
Diversification in the Hexapoda:  

A molecular phylogenetic perspective 

 

 

 

 

James Lewis Rainford 

Doctor of Philosophy 

 

 

 

 

University of York 

Biology 

February 2015 

  



 ii 

Abstract 

Hexapoda (insects and their relatives) comprise over half of all described species, 

and demonstrates large variation in species richness among major sub-clades. This has led 

to various hypothesized controls responsible for structuring diversification within hexapod 

lineages, including morphological key innovations, dietary shifts (in particular plant 

feeding) and small body size. This thesis explores these ideas in the context of an explicit 

phylogenetic hypothesis for the group, constructed from published sequence data and 

literature derived constraints, and dated using a fossil calibrated relaxed molecular clock 

(Chapter 2). Based on this framework, models of the diversification process identify 

complete metamorphosis as a likely key innovation in the hexapod radiation, in addition to 

further up and down shifts in diversification rate responsible for the observed richness 

distribution (Chapter 3). Analysis also suggests that ideas regarding the role of plant 

feeding in diversification are related to restricted clade sampling, and a more 

comprehensive approach recovers no consistent association between particular diets and 

net diversification rates, in addition to heterogeneity in the age of dietary groups and in 

transition rates among dietary categories (Chapter 4). Our data also suggests body size 

evolution in hexapods occurs independently of clade richness, and is broadly dominated by 

neutral evolution on a log scale (Chapter 5). Thus, this thesis supports some hypotheses 

regarding controls on insect richness, whilst conflicting with other, well established ideas. 

It also provides a novel dated phylogenetic framework for further studies of hexapod 

evolution and identifies several novel directions for research into the origins and 

development of this diverse and important radiation. 

. 
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“The sciences, each straining in its own direction, have hitherto harmed us little; 

but some day the piecing together of dissociated knowledge will open up such terrifying 

vistas of reality, and of our frightful position therein, that we shall either go mad from the 

revelation or flee from the light into the peace and safety of a new dark age.” 

 H.P. Lovecraft. The Call of Cthulhu 1928 

 

"It is interesting to contemplate a tangled bank, clothed with many plants of many 

kinds, with birds singing on the bushes, with various insects flitting about, and with worms 

crawling through the damp earth, and to reflect that these elaborately constructed forms, 

so different from each other, and dependent upon each other in so complex a manner, have 

all been produced by laws acting around us. These laws, taken in the largest sense, being 

Growth with reproduction; Inheritance which is almost implied by reproduction; 

Variability from the indirect and direct action of the conditions of life, and from use and 

disuse; a Ratio of Increase so high as to lead to a Struggle for Life, and as a consequence 

to Natural Selection, entailing Divergence of Character and the Extinction of less 

improved forms. Thus, from the war of nature, from famine and death, the most exalted 

object which we are capable of conceiving, namely, the production of the higher animals, 

directly follows. There is grandeur in this view of life, with its several powers, having been 

originally breathed by the Creator into a few forms or into one; and that, whilst this planet 

has gone circling on according to the fixed law of gravity, from so simple a beginning 

endless forms most beautiful and most wonderful have been, and are being evolved." 

 C. Darwin. On the Origin of Species, 6th Edition, 1872.  
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1. Introduction 

1.1. Why study diversification? Concepts and tools for the 

study of species richness. 

There is perhaps no more fundamental question in evolutionary biology than the 

issue of why some groups seem to flourish in vast numbers and variety while others 

languish in obscurity or apparent decline (Coyne & Orr 2004; Benton & Emerson 2007; 

Losos 2010). It is this question, of what controls observed patterns of species richness 

across time and space, that has been at the heart of macro-evolutionary studies and as such 

has shaped much of our views regarding the development of natural systems (Simpson 

1967; Stanley 1998; Gaston & Blackburn 2000). One of the most pervasive ideas in macro-

evolutionary theory is that the average rates of speciation and extinction among clades can 

be causally attributed to traits possessed by lineages (Mayhew 2006; Fritz et al. 2013; 

Morlon 2014). Within this paradigm a distinction is often made between so called key 

innovations, which may represent unique evolutionary developments in an organism 

history (Coyne & Orr 2004), and more continuous properties that may have originated 

multiple times (thus given replicated samples for comparative study) (Mitter et al. 1988; 

Farrell et al. 1991) or whose effects may be dependent on the trait magnitude (Bokma et al. 

2014). In this thesis I will be exploring a number of hypotheses regarding both of these 

types of trait dependent diversification in the context of the largest terrestrial clade of 

organisms, the Hexapoda or six legged arthropods.  

1.1.1. Sister group comparisons and the role of phylogeny 

It has long been recognized that common descent through phylogeny represents a 

non-independence within the data when comparing lineages, leading to the violation of the 

assumptions that underpin the majority of statistical tests, including those used in modeling 

controls on diversification (Felsenstein 1985; Bokma et al. 2014). Comparisons of sister 

taxa, i.e. between taxa that are each other’s closest relative and thus have had identical 

time for divergence and diversification from their common ancestor are, by definition, 

statistically independent with respect to phylogeny, assuming of course that such 

relationships are correctly identified (Felsenstein 1985). Such relationships therefore 

underpinned early attempts to deal with phylogenetic correlation.  
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Early sister group comparison methods focused on exploring statistical regularities 

between the occurrence of traits and relative patterns of extant richness, i.e. whether the 

presence of a trait is more commonly associated with a given richness pattern than would 

expected from chance e.g. (Mitter et al. 1988; Farrell et al. 1991; de Queiroz 1998). Such 

approaches have subsequently been refined by the incorporation of explicit underlying 

models of the diversification process (Slowinski & Guyer 1989; Paradis 2012)(although 

see (de Queiroz 1998; Vamosi & Vamosi 2005) for statistical limitations on these 

approaches) or by the use of non-parametric tests that explicitly incorporate the magnitude 

of richness divergence into the hypothesis test, e.g. (Wiegmann et al. 1993; Barraclough et 

al. 1995; Barraclough et al. 1996).  

Extending this concept of phylogenetic independence to whole tree problems 

allows for a more generalized hypothesis-testing framework. Two basic approaches exist 

to do this, which recent analyses have shown to be statistically equivalent (Blomberg et al. 

2012), termed phylogenetic generalized least squares (PGLS) (Martins & Hansen 1997) 

and phylogenetically independent contrasts (PICs) (Felsenstein 1985; Martins & Hansen 

1996). Independent contrasts are a direct extension of standardized sister group 

comparisons, incorporating correction factors to account for variance in the context of 

more deeply nested clades (Figure 1) (Garland et al. 1992; Gittleman & Purvis 1998). 

PGLS, by contrast, refers to the use of phylogenetic distance as a weighting function in the 

context of a generalized least squares (GLS) linear model (Rohlf 2001). Both methods 

implicitly assume an underlying model of trait evolution; typically the Brownian motion 

random walk process (Section 1.1.3.) and both have been widely used to study both the co-

evolution of continuous traits on trees and the relationship of these traits to species 

richness (e.g. (Isaac et al. 2005; Phillimore et al. 2006)). 
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Figure 1 Illustration of Phylogenetically Independent Contrasts (PIC’s). 

Worked example taken from (Garland et al. 2005). Numbers at terminals represent 

tip states. Numbers above branches give branch lengths and bracket numbers give 

additional branch lengths added at the relevant nodes to account for deviation within 

contrasts.  

One of the issues with modeling species richness using these techniques is that the 

generating processes of speciation and extinction are not themselves expected to conform 

to a BM process. This necessitates the use of descriptive metrics that approximate the 

overall rate of diversification (see below for further discussion), common examples of 

which include the total diversification (defined as log species richness) and PIC based 

measures such as the relative rate difference (RRD), defined as; ln(N1/N2) where N1 is the 

richness of the descendant clade with larger value of the reference variable and N2 is the 

richness of the sister group and the proportion dominance index (PDI) defined as; (N1/(N1 

+ N2))-0.5 (Agapow & Isaac 2002; Isaac et al. 2003).  

One property of whole tree comparisons is non-independence between nodes due to 

nested increases in diversification rate, i.e. that shifts in the diversification process 

occurring at a particular node may cascade down the topology to produce spurious 

significant contrasts on more deeply nested nodes (Figure 2) (Davies et al. 2004). This is a 

particular problem if we are interested in the localization of changes in diversification and 

its correspondence to particular events inferred in the phylogeny (e.g. the development of 

key innovations (Bokma et al. 2014)). One way of dealing with this issue is the “trickle 
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down method” (Davies et al. 2004), whereby significant shifts in richness (based on the 

Slowinski-Guyer test (Slowinski & Guyer 1989)) are corrected for in the context of more 

deeply nested comparisons (Figure 2; (Davies et al. 2004)). This approach renders 

comparisons at each node partially independent; although the result is comparatively crude 

relative to explicit birth-death models discussed below. 

 

Figure 2 Illustration of the “Trickle down problem” (Davies et al. 2004) and 

the impact of correction. Tip values are number of species within clades. F and p 

values for each node calculated using the Slowinski & Guyer (1989) test implemented 

in ape (Paradis et al. 2004) 

1.1.2. Stochastic modeling of diversification rates 

As speciation and extinction are essentially random processes in the context of 

phylogeny they have the potential to be explicitly modeled using a stochastic framework, 

where the probability of an event on a given branch occurring within a given time interval 

is defined by the instantaneous rate of each of the process (Nee 2006; Morlon 2014). Of 

course speciation and extinction also define the shape of the topology, which has led to the 

development of a number of metrics that characterize the shape of phylogenies and look 

for imbalance associated with changes in the underlying rate parameters (Mooers & Heard 

1997; Chan & Moore 2002; Moore et al. 2004; Freckleton et al. 2008) including the well 

known, and widely implemented, gamma statistic of (Pybus & Harvey 2000). In the 

context of the work discussed here, which focuses on patterns observable within topologies 

of higher taxa (See Section 1.2), these metrics, which are reliant on species complete data, 

are unsuitable and interested readers are referred to the referenced studies, and to (Quental 

& Marshall 2010) with respect to the limitations of some of these methods. 
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Underlying all stochastic models of diversification is the exponential birth process 

first described by Yule (Yule 1925) sometimes termed the pure birth model (e.g. (Nee 

2000; Nee 2006). Under this process species numbers within a tree are expected to grow 

exponentially through time under the control of a single parameter birth rate (commonly 

denoted b or λ) that can be interpreted as the instantaneous probability of a given lineage 

undergoing a speciation event. The value of b can be estimated from the slope of a plot of 

the (log) lineage accumulation through time (LTT plot) or based on the exponential 

accumulation of species through time such that the richness of a clade N after a time 

interval t, N(t) = N(0)ebt where N(0) is the starting number of species within the clade 

(typically 1 )(Nee 2006). 

In order to incorporate extinction this model is extended to postulate an 

instantaneous probability of extinction (d) and, because most diversification questions 

focus exclusively on extant taxa, involves conditioning on the survival of the observed 

number of lineages (Nee et al. 1994; Nee 2006) (usually referred to as the “birth death” or 

“bd” process). For statistical reasons, related to the ease and speed of implementation (see 

below), parameterization of bd models is usually undertaken using a pair of composite 

parameters that combine b and d, as these provide a more natural framework for 

mathematical interpretation (Nee 2006). The first of these (r) represents the difference 

between the speciation and extinction rates (i.e. b-d) and is commonly referred to as the 

“net diversification rate”. The value of r associated with a particular clade can be estimated 

from its age and species richness using the method-of-moments approach (Magallon & 

Sanderson 2001). The second parameter, epsilon (ε), is a dimensionless scaling parameter 

giving the ratio of extinction to speciation (i.e. d/b) and is various referred to as the 

“extinction fraction” or the “turnover parameter”. Note that because the value of epsilon is 

more responsive to minor changes in the value of d, the precision on its estimates will 

usually be lower than that of r (Foote 1988; Alfaro et al. 2009) and can be unreliable in 

cases of extreme extinction rates (Rabosky 2010).  

Given these parameter estimates the likelihood of a clade leaving n descendants 

after time t (time since divergence of stem group on dated topology), conditional on that 

the clade does not go extinct (which it does with a probability 1-ε), is Pr(n|t,r,ε,n>1)=(1-

β)βn-1 where β=(ert-1)/(ert-ε) (Nee et al. 1994). The product of these probabilities across the 

T terminals of the phylogeny gives the log likelihood of the taxonomic data: log LT=Σ 
T

i=1log(1-βi)+ Σ Ti=1 (ni-1)logβi (Rabosky et al. 2007). 
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What makes this rate-based framework so attractive for macro-evolutionary study 

is that it can potentially be extended into an almost infinite array of more complex models 

simply by postulating mechanisms that change the local values of parameters r and ε. As 

such extensions are defined on relatively simple parameters they remain computationally 

tractable for typically sized datasets (see (Pyron & Burbrink 2013) and (Morlon 2014) for 

a reviews of recent methods). Such complex models can potentially include time 

dependence in diversification rate (Stadler 2011; Morlon et al. 2011; Hallinan 2012; 

Condamine et al. 2013), hypothesis testing of differential rates in particular clades 

(Ricklefs 2007; Morlon et al. 2011), trait dependent diversification rates (Maddison et al. 

2007; FitzJohn et al. 2009; FitzJohn 2010; Goldberg et al. 2011; Magnuson-Ford & Otto 

2012) and optimization of patterns of diversification rates to be maximally explanatory of 

the observed data without an a-priori hypothesis for the location of rate changes (Alfaro et 

al. 2009; Rabosky 2014).  

As the last methods play a major role in the conclusions of this study I will make a 

brief review of one of the major algorithms used (the MEDUSA algorithm of (Alfaro et al. 

2009)). This procedure, in its simplest form, is a greedy comparative algorithm that 

progressively compares increasingly complex models to explain the observed pattern of 

richness within the framework of (corrected) Akaike Information Criterion (AICc). At the 

first time step the global values for the diversification rate parameters for the observed 

topology and richness data are estimated (Magallon & Sanderson 2001) and then preceding 

node by node the optimal position of a break in the diversification model, i.e. where all the 

descendants of that clade diversify under a different parameter set is identified on the basis 

of the joint model AICc (Burnham & Anderson 2002)). This procedure is repeated 

iteratively, adding further process breaks until the global AICc of the joint model fails to 

increase significantly according to some preset criteria. At this point the joint set of 

inferred node shifts is outputted as the optimal ML description for diversification within 

the clade. As a method for the study of diversification MEDUSA (and similar algorithms 

such as the reversible-jump MCMC approach BAMM (Rabosky 2014)) primarily serve as 

descriptors of patterns within a given phylogeny, as opposed to testing a preconceived 

hypothesis, a role in which they have successfully furthered our understanding of many 

major radiations including vertebrates (Alfaro et al. 2009), plants (Fiz-Palacios et al. 2011) 

and birds (Jetz et al. 2012).  
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While providing a wide array of computationally tractable tools the rate based 

approach to diversification is not without its critics, see discussion in (Rabosky 2009a; 

Quental & Marshall 2010; Rabosky et al. 2012). The central theme of such criticisms 

relates to the way in which a naïve rate model, with a positive r parameter, will always 

lead to an exponential increase in clade richness through time, which runs contrary to 

patterns observed in fossil record (Allen & Gillooly 2006; Alroy et al. 2008; Quental & 

Marshall 2010) and is incompatible with the idea of niche mediated limits on clade 

diversity (Ricklefs 2007; McPeek & Brown 2007; Rabosky 2009a). As a result (Rabosky 

2009b) postulated an alternative paradigm termed “ecological limits” where clades were 

defined as demonstrating diversity dependent rates of diversification leading to logistic 

patterns of clade growth.  

In truth however, these apparently divergent world views share many fundamental 

underlying similarities (Wiens 2011) and it is possible to incorporate the central tenants of 

“ecological limits”, within the rate framework through extension of the bd model to 

incorporate changes in the rates of diversification through time, e.g. (Etienne et al. 2011; 

Rabosky 2014). Methods that build on these ideas remain in their infancy (and are strongly 

dependent on the availability of species complete trees (Etienne et al. 2011)) and will not 

be discussed further in this thesis (see review in (Condamine et al. 2013) and (Morlon 

2014)).  

1.1.3. Modeling trait evolution 

Analogous to the modeling of diversification rate described above there has also 

been related work in characterizing rates of the evolution of traits that potentially act as co-

variants in diversification models (e.g. (Adams et al. 2009)). For discrete trait data 

common implementations employ a variation of the continuous-time finite-state Markov 

model (O’Meara 2012) to generate maximum likelihood estimates of the transition rates 

between different states, e.g. (Pagel 1994; Maddison et al. 2007; Beaulieu et al. 2013), 

although more complex approaches such as threshold models have recently been 

developed (Felsenstein 2012), and many studies still make use of traditional parsimony 

based approaches e.g. (Maddison & Maddison 2011).  

By contrast, continuous trait evolution models are generally based around 

extensions of the multivariate normal distribution model commonly referred to as 

Brownian motion (BM) (O’Meara 2012), where numerous small, independent and 
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randomly directed stochastic changes along branches result in an overall effect where the 

mean expectation of the generated process is invariant through time (i.e. the mean 

expectation of change is 0) but the associated variance among terminal groups scales with 

increased the branch length (Felsenstein 1985).  

Numerous models have been developed that extend this process to add 

directionality to trait evolution (Harmon et al. 2010). Some of the most important include: 

the single stable peak (or SSP) mode; which uses an Ornstein-Uhlenbeck process to model 

convergence of stochastic process on single trait optima (Butler & King 2004), the early 

burst model (EB/ACDC); in which the net rate of evolution slows (or increases) 

exponentially through time as the radiation proceeds (modeled as a BM process with a 

time dependent dispersion parameter) (Blomberg et al. 2003; Freckleton & Harvey 2006; 

Harmon et al. 2010), tree scaling procedures; which modify the branch lengths in a 

topology in-order to make the rescaled tree compatible with BM (e.g. Pagel’s delta; which 

reweights the relative branch lengths of terminal and internal branches in order to model 

rate change through time, and Pagel’s lambda; which accesses convergence with BM 

without the assumption of a particular generating process (Pagel 1994; Pagel 1999)); and 

linear trend models; where fossil derived trends are implemented alongside the BM 

component (Finarelli 2007).  

Some of these derivatives, notably OU and EB models have themselves been used 

as the basis for more complex shift based models where processes are allowed to vary at 

different regions in the topology (analogous to the MEDUSA algorithm described above) 

for example (Ingram & Mahler 2013; Thomas & Freckleton 2012; Rabosky 2014). A 

consequence of this have been a number of surveys interested in joint processes of 

diversification and trait evolution e.g. (Adams et al. 2009; FitzJohn 2010; Slater et al. 

2012) that collectively are beginning to explore the possible linkages between these two 

aspects of diversity. 
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1.2. Hexapoda as a model system and hypotheses for 

diversity in the group 

If all mankind were to disappear, the world would regenerate back to the rich 

state of equilibrium that existed ten thousand years ago. If insects were to vanish, the 

environment would collapse into chaos. (Common paraphrasing from (Wilson 2010)).  

The above sentiment neatly encapsulates the central role played by hexapods in the 

structure of terrestrial and freshwater ecosystems. As the most species rich invertebrate 

lineage, hexapods provide much of the vital linkage between the macro-scale world 

inhabited by higher plants and vertebrates, including ourselves, and the micro-world of 

fungi and bacteria and other groups that provide the nutrient basis on which all life on land 

depends (Grimaldi & Engel 2005). Here at the heart of terrestrial ecosystems hexapods 

have radiated into a truly astonishing array of forms and ecologies that collectively outstrip 

almost any other major organismal group (Mayhew 2007).  

So vast is the hexapod radiation that its limits can only be guessed at, as a huge 

proportion of the total richness of the group (perhaps as much as 70%) remains un-

described (May 1988; Hamilton et al. 2010; Mora et al. 2011). Estimates of the total 

richness of the clade have included numbers up to 30 million species globally (Erwin 

1982), although subsequent refinements of the assumptions underpinning such estimates 

suggest something closer to modal estimates of 3.7 million (90% CIs; 2.0-7.4 million) or 

2.5 million (1.1-5.4 million) depending on the precise model used (Hamilton et al. 2010). 

Estimates of total number of described insect species are also variable with typical values 

including 855,000 (May 2000), 926,400 (Grimaldi & Engel 2005) and 1,049,000 

(Compiled estimates used in this study; Appendix 7.1, includes 15,231 species belong to 

clades not present on the tree described in Chapter 2). These differences reflect a 

combination of novel description, revision of synonymous names in available catalogues 

and improved estimation techniques.  

What is of great macro-evolutionary interest is the manner in which these species 

are distributed among the major clades of the group (Mayhew 2007). Across the hexapod 

orders there exist differences in extant richness spanning four orders of magnitude, for 

example the orders Zoraptera (“angel insects”) and Coleoptera (beetles) have respectively 

32 and 350,000 extant described species (Grimaldi & Engel 2005). Coleoptera are one of 
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four huge orders that collectively comprise almost 80% of all hexapod species (Grimaldi & 

Engel 2005) all of which are members of the vast clade Holometabola (the other three are 

Diptera (flies), Hymenoptera (wasps) and Lepidoptera (moths and butterflies)) (see Section 

1.4). Given such major differences in richness among the higher taxonomic groups it is 

perhaps unsurprising that numerous causal explanations for richness patterns within 

Hexapoda have been proposed throughout the study of the group (reviewed in (Mayhew 

2007)). Sets of these ideas can be categorized into three forms; key morphological 

innovations, ecological co-evolution and other traits that are not necessarily specific to 

hexapods (for example body size, see below). A fourth category, the role of historical 

contingency and the impact of past events such as mass extinctions, will be touched upon 

but is not explicitly tested here (interested readers are referred to (Nicholson 2012) and 

references therein). 

1.2.1. Key morphological innovations  

Of the various hypotheses accounting for the observed species richness across 

hexapod groups perhaps the most attention has been paid to the idea that there are 

particular morphological transitions within the group’s history that have ultimately acted as 

drivers for species richness within the group (Mayhew 2007). Four innovations seen as of 

particular importance include the origins of: the insect body plan, flight, the capacity to 

fold the wings when not in use, and complete metamorphosis (Figure 3)(Carpenter 1953; 

de Queiroz 1998; Yang 2001; Dudley 2002; Mayhew 2002; Mayhew 2003; Grimaldi & 

Engel 2005; Mayhew 2007; Davis et al. 2010a). These ideas have rarely been explicitly 

linked with causal mechanisms on how traits might impact diversity. However some 

discussion has been made regarding the linkage between flight and dispersal (Mitterboeck 

2012; Ikeda et al. 2012), and there are widely discussed ideas relating (complete) 

metamorphosis to increased ecological partitioning via the separation of larval and adult 

ecological niches (Yang 2001; Grimaldi & Engel 2005; Mayhew 2007).  

The importance of these ideas in shaping ideas on hexapod richness has led to their 

explicit testing in the context of the then current ordinal hexapod phylogeny (Mayhew 

2002; Mayhew 2003; Davis et al. 2010a). These studies reveal support for the idea that for 

the capacity the fold the wings flat across the abdomen when at rest, synapomorphic of the 

clade Neoptera, resulted in a major upshift in diversification rate followed by downshifts 

on particularly species deficient groups including the relic order Neuropterida and 
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Zoraptera (Davis et al. 2010a). In the years since this work was undertaken our 

understanding of the hexapod phylogeny has advanced dramatically (Section 1.4) and as a 

consequence one of the goals of this work was thus to expand on these ideas in the context 

of an improved phylogeny and provide a novel test of which events are the key innovations 

controlling richness within the group (Chapter 3).  

 

Figure 3 Key morphological innovations proposed to have shaped hexapod 

diversification (Mayhew 2007; Davis et al 2010a). Redrawn from (Nicholson et al. 

2014) 

1.2.2. Ecological innovations and the role of co-evolution 

While morphological key innovations have been dominant in discussions regarding 

the species richness patterns across hexapod orders, within these clades ecological 

opportunity and associated patterns of co-radiation are generally thought to be responsible 

for shaping observed patterns of species richness. Ideas regarding co-evolution as a driving 

force behind hexapod species richness originate in an influential paper by Ehrlich & Raven 

(1964), where the authors postulate that observed relationships between species richness of 

caterpillars and their host plants could be attributable to antagonistic co-evolution between 

these groups. Since then co-evolution, particularly with angiosperms, has featured 
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prominently in various hypotheses regarding controls on diversity both across Hexapoda as 

a whole (Mitter et al. 1988; Winkler & Mitter 2008) and within Coleoptera (Farrell 1998; 

Hunt et al. 2007) (the latter including a number of hyper-diverse plant feeding lineages, see 

Section 1.4.7.4).  

The idea that angiosperm diversification drove that of hexapods, many of which are 

highly specialized in terms of their host selection, has great intuitive appeal (Grimaldi & 

Engel 2005). However actual evidence that plant feeding promotes richness within the 

clade remains thin on the ground (see Chapter 4). Some authors have taken the next logical 

step and questioned as to whether co-evolution with a host represents a more general 

property in species-rich clades (Futuyma & Moreno 1988) although to date the groups in 

which this has been explored, notably carnivorous parasitoids, do not appear to show 

consistent patterns of host-driven diversification (Wiegmann et al. 1993; Stireman 2005). 

Testing these ideas in the context of our current understanding of hexapod ecology and 

phylogeny represents the second major aspect of this work.  

1.2.3. Broad ecological trends and opportunities for radiation 

The third theme to be explored in thesis is not centrally focused on Hexapoda but 

instead reflects more general patterns in macroevolution that I aim to test in the context of 

my study system. Body size is of fundamental importance in understanding an organism’s 

ecology in that it is correlated with a huge number of other life history traits (Chown & 

Gaston 2010; Gaston & Chown 2013). Based on studies of vertebrate clades, many of 

which show a pronounced skew in their overall size distribution even on a log scale 

(Maurer 1998; Gardezi & Silva 1999; Albert & Johnson 2012), a number of general 

mechanisms linking size and diversification have been proposed (see review in (Gardezi & 

Silva 1999; Allen et al. 2006)). The universality of such mechanisms and their application 

to non-vertebrate clades has however been challenged, e.g. (Orme, Isaac, et al. 2002; 

Orme, Quicke, et al. 2002). In Chapter 5 I take a novel compilation of body size data for 

hexapod groups in combination with the inferred tree (Chapter 2) to explore the 

relationships with diversification in Hexapoda and to describe the patterns that may be 

responsible for structuring trait evolution in the group.  
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1.3. Molecular phylogenies for the study of 

diversification: advantages and pitfalls 

A phylogeny describes the pattern of relationships among a set of taxa and, in 

modern forms, is based on a specific hypothesis of character distribution. In principle the 

origins of phylogenetic characters are of no importance, phylogenies can be constructed 

from morphological, molecular and even ecological datasets. However in the context of the 

described work molecular systematics presents a distinctive set of opportunities and 

challenges which will now be briefly reviewed (see also (Sanderson & Shaffer 2002; 

Baldauf 2003)). 

The greatest advantage that molecular data provides for phylogenetic analysis is the 

relative ease with which large character sets can be collected. As well as the ever-declining 

cost of sequencing technologies (Mardis 2013) a major part of this ease is the availability 

of public databases, such as Genbank and its mirror servers (Benson et al. 2013), that store 

available sequence data. This means that assembling datasets even for large clades such as 

Hexapoda is a relatively simple matter of defining appropriate search criteria and 

extracting suitable sequences for the taxa of interest (Altschul et al. 1990). However 

drawing, as is done here (Chapter 2), entirely on such databases entails certain problems, in 

particular that the availability of markers across taxa is dependent on the patterns of 

sequencing within groups, and as such different patterns of sequencing across different 

lineages can lead to the addition of considerable quantities of missing data into the 

combined dataset (Sanderson & Driskell 2003) (Section 1.3.4). In addition, in conducting 

broad taxonomic surveys one is often restricted to a limited set of widely sampled markers, 

for example the barcoding gene COI and 18S rRNA (see Chapter 2). Some of these have 

un-desirable properties such as alignment difficulties or susceptibility to saturation 

(Sections 1.3.1 and 1.3.2). In the following section I describe the basic protocols 

underpinning the construction, from molecular data, of phylogenies for large clades, 

focusing on the particular challenges offered by this data source and the potential impacts 

of missing data in the context of species rich groups. 

1.3.1. Alignment and defining homology 

The price one pays for the ease with which molecular data can be collected is a 

level of ambiguity with respect to the quality of the hypotheses of character distributions 
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that arise from such datasets (Wheeler 2008). A fundamental property of characters used 

for phylogenetic inference is homology, that is the idea that examined states at a given 

character, or position within a sequence, are comparable because they reflect a common 

evolutionary origin (Phillips et al. 2000; Lee 2001). When dealing with morphological 

data, a strong statement of homology can be obtained from detailed examination of the fine 

structure of the feature in question and its ontogeny during the course of growth (Beutel et 

al. 2011; Friedrich et al. 2014). Molecular data, being comprised of strings of otherwise 

identical chemical bases, is altogether more ambiguous and requires alternative approaches 

to defining homologous states in cases where there is no direct matching among taxa, 

collectively referred to as alignment procedures (Wheeler 2008).  

The most common approach to homology in molecular data is to treat the issue as a 

mathematical optimization problem i.e. defining a criteria or score (usually based on the 

number of base matches and the distribution of gap states- “indels” (Giribet & Wheeler 

1999)) against which the quality of alignment is measured and then using iterative 

computation functions to minimize this cost function. For a given alignment and gap cost 

function, there exists an exact optimal solution for a multiple sequence alignment defined 

by dynamic programing; however generating such a solution is an NP-complete problem 

(i.e. one which cannot be solved in polynomial time) and scales exponentially in time on 

the length and number of sequences in the combined alignment (Needleman & Wunsch 

1970; Lee et al. 2002). As a result most commonly implemented alignment procedures 

such as the well-known Clustal algorithm (Chenna et al. 2003; Larkin et al. 2007), and its 

improvements such as Muscle (Edgar 2004) or MAFFT (Katoh et al. 2002)! represent 

heuristic approximations of this exact solution on which they converge to varying degrees, 

with a key factor being the potential for iterative improvements in estimation of alignment 

parameters (Edgar & Batzoglou 2006).  

Alternative alignment procedures rely on the use of a reference database to identify 

conserved features of particular sequences and use these as landmarks to align novel 

targets against this set. Such approaches are obviously only suitable for molecules where 

structure is highly conserved across deep phylogenetic splits, for example the stem-loop 

structure of rRNA (although see (Letsch et al. 2010)), as implemented in SILVA (Pruesse 

et al. 2007). Alignments can also be defined using global properties of the estimated 

molecule, for example its minimum energy state, e.g. RNAalifold (Bernhart et al. 2008), 



 15 

although such approaches are inherently dependent on the quality of the molecular model 

used, which can be problematic for highly divergent sequences.  

Finally there is concept of “direct optimization” (Wheeler 1995; Terry 2003; Kjer 

et al. 2007) wherein the alignment of a data matrix and the resulting phylogenetic tree are 

jointly optimized with reciprocal feedback acting to improve each step (Ogden & 

Rosenberg 2007; Wheeler et al. 2006). Such approaches are rarely implemented in recent 

studies due to their reliance on explicit models of gap evolution, which may fail to 

adequately characterize the complexities involved of deletion and replication of sequence 

information, and the fact that available implementations remain restricted to parsimony 

(Kjer et al. 2007; Simmons et al. 2010). However such procedures have played an 

important historic role in our understanding of hexapod relationships, e.g. (Terry & 

Whiting 2005; Yoshizawa 2010), the consequences of which are discussed below (Section 

1.4.5.1). 

1.3.2. Phylogenetic inference and model selection 

The establishment of alignment represents only the first stage of phylogenetic 

inference from molecular data. The fundamental procedures of phylogenetic inference are 

identical regardless of the source of character information and entail defining a criterion 

against which to optimize a given character set and then using heuristic tree search 

algorithms to identify the optimal topology describing the relationships among included 

taxa (Swofford et al. 1996). Common optimization criterion include minimizing distances 

within a similarity matrix (as in neighbor joining (NJ) and other distance based methods), 

minimizing the number of inferred character transitions (maximum parsimony) or 

maximizing the joint likelihood of an explicit model of character evolution (maximum 

likelihood or ML methods) (see (Swofford et al. 1996) and (Holder & Lewis 2003) for 

reviews). ML approaches are strongly associated with molecular data due to the fact that, 

unlike morphological state transitions, which usually result from strong directional and 

idiosyncratic selection (and therefore requires complex, parameter rich models), it is 

intuitively reasonable to treat, essentially random, molecular base substitutions in a 

stochastic probabilistic framework that lends itself to explicit models of sequence 

evolution (introductory discussion in (Swofford et al. 1996) and (O’Meara 2012)).  

In some cases model based frameworks have been extended to consider not only 

the optimal parameter values defining the ML solution but to also sample the shape and 
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structure of the underlying probability distributions. This concept of quantifying the 

uncertainty in parameter estimates underpins the Bayesian approches to phylogenetics, 

which typically rely on the use of Markov Chain Monte Carlo (MCMC) samplers to define 

the shape of the probability distributions underlying the parameters involved in modeling 

sequence evolution in order to give an overall distibution of likelihood states associated 

with the data (Huelsenbeck et al. 2001; Holder & Lewis 2003). Numerous attempts have 

been made compare ML and Bayesian approches to phylogenetic inference with key areas 

of dispute including; the suitability of Bayesian partition frequencies (approximating the 

posterior probability of the inferred model) as measures of clade support as opposed to the 

more conventional use of bootstrap pseudo-replication (Alfaro et al. 2003; Douady et al. 

2003; Simmons et al. 2004), the role of the prior probability distribution set by the user in 

determining the data outputs (Pickett & Randle 2005; Alfaro & Holder 2006) and the 

problems of determining if adequate sampling of the tree space has occurred via the 

MCMC algorithm (Randle et al. 2005). Dealing with the various issues arising from such 

comparisons is beyond the scope of this review (see (Randle et al. 2005) for a summary), 

and instead we acknowledge the various strengths of these different procedures for 

conducting particular tasks. For example, molecular clock dating (Section 1.3.3) where 

uncertainty in the ages of calibration points is a key component of the analysis is most well 

suited to the Bayesian framework, while ML approaches may be more computationally 

efficient in producing point estimates for particular topologies.  

 Given the reliance on explicit models the assertion of model appropriateness of a 

given dataset is of key importance in molecular phylogenetic analyses, with the standard 

approach (as implemented in programs such as PAML (Yang 2007) or jModeltest (Posada 

2008)) being to construct an estimated working tree (often the NJ tree) and then fit 

different models of character evolution to the tree and dataset comparing the inferred 

likelihoods and selecting the optimal model for more in depth analysis (Sullivan & Joyce 

2005). While this procedure has many advantages in terms of computation efficiency it 

does open up issues of model misspecification which has been shown to be a source of 

error in phylogenetic inference (Lemmon & Moriarty 2004; Brown & Lemmon 2007). 

One of the ways in which model misspecification can manifest itself is associated 

with the issue of sequence saturation (Philippe & Forterre 1999; Philippe et al. 2011). As 

noted previously the models for the process of base transition in molecular data are 

probabilistic process of random mutation, as a simplification from the processes of 
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selection, drift and mutation acting within real populations (Swofford et al. 1996). 

Saturation occurs where, over the divergence time scales being considered in a phylogeny, 

this random process of inferred mutation is sufficiently rapid as to obscure any signal of 

relationships present within the dataset (Figure 4) (Ho & Jermiin 2004; Jeffroy et al. 2006). 

Modeling hidden substitution events is one of the major reasons for favoring ML 

approaches for molecular data (Swofford et al. 1996); however even allowing for this the 

majority of implemented models will produce misleading results in the face of truly 

saturated sequence data (Suzuki et al. 2002), leading to errors analogous to the well-known 

issue of long branch attraction (Swofford et al. 1996; Bergsten 2005). 

The identification of partitions subject to sequence saturation relies on the 

calculation!of indices of which the most well-known is the entropy based index of (Xia et 

al. 2003), which in effect measures in the information content of sequence data relative to a 

randomized series (see also (Xia & Xie 2001)). Given that, by definition, sequences 

subject to significant saturation contain no useable phylogenetic information, (although 

they can inform parameter values within the estimated model), common practice is to 

remove such partitions from consideration within the analysis, for example by dropping the 

less constrained third codon position from the consideration of protein coding sequences. 

Some authors have suggested that such draconian methods are overly harsh in terms of the 

loss of information and have instead advocated compromises, such as RY coding to 

remove the most common forms of base transition (Phillips et al. 2004; Ishikawa et al. 

2012), although these have seen little use due to limited implementation in widely used 

phylogenetic software.  
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Figure 4 Figurative description of the problem of loss of historical signal 

(sequence saturation) based on the simulation analysis of Ho & Jermiin (2004). Left 

panel; shows the reduction in probability of the correct inference of the tree 

((A,B),(C,D)); under random site mutation with increasing terminal branch length (t- 

measured in average no. of substitutions). Depicted curve is based on the ML case 

described in Ho & Jermiin (2004). Dashed line at 0.33 demonstrates the point where 

split inference among the three possible trees is equivalent to random choice. Right 

panel; shows that the failure to recover the correct tree at high branch lengths is 

driven by an increasing tendency for multiple changes per site which are problematic 

to reconstruct from extant data due to the masking effect of latter substitutions. 

Discussion of these findings and other sources of model misspecification in (Ho & 

Jermiin 2004).  

1.3.3. Dating using the molecular clock 

The inherent randomness of the underlying process of sequence evolution is also 

harnessed in one of the most important uses of phylogenetic molecular data: the molecular 

clock and its derivitives. The fundamental concept underpining molecular clock divergence 

time estimates is the recognition that random stochastic base mutations can be 

appropriately described by an average rate over time (Zuckerkandl & Pauling 1962; 

Bromham & Penny 2003) and that by calibrating this rate on known splits we can infer 

divergence times among taxa beyond the bounds imposed by an incomplete fossil record 

(Donoghue & Benton 2007). 
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 In reality of course, this model of a simple universal clock has been found to be 

inadequate, as taxa undergo different intrinsic rates of molecular evolution that must be 

accounted for in any attempt to model the ages of divergence within the tree (Li & 

Tanimura 1987; Bromham & Penny 2003). This conundrum has resulted in the 

development of so called relaxed clock methods (Drummond et al. 2006) that impose a rate 

evolution process onto the estimate of the molecular clock. Common implementations of 

such ideas include allowing rates to undergo a Brownian motion like drift from the 

ancestral rate across each node in the tree (Thorne & Kishino 2002), imposing a process of 

stochastic rate shifts defined by an underlying compound Poisson process (Huelsenbeck et 

al. 2000; Drummond & Suchard 2010), or simply assuming that rates are drawn from an 

underlying mathematical distribution (typically a gamma distribution due to its 

combination of flexibility and computation tractability) (Lepage et al. 2007). In each case 

the hyper-parameters of rate evolution process must themselves be estimated from the data, 

a situation that can in some cases lead to problematic interactions with transition rate 

matrices and partition scaling factors within highly parameterized Bayesian models 

(Ronquist et al. 2012).  

Very recently there has been a move to further extend relaxed clock approaches to 

directly incorporate morphological evolution (and thus fossil data –see below) an idea 

known as the total evidence clock (Ronquist et al. 2012). Despite their increasing 

popularity there remains some need for caution in interpreting these approaches, as they 

tend to be extremely parameter rich and thus particularly vulnerable to parameter 

interactions within the complex modeling framework. 

The use of fossil data to calibrate molecular clock studies remains one of the most 

contentious issues in dating groups with an inadequate fossil record (Donoghue & Benton 

2007). Leaving aside, for the moment, issues of data quality and assuring an explicit link 

between a numerical calibration and the specimen on which it is based (Gandolfo et al. 

2008; Ksepka et al. 2011; Parham et al. 2012), most of the contentious issues in calibration 

relate to the manner in which such data are used to constrain the ages of nodes within the 

tree (Ho & Phillips 2009). With the exception of total evidence dating described above, 

where the process of morphological character evolution is inherently built into the 

estimation of rates, procedures for incorporating fossil calibrations can be generalized as 

the imposition of a mathematic distribution on the age of one or more nodes within the 
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topology, the structure of which is informed by the available fossil data (Ho & Phillips 

2009) (examples in Figure 5).  

The simplest node calibration procedure is to treat the age of a given fossil as the 

age of divergence of a particular node, the so called point calibration approach (Ho & 

Phillips 2009). Such protocols formed the basis for the earliest molecular clock analyses, 

but are now rarely used due to the recognition that the true divergence of lineages must 

always exceed the earliest fossil representative (Graur & Martin 2004). However, see 

(Graur & Martin 2004) and (Ho 2007) for commentary on the equally problematic but 

widespread use of secondary calibrations from broad scale clock studies as point 

calibrations within nested clades.  

 

 

Figure 5 Probability densities on age of focal node given different implemented 

priors for fossil data (illustrated by red boxes on branches); A) Point calibration, B) 

Hard maximum and minimum bounds, C) “Soft bounds”, D) Normal distribution, E) 

Log-normal distribution, F) Exponential distribution. See Section 1.3.3. for 

discussion. 
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Other approaches to calibration can be thought of as extensions of such bounded 

intervals to incorporate explicit probability distributions. For example ‘soft bounds’ work 

by enforcing a 95% probability that the age of a given node lies within a bounded interval, 

with the remaining probability treated as exponential functions associated with the interval 

margins (Figure 5) (Yang & Rannala 2006). Alternatively one can use conventional 

probability distributions such as the normal, gamma and log normal distributions (Ho & 

Phillips 2009), although in all cases there is a reliance on good fossil data to justify the 

explicit bounds placed on the node distributions (Nowak et al. 2013). As yet, while there is 

growing consensus regarding best practice and increased appreciation of the role 

calibration can play in determining the outcome of molecular clock analyses, e.g. (Sauquet 

et al. 2012), the implementation of calibration in a given analyses remain determined by 

the nature of the data at hand and are subject to the limitations in implementation within 

available software packages.  

1.3.4. Missing data 

All stages of phylogenetic analysis, including use of the molecular clock, are 

potentially impacted by the presence of missing data within the studied matrix. As noted 

above missing data in phylogenetics can arise from several sources, including sampling 

incongruence across the sequenced markers, alignment issues and the procedures used to 

generate sequence data (e.g. expressed sequence tags; EST data) (Hartmann & Vision 

2008). Missing data has the potential to impact on phylogenetic inference in a number of 

ways including; statistically compromising of the underlying models, contributing to 

model misspecification and, via lack of overlap between taxa within the data matrix, 

contributing to ambiguous placements within the topology (Hartmann & Vision 2008).  

The precise role of missing data, and philosophies on how to deal with its presence, 

has a long history in phylogenetic studies (reviewed in (Wiens 2003a; Wiens 2006)) and 

recently there have been a number of simulation studies that have explored its effects in the 

context of multi-gene molecular datasets e.g. (Wiens 2003b; Wiens 2005; Sanderson et al. 

2010). The broad consensus of this work has been that the proportion of missing data 

present within the data matrix has a relatively limited effect on the quality of inference so 

long as the total amount of data available is sufficiently large (Wiens 2003a; Wiens 2003b; 

Philippe et al. 2004) (although see (Lemmon et al. 2009; Wiens & Morrill 2011; Roure et 

al. 2012) regarding the role of introduced non-parsimony informative states). The 
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structuring of missing data within the matrix is however recognized as significant, with 

randomized additions of missing data (e.g. due to alignment issues) being regarded as less 

problematic than missing gene partitions, which are themselves less of an issue than the 

missing data associated with the partial overlapping fragments typical of EST data 

(Hartmann & Vision 2008; Sanderson et al. 2010). Partly as a result of these findings 

numerous studies have now been conducted on large taxonomic groups with high 

proportions of missing data with little apparent loss of phylogenetic accuracy e.g. (Wiens 

et al. 2005; Burleigh et al. 2009; Cho et al. 2011).  

The impact of missing data on molecular clock estimates is less clearly understood 

and again appears to be strongly dependent on the structure of the missing information 

(Douzery et al. 2004), and its interactions with model misspecification and sequence 

saturation (Soubrier et al. 2012; Zheng et al. 2011). There is evidence to suggest that 

relaxed Bayesian procedures are relatively insensitive to issues of data composition 

compared with alternative dating protocols (Mulcahy et al. 2012), although it is unclear 

how this fits within the generally accepted sensitivity of Bayesian procedures to model 

misspecification (Lemmon & Moriarty 2004). 
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1.4. An introduction to the phylogeny of Hexapoda 

This section documents the current understanding of the hexapod phylogeny and 

outstanding issues in relationships within the group (based, in part, on (Trautwein et al. 

2012) and (Yeates et al. 2012)).  

 

Figure 6: Summarized consensus relationships among hexapod orders with 

relevant evidence supporting groupings. Redrawn with modification from (Trautwein 

et al 2012). Major clades dicussed in subsequent chapters are highlighted. Nodes 

subject to phylogentic uncertainty are denoted by dashed lines, see dicussion below. 
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1.4.1. Hexapod origins and monophyly 

The placement of Hexapoda within the wider phylogeny of arthropods has 

traditionally been controversial, with the majority of early workers favoring a close 

relationship with Myriapoda (centipedes, millipedes and allies), with whom hexapods 

share a number of morphological features, e.g. the loss of the second pair of antennae and 

the development of the tracheal system, which respectively give this grouping the 

interchangeable names “Atelocerata” and “Tracheata” (Giribet & Edgecombe 2012). 

Following the development of molecular techniques and associated advances in 

developmental biology the majority of workers now recognize that hexapods are in fact 

derived from within “Crustacea” (the so called Pancrustacea hypothesis) (Giribet & 

Edgecombe 2012) and that the features shared with Myriapoda were derived in parallel 

during the movement onto land in both lineages (Grimaldi 2010).  

While early molecular studies based on mitochondrial genomes challenged the 

monophyly of Hexapoda (Nardi et al. 2003), subsequent work using larger datasets have 

generally favored a single origin of the group within Pancrustacea (Timmermans et al. 

2008; Regier et al. 2010). The sister group to Hexapoda within crustaceans remains 

controversial, with recent analyses favoring a close relationship either with; remipedes 

(Von Reumont et al. 2012; Rota-Stabelli et al. 2013), remipedes + cephalocarids 

(Xenocarida) (Regier et al. 2010) or Branchiopoda (Meusemann et al. 2010; Andrew 2011) 

(although in the last remipedes are not represented). Extant Remipedea are a small group 

of unusual crustaceans associated with marine flooded (anchialine) cave systems, whose 

placement with respect to other crustacean groups is highly unstable in recent studies (Von 

Reumont et al. 2012). Beyond genomic data, few characters link hexapods and remipedes, 

although the some studies have reported shared features of brain anatomy (Harzsch 2006) 

and conserved structures of hemocyanin compounds used to transport oxygen (Ertas et al. 

2009).  

As inhabitants of transitional saline environments the placement of remipedes as 

potential sister groups to Hexapoda is intriguing from the perspective of hypotheses 

regarding the transition of the group to terrestrial environments (Von Reumont et al. 2012). 

It has long been recognized that hexapods have a marine origin (Giribet & Edgecombe 

2012) (as opposed to the freshwater origin ascribed to tetrapods (Clack 2012)); however no 

marine fossil has thus far been attributed to the stem of the group (the former stem 
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hexapod Devonohexapodus is now considered a synonym for Wingertshellicus backesi and 

excluded from crown Pancrustacea (Kühl & Rust 2009)). Molecular clock studies have 

provided increasingly strong evidence that the transition to land happened very early in the 

development of terrestrial ecosystems, with estimates typically falling in the late Cambrian 

or early Ordovician (Section 2.4.2) (Sanders & Lee 2010; Rehm et al. 2011; Rota-Stabelli 

et al. 2013). Such estimates precede the earliest definitive fossils of land plants (so called 

“cryptospores” typical of the Middle Ordovician) by up to 50Ma, and the earliest land 

arthropod trace fossils (Diplichnites and Diplopodichnus from the Late Ordovician of 

England (Johnson et al. 1994)), by up to 80Ma (Kenrick et al. 2012). The early Paleozoic 

terrestrial record is poor (Grimaldi 2010; Kenrick et al. 2012) and as result we know 

almost nothing about the environments into which the earliest terrestrial arthropods 

emerged, although it seems likely at this early stage communities were restricted to 

marginal semi-aquatic habitats prior to the development of true land plants (Clarke et al. 

2011). 

1.4.2. The basal hexapods- Entognatha 

 

Figure 7: Examples of entognathan orders; A) Protura (1.4.2.1), B) Diplura 

(1.4.2.2), C) Collembola (1.4.2.3) 

Photo Attribution- All pictures used under a Creative Commons license, and sourced from 

http://commons.wikimedia.org: 

A. David R. Maddison 2004- 

http://commons.wikimedia.org/wiki/File:Protura_from_Durham,_NC,_USA.jpg 

B. Andy Murray 2013; 

http://commons.wikimedia.org/wiki/File:Campodeidae_sp._%2811499938054%29.jpg  

C. U. Burkhardt 2006; http://commons.wikimedia.org/wiki/File:Isotoma_Habitus.jpg  



 26 

At the base of Hexapoda are three orders of small soil living organisms typically 

united due to the structure of their mouthparts. In true insects (Ectognatha) the various 

limbs that comprise the mouthparts are external to the head capsule, while in these three 

groups (Protura, Diplura and Collembola) the mouthparts are recessed into a space known 

as the gnathal pouch; hence the collective name Entognatha (Grimaldi & Engel 2005). 

Whether Entognatha represents a monophyletic lineage or a grade within basal hexapods 

been controversial, with several morphologists suggesting that some members of Diplura 

may have close affinities with true insects e.g. (Kukalova-Peck 1987). However, studies 

including representatives from all three orders have typically supported the group’s 

monophyly (Meusemann et al. 2010; Regier et al. 2010; Von Reumont et al. 2012) 

(although see alternative placement in (Misof et al. 2014)). Relationships between the three 

orders remain controversial, with some molecular studies favoring a sister grouping of 

Protura and Diplura (termed Nonoculata) (Giribet et al. 2004; Luan et al. 2005; 

Meusemann et al. 2010), as opposed to the more traditional grouping of Protura with 

Collembola (Ellipura) (Von Reumont et al. 2012). Morphological support for the former 

grouping is scant, with the name being derived from the absence of eyes in both lineages, 

whereas Ellipura is favored by details of the structure of the gnathal pouch (Grimaldi & 

Engel 2005).  

1.4.2.1. Protura- proturans 

Among the least familiar hexapod groups, Protura are tiny, functionally tetrapod, 

soil dwelling organisms whose global diversity is poorly known (Pass & Szucsich 2011). 

The group has received little phylogenetic attention with the only substantial molecular 

study to date, (Dell’Ampio et al. 2011) supporting the monophyly of the major sub clades 

Acerentomata (Protentomidae, Acerentomidae and Hesperentomidae) and Eosentomata 

(Eosentomidae, Antelientomidae) but suggesting that “Sinentomata” (Fujientomidae, 

Sinentomidae) represents a paraphyletic grade at the base of the order. Inevitably, 

taxonomic sampling is sparse and the reciprocal monophyly of the various families 

remains to be demonstrated (Dell’Ampio et al. 2011). What little is known about proturan 

ecology suggests that fungal hyphae may be an important component of the diet although 

few ecological studies have been conducted for the group (Pass & Szucsich 2011). Given 

their small size and fragile structure it is perhaps unsurprising that proturans lack any fossil 

representatives and nothing is known regarding the group’s origins and history (Grimaldi 

& Engel 2005).  
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1.4.2.2. Diplura- diplurans 

Diplura are a low diversity, soil-living order, whose most characteristic feature are 

large paired cerci that, in some super-families are used in prey capture. The group is 

conventionally divided into several lineages, the occasionally large sized (up to 50mm) 

predatory Japygoidae, and the smaller, generalist feeding Campodeomorpha and 

Projapygidae (the latter grouped with japygids as the suborder Japygomorpha). Due to a 

number of apparently shared features between Japygomorpha and true insects, e.g. the 

presence of accessory tubules within the sperm axonome (Carapelli et al. 2006), the 

monophyly of Diplura (and thus Entognatha) has been subject to a number of challenges 

(Kukalova-Peck 1987; Carapelli et al. 2006), although most molecular studies to date have 

consistently supported the order e.g. (Mallatt & Giribet 2006; Gao et al. 2008; Regier et al. 

2010), with the exception of the genome level study of (Misof et al. 2014). The earliest 

definitive Diplura is a well preserved japygid from the Cretaceous of Brazil (Wilson & 

Martill 2001), and members of both suborders are known from Cenozoic ambers (Grimaldi 

& Engel 2005). 

1.4.2.3. Collembola- springtails 

Collembola are the most species rich of the Entognthan orders, with typical 

members being extremely abundant microbial grazers associated with soil and other 

detritus-rich environments, although a number of more specialized ecologies are known to 

occur among the various families (reviewed in (Hopkin 1997)). The most distinctive 

feature of the group is the furculum spring mechanism, derived from the fused appendages 

of the fourth abdominal segment and used in predator avoidance. Recent systematic 

surveys favor the existence of five major lineages; Poduromorpha, Tomoceroidea, 

Entomobryomorpha, Symphypleona and Neelipleona although the relationships between 

these groups remain poorly understood (D’Haese 2003; Xiong et al. 2008). Outstanding 

problems include the removal of Tomoceroidea from the Entomobryomorpha (conflicting 

with traditional taxonomy) and the placement of the highly derived miniaturized family 

Neelidae (Xiong et al. 2008).  

Compared with other Entognatha the fossil record of Collembola is surprisingly 

rich with most extant families having stem representatives in Cretaceous ambers e.g. 

(Christiansen & Nascimbene 2006). The most well-known fossil Collembola is also the 
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earliest definitive representative of Hexapoda, Rhyniella praecursor (Hirst & Maulik 1926) 

from the Middle Devonian; Rhynie chert formation of Scotland (Whalley & Jarzembowski 

1981), whose modern appearance has led to classification within the extant family 

Isotomidae (Greenslade & Whalley 1996), although uncertainties in character polarity have 

resulted in many authors, particularly in the context of calibrating molecular clocks, 

favoring treatment as a stem member of the order e.g. (Rehm et al. 2011).  

1.4.3. Insecta- basal members (bristletails and silverfish) 

 

Figure 8 Examples of Basal Insects (1.4.3); A) Archaeognatha, B) Zygentoma; 

and Palaeoptera (1.4.4); Odonata (1.4.4.1) C) Anisoptera, D) Zygentoma; E) 

Ephemeroptera (1.4.4.2) 

Photo Attribution- All pictures used under a Creative Commons license, and sourced from 

http://commons.wikimedia.org 

A. User:Stemonitis 2006- http://commons.wikimedia.org/wiki/File:Archaeognatha.jpg 

B. David R. Madison 2003-http://commons.wikimedia.org/wiki/File:Thermobia_domestica1.jpg 

C. Ingrid Taylar 2010- http://commons.wikimedia.org/wiki/File:Dragonfly%27s_Meal.jpg  

D. Friedrich Böhringer 2006- http://commons.wikimedia.org/wiki/File:Coenagrion_puella_Paarung1.JPG 

E. Cameraman 2008- 

http://commons.wikimedia.org/wiki/File:Mayfly_resting_on_the_river_bank_at_Thornborough_Bridge.

_-_geograph.org.uk_-_1503506.jpg 

In many traditional discussions of the hexapod phylogeny Entognatha are linked 

with two small lineages of primitively wingless insects forming the grade “Apterygota”, 

e.g. (Hennig 1969). Occasionally both lineages are grouped as the paraphyletic order 

“Thysanura”, however most workers recognize two distinct orders; Archaeognatha 

(jumping bristletails) and Zygentoma (silverfish and firebrats), with the latter considered 
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sister to the winged insects; forming the clade Dicondylia (Grimaldi & Engel 2005; 

Trautwein et al. 2012). The key feature uniting Zygentoma and winged insects is the 

presence of a second point of articulation (or “condyle”) on the mandible, restricting its 

movement to a single plane and increasing the power of the “bite” (Grimaldi & Engel 

2005). 

 Both bristletails and silverfish are generally small, drab and dorsally flattened 

insects, usually feeding as nocturnal detritivores in damp environments. Neither group has 

received much systematic attention, e.g. (Comandi et al. 2009). An outstanding 

controversy is the placement of the mono-specific zygentoman family Lepdiotrichidae, 

which unlike other members of the order retain occeli (Grimaldi & Engel 2005). On this 

basis, the latter has been proposed as sister to Pterygota (winged insects) (Beutel & Gorb 

2001; Engel 2006) although this placement conflicts with the majority of available 

molecular data (Giribet et al. 2004; Trautwein et al. 2012).  

1.4.4. Winged insects and the Palaeoptera problem 

When talking about the insects as a terrestrial group it is impossible to overstate the 

importance of flight (Dudley 2002; Mayhew 2007). Flight defines so much about the 

ecology of insects, and their importance in terrestrial and freshwater ecosystems, that it is 

perhaps unsurprising that the origins and basal relationships within the winged insects 

should be one of the most active and contentious phylogenetic issues in the group 

(Hovmöller et al. 2002; Whitfield & Kjer 2008; Trautwein et al. 2012; Thomas et al. 

2013).  

Pterygota, the clade that contains winged insects, is almost universally recognized 

as monophyletic (Trautwein et al. 2012) and contains four major lineages: Odonata (the 

dragonflies and damselflies), Ephemeroptera (mayflies), Neoptera (insects able to fold the 

wings flat across the abdomen, including all other living winged insects) and the entirely 

extinct superorder Palaeodictyoptera (Grimaldi & Engel 2005). The relationships between 

the three extant winged groups has come to be referred to as the “Palaeoptera problem” 

and represents one of the best known examples of an ancient divergence with very short 

internode differences leading to phylogenetic uncertainty (Whitfield & Kjer 2008; Thomas 

et al. 2013).  
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 The term Palaeoptera refers to a hypothesis linking Odonata and Ephmeroptera 

(Hennig 1969) which until very recently had dropped out of favor in the entomological 

community (Thomas et al. 2013). Instead authors have focused on alternatives such as: 

“Metapterygota”; uniting Odonata and Neoptera, based on loss of the non-reproductive 

flying stage (“sub-imago”) and the fixation of mandibular articulation (Wheeler et al. 

2001; Ogden & Whiting 2003; Grimaldi & Engel 2005; Beutel & Gorb 2006), and 

“Chiastomyaria”; linking Ephmeroptera with Neoptera by indirect sperm transfer and 

ribosomal markers (Kjer 2004; Mallatt & Giribet 2006; Misof et al. 2007; Wang et al. 

2013)(Mallatt & Giribet 2006), as well as genomic (Simon et al. 2009; Meusemann et al. 

2010) and mitochondrial datasets (Li et al. 2014).  

The revival of Palaeoptera as a hypothesis rests on recent high resolution 

phylogenomic studies (Thomas et al. 2013; Misof et al. 2014), evidence from slow 

evolving nuclear markers (Regier et al. 2010; Ishiwata et al. 2011) and reanalysis of 

character states in the head (Blanke et al. 2012; Blanke, Greve, Wipfler, et al. 2013). This 

is the currently favored hypothesis, although most reviews prefer to denote the node as 

unresolved, e.g. (Trautwein et al. 2012; Yeates et al. 2012). As with many controversial 

phylogenetic issues the impacts of taxon sampling and marker choice on the outcomes of 

studies remains unclear and it will be some years before the application of new genomic 

data begins to resolve these long standing issues. 

1.4.4.1. Odonata- dragonflies and damselflies  

Thanks to their often-large size and metallic coloration Odonata are among the 

most charismatic of insect groups and as a result have been thoroughly studied in terms of 

their ecology and distribution (e.g. (Silsby 2001)). All members of the order develop as 

predatory nymphs in freshwater and the adults are typically active aerial hunters. The 

difference between dragonflies (sub-order Epiprocta) and damselflies (Zygoptera) lies in 

the strongly oblique thorax structure of the latter, allowing the wings to be held upright as 

opposed to flat resting position typical of dragonflies. Traditionally a third sub-order 

Anisozygoptera was recognized for the extant family Epiophlebiidae, however these are 

now usually grouped within Epiprocta, as basal to the other dragonflies (Anisoptera) 

(Bybee et al. 2008; Dumont et al. 2010).  

Both Zygoptera and Anisoptera are subject to phylogenetic issues in the placement 

of included families. Zygoptera is now recognized as comprising (at least) two major 
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clades; with the superfamily Lestoidea (Davis et al. 2011; Dijkstra et al. 2014) (also termed 

Lestomorpha (Dumont et al. 2010)) being recognized as sister to the remaining taxa, 

however support for relationships above the family level is low, and the monophyly of 

some traditional families, e.g. Coenagrionidae, Megapodagrionidae and Amphipterygidae, 

are considered suspect (Dumont et al. 2010; Dijkstra et al. 2014). Within Anisoptera, 

molecular analysis place the superfamily Aeshnoidea as basal and generally support most 

of the traditional groupings, although the large heterogeneous family Corduliidae is often 

found to be a polyphyletic assemblage, with groups spread across different parts of the tree 

(Fleck et al. 2008; Bybee et al. 2008; Dumont et al. 2010; Blanke, Greve, Mokso, et al. 

2013).  

Crown Odonata are strictly a post-Permian radiation (Grimaldi & Engel 2005; 

Davis et al. 2011). However stem members of the group, including the famous giant 

Protodonata (Grimaldi & Engel 2005), are important components of early hexapod faunas 

and include the largest known winged insects, e.g. Meganeuropsis permiana, with 

wingspans approaching 70cm (Grimaldi & Engel 2005; Clapham & Karr 2012). 

1.4.4.2. Ephemeroptera - mayflies 

Best known for their mass emergences and proverbially brief adult lifespans (the 

adults never feed and most live only a few hours) mayflies are another major hexapod 

group that conduct the majority of their lifecycle in freshwater. In most families the 

nymphs are detritivores, although a few are carnivorous in late instars, and members are 

common in both fluvial and lacustrine environments (Barber-James et al. 2007). Mayfly 

systematics are currently poorly resolved, with the most recent review challenging the 

traditional suborders (Pisciforma and Setisura), although the major clades Carapacea 

(including taxa with a notal shield) and Furcatergalia (defined by adaptions to burrowing) 

were recovered (Ogden et al. 2009). Like Odonata, extant Ephemeroptera are a Mesozoic 

radiation with diverse Palaeozoic stem groups, although the timings of major transitions 

and the origins of extant families remain poorly defined (Grimaldi & Engel 2005).  
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1.4.5. Polyneoptera and basal Neoptera 

 

Figure 9 Examples of Polyenopteran orders; Dictyoptera (1.4.5.2); A) 

“Blattodea”, B) Mantodea, C) Isoptera; D) Plecoptera (1.4.5.3); E) Dermaptera 

(1.4.5.4); Eukinolabia (1.4.5.5); F) Phasmatodea, G) Embioptera; 

Notoptera/Xenonomia (1.4.5.6); H) Grylloblatodea, I) Mantophasmatodea; 

Orthoptera (1.4.5.7); J) Caelifera, K) Ensifera; L) Zoraptera (1.4.5.1) 

Photo Attribution- All pictures used under a Creative Commons or Free Art License and sourced from 

http://commons.wikimedia.org and http://tolweb.org/tree/  
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J. Francisco Welter-Schultes 2011 http://commons.wikimedia.org/wiki/File:Caelifera-7303r.JPG 

K. Andrew McMillan 2013 http://commons.wikimedia.org/wiki/File:New_Zealand_weta.jpg 

L. David R. Maddison, 2004 ; http://tolweb.org/Zoraptera  

Neoptera, insects able to fold the wings flat across the abdomen, is generally 

considered to comprise three major lineages. Of these two; Holometabola (insects with 

complete metamorphosis) and Paraneoptera (bugs and their relatives), are generally 

regarded as secure monophyletic groups (although see Section 1.4.6), while the third, 

Polyneoptera, refers to a disparate assemblage of orders, whose relationships remain one of 

the greatest outstanding challenges in hexapod phylogenetics (Trautwein et al. 2012). From 

a morphological perspective the orders making up Polyneoptera show few uniting features 

(Grimaldi & Engel 2005), although the group has been recovered in analysis of wing base 

structures (Yoshizawa 2011) and attachment devices (Beutel & Gorb 2006); the latter 

excluding Zoraptera (See Section 1.4.5.1). However molecular analyses show remarkable 

consistency in uniting this clade (Trautwein et al. 2012), although both the internal 

relationships and the sampling of lineages are highly inconsistent across different studies, 

e.g. (Letsch et al. 2012; Simon et al. 2012; Misof et al. 2014).  

For convenience the discussion here is structured around the phylogeny presented 

in Chapter 2 (broadly consistent with the consensus view shown in (Trautwein et al. 2012) 

and Figure 6), and concerns five major lineages the interrelationships of which remain 

unclear. Of these, only the Dictyoptera (Section 1.4.2.2) (Mantodea + “Blattodae” + 

Isoptera) is universally recognized and strongly supported by their reduced ovipositor, 

gizzard like proventriculus and the deposition of eggs in specialized pods known as 

oothecae (although within Isoptera, the last occurs only in the most basal taxa) (Grimaldi 

& Engel 2005). 

By contrast with Dictyoptera, the sister grouping of Plecoptera (Section 1.4.5.3) 

and Dermaptera (Section 1.4.5.4) has little to recommend it from a morphological 

perspective, linking as it does one of the most primitive looking and one of the most 

derived neopteran orders with respect to traditional wing-vein characters (Haas & 

Kukalová-Peck 2001). Nevertheless the grouping has received consistent support across a 

range of molecular markers, including 18S (Misof et al. 2007) and 28S (Wang et al. 2013) 

rRNA, nuclear protein coding genes (Ishiwata et al. 2011), mitochondrial genomes (Wan et 

al. 2012), genome data (Simon et al. 2012; Misof et al. 2014) and supermatrix studies e.g. 

(Kjer et al. 2006). 
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Another grouping that appears robust on recent analyses but which challenges 

traditional views of hexapod relationships is the concept of Eukinolabia; uniting the orders 

Phasmatodea and Embioptera (Section 1.4.5.5). This grouping was originally defined in 

the supermatrix study of Terry & Whiting (2005), and has since been recovered by (Kjer et 

al. 2006; Ishiwata et al. 2011; Wang et al. 2013; Letsch et al. 2012) and (Misof et al. 2014) 

(although see, (Misof et al. 2007) for a counter example). The clade receives some 

morphological support based on the flexor of the paralossae (Friedemann et al. 2012) and 

the presence of an operculum on the egg (Bradler 2009). Mitochondrial genome studies by 

contrast, tend to reject this concept in favor of uniting Phasmatodea (in particular the basal 

genus Timema) with the recently described order Mantophasmatodea (see below) (Klass et 

al. 2002; Damgaard et al. 2008; Cameron et al. 2006; Plazzi et al. 2011), although this may 

be due to the lack of suitable data for Embioptera (Kômoto et al. 2012).  

Mantophasmatodea is conventionally placed in the clade variously referred to as 

Notoptera (Arillo & Engel 2006), Chimaeraptera (Uchifune & Machida 2005) or 

Xenonomia (Terry & Whiting 2005), the other members of which are the bizarre 

cryophilic relic taxon Grylloblattodea (Section 1.4.5.6). Discounting the mitochondrial 

data discussed above, the close affinities of these orders have been supported by a wide 

range of markers (Terry & Whiting 2005; Kjer et al. 2006; Ishiwata et al. 2011; Wang et 

al. 2013; Misof et al. 2014) and various features of the head (Baum et al. 2007; Wipfler et 

al. 2011), egg (Uchifune & Machida 2005), and attachment structures (Beutel & Gorb 

2006; Beutel & Gorb 2008)(Beutel & Gorb 2008).  

By far the most species rich Polyneopteran order, Orthoptera (Section 1.4.5.7) 

stands somewhat apart in recent studies partially as a consequence of incomplete 

taxonomic sampling. The nuclear protein gene analysis of (Ishiwata et al. 2011) placed the 

group as sister to the Plecoptera +Dermaptera + Dictyoptera, while EST data has variously 

placed orthopterans as sister to Dictyoptera (Simon et al. 2012) or as basal to Polyneoptera 

as a whole (Letsch et al. 2012). (Terry & Whiting 2005) suggested a sister group with 

Eukinolabia, while mitochondrial genomes for the most part support Orthoptera as sister to 

Dictyoptera/Eukinolabia/Xenomia (Plazzi et al. 2011; Wan et al. 2012) (also found with 

weak support in (Misof et al. 2014)). The 18S study of (Misof et al. 2007) supports the 

traditional view of an Orthoptera/Phasmatodea sister relationship (“Orthopterida”). 

Perhaps unsurprisingly morphology does little to resolve these issues, with the most 

comprehensive datasets to date supporting the traditional “Orthopterida” grouping 
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(Yoshizawa 2011) or a sister group to Phasmatodea + Xenonomia (Beutel & Gorb 2008). 

At the present time therefore the placement of Orthoptera with respect to other 

polyneopteran groups remains poorly defined. 

1.4.5.1. The Zoraptera problem 

 Of all the Polyneopteran orders, none has presented such a substantial 

classification problem as Zoraptera. This tiny and obscure group of 32 species, which form 

semi-social fungus feeding colonies in dead wood, were originally classified in 

Paraneoptera (e.g. (Hennig 1969)) although they have also appeared as basal Eumetabola 

(the clade uniting Paraneoptera and Holometabola) (Wheeler et al. 2001) or even sister to 

the Holometabola (reviewed in (Beutel & Weide 2005)). While there is broad consensus 

regarding a placement within Polyneoptera (reviewed in (Beutel & Weide 2005; Grimaldi 

& Engel 2005; Yoshizawa 2007)), Zoraptera’s affinities within the clade now presents the 

most severe outstanding problem in insect ordinal systematics (Yoshizawa 2011; 

Trautwein et al. 2012).  

A major part of the “Zoraptera problem” is lack of data. The cryptic lifestyle and 

relative rarity of zorapteran taxa have led to them being underrepresented with respect to 

otherwise widely sampled molecular markers, e.g. at the time of writing, Zoraptera are the 

only insect order to lack a representative mitochondrial genome sequence (Cameron 2014). 

In addition both the 18S and 28S rRNAs are structurally highly modified in Zoraptera 

relative to other insect groups leading to challenges in alignment and the identification of 

homologous sites (Yoshizawa & Johnson 2005; Wang et al. 2013). Contamination of 

sequences within molecular studies has also played a role in generating ambiguity, as at 

least one study, that of (Terry & Whiting 2005), contains sequences that, while labeled as 

zorapterans, appear to in fact be of dermapteran origin, which has resulted in problematic 

alignment of markers under direct optimisation (Yoshizawa 2010). 

There are four major hypotheses regarding the position of Zoraptera within 

Polyneoptera. The first, as sister group to Dermaptera (“Haplocercata” (Terry & Whiting 

2005)) is called into question by the contamination issues noted above (although it 

reappears with weak support in the recent genome study of (Misof et al. 2014)). A second 

view, commonly identified in morphological data but lacking molecular support, places 

Zoraptera with Embiodea (“Mystroptera”) (Yoshizawa 2007; Friedrich & Beutel 2008; 

Yoshizawa 2011). Comprehensive studies of 18S suggest links with Plecoptera, although 
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as noted there are issues in the alignment of this marker across groups (Misof et al. 2007). 

Finally, single copy nuclear markers support placement close to the Dictyoptera, which is 

our favored hypothesis as it is derived from data sources independent of known erroneous 

markers and explains unique shared features of ribosomal structure seen between the 

groups (Yoshizawa & Johnson 2005; Ishiwata et al. 2011; Wang et al. 2013). 

1.4.5.2. Dictyoptera- roaches, mantids and termites:  

The Dictyoptera are an undisputed monophyletic group comprising three lineages 

with differing ecologies, the carnivorous mantids, the eusocial termites and the generalist 

detritivorous cockroaches (Grimaldi & Engel 2005). The focus of recent phylogenetic 

efforts within the group has been on the interrelationships of these lineages, and in 

particular establishing the appropriate placement of termites with respect to roaches. 

Traditionally recognized as their own order (Isoptera), recent studies have increasingly 

converged on placing termites within the roach clade (formerly the order “Blattodea”) as 

sister to the wood roach family Cryptoceridae (Lo et al. 2000; Inward et al. 2007; Ware et 

al. 2008; Davis et al. 2009; Djernæs et al. 2012). Such studies have however differed in 

their treatment of the basal roach families Polyphagidae and Nocticolidae, and the 

placement of Mantodea, which have been shown to be sensitive to out-group choice (Ware 

et al. 2008). The most recent study identified a monophyletic Mantodea as sister to the 

combined “Blattodea”/ Isoptera clade (Djernæs et al. 2012).  

Within each of the “orders”, family relationships remain unsettled. In roaches the 

respective monophyly and composition of the large families Blaberidae and “Blattellidae” 

(=Ectobiidae) remains an outstanding challenge. Termites face questions regarding the 

(traditional) basal placement of the monospecific Mastotermittidae and the division 

between the “lower”; harvester, damp and dry wood termites vs. the more derived “higher 

termite” families (Ware et al. 2008; Djernæs et al. 2012). The phylogeny of mantids highly 

problematic, with recent analysis supporting traditional basal lineages (Chaeteessidae, 

Mantoididae and possibly Metallyticidae) (Svenson & Whiting 2004), but calling into 

question many of the more derived families and indicating that morphological convergence 

is rife among unrelated clades within the group (Svenson & Whiting 2009).  

Dictyoptera have one of the richest fossil records of any polyneopteran group 

(Grimaldi & Engel 2005). The earliest division among the crown groups is the Permian 

stem mantid Mesoptilus dolloi (Béthoux & Wieland 2009), although the modern clades 



 37 

appear to have a late Mesozoic origin, based on both fossil evidence (Vršanský 2008; 

Grimaldi 2003) and patterns of vicariance observed in phylogenies (Svenson & Whiting 

2009). The earliest definitive crown members of the Blattodea/ Isoptera clade are of 

Cretaceous origin in the Bassia deposits of central Russia (Vršanský 2005; Engel et al. 

2007). 

1.4.5.3. Plecoptera – Stoneflies  

Stoneflies are traditionally (and misleadingly) regarded as the most primitive 

neopteran lineage and have long been used a models for the origins of the group, and of 

insect flight in general (Hennig 1969; Dudley 2002; Engel et al. 2013). Uniquely among 

Polyneoptera, plecopteran nymphs are aquatic, and the order as a whole is principally 

associated with running or cool water environments with relatively high oxygen 

concentrations. Most Plecoptera nymphs are shredders of decaying leaf material, although 

some families in the superfamily Perliodae are strictly predatory (Zwick 2000), and the 

short-lived adults appear to feed very little, if at all (Hynes 1942).  

Plecoptera are another polyneopteran group in need of systematic review based on 

molecular data and improved out-group selection (Thomas et al. 2000). The traditional 

taxonomy, based on the informal cladistics study of (Zwick 2000) distinguishes between a 

southern hemisphere lineage Antarctoperlaria and a predominantly northern hemisphere 

group (“Arctoperlaria”) encompassing the suborders Systellognatha and Euholognatha 

(Grimaldi & Engel 2005). Molecular data shows only limited support for this disjoint 

pattern, with the 18S study of Thomas et al. (2000) recovering a paraphyletic 

“Arctoperlaria” with Nemouroidea at the base (although see (Terry 2003) for an alternative 

view).  

Despite a presumed ancient, origin, the fossil record of Plecoptera is rather poor, 

likely a reflection of the groups preference for environments with low preservation 

potential (Grimaldi & Engel 2005). The earliest known stem representative is the 

Carboniferous Gulou carpenter (Béthoux et al. 2011), although well preserved members of 

extant families are restricted to the Jurassic of Germany and China (Zhao et al. 2010). 

1.4.5.4. Dermaptera –earwigs 

 Earwigs are an often overlooked, homogenous group of nocturnal 

omnivorous insects, whose most distinctive features are the paired forceps on the terminal 
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of the abdomen and the modification of the forewing to form a rigid tegminious cover 

analogous to the elytra of beetles (Grimaldi & Engel 2005). This description overlooks two 

remarkable small families Arixeniina and Hemimerina, which are the only ecto-parasitic 

polyneopterans (on molossid bats and two genera of African rodents respectively) 

(Kocarek et al. 2013). The placement of these lineages, which until recently had been 

allotted sub-ordinal status (i.e. regarded as sister to all free-living earwigs; Forficulina), 

provides the context for recent phylogenetic study within the group (Kocarek et al. 2013). 

Molecular investigations have, unsurprisingly, found that both parasitic groups nest within 

Forficulina, and have reaffirmed the important superfamily Forficuloidae (Jarvis et al. 

2005; Kocarek et al. 2013). Dermaptera are rare in the fossil record and most Mesozoic 

taxa are placed within the extinct suborders “Archidermaptera” and Eodermaptera 

(Grimaldi & Engel 2005; Zhao et al. 2010; Nel, Aria, et al. 2012).  

1.4.5.5. Phasmatodea and Embiodae- stick insects and webspinners 

On the surface one would be hard pressed to find two more distinct clades than the, 

often large, cryptic, herbivores of Phasmatodea and the comparatively small, web-spinning 

detritivores of Embiodae. However as noted above the two groups share a number of 

features strongly suggesting a common origin (Eukinolabia) and I will treat them together 

here. Stick and leaf insects are perhaps best known from their extraordinary body form and 

camouflage abilities, and include some of the longest of all extant insects (Hennemann & 

Conle 2008). Within the order there exists a fundamental division between the small (21 

species) relict genus Timema native to the western USA, and the remaining taxa 

collectively known as Euphasmatodea, although within the latter the status of a number of 

recognized families and subfamilies remains uncertain (Buckley et al. 2009; Kômoto et al. 

2011; Bradler et al. 2014).  

Embids are a predominantly tropical or sub-tropical forest group, where they live 

within communal galleries spun from silk produced in their uniquely modified forelimbs. 

All female Embiids are wingless and males have unique collapsible wings that are inflated 

for use by pumping haemolymph into “blood sinuses” that are the group’s most distinctive 

synapomorphy. Surprisingly, given their cryptic nature, the phylogeny of Embioptera is 

comparatively well understood, with supermatrix studies confirming the monophyly of 

four of the eight recognized families (in total around 400 species) and redefining the 

remainder into monophyletic lineages (Miller et al. 2012). The internal phylogeny of the 
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group remains poorly supported in these studies with either Clothodidae or 

Australembiidae being considered the basal members of the group and Oligotomidae and 

Tetatembiidae being highly supported as sister taxa (Miller et al. 2012). The family 

Embiidae remains a taxonomic problem and further redefinition and combination with 

other groups is required (Szumik et al. 2008; Miller et al. 2012).  

In keeping with their arboreal habits the fossil records of both Phasmatodea and 

Embioptera are exceptionally poor. Traditionally a wide array of Mesozoic forms have 

been considered as stem group Phasmatodea (e.g. (A. Nel et al. 2010; Nel & Delfosse 

2011)). However no unambiguous characters link these with either of the two extant 

lineages and thus their ability to inform us regarding the group’s origin is extremely 

limited (Bradler & Buckley 2011). Fossil embiids showing all of the group’s major 

characters are known from late Jurassic (Huang & Nel 2009) and late Cretaceous ambers 

(Engel & Grimaldi 2006); however as yet we have only a limited picture of how these 

findings fit within the wider context of Polyneopteran diversification. 

1.4.5.6. Notoptera/Xenonomia- ice crawlers and heelwalkers 

The discovery of Mantophasmatodea stands out as one of the most unexpected and 

significant events in entomology in recent decades (Klass et al. 2002). This small group of 

nocturnal carnivores from southern Africa had apparently been overlooked due to their 

remarkable similarity to nymphs of other Polyneopteran groups, notably Phasmatodea and 

Orthoptera (Klass et al. 2002). Nevertheless their anatomy is highly distinct, not least for 

their characteristic tarsal morphology, whereby the terminal segments are held clear of the 

substrate, a feature which has earned them one of their many common names, the 

“heelwalkers” (others include “rock-crawlers” or “gladiator insects”). The other members 

of Xenomia are likewise unusual, the 27 species of Grylloblatodea (ice crawlers) are 

almost completely restricted to mountain tops and other cool environments in the Northern 

hemisphere where they live as slow moving predator-scavengers. Given the low diversity 

and comparatively homogenous form of these orders, both are typically treated as single 

families (although see (Damgaard et al. 2008) for an alternative treatment of 

Mantophasmatodea) and some schemes treat them as suborders of a united Notoptera.  

While the living fauna of Notopotera are clearly relictual the group has traditionally 

played host to a large array of difficult-to-place fossil taxa, most of which have been 

described in Grylloblattodea. The linking of these, typically isolated, wing fragments to the 



 40 

wingless extant forms is often tenuous (Huang, Nel & Petrulevičius 2008) and the several 

authors have recognized that the group has acquired a wastebasket status and is in need to 

review (Grimaldi & Engel 2005). It seems likely that among these various Paleozoic 

groups the stem lineages of Notopera and possibly of other extant groups (notably 

Eukinolabia) are present but as yet unidentified. Definitive members of both 

Mantophasmatodea and Grylloblatodea are known from the Jurassic of China (Huang, Nel, 

Zompro, et al. 2008; Huang, Nel & Petrulevičius 2008). 

1.4.5.7. Orthoptera- grasshoppers and crickets 

Grasshoppers and crickets are the most numerous (20,000 species; (Grimaldi & 

Engel 2005)) and familiar of the Polyneopteran orders. The monophyly of the order is 

defined by a number of features of which most obvious are the presence of a 

cryptopleuron, the saltatorial (jumping) hind limbs and the widespread presence of 

acoustic capabilities (Grimaldi & Engel 2005). The order is divided into two natural 

groupings: the typically nocturnal and omnivorous crickets and katydids (Ensifera), and 

the almost universally herbivorous, “shorthorn grasshoppers” and locusts (Caelifera). Most 

molecular treatments have tended to focus on only one of these suborders with the result 

that they differ considerably in their degree of phylogenetic resolution.  

Of the two suborders, Ensifera has proved to be the most problematic from a 

phylogenetic perspective, with many issues centering on a collection of large wingless 

taxa, formerly grouped in the superfamily Stenopelmatoidae (cave crickets; 

Rhaphidophoridae, Jerusalem crickets; Stenopelmatidae, king crickets and weta; 

Anostostomatidae and raspy crickets; Gryllacrididae) the monophyly of which, and their 

respective placement with respect to other major clades such as the true crickets 

(Grylloidea), the splay footed crickets (Schizodactylidae) and the, often herbivorous, grigs 

and katydids (Prophalangopsidae and Tettigoniidae) remains highly unstable in recent 

studies (Legendre et al. 2010). 

By contrast Caelifera shows a fair degree of consensus among analyses, including a 

basal division between Tridactyloidea (a detriverious groups with subterranean habits) and 

the remaining taxa comprising the pigmy grasshoppers (Tetrigidae) and the true locusts 

and their allies; Acridoidea (Song 2010; Leavitt et al. 2013). Within Acridoidea the limits 

of some of the families remains unclear; however recent taxonomic treatments have begun 

to resolve some of the problematic areas (Leavitt et al. 2013).  
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Orthoptera are recognized as has having a diverse fossil record (Béthoux & Nel 

2002; Béthoux 2007) and a stem member of this clade is considered the earliest definitive 

Neoptera (Prokop, Nel, and Hoch 2005). Given the taxonomic uncertainties, the 

relationships among fossil and extant taxa remain unclear, particularly with respect to 

Ensifera and as such the origin of modern familes remains poorly understood.  

1.4.6. Paraneoptera 

 

Figure 10 Examples of Parneopteran orders; Psocodea (1.4.6.1); A) 

“Psocoptera”, B) Pthiraptera; C) Thysanoptera (1.4.6.2); Hemiptera (1.4.6.3); D) 

Sternorrhyncha, E) Auchenorrhyncha, F) Heteroptera. 

Photo Attribution for previous page- All pictures used under a Creative Commons license, and sourced from 

http://commons.wikimedia.org 
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B. Gilles San Martin, 2010, 

http://commons.wikimedia.org/wiki/File:Male_human_head_louse_%284900867458%29.jpg 

C. Luis Fernández García, 2007, -http://commons.wikimedia.org/wiki/File:Thysanoptera1.jpg 

D. Drc406, 2009-http://commons.wikimedia.org/wiki/File:Greenflies_or_Aphids.jpg 

E. Tomwsulcer, 2013, http://commons.wikimedia.org/wiki/File:Cicada_on_tree_ready_to_party.jpg 

F. Shyamal, 2006,- 

http://commons.wikimedia.org/wiki/File:Unidentified_Largid_or_Pyrrhocorid_nymph.jpg 

When compared with Polyneoptera the three orders that comprise Paraneoptera 

(also referred to as Acercaria) have a number of robust features that suggest they form a 

monophyletic group including; the reduction in the tarsomeres to three or less, the large 
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postclypeus, and the detachment of the stylet-like lacinia from the stipes (Grimaldi & 

Engel 2005). It is therefore somewhat surprising that a number of recent phylogenetic 

studies have failed to recover this relationship with robust support, e.g. (Yoshizawa & 

Johnson 2005; Meusemann et al. 2010; Ishiwata et al. 2011; Simon et al. 2012; Misof et al. 

2014), although single marker studies e.g. (Misof et al. 2007; Wang et al. 2013) have 

successfully recovered the group, as has at least one genomic study under some analytical 

procedures (Letsch et al. 2012). Complete mitochondrial genomes have been highly 

inconsistent in Paraneopteran relationships, which may reflect high degrees of 

modification and compositional bias in certain lineages (Cameron et al. 2011). A key issue 

appears to be that the clade Psocodea, typically represented in such studies by parasitic 

groups such as the human louse Pediculus humanusm, whose highly modified and 

compositionally biased genome has proved problematic to compare with that of other 

hexapods (Letsch et al. 2012).  

Within Paraneoptera, most classifications treat Thysanoptera (thrips) and 

Hemiptera (bugs) as sister groups (forming the clade Condylognatha) which is supported 

by the structure of the mouthparts and forewings (Yoshizawa & Saigusa 2001; Nel, 

Prokop, et al. 2012), but which has received only modest support in molecular studies 

(Johnson et al. 2004; Misof et al. 2007; Wang et al. 2013) and is contradicted by others 

(e.g. (Wheeler et al. 2001; Talavera & Vila 2011)). Given the currently available data, and 

the lack of sequence data for non-parasitic Psocodea, it is perhaps prudent to consider the 

ordinal relationships within Paraneoptera as presently unresolved (Trautwein et al. 2012).  

1.4.6.1. Psocodea –lice and booklice 

Most traditional classifications divide the members of Psocodea into two distinct 

orders; the cryptic detritivorous booklice and barklice (“Pscoptera”) and the parasitic lice 

(Pthiraptera) (Grimaldi & Engel 2005). In most sources Pthiraptera is considered 

monophyletic, and either sister to or derived from within “Pscoptera”, with the family 

Liposcelididae often mentioned as an intermediate form (Grimaldi & Engel 2005). The 

first major test of the placement of lice originated from molecular data (Yoshizawa & 

Johnson 2003; Johnson et al. 2004; Murrell & Barker 2005) and confirmed that that they 

originated from within “Pscoptera” (rendering the later paraphyletic). However, these 

studies also implied that Pthiraptera, at the time regarded as one of the most robust insect 
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orders, was itself paraphyletic, i.e. that the specialist ecto-parasitic life style had originated 

several times independently in different booklice taxa (Yoshizawa & Johnson 2006).  

Subsequent analysis revealed considerable conflict among markers, with the 

strongest support for pthirapteran polyphyly coming from 18S rRNA (Yoshizawa & 

Johnson 2010) and the issue remains unresolved. As currently understood, lice are divided 

into two broad assemblages, the traditional suborder Amblycera vs. the suborders 

“Ischnocera”, Anoplura and Rhychophthirina, which may or may not be sister taxa, and 

nest somewhere within “Pscoptera”, with the families Liposcelididae, Pachytroctidae and 

Sphaeropsidae regarded as potential sisters to the louse clades (Yoshizawa & Johnson 

2010). The other three major clades of “Pscoptera” (Trogiomorpha, Psocomorpha and 

Amphientometae) are all regarded as monophyletic although their branching order and 

relationships differ across different markers (Yoshizawa & Johnson 2010; Yoshizawa & 

Johnson 2014). Accelerated rates of substitution in lice, possibly associated with their 

parasitic lifestyle, mean that this is a difficult region of the tree to resolve (Yoshizawa & 

Johnson 2003; Cameron et al. 2011) and no doubt further sampling of “Pscoptera” lineages 

will lead to fresh insights into the relevant relationships. All known fossil Psocodea are of 

the “Pscoptera” type, with numerous stem forms known from Paleozoic deposits (Grimaldi 

& Engel 2005) and the earliest undisputed crown taxa occurring in early Cretaceous 

ambers (Grimaldi & Engel 2006).  

1.4.6.2. Thysanoptera- thrips 

Thrips are distinctive tiny insects easily defined as monophyletic by their hair 

fringed wings, eversible pretarsal bladder and the reduction of the right mandible 

(Grimaldi & Engel 2005). Despite their often tiny size they exhibit a surprising ecological 

diversity with the majority being phytophagous or fungivorious, and the occasional 

predatory lineage, notably in the family Aeolothripidae (Mound 2010). The most important 

distinction in thrip systematics is between the suborder Tubulifera, which includes only the 

diverse family Phlaeothripidae, and the remaining seven extant families that collectively 

form Terebrantia. Traditionally Tubulifera were seen as having been derived from within 

Terebrantia (Mound & Morris 2007); however a recent molecular study concluded that 

both groups are monophyletic and also confirmed the monophyly of a number of the 

Terebrantia families (Buckman et al. 2013). Stem group thrips have been described from 

the late Carboniferous of France (Nel, Azar, et al. 2012). However, secure members of the 
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crown group are first recovered in mudstone (Shmakov 2009) and amber deposits of the 

early Cretaceous (P. Nel et al. 2010).  

1.4.6.3. Hemiptera- bugs 

The true bugs are the most species rich and ecologically important group of non-

holometabolan insects. Traditional classifications divide the group into the phytophagous 

“Homoptera” and the (primitively) predatory Heteroptera, although more modern schemes 

divide “Homoptera” into several lineages: Sternorrhyncha (including aphids and scales), 

Auchenorrhyncha (including froghoppers, cicadas and planthoppers) and Coleorrhyncha 

containing the single family Peloridiidae, with the last being recognized as the sister to 

Heteroptera (Resh & Cardé 2009). While the monophyly of Sternorrhyncha and 

Heteroptera have never been seriously challenged Auchenorrhyncha remains an 

outstanding problem, as the links between its two constituent infraorders Fulgoromorpha 

and Cicadomorpha have never been robustly established in molecular studies (Campbell et 

al. 1995; Xie et al. 2008). The most recent treatment based on seven gene regions supports 

a monophyletic Auchenorrhyncha with the overall topology being (Sternorrhyncha, 

(Auchenorrhyncha, (Coleorrhyncha, Heteroptera))) (Cryan & Urban 2012) although this 

arrangement is disputed in mitochondrial genome study of (Song et al. 2012).  

Within Sternorrhyncha arrangement of the five super-families are fairly well 

known with Phylloxeroidea (pine aphids) sometimes being grouped within Aphidoidea 

(true aphids) and the whole clade considered sister to scales (Coccoidea) with whitefly 

(Aleyrodidae) and plant lice (Psyllidae) as successive out-groups (Cryan & Urban 2012).  

Cicadomorpha is divided into three super families, Membracoidea (leaf and 

treehoppers), Cicadoidea (Cicadas) and Cercopoidea (froghoppers) with the last two being 

sister taxa (Cryan 2005; Cryan & Urban 2012). Relationships within Fulgoromorpha (plant 

hoppers) have only recently been established, with these results resolving a number of 

outstanding questions regarding the monophyly of a number of the included families, as 

well as identifying Cixiidae + Delphacidae as the outgroup to the remaining taxa (note that 

this topology implies a paraphyletic Auchenorrhyncha) (Song & Liang 2013).  

Heteroptera are the most morphologically diverse Hemipteran lineages with seven 

infra-orders traditionally recognized. Which of these groups is basal to the suborder 

remains an outstanding problem, with some authors favoring the terrestrial 

Enicocephalomorpha (gnat bugs) (Xie et al. 2008) and others the aquatic Nepomorpha 



 45 

(water bugs) (Li et al. 2012), or the aberrant nepomorph family Pleidae (pigmy 

backswimmers), which in mitogenome studies is placed within its own infra-order (Hua et 

al. 2009). The placements of three of the other major lineages, Gerromorpha (semi-aquatic 

bugs) Leptopodomorpha (shore bugs) and Dipsocoromorpha (litter bugs), remain variable 

among studies, resulting in much confusion regarding the direction of character evolution 

within the clade (Li et al. 2012). The final two infra-orders, the mostly predatory 

Cimicomorpha (which includes the large families Miridae; flower bugs and Reduviidae; 

(Hwang & Weirauch 2012; Jung & Lee 2012)) and the plant feeding Pentatomomorpha 

(shield bugs, stink bugs and their relatives (Li et al. 2005; Hua et al. 2008)), are almost 

universally regarded as sister taxa and comprise the land bugs or Geocorisae (Xie et al. 

2008; Li et al. 2012).  

Hemiptera are an ancient group with stem Heteroptera present in the Permian 

(Grimaldi & Engel 2005) and a number of extant families recorded from Triassic deposits 

(Fraser et al. 1996; Yao et al. 2012). A recent dating study indicated that Heteroptera 

represented a post Permian radiation; however the calibrations used did not incorporate 

these early fossils (Li et al. 2012). Less is known regarding the history of Sternorrhyncha 

and Auchenorrhyncha although both groups are present and diverse in late Mesozoic 

deposits (Grimaldi & Engel 2005). 

1.4.7. Holometabola 

 Collectively the Holometabolan orders, defined as those insects which conduct 

complete metamorphosis, represent over three quarters of all insect species and close to 

half of all described species on earth (Grimaldi & Engel 2005). The monophyly of the 

group has never been seriously challenged and it is the growing consensus regarding its 

internal relationships from both molecular e.g. (Castro & Dowton 2005; Savard et al. 2006; 

Zdobnov & Bork 2007; Cameron et al. 2009; Wiegmann et al. 2009; McKenna & Farrell 

2010; Longhorn et al. 2010; Meusemann et al. 2010; Niehuis et al. 2012; Peters et al. 2014; 

Misof et al. 2014), and morphological data (Beutel et al. 2011), that represents one of the 

great triumphs of modern hexapod systematics.  

Based on these, and related studies, the ordinal phylogeny of Holometabola is now 

more-or-less settled (Trautwein et al. 2012; Yeates et al. 2012) with Hymenoptera being 

recognized as basal and the remaining orders clustering in two large assemblages; 

Neuropteroidea (Neuropterida, Coleoptera, Strepsiptera), and Mecopterida, with the later 
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including two traditional groupings, Amphiesmenoptera (Trichoptera and Lepidoptera) and 

Antliophora which includes Diptera, “Mecoptera” and Siphonaptera. Outstanding issues, 

discussed in detail below, include the monophyly and association of “Mecoptera” within 

Antliophora (Whiting 2002; Wiegmann et al. 2009; McKenna & Farrell 2010), the ordinal 

relationships within Neuropterida (Winterton et al. 2010; Peters et al. 2014), and the 

precise placement of Strepsiptera with respect to Coleoptera (McKenna & Farrell 2010; 

Niehuis et al. 2012; Boussau et al. 2014). 

1.4.7.1. Hymenoptera- wasps, ants and bees 

 

Figure 11 Examples of major lineages of Hymenoptera (1.4.7.1); A) 

“Symphyta”, B) “Parasitica”, C) Aculeata 
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Hymenoptera are the smallest of the “big four” Holometabolan orders (based on 

described species (Grimaldi & Engel 2005)) and are now recognized as the basal member 

of the lineage. The key division within Hymenoptera is ecological, separating a primitive 

paraphyletic assemblage of basal taxa, the majority of whom have foliage feeding or wood 

boring larvae (“Symphyta” or sawflies), from the more derived groups, which are 

overwhelmingly parasitoids of other invertebrate taxa (Apocrita). From within the latter 

are derived the stinging wasps (Aculeata), a large and important clade that includes such 

ecologically key taxa as the “yellowjackets” (social wasps), bees and ants (Grimaldi & 

Engel 2005). Within this broad scheme recent phylogenetic work has focused on 



 47 

establishing infra-ordinal and superfamily relationships, with a particular focus on the 

origination of the key Aculeata groups.  

Within “Symphyta” phylogenetic relationships in recent studies more or less mirror 

traditional opinions such as the position of Xyeloidea as sister to the rest of the order 

(Sharkey et al. 2012) (although alignment dependent in (Heraty et al. 2011)), the 

monophyly of Tenthredinoidea (the “true sawflies”) (Heraty et al. 2011; Sharkey et al. 

2012) and the recognition of the clade Unicalcarida uniting the various plant boring sawfly 

groups Cephoidae, Siricoidae and Xiphydrioidea, with the parasitic Vespina. Within 

Unicalcarida relationships are unstable, with morphology favoring the traditional view of 

the wood boring Xiphydrioidea as sister to Vespina (Vilhelmsen et al. 2010; Sharkey et al. 

2012), while recent molecular evidence favors the herbaceous boring Cephoidae (Heraty et 

al. 2011). Traditionally also treated within “Symphyta”, the status of Orussidae as the basal 

member of Vespina has been challenged in some recent molecular studies (e.g. (Heraty et 

al. 2011)) a view that would render paraphyletic the traditional clade Apocrita defined, by 

the distinctive “wasp waist” contraction of the first and second abdominal segment, 

although the clade was retained in the total evidence study of (Sharkey et al. 2012).  

The majority of Apocrita families comprise the problematic grade “Parasitica”, 

whose major features, particularly above the superfamily level, are the key issue facing 

hymenopteran systematics (Rasnitsyn 2010; Ronquist et al. 2012). The most recent studies 

have begun to suggest the presence of two broad assemblages: Proctotrupomorpha 

(Rasnitsyn 1988); which includes the “micro-hymenoptera” traditionally placed in the 

superfamilies’ Platygastroidea, Cynipoidea, Diaprioidea, Mymarommatoidea, 

Chalcidoidea and “Proctotrupoidea” (Heraty et al. 2011; Vilhelmsen et al. 2010; Munro et 

al. 2011; Sharkey et al. 2012), and Evaniomorpha; which includes Megalyroidea, 

Ceraphronoidea, Trigonaloidea, Evanioidea and Aculeata (Rasnitsyn 1988). Support for 

the later (and for the monophyly of Aculeata) is very low in most datasets (Heraty et al. 

2011; Sharkey et al. 2012). Within this scheme the placement of the large lineage 

Ichneumonoidea remains unclear ((Sharkey et al. 2012) favour a placement close to 

Proctotrupomorpha), as are the positions of the basal families Stephaniidae and 

Megaspilidae (linked with Orussidae in (Heraty et al. 2011)). 

Despite low support in some recent molecular datasets the monophyly of Aculeata 

remains widely accepted among hymenopteran systematics, which may reflect limits in the 

available data (Sharkey et al. 2012). Key questions within the group concern the origin of 
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the two ecologically important groups of eusocial insects, the predatory ants (Formicidae) 

and the pollinating bees (Anthophila), which in their own way have each played a role in 

revolutionizing post-Cretaceous ecosystems (Grimaldi & Engel 2005). One of the biggest 

insights in recent years has been to recognize that the traditional superfamily “Vespoidea”, 

appears to be paraphyletic (Pilgrim et al. 2008; Debevec et al. 2012; Johnson et al. 2013) 

which has led to various attempt to reexamine the placement of its former components 

(which includes the ants). Current theories regarding ant origins place them as sister to a 

loose assemblage of taxa which include Scoliidae, Bradynobaenidae (in part) and Apoidea 

(the last superfamily including bees) (Pilgrim et al. 2008; Debevec et al. 2012), or as sister 

to bees and their immediate relatives (Crabronidae) (Johnson et al. 2013).  

Adding to the ambiguities regarding the early evolution of Hymenoptera, the fossil 

record of the group shows a remarkable rapid radiation of forms beginning in the Late 

Triassic, without obvious precursors among the Palaeozoic fauna (Rasnitsyn & Quicke 

2002; Grimaldi & Engel 2005; Rasnitsyn & Zhang 2010; Warnock et al. 2011; Ronquist et 

al. 2012). Given that phylogeny implies the group must have been present since at least the 

Carboniferous (Nel et al. 2007; Nel et al. 2013) this apparent gap in the record is puzzling, 

leading some authors to revisit ideas regarding links to the mysterious stem Holometabolan 

order Miomoptera (Ronquist et al. 2012). The group has also been subject to molecular 

clock studies, including a total evidence analysis supporting a Permian diversification 

(well before the earliest known fossil evidence) (Ronquist et al. 2012) and genomic studies 

looking at the late Jurassic divergences within Aculeata (Wilson et al. 2013). 
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1.4.7.2. Neuropterida- lacewings, alderflies, and snakeflies 

 

Figure 12 Examples of neuropteroid orders; Neuropterida (1.4.7.2), A) 

Raphidoptera, B) Megaloptera, C) Neuroptera; D) Strepsiptera (1.4.7.3); Coleoptera 

(1.4.7.4); E) Archostemata, F) Adephaga, G) Myxophaga, H) Polyphaga 
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Neuropterida comprise a small group of relictual Holometabola, conventionally 

divided into three orders Raphidoptera (snakeflies), Megaloptera (alderflies, and 

dobsonflies) and Neuroptera (lacewings). All three groups comprise relatively large bodied 

Holometabola with, for the most part, predatory larvae. While most Neuropterida are 

terrestrial, Megaloptera and some of the basal Neuroptera (Nevrorthidae, Sisyridae and 
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some Osmylidae) are aquatic during the larval stage, with the primitive ecology for the 

group as a whole being highly controversial (Aspöck et al. 2012).  

Relationships between the three orders are controversial (Winterton et al. 2010; 

Beutel et al. 2011; Trautwein et al. 2012; Peters et al. 2014) with some studies going so far 

as to challenge the monophyly of Megaloptera, although this appears to be associated with 

highly modified, or mis-sequenced rRNA attributed to one of the families (Winterton et al. 

2010). The most recent study, which uses comprehensive genomic data, supports 

Raphidoptera as the basal taxon, with a monophyletic Megaloptera as sister to Neuroptera 

(Peters et al. 2014), a placement that is also consistent with morphological analyses (Beutel 

et al. 2011). Within Neuroptera the monophyly of the traditional suborder 

Hemerobiiformia has been challenged, and various families have subsequently been 

proposed as basal within the group including Coniopterygidae (Winterton et al. 2010), 

Nevrorthidae (Haring & Aspöck 2004) and Sisyridae (Zimmermann et al. 2011) (reviewed 

in (Aspöck et al. 2012)). In contrast with many other Holometabolan groups the fossil 

diversity of Neuropterida exceeds its extant richness (Labandeira & Sepkoski Jr 1993; 

Grimaldi & Engel 2005), leading to an interpretation of the group as relictual (see 

(Nicholson 2012) for review). 

1.4.7.3. Strepsiptera 

Strepsiptera are miniaturized and highly modified parasitoids that were until 

recently the most phylogenetically problematic holometabolan order. The group is 

characterized by a number of remarkable features including the extreme reduction of 

forewings (recalling the halters of true flies), larviform females that never (except in the 

most basal family) leave their invertebrate hosts, and most importantly for understanding 

their phylogenetic history, a highly modified structure for rRNA molecules (Xie et al. 

2009) and a genome showing strong compositional bias (A/T richness) when compared 

with other hexapod groups (Gillespie et al. 2005). It was on the basis of these rRNA 

markers that early analyses e.g. (Whiting & Wheeler 1994; Whiting et al. 1997; Whiting 

1998) linked the group with Diptera (forming the clade “Haltaria” (Whiting et al. 1997)), 

and the issue has become one of the most well known examples of the widespread error in 

phylogenetic analysis known as long branch attraction (Huelsenbeck 1998).  

More recently there has developed a strong consensus from both morphological 

(Friedrich & Beutel 2010a; Beutel et al. 2011; Koeth et al. 2012; Peters et al. 2014), and 
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molecular studies (Wiegmann et al. 2009; McKenna & Farrell 2010; Longhorn et al. 

2010)(McKenna & Farrell 2010)(Longhorn et al. 2010) placing Strepsiptera as close to 

Coleoptera (Niehuis et al. 2012; Trautwein et al. 2012; Peters et al. 2014). Problematically 

the monophyly of Coleoptera with respect to Strepsiptera has not been robustly established 

on all molecular markers (McKenna & Farrell 2010), although the most recent studies 

which have included genomic data from the basal coleopteran suborder Archostema (see 

below) have rejected nesting Strepsiptera within the beetles (Niehuis et al. 2012; Boussau 

et al. 2014; Misof et al. 2014). In the interests of simplicity, and in order to reduce 

problems of long branches associated with this group, I here treat Strepsiptera as a single 

terminal taxon and refer readers interested in the relationships between the seven included 

families to (McMahon et al. 2011). 

1.4.7.4. Coleoptera- beetles 

Subject to a well-known “inordinate fondness” as well as an astonishing array of 

ecological diversity, Coleoptera is, in terms of described species, the largest of the 

holometabolan orders and was the first to undergo systematic study using molecular data at 

the family level (Hunt et al. 2007). This topology, the raw data for which is partially used 

here, remains the standard framework for discussing the group, with the majority of other 

recent discussion focusing on either deep relationships among the four suborders (Beutel & 

Haas 2000; Hughes et al. 2006; Friedrich et al. 2009; Lawrence et al. 2011) or on 

relationships within particular superfamily groups (e.g. (Kundrata et al. 2014)). The four 

suborders of Coleoptera differ substantially in their ecologies, with the small suborder 

Archostema and Myxophaga being wood-boring fungus feeders and aquatic algal scrapers 

respectively (Arnett & Thomas 2000), while the larger predominately predatory Adephaga 

are split among aquatic (“Hydradephaga”) and terrestrial forms (Geoadephaga) (Maddison 

et al. 2009). The vast majority of the group’s diversity falls within the largely terrestrial 

subfamily Polyphaga, which includes five major series: Staphyliniformia, Scarabaeiformia 

(=Scarabaeoidea), Elateriformia, Bostrichiformia and Cucujiformia, all of which show 

substantial ecological diversity.  

The relationships of the suborders remain controversial, with traditional views, 

placing Archostema as sister to the remaining sub-orders (with Myxophaga sister to 

Polyphaga) (Beutel & Haas 2000; Friedrich et al. 2009; Hughes et al. 2006) conflicting 

with more recent morphological studies favoring a topology of ((Archostema, 



 52 

Adephaga),(Myxophaga, Polyphaga)) (Lawrence et al. 2011), and with molecular data, 

which supports Adephaga and Polyphaga as sister groups with Archostema being nested 

within Myxophaga (Hunt et al. 2007) (although see (Maddison et al. 2009) for an 

alternative opinion). 

Within Adephaga phylogenetic questions focus on whether the groups shows a 

single (Ribera et al. 2002; Hunt et al. 2007) or multiple (Maddison et al. 2009; Dressler & 

Beutel 2010; Beutel et al. 2013) transitions from water to land (or vis-versa) (reviewed in 

(Jardine 2010)). In Polyphaga the deep phylogenetic structure is uncertain e.g. the 

respective monophylies of Staphyliniformia, Elateriformia and Bostrichiformia, (Hunt et 

al. 2007; Lawrence et al. 2011). One major clade that has been robustly supported on 

molecular and morphological data is Cucujiformia (Hunt et al. 2007; Lawrence et al. 

2011), containing over half of all beetle families, and of particular interest due to 

containing the spectacularly rich plant feeding lineages Curculionoidae (weevils or snout 

beetles) and Chrysomeloidae (leaf and longhorn beetles) (often grouped as phytophaga 

(Lawrence et al. 2011)). Due to their ecological and economic importance, these last 

groups have received further phylogenetic attention, e.g. (Gómez-Zurita et al. 2007; 

McKenna et al. 2009), although their derivation and relationships with the other 

Cucujiformia, most of which are small bodied and cryptic fungus feeding beetles, remains 

poorly understood.  

Until recently the earliest recognized stem Coleoptera was also the earliest known 

Holometabolan, Adiphlebia lacoana from the Carboniferous Mason Creek formation of the 

USA (Béthoux 2009). However this placement has been challenged, which renders the 

earliest known coleopterans as various Permian Protocoleoptera, primarily known from 

Russian deposits (Kukalová-Peck & Beutel 2012). Extant families of three of the suborders 

Archostema (Cupediae) (Martins-Neto et al. 2006), Adephaga (Carabidae) (Grimaldi & 

Engel 2005) and Polyphaga (Staphylinidae) (Chatzimanolis et al. 2012) are known 

deposits from the Middle to Late Triassic, with the earliest Myxophaga reported from 

Cretaceous mud-stones (Cai et al. 2012) and ambers (Kirejtshuk 2009).  
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1.4.7.5. Mecoptera and Siphonaptera –scorpion flies and fleas 

 

Figure 13 Examples of major lineages of Antliophora; “Mecoptera” (1.4.7.5); 

A) Pistillifera, B) Siphonaptera; Diptera (1.4.7.6); “Nematocera”; C) Culicomorpha, 

D) Bibionomorpha; Brachycera; E) “Orthorrhapha”, F) Schizophora 
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Mecoptera are another cryptic and possibly relictual group, whose placements with 

respect to other Antliophora remain one of the major outstanding problems in 

Holometabolan phylogenetics (Trautwein et al. 2012; Yeates et al. 2012). Most treatments 

recognize four basic divisions, the placements of which, with respect to each other and to 
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Diptera, remain highly contentious. One of these divisions includes the parasitic fleas, 

which were formerly treated as their own order (Siphonaptera). Evidence placing fleas 

within a paraphyletic Mecoptera has come from a number of molecular studies, proposing 

links with the flightless northern hemisphere family Boreidae (Whiting 2002; Kjer 2004; 

Kjer et al. 2006), although this view is less favored in studies using nuclear molecular 

markers (Wiegmann et al. 2009; McKenna & Farrell 2010; Ishiwata et al. 2011; Misof et 

al. 2014) (see also (Beutel et al. 2011)). Also problematic is the placement of the obscure 

Gondwanan family Nannochoristidae, which has unique aquatic larvae, and has 

traditionally been seen as sister to the rest of the order (Friedrich & Beutel 2010b; Fraulob 

et al. 2012).  

All other families comprise the infra-order Pistillifera that is dominated by two 

relatively large families, the scavenging Panorpidae (“true” scorpionflies) and the 

predatory Bittacidae (“hangingflies”) and whose phylogeny above the family level remains 

poorly established (Whiting 2002). Within fleas there has been some attempt to resolve the 

phylogeny with recent efforts revealing Tungidae as sister to the rest of the order, and also 

confirms the monophyly of most of the recognized families, with exceptions of 

Hystrichopsyllidae, Leptopsyllida and Ctenophthalmidae, all be it with low support above 

the family level (Whiting et al. 2008).  

The fossil record of Mecoptera and Siphonaptera are active areas of research, in 

part with an aim to resolve the phylogenetic ambiguities of the group. A major recent 

advance has been the recovery from Cretaceous deposits in China of stem group fleas, the 

study of which is providing fresh insights into the origins of ecto-parasitism within the 

group (Huang et al. 2012; Gao et al. 2013). 

1.4.7.6. Diptera- Flies 

Of the four “mega diverse” holometabolan orders, Diptera is the most ecologically 

varied and contains taxa feeding on almost any conceivable organic resource (see 

(Marshall 2012)). Progress in establishing the phylogeny of Diptera has been rapid in 

recent years with the publication of major new morphological (Lambkin et al. 2013) and 

molecular datasets (Bertone et al. 2008; Trautwein et al. 2010; Wiegmann et al. 2011; 

Caravas & Friedrich 2013).  

The most basal Diptera are now recognized as highly modified aquatic groups 

associated with fast flowing mountain streams in the Northern hemisphere 
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(Deuterophlebidae, and possibly also Nymphomyiidae) (Wiegmann et al. 2011; Lambkin 

et al. 2013) and aquatic or semi-aquatic larvae are common among a number of the basal 

dipteran lineages including: Tipulomorpha (crane flies), Culicomorpha (mosquitoes and 

midges), Psychodomorpha (sand flies and scavenger flies) and Blephariceromorpha (net 

winged midges). The order of branching in this part of the tree is highly uncertain and 

receives low support in both morphological (Lambkin et al. 2013) and molecular studies 

(Bertone et al. 2008; Caravas & Friedrich 2013). The remaining, more terrestrialised, 

Diptera comprise the clade Neodiptera whose basal members form a monophyletic group 

including the fungus midges, gall midges and march flies known as Bibionomorpha 

(Wiegmann et al. 2011; Caravas & Friedrich 2013).  

All of the flies described above belong the paraphyletic suborder “Nematocera”. 

Flies with reduced antenna, as well as a variety of other morphological features, comprise 

the robustly supported monophyletic suborder Brachycera. Relationships among the basal 

Brachycera remain contentious with (Wiegmann et al. 2011) grouping many of these taxa 

into a modestly supported clade “Orthorrhapha”, most of whose members (with the 

exception of soldier flies- Stratiomyomorpha) have predatory larvae and are divided in 

traditional classifications into three infra-orders “Tabanomorpha”, “Asilomorpha” (sensu 

stricto- excluding Empidoidae) and “Stratiomyomorpha”). The status of “Orthorrhapha” 

remains ambiguous as the group lacks morphological support (Lambkin et al. 2013) and 

was not recovered in the molecular sensitivity analysis of (Caravas & Friedrich 2013). By 

contrast the sister group relationship between Empidoidae (dance flies and long-legged 

flies) with remaining Diptera (the clade Cyclorrhapha) is robustly supported in all datasets 

confirming traditional ideas regarding the placement of these taxa (Eremoneura; 

(Wiegmann et al. 2011; Caravas & Friedrich 2013; Lambkin et al. 2013)).  

The Cyclorrhapha includes three (possibly four) clades, the relationships between 

which have important implications for the history of larval development in Diptera, and 

which were investigated with micro-RNA data by (Wiegmann et al. 2011). Phoridae and 

its close relatives (the superfamily Platypezoidae) share with the more derived 

Cyclorrhapha (Schizophora) a number of important developmental innovations including 

patterns of gene expression in the early embryo (Wiegmann et al. 2011). Despite this, both 

micro-RNA work and multi-gene datasets support Syrphoidea (hoverflies) as sister to 

Schizophora (Wiegmann et al. 2011), with the status of Pipunculidae, usually treated 

within Syrphoidea but sister to Schizophora in (Wiegmann et al. 2011), remaining 
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uncertain (Lambkin et al. 2013). This topology is also robustly supported in the molecular 

sensitivity analysis of (Caravas & Friedrich 2013).  

The phylogeny of Schizophora is the major outstanding problem in Dipteran 

systematics with over half of fly families being grouped among vaguely defined super-

families and a large number systematic questions regarding isolated and rare genera 

(Marshall 2012). A notable member of this messy grade is the model “fruit fly” 

Drosophila, the potential sister groups of which are discussed in (Wiegmann et al. 2011). 

The most well-resolved clade within Schizophora is Calyptratae which includes at its base 

the blood feeding, ecto-parasitic superfamily Hippoboscoidea, and then a series of familiar 

groups such as house flies (Muscidae), dung flies (Scathophagidae), blow flies 

(Calliphorida) and the parasitoid tachinids (Tachinidae) whose relationships and reciprocal 

monophyly remains an area of active contention (Marinho et al. 2012; Caravas & Friedrich 

2013). 

As with Hymenoptera, Diptera first appear in the fossil record as a diverse radiation 

(in this case in the middle Triassic) with early members linked to many of the major clades 

including basal Brachycera (Krzemiñski & Krzemiñski 2003; Blagoderov et al. 2007). 

While the fossil record of basal Diptera is rich, due to their small size and delicate form, 

Schizophora are extremely rare, with the earliest example being a leaf mine trace from the 

early Paleocene of Montana, USA (Winkler et al. 2010).  
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1.4.7.7. Trichoptera- Caddisflies 

 

Figure 14 Major lineages of Amphiesmenoptera; Trichoptera (1.4.7.7); A) 

Larva, B) Adult; Lepidoptera (1.4.7.8); C) Micropterigidae, D) basal Glossata, E) 

Macroheterocera, F) Papilionoidea  

Photo Attribution- All pictures used under a Creative Commons license, and sourced from 

http://commons.wikimedia.org 

A. MyForest 2001- http://commons.wikimedia.org/wiki/File:Caddisfly_Larva.jpg 

B. Donald Hobern 2014 - http://commons.wikimedia.org/wiki/File:Pending_%2814253583265%29.jpg 

C. Neville Hudson 2009-http://commons.wikimedia.org/wiki/File:Sabatinca_lucilia.jpg 

D. Virtala 2006 -http://commons.wikimedia.org/wiki/File:Hepialus_fuscoargenteus.jpg 

E. Zuhairali 2010- http://commons.wikimedia.org/wiki/File:Moth_Kerala.jpg 

F. Charlesjsharp 2013- http://commons.wikimedia.org/wiki/File:Gatekeeper_hedge_brown.jpg  

The long-recognized sister group to Lepidoptera, adult Trichoptera are cryptic, and 

short lived insects that resemble small drab moths with wings covered by fine hairs 

(Holzenthal et al. 2007). The larvae are aquatic and in the most familiar examples 

constructing protective cases from organic or inorganic debris. Such larvae play key roles 

in a wide variety of aquatic ecosystems, with the majority acting as detritivores or filter 

feeding, with a limited number of derived predatory forms (reviewed in (Holzenthal et al. 

2007)) 

Case-building behavior provides the basis for traditional systematics in Trichoptera 

with three suborders being recognized; the “retreat” forming Annulipalpia, the mobile case 

building Integripalpia and the free living “Spicipalpia”, the last being almost certainly 
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paraphyletic and basal to the clade as whole (Holzenthal et al. 2007; Malm et al. 2013) 

(although see (Wiggins 2004)). The most recent phylogenetic treatment suggested that 

Annulipalpia and Integripalpia are sister groups and recovers Rhyacophilidae as basal 

among the “Spicipalpia” (Malm et al. 2013), although support within the latter is low and 

other recent publications have reported different arrangements of the families involved, 

e.g. (Holzenthal et al. 2007).  

The earliest definitive Trichoptera are Jurassic and a recent molecular clock study 

placed the divergence between Trichoptera and Leipdoptera as around 234 MA during the 

late Triassic (Malm et al. 2013). As is typical of aquatic groups, the record of Trichopteran 

families is comparatively rich (Grimaldi & Engel 2005), and the earliest examples of case 

building are known from the early Jurassic of Siberia, consistent with a rapid early 

divergence of the groups in question (Malm et al. 2013).  

1.4.7.8. Lepidoptera- moths and butterflies 

By contrast with the other mega-diverse orders, Lepidoptera are, with only a few 

isolated exceptions, exclusively plant feeders, making the group one of the most important 

global consumers of angiosperm tissue and, as a result, subject to close coevolution with 

the flowering plants (Ehrlich & Raven 1964; Powell et al. 1998). Recent phylogenetic 

analyses have challenged some of the long held views from traditional morphological 

phylogenies of the group e.g. (Kristensen 1999) particularly with respect to the derived 

clade “Macrolepidoptera” (Minet 1990); traditionally uniting the butterflies- Papilionoidea 

(which contrary to some recent analyses e.g. (Cho et al. 2011) appear to be monophyletic 

(Heikkilä et al. 2011; Kawahara & Breinholt 2014)) with the relatively large bodied 

“macro-moths” of the super-families Bombycoidea, Geometroidea, Lasiocampoidea and 

Noctuoidea (now united as the clade Macroheterocera (Regier et al. 2013)). 

“Macrolepidoptera” is now recognized as paraphyletic with butterflies instead falling at the 

base of the more inclusive group Obtectoma (Regier et al. 2013; Kawahara & Breinholt 

2014) which also includes the small bodied Gelechioidea (Kaila et al. 2011) and 

Pyraloidea.  

Towards the base of the tree the status of the mandibulate moths (Micropterigidae) 

as sister to the rest of the order (Wiegmann et al. 2000; Wiegmann et al. 2002) has recently 

been challenged, with evidence linking them to another lineage of basal moths, the 

Agthiphagidae (Regier et al. 2013). Other areas of contention and low support include the 
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phylogeny of the basal Glossata, moths with a proboscis, (Regier et al. 2013) and in 

particular the identification of the sister group to Ditrysia (moths with partitioned female 

reproductive tracts including >90% of all species) with (Regier et al. 2013) favoring part of 

the paraphyletic “Palaephatidae”, as well as the monophyly of the traditional superfamily 

Tineoidae (Regier et al. 2013; Mutanen et al. 2010). When compared with other large 

insect groups the fossil record of Lepidoptera is exceptionally poor (see (Sohn et al. 2012) 

for a review of the known taxa). Like their sister group the earliest definitive Lepidoptera 

are Jurassic in age, e.g. (Huang et al. 2010).  

1.5. Overall thesis aims 

The main hypotheses that I aim to test within this thesis and the relevant 

background information are summarized above (Section 1.2). To reiterate my goals are:  

1. To construct a dated phylogenetic framework based on our current 

understanding of hexapod relationships, that can form the basis for 

addressing issue of taxonomic diversification within the clade, within the 

limits of current data (Chapter 2) 

2. To test which, if any, of the following morphological innovations (origin of 

the insect body plan, flight, wing folding and complete metamorphosis) 

correspond with shifts in the diversification rate of hexapods and to 

examine other patterns of rate shifts responsible for the extant variation in 

richness among different sub-clades (Chapter 3) 

3. To formally test, in the context of an explicit phylogeny, ideas relating to 

co-evolution and plant feeding as drivers of hexapod diversity and to 

extended this framework to looking at patterns associated with dietary 

ecology more generally (Chapter 4) 

4. To test the association between body size and diversity among hexapod 

families and examine the macro-evolutionary mechanisms underpinning 

size evolution in the group (Chapter 5). 

 



 60 

2. Constructing and Dating the Hexapod Tree 

2.1. Abstract 

This section describes the data and protocols used in the construction of the dated 

topology for Hexapoda used in subsequent chapters to infer diversification patterns within 

the group. A global phylogenetic framework for Hexapoda was inferred from eight widely 

sampled molecular markers, both nuclear and protein coding regions and rRNA sequences 

from public databases, in combination with literature-defined constraints to control the 

placement of unstable taxa. The final data-matrix had a length of 7021bp and was 50.69% 

complete at the nucleotide level for the 874 included terminal taxa. Topology was inferred 

using the ML algorithm RAxML, and the resulting tree dated using an independent gamma 

rates clock implemented in MrBayes 3.2. Calibration of the clock was based on 86 fossil 

constraints implemented as hard minimum bounds. Recovered ordinal relationships 

corresponded closely with the consensus hexapod phylogeny presented in Chapter 1. 

However, as in previous studies using molecular markers, our methods struggled to resolve 

diverse and rapidly evolving groups, such as Apocrita (Hym.), “backbone” relationships of 

Polyphaga (Col.), Schizophora (Dip.) and Apoditrysia (Lep.). With respect to dating, our 

results show greatest similarity with previous studies sharing a common philosophy 

regarding implementation of calibration fossils, although there are outstanding issues 

related to differences in the phylogenetic resolution of different datasets. Our findings 

support a crown radiation of hexapod taxa well before the earliest fossils of the group, 

potentially back as early as the Ordovician, with a Middle Paleozoic ordinal diversification 

followed by family level divergences in the Late Permian and early Mesozoic.  
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2.2. Introduction  

Understanding patterns of diversification requires a phylogenetic perspective on the 

group in question in order that the location of shifts in diversification rate and their 

relationship to potential traits of interest can be correctly identified (Stanley 1998). The 

phylogenic relationships among the Hexapoda have traditionally been difficult to infer due 

to limitations on informative morphological characters and inadequacies in the fossil 

record in documenting transitional forms (Whitfield & Kjer 2008; Béthoux 2009). As a 

result previous attempts to incorporate phylogenetic information into the study of 

diversification in the group have either lacked an explicit basis for the relationships used 

e.g. (Mayhew 2002; Mayhew 2003) or are subject to methodological issues due to the use 

of supertrees and non-independent source data, e.g. (Davis et al. 2010; Davis et al. 2011). 

The recent expansion of molecular markers for hexapod groups (Terry & Whiting 2005; 

Regier et al. 2008; Wiegmann, Trautwein, et al. 2009; McKenna & Farrell 2010; Ishiwata 

et al. 2011), as well as enhancements in analytical techniques, have resulted in a growing 

consensus regarding the deep relationships within the group (reviewed in Section 1.4). As 

a result of these developments it is now feasible to attempt to infer an explicitly based 

phylogeny for the clade as a whole in order to provide new insights into the pattern of 

diversification. 

The use of molecular data to define relationships in Hexapoda has the further 

advantage that it allows the dating of the phylogeny through the use of relaxed molecular 

clocks (Rutschmann 2006; Drummond et al. 2006). For hexapods this is particularly 

significant as much of the known fossil record of the group is restricted deposits of 

exceptional quality (Lagerstätten) (Grimaldi & Engel 2005) and as a result their record is 

often incomplete (Wills 2001) and subject to geological or sampling noise (Labandeira & 

Sepkoski Jr 1993; Davis et al. 2010; Nicholson et al. 2014). This effect is most notable 

during the Paleozoic when insect bearing deposits are rare (Engel & Grimaldi 2004; 

Béthoux 2009; Garrouste et al. 2012), as well as for lineages with low preservation 

potential such as Protura, Pthiraptera (lice) and Siphonaptera (fleas) (Grimaldi & Engel 

2005; Huang et al. 2012). In resolving the inadequacies of the fossil record a dated 

phylogeny of the group provides the ability of explore the impact of specific historical 

links to hexapod diversification, for example Permo-Triassic mass extinction (Labandeira 
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& Sepkoski Jr 1993; Grimaldi & Engel 2005; Labandeira 2005) and the Cretaceous rise of 

the flowering plants (angiosperms) (Fiz-Palacios et al. 2011; Clarke et al. 2011).  

2.3. Topological reconstruction 

2.3.1. Methods 

The raw sequence data for the inference of the Hexapod phylogeny used in this 

study was extracted from Genbank (Benson et al. 2013), and the curated ribosomal 

database SILVA (Pruesse et al. 2007) and using BLAST (Altschul et al. 1990) searches 

targeted on Drosophila sequences for genes previously used for phylogenetic inference 

above the family level. Accessions for the target sequences used are shown in tables linked 

to Appendix 7.1, and were taken directly from previous publications or a published 

complete mitochondrial genome (ref AJ400907) (Azou & Bregliano 2001). Our initial 

survey included fourteen genes collectively encompassing the set used in previous super-

matrix studies (Kjer et al. 2006; Regier et al. 2008; Wiegmann, Trautwein, et al. 2009; 

Ishiwata et al. 2011). Following reviewers comments on an early draft publication, 

reharding high levels of introduced missing data as compromising the underlying inference 

model (17.1% nucleotide complete dataset of 21,634 bp length, driven primarily by 

markers available only at the ordinal level, i.e. for approximately 36 of the 880 terminal 

taxa), this set was reduced to only encompassed the most widely sampled markers, all of 

which had family level coverage in at least one or two major orders. This reduced set, on 

which all the analyses presented here are based, incorporated eight molecular markers, 

including nuclear (CAD, Ef1α, PGD) and mitochondrial (COI, COII) protein coding genes 

and 16S, 18S and 28S rRNA.  

Given that our goal was to investigate patterns at a higher taxonomic level due to 

the resolution of available richness data and fossil calibrations we took the unusual step of 

combining sequence data from multiple studies and species in order to maximize coverage 

across the different studied markers i.e. the terminal taxa used are chimeras with sampling 

favoring those with highest similarity to the BLAST target. This differs from the more 

common practice of using sequences for a single taxon (if not a single individual) as an 

exemplar for the placement of a larger group. While the former approach, which is 

common in studies using secondary data e.g. (Peters et al. 2011; Fiz-Palacios et al. 2011), 

has the benefit of maximizing the often sparse coverage of markers across taxonomic 

groups (Springer et al. 2004; Campbell & Lapointe 2009) it does entail an assertion of 
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monophyly for the group in question (i.e. that there is no conflict in the signal between 

different gene partitions (Yoshizawa & Johnson 2010; Leigh et al. 2011; Simon et al. 

2012; Caravas & Friedrich 2013)) which as noted in Chapter 1 is not universally true of all 

hexapod families. In a sense this issue of assumed monophyly is moot, as the downstream 

analyses of species richness patterns themselves assume that all terminals are 

monophyletic groups (Chapters 3-5); however it does also introduce a level of conflict 

among markers that may contribute to phylogenetic instability (Nosenko et al. 2013). In 

the absence of high resolution phylogenetic data and in the face of current taxonomic 

understanding, we felt that the benefits of using the most complete available sequences for 

each marker for each terminal group outweighed any introduced ambiguities in taxonomic 

placement, particularly given the already sparse nature of available sequence data. Thus we 

present our work as contingent on current taxonomic assignments within hexapods and 

expect that future improvements in these hypotheses will enhance the model presented 

here. 

The taxonomy of most hexapod groups was resolved to the family level (tips listed 

in Appendix 7.1), following Genbank up to August 2013 in order to maintain consistency 

across genetic partitions. Exceptions to the family level resolution include the Hemiptera 

suborder Sternorrhyncha (Aphidoidea (10 families), Coccoidea (23 families), 

Phylloxeroidea (2 families) and Psylloidea (7 families)) and the small parasitic order 

Strepsiptera (7 families). In the former case this was the result of taxonomic conflict 

between Genbank and the consulted sources of species richness estimates, while in the 

case of the latter this represented a deliberate strategy to minimize problems of long branch 

attraction known to be associated with this taxon (Huelsenbeck 1998; Pohl & Beutel 2005; 

Niehuis et al. 2012). In total the groups included on the presented tree incorporate a total of 

903 of the approximately 1100 recognized extant hexapod families, with the remainder 

being excluded on account of a lack of suitable sequence information.  

The eight markers sampled were individually aligned using MAFFT (local pair 

distances, max iterations=1000) (Katoh et al. 2002), with the exceptions of 18S and 28S 

which were aligned using an automated profile alignment based on the structural reference 

database SILVA (Pruesse et al. 2007). This approach was selected due to the combination 

of time efficiency and the preservation of conserved structural elements that previous 

studies have shown to be significant in accurate phylogenetic reconstruction within 

Hexapoda (Misof et al. 2007; Wang et al. 2013). All partitions were subjected to Gblocks 
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(Talavera & Castresana 2007) in order to remove regions of poor alignment, and limited 

overlap among taxa, with the minimum conserved block length set to three for protein 

coding genes and two for ribosomal sequences. Third codon positions for all protein-

coding sequences were also excluded due to the risk of substitution saturation (Ho & 

Jermiin 2004) following the testing of preliminary datasets using the index proposed by 

(Xia et al. 2003) implemented in the program DAMBE (Xia & Xie 2001). In total the 

concatenated sequence had a length of 7021bp and was 50.69% complete at the nucleotide 

level (aligned sequences linked to in Appendix 7.1).  

2.3.1.1. Constraints on Topology  

Recent studies attempting to infer broad scale phylogenies for diverse groups have 

typically relied on a tiered system of phylogenetic inference such that datasets with 

restricted taxonomic sampling have been used to provide a backbone in order to guide the 

placement of the rest of the tree e.g. (Wiens et al. 2005; Jetz et al. 2012). For Hexapoda the 

distribution of sequence information currently available in Genbank (particularly for the 

reduced set of genes considered here) means that there are restrictions on the availability of 

data for the most controversial nodes within the tree and as a result a backbone approach 

fails to adequately control the placement of unstable taxa (Whitfield & Kjer 2008; 

Trautwein et al. 2012; Yeates et al. 2012). Instead we adopted a constraint-based approach 

whereby relationships that have been recovered as consistently well supported in previous 

studies were used to guide the reconstruction of the tree used here. In order to define 

suitable constraints the available phylogenetic literature for hexapods was reviewed since 

2005 (Section 1.4), and used to define suitable constraints in accordance with the following 

principals: 

• A constraint must reflect a recognized and named systematic group that is widely 

accepted within the literature of the appropriate taxa, defined by reference to 

appropriate encyclopedic sources e.g. (Grimaldi & Engel 2005; Resh & Cardé 

2009). 

• Recovery with strong support, defined as bootstrap support of at least 95 under 

maximum likelihood or parsimony, or alternatively Bayesian posterior probability 

of 0.99, in all relevant recent molecular phylogenic studies with sufficient 

resolution to inform the family level analysis conducted here. Where both 

maximum likelihood and Bayesian trees were available the former were favored 
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due to the well known tendency for Bayesian analyses to give higher confidence 

values relative to conventional bootstrap procedures (Alfaro et al. 2003; Douady et 

al. 2003; Erixon et al. 2003) and in order to maximize methodological 

comparability with the process of topological inference used here. 

Constraints meeting these criteria are listed below with example references that 

include the most recent and comprehensive taxonomic treatments of the relevant groups. In 

addition to these we also constrained the monophyly of recognized orders with the 

following exceptions where paraphyly is known or suspected (Trautwein et al. 2012; 

Yeates et al. 2012) i.e.: “Blattodea” with respect to Isoptera (Inward et al. 2007), 

“Pscoptera” w.r.t Pthiraptera (Yoshizawa & Johnson 2010) and “Mecoptera” w.r.t. 

Siphonaptera (Whiting 2002) and Phasmatodea w.r.t. Embiodea (Zrzay 2008; Friedemann 

et al. 2012).  

Finally, we also used constraints to restrict the movement of representatives of the 

unstable polyneopteran order Zoraptera which was extremely data-deficient with respect to 

the studied markers and whose position was strongly influenced by biases induced by the 

uniquely modified nuclear rRNAs of this taxon (Yoshizawa & Johnson 2005; Yoshizawa 

2010; Wang et al. 2013). Traditional classifications placed Zoraptera at the base of 

Paraneoptera (e.g. (Hennig 1969)); however recent opinion favors an unresolved 

placement somewhere within Polyneoptera (Terry & Whiting 2005; Yoshizawa & Johnson 

2005; Misof et al. 2007; Yoshizawa 2007; Friedrich & Beutel 2008; Ishiwata et al. 2011; 

Simon et al. 2012; Misof et al. 2014). The constraint used here was based on the most 

recent study, and the only one to be based on protein-coding markers independent of the 

problematic rRNAs, which recovered Zoraptera as sister to Dictyoptera (Ishiwata et al. 

2011), a position which is also accepted in a recent review of hexapod ordinal relationships 

(Trautwein et al. 2012). In the absence of constraint Zoraptera was recovered as sister to all 

other Neoptera, a position that has never been supported in previous work and which has 

serious consequences for the pattern of diversification due to low richness of this lineage.  

Implemented constraints (Figure 15); 

• Ordinal relationships- reviewed in (Trautwein et al. 2012; Yeates et al. 

2012): Insecta, Dicondylia, Pterygota, Neoptera, Holometabola 

• Hymenoptera (Heraty et al. 2011; Debevec et al. 2012; Wilson et al. 2013): 

Unicalcarida, Vespina, Aculeata, Chrysidoidea, Anthophila 
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• Coleoptera (Hunt et al. 2007; Lawrence et al. 2011): Hydrophiloidea, 

Scarabaeoidea, Cucujiformia, Curculionoidea 

• Diptera (Wiegmann et al. 2011; Caravas & Friedrich 2013; Lambkin et al. 

2013): Brachycera, Schizophora 

• Lepidoptera (Regier et al. 2009; Mutanen et al. 2010; Regier et al. 2013): 

Glossata, Rhopalocera 

 

2.3.1.2 Tree inference 

Tree inference was conducted using the rapid maximum likelihood routine RAxML 

(Stamatakis et al. 2005; Stamatakis et al. 2008) implemented on the CIPRES webserver 

(Miller et al. 2010). This procedure was chosen on the basis of rapid implementation and 

the availability of computational resources, and represents the industry standard in current 

generation phylogenetic analyses. The matrix in RAxML was partitioned such that codons 

one and two for nuclear and mitochondrial genes respectively were allotted separate 

GTR+CAT models, as were each of the three RNA partitions included. Reported bootstrap 

values are calculated using an MR-based stopping criterion (Stamatakis et al. 2008) 

resulting in 650 replicated bootstrap samples. 

2.3.2. Results  

At an ordinal level the recovered topology was broadly consistent with the current 

consensus regarding hexapod relationships (Section 1.4). Regions of strong support 

include the increasingly well-established relationships within Holometabola, with 

Hymenoptera as basal (Bootstrap support- BS = 98) to the super-ordinal groupings 

Neuropteroidea (Neuropterida, Coleoptera, Strepsiptera; BS 99) and Mecopterida (BS 

100), with the later including two traditional groupings; Amphiesmenoptera (Trichoptera 

and Lepidoptera; BS 100) and Antliophora (Diptera, “Mecoptera” and Siphonaptera; BS 

97).  
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Figure 15 Nodal support on the phylogeny. Nodes marked with circles are 

either constrained (red) or have high bootstrap support (light blue 50-80%, dark 

blue: over 80%). Membership of major hexapod clades is denoted by coloration of 

the ring (Grey: Entognatha, Black: basal insects, Cyan: Palaeoptera, Purple: 

Polyneoptera, Green: Paraneoptera, Red: Holometabola). Common names for the 

labeled clades are shown on Figure 18 (Section 3.4.). 

With respect to controversial regions of the tree; among the basal winged insects 

we recover extremely weak support (BS 20) for a monophyletic Palaeoptera (Whitfield & 

Kjer 2008) consistent with recent morphological (Blanke et al. 2012; Blanke et al. 

2013)(Blanke et al. 2013) and genomic findings (Thomas et al. 2013); as well as modest 

support for the monophyly of Polyneoptera (BS 59) and Paraneoptera (BS 70) and 

Nonoculata (uniting Diplura and Protura (BS 99)). Within Polyneoptera few conclusions 

can be drawn regarding ordinal relationships (partially due to the constraint imposed on 

Zoraptera- see above) although we do find strong evidence for an unnamed grouping of 

Plecoptera and Dermaptera (BS 96) that is also present on (Kjer et al. 2006; Misof et al. 
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2007; Ishiwata et al. 2011; Wang et al. 2013), Xenonomia (Grylloblatodea + 

Mantophasmatodea , BS 93) (Terry & Whiting 2005), as well as weak support for 

Eukinolabia (Phasmatodea +Embioptera BS 58) (Terry & Whiting 2005; Friedemann et al. 

2012). Within Paraneoptera Hemiptera was modestly supported as sister to Thysanoptera, 

i.e. recovering the clade Condylognatha (BS 68). 

As discussed in Section 1.4 many within-ordinal relationships in hexapod groups 

remain highly contentious and have often been subject to low support and instability in 

previous phylogenetic surveys. Unsurprisingly, given that we draw exclusively on 

previously published sequence data, the results presented here show a similar pattern, 

encompassing a mixture of well-supported and unstable relationships across different parts 

of the tree (local support summarized on Figure 15). Particularly problematic areas are 

often associated with regions of the tree that are suspected as having been subject to rapid 

diversification of large lineages (Whitfield & Kjer 2008) for example Apocrita (Hym.) 

(Heraty et al. 2011; Sharkey et al. 2012), the “backbone” relationships of Polyphaga (Col.) 

(Hunt et al. 2007), Schizophora (Dip.) (Wiegmann et al. 2011; Caravas & Friedrich 2013) 

and Apoditrysia (Lep.) (Mutanen et al. 2010; Cho et al. 2011; Regier et al. 2013), many of 

which are also areas of ambiguity with respect to the taxonomic limits and monophyly of 

families e.g. (Marshall 2012). Despite recent progress it seems likely that it will be some 

years and requiring large amounts of targeted sequencing before these issues are 

completely addressed and therefore we regard the work presented here as an important first 

step in defining a testable baseline against which such improvements can be assessed.  

To briefly review the areas of phylogeny that do show strong support, beginning at 

the base of the tree, we recover strong support for Acerentomata within Protura (although 

with the addition of Berberentomidae) (Dell’Ampio et al. 2011) and find modest evidence 

to suggest that Sinentomidae may be more derived than in previous studies, with 

Fujientomidae being recovered as the basal family (BS 60). In Diplura the conventional 

grouping of the three included taxa is recovered within a monophyletic Japygomorpha (BS 

95) (Grimaldi & Engel 2005). Collembola show low support for the family level 

relationships, driven in part by instability in the placement of Neelidae (Xiong et al. 2008); 

however we do find strong support for a clade approximating Poduromorpha (BS 93), 

which is weakly linked with the family Isotomidae (BS 57), traditionally placed in 

Entomobryomorpha, raising questions reading the monophyly of the latter group. 

Implemented constraints govern the placement of the primitively wingless insects, 
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specifically the enforced monophyly of Dicondylia (in the absence of which Zygentoma 

appears grouped with Odonata, possibly as a result of shared GC compositional bias in 18S 

rRNA).  

As noted previously our results recover Palaeoptera as monophyletic, albeit with 

trivial support (BS 20). Within the Ephemeroptera, relationships are almost completely 

unresolved with the only nodes of any note approximating the burrowing mayflies of the 

Fossoriae (BS 78), although this group is also found to include the non-burrowing 

Siphlonuridae and Ichthybotidae, both of which are conventionally treated in a more basal 

position (Ogden et al. 2009). By contrast, within Odonata relationships follow a far more 

conventional structure, with both the suborders recovered as monophyletic (Epiprocta BS 

89, Zygentoma BS 91), and Epiophlebiidae (Anisozygoptera) nested deep within 

Anisoptera as opposed to being its sister (BS 49) (as in (Bybee et al. 2008) but conflicting 

with (Dumont et al. 2010)). Strongly supported is a clade which combines members of the 

superfamily Libelluloidea with Corduliidae and Macromiidae (BS 94), both of the latter 

being families for which the inference of monophyly has been problematic (Dumont et al. 

2010). Within Zygoptera we recover the division between Lestoidea and the remaining 

taxa (BS 65, although the former is not recovered as monophyletic BS 67 (Dumont et al. 

2010)) and otherwise family relationships are poorly supported .  

Within the Polyneopteran orders, Dictyoptera follow (Djernæs et al. 2012), 

showing a monophyletic Mantodae as sister to “Blattodea”/ Isoptera (BS 77), with the later 

closely linked to the wood roaches of the family Cryptoceridae (BS 72). Within Isoptera 

the placement of Mastotermittidae is unresolved although the clades of the higher 

(Rhinotermitidae, Serritermitidae and Termtidae, BS 95) and lower (Hodotermitidae, 

Termopsidae and Kalotermitidae, BS 61) termites are both recovered. Dermaptera lacks 

any clear resolution, although the topology of the studied families (which do not include 

the two parasitic lineages Arixeniina and Hemimerina due to lack of suitable sequence 

data) is broadly consistent with (Kocarek et al. 2013). Plecoptera are surprisingly well 

resolved, with moderate support placing Notonemouridae at the base of the order (BS 72), 

consistent with (Thomas et al. 2000), and support for the monophyly of the southern 

hemisphere lineages Antarctoperlaria (BS 61) and for the suborder Systellognatha (BS 93) 

which includes the predatory super-family Perloidea (BS 98). Within Orthoptera all of the 

suborders and infra-orders are recovered as monophyletic, although as expected in Ensifera 

there is low support above the family level (Legendre et al. 2010). In Caelifera support 
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values are also often low, particularly within the important infra-order Acridoidea although 

the topology is broadly consistent with other recent opinions regarding relationships within 

the group (Song 2010; Leavitt et al. 2013). Neither Embiodae nor Phasmatodae show 

strong support for the resolution of their family relationships although the latter is 

recovered as monophyletic (see constraints Section 2.3.1.1) with low support linking 

Timema (BS 39) to the remaining taxa (Euphasmatodea (BS 100)).  

At the base of Paraneoptera relationships within the Psocodea show modest support 

for the monophyly of Pthiraptera (BS 68) (Yoshizawa & Johnson 2010) which, with the 

associated families Liposcelididae and Pachytroctidae, are weakly placed as sister to the 

rest of the order (BS 54) . Within Pthiraptera Amblycera (BS 80) is sister to the rest of the 

clade (BS 91), with “Ischnocera” forming a paraphyletic series leading to sister grouping 

of Anoplura (BS 88) and Rhychophthirina (BS 89). In the remaining Psocodea, 

Trogiomorpha (BS 86) is sister (BS 77) to clade uniting Psocomorpha (BS 99) and 

Amphientometae (BS 63) which are recovered with modest support (Yoshizawa & 

Johnson 2010). Thysanopteran relationships are unresolved. Within Hemiptera 

Sternorrhyncha (BS 96) are basal (BS 62), with very weak support for a monophyletic 

Auchenorrhyncha (BS 35) and the conventional sister grouping of Coleorrhyncha and 

Heteroptera (BS 44). Within the latter all of the recognized infra-orders are recovered as 

monophyletic with the exception of the aquatic bugs Nepomorpha, with both the family 

Corixidae (water boatmen) and Pleidae (pigmy backswimmers) recovered elsewhere (the 

former as basal to clade containing Enicocephalomorpha, Dipsocoromorpha (BS 99) and 

Gerromorpha (BS 89), and the latter as sister to Leptopodomorpha (BS 97)). Geocorisae is 

recovered with weak support (BS 55) and relationships within the Cimicomorpha (BS 30) 

are particularly unstable.  

The phylogeny of Hymenoptera recovered here corresponds closely to that outlined 

in Section 1.4.7.1, with modestly strong support for deep relationships among “Symphyta” 

and very weak support for the majority of clades within Vespina (BS 72, including 

Orussidae as sister to Stephaniidae (Heraty et al. 2011)). Excluding Platygastroidea, there 

is some support for the Proctotrupomorph (BS 75) and within this grouping most of the 

recognized superfamilies are recovered, although with low support. Given that the 

monophyly of Aculeata was enforced it was not possible to make strong statements 

regarding its relationships although it should be noted that support values both within and 

around this important clade are extremely low. 
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In Neuropterida our results follow those of (Peters et al. 2014) in recovering a 

monophyletic Megaloptera (BS 100) as sister (BS 82) to Neuroptera (BS 98), thus 

rendering Raphidoptera (BS 100) basal and supporting a terrestrial ancestral larval state for 

the clade (Aspöck et al. 2012). Within Neuroptera, Coniopterygidae, Nevrorthidae, 

Sisyridae and Osmylidae form a poorly resolved basal series, with the remaining taxa 

robustly recovered as monophyletic (BS 86) including the sub-order Myrmeleontiformia 

(BS 63). 

Within Coleoptera we find very weak support for a novel sub-ordinal topology of 

(((Archostema, Myxophaga)(BS 34), Adephaga)(BS 23), Polyphaga) conflicting with 

previous molecular work that has supported a sister grouping of Adephaga and Polyphaga 

(Hunt et al. 2007)(Maddison et al. 2009). Beyond the constrained nodes described above, 

there are relatively few regions of strong support within beetles, although the overall shape 

is rather similar to that proposed by (Hunt et al. 2007), including a monophyletic 

Geoadephaga (BS 67) nested within “Hydroadephaga” (Maddison et al. 2009), separation 

of the “basal four” (Hunt et al. 2007) from the remainder of Polyphaga (BS 83), and broad 

patterns of association within the rump Staphyliniformia, Elateriformia and 

Bostrichiformia. Cucujiformia is another large and almost completely unresolved group 

with the only region of strongly supported nodes representing the constrained superfamily 

Curculionoidea. Low support within Coleoptera is likely to be in part a product of a lack of 

data to constrain the placement of unstable taxa, as well as the absence of suitable markers, 

such as slow evolving nuclear genes (Maddison et al. 2009) to resolve deep nodes. The 

group is thus one of the regions of the tree that would benefit most from further in depth 

sampling e.g. (Kundrata et al. 2014).  

As with other analyses that have included ribosomal markers, e.g. (Whiting 2002; 

Kjer 2004; Kjer et al. 2006), our tree suports a linkage between Siphonaptera (BS 100) and 

the mecopteran family Boreidae (BS 80), which together are placed as sister to the 

remaining Mecoptera (BS 100). The monophyly of the Pistillifera (the “true scorpion flies” 

excluding Nannochoristidae) is also confirmed with strong support (BS 91) with modest 

support for its internal relationships. 

In Diptera there is very strong support for considering Deuterophlebidae as sister to 

the rest of the order (BS 93; our analysis excludes Nymphomyiidae (Wiegmann et al. 

2011)), as well as for the monophyly of the various “Nematocera” clades and (Brachycera 

being constrained). Relationships among the basal brachyceran lineages remain poorly 
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resolved (as in (Wiegmann et al. 2011; Caravas & Friedrich 2013)) and we do not recover 

the controversial clade “Orthorrhapha”. Eremoneura including Empidoidae and 

Cyclorrhapha is present and well supported (BS 95), and our tree shows the same 

relationships among the basal Cyclorrhapha as are present in (Wiegmann et al. 2011) (i.e. 

((Phoridae, Platypezoidae)(BS 51), (Syrphidae (Pipunculidae, Schizophora)(BS 94) )(BS 

93) )(BS 93);). Within Schizophora there are no well-supported relationships with the 

exception of Calyptratae (BS 96). 

Relationships in both Trichoptera and Lepidoptera suffer generally low support due 

to the instability of small numbers of data-deficient taxa and the limited resolving power of 

the available markers. In Trichoptera the only clade with any meaningful support 

represents part of the sub order Annulipalpia (BS 98 although the large family 

Hydropsychidae is absent). Lepidopteran relationships are dominated by the implement 

constraints; however there is at least some support for the nested group Heteroneura (BS 

88) and Ditrysia (BS 80) despite poor resolution within the Obtectoma. 

2.4. Dating the Tree 

2.4.1. Methods 

Dating of the topology was conducted using an independent gamma rates clock 

implemented in MrBayes 3.2 (Ronquist, Teslenko, et al. 2012). The form of clock was 

chosen based on Bayes factor comparisons conducted on preliminary versions of the data 

matrix which significantly favored this form of clock over alternative models (Xie et al. 

2011). The data were partitioned as above, and optimal models for each partition identified 

using PHYML, implemented in the TOPALI browser (Milne et al. 2009). Priors on the 

clock rates were based on those used in a comparable multigene analysis of Hymenoptera 

(Ronquist, Teslenko, et al. 2012) (overall clock rate; lognormal mean= 6.10, SD 2.458582, 

independent gamma rates variation; exponential mean= 37.12). Preliminary runs of the 

Bayesian chain identified a strong tendency for chains to become stuck on distinct local 

optima resulting in poor convergence and inadequate parameter sampling. In order to 

resolve this, runs were conducted under low temperature conditions (heating parameter 

0.005) with the proposal frequencies of a number of parameters being modified in order to 

achieve acceptance rates within the recommended range (20-80%) (Ronquist et al. 2009). 

Two independent sets of four Markov Chain Monte Carlo (MCMC) chains were run for 12 

million generations with sampling conducted every 500 generations with a burn-in fraction 
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of 50% necessary to remove the impact of all the suboptimal peaks obtained during 

sampling. Convergence on the stable distribution was assessed based on trace outputs 

analyzed in Tracer v1.5 (Drummond & Rambaut 2007; Rambaut & Drummond 2009) and 

on the adequate sampling of the majority of the model parameters (average effective 

sample sizes >200 and potential scale reduction factors of approximately 1) (Ronquist et 

al. 2009; Ronquist, Teslenko, et al. 2012). Dating was preformed locally on a Mac 3.4Ghz 

Intel Core i7 processor and required approximately 1100 hours to run to completion. 

Calibration was conducted using 86 fossils taken from the recent 

palaeoentomological literature (Table 2). In defining calibrations we favored specific 

named fossils, as oppose to commonly used general references e.g. (Benton & Donoghue 

2007), following the recommendations of (Parham et al. 2012). All calibrations were 

implemented as hard minimum bounds on a uniform distribution with a hard maximum 

based on the upper 95% CI on the basal divergence in Hexapoda in (Rota-Stabelli et al. 

2013); 503 Ma. The same maximum was also placed on the age of the root node. Where 

available minimum radiometric dates for the relevant deposits have been used, otherwise 

deposits were treated as the age of the termination of the relevant stage in (Gradstein et al. 

2012) (Table 2). 
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2.4.2. Results and Discussion 

 

Figure 16 Topology showing 95% confidence intervals on node ages 

(transparent blue bars). Black rings denote 100Ma intervals from the present. Nodes 

denoted with red circles are involved in calibration (see Table 2). Tree shown in the 

same orientation as Figure 15 

Comparisons between the node ages generated in this study and those of previous 

molecular clock analyses and the fossil record for Hexapoda are shown in Table 1. One of 

the major difficulties in making such comparisons lies in the fact that because of 

differences in the availability of sequence information used, the coverage of nodes and the 

estimated tree topology can be highly variable among studies, meaning that identifying sets 

of comparable nodes across different studies can be challenging (particular where explicit 
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dates are not given for all the included divergences, e.g. (Rota-Stabelli et al. 2013)). In 

addition there is substantial variation in calibration between studies in the choice of 

calibration points; reflecting both differences in the focus of studies (Giribet & Edgecombe 

2012; Wheat & Wahlberg 2013), improvements in our understanding of the relevant fossil 

record (Grimaldi & Engel 2005; Benton & Donoghue 2007; Nel et al. 2013) and changes 

in the numerical geological timescale (Gradstein et al. 2012). Different studies have also 

differed in their the implementation of fossils (see Section 1.3.3.) either as; point data 

(Gaunt & Miles 2002), hard (this study, (Wiegmann, Kim, et al. 2009) and (Rehm et al. 

2011)) or soft (Warnock et al. 2011; Rota-Stabelli et al. 2013) bounds, or explicit 

probability distribution (normal distributions in (Wheat & Wahlberg 2013)).  

For comparative purposes I will here focus on three studies (Warnock et al. 2011) 

(Rehm et al. 2011) and (Wheat & Wahlberg 2013) which show the greatest overall 

similarity with the work conducted here in terms of both studied nodes and implemented 

calibrations. As a general rule the dates inferred in this study are typically somewhat older 

than those identified in these works with the greatest similarity (rarely more than 25 Ma 

age differences, confidence intervals usually overlapping) shown with (Rehm et al. 2011), 

with whom we share the same calibration philosophy (broadly distributed hard minimum 

bounds on node ages with, mostly, arbitrarily high hard maxima). The greatest contrast is 

seen with (Wheat & Wahlberg 2013), whose estimated ages we often exceed by 50 Ma. 

We attribute this difference primarily to the use by these authors of explicit, and normally 

distributed probability distributions (Ho & Phillips 2009).  

The appropriate implementation of fossil calibrations for molecular clock studies 

remains an active area of debate ((Ho & Phillips 2009), Section 1.3.3.) and we recognize 

that previous work has shown that the use of uniform calibrations as is done here can lead 

to non-uniform effective priors (Heled & Drummond 2011). However we feel that, due to 

the incomplete nature of the hexapod fossil record (Wills 2001), attempts to explicitly 

calibrate node age maxima using probability distributions of fossil absences introduce 

unknowable levels of error (Nowak et al. 2013), relating primarily to taphonomic bias in 

the early hexapod record (Grimaldi & Engel 2005). In addition the use by these authors of 

symmetrical probability distributions for node calibration is problematic (Ho & Phillips 

2009), as the result is to treat errors in phylogenetic placement (resulting in nodes being 

calibrated as earlier then the true age of divergence (Near et al. 2005)) as having equal 

weight to the uncertainty in maximum age, a position that may downgrade the quality of 
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hypotheses based on morphological inference. In this context soft bounded distributions, or 

asymmetric calibrations such as the log normal are more justifiable, and when comparing 

our results with (Warnock et al. 2011) which used such priors we find greater concordance 

in inferred node ages, particularly when confidence intervals are taken into account.  

As noted in Chapter 1 the fossil record of hexapods is sporadic (Wills 2001), and 

due a lack of suitable terrestrial deposits (Kenrick et al. 2012), the earliest phases of the 

diversification of the group remain poorly understood (Giribet & Edgecombe 2012; Nel et 

al. 2013). Under these circumstances it should come as no surprise that the inferred age of 

many of the deep nodes within the tree, in both this and previous studies (Table 1), is 

substantially earlier than the first fossil evidence for the presence of such groups. For 

example we estimated the age of Hexapoda as a whole, i.e. the divergence of true insects 

from Entognatha (basal hexapods including springtails) as occurring in the Ordovician 

(mean estimate 474.4Ma, 95% CI 439.6-502.9Ma), compared with the earliest fossil 

evidence from the Rynie chert of Scotland dating to around 410Ma (early Devonian 

(Grimaldi & Engel 2005)(Parry et al. 2011)). Our date estimates suggest that by the time of 

these earliest fossil deposits, which include a collembolan Rhyniella praecursor (Whalley 

& Jarzembowski 1981)) and a possible winged insect; Rhyniognatha hirsti; 410.2 Ma 

(Engel & Grimaldi 2004), hexapods had already diversified to the point where 

Paraneoptera had likely separated from Holometabola (426 Ma, 95CI 384-468 Ma), and 

that by the time of the first diverse faunas (for example the famous Mason Creek fauna of 

the southern USA; Moscovian stage- 307 Ma (Grimaldi & Engel 2005; Nel et al. 2013)) 

almost all of the extant orders had diverged and several, notably Hemiptera and Psocodea, 

were beginning their basal radiations (although the latter may be artifact of elevated rates 

of substitution in the parasitic Pthiraptera (Cameron et al. 2011; Letsch et al. 2012) which 

are difficult to constrain given the lack of fossil evidence for the group). 
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Table 1: Estimated ages on key nodes from this study, the fossil record and other relevant clock analyses. For (Warnock et al. 2011), 

(Rehm et al. 2011) and (Rota-Stabelli et al. 2013); values are given for the mean of considered calibrations and datasets. Values given in 

parentheses are the 95% confidence interval associated with the age in question. Values given in braces are the calibration, if any, 

applied to the node in the relevant study. Different forms of calibration given include: point calibrations (denoted pt) hard 

minimum/maximum bounds (denoted min/max respectively), soft maxima (denoted s*max), and normal distributions (denoted by the 

mean (mu) and standard deviation (sd) of the prior distribution). Fossils are given as the radiometric dates of known deposits or 

termination of the relevant geological stage and were taken from (Nicholson 2012) except where noted. For calibrations used in this 

analysis see Table 2. 

Clade Estimated Crown Age (Ma) 
This 
study 

Earliest 
fossils  

(Gaunt & 
Miles 2002) 

(Regier et 
al. 2004) 

(Wiegmann, 
Trautwein, et al. 
2009) /(Wiegmann, 
Kim, et al. 2009) 

(Warnock et al. 
2011)  

(Rehm et al. 
2011)  
 

(Wheat & 
Wahlberg 2013)  

(Rota-
Stabelli et al. 
2013)  

Hexapoda 479 (439-
502) 

410.2  - 485-488 
(467-504) 
 

- - 485  
(447-547) {min= 
404} 

433 (420-445) 483 (456-504) 
{max= 543, 
min= 395} 

Insecta 462 (419-
498) 

410.2  - 402-415 
(387-443) 

- - 455 (418-512) Approximate age = 
410 {mu= 425, 
sd=7) 

455 (405-500) 
{max= 543, 
min= 383} 

Pterygota 442 (397-
480) 

318  373- 388 368-385 
(337-416) 

- - 419 (385– 
469) {min= 
324.8} 

384 - 

Palaeoptera 373 (323-
431) 

228  - - - - 388 (343-435) 326 (278-367) - 

Neoptera 431 (393-
471) 

318  - - - - 397 (364-442) 346 (324-371) - 

Polyneoptera node A 
(Dermaptera- 
Dictyoptera) 

401 (357-
438)  
 

As above  245- 279 
(194-328)  

- - - - - 
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Polyneoptera node B 
(Orthoptera – 
Dictyoptera) 

387 (347-
430) 

As above {pt= 323} - - - 351 (310-389) 279 (218-334) - 

Eumetabola 427 (384-
468) 

315  - - 355 
{max= 360, min= 
280} 
 

476 (439-513) 
{min= 307.2, 
s*max=414} 

NA - - 

Paraneoptera 417 (369-
457) 

315  - - - 419 (368-470) 
{min=283.7, 
s*max =414} 

- 275 (219-325) - 

Holometabola 390 (350-
435) 

Unclear ; see 
(Nel et al. 
2013)  

- - 350 (336-359) 439 (404-476) 
{min=307.2 
s*max= 414} 

372 (340-412) 308 (292-325) - 

Hymenoptera 257 (231-
282) 

228  - - - - - - - 

non hymenopteran 
Holometabola 

362 (324-
405) 

Unclear; see 
(Nel et al. 
2013);  

- - 300 (287-315) 406 (372-
441){min= 307.2 
s*max= 414} 

353 (322-388) 288 (270-
305){mu=300, 
sd=11) 

- 

Neuropteroidea 334 (307-
371) 

299 (Nel et al. 
2013) 

- - 286 (274-299) -  - - 

Neuropterida  300 (259-
333) 

279  - - 255 (227-276) - - - - 

Coleoptera 307 (288-
329) 

237  - - - - - - - 

Mecopterida 321 (298-
368) 

265  338-351 - 282 (264-300) 373 (341-
406){min= 238.5, 
s*max=295.4} 

342 (311-373) 267 (249-285) - 

Amphiesmen-optera 302 (279-
356) 

Unclear - - 230 (190-261) - - - - 

Lepidoptera 269 (232-
324) 

113 (Sohn et 
al. 2012) 

- - - - - - - 

Antliophora 317 (291-
362) 

Unclear/ As 
below 

- - 256 (234-279) - - - - 

Diptera (Brachycera- 
Culicomorpha) 

290 (269-
313) 

241  248-283 - Approx. 240 
(secondary 
calibration used in 
(Wiegmann et al. 
2011)) 

325 (294-
357){min= 238.5, 
s*max=295.4} 

281 (251-295){ 
min= 238.5, 
max= 295.4) 

227 (210–
244){mu=230, 
sd=11) 

- 
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At the time of the Permo-Triassic extinction event (approximately 252 Ma (Benton 

& Twitchett 2003; Gradstein et al. 2012)), traditionally seen as a major period of faunal 

turnover in hexapods (Labandeira & Sepkoski Jr 1993; Labandeira 2005; Nicholson 2012), 

we find that, consistent with previous work e.g. (Davis et al. 2010; Nicholson et al. 

2014)(Nicholson 2012), limited evidence for signal of a hiatus or rebound with respect to 

the extant fauna (see Chapter 3 for further discussion). For the majority of taxa the family 

level radiation of groups is estimated as Mesozoic in origin e.g. Hymenoptera in the 

earliest Triassic (contrasting with the Permian dates given in (Ronquist, Klopfstein, et al. 

2012)), although exceptions do occur, notably the late Permian diversification of 

Coleoptera and Diptera (Chapter 3). Given the coarse taxonomic level used in this study it 

is difficult to resolve the impact of more recent events, e.g. the Cretaceous diversification 

of Angiosperms (Fiz-Palacios et al. 2011; Clarke et al. 2011), or the K/T extinction event, 

as despite these likely playing a major role in hexapod diversification at the species level 

(See Chapter 3 and Chapter 4) their impacts on hexapod families are regarded as marginal 

based on fossil surveys (Labandeira 2005; Nicholson 2012). 

2.5. Conclusions 

This chapter summarizes the dated phylogenetic framework that underpins the 

comparative work conducted in the remainder of this thesis and illustrates the various data 

sources and procedures that went into its construction. As noted our goal in this work was 

to provide a comprehensive framework for the study of hexapod diversity, particularly 

with respect to times of divergence. Achieving this entailed data-driven compromise to 

make the best use of patchy available data, with the result being retention of phylogenetic 

ambiguity in regions of rapidly diverging terminal groups due to limited constraining 

information and sequence data. For a group as diverse as Hexapoda there will always be a 

trade-off between the (considerable) benefits of having a single explicit tree to provide the 

basis for general models vs. some level of ambiguity regarding the placement of some of 

the constituent lineages (see discussion regarding the widely implemented super-tree of all 

mammal species (Bininda-Emonds et al. 2007) e.g. (Meredith et al. 2011)). As our focus 

here was on whole tree processes of diversification and ambiguity applied throughout the 

studied datasets (e.g. estimated tip richness and ecological state- see subsequent chapters 

and Section 7), we felt comfortable in accepting the topology estimated here as an 

approximation for the hexapod phylogeny. We recognize that further data sampling other 
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improvements in taxonomic understanding are likely to refine the picture of hexapod 

relations described here (e.g. (Misof et al. 2014)). However based on current understanding 

as reviewed in Section 1.4 our topology shows no major deviations from the consensus 

view of hexapod relationships and thus represents a valid first attempt at establishing a 

comprehensive framework for Hexapoda, all be it one with outstanding regions of 

uncertainty reflecting rapidly diverging groups. Further discussion of possible 

improvements in phylogenetic understanding and a horizon scan of near future 

developments are provided in Section 6.1. 

To date our favored topology, we have applied what is, to our knowledge, the most 

comprehensive set of fossil calibrations yet used with respect to Hexapoda. As discussed in 

Section 2.4.2 we find that the consistency of our inferred dates with those of previous 

studies is driven by similarities in the fossil derived distributions implemented (Ho & 

Phillips 2009; Parham et al. 2012; Nowak et al. 2013). This implies a strong need to justify 

our choice of calibration scheme. As noted above, our use of multiple widely dispersed 

hard minimum bounds on node ages is based primarily on a belief that the fossil record of 

hexapods, and in particular the association of fossil clades within the extant phylogeny, is 

insufficiently resolved to support explicit probability distributions on node ages. However, 

due to the large degree of sequence rate variability within the group, there is a need for 

many localized calibration points. Method selection also included practical considerations 

such as run-time (always a limitation when working on comparatively large trees) and the 

availability of suitable software implementations for some of the methods in question. As a 

general point there is a need to be critical regarding the validity of symmetrical probability 

functions for node calibration e.g. the normal distribution (Wheat & Wahlberg 2013), as it 

is unclear how these conform to the expectations of fossil data (Nowak et al. 2013). Given 

the rapid development of paleoentomology in recent years e.g. (Nicholson 2012; Clapham 

& Karr 2012; Nel et al. 2013), the calibrations used here represent only a snapshot of 

current knowledge and are subject to continual updating (e.g. compare with (Misof et al. 

2014)). The consequences of this for further studies of hexapod diversification are very 

much dependent on precisely which nodes are impacted and how these interact within the 

joint model. Unfortunately computational limitations restricted our ability to make formal 

cross validation, see (Near et al. 2005; Sanders & Lee 2007; Marshall 2008; Pyron 2010) 

of such effects although this would provide a potentially valuable addition to subsequent 

dating studies.   
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Table 2: Fossil calibrations implemented in dating tree topology. Calibrated 

nodes are plotted on Figure 15. Where available radiometric date estimates are 

referenced on the first occurrence of the deposit, alternatively the relevant stage 

termination is given based on (Gradstein et al. 2012). Recovered age is given as the 

mean estimate from the post-burnin MCMC samples with associated confidence 

intervals. 

Node Fossil Deposit Age (Ma) References Recover-
ed age 
(Ma, 95% 
CI’s) 

Stem Collembola Rhyniella praecursor Rhynie chert, 
Dryden Flags 
Fm., 
Aberdeenshire, 
Scotland 

410.2 (Parry et 
al. 2011) 

(Whalley & 
Jarzembowski 
1981; 
Greenslade & 
Whalley 1996)  

464 (432-
500) 

Stem Japygoidea Ferrojapyx vivax Crato Fm., 
Brazil 

Aptian -113 (Wilson & 
Martill 2001) 

230 (126-
348) 

Stem Dicondylia Rhyniognatha hirtsi Rhynie chert, 
Dryden Flags 
Fm., 
Aberdeenshire, 
Scotland 

410.2 (Engel & 
Grimaldi 2004) 

462 (419-
498) 

Palaeoptera e.g. Eugeropteron 
lunatum 

Malanzán Fm, 
Cuesta de la 
Herradura, 
Argentina 

Serpukhovian-
323 

(Riek & 
Kukalova-Peck 
1984) 

373 (323-
432) 

Crown Odonata Triassothemis 
mendozensis 

Potrerillos Fm., 
Cerro 
Cachueta, 
Potrerillos 
Argentina 

228 (Spalletti 
et al. 2008) 

(Carpenter 
1960; Davis et 
al. 2011)  

243 (228-
274) 

Odonata Aeshnidae Sinacymatophlebia 
mongolica 

Jiulongshan 
Fm., Inner 
Mongolia, 
China 

152 (Liu et al. 
2006) 

(Huang & Nel 
2009a)  

155 (152-
167) 

Odonata 
Hemiphlebidae 

Mersituria ludmilae Doronino Fm., 
Transbaikalia. 

Berriasian-139 (Vasilenko 
2005) 

160 (139-
195) 

Ephemeroptera 
Leptophlebiidae 

Conovirilus poinari Lebanese 
Amber 
(Collection 
locality not 
reported) 

Aptian -113 (McCafferty 
1997) 

230 (174-
299) 

Ephemeroptera- 
Baetiscidae 

Protobaetisca bechlyi Crato Fm., 
Brazil 

Aptian -113 (Martill et al. 
2007) 

150 (124-
194) 

Stem Orthoptera Unnamed 
Archaeorthoptera, 
specimen B13711 
Municipal Museum 
of Ostrava, Czech 
Republic 

Petřkovice 
Beds, Ostrava 
Fm., Upper 
Silesian Basin, 
Czech Republic 

Serpukhovian-
318 

(Béthoux & Nel 
2002; Prokop et 
al. 2005) 

387 (347-
430) 

Crown Orthoptera Raphogla rubra Salagou Fm., 
Saxonian 
Group, Lodève 
Basin, France 

Kungurian -
272 

(Béthoux et al. 
2002) 

309 (272-
368) 

Orthoptera Gryllidae Araripegryllus 
orientalis 

Weald Clay 
Fm., UK 

Barremian 
126 

(Gorochov et 
al. 2006) 

195 (137-
258) 

Orthoptera-Caelifera e.g. Dzhajloutshella 
sp. 

Madygen Fm., 
Kyrgyzstan 

Carnian- 228 (Gorochov 
2005) 

271 (232-
325) 

Orthoptera- Eoproscopia martilli Crato Fm., Aptian -113 (Heads 2008) 138 (113-
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Proscopiidae Brazil 174) 
Orthoptera- 
Tridactylidae 

Cretoxya rasnitsyni Lulworth Fm., 
UK 

Berriasian - 
139 

(Gorochov et 
al. 2006) 

186 (139-
236) 

Stem Mantodea Mesoptilus dolloi Upper Coal 
Measures, 
Commentry 
Basin, France 

Gzhelian - 299 (Béthoux & 
Wieland 2009) 

307 (299-
333) 

Blattodea – 
Ectobiidae 

Piniblattella 
sharingolensis 

Sharin-Gol 
Fm., North 
Mongolia 

Valanginian- 
134 

(Vršanský 
2005) 
 

155 (134-
203) 

Stem Isoptera  Baissatermes 
lapideus 

Baissa locality, 
Zaza Fm., 
Siberia, Russia 

Valanginian- 
134 

(Engel et al. 
2007; Engel et 
al. 2009)  

174 (134-
212) 

Mantodea- 
Chaeteessidae 

Arvenineura insignis Menat Puy-de-
Dome locality, 
France 

Palaeocene – 
56 

(Nel & Roy 
1996; Grimaldi 
2003; Grimaldi 
& Engel 2005)  

96 (68-
125) 

Stem Embiodea Sinembia rossi, 
Juraembia 
ningchengensis 

Jiulongshan 
Fm, Inner 
Mongolia, 
China 

152 (Huang & Nel 
2009b) 

260 (211-
306) 

Embiodea – 
Australembiidae 

Burmitembia venosa Burmese amber 98 (Shi et al. 
2012) 

(Engel & 
Grimaldi 
2006a) 

125 (98-
169)* 

Phasmatodea- 
Phyllidae 

Eophyllium 
messelensis 

Messel Fm., 
Germany 

Middle 
Eocene- 47.8 

(Wedmann et 
al. 2007) 

59 (48-82) 

Mantophasmatodea Juramantophasma 
sinica 

Jiulongshan 
Fm., Inner 
Mongolia, 
China 

152 (Huang et al. 
2008) 

220 (152-
269) 

Stem Plecoptera Gulou carpenter Tupo Fm., 
Ningxia Hui 
Autonomous 
region, China 

Bashkrian - 
315 

(Béthoux et al. 
2011) 

356 (315-
400) 

Plecoptera Capniidae Dobbertiniopteryx 
capniomimus 

Upper Lias, 
Dobbertin, 
Germany 

Toarcian- 174 (Liu et al. 
2009) 

181 (174-
199) 

Plecoptera-Perlidae Archaeoperla 
rarissimus 

Yixian Fm., 
Liaoning 
Province, 
China 

121.8 (Swisher 
et al. 1999; 
Sun et al. 
2011)  

(Yushuang et 
al. 2008) 

128 (122-
146) 

Dermaptera- Labiidae Kotejalabis haeuseri Crato Fm., 
Brazil 

Aptian -113 (Martill et al. 
2007) 

179 (119-
238) 

Dermaptera-
Pygidicranidae 

Astreptolabis 
ethirosomatia 

Burmese amber 98 (Engel 2011) 211 (120-
282) 

Stem Thysanoptera Westphalothripides 
oudardi 

Isolated 
material taken 
from a slag 
heap, ‘Terril N◦ 
7’, Avion, 
Nord, France 

Bashkrian - 
315 

(P. Nel et al. 
2012) 

405 (356-
445) 

Pscodea Liposcelididae Cretoscelis burmitica Burmese amber 98 (Grimaldi & 
Engel 2006b; 
Yoshizawa & 
Lienhard 2010)  

351 (291-
410) 

Pscodea - 
Sphaeropsocidae 

Sphaeropsocites 
lebanensis 

Lebanese 
Amber, Jezzine 
locaility, 
Central 
Lebanon 

Aptian -113 (Grimaldi & 
Engel 2006a) 

164 (113-
229) 

Pscodea - 
Compscocidae 

Burmacompsocus 
perreaui 

Burmese amber 98 (Nel & Waller 
2007) 

193 (112-
275) 

Stem Heteroptera Paraknightia 
magnifica 

Belmont 
Conglomerate 
Member, 

Changhsingian
- 252 

(Grimaldi & 
Engel 2005) 

336 (284-
382) 
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Croudace 
Bay Fm., New 
South Wales, 
Australia 

Hemiptera-
Belostomatidae 

Unnamed specimen, 
Virginia Museum of 
Natural History 727 

Cow branch 
Fm., Virginia, 
USA 

Carnian 228 (Fraser et al. 
1996; Grimaldi 
& Engel 2005)  

239 (228-
267) 

Hemiptera -Ochteridae e.g. Pristinochterus 
zhangi 

Yixian Fm., 
Liaoning 
Province, 
China 

121.8 (Yao et al. 
2007; Yao et al. 
2011)  

179 (124-
247) 

Hemiptera - 
Schizopteridae 

Libanohypselosoma 
popovi 

Amber, 
Hammana-
Mdeirij 
locality, 
Boundary of 
Abeih Fm. and 
Chouf 
Sandstone Fm., 
Central 
Lebanon 

Aptian-113 (Azar & Nel 
2010) 

160 (113-
226) 

Hemiptera- Saldidae Brevrimatus 
pulchalifer 

Yixian Fm., 
Liaoning 
Province, 
China 

121.8 (Zhang et al. 
2011) 

173 (122-
243) 

Hemiptera- Gerridae Cretogerris albianus  Amber from 
Archingeay-
Les Nouillers, 
Charente-
Maritime, 
France 

Albian- 100 (Perrichot et al. 
2005) 
 

118 (100-
177) 

Hemiptera – 
Coreidae 

Kerjiecoris oopsis Huangshanjie 
Fm., Xinjiang 
Uygur 
Autonomous 
Region, China 

Norian -209 (Lin 1992; Yao 
et al. 2012)  

214 (209-
226) 

Hemiptera Cicadoidea 
(Tettigarctidae) 

“Liassiocicada” 
ignotata 

Lilstock Fm., 
UK 

Rhaetian- 201 (Scherbakov 
2009) 

225 (201-
267) 

Hemiptera Cixiidae “Cixius” petrinus Weald Clay 
Fm., UK 

Barremian 
126 

(Szwedo 2007; 
Szwedo et al. 
2011)  

191 (126-
262) 

Hemiptera- 
Aphidomorpha 

Leaphis prima  
(syn. Vosegus 
triassicus) 

Grès à Voltzia 
Fm., France 

Anisian- 241 (Szwedo & Nel 
2011) 

286 (241-
339) 

Stem Holometabola Westphalomerope 
maryvonneae 

Terril n° 5bis, 
Vicoigne 
Series, France 

Westphalian 
A, Bashkirian- 
315 

(Nel et al. 
2007; 
Labandeira 
2011)  

427 (384-
468) 

Hymenoptera-Xyelidae Triassoxyela 
foveolata, 
Leioxyela antiqua 

Madygen Fm., 
Russia 

Carnian 228 (Ronquist, 
Klopfstein, et 
al. 2012) 

257 (231-
282) 

Hymenoptera-
Pelecinidae 

e.g. Archaeopelecinus 
tebbei 

Jiulongshan 
Fm., Inner 
Mongolia, 
China 

152 (Rasnitsyn & 
Zhang 2004; 
Shih et al. 
2010)  

159 (152-
175) 

Hymenoptera -
Heloridae 

Archaeohelorus hoi Jiulongshan 
Fm., Inner 
Mongolia, 
China 

152 (Wang et al. 
2005; Shih et 
al. 2011)  

176 (152-
206) 

Hymenoptera -
Bethylidae 

Lancepyris opertus Lebanese 
amber, Ain 
Dara locality, 
Central 
Lebanon 

Aptian-113 (Azevedo & 
Azar 2012) 

124 (113-
148) 

Hymenoptera-Figitidae Jerseucoila New Jersey Turonian- 89.8 (Liu et al. 103 (90-
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plesiosoma Amber, Raritan 
Fm., USA 

2007) 141) 

Hymenoptera –
Pompilidae 

Bryopompilus 
interfector 

Burmese amber 98 (Engel & 
Grimaldi 
2006b) 

123 (98-
157) 

Hymenoptera-
Anthophila  

Melittosphex 
burmensis 

Burmese amber 98 (Poinar Jr 2009; 
Shi et al. 2012)  

154 (98-
180) 

Megaloptera - Sialidae Dobbertinia 
reticulata 

Upper Lias, 
Dobbertin, 
Germany 

Toarcian- 174 (Wichard & 
Engel 2006) 

193 (174-
230) 

Neuroptera -
Mantispidae 

Liassochrysa stigmati
ca 

Upper Lias, 
Dobbertin, 
Germany 

Toarcian- 174 (Wedmann & 
Makarkin 2007) 

184 (174-
209) 

Neuroptera -Osmylidae Allotriosmylus 
uniramosus 

Jiulongshan 
Fm., Inner 
Mongolia, 
China 

152 (Yang et al. 
2010) 

207 (152-
257) 

Neuroptera 
Myrmeleontidae 

Choromyrmeleon 
aspoeckkorum 

Yixian Fm., 
Liaoning 
Province, 
China 

121.8 (Ren & Engel 
2008; Makarkin 
et al. 2012)  

131 (122-
151) 

Stem Coleoptera e.g. Moravocoleus 
permianus 

Bačov Fm., 
Obora, Czech 
Republic 

Sakmarian-
290 

(Kukalová-
Peck & Beutel 
2012)  

309 (290-
331) 

Coleoptera -Cupedidae Argentinocupes 
pulcher 

Los Rastros 
Fm., La Rioja 
Province, 
Argentina 

Ladinian-237 (Martins-Neto 
et al. 2006) 

255 (237-
283) 

Coleoptera- 
Hydroscaphidae 

Hydroscapha 
jeholensis 

Yixian Fm., 
Liaoning 
Province, 
China 

121.8 (Cai et al. 
2012) 

235 (169-
277) 

Coleoptera-Carabidae Unnamed specimen 
pictured and 
discussed in 
(Grimaldi & Engel 
2005) 

Cow branch 
Fm. Virginia, 
USA 

Carnian 228 (Grimaldi & 
Engel 2005) 

232 (228-
246) 

Coleoptera- 
Staphylinidae 

Leehermania prorova Cow branch 
Fm. Virginia, 
USA 

Carnian 228 (Chatzimanolis 
et al. 2012) 

236 (228-
253) 

Coleoptera- Lucanidae Juraesalus atavus Jiulongshan 
Fm., Inner 
Mongolia, 
China 

152 (Bai et al. 2012; 
Nikolajev et al. 
2011) 

163 (152-
188) 

Coleoptera- 
Ochodaeidae 

Mesochodaeus 
daohugouensis 

Jiulongshan 
Fm., Inner 
Mongolia, 
China 

152 (Nikolajev & 
Ren 2010) 

160 (152-
186) 

Coleoptera 
 Trogossitidae 

Sinopeltis jurassica Jiulongshan 
Fm., Inner 
Mongolia, 
China 

152 (Yu et al. 2012) 159 (152-
175) 

Coleoptera 
Helophoridae 

Helophorus 
(Mesosperchus) 
inceptivus 

Shar-teg Fm., 
Gobi-Altai 
Province, 
Mongolia 

Tithonian- 145 (Fikáček et al. 
2012b; Fikáček 
et al. 2012a)  

151 (145-
172) 

Coleoptera - 
Ithyceridae 

Karacar contractus Karabastau 
Fm., Karatau 
locality 
Kazakhstan 

Oxfordian- 
157 

(Gratshev & 
Legalov 2011) 

161 (157-
170) 

Coleoptera- Silvanidae Pleuroceratos 
burmiticus 

Burmese amber 98 (Poinar Jr et al. 
2008) 

105 (98-
119) 

Coleoptera- Clambidae Eoclambus 
rugidorsum 

Amber, 
Hammana-
Mdeirij 

Aptian-113 (Kirejtshuk & 
Azar 2008) 

254 (183-
301) 
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locality, 
Boundary of 
Abeih Fm. and 
Chouf 
Sandstone Fm., 
Central 
Lebanon 

Mecopterida (i.e. Stem 
Amphiesmenoptera) 

Cladochorista sp., Chepanikha 
locality, Russia 

Wordian-265 (Aristov & 
Bashkuev 2008; 
Minet et al. 
2010)  

321 (298-
368) 

Trichoptera –
Philopotamidae 

Liadotaulis major Upper Lias, 
Dobbertin, 
Germany 

Toarcian- 174 (Ansorge 2003; 
Hao & Huang 
2012)  

198 (174-
229) 

Trichoptera -
Lepidostomatidae 

Eucrunoecia ridicula Weald Fm., UK Barremian- 
126 

(Sukatsheva & 
Jarzembowski 
2001) 

142 (126-
175) 

Trichoptera- 
Psychomyiidae 

Palerasnitsynus 
ohlhoffi 

Burmese amber 98 (Wichard et al. 
2011) 

116 (98-
150) 

Lepidoptera- 
Micropterigidae 

Parasabatinca 
aftimacrai 

Amber, 
Hammana-
Mdeirij 
locality, 
Boundary of 
Abeih Fm. and 
Chouf 
Sandstone Fm., 
Central 
Lebanon 

Aptian-113 (Sohn et al. 
2012) 

242 (160-
290) 

Lepidoptera- 
Nepticulidae 

Stigmella (leaf mine 
trace) 

Dakota Fm., 
Nebraska, USA 

Cenomanian- 
93.9 

(Labandeira et 
al. 1994; Sohn 
et al. 2012)  

157 (94-
201) 

Lepidoptera- 
Gracillariidae 

Leaf mine trace 
attributed to 
Phyllocnistis 

Dakota Fm., 
Nebraska, USA 

Cenomanian- 
93.9 

(Labandeira et 
al. 1994; Sohn 
et al. 2012) 

102 (94-
117) 

Lepidoptera- 
Hesperiidae 

Undescribed fossil  
Henrik Madsen 
Collection, Morsland 
Historical Museum 
Mors, Denmark (1 
ex: DK 136) 

Stolleklint 
Clay, Fur Fm., 
Denmark 

early 
Ypresian- 47.8 

(Sohn et al. 
2012) 

59 (48-83) 

Siphonaptera+ 
Boreidae 

Unnamed “Giant 
fleas” Nanjing 
Institute of Geology 
and Palaeontology 
reference numbers 
154244a-b, 54245, 
154247a, 154249a 
and 154250a 

Jiulongshan 
Fm., Inner 
Mongolia, 
China 

152 (Huang et al. 
2012; Gao et al. 
2012)  

206 (158-
255) 

Mecoptera-Bittacidae e.g. Preanabittacus 
validus 

Jiulongshan 
Fm., Inner 
Mongolia, 
China 

152 (Yang et al. 
2012) 

160 (152-
181) 

Diptera-  
Psychodidae 

Triassopsychoda 
olseni 

Cow branch 
Fm. Virginia, 
USA 

Carnian 228 (Blagoderov et 
al. 2007) 

247 (228-
274) 

Diptera- Culicomorpha Anisinodus crinitus Grès-a-Voltzia 
Fm., France 

Anisian- 241 (Lukashevich et 
al. 2010) 
 

264 (243-
294) 

Diptera- 
Chironomiodae 

Aenne triassica Lilstock Fm., 
UK 

Rhaetian- 210 (Blagoderov et 
al. 2007) 

234 (210-
260) 

Diptera-
Perissommatidae 

Palaeoperissomma 
collessi 

Itat Fm., 
Kubekovo, 
Krasnoyarsk 
Krai, Siberian 

Bathonian- 
166 

(Lukashevich et 
al. 2006) 

176 (166-
197) 
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Federal 
District, Russia 

Diptera- Brachycera Gallia alsatica Grès-a-Voltzia 
Fm., France 

Anisian- 241 (Krzemiñski & 
Krzemiñski 
2003) 

252 (241-
269) 

Diptera -Rhagionidae e.g. Lithorhagio 
megalocephalus 

Jiulongshan 
Fm., Inner 
Mongolia, 
China 

152 (Zhang & Li 
2012) 

176 (152-
214) 

Diptera-Tabanidae Eotabanoid lordi Durlston Fm., 
UK 

Berriasian -
139 

(Zhang 2012) 146 (139-
175) 

Diptera- Agromyzidae Phytomyzites 
biliapchaensis (leaf 
mine trace) 

Fort Union 
Fm., south-
eastern 
Montana, USA 

early 
Paleocene- 
61.6 

(Winkler et al. 
2010) 

77 (62-
111) 

 



 87 

3. Phylogenetic distribution of extant richness suggests 

metamorphosis is a key innovation in insects 

3.1. Abstract 

Insects and their six-legged relatives (Hexapoda) comprise more than half of all 

described species and dominate terrestrial and freshwater ecosystems. Understanding the 

macroevolutionary processes generating this richness requires a historical perspective, but 

the fossil record of hexapods is patchy and incomplete. Dated molecular phylogenies 

provide an alternative perspective on divergence times and have been combined with birth-

death models to infer patterns of diversification across a range of taxonomic groups. Here 

we use a dated phylogeny of hexapod families to identify the broad pattern of 

macroevolutionary changes responsible for the composition of the extant hexapod fauna. 

The most prominent increase in diversification identified is associated with the origin of 

complete metamorphosis, confirming this as a key innovation in promoting insect 

diversity. Subsequent reductions are recovered for several groups previously identified as 

having a higher fossil diversity during the Mesozoic. In addition a number of recently 

derived taxa are found to have radiated following the development of flowering plant 

(angiosperm) floras during the mid-Cretaceous. These results reveal that the composition 

of the modern hexapod fauna is a product of a key developmental innovation, combined 

with multiple and varied evolutionary responses to environmental changes from the mid 

Cretaceous floral transition onward. 

3.2.  Introduction 

Hexapoda, including the insects and their six-legged relatives, are the most species-

rich animal clade in terrestrial ecosystems and collectively comprise over half of all 

described extant species (Gaston 1991; Grimaldi & Engel 2005). Therefore understanding 

the origins of this exceptional richness is key to understanding the history of life on land 

and the assembly of terrestrial ecosystems (Mayhew 2007). In addition to their high overall 

species richness, insect groups are also remarkable for the degree of disparity in richness 

existing among the major sub clades. For example the orders Zoraptera (“angel insects”) 

and Coleoptera (beetles) differ in richness by four orders of magnitude (32 and 350,000 
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described extant species, respectively (Grimaldi & Engel 2005)). A key part of the 

discussion on these differences in extant richness relates to the hypothesized effects of 

potential key innovations that may have acted as drivers for hexapod richness (Mayhew 

2007). Such proposed innovations include both major morphological developments 

including: the origin of the insect body plan, flight, the capacity to fold the wings and the 

origin of complete metamorphosis (Carpenter 1953; de Queiroz 1998; Yang 2001; Dudley 

2002; Mayhew 2002; Grimaldi & Engel 2005; Mayhew 2007; Davis et al. 2010a), and 

ecological opportunities or innovations, notably the evolution of flowering plants 

(angiosperms) (Mitter et al. 1988; Farrell 1998; Nyman 2010) and parasitism (Wiegmann 

et al. 1993). 

Attempts to explicitly test these ideas within a phylogenetic framework have either 

been restricted to particular orders (Hunt et al. 2007; Wiegmann et al. 2011; Heikkilä et al. 

2011), thus omitting a wider context, or have ignored variation within orders (Mayhew 

2002; Davis et al. 2010a). Here we integrate these disparate approaches by producing a 

dated hypothesis of phylogenetic relationships across the hexapods that is near-complete at 

the family level, through the combination of previously published molecular sequence data 

and a set of literature derived constraints (see Chapter 2). Our goal is therefore not to 

present a novel estimate of the hexapod phylogeny (see discussion below), but instead to 

focus on what current taxonomic, phylogenetic and paleontological evidence reveals about 

broad patterns of diversification within the group, and its relationship with key 

evolutionary innovations, environmental changes and mass extinctions (Labandeira & 

Sepkoski Jr 1993; Ross et al. 2000; Labandeira 2005).  

3.3. Methods 

All analyses of diversification and tree processing were conducted in R v 2.15.1 (R 

Development Core Team 2011). Estimates of extant species richness for terminal taxa 

were sourced from previous publications (Durden & Musser 1994; Hunt et al. 2007; 

Whiting et al. 2008; Kathirithamby 2009; Cryan & Svenson 2010; Vas et al. 2012), recent 

encyclopedias (Lienhard & Smithers 2002; Grimaldi & Engel 2005; Resh & Cardé 2009; 

Zhang 2011) and online taxonomic resources (Penny 1997; Noyes 2003; Deitz et al. 2010; 

Ascher & Pickering 2012; Bourgoin 2012; Deem 2012; DeWalt et al. 2012; Eades 2012; 

Maehr & Eades 2012; Otte et al. 2012; Pulawski 2012) (tip richness linked in Appendix 
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7.1). Where taxonomic sources conflicted with the classification given here species 

assigned to any subgroups were deducted from the more inclusive clade.  

The primary algorithm used to infer the topological position of shifts in 

diversification rate was the stepwise greedy ML algorithm MEDUSA (Alfaro et al. 2009) 

as implemented in the package TurboMEDUSA (Brown et al. 2012). This algorithm 

proceeds by estimating optimal parameters for a global birth-death model on a given tree 

with tip richnesses, and then going through all nodes and identifying the optimal position 

of a break in the diversification model (henceforth a “shift”) that maximally improved the 

overall AICc score. This process is repeated adding further shifts until some threshold is 

achieved where there is no further improvement in AICc. The appropriate threshold score 

was calculated internally to the routine and given as an improvement in AICc of 9.321 

units. The resulting optimal model identified 48 shift events with parameter values listed in 

Table 4 (Figure 18). In order to estimate the impact of particular shift events on the overall 

richness of hexapods we used simulated birth death models to estimate what the richness 

of clades would have been had the modeled shifts not occurred. This was done using the 

crown.limits (Magallon & Sanderson 2001) function in package geiger (Harmon et al. 

2008) with parameter values taken from the parental model estimated in MEDUSA (i.e. the 

model within which the focal shift is nested) and node age based on the consensus tree. 

The function gives the upper and lower confidence intervals on the richness of a clade of 

that age, from which a mean estimate was calculated. This was compared with estimates of 

clade richness which had previously been corrected for the presence of further shifts in 

diversification rate, by replacing the richness of nodes with subject to further shifts with 

their mean modeled richness (Figure 19).  

The reported shift on Holometabola (Section 3.4) is of particular interest as it is 

both the first shift recovered by the greedy MEDUSA algorithm, implying that its 

inclusion makes the greatest overall improvement to AICc scores and it is also significant 

in ideas relating to key innovations in driving hexapod diversification (Mayhew 2007). In 

order to explore the importance of this shift and to make comparisons with other potential 

key innovations we examined the likelihood improvement associated with a range of shifts 

using the package laser (Rabosky 2007). The functions fitNDR_1rate and fitNDR_2rate 

were used to find parameter estimates and log likelihood values for the optimal global 

model and models with a single shift at every possible node respectively. In both cases 

these functions require that the turnover parameter be specified and this was based on the 
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value obtained from for the homogenous model (i.e. that with no shifts) estimated in 

MEDUSA (eps=0.9990712). Parameter estimates and likelihood scores of the resulting 

models are presented in Table 3 with an emphasis placed on groups associated with 

potential shifts in diversification rate identified in previous studies (Mayhew 2002; 

Mayhew 2003; Davis et al. 2010a). The results of likelihood ratio tests are shown for 

comparison of the Holometabola shift model with these alternatives and the single shift 

model.  

In order to assess the degree to which uncertainty with respect to node age 

impacted on the pattern of rate shift events, the analysis was repeated across 500 random 

samples taken from the post-burnin MCMC chain used in dating. Samples were taken so as 

to be evenly distributed between the two parallel chains and were scaled into time units 

using the appropriate estimates of the overall clock rate. Note that due to the use of the 

two-stage phylogenetic inference process described above it was not possible to assess the 

impact of topological uncertainty on the results of this study. The occurrence of a shift 

associated with a particular node across the different samples was scored and the 

proportion of samples in which a node occurs is used as the basis for the colouration of the 

symbols on Figure 18 and is reported in Table 4. Table 5 lists the top 50 nodes with respect 

to proportional occurrence and these are depicted on Figure 20. For this study we have 

elected not to use the alternative diversification model TreePar (Stadler 2011; Jetz et al. 

2012; Near et al. 2013) due to limitations on the available computational resources which 

restricted the capacity to simulate the large numbers of species complete trees needed to 

calculate appropriate confidence intervals (Stadler 2011a) 

3.4. Results  

The dated phylogeny used in this study contains 874 higher taxa of Hexapoda 

(Figure 18). Taxa were variously resolved to a family or superfamily level, such that the 

presented tree incorporates a total of 903 of the approximately 1100 recognized extant 

families, with taxonomy following that given by GenBank references up to August 2013 

(see Chapter 2 for further discussion). The tree was reconstructed using a combination of 

eight widely sampled molecular markers and literature-derived constraints on certain 

widely recognized phylogenetic nodes ((Trautwein et al. 2012; Yeates et al. 2012), see 

Section 2.3.1). The tree topology was inferred using a partitioned RAxML (maximum 

likelihood) analysis (Stamatakis et al. 2005; Stamatakis et al. 2008). This topology was 
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dated using a relaxed molecular clock implemented in Mr Bayes 3.2 (Ronquist et al. 2012) 

and calibrated using 86 fossil dates taken from the recent palaeoentomological literature 

(Table 2).  

Using our dated tree we estimated the crown divergence of Hexapoda, i.e. the 

divergence of true insects from Entognatha (basal hexapods including springtails) as 

occurring in the Ordovician (mean estimate 474.4Ma, 95% CI 439.6-502.9Ma), which is 

consistent with other recent molecular clock estimates (Rehm et al. 2011; Rota-Stabelli et 

al. 2013; Wheat & Wahlberg 2013) (Figure 16, Table 1). These estimates greatly exceed 

the age of the oldest securely placed hexapod fossils including the potential crown winged 

insect Rhyniognatha hirsti from the early Devonian (Engel & Grimaldi 2004). Little is 

known regarding Devonian insect communities (Grimaldi & Engel 2005), and the nature of 

terrestrial communities at this early date remains poorly understood (Kenrick et al. 2012). 

However, our results are in line with recent fossil evidence indicating an early (i.e. prior to 

the late Carboniferous) origin for major crown lineages, including the stem lineages of 

several orders of advanced Holometabola (insects that undergo complete metamorphosis) 

(Labandeira 2011; Nel et al. 2013).  

At higher taxonomic levels, lineage-through-time plots (Figure 17) indicate a 

remarkable stability in divergence rate across all the major hexapod clades, with some 

suggestion of an elevated diversification rate in Holometabola during the late Permian 

corresponding to basal divergences within Coleoptera and Diptera (flies) (Grimaldi & 

Engel 2005; Blagoderov et al. 2007). Despite the conventional division between Paleozoic 

and post-Paleozoic insect faunas in paleoentomological research (Labandeira 1998; 

Grimaldi & Engel 2005), our results reveal no evidence for changes in diversification rate 

around the time of the Permo-Triassic extinction event (P/T) (Figure 17), suggesting that 

the radiation of extant groups was not strongly impacted by the loss of Paleozoic forms 

indicated by the fossil record (Labandeira & Sepkoski Jr 1993; Labandeira 2005). A 

possible exception is an upshift in the diversity of Palaeoptera (dragonflies and mayflies) 

associated with the origin of crown members of the two orders, both of which undergo 

major taxonomic turnover during the P/T event (Grimaldi & Engel 2005; Davis et al. 2011) 

(Figure 17).  
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Figure 17 Lineage (y-axis; log scale) through time (x-axis; Ma) plot for the 

major groups of Hexapoda using the phylogeny in Figure 18 Colors used identify the 

same clades as the ring in Figure 18. Thick lines are calculated from the mean tree 

dates (Figure 16). Shaded regions represent 500-scaled samples taken from the 

MCMC chain used in dating. Major events in the history of the group are denoted 

using dotted lines: 1. Oldest Hexapod fossil. 2. Oldest member of crown Pterygota 

(Polyneoptera). 3. Permo-Triassic mass extinction. 4. Origination of crown 

Angiosperms (Clarke et al 2011). 5. Angiosperms become abundant in fossil record. 6. 

Cretaceous-Paleocene mass extinction 

Despite this apparent stability in the origination of higher taxa, the application of 

birth-death models (Nee 2006; Alfaro et al. 2009) identifies two major transitions, 

characterized as shifts in the net diversification rate and turnover in the descendent clades, 

which together play a major role in defining the overall structure of hexapod 

diversification. These major shifts correspond to the origins of flight (Pterygota) and of 

complete metamorphosis (Holometabola) (Figure 18, Table 3 and Table 4). Both in terms 

of the degree to which its inclusion improves the likelihood of diversification models 

(Table 3) and in its relative stability with respect to uncertainties in node age estimation 

(Figure 18, Table 4) the upshift in diversification rate associated with the origin of 

complete metamorphosis represents the more strongly supported event. 
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Previous studies proposing a link between complete metamorphosis and elevated 

diversification rates have been based on evidence in the fossil record (Yang 2001; 

Nicholson et al. 2014), which for hexapods is highly incomplete (Wills 2001). In contrast, 

sister group comparisons, using earlier phylogenetic reconstructions (Trautwein et al. 

2012; Yeates et al. 2012), failed to recover a diversification shift associated with 

Holometabola (Mayhew 2002; Davis et al. 2010a). However, likelihood ratio tests indicate 

that the birth-death models significantly favor this position over alternative proposals 

including Eumetabola (Holometabola plus its sister group) and Neoptera (insects able to 

fold their wings; Table 3). Earlier studies (Mayhew 2002; Mayhew 2003) have also 

provided some evidence supporting the role of flight in promoting hexapod diversification. 

Although our analysis supports this notion it also shows that the recovery of this shift is 

sensitive to uncertainties in divergence time estimates within the phylogeny rendering its 

overall role in hexapod diversification ambiguous (Figure 18).  

In addition to these broad patterns, diversification shift models identified a further 

forty-three clades on the tree potentially associated with shifts in diversification rates 

(Figure 18, Table 4). These shifts vary in their intensity and robustness with respect to 

uncertainties in branch length and are distributed across the tree, with the majority 

occurring within the holometabolan radiation. Among the most robust and 

phylogenetically inclusive shifts are down-shifts impacting on known or suspected relict 

groups within the modern fauna. These included holometabolan groups such as 

Neuropterida (lacewings and their relatives), Mecoptera and Siphonaptera (scorpionflies 

and fleas (Whiting 2002)) and basal members of Coleoptera (beetles) and Lepidoptera 

(moths), as well as non-metamorphosing groups such as Ephemeroptera (mayflies) and 

Psocodea (booklice and parasitic lice) (Yoshizawa & Johnson 2010). The fossil records for 

a number of these groups indicate a higher family richness during the Mesozoic, 

suggesting that their current representatives are surviving relics of taxa that were formerly 

more diverse (Labandeira & Sepkoski Jr 1993; Labandeira 2005), further supporting the 

results of the diversification shift models. 
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Figure 18 Dated phylogeny of extant hexapod families showing diversification 

rate shifts. Membership of major clades is denoted by coloration of the ring (Grey: 

Entognatha, Black: basal insects, Cyan: Palaeoptera, Purple: Polyneoptera, Green: 

Paraneoptera, Red: Holometabola). Changes in branch coloration denote 

diversification shifts identified using TurboMEDUSA (Table 4). Symbols at shifts 

denote a net upshift (diamond) or down shift (circle). Coloration of symbols reflects 

the robustness of the shift event across dating (Black: shift recovered in >80% of 

samples, Grey with Black outline: recovery >50%, Grey with Pale outline: recovery 

>30%, Pale Grey: recovery<30%). Black circles are shown at 100Ma increments 

from the present. 
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In contrast with these relict groups, most of the shifts leading to a net increase in 

taxonomic richness are comparatively recent (Figure 19) and are associated with restricted, 

but massively diverse lineages many of which are of large ecological significance in recent 

communities. Among the non-holometabolan insects these include large herbivorous 

radiations such as the katydids (Tettigoniidae), true and lubber grasshoppers (Acrididae 

and Romaleidae), aphids (Aphidoidea), leafhoppers and treehoppers (Membracoidea), as 

well as plant/lace bugs and stink bugs (Miridae/Tingidae and Pentatomidae). Also 

represented are predatory groups such as assassin bugs (Reduviidae) and certain families 

of dragonflies and damselflies (Odonata). The pattern of shifts within the Dictyoptera 

(which includes detritivorous roaches and termites as well as predatory mantids) (Davis et 

al. 2009) is unstable with respect to branch length, with the majority of samples failing to 

recover the small proposed shift encompassing the entirety of the group (Figure 20, Table 

5). These groups, with the exception of Dictyoptera, radiated during the mid to late 

Cretaceous, which may imply an association between these radiations and the restructuring 

of floral and faunal communities during this interval following the radiation of 

angiosperms (Clarke et al. 2011; Fiz-Palacios et al. 2011).  

 

Figure 19 Change in species richness associated with shift events plotted 

through time. Values plotted are ratio between the observed richness of the clade 

(after correction for nested shifts) and the mean estimated values of the richness of a 

clade of the appropriate age under the parental diversification model (see text). 

Confidence intervals given are based on the change in richness associated with 95% 

CIs on the estimated outcomes of the stochastic diversification process 



 96 

Unsurprisingly, several upshifts in diversification within Holometabola also 

involve groups directly associated with the angiosperm radiation, with notable examples 

including leaf and longhorn beetles (Chrysomeloidea) (Gómez-Zurita et al. 2007; Hunt et 

al. 2007) and advanced bees (Apidae and Megachilidae) (Davis et al. 2010b). Our results 

also strongly support an upshift encompassing the Calyptratae, which includes houseflies 

and the important parasitoid group Tachinidae (Wiegmann et al. 2011).  

The recovered pattern of diversification shifts in Lepidoptera is complex and highly 

sensitive to uncertainties in branch length estimation, reflecting the difficulties of 

accurately dating a group for which there is a lack of suitable calibration fossils 

(Labandeira & Sepkoski Jr 1993; Sohn et al. 2012), and which includes several regions of 

phylogenetic instability (Cho et al. 2011; Regier et al. 2013). The pattern recovered from 

the mean estimates of node times indicates a nested model with an overall down-shift 

associated with the most basal moths followed by a series of up-shifts corresponding to the 

major clades Glossata (moths with a proboscis) and Ditrysia (moths with partitioned 

female reproductive tracts). The pattern of shifts within the advanced moths and butterflies 

is poorly resolved with a number of events showing limited robustness with respect to 

branch length variation. If shift recovery across multiple samples of the Markov Chain 

Monte Carlo used in dating is considered ((Ronquist et al. 2012) see Section 2.4.), several 

of these events are found to be collapsed into a single shift associated with the redefined 

Obtectomera (Cho et al. 2011; Regier et al. 2013) (Figure 20, Table 5) which also 

corresponds to the shift associated with second largest improvement in overall model 

likelihood in single-shift models (Table 3).  

Comparable previous work on patterns of diversification within Diptera identified a 

series of nested shifts within the order that are not recovered in our study (Wiegmann et al. 

2011). These differences can be attributed to the placement of radiations within a more 

inclusive phylogenetic context, i.e. within Holometabola in its entirety, resulting in greater 

estimated turnover within the group, as well as minor differences in taxonomic sampling 

and dating between analyses. Contrary to previous views, which have tended to emphasize 

the role of particular ecologies (notably phytophagy) (Mitter et al. 1988; Farrell 1998) in 

determining patterns of hexapod richness, our results do not show strong correlation 

between patterns of diversity and particular life history traits, e.g. upshifted clades show a 

range of dietary ecologies (Chapter 4). Instead, our results suggest diverse responses 
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within Mesozoic fauna to the ecological transition and novel opportunities provided by the 

Cretaceous angiosperm expansion (Grimaldi & Engel 2005).  

3.4.1.1. Perspectives on diversification from sampling the MCMC  

The majority of studies involved in modeling diversification rates within dated 

trees have tended to focus exclusively on patterns associated with the mean tree without 

any consideration of the potential uncertainties involved in estimating node ages. Bayesian 

methods as implemented here provide a natural way to approximate the confidence 

intervals on the node ages through the use of samples from the postdated MCMC (see 

methods). Comparing the pattern of nodes consistently recovered from such samples (the 

top fifty of which are shown on Figure 20 and listed in Table 5 provides an alternative 

insight into the processes of diversification active within the group. Overall the pattern of 

well supported shifts is broadly consistent with that recovered on the mean tree indicating 

that most of the inferred events, including the shifts associated with Holometabola and 

Pterygota, are relatively robust with respect to uncertainties in branch length. However 

there are also a number of differences within certain major clades that change our 

perspective on diversification patterns.  

The majority of changes in the pattern of diversification occur within the 

megadiverse Holometabolan orders. In Lepidoptera the pattern of shifts alters such that in 

place of the idiosyncratic shifts associated with butterflies (Rhopalocera) and Gelechioidea 

a more secure shift is recovered associated with the redefined Obtectomera, which 

encompasses both these groups as well as macromoths, and is one of the best supported 

clades in the advanced Lepidoptera (Mutanen et al. 2010; Cho et al. 2011; Regier et al. 

2013). This shift also corresponds to that identified as the second best position under the 

two-rate model in Table 3. Within Coleoptera four novel shifts are highlighted involving 

three large and recently derived phytophagous groups (Farrell 1998; Hunt et al. 2007): 

Buprestidae (jewel beetles), Curculionidae (“true” weevils) and Mordellidae (tumbling 

flower beetles) (the last in association with the also tending to phytophagous Anthicidae 

(ant-like flower beetles) and the parasitoid Meloidae (Blister beetles)) (Hunt et al. 

2007)(Arnett et al. 2010), as well as the large detritivorous family Tenebrionidae (Darkling 

beetles). Within Diptera the seminal role of Calyptratae, and Tachinidae in particular, in 

dominating the pattern of diversification is again emphasized. Tachinids are among the 

most diverse (9626 described species) (Zhang 2011) and youngest (divergence estimated 
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as 26.27 Ma, CIs 9.96-42.31 Ma) fly families, implying exceptional rates of 

diversification, which may reflect the group’s successful adaptation to a parasitoid lifestyle 

on a huge variety of arthropod hosts, particularly similarly recently derived Lepidoptera 

(Marshall 2012).  

Outside of Holometabola there are also minor modifications to the apparent pattern 

of diversification including a potential shift associated with the aquatic bugs (including 

Nepomorpha, Gerromorpha, Dipsocoromorpha and Enicocephalomorpha), modifications 

to the apparent pattern within Dictyoptera that highlight three super-rich clades (i.e. 

Blattidae + Blaberidae (Blattodea), Mantidae (Mantodea), Termitidae (Isoptera)) and bring 

results more in line with those of previous studies (Davis et al. 2009), and the loss of 

idiosyncratic up-shifts associated with a subclade of Ephemeroptera and Neanuridae 

(Collembola). As well as highlighting further candidates for radiations within Hexapoda 

these results also emphasize the potential dangers of relying on a single set of date 

estimates when discussing diversification, as the resulting pattern may include shifts 

shaped by idiosyncrasies of the particular tree chosen and so not be representative of the 

overall pattern implied by the data.  
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Figure 20: The fifty shifts with the highest rates of recovery in samples from 

the MCMC chain (Table 5) plotted together on the tree topology. Shifts are denoted 

as Figure 18 with novel shifts not recovered on the mean tree denoted by red circles 

3.5. Discussion 

Ultimate explanations of insect diversification can be classified into morphological 

key innovations, and ecological interactions (Mayhew 2007). Our results highlight the 

importance of complete metamorphosis as the major key innovation underpinning the 

pattern of hexapod species richness. The mechanism by which complete metamorphosis 

promotes diversification is incompletely understood. However, previous workers have 

suggested that the ecological division of adult and juvenile life stages separated by a pupal 

stage in Holometabola may play a major role (Carpenter 1953; Yang 2001; Mayhew 
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2007). The adaptation to novel ecological niches likely played a role in promoting 

diversity within specific hexapod radiations, such as family-level or lower taxonomic 

levels, but there is no evidence here to support the idea that a single suite of ecological 

traits is generally associated with shifts in hexapod diversification. Instead, the patterns 

observed are consistent with distinct members of the community responding in a wide 

variety of ways to the ecological changes following the angiosperm radiation and 

continuing to the present day. However, we did find evidence that the radiation of 

angiosperms itself triggered a number of upshifts in diversification rate across both non-

holometabolan and holometabolan groups, marking the evolution of angiosperms as a key 

ecological change in the evolutionary history of Hexapoda.  

It is important to note that our recognition of these patterns is dependent on the 

inferred phylogenetic topology, which contains some regions of considerable phylogenetic 

uncertainty (see Section 2.3.2). However, it is unlikely that the major findings of our 

analysis – i.e. key roles of complete metamorphosis and angiosperm evolution as well as 

the failure to recover a distinct suite of ecological traits underlying a species group’s 

phylogenetic richness – will change in the light of future improvements to the topology, 

dating, and extant species richness of the insect phylogenetic tree, which collectively will 

combine to further improve our understanding of the origins and diversification of this key 

component of terrestrial ecosystems.   
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Table 3 Log likelihood and parameter estimates for models with a single shift 

in diversification rate. Log likelihood tests performed to compare the optimal model, 

with shift placed on Holometabola, and various alternative models. Data shown are 

log likelihoods of the respective models estimated in laser using turnover estimates as 

estimated in the homogenous model in MEDUSA (i.e. that with no shifts). Net 

diversification rates estimated for the partition in including the root (Rroot) and the 

descendants of the focal node (Rclade). Chi squared values, Degrees of Freedom and 

p values relate to results of likelihood ratio comparisons between denoted models. 

Comparable parameter values for the Holometabola model are; lnL= -11299.6, 

Rroot=0.00359636, Rclade =0.0112969.  

Taxon 1 lnL Taxon 2 lnL R root R clade Chi-
Squared 

DF p.value 

Holometabola -11299.6 Uniform 
Model 

-11504.6 0.00874 - 409.90 3 < 0.001 

Holometabola -11299.6 Obtectomera  
(Second Best 
Node) 

-11351.0 0.0073964 0.0264802 102.81 1 < 0.001 

Holometabola -11299.6 Paraneoptera -11433.7 0.0096620 0.0039822 268.22 1 < 0.001 

Holometabola -11299.6 Eumetabola -11393.2 0.0032761 0.0098645 187.10 1 < 0.001 

Holometabola -11299.6 Neoptera -11415.3 0.0020526 0.0093177 231.25 1 < 0.001 

Holometabola -11299.6 Pterygota -11474.3 0.0023812 0.0089912 349.32 1 < 0.001 

Holometabola -11299.6 Insecta -11481.9 0.0026486 0.0089487 364.58 1 < 0.001 

Holometabola -11299.6 Coleoptera -11495.2 0.0082814 0.0105405 391.11 1 < 0.001 

Holometabola -11299.6 Lepidoptera -11418.2 0.0075482 0.016791 237.22 1 < 0.001 

Holometabola -11299.6 Diptera -11486.3 0.0082253 0.0120813 373.32 1 < 0.001 

Holometabola -11299.6 Hymenoptera -11497.6 0.0085002 0.0111554 395.96 1 < 0.001 

 



Table 4 Parameter values and shifts in species richness associated with MEDUSA model shifts inferred across the mean topology. 

Shift 
No. 

Affected Taxa Percentage 
occurrence 
in samples 
from the 
MCMC 
chain 

Log 
likelihood 
of model 
including 
shift 
 

AIC of 
cumulative 
models 

Net 
diversification 
of shifted 
clade 

Turnover in 
shifted 
clade 

Age  
(Myr) 

Parent 
shift 

Total richness  
(Corrected 
Richness) 

Mean richness in 
the absence of shift 
(lower- upper 95% 
CIs) 

1 
Root NA -11504.58 23013.15 0.006306892 0.984480673 478.08 NA 1037967 

 
NA 

2 
Holometabola 98 -11261.60 22533.20 0.016956804 0.996863114 389.69 42 867118 

(912767) 
29329 
(988- 57669) 

3 

Macromoths (Hyblaeoidea+ 
Pyraloidea+ Noctuoidea+ 
Geometroidea+ Drepanoidea+ 
Bombycoidea+ Cimeliidae) 
(Lepidoptera) 

44.2 -11160.56 22337.12 0.017787886 0.999846505 127.35 40 89731 
(126799) 

3107 
(105- 6110) 

4 

Calyptratae + Drosophilidae + 
Ephydridae + Agromyzidae 
(Diptera) 

61.4 -11108.74 22239.49 0.031770706 0.99907383 95.88 2 22890 
(22890) 
 

1988 
(67- 3908) 

5 
Acrididae + Romaleidae 
(Orthoptera) 

70.8 -11062.85 22153.71 0.067112354 0.99470352 43.18 42 6481 
(6481) 

70 
(3-138) 

6 
Trichoptera 70 -11022.27 22078.54 0.022328614 0.926777663 276.29 30 14193 

(12994) 
267 
(38-495) 

7 
Archostemata + Myxophaga 
(Coleoptera) 

100 -10987.31 22014.62 0.015592491 6.03E-07 282.92 2 140 
(140) 

58475 
(1969-114981) 

8 

Psocodea 59.4 -10957.34 21960.68 0.01259899 0.940790255 401.42 42 9234 
(6109) 

35161 
(1184- 
69137) 

9 

Mecoptera + Siphonaptera 84.8 -10928.56 21909.13 0.009646414 0.99145901 260.77 2 2853 
(2853) 

40013 
(1348- 
78679) 

10 
Ephemeroptera 56.6 -10900.43 21858.87 0.021219991 0.785579484 268.74 42 3126 

(2230) 
4480 
(151-8808) 

11 
Neuropterida 96.2 -10872.32 21808.65 0.017081799 0.865444919 300.35 2 6180 

(2039) 
78749 
(2652- 154847) 

12 Chrysomeloidea 75.8 -10847.07 21764.13 0.027013199 0.999342832 115.25 2 62619 2949 
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(Coleoptera) (62619) (100- 5799) 

13 

Bombycoidea (in part) + 
Cimeliidae 
(Lepidoptera) 

45.6 -10824.57 21725.14 0.047987062 0.981655444 92.77 3 4704 
(4704) 

41772 
(1407- 82138) 

14 

Apataniidae + Goeridae + 
Limnephilidae 
(Trichoptera) 

57 -10804.30 21690.60 0.015012577 0.99791316 62.64 6 1267 
(1267) 

68 
(3-133) 

15 
Tettigoniidae 
(Orthoptera) 

95 -10784.19 21656.38 0.103127941 0.552218484 77.82 42 6827 
(6827) 

169 
(6-332) 

16 
Apidae + Megachilidae 
(Hymenoptera) 

59.2 -10764.50 21623.00 0.007156149 0.99993768 37.56 2 9871 
(9871) 

435 
(15-855) 

17 

Rhopalocera (with the 
exception of Papilionidae) 
(Lepidoptera) 

11.8 -10744.78 21589.56 0.029625726 0.998872604 87.46 40 18177 
(18177) 

839 
(29-1650) 

18 
Membracoidea 
(Hemiptera) 

52.2 -10728.34 21562.68 0.020257069 0.996798633 170.67 42 23492 
(23492) 

932 
(32-1832) 

19 
Reduviidae 
(Hemiptera) 

78.6 -10712.48 21536.97 0.084227724 0.525345485 95.246 42 6420 
(6420) 

243 
(9-477) 

20 

Heloridae+ Maamingidae + 
Mymarommatidae 
(Hymenoptera) 

100 -10696.79 21511.58 0.013650868 6.86E-06 176.23 2 18 
(18) 

9173 
(309- 18036) 

21 

Amphizoidae + Aspidytidae + 
Hygrobiidae  
(Coleoptera) 

99.2 -10681.83 21487.67 0.014945337 1.70E-06 125.41 2 12 
(12) 

3595 
(122- 
7069) 

22 
Miridae + Tingidae 
(Hemiptera) 

65.2 -10667.91 21465.83 0.006895962 0.999726953 140.70 42 12000 
(12000) 

561 
(19-1103) 

23 
Coenagrionidae + Protoneuridae 
(Odonata) 

90.6 -10653.16 21442.32 0.024525083 0.998329638 30.66 42 1344 
(1344) 

46 
(2-89) 

24 
Aphidoidea 
(Hemiptera) 

62.8 -10637.93 21417.87 0.087179981 0.537060022 87.14 42 4300 
(4300) 

206 
(7-405) 

25 

Dictyoptera 33.0 -10620.86 21389.71 0.010720132 0.996830072 307.23 42 9253 
(9253) 

8169 
(276- 
16063) 

26 
Asiloidea (in part) 
(Diptera) 

36.0 -10607.69 21369.38 0.015839809 0.999508807 109.28 2 5837 
(5837) 

2619 
(89-5149) 

27 
Elateridae (Coleoptera) 66.4 -10594.42 21348.85 0.138604856 0.558284995 60.55 2 10000 

(10000) 
874 
(30-1718) 
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28 
Eulophidae + Pteromalidae 
(Hymenoptera) 

49.2 -10580.62 21327.24 5.02E-07 0.999999994 48.58 2 7978 
(7978) 

624 
(21-1227) 

29 
Gelechioidea + Callidulidae 
(Lepidoptera) 

2.8 -10567.60 21307.21 0.028217669 0.997116756 119.95 40 17121 
(17121) 

2447 
(83-4811) 

30 
Amphiesmenoptera 
(Lepidoptera + Trichoptera) 

56.4 -10554.44 21286.88 0.016831916 2.76E-06 302.41 2 170209 
(562) 

81563 
(2747- 160379) 

31 

Glossata (excluding 
Eriocraniidae) 
(Lepidoptera) 

41,4 -10536.46 21256.91 0.011361995 0.990118042 222.98 30 155829 
(3515) 

108 
(16-201) 

32 

Ameletidae + Ameletopsidae + 
Caenidae + Oligoneuriidae + 
Ephemerellidae + 
Heptageniidae + Nesameletidae 
+ Rallidentidae 
(Ephemeroptera) 

26.8 -10523.79 21237.57 0.025969093 0.952800982 133.74 10 1025 
(1025) 

129 
(5-253) 

33 
Neanuridae (Collembola) 32.4 -10511.52 21219.03 0.113979086 0.556941465 56.53 43 1417 

(1417) 
204 
(7-401) 

34 

Epimetopidae + Georissidae + 
Helophoridae + Spercheidae 
(Coleoptera) 

72.2 -10499.31 21200.61 0.028544091 2.61E-06 179.43 2 306 
(306) 

9711 
(327- 
19095) 

35 
Libellulidae (Odonata) 31.4 -10487.14 21182.27 0.130729344 0.57268948 46.12 42 970 

(970) 
77 
(3-150) 

36 
Pentatomidae (Hemiptera) 44.2 -10474.51 21163.02 0.061467249 0.542746523 124.12 42 4500 

(4500) 
419 
(15-823) 

37 
Psocomorpha (Psocodea) 47.6 -10462.77 21145.55 0.019704411 0.964589998 214.44 8 3496 

(3496) 
371 
(13-728) 

38 

Myrmeleontoidea + 
Nemopteridae + Ithonioidea + 
Chrysopidae + Hemerobiidae 
(Neuroptera) 

69.6 -10451.64 21129.28 0.029858396 0.918567569 195.34 11 4472 
(4472) 

331 
(12-649) 

39 

Ceratocanthidae + Hybosoridae 
+ Glaresidae + Lucanidae + 
Pleocomidae + Glaphyridae + 
Ochodaeidae + Passalidae  
(Coleoptera) 

35.2 -10440.73 21113.46 0.026293101 0.884805968 205.08 2 3402 
(3402) 

15266 
(514- 
30017) 

40 
Ditrysia (Lepidoptera) 38.8 -10430.50 21098.99 0.031681892 0.972384078 184.87 31 153427 

(32332) 
1113 
(38-2188) 

41 Pelecinidae + Roproniidae 92.2 -10420.50 21085.01 0.015770387 2.65E-08 158.84 2 21 6706 
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(Hymenoptera) (21) (226- 
13185) 

42 
Pterygota 34.8 -10411.44 21072.88 0.015426853 0.97861985 441.60 1 1028365 

(154218) 
1506 
(51-2961) 

43 

Collembola (with exceptions of 
Neelipleona, Katiannidae and 
Tomoceridae) 

40 -10399.43 21054.86 0.011988111 0.992676842 267.57 1 7419 
(6206) 

438 
(15-861) 

44 

Clambidae + Eucinetidae 
(Coleoptera) 

35.4 -10390.75 21043.51 0.018680745 3.41E-05 253.75 2 223 
(223) 

35468 
(1195- 
69742) 

45 
Hyocephalidae + Idiostolidae 
(Hemiptera) 

67.8 -10382.08 21032.16 0.00776074 4.28E-06 178.65 42 7 
(7) 

1063 
(36-2090) 

46 
Limacodidae + Zygaenidae 
(Lepidoptera) 

36.6 -10373.60 21021.20 0.000317545 0.999987364 53.34 40 2708 
(2708) 

249 
(9-490) 
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Table 5 The fifty most robustly recovered shifts inferred from 500 samples from the post-

burnin Markov Chain Monte Carlo (MCMC). Shifts are plotted on Figure 20. Shifts without 

equivalents on the mean tree are highlighted in bold. 

Percentage 
occurrence in 
samples from 
the MCMC 
chain 

Equivalent 
Model on 
Consensus 
tree 

Taxa Impacted 

1 20 Heloridae Maamingidae Mymarommatidae (Hymenoptera) 
1 7 Archostemata + Myxophaga (Coleoptera) 
0.992 21 Amphizoidae + Aspidytidae + Hygrobiidae (Coleoptera) 
0.98 2 Holometabola 
0.962 11 Neuropterida 
0.95 15 Tettigoniidae (Orthoptera) 
0.922 41 Pelecinidae + Roproniidae (Hymenoptera) 
0.906 23 Coenagrionidae + Protoneuridae (Odonata) 
0.848 9 Mecoptera + Siphonaptera 
0.824 - Obtectomera (Lepidoptera) 
0.786 19 Reduviidae (Hemiptera) 
0.758 12 Chrysomeloidea (Coleoptera) 
0.722 34 Epimetopidae + Georissidae + Helophoridae + Spercheidae (Coleoptera) 
0.708 5 Acrididae + Romaleidae (Orthoptera) 
0.7 6 Trichoptera 
0.696 38 Myrmeleontoidea + Nemopteridae + Ithonioidea + Chrysopidae + Hemerobiidae (Neuroptera) 
0.678 45 Hyocephalidae + Idiostolidae (Hemiptera) 
0.664 27 Elateridae (Coleoptera) 
0.652 22 Miridae + Tingidae (Hemiptera) 
0.628 24 Aphidoidea (Hemiptera) 
0.614 4 Calyptratae + Drosophilidae + Ephydridae + Agromyzidae (Diptera) 
0.598 - Termitidae (Isoptera) 
0.594 8 Psocodea 
0.592 16 Apidae + Megachilidae (Hymenoptera) 
0.57 14 Apataniidae + Goeridae +Limnephilidae (Trichoptera) 
0.566 10 Ephemeroptera 
0.564 30 Amphiesmenoptera (Lepidoptera + Trichoptera) 
0.542 - Buprestidae (Coleoptera) 
0.522 18 Membracoidea (Hemiptera) 
0.492 28 Eulophidae + Pteromalidae (Hymenoptera) 
0.482 - Curculionidae (Coleoptera) 
0.476 37 Psocomorpha (Psocodea) 
0.456 13 Bombycoidea (in part) + Cimeliidae (Lepidoptera) 
0.442 36 Pentatomidae (Hemiptera) 
0.442 3  Macromoths (Hyblaeoidea+ Pyraloidea+ Noctuoidea+ Geometroidea+ 

Drepanoidea+Bombycoidea+Cimeliidae (Lepidoptera) 
0.424 - Tenebrionidae (Coleoptera) 
0.414 31 Glossata (excluding Eriocraniidae)(Lepidoptera) 
0.4 43 Collembola (with exceptions of Neelipleona, Katiannidae and Tomoceridae) 
0.388 40 Ditrysia (Lepidoptera) 
0.372 - Calyptrata (Diptera) 
0.368 - Sarcophagidae + Tachinidae (Diptera) 
0.366 46 Limacodidae + Zygaenidae (Lepidoptera) 
0.36 26 Asiloidea (in part) (Diptera) 
0.354 44 Clambidae + Eucinetidae (Coleoptera) 
0.352 39 Ceratocanthidae + Hybosoridae + Glaresidae + Lucanidae + Pleocomidae + Glaphyridae + 

Ochodaeidae + Passalidae (Coleoptera) 
0.35 - Anthicidae + Meloidae + Mordellidae (Coleoptera) 
0.348 42 Pterygota 
0.346 - Neopomorpha+ Gerromorpha + Enicocephalomorpha+ Dipsocoromorpha (Hemiptera) 
0.342 - Blattidae + Blaberidae (Blattodea) 
0.336 - Mantidae (Mantodea) 
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4. The Impact of Dietary Ecology on Diversification in 

Hexapoda 

4.1. Abstract 

Hexapoda, the insects and their relatives, includes over half of all described 

species. Because large proportions of this diversity cluster within a small set of 

phytophagous groups, dietary-substrates have been proposed to shape patterns of richness 

within the clade through antagonistic co-evolution and zones of ecological opportunity. 

Here we explore these processes in the context of a recent dated phylogeny of Hexapod 

families. Our results indicate phylogenetic clustering of specialized ecologies such as 

phytophagy and parasitism, but reveal no consistent associations between the use of 

particular dietary substrates and clade richness. We also find no evidence that diets 

expected to promote antagonistic co-evolution are consistently associated with elevated 

species richness, nor that sister clades differing in dietary state are associated with greater-

than-expected differences in richness. We do, however, identify variation in the age of, and 

transition rates among, dietary states that are likely to play a role in the observed 

heterogeneity in richness among dietary classes. Based on these findings we suggest 

remaining circumspect about the generality of adaptive zones based on broad dietary 

groupings as an explanation for hexapod richness, and suggest that richness heterogeneity 

may be better explained by origination and transitions rates, and variation within dietary 

categories. 

4.2. Introduction 

A key issue in macroevolution is how ecology affects speciation and extinction to 

generate differences in species richness among clades (Schluter, 2009). Ecological 

opportunity is a key potential part of this relationship, and refers to how niche space 

constrains the richness of clades using these niches (Valentine, 1980; Wellborn and 

Langerhans, 2015). Zones of ecological opportunity are challenging to visualize, as they 

exist in a multi-dimensional volume defined by a combination of many ecological traits 

(Devictor et al., 2010; Futuyma and Moreno, 1988). However, ecological zones may 

sometimes be approximated by single, simply measured traits, and the distribution of such 

traits may be studied on phylogenies of radiating taxa (Cantalapiedra et al., 2014; Poisot et 
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al., 2011). For example, the division of niche space into zones of opportunity would be 

expected to restrict transitions between such zones, resulting in strong phylogenetic 

conservatism in correlated traits (Cooper et al., 2010; Poisot et al., 2011). Likewise, 

because zones of opportunity are expected to differ in their control of net diversification 

rates and carrying capacity, transitions across different ecological zones should correlate 

with differences in the inferred diversification process and therefore the species richness of 

transitioning clades (Maddison et al., 2007; Rabosky, 2009). Understanding the role of 

ecology in structuring species richness among clades therefore relies on an understanding 

of diversification rates, the history of ecological evolution within the group, and an 

appreciation of the limits to zones of ecological opportunity. 

Much of the work on diversification and ecology explores the relationship between 

species richness and host specialization (Poisot et al., 2011; Thompson, 2009). Host 

specialists, by definition, make use of only part of the resources available in an 

environment, and therefore zones of opportunity can be occupied by greater numbers of 

species, potentially resulting in more species-rich clades (Poisot et al., 2011; Vamosi et al., 

2014). Furthermore, antagonistic coevolution, and loss of genetic variation, is expected to 

result in increased specialization among specialized daughter clades leading to potential 

long lasting impacts on clade diversification (Ehrlich and Raven, 1964). Specialization also 

imposes macro-evolutionary costs, such as reduced population and range size, which 

render species more susceptible to extinction, and which may mask or counter the effects 

of increased diversification rates (Kelley and Farrell, 1998; Nosil, 2002). Whether and how 

clades overcome this “paradox of parasitism” (Drake, 2003), and how this relates to zones 

of ecological opportunity, remain major outstanding questions. 

A classic system for exploring the relationship between ecology and species 

richness is the macroevolution of Hexapoda, the six-legged arthropods that include insects 

and their relatives. Within this clade there is considerable variation among sub-groups in 

both species richness (Mayhew, 2007), and dietary ecology (Grimaldi and Engel, 2005), 

presenting an ideal system for studying relationships between these traits. In addition, due 

to the typical presence of a feeding nymph or larval stage with limited mobility, there is a 

long tradition in hexapod studies of using dietary substrates, e.g. phytophagy (Mitter et al., 

1988; Nyman et al., 2010; Winkler and Mitter, 2008), parasitoidism (Wiegmann et al., 

1993), fungivory (Leschen and Buckley, 2007), and generalized diets such as detritivory 
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and predation, as proxies for zones of ecological opportunity and therefore controls on 

clade diversification within the group (Mayhew, 2007). 

Evidence that use of heterogeneous dietary substrates may promote clade richness 

in hexapods is based on the widely cited studies of Mitter et al. (1988), Farrell (1998) and 

Winkler and Mitter (2008). These analyses purported to show that plant feeding (Mitter et 

al. 1988), and specifically feeding on angiosperms (Farrell 1998; Winkler and Mitter 

2008), is correlated with elevated diversity with respect to sister taxa, across insects as a 

whole and within Coleoptera (beetles). While this view has become standard in discussions 

of plant feeding and speciation (e.g. (Nyman 2010) and references therein) there remain a 

number of outstanding issues associated with this interpretation, including questions 

surrounding selectivity in the choice of sister group contrasts. Mitter et al. (1988) included 

only 13 comparisons in their analysis, which due to the state of phylogenetic and 

taxonomic information then available, show an implicit bias towards larger plant feeding 

groups. The authors acknowledged this ((Mitter et al. 1988): appendix) and justified the 

exclusion of small phytophagous radiations on the basis of their playing a marginal role in 

understanding overall patterns of clade diversification, due to their low diversity and that 

of their probable sister taxa. Attempts to test this assertion within Coleoptera indicated that 

such small families may in fact play pivotal roles in the clade’s diversification, resulting in 

an analysis which failed to recover any consistent association between phytophagy and 

species richness (Hunt et al. 2007). In addition, conflicting evidence from parasitic 

hexapods challenges the generality of heterogeneous diets for promoting clade 

diversification (Futuyma and Moreno 1988; Wiegmann et al. 1993). 

In recent years there has been a steady increase in the phylogenetic information 

available for Hexapoda e.g. (Misof et al., 2014; Trautwein et al., 2012), and in techniques 

for assembling such data into increasingly comprehensive frameworks for the group 

(Chapter 2). As a result it is now possible to extend the methodologies used by (Mitter et 

al., 1988) and others to consider a more inclusive view of hexapod diversification. The 

aims of this study are thus: a) to summarize the phylogenetic distribution of diets across 

higher insect taxa based on a consistent dietary classification (see Appendix 7.2) and 

evaluate what this implies about the historical patterns of dietary acquisition and loss, b) to 

demonstrate if there is phylogenetic conservatism in diet across the broad array of hexapod 

taxa as a prerequisite to a long term macro-evolutionary association between diet and 

species richness, and c) to investigate the association between net diversification and 
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dietary ecology, specifically whether the use of particular substrates is correlated with 

elevated or depressed richness among hexapod clades, and if consistent patterns occur 

among the set of diets that are expected to promote antagonistic co-evolution.  

4.3. Methods 

Underlying this study is a dated topology of Hexapoda, including 874 terminal taxa 

covering 903 of the approximately 1100 extant hexapod families (Chapter 2). Whilst 

clearly a phylogeny so inclusive will never be error-free, and some regions whilst 

plausible, are only weakly supported, this topology includes all clades highly supported by 

previous work at the level of hexapod families (Section 2.3.2), and is broadly consistent 

with recent opinions regarding the deep structuring of higher taxonomic relationships 

(Trautwein et al., 2012; Misof et al., 2014). We therefore propose it as the best current 

working basis for a broad and inclusive comparative study of hexapod diversification. 

Accompanying this tree are estimates of described species richness for terminal groups 

taken from recent encyclopedia and related sources (references in Section 3.3). 

Dietary ecology for terminal groups was taken from published descriptions 

(Appendix 7.2) and categorized according to predominant substrate use among subfamilies 

or comparable groups. The substrates used include fungivory, detritivory, phytophagy 

(herbivory), predation, parasitoidism, and ecto-parasitism as well as non-feeding and 

liquid-feeding adults (Appendix 7.2). Diets were coded separately for juveniles and adults, 

with most non-metamorphosing taxa assumed to maintain the same ecology throughout the 

lifecycle. Omnivorous taxa or taxa in which subfamilies varied in predominant ecology 

were coded as mixed states (Appendix 7.2). In order to reflect differences in previous 

classifications regarding the treatment of marginal diets, such as whether to classify 

xylophagy and/or pollenivory under phytophagy or detritivory (Mitter et al., 1988; Hunt et 

al., 2007), and whether to group carnivorous parasites (parasitoids, ecto-parasites and other 

blood feeding taxa) as a single category (Wiegmann et al., 1993), we developed three 

distinct coding schemes, details of which are provided in Appendix 7.2. Our favored 

scheme, emphasizing larval/immature diets, is denoted “Larval Raw”. A scheme that more 

closely corresponds to the categories used in previous sister-group studies is henceforth 

“Larval Modified” (in parentheses; Appendix 7.2). Finally, a scheme based on the ecology 

of adult taxa is henceforth- “Adult”. 
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To assess the degree to which ecological states demonstrated non-random 

phylogenetic structure of across terminal groups, e.g. due to clustering or over-dispersion, 

we used Phylocom (Webb et al., 2008) to calculate two indices; net relatedness index 

(NRI- measuring total phylogenetic distance between taxa with particular ecologies) and 

nearest taxon index (NTI- measuring mean distance to nearest neighbor sharing a 

particular diet) relative to 999 randomized tip permutations. Given that hypothesized zones 

of ecological opportunity implicitly assume long-term associations of clades with 

particular dietary substrates (Irwin et al. 2012), the presence of phylogenetic conservatism 

can be regarded as evidence consistent with such models. Taxa with mixed coding states 

were treated as contributing to all relevant indices and taxa with for which no ecological 

information could be obtained (denoted by “?” in Appendix 7.2) as contributing to all 

studied indices, so as to minimize any biasing effect this lack of data might have on the 

analyses. 

As the basis for subsequent sister-group comparisons (see below) we reconstructed 

ancestral dietary states under parsimony (using Mesquite (Maddison and Maddison, 

2011)), and maximum likelihood (ML) using the hidden rates Markov model rayDISC (R 

package; corHMM (Beaulieu et al., 2013)). For the ML reconstruction of the “Adult” 

dataset the rarity of some ecologies, e.g. fungivory, resulted in an overexpression at deep 

nodes within the phylogeny, (see (Nosil, 2002)). To resolve this we constrained the root 

state for this reconstruction to detritivory in order to match the parsimony reconstruction. 

We converted reconstructed probabilities into discrete states using a threshold approach; 

with all nodes where a single state represented greater than 0.7 of the total probability 

referred to this state, and the remaining nodes referred to mixed-states encompassing all 

traits present with a probability of at least 0.05. These values were selected to maximize 

similarity with previous studies in inclusion of clades showing strong dominance of 

particular diets, while maintaining ambiguity where ancestral states are uncertain.  

Comparisons of richness across sister clades with divergent ecologies were 

estimated for each novel origination of a trait on our tree following (Mitter et al., 1988). As 

with these authors our compared richness values subtracted any members of the focal clade 

belong to terminal taxa lacking the ecology of interest or members of the sister group 

processing the focal ecology, including within mixed states (henceforth corrected 

richness). For the purposes of corrected richness, we did not apply subtractions for dietary 

variation within our terminals due to limits in describing diet and species richness in clades 
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below the family level for many ecologically diverse groups (see discussion). Contrasts 

where the ecology of either taxon was unknown were excluded.  

Corrected richness values were compared using the sign binomial test (Farrell et 

al., 1991) and “species diversity contrast” (SDC) methods that incorporate the magnitude 

of the diversity contrast between groups (Vamosi and Vamosi, 2005). Three SDC statistics 

were calculated (using Python script “Systers” (Hardy and Cook, 2010)), represented 

distinct approaches to scaling richness comparisons: raw contrast (Wiegmann et al., 1993), 

proportional contrast (Barraclough et al., 1995) and log contrast (Barraclough et al., 1996). 

Following (Vamosi and Vamosi, 2005), sample size dependent statistical tests were 

applied to these statistics, with very small samples (<6 comparisons) analyzed using a 

randomization test of matched pairs, and larger sets compared using a Wilcoxon non-

parametric test or its normal approximation (for > 20 comparisons). In this study we did 

not use the well-known (Slowinski and Guyer, 1989) test for diet contrasts following 

evidence of an elevated type one error rate when multiple comparisons are combined 

within a single test (de Queiroz, 1998; Vamosi and Vamosi, 2005). Likelihood models of 

trait-dependent diversification processes, e.g. BiSSE (Maddison et al., 2007), were not 

used here, as current implementations rely on a species complete transition rate matrix for 

parameter estimation on trees of higher taxa, resulting in exponential growth in time and 

memory requirements, that render such methods computationally intractable on the scale 

of Hexapoda (FitzJohn et al., 2009). We further question whether such approaches, which 

estimate uniform speciation and extinction rates across whole dietary classes, are 

appropriate for clades where there is clearly enormous rate heterogeneity across subgroups 

(Chapter 3).  

To assess the hypothesis that use of biochemically heterogeneous states, i.e. those 

expected to promote antagonistic co-evolution, might collectively act as drivers of species 

richness in hexapods we combined these states (phytophagy, parasitoidism, ectoparasitism 

and fungivory) into a single character, which we term “potential for specialization” or PS. 

Ancestral reconstruction of the PS character was conducted as above and corrected 

richness contrasts calculated on novel originations vs. “generalized” sister taxa using the 

SDC methods described above.  

We also explored the idea that related clades occupying different ecological zones 

(i.e. processing different diets) should be associated with larger than expected absolute 

differences in richness, arising from differences in the control of net diversification and 
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carrying capacity. To do this we calculated standardized differences in richness at each 

node in the tree (standardized relative rate difference; stRRD, defined as the absolute 

contrast in log richness of the two descendant clades) using the trickle down protocol of 

(Davies et al., 2004) as compensation for phylogenetic nesting. The latter uses single-

contrast Slowinski-Guyer (1989) tests to identify nodes associated with significant 

differences in the species richness of descendant clades and then compensates for such 

shifts for comparisons of more deeply nested nodes (Davies et al., 2004). Our 

implementation differs from previous work in that where the richnesses of both descendant 

clades differ significantly from that of the outgroup, we use the sum of the two descendant 

richnesses for more deeply nested comparisons, thus avoiding corrections where the 

direction of richness change is ambiguous (Davies et al., 2004). Following standardisation 

we calculated the mean stRRD value for nodes where ecology was divergent between 

descendent clades, including mixed states and compared this with the distribution of means 

of 1,000 sets of equal length, drawn at random from nodes of the tree.  

4.4. Results 

Based on our favored, “Raw Larval” classification, just over half of all hexapod 

species belong to families that contain at least some plant feeding taxa (527,000 species of 

the 1,038,000 estimated described taxa within the clades present on the discussed tree; 

(Rainford et al., 2014)). This compares with approximately thirty percent represented each 

by families including detritivorous and predatory representatives (330,000 and 322,000 

species respectively), nineteen percent for fungivory (194,000 species), thirteen percent for 

parasitoids (136,000 species) and less than one percent ecto-parasites (7700 species). By 

comparison adult hexapods are dominated by liquid feeding taxa, which comprise the 

majority of adult Holometabola (411,000 species), with approximately equal proportions 

of detritivorous (301,000 species), phytophagous (351,000 species) and predatory groups 

(260,000 species), and minority representation of fungivores (167,000 species), non-

feeding groups (116,000 species) and blood-feeders (39,000 species). Note that the 

percentages given here incorporate terminal taxa with mixed ecologies into each of the 

relevant dietary categories hence they exceed one hundred percent.  

There is significant phylogenetic clustering of fungivory, phytophagy, 

parasitoidism and ectoparasitism under both the NRI and NTI metrics for the “Raw 

Larval” and “Larval Modified” coding systems (Table 6). This implies that on average, 
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taxa with these ecologies tend to be closely related to other taxa with the same diet (Figure 

21). This pattern is not observed in detritivory and predation, both of which show non-

significant trends towards over-dispersion in both larval datasets with respect to NRI. For 

adult ecologies, significant clustering is observed for fungivory, blood-feeding and non-

feeding diets while predators, detritivores and plant feeders show no significant trend with 

respect to NRI.  

Both parsimony and ML reconstructions identified detritivory as the ancestral and 

most widespread larval ecology within Hexapoda (Figure 21), although under ML some 

degree of fungivory is inferred in the early insect radiation, based on the diet of the poorly 

known basal order Protura (Pass and Szucsich, 2011). The two methods identify broadly 

similar patterns in resource use across the tree, with most ordinal groups showing strong 

conservatism with respect to diet, resulting in a pattern dominated by a small number of 

well characterized radiations, for example that of plant feeding within Lepidoptera and 

parasitisoidism within Hymenoptera (Grimaldi and Engel, 2005).  

Disagreement between reconstruction methods typically reflects taxa showing high 

degrees of ecological lability, e.g. Coleoptera, where ML identifies fungivory as the 

ancestral ecology, and multiple originations of detritivory, whereas under parsimony this 

pattern is reversed. This reflects genuine ambiguity regarding the deep topology of the 

order, as well as the close relationships of many families associated with both dietary states 

(e.g. with wood-boring or soil-living lifestyles) (Hunt et al., 2007). Likewise basal 

members of the fly suborder Brachycera show conflict in the origination of predation, 

which under ML is recovered as multiple independent origins from a detritivorous ancestor 

in Asiloidea, Empidoidea and Tabanomorpha, as opposed to a single origin, with a return 

to detritivory in Stratiomyomorpha and Cyclorrhapha observed under parsimony 

(Marshall, 2012).  
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Figure 21 Reconstructed dietary ecologies for the Larval Raw dataset under 

maximum likelihood. Ecologies are denoted as follows: Dark Blue- Fungivory, Cyan- 

Detritivory, Green- Phytophagy, Red- Predatory, Magenta- Parasitoids, Yellow- 

Ectoparasites. Taxa and nodes with mixed states are shown by dashed lines. Taxa 

with unknown states are shown in Grey. Coloured dots denote the postions of sister 

group comparisons. The colouration of the outer ring denotes major clades (Grey; 

Entognatha, Black; basal insects, Cyan; Palaeoptera, Purple; Polyneoptera, Green; 

Paraneoptera, Red; Holometabola). Internal piechart gives the relative species 

richness associated with each dietary category, with taxa with mixed ecologies 

contributing to all relevant states, see Appendix 7.2. 
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The implemented ML model for the Larval Raw dataset allowed all transition rates 

to vary independently (all rates variable AICc = 1182.3, vs. equal rates AICc= 1244.2, a 

significant difference of 61.87 likelihood units). The highest-obtained transition rates occur 

between fungivory and detritivory (Table 4), reflecting the widespread nature of these diets 

and frequent transitions within Coleoptera and Diptera (see above). Transitions between 

detritivory and predation also occur at high rates, being particularly common among 

freshwater taxa, e.g. caddisflies and mayflies where multiple parallel origins of predatory 

larvae occur in various families. Ecto-parasitism is identified as a dead end with respect to 

ecological diversification with no examples of the emergence of other ecologies within a 

primitively ecto-parasitic group (transition probabilities equal zero). Note that ecto-

parasitism in larval hexapods is extremely rare and restricted to four clades, including one 

ancient origination in Pthiraptera (lice; whose age is highly uncertain due to lack of 

suitable fossils (Grimaldi and Engel, 2005) and accelerated rates of genomic evolution 

(Trautwein et al., 2012)), and three further events occurring among young terminal groups 

with modest extant diversity. Other transitional dead-ends also appear: there are no direct 

transitions between fungivory and ecto-parasitism or from parasitoidism to fungivory or 

detritivory. In the later case this result is dependent on the coding of pollenivory based on 

the results of the Larval Modified dataset (Figure 22, Table 5).  

Table 4 Overall Likelihood and Transition rates per million years inferred for 

the optimal ML model of Larval Raw Data set. Overall LnL: 563.59, AIC: 1187.17, n. 

taxa: 874. Models are denoted as transition rates from rows to columns. 

 Fungivory Detritivory Phytophagy Predators Parasitoids Ecto-
parasites 

Fungivory NA 0.00187 0.00060 0.00065 0.00022 0.00 
Detritivory 0.00016 NA 0.00039 0.00072 0.00016 0.00004 
Phytophagy 0.00031 0.00015 NA 0.00003 0.00010 0.00 
Predators 0.00007 0.00016 0.00015 NA 0.00009 0.00004 
Parasitoids 0.00 0.00 0.00035 0.00016 NA 0.00011 
Ecto-parasites 0.00 0.00 0.00 0.00 0.00 NA 

Table 5 Overall Likelihood and transition rates per million years inferred for 

the optimal ML model of Larval Modified dataset. Overall LnL: 561.30, AIC: 

1162.61, n. taxa: 874. Models are denoted as transition rates from rows to columns 

 Fungivory Detritivory Phytophagy Predators Parasites 
(Combined) 

Fungivory NA 0.002054 0.00068 0.00063 0.00019 
Detritivory 0.00015 NA 0.00037 0.00074 0.00024 
Phytophagy 0.00033 0.00015 NA 0.00003 0.00010 
Predators 0.00007 0.00016 0.00021 NA 0.00014 
Parasites  0.00 0.00014 0.00009 0.00011 NA 
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Figure 22 Reconstructed ecologies for the Larval Modified dataset under 

maximum likelihood. Colours are as Figure 21 with Magenta denoting carnivorous 

parasites. Internal piechart gives the relative species richness associated with each 

dietary category with taxa with mixed ecologies contributing to all relevant states, see 

Appendix 7.2.  
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Figure 23 Accumulation Plot of dietary originations through geological time 

for Larval_Raw ML reconstruction. 

The accumulation curve of dietary originations for the ML reconstruction of the 

Larval Raw dataset demonstrates differences in the relative times and rates of origination 

between diets that collectively may contribute to their respective differences in richness 

(Figure 23). These series reveal certain ecologies including fungivory, phytophagy and 

predation as appearing early in the history of the group and undergoing approximately 

consistent rates of origination throughout the history of Hexapoda. This contrasts with 

patterns in detritivory, and parasitoidism both of which are strongly skewed, such that the 

majority of originations occur within specific time intervals (respectively the Middle and 

Late Mesozoic). Friedman tests using the number of originations within 50Ma bins reveal 

significant differences in the origination rate across dietary categories (maxT = 3.068, p-

value = 0.02622).  

Post-hoc analysis; (Galili, 2010), identifies significance as driven by a large 

contrast between the predatory and ecto-parasitic dietary classes (p=0.0263) as well as a 

marginally non-significant contrast between ecto-parasitism and phytophagy (p=0.0574). 

By comparison the ML reconstructed Larval Modified dataset (where ecto-parasitism and 

parasitoidism are combined) reveals no comparable differences between binned ecological 

categories (maxT = 1.6813, p-value = 0.446) suggesting that these differences arise from 

splitting these two distinct forms of carnivorous parasitism into discrete categories. 

Likewise there are no significant differences in the binned counts among the ecologies in 

the Adult dataset (ML reconstruction; maxT = 2.4076, p-value = 0.195). 
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Figure 24: Reconstructed adult dietary ecology under maximum likelihood. 

Colours are as Figure 1 with the addition of Orange- NonFeeding and Pink- Liquid 

feeding/Nectivory. Yellow is used to denote both Ectoparasites and adult blood 

feeding taxa. Coloured dots denote the positions of sister group comparisons. Internal 

piechart gives the relative species richness associated with each dietary category with 

taxa with mixed ecologies contributing to all relevant states, see Appendix 7.2. 
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Compared with the larval phase, information on the extent and significance of adult 

feeding within many hexapod groups is relatively uncertain, resulting in poorer 

documentation and fewer records of adult diet. As a result, reconstructions from our adult 

dataset are subject to extrapolation errors under ML associated with rare ecologies (see 

above) and there are high degrees of conflict between reconstruction techniques (Figure 

24). Major regions of conflict include: the ancestral state of Mecopterida (including 

Trichoptera, Lepidoptera, Diptera, “Mecoptera” and Siphonaptera) (Trautwein et al., 

2012), the relative importance of fungivory in the diets of adult beetles (many of which are 

polyphagous relative to their larval stage), and ancestral diets within Heteroptera. 

Sister group comparisons failed to show any significant effect of any dietary 

ecology on species richness. The only potential exception was the reconstruction of 

detritivory under parsimony, which showed a significant trend with respect to Raw 

contrasts towards increased richness (Table 7), primarily driven by the novel origination of 

detritivory in Cyclorrhapha (Diptera) (conflicting with ML reconstruction). The analysis of 

the Larval Modified dataset produced similar results indicating that this lack of previously 

identified relationship was not simply a manifestation of differences in the coding system 

between this work and previous studies. Similarly no significant trends in richness 

association were observed with respect to adult ecology. 

 The reconstructed history of the PS character state was identical under parsimony 

and ML methods and corresponded to the major specialized groups previously described 

(Figure 21, Figure 25). The associated transition matrix for the ML model identifies a 

marginally significant bias in transition rates towards the evolution of more specialized 

ecologies (0->1: 0.00072 myr-1 vs. 1->0 0.00035 myr-1, AIC= 526.51, vs. an AIC of 528.19 

for an equal rates model). Sister group comparisons between PS and non-PS groups failed 

to recover any evidence for the trait promoting diversity with exactly half of the test 

comparisons running contrary to the view (24 of 47 instances, Sign Test p value= 0.5106, 

Wilcoxon Tests: Raw Contrasts; W=504, p= 0.52893, Log Ratio Contrasts; W=545, 

p=0.84479, Proportional Contrasts; W=524, p=0.67595). 
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Figure 25; The reconstructed history of the “potential specialization” (PS) 

character described in the text. Clades with specialized ecologies are denoted in red, 

generalised ecologies in blue and taxa with unknown states in grey. Mixed states are 

shown by dashed lines. Tree orientation and clade identities are as Figure 21.  

When we compare nodes where ecology diverges we show that for the “Larval 

Raw” and “Larval Modified” datasets there is no significant trend in terms of greater than 

expected contrasts at nodes with divergent ecologies. For the “Larval Raw” data, the mean 

estimate of the stRRD value associated with nodes showing ecological divergence was 

2.1245, corresponding to a p value of 0.2741, assuming a normal distribution of the log 

means of the 1000 randomly sampled node sets (mean of random samples 2.061; sd 

0.1058; Shapiro-Wilk normality test; W = 0.9994, p-value = 0.0948). For the “Larval 

Modified” mean stRRD = 2.116, p value= 0.2898, (mean of random samples 2.057; sd 

0.1072; SW test; W = 0.999, p-value = 0.562). 
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By contrast in the “Adult” dataset there was a marginally significant trend towards 

larger contrasts, estimate of stRRD = 2.252, p= 0.0484, (Mean of random samples 2.0572; 

sd 0.1175; SW test; W = 0.998, p-value = 0.296). It is unclear whether this difference 

between datasets simply reflects the presence of more character states in the Adult dataset 

(thus generating more divergent nodes) or if it is the influence of a small number of deep 

dietary shifts, e.g. the transitions to predominantly non-feeding or liquid feeding diets 

within Holometabola. Based on these results we conclude that one of the basic assertions 

of a ecological zone model, that groups with divergent ecologies should show greater than 

average differences in richness (after standardization to render contrasts independent), 

cannot be demonstrated as holding at the resolution of hexapod families 

4.5. Discussion 

Our results explore the association between dietary substrate and hexapod richness 

via adaptive zones of opportunity. Surprisingly, no association was found between 

particular dietary ecologies and net diversification, in contrast to previous findings relating 

to phytophagous insects. Also, our specialized and generalized diets do not consistently 

promote differences in species richness. Nor are nodes involving dietary shifts attributed 

greater shifts in diversification than random nodes. There is, however, evidence for strong 

phylogenetic conservatism of specialized diets but not generalized diets. Finally, there are 

differences in transition rates and origin times between diets, with a tendency towards 

evolution of diets associated with co-evolution and host specialization. Below we interpret 

these findings and their consequences for understanding how diet affects hexapod 

diversification. 

Our original motivation was to explore how hexapod diet acts as a proxy for zones 

of ecological opportunity (Mayhew 2007). The association of diet with zones of ecological 

opportunity is expected to result in phylogenetic clustering, arising from restricted 

transitions between diets (Cooper et al. 2010; Poisot et al. 2011). We observed 

phylogenetic conservatism in the use of biochemically and mechanically heterogeneous 

resources such as fungivory, phytophagy and parasitoidism. Such clustering is weaker for 

detritivory and predation (Table 6). Strong phylogenetic conservatism in hexapod diets, 

e.g. herbivorous insects, is widely acknowledged, e.g. (Ehrlich and Raven 1964; Mitter and 

Farrell 1991; Futuyma and Agrawal 2009), although comparisons across multiple 

substrates are rare.  



 123 

Phylogenetic conservatism in the use of heterogeneous substrates may be generated 

by a requirement to overcome with host defenses (Mitter and Farrell 1991; Futuyma and 

Agrawal 2009) and skewed nutrient content (Mattson 1980; Douglas 2009), which may 

restrict colonization of these resources by novel hexapod lineages. By contrast, 

intermediate stages such as scavenging, incidental predation of cohabitants, and 

cannibalism, may serve to lower such barriers for originations of “generalist” diets (Coll 

and Guershon 2002), allowing their adoption by a wider range of clades (Figure 23), and as 

a result, reduced phylogenetic clustering across Hexapoda. The higher transition rates from 

generalized to specialized diets also supports this interpretation, mirroring previous 

species-level studies within dietary groups (Nosil 2002; Nosil and Mooers 2005). These 

findings suggest that “specialized” ecologies are consistent with being zones of 

opportunity, at the family level, in contrast to “generalized” diets. However, this pattern 

alone is insufficient to define dietary adaptive zones, which are also contingent on the 

association of different diversification processes with particular diets (Maddison et al. 

2007; Rabosky 2009). 

Contrary to previous publications, our work finds no evidence that plant-feeding 

groups are consistently more species rich than their sisters; a view which has been very 

influential (e.g. (Grimaldi and Engel, 2005; Nyman, 2010) and references therein). We 

think it unlikely that our lack of evidence reflects a lack of power as our sampling of 

phytophagous clades was more comprehensive than in previous studies (13 sister 

comparisons in (Mitter et al., 1988), but 25- Larval Raw or 26 -Larval Modified here). 

Instead these differences probably arise from earlier selective sampling towards 

representation of larger and phylogenetically better known plant-feeding groups ((Mitter et 

al., 1988)- appendix), and heterogeneity in the macro-evolutionary dynamics of 

phytophagous lineages. Our total number of parasitism comparisons is identical to that of 

previous studies (15- (Wiegmann et al., 1993)), although the identity of the groups shows 

minor differences. In agreement with previous work, our analysis fails to show a consistent 

association of parasitism and species richness, including where invertebrate and vertebrate 

parasites are treated separately (as in Larval Raw). 

Our study does not distinguish between phytophagous clades feeding on 

angiosperms and gymnosperms (Farrell, 1998; Winkler and Mitter, 2008), because 

hexapod families often include species feeding on both plant clades. The idea that host 

clades may produce different diversification dynamics, has been discussed extensively 
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(Winkler and Mitter, 2008; Nyman, 2010), e.g. the Cretaceous radiation of angiosperms 

expanding the ecological space available for plant-feeding clades (Labandeira and Eble, 

2000; Grimaldi and Engel, 2005). However, testing this assertion is challenging due to 

uncertainties in the timing of hexapod diversification (Chapter 2), the extended emergence 

of angiosperms prior to their appearance in the fossil record (Clarke et al., 2011), and 

because insect radiations may be decoupled from the radiations of their hosts e.g. 

(McKenna et al., 2009). As such it is beyond the reach of the presented datasets.  

Our analysis also fails to identify consistent differences in net diversification 

between specialist and generalist diets (represented here by our PS character). Likewise, 

sister taxa that differ in ecology do not experience significantly increased differences in 

richness, as would be expected if diets represent different adaptive zones (Rabosky, 2009). 

This opens up alternative perspectives on the controls on hexapod diversification (see 

below). 

Differences in the richness of dietary groups can alternatively be explained by 

historical factors in the evolution of hexapod diet. For example, the timing of originations, 

such as bias towards post-Mesozoic originations in parasitoidism (Labandeira and Eble, 

2000; Grimaldi and Engel, 2005), may limit the richness of such clades when compared 

with older (e.g. phytophagous) lineages (Figure 23). Time-lagged evolution of suitable 

hosts may also limit the richness of ecto-parasites (Whiting et al., 2008), while other diets 

such as fungivory, detritivory and phytophagy have undergone many parallel and ancient 

origins which may partly account for differences in their richness (Figure 23) (Grimaldi 

and Engel, 2005).  

The flipside of origination is extinction; however evidence regarding the latter is 

limited in phylogenetic studies of extant taxa (Labandeira and Eble, 2000). Insect fossils, 

whilst providing direct evidence of the extinction of higher taxa, provide little evidence 

regarding the diets of extinct groups (Grimaldi and Engel, 2005). One major, (probably) 

phytophagous group, the Palaeodictyoptera, went extinct at the Permo-Triassic mass 

extinction (Labandeira, 2006, 2013), however the implications of this for modern plant-

feeding clades remains unclear, and to date no fossil studies have attempted to compare the 

extinction rates of different dietary categories.  

The frequency of transitions between different dietary groups is another historical 

factor potentially affecting the richness of different diets. Ecto-parasitism originates at a 
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very low rate compared to other dietary categories, as does parasitoidism (Table 4). Some 

transition rates to the other dietary categories are much higher; for example from fungivory 

to detritivory, fungivory to phytophagy, fungivory to predation, and detritivory to 

predation (Table 4). The high rates associated with transition away from “generalized” 

ecologies mirrors recent findings with respect to mammalian dietary evolution (Price et al., 

2012), although contrary to the latter it seems unlikely that “generalized” categories in 

hexapods represent unstable intermediates between specialized diets (see discussion of 

omnivory in (Price et al., 2012)). Ecto-parasitism appears to be an evolutionary dead-end 

in hexapods (Kelley and Farrell, 1998), resulting in no further transitions to other dietary 

substrates and likewise, at the studied resolution, there are no transitions from fungivory or 

phytophagy to ectoparasitism (Table 4). This may be due to extreme differences in nutrient 

content, the requirements of appropriate nutritional symbionts (Douglas, 2009) and limited 

opportunity for the establishment of long-term insect-host associations (Lehane, 1991; 

Balashov, 2006). Thus the data presented here suggest that, even in the absence of 

consistent differences in net diversification between diets, the historical pattern of 

originations and transitions between diets goes some way towards explaining the 

heterogeneity in richness between different dietary categories. On their own however they 

fail to provide an explanation for the exceptional richness of Hexapoda that the adaptive 

zones hypothesis potentially provides.  

Given these findings, what is the role of dietary adaptive zones in hexapod 

diversification? One possibility is that the real impact of diet is masked by uncertainties in 

hexapod taxonomy, phylogeny and ecological description. Discussion of the problems of 

monophyly and richness estimates can be found in Chapter 2. Phylogenetic uncertainties in 

hexapod relationships (Trautwein et al., 2012; Misof et al., 2014) could in principle bias 

the results, particularly if small clades with divergent diets, whose phylogenetic placement 

is generally less certain, have been systematically wrongly placed next to taxa with greater 

richness than that of their true sister groups. However, we currently have no reason to 

suspect such a bias, and thus expect to maintain signal across the implemented tests. 

Overall, the presence of numerous, and previously neglected, species poor phytophagous 

taxa give reason to remain circumspect on the generality of the findings of Mitter et al. 

(1988) and positive and sensible results found elsewhere in this paper suggest substantial 

signal regarding diet and species richness is present within our dataset.  
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Unseen ecological variation within families may also bias our results. However, 

available descriptions severely limit analysis at finer taxonomic scales: there are often no 

species richness estimates below the family level, or published descriptions may not 

attribute observed variation in diet to particular sub-taxa, particularly where observations 

are known for only a few species. Within-family phylogenetic uncertainties are also 

limiting; for example previous work involved contrasts using subfamilies of Scarabeidae 

and Coccinellidae (Coleoptera) (Mitter et al., 1988; Hunt et al., 2007), the sister groups of 

which have been disputed by subsequent phylogenetic work, e.g. (Smith et al., 2006; 

Magro et al., 2010). It is possible that compiling all sets of ecological contrasts would 

collectively reveal different patterns to those described here, however this would still leave 

considerable heterogeneity in diversification within dietary groups to be explained 

(Mayhew, 2007).  

As this study draws extensively on the results of ancestral reconstruction it is 

important to acknowledge the sensitivity of these techniques to model misspecification, 

rapidly evolving traits, widespread convergence and transitions via intermediate states 

which may be lost in extant representatives (Cunningham et al., 1998; Nosil, 2002; 

Beaulieu et al., 2013). The uncertainties surrounding historical hexapod diets and the 

timings of dietary transitions (Labandeira, 2006, 2013) limit the extent to which we can 

test the impact of these limitations. However there tends to be close agreement between the 

transitions shown here and previous broad historical hypotheses (see Grimaldi & Engel 

2005).  

Sister clade comparisons of species richness explore only the sum of speciation and 

extinction impacting on focal taxa. Approaches that attempt to tease apart these processes 

e.g. BiSSE (Maddison et al., 2007) have become increasingly popular and may play a role 

in resolving some of the ideas discussed here. Note however that in current 

implementations these procedures have their own limitations (see methods). Very recently 

the idea has been proposed of using global inference of diversification processes in 

combination with tree pruning to describe the subset of diversification rates associated 

with procession of a particular trait e.g. (Weber and Agrawal, 2014). This is an idea that 

holds considerable promise for future work, however once again there are issues relating to 

its implementation for Hexapoda.  

Leaving aside the above methodological issues, there remains the possibility that 

the observed lack of association between diet and diversification reflects real features of 



 127 

hexapod evolution. This implies that, rather then each diet being linked to a particular 

diversification process, different clades using the same substrate respond in different ways. 

In other words, substrate-based classifications, such as that applied here, may be poor 

approximations for the real zones of ecological opportunity that have shaped hexapod 

diversification. Instead we should consider how other features of diet or hexapod traits 

may shape the macroevolution of diversifying clades (Mayhew, 2007). A simple example 

would be host clade specific diversification, such as between gymnosperms and 

angiosperms (see discussion above). However, other features, such as differences in spatial 

context, e.g. between terrestrial and aquatic taxa (Hunt et al., 2007), and the role of 

ecological co-variates such as body size and dispersal capacity, may modify the effect of 

diet on clade diversification (Isaac et al., 2005; Phillimore et al., 2006).  

A further possibility is that differences among taxa in their ability to transition 

between ecological zones may have consequences for their relative diversification (Dodd 

et al., 1999). Evidence for evolvability as a correlate of richness remains limited (Dodd et 

al., 1999), and is subject to theoretical issues regarding the underlying model of character 

change (Ricklefs and Renner, 2000; Silvertown et al., 2000). These, as well as data 

restrictions due to our incomplete sampling of hexapod diets (see above), mean that we do 

not incorporate such ideas into this study, although we acknowledge the potential for 

future analysis in exploring these ideas. 

One potential source of heterogeneity within diets is the ecological feeding guild 

(Simberloff and Dayan, 1991), i.e. the manner in which taxa utilize a particular resource. 

Evidence for the importance of guild-specific processes can be found in community 

assembly studies (Novotny et al., 2010, 2012), as well as differences in the fossil dynamics 

of higher taxa (Labandeira, 2006, 2013). However, to date few guilds have been explicitly 

explored in terms of diversification e.g. leaf-mining; (Connor and Taverner, 1997), galling 

(Hardy and Cook, 2010). Some others, such as the distinction between idiobiont (which 

restrict host development from the point of parasitism) and koinobiont (which must deal 

with active defense by the developing host) parasitoids, have been subject to intensive 

speculation e.g. (Hawkins, 2005; Santos and Quicke, 2011) and warrant serious 

consideration in future studies.  

Since the work of authors such as (Gould and Calloway, 1980) and (Mitter et al., 

1988) the broad emphasis of trait-based diversification studies has predominantly been on 

testing a-priori hypotheses regarding the association of traits with patterns of 
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diversification. While acknowledging the power of this approach, there is a need to be 

rigorous in discussing the relationships between studied proxies (e.g. dietary substrate) and 

the processes of interest that may have acted to shape clade diversification (e.g. host 

specialization and zones of opportunity) (de Queiroz, 2002; Vamosi et al., 2014). In our 

analyses we group a set of ecologies potentially associated with promoting co-evolution 

and host specialization, under the expectation that these might show common patterns of 

clade diversification (our PS traits). However, a clear definition of “specialization” that is 

applicable when comparing different ecologies remains lacking (Devictor et al., 2010; 

Poisot et al., 2011), rendering comparisons between diets ambiguous (Giller, 1996; 

Nyman, 2010). Attempts to resolve this issue through metrics of specialisation (e.g. based 

on the number or phylogenetic diversity of host lineages used by taxa, e.g. (Forister et al., 

2015), or on measures of interspecific competition within communities e.g. (Kaplan and 

Denno, 2007)), have yet to be widely adopted and remain restricted to single dietary 

classes (Poisot et al., 2012). There is therefore a need to use language rigorously to 

describe these interactions and their relationship to theoretical models of niche divergence 

((Vamosi et al., 2014) and references therein).  

To conclude, the work presented here suggests that, while some diets show strong 

conservatism at the level of hexapod families, and the origination dates and transition rates 

between different broad diets go some way towards explaining their heterogeneity in 

species richness, evidence for differential diversification processes operating within these 

substrate-based categories is lacking. It seems likely that by the restriction of discussion to 

arbitrary and subjective classifications we are failing to appropriately account for the 

different processes that may be responsible for shaping clade richness and how these relate 

to our measured proxy traits (Nyman, 2010). Understanding this linkage will require a 

combination of detailed ecological study, as well as further investigation into the macro-

evolutionary process with a view towards defining appropriate hypotheses to test with 

comparative methods. Ultimately thereby we may establish a more “insect’s eye” view of 

adaptive landscapes and thus enhance our understanding of the processes that drive 

diversification within the clade.  



 129 

Table 3 Clustering analyses of different character states inferred for the different coding systems. Column headings: MPD (MPD.r, 

MPD.sd)- Mean phylogenetic distance of taxa possessing a particular ecology in the data set, and the mean and standard deviation of the 

implemented randomizations respectively, NRI- net relatedness index, MNTD (MNTD.r, MNTD.sd)- Mean Nearest Taxonomic distance 

of dataset and mean and standard deviation of value of the implemented randomizations respectively, NTI- Nearest Taxon index. MPD 

and MNTD are given in millions of years (the unit of branch length of the underlying phylogeny). NRI and NTI are dimensionless ratios, 

defined on the difference of the observed and mean expected values divided by the standard deviation of expected values, positive values 

referring to clustered data (Webb et al. 2008). P-values are calculated based on a two-tailed test. 

Coding Ecology MPD MPD.r MPD.sd NRI p MNTD MNTD.r MNTD.sd NTI p 
Larval Raw Fungivory 696.96 779.35 11.24 7.33 <0.001 341.46 373.91 15.66 2.073 0.0197 
Larval Raw Detritivory 781.83 781.50 5.45 -0.0597 N.S. 265.96 294.98 6.704 4.329 <0.001 
Larval Raw Phytophagy 730.25 792.10 5.60 11.04 <0.001 250.07 308.86 7.570 7.766 <0.001 
Larval Raw Predators 796.34 792.55 6.50 -0.584 N.S. 277.063 319.32 8.730 4.840 <0.001 
Larval Raw Parasitoids 657.03 789.18 11.20 11.80 <0.001 294.76 378.79 15.90 5.285 <0.001 
Larval Raw Ectoparasites 743.37 783.94 16.82 2.412 0.0124 386.16 438.73 25.53 2.059 0.0206 
Larval Mod Fungivory 698.48 779.32 11.28 7.166 <0.001 344.67 374.66 15.75 1.905 N.S. 
Larval Mod Detritivory 787.41 781.36 5.554 -1.089 N.S. 269.30 296.26 6.844 3.941 <0.001 
Larval Mod Phytophagy 726.20 791.83 5.831 11.256 <0.001 250.05 311.67 7.853 7.846 <0.001 
Larval Mod Predators 796.94 792.79 6.478 -0.6403 N.S. 278.00 320.46 8.816 4.817 <0.001 
Larval Mod. Parasites 704.64 790.12 9.324 9.1671 <0.001 283.24 355.68 12.81 5.657 <0.001 
Adult Fungivory 677.92 779.89 12.64 8.0641 <0.001 347.71 391.23 18.22 2.388 0.0091 
Adult Detritivory 791.08 779.12 7.215 -1.6581 N.S. 313.27 318.95 9.129 0.622 N.S. 
Adult Phytophagy 788.84 782.84 9.091 -0.66 N.S. 320.58 346.67 12.10 2.157 0.0156 
Adult Predators 797.92 786.07 7.640 -1.5506 N.S. 290.80 331.24 10.18 3.974 <0.001 
Adult Blood feeders 731.18 788.42 12.41 4.6106 <0.001 326.60 399.86 18.70 3.918 <0.001 
Adult Non feeding 734.51 792.06 9.852 5.8416 <0.001 276.80 371.21 14.45 6.534 <0.001 
Adult Nectivory 653.43 793.85 5.064 27.731 <0.001 219.49 298.83 6.714 11.82 <0.001 
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Table 4 Statistical tests of sister group comparisons. Methods of reconstruction are denoted P; parsimony and ML; Maximum 

Liklihood. Number of contrasts (N. cont.) and number of successes (where the richness of the focal origination was greater than its sister 

clade ; N succ.) are denoted for interpreting the sign test. SDC methods are given as results of Wilcoxon tests or their normalised 

equivalent, with the exception of tests denoted by an asterix which are the results of randomised matched pairs. 

Coding system Ecology Method N cont. N succ. p value Raw Contrasts Log Ratio Contrasts Proportional Contrasts 
W (S*) p (two 

tailed) 
W (S*) p (two 

tailed) 
W (S*) p (two 

tailed) 
Larval (Raw) Fungivory P 15 5 0.3333 45 0.4212 50 0.5995 50 0.560 
Larval (Raw) Fungivory ML 16 5 0. 3125 42 0.1928 49 0.3484 43 0.211 
Larval (Raw) Detritivory P 19 4 0.2105 31 0.0082 54 0.1042 49 0.066 
Larval (Raw) Detritivory ML: 24 13 0.5417 111 0.4202 134 0.9152 120 0.595 
Larval (Raw) Phytophagy P 25 10 0.400 123 0.2940 127 0.3463 151 0.767 
Larval (Raw) Phytophagy ML - - - - - - - - - 
Larval (Raw) Predators P 31 15 0.4839 232.0 0.7613 222 0.6173 222 0.617 
Larval (Raw) Predators ML 29 13 0.4483 210 0.8797 215 0.9655 214 0.948 
Larval (Raw) Parasitoids P 15 5 0.3333 45 0.4212 50 0.5995 50 0.600 
Larval (Raw) Parasitoids ML - - - - - - - - - 
Larval (Modified) Phytophagy P 25 11 0.440 122 0.2818 127 0.3463 157 0.893 
Larval (Modified) Phytophagy ML 26 12 0.4615 124 0.1952 144 0.4311 171 0.919 
Larval (Modified) Parasites P 19 7 0.3684 78 0.5153 81 0.5949 81 0.595 
Larval (Modified) Parasites ML - - - - - - - - - 
Adult Fungivory P 18 6 0.3333 52 0.1541 60 0.2837 66 0.417 
Adult Fungivory ML 10 2 0.2 81492* 0.8320 9.672* 0.1211 1.685* 0.174 
Adult Phytophagy P 12 7 0.5833 17 0.0923 33 0.6772 151 0.733 
Adult Phytophagy ML - - - - - - - - - 
Adult Predators P 13 5 0.385 43 0.8926 43 0.8926 43 0.893 
Adult Predators ML 12 5 0.417 35 0.7910 36 0.8501 35 0.791 
Adult Blood feeders P 7 5 0.7143 4684* 0.9688 5.107* 0.2031 1.070* 0.266 
Adult Blood feeders ML 5 2 0.400 11613* 0.8125 0.261* 1.0 0.068* 0.938 
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5. Body Size Evolution and Diversity in the Hexapoda 

5.1. Abstract 

One of the most fundamental attributes of animal communities is the relatively high 

richness of small-bodied taxa across a wide range of animal clades. Work on the 

macroevolutionary processes responsible for this has been largely restricted to vertebrate 

model systems, so relatively little is known from other major taxa. Here we explore the 

macroevolutionary patterns of body size variation within a phylogeny of hexapod families 

(insects and their close relatives) and the links between size and diversity in this clade. The 

maximum, minimum, and mean-log body lengths of hexapod families are all 

approximately log-normally distributed, consistent with previous studies at lower 

taxonomic levels, and contrasting with skewed distributions typical of vertebrate groups. 

After taking phylogeny and within-tip variation into account, we find no evidence for a 

negative relationship between diversification rate and body size, suggesting decoupling of 

the forces controlling these two traits. Likelihood-based modeling of the log-mean body 

size identifies distinct processes operating within Holometabola when compared with other 

hexapod groups consistent with accelerating rates of size evolution within this clade, while 

as a whole hexapod body size evolution is found to be dominated by neutral processes 

including significant phylogenetic conservatism. Overall our results indicate that within 

hexapods, and within the limits of current systematic and phylogenetic knowledge, insect 

diversification is generally unfettered by size-biased macro-evolutionary processes. 
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5.2. Introduction 

One of the most prevalent patterns observed in natural systems is the 

overrepresentation of small-bodied taxa (Kozłowski & Gawelczyk 2002). The observation 

of right skew in body size distributions, following transformation to the log scale, has been 

made for a variety of vertebrate clades (Maurer 1998; Gardezi & Silva 1999; Allen et al. 

2006) and provides the basis for a variety of size-selective diversification mechanisms that 

have been proposed as general models for the macroevolution of animals (Kozłowski & 

Gawelczyk 2002; Allen et al. 2006). Despite widespread interest in these patterns, 

comparatively little effort has been spent in examining whether such relationships are truly 

universal and there is limited evidence for their presence across major non-vertebrate 

lineages (Orme, Isaac, et al. 2002; Orme, Quicke, et al. 2002). In this study, we explore the 

relationship between species richness and body size, and the universality of size biased 

diversification, in one of the largest terrestrial invertebrate clades, the six-legged 

arthropods or Hexapoda. 

Interest in body size distributions relates to the importance of size in impacting on 

an organism’s ecology and thus potential evolution and diversification. Body size 

determines the scale of an organism’s interactions within the fractal structure of natural 

environments (Hutchinson & MacArthur 1959; Morse et al. 1985), the relative strength of 

gravitational (i.e. body weight) vs. viscous and inertial forces (Vogel 1994) and, via 

surface area to volume ratios and the scaling of exchange networks, controls the rates of 

metabolic processes such as temperature response (Brown et al. 2004) and gas diffusion 

(Harrison et al. 2010). As a consequence, body size impacts on almost every major life 

history trait including; growth, parental investment, range size, dispersal and degree of host 

specificity (see Chown & Gaston 2010; Davis et al. 2013; Gaston & Chown 2013, and 

references therein, for review of Hexapoda). 

Based on these observations a number of size dependent mechanisms linked to 

clade diversification have been proposed (reviewed in (Gardezi & Silva 1999; Allen et al. 

2006)). These include; hard limits on minimum size which restrict random character 

change (McKinney 1990), energetic models emphasizing the relative efficiency of small 

body sizes in the production of offspring (Sokolovska et al. 2000; Brown et al. 2004), and 

fractal environmental models, exploring the capacity for small-bodied taxa to more finely 

subdivide a given environmental landscape (Hutchinson & MacArthur 1959). The 
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relationship of these process to macro-evolutionary diversification remains incompletely 

understood, for example the relative contributions of size-biased cladogenesis (i.e. small 

taxa being more prone to speciation) (Maurer 1998), directional bias in size evolution 

within lineages; e.g. “Copes rule” (Hone & Benton 2005), and size-biased extinction 

(Monroe & Bokma 2013), in the generation of observed size distributions. Testing the 

predictions of these models, e.g. the presence of a relationship between clade richness and 

body size, as well as more generally exploring the processes that may underlie size 

evolution, requires that we extend our perspectives to encompass other major lineages that 

may show differences from our vertebrate model systems (Harmon et al. 2010). 

The extreme species richness of hexapod clades, which collectively account for 

over half of all described species, is one of the most well-known features of terrestrial 

biomes (Mayhew 2007). Hexapoda are also morphologically diverse, including body 

lengths ranging over four orders of magnitude, comparable with the range of well-studied 

mammal and bird radiations (Chown & Gaston 2010). The longest known hexapods are 

females of the phasmid (stick-insect) Phobaeticus chani with specimens up to 357 mm 

long in body length. By contrast, the smallest recognized adult insect, the male of the 

mymarid wasp Dicopomorpha echmepterygis has a total body length of merely 139 µm (or 

0.139 mm)(Chown & Gaston 2010).  

Evidence to suggest that processes in hexapod size evolution my be distinct from 

larger vertebrate groups includes taxonomic compilations e.g. (Poulin & Morand 1997), 

regional faunal data e.g. (Ulrich 2006; Ulrich 2007) and broad-scale continental surveys 

(Finlay et al. 2006), all of which suggest that compared with the latter hexapods exhibit 

relatively little right skew in the distribution of log body size (Chown & Gaston 2010; 

Gaston & Chown 2013). Likewise, where formal phylogenetic tests of association between 

clade richness and body size have been conducted for hexapod sub-clades, they have 

generally failed to recover evidence for small size promoting richness within the group e.g. 

(Katzourakis et al. 2001), with one study identifying the opposite pattern with respect to 

Anisoptera (dragonflies) (Misof 2002).  

In addition to these apparent divergences from size structured models there are also 

potential interactions between size evolution and other hexapod traits, several of which 

have been previously explored as correlates of species richness including complete 

metamorphosis, and dietary substrate (Mitter et al. 1988; Mayhew 2007; Rainford et al. 

2014). Metamorphosis has the potential to structure size evolution via the promotion of 
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modularization of life history stages, and the separation of selection pressures on larval and 

adult stages (Yang 2001; Chown & Gaston 2010). This process is taken to extremes in 

Holometabola, where during metamorphosis there is a fundamental reorganization of the 

body plan (Grimaldi & Engel 2005), and as a result various authors have suggested 

divergent processes of size evolution associated with this clade (e.g. accelerated rates of 

size evolution through time (Chown & Gaston 2010; Nel et al. 2013)). Similarly, as a 

potential correlate of clade richness ((Mitter et al. 1988; Nyman 2010); see Chapter 4), 

dietary ecology, may also interact with any association between body size and clade 

richness, particularly where body size within communities is structured by trophic level 

(see Novotny & Kindlmann (1996) for discussion).  

The recent and growing consensus with regards to hexapod higher taxonomic 

relationships from molecular markers e.g. (Trautwein et al. 2012; Misof et al. 2014; 

Rainford et al. 2014) provides us, for the first time, with a framework for exploring large 

scale patterns of trait evolution within the group. In this study we combine these tools with 

comprehensive descriptive information regarding size variation within the clade to explore 

patterns of body size evolution and its relationship with clade diversification. Hypotheses 

we test include: a) that the apparent lack of skew in body size distributions (on the log 

scale) for hexapods, identified in regional faunas, persists when the group is considered in 

a global phylogenetic context, b) that this lack of skew results in a lack of consistent 

relationships between clade richness and body size within hexapods after accounting for 

phylogeny and within-taxon variation in size, c) that interactions exist between the body 

size and other hexapod key innovations (Rainford et al. 2014; Chapter 4), which may alter 

the combined impact of these traits on clade diversification, and, d) that body size 

evolution within hexapods can be described by simple mathematical models, and different 

major sub-clades (Rainford et al. 2014) vary in their fit to these descriptive processes (e.g. 

due to the presence or absence of complete metamorphosis). 

5.3. Methods 

An ideal analysis of body size evolution would comprehensively explore patterns 

and processes at the species level. However, because of the enormous richness of 

Hexapoda phylogenetic and trait data are currently too sparse to support a comprehensive 

species-level analysis. Therefore, for practical reasons we restrict our discussion to the 

family level, based on recently proposed phylogenetic relationships (Rainford et al. 2014). 
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The size data for this study is based on family level estimates of minimum and 

maximum body length collected from global, regional and taxonomic datasets (References 

given in Appendix 7.3). The use of length as a proxy for size is common in Hexapoda due 

to difficulties in estimating mass from dried museum specimens (Chown & Gaston 2010; 

Gaston & Chown 2013). Taxon-specific length to mass conversion factors (e.g. 

(Wardhaugh 2013)) were explored for use in this study and produced qualitatively similar 

results; however due to the large amount of uncertainty associated with these values, the 

presented analyses are restricted to raw length data. Body length was taken as from the 

anterior margin of the head to the termination of the abdomen, discounting wing cases, 

abdominal limbs, antennae or cerci where such resolution was available. For taxa such as 

Lepidoptera (moths) where data-sources record body-size via an alternative metric (e.g. 

wingspan), average measurements of accompanying illustrations (between one and eight 

per terminal; selected to encompass the observed diversity) were used to convert these 

values to body length (examples listed in Appendix 7.3). For Trichoptera (caddis flies), 

which are typically not illustrated so as to make both the wingspan and body length visible, 

conversion for the whole order was based on specimens of the various families illustrated 

in (Arnett 2000).  

Estimates of clade richness follow (Rainford et al. 2014; Section 3.3) with the 

resolution of taxonomic conflict described in Appendix 7.3. In order to avoid issues 

associated with estimating standard deviation for mono-specific clades (see below) all 

richness estimates were increased by two for the purposes of modeling relationships. This 

process is recognized as ad-hoc but regarded as preferable to the loss of phylogenetic 

information resulting from the exclusion of such lineages. In total the dataset consisted of 

774 terminal taxa spanning all major hexapod lineages (Appendix 7.3).  

For modeling purposes, we assumed that, within terminal groups, species conform 

to a lognormal size-distribution, the parameters of which are estimated from the observed 

minimum, maximum and richness data. This is a strong assumption, but one conforming to 

available data regarding hexapod size distributions at the family level (Novotny & 

Kindlmann 1996; Hodkinson & Casson 2000), and can therefore be regarded as the 

obvious default in the absence of data to the contrary. The mean of the approximated 

distributions (henceforth treated on a log scale) was taken as the mean of the log values of 

the minimum and maximum size estimates (henceforth mean-of-logs). The standard 

deviation of approximated distributes was estimated using meta-analysis statistics that 
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assume a sample-size dependent relationship between the estimated sd and the observed 

range (Hozo et al. 2005). Thus, for very small clades (<15 taxa) sd was calculated using 

Equation [16] of (Hozo et al. 2005), for moderately diverse groups (16-70 taxa) sd was 

estimated as range over four, and for large clades (>70 taxa) sd was estimated as range 

over six (Hozo et al. 2005). These procedures assume that the mean values for species rich 

groups are known with greater accuracy (i.e. have smaller associated variance) than 

species poor groups with the same size-range, reflecting the fact that the former are less 

likely to be perturbed by further species description (see Discussion). Given that our 

estimates of standard deviation are thus dependent on corrected clade richness it is 

appropriate that we maintain this assumption into the derived estimates of standard error 

(se) around the clade specific mean-of-logs values. Hence our se estimates for modeling 

evolutionary processes (Ives et al. 2007) were calculated, under the assumption that sample 

size was equivalent to corrected clade richness.  

Descriptive plots of the observed frequency distribution of size were generated for 

hexapods as a whole and for the major super-ordinal sub-clades (Trautwein et al. 2012; 

Misof et al. 2014; Rainford et al. 2014). The normality of the overall mean distributions, 

both at the level of terminal taxa, and with taxa weighted by their observed species 

richness (Figure 26) was assessed using an Agostino test (D’Agostino 1970) (implemented 

in R; package moments (Komsta & Novomestky 2012)). The phylogenetic distribution of 

minimum, maximum and mean body length, as well as the estimates of terminal standard 

deviation (Figure 27) were plotted using a Brownian motion (BM) ancestral reconstruction 

(Revell 2013) implemented in the package phytools (Revell 2012).  

The degree of phylogenetic signal present in the data with respect to mean-of-logs 

size was assessed using Blomberg’s K statistic (Blomberg et al. 2003), and by comparing 

the observed variance among the phylogenetically independent contrasts (PICs) with 1,000 

randomized data replications, applying the correction of (Ives et al. 2007) to account for 

within-group variance (implemented in the package phytools) (Table 8). Blomberg’s K can 

be visualised as measuring the degree to which an observed dataset converges on the 

expectations of BM (producing an expected value of 1) (Blomberg et al. 2003). Data with 

no phylognetic signal will produce a K value of 0 and values less or greater than 1 should 

be interpreted as lower or higher than expected similarity among terminal taxa, which can 

be a manifestation of more complex trait evolutionary processes (see below).  
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To explore the relationship between diversification and body size we used an 

adaptation of the PIC derived “macrocaic” method implemented in the package caper 

(Orme et al. 2012) which is optimized to explore associations of traits values and species 

richness at the level of higher taxa (Agapow & Isaac 2002; Isaac et al. 2003; Freckleton et 

al. 2008). Richness contrasts at each node were standardized using two metrics; relative 

rate difference (RRD); (ln(N1/N2); N1= richness of descendant clade with larger body size, 

N2=the richness of the other descendant clade) (Table 9, Figure 28), and proportion 

dominance index (PDI); ((N1/(N1 + N2))-0.5) (Table 10). Size was modeled as the mean-

of-logs estimate and the relationship between the two sets of independent contrasts 

assessed using regression through the origin (Isaac et al. 2003). To incorporate within-tip 

variance in size we used a parametric bootstrap, where across 50,000 pseudo-replicated 

datasets the values of terminal groups were taken as random draws from the estimated 

terminal distributions (see above) and the 95% bounds on the relationship between 

contrasts were estimated. This distribution was compared with that of an identical number 

of replicated null data samples where terminal size-values were randomized across the tree. 

Significance was judged on whether the 95% confidence intervals on the bootstrapped data 

excluded those of the randomized null data. 

Having identified the relationship between body length and clade richness we then 

expanded these ideas into a multi-trait analysis (e.g. (Phillimore et al. 2006)) in order to 

investigate possible interactions between size and other potential key innovations. This 

was done using the PGLS framework (Rohlf 2001) under the assumption of Brownian 

covariance structure among tips, implemented using code from the packages ape (Paradis 

et al. 2004) and nlme (Pinheiro et al. 2014). As a response variable we modeled clade 

diversification as the log of the Yule diversification rate potentially associated with each 

tip (Phillimore et al. 2006). Yule rates were calculated as the log species richness of a 

clade, corrected as described above, divided by the clade’s stem age (Yule 1925; Nee 

2006)). Logging the diversification rate in this way limits our interpretation of these 

analyses, however was essential for limiting the weight given to a few recently diverged 

and extremely diverse clades, and for maintaining a residual structure within the 

implemented models consistent with the assumptions of the gls testing framework.  

The following traits were implemented as blocks of predictor variables, with 

different combinations being examined and compared using an AICc framework (Table 

11): whether or not a clade displays complete metamorphosis (i.e. whether or not it 
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belongs to Holometabola (Rainford et al. 2014); implemented as a binary variable), mean 

of logs body size, dietary substrate- implemented as the presence or absence of particular 

diets within the known ecology of a clade (taxa within unknown ecologies are coded as 

present for all categories) , and the interaction of diet and body size. For the coding of diets 

and interactions fungivory was excluded and treated as part of the overall model intercept. 

To account for differences in coverage between traits topology was standardized on the 

pruned tree used above, and the diets of modified groups updated to include all coding 

states present within any subgroup (Chapter 4, Appendix 7.2). We performed analyses 

using three different dietary coding schemes described in Chapter 4, reflecting different 

treatments of various life stages within Hexpaoda: Larval Raw, Larval Modified and Adult 

(Table 11). The definitions underlying these datasets and the coding of diet are given in 

Appendix 7.2.  

To explore the processes responsible for generating the observed size distribution 

we used a model testing framework; fitContinuous, in the package geiger (Harmon et al. 

2008; Pennell et al. 2014). Candidate models fitted were: a simple BM process; the early 

burst model (EB/ACDC), (Blomberg et al. 2003; Harmon et al. 2010) where rates of 

evolution through time exponentially increase or decrease; the delta model (Pagel 1999), 

which scales the phylogeny so as to bias the distribution of rates of trait evolution towards 

either the root or tips; the SSP model (single stationary peak; modeled as an Ornstein-

Uhlenbeck process) (Butler & King 2004), which assumes that trait evolution 

convergences on a single global optimum value (Table 13). All of these models are all 

capable of expressing BM as a special case, resulting from near-zero estimates of the 

relevant scaling parameters.  

In addition we also fitted two models without an explicit generating process, in 

order to measure the role of noise and non-phylogenetic signal in the structure of our 

dataset. The lambda model (Pagel 1999), calculates a global statistic measuring the extent 

of deviation in the inter-tip covariance matrix from the assumptions of BM (which 

corresponds to a lambda value of 1). The white noise model (WN) corresponds to a lambda 

value of 0, and reflects the result that would be obtained in the absence of any phylogenetic 

structure (star tree) with tip states being drawn from a single underlying normal 

distribution (Table 13). All fitted models incorporated estimates of standard error around 

the mean-of-logs, using the methodology of Ives et al. (2007) (see above for how these are 
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calculated). Model selection was performed on the basis of AICc values and Akaike 

weights, see discussion in Harmon et al. (2010). 

Finally, we conducted an exploration of the homogeneity of the process of size 

evolution within Hexapods using the shift-based reversible jump Markov Chain Monte 

Carlo framework BAMM (Rabosky 2014). As implemented here, the analysis fits 

EB/ACDC models of size evolution to nodes within the tree signifying regime changes 

among descendent clades based on an underlying Poisson proposal mechanism. This 

allows the identification of potential breakpoints in the underlying process of size 

evolution without the imposition of an explicit prior model. Note that this procedure in its 

current form is unable to accommodate error in the tip value estimates, thus only the mean-

of-log size values for terminal clades were modeled.  

Starting values for BAMM were calculated as a homogenous BM process in 

fitContinuous (betaInit= 0.002424, betaShiftInit= 0), and prior distributions calculated 

using the package BAMMtools (poissonRatePrior = 1, betaInitPrior = 412.47 betaShiftPrior 

= 0.002408). We set informative priors on the rate of regime change favoring a 

homogenous diversification process in order to maximize the credibility of any shifts 

recovered. Chains were run for 500 million generations with sampling conducted every 5 

million generations. Burn-in was estimated based on the stabilization of the inferred 

likelihood measurements at 10% of the total sample. Adequate sampling of the stable 

distribution was assessed on the convergence of two independent runs from divergent 

starting parameters, based on complete overlap of the credible shift set of models 

accounting for 70% of the overall described likelihood. The results presented here are 

taken only from the first chain, based on the estimated homogenous BM parameters. 

5.4. Results 

Distributions of the observed values of mean-of-logs, log maximum and log 

minimum body size for terminal taxa are shown in Figure 26. In all three cases the overall 

distributions are approximately normal (two-sided Agostino test, log minimum: skew = 

0.3333, z = 2.455, p-value = 0.0141, log maximum: skew = 0.0752, z = 0.567, p-value = 

0.5706, mean-of-logs: skew = 0.210, z = 1.572, p = 0.116), although the distribution of 

minimum sizes shows a small secondary peak associated with an over-prevalence of taxa 

reported as bounded at 1 mm (commonly used for convenience in descriptions of small 

taxa). When mean values are weighted according to their species richness the resulting 
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distribution shows a significant skew towards larger body sizes (skew = -0.0290, z = -7.91, 

p-value = <0.001) running contrary to the expectations of the paradigm described above. 

Comparing major clades we can identify pronounced differences in typical size 

distributions observed among groups. As the most diverse clade (more than 75% of all 

extant hexapods) (Grimaldi & Engel 2005) and accounting for the majority of the terminals 

included in this study (508 out of 775) it is unsurprising that the size distribution of 

Holometabola (insects with complete metamorphosis) mirrors that of hexapods as a whole, 

with similar average size to the global mean (Hexapoda; (log) mean= 1.946 ln(mm), 

sd=0.9491 ln(mm), Holometabola; (log) mean=1.8032 ln(mm), sd=0.8078 ln(mm)). By 

contrast both the clades Entognatha (non-insect hexapods including springtails); mean 

=0.8879 ln(mm), sd=1.061 ln(mm) and Paraneoptera (true bugs and their relatives); 

mean=1.5506 ln(mm), sd=0.7755 ln(mm) are predominantly composed of groups falling at 

the small end of the size spectrum, the latter particularly with respect to minimum sizes, 

while large insects include disproportionate representation of Polyneoptera (including 

Orthoptera grasshoppers and crickets) and Phasmatodea (stick-insects)); mean=3.045 

ln(mm), sd=0.7455 ln(mm) and Palaeoptera (particularly large bodied Odonata 

(dragonflies)); mean= 3.060 ln(mm), sd=0.8825 ln(mm).  

This pattern is reinforced on the phylogenetic ancestral reconstruction plots for the 

group (Figure 27) in which the following clades show strong deviations from the average 

size dynamics: Odonata (with respect to larger than average minimum body size), 

Psocodea (booklice and lice; small maximum sizes), micro-hymenoptera (the smallest 

members of Holometabola with particularly small minimum size bounds) and various 

polyneopteran clades, notably Phasmatodea and Orthoptera. Beyond these limited 

examples, the majority of hexapod higher taxa log-means lie close to global average size, 

and ancestral reconstruction of internal nodes rapidly approaches this value as an 

approximation of the global ancestral state. 

The value of the inferred standard deviation of the terminal distributions shows a 

rather different phylogenetic pattern from that of the mean size values, although after 

taking phylogeny into account the two are strongly correlated (PGLS (Pagel 1997) 

assuming a Brownian covariance structure: Estimate=0.4219, SE=0.1830, t=2.3049, 

p=0.0214). Clades associated with particularly low values of standard deviation (implying 

relatively little size variation after accounting for species richness within terminal groups) 

include Trichoptera, Neuropterida (lacewings and relatives), Psocodea and Odonata while 
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the largest values occur in Coleoptera and advanced Lepidoptera (Figure 27), with the 

single largest value occurring in the morphologically diverse (4-39 mm) but species poor 

Lepidoptera family Aididae (6 species) 

 
Figure 26 Histograms of A) Minimum log body size (ln(mm), Skewness = 

0.3333) B) Maximum log body size (ln(mm), Skewness = 0.07517) C) Calculated mean 

log body size; for terminal groups used in this analysis (ln(mm), Skewness = 0.2102), 

D) Mean size with each terminal group represented proportionally to its richness 

(ln(mm), Skewness =-0.0285) . Curves on upper panels reflect normal distributions 

with the same mean and standard deviation as the observed data. Colors in lower 

panels show breakdown of size classes by major taxonomic group; Red - 

Holometabola, Green - Paraneoptera, Magenta - Polyneoptera, Cyan - Palaeoptera, 

Black - Basal insects / “Thysanura”, Grey - Entognatha. 
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Figure 27 Phylogenetic plot of (log) size traits. A) (log) Maximum body 

Length; B) (log) Minimum body Length; C) log-mean body length; D) Estimated 

Standard Deviation. Ancestral reconstruction of internal nodes based on a BM 

process (ancML) (Revel 2013). Bars denote the minimum and maximum values of 

observed traits. Coloration on a red to blue scale; minimum and maximum values 

denoted by the internal bars. Terminal bars denote membership of major clades; 

colors as Figure 26. 
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Table 8: Tests of phylogenetic signal in body size within major hexapod clades 

(with observed standard error). Statistical tests given relative to 1000 tip 

randomisations. 

Taxa Blomberg’s 
K 

Sigma2 rate 
parameter  

Model log 
likelihood 

P randomization 
test 

Hexapoda 0.8870 0.002368 -778.95 <0.001* 
Holometabola 0.6864 0.002694 -515.43 <0.001* 
Paraneoptera 1.3166 0.001436 -117.07 <0.001* 
Polyneoptera 0.8144 0.002122 -66.26 <0.001* 
Palaeoptera 1.7806 0.001467 -40.192 <0.001* 
Entognatha 1.1244 0.002574 -15.711 0.0247* 

Evidence of phylogenetic signal was recovered in both the full dataset and in all the 

major sub-clades (Table 8), with very strong support, with the exception of Entognatha, 

where evidence of structuring is present but support is much lower (likely due to the small 

number of tips on this subtree: 12). Blomberg’s K values indicate that Hexapoda as a 

whole demonstrate somewhat lower values of K than would be expected under a BM 

process, consistent with related species resembling one another less than under the 

expected BM distribution. Similar patterns are also identified in Holometabola and 

Polyneoptera. By contrast Paraneoptera and Palaeoptera show strong tendencies towards 

higher-than-expected values of K, indicating differences in the size evolution process 

among major clades. 

The standardized contrasts in body size and RRD across major clades are plotted in 

Figure 28 with the estimated relationship through the origin calculated on the observed 

mean-of-log sizes and confidence intervals based on the parametric bootstrap samples as 

drawn from the estimated terminal distributions for both observed (coloured) and 

randomized (black) data (parameter values in Table 9). Overall, the data for Hexapoda 

supports the presence of a weak positive relationship between richness and body size 

within the clade, although following the parametric bootstrap this relationship is not 

significant once the uncertainty of terminal states is taken into account. Similar patterns of 

null relationships once tip variance is taken into consideration occur in all of the major 

sub-clades examined, although in the case of Palaeoptera the direction of the relationship 

observed is negative. When these statistics were recalculated based on PDI (Table 10) no 

significant relationships were observed between mean size and richness, rendering further 

parametric bootstrapping redundant.   
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Figure 28 Plots of Standardized contrasts for richness (RDD) and body length 

(ln(mm)). Solid lines denote the relationship inferred from the mean values in 

Macrocaic. Dashed colored lines are the 95% CI based on 10,000 parametric 

bootstraps taking into account the variance present among terminal groups. Dotted 

black lines denote the equivalent null intervals calculated on the basis of tip 

randomization. Relevant statistical information for the observed relationships is 

presented in Table 9. 
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Table 9: Outputs of Macrocaic analysis: phylogenetically independent node 

contrasts in RRD and mean log size for major clades (see text). Includes results of 

parametric bootstrap based on the quartile range of Estimate values from 50000 

random draws from the estimated tip distributions vs. the NULL expectation when 

tip size is randomized. See text for discussion. 

Taxa N. Estimate (Adjust-
ed) R2 

SE t p Observed 
Quartile range 
(50000 
parametric 
bootstraps) 
 

NULL 
Quartile 
range  
(50000 
parametric 
bootstraps) 

2.5% 97.5% 2.5% 97.5
% 

Hexapoda 773 4.538 0.004203 2.219 2.045 0.0412* 1.886 5.383 -2.127 2.10
6 

Holometabola 507 4.415 0.003232 2.715 1.626 0.105 1.246 5.580 -2.944 2.96
9 

Non-
Holometabola 

265 5.416 0.003874 3.801 1.425 0.155 1.927 7.304 -3.159 3.17
8 

Paraneoptera 126 11.759 0.02523 5.696 2.064 0.0411* 5.495 14.35 -7.172 7.07
9 

Polyneoptera 64 9.135 0.009866 7.139 1.28 0.205 1.256 14.02 -9.385 9.40
7 

Palaeoptera 57 -8.866 -0.000210 8.919 -0.994 0.325 -12.63 -2.987 -6.800 6.98
6 

Entognatha 11 12.43 -0.04417 17.00 0.731 0.481 5.118 17.94 -24.74 23.8
2 

 

Table 10 Outputs of Macrocaic analysis of relationship between PIC of 

diversification rate (measured as PDI) and mean log size for major clades. See text 

for discussion 

Taxa N (Contrasts) Estimate (Adj) R2 SE t p 

Hexapoda 773 0.4589 0.002572 0.2652 1.73 0.084 

Holometabola 507 0.5020 0.003065 0.3138 1.6 0.11 
Paraneoptera 126 1.231 0.01155 0.783 1.573 0.118 

Polyneoptera 64 0.6955 -0.007437 0.9576 0.726 0.47 

Palaeoptera 57 -1.524 0.01207 1.170 -1.303 0.198 

Entognatha 11 0.9674 -0.07041 1.8400 0.526 0.611 

PGLS modeling of the Yule diversification rates for clades within the tree reveals 

that, as above, mean-of-logs body size is not alone a significant predictor of this measure 

of clade diversification, although there is evidence for a marginal effect (Table 11; Log 

Likelihood ratio (LnL) of Phylogeny + Size model vs. Phylogeny only model; 3.221, 

p=0.0727, Estimate of Size Parameter = 0.06194). With respect to the role of diet in 

modulating this relationship, different life history stages and coding philosophies are 

shown to vary in the implied relationships.  
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For the majority of hexapod groups, the larval/nymphal stage is the primary feeding 

phase of the lifecycle and the majority of discussion regarding the roles taxa in natural 

ecosystems focuses on this developemental stage. For the Larval Raw dataset, the favored 

model based on AIC comparisons includes the presence of dietary categories (LnL 

Phylogeny +Diet vs. Phylogeny only; 32.65, p= <.0001*) but precludes any interaction 

between size and larval diet (LnL Phylogeny +Size +Diet +Interaction vs. Phylogeny + 

Diet; 7.41516 p =0.2842). By contrast the Larval Modified system, where ecto-parasitism 

is combined with parasitoidism, does not recover a significant impact of diet on log 

diversification rates, and instead collapse to the null, phylogeny only model (Table 11; 

LnL Phylogeny +Diet vs. Phylogeny only; 5.176, p= 0.270).  

In contrast with the larval stage, data from Adult insects favors models where 

(adult) body size and diet interact in their prediction of clade richness (Table 11; LnL 

Phylogeny +Size +Diet +Interaction vs. Phylogeny + Diet; 16.69, p =0.0195*). The 

predicted diversification rates for taxa processing different dietary categories vary as a 

consequence of differences in interaction estimates (Figure 29; values in Table 15). Clades 

containing phytophagous (mean body length; 2.285 ln(mm), sd=0.900 ln(mm)) and non-

feeding taxa (mean = 2.343 ln(mm), sd= 0.7691 ln(mm)) are predicted to have very low 

diversification rates at small body lengths but to show increased diversification at larger 

body sizes. However in groups containing ecto-parasitic representatives (mean = 1.780 

ln(mm), sd= 0.9113 ln(mm)) this pattern is reversed, such that high rates of diversification 

are exclusive to small-bodied clades. Predatory lineages (mean = 2.307 ln(mm), sd= 1.061 

ln(mm)) are also predicted to diversify most rapidly at small body sizes, although the 

subsequent drop-off is less severe, such that large bodied predators approximately 

converge on the overall mean process. Likewise detritivory (mean = 1.774 ln(mm), sd= 

0.9124 ln(mm)), nectivory (mean = 1.841 ln(mm), sd= 0.7747 ln(mm)), and taxa for whom 

ecology is unknown (mean = 2.187 ln(mm), sd= 0.8165 ln(mm)) also approximately 

follow the overall mean process, although in the latter two cases the inferred 

diversification rate is always below the global average. The inclusion of holometaboly as a 

binary variable does not significantly increases the predictive power of any of the models 

used (Table 11). 
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Table 11 Model comparisons for PGLS of log (Yule Diversification Rate) 

assuming BM covariance structure among tips. Parameter blocks are described in 

text. LnLik is calculated under ML in the package nlme. Highlighted models are the 

favored explanation for each of the dietary reconstructions. 

Diet reconstruction Model df AIC BIC lnLik 

Larval Raw Phylogeny +Size +Diet 
+Interaction+ 
Holometabola 

14 1485.902 1551.024 -728.9512 

Larval Raw Phylogeny +Size +Diet 
+Interaction 

13 1483.937 1544.408 -728.9686 

Larval Raw Phylogeny + Diet+ 
Holometabola 

8 1481.3 1518.513 -732.6501 

Larval Raw Phylogeny + Diet 7 1479.352 1511.913 -732.6761 
Larval Raw Phylogeny + Size * 

Holometabola 
5 1504.683 1527.94 -747.3413 

Larval Raw Phylogeny + Size 3 1500.779 1514.733 -747.3893 
Larval Raw Phylogeny+ 

Holometabola 
3 1503.922 1517.877 -748.9609 

Larval Raw Phylogeny only 2 1502 1511.303 -749.0001 
      
Larval Modified Phylogeny +Size +Diet 

+Interaction+ 
Holometabola 12 1508.861 1564.68 -742.4303 

Larval Modified Phylogeny +Size +Diet 
+Interaction 11 1506.947 1558.114 -742.4734 

Larval Modified Phylogeny + Diet+ 
Holometabola 7 1506.733 1539.294 -746.3667 

Larval Modified Phylogeny + Diet 6 1504.824 1532.733 -746.412 
Larval Modified Phylogeny + Size * 

Holometabola 5 1504.683 1527.94 -747.3413 
Larval Modified Phylogeny + Size 3 1500.779 1514.733 -747.3893 
Larval Modified Phylogeny+ 

Holometabola 3 1503.922 1517.877 -748.9609 
Larval Modified Phylogeny only 2 1502 1511.303 -749.0001 
      
Adult Phylogeny +Size +Diet 

+Interaction+ Holo 16 1486.481 1560.906 -727.2403 
Adult Phylogeny +Size 

+Diet +Interaction 15 1484.816 1554.589 -727.4079 
Adult Phylogeny + Diet+ 

Holo 9 1489.174 1531.038 -735.5871 
Adult Phylogeny + Diet 8 1487.511 1524.723 -735.7553 
Adult Phylogeny + Size * 

Holometabola 5 1504.683 1527.94 -747.3413 
Adult Phylogeny + Size 3 1500.779 1514.733 -747.3893 
Adult Phylogeny+ 

Holometabola 3 1503.922 1517.877 -748.9609 
Adult Phylogeny only 2 1502 1511.303 -749.0001 
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Table 12 Parameter estimates for the (favored) Phylogeny + Diet model 

(Larval Raw dataset) 

Parameter Estimate Std.Error t-value p-value 
(Intercept) -3.845 0.2889 -13.33 0 
Detritivory -0.021 0.0561 -0.377 0.7065 
Phytophagy 0.1114 0.0655 1.701 0.0893 
Predation 0.0806 0.0645 1.248 0.2124 
Parasitoidism -0.0018 0.0768 -0.023 0.9816 
Ecto-parasitism -0.5745 0.1093 -5.255 >0.001* 

 

 

 
Figure 29 Predicted response curves for the Phylogeny + Size +Diet + 

Interaction model (Adult dataset) across a 0-25 mm size interval. Data are shown 

after back transformation from the log values used in the model (parameter estimates 

for original model provided in Table 15). Colours denoting diet classifications are 

given in the internal legend. The dashed vertical line gives the overall mean size value 

for Hexapoda and the horizontal line, the associated intercept diversification rate. 

Mean body sizes of taxa processing particular diets are denoted by the circles, with 

the dark blue circle denoting the average size of taxa containing fungivorous lineages 

(mean = 1.678 ln(mm), sd= 0.8429 ln(mm)). The “ecology unknown” category 

represents the aggregate process for taxa coded as present for all dietary categories 

(represented by “?” in Appendix 7.3).  
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Table 13: Parameter estimates and relative likelihoods of alternative models 

explaining mean body size for major clades of Hexapoda (including terminal 

standard error). Models and relevant parameters are denoted as follows BM: 

Brownian motion (Sigma squared: ML estimate of rate of the underlying size 

evolution, z0: ML estimate of value for the root state), EB: Early burst model (a: 

exponential rate scale for relationship through time), Delta: Pagel’s delta rate change 

through time model (delta: tree scaling parameter), OU: Ornstein-Uhlenbeck model 

with central tendency trend (alpha: strength of central attraction), lambda; Pagel’s 

lambda measuring deviation of inter-tip covariance matrix from expectations of BM 

(lambda: multiplication factor applied to the off-diagonal covariance matrix elements 

maximizing similarity to BM), WN; white noise non-phylogenetic model with all data 

drawn from a common distribution. Also given are log likelihood values of the 

observed data (LnLik), number of parameters (k), and AICc values, deviation from 

optimal model (Delta AiCc), and Akaike weights. See text for further discussion. 

 

Clade Model Sigma 
squared 

z0 a/ delta 
/ alpha/ 
lambda 

LnLik k AICc Delta 
AiCc 
from 
optimal 
model 

Akaike 
weights 

Hexapoda BM 0.002403 1.749  -779.4 2 1562.7 21.031 0.00003 
 EB 0.002404 1.748 -1e-06* -779.4 3 1564.7 23.051 0.00001 
 delta 0.002196 1.766 1.129 -779.1 3 1564.3 22.627 0.00001 
 SSP 0.002666 1.764 0.000591 -778.0 3 1562.1 20.434 0.00004 
 lambda 0.001957 1.759 0.92093 -767.8 3 1541.7 0 0.9991 
 WN 0.8985 1.946  -1057.3 2 2118.7 576.99 0.0000 
          
Holometabola BM 0.002726 1.846  -515.4 2 1034.8 17.571 0.0002 
 EB 0.002727 1.846 -1e-06* -515.4 3 1036.9 19.600 0.0001 
 delta 0.001787 1.802 1.881 -511.2 3 1028.5 11.265 0.0035 
 SSP 0.003613 1.830 0.001923 -510.7 3 1027.4 10.170 0.0061 
 lambda 0.002138 1.845 0.89028 -505.6 3 1017.3 0 0.9901 
 WN 0.6498 1.803  -611.9 2 1227.8 210.52 0.0000 
          
Paraneoptera BM 0.001469 1.132  -117.0 2 238.2 0 0.3939 
 EB 0.001518 1.130 -0.000111 -117.0 3 240.3 2.094 0.1382 
 delta 0.001559 1.119 0.9031 -117.0 3 240.1 1.9781 0.1465 
 SSP 0.001469 1.132 0.00 -117.0 3 240.3 2.0983 0.1379 
 lambda 0.001368 1.139 0.9343 - 116.7 3 239.7 1.5276 0.1835 
 WN 0.5961 1.531  -147.4 2 299.0 60.78 0.0000 
          
Polyneoptera BM 0.002121 2.759  -66.26 2 136.7 0.1955 0.2922 
 EB 0.002121 2.759 -1e-06* -66.26 3 138.9 2.3961 0.0972 
 delta 0.001389 2.822 2.186 -65.06 3 136.5 0 0.3221 
 SSP 0.003247 2.812 0.002286 -65.60 3 137.6 1.081 0.1876 
 lambda 0.002005 2.765 0.9636 -66.22 3 138.8 2.334 0.1003 
 WN 0.5465 3.045  -72.66 2 149.5 12.99 0.0005 
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Palaeoptera BM 0.001485 2.918  -40.18 2 84.58 0 0.3195 
 EB 0.002088 2.917 -0.001169 -40.06 3 86.57 1.991 0.1181 
 delta 0.002322 2.938 0.5462 -39.51 3 85.46 0.8857 0.2052 
 SSP 0.001485 2.918 0.00 -40.18 3 86.80 2.226 0.1050 
 lambda 0.00119 2.928 0.8993 -39.30 3 85.05 0.4729 0.2522 
 WN 0.7646 3.060  -74.55 2 153.3 68.73 0.0000 
          
Entognatha BM 0.002414 1.074  -15.71 2 36.75 0 0.5003 
 EB 0.01257 1.048 -0.006225 -15.16 3 39.31 2.561 0.1390 
 delta 0.002921 1.070 0.6378 -15.58 3 40.16 3.407 0.0911 
 SSP 0.002414 1.074 0.00 -15.71 3 40.42 3.667 0.0800 
 lambda 0.002414 1.074 1 -15.71 3 40.42 3.667 0.0800 
 WN 1.0335 0.888  -17.23 2 39.79 3.035 0.1097 

 

Table 14 Parameter estimates and relative likelihoods of alternative models of 

mean body size for major orders of Holometabola (including terminal standard 

error). Models and parameters denoted as Table 13.  

Clade Model Sigma 
squared 

z0 a/delta/alp
ha 

LnLik k AICc Delta 
AiCc 
from 
optimal 
model 

Akaike 
weights 

Hymenoptera BM 0.003168 2.091  -86.87 2 177.9 0 0.4210 

 
EB 0.003952 2.105 -0.001230 -86.81 3 179.9 2.043 0.1516 

 
delta 0.003159 2.090 1.006 -86.87 3 180.1 2.166 0.1425 

 SSP 0.003168 2.091 0.000 -86.87 3 180.1 2.167 0.1425 
 lambda 0.003168 2.091 1 -86.87 3 180.1 2.167 0.1425 
 WN 0.8712 1.784  -104.1 2 212.3 34.39 0.0000 
          
Diptera BM 0.003120 1.635  -114.8 2 233.7 16.94 0.00014 
 EB 0.003121 1.635 -1e-06* -114.8 3 235.8 19.04 0.00005 
 delta 0.001396 1.539 4.392 -106.8 3 219.9 3.117 0.1357 
 SSP 0.006735 1.550 0.007896 -106.4 3 219.0 2.195 0.2152 
 lambda 0.001695 1.611 0.6648 -105.3 3 216.7 0 0.6449 
 WN 0.3991 1.513  -111.4 2 227.0 10.21 0.0039 
          
Coleoptera BM 0.002685 1.424  -153.6 2 311.3 0.5992 0.2071 
 EB 0.002686 1.424 -1e-06* -153.6 3 313.4 2.689 0.0729 
 delta 0.002091 1.494 1.656 -152.34 3 310.9 0.1922 0.2538 
 SSP 0.003932 1.467 0.002282 -152.3 3 310.7 0 0.2794 
 lambda 0.00228 1.436 0.8274 -152.7  311.5 0.8054 0.1868 
 WN 0.5859 1.625  -162.6 2 329.2 18.47 0.00003 
          
Lepidoptera BM 0.002756 1.368  -95.14 2 194.4 1.661 0.1996 
 EB 0.002756 1.368 -1e-06* -95.14 3 196.5 3.778 0.0692 
 delta 0.002012 1.488 1.618 -94.46 3 195.2 2.415 0.1369 
 SSP 0.003441 1.444 0.001989 -94.47 3 195.2 2.420 0.1365 
 lambda 0.002197 1.393 0.88127 -93.26 3 192.7 0 0.4578 
 WN 0.5985 2.106  -125.7 2 255.4 62.68 0.0000 
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Considering the potential processes responsible for generating observed patterns of 

size evolution, our data suggest that, of our process based models; the majority of hexapod 

clades favor simple Brownian motion (BM), with the exception of Holometabola, where 

the favored process is an SSP model with convergence on a single global optimum or 

elevated diversification at distant tips (Table 13,Table 14). However, when models without 

an explicit generating process are considered (i.e. lambda and WN) this picture changes, 

such that for Hexapoda as a whole and Holometabola, there is evidence for considerable 

non-phylogenetic signal in body size, resulting in lambda values that significantly diverge 

from the expectations of BM (although in all cases the WN model with no phylogenetic 

signal is strongly rejected, see also Table 8). Similar patterns are obtained when the major 

holometabolan orders are examined individually, with Hymenoptera (wasps), Coleoptera 

(beetles) and Lepidoptera (moths) all favoring BM processes, while Diptera (flies) shows 

strong evidence for non-phylogenetic signal (and thus favors the lambda model). The 

implications of these differences for our understanding of size evolution in hexapods, and 

particularly within Holometabola and Diptera, will be explored below. 

The findings of the BAMM analysis of model heterogeneity further support the 

idea that the process of size evolution behaves differently in holometabolan and non-

holometabolan groups (Figure 30). A single shift in the rate model associated with the 

origins of Holometabola is recovered with a marginal probability of 0.988, i.e. is found in 

> 95% of all sampled models from the post burn-in chain. The single most sampled 

configuration, recovers only this shift (with a relative frequency of 0.5) (Figure 31) 

suggesting that the impact of other events on size evolution within the group is 

comparatively marginal. This regime shift in Holometabola is associated with a reversal in 

rate of size evolution, such that within this clade rates appear to accelerate through time, 

contrasting with the weak deceleration observed across the remaining hexapods 

(potentially consistent with the BM process described above). The only other nodes found 

to significantly contribute to heterogeneity in size evolution within hexapods are associated 

with decelerations in size evolution within Trichoptera including (relative frequency 0.17) 

or excluding (relative frequency 0.18)) the basal family Hydroptilidae. 
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Figure 30 Outputs of Bayesian Analysis of Macroevolutionary Mixtures 

(BAMM) analysis of log mean body size data. Mean rate of evolution for branches 

across all post-burnin samples (ln(mm) per million years), denoted by branch 

coloration (red being high).  

 

Figure 31 Maximum credible model set from Bayesian Analysis of 

Macroevolutionary Mixtures (BAMM) corresponding to 95% of the overall model 

likelihood. Models are listed in order of frequency (f) of obtaining model in the post 

burnin set corresponding to their inferred probability. Coloration and tree 

orientation are as Figure 30  
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5.5. Discussion 

The findings of this study corroborate previous work at continental scales e.g. 

(Finlay et al. 2006; Ulrich 2006; Ulrich 2007) suggesting that the distribution of body 

lengths in hexapod families does not show a strong skew towards an over-abundance of 

small sized taxa on the log scale. We also demonstrate that, while size does show 

phylogenetic structuring with respect to the different hexapod groups, after accounting for 

these relationships and the variances observed within tip groups, there is no global 

negative association between body length and diversification across the studied taxa. In 

addition for adult insects there appears be an interaction between dietary ecology and body 

size with respect to their effects on diversification; however this interaction does not 

appear when larval ecologies (which make up the primary feeding stage) are considered 

independently. Finally, our survey of possible evolutionary models suggests that the 

pattern and processes of size evolution in Holometabola, and possibly Diptera, are distinct 

from those of other hexapod groups. In both cases evidence for non-phylogenetic signal 

suggests that these differences cannot be adequately accounted for in single parameter 

extensions of Brownian motion, although for other groups, body size evolution looks 

approximately Brownian. 

The recognition that body length distributions in Hexapoda show relatively little 

bias on a log scale, and that diversification rates within the group are approximately 

independent of size, supports the idea that concepts derived from the study of vertebrate 

groups (Gardezi & Silva 1999; Kozłowski & Gawelczyk 2002) may be inappropriate when 

discussing other taxonomic groups (Orme, Isaac, et al. 2002; Orme, Quicke, et al. 2002), 

and hexapods in particular (Finlay et al. 2006; Chown & Gaston 2010; Gaston & Chown 

2013). Possible explanations for these differences focus on the potential for small absolute 

body size to alter the link between body-size and clade diversification. For example small-

bodied organisms experience distinct flow conditions where viscous forces, such as surface 

tension and air resistance, have the potential to overwhelm the effect of the gravitational 

forces (i.e. body weight) that are responsible for structuring body size changes at larger 

spatial scales (Vogel 1994; Whitman 2008). Likewise fractal environmental models, which 

postulate the existence of a higher number of niches at small body sizes (Hutchinson & 

MacArthur 1959; Morse et al. 1985), may become inapplicable below a certain scale, 

particularly with respect to “parasitic” taxa, which live on the surface of larger host 

organisms (typical of the majority of hexapods), and therefore subject to local 
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homogeneity in the composition of their environment across a range of spatial scales 

(Poulin & Morand 1997; Mouillot et al. 2003; Nyman 2010). In addition with respect to 

hexapods, despite a general trend towards larger bodied organisms showing greater 

reproductive output, there is evidence from well-studied systems to suggest that this 

pattern is not universal across the group (Klingenberg & Spence 1997, see also 

Blanckenhorn 2000; Sokolovska et al. 2000). Thus, several of the mechanisms typically 

invoked to account for size-biased diversification in vertebrates may not be applicable to 

Hexapoda, reflecting a potential danger of extrapolation from well-studied, but atypical 

clades to describe global evolutionary processes (Orme, Quicke, et al. 2002). There is a 

need to further investigate processes of size evolution across a broader range of 

invertebrate groups for comparative purposes (e.g. (Nekola et al. 2013)), which when taken 

together may provide us with new insights into underlying mechanisms controlling the size 

structuring of natural environments (Woodward et al. 2005). 

Despite the presence of non-phylogenetic signal in some specific groups, there is 

considerable evidence that the majority of hexapod clades are strongly phylogenetic 

structured with respect to body size, and hence size evolution within Hexapoda is broadly 

described by a BM process on the log scale. However many specific clades appear, within 

the limits of available data, to be constrained to a particular subset of possible sizes. The 

mechanism underlying such constraint is likely to be variable across different lineages. For 

example the absence of small minimum body sizes within Odonata may be attributed to 

limitations on the minimum size required for the group’s unique flight mechanism (Dudley 

2002). In other cases the causes of constraint are much less apparent, e.g. the absence of 

large bodied members of the order Psocodea; booklice (even after accounting for the 

parasitic and small-bodied Pthiraptera), which may reflect constraints of a cryptic and 

concealed lifestyle in a group that has received proportionally little detailed study. The 

effect of such constraints at the super-ordinal scale appears to be marginal, as all of the 

major lineages demonstrated a wide variation in size as well as homogeneity of process 

within clades (and across clades, with the exception of Holometabola and Diptera). The 

overriding impression therefore is that, within the limitations imposed by restricted 

phylogenetic resolution, size evolution within hexapods is dominated by comparatively 

localized factors operating at the sub-ordinal or super-familial level. 

The reconstruction of estimated standard deviation in body size within Hexapoda 

generated here, bears a strong qualitative resemblance to previously recovered patterns of 
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diversification rate shifts across the clade (Rainford et al. 2014). This is particularly 

striking in that clades previously recovered as downshifted with respect to diversification 

rate, e.g. Psocodea, Neuroptera and Trichoptera, are here recovered as having 

comparatively low standard deviation in body size suggesting a link between the 

diversification process and radiation into novel morphospace (Ricklefs 2004). Similar 

ideas have been previously proposed with respect to bird families, (Ricklefs 2004), 

however formalized testing via multiple regression has been shown to be statistically 

problematic, due to an inability to distinguish time-dependent and speciation dependent 

generation of variance (Purvis 2004; Ricklefs 2006). This, in combination with the data 

abstraction required to treat higher taxonomic groups here (Bokma 2010), and the fact that 

our approaches to estimate standard deviation are confounded with clade richness (see 

above; (Hozo et al. 2005)), meant that we did not feel secure in pursuing this line of 

investigation within the current study. However in the presence of better data, particularly 

for within clade body size distributions, this is an intriguing concept and one that merits 

further investigation.  

PGLS modeling of log Yule diversification rates indicated that, for some coding 

systems (Larval Raw and Adult), diet is a (marginally) significant predictor of clade 

diversification. Despite marginal significance in the Larval Raw dataset the predictive 

power of larval ecology on diversification is inferred to be small. The only coding state to 

show large loadings is ecto-parasitism (Table 14), a state which is extremely rare in larval 

hexapods (see Section 4.4), and which is strongly confounded with taxa with unknown 

ecologies (coded as present in all states, see above). As a result the Larval Modified 

dataset, where ecto-parasitism is combined with parasitoidism, shows no overall support 

for a relationship between diet and clade diversity, and analysis favors the null, phylogeny 

only model (Table 11). Given that the larval/nymphal stage is the primary feeding phase of 

the hexapod lifecycle this lack of support can be considered consistent with the limited role 

for diet in structuring clade diversity described in Chapter 4.  

By contrast, adult diets are associated with a significant interaction with (adult) 

body sizes, resulting in different diversification dynamics across the size spectrum for 

different dietary classes (Figure 29). Given the marginal importance, in terms of overall 

fitness, of adult feeding in many hexapods (Hill & Pierce 1989), the simplest interpretation 

of these patterns is to infer optimal size spectrum for taxa utilizing particular resources see 

discussion in (Lafferty & Kuris 2002)), resulting in differential selection and 
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diversification of different trophic groups at different sizes (Novotny & Kindlmann 1996). 

For example, one can envisage that large-bodied ecto-parasites (vertebrate blood-feeders), 

would be at a competitive disadvantage in their probability of remaining undetected by the 

host, and in their susceptibility to periods of resource limitation, resulting in few large-

bodied and species rich ecto-parasitic clades ((Waage 1979); see discussion in (Poulin & 

Morand 1997)). On the other hand, large bodied herbivores may gain a mechanical 

advantage that allows them to overcome structural plant defenses (Andres & Connor 2003; 

Hanley et al. 2007), and/or may benefit from increased generalism in host-plant use 

(Wasserman & Mitter 1978; Brändle et al. 2000), which may potentially result in more 

rapid diversification within large-bodied clades.  

Based on this interpretation the expectation is that associations between (adult) 

body size and diet should be strongest in groups where, relative to the juvenile stage, the 

adult is long-lived and so makes important contributions to overall lifetime nutrition. This 

aspect of hexapod ecology is understudied, and not included in the data compiled here, but 

represents a potentially important macro-evolutionary correlate for incorporation into 

subsequent analyses of diversification. Both body size and diet are also subject to complex 

interactions with dispersal ability (Dudley 2002; Jenkins et al. 2007), with the former being 

potentially responsible for the elevated diversification of large-bodied non-feeding taxa 

reported here (Figure 29, Table 14). Dispersal ability is complex trait, which has the 

potential to both accelerate and inhibit clade diversification across the large temporal and 

spatial scales occupied by hexapod families (Weeks & Claramunt 2014). As with many 

fundamental hexapod traits, lack of suitable proxies and the sheer scale of the radiation 

limit the production of multi-trait datasets comparable with those used to explore correlates 

of clade richness in well-studied vertebrate groups e.g. (Phillimore et al. 2006). As a result 

a key future priority for hexapod studies is the targeted assembly of disparate ecological 

descriptions, such that we can make the maximum use of recent improvements in 

phylogenetic information (Mayhew 2007; Section 6.4.). 

In the above models there is no evidence that in inclusion of holometaboly as a 

categorical trait improves the prediction of log Yule diversification rates, within the limits 

of our modeling assumptions (Table 11). This implies, no systematic differences between 

Holometabola and non-holometabolan taxa in terms of their overall diversification that are 

not accounted for by the other modeled variables (including the covariance associated with 

the tree structure). Note however, that there are limitations on these models, arising from 
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the use of (log) pure-birth Yule rate (Yule 1925; Nee 2006) as a proxy for clade 

diversification, which neglects the role of extinction and turnover in diversification 

dynamics in terminal clades. Previous birth-death models (Rainford et al. 2014), and fossil 

evidence (Labandeira 2005; Nicholson et al. 2014), has indicated that, within hexapods, 

extinction and turnover are key features in understanding clade evolution, and therefore 

that Yule rates may be poor estimators of the true underlying processes. The use of shift-

based frameworks, and method of moments (Magallon & Sanderson 2001) approximations 

of net diversification in order to incorporate turnover (e.g. MEDUSA (Alfaro et al. 2009)) 

results in statistical linkage between tip values, which may violate the assumptions of the 

underlying gls framework, and hence we have not implemented these here. However 

recent improvements in birth-death models, such the rjMCMC framework in BAMM 

(Rabosky 2014)) hold promise for incorporating these ideas into future studies of the 

impact of particular traits on clade diversification (Weber & Agrawal 2014; Setion 6.3).  

Turning now to the processes that may underlie the evolution of hexapod body size, 

our analyses identify Holometabola, and in particular Diptera, as having undergone 

divergent evolutionary processes when compared with the remaining Hexapoda (the latter 

being dominated by an overall Brownian drift across the phylogeny). None of the explicit 

process models explored here were recovered as adequate descriptors of what this 

divergent process may be, although the BAMM analysis of rate heterogeneity suggests a 

rate acceleration through time may be involved. The (favored; Table 13) lambda model is 

not in itself a process description, hence why this parameter is most commonly described 

as a test of phylogenetic signal, e.g. (Pagel 1999). However despite this, we can 

conceptually distinguish three possible sources of non-phylogenetic signal that may 

individually or collectively explain the deviation from BM within these clades: random 

noise in the dataset (e.g. from inadequate descriptive data), phylogenetic error in taxon 

assignments, and the presence of complex evolutionary processes that are inadequately 

accommodated within the single parameter extensions of BM examined above.  

Focusing on Diptera as the extreme case of divergence from BM (Table 14), it can 

be noted that, in comparison with e.g. Lepidoptera; where the majority of large bodied 

members are restricted to two derived clades (Macroheterocera; “macro-moths”, and 

Rhopalocera; butterflies (Regier et al. 2013)), large bodied flies occur in basal; e.g. 

Tipulidae (crane flies), intermediate; e.g. Asilidae and Mydidae (robber and Mydas flies), 

and highly derived, phylogenetic positions; e.g. Oestridae (bot flies). Likewise 
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miniaturization also occurs in a range of unrelated families, e.g. Braulidae (bee lice; 

mean=1.30mm), Corethrellidae (mean=1.22mm) and Phoridae (mean=1.75mm), which 

collectively may further skew size distributions across the order (Marshall 2012). Thus 

there is the potential for divergent processes of size evolution within the clade that are not 

fully captured by the simplistic evolutionary models implemented here. However, noise in 

the dataset e.g. from the use of regional taxonomic descriptions (North and Central 

America (McAlpine et al. 1981; McAlpine et al. 1987; Brown et al. 2009)) as proxies for 

global size distributions, and phylogenetic uncertainty in relationships, e.g. within 

Schizophora (Wiegmann et al. 2011; Caravas & Friedrich 2013; Rainford et al. 2014), 

mean that we should be cautious of over-interpreting these patterns and await better 

comparative information, preferably incorporating developmental and larval data (Chown 

& Gaston 2010). 

The apparent association of Holometabola with accelerating rates of size evolution 

through time (even if we cannot define the specific underlying model) is interesting given 

that complete metamorphosis has previously been identified as a key innovation in 

hexapod diversification (Rainford et al. 2014). Plausible mechanisms a for different 

process of size evolution within the clade include: modularization of life history stages 

decoupling adult body-size from larval ecology and so permitting greater adaptive 

flexibility (Yang 2001; Chown & Gaston 2010), and historical factors relating to the 

differential extinction of large bodied non-holometabolan groups (Monroe & Bokma 2013; 

Nicholson et al. 2014). There have been various suggestions, based on the small size of 

early fossil representatives (Nel et al. 2013), that patterns within Holometabola may follow 

the widely acknowledged principal known as Cope’s rule, which postulates that increased 

niche specialization tends to lead to increased body sizes within a clade over evolutionary 

time (Hone & Benton 2005). However, the lack of joint systematic framework for extant 

and fossil taxa has restricted formal testing of this assertion in recent fossil compilations 

(e.g. (Clapham & Karr 2012)).  

Unlike well-studied vertebrate clades, there is currently no universal reference 

source for comparative data within Hexapoda, with the result that the information used 

here is derived from a mix of global and regional scale datasets collected at the level of 

individual clades (Appendix 7.3). This imposes additional assumptions beyond the 

selection of phylogenetic framework (see discussion of tree in (Rainford et al. 2014)) and 

the use of described species as proxies for total clade richness (Costello et al. 2012). There 
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are two major sources of error that may impinge on this analysis and whose extents are 

problematic to test in the absence of more finely resolved taxonomic data. The first relates 

to the representative nature of the compiled size limits as accurately reflecting the true size 

range of studied terminal groups. Due to a lack of data for tropical faunas, the information 

used here includes an over-reliance on North American, Australian and European taxa, 

which due to the presence of a well-known latitudinal cline in insect body size (Chown & 

Gaston 2010), has the potential to bias the raw data on which our findings are based. While 

acknowledging that such a bias is difficult to explicitly test, we note that previous work has 

found evidence that regional data for taxonomic groups is predictive of global patterns 

with respect to hexapod body size (Finlay et al. 2006) and that by combining multiple 

regional sets we at least attempt to consolidate our size ranges across the known taxonomic 

range.  

Another difficult-to-test but implicit assumption in our work is that the probability 

of species description within terminal taxa is not itself biased by body size (Gaston 1991; 

Blackburn & Gaston 1994; Gaston & Blackburn 1994) or, to put this another way, that the 

estimates of described species richness for terminal groups are unbiased approximations of 

their true extant diversity (Costello et al. 2012). The problem of acquiring estimates of 

“true” species richness based on available, and often incomplete records of described 

species is one of the most profound challenges facing work on any diverse clade (see 

discussion in (Costello et al. 2012; Poulin 2014) and references therein). Of the work 

conducted here, the observed pattern, i.e. a weak and statistically non-significant positive 

correlation is potentially consistent with systematic under description of small bodied 

species; however this effect would have to be large in-order to mask any “real” negative 

relationship present within the group. As with many issues relating to unknowns in the 

richness of large clades, efforts to integrate global taxonomic databases together with 

associated rates of species description, synonymy resolution and meta-data such as body 

size, will go a long way towards characterizing what it is that we still do not know 

regarding hexapod diversity (Mayhew 2007). 

In addition to description bias, there are also issues relating to the appropriate 

partitioning of within-tip variance, which here we have treated as arising entirely from 

taxonomic under-sampling. Thus, the effect that novel species description would have on 

the estimate of the mean body size of a given clade depends on the number of described 

species in this clade (hence why the estimate of variance is clade-richness dependent 
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(Hozo et al. 2005)), whereas in reality such estimates also encompass other sources of 

error such as length variation among individual specimens (Gouws et al. 2011) and sexual 

dimorphism (Cohen et al. 2005) which may contribute to variation observed across 

lineages. Dealing with within tip variance in trait measurements is perhaps the greatest 

outstanding challenge in modeling of trait evolution at deep phylogenetic levels (Revell & 

Reynolds 2012). The methods used here, based on Ives et al. (2007) and Felsenstein 

(2008), were originally developed with the aim to incorporate measurement error in tip 

values, with the result that they contain assumptions regarding the distribution of such 

variance that may not be appropriate for all of the contributing sources of variance present 

within this dataset. Alternative approaches exist, e.g. “MECCA” (Slater et al. 2012), 

however these involve simulating multiple species-complete trees (computationally 

unfeasible on the scale of Hexapoda) and also make strong assumptions regarding variance 

structure within tip taxa. Further work on partitioning variance within phylogenetic models 

(Revell & Reynolds 2012), as well as improved understanding in how such variance is 

structured in groups where there is good phylogenetic information, represents an area of 

great potential in understanding trait evolution may be modeled across very large 

taxonomic groups. 

Within the limits of the available data and the neontological approach, our analyses 

suggest that the evolutionary forces structuring macro-evolutionary patterns of body size 

within Hexapoda are not directly related to those responsible for structuring the diversity 

of the group. The overall pattern of body size evolution within the group, based on its 

extant representatives appears to be broadly driven by essentially neutral forces (at a log 

scale) with the exception of the poorly defined process operating within Holometabola and 

Diptera. This conclusion differs from that of fossil based surveys of the group, which have 

emphasized constraints in shaping size evolution in hexapods, such as oxygen limitation 

(e.g. (Harrison et al. 2010; Clapham & Karr 2012)) and the evolution of vertebrate 

predators (notably birds) (Dorrington 2012). These differences reflect differences in the 

underlying data, including a focus on the evolution of mean body size within clades as 

opposed to the limits of its maximum value (Clapham & Karr 2012), the inability of 

analyses based on extant data to take account of no-longer existing diversity (Finarelli & 

Goswami 2013) and impacts of phylogenetic non-independence, which are often neglected 

in fossil analyses of hexapods (Grimaldi & Engel 2005). 
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The consequences of these findings for the standard size paradigm (e.g. (Kozłowski 

& Gawelczyk 2002)), with its emphasis on vertebrates, in which size and richness show a 

strong degree of coupling (Maurer 1998; Gardezi & Silva 1999), are significant in that they 

attack the universality of these findings to other terrestrial clades (Orme, Quicke, et al. 

2002). As with any macro-evolutionary study involving incompletely described taxonomic 

groups, we must pay special attention to the role of missing data and interpolation in 

defining the observed pattern, hence here we have attempted at a basic level to incorporate 

within tip variance into our discussion of body size and diversification. Great challenges 

remain in trying to tease apart ecological and evolutionary processes in groups operating 

on temporal and spatial scales profoundly different from our own. The analysis presented 

here thus should be taken as a step on the road towards a broader understating of the 

processes of size evolution and its consequences for an invertebrate perspective of the 

natural world. 

Table 15 Parameter estimates for the (favored) Phylogeny +Size +Diet 

+Interaction model (Adult dataset) 

Parameter Value Std.Error t-value p-value 
(Intercept) -3.968 0.3000 -13.22 >0.001* 
Mean-of-logs body size 0.0308 0.0528 0.5835 0.5597 
Detritivory 0.0792 0.1429 0.5541 0.5796 
Phytophagy -0.1961 0.2118 -0.9253 0.3551 
Predators 0.3142 0.1589 1.977 0.0484 
Ecto-parasites 0.2178 0.2467 0.8826 0.3777 
Non-feeding -0.4091 0.2233 -1.832 0.0673 
Nectivory -0.2006 0.1507 -1.331 0.1835 
Interaction (detritvory) -0.0171 0.0719 -0.237 0.8126 
Interaction (phytophagy) 0.1731 0.0921 1.881 0.0604 
Interaction (predators) -0.0881 0.0772 -1.140 0.2546 
Interaction (ecto-parasites) -0.3507 0.1364 -2.571 0.0103* 
Interaction (non-feeding) 0.2076 0.0876 2.371 0.018* 
Interaction (nectivory) 0.0254 0.0638 0.3981 0.6907 

 



 162 

6. General Conclusions and Future Prospects  

Comprising more than half of all described extant species, the diversity of the 

Hexapoda (insects and their six-legged relatives such as springtails) represents a defining 

feature of most modern terrestrial communities (May 1988; Gaston 1991b). Within this 

vast diversity, species richness among the various sub-clades shows striking variation with 

the extant species richness with different orders varying across four orders of magnitude 

(Grimaldi & Engel 2005; Mayhew 2007). The overall aims of this thesis were the 

exploration of diversity dynamics within the Hexapoda, and in particular to test long 

standing ideas regarding the roles played by key morphological innovations (Chapter 3), 

ecological determinism and co-evolution (Chapter 4) and body size evolution (Chapter 5) 

in the structuring of richness within the group (Mayhew 2007). This was done within the 

context of an explicit dated phylogenetic hypothesis for hexapods generated from 

publically available molecular sequence data, and incorporating constraints from previous 

systematic analyses and novel calibration fossils (Chapter 2). In this final section I review 

the major findings identified here, and attempt to place these within the context of our 

overall knowledge regarding the hexapod radiation, as well as to explore generalities 

arising from across the different analyses and look towards how future work may continue 

to enhance our understanding of the origins and evolution of this vast and vitally important 

clade. 

6.1. Constructing and dating a molecular phylogeny for 

Hexapoda  

Chapter 2 described the process and data used in the construction of the dated 

phylogenetic framework for Hexapoda used as the basis for all subsequent analyses in this 

thesis. As noted in Section 2.5, the aim of this work was primarily to make use of the 

growing topological consensus of molecular and morphological datasets (Beutel et al. 

2011; Trautwein et al. 2012; Yeates et al. 2012; Misof et al. 2014) and the publication of 

novel datasets for markers within major ordinal groups, e.g. (Hunt et al. 2007; Wiegmann 

et al. 2011; Cho et al. 2011), to provide a comprehensive basis for inferring patterns of 

diversification within the group. Compared with other major groups for whom broad scale 

phylogenies have been constructed for the purposes of modeling diversity; e.g. vertebrates 
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(Alfaro et al. 2009), angiosperms (Smith et al. 2011; Fiz-Palacios et al. 2011), mammals 

(Yu et al. 2012), birds (Jetz et al. 2012), snakes (Pyron & Burbrink 2012) and ray-fined 

fish (Near et al. 2013), attempts to resolve Hexapoda must deal with; a) an extreme degree 

of species richness, limiting any feasible phylogenetic scheme to higher taxonomic levels 

(thus entailing issues of non-monophyly and conflicting systematic definitions among 

terminal groups) and b) a lack of universally sequenced markers comparable with, for 

example, the rbcL marker used in plant surveys (Savolainen et al. 2000; Fiz-Palacios et al. 

2011). This, combined with lack of resources for novel-sequencing work to fill gaps in the 

dataset, resulted the need for some non-standard approaches, outlined in Chapter 2 in order 

to maximize the information content of available datasets. As a consequence, our analysis 

entailed a necessary tradeoff between comprehensive reconstructions of all major hexapod 

groups vs. ambiguity with respect to placements in regions with low phylogenetic signal. 

In practice these intrinsic limitations of the dataset means that there is conflict 

between our recovered results and those of other recent analyses, in particular with respect 

to more focused studies targeting individual orders, e.g. (Wiegmann et al. 2011; Cho et al. 

2011; Regier et al. 2013). The latter tend to have greater consistency in terms of sequence 

sampling among tips, may be able to make use of more markers, and often have defined 

strategies for dealing with missing data (e.g. novel sequencing), which may account for 

their improved coverage. In comparing such studies to that conducted here it must first be 

recognized that much of the apparent conflict is restricted to regions that receive low 

support in all analyses, i.e. areas in which the phylogeny remains genuinely ambiguous, 

such as the backbone of Coleoptera, and diversification within Schizophora (see discussion 

in Section 1.4, 2.3.2). There are also questions regarding taxonomic overlap, and the 

monophyly of terminal taxa that could not be addressed here due to restrictions on the 

resolution of fossil and richness data used in subsequent analyses (Sections 2.4 and 3.2). In 

terms of hard conflict with well supported nodes, of which there are very few examples in 

our dataset, we attribute these to greater context provided by placing sequences in the 

context of the full hexapod radiation (e.g. in terms of alignment) as well as subtle 

difference in the sequences used, for example by restricting the dataset to a single 

representative for each family lineage. 

One recent study that bears particular comparison with the work presented here is 

the recently published genome analysis of (Misof et al. 2014), an early output of the “i5k” 

invertebrate genome sequencing project (Robinson et al. 2011), which represents, for the 
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first time, a comprehensive effort to use full genome sequencing to resolve many of the 

outstanding controversies in hexapod relations. This work, the publication of which 

postdates the analysis presented here, shows a view of hexapod ordinal relationships that 

is, for the most part, congruent with that shown in Chapter 2, indicating at least some level 

of validity to the multi-gene public-data approach adopted in this thesis. Areas of conflict 

include the monophyly of Entognatha; recovered here and disputed by (Misof et al. 2014) 

with Diplura recovered as sister to insects (>90 bootstrap support- BS), the placement of 

Zoraptera within Polyneoptera; which we constrained as sister to Dictyoptera following 

(Ishiwata et al. 2011), while (Misof et al. 2014) weakly recover as sister to Dermaptera 

(BS <75) (see also (Terry & Whiting 2005)), the exclusion of Siphonaptera from within 

Mecoptera as opposed to a sister relationship with Boreidae recovered here (see also 

(Peters et al. 2014)), and, perhaps most strikingly, the failure of these authors to recover a 

monophyletic Paraneoptera (which these authors term “Acercaria”); with Psocodea instead 

recovered as sister to Holometabola (as in (Ishiwata et al. 2011))(BS >98).  

In terms of divergence times the two studies are also similar although the 

confidence intervals reported here are larger reflecting differences in calibration 

philosophy. The dates generated in (Misof et al. 2014) are based on 37 fossil calibration 

points, which show some overlap with those used here and are implemented as log-normal 

priors (µ = 2; d = 0.5) with an arbitrary root height range of range of 411.5-580 Ma (the 

authors describe uniform distributions as used here to be “too conservative”). Example 

nodes for comparison include; the origin of Hexapoda (our analysis: 478 Ma [Confidence 

Interval; CI; 440-503 Ma], (Misof et al. 2014): 479 Ma [CI; 452-509 Ma]), radiation of 

true insects (our analysis: 462 [CI 419-498Ma], (Misof et al. 2014): ~441Ma [CI 421-465 

Ma]), diversification of Polyneoptera (our analysis 401 Ma [357-438 Ma] , (Misof et al. 

2014): ~302 Ma [CI 231- 377 Ma]) and diversification of Holometabola (our analysis: 390 

Ma [350-436 Ma], (Misof et al. 2014): 344 Ma [317-372 Ma]), although note the 

difference in sister group described above).  

In assessing the significance of the conflict between these two datasets, it is first 

important to appreciate the vast differences in scope and scale between these analyses. The 

focus of this study was to provide a shallow (8 genes, 7kb length of sequence) but 

comprehensive (874 tips) analysis for the entirety of Hexapoda, as our interest lay in 

understanding the processes of diversification across the group at a relatively fine 

taxonomic level. By contrast the (Misof et al. 2014) analysis can be thought of as a very 
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deep and detailed sampling of sequence information (total sequencing of 2.5 giga-bases, 

analysis of multiple super matrices of up to 201,000 amino acid sites) for a restricted range 

of taxa (103 tips) emphasizing ordinal relationships. These differences in emphasis, as well 

as the vast difference in available resources (notably computation time and genomic 

expertise), are likely to account for most of the differences between the results. It should 

also be noted that genomic data, due to its sheer size, contains the potential for severe 

internal conflict and is susceptible to a number of hard-to-characterize biases, for example 

in terms of in terms of nucleotide composition and potential paralogy at included loci 

(Phillips et al. 2004; Jeffroy et al. 2006; Leigh et al. 2011). A great deal of effort has been 

spent by these authors to deal with some of these issues; however, as they note, there 

remains a number of unanswered questions within their phylogeny, notably relating to 

Palaeoptera, the position of Zoraptera and the validity of a paraphyletic Paraneoptera 

(Misof et al. 2014).  

Given these advances in data availability it is important to ask what are the 

consequences for the validity of our work and its subsequent utility for inferring 

macroevolutionary hypotheses. As noted, the tree presented in Chapter 2 is the most 

comprehensive dated tree currently available for Hexapoda and one of very few that 

attempts to treat multiple orders at a fine (e.g. family) taxonomic level. The value of this 

approach is that provides consistency when comparing many groups, particularly with 

respect to divergence times, such as has not been possible in former studies using 

distributed trees e.g. (Connor & Taverner 1997). The value of such comprehensive trees, 

even where there are problems with the placements of some of the tips is nicely illustrated 

by the large, and growing, body of work based on the mammalian super-tree of (Bininda-

Emonds et al. 2007), e.g. (Stadler 2011a; Price et al. 2012), despite some concerns over its 

representation of certain tip groups (Meredith et al. 2011). Given the sheer scale of the 

hexapod radiation it is unlikely that we will ever attain the species level coverage of the 

former analysis (which as noted below, requires some rethinking in terms of how we 

model diversity controlling processes). However having at least a preliminary framework 

for conducting analyses is likely to be valuable in its own right as a tool for exploring the 

group.  

How long the tree described here remains a useable tool is in many ways dependent 

on the future of phylogenetic surveying among hexapod clades. The ongoing “i5k” project 

is ultimately aimed at sequencing 5,000 arthropod genomes, i.e. many more than the 
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number of tips on the tree presented here, however much of the proposed sampling is 

driven by concerns other than phylogenetic inference (most notably pest management 

(Robinson et al. 2011; Consortium 2013)) with the result that currently planned sampling 

will be less comprehensive in terms of major clades covered than that given here. In any 

case it seems unlikely that this vast array of data will be fully integrated into a 

comprehensive dating framework for the group as a whole any time in the near future, and 

until then our tree (or perhaps a similar one that makes use of the topology of (Misof et al. 

2014) as a direct source of topological constraints) should serve as a useful placeholder 

and to illustrate the potential gains in terms of macro-evolutionary understanding that can 

potentially be achieved by taking a broad view of the hexapod phylogeny. Given the 

overall similarity of our tree with that produced by these novel analyses it is unclear what, 

if any, effect these improvements will have on the conclusions presented here. 

6.2. Patterns of diversification rate shifts in Hexapoda 

The main motivation behind this work was a reexamination of key innovation 

hypotheses in the diversification of Hexapoda at a level of phylogenetic resolution beyond 

that available in previous surveys of the group (Mayhew 2002; Mayhew 2003; Mayhew 

2007; Davis et al. 2010) (Reviewed in Section 1.2.). The hope was that by combining 

enhanced resolution, as well as explicit and direct dating of the node ages (which would 

not have been possible under previous methodologies (Nee 2006)) we could further our 

understanding of the radiation and assess the overall significance of proposed key 

innovations. (Davis et al. 2010a), postulated a major shift in diversification process 

associated with the development of wing–folding (i.e. at the origin of Neoptera) with a 

minor effect identified associated with the development of flight, based on a super-tree 

compilation of available trees to 2007 (Bininda-Emonds et al. 2004; Davis et al. 2010), 

with diversification modeled using the trickle-down process of (Davies et al. 2004). By 

contrast our analysis, based on the MEDUSA algorithm strongly indicates the presence of 

shift associated with Holometabola (i.e. the origin of complete metamorphosis) and 

provides weak evidence for a shift associated with the origin of flight. Given the numerous 

differences in terms of topology, dating and taxonomic richness between these two studies 

such differences in apparent pattern are perhaps unsurprising and we can demonstrate on 

the basis of likelihood ratio tests that these previous hypotheses represent inferior 
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descriptions of the assembled data when compared with complete metamorphosis (Section 

3.4.). 

The improved phylogenetic resolution available to this dataset allows us to further 

assess the significance of other proposed shifts in diversification that may have played a 

role in structuring extant patterns of diversity. For example (Davis et al. 2010a) identified a 

down-shift associated with the clade Neuropterida relative to its sister lineage; however at 

the time the significance of this even was unclear due to the uncertainties around tree 

construction. Our recovery of this event, within the context of the Holometabolan 

radiation, is thus of significance as it underscores the possibility of divergent processes 

ongoing within the group. What these processes may be is hinted at by combining this 

apparent event with other similar downshifts associated with unrelated groups such as 

Mecoptera, Ephemeroptera and basal members of Coleoptera and Lepidoptera. A striking 

feature of a number of these groups is that their fossil records suggest that, in terms of 

number of families, these are groups which have declined in richness from a peak in the 

late Mesozoic (Labandeira & Sepkoski Jr 1993; Nicholson 2012; Nicholson et al. 2014), 

and there are a number of lineages that appear to have restricted extant distributions 

relative to recent fossils (e.g. Raphidoptera or Nannochoristidae (Grimaldi & Engel 2005)). 

Both of these features are compatible with reduced diversification due to extinction 

(resulting in “relic taxa”), that may be indicative of the failure of these clades to adapt to 

the massive ecological changes brought about by the angiosperm radiation during the late 

Cretaceous (Ross et al. 2000; Grimaldi & Engel 2005). It should however, be noted that 

attributing particular up or downshifts with respect to overall diversification to either 

speciation or extinction processes is challenging using the methods described here (Nee et 

al. 1994; Rabosky 2010) and may be contingent on the availability of suitably resolved 

fossil data (McInnes et al. 2011), although see (Stadler & Bokma 2012) for potential recent 

developments in this regard.  

In addition to the apparent relictual taxa, our analysis also identifies a set of 

recently derived up-shifted groups many of which are familiar and important components 

of the recent fauna such as Acrididae, Chrysomeloidea, Apidae and Calyptratae (in 

particular Tachinidae). We also find evidence, once uncertainties in node ages are taken 

into account for nested shift dynamics within Lepidoptera, particularly with reference to 

Obtectomera which may reflect repeated Cretaceous radiations in this predominantly 

phytophagous lineage (Regier et al. 2013). Interestingly, with the exception of a shift 
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associated with Calyptratae, our work fails to recover the nested or “episodic” shift pattern 

previously reported within Diptera (Wiegmann et al. 2011), a difference which we attribute 

to: differences in the inferred relationships within this group (Caravas & Friedrich 2013), 

improvements in the dating procedures, and the greater context provided by nesting 

Diptera within the complete Holometabolan radiation. Once again these differences serve 

to illustrate the benefits gained by adopting a universal approach to considering hexapod 

diversification, as oppose to fixating on single clades in the identification of large scale 

patterns and possible general models involved (Mayhew 2007). 

The methods used to model diversification in this study are subject to a number of 

limitations, some of which have been partially alleviated by work subsequent to this 

analysis. Firstly there are a number of outstanding questions regarding the use of the 

MEDUSA algorithm (Alfaro et al. 2009; Brown et al. 2012) that provides the primarily 

basis for the results described above. These criticisms include the fact that the form of 

algorithm implemented in this study is “greedy” in the sense that at each time step it is 

only possible to add further shifts to the joint model, even if the overall likelihood would 

be improved by the removal of previously inferred events (this feature has subsequently 

been added to more recent versions (Pennell et al. 2014)). In addition there are also 

questions regarding the suitability of the underlying method of moments estimator for net 

diversification rate (Magallon & Sanderson 2001) particularly in the context where rates of 

diversification might be expect to change through time (Rabosky 2009; Wiens 2011). 

Currently there are relatively few alternative methodologies that are able to deal with 

appropriate modeling of terminally incomplete clades. Several of these, including the 

BiSSE algorithm (Maddison et al. 2007) and its various derivatives e.g. (FitzJohn et al. 

2009; FitzJohn 2010; Magnuson-Ford & Otto 2012), rely implicitly on simulation of the 

species resolved tree as the basis for parameter estimates (Stadler 2011b; Pyron & 

Burbrink 2013), or highly parameterized and computationally complex transition matrices 

(FitzJohn et al. 2009) both of which is computationally unfeasible on the scale of 

Hexapoda due to exponential scaling of time and memeory requirements on the number of 

species represented by tips.  

The recently developed alternative procedure, the BAMM algorithm of (Rabosky 

2014), represents the beginnings of a gradual shift within diversification studies into the 

Bayesian framework (as opposed to the maximum likelihood models described here), that 

due to its capacity to deal with uncertainty in parameter estimates (represented as 
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distributions as opposed to single point values) may represent a more natural framework 

for dealing with the issues surrounding diversity modeling (Bokma 2008; Moore & 

Donoghue 2009; Silvestro et al. 2011). Preliminary attempts within this project to use this 

algorithm in its current form resulted in inference of a flat likelihood surface, where the 

uninformative model prior dominated the position of inferred shifts. At the time of writing 

there has been insufficient emphasis placed on adapting models of diversification for large 

unresolved clades which make up the majority of taxonomic diversity, partially due to the 

availability of species resolved trees for charismatic vertebrate groups and the intrinsic 

difficulty of scaling current algorithms to deal with large non-model clades. This 

represents an important future direction for the field and a major area of current 

development.  

While extending available modeling frameworks presents a significant challenge 

for future studies, an equally great issue arises from the need to acquire accurate proxies 

for clade richness in groups, such as Hexapoda, where the majority of species remain un-

described (Erwin 1982; May 1988; Mayhew 2007). Throughout this thesis we have relied 

implicitly on estimates of described species richness (which are themselves subject to 

unknown levels of error relating to the extent of synonymy across groups (Costello et al. 

2013)) as proxies for the true richness of different hexapod clades. This assumes, however 

that the proportion of species described is equal across different clades, which is very 

unlikely to hold with respect to small bodied, cryptic or parasitic taxa (May 1988; Poulin 

2014). Attempts to utilize rates of species description through time to standardize estimates 

of total diversity have proved to be of mixed utility, with the most well known examples 

being highly sensitive to the underlying assumptions regarding the rate of increase 

(Dolphin & Quicke 2001) and some models resulting in statistically undefined estimates of 

total richness (Bebber et al. 2007; Costello et al. 2012). Alternative approximations such as 

expert opinion have their own issues of subjectivity and systematic bias ((Appeltans et al. 

2012; Poulin 2014) and references therein), although some novel methods, which draw on 

richness relationships between different levels in the taxonomic hierarchy, hold at least 

potential promise for enhancing the clade richness estimates used here (Mora et al. 2011). 

While acknowledging these potential methodological and data constraints, based on 

the relative robustness of the findings presented here to the sources of error that we could 

explicitly examine (e.g. uncertainty in the ages of divergence from the molecular clock 

study- see section 3.4), it appears likely that the major conclusions of this study; elevated 
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diversification rate in Holometabola (which contains a large number of under-described 

lineages), the existence and identity of apparent relictual groups, and the importance of 

some recently derived ecologically important lineages, will show some level of robustness 

to improvements in species description, as well as to increased sampling of and 

redefinition of the terminal lineages used here. Unfortunately the precise results of such 

data changes cannot be predicted a-priori and will be strongly contingent on precisely 

which groups are strongly impacted. 

6.3. Dietary ecology as a determinate of species richness 

patterns 

Arguably the most influential idea in hexapod diversification is the apparent link 

between species richness and ecological, and in particular, dietary, zones of adaptive 

opportunity (Mayhew 2007) (see also (Price et al. 2012)). Of these, by far the most 

significant is the apparent increase in species richness linked with plant feeding (Mitter et 

al. 1988; Farrell 1998), as underpinned by both the observation of extreme species richness 

in certain specialized phytophagous clades (e.g. (Mitter et al. 1988; Farrell 1998; 

Barraclough et al. 1998; Winkler & Mitter 2008; Nyman 2010)) and a broader theoretical 

framework linking heterogeneous substrate use with specialization and enhanced clade 

richness (Ehrlich & Raven 1964; Thompson 2009; Forister et al. 2011; Janz 2011). In 

Chapter 4, we reexamined this hypothesis, along with related ideas looking at parasitism 

(Wiegmann et al. 1993), and the role of ecological specialization more generally (Futuyma 

& Moreno 1988; Forister et al. 2011), in the context of our explicit tree. In addition we 

also explored patterns of phylogenetic structure and transition rates among dietary types 

that may have contributed to their respective species richness associations. Our 

conclusions, that there was no significant association between possession of a particular 

dietary trait and elevated or depressed richness, nor with combinations of traits that would 

be expected a-priori to be associated with specialization (due to host parasite co-evolution), 

are thus novel in that they conflict with established opinion regarding the drivers within 

Hexapoda. We do however recover evidence that dietary states differ in their degree of 

phylogenetic conservatism and relative transition rates, specifically evidence of bias 

transition in favor of more “specialized” dietary states that may reflect key processes or 

events in the macroevolution of hexapod ecology.  
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 As discussed in Section 4.5, possible sources for heterogeneity within ecological 

zones include a) guild specific diversification processes (Hardy & Cook 2010; Novotny et 

al. 2010; Novotny et al. 2012) that are collectively masked by the relatively coarse 

substrate based descriptors applied here, b) failure of the coding system to adequately 

denote real zones of ecological opportunity at the clade level (e.g. failure to appropriately 

consider within tip variation in ecology) (Mitter et al. 1988) or, c) contingent effects of 

other trait values such as body size or dispersal ability in regulating the effect of a given 

dietary shift (de Queiroz 2002). Exploring these various possibilities takes us beyond the 

exploration of single trait axis and into a more integrated perspective on the limits of zones 

of ecological opportunity, niche space, and the resultant impacts on clade richness (Poisot 

et al. 2011; Vamosi et al. 2014). Multi-trait models that simultaneously consider multiple 

impacts on potential diversification are likely to play a major role in unraveling 

outstanding patterns within hexapods. The application of such modeling frameworks 

remains limited by the availability of descriptive data and the resolution of underlying 

phylogenetic frameworks, prompting the need for further synthesis of disparate data 

sources, possibly in the form of online data-bases (see discussion below). 

From a methodological perspective the simple sister-group methods used here have 

increasingly been superseded, with respect to small (species resolved) clades, by joint trait-

diversification rate models, in particular those belonging to the BiSSE family (Maddison et 

al. 2007) (see discussion above). As noted above, these models were not available for 

implementation here due to limitations on computational scaling and memory requirements 

for the study of large unresolved clades. However, as computation improves and modeling 

frameworks become more able to deal with trees of higher taxa it appears likely that these 

will be become increasingly able to address issues on these large phylogenetic scales. A 

possible way forward, involving the fusion of the Bayesian rjMCMC algorithm BAMM 

with tree pruning, to explore average rates among taxa showing a particular phenotype, is 

presented in recent work by (Weber & Agrawal 2014) representing the culmination of the 

current generation of tools for historical rate based analysis, and providing a model for 

future explorations of state dependent diversification. 

 As with other macro-evolutionary questions study into the impacts of trait 

acquisition (e.g. dietary shifts) on diversification would benefit from a more holistic 

approach that takes into consideration the context and evolutionary mechanisms by which 

such shifts may occur and the consequences of such mechanisms for the resultant patterns 
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of diversity (see for example discussion in (Ricklefs 2004b)). Diet, particularly at the broad 

scale considered here, is a complex trait, evolving over long time scales, and as such is 

subject to considerable historical effects that may play a role in shaping the resultant 

patterns of niche space (Grimaldi 1999; Grimaldi & Engel 2005; Pennington et al. 2006; 

Futuyma & Agrawal 2009). Implicit in the work conducted here and elsewhere is an 

underlying model where niche space is partitioned into semi-discrete zones of opportunity 

that, due to differences in rates of diversification and/or carrying capacity, facilitate 

differences in species richness. Historical factors, such as the relative availability of food 

resources or the radiation of novel host groups have the potential to modulate the structure 

and permeability of boundaries between these ecological zones, which may affect their 

promotion of diversity (Pennington et al. 2006; Futuyma & Agrawal 2009). Assessing such 

effects may be beyond the capacity of known hexapod and plant fossil records (Grimaldi & 

Engel 2005), although see (Labandeira 2006; Labandeira 2013) for discussion of recent 

progress. However growing taxonomic knowledge and in particular greater integration of 

fossil groups with the phylogeny of extant taxa (thus providing ecological models), may go 

a long way towards making discussion of these ideas increasingly feasible in future work.  

Identifying and categorizing zones of ecological opportunity, and the signal they 

leave on phylogenies, remains one of the greatest outstanding challenges of macroecology, 

as intuitive classifications such as that applied here are inherently subjective (Nyman 

2010), and may result in missing biologically relevant principals (Bernays & Graham 

1988; Singer & Stireman 2005). Recently there have been moves to utilize the growing 

body of phylogenetic and biochemical data available for insect herbivores and their plant 

hosts to begin to formalize the concept of adaptive zones within theses groups (Cavender-

Bares et al. 2009; Joy & Crespi 2012) although, as yet, there are too few well defined 

examples to provide a basis for generalities across all hexapod groups (see discussion in 

(Futuyma & Agrawal 2009)). With respect to other diets, severe knowledge gaps in our 

understanding of how ecological guilds are partitioned (Giller 1996), and the roles played 

by other factors such as natural enemies, limit our ability to describe such lifestyles with 

respect to adaptive zones resulting in a need for further ecological work targeting such 

systems, as well as efforts to improve our understanding of the phylogenetic context 

underlying such radiations. 



 173 

6.4. Body size and diversity 

Body size is one of the most significant controls on how organisms interact with 

local environments (Hutchinson & MacArthur 1959; Morse et al. 1985; Gaston & 

Blackburn 2000) and has been studied as a correlate of richness in a wide range of 

vertebrate groups (Maurer 1998; Gardezi & Silva 1999; Kozłowski & Gawelczyk 2002; 

Albert & Johnson 2012). However to date there have been relatively few attempts to 

explore such patterns in invertebrates (Orme, Quicke, et al. 2002; Orme, Isaac, et al. 2002) 

and hexapods in particular (Chown & Gaston 2010; Gaston & Chown 2013). In Chapter 5 

we present a series of analyses aimed at exploring patterns of size bias in clade richness 

within hexapods, and the processes responsible for generating observed patterns of body 

size evolution on the log scale within the group. This was conducted within the context of 

the described hexapod phylogeny and coarse-scaled estimates of the observed range of 

body sizes observed within terminal groups based on log minimum and maximum body 

length estimates. From these analyses, the details of which are given in Section 5.4 we 

concluded that, on the log scale, there is no clear evidence of bias in terms of the length 

distribution of insects and, after taking account both phylogeny and the uncertainty within 

tip estimates, there is no global association of body length with species richness either for 

the group as a whole or any of the major sub-clades. We also concluded that the overall 

process of size evolution within hexapods closely approximates simple Brownian motion 

on the log scale, with the exception of Holometabola, a clade for which the observed 

processes are non-Brownian and consistent with accelerating rates of size evolution 

through time (see Section 5.5. for discussion). 

These results, and in particular the possible future development of this work serve 

to illustrate two distinct issues applicable to the study of macroevolutionary patterns in 

continuous trait data for higher taxonomic groups. The first is a data-driven issue relating 

to the availability of information in non-model taxonomic groups and how we can improve 

the treatment of such information within the modeling process. There are a number of 

limitations imposed on a dataset concerning a group as diverse as a the Hexapoda, 

including: geographic bias in the availability of size data (both in terms of the placement of 

well studied faunas and in collections that could potential be used to model size 

distributions) (Finlay et al. 2006), descriptive bias relating to possible systematic 

underreporting of small sized forms (Gaston 1991a; Blackburn & Gaston 1994; Gaston & 
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Blackburn 1994) and the presence of potential confounding features such as sexual 

dimorphism that prevent like-for-like comparison of different taxonomic groups (Chown & 

Gaston 2010; Gaston & Chown 2013). For modestly sized and charismatic groups, such as 

mammals and birds, such issues are for the most part mitigated through the availability of 

global comprehensive databases of trait data e.g. PanTHERIA (Jones et al. 2009), that 

provide the basis for the study of macro-evolutionary patterns e.g. (Slater 2013). For 

hexapods, due to their extreme taxonomic richness, the problem is several orders of 

magnitude harder. However, any standardized approach, even if restricted to particular 

sub-clades (for example the addition of size and ecological meta-data to entries in active 

online systematic databases e.g. Polyneoptera Species file project (Eades 2012) or Systema 

Dipterorum (Pape & Evenhius 2013)) would represent a major advance in terms of our 

capacity to make strong statements regarding the processes involved, and may, through 

modeling associated uncertainty, prove the basis for resolving some of the deeper data 

issues (see (Blackburn & Gaston 1994; Gaston & Blackburn 1994) and discussion above 

on modeling true lineage richness from rates of species description). 

The other major trend that this analysis serves to illustrate is the importance of 

incorporating variance within tips into the modeling of macro-evolutionary processes for 

the study of large taxonomic groups (Harmon & Losos 2005; Garamszegi & Møller 2010; 

Silvestro et al. 2015). Due to the primary focus of comparative methods on highly resolved 

(ideally species level) trees, historically there has been little emphasis placed on 

considering the degree to which internal variation within tips, (which with respect to insect 

body size can be a large proportion of the total variance observed across clades (Chapter 

5)) have potential to impact on the results of comparative methods (Felsenstein 1985). 

Only relatively recently have procedures been developed that explicitly deal with this 

additional source of variance within standard comparative frameworks, and several of 

these, e.g. (Ives et al. 2007; Felsenstein 2008) are primarily constructed to deal with error 

arising from measurement variation among samples, particularly where sample sizes vary, 

although they can potentially be adapted to other situations.  

More relevant to the work conducted here (although as yet lacking good 

implementations) are the development of Brownian procedures that model species means, 

intraspecific phenotypic variances, and the parameters of the evolutionary process from 

their joint posterior probability distribution, such as that recently developed by (Revell & 

Reynolds 2012). This is an exciting addition to available methodological tools; in that it 
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provides a bi-directional information flow such that modeling parameters and terminal 

distributions are potentially jointly informative (i.e. in effect it can compensate to some 

degree for missing data within the terminal lineage by drawing on the joint likelihood of 

the overall tree). The referenced publication provides a simple example of this approach, 

which assumes intraspecific variability is the same for all species (their so called reduced 

model), and does not fully explore the more complex case where variance is itself variable 

across tip taxa (corresponding to different ranges in the data discussed here) (Revell & 

Reynolds 2012). However expanding this, particularly if such procedures can be combined 

with a more diverse array of trait evolution models (the current form fits only the lambda 

model), and recent innovations to reduce the inference of such models to linear time (Ho & 

Ane 2014) then this could lead to a major advance in terms of how we explore trait 

evolution in large and unresolved groups. A nice feature of Bayesian protocols is their 

inherent hierarchical nature, such that distinct processes can be combined into a single 

more complex joint model, thus in principle (if less so in practice) it is possible to envisage 

a future world in which models have been developed that combine this variance based 

inference of process with the capacity to explore clade heterogeneity (e.g. using of 

reversible jump Markov chain Mote-Carlo such as BAMM (Rabosky 2014)) in order to 

provide a comprehensive approach to exploring patterns of trait evolution in the context of 

large clades. 

One other current, but as yet rarely implemented, method that, in principle, is able 

to deal with unresolved variance within phylogenetic tips is the approximate Bayesian 

computation (ABC) method, MECCA, developed by (Slater et al. 2012). ABC is a 

simulation based technique related to Bayesian modeling where parameter values are 

sampled from an assumed prior distribution (which must be defined a-priori, see 

(Templeton 2010)) and then the distribution of model outputs compared with that of real 

data based on a summary statistic (Joyce & Marjoram 2008), in order to generate a 

parameter distribution approximating the underlying likelihood surface (Marjoram & 

Tavaré 2006). Thus this approach removes the, often time consuming, step of calculating 

likelihood at each time step in an MCMC chain, and so is able to implement models for 

which there is no known explicit likelihood function (Marjoram & Tavaré 2006). This is a 

relatively novel mathematical tool in diversification modeling, and as currently 

implemented is computationally taxing (due to the need to generate many simulations, 

most of which are discarded). However, such approaches have been heavily implemented 
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in phylo-geographic studies (although not without criticism, see (Templeton 2009; 

Templeton 2010)) and may, as trait models become increasingly sophisticated, become an 

important tool in the study of trait evolution.  

The work conducted here focuses exclusively on adult body size as an explanatory 

variable for clade richness within Hexapoda, which despite the data issues discussed above 

is one of the easiest quantitative ecological traits to characterize in the context of a data 

deficient clade. There are however ever numerous other continuous variables that would be 

great interest to study in the context of insect macroevolution. Some of these, such as 

reproductive rate, life span and home range size have been dealt with in model vertebrate 

groups e.g. (Phillimore et al. 2006). However, others notably dispersal capacity (briefly 

examined in the context of the evolution of flightless taxa in (Mitterboeck 2012)), remain 

poorly characterized for many taxa despite their clear ecological significance, and potential 

for co-evolution with the dietary traits and size evolution discussed here. Once again I 

reiterate the need for standardized, and preferably curated reference sources to collate the 

work of hundreds of years of ecological observation and facilitate comparative work for 

the study of the controls of richness in this vast and important clade. 

6.5. Final thoughts  

Above I have outlined the major findings of this thesis and briefly explored the 

potential impact of recent findings and methodological developments on the conclusions 

presented here and the potential for further work. To summarize, prior to this work much 

of the focus of macroevolutionary explanations for hexapod diversity have been restricted 

to incomplete phylogenetic settings, that have either lacked resolution to deal with 

questions on interest (e.g. by being restricted to the ordinal level (Mayhew 2002; Mayhew 

2003; Davis et al. 2010)), or have lacked an explicit hypothesis of relationships 

underpinning chosen richness comparisons (e.g. (Mitter et al. 1988; Connor & Taverner 

1997)). By constructing a resolved and dated phylogenetic tree, despite outstanding 

uncertainties, our goal was to establish a new standard in hexapod diversification studies 

bringing work on the group one step closer to that conducted for well studied vertebrate 

lineages (e.g. (Price et al. 2012; Jetz et al. 2012)). Analyses in this thesis highlight the 

significance of metamorphosis as a key innovation, contrasting with previous views 

focusing predominantly on wing-folding (Davis et al. 2010a); cast doubt on long standing 

ideas regarding the role of phytophagy in promoting hexapod diversification (Mitter et al. 
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1988), and raise questions regarding the relationship between body size evolution and 

diversity within the group (Mayhew 2007).  

In terms of forward direction, patterns of diversification in hexapods over long time 

scales are likely to be driven by an amalgamation of species-level, clade-level and 

ecosystem level phenomena that may render simple models of diversification inadequate to 

explain the full complexity of diverse and ancient clades (Benton 2010). In seeking to 

further our understanding there is a need to integrate our perspectives across various 

phylogenetic scales, in combination with other sources of information such as the fossil 

record (Losos 2011), in order to understand the relative roles of different mechanism in the 

promotion and maintenance of clade richness. Areas of priority for future work include: 

• Resolving the outstanding phylogenetic uncertainty among the major extant 

lineages (see (Misof et al. 2014) and discussion above), and using this 

knowledge to better contextualize the placement of ambiguous fossil groups 

(e.g. (Béthoux & Nel 2002; Grimaldi & Engel 2005; Davis et al. 2011)), in 

order to provide a more complete historical record of hexapod evolution 

(Nicholson 2012).  

• Consideration of the potential impacts of outstanding uncertainty in 

taxonomic description (estimated clade richness) and the impacts this may 

have for inferred patterns of diversification.  

• Improved data standardization and integration for the exploration of trait 

data both at a higher taxonomic and species level with an aim to condense 

hundreds of years of ecological observations into a referenced and reliable 

format to facilitate future studies on trait mediated diversification within the 

group.  

• Integration of trait based analyses of diversification drivers into a more 

cohesive multivariate framework (for examples see (Marx & Uhen 2010; 

Benson & Mannion 2011)) with a particular emphasis on trying to identify 

the biologically limiting controls that are likely to denote zones of 

ecological opportunity. 

• Expansion of modeling frameworks for dealing with large and terminally 

unresolved clades in the context of birth-death and related modeling 

frameworks.  
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This is an exciting time for the study of hexapod diversity as molecular tools, 

including the ones described here and the recent genome work of (Misof et al. 2014), are 

beginning to generate the phylogenetic frameworks needed to support robust analyses 

comparing different hexapod clades. It is unfortunate therefore that the integration of 

potential trait correlates of richness such as diet and body size has not kept pace with these 

improvements, restricting our ability to generate and test sophisticated hypotheses 

regarding relative diversification rates within the group. In terms of modeling diversity we 

are again seeing an explosion of novel and potentially powerful methods for exploring 

species richness, although as noted above, there has as yet been too little emphasis on 

extending such frameworks in order to be suitable for use on large and (at the species 

level) unresolved groups that make up the overwhelming majority of life on Earth. The 

work presented here provides an early phase overview, within a specific hypothesis of 

hexapod relationships, of some of the potential processes that may be operating within the 

group. As phylogenies and methods become increasingly sophisticated, and data sources 

for the various traits on interest continue to improve, the hope is that we can expand our 

understanding of the potential macro-evolutionary drivers of speciation and extinction, and 

so further our understanding of the radiation of the most diverse animal clade on earth. 
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7. Appendix and Supplementary Tables 

7.1. Link to supporting information for Chapters 2 and 3 

Additional supporting information for Chapters 2 and 3, including Accession 

Numbers for genes used in tree construction, implemented alignments, and digital 

copies of the inferred tree available at: [last accessed 26th January 2015] 

http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0109085#s 

 

7.2. Link to supporting information for Chapter 4  

Supporting files on the Dryad data repository, including diet coding for all 

terminal groups and associated references available at 

http://dx.doi.org/10.5061/dryad.6f75v 

7.2.1. Definitions of ecological states 

1. Fungivory- use of living fungal tissue or symbiotic fungi for external digestion of a 

detritus substrate (common in wood boring taxa, particularly beetles and primitive 

Hymenoptera). Includes organisms specialized on slime molds and yeasts. Not spore 

feeding (detritivory (category 2) unless the organism has some other close association with 

fungal tissue). Unlike the other categories discussed, the specialization state of fungivory is 

treated as variable depending on whether the relevant sources note a close relationship 

between the taxon and a particular subgroup of fungi. 

2. Detritivory- feeding on decaying substrates and/or associated microbial 

communities. Includes scavenging and corpse feeding (animals capable of killing live prey 

are treated under predation (4)), dung feeding, shredding of decaying plant material, 

microbial film feeders and filter feeders in aquatic settings. All detritivores are treated as 

generalist in the analysis of specialization. 

3. Phytophagy- feeding on living plant material including vegetative parts, roots and 

seeds (the last only if taken in situ with pests of stored grain treated under detritivory (2)). 

Includes  taxa  feeding  on  both  vascular  plants  and  lower  plants  such  as  mosses  and 
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liverworts. Algal feeders, including wrack, are excluded and treated under detritivory (2). 

Includes wood boring of the cambium layer of living trees (taxa boring into dead wood 

treated under detritivory (2)) and larval pollen feeding. The last two are recoded as 

detritivory (2) for the purposes of the Larval Modified data set. For adults, pollen and 

nectar feeding are excluded (as detritivory (2) or liquid feeding (9) respectively). 

Phytophagy is considered a specialized ecology in the specialization analysis.  

4. Predation- feeding on multiple other animals that the focal organism has the 

capacity to kill. Includes taxa which also scavenge invertebrates, but corpse feeding of 

larger animals and specialized kleptoparasites are treated under detritivory (2). Facultative 

predation and cannibalism by taxa with predominantly phytophagous or detritivous taxa 

are excluded, except in the presence of clear adaptions towards hunting behavior. 

Omnivores are treated as mixed states. Predation is considered generalist ecology in the 

specialization analysis. 

5. Parasitoidism- Taxa which, as larvae, complete their development using a single 

individual arthropod host which dies as a direct result of having been fed upon (Godfray 

1994). Also includes similar groups that engage in multiple provisioning e.g. Sphecidae 

(sensu lato) and some Bombyliidae, as well as parasitoids of molluscs or other invertebrate 

groups. Parasitoidism is considered a specialized ecology in the specialization analysis and 

combined with ecto-parasitism (6) in the Larval-modified data set.  

6. Ecto-parasitism- Feeding on blood, flesh, or other products on vertebrates in the 

context of long-term associations. Also includes, for larval surveys, taxa which do not 

directly feed as larvae but which have blood-feeding adults (e.g. Hippoboscoidea). In the 

context of adults this category is extended to include micro-predators such as Tabanidae 

and many Culicomorpha. With the exception of the later (considered generalist) ecto-

parasitism is treated as a specialized ecology in the specialization analysis and combined 

with parasitoidism (5) in the Larval-modified data set.  

7. Non-feeding- Adult organisms within this category have vestigial mouth parts and 

are incapable of feeding. 

8. Liquid feeding and Nectivory- Feeding exclusively or near-exclusively on liquid 

substrates such as nectar, liquid products of decay, honeydew or host haemolymph, 

primarily in the context of maintenance of the winged adult. Includes some adult taxa such 

as Trichoptera and certain Diptera and Hymenoptera for which feeding status is 

undetermined (see below) 
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In cases of polymorphic feeding strategies, sexually dimorphic taxa are denoted as 

the female state (which in most insects in the primary feeding state) with the exception of 

the parasitoid Strepsiptera, where in most families the larval-form female never leaves its 

host, and which are coded on the non-feeding male. Species showing caste dimorphisms 

are coded on the worker stage, although in practice there is no distinction at the level of 

resolution used in this study. Unless otherwise stated, non-holometabolan insects are 

assumed to feed on the same substrate throughout the life cycle, resulting in identical 

coding’s for the “larval” and adult ecologies (denoted by – below). Taxa for which there is 

no ecological information available are denoted by “?”. 

7.3. Body length data for included terminal groups with 

references (Chapter 5)  

Taxon Rich
ness 

Length Data Raw Data Reference Dietary Substrate Notes 
Min 
/mm 

Max 
/mm 

Min 
/mm 

Max 
/mm 

Larva
l Raw 

Larva
l Mod. 

Adult 

Archaeognatha 495$ 10$ 12$   (Arnett 
2000) 2 2 2 

 

Blattodea 
Blaberidae 

1198$ 2.5$ 75$   (Arnett 
2000)/(Hogu
e 1993) 2 2 2 

 

Blattodea 
Blattidae  

2381$ 18$ 45$   (Arnett 
2000) 2 2 2 

 

Blattodea 
Cryptocercidae 

594$ 24$ 29$   (Arnett 
2000) 2 2 2 

 

Blattodea 
Ectobiidae  

12$ 8$ 18$   (Arnett 
2000) 2 2 2 

 

Blattodea 
Corydiidae 

247$ 15$ 24$   (Arnett 
2000) 

2 2 2 

Includes$
Nocticolidae$
 

Coleoptera 
Amphizoidae 

5$ 11$ 16$   (Parker$
1982)$ 4 4 4 

 

Coleoptera 
Aspidytidae 

2$ 4.8$ 7$   (Beutel$&$
Leschen$
2005)$$ 4 4 4 

 

Coleoptera 
Carabidae 

4000
0$

1$ 85$   (Beutel$&$
Leschen$
2005)$$ 4 4 3&4 

 

Coleoptera 
Dytiscidae 

4015$ 1$ 48$   (Beutel$&$
Leschen$
2005)$ 4 4 2&4 

 

Coleoptera 
Gyrinidae 

882$ 3$ 15$   (Parker$
1982)$ 4 4 4 

 

Coleoptera 
Haliplidae 

218$ 2$ 6$   (Parker$
1982)$ 2 2 4 

 

Coleoptera 
Hygrobiidae 

5$ 8$ 10$   (Parker$
1982)$ 4 4 4 

 

Coleoptera 
Noteridae 

250$ 1$ 5.8$   (Beutel$&$
Leschen$
2005)$ 4 4 4 

 

Coleoptera 6$ 3.8$ 7$   (Beutel$&$ 4 4 4  
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Trachypachidae Leschen$
2005)$

Coleoptera 
Cupedidae 

31$ 5$ 22$   (Beutel$&$
Leschen$
2005)$ 1 1 2 

 

Coleoptera 
Micromalthidae 

1$ 1.5$ 2.5$   (Parker$
1982)$ 1 1 1 

 

Coleoptera 
Ommatidae 

6$ 6$ 27$   (Beutel$&$
Leschen$
2005)$ ? ? 2 

 

Coleoptera 
Lepiceridae 

1$ 1.5$ 2$   (Beutel$&$
Leschen$
2005)$ 2 2 2 

 

Coleoptera 
Hydroscaphidae 

22$ 1$ 2$   (Beutel$&$
Leschen$
2005)$ ? ? 2 

 

Coleoptera 
Sphaeriusidae 

19$ 0.5$ 1.2$   (Beutel$&$
Leschen$
2005)$ 2 2 2 

 

Coleoptera 
Torridincolidae 

60$ 1$ 2.7$   (Beutel$&$
Leschen$
2005)$ 2 2 2 

 

Coleoptera 
Aderidae 

900$ 1$ 4$   (Arnett$et$al.$
2010)$ ? ? ? 

 

Coleoptera 
Agyrtidae 

70$ 4$ 14$   (Arnett$&$
Thomas$
2000)$ 2 2 2 

 

Coleoptera 
Alexiidae 

50$ 1.2$ 1.7$   (F.$W.$
Shockley$
2008)$ 1 1 1 

 

Coleoptera 
Anobiidae 

2084$ 1$ 9$   (Parker$
1982)$ 2&3 2 2&3 

 

Coleoptera 
Anthicidae 

3000$ 1.5$ 15$   (Parker$
1982)$ 2 2 2&4 

 

Coleoptera 
Anthribidae 

3900$ 1$ 20$   (Parker$
1982)$ 1&3 1&3 

1&2&
3 

 

Coleoptera 
Polyphaga 
Artematopodida
e 

45$ 2.5$ 10$   (Leschen$et$
al.$2010)$

3 3 ? 

 

Coleoptera 
Attelabidae 

2500$ 1$ 18$   (Parker$
1982)$ 3 3 3 

 

Coleoptera 
Belidae 

375$ 4.5$ 20$   (Parker$
1982)$ 3 3 2 

 

Coleoptera 
Biphyllidae 

200$ 1.5$ 8$   (Parker$
1982)$ 1 1 1 

 

Coleoptera 
Boridae 

4$ 8$ 25$   (Arnett$et$al.$
2010)$$ ? ? ? 

 

Coleoptera 
Bostrichidae 

570$ 1$ 50$   (Parker$
1982)$ 2&3 2 2&3 

 

Coleoptera 
Bothrideridae 

400$ 1.5$ 13$   (Arnett$et$al.$
2010)$ 1&5 1&5 4 

 

Coleoptera 
Brachyceridae 

385$ 1.5$ 6$   (Arnett$et$al.$
2010)$ 3 3 3 

 

Coleoptera 
Brentidae 

4000$ 3$ 80$   (Parker$
1982)$ 1&3 1&3 3 

 

Coleoptera 
Buprestidae 

1470
0$

1.5$ 60$   (Parker$
1982)$ 3 2 3 

 

Coleoptera 
Byrrhidae 

430$ 1.5$ 10$   (Parker$
1982)$ 3 3 3 

 

Coleoptera 24$ 2.5$ 8$   (Parker$ 3 3 2&8  
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Byturidae 1982)$
Coleoptera 
Callirhipidae 

150$ 9$ 23$   (Arnett$et$al.$
2010)$ 1 1 ? 

 

Coleoptera 
Cantharidae 

5100$ 1.5$ 30$   (Parker$
1982)$ 4 4 2&4 

 

Coleoptera 
Cephaloidae 

19$ 4.2$ 22$   (Leschen$et$
al.$2010)$ 1 1 2 

 

Coleoptera 
Cerambycidae 

3007
9$

2$ 200$   (Parker$
1982)$ 3 2&3 3 

 

Coleoptera 
Ceratocanthidae 

120$ 2$ 9$   (Arnett$et$al.$
2010)$ 1 1 1 

 

Coleoptera 
Cerylonidae 

450$ 1$ 4$   (Parker$
1982)$ 1 1 1 

 

Coleoptera 
Chelonariidae 

250$ 2.5$ 10$   (Parker$
1982)$ 2 2 ? 

 

Coleoptera 
Chrysomelidae 

3250
0$

1$ 40$   (Parker$
1982)$ 3 3 3 

 

Coleoptera 
Ciidae 

650$ 0.5$ 7$   (Parker$
1982)$ 1 1 1 

 

Coleoptera 
Clambidae 

170$ 0.7$ 2$   (Parker$
1982)$ 1 1 2 

 

Coleoptera 
Cleridae 

3400$ 2$ 25$   (Parker$
1982)$ 4 4 2&4 

 

Coleoptera 
Coccinellidae 

6000 1 10   (Parker$
1982)$ 3&4 3&4 3&4 

 

Coleoptera 
Corylophidae 

200 0.7 2.3   (Parker$
1982)$ 1 1 2 

 

Coleoptera 
Cryptophagidae 

600 1 4   (Parker$
1982)$ 1 1 1 

 

Coleoptera 
Cucujidae 

44 2.5 25   (Leschen$et$
al.$2010)$ 4 4 ? 

 

Coleoptera 
Curculionidae 

5061
5 

1 55   (Parker$
1982)$ 1&3 1&3 

1&2&
3 

 

Coleoptera 
Dascillidae 

80 6 20   (Parker$
1982)$ 2 2 ? 

 

Coleoptera 
Dermestidae 

1200 1 12   (Parker$
1982)$ 2 2 2 

 

Coleoptera 
Derodontidae 

30 1.5 4   (Parker$
1982)$ 1 1 1&4 

 

Coleoptera 
Discolomatidae 

400 1.1 8   (Parker$
1982)$ 1 1 1 

 

Coleoptera 
Drilidae 

120 3 10   (Parker$
1982)$ 4 4 4 

 

Coleoptera 
Dryopidae 

300 2 8   (Parker$
1982)$ 2 2 2 

 

Coleoptera 
Elateridae 

1000
0 

1.5 60   (Parker$
1982)$ 3&4 3&4 

2&3&
4 

 

Coleoptera 
Elmidae 

1500 1 8   (Parker$
1982)$ 2 2 2 

 

Coleoptera 
Endomychidae 

1800 1 18   (Parker$
1982)$ 1 1 1 

 

Coleoptera 
Epimetopidae 

27 1 4   (Beutel$&$
Leschen$
2005)$ 4 4 2 

 

Coleoptera 
Erotylidae 

2500 2.5 25   (Parker$
1982)$ 1 1 1 

 

Coleoptera 
Eucinetidae 

53 0.8 4   (Parker$
1982)$ 1 1 ? 

 

Coleoptera 
Eucnemidae 

1500 1.5 40   (Leschen$et$
al.$2010)$ 1 1 ? 
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Coleoptera 
Eulichadidae 

30 15 25   (Parker$
1982)$ 2 2 ? 

 

Coleoptera 
Georissidae 

77 1 3   (Parker$
1982)$ 4 4 2 

 

Coleoptera 
Geotrupidae 

920 5 45   (Arnett$et$al.$
2010)$$ 2 2 2&7 

 

Coleoptera 
Glaphyridae 

204 6 20   (Arnett$et$al.$
2010)$ 2 2 ? 

 

Coleoptera 
Glaresidae 

57 2.5 6   (Arnett$et$al.$
2010)$ ? ? 1 

 

Coleoptera 
Helophoridae 

183 2 9   (Beutel$&$
Leschen$
2005)$ 4 4 2 

 

Coleoptera 
Helotidae 

107 6 16   (Parker$
1982)$ 2 2 2 

 

Coleoptera 
Heteroceridae 

300 1 8   (Arnett$et$al.$
2010)$ 2 2 2 

 

Coleoptera 
Histeridae 

4300 0.5 20   Parker$et$al$
82$ 4 4 2&4 

 

Coleoptera 
Hybosoridae 

572 5 7   (Arnett$et$al.$
2010)$ 2 2 2 

 

Coleoptera 
Hydraenidae 

1600 1.2 3   (Parker$
1982)$ 2 2 2 

 

Coleoptera 
Hydrochidae 

164 2 4   (Jäch$&$
Balke$2003)$ 4 4 2 

 

Coleoptera 
Hydrophilidae 

3400 1 40   (Parker$
1982)$ 4 4 2 

 

Coleoptera 
Ithyceridae 

6 12 15   (Parker$
1982)$ 3 3 3 

 

Coleoptera 
Kateretidae 

95 1.3 6   (Hisamatsu$
2011)$ 3 3 3 

 

Coleoptera 
Laemophloeidae 

430 1 5   (Arnett$et$al.$
2010)$ 1&2 1&2 1&4 

 

Coleoptera 
Lampyridae 

2200 4 30   (Parker$
1982)$ 4 4 4 

 

Coleoptera 
Languriidae 

1000 1.2 25   (Parker$
1982)$

1&2&
3 

1&2&
3 

1&2&
3 

 

Coleoptera 
Latridiidae 

1000 1 3   (Shockley$et$
al.$2011)$ 1 1 1 

 

Coleoptera 
Leiodidae 

3700 1 7   (Parker$
1982)$ 1 1 1&2 

 

Coleoptera 
Limnichidae 

390 0.8 3   (Parker$
1982)$ 2 2 2 

 

Coleoptera 
Lucanidae 

1489 4 80   (Parker$
1982)$ 2 2 2&8 

 

Coleoptera 
Lutrochidae 

11 3 5   (Parker$
1982)$ 2 2 2 

 

Coleoptera 
Lycidae 

4600 3 22   (Parker$
1982)$ 1 1 8 

 

Coleoptera 
Lymexylidae 

70 5 40   (Parker$
1982)$ 1 1 ? 

 

Coleoptera 
Mauroniscidae 

26 2 4.5   (Leschen$et$
al.$2010)$ ? ? ? 

 

Coleoptera 
Melandryidae 

420 1.2 19   (Parker$
1982)$ 1 1 1 

 

Coleoptera 
Meloidae 

3000 5 33   (Parker$
1982)$ 2&5 2&5 3 

 

Coleoptera 
Melyridae 

6000 1 20   (Parker$
1982)$ 2&4 2&4 2&4 

 

Coleoptera 250 1.3 5   (Parker$ 1&4 1&4 1&4  
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Monotomidae 1982)$
Coleoptera 
Mordellidae 

1500 2 15   (Parker$
1982)$ 3 3 2 

 

Coleoptera 
Mycetophagidae 

130 0.8 6.5   (Parker$
1982)$ 1 1 1&2 

 

Coleoptera 
Nemonychidae 

70 4 6   (Parker$
1982)$ 3 3 2 

 

Coleoptera 
Nitidulidae 

4500 0.9 14   (Parker$
1982)$ 1&2 1&2 1&2 

 

Coleoptera 
Nosodendridae 

50 2.5 9   (Parker$
1982)$ 1 1 1&4 

 

Coleoptera 
Ochodaeidae 

110 3 10   (Arnett$et$al.$
2010)$ ? ? ? 

 

Coleoptera 
Oedemeridae 

500 5 20   (Parker$
1982)$ 2 2 2 

 

Coleoptera 
Omalisidae 

8 3 9   (Leschen$et$
al.$2010)$ 4 4 ? 

 

Coleoptera 
Omethidae 

33 3 12   (Arnett$et$al.$
2010)$ ? ? ? 

 

Coleoptera 
Orsodacnidae 

40 4 15   (Arnett$et$al.$
2010)$ 3 3 3 

 

Coleoptera 
Passalidae 

800 18 80   (Parker$
1982)$ 2 2 2 

 

Coleoptera 
Passandridae 

109 3 35   (Leschen$et$
al.$2010)$ 5 5 ? 

 

Coleoptera 
Perimylopidae 

19 6 10   (Parker$
1982)$ 2 2 2 

 

Coleoptera 
Phalacridae 

640 1.2 4.5   (Parker$
1982)$ 1 1 1 

 

Coleoptera 
Phengodidae 

250 3 65   (Parker$
1982)$ 4 4 4 

 

Coleoptera 
Phloeostichidae 

14 2.4 15   (Leschen$et$
al.$2010)$ 1 1 1 

 

Coleoptera 
Phloiophilidae 

1 2 3   (Parker$
1982)$ 1 1 1 

 

Coleoptera 
Pleocomidae 

50 15 45   (Parker$
1982)$ 3 3 7 

 

Coleoptera 
Prionoceridae 

160 5.5 20   (Leschen$et$
al.$2010)$ 2&4 2&4 2 

 

Coleoptera 
Propalticidae 

30 1.2 1.8   (Parker$
1982)$ 1 1 1 

 

Coleoptera 
Prostomidae 

30 5 10   (Arnett$et$al.$
2010)$ 1 1 1 

 

Coleoptera 
Protocucujidae 

7 3.5 5.8   (Leschen$et$
al.$2010)$ ? ? ? 

 

Coleoptera 
Psephenidae 

290 2 7   (Parker$
1982)$ 2 2 2 

 

Coleoptera 
Ptiliidae 

650 0.3 2   (Parker$
1982)$ 1 1 1 

 

Coleoptera 
Ptilodactylidae 

500 2 16   (Parker$
1982)$ 2 2 2 

 

Coleoptera 
Ptinidae 

500 1 5   (Parker$
1982)$ 2&3 2&3 2 

 

Coleoptera 
Pyrochroidae 

167 7 18   (Parker$
1982)$ 1&2 1&2 2 

 

Coleoptera 
Pythidae 

23 3 20   (Parker$
1982)$ 2&3 2 2&4 

 

Coleoptera 
Rhipiceridae 

70 10 25   (Parker$
1982)$ 5 5 7 

 

Coleoptera 400 2 38   (Parker$ 5 5 ?  
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Ripiphoridae 1982)$
Coleoptera 
Salpingidae 

300 1.5 12   (Parker$
1982)$ 2&4 2&4 2 

 

Coleoptera 
Scarabaeidae 

2700
0 

1 160   (Parker$
1982)$ 2&3 2&3 

2&3&
7 

 

Coleoptera 
Scirtidae 

800 1.5 12   (Parker$
1982)$ 2 2 2 

 

Coleoptera 
Scraptiidae 

500 1.3 15   (Parker$
1982)$ 1&2 1&2 ? 

 

Coleoptera 
Scydmaenidae 

4586 0.5 7   (Parker$
1982)$ 4 4 4 

 

Coleoptera 
Silphidae 

200 7 45   (Parker$
1982)$ 2 2 2&4 

 

Coleoptera 
Silvanidae 

500 2 15   (Arnett$et$al.$
2010)$ 1&2 1&2 1&2 

 

Coleoptera 
Spercheidae 

19 3 7   (Darilmaz$&$
Kiyak$2011)$ 2 2 2 

 

Coleoptera 
Sphaeritidae 

5 4 6   (Parker$
1982)$ 4 4 ? 

 

Coleoptera 
Sphindidae 

59 1.5 3.5   (Leschen$et$
al.$2010)$ 1 1 1 

 

Coleoptera 
Staphylinidae 

5600
0 

0.5 50   (Parker$
1982)$

1&2&
4 

1&2&
4 

1&2&
4 

 

Coleoptera 
Synchroidae 

8 7 13   (Parker$
1982)$ 1 1 1 

 

Coleoptera 
Tenebrionidae 

2000
0 

1 50   (Parker$
1982)$ 1&2 1&2 1&2 

 

Coleoptera 
Tetratomidae 

150 2.8 15   (Parker$
1982)$ 1 1 1 

 

Coleoptera 
Throscidae 

150 1.2 6   (Leschen$et$
al.$2010)$ 1 1 2 

 

Coleoptera 
Trictenotomidae 

13 32 80   (Leschen$et$
al.$2010)$ 1 1 ? 

 

Coleoptera 
Trogossitidae 

600 1 50   (Parker$
1982)$ 2&4 2&4 

1&2&
4 

 

Coleoptera 
Zopheridae 

1700 2 40   (Parker$
1982)$

1&2&
4 

1&2&
4 

1&2&
4 

 

Collembola 
Entomobryidae 

2189 1 10   (Arnett 
2000)$

2 2 2 

Includes$
Paronellidae
P$ 

Collembola 
Hypogastruridae 

682 0.8 3   (Arnett 
2000) 2 2 2 

$

Collembola 
Isotomidae 

1346 0.7 6   (Arnett 
2000) 2 2 2 

$

Collembola 
Neanuridae 

1546 2 3.5   (Arnett 
2000) 

2 2 2 

includes$
Brachystom
ellidae$$

Collembola 
Neelidae 

33 0.3 0.7   (Arnett 
2000) 2 2 2 

$

Collembola 
Onychiuridae 

913 0.5 3   (Arnett 
2000) 

2 2 2 

includes$
Odontellida
e$+$
Tullbergiida
e$$

Collembola 
Poduridae 

1 1.3 2   (Arnett 
2000)/(Hopk
in 1997) 2 2 2 

$

Collembola 
Sminthuridae 

742 0.4 2.7   (Arnett 
2000) 

2 2 2 

includes$
Bourletiellid
ae,$
Dicyrtomida
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e$and$
Oncopoduri
dae$$

Collembola 
Tomoceridae 

354 6 10   (Arnett 
2000) 2 2 2 

includes$
Katiannidae$

Dermaptera 
Anisolabididae 

38 9 13   (Arnett 
2000) 2&4 2&4 2&4 

$

Dermaptera 
Apachyidae 

15 11 25   (Boeseman 
1954) 2&4 2&4 2&4 

$

Dermaptera 
Chelisochidae 

95 16 20   (Arnett 
2000) 2&4 2&4 2&4 

$

Dermaptera 
Forficulidae 

485 10 18   (Arnett 
2000) 

2&3&
4 

2&3&
4 

2&3&
4 

$

Dermaptera 
Labiduridae 

64 18 80   (Arnett 
2000)/(Bere
nbaum 
2007) 2&4 2&4 2&4 

$

Dermaptera 
Labiidae 

495 4 7   (Arnett 
2000) 2&4 2&4 2&4 

$

Dermaptera 
Pygidicranidae 

181 9 45   (Parker$
1982) 2&4 2&4 2&4 

$

Diplura 
Campodeidae 

448 8 10   (Arnett 
2000) 

2&3&
4 

2&3&
4 

2&3&
4 

$

Diplura 
Japygoidea 

590 8 50   (Arnett 
2000) 

2&3&
4 

2&3&
4 

2&3&
4 

$

Diptera 
Acartophthalmid
ae 

6 2.5 3   (McAlpine 
et al. 1987) 

? ? 8 

 

Diptera 
Acroceridae 

400 2 21   (Brown et 
al. 2009) 5 5 8 

 

Diptera 
Agromyzidae 

3017 0.9 6.5   (Brown et 
al. 2009) 3 3 8 

 

Diptera 
Anisopodidae 

196 2 18   (McAlpine 
et al. 1981) 2 2 8 

 

Diptera 
Anthomyiidae 

1941 2 12   (McAlpine 
et al. 1987) 

2&3&
5 

2&3&
5 4&8 

 

Diptera 
Anthomyzidae 

100 1.1 3.4   (Brown et 
al. 2009) 2 2 8 

 

Diptera 
Apioceridae 

143 7.5 35   (McAlpine 
et al. 1981) 4 4 8 

 

Diptera 
Apsilocephalida
e 

7 4.5 5.5   (Nagatomi 
et al. 1991) 

? ? 8 

 

Diptera Asilidae 7531 3 60   (Brown et 
al. 2009) 4 4 4 

 

Diptera 
Asteiidae 

138 1 5   (Brown et 
al. 2009) 2 2 8 

 

Diptera 
Atelestidae 

22 1.5 4   (Wiegmann 
1989)/(Capi
nera 2008) ? ? 2 

 

Diptera 
Athericidae 

133 7 10   (Brown et 
al. 2009) 4 4 6&8 

 

Diptera 
Aulacigastridae 

19 1.5 4   (Brown et 
al. 2009) 2 2 8 

 

Diptera 
Australimyzidae 

9 1.3 2.6   (Brake & 
Mathis 
2007) ? ? 8 

 

Diptera 
Austroleptidae 

8 3.1 5.3   (Nagatomi 
& Nagatomi 
1987) ? ? 8 

 

Diptera 
Axymyiidae 

8 4 7 5 8 (Schneeberg 
et al. 2013) 

2 2 8 

Data given 
as wing 
length 

Diptera 1382 2 15   (Brown et 2 2 8 Includes 
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Bibionidae al. 2009) Pleciidae 
Diptera 
Blephariceridae 

331 3 13   (McAlpine 
et al. 1981) 2 2 4 

 

Diptera 
Bombyliidae 

5382 4 40   (Arnett 
2000) 5 5 2&8 

 

Diptera_Braulid
ae 

7 1 1.7   (McAlpine 
et al. 1987) 2 2 8 

 

Diptera 
Calliphoridae 

1525 4 16   (McAlpine 
et al. 1987) 2&5 2&5 4&8 

 

Diptera 
Canthyloscelida
e 

14 2 3.5   Manual of 
Neoarctic 
diptera 2 2 8 

 

Diptera 
Carnidae 

92 1 3   (Brown et 
al. 2009) 2 2 2&8 

 

Diptera 
Cecidomyiidae 

6296 1 8   (McAlpine 
et al. 1981) 3 3 2&8 

 

Diptera 
Ceratopogonida
e 

5902 1 6   (McAlpine 
et al. 1981) 

2&4 2&4 4&6 

 

Diptera 
Chaoboridae 

89 1.4 10   (McAlpine 
et al. 1981) 4 4 8 

 

Diptera 
Chironomidae 

7290 1 13   (Brown et 
al. 2009) 2&4 2&4 8 

 

Diptera 
Chloropidae 

2885 1 7   (Karpa 
2001) 

2&3&
4 

2&3&
4 2&8 

 

Diptera 
Chyromyidae 

139 0.5 4.5   (Brown et 
al. 2009)/ 
(McAlpine 
et al. 1987) 2 2 8 

 

Diptera 
Clusiidae 

363 1.8 7.5   (McAlpine 
et al. 1987) 4 4 8 

 

Diptera 
Coelopidae 

35 3 16   (Brown et 
al. 2009) 2 2 8 

 

Diptera 
Conopidae 

831 2.5 30   (Brown et 
al. 2009) 5 5 8 

 

Diptera 
Corethrellidae 

111 0.6 2.5   (Brown et 
al. 2009) 4 4 6 

 

Diptera 
Culicidae 

3725 3 9   (McAlpine 
et al. 1981) 2 2 6 

 

Diptera 
Deuterophlebiid
ae 

14 2 4   (Arnett 
2000) 

2 2 7 

 

Diptera 
Diadocidiidae 

39 3 10   (Bechev & 
Chandler 
2011) 1 1 8 

 

Diptera 
Diopsidae 

194 4 12   (McAlpine 
et al. 1987) 2 2 8 

 

Diptera Dixidae 197 4.5 7   (Arnett 
2000) 2 2 7 

 

Diptera 
Dolichopodidae 

7358 0.8 9   (McAlpine 
et al. 1981) 4 4 4 

 

Diptera 
Drosophilidae 

4017 1 7   (Brown et 
al. 2009) 1&2 1&2 2&8 

 

Diptera 
Dryomyzidae 

30 4 18   (Mathis & 
Sueyoshi 
2011) 2 2 8 

 

Diptera 
Empididae 

3142 2 12   (Capinera 
2008) 4 4 2&4 

 

Diptera 
Ephydridae 

1994 0.6 11   (Brown et 
al. 2009) 2&4 2&4 4&8 

 

Diptera 
Fanniidae 

359 3.5 7.5   (Brown et 
al. 2009) 2 2 8 

 

Diptera 
Fergusoninidae 

29 2 3   (Nelson et 
al. 2011) 3 3 8 
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Diptera 
Glossinidae 

25 6 14   (Wall & 
Shearer 
2008) 6 5 6 

 

Diptera 
Helcomyzidae 

12 3 16   (Mathis 
2011a) 2 2 8 

 

Diptera 
Helosciomyzida
e 

23 5 11   (Barnes 
1981) 

4 4 8 

 

Diptera 
Hesperinidae 

10 4.7 12   (Papp 2010) 
2 2 8 

 

Diptera 
Heterocheilidae 

2 4.2 6.5   (Mathis 
2011b) 2 2 8 

 

Diptera 
Hilarimorphidae 

36 1.8 7.2   (McAlpine 
et al. 1981) ? ? ? 

 

Diptera 
Hippoboscidae 

271 1.5 12   (McAlpine 
et al. 1987) 6 5 6 

 

Diptera 
Hybotidae 

2005 1 9   (Capinera 
2008) 4 4 4 

 

Diptera 
Keroplatidae 

993 2.8 8.8   (Brown et 
al. 2009)  1&4 1&4 7 

 

Diptera 
Lauxaniidae 

1900 2 11   (Brown et 
al. 2009) 1&2 1&2 1 

 

Diptera 
Lonchaeidae 

504 3 6   (Brown et 
al. 2009) 2 2 8 

 

Diptera 
Lonchopteridae 

65 2 4   (Brown et 
al. 2009) 2 2 2&8 

 

Diptera 
Lygistorrhinidae 

44 3 5   (Brown et 
al. 2009) ? ? 8 

 

Diptera 
Marginidae 

3 1.5 2   (McAlpine 
1991) ? ? 8 

 

Diptera 
Micropezidae 

583 5 17   (Brown et 
al. 2009) 2&3 2&3 8 

 

Diptera 
Milichiidae 

288 1 7   (Brown et 
al. 2009) 2 2 2&8 

 

Diptera 
Muscidae 

5218 2 20   (Brown et 
al. 2009) 2&4 2&4 

4&6&
8 

 

Diptera 
Mycetophilidae 

4525 2.2 13.3   (McAlpine 
et al. 1981) 1 1 8 

 

Diptera Mydidae 498 9 60   (McAlpine 
et al. 1981) 4 4 8 

 

Diptera 
Mythicomyiidae 

350 0.8 3   (Brown et 
al. 2009) 4 4 8 

 

Diptera 
Nemestrinidae 

300 4 16   (Brown et 
al. 2009) 5 5 8 

 

Diptera 
Neurochaetidae 

22 1.5 4.1   (McAlpine 
1993) 2 2 ? 

 

Diptera 
Nycteribiidae 

274 1.5 5.5   (Brown et 
al. 2009) 6 5 6 

 

Diptera 
Odiniidae 

65 2.5 6   (Brown et 
al. 2009) 2 2 8 

 

Diptera 
Oestridae 

176 8 25   (McAlpine 
et al. 1987) 6 5 7 

 

Diptera 
Opomyzidae 

61 2 4.4   (McAlpine 
et al. 1987) 3 3 8 

 

Diptera 
Pachyneuridae 

8 5 6   (Arnett 
2000) 1 1 8 

 

Diptera 
Pallopteridae 

71 3 5   (McAlpine 
et al. 1987) 3&4 3&4 2&8 

 

Diptera 
Pelecorhynchida
e 

49 4 18   (McAlpine 
et al. 1981) 

4 4 8 

 

Diptera 
Periscelididae 

91 2.5 5   (Brown et 
al. 2009) 2 2 8 

 

Diptera 9 1 2   (Colless 1 1 8  
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Perissommatida
e 

1969) 

Diptera Phoridae 4200 0.5 6   (Brown et 
al. 2009) 

1&2&
3&4&
5 

1&2&
3&4&
5 2&8 

 

Diptera 
Piophilidae 

83 3 8   (Brown et 
al. 2009) 2 2 8 

 

Diptera 
Pipunculidae 

1428 2 11.5   (Brown et 
al. 2009) 5 5 8 

 

Diptera 
Platypezidae 

277 1.4 10   (Brown et 
al. 2009) 1 1 8 

 

Diptera 
Platystomatidae 

1164 2.5 20   (Brown et 
al. 2009) 2&3 2&3 8 

 

Diptera Psilidae 322 3 12   (Brown et 
al. 2009) 3 3 2&8 

 

Diptera 
Psychodidae 

3026 1 5   (Brown et 
al. 2009) 2 2 6&7 

 

Diptera 
Ptychopteridae 

156 7 14   (Brown et 
al. 2009) 2 2 8 

 

Diptera 
Pyrgotidae 

351 5 30   (Brown et 
al. 2009) 5 5 8 

 

Diptera 
Rhagionidae 

756 4 12   (Brown et 
al. 2009) 4 4 6&7 

 

Diptera 
Rhinophoridae 

174 3.5 8   (Brown et 
al. 2009) 5 5 8 

 

Diptera 
Richardiidae 

178 3 15   (Brown et 
al. 2009) 2 2 8 

 

Diptera 
Sarcophagidae 

3094 5 25   (Brown et 
al. 2009) 

2&4&
5 

2&4&
5 8 

 

Diptera 
Scathophagidae 

419 3 13   (McAlpine 
et al. 1987) 

2&3&
4 

2&3&
4 4 

 

Diptera 
Scatopsidae 

407 0.6 4.1   (McAlpine 
et al. 1981) 2 2 8 

 

Diptera 
Scenopinidae 

420 1 8.5   (Oosterbroe
k 1998) 4 4 8 

 

Diptera 
Sciaridae 

2455 1 11   (McAlpine 
et al. 1981) 2 2 8 

 

Diptera 
Sciomyzidae 

618 2 13   (Brown et 
al. 2009) 4&5 4&5 2&8 

 

Diptera Sepsidae 345 2 7   (Brown et 
al. 2009) 2 2 8 

 

Diptera 
Simuliidae 

2121 1 5.5   (McAlpine 
et al. 1981) 2 2 6 

 

Diptera 
Somatiidae 

7 3.5 5   (Brown et 
al. 2009) ? ? 2&8 

 

Diptera 
Sphaeroceridae 

1571 0.7 6   (Brown et 
al. 2009) 2 2 8 

 

Diptera 
Stratiomyidae 

2690 2 28   (Brown et 
al. 2009) 2 2 8 

 

Diptera 
Streblidae 

237 0.7 5.5   (Brown et 
al. 2009) 6 5 6 

 

Diptera 
Strongylophthal
myiidae 

45 2 6   (Palaczyk et 
al. 2013) 

2 2 8 

 

Diptera 
Synneuridae 

3 2 3.5   (McAlpine 
et al. 1981) 2 2 8 

 

Diptera 
Syrphidae 

6107 4 25   (Brown et 
al. 2009) 2&4 2&4 2&8 

 

Diptera 
Tabanidae 

4434 6 30   (McAlpine 
et al. 1981) 4 4 6 

 

Diptera 
Tachinidae 

9626 3 25   (Brown et 
al. 2009) 5 5 8 

 

Diptera 
Tanyderidae 

55 11 23 20 42 (Arnett 
2000) ? ? ? 

Data given 
as wingspan 
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Diptera 
Tephritidae 

4716 2 35   (Brown et 
al. 2009) 3 3 8 

 

Diptera 
Thaumaleidae 

183 2 4.5   (Arnett 
2000) 2 2 7&8 

 

Diptera 
Therevidae 

1143 2.5 15   (McAlpine 
et al. 1981) 4 4 8 

 

Diptera 
Tipulidae 

1577
0 

6 60   (McAlpine 
et al. 1981) 

2&3&
4 

2&3&
4 7&8 

 

Diptera 
Trichoceridae 

183 3 9   (Brown et 
al. 2009) 2 2 8 

 

Diptera 
Ulidiidae 

678 2 14   (Brown et 
al. 2009) 2 2 8 

 

Diptera 
Vermileonidae 

61 7 12   (Brown et 
al. 2009) 4 4 8 

 

Diptera 
Xenasteiidae 

13 1.2 2   (Evenhius 
2011) 2 2 8 

 

Diptera 
Xylomyidae 

138 5 15   (McAlpine 
et al. 1981) 2 2 8 

 

Diptera 
Xylophagidae 

145 2 25   (McAlpine 
et al. 1981) 4 4 8 

 

Embioptera 337 4 22   (Arnett 
2000) 2 2 2 

 

Ephemeroptera 
Ameletidae 

56$
 

7 21   (Zloty & 
Pritchard 
1997) 2 2 7 

 

Ephemeroptera 
Ameletopsidae 

6 15.5 22   (Mercado & 
Elliot 2005) 4 4 7 

 

Ephemeroptera 
Ametropodidae 

3 13 15 13 15 (Edmunds et 
al. 1976) 

2 2 7 

Data as 
forewing 
length 

Ephemeroptera 
Baetidae 

860 3 10   (Arnett 
2000) 2&4 2&4 7 

 

Ephemeroptera 
Baetiscidae 

12 8 16 8 16 (Edmunds et 
al. 1976) 

2 2 7 

Data as 
forewing 
length 

Ephemeroptera 
Behningiidae 

7 12 18   (Parker 
1982) 4 4 7 

 

Ephemeroptera 
Caenidae 

211 2 6   (Arnett 
2000) 2 2 7 

 

Ephemeroptera 
Coloburiscidae 

6 13 18   (Marsh 
2004) 2 2 7 

 

Ephemeroptera 
Dipteromimidae 

2 13 23.5   (Tojo & 
Matsukawa 
2003) ? ? 7 

 

Ephemeroptera 
Ephemerellidae 

91 5 12   (Arnett 
2000) 2 2 7 

 

Ephemeroptera 
Ephemeridae 

160 10 32   (Parker 
1982) 2&4 2&4 7 

 

Ephemeroptera 
Euthyplociidae 

19 11 16   (Gillies 
1980) 2 2 7 

 

Ephemeroptera 
Heptageniidae 

529 4 14   (Arnett 
2000) 2&4 2&4 7 

 

Ephemeroptera 
Ichthybotidae 

2 19 22   (Phillips 
1930) 2 2 7 

 

Ephemeroptera 
Isonychiidae 

30 9 16   (Arnett 
2000) 2 2 7 

 

Ephemeroptera 
Leptohyphidae 

157 2 10   (Dominguez 
et al. 2006) 2 2 7 

 

Ephemeroptera 
Leptophlebiidae 

623 4 12 4 14 (Edmunds et 
al. 1976) 

2 2 7 

Data as 
forewing 
length 

Ephemeroptera 
Metretopodidae 

13 9 16 9 16 (Edmunds et 
al. 1976) 

2&4 2&4 7 

Data as 
forewing 
length 
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Ephemeroptera_
Neoephemeridae 

7 6 13   (Bae & 
McCafferty 
1998) 2 2 7 

 

Ephemeroptera 
Nesameletidae 

11 10.5 16.5   (Hitchings 
& Staniczek 
2003) 2 2 7 

 

Ephemeroptera 
Oligoneuriidae 

54 6 10 6 10 (Edmunds et 
al. 1976) 

2 2 7 

Data as 
forewing 
length 

Ephemeroptera 
Oniscigastridae 

8 10 11   (Heckman 
2002) 2 2 7 

 

Ephemeroptera 
Palingeniidae 

32 15 35   (Parker$
1982) 2 2 7 

 

Ephemeroptera 
Polymitarcyidae 

84 12 35   (Parker$
1982) 2 2 7 

 

Ephemeroptera 
Potamanthidae 

23 8 25   (Parker$
1982) 2 2 7 

 

Ephemeroptera 
Prosopistomatid
ae 

19 1.5 4.5   (Pearson & 
Penridge 
1979) 4 4 7 

 

Ephemeroptera 
Rallidentidae 

1 10.5$ 12   (Penniket 
1966) 2 2 7 

 

Ephemeroptera 
Siphlaenigmatid
ae 

1 8 9   (Penniket 
1962) 

2 2 7 

 

Ephemeroptera 
Siphlonuridae 

49 9 13   (Arnett 
2000) 2&4 2&4 7 

 

Ephemeroptera 
Tricorythidae 

34 4 6.5   (Edmunds et 
al. 1976) 

2 2 7 

Data as 
forewing 
length 

Grylloblattidae 27 10 30   (Arnett 
2000) 4 4 4 

 

Hemiptera 
Acanthosomatid
ae 

200 6 18   (Schuh$&$
Slater$1995) 

3 3 3 

 

Hemiptera 
Achilidae 

503 3 13   (Capinera$
2008) 1 1 3 

 

Hemiptera 
Achilixiidae 

24 4 8   (Capinera$
2008) 3 3 3 

 

Hemiptera 
Aetalionidae 

42 3 30   (Deitz$et$al.$
2010) 3 3 3 

 

Hemiptera 
Aleyrodoidea 

1560 1 4   (Capinera$
2008) 3 3 3 

 

Hemiptera 
Alydidae 

250 8 20   (Schuh$&$
Slater$1995) 3 3 3 

 

Hemiptera 
Anthocoridae 

600 1.4 4.5   (Schuh$&$
Slater$1995) 4 4 4 

 

Hemiptera 
Aphelocheiridae 

400 3.5 11.5   (Schuh$&$
Slater$1995) 4 4 4 

 

Hemiptera 
Aphidoidea 

4375 1 8   (Capinera$
2008) 

3 3 3 

Includes 
Phylloxeroid
ea 

Hemiptera 
Aradidae 

2000 3 11   (Schuh$&$
Slater$1995) 1 1 1 

 

Hemiptera 
Belostomatidae 

150 9 110   (Schuh$&$
Slater$1995) 4 4 4 

 

Hemiptera 
Berytidae 

100 2.5 11   (Schuh$&$
Slater$1995) 3&4 3&4 3&4 

 

Hemiptera 
Caliscelidae 

202 1 5   (Capinera$
2008) 3 3 3 

 

Hemiptera 
Canopidae 

8 5 7   (Schuh$&$
Slater$1995) 1 1 1 
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Hemiptera 
Cercopidae 

2410 5 20   (Arnett 
2000) 

3 3 3 

Includes 
Aphrophorid
ae, 
Clastopterid
ae, 
Machaerotid
ae 

Hemiptera 
Cicadellidae 

2000
0 

1.7 28   (Evans$1966) 
3 3 3 

 

Hemiptera 
Cicadidae 

1300 10 100   (Capinera$
2008) 3 3 3 

 

Hemiptera 
Cimicidae 

100 2 12   (Schuh$&$
Slater$1995) 6 5 6 

 

Hemiptera 
Cixiidae 

2223 3 13   (Capinera$
2008) 3 3 3 

 

Hemiptera 
Coccoidea 

8000 0.6 35   (Arnett 
2000) 3 3 3 

 

Hemiptera 
Colobathristidae 

90 6 20   (Schuh$&$
Slater$1995) 3 3 3 

 

Hemiptera 
Coreidae 

1900 7 45   (Schuh$&$
Slater$1995) 3 3 3 

 

Hemiptera 
Corixidae 

600 2.5 15   (Schuh$&$
Slater$1995) 2&4 2&4 2&4 

 

Hemiptera 
Cydnidae 

617 2 20   (Schuh$&$
Slater$1995) 3 3 3 

 

Hemiptera 
Delphacidae 

2029 2 10   (Capinera$
2008) 3 3 3 

 

Hemiptera 
Derbidae 

1700 4 11   (Capinera$
2008)/ 
(Arnett 
2000) 1 1 3 

 

Hemiptera 
Dictyopharidae 

731 3 33   (Capinera$
2008) 3 3 3 

 

Hemiptera 
Dinidoridae 

90 9 27   (Schuh$&$
Slater$1995) 3 3 3 

 

Hemiptera 
Dipsocoridae 

30 0.8 3   (Schuh$&$
Slater$1995) 4 4 4 

 

Hemiptera 
Enicocephalidae 

400 2 15   (Schuh$&$
Slater$1995) 4 4 4 

 

Hemiptera 
Eurybrachyidae 

189 7 29   (Capinera$
2008) 3 3 3 

 

Hemiptera 
Flatidae 

1446 4 32   (Capinera$
2008) 3 3 3 

 

Hemiptera 
Fulgoridae 

687 4 100   (Capinera$
2008) 3 3 3 

 

Hemiptera 
Gelastocoridae 

100 7 15   (Schuh$&$
Slater$1995) 4 4 4 

 

Hemiptera 
Gerridae 

620 1.6 36   (Schuh$&$
Slater$1995) 4 4 4 

 

Hemiptera 
Hebridae 

150 1.3 3.7   (Schuh$&$
Slater$1995) 4 4 4 

 

Hemiptera 
Hermatobatidae 

8 2.5 4   (Schuh$&$
Slater$1995) 4 4 4 

 

Hemiptera 
Hydrometridae 

110 2.7 22   (Schuh$&$
Slater$1995) 4 4 4 

 

Hemiptera 
Hyocephalidae 

3 8 15   Resh$and$
Carde$2009 3 3 3 

 

Hemiptera 
Idiostolidae 

4 5 7   (Schuh$&$
Slater$1995) ? ? ? 

 

Hemiptera 
Issidae 

924 2 19   (Capinera$
2008) 3 3 3 
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Hemiptera 
Joppeicidae 

1 2.5 3   (Schuh$&$
Slater$1995) 

4 4 4 

Modified to 
avoid zero 
variance 

Hemiptera 
Largidae 

120 7 55   (Arnett 
2000)/$
(Schuh$&$
Slater$1995) 3 3 3 

 

Hemiptera 
Leptopodidae 

40 1.8 7   (Schuh$&$
Slater$1995) 4 4 4 

 

Hemiptera 
Lestoniidae 

2 3.5 5.6   (Schuh$&$
Slater$1995) 3 3 3 

 

Hemiptera 
Lophopidae 

138 5 15   (Capinera$
2008) 3 3 3 

 

Hemiptera 
Lyctocoridae 

27 2 6   (Schuh$&$
Slater$1995) 4 4 4 

 

Hemiptera 
Lygaeidae 

4400 1.2 12   (Schuh$&$
Slater$1995) 3&4 3&4 3&4 

 

Hemiptera 
Macroveliidae 

3 2.5 5.6   (Schuh$&$
Slater$1995) 4 4 4 

 

Hemiptera 
Malcidae 

20 3 4   (Schuh$&$
Slater$1995) 3 3 3 

 

Hemiptera 
Meenoplidae 

158 3 7   (Capinera$
2008) 3 3 3 

 

Hemiptera 
Membracidae 

3450 2 24   (Deitz$et$al.$
2010) 3 3 3 

 

Hemiptera 
Mesoveliidae 

35 1.2 4.2   (Schuh$&$
Slater$1995) 4 4 4 

 

Hemiptera 
Microphysidae 

30 1.5 3   (Schuh$&$
Slater$1995) 4 4 4 

 

Hemiptera 
Miridae 

1000
0 

2 15   (Schuh$&$
Slater$1995) 3&4 3&4 3&4 

 

Hemiptera 
Nabidae 

400 7 11   (Arnett 
2000) 4 4 4 

 

Hemiptera 
Naucoridae 

500 5 20   (Schuh$&$
Slater$1995) 4 4 4 

 

Hemiptera 
Nepidae 

225 15 45   (Schuh$&$
Slater$1995) 4 4 4 

 

Hemiptera 
Nogodinidae 

286 4 17   (Capinera$
2008) 3 3 3 

 

Hemiptera 
Notonectidae 

350 5 15   (Schuh$&$
Slater$1995) 4 4 4 

 

Hemiptera 
Ochteridae 

50 4.5 9   (Schuh$&$
Slater$1995) 4 4 4 

 

Hemiptera 
Paraphrynovelii
dae 

2 1.7 2.4   (Schuh$&$
Slater$1995) 

4 4 4 

 

Hemiptera 
Peloridiidae 

12 2 5   (Resh$&$
Cardé$2009) 3 3 3 

 

Hemiptera 
Pentatomidae 

4500 4 20   (Schuh$&$
Slater$1995) 3&4 3&4 3&4 

 

Hemiptera 
Phloeidae 

3 20 30   (Schuh$&$
Slater$1995) 3 3 3 

 

Hemiptera 
Piesmatidae 

40 2.5 5   (Schuh$&$
Slater$1995) 3 3 3 

 

Hemiptera 
Plataspidae 

500 2 20   (Schuh$&$
Slater$1995) 3 3 3 

 

Hemiptera 
Pleidae 

40 1.5 3   (Schuh$&$
Slater$1995) 4 4 4 

 

Hemiptera 
Plokiophilidae 

6 1.2 3   (Schuh$&$
Slater$1995) 4 4 4 

 

Hemiptera 2500 1 8   (Capinera$ 3 3 3  
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Psylloidea 2008) 
Hemiptera 
Pyrrhocoridae 

225 8 30   (Schuh$&$
Slater$1995) 3 3 3 

 

Hemiptera 
Reduviidae 

6700 7 40   (Schuh$&$
Slater$1995) 4 4 4 

Includes 
Phymatidae 

Hemiptera 
Rhopalidae 

200 4 15   (Schuh$&$
Slater$1995) 3 3 3 

 

Hemiptera 
Ricaniidae 

417 4 12   (Capinera$
2008) 3 3 3 

 

Hemiptera 
Saldidae 

265 2.3 7.4   (Schuh$&$
Slater$1995) 4 4 4 

 

Hemiptera 
Schizopteridae 

120 0.8 2   (Schuh$&$
Slater$1995) 4 4 4 

 

Hemiptera 
Scutelleridae 

500 5 20   (Schuh$&$
Slater$1995) 3 3 3 

 

Hemiptera 
Stenocephalidae 

30 8 15   (Schuh$&$
Slater$1995) 3 3 3 

 

Hemiptera 
Termitaphididae 

9 2 3   (Schuh$&$
Slater$1995) 1 1 1 

 

Hemiptera 
Tessaratomidae 

250 15 40   (Foottit$&$
Adler$2009) 3 3 3 

 

Hemiptera 
Tettigometridae 

73 3 11   (Capinera$
2008) 3 3 3 

 

Hemiptera 
Thaumastocorid
ae 

19 2 4.6   (Schuh$&$
Slater$1995) 

3 3 3 

 

Hemiptera 
Tingidae 

2000 2 8   (Schuh$&$
Slater$1995) 3 3 3 

 

Hemiptera 
Tropiduchidae 

575 5 13   (Capinera$
2008) 3 3 3 

 

Hemiptera 
Veliidae 

720 1 10   (Schuh$&$
Slater$1995) 4 4 4 

 

Hemiptera 
Velocipedidae 

31 10 15   (Schuh$&$
Slater$1995) 4 4 4 

 

Hymenoptera 
Agaonidae 

757 1 3   (Parker 
1982) 3&5 3&5 8 

 

Hymenoptera 
Ampulicidae 

200 5 15   (Arnett 
2000) 5 5 8 

 

Hymenoptera 
Anaxyelidae 

1 7.5 8   (Parker 
1982) 

1 1 8 

Modified to 
avoid zero 
variance 

Hymenoptera 
Andrenidae 

2938 4 22   (Arnett 
2000) 3 2 8 

 

Hymenoptera 
Aphelinidae 

1168 0.35 2.5   (Parker 
1982) 5 5 8 

 

Hymenoptera 
Apidae 

5751 3.5 27   (Arnett 
2000) 3 2 8 

 

Hymenoptera 
Argidae 

800 4 15   (Parker 
1982) 3 3 8 

 

Hymenoptera 
Aulacidae 

200 1 20   (Parker 
1982) 5 5 8 

 

Hymenoptera 
Bethylidae 

2000 1 20   (Parker 
1982) 5 5 8 

 

Hymenoptera 
Blasticotomidae 

10 6 10   (Parker 
1982) 3 3 8 

 

Hymenoptera 
Braconidae 

2000
0 

2 15   (Parker 
1982) 5 5 8 

 

Hymenoptera 
Bradynobaenida
e 

200 3 20   (Parker 
1982) 

5 5 8 

 

Hymenoptera 
Cephidae 

80 5 25   (Parker 
1982) 3 3 8 
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Hymenoptera 
Ceraphronidae 

350 0.5 5   (Parker 
1982) 5 5 8 

 

Hymenoptera 
Chalcididae 

1464 2 12   (Parker 
1982) 5 5 8 

 

Hymenoptera 
Chrysididae 

3000 2.5 20   (Parker 
1982) 5 5 8 

 

Hymenoptera 
Cimbicidae 

130 18 25   (Arnett 
2000) 3 3 8 

 

Hymenoptera 
Colletidae 

2545 3.5 20   (Arnett 
2000) 3 2 8 

 

Hymenoptera 
Crabronidae 

8774 6 20   (Arnett 
2000) 5 5 8 

 

Hymenoptera 
Cynipidae 

1000 1 8   (Parker 
1982) 3 3 8 

 

Hymenoptera 
Diapriidae 

2300 3 15   (Parker 
1982) 5 5 8 

 

Hymenoptera 
Diprionidae 

90 5 12   (Parker 
1982) 3 3 8 

 

Hymenoptera 
Encyrtidae 

3735 0.5 5   (Parker 
1982) 5 5 8 

 

Hymenoptera 
Eucharitidae 

423 3 10   (Parker 
1982) 5 5 8 

 

Hymenoptera 
Eulophidae 

4472 1 5   (Parker 
1982) 5 5 8 

 

Hymenoptera 
Eupelmidae 

907 1 8   (Parker 
1982) 5 5 8 

 

Hymenoptera 
Eurytomidae 

1424 3 5   (Parker 
1982) 3&5 3&5 8 

 

Hymenoptera 
Evaniidae 

500 2 15   (Parker 
1982) 5 5 8 

 

Hymenoptera 
Figitidae 

1500 1.5 5   (Parker 
1982) 5 5 8 

 

Hymenoptera 
Formicidae 

1000
0 

1 33   (Arnett 
2000)/(Lenh
art et al. 
2013) 4 4 8 

Sizes given 
based on 
workers 

Hymenoptera 
Gasteruptiidae 

420 13 40   (Arnett 
2000) 5 5 8 

 

Hymenoptera 
Halictidae 

4338 4 10   (Arnett 
2000) 3 2 8 

 

Hymenoptera 
Heloridae 

7 4 7   (Parker 
1982) 5 5 8 

 

Hymenoptera 
Ibaliidae 

50 8 25   (Parker 
1982) 5 5 8 

 

Hymenoptera 
Ichneumonidae 

2200
0 

3 40   (Parker 
1982) 5 5 8 

 

Hymenoptera 
Liopteridae 

50 4 15   (Parker 
1982) 5 5 8 

 

Hymenoptera 
Maamingidae 

2 1 2   (Early et al. 
2001) 5 5 8 

 

Hymenoptera 
Megachilidae 

4120 7 39   (Arnett 
2000)/(Mess
er 1984) 3 2 8 

 

Hymenoptera 
Megalodontesid
ae 

40 5 20   (Parker 
1982) 

3 3 8 

 

Hymenoptera 
Megalyridae 

50 4 20   (Parker 
1982) 5 5 8 

 

Hymenoptera 
Megaspilidae 

450 1 5   (Parker 
1982) 5 5 8 

 

Hymenoptera 
Melittidae 

191 7 12   (Arnett 
2000) 3 2 8 

 

Hymenoptera 
Monomachidae 

20 7 22   (Parker 
1982) 5 5 8 
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Hymenoptera 
Mutillidae 

5000 3 30   (Parker 
1982) 5 5 8 

 

Hymenoptera 
Mymaridae 

1424 0.2 2   (Parker 
1982) 5 5 8 

 

Hymenoptera 
Mymarommatid
ae 

9 0.3 0.8   (Gibson et 
al. 2007) 

5 5 8 

 

Hymenoptera 
Orussidae 

75 5 20   (Parker 
1982) 5 5 8 

 

Hymenoptera 
Pamphiliidae 

250 8 15   (Arnett 
2000) 3 3 8 

 

Hymenoptera 
Pelecinidae 

3 30 60   (Parker 
1982) 5 5 8 

 

Hymenoptera 
Pergidae 

500 7 10   (Arnett 
2000) 3 3 8 

 

Hymenoptera 
Perilampidae 

277 1.5 7   (Parker 
1982) 5 5 8 

 

Hymenoptera 
Platygastridae 

1100 0.5 5   (Parker 
1982) 5 5 8 

 

Hymenoptera 
Plumariidae 

20 3 10   (Parker 
1982) 5 5 8 

 

Hymenoptera 
Pompilidae 

4000 3 60   (Parker 
1982) 5 5 8 

 

Hymenoptera 
Proctotrupidae 

310 6 8   (Parker 
1982) 5 5 8 

 

Hymenoptera 
Pteromalidae 

3506 1 4   (Parker 
1982) 5 5 8 

 

Hymenoptera 
Roproniidae 

18 8 10   (Parker 
1982) 5 5 8 

 

Hymenoptera 
Rotoitidae 

2 0.7 0.9   (Bouček & 
Noyes 1987) 5 5 8 

 

Hymenoptera 
Sapygidae 

80 6 22   (Parker 
1982) 5 5 8 

 

Hymenoptera 
Scelionidae 

3000 0.5 15   (Parker 
1982) 5 5 8 

 

Hymenoptera 
Scolebythidae 

3 7 10   (Cambra & 
Oliveira 
2003) 5 5 8 

 

Hymenoptera 
Scoliidae 

300 8 60   (Parker 
1982) 5 5 8 

 

Hymenoptera 
Siricidae 

95 20 40   (Parker 
1982) 5 5 8 

 

Hymenoptera 
Sierolomorphida
e 

10 3.5 6   (Parker 
1982) 

1 1 8 

 

Hymenoptera 
Sphecidae 

724 18 55   (Arnett 
2000) 5 5 8 

 

Hymenoptera 
Stenotritidae 

21 14 20.5   (Houston 
1983) 3 2 8 

 

Hymenoptera 
Stephanidae 

200 4 40   (Parker 
1982) 5 5 8 

 

Hymenoptera 
Tenthredinidae 

4000 3 20   (Parker 
1982) 3 3 

3&4&
8 

 

Hymenoptera 
Tetracampidae 

50 0.5 2   (Doganler 
2003) 5 5 8 

 

Hymenoptera 
Tiphiidae 

1500 4 30   (Parker 
1982) 5 5 8 

 

Hymenoptera 
Torymidae 

986 1 15   (Parker 
1982) 3&5 3&5 8 

 

Hymenoptera 
Trichogrammati
dae 

839 0.5 1   (Parker 
1982) 

5 5 8 

 

Hymenoptera 
Trigonalidae 

100 8 17   (Parker 
1982) 5 5 8 

 



 198 

Hymenoptera 
Vanhorniidae 

5 3 10   (Arnett 
2000) 5 5 8 

 

Hymenoptera 
Vespidae 

4000 8 25   (Arnett 
2000) 3&4 2&4 8 

 

Hymenoptera 
Xiphydriidae 

100 7 25   (Parker 
1982) 1 1 8 

 

Hymenoptera 
Xyelidae 

50 5 15   (Parker 
1982) 3 3 2&3 

 

Isoptera 2658 4 20   (Robinson 
2005) 

2 2 2 

Sizes given 
based on 
winged 
forms  

Lepidoptera 
Acanthopterocte
tidae 

5 4 6 11 16 (Capinera 
2008) 

3 3 8 

Data given 
as wingspan 

Lepidoptera 
Acrolophidae 

300 4 28 9 60 (Capinera 
2008) 2 2 7 

Data given 
as wingspan 

Lepidoptera 
Adelidae 

294 2 11 4 28 (Arnett 
2000) 3 3 8 

Data given 
as wingspan 

Lepidoptera 
Agathiphagidae 

2 3 5 9 14 (Capinera 
2008) 3 3 ? 

Data given 
as wingspan 

Lepidoptera 
Agonoxenidae 

4 2 6 6 15 (Capinera 
2008) 3 3 8 

Data given 
as wingspan 

Lepidoptera 
Aididae 

6 4 39 10 90 (Capinera 
2008) 3 3 8 

Data given 
as wingspan 

Lepidoptera 
Alucitidae 

216 2 10 7 28 (Capinera 
2008) 3 3 8 

Data given 
as wingspan 

Lepidoptera 
Amphisbatidae 

21 7 8 17 19 (Capinera 
2008) 3 3 8 

Data given 
as wingspan 

Lepidoptera 
Andesianidae 

3 10 23 27 61 (Capinera 
2008) 3 3 7 

Data given 
as wingspan 

Lepidoptera 
Anomoeotidae 

40 5 8 22 31 (Capinera 
2008) 3 3 8 

Data given 
as wingspan 

Lepidoptera 
Anthelidae 

94 9 68 22 166 (Capinera 
2008) 3 3 7 

Data given 
as wingspan 

Lepidoptera 
Apatelodidae 

145 10 37 20 74 (Capinera 
2008) 3 3 7 

Data given 
as wingspan 

Lepidoptera 
Arctiidae 

6000 3 44 8 115 (Capinera 
2008) 2&3 2&3 7 

Data given 
as wingspan 

Lepidoptera 
Argyresthiidae 

157 2 5 6 15 (Capinera 
2008) 3 3 8 

Data given 
as wingspan 

Lepidoptera 
Arrhenophanida
e 

26 5 29 12 69 (Capinera 
2008) 

1 1 7 

Data given 
as wingspan 

Lepidoptera 
Autostichidae 

585 4 7 10 20 (Capinera 
2008) 2 2 8 

Data given 
as wingspan 

Lepidoptera 
Batrachedridae 

99 2 9 7 28 (Capinera 
2008) 3 3 8 

Data given 
as wingspan 

Lepidoptera 
Blastobasidae 

377 1 11 5 35 (Capinera 
2008) 2 2 8 

Data given 
as wingspan 

Lepidoptera 
Bombycidae 

185 10 33 19 64 (Capinera 
2008) 3 3 7 

Data given 
as wingspan 

Lepidoptera 
Brachodidae 

137 3 17 8 42 (Capinera 
2008) 3 3 8 

Data given 
as wingspan 

Lepidoptera 
Brahmaeidae 

44 18 66 50 180 (Capinera 
2008) 3 3 7 

Data given 
as wingspan 

Lepidoptera 
Bucculatricidae 

297 2 5 5 16 (Capinera 
2008) 3 3 8 

Data given 
as wingspan 

Lepidoptera 
Callidulidae 

49 8 14 22 38 (Capinera 
2008) 3 3 8 

Data given 
as wingspan 

Lepidoptera 
Carposinidae 

283 3 14 10 40 (Capinera 
2008) 3 3 8 

Data given 
as wingspan 

Lepidoptera 
Carthaeidae 

1 28 37 75 100 (Capinera 
2008) 3 3 8 

Data given 
as wingspan 
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Lepidoptera 
Castniidae 

113 10 82 24 190 (Capinera 
2008) 3 3 8 

Data given 
as wingspan 

Lepidoptera 
Choreutidae 

406 3 10 7 24 (Capinera 
2008) 3 3 8 

Data given 
as wingspan 

Lepidoptera 
Cimeliidae 

6 8 11 22 28 (Capinera 
2008) 3 3 8 

Data given 
as wingspan 

Lepidoptera 
Coleophoridae 

1386 2 7 5 24 (Capinera 
2008) 3 3 8 

Data given 
as wingspan 

Lepidoptera 
Copromorphidae 

43 3 11 12 37 (Capinera 
2008) 3 3 8 

Data given 
as wingspan 

Lepidoptera 
Cosmopterigida
e 

1792 2 11 6 32 (Capinera 
2008) 

3 3 8 

Data given 
as wingspan 

Lepidoptera 
Cossidae 

971 5 136 9 240 (Capinera 
2008) 3 3 7 

Data given 
as wingspan 

Lepidoptera 
Crinopterygidae 

1 2 2.5 3 3.5 (Kristensen 
et al. 2007) 

3 3 8 

Data given 
as forewing 
length 

Lepidoptera 
Cyclotornidae 

5 3 10 10 30 (Capinera 
2008) 5 5 7 

Data given 
as wingspan 

Lepidoptera 
Dalceridae 

80 4 18 11 50 (Capinera 
2008) 3 3 8 

Data given 
as wingspan 

Lepidoptera 
Douglasiidae 

29 2 5 6 15 (Capinera 
2008) 3 3 8 

Data given 
as wingspan 

Lepidoptera 
Drepanidae 

660 6 22 18 66 (Capinera 
2008) 3 3 8 

Data given 
as wingspan 

Lepidoptera 
Dudgeoneidae 

57 11 29 28 72 (Capinera 
2008) 3 3 7 

Data given 
as wingspan 

Lepidoptera 
Elachistidae 

3197 2 9 5 23 (Capinera 
2008) 3 3 8 

Data given 
as wingspan 

Lepidoptera 
Endromidae 

56 11 27 29 74 (Capinera 
2008) 3 3 7 

Data given 
as wingspan 

Lepidoptera 
Epicopeiidae 

20 13 38 36 126 (Capinera 
2008) 3 3 8 

Data given 
as wingspan 

Lepidoptera 
Epipyropidae 

32 1 13 4 35 (Capinera 
2008) 5 5 7 

Data given 
as wingspan 

Lepidoptera 
Eriocottidae 

80 2 21 5 50 (Capinera 
2008) 2 2 7 

Data given 
as wingspan 

Lepidoptera 
Eriocraniidae 

28 2 5 6 13.5 (Capinera 
2008) 3 3 8 

Data given 
as wingspan 

Lepidoptera 
Eupterotidae 

339 8 47 23 140 (Capinera 
2008) 3 3 7&8 

Data given 
as wingspan 

Lepidoptera 
Gelechiidae 

4700 1 12 4 35 (Capinera 
2008) 3 3 8 

Data given 
as wingspan 

Lepidoptera 
Geometridae 

2300
2 

3 42 8 120 (Capinera 
2008) 3 3 7&8 

Data given 
as wingspan 

Lepidoptera 
Glyphidoceridae 

49 5 7 13 19 (Capinera 
2008) 3 3 8 

Data given 
as wingspan 

Lepidoptera 
Glyphipterigidae 

535 2 14 5 35 (Capinera 
2008) 3 3 8 

Data given 
as wingspan 

Lepidoptera 
Gracillariidae 

1864 2 10 4 25 (Capinera 
2008) 3 3 8 

Data given 
as wingspan 

Lepidoptera 
Hedylidae 

36 15 27 35 65 (Capinera 
2008) 3 3 8 

Data given 
as wingspan 

Lepidoptera 
Heliozelidae 

123 1 3 3 9 (Capinera 
2008) 3 3 8 

Data given 
as wingspan 

Lepidoptera 
Hepialidae 

604 8 104 20 250 (Capinera 
2008) 1&3 1&3 7 

Data given 
as wingspan 

Lepidoptera 
Hesperiidae 

4113 7 37 16 82 (Capinera 
2008) 3 3 8 

Data given 
as wingspan 

Lepidoptera 
Heterobathmiida
e 

3 3 4 10 11 (Capinera 
2008) 

3 3 2 

Data given 
as wingspan 

Lepidoptera 10 3 9 9 29 (Capinera 3 3 8 Data given 
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Heterogynidae 2008) as wingspan 
Lepidoptera 
Himantopteridae 

40 5 12 16 42 (Capinera 
2008) 3 3 8 

Data given 
as wingspan 

Lepidoptera 
Hyblaeidae 

18 11 22 25 49 (Capinera 
2008) 3 3 8 

Data given 
as wingspan 

Lepidoptera 
Immidae 

245 5 14 14 42 (Capinera 
2008) 3 3 8 

Data given 
as wingspan 

Lepidoptera 
Incurvariidae 

50 2 6 7 18 (Capinera 
2008) 3 3 8 

Data given 
as wingspan 

Lepidoptera 
Lacturidae 

120 4 22 11 65 (Capinera 
2008) 3 3 8 

Data given 
as wingspan 

Lepidoptera 
Lasiocampidae 

1952 10 92 19 172 (Capinera 
2008) 3 3 7 

Data given 
as wingspan 

Lepidoptera 
Lecithoceridae 

1200 2 10 5 30 (Capinera 
2008) 2 2 8 

Data given 
as wingspan 

Lepidoptera 
Lemoniidae 

21 9 28 20 65 (Capinera 
2008) 3 3 7 

Data given 
as wingspan 

Lepidoptera 
Limacodidae 

1672 4 35 9 80 (Capinera 
2008) 3 3 7 

Data given 
as wingspan 

Lepidoptera 
Lycaenidae 

5201 2 33 6 92 (Capinera 
2008) 3 3 8 

Data given 
as wingspan 

Lepidoptera 
Lymantriidae 

2500 7 58 16 135 (Capinera 
2008) 3 3 7 

Data given 
as wingspan 

Lepidoptera 
Lyonetiidae 

220 2 5 4 12 (Capinera 
2008) 

3 3 8 

Data given 
as wingspan, 
includes 
Bedelliidae 

Lepidoptera 
Megalopygidae 

232 5 44 10 90 (Capinera 
2008) 3 3 7 

Data given 
as wingspan 

Lepidoptera 
Micropterigidae 

154 1 3 5 12 (Capinera 
2008) 2&3 2&3 2 

Data given 
as wingspan 

Lepidoptera 
Mimallonidae 

194 10 28 22 60 (Capinera 
2008) 3 3 8 

Data given 
as wingspan 

Lepidoptera 
Mnesarchaeidae 

7 2 4 5 10 (Capinera 
2008) 2&3 2&3 8 

Data given 
as wingspan 

Lepidoptera 
Momphidae 

115 2 5 8 18 (Capinera 
2008) 3 3 8 

Data given 
as wingspan 

Lepidoptera 
Neopseustidae 

14 3 6 14 27 (Capinera 
2008) ? ? 8 

Data given 
as wingspan 

Lepidoptera 
Nepticulidae 

806 1 2 2.5 8 (Capinera 
2008) 3 3 7 

Data given 
as wingspan 

Lepidoptera 
Noctuidae 

3057
9 

3 154 7 360 (Arnett 
2000)/(Ohl 
& Thiele 
2007) 2&3 2&3 8 

Data given 
as wingspan 

Lepidoptera 
Notodontidae 

3800 9 57 20 124 (Capinera 
2008) 3 3 7&8 

Data given 
as wingspan 

Lepidoptera 
Nymphalidae 

6131 6 56 20 180 (Arnett 
2000)/(Hogu
e 1993) 3 3 8 

Data given 
as wingspan 

Lepidoptera 
Oecophoridae 

3304 2 30 5 80 (Capinera 
2008) 2&3 2&3 8 

Data given 
as wingspan 

Lepidoptera 
Opostegidae 

192 1 6 3 16 (Capinera 
2008) 3 3 7 

Data given 
as wingspan 

Lepidoptera 
Palaephatidae 

57 3 11 8 36 (Capinera 
2008) 3 3 8 

Data given 
as wingspan 

Lepidoptera 
Papilionidae 

566 10 83 35 285 (Capinera 
2008) 3 3 8 

Data given 
as wingspan 

Lepidoptera 
Pieridae 

1164 7 31 23 100 (Capinera 
2008) 3 3 8 

Data given 
as wingspan 

Lepidoptera 
Plutellidae 

150 2 17 7 55 (Capinera 
2008) 3 3 8 

Data given 
as wingspan 

Lepidoptera 
Prodoxidae 

98 2 11 5 33 (Capinera 
2008) 3 3 8 

Data given 
as wingspan 
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Lepidoptera 
Prototheoridae 

12 2 15 6 40 (Capinera 
2008) ? ? 7 

Data given 
as wingspan 

Lepidoptera 
Psychidae 

1324 2 37 4 60 (Arnett 
2000) 2&3 2&3 7 

Data given 
as wingspan 

Lepidoptera 
Pterolonchidae 

8 11 12 24 27 (Arnett 
2000) 3 3 8 

Data given 
as wingspan 

Lepidoptera 
Pterophoridae 

1318 2 15 6 40 (Capinera 
2008) 3 3 8 

Data given 
as wingspan 

Lepidoptera 
Pyralidae 

5921 4 67 5 75 (Resh&&&
Cardé&
2009) 

2&3 2&3 7&8 

Data given 
as Forewing 
length, 
includes 
Crambidae 

Lepidoptera 
Riodinidae 

1532 8 13 20 35 (Arnett 
2000) 3 3 8 

Data given 
as wingspan 

Lepidoptera 
Roeslerstammiid
ae 

53 4 8 11 22 (Capinera 
2008) 

3 3 8 

Data given 
as wingspan 

Lepidoptera 
Saturniidae 

2349 12 117 30 300 (Capinera 
2008) 3 3 7 

Data given 
as wingspan 

Lepidoptera 
Sematuridae 

40 19 44 42 100 (Capinera 
2008) 3 3 8 

Data given 
as wingspan 

Lepidoptera 
Sesiidae 

1397 5 34 5 28 (Resh&&&
Cardé&
2009) 3 3 7&8 

Data given 
as Forewing 
length 

Lepidoptera 
Somabrachyidae 

8 7 8 18 22 (Capinera 
2008) 3 3 8 

Data given 
as wingspan 

Lepidoptera 
Sphingidae 

1461 11 94 23 200 (Capinera 
2008) 3 3 8 

Data given 
as wingspan 

Lepidoptera 
Thyrididae 

940 4 42 9 90 (Capinera 
2008) 3 3 8 

Data given 
as wingspan 

Lepidoptera 
Tineidae 

2093 2 21 5 54 (Capinera 
2008) 1&2 1&2 7 

Data given 
as wingspan 

Lepidoptera 
Tineodidae 

19 7 16 15 34 (Capinera 
2008) 3 3 8 

Data given 
as wingspan 

Lepidoptera 
Tischeriidae 

110 2 3 6 11 (Capinera 
2008) 3 3 8 

Data given 
as wingspan 

Lepidoptera 
Tortricidae 

1038
7 

3 24 7 60 (Capinera 
2008) 3 3 8 

Data given 
as wingspan 

Lepidoptera 
Uraniidae 

686 10 50 31 160 (Capinera 
2008) 3 3 8 

Data given 
as wingspan 

Lepidoptera 
Urodidae 

66 4 14 10 37 (Capinera 
2008) 3 3 8 

Data given 
as wingspan 

Lepidoptera 
Xyloryctidae 

524 5 29 12 75 (Pohl et al. 
2010)/(Zbor
owski & 
Edwards 
2007) 3 3 8 

Data given 
as wingspan 

Lepidoptera 
Yponomeutidae 

363 2 11 3.2 15 (Resh&&&
Cardé&
2009) 3 3 8 

Data given 
as Forewing 
length 

Lepidoptera 
Ypsolophidae 

163 3 6 9 17 (Capinera 
2008) 3 3 8 

Data given 
as wingspan 

Lepidoptera 
Zygaenidae 

1036 4 40 5 50 (Resh&&&
Cardé&
2009) 3 3 8 

Data given 
as Forewing 
length 

Mantodea 2163 10 170   (Prete 1999) 4 4 4  
Mantophasmato
dea 

16 10 30   (Buder & 
Klass 2013) 4 4 4 

 

Mecoptera 
Apteropanorpida
e 

1 5.5 11   (Palmer & 
Siebke 
2008) ? ? 2 

 

Mecoptera 
Bittacidae 

214 14 34   (Parker 
1982) 2 2 4 
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Mecoptera 
Boreidae 

38 2 7.5   (Parker 
1982) 3 3 2&3 

 

Mecoptera 
Choristidae 

12 11 14 13 17 (Riek 1973) 

? ? 2 

Data as 
forewing 
length 

Mecoptera 
Meropeidae 

2 10 12   (Arnett 
2000) ? ? 2 

 

Mecoptera 
Nannochoristida
e 

9 5 9 6 12 (Byers 
1989) 

4 4 8 

Data given 
as wingspan 

Mecoptera 
Panorpidae 

480 9 25   (Arnett 
2000) 2 2 2 

 

Mecoptera 
Panorpodidae 

19 7 17   (Byers 
1990) ? ? 3 

 

Megaloptera 
Corydalidae 

200 20 80   (Arnett 
2000) 4 4 8 

 

Megaloptera 
Sialidae 

70 13 18   (Arnett 
2000) 4 4 2 

 

Neuroptera 
Ascalaphidae 

430 40 80   (Arnett 
2000) 4 4 4 

 

Neuroptera 
Berothidae 

115 6 15 6 15 (Resh&&&
Cardé&
2009) 4 4 4 

Data given 
as Forewing 
length 

Neuroptera 
Chrysopidae 

1200 10 25   (Arnett 
2000) 4 4 4 

 

Neuroptera 
Coniopterygidae 

450 2 3   (Arnett 
2000) 4 4 4 

 

Neuroptera 
Hemerobiidae 

550 6 12   (Arnett 
2000) 4 4 4 

 

Neuroptera 
Ithonidae 

53 21 40   (Arnett 
2000) 2 2 ? 

 

Neuroptera 
Mantispidae 

400 20 35   (Arnett 
2000) 5 5 4 

 

Neuroptera 
Myrmeleontidae 

2100 40 80   (Arnett 
2000) 4 4 2&4 

 

Neuroptera 
Nemopteridae 

100 15 35 15 35 (Resh&&&
Cardé&
2009) 4 4 2 

Data given 
as Forewing 
length 

Neuroptera 
Nevrorthidae 

12 6 10 6 10 (Resh&&&
Cardé&
2009) ? ? ? 

Data given 
as Forewing 
length 

Neuroptera 
Nymphidae 

35 18 40 18 40 (Resh&&&
Cardé&
2009) 4 4 ? 

Data given 
as Forewing 
length 

Neuroptera 
Osmylidae 

160 15 30 15 30 (Resh&&&
Cardé&
2009) ? ? ? 

Data given 
as Forewing 
length 

Neuroptera 
Polystoechotida
e 

4 35 75   (Arnett 
2000) 

2 2 4 

 

Neuroptera 
Psychopsidae 

26 10 35 10 35 (Resh&&&
Cardé&
2009) 4 4 ? 

Data given 
as Forewing 
length 

Neuroptera 
Sisyridae 

50 6 8   (Arnett 
2000) 4 4 2&4 

 

Odonata 
Aeshnidae 

428 50 100   (Garrison et 
al. 2006)  4 4 4 

Data given 
as wingspan 

Odonata 
Austropetaliidae 

11 57 86   (Garrison et 
al. 2006) 4 4 4 

 

Odonata 
Chlorogomphida
e 

45 60 78   (Wilson 
undated) 

4 4 4 

 

Odonata 
Cordulegastrida

51 55 88   (Garrison et 
al. 2006) 4 4 4 
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e 
Odonata 
Corduliidae 

285 28 68   (Garrison et 
al. 2006) 

4 4 4 

As 
subfamily of 
Libellulidae, 
Includes 
Synthemisti
dae 

Odonata 
Gomphidae 

945 25.5 90   (Garrison et 
al. 2006) 4 4 4 

 

Odonata 
Libellulidae 

970 17 63   (Garrison et 
al. 2006) 4 4 4 

 

Odonata 
Macromiidae 

123 56 91   (Garrison et 
al. 2006) 

4 4 4 

As 
subfamily of 
Libellulidae 

Odonata 
Neopetaliidae 

1 57 58   (Garrison et 
al. 2006) 4 4 4 

 

Odonata 
Petaluridae 

11 54 88   (Garrison et 
al. 2006) 4 4 4 

 

Odonata 
Epiophlebiidae 

2 48 60   (Fleck et al. 
2013) 4 4 4 

 

Odonata 
Calopterygidae 

172 45 60   (Esquivel 
1997) 4 4 4 

 

Odonata 
Chlorocyphidae 

143 26 30   (Serrano-
Meneses et 
al. 2008) 4 4 4 

 

Odonata 
Chorismagrionid
ae 

1 38 40   (Morton. 
1914) 

4 4 4 

 

Odonata 
Coenagrionidae 

1104 16 60   (Silsby 
2001)/(How
arth & Mull 
1992) 4 4 4 

 

Odonata 
Diphlebiidae 

9 45 55   (Stewart 
1980) 4 4 4 

 

Odonata 
Euphaeidae 

68 26 38   (Hayashi 
1990) 4 4 4 

 

Odonata 
Hemiphlebiidae 

1 23 25   (Rivera 
2014) 4 4 4 

 

Odonata 
Isostictidae 

45 15 40   (Watson 
1974) 4 4 4 

 

Odonata 
Lestidae 

150 40 75   (Esquivel 
1997) 4 4 4 

 

Odonata 
Megapodagrioni
dae 

285 40 75   (Esquivel 
1997) 

4 4 4 

 

Odonata 
Perilestidae 

19 50 55   (Esquivel 
1997) 4 4 4 

 

Odonata 
Platycnemididae 

222 40 50   (Silsby 
2001) 4 4 4 

 

Odonata 
Platystictidae 

189 40 50   (Esquivel 
1997) 4 4 4 

 

Odonata 
Polythoridae 

58 30 40   (Esquivel 
1997) 4 4 4 

 

Odonata 
Protoneuridae 

240 30 35   (Esquivel 
1997) 4 4 4 

 

Odonata 
Pseudostigmatid
ae 

19 80 120   (Esquivel 
1997) 

4 4 4 

 

Odonata 
Synlestidae 

33 35 60 50 85 (Picker et al. 
2004) 4 4 4 

Data given 
as wingspan 

Orthoptera 
Acrididae 

6016 9 120   (Parker 
1982) 3 3 3 

 

Orthoptera 
Cylindrachetida

16 35 75   (Günther&
1992)/(Bail 2 2 2 
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e ey 2007) 
Orthoptera 
Eumastacoidae 

645 10 45   (Arnett 
2000) 

3 3 3 

Includes 
Euschmidtii
dae, 
Episactidae, 
Chorotypida
e and 
Thericleidae 

Orthoptera 
Lentulidae 

35 12 25   (Parker 
1982) 3 3 3 

 

Orthoptera 
Pamphagidae 

448 30 90   (Parker 
1982) 3 3 3 

 

Orthoptera 
Pneumoridae 

17 11.5 100   (Parker 
1982) 3 3 3 

 

Orthoptera 
Proscopiidae 

214 25 165   (Parker 
1982) 3 3 3 

 

Orthoptera 
Pyrgomorphidae 

455 10 90   (Parker 
1982) 3 3 3 

 

Orthoptera 
Romaleidae 

465 18 80   (Arnett 
2000) 3 3 3 

 

Orthoptera 
Tanaoceridae 

3 10.3 25   (Parker 
1982) 3 3 3 

 

Orthoptera 
Tetrigidae 

1246 6 16   (Arnett 
2000) 2 2 2 

 

Orthoptera 
Tridactylidae 

201 4 15   (Naskrecki 
2001) 

2 2 2 

Includes 
Rhipipterygi
dae 

Orthoptera 
Trigonopterygid
ae 

16 29 40   (Ng et al. 
2011) 

3 3 3 

 

Orthoptera 
Xyronotidae 

4 17 30   (Parker 
1982) 3 3 3 

 

Orthoptera 
Anostostomatida
e 

206 20 80   (Pratt et al. 
2008) 

2&4 2&4 
2&3&
4 

 

Orthoptera 
Gryllacrididae 

675 7 50   (Arnett 
2000) 3&4 3&4 3&4 

 

Orthoptera 
Gryllidae 

4664 4 50   (Otte 2007) 2&3&
4 

2&3&
4 

2&3&
4 

 

Orthoptera 
Gryllotalpidae 

100 20 40   (Arnett 
2000) 3&4 3&4 3&4 

 

Orthoptera 
Myrmecophilida
e 

8 2 4   (Arnett 
2000) 

2 2 2 

 

Orthoptera 
Prophalangopsid
ae 

71 17 30   (Walker 
2013) 

3 3 3 

 

Orthoptera 
Rhaphidophorid
ae 

497 10 30   (Richards 
1968)/(Rich
ards 1959) 2&4 2&4 2&4 

 

Orthoptera 
Stenopelmatidae 

28 30 50   (Arnett 
2000) 2&4 2&4 2&4 

 

Orthoptera 
Tettigoniidae 

6827 5 90   (Rentz 
2010) 3&4 3&4 3&4 

 

Phasmatodea 
Agathemeridae 

8 40 70   (Zompro 
2004) 3 3 3 

 

Phasmatodea 
Aschiphasmatid
ae 

96 20 60   (Ng et al. 
2011) 

3 3 3 

 

Phasmatodea 
Bacillidae 

54 40 110   (Scali et al. 
2012) 
/(Picker et 
al. 2004) 3 3 3 

 

Phasmatodea 1210 17.5 140   (Zompro 3 3 3  
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Diapheromerida
e 

1999)/ 
(Brock & 
Hasenpusch 
2009) 

Phasmatodea 
Heteropterygida
e 

103 20 150   (Ng et al. 
2011) 

3 3 3 

 

Phasmatodea 
Phasmatidae 

991 50 357   (Ng et al. 
2011)/ 
(Hennemann 
& Conle 
2008) 3 3 3 

 

Phasmatodea 
Phylliidae 

51 24 90   (Zompro 
2001)/(Ng et 
al. 2011) 3 3 3 

 

Phasmatodea 
Pseudophasmato
idea 
 

406 17.5 250   (Zompro 
1998)/(Picke
r et al. 2004) 

3 3 3 

Includes 
Heteronemii
dae 

Phasmatodea 
Timematidae 

21 12 25   (Arnett 
2000) 3 3 3 

 

Phthiraptera 
Boopidae 

55 1.3 3.14   (Parker 
1982) 6 5 6 

 

Phthiraptera 
Gyropidae 

93 0.8 1   (Parker 
1982) 6 5 6 

 

Phthiraptera 
Haematomyzida
e 

3 1.9 3   (Parker 
1982) 

6 5 6 

 

Phthiraptera 
Heptapsogasteri
dae 

130 0.81 4.44   (Parker 
1982) 

6 5 6 

 

Phthiraptera 
Laemobothriida
e 

20 6.5 11   (Parker 
1982) 

6 5 6 

 

Phthiraptera 
Menoponidae 

1039 1.1 6   (Parker 
1982) 6 5 6 

 

Phthiraptera 
Philopteridae 

2698 1.12 9.72   (Parker 
1982) 6 5 6 

 

Phthiraptera 
Ricinidae 

109 1.6 5.5   (Parker 
1982) 6 5 6 

 

Phthiraptera 
Trichodectidae 

362 0.92 2.73   (Parker 
1982) 6 5 6 

 

Phthiraptera 
Anoplura 

446 0.5 5   (Arnett 
2000) 

6 5 6 

includes, 
Echinophthir
iidae, 
Hoplopleuri
dae, 
Linognathid
ae, 
Pedicinidae, 
Pediculidae, 
Pthiridae 
and 
Polyplacidae 

Plecoptera 
Austroperlidae 

15 10 35   (Parker 
1982) 2 2 ? 

 

Plecoptera 
Capniidae 

287 3 25   (Parker 
1982) 2 2 2 

 

Plecoptera 
Chloroperlidae 

187 6 40   (Parker 
1982) 4 4 2 

 

Plecoptera 
Diamphipnoidae 

6 25 45   (Parker 
1982) 2 2 ? 

 

Plecoptera 
Eustheniidae 

23 15 35   (Parker 
1982) 4 4 2 

 

Plecoptera 270 5 25   (Michaelis 2 2 2  
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Gripopterygidae et al. 2011) 
Plecoptera 
Leuctridae 

360 6 13   (Arnett 
2000) 2 2 2 

 

Plecoptera 
Nemouridae 

674 6 15   (Arnett 
2000) 2 2 2 

 

Plecoptera 
Notonemouridae 

118 5 8   (Picker et al. 
2004) 2 2 2 

 

Plecoptera 
Peltoperlidae 

69 34 49   (Arnett 
2000) 2 2 7 

 

Plecoptera 
Perlidae 

965 10 50   (Parker 
1982) 4 4 7 

 

Plecoptera 
Perlodidae 

310 8 50   (Parker 
1982) 4 4 2&7 

 

Plecoptera 
Pteronarcyidae 

12 38 63   (Arnett 
2000) 2 2 7 

 

Plecoptera 
Scopuridae 

8 16 25   (Jin & Bae 
2005) 2 2 ? 

 

Plecoptera 
Taeniopterygida
e 

103 10 25   (Arnett 
2000) 

2 2 ? 

 

Protura 712 0.6 2.5   (Arnett 
2000) 1 1 1 

 

Psocoptera 
Amphientomida
e 

100 2.3 5   (New & 
Lienhard 
2007) 2 2 2 

 

Psocoptera 
Amphipsocidae 

180 2.8 5.5   (New & 
Lienhard 
2007) 2 2 2 

 

Psocoptera 
Archipsocidae 

81 1.2 1.8   (New & 
Lienhard 
2007) 2 2 2 

 

Psocoptera 
Caeciliusidae 

566 2.5 4.5   (New & 
Lienhard 
2007) 2 2 2 

 

Psocoptera 
Calopsocidae 

34 4.3 7   (New & 
Lienhard 
2007) 2 2 2 

 

Psocoptera 
Ectopsocidae 

177 2 2.5   (New & 
Lienhard 
2007) 2 2 2 

 

Psocoptera 
Elipsocidae 

129 2 2.6   (New & 
Lienhard 
2007) 2 2 2 

 

Psocoptera 
Epipsocidae 

138 2.5 5.7   (New & 
Lienhard 
2007) 2 2 2 

 

Psocoptera 
Hemipsocidae 

24 2.5 2.8   (New & 
Lienhard 
2007) 2 2 2 

 

Psocoptera 
Lachesillidae 

271 1.8 2.2   (New & 
Lienhard 
2007) 2 2 2 

 

Psocoptera 
Lepidopsocidae 

206 2 2.5   (New & 
Lienhard 
2007) 2 2 2 

 

Psocoptera 
Liposcelididae 

181 1 1.5   (New & 
Lienhard 
2007) 2 2 2 

 

Psocoptera 
Mesopsocidae 

75 3.8 4.2   (New & 
Lienhard 
2007) 2 2 2 

 

Psocoptera 
Myopsocidae 

159 3 5   (Arnett 
2000) 2 2 2 

 

Psocoptera 87 1.4 1.8   (New & 2 2 2  
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Pachytroctidae Lienhard 
2007) 

Psocoptera 
Peripsocidae 

235 2 4   (New & 
Lienhard 
2007) 2 2 2 

 

Psocoptera 
Philotarsidae 

111 2.2 3.8   (New & 
Lienhard 
2007) 2 2 2 

 

Psocoptera 
Prionoglarididae 

7 3 3.4   (New & 
Lienhard 
2007) 2 2 2 

 

Psocoptera 
Pseudocaeciliida
e 

899 2.5 8   (New & 
Lienhard 
2007) 2 2 2 

 

Psocoptera 
Psilopsocidae 

300 1.9 3.2   (New & 
Lienhard 
2007) 2 2 2 

 

Psocoptera 
Psocidae 

7 3.2 5.4   (New & 
Lienhard 
2007) 2 2 2 

 

Psocoptera 
Psoquillidae 

27 1.1 2   (New & 
Lienhard 
2007) 2 2 2 

 

Psocoptera 
Psyllipsocidae 

26 1.3 2   (New & 
Lienhard 
2007) 2 2 2 

 

Psocoptera 
Stenopsocidae 

95 3.5 4.5   (New & 
Lienhard 
2007) 2 2 2 

 

Psocoptera 
Trichopsocidae 

11 2 2.5   (Arnett 
2000) 2 2 2 

 

Psocoptera 
Troctopsocidae 

22 1.4 4.1   (New & 
Lienhard 
2007) 2 2 2 

 

Psocoptera 
Trogiidae 

52 1.6 2.5   (New & 
Lienhard 
2007) 2 2 2 

 

Raphidioptera  225 5 20 5 20 (Resh&&&
Cardé&
2009) 4 4 4 

Data as 
Forewing 
length 

Siphonaptera  2078 1 10   (Whiting et 
al. 2008) 2 2 6 

 

Strepsiptera 590 1 7.5   (Parker 
1982) 5 5 7 

 

Thysanoptera 
Aeolothripidae 

201 1.4 2.6   (Treherne 
1919) 3&4 3&4 3&4 

 

Thysanoptera 
Heterothripidae 

76 0.6 1.5   (Retana-
Salazar 
2009) 3 3 3 

 

Thysanoptera 
Phlaeothripidae 

3532 2 14   (Lewis 
1973) 1&3 1&3 1&3 

 

Thysanoptera 
Thripidae 

2066 1 3   (Arnett 
2000) 3&4 3&4 3&4 

 

Trichoptera 
Anomalopsychi
dae 

27 4 8   (Holzenthal 
& Flint Jr 
1995) 2 2 8 

 

Trichoptera 
Apataniidae 

203 4 13 8 15 (Ivanov & 
Menshutkina 
1996) 2 2 8 

Data as 
Forewing 
length 

Trichoptera 
Atriplectididae 

6 7 10 20 28 (Neboiss 
1986) 2 2 8 

Data as 
wingspan 

Trichoptera 
Beraeidae 

57 4 5   (Arnett 
2000) 2 2 8 

 

Trichoptera 111 6 11   (Arnett 2 2 8  
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Brachycentridae 2000) 
Trichoptera 
Calamoceratidae 

182 6 10 15 26 (Neboiss 
1986) 2 2 8 

Data as 
wingspan 

Trichoptera 
Calocidae 

23 2 10 5 25 (Arnett 
2000) 
/(Neboiss 
1986) 2 2 8 

Data as 
wingspan 

Trichoptera 
Chathamiidae 

5 6 9 15 22 (Neboiss 
1986) 2 2 8 

Data as 
wingspan 

Trichoptera 
Conoesucidae 

43 4 10 10 25 (Neboiss 
1986) 2 2 8 

Data as 
wingspan 

Trichoptera 
Dipseudopsidae 

114 4 14 4 16 (Olah & 
Johanson 
2010) 2 2 8 

Data as 
forewing 
length 

Trichoptera 
Ecnomidae 

469 2 7 6 18 (Neboiss 
1986) 2&4 2&4 8 

Data as 
wingspan 

Trichoptera 
Glossosomatida
e 

682 3 10 8 12 (Neboiss 
1986) 

2 2 8 

Data as 
wingspan 

Trichoptera 
Goeridae 

184 4 10 5 12 (Parker 
1998)/(Gree
nhalgh & 
Ovenden 
2004)  2 2 8 

Data as 
forewing 
length 

Trichoptera 
Helicophidae 

44 3 6 8 15 (Neboiss 
1986) 2 2 8 

Data as 
wingspan 

Trichoptera 
Helicopsychidae 

269 4 6 10 16 (Neboiss 
1986) 2 2 8 

Data as 
wingspan 

Trichoptera 
Hydrobiosidae 

407 4 13 10 35 (Neboiss 
1986) 4 4 8 

Data as 
wingspan 

Trichoptera 
Hydropsychidae 

1808 3 21 8 56 (Neboiss 
1986) 
/(Picker et 
al. 2004) 2&4 2&4 8 

Data as 
wingspan 

Trichoptera 
Hydroptilidae 

2124 1.5 4 4 12 (Neboiss 
1986) 2 2 8 

Data as 
wingspan 

Trichoptera 
Kokiriidae 

15 5 9 14 24 (Neboiss 
1986) 4 4 8 

Data as 
wingspan 

Trichoptera 
Lepidostomatida
e 

471 8 10   (Arnett 
2000) 

2 2 8 

 

Trichoptera 
Leptoceridae 

2020 4 15 10 40 (Neboiss 
1986) 2&4 2&4 8 

Data as 
wingspan 

Trichoptera 
Limnephilidae 

880 7 23 25 40 (Neboiss 
1986) 2 2 8 

Data as 
wingspan 

Trichoptera 
Limnocentropod
idae 

15 10 12 27 33 (Wiggins 
1956) 

4 4 ? 

Synonym 
Kitagamiida
e, Data as 
wingspan 
 

Trichoptera 
Molannidae 

41 10 17   (Arnett 
2000) 2&4 2&4 8 

 

Trichoptera 
Odontoceridae 

154 5 14 14 - (Neboiss 
1986)/(Arnet
t 2000) 2&4 2&4 8 

Minimum as 
wingspan/ 
body length 

Trichoptera 
Oeconesidae 

18 12 16 30 40 (Neboiss 
1986) 2 2 8 

Data as 
wingspan 

Trichoptera 
Philopotamidae 

1168 6 9 12 20 (Neboiss 
1986) 2 2 8 

Data as 
wingspan 

Trichoptera 
Philorheithridae 

30 6 13 16 35 (Neboiss 
1986) 4 4 8 

Data as 
wingspan 

Trichoptera 
Phryganeidae 

84 12 28 18 43 (Wiggins 
1998) 

2&4 2&4 8 

Data as 
forewing 
length 
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Trichoptera 
Pisuliidae 

19 6 19 - 40 (Morse 
1974)/ 
(Picker et al. 
2004) 2 2 8 

Maximum 
as wingspan 

Trichoptera 
Polycentropodid
ae 

806 5 10 8 25 (Neboiss 
1986) 

4 4 8 

Data as 
wingspan 

Trichoptera 
Psychomyiidae 

522 4 6   (Arnett 
2000) 2 2 8 

 

Trichoptera 
Rhyacophilidae 

774 8 13   (Arnett 
2000) 4 4 8 

 

Trichoptera 
Sericostomatida
e 

107 8 14 20 35 (Picker et al. 
2004) 

2 2 8 

Data as 
wingspan 

Trichoptera 
Stenopsychidae 

94 6 12 18 35 (Neboiss 
1986) 2 2 8 

Data as 
wingspan 

Trichoptera 
Tasimiidae 

9 4 6 12 18 (Neboiss 
1986) 2 2 8 

Data as 
wingspan 

Trichoptera 
Uenoidae 

31 7 9 8 10 (Houghton 
2012) 

2 2 8 

Data given 
as forewing 
length 

Trichoptera 
Xiphocentronida
e 

172 3 4 3 4 (Munoz-
Quesada & 
Holzenthal 
1997) 2 2 8 

Data given 
as forewing 
length 

Zoraptera 35 2 3   (Parker 
1982) 1&4 1&4 1&4 

 

Zygentoma 
Lepidotrichidae 

1 12 14   (Arnett 
2000)/(Resh 
& Cardé 
2009) 2 2 2 

 

Zygentoma 
Lepismatidae 

200 8 20   (Arnett 
2000) 2 2 2 

 

Zygentoma 
Nicoletiidae 

30 4 29   (Arnett 
2000)/(Espin
asa et al. 
2013) 2 2 2 
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