example of conspicuous consumption. It is also worth mentioning that the region’s unique chalk warrior figurines, which may represent deities or ancestors, also appeared around this time but are usually found in early ladder enclosures (Stead 1988). Many are figures wearing swords suspended centrally on their backs and their right arms reach round behind them towards the weapon. In some of the aforementioned weapon burials, the deceased was clearly interred with a sword in its scabbard in that position (Stead 1988, Fig.10).

In summarising this section, it is interesting that at GWS the mortuary evidence for social differentiation was not obviously reflected in the hierarchical organisation of space, structures or artefactual evidence in the settlement zone (see case study in Chapter 8). This is maybe not that unexpected, particularly when the LBA-EIA evidence does not suggest a highly stratified social structure but, rather, one that was clan-based. Nonetheless, the hillforts represented local nodes of authority and control in a society that evidenced some degree of centralisation, if not a high level of social complexity. During the MIA, there seems to have been a proliferation of lower order elites, now living amongst and being buried in the same cemeteries as producers, but expressing social
differentiation in mortuary contexts. One can therefore imagine a landscape structured by major boundaries and trackways, within which clusters of communities farmed blocks of arable land and ran sheep on higher pastures; each had obligations to supply agricultural surplus to localised elite groups, which exploited the excellent communications network using horses and wheeled vehicles and celebrated their mobility in death.

Such connections appear to have remained dominant until the beginning of the LIA and Lang offered this useful model of MIA socio-political organisation in the study region:

“tribal society in East Yorkshire appears to have consisted of...localised lineages or sublineages, with only a limited degree of corporate awareness or expression, at the ‘tribal’ level. Competition for status within and between clans was primarily engaged in at the level of the basic domestic group, through marriage alliance and gift-exchange. Within this structure, disposal practice could be used to re-affirm the obligations of the lineage group in their degree of participation in the mortuary ritual, and of the corporate tribal or sub-tribal group in re-affirming land rights...the failure to stabilise communities in the long term resulted in serious outbreaks of warfare, and an alternative form of disposal of the dead.” (Lang 1986)

Lang's identification of the instability of social hierarchies as the basis for the abandonment of the square barrow tradition, whilst probably true to some extent, is very vague. His ideas may have drawn upon Dent's (1983a, 38-9) portrayal of an increasingly conflict-ridden later MIA to LIA, which he based upon the presence of warrior burials towards the end of the barrow tradition and chalk warrior figurines in early enclosure ditches. Certainly, the sheer numbers of smaller, later barrows in the major cemeteries may indicate a broadening of participation in the rite which, in turn, might reflect a gradual sub-division of social hierarchies and blurring of socio-political boundaries as demands for living and
productive space began to overwhelm the existing landscape structure. It pains me to fall back on population growth in any capacity, but the trajectory of the MIA to LIA-ER landscape points toward a need to make productive use of the vast areas of prime land occupied by cemeteries. At broadly the same time, the farming landscape witnessed a move to enclosed, more nucleated settlements, but still focused on the communications network, with in-fields and household farmsteads embedded within the overall ladder patterns – the dead ‘came home’ to reside in the peripheral ditches of farmsteads.

Thus the evidence for M-LIA ‘warrior’ burials, chalk ‘warrior’ figurines, the eventual abandonment of corporate burial practices and renewed interest in enclosure – now not just by elites using hillforts, but at all levels in society – broadly supports the notion of a social upheaval of some sort at this time. It is into this perhaps more turbulent period that we must now move.

A LIA-ER realignment of the axes of authority

Stead (1991, 184) has suggested that the rite of burial within square barrows may have lasted into the 1st century AD at Rudston, but argued that most cemeteries had gone out of use a century before the Roman conquest of the region. However, given the issues of dating these changes between the end of the MIA and the arrival of the Roman army in the region, it would be foolish to ignore the possibility of some cause-and-effect relationship linked to the growth of Roman influence - first via the continent, then from south of the Humber, and eventually on Parisian soil. For example, for such a decentralised, clan-based society, one can imagine that any attempt to agree a corporate tribal strategy toward Rome might have caused a major disturbance of the status quo. As discussed in Chapter 3, cultural change resulted from a complex process not an event, and to view the Roman conquest of AD43 – or AD71 in Yorkshire – as a hard line in terms of cultural change is a mistake. From the late 1st century BC we recognise in the south-east and, to a lesser degree, the east of England that there existed intensified
contact with Roman Gaul associated with the emergence of client 'kings' (Creighton 2000; 2006). In eastern Yorkshire we have a region with a significant iron industry, which probably underpinned the wealth, prestige and prominence of some MIA tribal groups in eastern Yorkshire (Millett 1999, 225). This crucial resource was connected, via an excellent waterborne communications network, to the ancient and important overland routeway following the edge of the Lincolnshire and Yorkshire Wolds, which crossed the Humber between South and North Ferriby (Millett 1999, 225) - the Bronze Age Ferriby boats hint at the antiquity of this crossing point (Wright et al. 2001).

Eastern Yorkshire appears to be following a quite insular trajectory during the MIA, but is it such a stretch to imagine that the emergence of more expressive pottery forms (Challis and Harding 1975(i), 98), the abandonment of mortuary display and recourse to enclosure were to some degree a response to developments on the continent and south of the Humber? After all, we have increasing evidence for the existence of elite-level contacts across wide geographical areas, both within Britain and between it and the continent, before, during and after the Claudian invasion (Creighton 2000, 2006). To suggest that elite groups in eastern Yorkshire were completely oblivious to and unaffected by socio-political changes occurring within the Brigantes or, more significantly, between elite groups from Kent to Lincolnshire is frankly inconceivable.

There are also good reasons to believe that the Humber, although conventionally seen as the southern limit of Parisian territory, remained a crucial conduit for inter-regional trade into the LIA and ER periods and was probably a far more permeable socio-political boundary than the *Peoples of Roman Britain* series might have us believe (e.g. Todd 1973; Ramm 1978).

Corieltauvian contacts and the unifying Humber

It has been widely suggested by earlier authors that the LIA tribe the Parisi, who were recorded in eastern Yorkshire in Roman documents, are
historical correlates for the archaeologically-defined MIA Arras Culture (Ramm 1978, 21; Dent 1983a, 39; Millett 1989, 38). The apparently decentralised, clan-based structure of Parisian society does not seem to have resulted in recognisable settlement hierarchies or central places such as those in Corieltauvian territory south of the Humber, for example, Dragonby (May 1996).

Support for the notion of a Humber ‘trading zone’, quite distinct from the Wolds proper, is provided by the patterning of Corieltauvian coinage (May 1992, 101) and the growing evidence for pre-AD71 imports of Roman and ‘Gallo-Belgic’ ceramics on ladder sites on the north Humber fringe and in its southern Wolds hinterland. Central to this argument is the rich LIA settlement at Redcliff, with its regionally unique assemblage of Corieltauvian coins, brooches and imported ceramics (Corder et al. 1932; Corder and Pryce 1938; 1939; Crowther and Didsbury 1988; May 1992). In terms of the finds, if not yet the settlement evidence, Redcliff has much more in common with LIA-ER sites south of the Humber such as Kirmington, South Ferriby and Dragonby than it does with any to the north. The distribution of ceramic imports from south of the Humber is revealing: in the Humber hinterland sites ranging from modest farms such as MSL (see Chapter 8) to those such as Brantingham, which later became villas, were receiving such material (Dent 1988, 98); whereas the ladder settlement underlying Rudston villa provides a rare Wolds example of a site receiving Camulodunnum-type butt and girth beakers (Rigby 1980, 41). In recent years, developer-funded fieldwork and the metal detected finds of the Portable Antiquities Scheme have added hugely to the evidence for the importation of LIA pottery and coinage from south of the Humber. Coins, including a recent hoard of gold staters from Walkington parish, are recorded as far north as Driffield, whilst south bank pottery has been found up to 20km north of the Humber (Dave Evans pers. comm. October 2007). This patterning seems to suggest an intensity of contact beyond elite-level trade.
Before the emergence of wider evidence for imports across the south of the study region, the finds from Rudston seemed a more striking marker of the differential status of some LIA-ER social groups with better access to relatively exotic household goods. The finds still mark Rudston villa as different, particularly in its northern Wolds context, but the significance of early imports clearly has to be judged against underlying patterns of consumption and supply. Further potential evidence for LIA-ER social hierarchies is evidenced at other sites on the Wolds that later became villas. For example, at WGV ER Gaulish colour-coated wares and decorated samian were recovered with LIA-ER DPH coarsewares. Similarly, the enclosure underlying Langton villa produced ER greyware forms, Rusticated ware and, again, LIA-ER DPH types. Is the presence of ER pottery on such villa precursor sites evidence for the presence of dominant LIA groups who, through the mediation of taxation in kind between their communities and the Roman military and later civilian authorities, were able to exploit their position over several generations to eventually acquire the trappings of Roman living?

Early Roman military-urban patterns of exploitation

When the Roman army entered Parisian territory its focus appears to have been on the suppression of the revolting Brigantes, a confederation of tribal groups occupying the area to the north and west of the Parisi (Hartley and Fitts 1988, 1-5). Redcliff was quickly abandoned in favour of a new fort, naval base and settlement at Brough-on-Humber and from there roads were laid out to link forts at Hayton, Malton, Cawthorn and Lease Rigg and York via a possible fort at Stamford Bridge (Breeze and Dobson 1985, Figs.1 and 2). The latter remains unproven; however, a temporary marching camp has been noted just to the north at Buttercrambe (Horne and Lawton 1998). As argued previously (Atha 2005, 100), the positioning of the legionary fortress at York reinforces the notion that the Ouse formed the inter-tribal boundary between the hostile Brigantes to the west and the ‘friendly tribe’ the Parisi to the east. Moreover, the position of the forts within Parisian territory reflects the Roman practice of establishing their military infrastructure “on the
borders of the target territory” (Millett 1990a, 54), in this case Brigantia. The early abandonment of forts at Brough and Hayton (Breeze and Dobson 1985, Figs.1-3) seems to indicate a fairly uncontested transference of power in Parisian territory; as is also borne out by the wider evidence for continuity of socio-political trajectories in the agricultural hinterlands of eastern Yorkshire. The marine transgression mentioned above would probably have meant that the ports/trans-shipment points at Brough and Faxfleet ‘B’ would respectively have commanded the eastern and western sides of the Walling Fen tidal inlet (Sitch 1989, 13; Head et al. 1999, 137). Indeed, at Brough the now infilled Haven would have contained a harbour and bay directly adjoining the western side of the Roman walled town (Dave Evans pers. comm. October 2007). The region’s waterways seem to have become particularly important lowland focus for rural development from the 2nd century onwards, particularly in the lower Hull Valley (Didsbury 1990b, 206). Here, a string of settlements were established, which appear to have specialised in cattle husbandry exploiting the rich saltmarsh and water meadow grazing, whilst processed carcasses are thought to have been shipped out using the river (Evans 2000, 197-8).

The main Roman civilian settlements beside the forts at Brough (Wacher 1969), York (Ottaway 2004) and Malton (Wenham and Heywood 1997) have been well explored and are of most relevance to this study when considered for their potential relationship with later Roman patterns of rural development, in particular villas. The general absence of major stone buildings and urban munificence in ER towns in the region is reflected in their rural hinterlands where, apart from the 2nd-century development of Welton Wold villa (Mackey 1999, 24) and possible stone-built byre of similar date at Brantingham villa (Dent 1988, 98), little change of trajectory is evidenced. A focus on the Roman road network, however, has yielded evidence for roadside settlements with 2nd century or somewhat earlier beginnings at Hayton (Taylor 2001, 53), Shiptonthorpe (Millett 2006, 305) and Stamford Bridge (Lawton 2003; 2005). Roadside settlements have obvious morphological parallels with
Chapter 5

A Parisian sideshow? Putting eastern Yorkshire into context.

ladder settlements but, economically-speaking, they appear quite different. During the 2nd century, Shiptonthorpe evidenced a level of integration within Roman supply networks that, although much better than local ladders, lacked the intensity demonstrated at contemporary urban/military centres or later villas in the region (Millett 2006, 310). The value of developer-funded fieldwork in a cropmark-rich landscape has recently been demonstrated by the discovery at Newbald of a previously unknown and well-preserved roadside settlement following a side branch of the Brough to York Roman road (Evans pers. comm. March 2007). The site was rendered invisible to remote sensing by a deep blanket of colluvium and only came to light when a pipeline easement carved its way up the dry valley within which it lay. Based on the ecofactual and artefactual evidence for economic activity, Millett (2006, 308-10) posited a role for these roadside communities as intermediaries between rural producers and urban/military consumers. The relatively high coin loss rates at Shiptonthorpe may reflect transactions with such consumers whilst, in contrast, the rural producers may have received Roman manufactured goods in exchange for their produce – this may, in part, explain the generally low incidence of coins on rural farmsteads. The discovery of greyware pottery production at Stamford Bridge (Lawton 2003) and Newbald provides an interesting development in our understanding of the types of roles played by roadside settlements in the region. In addition to the above excavated settlements, a further example has been identified from cropmarks at High Catton (Jones forthcoming). An interesting contrast is provided by the lower Hull Valley, where developer-funded fieldwork has also produced good evidence of a system of riverside ladder-type settlements, which also flourished from the 2nd century onwards (Evans and Steedman 1997, 124; 2001, 85).

Later Roman trajectories

Later Roman rural trajectories are really beyond the scope of this study but, as the case studies in Chapters 7 and 8 show, developments in the 3rd and 4th centuries emerged out of the pre-existing landscape structure.
On the Wolds the character of LR changes demands that they be dealt with not as a ‘structural’ component but, rather, in terms of changing patterns of landscape exploitation resulting from the emergence of more centralised villa economies.

In brief, though, the later 2nd and early 3rd centuries, in particular on the Wolds, evidence a pattern of significant reorganisation of the LIA-ER settlement structure defined by ditch-enclosed ladder settlements. Many of the LIA-ER enclosure ditches excavated to date seem to have been backfilled and levelled in this period (for further detail see GWS and WGC case studies in Chapters 7 and 8). Some such ladders may have been abandoned, but more reveal a reorganisation of space, often still respecting pre-existing trackways, within which rectangular buildings were bounded by slighter probably hedged boundaries. Later Roman trajectories across the wider region are, however, complex and, in contrast to the patterning of reorganisation in Wolds, the lowlands reveal a growth of new settlements focused upon riverine, estuarine and wetland-edge locations. The riverside settlements of the Hull Valley, which were mostly founded in the 2nd century, continued on similar trajectories in the 4th or even early 5th centuries.

Most prominently, the LR landscape of eastern Yorkshire is different from that of the ER period because we see the emergence of villas, in most cases constructed over earlier enclosed settlements and again within redefined boundaries. The eastern Yorkshire villas are mostly on the Wolds and at their lowland periphery, and there are distinct clusters around urban centres at Malton and Brough. Villas at Harpham and Rudston could possibly relate to a lost Roman port at Bridlington and two postulated Roman roads appear to head in that direction. Here we see for first time wholehearted expressions of Roman styles of living on rural sites as evidenced in the 3rd and 4th centuries at Brantingham, Langton, Rudston, Beadlam, Wharram Grange and Wharram-le-Street villas. One can envisage for villa owners a similar intermediary role, in terms of engagement with the monetised LR economy, to that suggested
for residents of Shiptonthorpe above. Such roadside settlements were integrated via the Roman road network in the Vale of York with the main urban centres in the region. Of these, York achieved *colonia* status and with it came the major public buildings one would expect in a town of such status. Similarly, Malton and the *civitas* capital at Brough, although far less grand, emerged as towns more recognisable as major Roman civilian centres (Ottaway 2004, 127). By the LR period the region was also economically pivotal to the supply of coarseware ceramics and the products they may have contained to the frontier zone (Whyman 2001, 248).

Despite such developments, the rural hinterlands of much of the Vales of York and Pickering, the upper Hull Valley, Holderness and the Wolds remained the domain of farming communities. The important point here, though, is that the 3rd century did represent a genuine watershed in the development of the region: in terms of the maturity of villa structures and urban centres, in the reorganisation of Wolds’ ladder settlements and in the expansion of lowland settlement in riverine, estuarine and wetland-edge locations. Ultimately though, for my purposes it is sufficient here to acknowledge the validity of that chronological cut-off point; the causes and implications of such changes are for other researchers to explore.

5.6 Conclusions

The research questions listed in Chapter 1 of this thesis are addressed using two distinct levels of analysis: inter-regional and intra-regional. The discussion below deals with the first of these and, in order to do so, it summarises the findings of this chapter and then compares and contrasts them with trends observed in Chapter 4’s three case studies. First, therefore, I will review the eastern Yorkshire evidence for changing landscape structure, patterns of exploitation and the reproduction of elite authority from the LBA to the ER period.
A summary of the eastern Yorkshire social landscape (LBA-ER)

Eastern Yorkshire was shown to be an environmentally diverse region which, in the past, embodied even greater contrasts than today between dry calcareous uplands, spring-fed lowland edge, wetland proper and riverine/estuarine environments.

The LBA-EIA landscape records a process of extensive territorialisation that involved the creation of massive linear boundaries, which drew upon earlier tenurial and authority claims made using EBA barrows and ancient trackways. This process appears to have been driven forward by small groups of elites living in fortified hilltop enclosures (also conventionally referred to as hillforts – a shorthand I will use below). Several key points are raised here: firstly, that we have clear evidence of a hierarchical social structure at the time; secondly, that a substantial rural population is implied by the numbers of EBA barrows and the size of the LBA-EIA undertaking; thirdly, that the hillforts' grain storage features and availability of labour for non-agricultural work together suggest the routine production of agricultural surplus; and, finally, that the extent of the linears would have required population control across multiple community areas. Nonetheless, no regional elite centre is known and a limited degree of social complexity is therefore implied although, at this early date, some degree of centralisation is provided by the hillforts with their large grain storage features and Hallstatt metalwork. Moreover, the productive landscape, the basis for elite authority, was being formally inscribed with tenurial rights linked to settlement, ploughland and pastures.

The evidence is slender for the MIA, but we can suggest the existence of a mixed economy with an upland emphasis on sheep and some arable and lowland focus on arable and cattle. These are contrasted by industrial specialisation in wetland areas. Landscape reorganisation in the MIA involved the enclosure of earlier trackways using parallel flanking ditches and some sub-division of the large territories defined by earlier linears. These changes demonstrated
that MIA communities respected the earlier landscape structure but, nonetheless, felt it necessary to restate land-claims using early square barrow clusters (itself harking back to the EBA practice of marking territories and routeways with burial monuments). It is perhaps significant that the emergence of a new burial rite followed the elite abandonment of separate defended settlements: MIA settlements appear undifferentiated in terms of status, but it is in the sometimes massive cemeteries that we find evidence for elite-level display in early cart burials and, late in the sequence, warrior burials. Thus, although the clear settlement hierarchies of earlier times had gone, the emphasis on social differentiation persisted in elite-level mortuary display. Essentially, however, the MIA seems to record a move towards a proliferation of lower order elites, which then seems to have persisted into our key study period. The figure of 9% for barrow burials with grave goods at Wetwang Slack is notable here. A few individuals were privileged enough to warrant cart burial, but they were perhaps supported lower order elites falling within this latter category.

By the end of the MIA, the existing lowland landscape structure was gradually overwhelmed by a perceived greater need for an expansion of space for agricultural use and settlement development. We thus see agricultural land and enclosed settlements overriding the former cemeteries, whilst the enclosure of household plots went hand-in-hand with a re-focusing of mortuary practice around the peripheries of the domestic sphere. On the Wolds, the LIA-ER landscape structure of ladder settlements with their domestic and stock enclosures, in-fields and outfield grazing developed around the ancient trackways, which had been formally ‘enclosed’ in the MIA. In the wide open spaces of the large Wolds’ valleys, more extensive plateaux and lowland edge, massive ladders developed. In contrast, on the narrower plateaux of the higher Wolds and in areas in-between such heavily occupied land, smaller more irregular examples can be found. Contrasting and complementary economies can be envisaged
here: arable-focused mixed farming with some transhumance in the former case and a focus in sheep and some arable in the smaller settlements. In the Vale of York, patterns of co-axial fields were linked to arable farming whilst, on raised areas within wetlands to the south, iron and ceramics production is recorded alongside cattle husbandry. In the lower Hull Valley, ER communities exploited an ameliorating marine transgression to establish a string of riverside ladder settlements that, again, seem to have specialised in cattle husbandry. These ladders, it was argued, reflected an ER focus of development around roads and rivers. This change was thus partially an opportunistic exploitation of an improving environment, partially an ER focus on a lowland communications network, within which rivers appear to have played an important part. The latter was probably linked to the movement of agricultural surpluses over larger distances than had formerly been necessary.

There is a quite distinct patterning to ER landscape developments, which shows settlement continuity in areas intensively exploited during the LIA – such as the Wolds, Vale of Pickering, Ouse-Derwent interfluve, and Vale of York wetlands; whereas, in some lowland areas, ER settlements were established anew around the Roman road network and beside navigable rivers – such as in the lower Hull Valley, below the western Wolds' scarp, and beside rivers in the central Vale of York. Such changes were prefigured by the patterning of contact, trade and, perhaps, wider socio-political interactions between communities to either side of the Humber, particularly in the 1st century AD as evidenced at Redcliff and some distance north of the estuary. Conventionally, the presence of later MIA weapons burials and LIA occurrence of warrior figurines have together been taken as indicators of social upheaval in the immediate pre-Roman period. However, the region appears to have enjoyed a peaceful transference to Roman hegemony. Nevertheless, the consolidation of Roman authority here reinforced the division between established LIA areas of settlement and new foci emphasising, perhaps, access to
Chapter 5

Chapter 5

A Parisian sideshow? Putting eastern Yorkshire into context.

Roman markets and goods. Roadside settlements, of which there are an increasing number known in lowland eastern Yorkshire, are thought to have been occupied by communities who acted as economic intermediaries exchanging agricultural surplus from farming communities in return for Roman goods (Millett 2006, 310).

In this context, the lack of any obvious LIA-ER settlement hierarchy in the rural heartland of the Wolds can perhaps be explained not in structural but, rather, artefactual terms. The Wolds, as the core area evidencing LIA to ER continuity, are also the main sub-region within which villas later developed. However, the early example at Welton Wold and another, perhaps, at Brantingham, are exceptions, which probably relate to quarrying and other military-focused activities associated with road building and ER establishments between Brough and York. All the published villas on the Wolds are firmly LR developments, but they also have some evidence for LIA-ER settlement which, in several cases, had an usual level of access to imported ceramics from south of the Humber or further afield. This subtle difference may, in the absence of other structural or mortuary markers, be sufficient to identify LIA higher status households, who eventually had the wherewithal to build for themselves well-appointed Roman-style houses. Such villas, for the first time since the LBA-EIA, permit the archaeological identification of centralisation amongst the farming communities of rural eastern Yorkshire.

Contextualising eastern Yorkshire (M-LIA to ER)

In overview, eastern Yorkshire presents a further regionally distinctive pattern of landscape structure, exploitation and socio-political organisation to go with the other three identified in the previous chapter. Our understanding of landscape structure and exploitation in each of the four regions, indeed across the entire former Roman province, is affected by differential visibility and survival of archaeological remains. Nonetheless, such processes are sufficiently well understood as to not overly hinder the appreciation
of intra- and inter-regional patterning, which seems to reflect real differences in the past. Traditional divisions between a highland and lowland zone are too coarse to offer any meaningful insights into the LIA patterning, which is clearly identifiable on a much finer, regional basis. Such LIA patterning resulted from regionally-specific interactions between complex processes of environmental change and socio-political structures.

In eastern Yorkshire and parts of the Fenland the persistence of LIA ceramic traditions can make it difficult to differentiate between LIA and ER change in the agricultural economy. This is nothing compared to Cumbria, where the region's aceramic Iron Age renders such a task almost impossible. In contrast, the very richness of the UTV palaeobotanical and zooarchaeological data base makes economic comparison with the wider province difficult. This issue is reflected in more general terms with respect to the south-east and its exceptional archaeological data base. The south-east thus represents one extreme archaeological signature of a widely evidenced pattern of LIA-ER regionality. Eastern Yorkshire was also different from other regions in the LIA and enjoyed an ER trajectory quite distinct from any other region. The difficult part involves the identification of elements reflecting wider, longer-term processes and those operative on a more local, short-term basis. As discussed above, the eastern Yorkshire LIA also exhibits significant intra-regional variation in settlement patterns and landuse between different environmental-economic zones. The UTV, Fenland and Cumbria similarly evidence intra-regional patterns reflecting their own environmental-economic baselines.

On the face of it, eastern Yorkshire has much in common with the UTV: both exhibit a distinct M-LIA change of trajectory in terms of landscape structure and enclosure, and both regions developed extensive agricultural settlements in their lowlands and a somewhat different pattern in their calcareous uplands. These upland-lowland
contrasts might be in part connected to transhumance—a practice likely to have also been important in Cumbria. Where MIA activity was identified around the Fenland’s western fen-edge, it appears to have continued right through into the Roman period.

In terms of the reproduction of elite authority, the UTV is the only region of the four that has really convincing evidence for the existence of a centralised LIA society in the region. The Fenland and, to a lesser extent, Cumbria have some indications of LIA defended sites, whereas in eastern Yorkshire the only possible candidate is the short-lived site of Redcliff, which may have acted as an entrepôt through which imported goods from south of the Humber were fed out into the Humber hinterland.

For the majority of agricultural communities in eastern Yorkshire and the UTV, the LIA-ER transition seems to have been a period dominated by continuity. Interestingly, eastern Yorkshire and the Fenland, which both face out into the North Sea, show some response to LIA-ER sea-level change, which opened up new possibilities for economic extensification. In the ER period this took the form of riverine/wetland-edge cattle husbandry in the former region and salt extraction and the intensive production of lamb in the latter—the hints of Iron Age and Roman salterns in eastern Yorkshire may eventually prove to relate to a rather more extensive activity than presently seems to be the case. Cumbria’s well-preserved upland field systems and lowland settlements both record ER activity but, given the ‘invisible’ Iron Age there, it remains unclear whether this was continuity of LIA activity or Roman-period extensification.

The similarities evidenced in the M-LIA transition in the UTV and eastern Yorkshire are also repeated in the Roman period, when both regions developed villas on their calcareous uplands, albeit in the ER and LR periods respectively. In addition, both regions saw the creation of ER roadside settlements, which provided an important link between rural producers and Roman manufacturers. The parallel
Roman-period trajectories of eastern Yorkshire and the UTV are particularly interesting given their respective indications of decentralised and centralised LIA societies. My feeling is that the MIA and earlier evidence for social hierarchies in eastern Yorkshire, which re-emerges in the villas of the later Roman period, is also present in the LIA-ER period, but expressed so subtly as to be difficult to recognise archaeologically. The presence of small quantities of imported ceramics on LIA-ER farmsteads that later became villas seems crucial here.

In conventional terms, eastern Yorkshire sits at the southern edge of the military zone and marks a northern outpost of the civilian province. In sum, eastern Yorkshire was as much an anomaly in its Roman context as it was anomalous in its M-LIA regional signature. This seems to tell us that the correlation between LIA regionality and ER trajectories is strong and, moreover, is strongest where very distinctive patterns of LIA landscape exploitation existed and the regions in question enjoyed a peaceful transition to Roman hegemony.
CHAPTER 6

From artefact to landscape: productively integrating data of different scales and resolutions

6.1 Introduction

This chapter builds upon the conceptual and contextual foundations of the previous four chapters to create a methodology that maximises the potential of the data sets available in order to successfully address the research questions. The discussions below are firmly focused upon the exposition of the methodology developed for the processing and analysis of the Wharram Grange Crossroads (WGC) archive. However, the range of data sets and techniques associated with the WGC case study were also, to greater or lesser degree, relevant to the other three case studies: Garton-Wetwang Slacks (GWS); Melton South Lawn (MSL); and West Heslerton (WH).

Section 6.2 introduces the four eastern Yorkshire case studies and explains the basis for their selection. Thereafter, the research questions are reintroduced as a preface to a discussion of the various data sets available for use in the case studies (6.3). The discussion works from large-scale remote sensing data sets and their role in, for example, the elucidation of landscape structure, down to assemblage and artefactual data and their potential to provide evidence for, amongst other things, the date, function and status of deposits and features. The following section then sets out the detailed methodology tailored to suit the specific range and quality of data sets within the main Wharram Grange Crossroads (WGC) case study (6.4). It should be noted that, as the only case study substantially based upon raw archives, the WGC methodology required far greater elaboration than was necessary for the other three. Therefore each of the three supporting case studies will have a short methodological discussion included within their ‘Background’ sections.
Chg_i2ter6 From artefact to landscape: productively integrating data of different scales and resolutions

in Chapter 8. There seemed no reason to provide a conclusion to this chapter and the methodological discussion therefore flows directly into the WGC case study in the following chapter.

6.2 The eastern Yorkshire case studies

It is extremely likely that archaeological research in the 21st century will become increasingly reliant on non-invasive methods. That said, developer-funded projects will continue to churn out grey literature reports and we need to make better use of the data sets they contain (Richard Bradley’s (2007) recent book is an attempt to do just that). There are also substantial unpublished archives from large and archaeologically significant excavations that remain seriously understudied, but demand to be revisited and have new questions asked of them. With these issues in mind, four very different EY case studies, each involving the excavation of LIA-ER ladder settlements, were selected for use in this thesis. Three of their number (WGC; GWS; MSL) involved quite substantial excavations, whereas WH included a small sampling exercise as part of a major remote-sensing focused study.

Case study selection rationale

My main research interest is in the emergence and development of ladder settlements. Therefore, co-axial field systems were worthy of consideration in terms of the overall pattern of landscape exploitation in Chapter 5 but not, for my present purposes, more detailed study. Similarly, the riverside ladders of M-LR date in the Hull Valley represented a noteworthy extensification on to new land, but were adequately contextualised in synthesis. As was demonstrated in Chapter 5, Halkon and Millett’s (1999) work in the south-eastern Vale of York provides invaluable comparative material for this thesis, but is already substantially in print, online and, crucially, was also the subject of Peter Halkon’s own recently completed PhD research. Thus a combination of academic etiquette (Halkon’s thesis was still ongoing when decisions had
to be made) added to a desire to examine other, less well known, case studies led this project down another avenue.

The first and by far the most substantial case study is Wharram Grange Crossroads (WGC), a long-term research project and the subject of seven separate field school excavation campaigns by the universities of Sheffield and York. The archives from 10 student-dug trenches are collectively large and of variable quality. However, with the published Wharram excavations, they represent a substantial and valuable case study. Also the Wharram plateau is in the high north-western Wolds and, as such, is within the upland zone of smaller ladder settlements identified in Chapter 5. When taken together, the archaeological and geomorphological unity of the plateau landscape at Wharram offered an excellent opportunity to thoroughly explore the inter-relationships of landscape structure and exploitation, and the reproduction of elite authority on a rather grander scale than would be possible in the less detailed archives of the other three case studies. With these ideas in mind, the WGC study takes in a wider geographical area, more explicitly mirrors the structure of Chapter 5, and also incorporates additional levels of analysis.

The first supporting case study, Garton-Wetwang Slack (GWS), was a massive open-area excavation carried out ahead of gravel quarrying during the 1970s rescue movement. The 800+ page archive report is usually only available on microfiche but, thankfully, a paper copy was kindly made available by Terry Manby of the East Riding Archaeological Society. This is a very important site that should really have been fully published but, like so many big projects at that time, the money was devoured by the fieldwork and initial post-excavation processing and it never happened. The site is unique in that it contained a MIA cemetery with contemporary open settlement, which was later superseded by LIA-ER ladder settlements. For this reason, if no other, the site had to be included in this project. However, it is also located in a valley on the
Wolds’ eastern dip-slope and thus also provides a valuable environmental contrast with the Wharram study.

In Chapter 5, the northern Humber hinterland was identified as an archaeological sub-region evidencing significant contrasts with more northerly parts of the region. It was therefore fortuitous that the assessment report from Melton South Lawn (MSL), a recent developer-funded excavation associated road improvements west of Hull, was provided for my research by On-Site Archaeology. There is therefore an interesting contrast between MSL, which is a PPG16 (DoE 1990) project aimed at (where possible) preserving archaeology in situ and WGC which, as a 1970s rescue excavation, sought to preserve the archaeology ‘by record’ – in other words, by digging it. In addition to its obvious benefits in terms ladder settlement research, this site also offered an opportunity to contrast a modern commercial project with the earlier rescue excavation at GWS.

The final case study examines the classic extensive lowland ladder settlement at West Heslerton (WH), whose investigation began as a rescue excavation in the late 1970s and has since developed into an exemplar of remote sensing-focused landscape research. Dominic Powlesland’s work in the Vale of Pickering has been pioneering in its integrated use of remote sensing techniques. A truly astonishing late prehistoric to early medieval landscape has been revealed using mostly magnetometer surveying, but also a range of airborne survey methods as well as targeted excavations. Only a brief published summary is available for one part of the ladder. Nevertheless, the full magnetometer plot for a 10km-long section of the southern Vale was provided for use in this project and this will be compared and contrasted with the results from the other three excavation-based studies.

Of the five main categories of enclosed settlement identified in Chapter 5 only two are directly relevant to the specific research focus of this thesis: the upland type of ladder settlement is explored at WGC; whilst
three lowland ladders, in quite different environmental contexts, are explored at GWS, MSL and WH. As introduced above, the four cases studies can also be viewed as two rescue excavations (GWS and MSL) and two research projects (WGC and WH).

The next task involves an examination of the material implications of the research questions and the ways in which the methodology will exploit the diversity of the case study data sets in order to provide the necessary evidence.

6.3 Research questions and case study data sets

The research questions were obviously not arrived at without due consideration being given to the nature of the evidence available and the wider archaeological-intellectual context of the project. However, it is only when one engages with the detail of the case studies that there emerges a true sense of how realistic the original aims might have been. The project was thus developed recursively between the problematic and its supporting questions and the inherent opportunities and constraints of the case study data sets – both those within eastern Yorkshire and in the three other regions examined in Chapter 4. In the interest of clarity and convenience a reminder of the research questions is provided as a preface to my discussion of the data sets and research methodologies designed to answer them.

Research questions

1) In overview, between 100BC and AD200, how does the trajectory of settlement and landuse in eastern Yorkshire compare with other regions in what became the Roman province of Britannia?

2) Based on the combined analysis of remote sensing and excavation data is it possible to characterise how the emergence of ladder settlements related to wider changes in the structure and organisation of the agricultural economy from the MIA to the ER
Chapter 6: From artefact to landscape: productively integrating data of different scales and resolutions

period?

3) The square barrow inhumations of the so-called Arras Culture are conventionally taken to express social status and differentiation through the mortuary context but what evidence is there for social hierarchies and the reproduction of elite authority in the social landscapes of the study period?

4) Can we approach a deeper understanding of the relationships between large-scale landscape change and household-community social action using the kinds of archaeologically diverse data sets that result from field schools, old rescue excavations, modern developer-funded work and remote sensing-based research – invariably on plough-damaged landscapes?

The research questions were thus designed to move from the general to the specific and then back out to a general consideration of more practical, real world issues. Question 1 was concerned with the identification of LIA regionality as a baseline from which to then assess the impact of Roman contact, conquest and consolidation. In effect, my aim was to characterise the diversity of response of LIA tribal societies to the expansion of the Roman Empire as a means of better understanding the patterning of ER trajectories across the regions of Roman Britain. Chapters 3-5 have, to large extent, already addressed these issues in that LIA regionality was evidenced in all its diversity in the south-east, the UTV, the Fenland, Cumbria and eastern Yorkshire. Moreover, the study region was shown in overview to be particularly interesting because it brought together an intriguing combination of environmental, historical, geo-political and socio-economic factors, which marked it out as a rich resource for the study of the LIA-ER transition. By examining the evidence on an intra-regional basis (Chapters 7 and 8) further, more localised and nuanced, understandings of the development of landscape structure and patterns of exploitation (Question 2) and the reproduction of elite authority (Question 3) are
possible. An answer to the final question will emerge during the processing of the four case studies, during which it should be possible to assess the degree to which different archaeological approaches and levels of preservation constrain and enable the process of analysis and interpretation. My consideration of here will thus run in parallel with the main thrust of the analyses and discussions in the following two chapters and will then be taken up again in the conclusions to the research (Chapter 9).

Before moving on to discuss the case study methodologies in detail (Sections 6.4-6.7), it is necessary to consider the different remote sensing and more intrusive techniques used in archaeological fieldwork and the ways in which this project attempts to integrate the resulting data sets in effective and meaningful ways. The sections below are hierarchically arranged to reflect the cascading scales and resolutions at which the landscapes in question were investigated: airborne remote sensing, ground-based remote sensing, surface collection, excavation, and assemblage analysis for dating and function.

Airborne remote sensing
The value of an aerial perspective has long been appreciated and exploited for the identification and surveying of archaeological features and monuments in their landscape setting (e.g. Riley 1986; Bowden 1999, 105-15; Wilson 2000, 16ff). Given the massive expansion of arable farming since WWII, most systematic aerial surveys have tended to be concerned with the photographic recording of cropmark and soilmark sites rather than earthworks (e.g. Riley 1980; Stoertz 1997; Jones forthcoming). In recent decades a range of other types of airborne survey equipment has become commercially available, including multi-spectral scanners and LiDAR, as used in the Vales of Pickering and York (Powlesland *et al.* 1997; Whyman and Howard 2005). Unfortunately, although these areas fall within the study region, the survey data were not available for use in this project. However, we are fortunate in eastern
Yorkshire to have Cathy Stoertz's (1997) seminal publication of cropmark landscapes, which encompasses much of the study region and covers all four of the regional case studies discussed below. Indeed, part of the selection process for these case studies included the issue of data comparability which, at least at the landscape scale of analysis, was covered by selecting examples within the area mapped by Stoertz. Moreover, as discussed in Section 5.2, it was also possible to take into account a range of other important archaeological and environmental criteria when making these selections.

Stoertz's maps were digitised and are used to provide the landscape-level basemap against which the other categories of evidence are then compared and contrasted. In terms of the research questions, the cropmark data allow an inter-regional and intra-regional comparison of settlements and field systems based on morphological characters. By drawing on past research (Atha 2003), in which such characters were tested by other means (usually excavation), they can be tentatively ascribed to broad functional and periodic categories such as ladder settlements. Fundamentally, though, cropmarks fossilise multiple periods of development and can only be given a greater sense of time depth and chronology when used in concert with other techniques.

Personal field experience at WGC had engendered a reasonably good understanding of the impact of intensive arable farming on buried archaeology. Soils on the Wolds are thin, often no more than 25cm deep, and the plough deflation of buried archaeological sites and associated former land surfaces has simultaneously done two things: it has highlighted the overall patterns of landscape change as evidenced through the cropmarks of larger and deeper cut features such as boundary ditches and enclosures, whilst, at the same time, completely removing the occupation layers, hearths, stake holes and drip gullies relating to domestic occupation. We are therefore left with the outline structure of settlement, fields and trackways which, through careful excavation, can be translated into a chronological narrative of human-environment
interaction. However we have lost much of the biographical detail of household and community *inhabitation* of the landscape. An initial survey of the case studies suggested that this was particularly a problem at WGC and at GWS, and less so at MSL and WH where there appeared to be some reasonably good pockets of preservation. This degradation of the archaeological remains at WGC and GWS was potentially a serious problem for a project attempting to collectively unpack the overall narrative of landscape change in relation to the detailed biographies of discrete social groups. The early recognition of such practical, methodological concerns led to the inclusion of Question 4 as an explicit prompt to reflect upon such issues during the case study analyses and, especially, in the conclusions.

Ground-based remote sensing

Geophysical techniques, the ‘geofizz’ of popular archaeology, are now an everyday tool at the disposal of the commercial archaeologist, local society or academic researcher. Of the ever-growing range of techniques available, magnetometry (invariably using a fluxgate gradiometer) and resistivity (using a twin probe array), are the two mainstays of archaeological geophysics in Britain (Gaffney and Gater 2003, 56-63). Noteworthy amongst the other regularly used geophysical techniques are ground penetrating radar (GPR) and magnetic susceptibility (MS). The former is of quite limited use on the kinds of archaeology typically encountered on rural sites in eastern Yorkshire but, in contrast, MS can provide a useful complement to the two main techniques introduced above (Clark 1996, 99-105; Gaffney and Gater 2003, 72-4). Soil phosphate analysis, especially in concert with MS, has been use to detect background patterns of magnetic and chemical soil enhancement caused by past human activity (Tite and Mullins 1971; David 1995, 28).

Not without good reason did Anthony Clark (1996, 69) refer to the fluxgate gradiometer as “the workhorse – and the racehorse – of British archaeological prospecting”. It is the most versatile, fast and reliable tool in common usage and, not surprisingly, was responsible for the
geophysics plots used in this thesis. The WGC and WH data were available in digital form suitable for use in a geographical information system (GIS), whereas the MSL report was provided as part of a PDF document. The GWS fieldwork, as already mentioned, was completed before archaeological geophysics was widely used and therefore lacks this useful additional tier of analysis. However, my research interests are not concerned with the spatial comparison of survey techniques per se but, rather, are focused upon the ways in which a variety of complementary data sets can be collectively directed at a series of research questions. Indeed, given the fundamental nature of magnetometry data, within which different sizes and types of features produce different strengths of response, we can usually achieve far more than is possible with cropmark data (e.g. Yip 2006), which essentially are limited to identifying the presence and layout of larger sub-surface remains. Therefore, for instance, we can sometimes differentiate between ditches with magnetically-enhanced organic-rich fills and those with sterile chalky fills (Yip 2006, Fig.20). In addition, an impression of horizontal stratigraphy can also sometimes be gained as demonstrated by the application of high-resolution magnetometry at West Heslerton (Lyall and Powlesland 1996). However, size and fill type both influence response and, as a result, interpretation requires a prior knowledge of both local environmental conditions and the response patterns of archaeological remains in the region (Gaffney and Gater 2003, 110).

With respect to the research questions, the magnetometry plots are used in much the same way as the cropmark data. However, the geophysical results invariably amplify the cropmark record by adding further detail to features visible in the latter, as well illuminating quite different aspects of the buried landscape (as exemplified in the WH case study in Chapter 8).

Surface collection
Surface collection is a means of identifying the presence of past human activity through the analysis of artefactual material
incorporated in the ploughsoil (Hinchliffe and Schadla-Hall 1980; Haselgrove et al. 1985; Bowden 1999, 125-8). Since the basic principles were established, the technique has gone on to become an integral part of most large-scale landscape research projects (see examples in Bintliff et al. 2000; Francovich and Patterson 2000; Millett et al. 2000). As well as identifying the intense clusters of material associated with archaeological sites, surface collection can also be useful in discriminating between that latter and the much thinner distributions of highly abraded material conventionally associated with past manuring activity (Williamson 1984; Hayfield 1987). Of the four case studies under consideration here, only WGC had surface collection data sets available.

In terms of the research questions, the surface collection results are used in an intermediate stage of analysis: they provide some clues as to the date, and perhaps even function, of sub-surface features identified through airborne or ground-based remote sensing; and they constitute a bridge between the remote sensing data and the more detailed excavation results. They thus help to define the potential chronology of landscape structure, provide indications of patterns of landscape exploitation, and can say something about consumption patterns, status and trade. Given that the materials in question are all recovered from the ploughsoil, they are only indicators of what might lay beneath – greater certainty can be provided by excavation.

Excavation

Despite the increasing use of remote sensing technologies, excavation remains the primary data gathering technique used in archaeology (Carver 1990; Barker 1993; Roskams 2001). The main developments of the modern era have been the refinement of open-area approaches such as ‘strip, map and sample’ and, in more deeply-stratified urban contexts, the development of single context recording systems such as that used by the Museum of London Archaeology Service (MoLAS 1994). The MoLAS system allocates one sequence of context numbers to layers, fills
Chapter 6 From artefact to landscape: productively integrating data of different scales and resolutions

and cuts – the latter being used to group fills. In the Carver system, contexts are grouped by feature rather than cut number during excavation. The latter therefore attempts to interpret the archaeology at the trowel’s edge and thus, effectively, shifts part of the burden of interpretation from the post-excavation stage of analysis back on to site.

Within the cascading scales of investigation and analysis, excavation represents a very significant step in terms of the identification of far more features than are visible to remote sensing. It also, crucially, elucidates spatial distributions of features and clarifies their relationships with one another. In other words, excavation defines the horizontal relations of stratigraphy whilst, at the same time, revealing the vertical dimensions of morphological characters which, otherwise, only exist in plan. The conversion of archaeological remains in the ground into intelligible functional interpretations relies upon the use of standardised categories of feature types (the categories used in this thesis are introduced in Chapter 7).

All the case studies included areas of detailed excavation of their respective ladder settlements, but site reports with detailed stratigraphic and assemblage information were only available for some areas at WGC, and in summary form for GWS and MSL, whilst the WH excavations only exist as a short summary. In addition, there was a series of quite diverse raw archives from 10 field school trenches at Wharram, whose processing and analysis formed the basis for the main WGC case study. There is a tremendous contrast between the different usages of excavation in the case studies: GWS and MSL both involved open-area excavation, but under quite different conditions; the WGC case study is characterised by the use of multiple discrete trenches – positioned over earthworks within Wharram Percy village or over geophysics targets in the landscape beyond; and, finally, geophysics were also used at WH to position “a small scale research excavation” over part of the ladder settlement west of Sherburn (Site H20) (Powlesland et al. 1986, 167).
Open-area excavation is by far the best method for the investigation of such large phenomena as ladder settlements, as they are invariably characterised by horizontal stratigraphy between intercutting ditches and lesser, discrete features. Under such circumstances, the possibility of viewing the full extent of features in plan is clearly advantageous, particularly in a commercial context when developers need to be certain that the full archaeological implications of their groundworks are understood. Developers do not like surprises. Research-driven academic fieldwork, such as that at Wharram, faces a series of constraints that often do not permit the stripping of vast areas of the landscape. In the case of Wharram, the village earthworks are scheduled by English Heritage, whilst areas beyond the guardianship zone are under intensive arable cultivation. However, by using the remote sensing plots as a basemap it is possible, as demonstrated at WGC, to at least tentatively connect discrete blocks of stratigraphy identified in discrete but adjacent trenches. In sum, excavation is clearly crucial to my attempts to address all four research questions but, especially, Question 2.

Assemblage analysis: dating
The analysis of finds assemblages opens up a whole series of other possibilities in terms of dating, function, status, economy and trade. On the first topic, chronological precision depends, for the periods in question, on pottery, brooches and coins.

Pottery
Whilst ceramics offer much more than simply a means by which to date and phase sites (Orton et al. 1993, 23), they nonetheless do continue to provide the primary dating tool used in archaeological research, this project included. The key, perhaps, is to ensure that that is not all one does with the ceramics evidence: it should be fully integrated within higher-level contextual and spatial analyses if research questions concerning site function, social organisation and economic change are to be properly addressed through the material evidence. Nevertheless, an important preliminary to the analysis of the case study archives was the
identification, during the Wharram pilot study, of a series of ceramic type-fossils for the MIA-LR period in eastern Yorkshire.

MIA ceramics are typically bucket or barrel-shaped vessels with small, upright or slightly everted 'pinched out' rims (Challis and Harding 1975, Fig.31; Stead 1991, Figs.71-2; Rigby 2004, 47 and Fig.80). Mackey (2003, 120) strikes a cautionary note with his observation that MIA forms of pottery at Welton Wold Villa were still in use post-conquest. LIA coarseware assemblages are dominated by three main types: barrel-shaped or globular jars with S-shaped everted rims, the same body shapes with sharply everted rims and, lastly, there is a group with noticeably thickened, everted or upright rims again on similar body shapes (Challis and Harding 1975, 96-7). The commonsense assertion that these LIA stylistic innovations in eastern Yorkshire owed much to influences from south of the Humber continues to hold good (Challis and Harding's 1975, 93-4). Interestingly, there is a re-emergence of plastic decoration on rims in LIA assemblages north of the Humber (Challis and Harding 1975, 95), resurrecting a decorative tradition absent since the EIA.

It was rather naively imagined at the outset that the dating and phasing of sites spanning the LIA-ER period might be a relatively straightforward exercise: LIA features would contain LIA pottery, with perhaps some residual MIA material and the potential for intrusive Roman materials, but one might reasonably expect the latter to be small and abraded; whereas ER features would contain ER pottery and, again, have some potential for residual LIA material and intrusive later sherds. Unfortunately, as Challis and Harding's 1975, 93-97) seminal work Later Prehistory from the Trent to the Tyne highlighted, the aforementioned suite of coarseware jar forms with distinctive rims, which developed during the LIA, continued in use throughout the ER period. The character and timing of this phenomenon are now widely accepted by ceramicists working in the region (J Evans 1995, 59-61; Didsbury 2004, 149-50; Rigby 2004, 47-8). It is important to note that this change can be
seen as a breaking down of the region’s insular MIA handmade, ceramic tradition through the introduction of more expressive, elaborate LIA forms seemingly influenced by developments to the south. In terms of the handmade coarsewares, there is a clear tension between ascribed archaeological periods and the continuities and innovations in material culture by which they are defined; using the example in the previous paragraph, it could be argued on grounds of coarseware ceramics usage that, in some respects, the LIA in eastern Yorkshire continued until c.200AD. This issue is explored below in the WGC detailed methodology and in the final three chapters.

With respect to ER mass-produced Roman coarseware chronologies, rusticated wares are a very useful late 1st to mid-2nd century type-fossil and with fine carinated greyware bowls, Ebor wares and acute lattice-decorated BB2 and BB2-type greywares form a periodic group with Samian ware. BB1 is rare in rural eastern Yorkshire and BB2 not much less so, which may relate to the primary axes of supply being BB1 up the west coast and BB2 up the east (Fulford 2004, 315). Based on advice from Peter Didsbury, some attempt was made to differentiate early sandy greywares from later, better finished and burnished types. Material in this early category is tentatively identified as Ebor greyware, but probably also includes other early EY industries as well as North Lincolnshire material. Rigby (1980, 57) noted that the bulk of stratified rusticated pottery at Rudston Villa was in the same fabric as and contextually associated with carinated jars of probable North Lincolnshire manufacture. Interestingly, she placed these assemblages in a date range somewhat later (c.AD100-150+) than Monaghan’s (1997, 989) c.AD70-130 suggested for rusticated types in York – Didsbury (pers. comm. March 2006) has recently given further support to Rigby’s suggested dating.

Interestingly, the LIA everted, thickened rim jar types mentioned above were later standardised and, presumably, mass-produced, still completely by hand, at Knapton and probably other locations from the end of the 2nd
Chapter 6 From artefact to landscape: productively integrating data of different scales and resolutions

century onwards (Corder and Kirk 1930; Monaghan 1997, 985). Given its 'native' origins, true Knapton ware, dating to between AD200-300, can be difficult to differentiate from earlier material of similar form; however, the combined assessment of fabric, form and assemblage seems to resolve this question. The Norton greyware industry (Hayes and Whitley 1950; Monaghan 1997, 900) also flourished around the same period and is thus, with Knapton ware, a good sign of 3rd century activity. A somewhat wider 3rd to mid-4th century span is implied by the presence of Holme-on-Spalding Moor (HoSM) products (Halkon 1989b; 2002; Monaghan 1997, 900). The two classic indicators of 4th century occupation are proto-Huntcliff/Huntcliff ware (Hull 1933; Monaghan 1997, 985) and the products of the Crambeck industry (Corder 1928; J Evans 1989; Monaghan 1997, 866). Although pottery will, without doubt, constitute the main chronological indicator used in this project, brooches and coins also potentially have a significant part to play. These categories of artefact are closely dateable and Roman coins, in particular, can be linked to the reigns of individual emperors. Brooches are therefore considered next.

Brooches

With respect to brooches, there are some good indicators of MIA, LIA and ER date: MIA brooches tend to be of "flat bow" or "involute" type as evidenced in many East Yorkshire burials (Stead 1991, 80-9), LIA examples are closer to Roman high-bow types with coiled springs and solid catch plates (Stead 1991, 89), whilst trumpet fibulae are diagnostic of the ER period with many examples in the region being late 1st to mid-2nd century in date (Hummler and Atha 2005; Brewster 1956, 215-6). However, date of manufacture is not date of deposition and, as demonstrated in the WGC case study below, brooches appear to have been curated for some considerable time.

Coins

Given the regularity of their issue and their clear association with the reigns of particular emperors, coins clearly offer a useful means of
ascribing absolute dates to archaeological deposits. High value silver and gold coins were a feature of LIA societies south of the Humber and these turn up in eastern Yorkshire, however, they are rare when compared with Roman types and are less closely dateable. Coins are a common find on Roman sites, but neither are they ubiquitous on all types of site nor do they occur in consistent numbers through time. Although coins may have been lost or deposited soon after issue, they may also have been in existence, either in circulation or in hoards, for many years. These issues recede somewhat on sites with tight stratigraphic controls, high loss rates and long coin lists but such circumstances are rare indeed in rural eastern Yorkshire during the study period.

In sum, coins and brooches provide a good *terminus post quem* relating to their production but not an absolute date range for their use and deposition.

Assemblage analysis: function

My analyses of assemblage data sought to extract information regarding economic matters, such as patterns of production, consumption and trade, as well as evidence indicative of social differentiation and status. Originally, it had been hoped that zooarchaeological and palaeobotanical remains might provide useful insights into change in the rural economy. However, such data are simply not available for all the case studies and, where they were processed, the assemblages were small, some being analysed using current methods whilst others were examined when ecofactual research was very much in its infancy – the results, therefore, are hardly comparable. It was therefore thought sensible to use such evidence only in support of other, more consistently produced, artefactual data relating to rural production and consumption, such as querns, bone implements and loom weights and, most importantly, ceramics.

Pottery

The ER contrast in ceramic assemblages between urban/military sites
such as Brough, Shiptonthorpe, Malton and York, and rural/agricultural settlements such as Wharram, Wetwang and Melton is often stark. The former sites were clearly well-integrated within Roman supply networks and received a wide range of manufactured goods, which were obviously controlled and distributed via the Roman communications network. On the other hand, in the rural hinterlands many agricultural settlements evidence only a very limited access to such Roman materials, in particular, before the end of the 2nd century AD. There is also a clear regionality in the composition of ceramics assemblages between the southern Wolds, which perhaps should be thought of as a Humber hinterlands, and areas further north, particularly in the latest Iron Age and ER period. In terms of ceramics consumption, the demand for handmade jars on rural sites persisted until the end of the Roman period. As such, the mass-produced Roman-period coarsewares, whether handmade, handmade and wheel-finished or fully wheelmade can be very useful dating tools, but poor indicators of status.

6.4 WGC detailed methodology

The Wharram Grange Crossroads (WGC) case study is built around a collection of highly variable raw archives (paper records, permatrace drawings, artefactual and ecofactual materials) from undergraduate field schools spanning several seasons by different teams from two universities. The University of Sheffield excavated at Wharram Grange Crossroads over five seasons in the 1990s under site codes WGC95 to WGC99. Then, somewhat later, the University of York ran a campaign at the crossroads in 2004, carrying on the existing nomenclature with WGC04 and, in the following spring, reinvestigated the Northwest Enclosure at Wharram Percy using the code WP05/92 in line with previous numbering conventions there. In addition to these field school interventions, the published evidence for LIA and Roman activity at Wharram Percy (Rahtz and Watts 2004), a later Roman villa at Wharram Grange (Rahtz et al. 1986), and the more dispersed evidence from
Hayfield's (1987) Wharram Parishes Survey, will be included in the case study.

The Wharram archives result from a series of spatially separate excavations connected by a remote sensing landscape defined by cropmarks and geophysics plots and surface collection results. These data sets, although different in character and resolution, can be spatially integrated to create a multi-period case study capable of addressing the intellectual framework established in Chapter 2. No specialist analysis or reporting had been completed on any of the field school archives. However, in parallel with my own research into the WGC ceramics, Naomi Sewpaul is currently completing her PhD at Bradford studying the mammal bone assemblages from the Sheffield campaigns. Her results are forthcoming and, together with my own findings, will contribute to future research. Beyond that, artefactual and ecofactual reports are included in some of the Wharram publications, notably Rahtz and Watts (2004), and these will be summarised in later discussions. The Wharram case study is, without doubt, the most fragmented and variable in terms of data quality and is, therefore, by far the most labour intensive and challenging of the four. However, the paper and material archives from the 10 trenches provided a useful opportunity to pilot the methodology, test and refine the research questions and, in the process, also learn a great deal about eastern Yorkshire ceramics. Ceramics are the main dating tool used in this thesis and it was thus necessary to expend some considerable effort getting to grips with the eastern Yorkshire ceramic types, forms and fabrics so that the Wharram field school assemblages, numbering 8000 sherds in total, could be effectively processed. As a result of this research, new Wharram type and fabric series were devised and cross-referenced to earlier examples and these can be found in Appendix 5 and 6 respectively. The Wharram archives were dealt with using a threefold approach, which began with the reconnaissance and evaluation of the materials available. This was followed by a process of data standardisation, which converted a group of quite diverse archives into a more easily comparable form. Finally, the archives were analysed
to extract a series of data sets, which were then stored in Access databases.

Data reconnaissance and evaluation

As is clear from the summary above, the Wharram archaeological archive comprises the results of many campaigns of fieldwork by different groups and institutions with diverse research agendas and, as a result, has its gaps and inconsistencies. The scope and constitution of the Wharram case study was thus arrived at through an initial ‘reconnaissance’ of the materials and data sets available. This involved a review of the published literature set out above, the unpublished ‘grey literature’, which mostly took the form of short interim reports (M Giles 1998; 1999; 2000; Hummler 2004; Hummler and Atha 2005; Hummler and Roskams 2005), and an assessment of the availability and content of the Sheffield and York field school archives. The entire unprocessed or, in many cases, part-processed archives were made available for use in this project. Sheffield’s WGC archive existed as a single paper copy and therefore, as a precautionary measure, was reviewed to assess its size and content and then copied in full.

A preliminary evaluation of the seven archives provided some indications of research potential and revealed considerable variation within the group in terms of completeness, clarity and usability. A decision was therefore taken, early on, to concentrate effort on the best quality datasets from archives that had the full complement of drawn, written and artefactual components. The main victim of this cull was WGC96. Although lacking a drawn record, this site had produced some interesting ceramic assemblages during an initial sort of the materials from trenches A and B. It was also possible from the quite sketchy context records to produce an overall Harris matrix incorporating both trenches. On reflection, though, it was decided that without drawings this element of the WGC study was incomparable with the other excavations. Hence it is only used in support of discussions concerning the ceramics from trench WGC04-8, which examined the same enclosure.
as WGC96 trenches A and B. Less problematically, although there were no Harris matrices for trenches WGC95A and B and written records were relatively poor, the essentials of the stratigraphic sequence could be established quite readily. In the end it was also recognised that some matrices would need to be combined (e.g. WGC97 and 98C), whilst the remainder would need checking and reproducing in a standardised, more easily comparable format.

In addition some components of the archive, such as WGC99 trench B, whilst interesting, appeared to be well beyond the chronological scope of the study. Positioned some 250m to the north-west of the crossroads, this trench examined one of a group of large sub-rectangular pit-like features which, on excavation, proved to be a sunken-featured building (SFB). A quick examination of the ceramics revealed a coherent group of plain, bead-rimmed vessels of apparently early Anglian date (Julian D Richards subsequently confirmed this identification: pers. comm. August 2006). This additional evidence for post-Roman settlement at Wharram deserves mention here but will not form part of the detailed analysis and discussion below.

Data formats and standardisation

As mentioned above, the Wharram case study is, by virtue of its origins, inherently diverse and, on the face of it, resistant to standardised processing. That said, Hayfield’s (1987) Wharram landscape survey covered the entire study region considered here and, for consistency’s sake, his site names and field numbers are used throughout Chapter 7’s discussions (see also Figs. 24 and 25). It should be noted that each of the five townships’ fields were numbered from 1 onwards and, therefore, within the study area we have Field 1 at WGV (Wharram-le-Street township) and Field 1 east of Birdsall High Barn (BHB) and Birdsall Brow ladder (BB) (Wharram Percy township).

In the Wharram case study, virtually the entire area between Wharram Grange Villa in the northwest and Wharram Percy in the southeast was
fieldwalked as part of the Wharram Parishes Survey (Hayfield 1987). Three different survey methodologies were employed in this work: method 'A' involved random field walking and recording onto 6" or 25" OS mapping—a rapid, preliminary assessment; method 'B' involved row walking fields under crop, but then aggregating counts by row—thus allowing an assessment of the frequencies of different finds along an axis at 90° to the crop rows; and method 'C' recorded all finds by 10m grid square, and was thus ideal for the identification of occupation-related scatters (Hayfield 1980; 1987, 7). These different approaches have clear interpretive consequences and these are examined in my discussion of the surface collection data for each 'site' within the Wharram case study (see section 7.5). In addition to problems specific to the different survey methodologies, there are more general issues relating to the materials collected, for example, the issue of differential visibility and survival of Roman versus prehistoric ceramics. This problem has long been recognised and was duly acknowledged as a potential bias in the Wharram data (Hayfield 1987, 25). Hayfield (1987, 7-13) sensibly interpreted surface artefact scatters, in terms of 'manuring' or 'settlement', using a combination of sherd size/condition together with an assessment of the relative intensity and discreteness of patterns observed. As is shown in Chapter 7, there are some very useful correlations between surface collected and excavated materials at WGC.

In contrast to Sheffield University's use 'trench' numbers for each excavation, the York system allocated each discrete survey or excavation 'event' a sequential 'intervention' number; thus WGC04-7 and WGC04-8 were the seventh and eighth of a series of events associated with the WGC project—the previous six being surveys. In the published Wharram reports yet another system was used whereby trenches were referred to as 'sites'. There is thus a range of terms used for excavations and, beneath that level, different naming and numbering conventions for areas, features and contexts—as well as some repetition of context numbers, which requires the use trench prefixes to avoid confusion.
However, something could be done to simplify matters in relation to the 10 field school trenches. Whilst it clearly made sense to retain the existing numbering systems for the detail of deposits and fills in each trench, when it came to higher level interpretation of cuts/features and their relationships within the wider settlement, a single numbering system seemed the best solution. Therefore, a new sequence of feature numbers, from F1 to F112, was allocated to the 10 field school trenches, working on a field-by-field basis. The latter occurs during the discussion of site development and interpretive labels might therefore appear to be somewhat prematurely applied. However, the reasoning behind them is fully explained later in the discussion of each trench. At this stage, it should be noted that trench WGC04-7 employed the ‘Carver System’ of allocating feature numbers instead of cuts and, therefore, to avoid confusion only the new sequence of feature numbers are used in the discussion of that trench (a list showing new feature and old cut number concordance can be found in Appendix 3). In all the other nine trenches, cut numbers are introduced but then immediately correlated with and replaced by feature numbers in the new sequence. When first discussed, context numbers appear in brackets – the brackets are then dropped for the remainder of the discussion of site development, and, finally, context numbers are omitted completely in favour of feature numbers for the higher level interpretation of each trench and, ultimately, the landscape.

The excavated evidence is approached by examining major linear boundaries first, then their relationships with enclosures, and, finally, the use of enclosure interiors through time. Beginning in Field 16, features F1-F3 were allocated to trenches WGC97/98C, and then features were numbered in a continuous sequence, proceeding clockwise thus: Field 5 - WGC98A, WGC04-7, WGC04-8; and then Field 96 - WG95A and B, WGC99A and WGC98B. The final block of numbers was allotted to features in trench WP05-92 at Wharram Percy and the published Wharram material was retained as is. By employing this approach, and by carefully integrating text and illustrations, it is hoped that the discussions in Chapter 7 will be internally consistent and readily
Chaper 6 From artefact to landscape: productively integrating data of different scales and resolutions

intelligible.

The WGC04-7/8 and WP05/92 trench locations, Stoertz cropmark transcriptions with OS backdrop, and geophysics results were available at York as georeferenced files. These data sets were then imported into ArcView GIS to create a convenient means of displaying them collectively. The Sheffield archives contained no accurate drawn or digital record of the trench locations and these were therefore positioned in ArcView as accurately as was possible using the information available in the 1997-1998 Interim Report (M Giles 1998). Notwithstanding all the above issues, the artefactual, written and drawn archives for the 10 trenches were actually coherent enough to allow the use of a common processing methodology throughout.

As explored above, there is no shortage of published reports illustrating the range of late prehistoric and Roman ceramic types and forms encountered in eastern Yorkshire (e.g. Gillam 1968; Challis and Harding 1975; Rigby 1980; J Evans 1996; Monaghan 1997, Swan 2002; Rigby 2004). The Study Group for Roman Pottery (SGRP) north Britain research framework advocates the construction of regional type series not from individual, potentially unrepresentative sites such as York, but rather through the synthesis of evidence spanning the entire region (J Evans and Willis 2007 – website visited 24/04/07). Taking such an approach, it was relatively straightforward to use the sources above, together with the recent Wharram North Manor (Didsbury 2004, 171-182) and Northwest Enclosure (J Evans 2004, 312-324) reports, to generate a good understanding of the regional form series spanning the MIA-LR periods.

In contrast to considerations of form, and despite the existence of the National Roman Fabric Reference Collection (NRFRC) (Tomber and Dore 1998), no consensus currently exists as to the coding and format of a Wharram, never mind regional, fabric series. Unfortunately the above publication does not cover the full Roman-period ceramic repertoire in.
eastern Yorkshire, but given the diversity and variability of coarseware fabrics, in particular, it is perhaps not surprising. The lack of agreement is exemplified in the use of two very different fabric series in the latest Wharram publication (Rahtz and Watts 2004): Didsbury’s (2004, 143-146) unfinished and consequently rather generic North Manor series, and Jerry Evans’ (2004, 322-324) finely differentiated and therefore difficult to replicate Beadlam Villa series (J Evans 1996), which was used for the Northwest Enclosure report – both also refer to earlier, apparently now defunct, Wharram series.

Aside from easily identifiable fabrics such as Crambeck Greyware or Crambeck Parchment Ware, it proved very difficult, when armed with only a hand-lens and no reference collection, to relate brief and subtly different fabric descriptions, in Jerry Evans’ report in particular, to individual sherds under examination. Detailed fabric analysis has a crucial role to play in the identification of ceramic petrology, manufacturing technologies and production sites which, for example, might also help elucidate patterns of trade and exchange. However, when we know, or strongly suspect, that a particular production process was very variable, splitting fabrics based on small differences in the parent clay, tempering media or firing conditions is perhaps of value only when our aim is the definition and characterisation of such variation. Often decisions regarding the identification of different fabrics seem “to depend as much on the psychology of the worker as on the nature of the pottery” (Orton et al. 1993, 73). Or, put another way, whether they are ‘lumpers’ (e.g. Didsbury) who tend to assume similarity, or ‘splitters’ (e.g. J Evans) who tend to assume difference. Monaghan (1997, 900) and Didsbury (2004, 142) have discussed the impact of these contrasting ‘mindsets’ in relation to the identification of sub-divisions within calcareously tempered coarseware and greywares fabrics in eastern Yorkshire.

Given these difficulties of comparison, it made sense to create a new Wharram fabric series, expanding out from a core of diagnostic fabrics
that could easily be cross-referenced to fabrics identified by both Jerry Evans (2004) and Didsbury (2004). In addition, any fabrics appearing in the NRFRC were also cross-referenced to fabric codes used in that publication. Despite my best efforts to group and simplify, as experience and familiarity with the material grew, the fabric series expanded from its generic core to eventually include more than fifty entries. How significant and culturally meaningful some of the finer divisions were is a matter for conjecture but, if in doubt, I always sought to lump fabrics together rather than split them down.

Data gathering and storage

To begin with, the drawings and site records for each case study were carefully examined so that an overall appreciation of archaeological features and relationships present could be achieved. An important part of this process involved the creation or checking (if pre-existing) of Harris matrices for each trench. These were then used to support subsequent, more detailed, processing and analysis of artefactual assemblages, contextual and stratigraphic information.

Whilst this project’s focus is on pottery as the main dating medium and indicator of function, trade and status, other artefact and ecofact types are used below to provide supporting and contrasting evidence. In addition to the excavated materials, the main finds categories recorded and quantified in Hayfield’s (1987) report on his fieldwalking surveys were ceramics, CBMs, lava querns, tesserae and daub. The latter functional category is only used where material was identified as such in print – otherwise the more generic term burnt clay is preferred.

The small numbers of Roman coins and brooches recovered during the WGC, WGV and WP excavations are discussed in concert with other dating/assemblage data within each trench – these include the rare find of a carved chalk figurine in WGC95B. Identifiably ‘Roman’ CBMs are rare in all but the WGV site at Wharram but, where found, will be discussed with other evidence for stone structures, burnt daub and the
like. With respect to agricultural activity, there are, as is commonly the case, many quern fragments from the excavations, although these are mostly small, abraded and probably residual in most contexts.

In terms of ecofactual materials, the mammal and human bone from all field school excavations apart from WGC04, which was washed but only identified as either mammal or human, was unprocessed and therefore the only report of any substance appears in the North Manor volume (Rahtz and Watts 2004, 332-40). That said, several human burials as well as more fragmentary material were encountered at WGC and these remains are discussed with the results from each area.

The ceramics were assessed using a two-stage process comprising a primary sort and then detailed examination and recording. A range of more general (e.g. Webster 1996; Tomber and Dore 1998; Tyers 1999) and region-specific (e.g. Gillam 1968; Challis and Harding 1975; Rigby 1980; J Evans 1996; Monaghan 1997, Swan 2002; Rigby 2004) ceramics publications was used to identify the ceramics. To begin, the ceramic archive from each trench was laid out in context order and each assemblage was then divided up and re-bagged as ‘undiagnostic’ calcareously tempered ware (CTW) body sherds, coded ‘HND’ (handmade not diagnostic), and ‘diagnostic’ sherds (all rims and more identifiable base and body sherds based on a combination of fabric, form and decoration). At this stage the diagnostic ceramics were also further separated into my two socio-technological categories of “DPH” (domestically produced handmade) and “MPR” (mass-produced Roman). The former covers all open-fired, locally made coarsewares in use throughout the LIA-ER periods, whereas the latter includes the products of all industrial-level potteries of Roman date. The MPR category is then subdivided into generically Roman “MPR-W” (mass produced Roman-wheelmade) types and later Roman “MPR-H” (mass-produced Roman-handmade: mostly Knapton in eastern Yorkshire) and “MPR-HW” (mass-produced Roman handmade and wheel-finished: mostly Huntcliff) types. Despite the necessary emphasis on rims for quantification and inter-
assemblage comparisons, it was also possible to identify MPR body and base sherds to type, which added additional information regarding site chronology and function. An attempt was also made to group CTW bases using the morphology of the external base angle – based on my initial observations of the material it seemed that MIA-ER forms tended to have a 'heel' whereas LR types did not. However, with further experience of the material, the relationship between CTW base morphology and fabric was shown to be more complicated as some 'late' fabrics had the supposedly 'early' form and, given this uncertainty, all CTW bases were therefore coded "HND".

In the discussions of excavated assemblages in Chapter 7, all pottery categorised as HND or DPH is CTW, unless specifically stated otherwise. In the analysis of excavated assemblages, DPH types are recorded as LIA-ER and, if possible, they are then tied into closer chronologies within their 300-year date range based upon their contextual and assemblage relationships. Caution is required, though, if past assumptions regarding the date of DPH assemblages, based on the presence or absence of Roman material, are not to be carried forward as fact. An absence of Roman material in context does not necessarily mean a DPH assemblage is pre-conquest. Alternative interpretations in particular, surrounding the identification of LIA phases of activity and the possibility that such DPH material is potentially peri-/post-conquest, are explored more fully in the following chapter.

Before moving on to the question of quantification, it might be prudent to make a few statements regarding the status of these 'undiagnostic' and 'diagnostic' categories. First and foremost it should be acknowledged that, with greater expertise and much more time, it would have been possible to sub-divide the 'undiagnostic' sherds into those in potentially late prehistoric/ER fabrics and those of more diagnostically LR type, following J Evans' (2004, 314; Table 72) example in the Wharram Northwest Enclosure report. There he was able to show that his G01 (LR) and G02 (LIA-ER) fabrics tied in quite well with site phasing based on
more closely dateable sherds.

Given that ceramics research forms just one component of my analyses in one case study, the work of analysing and allocating each of the 6490 HND sherds to a particular fabric could not be justified – on time grounds alone if no other. Nevertheless, I felt it was incumbent upon me to somehow make better use of this material, which constituted 81% by count (6490/8000) and 67% by weight (65491/97661g) of the main finds category used in dating and phasing features and contexts. With that in mind, a rapid reassessment of the HND CTW material was carried out on a context-by-context basis to identify whether assemblages were mostly LR-type fabrics (HND-L), ER/prehistoric-type fabrics (HND-E), or mixed (HND-E/L). This was done ‘blind’ (i.e. without further reference to the diagnostic component in each context) and the results are presented in detail in Chapter 7.5 and in a series of tables, which summarise HND and diagnostic ceramics by feature and weight/count.

The diagnostic component of each campaign archive was painstakingly examined context-by-context and one sherd at a time, recording a range of contextual and sherd-specific attributes into a series of 10 Access databases. These databases, based on a pre-existing generic design, created for the recording of all finds from the WGC04 campaign, were redesigned specifically to suit ceramics recording (see Appendix 2 for an explanation of database design and databases on CD at rear). This redesign drew upon background research into ceramics processing and quantification (Orton et al. 1993), to provide a common template into which ceramics data from each campaign/intervention could be entered (e.g. WGC95A and WGC95B). The use of a standardised design allowed Access queries to be run on any combination of fields within the 10 databases to extract appropriate data sets. The ceramics data were then exported into Excel pivot tables and displayed in a series of bar charts, one for each trench, showing percentage rim EVEs by feature, context and period. The bar charts employ a series of periodic colour codes in the display of ceramics results and the full sequence can be found in
Appendix 7).

As mentioned above, a further series of Access queries interrogated the full ceramic archive, including the HND component, to extract weight, count and period data by context. These data were then imported into Excel pivot charts, where they were tabulated and cross-referenced with a hierarchy of interpretive categories - where features exhibited some continuity between periods, the earliest period of use was entered into the ‘date’ field on the table. In these tables features were grouped by phase and arranged in stratigraphic order to be read in conjunction with Harris matrices (i.e. the earliest feature/phase was listed at the bottom and the latest at the top).

As stated at the beginning of this chapter, once the methodology was in place there would be no reason to summarise it further and therefore, without further delay, it will be put to work on the analysis of the WGC case study in Chapter 7.
CHAPTER 7

Wharraw Grange Crossroads (WGC): generating a research dividend from student training

7.1 Introduction

This chapter examines the first of the four eastern Yorkshire case studies, which involves the collation and synthesis of the results from a series of fieldwork campaigns centred upon Wharraw Grange Crossroads (WGC) (Fig. 24). In terms of work input and the development of new archaeological skills and knowledge the WGC study represents a very significant component of this project, involving as it did the processing and analysis of several, very diverse, field school archives.

In common with the other case studies, the chapter opens with an overview of the Wharraw physical environment and the history of archaeological research in the area (7.2). Section 7.3 then draws on the archaeological evidence to explore the origins and structure of the Wharraw landscape, focusing, in particular, on developments from the LBA to the LR period. Next, by drawing on previous research into the region's cropmark data (Stoertz 1997; Atha 2003), augmented in this case study by geophysics results and surface collection (fieldwalking) data, some initial observations regarding the likely date, chronology and function of features visible in such data sets are made (7.4). This largely two-dimensional remote sensing landscape, complete with its interpretive assumptions, is unpacked and given spatial and chronological depth using the detailed stratigraphic, contextual and finds evidence contained within the WGC excavation archives (7.5). A similar approach is applied to the WP05-92 archive, which is discussed against a more summary treatment of the published Wharraw Percy excavations (7.6). Thereafter, the remaining Wharraw Grange Villa (WGV), Birdasll Brow (BB) and Birdasll High Barn (BHB) published material is similarly
summarised and discussed against the remote sensing evidence (7.7). The chapter is rounded off with a concluding discussion, which draws on the interplay between morphological and excavated evidence to consider the questions and models set out in earlier chapters and the implications of the WGC/WP results for the other case studies (7.8).

7.2 Wharram research background

The High Wolds landscape

As discussed above in Chapter 5, the Wharram landscape is typical of the high northwest Wolds where deep spring-fed valleys punctuate the western chalk scarp and carve sinuous paths into the rolling chalk plateaux beyond. Soils are thin, free draining and easily cultivable although, if intensively used, they require careful management to maintain fertility. The springs and their associated ings, or water meadows, provide an essential resource for communities living both below and above the Wolds' scarp. Further into the central Wolds, where such springs are now absent, there were formerly perhaps more, but there also seems to have been a long-standing reliance on late glacial ponds, some of which have been exploited since the Mesolithic (Hayfield and Wagner 1995; Hayfield et al. 1995). Whilst the Wolds' environment has had its influence on past settlement and landuse, human communities have exploited the chalkland landscape in quite different ways through time.

The overwhelming emphasis on arable farming in the modern Wolds landscape, and on sheep back to the late medieval period, can be strongly contrasted with the mixed economies of high and early medieval, Roman-British and Iron Age communities. The more recent of these economic choices were born of the commercial expediencies of major landowners for whom a depopulated landscape provided room for sheep to roam and, then subsequently, for intensive, agribusiness arable farming to dominate. In contrast, the cropmark patterning of the LIA-LR agricultural landscape around Wharram reveals an intensity of settlement and landuse
seemingly comparable with that of the medieval period. However, as will be shown below, this buried ‘landscape’ is, in fact, a multi-period composite that brings together 1500-plus years of incorporation and change. This and the following two chapters thus represent an attempt to carefully unpack some of the assumptions underlying previous accounts of the LIA-RB ‘landscape’ to see if the existing ‘stories’ stand up to closer analysis.

The history of archaeological investigation
The high plateaux and steep-sided valleys of the Yorkshire Wolds around Wharram must constitute one of the most intensively studied blocks of landscape in Britain (Fig. 24). A near continual thread of archaeological research stretches back almost 60 years to Beresford and Hurst’s initial investigations of the deserted medieval village at Wharram Percy. The discovery of late Iron Age, Romano-British and Anglian remains during the excavation of Wharram Percy (Andrews 1979; Bell and Beresford 1987; Rahtz and Watts 2004) prompted a new interest in the elucidation of the origins of medieval settlement and landuse in the area (Beresford and Hurst 1990, 69). Later phases of work around Wharram Percy were thus, in part, targeted to investigate Iron Age and Romano-British elements of the landscape: the magnetometer survey and sample excavation of Wharram-le-Street (WLSV) and Wharram Grange ‘villas’ (WGV) (David 1986; Rahtz et al. 1986); Hayfield’s (1987) integrated survey of late prehistoric to early medieval landscapes in Wharram Percy and Wharram-le-Street parishes, which included David’s (1987, 13-19) magnetometer survey of enclosed settlements at Birdsall High Barn (BHB), Birdsall Brow (BB) and WGC; and the excavation in 1989-90 of Romano-British remains in the Northwest Enclosure, or Site 91 (Clark and Wrathmell 2004). The results published in the volumes above are used in concert with those derived from my processing and analysis of the raw archives detailed below.

At the end of the formal programme of investigations at Wharram Percy, the Wharram Research Group was established with a dual remit: to
ensure that the then extant fieldwork archives were carried through to publication, and to co-ordinate ongoing research activity in the Wharram area. Since the mid 1990s, a series of research-led, training-orientated fieldwork campaigns by the University of Sheffield (1995-99) and the University of York (2004-5), supported by members of the Wharram Research Group, have sought to understand the Iron Age to Roman period in the area, in particular, around Wharram Grange Crossroads (WGC). The 2004 and 2005 fieldwork took place under the auspices of the Wolds Research Project – a multi-period landscape study hosted in the Department of Archaeology at the University of York. All the above projects have relied upon field walking (Hayfield 1987), cropmarks (Stoertz 1997) and geophysical survey data to reveal the overall structure of settlement and landuse and to provide a landscape context for the more detailed findings revealed by targeted excavation. In addition, English Heritage has recently published the results of geophysical (Linford and Linford 2003) and analytical earthworks surveys (Oswald 2004) within the Wharram Percy guardianship area.

7.3 The origins and structure of the Wharram landscape

Overview

The Wharram area has an intriguing multi-period pattern of cropmarks representing settlements, fields, trackways, boundaries and mortuary monuments (Fig. 24). Prominent within this pattern are the rectilinear enclosure complexes or ladder settlements with which this project is concerned. As shown in Chapter 5, these settlements are characteristic of LIA-LR farming landscapes in the region, but their patterning and even their overall morphology suggest that local communities were keen to incorporate and reuse persistent components of earlier landscapes. Perhaps this phenomenon is a powerful physical expression of the collective habitus of Wolds’ farmers embedded within routine patterns of movement and cycles of agricultural life that were, by the later Iron Age, integral to their continued success. In fact, as elsewhere in the Wolds, we can most confidently identify the genesis of the LIA-LR Wharram
landscape in the LBA; a period marked by dramatic change from the more mobile landscapes of the second millennium BC within which round barrows served as territorial markers to one which, by the end of the millennium, had hierarchies of permanent settlements situated within fixed and bounded territories (Fenton-Thomas 2005, 39-40).

The Bronze Age legacy
There is a great deal of information contained in the cropmark 'landscape' around Wharram (Stoertz 1997), but the discontinuous patterns of major linear features or dykes can be somewhat confusing when viewed on a 2-D surface – some sense of elevation is needed. Across the Wharram plateaux, the modern field boundaries marking the edge of the cultivated land quite naturally coincide with break-of-slope of valleys and the wold scarp. By shading areas below the break-of-slope using a semi-opaque grey, lowland detail remains visible whilst the landscape structure of the plateaux is quite dramatically revealed (Fig. 24). Linear features connect valley heads, mark the top of the Wolds' scarp, and break up the plateau into large landscape blocks. Often such features appear to respect and are aligned upon EBA barrows. As argued in Chapter 5.3, linear ditched boundaries have a long currency in the region, being a feature of late prehistoric to late Roman landscapes, but the longer and more substantial examples do appear to be early in the sequence and probably LBA in date. It seems, therefore, that LBA communities in the Wharram area collectively excavated many kilometres of ditch-and-bank boundaries across the higher plateaux and, in so doing, affected the physical layout, experience and use of the landscape for generations thereafter.

Where such communities were living remains a mystery, as unenclosed settlements are notoriously difficult to identify in the remote sensing record and LBA to MIA features and finds rarely show up during the excavation of later settlements in the Wolds - Garton-Wetwang Slack being the one prominent exception. There are suggestions of an answer from West Heslerton (WH) in the Vale of Pickering, where excavation
revealed a LBA open settlement apparently associated with major landscape boundaries and small 'hillforts' at Staple Howe and Devil's Hill on the Wolds’ scarp (Powlesland 1986; 1988b). The WH evidence may reflect a wider pattern of peripheral settlement and transhumant pastoralism on the Wolds at this time – whether this was based predominantly upon cattle or sheep is open to debate but, for the Wolds as a whole, sheep are better suited to the dry conditions (but see further discussion below Albarella).

The alignment of large LBA linear boundaries on prominent EBA barrow clusters (such as the examples marked ‘A’ to ‘E’ on Figure 24) seems intentional and may, as Fenton-Thomas has argued (2005), represent the more rigid demarcation of communally agreed blocks of grazing previously delineated by round barrows and interconnected by droveways. Wharram presents a fairly typical Wolds’ pattern in that single ditch-and-bank features follow the plateaux edge break-of-slope whereas a double/triple vallate design is reserved for cross-ridge dykes linking dry valley heads and the wold scarp (e.g. Fig. 24 ‘A’, ‘D’ and ‘F’). This LBA activity would have radically altered the physical appearance of the Wharram plateaux – the greensward no longer stretched unbroken to the barrow-marked horizon – it was now also chalk-inscribed with ownership.

Developing his ideas on early, mobile landscapes, Fenton-Thomas (2005, 48-9) also suggested that ridgeways, similar to those on the southern chalklands, crossed the Wolds west to east; his "Towthorpe Ridgeway" (TR), perhaps dating from the Neolithic, follows the watershed and is marked along its path by EBA barrows. Fascinatingly, Hayfield (1987, 40) also records that the Birdsall-Wharram Percy township boundary, now marked by a modern hedgerow between the Toisland Farm barrow cluster (B) and WGC, was shown in 1836 as a trackway. This feature, which I will call Wharram Ridgeway (WR), ran for at least 10km from Aldro (AO) in the southwest through Wharram crossroads, Wharram-le-Street and past Duggleby Howe into the Great Wold Valley (Hayfield 1987, 60). Southwest of the Toisland Farm barrows, its path is still
marked for approximately 2km by a single ditch-and-bank earthwork and the alignment follows a string of EBA barrow clusters hugging the scarp-top.

Returning to the LBA enclosures, then, this change involved a massive communal investment of time and energy and its broad contemporaneity with the Paddock Hill, Devil's Hill and Staple Howe type of fortified sites may also indicate an intensification of social stratification and political control at this time. No similar 'central place' is yet known from the north-western High Wolds but at Aldro (Fig. 24 ‘AO’), just 5km southwest of WGC on the highest point of the same plateau, there is an impressive, scarp top promontory enclosed by earthworks that might be a candidate. Tantalisingly, Mortimer's barrow number 108 at Aldro produced a high status cremation burial with remarkable late Hallstatt/early La Tène metalwork, whilst "equally important metalwork evidence for Hallstatt connections comes from the Staple Howe settlement" (Challis and Harding 1975i, 42-3). Future research by the University of York would hope to test whether Aldro was indeed an important hub in the late prehistoric reorganisation of the High Wolds landscape.

The overall structure of the LIA-LR landscape

Previous research has shown that across the Wolds' eastern dip-slope, in particular, MIA cemeteries and LIA-LR ladder settlements developed within the same large enclosures of the LBA landscape (Atha 2003, 2005). On the Wharram plateaux the pattern is different in that individual square barrows, never mind cemeteries, are rare, and rarer still in association with ladders (but see Section 7.5 below). There is just one small group of large, potentially early, square barrows 2km south of WGC (see Stead 1986 for a similar group at Cowlam), associated with a multi-vallate cross-ridge dyke in a manner more typical of EBA barrows (Fig. 24 ‘F’). Indeed, north and west of the Great Wold Valley, the only square barrow cemeteries associated with ladder settlements seem to be restricted to the Wolds' lowland periphery as at West Heslerton or North
Grimston, just northwest of WGV (Fig. 24 ‘G’ and ‘H’).

Large tracts of the highest wold land, although regularly under crop today, produce no cropmarks recognisable as LIA-LR settlement, which may indicate that blocks of permanent pasture were extremely long-lived in the highest parts of the Wolds. The dichotomy in the LIA-LR settlement pattern is ably demonstrated at Wharram where the lower lying plateaux around WGC and WLSV are rich in ladders, whereas the highest land to the southwest towards Aldro and southeast beyond Fairy Dale and Stonepit Slack is devoid of settlement. Some of these areas could have been arable, but it seems unlikely that farming communities would grow their crops in the most distant, exposed corners of the landscape — they would, more likely, be sown in relatively sheltered locations close to home. Is it a coincidence that several of the LBA-EIA defended sites, the potential example at Aldro included, are situated in such locations — or was control of upland pastures and grazing rights, of the means of production, a central mechanism of LBA and later authority? In contrast to the gentle topography of the latter area, the high pastures and steep scarps around Wharram are perhaps better suited to raising sheep rather than cattle. That said, there are springs below the plateau, and one must be careful not to equate the physical needs and capabilities of our modern domestic beasts with those of LIA-LR livestock.

This difficult question of identification of past landuse is explored further in Section 7.5 below but, before that, it is essential to examine how the ancient corridors of movement mentioned above survived and influenced developments in the study period.

The long-distance trackways/boundaries are likely to be the earliest component of the cropmark patterns centred on Wharram Grange Crossroads, as everything else seems to respect the movement zones they define. As such, they appear to have been crucial to the operation of the agricultural landscape before and during the development of enclosed settlements in the area. Between Fairy Dale and Stonepit Slack the multi-
vallate boundary incorporates a double ditched trackway (Fig. 24) which, when projected westward beyond the visible cropmarks (dashed line), may have joined up with the trackway linking settlements at Wharram Percy (WP), Wharram Grange Crossroads (WGC) and Wharram Grange Villa (WGV). Beyond WGV the trackway runs west toward the plateau edge and then disappears at a modern field boundary into what is presumably permanent pasture – although archaeologically invisible it seems plausible that it continued down the slope in the direction of the LIA-ER farmstead and LR villa at Langton (LV) (cf. Garton-Wetwang Slack, West Heslerton and Melton case studies in Chapter 8 for other examples of trackways connecting chalk wolds and flatlands). Approximately 2km to the northeast of WGC, a north-south trackway intersects with the east-west orientated Gypsey Race (GR) ladder but their chronological relationship is unclear. Then, immediately after their crossing point, the trackway passes WLSV and continues south either to join with or cross the projected route of the trackway from WP (dashed line). Whilst on the topic of communication routes, it is interesting to note the line of the modern B1248, shown as a bold dotted line on Figure 24, running top middle to bottom right. This is the supposed route of the Roman road from Malton (Hayfield 1987, 5-7) that rather strikingly articulates with the entrance to the Fairy Dale-Stonepit Slack boundary/trackway mentioned above.

This section has explored how LIA-RB enclosed settlements on the Wharram plateau were created by communities with reference to and incorporating elements from already ancient social landscapes. The next and most important task in this, the main, case study is to examine how the different scales and resolutions embodied in the remote sensing, surface collection and excavated evidence can be creatively combined in the analysis and interpretation of the LIA-ER landscape (7.4).

7.4 Interpreting the detail of the LIA-LR landscape

In Figure 24 the LIA-LR enclosed settlements at Wharram formed one
component in a multi-period landscape, however, by 'zooming in' from that 50sqkm overview to a much more detailed 4sqkm block (Fig. 25), the morphological diversity of settlements at WGV, BHB, BB, WGC and WP is revealed. Collectively, the different data sets presented below indicate that such morphological characters carry, at least in some instances, useful information about the date, function and status of the settlements concerned.

For each of the five settlement components of the Wharram landscape, the cropmark evidence is reviewed and interpreted and then fleshed out and revised using the geophysics results. Where available, the results of Hayfield's (1987) surface collection survey are then used as a means of providing some further indications as to the date and character of human activity in and around the enclosure groups. It should be noted, however, that in most fields the surface collected materials were recorded during random fieldwalking or as aggregated row counts, which obviously limits spatial correlation with other data sets; only the southern end of Field 96 was surveyed using Hayfield's (1980, 28; 1987, 7) 10m-grid fieldwalking technique. The remote sensing resource comprises the published RCHME cropmark data (Stoertz 1997) (Figs. 24 and 25) and geophysical results from surveys carried out by University of York (UoY) students at WGC in 2003 and 2004 (Fig. 26) and at Wharram Percy by English Heritage in 2002 (Linford and Linford 2003) (Fig. 27). It should be noted that the UoY, in line with wider geophysical convention, display greyscale results with white for the minimum and black for the maximum values – EH, for a variety of reasons, do the reverse (Gaffney and Gater 2003, 109). Figures 26 and 27 also collectively show the locations of the ten field school excavation trenches. The results of earlier English Heritage surveys at WGV (Fig. 28) (David 1986) and BHB, BB and WGC (Fig. 29) (David 1987) are also incorporated within the relevant discussions. Finally, and crucially, the published and unpublished excavated evidence is analysed and interpreted in relation to the hierarchy of research questions reviewed in Chapter 6. My approach to the discussion of the excavation results follows the pattern established
in Humller and Roskams' (2005, 1) WP05/92 interim report: a description of stratigraphic development; a discussion of the nature and implications of the finds assemblages recovered; and, finally, an exploration of the collective implications of all the evidence available. Features discussed in the text are referred to using abbreviated campaign codes and context number(s) (e.g. in trench WGC98C ditch cut number 106 becomes 98C:106 and the earthwork 'fills' are similarly expressed as 98C:81/90/91/100/105). As mentioned in the previous chapter, all trenches bar WGC04-7 and WP05/92, which used the Carver system (Carver 1990), were excavated and recorded using variants of the MoLAS recording system (MoLAS 1994).

The five main areas of settlement (WGC, WP, WGV, BHB and BB) are dealt with below following that oldest of archaeological axioms – work from the known to the unknown. In terms of the LIA-ER period, that necessitated working from the relatively well-explored crossroads complex outwards along the arms of the communications network to surrounding settlements, following the order in parentheses above.

7.5 Wharram Grange Crossroads (WGC)
Remote sensing

Cropmarks
The WGC cropmarks are suggestive of several phases of development and a variety of different types of enclosed settlement (Fig. 25). At the crossroads, there is the subtly different alignment of the 0.25ha partitioned square enclosure to the west (sampled by WGC04-8) and the enclosure complex to the east (sampled by WGC95A and B, WGC98B and WGC99A) which, although split in two by the modern road to Wharram-le-Street, appears to be a coherent block of 0.2-0.35ha enclosures. This coherence suggests that if, as suggested above, an early long-distance trackway (Wharram Ridgeway) passed through this settlement, it is either respected by the later enclosures but the evidence is hidden beneath the modern road, or the enclosures cut across its path.
Chapter 7 Wharram Grange Crossroads (WGC): generating a research dividend from student training

Certainly, it appears likely that the modern road from the crossroads to WGV overlies another prehistoric/Roman trackway, which follows a perpendicular path linking WP to WGV.

In Field 5, west of the WGC04-8 square enclosure, a block of 3 or 4 enclosures – the largest of which being the partitioned 0.3ha example sampled by WGC04-7 – provide the ‘bridge’, via a fragmentary group of linear ditches in between, to the crossroads complex and, to the southwest, with the BB ladder. A single linear boundary (Fig. 25 ‘A’) projects north from the partitioned enclosure forming one side of what might be an ‘in-field’ system. I use this term to differentiate groups of fields contiguous with settlement areas – probably used for the production of cereals and other crops – from the much larger, open spaces of what was probably grazing land beyond. Such in-fields would need to be carefully managed on the thin and easily exhausted chalkland soils, requiring regular manuring – either directly by folding animals in fallow fields or by carting dung and midden material out from settlements and spreading on the fields.

There are two further, more diminutive, types of cropmark visible near WGC: discrete clusters of what appear to be pits – several smaller examples around the northern edge of the enclosure complex in Field 96 (Fig. 25 ‘B’) and, northwest of WGC, two groups of larger, suspiciously SFB-like features (sunken-featured building) – one of which was shown to be an Anglian SFB when excavated in trench WGC99B (Fig. 25 ‘C’), (see Section 7.3 above); and a single square barrow-like feature (Fig. 25 ‘D’) spatially, if not chronologically, associated with some fragmentary curvilinear cropmarks in the northern part of Field 5.

Geophysics
The magnetometry responses confirm and augment the cropmark results, making more sense of the fragmentary components west of the crossroads (Figs. 26 and 29). Looking at Field 5, the magnetometry brings to light a string of small (0.06ha) enclosures (Fig. 26 arrowed
‘A’), running NE-SW between trenches WGC04-8 and WCG98A – these are similar in size and shape to blocks within the BB ladder. Further detail of the relationship between the E-W linear boundary and subdivided enclosure investigated by WGC04-7, is also revealed. The former appears to fork into two strands east of the enclosure, rejoin in the area excavated, and then bifurcate again to the west. The strong magnetic response of the southeast corner of the main enclosure ditch (Fig. 26 arrowed ‘B’) points to its superimposition over the southern arm of the paired linear boundary – in the process cutting across the northern arm of the linear ditch. At the NE corner of the same enclosure, the N-S linear ditch mentioned above is, in fact, revealed to be the western arm of a large 1.5ha enclosure (Fig. 26 arrowed ‘C’), marking what might be an outer compound, or ‘in-field’; it is unclear whether this ‘in-field’ is associated with the enclosure to which it is attached, the partitioned enclosure immediately west of the crossroads, or even both. The magnetometry also reveals many additional pit-like features, some in loose scatters others forming discrete clusters throughout the enclosure complex (Figs. 26 and 29), for example, marked ‘A’ on Figure 29. The latter is the group excavated in trench WGC95B and, as a consequence, does not show on the York geophysics (Fig. 26). A similar phenomenon is recorded in the magnetometer results for the WP Northwest Enclosure over the portion of enclosure ditch sectioned in Site 91 (Linford and Linford 2003, 6), whilst the field 5 results also include what is probably the ‘ghost’ of trench WGC99B (Fig. 26 arrowed ‘D’). The consistently strong magnetic response around the entire circuit of larger ladder enclosures provides a very good indicator of their ditches’ use for the dumping of domestic rubbish. This observation is explored further below through the excavated evidence.

Surface collection
As the excavation evidence below demonstrates, Hayfield’s (1987, 63-79) surface collection surveys were, in some instances, a very useful prospection tool, both for the identification of settlement-related artefact scatters and the dating of the parent features from which they came.
At WGC Hayfield recorded two discrete ceramic scatters (stippled on Fig. 30) ‘A’ in Field 16 and ‘B’ in Field 96, the former in an area devoid of remote sensing responses and the latter over the enclosures north of the crossroads. Scatter ‘A’, identified during random fieldwalking (Hayfield 1987, 8), comprised 131 large, fresh sherds of handmade CTW of LIA-ER date and 11 small, abraded sherds of LR Huntcliff ware. In sharp contrast, scatter ‘B’, defined by gridded fieldwalking (Fig. 31), although also dominated by CTW, had 628 handmade sherds and 337 LR Huntcliff types; many of the former are probably LIA-ER but others, in particular a series of dishes, may be of Knapton manufacture (Corder and Kirk 1932, Fig. 30: 19-21). Scatter ‘B’ also contained, for the Wolds, a fairly typical array of wheelmade Roman ceramics including ‘East Yorkshire’ (EY) greywares, Crambeck greyware and Nene Valley Colour Coated ware (NVCC), plus something referred to as “Blackware” (new to Didsbury 2004, 141) but, given its colour and very low frequency, just might be Dorset Black Burnished Ware: BB1). Hayfield followed conventional wisdom by ascribing a pre-conquest date to any field scatters with no ‘Roman’ pottery. He therefore dated the field 16 scatter to the 1st-2nd century BC, although, as discussed at length above, most of the forms suggest a date anywhere within the LIA-ER period. Similarly, the Field 96 assemblage, although indeed containing MPR material of late 2nd to late 4th century AD date, did not warrant Hayfield’s (1987, 70) ascription of the entire assemblage - large quantities of LIA-ER CTW included - to such a date. His decision-making in this regard is interesting inasmuch as he acknowledged, “it is possible that some of the calcite-gritted forms...may be of an earlier date”, i.e. pre-Roman, but then continued,

“...given the presence of a more convincing Iron Age assemblage immediately to the south in Field 16, and the occurrence of both Roman and Saxon pottery in Field 5 to the west, this Field 96 assemblage represents a remarkably discrete clustering both in its distribution and in its time range".
Hayfield's apparently quite arbitrary decision to push LIA-ER CTW assemblages back or forward in time to suit his interpretations is just one example of a very common practice amongst archaeologists studying and writing about this period in the region. Moreover, this approach has also served to ensure that the Iron Age-Roman transition has continued to be discussed in terms of human activity that was either Iron Age or Roman in date rather than something rather less clear-cut and, archaeologically-speaking, less convenient. The archaeological data increasingly suggest that the period 100BC-AD200 is, in fact, characterised by a regionally distinctive mix of material continuities and innovations, spanning artefacts to agricultural landscapes. Hence the utility of the discursive landscape approach outline above, which prioritises the careful integration and balanced consideration of different data sets, over a desire to shoehorn the evidence into what are purely archaeological rather than socio-historical categories.

In addition to the ceramics, the Field 96 survey also recovered copious amounts of brick and tile but, due to the inexperience of personnel involved at the time, these remained unsorted into Roman and later material and were unquantified in the report (Hayfield 1987, 71). A particularly dense scatter of burnt daub was recorded just north of the crossroads, comprising 1000+ fragments in a 12-8m 'building-shaped' spread (Fig.31). Lastly, a single fragment of opus signinum was recorded in grid square G4 (see discussion of manuring below).

In Field 5 (Fig.32), west of the crossroads, crop row fieldwalking brought to light a more scattered, but nonetheless intriguing, mix of ceramics: 111 'handmade' and Huntcliff CTW sherds – unfortunately not quantified by type; 90 'reduced' sherds – presumably EY and Crambeck greywares; 4 mortaria sherds – 2 Crambeck and 2 unidentified; and 33 'Saxon' sherds (for which read Anglian throughout this thesis). The latter were clustered within rows B1-28 and the mortaria in rows B24-44, whilst the rest of the Roman pottery was quite evenly distributed across
Chapter 7 Wharram Grange Crossroads (WGC): generating a research dividend from student training

the entire survey area. Beyond the ceramics, an array of other materials was recovered: 11 sherds of Roman roof tile, 47 lumps of burnt daub, 2 tesserae and 14 fragments of imported Mayen/Niedermendig lava quern. A recent article discussing the Yorkshire Quern Survey (Cruse 2005, 24) highlighted the notion that such querns probably had two distinct periods of importation: one in the early Roman period associated with supply to the Roman army, although smaller numbers also turn up on Romano-British rural settlements in eastern Yorkshire; and a second seemingly resulting from renewed links with Germany in the Anglian period.

Against this backdrop, it is interesting to note that the tile and quern fragments correlated well with the Anglian pottery, being restricted to the area south of row B24. The apparent spatial mismatch between the groups of suspected SFBs, falling roughly in rows B40-50, and the ceramics evidence may reflect different functional zones within the Anglian settlement, or differential visibility, at the southern end of Field 5 (see West Heslerton for a good example of Anglian functional zonation; Powlesland 2003b, 290). As in Field 96, there was a discrete spread of daub over the ladder enclosures, which was linked to structural remains in the area. However, without further intervention, it is difficult to say whether these burnt ‘daub’ scatters relate to wattle-and-daub walls/partitions within houses or are, in fact, the remains of ploughed-up hearths or kilns of some sort. Whatever the case, the ‘daub’ and other finds suggest that the enclosures just west of the crossroads were used for purposes other than simply animal husbandry as was inferred from the lack of surface finds associated with the BB ladder immediately to the southwest (see below).

There were thus suggestions in this field of human activity spanning the LIA to Anglian periods with, perhaps, a main emphasis from the later Roman period onwards.

Whether such low quantities of tegulae and imbrices (of unknown size and condition), just 2 tesserae and one piece of opus signinum are
collectively of any real interpretive value is questionable; perhaps they are simply the ‘little and large’ of manuring assemblages? Certainly, the widespread evidence for low densities of small, abraded later Roman sherds has been interpreted as evidence for manuring (Hayfield 1987, 192-3; Figs. 51, 63, 73, 83 and 91 – also see excavated evidence for later Roman ploughsoils at WGC below).

On the question of manuring, Hayfield (1987, 194) argued that there was “no obvious correlation between these areas of manuring and the identified ladder enclosure complexes”, but then also suggested that the presence of allegedly Roman trackways traversing each block of manured land “indicates that there was probably an integral connection between the arable areas and the routeways”. The former assertion is questionable when the supposedly manured fields in the detailed study area, comprising parts of Wharram Percy (Fields 15 and 16) and Wharram-le-Street (Fields 87, 94 and 106) townships, do broadly correspond with the same lower plateaux locations occupied by ladders. When these manured fields are added to the permanent pastures suggested for the higher ground, they create a coherent pattern reflecting a mixed agricultural economy. Against that background, it is plausible to suggest the use of trackways as ‘enclosed corridors’ for the movement of livestock, most likely sheep, from enclosed folds or paddocks at lower-lying settlements through arable fields to upland pastures.

As with much remote sensing-based interpretation in landscape archaeology, the supporting threads of evidence derived from surface collection are as slender and diverse as the resulting stories are broad and speculative – hence the need for excavation to augment and test the former, thereby bringing much needed focus and definition to the latter.

Excavation

The data from 9 trenches (WGC95A and B; WGC97; WGC98A, B and C; WGC99A; WGC04-7 and WGC04-8) around the crossroads (Fig. 26) were used in the analysis of chronological development of: trackways
and boundaries, enclosed settlements, economic/functional zonation within and between enclosures, and patterns of consumption and production. All these aspects were considered in relation to a four-fold division of the study period: MIA (Middle Iron Age: c.300-100BC), LIA-ER (Late Iron Age-Early Roman: c.100BC-AD200), ER (Early Roman: c.AD70-200) and LR (Late Roman: c.AD200-410). Three further period groups were also needed in the ceramics processing: LB-EIA (Latest Bronze Age-Early Iron Age: c.900-300BC), TR (Throughout Roman: c.AD70-410) for ceramics used in both early and late periods, and AN for Anglian (c.AD410+). Occasionally materials in the TR group could be identified as early or late using date-related aspects of form or decoration but, more often than not, closer dating was deduced from the analysis of proportions of more diagnostically early or late types within the same assemblages. Whilst my focus fell firmly upon the impact of Roman colonisation on rural communities, small quantities of Anglian pottery did occur in some of the field school trenches discussed below – mainly, but not exclusively, in surface spreads at the base of the modern ploughsoil. The presence of this late material and, at the opposite end of the scale, the handful of sherds of LB-EIA pottery, are dealt with as part of the various trench/feature/context analyses and receive a brief mention in Section 7.8’s synthetic discussion of the Wharram data sets. For simplicity’s sake pottery identifications, comparanda and references are not generally included in the body of the text, but can be found in the ‘Provenance’ column of the relevant Access database.

For the sake of convenience, trenches from the same field were dealt with together, notionally starting with the investigation of linear boundaries/trackways, then their relationships with enclosures, and finally moving on to examine the creation and use of enclosures in more detail. I therefore began by examining WGC97 and WGC98C, which were positioned close together to investigate the same linear features revealed along the northern edge of Field 16. This led nicely into Field 5, where further sections of linear boundaries were encountered in trenches WGC98A and WGC04-7, and then the latter, together with WGC04-8,
provided some insights into the creation and use of enclosures west of the crossroads. Finally, the two spatially associated pairs of trenches in Field 96 - WGC95A and B and WGC98B and WGC99A – afforded useful insights into the chronology of enclosure east of the crossroads, and the character of human activity both before and after their creation. This approach also ensured that, by working on a field-by-field basis, the excavated results could easily be integrated with the cropmark, geophysics and surface collection data.

Space prevents a very detailed discussion of the evidence – the intention here is not to write a detailed site report – however, the overall size and depth of cut features (measured from the bedrock surface), key stratigraphic relationships, and functionally distinctive contexts are included. With respect to the latter, previous fieldwork experience at WGC has shown that deposits/fills tend to divide into those that are either lighter coloured and stony with few finds or comparatively darker, humic and relatively stone-free and finds-rich – this seems also to be reflected in the Sheffield records. In general, these might be interpreted respectively as contexts relating to backfilled chalk upcast and agricultural soils, and those more closely related to domestic occupation and rubbish disposal. Stoniness is thus only mentioned when it has a bearing on the interpretation of deposit status.

For each trench I begin by describing site development in proposed chronological order, providing a breakdown of contexts grouped by cut and interpretive category (see Appendix X for further details). In the interests of clarity, particularly with respect to the synthetic discussion in Section 7.8, each feature, be that a cut, layer or structure, is also allocated a unique feature number (in the sequence F1-F112) as detailed in Chapter 6.4. The latter occurs during the discussion of site development and interpretive labels might therefore appear to be somewhat prematurely applied, however, the reasoning behind them is fully explained in later discussions, which draw upon the finds and geophysics data. As also explained in Chapter 6.4, context numbers
initially appear in parentheses, which are then removed for subsequent mentions in the discussion of site development. Then, for the overall interpretation of each trench and the wider landscape, feature numbers provide a more appropriate scale of analysis.

The physical and stratigraphic relationships are then compared and contrasted with the finds data in order to clarify the function and date of features in each trench (Appendix X and Access databases on CD at rear). These sections rely primarily on the 8000-strong ceramic assemblage examined during this project, but bring in additional finds data, of relevance to the interpretation of function and date, as and when necessary.

WGC97 and WGC98C (Field 16)

In successive campaigns, two trenches WGC97 (23m²) and WGC98C (6m²) – shortened to 97 and 98C below – were positioned close together along the northern edge of Field 16 to investigate the source of the scatter of large, fresh DPH sherds found in the area during fieldwalking – no cropmarks are visible in the area and the field is yet to be surveyed using geophysics (see Fig. 26). The discussions below are supported by post-excavation plans (Figs. 33 and 34), feature sections (Fig. 35), Harris matrices (Fig. 36), and ceramics results by rim EVE (Fig. 37). The table in Figure 38 cross-references stratigraphic and dating evidence with interpreted features (see also full Access databases on CD).

The earliest phase of activity in both trenches was a substantial E-W-orientated ditch ("earthwork") c.2m wide by 1m deep (cuts 97:18; 98C:0101) – hereafter Ditch F1), which extended beyond the limit of excavation (l.o.e.) in both trenches. This was later backfilled, probably using its own chalk upcast as suggested by its stony fills (97:9/3; 98C:0081/0090/0100/0105) to create the wide, low bank of Mel Giles' (1998, 4) "remodelled earthwork". In WGC98C, a localised sub-oval spread (0091) was noted on top of the bank and may hint at later activity.
in that area. Approximately 1.5m to the south of the earthwork was a shallow gully (cuts 97:11/17; fills (14/16) – hereafter Gulley F2), similarly running roughly E-W and following a parallel course that suggested broad contemporaneity with the larger feature (see Fig. 34). Whilst there is no direct stratigraphic link between the earthwork and gully, both are 'clipped' by a ditch that shares their alignment (see further discussion below).

A further ditch measuring c.1.3m wide by 1.05m deep lay between F1 and F2 (cuts 97:12; 98C:0106 – hereafter Ditch F3) and, although not completely respecting the older boundary feature Ditch F1, certainly followed its course (see Fig. 33). At the eastern end of the trench, it also cut the small Gully F2 and therefore appears to be a later reinforcement of the same boundary/trackway. In contrast to Ditch F1, Ditch F3 was backfilled with a series of humic deposits (97:5-7/8/10/13/19)which, in WGC98C, could be resolved into two main phases of domestic rubbish disposal (0082 and 0089) (M Giles 1998, 4).

In overview, the ceramics assemblages for WGC97 (Figs. 37 and 38) were dominated by 70 LIA-ER DPH types (ASW 35.8g), with a small minority of seven MIA, LR and possible AN sherds. The HND component was overwhelmingly early in character.

The clean chalky primary backfill of Ditch F1 produced a handful of abraded HND-E sherds, which Mel Giles considered to be potentially LBA in character. The upper fills were similarly dominated by HND-E material, but also included four LIA-ER rims, two small sherds of possible Anglian pottery and two tiny, abraded MPR sherds. These last four sherds may be intrusions resulting from plough disturbance of the upper fills and, certainly, one AN sherd came from shallow spread 91 on the bank top - this was, however, poorly defined during excavation and therefore not allocated a feature number. The LIA-ER component in F1 tallies well with Gully F2's assemblage, which comprised 83 HND-E sherds and 11 DPH rims of LIA-ER date. It is thus probable that Gully
F2 was cut during the later stages of backfilling of Ditch F1 and had some overlap in use with the larger feature.

The aggregated ceramics assemblage from the four fills of Ditch F3 correlated well with the fieldwalking material — both were dominated by LIA-ER DPH rims, although there were two classic MIA upright, pinched rims amongst the excavated assemblage. Many of the CTW sherds from Ditch F3 were large and fresh — two LIA-ER rim 'joiners' adding up to 279g in weight, whilst one MIA rim weighed 96.2g — given their size and condition, it seemed probable that the entire CTW assemblage, LIA-ER and MIA alike, had been deposited soon after breakage. MIA rims of the above type are typically found in square barrows dating to between 300-100BC, however, when viewed with the much larger LIA-ER CTW component, a date early in the 1st century BC is perhaps appropriate for the assemblage as a whole.

As mentioned above, a few abraded MPR sherds were present, but only in the uppermost fill 5 of Ditch F3. Whether this relates to LR or later ploughing and manuring or some other kind of disturbance is difficult to determine, but context 5 may be the slumped residue of a formerly more widespread layer which, beyond the ditch, had been truncated by modern ploughing. Beside the ceramics, Ditch F3 also contained a rich occupation-related assemblage including 1700 mammal bone fragments, a cattle skull, worked bone and antler objects, iron objects including a square shanked nail and, intriguingly, several lumps of grey-green clay up to 14cm in size. This latter find can be contrasted with that of 12 large blue clay "roundels" (Wagner 1995) unearthed approximately 100m to the northwest in trench WGC95A (see further discussion below).

So to summarise this short section, then, three phases of activity are implied by the stratigraphic and finds evidence: at some date unknown but probably in the MIA, Ditch F1 was cut and subsequently backfilled creating a bank; at some point during this process, Gully F2 was cut on a parallel alignment suggesting, at least spatially, some overlap in use.
with Ditch F1, although the former did produce some LIA-ER ceramics; then LIA-ER Ditch F3 was inserted between Ditch F1 and Gully F2, respecting their course but cutting both. It is possible that Gully F2 was indeed LIA-ER in date, but there is also the chance of contamination by material of that date from F3. Beyond the three features excavated, one could infer that the volume of clean, chalky upcast needed to fill Ditch F1 and create a substantial bank must have come from another large feature, most likely a sizeable ditch. It is therefore possible that north of Ditch F1, under the modern road and its grass verge, there is at least one further large ditch, which reinforced the line of the E-W boundary after F1 (and F2?) and before Ditch F3 was cut (see overall discussion in Section 7.8 below). It is interesting to note that Linear Ditch F3 has the typical midden-type fill characteristic of ladder enclosure ditches, although here there are no cropmark indications of an enclosure. However, it is possible that F3 is in fact the southern arm of a rectilinear enclosure, which is archaeologically invisible because it is partly on the road and its verges and sealed by the buried ploughsoil/hillwash layer noted below in trenches WGC98B/99A.

WGC98A, WGC04-7 and WGC04-8 (Field 5)
Trench WGC98A (60m²) was positioned in the southeast corner of Field 5 (Fig. 26), in an attempt to establish whether the ladder settlements west of the crossroads were bordered on their southern side by a trackway. Due to there being a crop in the field, the trench was position on the unploughed roadside verge, which meant that it was outside the areas investigated by surface collection and geophysics, and within the cropmark ‘blank’ of the modern road corridor. As discussed in section 7.3 above, an early routeway is suspected in this location following the (dotted) line of the parish boundary (Fig. 25). Further weight to the argument can be found in the western ditch of the cropmark trackway running northwest across Field 16 from WP to WGC, which intriguingly appears to bend west just south of the crossroads, to perhaps define the southern edge of at least one phase of the supposed routeway (see Section 7.6 for further discussion of this feature). During the following
Choter 7 Wharram Grange Crossroads (WGC): generating a research dividend from student training

discussions reference should be made to post-excavation plan/sections (Fig. 39), Harris matrix (Fig. 40), and ceramic rim EVE results (Fig. 41). The table in Figure 42 cross-references stratigraphic and dating evidence with interpreted features (see also full Access databases on CD).

The initial phase of activity in the trench involved the use of a linear hollow way feature ('cut' 0045 – hereafter Trackway F4) some 3.6m wide, which ran east-west along the length of the trench, extending beyond the i.o.e. in both directions. The excavator recorded that the chalk bedrock was worn smooth (0062) and had a series of discontinuous parallel “cart ruts” (M Giles 1998, 3; 2000,178) which, at their deepest, had cut 0.4m below the surface creating a ‘raised’, cambered central strip. The depth of the ruts raises some questions as to the likely ground clearance and axle height of the vehicles causing the wear (Roskams pers. comm. March 2007). Some similarity was noted in the spacing of the ruts and the axle length of vehicles found in MIA square barrow burials in the region. The depth of such wear was taken to indicate an extended period of use, although, it was also acknowledged that this may be just one of several meandering paths within a larger, braided trackway of the kind noted in the cropmark record by Stoertz (1997). At the end of its useful life, the trackway was backfilled with dark humic silts (27=41=42 – henceforth Dump F5), which produced a finds assemblage indicative of domestic rubbish disposal.

Thereafter the whole area was gradually blanketed in c.0.5m of relatively sterile orange-brown colluvium (layer 0026 – F6), which evidenced two sub-phases of development separated by a thin lens of chalk gravel, perhaps indicative of a stabilisation phase during which the surface chalk was weathered out before being buried by later colluviation. Several shallow features in the upper surface of F6 were noticed in section and interpreted as medieval ridge-and-furrow (fills 0078/0079 – F7). All the above were then sealed by a spread of roadstone-type gravel, which the tenant farmer attributed to “the surfacing of the ‘hog track’ in the mid-1930s” (M Giles 1998, 2).
Whilst the colluvium was largely sterile, the underlying dark, silty fill (Dump F5) of Trackway F4 yielded a ceramics assemblage that was dominated by large, unabraded Huntcliff sherds numbering 29 (ASW 19.2g) but also contained smaller, abraded greyware sherds, which the writer tentatively identified as ER Ebor greyware – although see Monaghan’s cautionary words on the identification of East Yorkshire greywares (1997, 900) (see Figs. 41 and 42). Whilst this latter identification is, admittedly, tentative, and the sherds could be later, if this were a tightly dated LR assemblage, one might expect to see Crambeck products rather than burnished greywares accompanying the Huntcliff ware.

In addition to the ceramics, the dumped material included mammal bone, a single very worn and unidentifiable copper alloy coin and three copper alloy artefacts: a bracelet, a fragment of decorated strip and a possible hinge fragment. The coin and bracelet, presumably based on diameter and thickness in the former and stylistic grounds in the latter, were tentatively dated to the Roman period. The finds were restricted to the upper portion of trackway fill close to its interface with Colluvium F6. The fresh condition of the late Roman ceramics suggests that, by the time this material was being introduced to the feature, it had already gone out, or was rapidly going out of, use – if not, one would expect them to have become abraded by the passage of ‘traffic’ on the road. The abraded ER ceramics, dating caveats aside, can be interpreted in one of two ways: either as material that was already residual when introduced to the trackway in the LR period, or as material that became abraded in situ following dumping in the roadway in the ER period – unfortunately, the site records provide no indication as to the vertical concentrations of ER and LR materials which, had such detail been available, might have resolved this question. Whatever the case, the fill of Trackway F4 and its finds probably reflect the abandonment and/or very latest phases of use of a routeway that developed its hollow, worn profile over an extended time span which, despite the lack of early finds, probably stretched back
into prehistory.
To summarise the evidence from our period of interest, then, Trackway
F4 was somehow defined and then used over an extended, but ill-defined,
period of time, as evidenced by the significant level of wear in its base.
After abandonment, its hollow profile provided a convenient location for
the dumping of domestic rubbish (F5), the final phase of which occurred
in the LR period. This was subsequently sealed beneath a 0.5m-deep
spread of sterile colluvium (F6), which accumulated between the LR and
medieval periods, as evidenced by Ridge-and-Furrow (F7) cutting its
upper surface.

Trench WGC04-7 (260m²) was sited, guided by geophysical survey
results, to investigate a small group of contiguous enclosures lying
between the BB ladder and the crossroads enclosure complex (Fig. 26).
The trench sampled a section of the linear boundary/trackway bordering
the southern side of the enclosures and the ditches and interior of one
enclosure with the aim of establishing the nature, date and stratigraphic
relationships of any features revealed. The possibility was raised early
on that the aforementioned linear feature might be in some way related
to the trackway discovered in trench WGC98A discussed above.

In terms of the surface collection in Field 5, the trench lay at the
southern edge of the area surveyed; roughly over the central portion of
rows B1-B5 (Fig. 32). As discussed above, the aggregated row counts in
this field give no indication of finds densities along rows (i.e. on the
SW-NE axis), but only 'up the field' perpendicular to the direction
walked. That limitation aside, the first 5 rows produced 24 sherds of
pottery, of which 20 were classed as ‘Roman’ (but as discussed above,
CTW types were not subdivided in this field, so some of the latter may
be LIA-ER in date) and 4 were Anglian. Added to that, 1 lava quern
fragment was recorded in row 3 and, perhaps significantly, 44 lumps of
‘burnt daub’ were restricted to the first 5 rows, which overlay the
enclosures identified through remote sensing. During the following
discussions reference should be made to Figures 43 and 44 (ditch
sections), 45 (post-excavation plan), 46 (Harris matrix), and 47 (ceramic rim EVEs by context/period). The table in Figure 48 shows stratigraphic and dating evidence cross-referenced with interpreted features (see also full Access databases on CD).

Following topsoil removal, the features revealed comprise a series of intercutting linears defining the intersection of the E-W linear boundary/trackway with the enclosures to its north, and several potential pits and a short curvi-linear feature initially assumed to be within – and therefore broadly contemporary with – the enclosure (Fig. 45).

At the bedrock surface, the E-W linear was a substantial feature, tapering in width from c.5m to the east, down to just less than 4m to the west – on excavation, this resolved itself into a pair of ditches. The earlier of the two, and probably the earliest component in the trench, was a 2m wide by 0.8m deep U-shaped ditch (Linear Ditch F8). Its primary weathering silts (1025) were sealed by a 0.5m-deep, clean, homogenous chalk-rich fill (1015); at this point a larger V-shaped ditch (Enclosure Ditch F9), approximately 3m wide by 1.6m deep, was cut alongside but on a slightly converging course, such that they were separated by a ridge of bedrock in the eastern section (Fig.43), but Enclosure Ditch F9 clearly cut the two main fills (1025 and 1015) of Linear Ditch F8 under the western trench baulk.

Enclosure Ditch F9 has a fairly complex life history: following the formation of weathering silts (1010/1031/1032/1033), the first of two recuts cut a 0.45m wide ‘slot’ through these deposits right down to bedrock and was then backfilled with clast supported chalk rubble (1030). Thereafter, (1030) was sealed by three dumps of dark-coloured domestic rubbish first (1029), then (1016) and, finally (1021). The middle of these three (1016) is significant in that it is identical to a dark ashy deposit (1014) identified over (1015) in Linear Ditch F8 – thus both ditches were clearly open and in use for domestic rubbish disposal at the same time.
Chapter 7 Wharram Grange Crossroads (WGC): generating a research dividend from student training

It is at this stage of their backfilling that Linear Ditch F8 and Enclosure Ditch F9 appear to have been cut by a smaller (c.0.5m deep by 1.5m wide) N-S orientated ditch (fills 1003, 1011 – hereafter Redefinition Ditch F10). Judging by the geophysics (Fig. 26), the latter ditch subdivided the enclosure defined by Enclosure Ditch F9 and may have then turned west, within that ditch, and then north to redefine the western edge of the enclosure (see discussion section below). Problematically for the clarification of these relationships, Redefinition Ditch F10’s two greyish-brown stony fills were very close in colour and texture to the surface fill (1002) of Linear Ditch F8 and Enclosure Ditch F9. However, two physical clues suggested that Redefinition Ditch F10 did indeed cut F8 and F9. Firstly, the rounded profile of the bedrock ridge between F8 and F9 in Figure 43 is, in contrast, flat-topped and truncated by c.0.35m in the opposing section (Fig. 44), and cut away to the east in plan (arrowed ‘A’ on Fig. 45). That, of course, only proves that Ditch F10 extended south across the line of F8 and F9, not which came first. However, the absence of ashy deposit (1014=1016) in the immediately adjacent west-facing section (Fig. 20) is significant, particularly when an identical deposit (1023) was recorded 3m further east in the eastern sondage examining the relationship between Linear Ditch F8 and Gully F11 (see below). In sum, therefore, the local removal of ashy dump (1014=1016=1023) can be attributed to the later intrusion of Redefinition Ditch F10.

Staying with Redefinition Ditch F10, there are also good stratigraphic grounds for linking the second recut to Enclosure Ditch F9 to this later act of redefinition. Redefinition Ditch F10 and this second recut both cut through ashy dump (1016=1014) and overlying dump (1021). The geophysics suggest that a smaller ditch with a non-humic, poorly-magnetic fill, such as that in Redefinition Ditch F10 and recut two, was used to redefine the western half of the enclosure delineated by Enclosure Ditch F9. Redefinition Ditch F10 and recut two were not physically linked during excavation but the shared stratigraphic associations provide an important link. Like the lower recut, the second
was also backfilled with clast-supported chalk blocks, deposited in two episodes (1026/1028) separated by a lens of silty clay loam (1027).

The final linear component in this trench was a short section of a small N-S gully (fill 1004) – hereafter Gully F11), which was only noticed during section-straightening under the eastern baulk. Its length and width are therefore unknown, but its sloping base gradually deepened to a maximum of 0.15m at its southern interface with Linear Ditch F8. No relationship could be definitively established, however, it seems probable that the gully was a late addition as its single fill (1004) was indistinguishable from layer (1002), which overlay both Linear Ditch F8 and Enclosure Ditch F9. Layer (1002) – henceforth Buried Soil F12 – was a chalk-rich non-humic deposit, which varied in depth from c.0.15m to 0.6m. It probably incorporates a substantial upcast component and may be the remains of a ploughsoil, which developed over and then slumped into the ditches after they were abandoned. In mentioning upcast, the issue of banks is raised; whilst it seems probable that the main backfill of Linear Ditch F8 is backfilled upcast bank, the original location of any bank associated with Enclosure Ditch F9 is more problematic. One might expect an enclosure ditch to have its bank on the inside (i.e. where Linear Ditch F8 is located), but given the physical evidence described in detail above, it seems highly unlikely that this could be the case. Therefore, we are left with likelihood that the bank would have been outside the enclosure to its south – this is contrary to the received wisdom for such features and needs explanation (see overall WGC discussion below).

Roughly 9m north of Linear Ditch F8, effectively in the western half of the enclosure delineated by Enclosure Ditch F9 and subdivided by Redefinition Ditch F11, were four features (see Fig. 45): a pair of lozenge-shaped intercutting pit-like features (F13 and F14), a sub-circular pit (F15) and, nearby, a curving gulley (F16). When first cleaned up, F14 seemed to be cutting F13 and, on excavation, this proved to be the case.
The first of these features — hereafter Pit F13 — had an irregular cut c.1.70m long by 0.70m wide at its southern end and narrowing to 0.30m at its northern tip. As it narrowed, the depth decreased from a maximum of 0.45m in the south to 0.15m in the north. The upper of its two dark brown stony fills (1008) was distinguishable, by virtue of its relative stoniness, from the lower (1020). Both these fills were cut by another pit, henceforth 'Special' Pit F14, which was an elongated oval in shape, 2.1m long by 1m wide by 0.55m deep, with a fairly flat-bottomed cut. The three fills of 'Special' Pit F14 are quite distinct from one another: the cut was backfilled with a 0.30m thick brown, stony deposit (1018); a 0.12m thick very dark, almost black, ashy layer (1012) followed this; and then a 0.13m deep capping of fairly well articulated chalk blocks (1005), sealed the pit. The combination of these three fills and the finds they produced prompted the label 'special'. The word is used with caution, given that, in the wake of JD Hill's Ritual and Rubbish (1995a), any pit with remotely interesting deposits had the labels 'special', 'structured' and/or 'ritual' attached to it. Suffice it to say that I am only using 'special' to identify features whose fills suggest that they were being used in ways that were clearly different to the usual round of digging holes and backfilling them with upcast, rubble or domestic rubbish.

Approximately 3m to the west of F13/F14 were a pit (F15) and curving gully (F16) which, although adjacent, did not intercut, perhaps indicating broad contemporaneity of use. The former proved to be a quite typical Iron Age-style storage pit (e.g. see myriad Wolds examples in Rigby's (2004) Pots in pits), sub-circular in plan and 1.30m diameter, with vertical sides and slightly dished base some 0.75m below the bedrock surface — hereafter Rubbish/Storage Pit F15. Its four fills comprised an initial 0.20m thick ashy dump (1017), followed by a 0.18m thick dump of chalk rubble (1022), and then the remaining volume was filled with further dumps of domestic rubbish (1006, 1013). The gully — hereafter Curvilinear Gully F16 - proved to be a very shallow (<0.1m
Chapter 7 Wharram Grange Crossroads (WGC): generating a research dividend from student training

depth) feature with one fill (1009) almost identical to the upper fill of the adjacent pit. This gully could be the remnant of a drip gully and would, if projected on a consistent radius, have been c.5m in diameter, which is at the smaller end of the range for roundhouses, and certainly very small for a round barrow ditch.

It remains to be seen whether the finds assemblages reflect the site sequence proposed above.

The most striking thing about the finds assemblages from stratified contexts in WGC04-7 was the dominance of handmade CTW ceramics (587 sherds out of 591 in total). Of these, 521 were HND-E sherds (ASW 5.71g), 65 were LIA-ER DPH types (ASW 19.22g) including 40 'joiners' from one pot, and there was one MIA rim (7g) – leaving just four very small (3.28g ASW), abraded MPR body sherds to complete the stratified assemblage which, overall, averaged 7.19g in weight (see Figure 48 for a summary of the assemblage by weight and count). As the HND-E label above suggests, there were no diagnostically LR CTW fabrics present. As Figure 47 indicates, the assemblage of diagnostic rims suitable for EVE calculations was limited and, apart from one exception of MIA date, these were all LIA-ER DPH types (for further details of ceramics and full finds assemblages see Access database on CD at rear).

The MPR body sherds comprised one greyware and one oxidised ware in Buried Soil F12, and one oxidised ware each in the upper fills of 'Special' Pit F14 and Rubbish/Storage Pit F15 (1006) – all were most likely intrusive. The relatively low average weight of the MPR material, when compared with the DPH/HND ceramics, is probably misleading in that the MPR vessels were smaller and thinner-walled to start with. In addition, the sherds and assemblages are too small and the original size of vessels, based on CTW body sherds in particular, is hard to estimate – any comparison must therefore remain qualitative. Inter-assemblage comparison of CTW body sherd size might, however, determine whether (1002) was a slumped ploughsoil or not (see below).
Conventionally, a site with such a lack of diagnostic ‘Roman’, in particular MPR, ceramics would very quickly be ascribed a pre-conquest ‘Iron Age’ date – indeed, such was the case with my co-authored interim of WGC04 (Hummler and Atha 2005) and previous works addressing the LIA-RB period on the Wolds (e.g. Hayfield 1987; M Giles 2000; 2007). However, the assemblage in question here comprised entirely of CTW pots with rim forms in vogue throughout the LIA-ER periods in eastern Yorkshire (J Evans 1995, 59-61; Didsbury 2004, 149-50; Rigby 2004, 47-8). In the absence of scientific dating evidence or other, stratified, more diagnostically pre-Roman artefacts – such as certain types of brooch – these assemblages and the features from which they come must be labelled LIA-ER as per the most recent Wharram publication (Rahtz and Watts 2004). This approach is used below in the discussion of WGC04-7’s finds assemblages, finds-based dating and interpretation of features, and in the concluding trench summary. However, in the overall WGC discussion in Section 7.9, alternative readings of the data – some ‘conventional’ and others more ‘radical’ – are also explored.

As Figure 47 shows, besides one MIA rim, all those recovered were DPH types in forms quite typical of the LIA-ER period. As will be noted throughout the WGC trench assemblages, WGC04-7 included, EVE percentages were mostly very small – in many cases less than 10% EVE by period/context. Such low figures often reflect the presence of a single diagnostic rim sherd in a context, as was the case in WGC04-7 F9/(1026), F13/(1008), F14/(1005), F15/(1013) and (1017), and F16/(1009). Hence the importance of summing the ceramics data by context groups/features as presented in the EVE results and summary tables.

Perhaps significantly, Linear Ditch F8’s homogenous, stony lower fills (1025 and 1015=1024) yielded only HND-E pottery – typical of early, non-enclosure ditches. In contrast, even the primary silts of Enclosure Ditch F8 (1010=1031=1033) produced one LIA-ER DPH rim (too small for radius or EVE calculation), together with 10 HND-E sherds.
Following that, the ditch's secondary deposit (1032), first recut (1030), and overlying deposit (1029), all contained only HND-E pottery. It is at this point that both ditches F8 and F9 are simultaneously used for the dumping domestic waste (1014=1016=1023). These ashy dumps produced good dating evidence in the form of an almost complete (in 40 pieces) DPH LIA-ER upright, thickened rim vessel, together with a different rim sherd of similar date (F8:1014). In Enclosure Ditch F9, the equivalent deposit (1016) yielded a DPH rim sherd of a plain, upright jar common to LIA-ER assemblages in northeast England (Challis and Harding 1975, 97). The wider finds assemblage from these ash-rich dumps included HND-E ceramics and burnt mammal bone, clay and stone. Interestingly, the second recut (1026, 1027, 1028) produced a plastic decorated rim of LIA-ER type – a now commonly recognised reappearance of a much earlier decorative tradition.

The two fills of Redefinition Ditch F10 (1003/1011) yielded a clay spindlewhorl, 51 HND-E sherds and one small DPH rim, too small to obtain an EVE, although its unusual rim form is paralleled in both EIA and LIA-ER assemblages in the region (Challis and Harding 1975ii, Fig.22:14 and Fig.33:4 respectively). Given Ditch F10's position late in the sequence, a LIA-ER date seems likely here. Linear Gully F3 (1004) sadly produced not a single find and therefore remains undated.

The topmost 'fill' of Linear Ditch F8 and Enclosure Ditch F9 was identified above as Buried Soil F12, which may be the surviving trace of a formerly much more extensive layer, possibly a ploughsoil, which had developed across the abandoned and backfilled LIA-ER linear ditches and enclosures. Over time this layer could have locally slumped into the soft fill of the two ditches and thus avoided removal by modern plough-truncation. In character it falls somewhere between the finds-rich, dark, humic dumps interpreted as domestic rubbish and the clean, stony, relatively finds-free, lighter brown deposits interpreted as backfilled upcast. Figure 47 shows that all the rims recovered from (1002) were DPH types of LIA-ER date, however, this does not tell the whole story.
Figure 48 reveals that this layer also included a sizeable assemblage of HND-E pottery as well as two abraded MPR sherds. One might, perhaps, assume a below average sherd size for HND-E material from a ploughsoil, but the ASW from Buried Soil F12 is 7.1g, which is well above the trench average for this class of material from all other contexts (5.2g). Both these figures are well below what Jerry Evans (2004, 312) considers to be the regional ASW of between 15-30g and low also when compared with other trenches in this case study. Further evidence for the survival of such layers is discussed in connection with the Field 96 trenches below.

The geophysics suggested (Fig. 26) that Pits F13, F14 and F15, and Gully F16 all lay within the same 60x50m (0.3ha) enclosure and, as such, provided an opportunity to examine the range of activities evidenced and the period over which they had occurred.

Dealing with the intercutting pits first, Pit F13's upper fill (1008) contained one upright pinched rim of MIA type, together with a small (7.4g) lump of iron slag. In terms of function, F13 is a slight and rather enigmatic feature, whose fills make an unconvincing case for its interpretation as a rubbish pit – it remains, therefore, simply a pit. The primary fill of 'Special' Pit F14 (1018) yielded just three HND-E sherds, however, it did contain the head and shaft of a human humerus in eight fragments, as well as mammal bone and a lump of burnt clay. This was sealed by a charcoal-rich burnt deposit with HND-E pot and burnt mammal bone (1012), which was then capped with chalk blocks (1005) whose soil matrix produced one 30.8g LIA-ER rim sherd, a tiny fragment (0.6g) of oxidised MPR body and 61 small HND-E sherds (ASW 3.2g). Two reused quern fragments were noted in the layer of capping stones that sealed the pit in an apparently intentional act – but to what end? Hummler (2004, 25) suggested three alternative interpretations for this pit: firstly, that it was simply a rubbish pit into which material, including the fragments of human bone, had been gathered up and deposited, secondly, that it was a disturbed grave and, finally, that it
Chg_pter 7 “arram Grange Crossroads ffG -generating a research dividend from student trainin

might be a ‘special deposit’. The first two might be discounted on the grounds that stone capping is perhaps an odd feature for a rubbish pit, whilst one might expect to find rather more than a fragmented humerus in a grave given the excellent bone preservation on the chalk. Therefore the combination of a single, albeit fragmentary, human bone in its base (1018), sealed by a burnt layer (1012) and then capped with chalk blocks (1005) perhaps favours the third alternative. Further potentially ‘special’ deposits also occurred in pits to the east of the crossroads in Field 96 (see below).

In contrast to Pit F14, the ascription of a rubbish/storage function to Pit F15 is perhaps less contestable – its form is more typical of disused storage pits, which are often backfilled with a mixture of domestic rubbish and chalky upcast material. Its ashy primary backfill (1017) produced two small LIA-ER DPH rims, as well as HND-E body sherds, mammal bone, charcoal chunks and a lump of burnt clay. The overlying chalk rubble dump (1022) produced far fewer finds, but these included two lumps of green clay (see below). The finds-rich upper fill (1006/1013) – divided during excavation but, based on the context description, probably the same deposit – contained a large and mixed assemblage of domestic rubbish including one small MPR-W oxidised body sherd in the top of (1006), a LIA-ER DPH rim, 36 HND-E pottery (ASW 3g), 126 mammal bone fragments with a significant burnt component, charcoal, 12 chunks of sandstone and limestone, and a 211g lump of green clay. The latter could be discarded raw material or perhaps a degraded unfired, or maybe low-fired, clay loom weight – Powlesland has noted such items in post-Roman contexts a few miles to the northeast and the practice may be much older than that across areas of the Wolds with ready supplies of raw material. The DPH rim is intriguing in that its well-sorted temper and fully reduced finish are more typical of 3rd-century and later Roman fabrics (e.g. see WG01 and WG02 in Appendix X), but its almost square-section, everted, thickened form, whilst somewhat related to Knapton types, is without close parallel – hence the 100BC-AD300 date range in Figure 48 WGC04-7 (see Access database...
Immediately south of Rubbish/Storage Pit F15, lay Curvilinear Gully F16, whose shallow fill (1009) produced 64 HND-E sherds (ASW 2.9g) and one DPH rim of LIA-ER date. This list is, however, incomplete as the on-site assemblage contained perhaps a further 10 DPH rims, including examples of all the main LIA-ER rim forms described by Challis and Harding (1975i, 96-97). Sadly, this important data set was somehow 'lost' between site and post-exavcation processing and it is therefore fortunate that the writer supervised its excavation and it can, at least, be included in these discussions.

In sum, then, at some point during the MIA, perhaps slightly later or, potentially, much earlier, Linear Ditch F8 was laid out running west from the crossroads. From the geophysics, F8 seems to have been the northernmost of a pair of meandering ditches, running from the crossroads to the BB ladder. If this interpretation of the magnetometry results is correct, it seems likely that when LIA-ER Enclosure Ditch F9 was cut, forming a 60x50m (0.3ha) enclosure on the north side of linear Ditch F8, it locally removed the southern ditch. The reason, therefore, that Enclosure Ditch F9 did not recut and enlarge Linear Ditch F8, may well be because it did just that to F8's near-neighbour immediately to the south. With one probable exception, all remaining features in trench WGC04-7 appear to be LIA-ER in date. With the enclosure in use, both ditches F8 and F9 were used for the dumping of domestic rubbish. Next, Redefinition Ditch F10 subdivided the enclosure into western and eastern halves, cutting across F8 and F9, and may well have recut the western half of Enclosure Ditch F9. Due to their uncertain stratigraphic relationship and lack of dating evidence, Linear Gully F11 can only be tentatively placed later than Linear Ditch F8.

The group of three pits (F13-F15) and their associated curvilinear gully (F16) all appear to sit within the western half of the enclosure delineated by Redefinition Ditch F10. However, the one provable stratigraphic relationship within this group suggests that at least one element might
Chapter 7 Wharram Grange Crossroads (WGC): generating a research dividend from student training

pre-date the enclosure: Pit F13 produced one rimsherd of MIA date and was cut by Special Pit F14, which yielded one LIA-ER rim. Individual sherds are obviously not a particularly secure basis upon which to base a site sequence, but one has to work with the evidence at hand. Storage/Rubbish Pit F15 and Curvilinear Gully F16 were also seemingly LIA-ER additions. There is a general paucity of non-ceramic artefacts in all features within WGC04-7 (e.g. worked bone) and this is discussed below in relation to the other Wharram excavations. Special Pit F14 is similarly considered in terms of the wider evidence for structured deposition in this case study (see Section 7.8).

Trench WGC04-8 (120m²) was located in the southeast corner of Field 5, some 110m northeast of WGC04-7, and in a position that targeted the ditch and part of the interior of the sub-divided square enclosure immediately west of the crossroads, as well as the northern edge of the geophysically ‘feint’ NE-SW orientated string of smaller enclosures immediately to its south (arrowed ‘A’ on Fig. 26). The square enclosure had been investigated using two trenches in 1996 (WGC96A and B) and, whilst the ceramic archive was available for study, the absence of a drawn record prevented full use of these data. However, although the trench locations and details of features are sketchy, the WGC96 ceramics assemblage is interesting and is therefore briefly mentioned in the discussion at the end of this section.

With respect to field walking results, reference should be made to the discussion under WGC-07 above which, given the lack of E-W control in the data, will suffice for this trench also – both trenches falling roughly within the same rows on the N-S axis. The passages below make reference to four figures that should be used in concert with the text: 49 (enclosure ditch section), 50 (post-excavation plan), 51 (Harris matrix), and 52 (ceramics results by rim EVE). The table in Figure 53 cross-references stratigraphic and dating evidence with interpreted features (see also full Access databases on CD)
With the ploughsoil (2000) and subsoil interface removed (2001), five features were revealed (Fig. 50). Once again, the geophysics had allowed the trench to be accurately located over specific targets: the main ditch of the square enclosure (cuts 2025/2028 – hereafter Enclosure Ditch F17) was clearly visible as c.3m-wide SW-NE orientated feature, which stretched beyond the l.o.e to east and west. A narrow (0.2 to 0.4m wide) gully (cut 2026 – henceforth Linear Gully F18) was aligned NW-SE, perpendicular to and seemingly respecting the larger feature. Approximately 4.5m to the south of F17, near the southern end of the trench, Linear Gully F18 appeared to be cut at right-angles by a further SW-NE ditch (cut 2021 – hereafter Linear Ditch F19), which was 1.2 to 1.8m-wide and again extended beyond the l.o.e. This was almost certainly the northern boundary ditch of the string of small enclosures noted in the geophysics discussion above ('A' on Fig. 26). In plan, it therefore seemed probable that Enclosure Ditch F17 and Linear Gully F18 might be broadly contemporaneous, whereas Linear Ditch F19 was later. Two much smaller features were noted at the northern end of the trench, effectively within the square enclosure: a 1m wide scoop under the northern baulk (cut 2006 – henceforth Posthole/Gully F20 and a 1m-long oval posthole (cut 2009 – henceforth Posthole F21). Both probably relate to activity within the enclosure but could, of course, belong to a pre-enclosure phase of activity.

The following discussion draws on the full sequence of fills exposed in the eastern section (Fig. 49) and, where possible, equates units with those recorded in the partially excavated western section. On excavation, Enclosure Ditch F17 had a 3m wide by 1.7m deep rounded V-shaped profile. In the base of the ditch was a sequence of dark brown primary silts, the first being (2027), then (2020=2024) and, finally, (2018=2022), which collectively filled the lower 0.5m of the cut. The remainder of the ditch was filled by two homogenous, dark greyish brown fills with frequent chalk rubble – the lower and slightly the darker of the two being a 0.55m thick deposit (2019=2023), whilst the upper (2012=2002, 2008, 2010) was slightly thicker at 0.65m deep. Hummler (2004, 38)
suggested that these upper fills (2012/2019) might sit within a substantial recut, but the morphology of the basal fills 2018/2020/2027 may suggest an alternative sequence of events. Looking at Figure 49, it would be very odd for the primary weathering to have all occurred on one side of such a substantial ditch 2020/2027, and then to have stopped and switched sides forming 2018. The three deposit descriptions are very similar but, if the drawn context boundaries are 'real', it is possible to see 2018/2019/2012 as the fills of a recut along the northern face of the ditch. A large ditch, such as this, would have produced a sizeable upcast bank, and the excavator attributed the 9m gap between the ditch and Features F20 and F21 to the former presence of such a bank on the inside of the enclosure (Hummler 2004, 34).

Linear Gully F18 increased in size from 0.3m wide by 0.15m deep at its northern termination to 0.45m wide by 0.22m deep at the l.o.e some 5.5m to the south. It had a single dark brown, stony, homogenous fill (2004). Stratigraphically-speaking, it is impossible to say whether it post-dates or pre-dates Enclosure Ditch F17, but it seems more likely that the gully was cut with reference to the enclosure, rather than the other way around.

When their intersection was excavated, it was clear that Linear Gully F18 was indeed cut by Linear Ditch F19. The ladder of enclosures to which this ditch belongs produced a very weak magnetic response, which probably resulted from a lack of contrast between its quite shallow, dark brown, stony fill and the surrounding bedrock. Given its 1.2-1.8m width and the fact that it defines the edge of a 140m long ladder, one might expect it to have originally been considerably deeper than its 0.25-0.35m. Unless, of course, it was a bedding trench forming one element in a block of hedged paddocks or folds and not a ditched boundary at all (see discussion below).

The two small features at the northern end of the trench, effectively 'within' the square enclosure defined by Enclosure Ditch F17, both proved to be slight features. To the west, Posthole/Gully F20 was just
0.23m deep and had a single homogenous fill (2206) within a rounded cut. Two metres to the east, Posthole F21 was an irregular 0.8x0.5m oval in plan which, on excavation, proved to be 0.3m deep. Its two fills were both excavated as (2007), but it was clear in section that there had been a post set to the east and packed from the west – there being a clear post-ghost evidenced by a vertical stripe of less-stony, browner fill to that side. During definition of this feature, an elongated, shallow 'gouge' in the bedrock surface was noted at its western edge and this could have resulted from the removal of an earlier post.

In terms of the finds, the contrast with trench WGC04-7, just 110m to the southwest, is striking; the ceramic assemblage from WGC04-8 included large, fresh and well-stratified MPR sherds from several contexts. In overview, the assemblage divides up into 295 CTW HND-E sherds (ASW 6.8g), 11 DPH rims (ASW 16.9g), and 34 MPR sherds (ASW 8.3g). The overwhelmingly early character of the HND material finds support in the lack of Huntcliff-types in this trench, and there are just three Knapton ware rims in later fabric type WGOI (see Appendix X), all of which came from the lower dump deposit 2019=2023. As the EVE figures attest (Fig. 52), rims were again in short supply (i.e. completeness was low) and, as a consequence, the results can be rather misleading (see context 2003 below). An alternative view is provided by Figure 53's summary of ceramic weights and counts summed by context group/feature and period. This provides a better picture of the full range of diagnostic, dateable material, as well the relative size, distribution and date of the HND component.

The primary silts of Enclosure Ditch F17 2020/2024/2027 produced 27 small HND sherds and a rim sherd from an oxidised flanged bowl dated to between AD175-225. Six lumps of fuel ash slag were also recovered from these deposits and its presence is interesting when compared with its absence in WGC04-7, however, it may well be of domestic rather than 'industrial' origin (Hummler 2004, 60). As introduced above, there may be a major recutting of the ditch at this time, after which a secondary
Chapter 7 Wharram Grange Crossroads (WGC): generating a research dividend from student training

period of silting occurred 2018/2022. The latter offered further evidence of activity in this enclosure in the ER period: a rare and interesting find of an Ebor red-painted ware flanged bowl rim, four LIA-ER DPH rims – one typical of the type, two had early forms but later-type fabrics, whilst the other had an unusual fabric with hackly fracture and a triangular rim more common in ER BB1 forms – together they suggested a date late in the 2nd century AD or at the beginning of the 3rd. As noted in Section 7.6 below, Ebor red-painted ware was also found in the Northwest Enclosure at Wharram Percy (see further discussion there).

The main two dark brown stony fills of Enclosure Ditch F17 were rich in mammal bone and ceramics, and were therefore interpreted as dumps of domestic rubbish, perhaps, as postulated by Hummler, mixed with backfilled upcast from a bank on the inside of the enclosure. As mentioned above, the first of these 2019=2023 produced three Knapton ware (AD200-300) rims (Corder & Kirk (1932, Fig. 30: 8-9), all of which may come from the same vessel although none are joiners. A ‘flag-shaped’ rim and body sherd from a BB1-copy greyware bowl with acute burnished lattice is probably a Rossington Bridge product of secure early-mid second century date (Gillam 1968, Fig. 23: 218; Buckland et al. 1980). The footring of an oxidised ware copy of a Samian Dr. 37 bowl was tentatively dated to the early-mid 3rd century, and this interesting ER assemblage is rounded off by a tiny chip of Samian ware and two LIA-ER DPH rims. Further confirmation of date is provided by a beautifully preserved trumpet brooch (see Plate X) – an almost identical example was dated as mid-late second century at Birdoswald (Wilmott 1997, Fig. 187: 55). Taken as a group, these finds suggest that following its recutting, perhaps to remove earlier phases of midden deposits, Enclosure Ditch F17 began its final cycle of backfilling during first half of the 3rd century AD. Although very similar in character to the latter deposit, an upper phase of rubbish dumping was identified 2012=2010/2008/2002. This produced a very similar assemblage of 102 sherds of early-type HND pottery, as well as 4 LIA-ER DPH rims and an MPR component comprising: one small sherd of Samian ware, two thin-
walled Crambeck-type greyware body sherds, one possible Ebor greyware sherd, and an unusual fully-reduced CTW sherd tempered with well-sorted oolitic limestone. The Crambeck-type greyware is perhaps half the thickness of the ‘real thing’, but seems to be produced using the same white-firing, fine sandy clay, however, this can be won anywhere from North Lincolnshire to the Howardian Hills. Dating and provenance are therefore a problem but, taken as a group, a date somewhere in the 3rd century seems likely. Other finds included ten lumps of burnt clay and a substantial assemblage of mammal bone, much of it very fragmentary.

Linear Gully F18’s single stony fill yielded a small ceramic assemblage with just one LIA-ER DPH rim and three HND-E sherds. This is hardly a definitive dating assemblage; however, it does not contradict the notion that this feature and Enclosure Ditch F17 were broadly contemporary. Cutting F18 was Linear Ditch F19, whose ceramic assemblage ably demonstrated the potential of EVEs to skew results; here fill 2003 contained 11 body and base sherds of LR Crambeck greyware, but the quantification by rim EVE only shows the one small rim of LIA-ER DPH type. A further 4 LR greyware body sherds – 2 thin-walled Crambeck-type and 2 possible Holme-on-Spalding Moor (HoSM) examples – reinforced the LR dating. Two tiny abraded sherds, one of oxidised ware and the other a potentially early greyware, are probably residual. Finally, the 16 HND-E sherds reflected the lack of diagnostically late types in the CTW component. Together, this assemblage points to the backfilling of Linear Ditch F19 between the end of the 3rd and the middle of the 4th century.

Typically for such diminutive features, Posthole/Gully F20 and Posthole F21 were virtually finds-free; the latter producing just two tiny, undiagnostic scraps of pot.

At this point some mention should be made of the assemblage from trenches WGC96A and B, one of which, according to a sketch plan, was
positioned across the same features as WGC04-8, but just to the east, whilst the other was situated perhaps 30m to the north in the eastern half of the square enclosure. Whilst it is impossible without drawings to correlate features from the two campaigns, a clearly substantial ditch (perhaps equivalent to Enclosure Ditch F17) produced the following: Nene Valley colour coated ware including the lid of a 'Castor Box', large quantities of EY burnished greywares, Crambeck greyware, plain Samian ware, an amphora body sherd, Dorset BB1, Knapton ware, whitewares, mortaria (possibly Mancetter-Hartshill), oxidised wares and just a few scraps of abraded Huntcliff ware, which is probably intrusive. A gully and a further ditch were both firmly LR in date – it is possible that the latter is the continuation of Linear Ditch F19. A plethora of pits, postholes and gullies are listed which, presumably, were identified in the trench positioned within the enclosure. It is hope that, at some point, the missing archives will resurface to allow these interesting assemblages to be placed in their proper context.

To sum up WGC04-8: Enclosure Ditch F17 was probably dug in the late 2nd century, it was then recut soon afterwards and then subsequently backfilled with a mixture of domestic rubbish and upcast, which occurred in two episodes between the late 2nd and mid-3rd century. Linear Gully F18 may well have been laid out at or around the same time as the enclosure. Then, between the late-3rd and mid-4th century, a string of smaller enclosures defined along their northern edge by Linear Ditch F19, was laid out. The two smaller features F20 and F21, although undateable through artefactual means, are spatially within Enclosure Ditch F17 and may represent the south-western edge of more intensive domestic occupation towards the centre of the enclosure. They are therefore tentatively assumed to be broadly contemporary with the enclosure.

\textit{WGC95A, WGC95B, WGC98B and WGC99A (Field 96)}

Trenches WGC95A (136m2) and WGC95B (72m2) – shortened to 95A and 95B below – were positioned as shown in Figure 26, to investigate the
northern and southern ditches and adjacent interior space of a rectilinear enclosure forming the northernmost element of the ladder immediately north of the crossroads in the angle of Field 96. Although the western side of the enclosure is masked by a combination of the unploughed field edge and modern road, the visible portion can be estimated at c.45m square (0.2ha) – or just outside the 0.25-0.5ha range typical of many ladders. Given the similarities evidenced in the two trenches below, it is interesting to note that the gap between the southern end of 95A and northern edge of 95B is almost 20m. It should be noted that the paper archives for these two trenches were particularly sketchy with, for example, contradictory stratigraphic information and limited deposit descriptions, and this has obvious implications for what is inevitably a more summary discussion of the evidence. For the sake of clarity, site development and the finds assemblages are dealt with on a trench-by-trench basis and any obvious discrepancies between the text, figures and finds data are flagged up and explained using italicised text. The clear similarities between the two trenches nevertheless encouraged a more integrated summary of the overall phasing and function of features observed. The following figures for 95A/95B are referred to in the text: 54/59 (post-excavation plan), 55/60 (ditch section), 61 (95B ditch/pit sections), 56/62 (Harris matrix), 57/63 (ceramics results by rim EVE) and the tables in Figures 58/64 (stratigraphic and dating evidence cross-referenced with interpreted features). See also full Access databases on CD at rear.

The Field 96 gridded fieldwalking (Fig. 31) did not extend far enough north to cover the area excavated by these two trenches, but WGC95B was located at the northern edge of the surface artefact scatter recorded in Figure 30. The implication of the latter results was, therefore, that the intense LIA-RB occupation indicated within the southern enclosure in Field 96 (see discussion of WGC field walking above), might be reflected in the rest of the ditches and enclosures making up the ladder settlement.
With the modern overburden removed, both trenches revealed a cluster of what appeared to be intercutting pits and a stretch of enclosure ditch (see Figs.54/59), which in both instances was orientated E-W and extended beyond the l.o.e. In WGC95B the enclosure ditch was clearly cutting two of the pit-like anomalies. Interestingly, the pit clusters extended beyond both the northern l.o.e of 95B and the southern l.o.e. of 95A, effectively disappearing under a 20m-wide ‘baulk’ between the trenches. Whether the pits extend across that entire distance is unclear, but the geophysics only picked up a small proportion of the total – probably due to the lack of contrast between the natural chalk and the clean, orangey-brown, stony fills of most of their number. Indeed, only one pit in each trench is recorded as having fills that were darker, less stony and more humic in character (see 95A:006 and 95B:220 below).

In WGC95A, the earliest element is a U-shaped gully 0.4m wide by 0.3m deep (cut 025 – henceforth Linear Gully F22), whose single dark brown fill (024) appeared to be cut by the largest of a series of intercutting pits (cut 006 – hereafter ‘Special’ Pit F23). The gully extended from the pit-edge some 2.5m to the eastern l.o.e. The latter pit was sub-oval and 4m by 2m in plan, and its 0.6m deep cut had a relatively dark and stone-free fill (005=047). Rather unusually, the pit was clay-lined and included what was clearly a placed deposit consisting of a calf skull “placed on a pedestal of chalk and pinned down with two trimmed chalk blocks” (Wagner 1995). In an interesting and probably significant parallel with ‘Special’ Pit F14 above, the pit was then sealed by a layer of chalk capping stones (049). A 0.5m wide by 0.2m deep gully (cut 010 – hereafter Linear Gully F24) was thought be the excavator to be contemporary with the latter pit, perhaps serving as a conduit channelling water into the clay-lined feature. Next, a 2m by 1.3m by 0.4m deep sub-oval pit (cut 014 – henceforth Pit F25) truncated ‘Special’ Pit F23 on its north-western side, and was itself cut on its northern edge by a slightly larger pit (cut 043 – hereafter Pit F26). Pits F25 had a single stony fill (013), whereas Pit F26 had a primary chalk weathering deposit (042) followed by two further stony fills (041/040). Overlying
all the above pits was a series of surface spreads which, stratigraphically-speaking, can be considered to be abutting one another (layers 004, 045=046 and 040 – hereafter Surface Spreads F29).

Some 8.5m north of the pit cluster lay the ditch defining the northern side of the enclosure visible in the remote sensing data (cut 003 – henceforth Enclosure Ditch F30). The ditch had a V-shaped profile that measured 1.6m wide by 0.9m deep, and was stepped on its southern side in such a way as to raise the possibility of perhaps one or even two recuts. Its five fills comprised: a brownish-yellow, stony primary weathering deposit (002d); followed by a 0.35m thick orangey-brown fill (002c) – perhaps suggestive of upcast backfilled into a recut marked by the first step, and then three dark brown humic fills (002a/002b/002), which may again sit within a recut corresponding with the higher step. The character of the three upper fills suggested the dumping of domestic rubbish and this is backed up by the finds data, to which we must now turn.

The ceramic assemblage from trench 95A falls neatly into two discrete groups, which relate to the excavation and use of pits in the MIA and the enclosure of settlement at the crossroads in the LIA-ER period.

Pits F23 and F26-28, and the overlying Surface Spreads F29, produced assemblages that were exclusively of early-type HND pottery and CTW forms of diagnostically MIA date; indeed, the vessels are classic examples of the upright, pinched-rimmed barrel jars more commonly found as grave goods in square barrows in the region, for example, at Danes Graves (Challis and Harding 1975, Fig.31). The latter therefore constitute an important non-mortuary data set, presumably relating to unenclosed domestic occupation at Wharram crossroads. Beyond the ceramics, there was an intriguing group of 12 “large roundels of raw blue clay” (Wagner 1995), discovered in the pair of intercutting pits F25 and F26, and weighing between 3-5kg each. When analysed, the clay was shown to have a low iron content, which was thought by the excavator to
be ideal "for forming moulds or crucibles" (Wagner 1995). Whatever the case, it would be interesting to establish the provenance of this material to see if it is derived from the Kimmeridge Clays recorded in the valley bottom at Wharram Percy (Atha 2003, Fig.22).

The primary weathering deposit it Enclosure Ditch F30 produced one large DPH rim sherd suggesting an initial date of creation in the LIA-ER period. The fill of the proposed lower recut offered up just two small HND-E sherds, supporting its interpretation as clean, backfilled upcast. The ditch was perhaps recut again and then finally filled to the top with a dump of domestic refuse, which included a large assemblage of HND sherds (886 with an ASW of 8.6g) – the vast majority in early-type fabrics – as well as 29 LIA-ER DPH rims (ASW 31.6g) and 106 MPR sherds (ASW 10.8g). The MPR material was mostly early in date and included the following: several sherds of that classic ER type-fossil Rusticated ware, a sherd of Dorset BB1, a local BB1 copy with calcareous temper, a Samian Dr.37 footring, a possible sherd of Colchester-type BB2 and a greyware BB2-copy, and, finally, several sherds of early-type greyware identified, somewhat cautiously, as Ebor ware. With the exception of one small, perhaps intrusive, rim sherd of Proto-Huntcliff-type, all the LR pottery was in fact Knapton or Knapton-type ware, which supports an end date for the ditch backfilling by the mid 3rd century. The lack of Crambeck or fully-developed Huntcliff material is also significant in this regard. Besides the pottery, Enclosure Ditch F30 produced two well-preserved Roman fibulae – one a mature Trumpet type, similar to that found in WGC04-8, and the other a debased headstud type – both probably dating to the first half of the 2nd century (Olivier 1996, 255).

In WGC95B, the earliest component is a 0.35m deep irregular pit (cut 296 – hereafter Pit F32), some 3.3 by 2.5m in plan, with three oval features (averaging 0.5m across) cut into its base (333, 336 and 351) – the last two being unexcavated. The latter were not allocated feature numbers as the archive has no detail of their stratigraphy, fills or finds,
but they are assumed to have been cut into the base of the larger feature before being sealed by the single stony fill of Pit F32 (292). A smaller 1.3m ‘diameter’ sub-round pit (cut 293 – henceforth Pit F33) - was then cut 0.2m into the top of F32 and backfilled with a single homogenous fill (290). Drawing on the finds evidence below, a further pit (fill 320 – henceforth Pit F31: cut number, location and stratigraphic relationships unknown) appeared to belong to this initial phase of activity in the trench. Pit F33 was then cut by a later pit (cut 295 – hereafter Pit F34: dimensions unknown), which was in turn clipped on its southern side by the enclosure ditch (see below). Approximately 3m to the west of F34 and partly hidden by the N-S baulk was another pit measuring 0.7 by 1.5m in plan (cut 231 – hereafter Pit F35), whose 0.6m deep fill (230) was cut by a later pit (cut 257 – henceforth Pit F36), which was superimposed over it - both were then truncated by the enclosure ditch (see Fig. 61).

Abutting F35/36 to the north lay a complex of three intercutting pits, which were sealed by a surface spread and then cut by a further pair of intercutting pits. The sequence in more detail is as follows: a 2m long by 1m wide oval pit (cut 254 – henceforward Pit F37: depth unknown) with fill (225) was cut by a smaller 0.3m deep by 1.5m diameter pit (cut 255 – henceforth Pit F38) with fill (226) which, in turn, was cut by a 1.5m long by 1m wide oval pit (cut 221 – hereafter Pit F39). The latter had a 0.35m deep humic, dark coloured fill that contrasted sharply with the orangey-brown, stony fill of every other pit in this trench. It was also noteworthy because it contained an inverted adult cattle skull full of carrion snails – suggesting the skull was at least partially fleshed when deposited. This may, however, just be rubbish disposal as the pit lacks any additional evidence suggestive of careful placement, burning or attempts to seal the deposit, and it is therefore not flagged as ‘special’. The group of three pits was then covered by an orangey-brown stony layer (215 – hereafter Surface Spread F40). Thereafter, a 2.2m diameter by 0.45m deep pit (cut 258 – henceforward Pit F41) with fills (267/249/248) cut Pit F39 on its northeast side and was then itself cut by another pit (cut 268 – hereafter
Pit F42), which was superimposed upon it. The latter feature measured some 0.85m long by 0.25m deep when viewed in section (see Fig. 61).

Abutting F41 on its north-eastern side was a large sub-oval pit (cut 326 – hereafter Pit F43), some 3m by 2.3m in plan, whose single 0.45m deep fill (325) was cut by two smaller pits (cuts 306 and 341 –Pits F44 and F45 respectively), the former was partially hidden beneath the baulk but appeared to be sub-oval, 1.5m long and had a single 0.2m deep fill – whilst the latter has no depth or fill recorded, but was 0.4m by 0.7m in plan. In amongst this confusing mass of intercutting pits lay three discrete examples: immediately west of Pit F41 lay a sub-circular pit some 2m in diameter (cut 253 – henceforth Pit F46: no depth or fill recorded), just to the south-east was a smaller 0.3m deep pit – perhaps 1.3m in diameter – truncated by the N-S central baulk (cut 261 – hereafter Pit F47) with a single fill (260), and, finally, at the eastern edge of the trench lay a 0.2m deep by 0.7m diameter pit (cut 263 – hereafter Pit F48) with a single fill (262).

All the pits so far discussed were sealed by a surface spread (216 – henceforward Surface Spread F55), which did not, however, extend across the four most northerly features in the trench. The first of these was a c.1.5m ‘diameter’ sub-oval pit (cut 212 – hereafter Pit F49: no depth recorded) with fill (211), which was abutted by Pit F46 on its southern side and cut by a somewhat larger pit along its north-eastern edge. The latter was oval in shape and at least 1.5m long, but extended under the central baulk and beyond the northern l.o.e. (cut 301 – henceforth Pit F50) and had a single 0.35m deep fill (300). Immediately to the west were two more features – both of which extended beyond the northern l.o.e.: a shallow scoop or gully c.0.4m wide, 0.9m long and 0.3m deep (cut 251 – hereafter Scoop F51) with fill (213), which was cut by a shallow, irregular pit measuring just 0.2m deep by at least 1.4m in length (cut 250 – henceforward Pit F52) and having a single fill (214).

As mentioned above, the final phase of activity in WGC95B began when a ditch (cut 206=274=284 – hereafter Enclosure Ditch F53) was dug E-W...
across the trench, cutting the southern edges of Pits F34, F35 and F36, and extending beyond the I.o.e. in both directions. There is some confusion in the archive as to the profile and dimensions of this ditch, which is either a rounded V-shape measuring 2.6m wide by 1m deep (Fig. 60), or a flat-bottomed V-shape measuring 1.8m wide by 0.7m deep (Fig. 61). Both sections were drawn at the point where the ditch cuts pits F35/F36 and, when viewed against the plan (Fig. 59), it seems likely that the true northern profile of the ditch is that recorded in Figure 61, whilst in Figure 60 the draughtsperson inadvertently followed the cut-line of the pits – the true line is suggested by the bold dashed line on the latter figure. Despite this confusion, the fills themselves provide no evidence of recuts and the four elements were as follows: a clay-rich primary weathering deposit (205=273=283) was overlain with two fills whose finds assemblages (see below), if not their cryptic deposit descriptions, were suggestive of domestic rubbish disposal – the lower deposit (204=272=282) was 0.35m thick and the more stony upper (203,202=271,270=281,280) 0.6m thick. Finally, a thin gravely spread sealed the surface of the ditch (201 – hereafter Surface Spread F54). Although the stratigraphy provides some very useful indications of site phasing it is to the finds assemblages that we must now turn for further definition.

Wagner's summary report suggested a date range of LIA-Anglian for the two trenches and it was therefore something of a surprise to find much earlier material within the ceramic archive. Particularly noteworthy are a pair of joining rim sherds from a Kilham-type jar (Rigby 2004, Fig.43:15), found in Pits F31 and F33 and dating these features – and Pit F32 which is itself undated but cut by F33 – to c.600-400BC. Of the remaining 17 pits, just 5 produced any ceramics at all and, of those, four had HND-E assemblages numbering just one to three sherds – the exception being Pit F41, which yielded 117 HND-E sherds (ASW 5.5g), but not a single diagnostic fragment. The aforementioned E-MIA pits were cut by later pits which, in turn, were cut by the enclosure ditch; where exactly the 17 undated pits fit is hard to say, but they are all
similar in morphology and fill and were tentatively dated as MIA (300-100BC) – some are probably contemporary with the three early examples above.

Enclosure Ditch F53 has a substantial assemblage of LIA-ER DPH pottery, which arguably points to its creation at some point in that period; indeed, even the primary weathering included three LIA-ER DPH rims. The lower dump of domestic rubbish included 7 rim sherds of Knapton-type pottery (AD200-300) together with 10 rim sherds of LIA-ER. The upper dump deposit provided a much more varied assemblage including MIA, LIA-ER, ER, LR, TR and AN material. To start with, this must indicate that the deposit, although seemingly homogenous when excavated and recorded had, in fact, resulted from several cycles of disturbance – either in terms of material lying around and becoming mixed prior to deposition, or as a result of a series of dumping events indistinguishable during excavation. Looking at the numbers of diagnostic sherds, they present an interesting pattern: two MIA, 43 LIA-ER, seven ER, nine LR, 10 TR and 37 AN. The MIA rim sherds probably represent residual material introduced during the process of backfilling. As argued above, the sizeable LIA-ER assemblage points toward the date of creation and this is not contradicted by the types present in the ER, TR or, even, LR groups, which include: two different types of Rusticated jars – one with early heavy rustication (c.AD70-120), the other with ‘strings and stars’ and maybe as late as AD150 in date; an indented greyware jar (c.AD160-280) with parallels in York (Monaghan 1997, Fig.386:307); and several Knapton-type rims (AD200-300). Taken as a group, the LIA-ER and MPR material collectively suggests that the upper phase of rubbish dumping occurred between the 2nd and early 3rd centuries.

What then of the significant quartzite-gritted Anglian assemblage? Hayfield’s field walking highlighted the presence of Anglian activity in the area, so the presence of Anglian pottery is not surprising. Having not excavated the site, it is difficult to offer detailed suggestions; however,
it seems that the upper fill of Enclosure Ditch F53 was in some way reworked, perhaps for rubbish disposal, in the Anglian period.

Besides the ceramics, Enclosure Ditch F53 "provided extensive evidence for nearby bronze and iron smelting (crucibles, moulds and slag)" (Wagner 1995) – parentheses original. Some qualification is necessary here; given the presence of crucibles and moulds, copper alloy working seems highly likely, but any ferrous slag present is almost certainly associated with smithing activity rather than smelting, which tended to occur in locations rich in raw materials such as the Foulness Valley. The 'star' find from the enclosure ditch was the body of a carved chalk figurine, similar in shape to several examples in Stead (1988), complete with a sword hilt carved on what is most likely to be its back. Stead (1988, 23), based on ceramic associations, dated such figurines to between 100BC-AD100.

In summary, then, the two trenches revealed a very mixed ceramic assemblage spanning the period 600BC-AD410+ (see again tables in Figs. 58 and 64 and Figs. 57 and 63). Within this wide date range, three main phases of activity can be identified: the first is defined by the excavation, use and disuse of at least 3 of the 25 intercutting pits (Pits F31-33) somewhere in the E-MIA (600-400BC); the second sees a continuation of that activity into the MIA proper (c.300-100BC), and the third is represented by the cutting, maintenance and disuse of Enclosure Ditches F30 and F53 between 100BC and AD250.

What function the 25 pits performed is, in most cases, unclear – some, such as pits F23 and F33, resemble the U-shaped profile typical of Iron Age storage pits, but are such notions of 'typical profiles' just archaeological constructs anyway? Certainly, none are recorded as containing charred grain, most lack convincing evidence for their (re)use as rubbish pits, and they seem to perform no structural role – although note the proximity of small Pits F45, F47 and contexts 333, 336 and 351 in Pit F32 in 95B. 'Special' Pit F23, though, was backfilled with a dark,
humic fill which, unlike the other ‘cattle skull pit’ F39 (one scrap of HND-E pot), did contain domestic rubbish in the form of 80 sherds of pottery.

Turning next to the enclosure ditches, the third phase of activity follows very similar trajectories in the two trenches: northern ditch F30 was possibly recut on a couple of occasions but seems to have been disused in the mid-3rd century. Southern ditch F53 reflects this pattern but, in contrast, its upper fills also bear witness to a fourth phase of activity in the Anglian period. The dearth of diagnostically LR material (EY greywares, Crambeck and Huntcliff types) in this enclosure tends to suggest that this occurred following a hiatus in settlement activity.

WGC98B and WGC99A

Trenches WGC98B (93m²) and WGC99A (80m²) – shortened to 98B and 99A below – were located as shown in Figure 26, to investigate the c.70x50m (0.35ha) sub-divided enclosure in the central portion of the ladder spanning Fields 96 and 16 east of the crossroads (see Fig. 25). Using the EH geophysics as a guide (Figs. 29 & 30), 98B was positioned on the grass verge along the northern side of the road to Wharram-le-Street whilst 99A was aligned parallel to it at the southern edge of Field 96. The enclosure fits well within the usual size range for ladders and could be larger still, given that it disappears under the modern road verges to the south and west. Perhaps it is easy with hindsight, but the size and layout of the enclosures to either side of the road north-east to Wharram-le-Street indicates that there would most likely be an E-W linear/enclosure ditch somewhere between Fields 96 and 16. Possible candidates had, of course, already been found in trenches 97 and 98C.

As noted in the discussion of surface collection at the beginning of this section, the south-western corner of Field 96 – within which both trenches currently under scrutiny were located – was the only part of this case study field walked intensively within a 10-m grid (see Fig. 31). One has to wonder, therefore, whether the conspicuous intensity of finds in
this area reflects a 'real' (i.e. LIA-RB behavioural) difference, or is simply an artefact of the archaeological methodology applied. The answer, as usual with such situations, is that it is probably a bit of both. A brief review of the field walking assemblage confirms the presence of a significant LR component of 3rd to 4th century types: Knapton ware, EY burnished greywares, Nene Valley colour coated ware, Huntcliff ware, Crambeck greyware, and possibly ?Dorset BB1. As argued above, the 628 sherd assemblage of handmade CTW - dated as LR, with caveats, by Hayfield - almost certainly contained LIA-ER DPH types, and this is borne out by the excavated evidence below. That is getting somewhat ahead of oneself, however, and it is to the sequence of site development in trench 98B that we must now turn.

The following figures are referred to in the text: 65 (post-excavation plan), 66 (Harris matrix), 67 (ceramics results by rim EVE), and 68 (table showing stratigraphic and dating evidence cross-referenced with interpreted features). See also full Access databases on CD at rear. Please note that the drawn record for 98B included no sections that added significantly to the relationships discernible in the post-excavation plan - hence the omission of such figures in this case.

Trench WGC98B was quite unusual for the Wolds in that it revealed what seemed to be a buried ploughsoil/hillwash horizon (7) beneath the modern topsoil (1) and subsoil (2). Its survival, like that of similar deposits in 98A (026) above and 99A (109) below, doubtless relates to the lack of modern deep ploughing in such field-edge and grass verge locations. When these three layers had been machined off, two distinct blocks of stratigraphy were identified in the western and eastern parts of the trench.

To the east, a flat-bottomed, U-shaped pit c.0.5 by 0.6m and 0.16m deep (cut 59 - henceforward Pit F56), contained two rich, humic fills (71/69) sealed by a layer of rounded chalk cobbles set in a clay matrix (58), which was then overlain by a chalk weathering layer (74). An
environmental sample of 69 revealed birch, alder, dandelion and fern pollen, interpreted as potential evidence for fodder being brought into the site (M Giles 1998, 3). Whatever the case, the pit is interesting in that it was sealed with some care. The pit was later truncated by an irregular pit (cut 75 – hereafter Quarry F57) some 2 by 3m across and extending beyond the l.o.e. to the north. It had been excavated to a depth of 0.6m, at which point shattered chalk gave way to bedded strata. Pit F56 had therefore formerly been that much deeper, suggesting that the chalk and clay capping was sealing deposits in the very base of a quite substantial pit. One might have hoped, therefore, to have found something more archaeologically intelligible beneath the capping than a few pollen grains. The base of the quarry contained a 0.3m-thick very dark silty spread (46), which may have derived from the truncated pit fill, whilst, in contrast, the remaining volume was made up of backfilled clean chalk rubble (40). Close to the northern baulk, a thin (0.1m) organic-rich layer (9=22 – henceforth Spread F58) had formed in the slumped upper surface of the quarry. The southern edge of Quarry F57 was cut by a N-S orientated ditch (cut 56 – hereafter Linear Ditch F59), which was just 0.35m deep and measured 0.9m wide by 3.4m long at the southern l.o.e. Its rounded u-shaped profile contained a single dark humic fill (12=29=52=61=63) with inclusions indicative of domestic rubbish disposal. Besides the quarry, Linear Ditch F59 also cut across the path of a 2.6m long ENE-WSW gully (cut 48 – henceforward Gully F60), some 0.6m wide by 0.4m deep at its western end – where there may have originally been a post set. Whilst its single brown fill (8=17) lacked the humic character of F59’s fills, it did include an intense scatter of finds in the eastern end of the feature. The third and final feature cut by Linear Ditch F59 was a 0.3m diameter posthole (cut 66 – hereafter Posthole F61) with a single sterile fill (47). The last component in the eastern sequence of intercutting features is perhaps the most interesting. It comprised a seemingly contemporary grave and stakehole (cuts 15 and 76 – hereafter Grave and Stakehole F62) cut into the eastern side of Quarry F57. The single extended inhumation of an elderly female was orientated feet to the east and the grave and stakehole each had single
fills (16 and 77 respectively) – the stakehole was interpreted as belonging to a grave marker.

In the western side of the trench, a shallow pit some 0.17m deep and 1.6 by 0.9m in plan – truncated by the southern lo.e. (cut 99 – henceforth Pit F63) had a single dark silty fill (83). It was cut along its northern side by a larger, roughly D-shaped pit of similar depth (cut 97 – henceforward Quarry F64), which had a single orangey-brown, clayey fill (88) and measured 1.6 by 3m in plan. The quarry was in turn cut by an E-W orientated gully whose eastern end terminated in what appeared to be a contemporary posthole (cuts 96 and 95 – hereafter Linear Gully and Posthole F65). The gully was a slight feature just 0.1m in depth, 0.5m wide and 3.6m long at the western lo.e. Its base was punctuated with a quite regular spacing of stakeholes which, together with the terminal posthole, suggested that F65 had perhaps functioned as a fenceline. It had a single fill (84), which was described by Mel Giles on the context record as "brown-black waterlain silt", which perhaps indicates a process of gradual accretion around the barrier. Most interestingly, Gully and Posthole F65 appeared to form the northern boundary of a 0.05m-thick spread (87 – hereafter Spread F66), which covered the entire 5m width of the southern trench ‘extension’ to the lo.e. and seemed to post-date and be ‘contained’ by the proposed fence. The spread had a trampled, worn surface and it sealed not only Pit F63 and Quarry F64 but, also, the southern butt-end of a N-S orientated ditch (cut 70=98 – henceforward Linear Ditch F67).

Linear Ditch F67 expanded in width from 0.6m wide in the south to 1m where it disappeared under the trench baulk some 6.2m to the north. It had a 0.35m deep, rounded U-shaped profile with three fills: the first a clay-rich primary silt (93), followed by a yellowish, chalky weathering deposit (107), and then topped off with a dark silty fill rich in domestic refuse (65=85). It is notable that the patterning of finds in this latter fill was recorded as clustering in the upper portion along the centreline of the feature – this patterning probably resulted from repeated cleaning of
rubbish to the edge of an area bounded by a hedge or fence of some sort.

Just over 3m to the west of F67, a shallow (0.2m deep) and irregular hollow some 1.8m across, but extending beyond the l.o.e. to north and west, was tentatively interpreted as a quarry (cut 92 – hereafter Quarry F68) – it had a single homogenous fill (86). Roughly a metre to the east of ditch F67 was an L-shaped gully (cut 68 – henceforward L-Shaped Gully F69), which measured 1.5m along the NW-SE orientated base of the ‘L’, whilst the SW-NE arm measured 1m to where it disappeared under the northern baulk. In section the feature was just 0.5m wide by 0.2m deep and its single fill (13) was in fact part of a dark, refuse-based layer that seemed to be delimited by the gully and to have ‘spilled’ into the feature from the inside (east). The extent of deposit 13 also correlates with the condition of the gully’s vertical faces: the outer edge of the cut was sharp, whereas the inner face was rounded and worn. In addition, a c.0.16m diameter stakehole (cut 68 – henceforth Stakehole F70) was cut abutting the inner face of F69 and may have been broadly contemporary.

South of F69/70, in the space between Linear Ditches F59 and F67, were a series of small features. The most northerly was a 0.1m thick by 0.3m diameter spread (14=51 – henceforth Spread F71), interpreted as a pocket of occupation material trapped in the bedrock surface. Just 1m southeast of F71, was a group of three postholes (cuts 53, 44 and 54 – hereafter Posthole Group F72) each with single fills (23, 43 and 24 respectively) which, although the first two slightly intercut, effectively respected one another. Some 1.5m to the southwest was a further posthole (cut 36 – henceforward Posthole F73) with a single fill (37). A further metre to the south, under the southern baulk, a c.1m diameter by 0.15m deep scoop (cut 55 – hereafter Scoop F74) appeared to be cut by another posthole (cut 72 – henceforth Posthole F75). The fill of Scoop F74 (25=28) included a soft, fine component commonly found where posts have rotted in situ, and it was thus thought that 25=28 probably incorporated much of the fill (73) of Posthole F75.
The final group of features in this trench was located to the east of Linear Ditch F59 and comprised three intercutting features, the earliest of which was a posthole (cut 33 - henceforth Posthole F76) 0.4m in diameter by 0.2m deep with a single fill (32). This was cut by an oval posthole measuring 0.70m by 0.55m by 0.15m deep (cut 31 - henceforward Posthole F77), whose fill (30) was considerably more stony to the south, perhaps indicating the location of packing for a post set in the northern end. The last feature was then cut by the grave of a “late neonate or very young infant” (M Giles 1998, 3) (cut 18 - henceforth Grave F78) with fill (10). This second burial in the area to the east of Linear Ditch F59 raised the possibility that an area within the enclosed ladder settlement was set aside for mortuary use, although the dating evidence suggested otherwise (see below).

That completes the discussion of the stratigraphy and for further chronological resolution we must turn to the finds data.

The ceramic assemblage from this trench is perhaps the most varied of any of those within the WGC case study and includes material from the following six periods: MIA, LIA-ER, ER, LR, TR and AN (Fig. 67 and Figure 68). Overall the assemblage numbered 783 sherds (ASW 11g), of which 600 (ASW 8.7g) were HND material in predominantly early fabrics, however, in features where MPR CTW occurred the correlation with HND-L material was, once again, very strong.

The earliest group of features in 98B date to the LIA-ER period and comprise Linear Ditch F67, L-Shaped Gully F69/Stakehole F70, and Spread F71. The last three sit within an enclosure sub-division defined by F67 and the assemblage from the whole group comprised one MIA sherd (52g), 114 large, fresh LIA-ER DPH sherds (ASW 20.7g) and five small MPR sherds (ASW 5.78g). As noted above, the fill of Gully F69 is in fact the westernmost edge of an occupation layer, which was particularly rich in finds including 79 DPH sherds (ASW 17g), a bone
comb made from a cattle longbone with coarse teeth cut into one end – conventionally termed weaving combs (e.g. Rigby 2004, 97 and 180), daub, charcoal, and mammal bone. The survival of this and other such layers in this trench is testament to what, for the Wolds, is an excellent level of preservation (see also trench 99A below).

All other features containing diagnostic assemblages are quite firmly dateable to the Roman period, but there is a definite ER to LR split from east to west.

The eastern group of intercutting features seems to have developed over an extended timeframe, probably spanning the first to early 4th centuries AD. Gully F60, Quarry F57 and, perhaps, Posthole F61 appear to form an early phase dating to AD70-250, and therefore probably overlap in use with some if not all of the LIA-ER elements above. The stratigraphically later Spread F58 and Linear Ditch F59, whilst including in their assemblages some LIA-ER CTW material and, in the latter, a particularly fine 2nd-century carinated greyware bowl, are characterised by 3rd to early 4th century material such as: EY burnished greywares, Dalesware, Knapton ware, and a NVCC copy of a Samian Dr.36 bowl – a Crambeck parchment ware mortarium is perhaps the latest component present. There are notably no sherds of Crambeck greyware or Huntcliff ware in these features.

The western group of features, namely Pit F63, Quarry F64, Spread F66, and Gully and Posthole F65, are more certainly of LR date as all bar the latter contained Huntcliff ware, whilst F64 and F66 also included Crambeck greyware. There are a couple of abraded greyware sherds of probable ER type, but these can reasonably be considered residual. A date range of c.AD300-410 is therefore suggested for these features. Gully/Posthole F65 yielded no diagnostic finds, but can be dated with the other features as it cut LR Quarry F64 and also formed the boundary delimiting Spread F66.
Chapter 7 Wharram Grange Crossroads (WGC): generating a research dividend from student training

The final event to take place in trench 98B was the extended burial of an elderly female, seemingly in the Anglian period. Grave F62 produced 13 early-type HND sherds and three sandy, upright and slightly everted jar rims typical of Anglian pottery in the region. A rough-worked limestone block was found above the woman's head and may have served as a grave marker of some sort.

The remaining discrete and intercutting scoops, pits and postholes as well as Grave F78 all produced only HND ceramics, invariably of early type, and might therefore be very tentatively dated as LIA-ER rather than any later. Somewhat more securely ascribable to this or perhaps an earlier date is Pit F56 which, although it produced just two HND-E sherds, was cut by ER features Gully F60 and Quarry F57. Sadly, Quarry F68 produced no finds at all and, based on the evidence from pits (quarries?) in trenches 95A and B, one might envisage an early date for this feature.

In sum, then, trench WGC98B provided a glimpse of the quite intense use and reorganisation of space within a ladder enclosure over a period of several centuries. Some features, such Quarry F68 and Pit F56 may well represent a pre-enclosure phase of activity. The surface find of a blue glass bead of MIA date provides a further indication of early activity in the area. The majority of features, however, appear to relate to the internal organisation, occupation and use of the ladder settlement. The first phase dates to the LIA-ER period as defined by F67 and F69-71, which probably overlapped with ER features F57, 60 and 61. There is a possible small (5m diameter) post-built roundhouse of this date described — in clockwise sequence — by post-holes F75, 73, 72, 61 and 76 which, although undated, sit ‘within’ the above LIA-ER boundary features.

Then two later Roman phases saw the addition of F58 and 59 in the east — the latter cutting through the aforementioned roundhouse — and F63-65 in the west. The correlation between the stratified and field
walking assemblages is very strong, even down to the range of MPR types represented, and, as postulated above, the large CTW assemblage did indeed contain a significant LIA-ER component. Thus challenging Hayfield’s assertion, based on traditional notions of DPH material as ‘Iron Age’ rather than LIA-ER, that the Field 96 ladder was a product entirely of the Roman period. The two burials tell contrasting stories: the neonate reflects the Romano-British practice of burying newborns, which had probably not been recognised as members of the community, within settlements (Salway 1993, 493-4), whereas the Anglian burial was perhaps peripheral to settlement located in Field 5 to the north-west.

In Mel Giles’ (1998) interim report she clearly thought that 98B had revealed part of the interior of the sub-divided enclosure in Field 96. However, given the absence of major ditched boundaries in the trench, it was unclear whether the features discovered were in the southern edge of the 0.35ha enclosure in Field 96, at the northern edge of the 0.4ha enclosure in Field 16, or somewhere in-between.

Trench WGC99A attempted to investigate the southern end of the N-S sub-division of the smaller enclosure but, due to agricultural activity, had to be positioned at the very southern edge of the field and therefore missed this target. What it did show, however, was a substantial multi-phase E-W boundary feature forming the division between these two enclosures and, in so doing, proved that trench 98B had in fact revealed the northern interior of the larger 0.4ha enclosure, most of which lay in Field 16. The following figures are referred to in the text: 69 (post-exavation plan), 70 and 71 (ditch sections), 72 (Harris matrix), 73 (ceramics results by rim EVE), and 74 (table showing stratigraphic and dating evidence cross-referenced with interpreted features). See also full Access databases on CD at rear.

The earliest activity in 99A relates to this E-W boundary and takes the form of a 2m-plus wide, 9m long (at eastern l.o.e) and 1.2m deep ‘flattened’ V-shape ditch (cut 190=194 – henceforward Linear Ditch
Chapter 7 Wharram Grange Crossroads (WGC): generating a research dividend from student training

F79), with a series of interleaved chalk rubble fills (grouped under context 168) as shown if Figure 70. The stony, sterile character and morphology of these fills was interpreted (M Giles 1999, 3) as resulting from successive slumps of upcast from banks to the north and south. Most interestingly, just short of the western trench baulk ditch F79 terminated and abutted a further ditch butt-end (cut 153 – henceforth Linear Ditch F80). The dimensions of this second section of early ditch are difficult to determine as its fill (154) had been heavily truncated by the first of three V-shaped ditches (cut 155=191 – hereafter Enclosure Ditch F81), each stretching to the l.o.e. to east and west, and successively almost entirely removing the former. Ditch F81 was c.1.75m wide by 0.75m deep and had a single organic-rich dark fill flecked with charcoal and ‘daub’ (156=192) with inclusions suggestive of domestic rubbish/midden deposits. The second ditch (cut 193=200 – henceforward Enclosure Ditch F82) was almost identical in size to F81 and had a cleaner, stony fill (128/143=201) more typical of backfilled/slumped upcast, but with a significant component of cultural material – this character may have resulted from the mixing of 156=192 with fresh chalk upcast when F82 was cut through the earlier feature. The third V-shaped ditch (cut 115=159 – henceforward Enclosure Ditch F83) was somewhat larger, being 1.9m wide by just over 1m deep. Here, two fills were apparent: primary silts (142=158=167), which were overlain by a rich, relatively stone-free, brownish-black midden deposit (129=130=157) with frequent cultural materials and flecked throughout with charcoal and daub. Mel Giles notes in the archive that different segments along the length of ditches F81 and F82 had somewhat different patterns of backfilling, suggesting perhaps a cyclical and variable intensity of use of middens along the ditch.

Once again, the contrast between the clean, stony fills of stratigraphically early linear ditches and the rich midden-type fills of later enclosure ditches was apparent. Of note also is the fact that each of the ditches was fully backfilled before being recut – this is therefore not a case of routine maintenance of a feature that was by functional
necessity a physical barrier. This practice finds parallel elsewhere in this (see WP in 7.6 below) and other case studies (see GWS in Chapter 8). CHECK! The excavator described Ditches F82 and F83 as ‘recuts’ of F81, but this is not really the case; each ditch appears to have been excavated to a full V-profile and it is therefore a case of three ditches reinstating the same alignment rather than a reworking of the same feature. A subtle but nonetheless important distinction when considerations of timescale, function and continuity are brought into play (see Section 7.8 below).

With all but the final 0.2m of the collective ditch cut backfilled (see Fig. 71), a series of six features were cut into these deposits. A N-S orientated 0.32m wide by 0.22m deep flat-bottomed U-shaped gully (cut 148 – henceforth Gully F84) cut the northern edge of Linear Ditch F79 and then butt-ended 2m to the north. It had a single quite sterile, silty fill (141) and was interpreted as a drainage feature, although on the free-draining chalk at WGC this seems somewhat unlikely. Intriguingly, the other five features were all infant graves (cuts 180, 182, 183, 184 and 186 – hereafter Grave Group F85), each backfilled with redeposited ditch fill (179, 181, 177, 178 and 187 respectively). The last three graves each contained rough-hewn limestone slabs, which were interpreted as marker stones (M Giles 1999, 3). Such clusters of infant burials are a common feature of LIA-LR sites (e.g. Burnby Lane: Halkon and Millett 1996; Wharram Percy Site 92: Section 7.6 below) and their position in the top of a backfilled ditch at the edge of an enclosure may reflect the social liminality of sub-adults at the time (M Giles 1999, 4).

The graves and gully were subsequently sealed by dark, humic spread packed full of domestic rubbish (114 and equivalents – henceforth Spread F86), which filled the remaining volume of the ditches. This deposit may either be what it seems, that is the upper ditch fill or, in line with WGC04-7:1002, it could be a remnant of a formerly more extensive layer, which only survived later plough truncation where it has slumped somewhat over the ditches. Unlike the latter, it has more the humic, finds-rich character of an occupation layer rather than a ploughsoil.
Cutting the northern edge of Spread F86 was another infant grave (cut 185 – henceforward Grave F87) measuring 0.6m wide by 1m long and c.0.2m deep which, like three of the others, was marked with a limestone slab. This grave was positioned near to the other five and the excavator considered all six graves to be close in date; however, five were earlier and one was later than Spread F86 which, if it was a gradually-accumulated occupation layer, may indicate rather more of a gap. Whatever the case, when added to the infant grave in 98B, these six inhumations seem to define a cemetery of sorts at the northern end of the enclosure crossed by the WLS road.

At roughly the same level as Grave F87 was a group of structural elements built upon and cut into Spread F87’s surface which, although stratigraphically later, is probably part of the same phase of activity. As a group, features F88 to F94 may form the southwest end of a heavily robbed SW-NE orientated rectilinear structure associated with Spread F87. This inverted L-shaped structure and layer were restricted to the area of the backfilled ditches, which happens to be slightly lower than the bedrock surface, and this has two main implications: firstly, in situations such as WGC04-7:1002 where no structural elements survive, the argument for the truncation of formerly more extensive layers is less easily made, however, when structural elements associated with such layers are seemingly truncated beyond the extent of potentially sunken fills, then localised differential preservation is maybe more likely. The level of disturbance caused by robbing and, probably, plough-action, makes interpretation difficult, however, the building appears to have comprised stone-packed earthfast posts and rough masonry walls – chalk, limestone, sandstone and flint being used in the construction. The stones were mostly very roughly shaped and ranged in size/character from 0.4x0.3x0.1m rectangular blocks to irregular ‘cobbles’ averaging 0.25x0.12x0.08m in size.

Working south from the NW corner of the building, a stone-packed post
setting (SPPS) (cut 197/stonework 144 – henceforth SPPS F88) with fill (134) abutted a c.1.4m length of 2-course tumbled wall (cut 203/stonework 111 – hereafter Wall F89) with fill (112), which was truncated by robbing to the south and may also have been spread by later ploughing. The fragmentary stonework of the central c.1m-long robbed section was unfortunately removed before recording, but its associated fill survived (117 roughly equivalent to 112). Immediately to the south, a further c.06m wide by 1.6m-long section of single course rough walling (cut 195/stonework 131 – hereafter Wall F90) with fill (122) was clipped by the cut of a stone lined feature (cut 196 – henceforth SPPS F91). The latter was constructed in the following sequence: a semi-circular cut c.1.1m diameter by 0.45m deep was lined with flat limestone slabs (121) and fill (160), further limestone slabs (146) were then added to the base and the feature was backfilled with a single fill (145).

Two further structural elements appear to relate to the building. At the NW corner of the building, SPPS F88 was abutted on its eastern side by a 0.4m-wide E-W spread of stones (113 – hereafter Cobbles F92) with matrix (116) and no evidence of a cut – hence their interpretation as a laid surface rather than wall. Whilst some 3m to the south of F92, and just east of Wall F90, were a group of 4 flat limestone slabs with matrix (198) (cut 199 – hereafter Padstones F93) forming a flat surface c.0.75 by 0.85m in area. Much of the stone used in the building is thought to have been reused and included a limestone slab with incised decoration, a saddle quern rubber, and several sandstone rotary quern fragments. A series of four discrete spreads of domestic and industrial waste were also noted on the surface of Spread F86 (118, 135, 140 and 151 – hereafter Spreads F94) – these may all originally have been within the rectilinear building defined by F88-F93.

Beyond the extent of Spread F86 were two features located close together in the north-east corner of the trench: the first was a kiln with a ‘keyhole’-shaped plan (cut 176 – henceforward Kiln F95), and the second was a pit (cut 189 – hereafter Rubbish/Storage Pit F96).
The kiln was not fully excavated and the dimensions of its cut are therefore not known in plan. The overall internal dimensions were roughly 1.3 wide, narrowing to 0.3m in the base of the firing chamber, by 1.8m long. The basic shape was cut into the bedrock and then lined with chalk rubble (175) to create a 0.9m by 1.3m by 0.3m deep oval “apron/stokehole area” (M Giles 1999, 4), whilst the area below the firing chamber was somewhat deeper at 0.45m. The latter was lined with roughly shaped limestone and sandstone blocks (161=173) – several, once again, appearing to be reused material – with a matrix of burnt chalk/clay. The kiln superstructure including the firing chamber had been completely removed in antiquity. The fills consisted of a 0.2m-thick sterile, grey ashy silt (172), followed by a 0.13m-thick sterile brown deposit with lumps of burnt clay and chalk gravel, which had been fired bright orange (171), and an upper stratum of orangey-red burnt soil, clay and chalk gravel with burnt stones from the kiln structure (170). The latter deposit filled the firing chamber to the top and spilled out into the bowl-shaped stokehole area.

Rubbish/Storage Pit F96 was roughly half-sectioned by the northern trench baulk and is typical many such pits of Iron Age date, however, as the finds evidence discussed below demonstrates, it is a securely LR feature. It measured 1.6m in ‘diameter’ and had U-shaped and flat-bottomed cut some 0.65m deep. The first of its two fills was a blackish-brown rich, humic domestic rubbish deposit (169), which filled most of the pit’s volume. Despite its homogenous appearance, a snail-rich horizon half way down this deposit suggested two distinct phases to the backfilling. Overlying 169 was a much shallower mid-brown upper fill (202), which was only identified during recording – all finds having been allocated to context 169.

The final component of relevance to the study period was an orangey-brown hillwash/buried ploughsoil (109) that sealed all other features mentioned above and protected the archaeology from modern ploughing.
Any disturbance/truncation of features doubtless occurred when this layer was actively being cultivated probably during the Anglian to high medieval periods.

The preceding passages revealed a clear stratigraphic sequence, but did the finds evidence reflect the site chronology implied above?

In general, the stratigraphy and finds data very closely correlate in this trench. As with preceding sections, a general presence of mammal bone can be assumed, whilst particularly clean or rich deposits were highlighted above as weathering/backfilled upcast or domestic rubbish respectively. The earliest elements, Linear Ditches F79 and F80, quite typically produced very few finds: a few mammal bones and just 11 sherds of pottery between them. The “small inverted vesicular rim sherd” and “small, bead-rimmed bowl...both characteristic of a late Bronze Age/early Iron Age assemblage” (M Giles 1999, 3), which had been recovered from the basal fill were missing from the archive. Thus the only diagnostic ceramics were two LIA-ER rim sherds from F80 with everted, squared rims and S-shaped body forms very typical of such material (Challis and Harding 1975, 96). However, there is no indication in the archive as to where in fill 154 the last two sherds were found – Mel Giles’ early sherds were in the base of ditch F80, the LIA-ER material may have been in the surface or at the interface with later ditch F81 – we will never know, but doubts remain.

The contrast between the assemblages from the above linear ditches and what I have interpreted as enclosure ditches (F81-83) is, in the first two instances, perhaps less dramatic than one might expect. Enclosure Ditch F81 yielded just 14 sherds including a MIA and a LIA-ER DPH rim and one base sherd in a high-fired LR fabric, whilst Enclosure Ditch F82 produced 29 sherds of which 28 were HND-E types and the other was a LIA-ER DPH rim. These numbers are deceptive, though, and in terms of finds per deposit volume it should be noted how little survived of ditches F80-82’s fills – hence F80’s finds were grouped with the broadly
contemporary ditch F79 (Fig.70 and 71). Placing the ‘missing’ ceramics to one side, the finds data suggest that ditches F79-82 were potentially rather closer in date than suggested by Mel Giles, however, given the extent to which these features intercut, there is always a significant chance of cross-contamination. Moreover, their tiny ceramic assemblages render dating tentative and any interpretation must draw on all the available evidence. Therefore, when viewed together, the stratigraphy, character of the fills and scarcity of finds in F79 and F80 do point toward a contrasting function and earlier date than the supposed enclosure ditches F81-82.

Enclosure Ditch F83, on the other hand, produced what might be termed a ‘classic’ ladder settlement ditch assemblage rich in cultural materials indicative of domestic occupation. Its 323 sherd assemblage weighed nearly 12kgs and included a 262-strong HND assemblage split roughly 80:20 in terms of early/late types, with an ASW of 21.9g. The diagnostic component was dominated by 48 LIA-ER DPH sherds with an exceptionally high ASW of 122.6g – resulting mainly from a large and almost complete pot in 12 pieces weighing 4.3kg – whilst the 36 other DPH sherds averaged 43.4g. The MPR assemblage included ER material in the form of tiny chip of plain Samian ware and a bodysherd from a BB2-type burnished greyware jar of mid-2nd to mid-3rd century date, and, more significantly, LR material in the form of four Huntcliff and one Crambeck greyware sherds. This assemblage suggests some considerable continuity of use of this enclosure ditch for the deposition of midden material; with a peak in the LIA-ER period and some reuse in the later 4th century. In addition to the ceramics, further evidence for refuse disposal is provided by the 1500+ mammal bone assemblage, 34 ‘daub’ fragments, 9 pieces of worked bone including several needles and two comb fragments, 15 lead fragments, and 2 iron objects. It is, of course, likely that fill 129=130=157’s apparent homogeneity is misleading and masks many discrete dumping events, which became merged as a result of post-depositional processes. Clues as to the iterative and incremental nature of midden build up are perhaps provided by the evidence for
discrete spreads (dumps) often visible in the surface of such ditches upon their eventual abandonment (e.g. see Spreads F94 below).

Grave Group F86 produced no dateable finds, although Gully F84, which like the graves cut the upper fills of Ditch F83, generated the following assemblage: 25 mostly early HND sherds (ASW 6.4g) plus five greyware sherds, of which just three were diagnostic – two being most likely late 1st to mid-3rd century in date and the last being a badly abraded and potentially intrusive sherd of Crambeck greyware. On balance, a date in the 2nd century seems most appropriate here. Kiln F95 produced just five sherds of pottery comprising three HND sherds – two late and one early type – plus a small oxidised rim and an early-type greyware sherd of perhaps late 2nd or early 3rd century date. Several fragments of oxidised tile were recovered from the backfill and these were interpreted as wasters produced in the kiln. Large but undated quantities of tile were collected, counted and discarded unsorted during fieldwalking in Field 96; however, Roman material was later identified in the retained sample (Hayfield 1987, 71) and one wonders how much was produced in the above kiln. Against this background, the general lack of tile recorded in the excavation archive is perplexing.

Sealing all bar Kiln F95 was the finds-rich Occupation Layer F86, which produced a substantial ceramic assemblage numbering 799 sherds with an ASW of 10.5g, within which a very mixed HND component numbered 645 (ASW 8.9g). This contrasts quite sharply with the main fill of Enclosure Ditch F83 with its 323 sherds (ASW 36.6g) or, with the 12 heavy sherds of the almost complete DPH pot removed, 311 sherds (ASW 24.2g). CTW coarsewares are by far the largest component in F86 as they are in F83, but they are predominantly LIA-ER types in ditch F83 and LR types in layer F86. This is certainly counter-intuitive in terms of the relative hardness of CTW material in these two periods and this indicates two related things: firstly, that the two assemblages followed quite different taphonomic pathways and, secondly, that this has clear functional implications for our interpretation of these two deposits. In effect, these taphonomic data add significant weight to the argument that
F86 was indeed a slumped occupation layer within which broken ceramics were being moved around, trampled and broken down. The diagnostic assemblage from F86 is very mixed in date and this is mirrored in both rim EVE and weight/count results (Figs. 73 and 74). It includes LIA-ER CTW types, Norton greywares (220-280), possible HoSM greywares (225-360), Knapton ware (200-300), grey and orange-brown Nene Valley colour coats (200-410), Crambeck greyware (285-410), Crambeck parchment ware (300-410), proto-Huntcliff (300-370) and Huntcliff ware (350-410). The overwhelming impression, therefore, is of an occupation layer that developed over a considerable timespan, perhaps from the late 2nd until the late 4th century AD. In addition to the pottery, some 1259 mammal bones, 23 lumps of daub, 6 pieces of jet/shale, 2 iron objects - one a nail, a possible copper alloy coin, and a bone ‘ring’ cut from a mammal longbone were recovered.

Grave F87 produced a small but interesting collection of ceramics including two sherds of Huntcliff ware, the rim of a wall-sided Crambeck parchment ware mortarium with reddish-brown painted decoration, and a rim of a flanged bowl, which together place the interment firmly in the 4th century. The poorly preserved rectilinear building - represented by features F88-92 - is also of this date, as was shown by a 246 sherd assemblage including a 155 mostly late HND sherds and a diagnostic component dominated by Huntcliff ware, Crambeck greyware, late forms of EY burnished greywares, and Nene Valley products. A few oddments of potentially earlier greywares and a couple of LIA-ER DPH sherds are doubtless residual in this company. Two poorly preserved coins of supposed Roman date were also recovered from the building. The spatially associated Spreads F94 also mirrored this dating with an assemblage comprising the following types: 134 mostly late HND sherd, 27 LR sherds of which most were Huntcliff ware with a few EY burnished greywares, two Nene Valley colour coated types and a sherd of Crambeck Parchment ware. There were, in addition, 327 mammal bones, four fragments of lead, and the handle of a fine Roman glass vessel.
Although spatially separate, Rubbish/Storage Pit F96 yielded a classic 4th-century assemblage, which undoubtedly places this feature in the same phase of activity as Occupation Spread F86 and the building. The ceramics included 97 HND-L sherds, the footring of an Oxford red-slipped ware Drag.36 hemispherical bowl, the rim/wall of a Nene Valley colour coated flanged bowl, and many sherds of Huntcliff ware. A few sherds of what might be earlier greywares are again residual here. The former presence of refuse in this feature was further reinforced by the presence of 201 mammal bones.

All the above features were then sealed by the LR to post-Roman ploughsoil/hillwash layer F97, which contained at its base a range of LR ceramics and a collection of four abraded copper alloy coins of presumed Roman date. That completes the detailed discussion of trench 99A and therefore a brief summary of the findings is in order.

At some point during the LBA-EIA (M Giles 1999, 3) Linear Ditches F79 and F80 were dug on an E-W alignment through WGC, probably with upcast banks to north and south. On the subject of this early ‘earthwork’, the excavator commented that the feature did not show in APs “nor does it exist as a mapped earthwork at any point along its length” (M Giles 1999, 3), however, if we project westward this may not be the case. My Wharram Ridgeway linking Aldro to the Great Wold Valley, crucially via Wharram Crossroads, is still marked by a single bank-and-ditch earthwork west of BHB; Linear Ditch F79-80 could therefore feasibly be part of the same large-scale landscape boundary. The adjoining butt-ends of the large linears found in 99A could represent the geographical and political boundary between two socio-economically distinct communities coming up against one-another. That these features were laid in sections, but stretched for kilometres across the landscape, suggests that both these hypothesised communities may have been dispensing their obligations of service to a shared overlord. Ladder settlement enclosures on the other hand, whilst also (we think) the product of a hierarchically-
ordered society, express collective action on an altogether more local scale.

By the LIA-ER period the linear's ditches had become backfilled and were then cut by the E-W arm of Enclosure Ditches F81 to F83, each moving slightly further south with each restatement of the boundary. Given the relative position of trenches 98B and 99A (see Fig. 26), it seems likely that the latter ditches as well as delineating one of the two enclosures in Fields 96 or Field 16, may also provided a shared 'internal' division between them. It is also possible that F81 represents a M-LIA linear redefinition of the earlier boundary (note the presence of MIA pottery in its fill), and F82 and F83 relate to the cutting at different times of the enclosures to the north and south. There is also the possibility that the proposed early E-W routeway ran precisely along the gap between the two trenches, which might also contain the northern E-W arm of the Field 16 enclosure. One can only hope that at some point in the future the crossroads is upgraded to a roundabout as part of a Melton-type road scheme, thereby permitting a proper look at this key intersection in the ancient landscape.

By the 3rd century, ditch F83 was backfilled to a high level, at which point Gully F84 and the cluster of infant Graves F85 were cut into its upper surface. Kiln F95 probably fits into this phase of activity also. By the 4th century, the graves, gully and ditches were sealed beneath an occupation later F86, which developed across the site in association with a rough-walled rectilinear building with two phases - the first defined by walls and cobbled surfaces (F89, 90, 92 and 93) and the second by post settings and spreads (F88, 91 and 94). A further infant grave (F87) was located next to the building and in roughly the same area as the earlier interments. A rubbish pit (F96) is a final component of this 4th-century phase of activity. Finally, the site was sealed beneath a ploughsoil/colluvium layer F97. One final point concerns the infant burials and the homogenous nature of both the upper fill of Enclosure Ditch F83 and Occupation Spread F86. The records imply otherwise, but
it is just possible that the infant graves were actually cut into the floor of the building as was the custom during the Roman period (Philpott 1991, 97). If they pre-date the building, the five neonates would have been interred in a disused ditch at the edge of an enclosure – also a common practice in Roman Britain (Salway 1993, 493-4).

The results from the analyses of the nine trenches above will be discussed in Section 7.8 in concert with those from Wharram Grange Villa, Birdsall Brow, Birdsall High Barn and Wharram Percy. The latter is discussed next, beginning with the remote sensing data and then moving on to explore the findings of the WP05-92 field school trench against the results of published excavations carried out during the Wharram Research Project.

7.6 Wharram Percy (WP)

Remote sensing

Cropmarks

The settlements around WGC are linked to those at WP by a double ditched trackway, which shows as a well-defined cropmark running downhill southeast of the crossroads. On its way to WP it passes two almost square enclosures (‘E’ on Fig.25): the first and smaller (0.2ha) on the southwest side, whilst the larger (0.4ha) example to the northeast is associated with a c.20m-diameter sub-circular cropmark. Just outside the north-western corner of WP medieval village the trackway turns almost due east and then passes through the middle of a substantial cluster of enclosures: to the north there is the 0.55ha North-West Enclosure investigated by trench WP05-92 (‘F’ on Fig.25), and, to the south, a c.2ha subdivided, trapezoidal enclosure (‘G’ on Fig.25) which, with associated rectilinear boundaries, may represent a system of in-fields related to the settlement. Further east, the cropmarks degenerate into a confusing mass of overlapping features perhaps indicative of more intensive and/or multi-period activity in that area. Some of these latter cropmarks may well relate to elements of the medieval north manor.
Geophysics

Although the area of the North-west Enclosure was resurveyed by York students as part of the WP05 fieldwork, this revealed no additional detail to that shown in the high quality EH magnetometry results and the latter were therefore used here (Fig.27). In general, the geophysics results match the cropmark data but, as at WGC, also help clarify relationships between features as well as revealing further complexity within the basic pattern.

Differentiating between LIA-RB and later features in the geophysics data is a problem. Following the EH resurveying of the village earthworks, the E-W boundary ditch (arrowed ‘A’), which was originally interpreted as part of the LIA-RB ladder settlement (Beresford and Hurst 1990, Fig.53), was shown to be the northern boundary of the South Manor curia (Oswald 2004, 98). Having said that, the blocks of contiguous enclosures articulated with the E-W trackway within and immediately outside the north-western part of the EH Guardianship Area can, with some confidence, be considered part of the ladder settlement, which stretches 300m E-W to the edge of the plateau.

In the magnetometry data the North-west Enclosure ditch is clearly cut to respect the E-W trackway from WGC (arrowed ‘B’ on Fig.27), whereas in the cropmarks it appears to cross its path. There is also a small 40 by 40m (0.16ha) ancillary enclosure tacked onto the eastern side of the North-west Enclosure (Fig. 27 ‘C’), which does not show as a cropmark. Similarly resistant to cropmark formation is an outer 80m by 150m (1.2ha) trapezoidal in-field enclosure, which springs from the north-eastern corner of the ancillary enclosure to incorporate both it and the North-west Enclosure – thus mirroring similar in-fields (Figs.27 ‘D’ and 25 ‘G’) to the south of the E-W trackway. Beresford and Hurst (1990, 71) suggested that a “defensive Iron Age ditch...with a gateway” related to an “aristocratic Iron Age settlement...underneath the later north manor”. This enclosure is arrowed ‘E’ on Figure 27 and discussed further below.
Surface collection

Two gridded transects (43 x 10m grids) were walked 30m apart up the eastern half of Field 15 to clarify patterns revealed during earlier crop row fieldwalking of this and adjoining Field 16 alongside the Guardianship Area. The results were somewhat questionable given the variable ability of the volunteers involved (Hayfield 1987, 110) and the ambiguous categorisation of the CTW assemblages into ‘handmade’ and ‘wheelmade’. One assumes that ‘handmade’ must be LIA-ER material – but could also be Knapton ware – and that ‘wheelmade’ must refer to the rims of Huntcliff types. On that basis Field 15 produced a patchy distribution of LIA-ER material and a more even spread of LR pottery dominated by reduced, Crambeck and Huntcliff wares, perhaps indicative of manuring (Hayfield 1987, 113). There was also a widespread but uneven distribution of Anglian material recovered from these fields, which Hayfield (1987, 113) suggested might relate to potential SFBs showing in cropmarks in the south-east corner of Field 15. Definite examples were investigated in the northern excavation areas at Wharram Percy (Rahtz and Watts 2004).

Excavation

As the excavations at Wharram Percy progressed, there emerged increasing evidence for Iron Age and Roman activity, particularly on the plateau in the north-western part of the medieval village. As discussed in Section 7.2 above, the focus of the project eventually expanded to explore these earlier periods and this summary includes both the chance discoveries of earlier work and the results of excavations specifically targeted to elucidate LIA-RB elements of the landscape. Figure 75 shows the location of the main areas producing LIA-RB material including the church, South Manor area (which adjoins Areas 6 and 10), North Manor area and North-west Enclosure.

Early excavations
During excavation of the glebe site just north of the church, a N-S-orientated crouched burial was found within what may have been a square barrow ditch and a calibrated radiocarbon date of 200BC-AD120 was obtained (Bell and Beresford 1987, 179). Some 115 stratified sherds of LIA and ER pottery were found near the church: some dating a LIA-ER ditch that passed E-W just to the south of the burial, further sherds coming from a buried soil in the churchyard and a final group of 1st to 2nd century material dated a hearth found under the chancel. A Corieltauvian silver coin of the last few years BC is recorded from the dam area south of the church.

The South Manor and Area 6 and 10 excavations all produced Roman pottery, but the vast majority was residual in later contexts. Of note, however, is the prevalence of LR material in the South Manor assemblage, which can be contrasted with the assemblages of LIA-ER date recovered near the church. Sites 22 and 23 were a pair of evaluation-type slot trenches, which were cut across the earthworks of the medieval hollow-way and underlying features of the LIA-RB E-W trackway just south of the North-west Enclosure (see Fig. 78). Site 22 revealed a substantial E-W orientated ditch, whose final backfilling seems to have occurred between c.AD285-350 as evidenced by the presence of Crambeck greyware, whilst Site 23 revealed a completely unexpected N-S orientated length of ditch dating to the LIA-ER period (J Evans 2004, 312; Clark and Wrathmell 2004, 297 and 300). The North Manor area was also sampled during the ‘pre-York University’ stage of the project, revealing evidence of IA-RB activity in Site 13 (1961: re-excavated as Site 83 in 1986), Site 43 (1976) and Site 45 (1977-80). The latter group are all discussed with the later North Manor excavations in the following section.

The North Manor excavations
As the previous section explained, before the excavations in the North Manor area, the evidence for Iron Age and Romano-British activity at Wharram Percy was limited to a few stratified features and finds of LIA-
RB material in the early excavations. The recent summary of LIA-LR activity identified in the North Manor excavations (Rahtz and Watts 2004, 275-284) reiterates the problem of differentiating between LIA and ER (pre- and post-conquest) activity, thereby justifying the ‘IA-ER’ label for the Wharram Percy Master Phase 2 (MP2), however, the confusion only surrounds late Iron Age ceramics – E-MIA types being mostly quite distinctive – hence my use of the slightly more specific ‘LIA-ER’ label. Master Phase 3 (MP3) is termed ‘Roman’ and, stratigraphically at least, relates to later features than those identified by ceramics to MP2. That said, the two master phases are divided not on strict chronological grounds but, rather, on the basis of the Romanisation (or not) of pottery assemblages (Rahtz and Watts 2004, 280). Therefore, whilst MP2 can be equated with my LIA-ER category, MP3 is an amalgam of my ER, TR and LR categories.

Of the five IA-RB farms identified by Beresford and Hurst (1990, Fig.53), three are as yet decidedly speculative identifications, but the northernmost pair in the North-west Enclosure (Sites 91 and WP05-92) and North Manor (Sites 45, 60, 82 and 83) area are much more secure, date-wise at least.

Dated to the LIA-ER period, the latter was centred upon a 30m by 45m enclosure (0.14ha), which seemed to be part of a multi-phase complex attached to the northern side of the SE-NW trackway linking WGC to the valley of WP (see Fig. 76). No buildings or other features indicative of domestic or agricultural activity were encountered, although the adjoining enclosure to the north-west has several pit-like geophysical anomalies. In its first phase, the trackway’s flanking ditches were both continuous cuts, but a later restatement of the, by then silted-up, northern ditch incorporated a 3.5m-wide gap beside the enclosure with evidence for an associated gateway structure of some sort with, perhaps, a bank to the north (Rahtz and Watts 2004, 278). In an interesting parallel with the WGC04-7 results, the sections through both phases of the trackway ditches in Site 60 produced ceramics of entirely DPH CTW
type. These were dated to c.100BC-AD100 based on Jerry Evans’ (2004, 151) observation that few of the sherds were of types commonly found with ER material. Despite this latter dating evidence it is, of course, possible that the ditches were maybe MIA or earlier; as argued at the beginning of this chapter, it is probable that many Wolds routeways in their earliest forms were unenclosed and the hollow-way may therefore pre-date the flanking ditches by some margin. An involute brooch of later MIA date (Stead 1991) was found in a Roman-period ditch, adding further weight to Jerry Evans’ argument in favour of pre-Roman origins for activity in this area.

Figure 77 shows the geophysical anomalies in the North Manor area identified by excavation to the Roman period (MP3). The above trackway ditches and enclosure identified to MP2 (i.e. lacking in diagnostically MPR material), are omitted from this figure. This highlights some interesting alignment changes between MP2 and MP3, in particular, the establishment of a N-S parallel-ditched trackway, which blocks much of the width of the earlier E-W trackway, whilst preserving a much narrower, more sinuous, metalled hollow-way within the run of the older routeway. The eastern ditch of this N-S trackway was excavated in Sites 45 and 60, but also appears to extend northwards as a geophysical anomaly, which curves east to form part of an enclosure. This pattern is mirrored by the western ditch of the trackway, perhaps forming a funnel into the fields beyond. Site 45 also produced rich evidence for occupation throughout the Roman period, including two slots and a series of post-holes of possible LIA-ER date and two smallish LR rectangular, pebble-floored outbuildings within a rammed chalk yard (Rahtz and Watts 2004, 23-27). One of these, building G4, revealed post-pads and the remains of a wattle-framed oven, and was associated with two infant burials in the base of a slot sealed by a large sherd of LR pottery. A grooved sandstone block had been reused from a much grander building somewhere in the vicinity. Similar blocks had been reused as the stokehole facings of a substantial crop dryer cut into the silted up fill of a N-S ditch in Site 60. This had originally been constructed with the
Chag! Fer 7 IfW=am Grange Crossroads fjf'GQ. - generating a research dividend from student trainin
'classic' T-shaped plan but, later, was expanded into a 'tuning-fork' layout. Crop dryers are a common feature of LR farmsteads and villas (Welton Wold with 17 being a particularly good example (Mackey 1999) and the reused masonry, together with a few tesseræ, Roman window and vessel glass and CBMs, were taken to indicate the existence of a villa-type structure somewhere at Wharram Percy (Rahtz and Watts 2004, 284). Site 45 produced eleven coins all of mid to late 4th century date.

The North-West Enclosure (NWE) – Site 91 and WP05-92
The North-west Enclosure was investigated by Site 91 ahead of treeplanting at the north-west corner of the Guardianship Area. As Figure 78 shows, the 210m² trench revealed the eastern arm of the sub-rectangular enclosure as well as a portion of the interior space and exterior. The 3.6m wide by 1.8m deep V-shaped enclosure ditch was the earliest feature present and its fills evidenced three recuts. Its initial phase of backfilling can be dated by Antonine Samian, LIA-ER DPH types and Knapton ware to the later 2nd and earlier 3rd centuries (J Evans 2004, 313. A rimsherd from a hemispherical bowl in Ebor red painted ware also dates to this phase, finding parallel in Enclosure Ditch F17 (WGC04-8). Its presence led Jerry Evans (2004, 316) to highlight the fairly wide distribution of this particular Ebor product whilst, at the same time, being surprised to find it “on a basic level rural site like Wharram”. The questions of relative status and access to Roman goods within the settlements at Wharram are themes explored in Section 7.8 below.

The second phase of activity involved the 3rd recutting of the enclosure ditch, associated with which were a series of small gullies and chalk gravel surfaces at the western edge and in the northern ‘bay’ of the trench. It was suggested that the northern gullies may be cart ruts or drainage features relating to a metalled trackway and entranceway (Herbert and Wrathmell 2004, 306). The latter features were truncated by a large sub-oval pit (cut 16) with ash and burnt bone in the base, which was speculatively linked to pyres nearby. East of and outside the enclosure were a group of pits and post-holes in two distinct phases. The
second of which included two cremation pits – the larger (cut 58) had the remains of an infant and an adult, whilst the cremation in the second, smaller pit (cut 20) was contained within a Crambeck greyware jar. Herbert and Wrathmell argued that the presence of cremation activity to the east and west of the two-thirds backfilled ditch confirms that it was by this stage being disregarded (Herbert and Wrathmell 2004, 38). This activity was dated by Knapton ware, Norton and Crambeck greywares to the later 3rd century. A Thealby-type brooch from the backfill of the final recut is dated to the later 1st to mid-2nd century, reinforcing perhaps the argument introduced above (see trumpet brooch from trench WGC04-8) for the curation of such objects.

The final phase of activity in the trench concerns the completion of enclosure ditch backfilling and the development of a “grey-brown clayey loam” (17) over the features within the enclosure, which produced a radiate copy coin of AD270-90. This layer was then cut by two pairs of intercutting features: a shallow gully (cut 85) and pit (cut 94) to the west, and to the east a pair of pits – the earlier (cut 49) contained a neonate burial, which had been cut through by the later (cut 27). This last phase was dated to the early to mid-4th century.

In addition to the ceramics, there were two LR bone hair pins from the upper fill of the enclosure ditch, a LIA-type bone needle, and three iron objects of which two had an agricultural function – an ox goad and a sickle blade – whilst the other was a writing stylus. Metalworking residues were present in the form of 96 smithing slag fragments. Sixty eight quern fragments were divided into 13% mayen lava type and 87% sandstone or gritstone, whilst building stone was predominantly local, including Birdsall Calcareous Grit (BCG) and limestone of North Grimston type.

The tenth field school trench, WP05-92 (650m²), sought to elaborate on the above findings by targeting the northern arm of the enclosure, a substantial area of the geophysically ‘noisy’ interior, as well as the feint
in-field boundary just to the north (see Fig. 27). The discussion below makes reference to three figures that should be used in concert with the text: 80 (post-excavation plan), 81 (Harris matrix), and 82 (ceramics results by rim EVE). The table in Figure 83 cross-references stratigraphic and dating evidence with interpreted features (see also full Access databases on CD).

On removal of the modern overburden by machine, a series of features cut into the natural were identified. The stratigraphically earliest component was a 0.32m deep by c.1m wide curvi-linear gully (cuts 1015=1018 - hereafter Curvi-linear Gully F98) with a clean clay-rich fill (1008). The feature was cut by the enclosure ditch and extended beyond the eastern l.o.e. and, if projected as a full circuit, was perhaps 12-18m in diameter – very large for a roundhouse and perhaps more likely to be a round barrow.

Just east of F98 was a N-S aligned 1m wide by c.2.5m long arrangement of limestone and chalk blocks averaging 0.2m across (stones 1014 – henceforward Foundation F99) set in a 0.2m deep clayey deposit (1013). This was associated with a NW-SE orientated spread of occupation material (1012), which overlay Gully F98, abutted the stones of F99, and was cut by the main enclosure ditch. The latter was identified as a roughly 3.5m wide by 20m long E-W orientated linear feature extending beyond the l.o.e. in both directions (cut 1017 – hereafter Enclosure Ditch F100). The humic upper fills, including the finds-rich dark brown ashy silt of context (1019), were sampled to a depth of 0.3m against the eastern baulk. Following a parallel alignment to F100, some 5.5m to the south, was a much slighter ditch (cut 1051 – henceforth Linear Ditch F101) with a single non-humic fill (1009). Ditch F101 measured 2m wide at its eastern end, tapering to just 0.5m at the western baulk, and had a shallow undulating cut just 0.15-0.25m deep. Like F100, this ditch also extended across the full width of the trench and cut across Gully F98 – it was also cut by a later curvi-linear gully (cut 1052 – see below). Ditch F101’s character is reminiscent of Linear Ditch F19 in WGC04-8 and, as
hypothesised there, may be a relict hedge-line. Some 3.5m to the north of ditch F100 and also on a parallel alignment with it, lay another smaller ditch c.1.5m wide by 0.7m deep (cut 1016 – henceforward Linear Ditch F102), much of which was obscured by the northern baulk although 12m was visible. The three lower fills consisted of primary silt (1042) and two very clean chalk rubble dumps (1030/1032). These were sealed by a somewhat darker fill (1006) with some cultural materials. The weak geophysical response of this and similar rubble-filled ditches must relate to a dearth of burnt and organic material, which creates a lack of magnetic contrast against the very similar background.

Meanwhile, at the southern end of the trench a roughly N-S orientated worn chalk gravel and sandstone surface (1036 – hereafter Path F103) measured c.0.5m across by 4m long to the western I.o.e. It was unclear whether this was laid surface or had formed as a result use-wear. At the southern end of the path it was overlapped by a partially-excavated dark greyish-brown deposit (1023) that may have resulted from rubbish collecting alongside or could have been the top of, for example, a robber trench (Hummler and Roskams 2005, 11). The northern end of 1023 was overlain by a compacted surface of chalk and limestone slabs up to 0.2m in size (1025), whilst the southern part was sealed by a dark brown layer, flecked with charcoal and burnt clay and containing large quantities of iron slag (1021). The latter was interpreted as either a build of occupation debris against 1025 or the fill of a feature in some way delimiting the latter.

South of 1025 a group of five limestone slabs (1024 – henceforth Foundation F104), the largest being 0.7m across, were laid over 1023. The latter appeared to be an in situ surface, hence the above interpretation. Immediately west of 1024 was a dark greyish-brown deposit with frequent charcoal and daub flecks (1062), which was overlain by a cleaner, more clayey deposit (1058) – these were taken to be either both later than 1023 or the latter was its equivalent. Based on personal memory of these deposits, the former option is preferred (see
dating evidence below). Intriguingly, a largely complete CTW shouldered jar (1056) had been placed in 1058 and was accompanied by a variety of LR sherds, which were numbered (1057/1059/1060). This does not appear to have been a cremation; instead, it may have served a storage function. Foundation F104 seems to be either a late addition to Linear Path F103 or may, in fact, be part of a group of features sharing a more NNE-SSW alignment (see F107 and F108 below).

West of F103/F104 were a scattering of 7 post-holes in clusters (1034, 1037, 1038 and 1039 – hereafter Posthole Group F105): the three of 1034 being each c.0.2m diameter, 1037 was 0.3 diameter, 1038 was under the western baulk but measured 0.3m across, and 1039 was double type some 0.4m by 0.6m long. These seem to be associated and broadly contemporary with Path F103.

A 1m wide E-W sondage cut across the southern end of the site revealed a very compacted basal deposit of chalk rubble (1027, 1029), which may have been a utilised surface or disturbed natural. Two roughly N-S orientated features were cut into this horizon: to the east was a c.1.5m wide cut (1049) with fill (1028), and to the west was another of similar width (cut 1067, fill 1026). A 0.17m patch of compact chalk metalling (1061) lay beside and lapped over the western edge of 1026. These features were gathered together as Amorphous Intrusions F106. Interpretation was constrained by the limited view afforded of these features; however, there are some similarities between the rough surfacing 1027/1029 and features F103/F104 just to the north.

West of F106, following the line of the western baulk, was a NNW-SSW aligned ditch c.2.4m wide by 0.7m deep (cut 1003 – henceforward Linear Ditch F107) with fill (1004). This ditch truncated the western side of metalling 1061 and appeared to butt-end or turn westwards under the barrow run. Fill (1033), just north of the barrow run, may actually be the outside ‘elbow’ of such bend in F107.
The next feature is difficult to describe adequately, as the evidence in the southern sondage was somewhat poorly defined. However, the excavators envisaged a 0.7m wide ditch (cut 1050 – hereafter Linear Ditch F108) with fill (1031) running from the sondage due NNE for at least 10m.

The northern sondage revealed only the western side of a linear feature with cut (1064), at the base of which was a line of five regularly positioned and rough-tooled stones (1065 – hereafter Foundation F109), forming a rough, unmortared foundation. Three of the stones sat squarely against the face of 1064, which can thus be interpreted as a “construction trench or a robbing trench... (or both)” (Hummler and Roskams 2005, 15).

The latter foundation sat within a larger, amorphous and part-excavated cut (1063 – henceforth Pond/Wellhead F110), which measured c.0.2m deep, approximately 7.5m E-W and extended to north and south beyond the 2m wide confines of the sondage. At its eastern edge the 1063 seemed to cut into underlying stratigraphy, which might relate to the line of Linear Ditch F108 to the south. The cut was backfilled in two stages with, first, a soft dark brown soil (1053/1055), followed by a dumps of paler, stonier material (1054/1066). The aforementioned deposits, including the foundation stones, were then sealed by a widespread soft, dark greyish brown loam (1044), which produced c.12 tooled limestone slabs (up to 0.5m across), a quern fragment, and a small sandstone trough or mortar. This feature was contained on all sides by chalk bedrock and therefore seems to be a discrete, deep feature rather than something linear. The latter, added to the fine, potentially water-sorted, character of 1044 and its accompanying large stones raised the likelihood of F108 being a ‘water feature’, where the stones had been pitched in to stabilise a muddy margin. Although not proven during excavation, the excavators made a convincing case for Foundation 109 marking an early phase of construction. Both it and, maybe, the co-aligned ditch F108, were then subsequently truncated when the larger Pond/Wellhead F110 was created.
Between the two sondages were a series of overlapping spreads: dark brown deposit (1022) was possibly a spread or a shallow linear feature whose western edge paralleled the alignment of F103, to the west of and later than 1022 was collection of finds (1040) recovered during cleaning over features F105/F107, 1022/1040 were then overlapped by a reddish-brown spread (1011) centred over F109/F110 and, finally a dark brown spread (1002) overlapped the southern edge of 1011 and sealed all features to the south barring, perhaps, F107. These deposits are gathered together as Surface Spreads F111.

Perhaps the latest feature in the sequence was a curving gully (cut 1052 – henceforward Curvilinear Gully F112), which cut features F101 and F110. It measured c.1.2m wide, 0.35m deep and 12.5m long at the eastern l.o.e. and its profile narrowed and became shallower from south to north. There was a single orangey-brown clayey fill (1010).

Before discussing the finds data, a brief revisiting of the geophysics plot in Figure 27 is in order. The three E-W ditches F100-102 are clearly visible in the magnetometry data and, interestingly, ditch F101 may extend across the western arm of enclosure ditch F100. The pair of strong N-S responses in the southern part of the trench may correspond with F107 and F108. The geophysically ‘noisy’ area in the eastern side of the trench seems to relate to features F109, F110 and F112 – note the contrast between the clarity of the latter's response and the invisibility of early curvi-linear gully F98.

In the section below, the ceramic assemblages are used to provide further dating resolution to the stratigraphic relationships discussed above.

Looking at the EVE results in Figure 82 and summarised ceramics data in Figure 83, two things are immediately apparent: first, the predominance of LR material and, second, the presence of a significant LIA-ER component in the surface spreads F111 and smaller MIA and LIA-ER ones in the larger cut features F100, F106 and F110. This has
specific implications for the origins of the assemblages discussed below, and raises more general issues concerning disparities created during the quantification of MPR and DPH ceramics (see below).

Curvilinear Gully F98 produced no dateable finds, but its clean, stony fill, stratigraphic position, size and shape support its interpretation as a potential EBA round barrow.

Foundation F99 produced a small assemblage comprising seven HND-E sherds, one MPR oxidised and one Crambeck greyware sherd (AD285-410). However, it is stratigraphically earlier than the uppermost fills of Enclosure Ditch F100, which overlapped associated deposit 1012. The upper fills of Enclosure Ditch F100 were interesting in that they yielded ceramics spanning the MIA-LR period, with a core period of the 3rd to mid-4th century based on 15 sherds of EY burnished greywares and one of Crambeck greyware. Also present were a sherd of Samian, two LIA-ER DPH rims, two fragments of CTW upright, pinched rims of MIA type, and 18 HND sherds in predominantly late fabrics. Linear Ditch F101 produced a mixed HND assemblage and just one diagnostic sherd, again in EY burnished greyware (AD225-360). Outside the enclosure, proposed in-field boundary, Linear Ditch F102 offered up another small assemblage comprising eight HND-L sherds and three greyware sherds: one EY burnished type and two Crambeck – indicative of a late 3rd to late 4th century date. Linear Path F103 generated 52 HND-L sherds, nine EY burnished greywares, four Huntcliff ware, two Knapton ware (AD200-300), two early Whitewares (AD100-200) and one Crambeck greyware, which collectively suggest activity in the later 2nd century, intensifying in the 3rd to late 4th centuries. The Amorphous Intrusion to the south of F103 yielded a mixed 32-strong HND assemblage, six Crambeck and two EY burnished greywares, whilst the two CTW rims – one LIA-ER and one Huntcliff – reflected the HND split. Overall, a date range spanning the 4th century is suggested.

Although stratigraphically later than Linear Path F103, Foundation F104
produced an assemblage that suggested they were roughly contemporary. It included the following sherds: 17 HND-L, 61 Huntcliff ware including the aforementioned large jar, a proto-Huntcliff rim, five EY burnished greyware, the rim of a Crambeck parchment ware mortarium, and one Crambeck greyware. Like Path F103, these collectively date Foundation F104 to the 4th century. The assemblage from Linear Ditch F107 included a nine-sherd HND collection mostly of early type as well as two greyware sherds — one Crambeck and one EY-type — and an oxidised sherd only dateable as TR. Together a date in the late 3rd to mid-4th century is suggested. The Pond/Wellhead F110 produced a mixed assemblage of eight HND sherds, a LIA-ER rim, the bead rim of a Crambeck parchment ware hemispherical flanged bowl, and an EY greyware bodyshard, which collectively indicate a date in the first half of the 4th century. The aforementioned limestone slabs and a rotary quern fragment could all have been reused to stabilise muddy ground around the pond/wellhead. Indeed they may have originally been used/reused in the potential wellhead stonework (Foundation F109) or could derive from material scavenged from abandoned buildings nearby. The stone trough or mortar is very similar to an example from Shiptonthorpe (Millett 2006, 246) and, if the former, would make sense located next to the farmstead’s main water source.

Sealing the above features were Surface Spreads F111, which unsurprisingly yielded a LR-dominated assemblage, but one that also included 12 LIA-ER DPH rims. The LR assemblage numbered 33 EY greyware, 14 Crambeck greyware, seven Huntcliff ware, one proto-Huntcliff ware, one Dalesware-type CTW rim and one amphora bodyshard unidentifiable to type. The latter assemblage suggests that F111 was probably accumulating during the entire 4th century. Two sherds of plain Samian constituted the ER component, whilst an assemblage of nine oxidised sherds were only dateable as TR. Given the securely LR date of underlying features, these ER types and the LIA-ER material are clearly residual in a LR deposit.
Curvilinear Gully F112 appeared to be stratigraphically late in the sequence, however, its ceramic assemblage suggested otherwise. Its 15 HND sherds were all in late fabrics, but six sherds of EY greyware, one of Crambeck greyware, and a Mancetter-Hartshill mortarium sherd (AD200-300) suggest a late 3rd to early 4th century date. One LIA-ER rim is probably residual in this company. Of particular note is an Anglian sherd, which could actually date the feature – of which more below.

The ceramics results prompt some reconsideration of the original phasing of features offered in the interim report. On a general note, it is worth remembering that whilst most MPR-W and many MPR-HW sherds are diagnostic to type and date, LIA-ER identifications are reliant on rims, thus the tabulated results by weight and count tend to underrepresent the latter. The quantity of LIA-ER material (rims) is therefore very much a minimum and the 12 rims in Spreads F111 above strongly suggest activity of that date in the area, maybe pre-dating the creation and use of the North-west Enclosure or relating to the initial – mid 2nd to early 3rd century – phase of use identified in the Site 91 excavations (J Evans 2004, 313). Further evidence of LIA-ER CTW wares is provided by the significant minority of early fabrics amongst the 364 sherd HND assemblage (see Fig. 83).

Other finds consisted of 14 coins of which the two identifiable examples came from the ploughsoil and Surface Spreads F111 and were attributed to Valens and Constantius (AD348-378) (Casey 2002, 44-6), a bronze bracelet was also a base-of-ploughsoil cleaning find, whilst a seal box lid was found during metal detecting of the spoil heap. Ironworking residues in the form of what was most likely smithing slag numbered 271 lumps, and there were 21 lumps of lead residue also.

In summary, the site’s first phase of activity takes the form of a possible Bronze Age round barrow (F98). This was slighted when the North-west Enclosure ditch F100 was cut probably in the early 3rd century. Soon afterwards, a pathway (F103) associated with insubstantial post-built structure (F105) of some sort was laid out on an alignment somewhat
different to the enclosure ditch. During the 3rd century, further linear ditches were cut – one (F101) perhaps carrying a fence of hedge defining/retaining the inside edge of the enclosure bank, and the other (F102) delineating an in-field zone outside the enclosure. In the early 4th century a group of poorly defined features F106 were cut south of pathway F103 and, like the latter, included areas of metalling. About the same time, a foundation was created (F99) between ditches F100 and F101, probably for a timber-framed building – most of which would be beyond the eastern l.o.e. Obviously, if there were a bank between F100 and F101, it must either have been locally removed to insert this feature or by then have been flattened and backfilled in the nearby ditches.

The above phase of activity was succeeded by a series of features laid out on a slightly different alignment. The first of two linear ditches (F107) was cut around the beginning of the 4th century on a NNE-SSW orientation, then turning west in the trench baulk. A further ditch (F108) was cut parallel with the latter and either butt-ended or turned east under later features. F107 and F108 may well relate to a redefinition of occupation zones once the main enclosure ditch F100 had become disused. Following the same alignment were two lengths of stone foundations: the first (F109) relating to the initial masonry construction of a well, and the other (F104) creating a new alignment over pathway F103 – both are probably early 4th century additions. F108 and F109 were then truncated when the Pond/Wellhead was constructed in the early-mid 4th century.

A series of surface spreads (F111) then formed over all features bar ditch F105 in the enclosure interior south of ditch F101 during the mid-later 4th century. Finally, a curvilinear gully (F112) was cut through these 4th-century deposits and, despite a predominantly late 3rd to early 4th century assemblage, may actually be dated by the one Anglian sherd recovered from its fill. Such narrow curvilinear boundaries are a common feature of Anglian settlement in the Wolds. Moreover, significant quantities of Anglian pottery were recovered during fieldwalking nearby, SFBs were
Chapter 7 Wharram Grange Crossroad: generating a research dividend from student training

excavated just a short distance to the east at Wharram Percy, and other possible examples are known as cropmarks to the north-east.

The WP results are discussed in Section 7.8 with those from the three sites covered hereafter.

7.7 Wharram Grange Villa (WGV), Birdsall High Barn (BHB) and Birdsall Brow (BB)

WGV

Cropmarks and geophysics

The very large (2.5ha) subdivided enclosure at WGV (Fig. 25) is one of several such examples known across the Wolds which, based mainly of the findings of this one site, are thought to be LR in date (Stoertz 1997, 55). Nearby, on the southern side of the trackway, there are two smaller (0.1ha) paddock-like enclosures ('H' on Fig. 25), whilst immediately east of WGV, a block of much larger (0.9ha) elongated examples could provide further evidence of in-fields ('J' on Fig. 25). Adjacent to WGV the trackway has a braided appearance, suggestive perhaps of repeated redefinition of ditches and/or serious roadway wear caused by intense/long-term usage in the environs of the settlement.

The magnetometer results (Fig. 28) mirror the cropmark data but, quite typically, add extra definition and new detail: there are hints of structural remains in the central enclosure, many short gullies/subdivisions within other enclosures, and myriad circular and lozenge-shaped pit-like features (c.1-3m in size) that could be storage/rubbish pits, large or double post-pits, crop-dryers or even graves. In an interesting parallel with the North-west Enclosure, the possible walls visible in the central enclosure at WGC are also 'misaligned' with the surrounding boundaries.

In sum, from the combined remote sensing data alone, there is an unusually high intensity of activity compared with many ladder
settlement enclosures.

Surface collection

The density of features is strongly reflected in the range, volume and status of artefactual material recovered from the ploughsoil surface (Figs. 84 and 85). Evidence for buildings with ceramic tiled roofs (imbrices and tegulae), mosaic floors (tesserae) and rooms with central heating (box flue-tiles) is usually taken to indicate a site of some status, hence the 'villa' of WGV. The surface finds revealed some interesting patterns, which are now discussed relative to each other and the magnetometry plot. Amphora sherds tended to be located at the edges of the central group of enclosures, whereas Samian ware more closely mirrored the overall ceramics distribution. The amphora data may relate to the location of storage/cooking areas surrounding the core residential enclosures. The scatter of ceramic roof tile was strangely thin over the central enclosures in Field 2, which produced intense concentrations of pottery and tesserae. Box flue-tiles were noted across the eastern two-thirds of the site, suggesting the presence of hypocausts in these areas. The lava quern fragments were similarly distributed but it is unclear whether they were thought to be Roman period or related to Anglian activity evidenced by a thin scatter of sherds around the periphery of the site.

Collectively, the surface collection and excavated ceramics assemblage comprises an early component of LIA-ER CTW types, Antonine or later samian including decorated types, and ER amphora, whilst the LR assemblage includes Huntcliff ware, Crambeck parchment ware mortaria, Crambeck and EY burnished greywares, NV colour-coated wares, and possible Knapton ware. The main distinction between the ploughsoil and stratified ceramics was the relative importance of LR CTW types in the former and relative dearth in the latter. The most obvious departures from every other ceramic assemblage examined thus far in this project are as follows: the sheer volume of samian, the presence of decorated
types of the latter, the occurrence of imported Gaulish colour coated wares (probably 2nd century), and number of different amphora types presumably relating to the supply of specific commodities: fish sauce, olive oil or wine. On the other Wharram sites, colour coated wares tend to be a LR phenomenon and invariably of Nene Valley manufacture.

Excavation

The excavations took the form of an asymmetrical T-shaped pattern of 18 small, mostly 1msq, test pits (Fig. 86). Problematically, the interventions sought only to establish the nature of the archaeology, its date and condition; this methodology thus prevented any real understanding of earlier phases of activity on the site.

There is not space here to go into the detail of the excavated evidence, however, there are a number of key findings that will serve to characterise the site as different to any other in this case study. Test Pits (TP) A-C, K, O, Q, S and T all revealed demolition layers rich in sandstone fragments suggesting that this was the prime building stone used in the foundations/walls of the main structure. The stonework includes materials sourced locally, others from the Howardian Hills, whilst some roofing flagstones may, like those used in the fortress and colonia at York, have come from the western side of the Vale of York (Rahtz et al. 1986, 26.3). Buckland saw this as evidencing economic links between higher status rural settlements and York, although somewhat ‘lesser’ farms were also receiving lower value, less bulky items from York such as Ebor pottery (see further discussion in Section 7.8 below). Well laid interior chalk floors were encountered in TPs A and K-P, indicating a range of buildings stretching for at least 60m across the site although, given the scale of the interventions, no real sense of building orientations was achievable. Similar, but rather more poorly finished, surfaces were also encountered in TPs S and T. The former also included evidence for an ash-filled flue, perhaps related to a hypocaust in the vicinity. Plain and painted wall plaster from TPs A, P and S, and the “comparative sophistication of the mosaic flooring” from
TP P provide convincing evidence that this was a site of some status (Rahtz et al. 1986, 27.3). Test Pit P also revealed a large stone-lined drain capped with reused roofing flags, which with the mosaic was interpreted as the possible location of a bath-house. In terms of dating, the majority of cut features produced assemblages of 2nd and 3rd century date, whilst the bedding deposits for the TP P mosaic included some 4th century material. Several different ‘classic’ types of LIA-ER CTW are illustrated from the excavations, but receive barely a mention in the report; Romano-centrism in action perhaps?

In conclusion, here we have the only convincing high-status villa-type farmstead in the detailed Wharram study area (Fig. 25). Tantalisingly, WGV evidenced activity throughout the Roman period and included sufficient LIA-ER CTW pottery to hypothesise the potential for a farmstead of that date to exist below the villa. Further support for activity at this time was provided by the find of a glass bangle dating to the 1st century AD (Rahtz et al. 1986, 26.12), which was well-stratified in one of the deeper interventions on site. The villa or possible religious centre at WLSV demonstrates a similar level of engagement with Roman material culture, but that is outside my immediate focus on the WGC plateau area. On the other hand, Birdsall High Barn (BHB) is within my study area and is dealt with next.

BHB

Cropmarks and geophysics

An interesting contrast with WGV is provided by the ‘farmstead’ settlement at BHB, which is also a subdivided-type enclosure. It is, however, considerably smaller than the latter at 65m by 70m (0.46ha), but still toward the top end of the 0.25-0.5ha size range typical of ladder settlements (Stoertz 1997, 51). The cropmark is truncated to the east by the modern field boundary, which is also the parish boundary and, as suggested above in Section 7.3, follows the line of an early trackway from Aldro to the Great Wold Valley. Its peculiar alignment relative to this boundary is worthy of investigation as it might indicate that the
farmstead ignored the old trackway, or has an odd trapezoidal shape or perhaps that the trackway has a localised kink at this point. The geophysics (Fig. 87) very closely reflect the cropmark signature in Stoertz (1997) but, unlike WGV, there are just a couple of pit-like features within the enclosure and a small cluster immediately outside to the northeast.

Surface collection

The site was identified during random fieldwalking and yielded a ceramic assemblage characterised by Hayfield as mostly 3rd to 4th century, with samian representing a 2nd century element. The overall assemblage comprised the following: 70 handmade CTW sherds including some that might have been Knapton ware, 62 ‘wheelmade’ CTW types (Huntcliff?), 75 EY and Crambeck greywares, 2 samian, 2 mortaria and 5 Anglian. He records the presence of early-type CTW material, indeed 7/16 illustrated sherds are of this type, but argues that they are “difficult to date precisely” (Hayfield 1987, 43) and, in line with other sites in his study where MPR material is present, the LIA-ER CTW component is rather downplayed. The truth of the matter is that CTW material spanning the 1st century BC to 2nd century AD is probably present.

Excavation

As Figure 88 shows, the excavation methodology employed was similar to that used at WGV; in this case nine 1m by 3m and two 1m by 4m test pits formed a punctuated transect across the site. Trenches A-C, H, I and K all produced no archaeological features. Of the others, TPs D, G and J all revealed ditches with dark brown finds-rich fills (mammal bone and pot), the latter being a 3m+ wide major E-W division within the farmstead (Fig. 88). Test Pit E revealed a group of 3 stone-packed post-holes cut into the subsoil just 0.2m below the surface of the modern ploughsoil, one of which (E5) had been set within a matrix of green clay. This provides one definitive use to which similar material noted in trenches at the crossroads might have been used. Test Pit F is definitely
the most interesting in that it revealed a "worn and compacted chalk surface set into an orange-yellow clay" (Hayfield 1987, 49-51) cut c.0.6m below the natural (c.0.8m below modern surface) across the full extent of the TP (F6). This surface evidenced burning in association with charcoal and a patch of dark grey clay, which might have been a hearth. Above this was a brownish-black fill (F5) with a slightly compacted crust (F3), into which a later post-hole (F4) had been cut. The change of depth from TP F to TP E, only 2m away, is surprising and probably indicates that surface F6 was within a discrete feature.

The ceramics reveal a wide date range: TP D produced a small assemblage of LIA-ER CTW and 2nd to 3rd century MPR types, post-hole E4 produced two sherds of LIA-ER CTW, the deep fill in TP F (F5) produced a 14-strong LIA-ER CTW assemblage – Crambeck greyware coming from the ploughsoil above, TP G again produced only LIA-ER CTW from the stratified ditch fill and, finally, the large ditch in TP J yielded 81 LIA-ER CTW sherds, one whiteware (perhaps AD100-200), one oxidised sherd and two "Blackware" (BB1?). All of this last assemblage could therefore be 2nd century or earlier. In addition to the above finds, a loom weight was recovered from context D4, a piece of worked bone from G3, whilst the three ditches produced substantial mammal bone assemblages.

In summing up the site, Hayfield argued that although the excavated features had produced no evidence of activity later than the 3rd century and plenty of LIA-ER date, the 4th-century ploughsoil assemblages must indicate occupation of that date (Hayfield 1987, 58). The inadequate sampling methodology allows this to remain possible, but the LR material could equally relate to manuring activity.

BB

Cropmarks and geophysics

The only 'classic' ladder settlement in the Wharram 'cropmark landscape' is the BB string of enclosures running southwest from the
crossroads. This ladder seems to have at least two phases as the first three enclosures west of the crossroads lie on a different alignment to the other 20 or so, which intriguingly seem to have been laid out between a pair of parallel ditches - it is plain to see how such layouts might be seen as evidence of planning and, as Chapters 4 and 5 explored, in the past this was 'naturally' attributed to Roman activity. The ladder includes three or four enclosures in the 0.25-0.35ha 'farmstead' size range, whilst the remainder vary between 0.05-1.5ha in size. There is some suggestion of phasing as evidenced by the smaller 0.05-0.1ha subdivisions in its mid-section and south-western extremity ('K' on Fig. 25). The ancient trackway mentioned above in relation to BHB extended past the BB ladder to the crossroads and its former presence is supported by the westward branching ditch of the trackway from WP, which then disappears under the verges and metalling of the modern road. One could speculate as to whether the odd-looking dog-leg in the BB ladder may reflect the original line of the trackway; the more recent course, following the ruler-straight boundary of Field 1, is perhaps a product of Parliamentary Enclosure. Lastly, to the north of the BB ladder there are hints of what might be an enclosed field system, which straddles Fields 3 and 148.

Surface collection

This ladder was repeatedly fieldwalked during Hayfield's project, but produced no 'Roman' artefactual material whatsoever. It was interpreted, therefore, as serving an entirely agricultural rather than domestic function. The complete lack of finds is very surprising and could indeed relate to function; for example, if the BB ladder was in fact a series of arable fields, which when fallow were directly manured by folded sheep, then no artefactual evidence would result. Equally, the archaeology could be protected by a localised area of hillwash; without excavation it is impossible to say. Given the uncertainties concerning the function and date of this site, it is frustrating that BHB received such attention when the one truly anomalous component in the settlement pattern remained untested.
The preceding six sections have presented a wide range and enormous volume of data—encompassing prospection-level cropmark, geophysics and surface collection results, and the much more detailed stratigraphic and finds evidence from excavations. The challenge now lies in drawing together these myriad evidential threads within a themed discussion broadly reflecting the research questions set out in Chapter 1, reintroduced in Chapter 6, and then reviewed at the end of the thesis in Chapter 9. The general issue of site preservation and data quality resulting from the four different types of projects explored in this thesis (Question 4) is, however, reserved for discussion in the concluding chapter.

7.8 Conclusions

As argued in Chapter 2, the LIA-LR landscape presented in combined cropmark and geophysics plots is a landscape only in its modern archaeological existence as 2-D plan-view image. A key goal of this thesis was to unpack that 2-D image and present an overlapping succession of landscapes that would have been perceived and understood by generations of farming communities, whose lives from cradle to grave were shaped by and found material expression therein. Such landscapes survive archaeologically as silent, plough-truncated pale shadows of their dynamic, noisy, inhabited, productive pasts. The following discussion attempts to reanimate these community-landscape interactions through a process of interpretive narrative, within which the material remains and their interpretations are carefully interwoven.

In the interest of narrative flow, the discussion is distilled from the individual trench/site summaries and is structured chronologically. Within each period, it moves from the development of landscape structure, to the domestic and agricultural exploitation of the landscape and, finally, to the evidence for hierarchies and socio-political reproduction.
At the meeting of the ways: LBA-MIA

As Figure 24 showed, the higher parts of the Wharram plateau, and others nearby, were divided up into large territorial blocks from the LBA onwards. This definition, it was argued, related to the formalised marking out of upland pastures that, together with earlier trackways, had previously been defined by strings and clusters of EBA barrows. The possible hillfort at Aldro was argued, with the territorial boundaries, to reflect a wider LBA-EIA process of inscription of elite authority on the landscape.

Structural developments

The story of WGC begins at this time, when the route of one early trackway, the Wharram Ridgeway, was formally marked by a ditch-and-bank boundary, which ran from the Wolds’ plateau edge at Aldro through Wharram crossroads, onward across the valley bottom stream and on through Wharram-le-Street towards the Great Wold Valley. The evidence for subtly different, but essentially E-W, alignments of early-type linear ditches (with sterile, stony fills) from trenches 97/98C, 98A, 99A and 04-7 suggest that this routeway was redefined in many different phases stretching forward into the M-LIA — presumably by successive communities for whom its stewardship was integral to their ongoing socio-economic reproduction. Once created, though, each length was left to silt up without further human interference. By the M-LIA period, but maybe as early as the ditched-definition of the Wharram Ridgeway, the crossroads was born as an archaeologically-recognisable feature. This occurred when a pair of flanking ditches was cut to formally define a route stretching from the lowlands beyond the scarp edge north-west of WGV, up the scarp and downhill through the crossroads and on to WP, perhaps continuing across the stream to join the Towthorpe Ridgeway where it crossed the watershed above Fairy Dale (Fig. 24 ‘D’). The earliest dating evidence for this feature at WP is M-LIA, but the wider landscape context clearly supports an earlier origin.
Patterns of exploitation

The absence of organic, finds-rich fills in these early linears probably reflects that, for much of their length, they were not closely associated with contemporary domestic settlement and therefore avoided use as rubbish dumps. There is maybe more to it than that, though, as MIA and earlier farming communities on the Wolds (Rigby 2004), and further south (Hill 1995a), seem to have actively preferred to use pits rather than ditches for rubbish disposal and other, ostensibly ritualistic, purposes. This general observation is borne out by the evidence at the crossroads.

In the E-MIA (600-400BC), occupation activity is evidenced along the north side of the SW-NE routeway as evidenced by three pits forming part of a group of 25, the others being of MIA date. Some 250m to the west of these, a further MIA pit was noted in WGC04-7. Evidence for structures is lacking but, where surfaces associated with dwellings and yards survive in the area (as in the NWE), they are not surprisingly made of crushed chalk. These MIA pits may therefore be primarily related to chalk quarrying for floors and yards associated with as yet unidentified dwellings of this date – this MIA use of crushed chalk is well-evidenced at GWS (see Chapter 8). An intriguing insight into the aforementioned MIA ritual activity is evidenced by the structured deposition of a cattle skull, propped with chalk blocks in a clay-lined, stone-capped pit and surrounded by domestic refuse. Such clay linings might have originally been associated with grain storage (although none was found here), but the reuse of such a pit for ritual activity may relate to concerns with pastoral reproduction. The finds of several large “roundels” of clay in one WGC95’s pits highlights the material benefits of living close to the exposures of Kimmeridge Clay in the valley bottoms of the north-west Wolds. This clay would have been put to variety of uses including handmade pottery, daub, loom weights, crucibles, spindle whorls, hearth pads, storage pit lining/capping and post-packing. The latter three uses were evidenced in situ in excavations under Wharram Percy church, at WGC95A and BHB respectively.
Further clues to the MIA exploitation of the Wharram landscape were provided in the cropmark and excavation records. There is the classic early MIA square barrow cluster on Raisthorpe Wold located, in EBA fashion, at the intersection of the Towthorpe Ridgeway and a multi-vallate cross-ridge dyke (Fig. 24, ‘F’). Further single barrows are recorded north-west of WGC and a possible example was excavated near the church at Wharram Percy. We therefore have indications of the MIA exploitation of the Wharram plateau.

Evidence for social differentiation and structures of authority
The sheer size (in cross-section) and length of the early linear ditches has implications for the ways in which we attempt to reconstruct the social organisation underpinning the exploitation of the landscape. Ladder enclosure ditches are perhaps no smaller in section, but they operate on a fundamentally different political level to the long-distance linears – both in terms of their creation and use. In the absence of the kind of state-level bureaucracy driving forward the construction of thousands of miles of Roman military roads, there must have been groups or individuals with influence over wide areas of the Wolds and many farming communities. Without them, such long-distance political structures could not have been imposed upon the landscape nor have retained their meaning and power.

Enclosing households, transforming the landscape: LIA-ER
The excavations discussed above confirmed the incremental nature of landscape enclosure around Wharram crossroads. Within that process it was absolutely clear and demonstrable that in every excavated interface between major linears and LIA-ER ladder settlement enclosures, the latter were always later.

Structural developments
Of those excavated, all bar one enclosure had clear origins in either the LIA-ER or ER periods – importantly these included the site of the LR villa at WGV and the NWE. The LIA-ER settlement pattern at Wharram
therefore comprised the following: at Wharram Percy an enclosed farmstead under the church and the potentially higher status WP45/60 gatewayed farmstead beside the SE-NW trackway; and at the crossroads, the entire block of enclosures immediately to the east of the SE-NW trackway (95A and B, 98B and 99A), and the WGC04-7 and BHB farmsteads to the west. The BB ladder, sandwiched between the last two, but as yet undated, could also be contemporary. Potentially overlapping in date are the enclosures with ER beginnings at WGC04-8, WGV and the NWE (WP91/05-92).

Patterns of LIA-ER landscape change have thus been clearly identified in the region, but how can we account for the changes? In traditional accounts there has been an over-reliance on population growth as the prime mover in this process (Dent 1983a; 1983b), but this is surely incorrect: population growth would only become pivotal to landscape change if there were short-term mass migrations of people and there is no evidence for this in the study period. Indeed, if anything, the enclosed settlements around WGC suggest the gradual accretion of boundaries, enclosures and sub-divisions over many generations. These may reflect the activities of just a few household groups at any one time whose farmsteads, upon deaths or marriages, were sub-divided or perhaps augmented with ancillary enclosures. Ladder settlements do not represent the colonisation of formerly unoccupied land - at WGC the evidence is there to suggest a tangible and sustained E-MIA presence focused around the meeting of ways. There are also hints, albeit more fragmentary, of MIA activity in the valley at WP. At Wharram the patterning of ladder settlements across the plateaux resulted from activity throughout the LIA and ER periods, but it was certainly not a LR phenomenon.

The respect shown by successive generations of ladder settlement dwellers to the alignments and movement corridors defined by the early ditch-and-bank bounded trackways is unequivocal. Even when settlements were significantly restructured in the 3rd and 4th centuries,
such trackways were still considered integral to the way people worked, inhabited and exploited the Wharram landscape. Intriguingly, and also completely contrary to traditional notions of ditches as 'barriers', it seems to have been of little concern to later generations whether such early 'earthworks' actually survived as holes in the ground.

In reality, the archaeological focus on ditches as the key to LIA-ER, and earlier, landscape organisation could be subtly missing the mark, especially if thorn hedges were widely used as implied by blackthorn clippings recovered from the pond at Shiptonthorpe (Millett 2006, 304) and by hedge-loving molluscs associated with boundary banks at West Heslerton (Powlesland 2003a, 23). Similarly, the 'expectation' of bank located on the inside of enclosure ditches – rather than the outside as suggested above in WGC04-7 – is based on tacit notions of defensibility, but my feeling, which is in accord with that of Mel Giles, is that LIA-ER ladder settlement ditches were not dug for 'defence' in any traditional sense of that word. Instead, they performed two practical roles: first, they provided material to make banks, which may well have been topped with thorn hedges, fences or palisades (all invariably lost to plough truncation); and second, they functioned as rubbish dumps or middens – hence the repeated recutting of enclosure ditches, not to reinstate a defensive feature, but rather to recover the rotted-down organic matter for horticultural or agricultural use. The in-fields may well have received this material or it could have been used on smaller garden plots within settlements.

Patterns of exploitation

Evidence for LIA-ER dwellings is slight, but the curving gully in WGC04-7 and curving pattern of postholes and L-shaped gully within WGC98B may indicate the fragmentary remains of houses of this date. The latter gully may relate to an early rectilinear structure, the bulk of which was under the northern baulk. Some additional support for this interpretation is provided by the rich deposits of domestic rubbish in 04-7's curving gully and another which formed a spread contained by the L-
shaped gully in 98B. This spread contained a coarse-toothed comb, which suggests that weaving was carried out within that particular household.

One of the most prominent aspects of LIA-ER ladder settlements is, of course, their substantial enclosure ditches. However, what is peculiar about such ditches is that they appear to have functioned not as physical barriers but, rather, as huge rectilinear middens. The uniformly strong magnetic response of ladder enclosures in geophysics plots suggests that entire circuits were used in this way. These middens appear to have been back-filled, left to rot and then emptied on a repeating cycle, which we see as series of recuts. The length and frequency of this cycle is difficult to assess. What we always encounter archaeologically are the abandoned ditches when this important LIA-ER phase of intensive management had come to an end. However, given the size of domestic ladder enclosures (typically in the size range 40x40m to perhaps 70x70m), the potential volume of material available at different stages of composting would have been enormous. One can imagine, for example, that the ditches might be filled and emptied following a sun-wise path around the enclosure – new material being dumped at one point in the circuit and fully matured compost being removed at another.

The structured deposition of a cattle skull in a MIA pit at WCC95A can be compared with a LIA-ER pit in WGC04-7, which included a fragmentary human humerus, sealed by a burnt, ashy deposit and again capped with close-set chalk blocks. Given the blurring of dating boundaries between the MIA and LIA in the region, these two pits could actually be quite close in date. Whatever the case, the structural similarities between the two pits suggest a common mindset regarding appropriate ways of interring and sealing important ritualistic/religious materials.

Mortuary activity is restricted to the aforementioned special deposition of a humerus in WGC04-7 and a neonate/infant burial in WGC98B of
possible LIA-ER date. Some of the neonate/infant burials in WGC99A could, as noted below, be ER in date.

Evidence for social differentiation and structures of authority

The ceramics evidence suggests that, from the 1st century AD, certain households on the Wharram plateau had access to Roman ceramics. However, the only site evidencing a more 'urban-military' pattern of supply in terms of long-distance trade in ceramics and building materials was, perhaps not surprisingly, WGV. Here, despite evidence for highly 'Romanised' LR buildings, there are also hints of an earlier settlement of some status as evidenced by ER imported amphora, decorated samian, and 2nd-century Gaulish colour coated wares. Greywares are hardly an indicator of status, but the presence of potential Ebor and North Lincolnshire material at Wharram is noteworthy. Some Ebor greywares are identified in trench WGC04-8, but these would be more tentative in nature were it not for the presence of other, more diagnostic, Ebor products at Wharram. Obviously, there may have been very different socio-economic mechanisms governing the supply of decorative table wares such as Ebor Red Painted ware and storage/cooking jars such as Ebor oxidised and greywares. Given the persistence of DPH jars well into the second century in eastern Yorkshire, the potential for contemporary use of such locally-produced material and ER MPR jars such as Ebor ware raises some interesting questions regarding the level of integration of rural settlements into ER supply networks and their influence or otherwise on domestic patterns of production and consumption of ceramics.

A later Roman reorganisation of the landscape

Structural developments

There is good evidence for a significant LR change in the structure of settlements and patterns of landscape exploitation. Enclosures with LIA-ER beginnings at the North Manor Site 45, NWE Site 91/WP05-92, and in trenches 98B/99A and 04-8 at the crossroads all evidence 4th-century activity, often on quite different alignments defined by much slighter,
probably hedged, boundaries, which override the, by then, backfilled ladder enclosures. This reorganisation of domestic and productive space in the landscape went hand-in-hand with the maturation of villa sites in the area, in particular WGV, and arguably related to a shift in emphasis away from the internal affairs of individual households and towards meeting collective obligations in terms of agricultural production and taxation in kind. The only new enclosures of definite LR date are the slight examples forming the string of small paddocks west of the crossroads (WGC04-8).

Patterns of exploitation

By the M-LR period the LIA-ER enclosure ditches had lost their earlier function as middens, ceased to exist as a physical barrier and seem to have passed beyond practical recognition and use. The only evidence for LR dumping into a linear feature was thus in trench WGC98A, where a deeply-rutted section of the SW-NE trackway was backfilled with domestic rubbish. Middens may have been established elsewhere, although the LR surface spreads in WCC99A and WP05-92 suggest, perhaps, that there was a breakdown of earlier conventions regarding the cleanliness of living spaces. However, the presence of these spreads should be treated with some caution as those in 99A and 98B were sealed by what was probably a buried ploughsoil of Anglian to high medieval date, whilst examples in WP05-92 seem to have been protected by a somewhat greater depth of modern ploughsoil. In most other trenches at Wharram there was no such protection and any spreads originally present would have been incorporated within the modern ploughsoil. It is interesting to note that the abandonment of the ditch middens was followed by the establishment of the LR string of small enclosures west of WGC. If these were indeed seasonal sheepfolds and arable/horticultural plots, then a move to direct manuring would go hand-in-hand with a reduction in emphasis on domestic midden material for soil enrichment. One final point concerns the environment; evidence from the Vale of Pickering clearly indicates that increasingly wet conditions prevailed in the later Roman period (Powlesland 2003a, 29).
This may have precipitated a shift in the nature and balance of the mixed economy on the Wolds towards sheep rearing, thus requiring readjustments in the management of arable land.

The excavations at WGC and WP provided no convincing evidence for buildings with ceramic tiled roofs. However, the 2nd- or, more likely, 3rd-century tile kiln in WGC99A may have supplied tiles to WGV, which has extensive evidence for their use. Field 96, within which the kiln is located, produced large quantities of undated tile during fieldwalking, however, few tiles were recovered at the crossroads during excavations east of the crossroads and these surface finds are more likely to be wasters from the kiln rather than evidence for structural remains. In one of two small LR rectangular buildings from WP45 was the base of a small wattle-and-clay domed oven, lacking any obvious industrial-type residues and perhaps a bread oven. These structures were originally interpreted as ancillary buildings for an unidentified main dwelling somewhere in the vicinity and this still holds good. A significant change, evidenced at many LR farms in the region, is implied by the use of more and larger crop dryers such as the sizeable 2-phase crop dryer inserted into a later 4th-century ditch in site WP60 (although note early examples at Sewerby Cottage Farm in Chapter 5).

Mortuary activity is evidenced in WGC99A by one LR neonate/infant burial and five of rather more uncertain date. The five can be interpreted as being either placed in the top of the enclosure ditch at the periphery of the ER household's domestic space or, if as suspected they were contemporary with the use of the LR building, they were inserted beneath its floor, as is common in the Roman period (Millett 2006, 318). Neonate/infant cremations were found in association with one of the two ancillary structures in WP45, where one was covered by a large sherd of Crambeck greyware. In the WP91 excavations at the NWE, three later 3rd century cremations comprised an adult/neonate together and a separate adolescent contained within a Crambeck greyware jar whilst, in the early-mid 4th century, an infant burial was cut through an earlier
chalk surface nearby. These burials were located to either side of the by then backfilled enclosure ditch. The jar cremations at Wharram are very late examples of a practice more typically associated with 1st to 2nd century activity in urban contexts such as York (Jones 1984).

The LR landscape of the Wharram plateau was characterised by the wealthy villa farm at WGV surrounded by producer settlements that looked very different to those of two centuries earlier. The large ditched enclosures and strict alignment of plots relative to the communications network had been replaced by a more fluid use of space within settlements defined by much slighter boundaries, perhaps using hedges. There is a sense that the earlier obsession with household definition and integrity had been tempered with a recognition that such domestic concerns had become outweighed by a renewed emphasis on meeting collective obligations centred upon WGV.
CHAPTER 8

Supporting studies – Garton-Wetwang Slacks (GWS), Melton South Lawn (MSL) and West Heslerton (WH)

8.1 Introduction

As introduced in Chapter 6, the three case studies discussed below were selected for their ability to provide a meaningful contrast with the Wharram case study examined above. The intention was to mirror the diversity of Chapter 4 and 5’s regional case studies at an intra-regional level. Thus Garton-Wetwang Slacks (GWS), Melton South Lawn (MSL) and West Heslerton (WH) are each located in different environmental zones with archaeological patterns that contrast with those of the Wharram plateau.

There were also fundamental differences in the data sets available for each of the case studies and this affected my approach to their discussion and interpretation. Notwithstanding such limitations, each case study presents some background information regarding the physical environment, the history of archaeological work, and the archive/data sets available in each area. The overall structure of each landscape is then examined using the remote sensing evidence. Thereafter, the excavation evidence is used to elucidate patterns of landscape exploitation from which some inferences can then be made regarding the reproduction of elite authority. Each case study then finishes by drawing together a series of conclusions. The case studies are dealt with in order of the volume and complexity of the excavation-based datasets available: first GWS (8.2), then MSL (8.3) and, finally, WH (8.4). With respect to the latter, the very brief published summary of excavations juxtaposed with the remarkable richness of the geophysics results at WH demanded a different approach to that case study. This rather foiled my original plan, which had been to try and consistently discuss the supporting case
studies using the same tripartite structure as the WGC case study. However, the very different nature of the studies meant that my discussions of landscape exploitation and the reproduction of elite authority, which tended to flow from the available evidence, were structured in the manner most appropriate to each study. The findings of each of the three cases studies then feed into Chapter 9’s conclusion, which draws together all the strands of evidence presented in this and earlier chapters as a means conceptualising and contextualising the LIA-ER transition in eastern Yorkshire.

8.2 Garton-Wetwang Slack (GWS)

Background
The area around GWS (see Fig. 89) is typical of the chalkland dip-slope, where the deeply incised plateaux of the high Wolds give way to the gentle rolling country of the upper Hull Valley. The wide, shallow and relatively flat-bottomed, profile of Garton and Wetwang Slack is very different to the narrow, steep-sided valleys around Wharram although, as the slack reaches westward into the hills, it increasingly takes on that sinuous, more dramatic high Wolds character. Springs emerge where the tilted chalk meets boulder clay and alluvium at the dip-slope base some 5km to the east of GWS at Elmswell. The slack contains a seasonal watercourse, which may have been a more regular feature of the area in the past (however, the presence of an ER well should be noted: 8.4 below). The valley is filled with chalk gravel colluvium to a depth of 6m below the modern surface (Brewster 1980, 3; Atha 2003, Fig. 24), and such deposits are increasingly being recognised as foci for late prehistoric and later settlement in the Wolds (e.g. Roskams 2006). An early, perhaps peri-glacial, formation date for these gravels is indicated at GWS (Brewster 1980, 5), and they were certainly in place by the Neolithic when round barrows and a long barrow were constructed on their surface (Dent 1983b, 1). The deep gravel deposits were similarly attractive to the aggregates industry and thus provided the means by which archaeologists came to recognise the true significance of the GWS
The site first came to light when, between 1849 and 1852, groundworks for the Driffield to Malton Railway revealed "British weapons and burials" (Brewster 1980, 1). J R Mortimer was also active in the area, excavating his Barrow 37 in Garton Slack (1905, 209-11) and part of the Blealands Nook ('BN' on Figure 89) ladder settlement and an associated cemetery in 1874 (1905, 194-98). Large scale quarrying began in 1963, whereupon the Granthams of Driffield Museum began salvaging artefacts for their collections, but also had the presence of mind to inform the Inspectorate of Ancient Monuments of their findings (Dent 1983b, 1). In 1965 the Inspectorate scheduled the site and appointed Tony Brewster and the East Riding Archaeological Research Committee to carry out rescue excavations in advance of quarrying (Brewster 1980, iv). The main archive used in this case study is Brewster's (1980) microfiche report *The excavation of Garton and Wetwang Slacks* which, despite its title, focuses predominantly on Garton Slack – just 5 out of 36 excavation areas being on the Wetwang (western) side of the parish boundary. When Brewster retired to write up his research in 1975, the Humberside Joint Archaeological Committee, under the direction of John Dent, took on responsibility for excavation as the quarry progressed westward up Wetwang Slack (Dent 1978, 46). These later excavations have appeared in print only as a series of short summary articles (Dent 1978; 1982; 1983a; 1983b; 1988) and, therefore, the bulk of what follows is based on Brewster's work. The latter summaries are, however, particularly useful in the overall discussion of changing landscape structure that follows.

The GWS archive survives as a photocopy of a microfiche report, which resulted from a rapid Rescue-type excavation conducted in the 1970s over 'box-scraped' ground immediately prior to chalk gravel extraction (Brewster 1980). The GWS report might be 27 years old, but it is, nevertheless, the fullest and most comprehensive ladder settlement investigation as yet carried out and available to the research community.
Moreover, it is also the only such study that clearly evidences the shift, discussed in Chapter 5, from open settlement and square barrow cemeteries to enclosed settlements with a more typical LIA to ER pattern of discrete inhumations. In many ways GWS is much simpler to work with than Wharram in that it comprises a single, albeit substantial (i.e. 800 page, 500 figure), report with publication-standard illustrations of plans, sections and artefacts. The report presents the results of a 40-hectare open-area excavation set, with the help of Stoertz (1997), within a cropmark landscape. There is a, sadly unquantified, summary of the ceramics seemingly produced by Brewster — whose knowledge of regional traditions was extensive (e.g. see Staple Howe report (Brewster 1963). His ceramics discussion is very handily cross-referenced to Challis and Harding (1975) which, as the standard reference work for late prehistoric northeast England, also provided many comparanda during the Wharram ceramics processing. Also included is an animal bone report produced by the legendary Barbara Noddle, which includes a breakdown of domestic species by period.

The site pre-dates the widespread application of archaeological geophysics and it was necessary to machine strip the topsoil to reveal the underlying archaeological features. Furthermore, one can only wonder how much more information might have been recovered had a hymac and archaeological banksman been used, rather than the extremely destructive box-scraper trucks that completed the task — but such were the constraints of the Rescue era. As with Wharram, the combination of the cropmark ‘backdrop’ and excavated detail permit the creation of an integrated study of real potential with respect to the overarching theoretical framework and specifics of the research questions. In addition, there are also available the summary results of several discrete, small-scale excavations carried out in the environs and these are also included in the overall interpretation of landscape development.

Landscape structure

The Wharram case study explored Fenton-Thomas’ (2005, 48-9) idea that
prehistoric ridgeways, of perhaps Neolithic or EBA date, continued to influence patterns of landuse and movement for millennia beyond their establishment. Passing through the GWS study area is another such routeway, Sledmere Green Lane (Fig.89 'SGL'), which still survives as a bank-and-ditch earthwork to the north of GWS (line marked by arrows on Figure 89). A section cut through its earthworks near the Tatton Sykes Monument (Fig.89 'TSM') yielded LBA ceramics (Dent 1984b, 33), which date the formalised marking out of what may have been a much earlier 'unenclosed' routeway. The association of EBA barrows with the route of early trackways is reflected at GWS but, given the much gentler topography of the dip-slope, such relationships are evidenced not on hilltops and watersheds but, rather, in the slack itself (see below). The pivotal role played by the SGL in the structuring of the GWS landscape is plain to see: the main route down the slack, (called here the Fimber-Elmswell Trackway: Fig.89 'FET'), crosses the route of the SGL creating an intersection reminiscent of WGC. Interestingly, to the east of its intersection with the SGL, the FET eventually became marked out with parallel flanking ditches following the pattern typical of the MIA onwards in region. In contrast, to the west of the intersection it appears to have remained an unenclosed trackway, although the ditch forming the south-western edge of, what became, the Blealands Nook (‘BN’) ladder seems to continue to the north-west as a single ditch-and-bank boundary, which then curves round to the north-east enclosing a large block of higher ground.

The FET is the one feature that seems to connect all stages of landscape development and patterns of exploitation in GWS, and it therefore demands particular attention. The trackway was defined by Brewster's (1980, 27-8) Main Ditch 1 (MD1) to the north and Main Ditch 2 (MD2) to the south (see Fig.90). The FET was an acknowledged and visible feature in the landscape for at least 700 years, as is evidenced by the stratigraphic relationships of its component parts, MD1 and MD2, with features dating from the 4th century BC to at least the 3rd century AD (Brewster 1980, 28). Working westwards from GS5, at the north-east end
of its excavated run (Fig. 90), MD1 appeared as a single ditch in GS5-7, bifurcated into two parallel ditches in GS8, 10 and 11, and then coalesced into a single ditch for the rest of its course to the western edge of the excavations (Brewster 1980, 28). In common with early trackway ditches at Wharram, MD1 appears to have been allowed to gradually silt up and was therefore already substantially back-filled when it was recut by the ditch of the GS11 MIA cart burial. Later interactions between the fully back-filled MD1 and LIA-ER phases of the ladder settlement in GS6-10 are discussed below. The southern linear ditch of the FET was excavated in areas GS6-8 and 11. At its eastern exposure in GS6, it appeared as a large ditch accompanied on its north side by a narrow slot whilst, in GS7, 8 and 11, MD2 appears as a pair of large meandering ditches. A c.300BC or earlier date for its original insertion was again confirmed when it was cut by two square barrows in GS7.

It is somewhat perplexing that Brewster (1980, 31) thought to discuss the lack of evidence from MD1 and MD2 for their use as trackways, but failed to address their more likely role as the flanking ditches of a much more substantial trackway varying in width from 7m to 15m. However, in the proximity of the WS ladder settlement (which I will discuss below), a metalled surface was recorded by Dent (1978, 50) and there can be little doubt that it functioned as the main trackway down the slack for several centuries.

The central part of Brewster's excavations was dominated by a substantial double-ditch and single bank linear running N-S through GS14, 17 and 16, which had been laid out over to two slighter, and therefore earlier, ditches following the same alignment. This is reminiscent of the linear ditches in trenches WGC97/98C at Wharram. Somewhat surprisingly, this major linear was dated to the LIA and clearly cut across MD1 in GS14 although, due to quarrying damage, its relationship with MD2 was sadly never established. At its northern end the two large ditches appear to be diverging, with the east turning east and the west heading due north. The cropmarks of a
further double-ditched length of trackway appear to be heading for an intersection with the latter feature just north of the excavation (see Fig. 89). This cropmark trackway is associated with a small ladder and is therefore probably of similar date, however, a dramatic dog-leg in the feature's alignment would have been necessary for the two to join up.

When viewed in their wider landscape context, it seems likely that the SGL and FET together divided up this part of the Wolds into four large landscape blocks which, on the basis of the cropmark evidence, may have served different purposes. By the MIA, the area between the SGL and FET was a core area of open settlement with an associated cemetery (see Fig. 91A). Blocks of in-fields may have existed between the northern settlement edge and the SGL, and to the south of the FET whilst, to the north-west beyond the SGL, the open expanse of higher ground was probably pasture. Dent (1995, Fig. 40) also suggested that the areas to the west and east of the main MIA settlement/cemetery zone may have been grazing land. As Dent's (1983b, Fig. 3) useful overview of MIA and LIA-ER settlement at GWS shows (see Fig. 91A), the double ditches of the FET formed the southern boundary of a settlement zone containing c. 80 roundhouses, which probably represented several phases of occupation. He noted, however, that the shared alignment of some groups of houses hinted at the former presence of ploughed-out ephemeral boundaries (Dent 1983b, 4), which may have defined the dwellings of social sub-groupings. Given the dispersed patterning of houses, it seems extremely likely that further dwellings would have existed beyond the l.o.e. Intriguingly, the trackway's northern ditch was intentionally diverted to incorporate an EBA round barrow, clearly a revered monument even in the MIA, which also seemed to provide a focus for the close-packed cemetery of c. 450 inhumations (Dent 1983b, 5). Furthermore, Figures 89 and 91A also show that, although the trackway was marked with ditches from Short Blealands (Fig. 89: 'SB') to the south-eastern edge of my map, the central length of the northern ditch bends to the north at either end of the main occupation zone. In so doing, it forms the western boundary
of the cemetery and can be traced almost to the SGL over 1km to the north-west. Thus, as noted at Wharram, such trackways appear to be a MIA or earlier feature. At its eastern end the cropmark is discontinuous but, once again, appears to extend north beyond the l.o.e. where it becomes a double-ditched feature (just north-west of 'GS' on Fig.89). Another N-S ditch sprang off the northern arm of the FET to further subdivide the large occupation zone.

By the LIA-ER period (see Figs.89 and 91B), the landscape had become one characterised by ladder settlements and enclosed field systems, which developed along the northern side of the FET at Short Blealands ('SB'), Blealands Nook ('BN'), Garton Slack ('GS') and Wetwang Slack ('WS') — the latter directly over the MIA cemetery. The continuing importance of the SGL is evidenced by the creation of further ladders and fields developed around linear boundaries such as those at Low and High Bitings ('LB'; 'HB') and the two examples at North Field ('NF'). This last group, as Fenton-Thomas (2005, 70) put it "hang off the ancient earthwork that ran along the ridge". In contrast, the ladder at Hunger Hills ('HH') developed around a subsidiary double-ditched trackway with a funnel-shaped northern end that fed into a c.9ha enclosed space, which may have served as some sort of seasonal collection point for livestock. Further enclosed settlements can be seen to the south of the FET, where several lengths of subsidiary trackways link groups of two or three enclosures. It is notable that many of the ladders to the north of the FET, as well as some of the farmsteads to the south, include strings or clusters of very small paddocks characteristic of my category of smaller ladders (see Chapter 5.3-5.4), which perhaps focused on sheep husbandry. The hypothesis that the area north of the SGL was permanent pasture is supported by the lack of later enclosed settlements and field systems in that area. The point of articulation between the SGL and the FET at Blealands Nook (see Fig.92) is clearly a pivotal location in this landscape, both in terms of its focus for settlement but, perhaps more so, for the control of movement of people and livestock. Stoertz (1997, Fig.37) highlighted this area as a 'funnel' point through a settlement
zone linking open areas to either side. The unusually large-ditched enclosures at the south-eastern end of the BN ladder are intriguing in this context and may reflect the particular importance of the household overseeing this key junction in the landscape. The high numbers of small, paddock-type enclosures is also interesting in this landscape context.

Landscape exploitation and the reproduction of elite authority

The following discussions are structured around the excavated evidence from Brewster's (1980) and Dent's (1978; 1983b) campaigns of fieldwork in the slack (see Figs. 90 and 91). The two issues of landscape exploitation and the reproduction of elite authority are so intertwined that it made sense to consider them in unison in relation to three subdivisions of the GWS study area: Garton Slack (GS); Wetwang Slack (WS) and other excavations. Based on Figure 90, excavation areas are numbered from 3b to 30 in GS (e.g. GS3b) and 1 to 5 in WS (e.g. WS5).

Garton Slack

The Garton Slack ladder (see Figs. 90, 93 and 94), excavated in areas GS5-10, had its origins in the LIA when the main c.0.35ha square domestic enclosure is thought to have been dug, although this was somewhat speculative as it evidenced re-cutting/cleaning out on at least one occasion and much of the silting had been removed (Brewster 1980, 291). The ladder's location is notable for its proximity to the GS11 cart burial, which was positioned just 25m to the west. On its creation, the enclosure ditch also recut the, by then silted-up, MD1, but respected the course of the trackway beyond. Also created at roughly the same time were a c.0.2ha rectangular enclosure with two partitions and a small square 0.1ha paddock, which attached to the main domestic enclosure on its eastern and northern sides respectively. The northern (E-W) ditch of the former ancillary enclosure yielded a chalk warrior figurine. A further small (0.1ha) paddock, attached to the N-S leg of MD1 in GS6/9 was also of this date.

In the centre of the main domestic enclosure was a well-preserved 11m diameter LIA roundhouse with a c.1m wide curving wall slot and a
south-east facing doorway. Brewster (1980, 294) was adamant that his excavations had shown that so-called drip-gullies in GWS were nothing of the sort; instead, he suggested that such slots had been used to hold small diameter, close-set logs, which thus formed quite substantial roundhouse walls. Such a technique indicated a need for relatively evenly-sized timber, which would most easily be procured from coppiced woodland.

Whatever the case, the roundhouse’s interior preserved some interesting features including a central hearth surrounded by a cluster of pits and postholes, and there survived the partial remains of a crushed chalk floor, which was well-preserved in the slumped fills of some pits. In the north-east quadrant of the house were three infant burials, perhaps mirroring the Roman-period practice of interment of such individuals in association with domestic structures. It is interesting to note how, with the shift from communal cemeteries to household enclosures at GWS, infants, which were formerly placed in the peripheral ditches of square barrows, came to be interred instead at the edges of the household core. The ceramic assemblage from cut features within the house was comprised entirely of Challis and Harding’s (1975) LIA developed forms, which were associated with two chalk figurines and five chalk loom weights (Brewster 1980, 293-6). An unusual feature of the main ladder enclosure was the presence of five, what Brewster termed “trench silos”, which were slots 6 to 18m long by c.1m wide by 0.5-0.75m deep – one of which was LIA in date. Their interpretation is derived from the presence of charred grain in the base of two of their number. However, it is hard to imagine how they would work as a storage facility, and they may have been used for the laying out and parching of grain prior to storage. Given the dominance of barley in the few palaeobotanical samples recorded at GWS (see below), it is possible that sprouted barley was treated thus (as it is today), prior to its use in the production of beer.

An Iron Age burial was positioned in the south-east corner of the main enclosure, whilst a further individual was interred alongside MD1 in the
0.2ha ancillary enclosure. Neither produced any dating evidence and they are only tentatively placed with the LIA-ER use of the ladder settlement. More securely within the LIA is the small enclosure in GS19, which evidenced ritual activity that may have continued into the ER period. This example is one of several described by Brewster – another being in GS5 – and it consisted of a circular wall-slot structure, which had a doorway facing north-east towards a series of south-facing, semi-circular shrine structures. These complexes are associated with finds of decapitated warrior figurines and carved chalk plaques, one of which bore the remarkable likeness of a conical-roofed roundhouse (Brewster 1980, Fig.77.3). A series of ritual pits within the enclosures contained either the burnt and unburnt bones of young and mature pigs/sheep or pigs only, which had all been broken in two and carefully deposited within layers of ash – quite unlike deposits in regular rubbish pits (Brewster 1980, 508). The association of burning with such structured deposits mirrors the findings above at WGC.

The main domestic enclosure was subsequently recut using a narrower ditch in the ER period, perhaps in the late 1st or early 2nd century (Brewster 1980, 28). This ditch appeared to have recut on more than one occasion and Brewster (1980, 290-1) recorded that the “silting came in all cases from the inside, built up, bank of the enclosure”, which perhaps supports the notion of domestic rubbish being pitched into the ditch from the bank top. He also noted that after the late 2nd century the main enclosure ditch was never cleaned out again “and this most probably applies to the entire ditch system” forming the ladder settlement. Two of the aforementioned trench silos were dated by pottery to the ER period and both contained significant quantities of charred grain which, unfortunately, was not sampled; however a sample from an undated silo in GS9 showed that the seeds were almost entirely six-row hulled barley (Brewster 1980, 686). Several rotary querns are recorded in Roman contexts within the GS ladder, whereas saddle querns seem to have been the norm in LIA contexts (Brewster 1980, 77). In contrast to the very limited palaeobotanical evidence, some possibility of comparison is
afforded by the MIA-ER mammal bone assemblages, which are discussed below.

In the south-east corner of the 0.2ha enclosure a well was drilled 28m deep into the chalk bedrock. Brewster could find no definitive dating material in the base of the well and, in relying on the wide range of material contained the fill, suggested that it may have been cut as early as the late 1st century AD. Immediately beside the well, a 1.8m wide by 5m long bathhouse was constructed in the emptied MD1 and had a limestone-slabbed floor laid over a hypocaust, with a stokehole at its west end. The rubble backfill contained samian, greyware and “RB gritted pottery” which, given the complete absence of 4th century material on site, probably refers to Knapton ware. However, it seems reasonable, given the close spatial association and functional connection between the well and the bathhouse, to propose a somewhat later date contemporary with 3rd century use of the domestic ladder enclosure. The Roman ceramics suggested a main period of activity between c.150 and 300AD – a date range amidst the complexities of the ER-LR transition. The ER material was characterised by mid-2nd century samian including several decorated examples, a sherd of Rusticated ware, a greyware carinated bowl which, it seems likely, was of North Lincolnshire manufacture or influence. Third century activity was evidenced by straight-sided flanged bowls in east Yorkshire greywares, a few mortaria, and occasional Nene Valley colour-coated products. A contemporary dwelling could not be located in the main or ancillary enclosures. However, some 2nd century ceramics were recovered from the floor surface of the LIA house and large quantities and stonework were cleared from the area by bulldozers following behind the box-scrapers. It therefore seems possible that the roundhouse continued to be used into the ER period and, as Brewster noted, if a beam-slot masonry structure had ever existed, it had been swept away by the aggressive mode of topsoil stripping. On balance, though, the 2nd- to 3rd-century evidence is somewhat ambiguous: we have a small bathhouse and a deep mechanically-drilled well, which were associated with a finds
assemblage including a few ER imports from North Lincolnshire and an unusually high proportion of decorated samian for a non-military/urban site. Roman-period mortuary activity is rare, but two cremations were recorded in the upper fill of the northern (E-W) ditch of the LIA 0.2ha rectangular enclosure, which seemed to date to the later 3rd-century.

The GS ladder provides some evidence for social differentiation spanning the M-LIA to perhaps the early 3rd century AD. One of the two square barrows, which cut MD2 to the south of the ladder settlement, contained the particularly rich burial of an elderly female accompanied by a chalk figurine, iron mirror and two suckling pigs (Brewster 1980, 35) – the latter alone were identified by Parker-Pearson (1999) as an indicator of status. If, as suspected, the figurines are a predominantly a LIA phenomenon, then this burial is particularly noteworthy in its association with what was recognisably a higher-status household in the ER period. In addition, the substantial LIA north-south orientated double-ditched boundary is noteworthy in that it curves around the GS ladder and the nearby MIA high status burials, perhaps segregating this household (and its ancestors?) from the former community focus of the WS cemetery.

Wetwang Slack

The creation of the Wetwang Slack ladder marked an emphatic break with the past when its enclosure ditches were dug through the middle of the former cemetery. Even if MIA burials were not disturbed – and they probably were – the ladder forcefully secularised the previously sacred ground (see Figs. 89 ‘WS’ and 91A and B). Little detail that has been published of this ladder, but Dent’s (1978; 1983b) summaries at least provide some outline detail of the site’s development. The four enclosures of the WS ladder, three of which appear to have been laid out together, are on the small side at 0.15ha. However, the central domestic space had at least two phases of roundhouses as well as evidence for three post-built, rectangular structures with wattle-and-daub walls, which were found in three different enclosures and
Chqpter 8 Supporting studies: Garton-Wetwang Slacks, Melton South Lawn and West Heslerton

indicated a period of use stretching until the end of the 3rd century AD (Dent 1983b, 5-8). Nevertheless, the enclosures' origins were in the LIA as evidenced by finds of a Colchester brooch, bone weaving comb and pottery of LIA type (Dent 1983b, 8). Down the eastern side of the ladder there was an interesting group of small-ditched irregular boundaries, which Dent (1983b) quite understandably linked to an emphasis on animal husbandry. Their slight ditches are reminiscent of other potentially hedged boundaries which, at WGC, were also linked to the management of livestock. The most striking components (see Fig.91B) are a curvilinear ditch, which could have served to feed stock from the FET into the paddocks, a potential stock control point in the middle, and a short trackway created between the northernmost paddock and the main ladder enclosures, which may have allowed stock to move into and out of pastures beyond. Several burials of cattle, horses, sheep and pigs were scattered around the enclosures and in open areas outside. Dent records the presence of rotary querns in this and other ladders at GWS but, nevertheless, emphasised the pastoral component of the WS agricultural economy.

From the limited excavation summaries available, it is difficult to assess the status of the WS ladder settlement and its household. Despite the finds of three MIA cart burials associated with the main cemetery upon which the settlement was established, there is nothing to suggest that the descendants of such elite individuals were resident in the ladder.

Other excavations

Dent's (1983a, 39) sample excavation of the ladder at Low Bitings (Fig.89 'LB') in 1979, confirmed that the one enclosure examined had been laid out in the early 1st century AD. This LIA household enclosure had two roundhouses and a four-post granary structure. Several fragmentary chalk warrior figurines were found within the enclosure. A series of infant burials were clustered in association with the houses and in the enclosure ditch. In common with the
nearby GS ladder, its peripheral ditches were recut for the last time during the late 1st or 2nd century AD (Dent 1983b, 7). Fascinatingly, the demise of the settlement was marked by the deposition of human bones in pits, one of which included the partially articulated upper torso and skull of an individual. Dent interpreted this as evidence for "war or plague", but less dramatic causes such as the accidental disturbance and hasty reburial of a fairly recent interment are also possible. Further small-scale excavations across the discrete enclosure to the west of the Short Blealands (Fig. 89 'SB') ladder produced LIA pottery from the ditches and surface finds of "Colchester, Hod Hill and Nauheim-derived brooches", which together seem to point toward a pre-conquest date for this farmstead (Dent 1983a, 39). Finally, in 1874 J R Mortimer (1905) noticed the cropmarks of the Blealands Nook ladder settlement and put a series of slots across its ditches. A nearby cemetery, disturbed during railway groundworks, comprised 12 unaccompanied crouched inhumations, which Mortimer dated as Romano-British based on pottery from the ladder ditches. However, his finds included a LIA warrior figurine and the ceramics were reinterpreted as LIA-ER coarsewares which, together with the burial positions, encouraged Stead (1979, 98) to quite reasonably posit a LIA date for the ladder and cemetery.

Conclusions
The discussion above has highlighted how MIA and later settlement in GWS was strongly influenced by the presence of two major routes passing through the area. The SGL may well be the earlier of the two and was shown, in excavations associated with the erection of the TSM, to date to the LBA, whereas the earliest demonstrable date for the FET places it at least in the earlier Iron Age. The ditches of the FET (MD1 and MD2) were seemingly allowed to silt up and it is notable that when cut by MIA barrows, LIA and Roman-period enclosures it was, on each occasion, already fully silted-up. Crucially, though, the central roadway, which had a metalled appearance adjacent to the WS ladder,
perennially respected throughout several centuries of land use and settlement change in the slack. The LIA pattern of settlements in GWS is very interesting in its lack of substantial ladders and in its relationship with the two ancient trackways. The one larger ladder at Blealands Nook remains an enigmatic settlement, located in arguably a pivotal position in this landscape, both in terms of control of movement through the crossroads and, by association, the economic exploitation of this sub-region.

The excavation of smaller ladders at LB, WS and GS seems to have confirmed that they were effectively the farmsteads of household groups, with main domestic enclosures, similarly sized ancillary enclosures and groups of small paddocks or garden plots. The layouts created in the LIA seem to have largely persisted into the ER period, although with some additions of smaller enclosures and recutting of domestic enclosure ditches, but not the others. Here again we see evidence for the intensive management of enclosure ditches as middens in the LIA and ER period, which ceased around the end of the 2nd century. However, at GWS what we do not see is any convincing proof of a LR reorganisation of the agricultural landscape. Dwellings changed from LIA roundhouses to ER rectilinear structures, whilst at GS it is just possible that a masonry structure may have existed, but was lost to the bulldozers. This was, however, an acknowledged speculation on Brewster’s part. The patterns of LIA-ER mortuary behaviour record both breaks and continuities with MIA activity: LIA-ER period adult inhuminations, like 3rd-century cremations, were inserted in the peripheral banks or ditches of enclosures whereas infants, in an interesting parallel with the MIA use of barrow ditches for their interment, we placed within or beside the household’s main dwelling.

In terms of the economy, the main excavated ladders all included clusters of paddocks and there can be little doubt, especially in light of the numbers of animal burials recorded, that livestock played an important part in what was, nevertheless, a mixed economy. Although
Brewster’s strange trench silos continued in use throughout the LIA-ER period, crop-processing technology was revolutionised by the introduction of rotary querns, which replaced the saddle querns in use in the M-LIA. The mammal bone assemblage was sufficiently large and well-preserved to allow some overall discussion of trends between the MIA and ER periods. Noddle’s (1980) report shows that the percentage minimum number of individuals (MNI) for the main domesticates was consistent throughout the M-LIA at around 27% cattle, 43% sheep and 14% pig whilst, in the Roman period figures of 33% cattle, 39% sheep and 10% pig were recorded. Horses accounted for around 10% of the MNI figure throughout. The pattern is interesting in that it reflects a growing Roman-period emphasis on cattle and a concomitant reduction in numbers of sheep. Pigs were seemingly a status-related animal in the M-LIA and their reduction of importance may reflect changing attitudes towards this species as a result of an ideological as well as dietary shift as we move into the Roman period. As evidenced widely in excavations of LIA-ER ladders, articulated burials of the main domestic species were found within the enclosures and beyond.

With respect to social differentiation and the maintenance of elite authority, there are some interesting comparisons to be made between the MIA and later periods. It is perhaps highly significant that the GS cart burial was both separate from the main cemetery and directly beside the GS ladder settlement in GS11, which as yet has the best evidence for a LIA-ER higher status household in the area. The large MIA cemetery, with its good evidence for social hierarchies and maybe their proliferation through time, can perhaps be related to the LIA reliance on a more formalised control of ritual activities associated with what were apparently purpose-built structures. Perhaps the elite use of mortuary display became rearticulated and mediated through the cyclical/seasonal use of particular locales and rituals, whose performance by certain individuals helped maintain their position of dominance in the community. A somewhat more brutal statement of social separation may have been made by the LIA double-ditched curvilinear boundary which,
together with the ER evidence for ceramic imports, a bathhouse and well, could identify the GS ladder and its locale as a the home of a wealthy household for several generations.

8.3 Melton South Lawn (MSL)

Background
The landscape at Melton is characterised by three main components: to the south the vast expanse of the Humber with, in the distance, the north Lincolnshire shore; in the middle a two kilometre wide zone of increasingly sloping ground is made up of Jurassic clay overlain by lacustrine deposits and drift-derived boulder clays, which gives way to chalk near the base of the third zone; the southern escarpment of the chalk Wolds (Fig. 95). The site is thus located within a topographic interface zone which, in this instance, reaches from sea-level at the Humber, climbing fairly gently from 10m to 24m AOD through the area of the site, and then rising steeply up the southern scarp to more than 125m AOD on the wold top a further 2kms to the north-west. The site thus sits on a spring-fed apron of ground between the contrasting resources of the Humber estuary and the rich upland grazing of the Wolds. Given the diversity of this environmental zone, it is perhaps no surprise to find that it was favoured for settlement during the study period.

The site came to light as a result of pre-development evaluation work ahead of major junction improvements on the A63 trunk road some 10km west of the city of Hull. Work began in 1992, when a desk-based assessment, geophysical and earthworks survey, and evaluation trenching (Fig. 96) were used to establish the full archaeological potential of a site that had previously been identified in aerial photographs (Fenton-Thomas 2006, 7), although Stoertz (1997) only records the easternmost N-S trackway as a cropmark (Fig. 95 marked with arrows). In 1993 Northern Archaeological Associates (NAA) excavated a series of ten trial trenches across the ladder settlement and established that it was
occupied from the LIA to the end of the 2nd century AD (Bishop 1999, 23). A preliminary summary of site phasing, based on the evaluation and geophysics plot, is provided in Figure 97. When the road scheme eventually went ahead, the entire corridor was systematically monitored and, where archaeology was encountered, it was excavated using a strip, map and sample methodology. The final site report, complete with specialists' analyses and the full and detailed presentation of the excavation results, is currently in preparation. However, On-Site Archaeology kindly made available the assessment report, which forms the basis of the discussions below.

Landscape structure
As Figure 95 shows, the cropmark landscape around Melton is not very revealing as to the nature of LIA-ER rural settlement in the area, which probably has much to do with the unresponsive nature of clay-based soils in the area. I will therefore outline the landscape context of the MSL ladder using the published evidence for other sites in the area and then, in Section 8.7, employ the geophysics and excavation data to explore the nature and development of the settlement.

As explored in Chapter 5, the southern part of eastern Yorkshire comprising the lower Hull Valley, southern Holderness, the southern Wolds and south-eastern Vale-of-York can collectively be considered a Humber hinterlands region, which has a subtly different archaeological signature from areas further north. The ladder settlement at MSL sits squarely within this zone and, as Figure 95 shows, is just 1.5km to the north-west of the ancient river crossing at North Ferriby (‘NF’), 1.5km north of the potential LIA entrepôt at Redcliff (‘R’), and 3.5km east of the Roman fort, vicus and port at Brough (‘B’) which, maybe as early as the late 1st century, became the civitas capital of the Parisi (Millett 1999a, 226). Just 2km to the south-west of MSL was another commercial project on the site of a proposed wastewater treatment works at Melton Common (‘MC’). The 16 evaluation trenches revealed a series of flood-affected ditches at the southern edge of an ER settlement, which was
thought to have been seasonally occupied from the late 1st to early 3rd century AD (Neal 2002). As discussed in Chapter 5, Redcliff is notable for its evidence of cross-Humber contacts suggested by the significant numbers of Corieltauvian coins found there (May 1992) but, more so, by the importation of Claudian-Flavian ceramics, in particular, tablewares (Corder and Pryce 1938; Corder et al. 1939; Crowther and Didsbury 1988), which seem to reflect ceramic consumption patterns recorded at the time in south-east England (e.g. Pitts 2005a, Figs. 6 and 7; 2005b). Brough has been the subject of decades of research, beginning in the 1930s (Corder and Romans 1938; Corder and Richmond 1942), continued by Wacher (1969) between 1958-61, and now occurring regularly, if intermittently, as a result of development (e.g. see summaries in D Evans 2001, 76-81). Also nearby are the two earliest villas in the region at Welton Wold (‘WWV’; Mackey 1999) and Brantingham (‘BV’; Dent 1989), which perhaps attest to the influence of Brough, the Humber crossing and the Brough-York Roman road on the ER economic potential of this sub-region. In terms of LIA and ER eastern Yorkshire, therefore, MSL was very much in the hinterlands of an economically vibrant area. However, as the evidence from the Hawling Road ladder and Shiptonthorpe roadside settlement attests, there can sometimes be little apparent integration between settlements on the Roman communications network and others in such economic hinterlands (Millett 1999a, 226). It remains to be seen whether a different, more wholehearted, pattern of economic integration was evidenced at MSL.

Landscape exploitation and the reproduction of elite authority
The geophysics plot provided an overview of the MSL ladder’s layout, which showed that the settlement developed around two perpendicular trackways (Figs. 96 and 97). The evaluation trenches suggested three phases of development starting in the LIA and with ER additions in the 1st and 2nd centuries AD. The central findings of the evaluations were that the N-S trackway/boundary was superseded by the E-W one, and that occupation in the main 0.3ha domestic enclosure to the south-east of their intersection evidenced continuity from LIA roundhouses to ER
rectangular post-in-trench structures (Bishop 1999, 40). These findings were subsequently augmented and refined by the open-area excavation phase of the project. Figures 98-100 should be used in conjunction with the discussions that follow.

The earliest structural component identified in the excavations was an EBA round barrow in Area 3 that had been respected by a N-S pit alignment which, had itself, been later followed by a N-S orientated double-ditched boundary/trackway which, in the ER period had a third ditch added down its western side). Given the narrowness of the gap between the eastern pair of ditches (c.3-4m), their size – the easternmost was 3.75m wide by 2m deep, and the way they straddle the earlier pit alignment, Bishop (1999, 40) was inclined to interpret this feature as a boundary, but a dual role cannot be discounted and, given its ambiguities, I will refer to it hereafter as the 'N-S linear'. This feature can be traced across the entire width of the site in the geophysics data and is highlighted by a string or arrows on Figure 95. When sectioned in Bishop's Trench E alongside the c.0.3ha domestic enclosure (Fig.97), this feature was shown to have six fills and no evidence of recuts, which seems to fit its interpretation as an 'early-type' linear ditch. A single square barrow, of supposed LIA date (Fenton-Thomas 2006, 11), was identified in Area 5 beside the N-S linear and opposite the EBA barrow. It seems probable that this choice of location made intentional reference to the earlier mortuary monument. Given that the N-S linear is cut by the LIA E-W trackway and associated with a square barrow, it seems more likely to have had MIA, rather than LIA, origins.

A well-preserved area of LIA settlement discovered at the western end of Areas 6-9 (Fig.99) was distinctive in its dearth of Roman-style and limestone tempered DPH ceramics, both of which were found in association across the rest of the site. The activity here was therefore interpreted as being entirely pre-conquest in date. Fenton-Thomas (2006, 12) recorded a minimum of six phases of LIA settlement along the northern side of the E-W double-ditched trackway – the earliest of which
was sealed by a buried soil layer. The earliest dwelling was thought to be the roundhouse within the c.0.4ha enclosure, whilst occupation outside took the form of a series of roundhouses – some clearly rebuilt on the same site – associated with a deep midden spread, which spilled over into the butt-ends of ditches defining the east-facing entrance to the enclosure. Some phases of the eastern cluster of roundhouses appear to be enclosed by a very slight fenceline, whilst further structural elements are suggested by the patterning of pits and postholes, within which an unusual oval building was identified. If the LIA phasing is correct, we seem to have an unusual move from the use of a domestic ladder enclosure to a more open form of settlement. Also associated with this LIA settlement focus were four-post granaries, three inhumation burials and several horse and cattle burials. Taken as whole, the clear evidence for multiple phases of activity, the earliest within and later ones outside the enclosure, suggests that these structural remains reflect the actions of several generations of perhaps a single household group. There is an interesting contrast between the ceramic assemblages from the two LIA foci in the settlement, with this eastern enclosure evidencing a different type of DPH coarseware to the western farmstead and having no LIA imports (see below) or subsequent ER activity. It is possible that the above farmstead was earlier than the Area 4 example, although the differences could also be related to the differential status of the two households.

Approximately 100m to the east in Area5a, the E-W trackway formed a T-junction with a very substantial hollow-way (Fig.100) which, in places was over one metre deep. The two trackways appear to have been laid out at the same time, as the two flanking ditches of the E-W trackway clearly diverged to north and south to form the western side of the N-S hollow-way. Five inhumation burials, two with metalwork, were identified to the north of the T-junction but, as yet, remain undated.

At the start of this section I mentioned the findings of the evaluation excavations, which confirmed LIA-ER continuity of occupation in the
Chapter 8 Supporting studies: Garton-Wetwang Slacks, Melton South Lawn and West Heslerton

c.0.3ha domestic ladder enclosure astride Areas 3 and 4. The evaluation showed that two phases of LIA roundhouses had existed in this central enclosure, and were eventually replaced by a c.8m wide by at least 10m long rectangular building probably in the late 1st century AD. This is a very early date for the development of such rectangular, Roman-influenced building morphologies on rural agricultural settlements, in particular, when compared to the Wolds. Somewhat later in the ER period, probably during the 2nd century AD, this building must have been removed because the N-S ditch, which partitioned the enclosure, carved directly through the middle of it. This latter ditch produced 379 Roman finds including a quern fragment and, more generally, the ceramic assemblage from evaluation trench F, which sampled this enclosure, was late 1st to mid 2nd century in date (Bishop 1999, 44). The open-area excavations in Areas 3 and 4 examined further parts of this domestic enclosure, the N-S linear adjoining it to the west and the smaller ancillary enclosures to the east (Fig.98). Dealing with the linear first, then, it appeared that the third and westernmost of its ditches was added during the ER period, thus respecting and reinstating the earlier double-ditched LIA linear, which also evidenced Roman-period use in its upper fills. According to Fenton-Thomas (2006, 11), the southern E-W ditch of the main enclosure was apparently dug during the 2nd century AD. However, the evaluation records that the enclosure was in place by the LIA, so this presumably was a re-cut of the earlier feature. A second Roman-period rectangular post-built structure, some 5m wide by 10m long, was noted in the south-east corner of the main enclosure. Several crouched inhumation burials were noted tucked against boundary ditches and may, originally, have been interred within an internal bank. The final phase of activity within my study period involved the insertion of a crop dryer in the eastern ditch of the main enclosure in the mid 3rd century AD. Details are not provided in the assessment report but, on spatial grounds, it seems possible that the crop dryer and some of the smaller-ditched enclosures to the east may relate to later Roman agricultural activity in this part of the site. If so they provide a glimpse of the LR reorganisation of agricultural landscape evidenced elsewhere.
in the region. In this context it is interesting to note Bishop’s (1999, 44) closing comment regarding what, in the evaluation, appeared to be the end of the site in the 2nd century: “(T)he possibility exists that the Welton Wold villa-estate came to dominate the landscape of which the Melton sites once formed a part”.

There are several elements within the site that may provide some clues as to the status of this settlement in the LIA-ER period. No coins were recovered during the excavations although, as discussed in Chapters 5 and 6, this is not unusual for an ER rural site – even one so close to a major Roman centre. More significantly, though, the ceramics assemblages from the evaluation included unstratified sherds of AD40-70 ‘Gallo-Belgic’ imports in the form of two Camulodunum-type flagon rims and one butt beaker rim – all spatially associated with the LIA-ER domestic enclosure in the angle of the trackways. It seems very likely that the latter would have come into eastern Yorkshire via the nearby entrepôt at Redcliff. Although the ER ceramic assemblages are fairly unremarkable in terms of the limited quantities of finewares and one Dressel 20 amphora body sherd, the overall size of assemblages and their early date are unusual for a rural farmstead. Moreover, they were associated with a 1st century AD rectangular building which, for a fairly basic farmstead, shows an atypical level of Roman influence for this date. Cross-Humber trade is also clearly evidenced in the ER greyware assemblages which, typically for this southern Wolds area, were almost certainly North Lincolnshire products (Bishop 1999, 46).

Conclusions
The MSL ladder seems to have developed from the Area 6-9 farmstead, which evidenced six or more phases of occupation, all apparently in the LIA. Whether the latter was still occupied when the Area 4 farmstead enclosure was created is difficult to say at this stage. However, the latter then continued to develop into the ER period and, by the late 1st century AD a rectangular building had replaced earlier roundhouses. The early adoption of Roman material culture by this household was mirrored in
the LIA evidence for ceramic imports during the floruit of the nearby entrepôt at Redcliff, which has evidenced substantial quantities of similar ceramics. The residents of the farmstead continued to have access to south-Humber imports well into the Roman period. By the end of the 2nd century the main period of domestic occupation seems to have come to an end. However, the crop dryer and potentially later, smaller enclosures to the east of the Area 4 farmstead suggest that LR activity occurred in the area, but within a reorganised spatial layout.

8.4 West Heslerton (WH)

Background

The landscape of the southern Vale of Pickering represents a classic environmental interface zone (Fig.101). Moving south from the River Derwent and the former wetlands of the central vale, the landscape is flat until we hit the slightly raised band of windblown sands around the 30m contour, which was intensively occupied during the study period. Further south the land slopes gradually uphill towards the spring line at the foot of the Wolds' northern escarpment and then rises sharply to plateau out at around 180m AOD.

At West Heslerton (WH), The Landscape Research Centre, under the direction of Dominic Powlesland, carried out airborne LiDAR surveying, airborne multi-spectral scanning (MSS), and geophysical surveys over a huge area along the southern edge of the Vale of Pickering. This massive effort brought to light an incredibly complex and extensive late prehistoric to Anglian buried landscape centred upon a 10km-long ladder settlement, but also including earlier and later settlements, boundaries and mortuary features (Powlesland 2003a and b). The WH magnetometry survey is one of the most remarkable remote sensing records ever produced in archaeology and confirms that the Vale of Pickering was intensively exploited during the study period. Although the airborne survey data were not available, the magnetometry data were offered for study in this project and the overall plot can be seen in Figure 102.
There were, nevertheless, two main concerns for this project; firstly, only very limited excavation work has been undertaken on supposedly LIA-Roman features; secondly, very little of what has been investigated is in print or was available to this project.

Nonetheless, good use could be made of the WH data both in their own right for the consideration of the implications of the limited excavation for the whole ladder, and in concert with the other three studies. The summary of the H20 excavations at Sherburn (Powlesland 1988a), whilst brief, give a good flavour of the complexity of what is, in many places, an extremely well-preserved buried landscape – sealed in antiquity by coversands. The remote sensing plots provide the wider canvas upon which the implications of the small Site H20 intervention and the findings of WGC, GWS and MSL are then considered. My discussion therefore opens with the Site H20 findings, after which I will explore three discrete blocks of magnetometry data, which were selected following a careful examination of the entire plot – their locations are marked on Figure 102. The three broad criteria governing my selections were those repeated throughout the case studies: landscape structure, patterns of exploitation, and evidence for social differentiation. I therefore identified the main characters constituting the WH ladder and then sought out good exemplars to illustrate them and provide a useful basis for drawing contrasts and comparisons with the other case studies.

Landscape structure and exploitation

The H20 excavations produced an enormous volume of data relating to all three of my research topics. One key point, already alluded to above, was the locally excellent levels of preservation which, in places, had resulted in 0.5m thick stratigraphic sequences. The ladder enclosure ditches provided evidence for their repeated cleaning out, recutting and realignment, such that both roundhouses and rectangular post-built structures within the enclosures had been truncated by this activity. Several pieces of building stone were recovered with mortar traces, hinting at the presence of more substantial structures in the later Roman
period. It seems that by the later Roman period rising groundwater was an issue in the area, such that the intensity of ditch cleaning out and recutting continued unabated into the LR period. That surface water run-off was partly to blame here is evidenced in what appear to be alluvial fans (broad red linear features) picked up in the geophysics data (Fig. 102). By the very end of the Roman period, however, the enclosure ditches had been abandoned and were replaced by fences set in slots in their upper fills. In an increasingly wet and flood-affected settlement this change is significant and may indicate the retreat of settlement to higher ground and the use of abandoned enclosures for grazing.

Functional zonation within the settlement seems to have been highly fluid and the evidence suggests a cyclical domestic and agricultural use and reuse of space through time. In contrast to Wolds’ sites and in line with other lowland settlements, the site’s mammal bone assemblage was dominated by cattle not sheep, although horses were also particularly well-represented. A mixed arable economy was implied by the presence of large numbers of both saddle and rotary querns. Metalworking residues were recovered, presumably relating to blacksmithing, whilst craft working in the form of weaving (loom weights) and bone working were also represented.

In terms of dating evidence, the Roman period assemblages included significant quantities of Knapton ware, which was manufactured a short distance down the Vale. Coins were also present, but typically in small numbers. An unusual find, perhaps, in this non-Wolds context was a chalk warrior figurine – thus confirming their use at least as far north as the southern Vale. The summary report concluded by suggesting that “(T)he work at Sherburn has revealed complexities which have much in common with deeply stratified urban deposits” (Powlesland 1988a, 149). In the 23 years since the Sherburn fieldwork occurred, many more discoveries have been made in the Vale, mostly through remote sensing but, as and when necessary, also through targeted excavations (Powlesland 2003a and b). Some of the key findings of this later work
will be included in my discussion of the magnetometry evidence that follows.

My examination of the ladder's structure, as revealed in the magnetometry plot, confirmed what Powlesland himself had observed; that the ladder incorporated discrete clusters of enclosures, settlement nuclei, at roughly 250m intervals along its length. These generate a repeating pattern along the length of the ladder and are comprised of the same components: a length of the central trackway, enclosures of various sizes (but, interestingly, mostly paddock-sized), circular or oval features (either structures associated with the ladder or earlier mortuary structures), associated cemeteries of small barrows (Powlesland's LIA 'barrowlets'), ditches defining in-fields to the south of the trackway (away from the fen-edge to the north), and myriad pit-like anomalies (some of which may be inhumation burials). In addition to the above features, which probably relate to the LIA-LR phase of development, there are later elements as typified by intense clusters of what are almost certainly SFBs which, in some instances, are associated with the classic curvilinear boundaries of Anglian settlements. Of more relevance to my research, there are also earlier components such as MIA square barrows tucked in beside the trackway, but seemingly respected by the later enclosures.

The first detailed block of the geophysics data concerns one cluster of MIA barrows that lies at the western end of the surveyed portion of the ladder (Fig. 103) - the ladder probably continues to the west, but there does seem to be a break in settlement beyond this point. The large, dead straight rectilinear boundary running diagonally up the middle of the plot can be immediately discounted as the drainage ditch of a modern field boundary. The small square barrow cemetery appears to be associated with a remarkable curvilinear MIA settlement typical of the wetland-edge type mentioned in Chapter 5 at, for example, North Cave. The lack of SFBs, morphology of the main (c.0.25ha) well-marked enclosure ('A'), size of ditches implied and apparent association with
square barrows all support a MIA date. If so, this is the first known settlement of this kind found so far north in the region. The first thing to note is the presence of a major intersection of the main E-W trackway with another coming in from the SW and a major linear boundary ('B'), which forms the eastern boundary of the MIA settlement. This appears to be a settlement of some importance: it is located at a major intersection in the landscape, seems to overlie several much earlier mortuary monuments, and is next to a cart burial ('C') which, in typical style, is located far enough away from the main cluster to emphasise the difference of its occupant. The barrow cemetery is associated with far more unenclosed burials which, as mentioned in Chapter 5's discussion of the reproduction of elites, may provide some clues as to the marking of social differentiation using the square barrow rite.

To the north-west there is what appears to be a broadly two-phase block of settlement with a focus between the two trackways, which incorporates both large-ditched curving elements (restricted to this area between the tracks) – potentially contemporary with the MIA focus above, and rectilinear enclosures, which are probably later in date. The latter override the MIA ditches in between the tracks, whilst others were laid out relative to and beyond the northern track. Initially one's eye sees only a multitude of small, paddock-like enclosures, but the multi-phase development identified at H20 contrives to mask the presence of larger, domestic-type enclosures within the pattern, for example, the 40x50m (0.2ha) enclosure north of the northern trackway, whose north-west and north-east corners are arrowed (Fig.103). There are dense clusters of pits here, which perhaps provide a coarse measure of the longevity and intensity of settlement activity in this area. Some are likely to be storage/rubbish pits whilst others could be inhumation burials – they are certainly too small to be SFBs. The intensity of, what is presumably, LIA-LR activity in this area could well indicate the continued status of this area into the Roman period. Moreover, we should not forget that settlements on the Wolds evidencing such concentrated reworking of space were probably higher status sites throughout the LIA-
Chapter 8 Supporting studies: Garton-Wetwang Slacks, Melton South Lawn and West Heslerton

LR periods (e.g. WGV).

To the north-east we see the beginnings of what is a more typical length of the ladder settlement. East of the trackway intersection there is a quite regular-looking block of three enclosures ('D'), which have a shared northern boundary and each is roughly 30×40m in size (0.12ha). The two easternmost enclosures both have evidence for what might be roundhouses. Opposite the enclosures, on the southern side of the trackway, there are traces of linear boundaries perhaps relating to in-field areas ('E').

The second detail block from the geophysics plot begins just 70m east of the previous one (see Fig.104). I should emphasise at this point that for much of its length the ladder exhibits a very consistent and repeating pattern of LIA-LR settlements. Thus the closeness of this second choice to the first in no way indicates a reluctance to explore other parts of the ladder. It was simply that good example of a typical ladder section happened to be next to the latter exceptional one; moreover, that juxtaposition is, in itself, interesting. This length of ladder shows several very typical components of settlements along the ladder in that it has a good examples of the following elements: a braided length of trackway evidencing heavy wear ('A') – perhaps from wheeled traffic as noted elsewhere along the ladder (Powlesland et al. 1986, 160); overlapping, intensively reorganised enclosures ('B'); a cemetery comprised of Powlesland's (2003a, 26) LIA miniature cremation barrows or 'barrowlets' ('C'); and a scatter of pits and internal features within enclosures, some of which are doubtless structural. To the north of the ladder are a series of linear ditches stretching down into the former wetland edge ('D'). These are unlikely to be arable fields and may simply be an extension of the household subdivision of space along the ladder. In support of this argument, most begin at the trackway and thus form the edges of household plots and their 'backyards' facing out into the fenland. A particularly interesting component within this pattern is the larger (c.70×80m: 0.56ha) sub-divided enclosure ('E'). Based on
experience elsewhere, this may well be the site of a LR villa with LIA-ER high status origins, although it is much smaller than morphologically similar examples on the Wolds. However, if such an interpretation was correct, its relationship with the proposed elite focus immediately to the west is interesting to say the least. It is here that we come up against the lack of chronology afforded by the remote sensing data. The two areas could easily both be elite foci in the landscape, but with one being a replacement of the other.

The third block of ladder settlement (see Fig. 105) forms, with the previous section (shown in Fig. 104), an excellent summary of the overall patterning evidenced along the whole 10km length. However, the section in Figure 104 can be considered a typical 'low intensity' area of settlement whereas, in contrast, the block of ladder settlement shown in Figure 105 is at the 'high intensity' end of the settlement spectrum. Similar components can be identified here, but the evidence is of a different order of magnitude. In addition, earlier features are clearly visible such as the three square barrows to the north of the road ('A'). Furthermore, the westernmost of these has the large central pit of either a cart or multiple inhumation burial. These barrows are spatially associated with a rather more open area in the eastern end of the settlement. The implication of this might be that there was a continued respect for this earlier mortuary (and perhaps settlement) focus when the ladder enclosures were laid out. Indeed, none of the four clusters of MIA square barrows along the ladder were overridden by settlement. This phenomenon is quite striking against the background of repeated reordering of domestic space at WH and the lack of respect shown elsewhere in the region. In terms of more typically LIA-ER features, a block of enclosures 40m wide by approximately 160m long fronts the roadway and shows and incredible intensity of pitting, subdivision and potential activity-related features ('B'). This level of pitting activity is visible throughout the settlement areas fronting the trackway. Across the road there is another cemetery comprising miniature barrows, but this one is considerably larger than the example in Figure 104 and extends
along the entire frontage of the settlement (Fig. 105 'C'). Meanwhile, to the north and west of the roadside block of enclosures there is a large concentration of very small (c.0.02ha) paddocks ('D') and somewhat larger c.0.15ha enclosures, several of which have few internal features ('E'). These are interesting in two respects: firstly, they are located at the rear of the main settlement zone and are associated with a subsidiary trackway, which seems to feed out into the fen-edge and, secondly, they do not seem to reflect Powlesland's cyclical use of enclosures which, along much of the ladder, is reflected in the density of features observed in them. I would offer two alternative scenarios here: one is that they were created late in the sequence and were quickly abandoned when the ladder was subject to repeated flooding in the LR period or, as an alternative, they were so positioned as to be used for corraling stock, which grazed the wetland-edge pastures. Being off the main roadway was perhaps enough to render them unfavourable for re-use as domestic enclosures.

Conclusions
In the H20 summary report, Powlesland was at pains to emphasise the intensity of enclosure cutting and redefinition, which had made his job of interpretation extremely difficult – here it is writ large in the geophysics data. It is therefore equally difficult along most of the ladder's length to establish just how big most enclosures were – most appear, by Wolds' standards, to be little more than my category of 0.02-0.05ha paddocks. That said, the excavation work at H20 suggests that this pattern is almost certainly a palimpsest and, moreover, that larger enclosures probably did exist throughout the life of the ladder. Nevertheless, even taking such factors into consideration, examples falling within what I would consider to be the usual size range for domestic ladder enclosures (0.2-0.5ha) are a very rare phenomenon. Added to that, it seems very likely that large numbers of small paddocks were present along the length of the ladder and related to a significant focus on animal husbandry. The diminution of domestic enclosure size in the Vale's settlements may reflect three things: the spatial constraints
imposed by socio-political boundaries created between each community spaced roughly 0.25km apart, the economic imperative of living by the road, and the environmental constraints created by wetlands to the north and arable to the south. The similarities of the settlement pattern in parts of the Great Wold Valley are perhaps informative in this regard. Factor in the potentially heightened demand for surplus during the Roman period and we can start imagine why the intensity of activity evidenced in the WH ladder occurred. Clear indications exist for the presence of social hierarchies in this landscape, as evidenced in the presence of larger, potentially higher status square barrow burials which, at the western end of the ladder, appear to be associated with a large multi-period settlement with probable origins in the MIA. A short distance to the east there is the very regular sub-divided enclosure, which may represent a somewhat later high status focus at this end of the ladder.

That completes the presentation of case study evidence and all that remains is to conclude the thesis with a synthetic discussion of the results and implications of the four intra-regional and four inter-regional studies.
CHAPTER 9

Conclusions

9.1 Eastern Yorkshire: refining the synthesis

This section considers how the evidence analysed and interpreted in Chapters 7 and 8 relates to the general patterning in East Yorkshire evident before the research work was undertaken (outlined in Chapter 5). It is divided chronologically between LBA/MIA, LIA, ER and LR.

In the LBA/MIA, the picture derived from earlier studies suggested a LBA process of large-scale landscape territorialisation as a means of legitimating claims on the landscape, which seems to have drawn upon earlier tenurial markers such as EBA barrows. The massive linear boundaries laid out at this time also worked in concert with a series of long-distance trackways that clearly continued to be pivotal to the socio-economic organisation of the region. Small, but clearly powerful, elite groups are implicated in this process as evidenced by the scattering of defended hilltop enclosures with Hallstatt metalwork and large-scale grain storage facilities. All of this suggests the existence of a substantial rural population, providing the basis for elite authority in this and later periods. These major structural changes were seemingly carried through into the MIA, when burials were again used to make claims on the landscape. Settlements of this date remain elusive, however, confined to one Wolds' example at GWS and a handful of others located in the lowlands at the wetland edge.

The case studies that have been looked at in detail above give considerable support for this notion of a major definition of territorial blocks in the LBA through the use of ditch-and-bank linears. WGC demonstrates that these features went through a complex evolution
involving redefinition and accretion. Furthermore, GWS shows that a major trackway was laid out perpendicular to the earlier major feature, and that at some stage a metalled roadway was created in relation to the route down the slack. Notwithstanding these detailed developments, all of these substantial landscape divisions were allowed to silt up gradually through time.

For the MIA, overall activity reflects that seen elsewhere with a general lack of proven settlement, but clear innovations in ritual activity, all taking place within a landscape structure defined in, and carried forward from, the LBA. That said, there are hints of settlement evidence, albeit difficult to define, in the form of the curvilinear enclosure complex at WH, together with the pits of this date at Wharram crossroads used for the quarrying of chalk for use in nearby construction activity.

Much more diagnostic of the MIA is the evidence for new forms of mortuary behaviour. This is clearly seen with barrow clusters at WGC and at WH. In the latter case they relate to the aforementioned settlement. In the former, they are positioned to repeat EBA claims on the landscape also through the use of burial monuments. The large cemetery at GWS, based on grave goods, suggests the emergence of social differentiation within that community. Furthermore, a cart burial set at some distance from this main cemetery implies yet another stratum (which, in turn, seems to influence LIA activity in that area). Finally, the changed nature of ritual activity is further shown by the use of enclosures associated with shrines in GWS. The latter also include ritual deposition in pits, something also reproduced at WGC.

In the LIA, pre-existing evidence implied that earlier landscape components continued, but were augmented by insertion of ladder settlements which, on the Wolds in particular, fitted neatly around the pre-existing arrangements of major linears, although MIA barrow cemeteries were not always treated with equal respect. Within the newly-created enclosures, a main domestic focus seems to have accrued
ancillary clusters, perhaps in the form of paddocks fronting the roadway
and larger in-field enclosures to the rear. Within this picture of
similarity across the region, artefactual assemblages suggest some sub-
regional differences, notably in relation to the patterning of imported
ceramics and Corieltauvian coinage, where an area at the southern end of
the Yorkshire Wolds implies a Humber 'trading zone' centred on
Redcliff, in contrast to the rest of the region.

The detailed study of Chapters 7 and 8 align with the above picture.
Critical LIA developments, notably the creation of ladders, clearly take
place within, and usually respect, elements of landscape organisation
inherited from earlier in the Iron Age. However, the creation of these
enclosure systems demonstrates a more focused approach to the
exploitation of that landscape. Details of the exact form of exploitation
is restricted by our limited understanding of internal dwellings, although
patterning of gulleys at WGC strongly suggests the existence of
structures within certain enclosures, and thus, presumably, farmsteads.

Ecofactual and artefactual evidence from WGC and WH imply that such
social units employed a mixed economy. However, its exact form, and
the relative emphases of pastoral and agricultural components, may vary
between different areas. For example, there is a clear contrast between
the larger enclosures at WGC and MSL, perhaps related to a mixture of
animal husbandry and crop production, and their smaller counterparts at
WH, implying a more intensive use of space moving between pastoral
and agricultural activities, and at GWS, perhaps indicating specialised
pastoral usage there.

Whatever the detailed functions of the ladders, each underwent complex
processes of development over an extended period of time, with gradual
accretion seen at WGC, MSL and WH. Throughout these changes,
however, a consistent pattern of enclosure ditch backfilling is evident at
WGC and GWS, interpreted there as disposal of domestic refuse in
midden fills, to be subsequently transferred, on a regular basis, to in-fields to enhance their productivity.

Despite these substantial changes to the landscape, some aspects of MIA activity were retained, notably the structured deposition seen at WGC. However here, there are additions to ritual activity, notably the development of the ‘barrowlet’ cemeteries at WH, and the burial of infants in internal settings at GWS.

For the ER period, there is very powerful evidence for continuity with LIA society. Thus, materially, the rural heartland of the Wolds was very like its forerunner, save for a few wheelmade Roman-style pots in and amongst the masses of handmade, bonfire-fired local wares, and similar continuity is evidenced elsewhere. However, navigable rivers seem to have formed an increasingly important component of the ER landscape, a change of which roadside settlements can also be considered part

Continuity with LIA elements is also a dominant theme in the case studies discussed above. Thus the ladders were retained, in essence, at WH and WGC, and systems of landscape exploitation remained fundamentally unaltered. Within this, however, external contacts are developed. Thus at MSL imported material culture is increasingly evident, albeit here building on a pre-existing emphasis on the circulation of such materials (related, no doubt, to the site’s proximity to Redcliff). The existence of a first century AD rectangular building adds to this picture of significant, if gradual, development. Hints of change are also seen at GWS, for example in the faunal indications of a move away from sheep and towards cattle. At WGC, there is the major development of the site at WGV, plus a tile kiln and crop dryer elsewhere within the study area. This is accompanied by ceramic supply at WGV implying a greater orientation on ‘urban-military’ mechanisms, no doubt related to the existence of the major centre at York.
The LR period across the region reveals a radical departure from LIA-ER trajectories, notably in the reorganisation of landscapes and the emergence of villas in certain areas. The case studies justify the suggestion that the third century AD marks a major watershed in the nature of landscape exploitation in many spheres (the only possible exception being GWS, although here LR evidence may been lost to the bulldozers). Thus, at MSL, the main domestic occupation seems to have ended by c.AD200, its place taken by a crop dryer and series of later enclosures suggesting a reorganised spatial layout. This situation is paralleled at WH, where a series of subdivided and smaller, but regular, enclosures replace those employed throughout the preceding centuries.

At WGC, the former systems of landholding are replaced in their entirety by a new arrangement involving the insertion of strings of small enclosures, perhaps sheep folds (a change in emphasis which would explain the lack of need to accumulate middens in enclosure ditches, such a diagnostic part of the earlier ladder landscape). In so far as the LIA/ER landscape features have any role here, this takes the form of hollows above the site of defunct major features, which occasionally facilitate the accumulation of LR rubbish. In addition, the proposed villa at Wharram Grange is clearly in existence by this point, representing another significant addition to the process of engaging with the landscape (although there are some indications that this site was already of some significance in the ER period, as noted above). Finally, where burials are evident at this late stage, they take the form of occasional cremations; rather than inhumation, which was evident in its various guises, in earlier centuries.

9.2 Broader lessons

The regional studies outlined in Chapter 4 exemplified a series of issues, which the conclusions embodied in the preceding section here support to a very large extent. Thus it was shown that research in the Upper Thames Valley, the Fenland and Cumbria was fundamentally affected by
the geographical setting of each area, influencing not only settlement in the past but also site visibility and thus investigation techniques in the present. In addition, resource allocation in each area has impacted on the way in which data was gathered and interpreted, and the latter activity in particular had been influenced by changing approaches to the way in which the discipline of archaeology theorised past social relations, notably the change in emphasis from culture-historical, to functionalist to, most recently, 'post-processualist' interpretations of our evidence. Notwithstanding such attempts to move forward, particularly in this last sphere, culture-history still has a fundamental influence on the types of perspective ultimately generated by such interpretations, even in the case of Fincham's 'post-colonial' approach to the development of the Cambridgeshire Fens.

The eastern Yorkshire evidence, marshalled in painstaking detail in the body of my own research, has many resonances with the trends noted in those other regions, together with the way in which interpretive schema, generated for the most part by evidence and ideas coming from the southeast of Britain, have tended to dominate approaches elsewhere to the detriment of understanding the province as a whole and the diverse range of processes and development which it embodied. In addition, however, my own work has attempted to take debate forward by a dedicated, if sometimes implicit, critique of conventional notions of 'Romanisation' and, hopefully, by showing how a landscape-orientated approach can begin to elucidate the true diversity of the impact of Rome on pre-existing social and economic relations in Britain.
LIST OF REFERENCES

References

Carver, M.O.H. (1990) 'Digging for data: archaeological approaches to data definition, acquisition and analysis.' in R Francovich and D Manacorda (eds), *Lo scavo archeologico: dalla diagnosi all'edizione*, 45-120. Firenze: Edizioni all'Insegna del Giglio.

Chadwick, A. (2004) "Heavier burdens for willing shoulders'? Writing different histories, humanities and social practices for the Romano-British countryside' in B
References

References

Dent, J. (1983a) 'The impact of Roman rule on native society in the territory of the Parisi', *Britannia*, 14, 35-44.

DoE (1973) 'Garton Slack', *Archaeological Excavations*, 34.

363

East Riding Archaeologist, 10, 67-94.

Gillam, J. (1951) 'Dales Ware, a distinctive Romano-British cooking-pot', *Antiquaries Journal*, 31, 154-164.

Haselgrove, C. (1984c) 'The later pre-Roman Iron Age between the Humber and the Tyne' in P. Wilson, R. Jones and D. Evans (eds), Settlement and society in the Roman north. Bradford.

James, S. (2001b) 'Soldiers and civilians: identity and interaction in Roman Britain' in S. James and M. Millett (eds), Britons and Romans: advancing an archaeological agenda, 77-89. CBA Research Report 125. York: CBA.

Archaeology, Supplementary Series 36. Portsmouth, Rhode Island: Journal of Roman Archaeology.

Muir, R. (2000a) 'Conceptualising landscape', Landscapes, 1, 4-21.

Riley, D.N. (1980) *Early landscape from the air*. Sheffield: University of Sheffield.

References

