
 

 

 

Multiscale modelling for optimal 

process operating windows in Friction 

Stir Welding 

 

 

 

Alicia Adriana Gonzalez Rodriguez 

 

 

Department of Automatic Control and Systems Engineering 

The University of Sheffield 

 

This dissertation is submitted for the degree of Doctor of Philosophy 

November 2014 

  



ii 

 

 

 

 

Dedication 

 

To Silvia, my mom, and my brother Cesar and little sister Lesli  

for all their love, unconditional support, encouragement and patience. 

 

 

 

 And with special love, to my grandma,  

the inspiration of our lives.  

Abis your pure soul has enlightened every day of my live,  

words cannot describe the immense love and admiration  

that I have for you and I cannot thank you enough  

for all your love and blessings,  

this is for you, my sweet and beautiful grandma.  

 



 

iii 

Abstract 

The modelling, prediction and performance monitoring of manufacturing 

processes are key research aspects for the optimal design and quality control, in 

particular for complex thermomechanical processes. Numerical-based modelling 

techniques such as Finite Element and Computational Fluid Dynamics are widely 

and used approaches to successfully model complex thermomechanical industrial 

processes. For real-time applications, however, such modelling techniques are not 

suitable due to the significant computational cost. In addition, the lack of in-depth 

understanding of some complex processes, such as Friction Stir Welding (FSW), 

prohibits the creation of accurate physics-based models. Data-driven modelling 

offers an alternative solution to model-based analysis of complex processes via the 

creation of computational structures that are capable of ‘learning’ from process 

data.  

In this thesis, a new data-driven modelling framework is proposed, focusing on 

real-time processing capability of a complex (and ill-understood for some 

materials) thermomechanical process: FSW. Specific challenges that this research 

work addresses includes availability of low number of process samples/data, 

modelling in multiple process scales (micro-, meso-, macro-), real-time processing 

capability (hence low computational cost), creation of new monitoring techniques 

capable of automatically identifying abnormal behaviour (novelty detection) and 

process optimisation which acts in real-time to ensure optimal Process Operating 

Windows (POW) in multiple scales. A special research focus of the presented 

research work is human-centric systems in manufacturing, hence the aspects of 

natural language feedback to the user and simple (transparent to the non-expert) 

yet accurate models are also investigated. 

The proposed hybrid model-based framework is based on Soft Computing, due to 

the need for system transparency and computational simplicity. This includes 

Fuzzy Logic-based approaches as well as Neural-Fuzzy (NF) modelling structures, 

and evolutionary optimisation with multi-objectives (real-time capable). 
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The initial stage of this research investigation includes the creation of NF models, 

which accurately describe the behaviour of FSW in multiple scales, despite the 

availability of limited data. FSW, which is a solid-state joining process, is widely 

recognised in industry (aerospace, shipbuilding, automotive and railway) as an 

efficient, versatile and environmentally friendly welding technique that produces 

very high quality welds. Despite this success, many challenges are still ahead, due 

to the need for process certification and ISO standard compliance (reliable 

monitoring, and Non-Destructive Evaluation - NDE).  A new model-based process 

monitoring and novelty-detection framework is proposed, it not only accurately 

monitors and predicts the process performance in real-time and in multiple scales, 

but it also provides a measure of assessing and predicting the normal or abnormal 

behaviours of the processes. In particular, this assessment is automatically 

communicated to the end-user via natural language feedback which is based on 

Human-Centric System (HCS). This is achieved by mathematically linking a number 

of process performance indices to a Fuzzy Logic rule base. The end-user reads 

(automatically generated text) the process performance in terms of forecasted 

product quality, reliability of model prediction, detection of abnormal behaviour, 

and overall multiscale process performance. The proposed model-based 

monitoring and novelty detection system is then coupled with a real-time capable 

multi-objective optimisation technique: a micro-Genetic Algorithm (micro-GA). For 

the first time in this field the multiple scales of FSW such as cooling rates, 

microstructure, mechanical performance, and overall quality of the manufactured 

parts are optimised in real-time using the proposed approach. The real-time 

processing capability is achieved by introducing short-length encoding for the 

micro-GA. The proposed model-based approach covers the whole manufacturing 

process lifecycle for FSW: process forecasting, monitoring-NDE and optimisation, 

while it is also generic enough to be employed in other manufacturing processes 

too, following further development. 
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1 Introduction 

Overview 

Friction Stir Welding (FSW) is a solid-state joining process, widely recognised in 

the industry as an efficient, versatile and environmentally friendly welding 

technique that produces high quality welds (Booth, Jones, and Threadgill, 2006; 

“Friction Stir Welding - Benefits and Advantages,” n.d.; Nandan, Debroy, and 

Bhadeshia, 2008; Threadgill, Leonard, Shercliff, and Withers, 2009). FSW has been 

routinely implemented as a manufacturing process in various sectors of industry 

such as aerospace, shipbuilding, automotive and railway (Colligan, 2004; Ding et 

al., 1994; Elvander, 2009; ESAB, 2010; Kallee and Mistry, 1999; Kallee, 2010; 

Mendez and Eagar, 2001). The impact and contribution of FSW for joining 

technology has been considerable over the last two decades and outstanding 

efforts have been made to improve this welding technique and its applications. 

There are, however, significant challenges still ahead to further understand the 

complexities of the process and develop the full potential of this welding 

technique. From a research perspective FSW is an exciting area to investigate due 

to its potential on applications and mainly to cover the huge demand from industry 

of new technologies to reduce costs of the process. The quality of welds produced 

with FSW is certainly one of the major advantages of the process, but the cost of 
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tests to identify defects on welds is high and implies destroying the tested material. 

There is also a lack of development of techniques which can predict, analytically or 

otherwise, the behaviour of welds or analyse the FSW process in real-time. 

Over the years, many researchers have proposed a variety of techniques to elicit 

advanced mathematical models that can replicate the physical behaviour of 

complex systems such as FSW. These models are commonly proposed as methods 

to reduce expensive experiments (Bhadeshia, 2008), and are used as tools to gain 

deeper understanding of complex systems. Numerical-based techniques such as 

Finite Element (FE) and Computational Fluid Dynamics (CFD) are approaches 

widely use to model the complex interactions found in FSW (He, Gu, and Ball, 

2014). However, one of the main drawbacks of these techniques is the difficulty in 

expressing complex systems in simple models and from the point of view of real-

time and online monitoring applications of industrial processes, these numerical-

based modelling techniques cannot be used due to their high computational cost. 

Another significant challenge for the modelling of FSW is the limited experimental 

data available. It is expensive to generate dataset of welds to create a high quality 

dataset, and furthermore the analysis of mechanical properties and microstructure 

of the samples is also expensive and time consuming. Therefore, the available 

datasets for FSW are not in the hundreds or thousands of samples as in some other 

manufacturing processes. 

To address the aforementioned challenges, this investigation proposes the use of 

mathematical models based on data-driven approaches. These modelling 

techniques are generally focused on: analysing information that represents the 

behaviour of complex systems, and determining the mapping relationship between 

the variables which are involved in the process such as inputs, internal variables 

and outputs. Data-driven models attempt to describe complex systems without 

including prior explicit knowledge of their physical behaviour. Another benefit of 

these modelling techniques is the ability to describe complex systems even with 

small datasets. These approaches have been developed with the contribution from 

data mining, pattern recognition, Computational Intelligence (CI), machine 
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learning and other artificial intelligence paradigms. Data-driven modelling 

approaches are widely used in material science and engineering. The several data-

driven modelling methods which have been used in these areas include Artificial 

Neural Networks (ANN), Fuzzy Systems, Genetic Algorithms (GA), Support Vector 

Machine (SVM), Gaussian process, and Bayesian, among others (Moraga, 2005; 

Solomatine, See, and Abrahart, 2008). 

This thesis focuses on data-driven modelling based on CI paradigms, namely, 

Neural Networks (NN), Fuzzy Systems, and GA. NN’s have the ability to learn 

complex nonlinear input-output relationships and combined with Fuzzy Systems, 

transparent models can be developed. Other benefits are the interpretability of the 

models, high accuracy and lower computational cost, when comparing with 

numerical based modelling approaches such as FE and CFD. GA are population-

based evolutionary systems with the ability to solve single-objective and multi-

objective optimisation problems. This thesis takes advantage of the best 

characteristics of each CI technique to create intelligent hybrid models. These 

models can efficiently analyse and predict the performance of complex industrial 

processes; create new model-based process monitoring methods; and, for the first 

time in this field, optimise in real-time the process’ performance. 

NN have the ability to approximate a function; however, to translate the results in 

terms of natural language it is possible to use fuzzy logic-based systems. Fuzzy 

Logic (FL) provides the computational framework for embedding structured 

human knowledge into workable algorithms. The main advantage of FL systems, 

for modelling approaches, is their transparency and interpretability of the models 

using linguistic variables. FL models extract knowledge from data which can then 

be presented in linguistic terms similar to human-based reasoning: IF THEN rules. 

A highly efficient hybrid approach is Neural-Fuzzy (NF) modelling which is a 

combination of NN and FL systems. NF modelling has been extensively used to 

accurately describe and predict the behaviour of complex systems. However, one 

of the main challenges in CI-based modelling for complex manufacturing process is 

the interaction with humans who are mostly non-experts. There is a need for 
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developing Human-Centric models which can naturally interact and communicate 

unexpected behaviour from the system to the user (Pedrycz and Gomide, 2007b).  

The use of modelling techniques in FSW has also assisted in the identification of 

the optimal Process Operating Window (POW). The definition of the optimal POW 

offers significant information on the process which can be used to better 

understand the process and accurately set up the process parameters. The 

identification of POW depends mainly on the material to be welded and tool 

design. This means that POW’s are specific to the applications at hand. To date, the 

design of POW has been carried out mainly based on experimental trials and using 

expert knowledge, which is usually expensive. During this research investigation, 

modelling techniques were used as a tool to efficiently identify POW at the 

different scales of the process. Currently, multiscale modelling as a technique for 

studying complex systems is a significant tool for developing advanced engineering 

and materials science applications. The use of multiscale modelling has become 

widespread for analysing complex engineering systems (Fish, 2009, 2014; Groen, 

Zasada, and Coveney, 2014). This technique allows the study of multiple physical 

processes from a particular system. Multiscale models can capture multiple 

processes at different scales; each process is presented as a sub-model of the 

system. Multiscale simulations have been applied to a wide range of engineering 

problems. From the point of view of engineering and materials science 

applications, microscopic properties can be of crucial importance for the quality of 

the overall design of materials.  

FSW is inherently multiscale; the process has been used in critical engineering 

applications; as a consequence, the multiscale analysis of FSW is important for the 

identification of defects or flaws. From the point of view of industry, it is 

particularly important to develop multiscale models of FSW, for example, to 

evaluate the final mechanical properties and microstructure of welds produced by 

FSW (Nandan et al., 2008). It is worth mentioning that for manufacturing 

applications, process experts often wish to determine the minimum or maximum 

values of the input process parameters at which the responses can reach their 



Chapter 1.  Introduction 

5 

optimum. The design of systems which can find the optimal design for a set of 

given inputs (process parameters) allows insights into the underlying processes on 

its various scales. In this thesis, multi-objective optimisation addresses this 

challenge and more importantly, a real-time evaluation and optimal design of the 

FSW at its different scales is developed for the first time. 

In this thesis, a data-driven modelling framework is proposed, focusing on real-

time processing capability for FSW which is a highly complex thermomechanical 

process. Specific challenges that this research work addresses includes: availability 

of low number of process samples/data; modelling in multiple process scales 

(micro-, meso-, macro-); real-time processing capability (hence low computational 

cost); creation of new monitoring techniques capable of automatically identifying 

abnormal behaviour (novelty detection); and process optimisation that acts in 

real-time to ensure optimal POW of FSW at its multiple scales. A special research 

focus of the presented research work is Human-Centric Systems (HCS) in 

manufacturing, hence the aspects of natural language feedback to the user and 

simple (transparent to the non-expert) yet accurate models are also investigated. 

The proposed hybrid model-based framework is based on Soft Computing, due to 

the need for system transparency and computational simplicity. This includes FL-

based approaches as well as NF modelling structures, and evolutionary 

optimisation with multi-objectives which can be used in real-time. 
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1.1 Research aims and objectives 

The aims of this research work and specific objectives are listed below: 

i.  Create data-driven models which can accurately describe and predict the 

FSW  process while addressing the issues of: 

a. Low sample data size 

b. Multiscale approach 

c. Real-time forecasting capability 

ii. Study the multiscale behaviour of FSW, by using simulations of the 

previously developed models, to gain further insights into the process, 

particularly in: 

a. Mechanical performance 

b. Microstructural composition 

c. Overall quality of the welds produced by FSW 

iii. Take advantage of data from new monitoring techniques in the field, and 

create model-based approaches to understand such data and their use in 

reliable process certification. 

iv. Create a model-based process monitoring framework that: 

a.  Can forecast the process performance 

b. Embed ‘Novelty Detection’ within the monitoring regime by 

assessing abnormal process behaviour 

c. And communicate any results using natural language (human-

centric design) 

v. Create a methodology for optimising the POW’s in real time, while 

considering: 

a. Multiscale performance of multi-objective targets 

b. Evolutionary optimisation algorithms with real-time capability 

c. Model-based approaches based on the previously developed 

frameworks 
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1.2 Research Contributions  

Multiscale data-driven process models, which describe and predict the FSW 

process, were developed using CI techniques. In particular, NF structures were 

created based on Radial-Basis-Functions (RBFs). The created models were then 

used to create new knowledge about the operating window of the process. The 

models developed allowed better understanding of this welding technique and the 

influence of various welding speeds and tools on the final part performance. As a 

result of their linguistic-based structure inherent to FL systems, the multiscale 

models are easy to understand for non-modelling experts. The micro-scale model 

predicts microstructure of the materials produced, at the centre of the welding 

zone, which includes the average grain size, and, for the first time in this field, the 

cooling rate which is measured behind the welding tool. The meso-scale simulation 

includes NF models, which predict several mechanical properties: Elongation, 

Reduction of Area (ROA), Ultimate Tensile Strength (UTS) and Yield Strength (YS). 

These characterise some of the mechanical performances of the welded parts. The 

macro-scale model was developed to predict the overall Weld Quality (WQ), of the 

welds produced by FSW, for this research project, the WQ was assessed by process 

experts. The majority of these NF models were presented in The Institute for 

Microstructural and Mechanical Process Engineering at The University of Sheffield 

(IMMPETUS) Colloquium 2011 (Sheffield). The cooling rate NF model, along with 

the process optimisation work (see next section) will be submitted to an 

International Journal. 

A significant contribution, based on data-driven modelling, to directly predict the 

WQ was the development of a model that makes use of spectral-temporal 

information from an advanced monitoring device that measures tool-bending 

forces. A crucial part of this modelling work was pre-processing of spectral-

temporal information to create a set of important markers to use as inputs to the 

data-driven model. The approach relies on Fast Fourier Transform (FFT) to extract 

information from the spectral temporal signal of the tool bending forces. Two 

performance markers were created and then used to create an NF model, which 
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directly predicts WQ. The hypothesis is that vibration signature and profile of the 

forces are linked to the tool’s performance. As a result of this modelling work the 

monitoring system was proposed to be simplified, hence less expensive, by 

focusing only on the spectral signals as suggested by the developed model. The 

temporal-spectral analysis, the developed NF model, and simulation results were 

presented in the IMMPETUS colloquium 2012 (Sheffield); the application of this 

approach for real-time applications was presented in the 9th International 

Symposium on Friction Stir Welding on 2012 (USA). 

One of the most significant contributions of this thesis is the creation of a new 

model-based computational framework for Novelty Detection (ND) in 

manufacturing processes by using Soft Computing approaches. In the proposed 

framework, the Fuzzy Entropy measure of an RBF modelling structure is used to 

identify new behaviour. This new behaviour is defined as the difference between 

the monitored signals and the forecasted behaviour by the data-driven models. 

The extracted information from the model also includes reliability of the system’s 

prediction. A secondary significant contribution, of this ND framework, to the aims 

of this research work, is a text-based feedback which is presented in natural 

language sentences to communicate the process performance to the user. This 

feedback, hence addresses the development of HCS. Part of this ND framework was 

presented in the 7th IEEE International Conference Intelligent Systems IS’2014 

(Poland). The concept of HCS for manufacturing process, which objective is to 

create systems that can naturally communicate with the user, was presented in The 

University of Sheffield Engineering Symposium (USES), 2013. A special presentation 

of this topic for FSW of aluminium alloys and steels was also given in the 3rd 

EPSRC Manufacturing the future National conference, 2014 (Edinburgh). 

In terms of optimising the process in real-time, the key research aspects were 

multi-objective optimisation of the multiple scales, and computational efficiency. A 

new model-based multi-objective optimisation framework is proposed based on 

the combination of a constraint micro-Genetic Algorithm (micro-GA), and an RBF-

based model. It was found that by using the proposed approach, it is possible to 
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find optimal welding parameters such as tool rotational and traverse speed within 

a strictly constrained search space, and for the first time, the trade-off between the 

various mechanical properties (elongation, ROA, UTS, and YS) and weld quality 

was studied. Similarly, the micro-scale performance of the FSW was investigated 

for the trade-off between microstructure (average grain size, cooling rate) and 

weld quality. The main results produced in this framework, including the 

optimisation work and resulting FSW-based simulations are in preparation for 

submission to an International Journal. 

1.3 List of publications 

Peer reviewed publications 

i. Adriana Gonzalez-Rodriguez, George Panoutsos, Mahdi Mahfouf and 

Kathryn Beamish, A Novelty detection framework based on fuzzy entropy 

for a complex manufacturing process, Proceedings of the 7th IEEE 

International Conference Intelligent Systems IS’2014, September 24‐26, 

2014, Warsaw, Poland, Volume 2: Tools, Architectures, Systems, 

Applications pp 453-464, 24-26, 2014. DOI: 10.1007/978-3-319-11310-

4_39. 

ii. Ali Baraka, Adriana A. Gonzalez-Rodriguez, George Panoutsos, Kathryn 

Beamish and Stephen Cater, Manufacturing Informatics and Human-in-

the-loop: A case of study on Friction Stir Welding, the 3rd EPSRC 

Manufacturing the future conference, 23rd-24th September 2014, Glasgow, 

UK. 

iii. A. A. Gonzalez-Rodriguez, G. Panoutsos, K. Sinclair, M. Mahfouf and K. 

Beamish, Model-based process monitoring in Friction Stir Welding, 

Proceedings of the 9th International Symposium on Friction Stir Welding, 15-

17 May 2012, Alabama, USA. 
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Workshops and symposia 

iv. A.M. Baraka, A. Rubio Solis, A.A. Gonzalez-Rodriguez, J.C. De Alejandro and 

G. Panoutsos, Human-Centric Approaches for Modelling Complex 

Processes, University of Sheffield Engineering Symposium (USES), 20 May 

2013, Sheffield, UK. 

v. A. A. Gonzalez-Rodriguez, G. Panoutsos and M. Mahfouf, Model-based 

process monitoring in Friction Stir Welding via Spectral-Temporal 

analysis, IMMPETUS Colloquium 2012, 3-4 April, Sheffield, UK. 

vi. A. A. Gonzalez-Rodriguez, G. Panoutsos and M. Mahfouf, Multiscale 

modelling for industrial processes: a cross-validation study, IMMPETUS 

Colloquium 2011, 19-20 April, Sheffield, UK. 
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1.4 Thesis outline 

Chapter 2 emphasises the importance of FSW in industry, and demonstrates the 

benefits of applying advanced modelling techniques to study this process. This 

Chapter reviews literature regarding the three main concepts which underpin this 

thesis: the FSW process, computational modelling, and CI paradigms. The Chapter 

introduces the basic concepts of FSW, and modelling approaches used to model 

this process. Surveys of current research in the area of CI-based modelling of FSW 

are also presented. 

Chapter 3, multiscale modelling is proposed to study the FSW at its different 

scales: micro-, meso- and macro-. Several data-driven models are elicited to 

predict mechanical properties, microstructure and weld quality of the system. Each 

model represents individual behaviour of the whole FSW welding routine. In this 

Chapter, for the first time, an NF-based model which extracts thermal information 

from the welding routine is created. This NF predicts the cooling rate of the 

process, which is an important property that has great influence over the final 

properties of the materials welded by FSW. 

In Chapter 4, an NF model-based spectral analysis is proposed by using FFT to 

study internal variables of the FSW. The spectral analysis is proposed to correlate 

the signals of the process with quality performance. For the first time, two indices 

extracted from the spectral signal are developed to predict the weld quality of the 

system. A single-objective GA optimisation, which enhances the performance of the 

multiscale models, is also presented in this Chapter. 

Chapter 5 presents a new ND framework which is created by taking advantage of 

the Fuzzy Entropy. The aim of this framework is to create a linguistic-based 

feedback mechanism which can advise the process users on the performance of 

complex manufacturing process. The main contributions of the proposed 

framework are (i) to warn the user when a new condition appears in the system, 

and (ii) to advise the user in regards to the reliability of the model’s prediction 

when a novelty occurs. The proposed ND framework informs the performance of 
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new behaviour in the system which can be linked to process variables affecting the 

quality of the joints. The information presented regarding the performance of the 

system is given to the user in a simple sentence. 

In Chapter 6, a new multi-objective optimisation algorithm based on micro-GA and 

RBF is proposed. The algorithm extracts knowledge from previous NF models and 

integrates the experience from process experts to find the Pareto optimal solutions 

of two functions. The use of micro-GA was proposed in this Chapter because it is 

computationally inexpensive and is highly suited for real-time applications. The 

algorithm was applied to find the optimal speeds which satisfied certain 

requirements from the user such as specific mechanical properties, microstructure 

and quality of the weld. The optimal solutions produced by the proposed multi-

objective optimisation may be helpful as a tool for decision support and can be 

used for the design of optimal POW for FSW. The optimisation framework 

presented in Chapter 6 may be used as part of complete process optimisation 

system including predicting, monitoring, evaluating, and optimising the multi-

objective problems presented in the FSW manufacturing processes. 
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2 Friction Stir Welding and 
Computational Modelling 

Overview 

The success of FSW is evident by the number of industrial applications and the 

wide use of the process with aluminium alloys as well as a variety of other 

materials. This success has allowed the use of the FSW process in the 

manufacturing of critical components, for example, components found in the 

aerospace, automotive and rail industry (Colligan, 2004; Ding et al., 1994; 

Elvander, 2009; ESAB, 2010; Kallee and Mistry, 1999; Kallee, 2010; Mendez and 

Eagar, 2001). FSW is versatile, environmentally friendly, and the mechanical 

properties of the materials welded are good, this is a result of the plastic 

deformation of the materials (Nandan et al., 2008). Despite its success, due to the 

high complexity of the FSW process, significant challenges still ahead to further 

understand the behaviour of the process and develop effective models that can 

provide comprehensive understanding of this complex manufacturing process. 

Modelling techniques have been used to describe and predict certain behaviour of 

the process. The objective of this Chapter is to emphasise the importance of FSW in 

industry, and to demonstrate the benefits of applying advanced modelling 
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techniques to study this process. This Chapter reviews literature regarding the 

three main concepts which underpin this thesis: the FSW process, computational 

modelling, and CI paradigms. The Chapter introduces the basic concepts of FSW, 

and then a review of modelling approaches used to model FSW is presented. 

Fundamental concepts of CI are described, and a description of selected CI 

paradigms used to analyse complex data and create intelligent models is detailed. 

Finally, a survey of current research in the area of CI-based modelling of FSW is 

presented. 

2.1 The FSW process 

2.1.1 Background and principle of operation 

FSW is an efficient solid-state welding process for the joining of difficult-to weld 

materials and was invented in 1991 by Wayne Thomas at The Welding Institute 

(TWI) in Cambridge UK (Thomas et al., 1991). The FSW process represents one of 

the major advances in welding technology and since its discovery FSW has been 

widely adopted by various industry sectors such as aerospace, shipbuilding, 

automotive and railway. This welding technique has been used to join materials for 

critical applications; its impact in industry is reflected in the innumerable 

applications that have been developed (ESAB and Stevetsaren, 2009). This welding 

process is versatile, environmentally friendly and its implementation is lower in 

cost when compared with traditional welding techniques (Thomas, Woollin, and 

Johnson, 1999). The process was originally implemented to join aluminium and its 

alloys, however, due to its versatility and exhaustive research efforts over the 

years, its use has been extended to a variety of materials such as magnesium, 

copper, titanium, steel and even polymers (Nandan et al., 2008). 

The basic principle of the FSW process is shown in Figure 2.1 and consists of a 

non-consumable rotating tool with a shoulder and a profiled probe. The probe is 

inserted between the two work pieces to be welded. These two pieces of material 
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are rigidly held while the rotating tool is pressured downwards until it makes 

contact with the material surface and rotates moving across the joint line. The 

friction caused by the rotating tool generates heat between the tool and the 

materials being welded. The probe stirs the material, transforming it from solid-

state into plastic-state, merging both materials to create the joint. The material 

where the direction of the rotation is the same as the welding direction is known 

as advancing side, and the material where the direction of the tool rotation is 

opposite to the welding direction is known as retreating side. As the process takes 

place below the melting point of the materials, FSW conserves the metallurgical 

properties of the materials joined. This results in high quality welds with excellent 

mechanical properties in fatigue, tensile and bend. 

 

Figure 2.1 Schematic diagram of the FSW process (Thomas et al., 1991) 

FSW has gained a reputation within the welding community as an easy and defect-

free process. However, as presented in (Nandan et al., 2008), the physical 

phenomena involved during the process, including material flow, complex 

interactions between the tool and workpiece, heat generation, and plastic 

deformation, as well as the influence that process parameters (such as rotation 

speed, traverse speed and downward force) have over the process, are factors that 

make this simple welding technique a complex non-linear process, which is not 

easy to understand. 
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The great interest from industry to develop new technologies using FSW and to 

thoroughly understand the FSW process has encouraged the research field for this 

welding technique. As a result, over the past two decades, significant contributions 

have been made in different fields related with FSW technology and development 

of new applications. For example, more advanced welding tools have been 

developed and their influence over the process has been evaluated (Thomas, 

Nicholas, and Smith, 2001a). The range of materials that can be welded has been 

extended beyond aluminium alloys (Çam, 2011; Nandan et al., 2008). Automation 

of the process and production is nowadays ordinarily used in industry (ESAB, 

2010), at the same time, data acquisition systems have been developed to record 

the process variables and guide the knowledge about the welding technique 

(Beamish and Russell, 2010a).  

The development of Non-Destructive Testing (NDT) techniques and quality control 

systems in FSW is an area of great interest and potential for new discoveries 

(Kinchen, Martin, Space, Orleans, and Aldahir, 2002; Zappia, 2010). In recent years, 

there has been an increasing amount of research efforts to deeply understand the 

physical phenomena present during the FSW process and simulate its behaviour, 

especially from the point of view of materials science (Nandan et al., 2008). 

However, as previously explained, due to the complexities of the process (e.g. 

material flow, heat generation, plastic deformation etc.), many challenges remain, 

including the development of intelligent and transparent process models, as well 

as monitoring and real-time systems that can provide accurate feedback of the 

process’ performance. This thesis will focus particularly on the challenges related 

to the development of new computational models and novel intelligent systems 

that can monitor the process in real-time, evaluate its performance and produce 

useful information for the experts and final users. 

2.1.2 Industrial applications 

Certainly, the manufacturing processes using FSW have become more efficient, 

FSW has contributed to the development of new manufacturing technologies. Its 
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impact can be illustrated in the many industries that are now using the process. 

This Section will present some of the crucial applications that have been adopted 

for various industry sectors. The literature presented here reflects the influence 

that FSW has had in the development of new technologies. The process was first 

commercially available in the late 1990s, when shipbuilding and aerospace 

industries realised the benefits of using FSW to produce high quality welds. In 

1996, Sapa manufactured hollow aluminium for deep freezing of fish on fishing 

boats and panels for ship decks. The freezer panels opened up the 

commercialisation of FSW and eventually, the first vessel was built using friction 

stir welded panels made by Marine Aluminium. In 1998, the aerospace industry 

applied FSW to the space programs of Delta II rockets (Kallee, 2010). Since then, 

innumerable applications have been developed using this welding technique. 

Presently, a variety of aluminium alloys can be welded using FSW, including those 

that were difficult to weld (2xxx, 6xxx and 7xxx series) by conventional fusion 

welding techniques such as fusion-gas or electric arc. The process has also been 

adopted for welding magnesium, titanium, copper and steel alloys among other 

material, detailed research about these materials is presented in (TWI Ltd., 2013). 

With regard to cost savings and improvements in fabrication, the use of FSW has 

been significant for high investment industries. For example, The Boeing Company 

reported that by using FSW for the design of satellite launch rockets (Delta IV and 

Delta II) they have achieved a 60% cost saving and the reduction of manufacturing 

time from 23 to 6 days (TWI Ltd., 2001). Different industry sectors have thus 

benefited with the implementation of FSW some crucial applications among these 

sectors are presented over the following paragraphs.  

Shipbuilding 

As noted above, the industrialisation of the process started within the shipbuilding 

sector. Since then, FSW has become a normal and cost-effective industry practice 

to produce prefabricated panels of various types and sizes to build fishing boats, 

high-speed ferries and sea vessels. In 1996, for the first time Sapa applied FSW to 

manufacture hollow aluminium freezer panels for fishing boats. At the same time, 
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deck panels and helicopter landing platforms were produced at Marine Aluminium. 

In this sector, the process was also used for the following applications: ship and 

oil-rig panels for decks and bulkheads, vessels, honeycomb panels and corrosion 

resistant panels, deck panels for civil and naval ships, hulls and superstructures; 

extended information about these applications is presented in (Kallee, 2010).  

Aerospace 

The Boeing Company was a pioneer in introducing FSW to the aerospace industry. 

They demonstrated the benefits of adopting FSW for their space programs Delta II 

and Delta IV. In 2001 Boeing reported the production of more than 3000 metres of 

defect free friction stir welds, with cost savings of 60% and an enormous reduction 

in manufacturing time (TWI Ltd., 2001). The FSW process offers considerable 

potential for low-cost joining of lightweight aluminium airframe structures for 

large civil aircraft such as the Airbus A380. It is also used in the production of light 

aircraft such The Eclipse 500 business jets, manufactured by Eclipse Aviation. 

Another example of aluminium alloys welded by FSW to reduce weight 

components was developed at NASA’s Marshal Space Flight Center, the shuttle’s 

super lightweight tanks were welded using FSW, in this way it was possible to 

significantly reduce the weight of the external tank by 3,402 Kilograms (Kallee, 

2010). As presented in (TWI Ltd., 2013), the FSW process for the aerospace sector 

can be also considered for applications in: air fuselages and wings, empennages, 

cryogenic fuel tanks for space vehicles, aviation fuel tanks, external thrown-away 

tanks for military aircraft, military and scientific rockets, and the repair of faulty 

MIG welds. 

Railway 

The railway industry has adopted the FSW process with great success building 

trains and trams using large panels made from aluminium extrusions and rolling 

stock panels welded by FSW. In 1996, single-wall aluminium roof panels for rolling 

stock applications were introduced by Sapa and Hydro Marine Aluminium for 

railway applications. In 1999, Alstom LHB used these prefabricated panes for 
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Copenhagen suburban trains and later, in 2001, they used friction stir welded 

aluminium side walls and floor panels for suburban trains in Munich. Hitachi has 

produced and exported a range of vehicles for commuter and domestic trains. 

Light Metal Industries produce floor panels for the Shinkasen network of high-

speed railway lines in Japan. The use of FSW has, therefore, helped to achieve high 

standards of safety for high-speed trains (Kallee, 2010; TWI Ltd., 2013). 

Automotive 

The automotive industry has developed a wide range of car components of 

different thicknesses, shapes and materials using FSW. This sector is the best 

example of efficiency of the process for covering specific demands such as large 

manufacturing batches, six sigma requirements and material combinations. FSW is 

used worldwide in series production of aluminium automotive components such 

as light alloy wheels and fuel tanks. Ford in the USA applied FSW for the design of 

components used for the chassis in the Ford GT sports car. This application 

maximised the fuel volume and reduced the number of connections to the fuel 

system. Suspensions and pistons with excellent mechanical properties have also 

been produced using FSW. Volvo, Saab, Audi, VW and BMW use wheel structures in 

which cast or forged centre parts are friction-stir welded to the rims, reducing the 

wheel weight by 20-25% (Kallee, 2010). More examples of automotive applications 

include: engine and chassis cradles, truck bodies and tail lifts for lorries, mobile 

cranes, armour plates for vehicles, fuel tankers, caravans, buses and airfield 

transportation vehicles (Kallee, 2010; TWI Ltd., 2013). 

Other applications 

Notable benefits of the FSW process include cost savings, good repeatability, 

excellent mechanical properties and low distortion. The active evolution of 

advanced equipment to automate and control the process, as well as the efforts to 

weld materials with higher melting points and dissimilar material joints, have 

allowed the development of novel applications in other industry sectors. These 

include construction, housing, heating and air conditioning, and copper canisters 
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for nuclear waste (Kallee, 2010). Additionally, FSW has successfully been applied 

to develop new technologies in consumer electronics such as the design of the iMac 

on 2012. Apple employed FSW to join the enclosure, achieving 40% less volume 

than previous iMac generations (Apple, 2012). The process has also been used for 

significant applications  within the  food industry; in 2004 RIFTEC  started a series 

production of flaw-free drying trays and later they used FSW for the production of 

cooling plates for industrial plate freezing plants (RIFTEC, 2004), these 

applications show how FSW has helped considerably in reducing costs and 

producing lighter components, as well as achieving higher hygiene standards 

(RIFTEC, 2004). 

This Section was presented with the aim of illustrate the global impact that FSW 

has had over industry since its first commercial application. The benefits in terms 

of cost, weight reduction and quality of products show the potential of this welding 

technique and the clear motivations to invest on research and develop new and 

more advanced technologies. 

2.1.3 Metallurgy: The FSW zones 

The friction stir welded region has a number of different zones that are thermally 

and mechanically influenced during the welding process. Several studies have 

revealed that this influence defines the microstructure of the weld and thus the 

properties of the joint (Beamish and Russell, 2010a, 2010b; Beamish, 2007; 

Bhadeshia and DebRoy, 2009; Nandan et al., 2008; Threadgill et al., 2009). For 

aluminium alloys, the final microstructure could be divided into four distinct 

regions, as shown in Figure 2.2:  
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Figure 2.2 Schematic cross–section of a typical FSW weld for aluminium alloys showing four 

distinct regions (TWI Ltd., 2013) 

According to (TWI Ltd., 2013), the four regions identified can be described as 

follows: 

A. Parent material: the parent material is the material outside the influence of 

the welding process and its properties are completely unaffected. 

B. Heat Affected Zone (HAZ): the HAZ is the material adjacent to the weld. In 

this region, clearly closer to the weld centre, the material experiences a 

thermal cycle, which modifies the microstructure and mechanical 

properties. There is, however, no plastic deformation of the material in this 

area 

C. Thermomechanically Affected Zone (TMAZ): this region exhibits both 

thermal and mechanical energy input, and is therefore, subjected to both 

heating and deformation.  

D. Nugget: the nugget is a region where the material is exposed to high 

temperatures and severe deformation, resulting in recrystalisation in the 

grain structure. 

Heat generation in FSW 

The plastic deformation of the process involves complex thermomechanical 

dynamics generated mainly by the frictional heating produced between the 

shoulder and the material surface. The plastic flow of the material depends on the 

heat generation. These factors, heat generation and material flow, determined the 

mechanical integrity of the joint. Detailed insights into heat generation and its 
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influence in the final microstructure of welds produced by FSW for aluminium and 

other materials are presented in (Nandan et al., 2008). 

2.1.4 Process variables 

FSW is in essence an easy to implement process, but its thermomechanical 

behaviour involves complex interactions. These interactions affect several 

phenomena including: the heating and cooling rates, plastic deformation, plastic 

flow, and dynamic recrystallization. These phenomena interactions, which reflect 

the mechanical integrity of the joint, are very difficult to study (Nandan et al., 

2008). It is, however crucial to understand the effect that all these factors have 

over the process as this influence will determine the outcome of the welding 

process. 

The main variables used to control the FSW process are listed in Table 2.1. The 

primary variables have the most significant influence over the process. The 

secondary variables can be measured and provide important information 

regarding the process. Previous research findings have proven that the tool design 

has a significant effect on material flow behaviour (Beamish and Russell, 2010b; 

Beamish, 2007; Thomas, Nicholas, and Smith, 2001b). A summary of tool design 

variables and other external variables that have influence over the process is 

shown in Table 2.2. 

Table 2.1 Main FSW process variables 

Primary variables Secondary variables 

Tool rotational speed Spindle torque 

Tool traverse speed (welding speed) Traverse force 

Tool plunge depth Lateral force 

Tool tilt angle Tool temperature 

Tool down force Workpiece temperature 
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Table 2.2 Tool design and other FSW process variables 

Tool design Other 

Shoulder and probe materials Anvil material 

Shoulder diameter Anvil size 

Probe diameter Workpiece size 

Probe length  Workpiece properties 

Thread pitch  

Feature geometry  

 

An example of the two primary FSW parameters (tool rotational speed and 

traverse speed) and their influence upon the process is illustrated in the optimal 

POW Figure 2.3 (TWI Ltd., 2013). The definition of the optimal POW offers 

significant information about the process, this information can be used to better 

understand the process and accurately set up the parameter process. For example, 

it is well known that slow tool rotational speeds are insufficient to generate heat 

and plasticise the material, this results in poor performance of the welding 

process. By increasing the tool rotational speed, the plasticisation of the material is 

facilitated producing good welds, the use of POW allows a better understanding of 

the speeds applied and its limits, reducing the physical trial and error experiments.    

 

Figure 2.3 Process operating window for FSW based on tool rotational and traverse speeds 

(TWI Ltd., 2013) 
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The tool traverse speed and forces applied during the process are also of 

significant influence over the final quality of the welds. For example, at slow 

traverse speed (e.g. 280 mm/min for AA5083 material), the heat gradually 

increases around the tool, hence, the tool can steadily move and soften the 

material. As a result, the forces applied to move the tool across the weld are 

generally low. As the tool traverse speed increases, the plasticisation of the 

material around the tool decreases, the increase of rotational and traverse forces is 

required to move the tool. Eventually, if the tool traverse speed is excessively high 

(e.g. 812 mm/min for AA5083), there is insufficient time to heat up the material. 

This can result in forming a harder material, consequently, the tool cannot move, 

generating a failing welding process and also damaging the tool (TWI Ltd., 2013). 

2.1.5 Tool design 

Tool design is crucial in the FSW process due to its influence to generate heat and 

facilitate the material flow. Investigations have revealed that the shoulder 

produces most of the heat and the material flow is affected by the influence of both, 

the shoulder and the probe. Extensive research has demonstrated the importance 

of tool design to achieve good mechanical properties. Several new features, such as 

tool pin shape and pin angle, have been developed to improve the design of FSW 

probes and create more advanced and efficient tools (Beamish and Russell, 2010a, 

2010b; Beamish, 2007; Nandan et al., 2008; Perret, Martin, Threadgill, and Ahmed, 

2007; Thomas et al., 2001a). Tools used for FSW aluminium alloys are generally 

made from steel such as AISI H13, or, the cobalt-nickel-chrome superalloy MP159. 

The MX TrifluteTM and MX TriFlatTM are advanced probes that have been used 

routinely for welding specific alloy types and thicknesses (Beamish and Russell, 

2010a). This thesis introduces only the information and characteristics of MX 

TrifluteTM and MX TriFlatTM due that the experimental data used for this research 

work was produced by using either of these tools. 
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MX TrifluteTM 

The MX TrifluteTM probe shown in Figure 2.4 (TWI Ltd., 2000) moves less material 

than a cylindrical pin type probe, allowing a more efficient flow path. The helical 

ridge around the flute helps to disperse surface oxides (Thomas et al., 2001a; TWI 

Ltd., 2013). 

MX TriFlatTM 

The three flat surfaces of this tool enhance the flow of material around the tool and 

assist the plasticisation of the material (see Figure 2.5). 

 

 

Figure 2.4 The MX TrifluteTM probe 

(TWI Ltd., 2013) 

 

 

Figure 2.5 The MX TriFlatTM probe   

(TWI Ltd., 2013)

 

These tools have been proven to be effective over a wide range of welding 

parameters for most grades of aluminium alloys, applications using these tools are 

reported in (Perret et al., 2007; TWI Ltd., 2013). 

2.1.6 Concise advantages of the FSW process 

The advantages of the FSW process result from the fact that the welding takes 

place in a plastic state without melting the materials to be joined and consequently 

retaining a great proportion of the properties of the welded materials. According 
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to the literature studied, the major benefits of the FSW process can be summarised 

as follows (“Friction Stir Welding - Benefits and Advantages,” n.d.; Ma, 2008; 

Threadgill et al., 2009; TWI Ltd., 2013): 

i. High quality welds: compared with fusion welding techniques, the plastic 

deformation that materials welded by FSW suffer does not dramatically 

change the microstructure and keeps the mechanical properties of the 

materials, resulting in high quality welds. 

ii. Production of defect-free welds: FSW eliminates defects such as 

solidification cracking, liquation and porosity associated with fusion 

welding techniques. 

iii. Join of materials difficult to weld: FSW has the ability to join materials that 

were impossible or difficult to weld by fusion welding techniques, for 

example, series 2XXX and 7XXX of aluminium alloys, as well as magnesium 

and copper. 

iv. Easily automated process: the process is suitable for automation and is 

adaptable for robotic use, reducing the degree of operator skill required. 

v. Green and energy-efficient: FSW produces relatively low noise levels, also 

non-consumable or gas shielding is required. 

vi. Safe welding process: staff safety is enhanced as no toxic fumes or radiation 

is generated during the process. 

vii. Not only aluminium: FSW has been successfully applied to weld a variety of 

materials such as magnesium, titanium, copper and steel. 

viii. Only few parameters to control: the major parameters affecting weld 

quality are tool rotational speed, tilt angle and tool shoulder. 

ix. FSW can be used in any orientation without regard to the influence of 

gravitational effects on the process. 

2.1.7 Potential flaws and defects in welds produced by FSW 

Even though FSW is a very constant process, the generation of flaws and defects 

can appear, producing imperfect welds. As explained in (Threadgill, 2007; TWI 
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Ltd., 2013), it is important to differentiate between flaws and defects in a weld. The 

author’s concepts of flaw and defect in welds produced by FSW are defined as 

follows: 

A flaw is an unintentional imperfection in a welded structure which may or may 

not compromise the integrity of the structure. After a critical assessment, it could 

be regarded as a defect, or accepted as a tolerable flaw. 

A defect is an imperfection in a weld whose presence cannot be tolerated. It must 

be removed or other remedial action taken. 

In accordance with (Threadgill, 2007), the flaws found in friction stir welds can be 

categorised as volumetric flaw and joint line flaw. Volumetric flaws are caused by a 

lack of material consolidation. A joint line flaw is a joint line remnant produced for 

oxide particles delineating the original joint-line.  A different categorisation of 

defects is given by (Zettler, Vugring, and Schmucker, 2010) where the author 

presents an extensive analysis of defects. He classified the defects as: defects from 

too hot welds, defects from too cold welds, and defects from geometrical mistakes. 

Common imperfections that can be found in aluminium alloys welded by FSW are 

summarised in Table 2.3. A detailed assessment of flaws in fiction stir welds for 

this material can be found in (Threadgill et al., 2009). 

 

Table 2.3 Summary of common flaws encountered in FSW for aluminium alloys 

Flaw type Location Causes 

Void 
Advancing side at the edge of the weld 

nugget 

Welding speed to high 

Plates not clamped close enough 

together 

Reduction of force pressure 

Void Beneath top surface of weld Welding speed too high 

Joint line 

remnant 

Weld nugget, extending from the root of 

the weld at the point where the original 

plates butted together 

Inadequate removal of oxide from the 

plate edges 

Inadequate disruption and dispersal of 

oxide by tool 

Root flaw 

Weld nugget, extending from the root of 

the weld at the point where the original 

plates butted together 

Tool pin too short 

Incorrect tool plunge depth 

Poor joint tool alignment 
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2.1.8 Materials 

Aluminium alloys 

As noted earlier, aluminium and its different alloys are widely used in industry.  

Aluminium is a soft, lightweight, nonmagnetic, malleable metal with good 

resistance to corrosion, and good thermal and electrical conductivity. Its strength 

and other physical and mechanical properties including density, ductility, 

workability, weldability, and corrosion resistance can be improved with the 

addition of other elements and heat treatments (TWI Ltd., 1996, 2013).  

Table 2.4 shows the classification of wrought aluminium alloys. 

 

Table 2.4 Wrought aluminium alloys 

Series Alloying element 

1000 Pure aluminium (Al) 

2000 Aluminium alloyed with copper (Al-Cu) 

3000 Aluminium alloyed with manganese (Al-Mn) 

4000 Aluminium alloyed with silicon (Al-Si) 

5000 Aluminium alloyed with magnesium (Al-Mg) 

6000 Aluminium alloyed with magnesium and silicon (Al-Mg-Si) 

7000 Aluminium alloyed with zinc (Al-Zn) 

8000 Aluminium alloyed with lithium and others (Al-Li) 

 

The weldability of materials is influenced by the different compositions and heat 

treatments of the aluminium alloys. Series 1xxx, 3xxx, 4xxx, 5xxx, and 6xxx can be 

fusion welded using TIG (Tungsten Inert Gas), MIG (Metal Inert Gas) and oxyfuel 

processes. Series 7xxx and most of the 2xxx are not suitable for fusion welding. As 

illustrated in Figure 2.6 (TWI Ltd., 2013), FSW can be used to weld many 

aluminium alloys, including those which are not possible to weld when using other 

fusion welding techniques (TWI Ltd., 1996). Series 5xxx have excellent weldability 

and good corrosion resistance; series 6xxx are widely used for their strength.  
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Figure 2.6 Weldability of aluminium alloys FSW vs. Fusion welding (TWI Ltd., 2013) 

 

The heat input and cooling rate associated with the welding process can have 

significant effect upon the strength of aluminium alloys (Nandan et al., 2008; 

Thomas et al., 2001b). AA6082 and AA5083 are examples of aluminium alloys with 

excellent strength and good corrosion properties. AA6082 is aluminium alloyed 

with magnesium (0.7%), manganese (0.5%) and silicon (0.9%) which is more 

resistant to deformation. Depending on the heat treatment used; this aluminium 

alloy can have high strength, good weldability and reasonable resistance to 

corrosion. AA6082 is widely used for general and structural engineering 

applications where good strength and formability are required. This alloy is one of 

the most frequently used. The 6xxx series of aluminium alloys are particularly 

suited for FSW and have a very wide POW. AA5083 is non-heat-treatable 

aluminium alloyed with magnesium (4.6%), manganese (0.6%) and silicon (0.3%) 

with high corrosion resistance; it is commonly used in high corrosion environment 

applications such as seawater. The 5xxx series of aluminium alloys have a smaller 

POW (TWI Ltd., 2013). 

Several studies have examined in depth the effect that heat generation has over the 

microstructure and properties of friction-stir welded aluminium alloys (Çam and 

Mistikoglu, 2014; Kimapong and Watanabe, 2004; Nandan et al., 2008; Perret et al., 

2007; Sivashanmugam, Ravikumar, Kumar, Rao, and Muruganandam, 2010; 

Threadgill et al., 2009). The most complete investigations of FSW in relation with 
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aluminium are presented in (Nandan et al., 2008) and (Threadgill et al., 2009). 

Together, these studies provide important insights into FSW, particularly of 

aluminium alloys, and deeper knowledge regarding to their microstructure and 

mechanical properties.  

Other materials 

As explained above, FSW has successfully addressed the welding of aluminium 

alloys. The benefits demonstrated for aluminium can conservatively, be 

transferred in other materials including steel, titanium, copper, magnesium 

(Bhadeshia and DebRoy, 2009; Çam, 2011; Nandan et al., 2008; TWI Ltd., 2013), 

dissimilar alloys (DebRoy and Bhadeshia, 2010; Kimapong and Watanabe, 2004), 

and even thermoplastics (Buxton, 2002). The major limitation to transfer the FSW 

technology is the development of suitable welding tool materials. For instance, 

FSW of steel and titanium faces more difficult operating conditions as a result of 

the high melting point of these metals (Bhadeshia and DebRoy, 2009; Nandan et al., 

2008). Aluminium is friction stir welded at between 300-400˚C and thus tools 

made from steel are generally adequate for the process. As the temperature of the 

workpieces rises, tools which can retain their properties at higher temperature are 

required. For example, the welding of copper alloys employs tools made from 

tungsten that can work at 600-900˚C. By contrast, FSW of steel requires a tool that 

can resists temperatures over 1000˚C (Bhadeshia and DebRoy, 2009; TWI Ltd., 

2013). Nonetheless, FSW of steel and titanium are areas of active research, and 

despite the limited number of applications, in comparison with FSW of aluminium 

alloys, significant applications for FSW have been proposed (Bhadeshia and 

DebRoy, 2009; Çam, 2011; Perret et al., 2007). 

2.1.9 Monitoring FSW towards a quality control 

As explained earlier, FSW offers many advantages over conventional fusion 

techniques for joining aluminium alloys. The quality of welds produced by FSW is 

one of the main benefits of this welding technique; as a result, there is great 
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interest from industries and FSW technology producers for developing more 

advanced monitoring tools and quality control systems. Major efforts have been 

made for developing NDT to detect flaws in welds produced by FSW (Kinchen et 

al., 2002; Zappia, 2010). At the same time, intensive research has been carried out 

to develop advance technology that can accurately record welding data during the 

FSW process. A comprehensive investigation of FSW tool design and its influence 

over the process was presented by (Beamish and Russell, 2010a). This study 

showed that the use of advance process monitoring systems for quality control of 

the FSW process is a crucial factor for the development of more advanced 

technology that can help to better understand the relationships of welding 

parameters, and their effects over the final product. The authors listed some of the 

benefits of using an advance monitoring system to meticulously investigate the 

FSW process:  

i. Provide a degree of confidence that repeatable welds are being produced, 

especially for critical applications. 

ii. Assist with the scientific understanding of process dynamics and tool 

performance. 

iii. Assist with optimisation of tool designs and process parameters. 

iv. Record data and provide feedback on the machine and process conditions. 

v. Aid with the specification of new FSW equipment. 

Hypothetically, the main purpose of using NDT techniques and advance monitoring 

systems is to create reliable quality control tools for FSW. At present, FSW 

machines have integrated data acquisition systems to measure and record process 

parameters. Usually, the parameters recoded are: rotational speed, traverse speed, 

tool position (x, y, and z), spindle torque, downward force, and tool temperature. 

However, little literature is available in regard to the use of these data acquisition 

systems and their application for quality control.  

There is also, a research gap related to the integration of monitoring and control 

systems for applications in real-time, particularly, for developing advanced 

applications that are able to detect changes during the welding routine, evaluate 
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the influence of these changes over the welds, and at the same time, adjust the 

process conditions in order to maintain the quality of welds.  

At TWI Ltd., significant research has been carried out in relation to the 

development of technology that can record and monitor data during the FSW 

process. For example, (Blignault, 2008), presented a report that describes in detail 

the concept of quality control for  FSW. In the report, the research related to the 

development of FSW monitoring technology is reviewed. More significantly, this 

study introduces the design of an advanced FSW monitoring system that is capable 

of recording data from the FSW process. The information recorded include: z-axis 

forces, torque, bending forces on the tool (x/y axis) and temperatures. The latter 

study, lead to significant findings in the area, Beamish and Russell (Beamish and 

Russell, 2010a), demonstrated that the use of this technology can assist experts in 

the study of the FSW process. They demonstrated that the analysis of the 

information recorded offers a better understanding about the influence of process 

conditions. In their research, the data acquired from the advanced monitoring 

system, was analysed to study the influence that tool design and other process 

conditions have over the microstructure of the material and the appearance of 

common flaws such as joint line remnant. The findings of this report in relation 

with tool design are summarised in Appendix 1, Table 9.1 and Table 9.2. 

Further research in this area is presented in (Zappia, 2010), in which an approach 

based on Design of Experiments (DOE) for establishing requirements and develop 

a quality control system for FSW is described. The author explains that the clear 

definition of the initial weld requirements and control of process parameters (i.e. 

POW) are essential. They can be used as reference to inspect and measure weld 

quality. More importantly, the author presents an extensive survey of monitoring 

techniques and NDT approaches (offline). The monitoring techniques discussed 

are: real-time sensing of the FSW process parameters, weld temperature, weld 

path errors and visual monitoring of the weld. The author proposes these 

techniques as ‘online’ approaches which can be used to monitor the FSW process 

along with analytical sensing techniques. The author explains that the aim of these 
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analytical sensing techniques is to find correlations between the data recorded and 

defects in welds, he presents examples of both ‘online’ and analytical sensing 

techniques. However, the examples are mainly theoretic and not specific for real-

time applications. A summary of these online and offline techniques, and the 

challenges related with each technique are presented in Appendix 1, Table 9.3. The 

information in this table reveals the importance of developing more reliable 

monitoring and NDT techniques, especially to assess the FSW process in-real time. 

2.1.10 An advanced monitoring system: The ARTEMIS tool 

As mentioned in the previous Section, TWI Ltd. has contributed to the research and 

development of advanced monitoring technology for FSW. They designed an 

instrumented rotating tool holder (Figure 2.7) which has been used to quantify the 

effects of FSW tool features, and has helped to better understand the behaviour 

and performance of FSW tools under various welding conditions. This tool known 

as ARTEMIS (Advanced Rotating Tool Environment Monitoring and Information 

System) records process variables such as tool torque, tool temperature, tool axial 

loading (z-axis force) and tool lateral bending forces during the welding routine. 

This tool offers a high level of process information, especially, via the generation of 

‘footprint’ plots that display the forces acting around the FSW tool (Figure 2.8). 

The ARTEMIS tool records force traces, providing information of bending forces 

every 7.5˚ intervals around the tool circumference (360˚). An advanced data 

acquisition system is employed to characterise the tool bending forces and display 

this information on polar plots. This monitoring system has already provided 

significant information on the effects of tool profile which can potentially be 

correlated to weld quality and defect detection (Beamish and Russell, 2010a).  
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Figure 2.7 The ARTEMIS tool 

 

Figure 2.8 Polar plot of bending forces 

 

In general, the potential benefits of using advanced tools such as ARTEMIS, to 

collect process data, and analyse the welding process information can be 

summarised as follows: 

i. Help in finding input-output relationships, of the recorded data, to predict 

weld joint strength and weld properties during the weld process. 

ii. Assist in better understanding of tool performance. 

iii. Provides insights into the tool/workpiece complex interactions. 

iv. Assist in establishing the reliable use of POW in relation to force, torque and 

temperature measurements.  

v. Potential to evaluate quality of the welds for real-time applications. 

vi. Assist the development of quality control methods that can identify and 

correct process variations before the formation of flaws. 

vii. Develop intelligent control systems that can optimise the process 

parameters. 

In general, one of the main drawbacks in the area of monitoring and analysis of 

FSW, is the lack of approaches that can provide transparent information about the 

process in real-time. Another topic to address is the development of monitoring 

systems that can evaluate the properties and quality of the welds during the 

welding routine. 
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The literature presented in this Section aims to demonstrate that advanced 

monitoring systems such as the ARTEMIS tool can be used to assist the 

development of more advanced approaches for quality control.  The literature 

review presented in this Section, reveals that the process information provided by 

the ARTEMIS tool can be used as knowledge to develop intelligent and efficient 

applications. These applications can, potentially, monitor and identify problems 

during the welding process. Over the years, many researchers have proposed a 

variety of techniques to create advanced mathematical models that can replicate 

the physical behaviour of complex systems such as FSW. These models are 

commonly proposed as methods to reduce expensive experiments (Bhadeshia, 

2008), and are used as tools to gain deeper understanding of complex systems. In 

the following Section, this topic is reviewed in detail. 

2.2 Mathematical modelling of FSW 

Background 

The use of mathematical models has been widely applied in physics, economics, 

life science, engineering and many other disciplines, in order to more clearly 

understand and replicate the behaviour of complex real-world systems. Materials 

science has taken advantage of modelling techniques to predict mechanical 

behaviour of metals, estimate complex properties of materials and to better 

understand the material’s structure at both micro and macro levels. Modelling in 

materials science has grown significantly over the past two decades; mainly as a 

result of the interest from various industries. Their aim is to achieve better 

solutions for their systems by minimizing the use of resources. Modelling 

techniques are proposed as a reliable alternative to reduce experimental testing 

that involves the destruction of materials. In addition, modelling has gained 

considerable success in developing computational tools that can predict the 

behaviour of materials and avoid the formation of some defects. Significant 
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evidence of this success has been published over the last decade (Bhadeshia and 

Honeycombe, 2006; Elangovan, Balasubramanian, and Babu, 2009; Nandan et al., 

2008). In general, major contributions have been made in the mathematical 

modelling of materials science, new technologies and materials have emerged as a 

result of these contributions. As (Bhadeshia and DebRoy, 2009) point out, there 

has been much progress and success in modelling in materials science. Despite 

this, however, there are still certain limitations regarding the development of 

mathematical models. In terms of data available, scientists can face major 

challenges when attempting exploit large amounts of data, and at the same time 

take advantage of all the collected system’s information. The complexity of systems 

usually increases the complexity of the models, making it difficult for scientists to 

translate the knowledge of the model to non-experts, and take full advantage of 

these modelling techniques. As a result of these issues, namely, large quantities of 

data and complex systems, the computational cost to produce these models is 

usually high. Additional drawbacks of mathematical modelling are: the 

understanding of uncertain behaviour; the presence of noise in data and the 

integration of models that can adapt knowledge from process experts. Indeed, 

many approaches have been proposed to develop more advanced modelling 

techniques that can deal with these drawbacks. Since the invention of FSW, most 

approaches for modelling FSW have proposed the use of numerical analysis to 

develop more advanced models. As introduced in Chapter 1, the use of CI is 

proposed in this thesis as an alternative to model this welding technique, and to 

develop data-driven models which can learn from process data. The following 

Section will briefly introduce the use of numerical analysis approaches that have 

been implemented to model the FSW process. Further, in this Chapter, a review of 

the approaches proposed to model FSW, based on CI, will be presented. 

2.2.1 Numerical modelling approaches for FSW 

Numerical analysis of FSW has played a significant role in the progress made in 

understanding the FSW process: the simulation of properties of the resulting 
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friction stir-welded joints, and the evaluation of the influence that process 

conditions and tool design have over the process. This progress is the result of 

exhaustive research developed over the years, in industries and by many scientists. 

Innumerable approaches have successfully been implemented to model this 

welding technique. Recently, an extensive review conducted by (He et al., 2014) 

demonstrated the widespread use of numerical analysis for FSW applications, this 

review presented a comprehensive analysis of approaches that have successfully 

developed advanced models of the FSW. Scaling models, FE models, grid based 

methods, Lagrangian particle methods, Discrete Element Method (DEM), meshless 

methods, CFD, Analysis of Variance (ANOVA), cellular automata, solid mechanics 

and NN are among the predominant approaches proposed to simulate and assist a 

better understanding of complex phenomena present in this welding technique. 

Due to the plastic deformation of materials and the heat generated during the 

process, the development of models that can simulate the thermomechanical 

behaviour of the process and plastic flow of the materials is extremely difficult but, 

at the same time, the development of these models is crucial to gain further 

insights into the process. For this reason, several studies have been published in 

this area.  

The previously mentioned review includes a considerable amount of publications 

based on FE and CFD. These have contributed to the design and simulation of 

thermomechanical behaviour of FSW. As a result of this exhaustive research work 

on thermomechanical modelling, several software tools, including, ABAQUS, 

DEFORM, COMSOL, FLUENT, ANSYS, STAR-CCM+, have been developed to produce 

advanced models of FSW (He et al., 2014). It is worth noting that all this effort has 

contributed enormously in the field of FSW. It is also beneficial for companies to 

have software available that can model the complex behaviour of the FSW. 

However, one of the major drawbacks of FE, CFD and the software developed 

based on these techniques, is the computational complexity. Modelling complex 

algorithms using FE or CFD requires sophisticated hardware, moreover, the 
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amount of time required to simulate a single model is not suitable for real time 

applications.  

The link between the development of sophisticated mathematical models and 

practical applications for manufacturing processes is crucial. The importance of 

models that can simulate the FSW has been described. There is, however, a 

research gap regarding the creation of not only advanced models, but also, time-

efficient and transparent models (i.e., models that can be easy to describe and 

understand, for experts and non-experts). This thesis predominately focuses on 

these issues by suggesting the use of CI paradigms to develop intelligent models. 

These models can simulate the FSW process with high accuracy, create advanced 

models that are simple to describe and more importantly, can interact with users 

and process experts to communicate the performance of the process. The 

motivation for suggesting this user-model communication is that, potentially, these 

models can have the ability to naturally interact with users and provide useful 

feedback on the process in real-time. There is a lack of research on this topic, but 

recently, a review on modelling of FSW focused on the optimisation of the models 

based on CI inspired algorithms has been published (Singhal, Singh, and Raj, 2014). 

This review highlights the need for the development of algorithms based on CI that 

can efficiently optimise manufacturing processes. The review is not exhaustive but 

it does offer a good understanding of state-of-the-art CI-based modelling. The 

following Section, will describe the fundamental concepts of CI and the main CI-

based approaches used in this investigation. A review of research papers that have 

used these approaches for modelling the FSW will then be presented.  

2.3 Data-driven modelling 

Data-driven models attempt to describe complex systems without including prior 

explicit knowledge of their physical behaviour. Another benefit of these modelling 

techniques is the ability to describe complex systems even with small datasets. 

These approaches have been developed with the contribution from data mining, 
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pattern recognition, CI, machine learning and other artificial intelligence 

paradigms. Data-driven modelling approaches are widely used in material science 

and engineering. The several data-driven modelling methods which have been 

used in these areas include ANN, Fuzzy Systems, GA, SVM, Gaussian process, and 

Bayesian, among others (Moraga, 2005; Solomatine et al., 2008). 

The benefits of using data-driven modelling based on CI paradigms are: the 

interpretability of the models, high accuracy and lower computational cost, when 

comparing with numerical based modelling approaches (FE and CFD). GA are 

population-based evolutionary systems with the ability to solve single-objective 

and multi-objective optimisation problems. This thesis takes advantage from the 

best characteristics of each CI technique to create intelligent hybrid models which 

can efficiently analyse and predict the performance of complex industrial 

processes; create new model-based process monitoring methods; and optimise in 

real-time the process’ performance. 

2.4 Fundamental concepts of CI  

CI is a field of intelligent information processing related with computer science and 

engineering. As shown in Figure 2.9, the escence of CI involves Fuzzy Systems, NN 

and Evolutionary Computation, among other techniques (Pedrycz and Gomide, 

2007b). As the latter describes, there is a need to develop computational interfaces 

that are intuitive to humans.  This is the fundamental concept of the emerging HCS 

research, the primary objective is to make computers adjust to people by being 

more natural and intuitive to use (Pedrycz and Gomide, 2007c). CI paradigms are 

certainly HCS as they rely on humans to desing and build the systems, and humans 

benefit from CI systems as they can find optimal solutions. One of the aims of CI is 

to develop intelligent systems with comparable human performance when 

processing information, it is therefore important to develop human-machine 

systems able to colaborate together and take decisions.  
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Figure 2.9 CI paradigms (Pedrycz and Gomide, 2007b) 

CI paradigms are inspired by biological systems, but none of these mechanisms are 

superior to any others. Recent trends in research and applications of CI techniques 

emphasise the development of effective hybrid CI systems. This research focuses 

on hybrid models based on NN; these approaches are proposed due to their ability 

in capturing complex patterns that can be found in data from complex systems. NN 

are routinely combined with Fuzzy Systems and GA to develop human-centered 

and highly transparent models. 

2.4.1 Neural Networks 

ANN are computational models of neurons based on how the human brain works. 

In this context, a neuro is defined as a special biological cell that processes 

information. The main components of a neural cell are shown in Figure 2.10 where 

dendrites transmit signals from other neurons into the cell body or soma, possibly 

multiplying each incoming signal by transferring weighting coefficient. In the soma, 

cell capacitance integrates the signals which are channelled through the axon 

hillock. Once the composite signal exceeds a cell threshold, a signal, is transmitted 

through the axon. Cell nonlinearities make the composite a nonlinear function of 

the combination of the arriving signals. The synapses operate through the 
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discharge of neurotransmitter chemicals across intercellular gaps and can be 

either excitatory (tending to fire the next neuron) or inhibitory (tending to prevent 

firing of the next neuron). A mathematical model of a neuron in Figure 2.11 shows 

the dendrite weights 𝑣𝑗, the firing threshold 𝑣0 (also referred to as bias), the 

summation of weighted incoming signals and the nonlinear function 𝜎(. ) (Lewis, 

Yesildirak, and Jagannathan, 1998). 

 

Figure 2.10 Neuron’s anatomy 

(Engelbrecht, 2007) 

 

Figure 2.11 Mathematical model of a 

neuron 

Architectures of NN 

A NN is a layered network of artificial neurons, which may consist of an input layer, 

hidden layers and an output layer. Artificial neurons in one layer are connected 

fully or partially to the artificial neurons in the next layer. Feedback connections to 

previous layers are also possible. In Figure 2.12 a typical NN structure is 

illustrated. 

 

Figure 2.12 The basic structure of neural networks 
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Due to their efficiency and ability to solve complex problems, NN have been used in 

a wide range of applications, including, classification, pattern recognition, 

optimisation, control, time series modelling and data mining (Engelbrecht, 2007). 

Different types of NN have been developed and can be classified depending on its 

applications or attributes: 

 

Figure 2.13 Classification of NN regarding their applications or attributes 

In general, NN are powerful function approximators and clustering devices in 

which learning procedures provide the key for development (Pedrycz and Gomide, 

2007a). The learning process of a NN consist on adjust the weights 𝑣𝑗 and 

threshold 𝑣0 values until a certain criterion is satisfied. Weights and thresholds 

values are computed so the NN can learn the optimum values from the given data. 

In supervised learning, the network is provided with a training set, pairs of input 

and the corresponding output samples. Weights are adjusted in such a way that the 

network will produce outputs that are as close as possible to the known outputs of 

the training dataset. Unsupervised learning does not require any outputs 

associated with the input. This learning method aims to reveal the essential 

structure in the data. For the reinforcement learning, the network receives only 

high level guidance. For good performance, the neurons are rewarded but 

penalised for bad performance. For the models developed in this thesis, the RBF 

neural networks are proposed, due to their transparency and learning abilities as 

described in the following Section. 

Radial basis function neural networks 

RBF neural networks are multidimensional nonlinear function mapping which 

depend on the distance between the input vector and the center vector. RBF 

networks have been found to be powerful paradigms for learning complex input-

output relationships. An RBF network with an n-dimensional input 𝑥 ∈ ℜ𝑛 and a 
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single output 𝑦 ∈  ℜ can be represented as follows (Gupta, Jin, and Homma, 

2003b): 

𝒚 ≜ 𝒇(𝒙) =  ∑𝒘𝒊∅𝒊(‖𝒙 − 𝒄𝒊‖)

𝒏

𝒊=𝟏

                              (𝟐. 𝟏) 

 

 

Figure 2.14 Representation of the RBF network 

 

Where ∅𝑖(‖𝑥 − 𝑐𝑖‖) is the radial basis function of  𝑥,  𝑐𝑖 ∈ ℜ
𝑛 are the centres of the 

radial basis functions and 𝑤𝑖  is a weight parameter. For modelling applications, the 

radial basis functions most frequently used for this neural network are Gaussian 

functions: 

∅𝒊(𝒙) = 𝒆𝒙𝒑 (−
‖𝒙 − 𝒄𝒊‖

𝟐

𝟐𝝈𝒊
𝟐 )                            (𝟐. 𝟐) 

Where 𝜎𝑖  is a scalar width parameter for this unit. Using the Gaussian radial 

function given in Equation 2.2, the output of the RBF network in Equation 2.1 can 

be rewritten as follows: 

𝒚 ≜ 𝒇(𝒙) =  ∑𝒘𝒊 𝒆𝒙𝒑 (−
‖𝒙 − 𝒄𝒊‖

𝟐

𝟐𝝈𝒊
𝟐 )                    (𝟐. 𝟑)

𝒏

𝒊=𝟏
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The advantages of RBF networks include the linearity in their parameters and the 

fast and efficient training methods. Additionally, unlike multilayer perceptrons, 

RBF networks have a strong theoretical foundation (Kecman, 2001). In modelling, 

RBF networks have been combined with fuzzy systems and genetic algorithms, to 

create hybrid models that are computational efficient and transparent (M. Y. Chen 

and Linkens, 2001; Hong, Oh, Kim, and Lee, 2001; Pedrycz and Gomide, 2007a; 

Sánchez, Jiménez, Sánchez, and Alcaraz, 2010).  

2.4.2 Fuzzy systems 

The fuzzy set theory was proposed by Zadeh, he introduced the use of fuzzy sets as 

‘a class of objects with a continuum of grades of membership’ (LA Zadeh, 1965) p. 

338. This theory embraces complex phenomena when ‘traditional techniques of 

system analysis are not well suited for dealing with humanistic systems because the 

fail to come to grips with the reality of the fuzziness of human thinking an behaviour 

’ (L. A. Zadeh, 1973) p. 29. Fuzzy Systems have the ability of modelling complex 

systems via simple structures. Fuzzy Systems are human-centric-based paradigms 

that describe nonlinear systems by using fuzzy sets, fuzzy rules and linguistic 

variables. ‘Linguistic variables’ are variables whose values are not numbers but 

words or sentences in a natural or artificial language (L.a. Zadeh, 1975).  

By definition, fuzzy sets are sets whose elements have degrees of membership (LA 

Zadeh, 1965) p. 339, and are defined as follows. 

“Let 𝑋, be a space of points (objects), with a generic element of 𝑋 denoted 

by 𝑥. Thus 𝑋 =  {𝑥}, then, a fuzzy set (class) 𝐴 in 𝑋 is characterised by a 

membership (characteristic) function 𝑓𝐴(𝑥) which associates with each 

point in 𝑋 a real number in the interval [0, 1], with the value of𝑓𝐴(𝑥) at 𝑥 

representing the ‘grad of membership’ of 𝑥 in 𝐴.” 

Fuzzy Systems have 𝑛 inputs 𝑥𝑖 ∈ 𝑋𝑖 , where 𝑖 = 1, 2,… , 𝑛 and 𝑋𝑖  is the universe of 

discourse for 𝑥𝑖, and one output 𝑦 ∈ 𝑌 , where 𝑌 is the universe of discourse for 𝑦.  
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Figure 2.15 shows the basic representation of Fuzzy Systems where the fuzzifier 

converts a set of input data 𝑥 into fuzzy sets. The inference uses the rules in the 

rule base to convert these fuzzy sets into other fuzzy sets that are representative of 

the recommendations of the various rules in the rule base. The defuzzification 

phase combines these fuzzy recommendations to give an output 𝑦. The fuzzy rule 

base consists of a set of fuzzy IF-THEN rules.  

 

Figure 2.15 A Basic representation of Fuzzy Systems  

The fuzzifier is a component that maps the real valued input variable 𝑥 on to a 

fuzzy set 𝐴, Gussian, trapezoidal and triangular are the types of fuzzifiers 

frequently used. The defuzzifier is implemented to specify a point 𝑦 that best 

represents a fuzzy set 𝐵 in the output space. The defuzzifier techniques that are 

frequently proposed are the centre of gravity, centre of area, centre average, and 

maximum defuzzifier (L.-X. Wang, 1997). The fuzzy rule-base is the core of fuzzy 

systems: it consists of the fuzzy IF-THEN rules. The most popular methods to 

express a fuzzy rule are Mamdani-type and Sugeno-type. A Mamdani fuzzy IF-

THEN rule is expressed as:  

𝑅𝑢𝑙𝑒𝑚: 𝐼𝐹 𝑥1 𝑖𝑠 𝐴1
𝑚  𝐴𝑁𝐷…𝐴𝑁𝐷 𝑥𝑛 𝑖𝑠 𝐴𝑛

𝑚 𝑇𝐻𝐸𝑁 𝑦𝑚 𝑖𝑠 𝐵𝑚 

where 𝑚 is the number of rules, 𝐴𝑛
𝑚 and 𝐵𝑚 are fuzzy sets in the input space 

𝑈𝑛  ⊂ 𝑅 and 𝑉 ⊂ 𝑅 respectively, 𝑥𝑛  ∈ 𝑈𝑛  and 𝑦𝑚  ∈ 𝑉 are the input and output 

variables of the fuzzy system.  

A Sugeno type IF-THEN rule is described as: 

𝑅𝑢𝑙𝑒𝑚: 𝐼𝐹 𝑥1 𝑖𝑠 𝐴1
𝑚 𝐴𝑁𝐷…𝐴𝑁𝐷 𝑥𝑛  𝑖𝑠 𝐴𝑛

𝑚 𝑇𝐻𝐸𝑁 𝑦𝑚 = 𝑔𝑚(𝑥1, … , 𝑥𝑛) 
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The fuzzy inference engine is a component in which the fuzzy IF-THEN rules are 

combined in order to build a map from the fuzzy inputs to the output fuzzy set. 

There are various types of fuzzy inference process and fuzzy operators, a complete 

description can be found in (L.-X. Wang, 1997).  

Fuzzy Logic systems 

As previously described, NN have the ability to approximate a function; however, 

to translate the results in terms of natural language is necessary the use of FL 

systems. FL is a tool for embedding structured human knowledge into workable 

algorithms. The main advantage of FL systems, for modelling approaches, is their 

transparency and interpretability of the models via ‘linguistic variables’. FL models 

extract knowledge from data which can then be presented in human-based 

reasoning (linguistic IF THEN rules). Many approaches have been developed using 

FL. They have been successfully applied in real-world systems such as fuzzy 

washing machines, digital image stabilizer, fuzzy systems in cars, fuzzy control of 

subway trains (L.-X. Wang, 1997). 

Neural-Fuzzy modelling 

A variety of hybrid approaches such as Neuro-Fuzzy systems have been proposed 

to improve the capability of Fuzzy Systems. Neuro-fuzzy systems combine the 

learning ability from NN with the reasoning ability of Fuzzy Systems. One of the 

first frameworks based on hybrid systems was introduced by (Jang, 1993), the 

author developed an Adaptive-Network-based Fuzzy Inference System (ANFIS). 

The architecture of ANFIS is a combination of NN and Fuzzy Systems that are used 

to describe the behaviour of complex systems by a set of fuzzy rules. Chen and 

Linkens proposed a variety of NF frameworks to generate and optimise the 

parameters of fuzzy models (Linkens and Chen, 1999). They also developed a rule-

base self-extraction approach that creates interpretable fuzzy models which are 

computationally efficient and linguistically interpretable (M.-Y. Chen and Linkens, 

2004). The potential of neuro-fuzzy systems for industrial applications was 

demonstrated by (Abbod, Zhu, Linkens, Sellars, and Mahfouf, 2006; M. Y. Chen and 
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Linkens, 2001; M.-Y. Chen and Linkens, 2004). The hybrid models proposed were 

used to predict crucial properties of metals, including, tensile strength, yield stress 

and elongation, furthermore, the NF-models were able to predict the 

microstructure of the materials by predicting the grain size. A refined version of 

NF modelling for industrial applications is presented by (George Panoutsos and 

Mahfouf, 2010), they combined NF modelling ideas with theory of fuzzy 

information granulation to capture the system behaviour of complex and imprecise 

dataset of heat treated steel. The models presented are able to accurately predict 

steel properties such as tensile strength, elongation and impact energy. The final 

structure of the models is highly transparent. 

2.4.3 Genetic Algorithms 

GA are direct, parallel, stochastic methods for global search and optimisation 

(Sivanandam and Deepa, 2008). GA attempt to computationally mimic the systems 

based on natural evolution theory as proposed by Charles Darwin, namely: 

reproduction, natural selection and diversity of the species. GA were first proposed 

by Holland (Holland, 1975), who described how to apply the principles of natural 

evolution to optimisation problems. Major contributions in the field were then 

developed by De Jong (De Jong, 1975) and Goldberg (Goldberg, 1989). They 

demonstrated the ability of GA to solve and optimise difficult problems, and their 

contributions lead to successful applications of GAs. (Haupt and Haupt, 2004) 

presents some of the advantages of these techniques, including the ability of GA to:  

i. Optimise with continuous or discrete variables 

ii. Simultaneously searches from a wide sampling of the cost surface, 

iii. Optimise variables with extremely complex cost surfaces 

iv. Provide a list of optimum variables, not just a single solution. 

The GA operates on a population of potential solutions applying the principle of 

survival of the fittest to produce increasingly more precise approximations to a 

solution. At each generation, a new set of approximations is created by the process 

of selecting individuals according to their level of fitness, just as in the natural 
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selection concept: ‘Preservation of favourable variations and rejection of 

unfavourable variations’ (Darwin, 1859), p. 81. All the information about the 

individuals is stored in a chromosome to create populations.  

The general algorithm for a GA can be listed as follows: 

i. Initial population: generate a set of possible solutions to a given problem. 

ii. Survival of the fittest: evaluate each of those solutions, and decide on a 

fitness level. 

iii. Apply selection: from these solutions breed new solutions for the new 

generation, here, the parent solutions that were more ‘fit’ are more likely to 

reproduce, while those that were less ‘fit’ are more unlikely to do so. 

iv. Exhaust search: solutions are evolved over time, by repeating the process 

each generation. 

v. Terminate: when a solution has been found or other termination criteria 

has been met the algorithm stops. 

GA can be defined by either binary or continue values (Haupt and Haupt, 2004). In 

this investigation, the continuous GA will be applied; the basic structure of GA can 

be illustrated as follows: 

 

Figure 2.16 Flow chart of a continuous GA 
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Selection is the process of choosing parents from reproduction; recombination 

combines the information from two parent chromosomes using an operator. The 

operator for this recombination process is known as crossover. Its function is to 

combine the information from two parent chromosomes and create a new 

chromosome. Mutation is a reproduction operator that randomly alters the values 

of genes in a parent chromosome (Haupt and Haupt, 2004).  

The procedure of a generic GA is given as follows (Goldberg, 1989): 

Step 1: set 𝑡 =  1. Randomly generate 𝑁 solutions to form the first population, 𝑃1. 

Evaluate the fitness of solutions in 𝑃1. 

Step 2: Crossover, Generate an offspring population 𝑄𝑡  as follows: 

 2.1 Choose two solutions 𝑥 and 𝑦 from 𝑃𝑡 based on the fitness values. 

 2.2 Using a crossover operator generate offspring and add them to 𝑄𝑡 . 

Step 3: Mutation, mutate each solution 𝑥 ∈ 𝑄𝑡  with a predefined mutation rate. 

Step 4: Fitness assignment: Evaluate and assign a fitness value to each solution 

𝑥 ∈ 𝑄𝑡  based on its objective function value and infeasibility. 

Step 5: Selection: Select 𝑁 solutions from 𝑄𝑡  based on their fitness and copy them 

to 𝑃𝑡+1. 

Step 6: If the stopping criterion is satisfied, terminate the search and return to the 

current population, else, set 𝑡 =  𝑡 +  1 got to Step 2. 

 

GA are less likely to become stuck in local minima when compared with back-

propagation methods (Larose, 2007; Montana and Davis, 1989). GA are approaches 

often used to perform optimisation within a NN, as an alternative to the usual 

back-propagation method. A good example of these applications for analysing 

complex industrial data is given in (Yang, Linkens, and Mahfouf, 2003). These 

hybrid models were developed to predict the flow stress behaviour in aluminium. 

The high accuracy and transparency of the models created was demonstrated via 

GA-NN. By using GA to optimise the process parameters, the authors showed that 

the NN structure can be easily simplified. They proposed the use of continuous GA 

with real-values instead of binary with the aim of reduce computational work.  
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GA are population-based Evolutionary Systems with the ability to solve single-

objective and multi-objective optimisation problems. As most real-world problems 

are multi-objective (i.e., solutions are in conflict with each other), many 

engineering problems require minimize costs while maximising performance. The 

use of multi-objective algorithms is therefore proposed in this investigation. The 

following Section will review the use of GA for multi-objective optimisation. 

Multi-objective optimisation 

Multi-objective optimisation involves the minimization or maximization of more 

than one objective function. The multi-objective optimisation problem may contain 

a number of constrains which any feasible solution must satisfy (Deb, 2001). The 

multi-objective optimisation problem for minimization can be defined as: 

𝐹𝑖𝑛𝑑 𝑎 𝑣𝑒𝑐𝑡𝑜𝑟 𝑥 ∈ 𝑋,𝑤ℎ𝑖𝑐ℎ 𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒𝑠: 

𝑓(𝑥) =  (𝑓1(𝑥),   𝑓2(𝑥),… , 𝑓𝑘(𝑥))
𝑇

 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜          𝑔1(𝑥)  ≤ 0, … , 𝑔𝑚(𝑥)  ≤ 0 

𝑎𝑛𝑑/𝑜𝑟               ℎ1(𝑥) = 0,… , ℎ𝑛(𝑥) = 0  

Where 𝑋 is the feasible space of decision vectors, 𝑥 is the vector of decision 

variables and 𝑘 is the number of objectives. The number of inequalities is 𝑚 and 

the number of equality constraints is 𝑛. To describe the concept of optimisation for 

the minimization problem presented above, the definitions of Pareto domination 

and the Pareto-optimal are introduced (Deb, 2001; Sawaragi, Nakayama, and 

Tanino, 1985): 

Definition Pareto domination 

One solution 𝑥1  ∈ 𝑋  dominates another solution  𝑥2  ∈ 𝑋  , if  𝑓𝑖(𝑥1)  ≤

 𝑓𝑖(𝑥2) , ∀𝑖  ∈ 𝑘, and 𝑓𝑖(𝑥1)  <  𝑓𝑖(𝑥2) for at least one 𝑖 ∈ 𝑘. 

Definition Pareto optimal solutions 

Also known as non-dominated solutions: One solution 𝑥∗ ∈ 𝑋 is Pareto 

optimal if for every 𝑥 ∈ 𝑋, 𝑓𝑖(𝑥)  ≥  𝑓𝑖(𝑥
∗) , ∀𝑖  ∈ 𝑘. 
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The first multi-objective GA, known as VEGA (vector evaluated GA) was proposed 

by (Schaffer, 1985). Since then, several multi-objective algorithms based on 

Evolutionary Algorithms have been developed. In (Deb, 2001), Deb presents an 

exhaustive analysis of the most widely known algorithms. He introduces the 

background, describes the theory, and analyses the advantages and disadvantages 

of each algorithm. This Section will review three multi-objectives algorithms: 

Multi-objective genetic algorithm (MOGA) (C.M. Fonseca and Fleming, 1993b) 

which were implemented in MATLAB (C.M. Fonseca and Fleming, 1993a), fast Non-

dominated Sorting Genetic Algorithm II (NSGA-II) which is one of the most widely 

used algorithms (Deb, Pratap, Agarwal, and Meyarivan, 2002) and finally, a micro-

GA (Coello and Pulido, 2001a) which is proposed as a faster and computationally 

lower in cost algorithm when compared with NSGA-II. 

Multi-objective GA 

MOGA was first introduced by (C.M. Fonseca and Fleming, 1993b), the authors 

were pioneers in developing a GA algorithm for multi-objective problems focused 

on diversity in the non-dominated solutions. The MOGA assigns the fitness 

function by Pareto ranking, and the diversity mechanism used is fitness sharing by 

niching: The fitness Pareto ranking is obtained when, for each chromosome, 𝑐𝑖 

calculates the number of chromosomes which dominate (𝑛𝑖). For rank  𝑟𝑖  =  1 +

 𝑛𝑖; the fitness is evaluated to 𝑐𝑖 using linear interpolation so that 𝑐𝑖  with the 

lowest rank has the maximum fitness. Once the ranking is performed, a raw fitness 

to a solution is assigned based on its rank, in order to maintain diversity among the 

Pareto optimal solutions. The authors introduced niching methods among 

solutions of each rank. The rest of the algorithm uses a classical GA structure: 

selection, crossover and mutation. The GA toolbox used in MATLAB was developed 

based on this algorithm. Additionally, the authors suggest MOGA as a tool for 

decision making support in the design of engineering and control systems 

applications (C.M. Fonseca and Fleming, 1993a). Since then, many applications 

have been developed using this algorithms to solve many challenging real-world 

optimisation problems (C.M. Fonseca, Fleming, Zitzler, and Deb, 2003). 
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Non-dominated sorting Genetic Algorithm II 

The NSGA-II proposed by (Deb et al., 2002) employs a crowded tournament 

selection operator which is designed to keep the diversity of the solutions. NSGA-II 

uses an elitist operator which combines the best parents with the best offspring. 

The main features of the NSGA-II summarised by (Deb, 2012) are: 

i. It uses an elitist principle. 

ii. It uses an explicit diversity preserving mechanism. 

iii. It emphasizes non-dominated solutions. 

A recent survey (A. Mukhopadhyay, Maulik, Bandyopadhyay, and Coello, 2014; 

Anirban Mukhopadhyay, Maulik, Bandyopadhyay, and Coello, 2014) illustrates the 

popularity and efficiency of these algorithms. The objective is to solve real-live 

data mining problems involving multiple conflicting measures of performance.  

Micro-GA 

The first micro-GA algorithm was implemented by (Krishnakumar, 1989), he used 

a population size of 5, a crossover rate of 1, a mutation rate of zero and an elitist 

strategy which copies the best string found in the current population to the next 

generation, and the selection process was created by declaring as a winner the 

individual with the highest fitness. The author compared his approach with a 

classic GA. He reported faster and better results when using a micro-GA for single-

objective optimisation. As a result, a micro-GA for multi-objective optimisation was 

proposed by (Coello and Pulido, 2001a). This algorithm uses two memories: (i) as 

a source to maintain the diversity and (ii) to achieve members of the Pareto 

optimal set. The population is operated in a similar way to that of the single-

objective micro-GA. The authors compared this micro-GA multi-objective approach 

with NSGA-II; the multi-objective micro-GA exhibited a low computational cost 

than NSGA II. 

The CI paradigms reviewed in this Section have been applied to many challenging 

real-world problems. Modelling techniques have been used as tool by industries to 

improve their manufacturing processes and develop new technologies. The 
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following Section will present literature related with the use of these approaches 

for FSW. 

2.5 Modelling FSW using CI approaches 

Over the last two decades, the impact and contribution of FSW for joining 

technology have been significant for many industries. As a result, considerable 

efforts have been made to improve this welding technique and its applications, in 

particular towards process certification. Modelling techniques are proposed as a 

tool to gain deeper understanding into the complex phenomena involved in this 

welding process and predict its performance. The use of advanced models has 

assisted the evaluation of the properties of the welded materials; the reduction of 

expensive destructive testing, and the deep analysis of the influence of the FSW 

parameters over the final product. As discussed in Section 2.2, several models 

based on a variety of advanced mathematical models have been developed. The 

use of modelling techniques in FSW can also assist in the identification of the 

optimal POW. This Section, reviews several CI model-based approaches that have 

been proposed for FSW. The literature presented in this Section is specially 

focused on the CI paradigms previously introduced in Section 2.4.  

Over the last decade, NN have been actively proposed to model this welding 

process, the NN-based models have successfully been used to predict critical 

mechanical properties including, UTS, YS and elongation. The research literature 

presented in this Section reflects the significance that NN have to map complex 

relationships that can be found during the FSW process. The ability of NN to 

analyse complex patterns and predict the performance of the process has been 

demonstrated in various comprehensive studies. For instance, (Okuyucu, Kurt, and 

Arcaklioglu, 2005), first proposed the use of NN for processing complex data from 

the FSW. The authors used a feedforward single layer NN and the backpropagation 

algorithm for the learning process. The NN consists of two inputs which are the 

traverse and welding speeds, and five outputs to predict different properties of the 
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aluminium plates welded by FSW. The properties predicted are hardness of weld 

metal, hardness of HAZ, elongation, YS, and tensile strength.  

The results presented in the latter study were encouraging. As a consequence, 

further investigations have taken advantage of the abilities that NN have to map 

the complex relationships found in FSW. Similarly, (L Fratini and Buffa, 2007) 

successfully used a NN to predict the final microstructure of aluminium alloys. The 

authors then presented a more detailed study (Livan Fratini, Buffa, and Palmeri, 

2009): in both studies, the authors used a supervised multilayer feedforward NN 

based on backpropagation. The NN consisted of four inputs representing the 

values of plastic strain, strain rate, temperature and Zener-Hollomon parameter, 

and one output which represent the behaviour of average grain size. The dataset 

was produced after a series of experiments conducted by materials science experts 

and with information from a finite element model (FEM).  

The experiments in (Livan Fratini et al., 2009), revealed the deeper understanding 

of the nugget, TMAZ and HAZ areas in three different types of welding joints: butt 

joint, lap joint and T-joint. In both studies, the authors demonstrated the ability of 

NN to learn complex data and predict, with high accuracy, the final grain size of 

aluminium alloys (AA6082-T6 and AA2031-T8) welded by FSW. They also used the 

NN model to simulate the behaviour of grain size influenced by two process 

parameters: tool rotational speed and traverse speed. The obtained results showed 

excellent agreement with the experimental data.  

An approach using GA to optimise the search for a desired solution was presented 

in (Tansel, Demetgul, Okuyucu, and Yapici, 2010). The authors propose an a 

approach which uses the knowledge acquired from the NN in (Okuyucu et al., 

2005) to find optimal parameters. The authors propose a GA to minimise or 

maximise welding speed or traverse speed. The authors used the ‘reverse 

engineer’ concept, by giving to the system the desired parameters (hardness of 

weld metal, hardness of HAZ, elongation, YS, and tensile strength). Their approach 

estimates the optimal values for welding speed and traverse speed. The approach 

presented in this study demonstrates the use of NN to learn from data and the 
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potential of GA to optimise multiple FSW parameters. However, as the authors 

acknowledge, their approach is very time consuming.  

A more transparent and faster approach which employs both, multi-objective GA 

and fuzzy modelling, CI-based techniques is presented by (Zhang, Mahfouf, 

Panoutsos, Beamish, and Norris, 2011). The models developed in this study, were 

optimised using NSGA-II. The interpretability of the models was enhanced by 

applying techniques based on fuzzy systems and the efficiency of the model was 

also improved by using gradient descendent algorithm. Yield strength, weld quality 

and average grain size were the outputs predicted using only traverse speed and 

welding speed as inputs of the system. The results showed excellent agreement 

with the experimental data. More importantly, the models were presented in a 

linguistic IF-THEN structure. This study demonstrated the use of fuzzy systems to 

develop models which are simple and can be translated into human linguistic 

reasoning.  

A different technique to better understand the FSW  by using NN was proposed by 

(DebRoy, De, Bhadeshia, Manvatkar, and Arora, 2012). They used a NN to generate 

a performance index that can predict the durability of the tool. This study shows 

that NN can be applied to investigate the FSW from every perspective. Another 

example is given in (Buffa, Fratini, and Micari, 2012), the authors applied NN to 

predict microstructure and micro-hardness of titanium alloys joined by using FSW. 

The inputs of the NN used where plastic strain, strain rate and temperature. In 

contrast with the studies reviewed so far, this work presents the use of NN to 

analyse information of a different metal other than aluminium.  

So far, the literature presented in this Section has demonstrated the use of CI-

based techniques to create advanced models of FSW. The models presented have 

undoubtedly contributed to a better understanding of certain areas of this welding 

technique. The models mentioned above produce accurate information of the 

process and its performance. These approaches, however, are often not suited for 

on-line applications. Nevertheless, efforts have been made to analyse the FSW 

process data in real-time. The development of applications that can ‘online’ 
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evaluate and simulate the behaviour of the FSW is an area which clearly requires 

further research.  Until recently, very little interest has been paid to the 

development of systems used to monitor the FSW performance in real-time and 

provide useful information to the user. 

It is important to develop advanced models of industrial processes, and extract 

useful information of the systems. Equally important is that the information 

extracted can be used as a decision support tool for the final user. Global 

companies are particularly interested in tools which can reduce costs and at the 

same time improve their manufacturing process.  

As presented in Section 2.1.2, FSW is used in many critical applications, 

shipbuilding and aerospace sector have developed requirements for quality 

control of the products welded by FSW (Kallee, 2010), one of the reasons why the 

development of techniques which can ensure the quality of materials welded by 

FSW is particularly important. There is a definite lack of literature in this field, 

especially in relation with CI-based techniques. There are, however, some studies 

which have attempted to develop online techniques, and these can evaluate the 

FSW. For example, in (Fleming et al., 2008), statistical analysis approaches were 

employed to investigate the frequency spectra of forces collected during the FSW 

process. The aim was to detect certain faults during the welding process.  

Another approach analysing data information regarding the forces, for a real-time 

application, was presented by (Boldsaikhan, Corwin, Logar, and Arbegast, 2011). 

The authors used a NN to classify the quality of the welds according to the 

frequency produced by the forces.  They analysed the frequency information from 

the forces, produced during the process, classifying it as ‘good weld’ or ‘bad weld’. 

The results presented in this study were considerable suited for online 

applications, because, as the authors reported, the algorithm produces these 

results in 0.01 second. Most recently, an study based on the analysis of peak 

temperatures was reported by (Imam, Biswas, and Racherla, 2013). The authors 

correlated the temperatures in the nugget welding zone and the heat affected zone 

with the microstructure, hardness, and ductility of the welds. The aim was to find a 
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possible relation of these correlations with weld quality. The results showed that 

temperatures in the HAZ above 410˚C, and in the weld nugget zone below 350˚C, 

resulted in a loss of ductility, property which can affect the quality of the joints.  

Currently, temperatures and forces can be recorded in real-time. This is the reason 

why the results obtained by these approaches are encouraging. It is worth 

mentioning that, to date, not studies or literature was found in relation with 

intelligent control systems that have implemented these techniques. It is also 

worth mentioning that there is a specific interest from industries and scientists in 

developing techniques which can offer useful information about the quality of the 

welds produced during FSW. 

2.5.1 Research challenges 

In summary, this Section has reviewed interesting approaches that apply 

numerical analysis and CI-based techniques to create models with the ability to 

describe complex relationships in FSW. Attempts have been made to extend these 

approaches for online applications. The motivation to develop advanced methods 

that not only can predict, but also, monitor the quality of the welds produced by 

FSW is rapidly growing. 

Online monitoring 

From the point of view of computational modelling, one of the main challenges is 

the development of applications which can monitor and evaluate the performance 

of FSW in real-time. The development of advanced monitoring techniques which 

can prevent the user of flaws/defect formation is significant for reducing 

expensive trials which are currently needed to evaluate the mechanical properties, 

microstructure and quality of the welds. Online monitoring of FSW should be seen 

as a tool to create defect-free welds without the need for destructive or non-

destructive testing evaluations. Another advantage of developing intelligent online 

monitoring techniques is the prediction of properties of the welds, which can lead 

to the optimal design of welds. 
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Automatic detection of abnormal behaviour 

As previously explained in Sections 2.1.6 and 2.1.9, the quality of welds produced 

by FSW is one of the main benefits of this welding technique. As a result, there is 

considerable interest from industries and FSW technology producers for 

developing systems that can ensure the quality of the final product. The detection 

of flaws and defects during the process is a promising area to ensure the quality of 

the welds. Major efforts, however, are needed to develop intelligent systems which 

can detect the different flaws found in friction-stir welded products. It has been 

demonstrated that the quality of the products can be predicted based on the tool 

rotational speed and traverse speed. Nevertheless, it is essential to apply these 

prediction models for real-time applications. 

Human-centric systems 

Despite the drive towards high level of industrial automation (and autonomy) 

humans still play a critical part in most manufacturing processes. This is 

predominantly in terms of expert knowledge, which helps optimise processes. It is 

therefore important maintain the link between human and machines via the 

development of intelligent techniques and systems that work in collaboration. This 

collaboration could be in the form of exchanging process information in natural 

language. The feedback about the system’s behaviour should be natural, accurate, 

and useful for the final user. One of the aims of this concept is to create intelligent 

models that are transparent to the users and can be used as tools for decision 

support.  

2.6 Summary 

In this Chapter, the concept of the FSW process was presented in order to 

demonstrate the significance of this novel technique for industry, and also to 

expose the complex phenomena involved in this manufacturing process. FSW has 

been successfully used to joint materials which are then applied for critical 

applications. Despite the success of FSW, and the development of innumerable 
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applications, many challenges still lie ahead in order to exploit the potential of this 

technique, and more importantly, to ensure the quality of the final product. The 

current literature on processing variables, tool design, and materials was 

presented with the aim of gaining a deeper understanding of the process. The 

advantages and disadvantages of this welding technique were also addressed.  

The literature revealed that one of the main advantages of this welding technique 

is the quality of welds. There is thus a specific interest from companies to develop 

techniques that can provide significant information about the quality and 

characteristics of the products, without the need of destructive testing techniques. 

Efforts have been made to develop technologies capable of collecting process 

information; the most relevant literature on this topic was presented in this 

Chapter. There is a lack of intelligent systems that can monitor the performance of 

the FSW process in real-time, and at the same time, detect behaviour which can 

affect the quality of the final welds. Such systems could have ‘intelligent’ traits, 

such as real-time communication to the user, in natural language, of system 

performance, as well as the provision of possible actions to improve performance. 

Evidence presented in this Chapter reveals that one of the main challenges to 

simulate FSW is the development of models that can describe the complex 

interactions involved in this process. These include heat generation, material flow, 

and the influence of welding parameters over the final weld. A brief review of 

mathematical models which have been proposed to better understand this process 

was presented in Section 2.2. The review exposed the benefits of using advance 

modelling techniques to investigate this manufacturing process. Furthermore, the 

literature revealed that there is gap regarding the developing of more advanced 

models which can effectively describe the complex interactions of FSW such as 

material flow, influence of tool design, plastic deformation and heat generation.  

The creation of advanced models to simulate complex systems such as FSW is 

indeed challenging. As explained in this Chapter, one of the main challenges is to 

develop models which can be both: (i) easy to describe and understand for experts 

and non-experts, and (ii) suitable for real-time applications. Modelling techniques 
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based on CI have been proposed to address these challenges and are frequently 

used to analyse and create intelligent models of complex industrial processes. For 

this reason, this thesis proposes the use of CI paradigms to analyse this 

manufacturing process. The basic concepts of CI were briefly described in this 

Chapter. Specific CI paradigms including NN, Fuzzy Systems and GA, which have 

been successfully applied to create intelligent models of the FSW process, were 

introduced. Additionally, a survey of CI-based studies that have been proposed to 

model the FSW process was presented. Finally, particular challenges which were 

identified during this investigation, related to the development of intelligent 

models for FSW were discussed.  In brief, this Chapter presents a general concept 

of the FSW process, emphasises the importance of modelling techniques. More 

importantly, it was identified the lack of intelligent techniques which are unable to 

effectively monitor the process for real-time applications and at the same time can 

communicate significant information on the performance of the process.  

The next Chapter will present several models which were developed using CI 

paradigms. The models are able to describe and predict the behaviour of FSW at 

various and different scales. 
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3 Multiscale Neural-Fuzzy 
modelling of complex 
manufacturing processes 
for Friction Stir Welding  

Overview 

Manufacturing processes are often challenging systems to accurately model. This is 

due to the nonlinearities and complex interactions which are present in the data 

produced for a single manufacturing routine. The development of approaches that 

can handle complex data and extract knowledge has been exhaustively studied by 

many scientists; and one of the innovative approaches proposed is multiscale 

modelling. This approach is based on the study of sub-processes which are part of 

a whole system. This concept considers a complex system at various-scales. In this 

Chapter, multiscale modelling is proposed to create sub-models of complex 

manufacturing processes such as FSW. The aim of the multiscale concept applied 

to FSW is to create, for the first time, several sub-models through data-driven 

modelling to address three different scales: micro-, meso-, and macro-. Each model 
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represents individual behaviour of the whole FSW welding routine. The data-

driven models are based on NF modelling which are powerful CI paradigms that 

can learn from data and more importantly, the models produced are highly 

transparent: i.e., their interpretability can be translated into human reasoning (IF-

THEN rules). The micro-scale model predicts different microstructure properties 

of the materials, which includes the average grain size and for the first time in this 

field the cooling rate. The meso-scale includes NF models which predict several 

mechanical properties: Elongation, ROA, UTS and YS. These mechanical properties 

characterise some of the mechanical performance of the welded parts. The macro-

scale model was developed to predict the overall WQ of the welds produced by 

FSW. 

The Chapter first introduces the multiscale and data-driven modelling concepts. 

This introduction illustrates the importance of using these techniques for a 

simulation of complex manufacturing process. Later in the Chapter, the NF 

modelling methodology is explained in detail. Finally, the multiscale data-driven 

models based on NF are presented. The models were created using only two 

process variables, in this case, tool rotational speed and traverse speed. The 

models were developed using two classification techniques:  grid partition and 

subtractive clustering. The experiments reveal that the use of subtractive 

clustering reduces the number of rules and the learning ability is superior to grid 

partition; however, grid partition reduces over-fitting when the models present 

challenging datasets.  

The multiscale models developed in this Chapter are highly transparent. They 

clearly exhibit the learning and transparency of NF modelling, as the models 

precisely represent the behaviour of the FSW sub-processes under investigation. 

Another important contribution in this Chapter is the use of these approaches to 

demonstrate how the optimal POW of a single material can be clearly identified 

even at different scales. More importantly, the models predict several mechanical 

properties and microstructure characteristics of the materials under investigation. 
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The approach is also able to quantify and predict the quality of the welds, which is 

one of the main contributions of using these modelling techniques for FSW. 

3.1 Multiscale and data-driven neural-fuzzy modelling 

Multiscale modelling 

Multiscale modelling as a technique for studying complex systems is nowadays of a 

significant help for engineering and materials science applications. The use of 

multiscale modelling has become widespread for analysing complex engineering 

systems (Fish, 2009, 2014; Groen et al., 2014). This technique allows the study of 

multiple physical processes from a particular system. Multiscale modelling is 

especially helpful when information is available at different levels of resolution 

and when embedding a standard problem in a multiscale framework leads to 

significant computational advantages (Ferreira and Lee, 2007). In (Weinan, 2011), 

the author explains that computational complexity can be reduced by exploring the 

disparity between micro and macro-scales of a problem. Multiscale models can 

capture multiple processes at different scales; each process is presented as a sub-

model of the system. Multiscale simulations have been applied to a wide range of 

engineering problems. As illustrated in (Groen et al., 2014), for engineering and 

materials science applications, microscopic properties can be of crucial importance 

for the quality of the overall design of materials. They also explain that materials 

science applications are naturally multiscale, as the macroscopic properties of 

many materials are largely characterised through interactions occurring on the 

microscopic level. Associating the understanding of physical interactions at very 

small scales with the behaviour at the macro-scales is a major focus in the area of 

materials science. This discipline has demonstrated that the multiscale modelling 

and simulation of systems can lead to the development of new technologies (Gates, 

Odegard, Frankland, and Clancy, 2005).  
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In general, the aim of multiscale modelling is to address an approach that shares 

both, the efficiency of macroscopic models, as well as, the accuracy of microscopic 

models by considering simultaneously models at different scales (Weinan, 2011).  

FSW is inherently multiscale, as presented in Chapter 2, the process has been used 

in critical engineering applications; as a consequence, the multiscale analysis of 

FSW is important for the identification of defects or flaws. From the point of view 

of industry, it is particularly important to develop multiscale models of FSW, for 

example, to evaluate the final mechanical properties and microstructure of welds 

produced by FSW (Nandan et al., 2008).  

In this Chapter, the use of multiscale modelling is proposed to analyse the 

behaviour of the FSW process at different scales: micro-, meso- and macro-. The 

aim is to demonstrate the potential of this approach to describe the FSW process 

from its various sub-systems. The multiscale models will simulate the performance 

of the process via data-driven approaches (see Figure 3.1 and Figure 3.2). 

Data-driven modelling 

Data-driven modelling techniques are generally focused on: (i) analysing 

information that represents the behaviour of complex systems and (ii) 

determining the relationship between the variables which are involved in the 

system (input, internal and output variables). Data-driven models attempt to 

describe complex systems without including prior explicit knowledge of their 

physical behaviour. Data-driven approaches have been developed with the 

contribution from data mining, pattern recognition, CI, machine learning and other 

artificial intelligence paradigms. In industry, the availability of devices which can 

measure and collect process data, as well as, the use of advanced computational 

approaches opens up to new scenarios for the development of advanced data-

driven models.  

In this Chapter, data-driven modelling is suggested as an approach which uses CI 

paradigms to build models of physical processes. These models can describe the 
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behaviour of physical systems and learn from the system to modify or predict 

parameters. Figure 3.1 illustrates the general concept of data-driven modelling 

based on CI. The most widely used methods in CI-based data-driven modelling are 

NN, GA and Fuzzy Systems. The combination of these methodologies extracts the 

best characteristics of every approach using them to create powerful hybrid 

models (Solomatine et al., 2008).  

 

Figure 3.1 General concept of data-driven modelling 

As a whole, data-driven modelling techniques are based on the analysis of all the 

data involved in a system. In this thesis, FSW is the system and the data to analyse 

was generated using the ARTEMIS tool. Data-driven modelling techniques have 

been identified as an approach which leads with complex datasets of 

manufacturing processes such a FSW. The challenge in modelling FSW is the 

limited experimental data available, it is expensive to create high quality datasets 

from this process and the analysis of mechanical properties and evaluation of 

microstructure is also expensive and time consuming.  

In the following Sections, several multiscale models of the FSW which were 

developed using data-driven and NF modelling approaches are presented. 

Additionally, the use of fuzzy rule-based systems to build transparent models of 

this complex welding technique is demonstrated.  
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Process Operating Window 

In this Chapter, multiscale and data-driven approaches are presented as 

techniques to analyse and simulate complex industrial processes. By using these 

techniques, a better understanding of complex interactions present in physical 

systems can be achieved. As a result, the regions where the system performs the 

better can be identified therefore used to optimise the system’s performance. For 

FSW, the identification of optimal POW is crucial, especially to obtain defect-free 

welds, and to achieve the desired mechanical properties of the materials welded. 

Currently, most of the POW’s for FSW are defined by trial and error methods. 

These methods are usually expensive and time consuming; the development of 

computational models allows the process user to easy identify the optimal POW’s 

and minimise the need of trial and error methods. The multiscale models 

developed in this Chapter, are highly transparent. They clearly exhibit and easily 

represent the behaviour of the FSW sub-processes under investigation. 

Furthermore, it is demonstrated how the optimal POW of a single material can be 

create at different scales. 

3.2 A multiscale approach for developing CI-based data-

driven models of FSW 

As previously introduced, industrial processes are often very difficult to model, 

mainly, due to the complex behaviour of their variables. As presented in Chapter 2, 

FSW is a welding technique which is stable along the welding process, with a few 

independent variables to control. The plastic flow of the materials and 

thermomechanical behaviour are, however, complex phenomena to understand. As 

discussed in the literature review, Section 2.1.7, several studies have demonstrated 

that the material flow behaviour, which is influenced for the process variables, 

reflects its influence in the generation of defects that can be found in welds 

produced by FSW (Beamish and Russell, 2010a, 2010b; Nandan et al., 2008). 
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The aim of the simulations presented in this Chapter is to enhance the fundamental 

understanding of the FSW process by developing multiscale models using data-

driven modelling techniques. These models represent the FSW at various scales. 

More importantly, the multiscale models assist the process experts to better 

comprehend and easily identify the POW’s of the material under investigation. As 

illustrated in Figure 3.2, the performance of FSW is assessed in three different 

scales: 

i. Meso-scale: Models 1, 2, 3 and 4 describe the behaviour of several 

mechanical properties: Elongation, ROA, UTS and YS.  

ii. Micro-scale: Models 5 and 6 simulate the behaviour of average grain size 

and cooling rate, properties which are strongly related to the final 

microstructure of the materials (Nandan et al., 2008).  

iii. Macro-scale: Model 7 represents the behaviour of the quality of welds 

produced by FSW. 

 

 

Figure 3.2 A data-driven structure proposed to simulate the multiscale behaviour of FSW 
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3.3 Experimental data 

The dataset, shown in Table 3.1 includes the mechanical properties and 

microstructure of the welds. This dataset was obtained from welds samples 

produced by FSW of 6mm thick sheets of aluminium alloy AA5083. The welds were 

performed using the Tri-flute™ MX tool. The dataset shown in Table 3.2, which 

represents the cooling rate, was estimated from thermal measurements of weld 

samples produced with 6mm thick sheets of aluminium alloy AA5083 using the 

Tri-flat™ MX tool.  

 

Table 3.1 AA5083 dataset using the Tri-flute™ MX tool 
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C11 280 168 19.9029 33.9460 314.7806 171.8666 11.9639 0 
C12 280 224 21.4184 31.8447 314.0579 173.0938 - 0 
C13 280 280 20.1078 32.9301 314.5284 173.0029 8.8966 0 
C14 280 336 20.7682 30.9170 314.2965 176.6526 8.6111 0 
C15 280 392 18.6968 29.8833 314.9759 184.0504 6.9829 2 
C16 355 213 21.1851 28.2068 313.5182 171.4650 11.7667 1 
C17 355 284 18.5264 28.4004 310.5434 172.5717 11.9665 0 
C18 355 355 21.7179 32.6291 312.6803 173.9246 10.7214 0 
C19 355 426 21.5080 30.7075 312.5699 174.7096 9.7164 0 
C20 355 497 20.0090 29.3227 310.6121 173.4202 - 1 
C21 430 258 21.3005 - 300.2489 163.3000 14.5185 0 
C22 430 344 25.3713 - 295.9089 169.9000 - 0 
C23 430 430 17.9744 - 266.3400 162.8000 - 0 
C24 430 516 19.6417 - 281.3056 163.6000 10.7752 1 
C25 430 602 19.1110 - 296.1344 169.0000 - 1 
C26 505 303 18.8152 27.2983 315.2544 173.8484 12.8799 0 
C27 505 404 19.6443 27.2994 305.9747 173.5826 - 0 
C28 505 505 13.4041 20.3864 275.7257 174.9407 - 1 
C29 505 606 21.1323 33.3349 320.1107 177.3667 13.0866 0 
C30 505 707 20.7148 30.9903 315.9479 177.8281 11.2733 2 
C31 580 348 20.0604 30.3553 315.2621 173.6538 12.2854 2 
C32 580 464 12.1529 13.6552 229.0648 175.7041 - 2 
C33 580 580 14.9365 18.0198 292.1812 175.8759 - 1 
C34 580 696 10.7151 15.1141 263.5498 177.7214 - 5 
C35 580 812 9.8258 13.0070 258.1556 176.5837 9.3194 8 
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Table 3.2 AA5083 thermal dataset using the Tri-flat™ MX tool 

Weld sample 
Tool rotational 

speed (RPM) 
Traverse speed 

(mm/min) 
Average cooling rate 

(°C/s) 

AW01 400 400 13.8 
AW02 500 500 20.5 
AW03 600 600 40.8 
AW04 700 700 71.1 
AW05 400 480 18.9 
AW06 500 600 87.9 
AW07 600 720 91.6 
AW08 700 800 129.8 
AW09 400 560 63.3 
AW10 500 700 103.5 
AW11 600 840 93.9 
AW12 400 640 66.5 
AW13 500 800 84.2 
AW14 600 960 130 
AW16 300 300 13.1 
AW17 300 360 23.3 
AW18 300 420 30.7 
AW19 300 480 35.2 

 

As previously noted, a significant challenge for the modelling of FSW is the limited 

experimental data available. It is expensive to create dataset of welds to obtain a 

high quality dataset, and furthermore the analysis of mechanical properties and 

microstructure of the samples is also expensive and time consuming. Therefore, 

the available datasets are not in the hundreds or thousands of samples as in some 

other manufacturing processes. 

From Table 3.1, the mechanical properties and microstructure measurements 

were calculated by metallurgical analysis, and the quality index was developed by 

process experts from TWI Ltd. The cooling rate given in Table 3.2 was calculated 

from mathematical definitions proposed on previous investigations of cooling 

rates for aluminium alloys Equation 3.2, (Dobrzański, Król, and Tański, 2010). In 

the following Section, the fundamental concepts of mechanical properties and 

microstructure are briefly explained as well as the acquisition process of the 

datasets. The intention is to illustrate the multiscale behaviour of FSW, which is 
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evident when each concept is individually analysed. This multiscale analysis 

exhibits how a specific concept can affect the overall quality of the final product. 

3.3.1 Mechanical properties 

The mechanical properties of materials will describe how the material reacts to 

external physical forces. These characteristics occur as a result of the physical 

properties inherent to each material, and are estimated through a series of 

mechanical tests (Bhadeshia and Honeycombe, 2006; Nandan et al., 2008). A brief 

description of the mechanical properties which were evaluated to obtain the 

datasets used for the NF models presented in this Chapter is given below (Mathers, 

2014). 

i. UTS is the maximum load that the material can withstand while being 

stretched before breaking. 

ii. YS is the point at which the material begins to deform plastically, i.e. when 

the material changes from elastic to plastic behaviour (permanent 

deformation).  

iii. Percentage of elongation represents how much a material stretches, before 

reaching it ultimate strength point. 

iv. Percentage of ROA is how much a test specimen has necked or reduced in 

diameter at the point of failure.  

UTS and YS are measurements related to the strength of the material, whereas, 

elongation and ROA indicate the deformational characteristics of the material in 

relation to applied forces.  

To generate the dataset showed in Table 3.1, all the weld samples were tested at 

room temperature and a two-dimensional digital image correlation system was 

used for data acquisition and displacement measurements. For each sample, five 

specimens were produced and tested. The tensile specimens were machined from 

the nugget zone in transverse orientation to the weld. The strength obtained in this 

area represents the weakest region of the weld. 
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Figure 3.3 The fracture surface of tensile specimens in the HAZ zone (Zhang et al., 2011) 

 

 

Figure 3.4 The fracture surface of tensile specimens in the nugget zone (Zhang et al., 2011) 

 

According to Zhang in Figure 3.3 and Figure 3.4 (Zhang et al., 2011), failures 

mainly occurred in the HAZ zone due that this zone has the lowest strength 

(Mishra and Ma, 2005). The welds with defects, failures may also occur in the 

nugget zone, where porosity voids are produced. 

3.3.2 Microstructure 

Average grain size and cooling rate 

The microstructure of a material is strongly related to its physical properties, such 

as: strength, toughness, ductility, hardness, corrosion, resistance, among others 

(Bhadeshia and Honeycombe, 2006; Nandan et al., 2008). The analysis of grain size 

of materials that have been thermomechanically affected is often used to evaluate 

the strength of materials. Grain size is partially influenced by the rate of cooling 
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from the manufacturing process; Figure 3.5 illustrates an example of the 

microstructure from the centre of the weld zone of a sample welded by FSW. For 

the case of FSW, the cooling rate represents the change of temperature of the 

material from semisolid phase to solid phase.  

 

Figure 3.5 Microstructure sample from centre of the weld zone (Zhang et al., 2011) 

 

Insights into cooling rate 

In this Section, the use of a thermal imaging camera is proposed as an approach to 

estimate and potentially monitor the cooling rate behaviour during the FSW 

process. The average cooling rate measurements given in Table 3.2 were 

calculated from thermal information acquired during the performance of several 

weld trials. The information of each weld trial was recorded with a thermal 

imaging camera which captures sequences of temperatures generated during the 

welding process. The sequences of each weld sample were then analysed for the 

first 25 seconds of the welding routine. From this analysis, as shown in Figure 3.6, 

seven points were monitored to calculate the cooling rate of the material during 

the process: 𝑆𝑝1,… , 𝑆𝑝7. 
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Figure 3.6 Thermal image of weld sample AW08, material AA5083, using the Tri-flat™ MX 

tool at 700 RPM and 800 mm/min 

 

The behaviour of the analysed points is shown in Figure 3.7; this plot illustrates 

the cooling rate profiles of a weld sample, in this case AW08. The cooling rate of 

each profile was calculated using Equation 3.1 (Dobrzański et al., 2010). 

 

𝑪𝑹𝑺𝒑 =  
𝑻𝟏 − 𝑻𝟐
𝒕𝟐 − 𝒕𝟏

      [ 
°𝑪

𝒔
 ]                              (𝟑. 𝟏) 

     

Were 𝐶𝑅𝑆𝑝 is the cooling rate of each profile, 𝑇1 is the maximum temperature that 

the profile reached and 𝑡1 is the time at that point. The temperature where the 

profile behaviour establishes i.e., the temperature continuously decreases, is given 

by  𝑇2 , and 𝑡2 is the time at this point.  
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Figure 3.7 Cooling rate profiles extracted from weld sample AW08, material AA5083, using 

the Tri-flat™ MX tool at 700 RPM and 800 mm/min 

 

The final cooling rate for each weld sample (𝐶𝑅𝑎𝑣𝑒𝑟𝑎𝑔𝑒) was then estimated using 

Equation 3.2. 

𝑪𝑹𝒂𝒗𝒆𝒓𝒂𝒈𝒆 =  ∑𝑪𝑹𝑺𝒑                                      (𝟑. 𝟐) 
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3.3.3 Weld quality index 

The quality of the welded samples was quantified by process experts from TWI, 

Ltd., via four different indices:  

i. Bend test-root 

ii. Bend test-face 

iii. Surface finish  

iv. Cross sectional inspection 

 

Figure 3.8 Bend test surface finish and cross-sectional inspection to assess the quality of the 

joints produced by FSW 

 

Each index is expressed in numerical values between [0 – 3] using expert 

knowledge, where 0 = none observed flaws. A final index is then constructed by 

aggregating the four sub-indices. This final index measures the overall ‘Weld 

Quality’ (WQ) of the welds, it ranges between 0 – 12, where 0 = ‘Good weld quality’ 

and 12 = ‘Poor weld quality’.  

3.4 Modelling methodology  

To create the NF models, the experimental data was divided into two datasets: (i) 

used for training and (ii) used for testing. As can be observed in Table 3.1, the data 

samples are scarce and in some cases the data is null. This is thus a challenging 

dataset to develop models using data-driven techniques due to the lack of 

information, which can lead to an over-fitting, inaccurate model. To prevent this 
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phenomenon, a cross-validation approach was employed. Leave ‘x’ out cross-

validation is a statistical method for evaluating and comparing learning algorithms 

by dividing all available data into subsets (Jerome, Hastie, and Tibshirani, 2001). 

For the datasets presented in Table 3.1 and Table 3.2, the process of ‘leave X out’ 

cross-validation was applied to establish the best model training regime. The ‘leave 

5 out’ cross-validation was employed for the cases where 25 data samples were 

available: elongation, YS, cooling rate and weld quality. For the cases where 20 

data samples or less were available: ROA, UTS and grain size, the ‘Leave 4 out’ 

cross-validation was applied. 

In this Section, an NF modelling approach is used based on an ANFIS. This 

approach is proposed to capture multiscale behaviour of the FSW process in order 

to map the nonlinear relationships between the process data and the FSW sub-

processes. For the learning routine, ANFIS applies a hybrid optimisation method 

based on back propagation and least square error (Jang, 1993). To validate the 

accuracy of the models, each sub-process was developed using two classification 

methods: grid partition and subtractive clustering. The grid-partitioning method 

defines a number of fuzzy sets for each variable: these fuzzy sets are shared in all 

the fuzzy rules generated. One of the issues related with the grid partition method 

is the generation of high-dimensional problems, due to the large number of fuzzy 

rules generated. On the contrary, with subtractive clustering, the fuzzy sets are 

generated using clustering techniques. The fuzzy sets are not shared by all the 

rules as each fuzzy rule is associated to one cluster. This leads to a reduction of 

rules generation, resulting in a simplified model.  

To measure the accuracy of the predicted models, the Root Mean Square Error 

(RMSE) was employed. This error is frequently used to measure the difference 

between values predicted by a model and the values actually observed from the 

environment that is being modelled. The RMSE of a model prediction with respect 

to the estimated variable 𝑋𝑚𝑜𝑑𝑒𝑙  of a sample of 𝑛 measurements is defined as: 
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𝑹𝑴𝑺𝑬 = √
∑ (𝑿𝒐𝒃𝒔 − 𝑿𝒎𝒐𝒅𝒆𝒍)

𝟐𝒏
𝒊=𝟏

𝒏
                         (𝟑. 𝟑) 

 

Where 𝑋𝑜𝑏𝑠 are the measured values and 𝑋𝑚𝑜𝑑𝑒𝑙   are the predicted values. 

For the datasets used in this Chapter, the RMSE measurements revealed that the 

models developed using subtractive clustering were more precise in respect to the 

real data samples, however, when the dataset is more complex, the grid partition 

models showed a better performance.  

The several data-driven models of the sub-processes which represent the 

multiscale behaviour of the FSW were generated as follows: 

i. Dividing the experimental data into subsets via cross-validation approach 

ii. Classifying the data using both grid partition and subtractive clustering 

methodologies 

iii. Generation of the model structure and fuzzy-rules using NF modelling 

iv. Evaluation of the NF models calculating the RMSE 

3.5 Simulation results 

As presented earlier and illustrated in Figure 3.2, for each NF model, two inputs 

were used: tool rotational and traverse speed, seven outputs were evaluated. The 

simulation response of the seven multiscale data-driven models created is shown 

in the following Section. The training and testing routines were based on (objective 

function) the RMSE which represents the performance of the developed NF 

models. Specifically, the testing performance is used as a measure of model 

generalisation. The behaviour of the models presented in 3D plots shows the 

output behaviour as a function of the inputs.  Due to the limited datasets used to 

produce these models, the models appear to extrapolate in regions where there is 

not enough knowledge (not enough data). Despite this, it is demonstrated that the 
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NF models reasonably represent the FSW process and predict its complex 

behaviour in a way that agrees with expert knowledge. 

3.5.1 Multiscale models to simulate the performance of 

mechanical properties in FSW 

Model 1: elongation 

For model 1, 20 data samples were used for training and 5 for testing (Table 9.4, 

appendix 2). Figure 3.9 shows the high accuracy of the model developed to predict 

this mechanical property. In Figure 3.10, the fuzzy-rules generated to predict the 

elongation of the FSW process are presented. Table 3.3 summarises the model’s 

performance of elongation 

Table 3.3 Elongation model's performance 

 Fuzzy rules RMSE of training RMSE of testing 

Grid partition 9 1.8029 2.8276 

Subtractive clustering 7 0.0608 4.6683 

 

Figure 3.9 The NF sub-process model developed via subtractive clustering to simulate the 

behaviour of elongation during the FSW process 
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The NF model created was compared with work that evaluates the process 

conditions (speeds) with mechanical characteristics such as % elongation. The 

behaviour of this model shows good agreement with the % elongation behaviour 

presented in (Han et al., 2009) for the same material AA5083 . The authors report 

that for RPM speeds around 500 r/min and traverse speeds between 267 mm/min 

and 342 mm/min, the % of elongation is measured between 10-15 % which is 

close to the predictions of the NF model presented. As the process conditions and 

tools are not exactly the same, the accuracy is not exactly the same but it is helpful 

as a reference and to prove the ability of the NF to predict the elongation for 

aluminium alloys AA5083. The NF model in Figure 3.9 shows that for values of % 

elongation > 26 and < 9, (which are values that the model has not learnt before) 

the process parameters are out of the POW. The linguistic interpretation of the NF 

model is illustrated the figure below. 

 

 

Figure 3.10 Fuzzy-rules and aggregation process created using subtractive clustering 

techniques to described the behaviour of elongation during the FSW process 
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In general, there are two principal ways of computing the contribution of each 

activated rule by using either an individual rule-based or a composition-based 

inference engine. The first step of individual rule-based inference is described in 

Figure 3.10. For each activated rule, the membership function of the IF part of the 

rule is calculate, and then, the influence on the THEN part of the rule. When this 

procedure is carried out for all activated fuzzy rules, a process called aggregation 

concludes individual rule-based inference with one output fuzzy set, which is then 

used for the computation of the output value (Kovacic and Bogdan, 2010). 

Aggregation is the process where the outputs of each rule are combined into a 

single fuzzy set. The input of the aggregation process is the list of the truncated 

output functions returned by the implication process for each rule. The output of 

the aggregation process is one fuzzy set for each output variable, here, all fuzzy 

sets assigned to each output variable are combined together to form a single fuzzy 

set for each output variable using a fuzzy aggregation operator as illustrated in 

Figure 3.10, Figure 3.12, Figure 3.14, Figure 3.16, Figure 3.18, Figure 3.24 and 

Figure 3.26. 

An example of the linguistic understanding of the fuzzy-rules presented in Figure 

3.10 can be interpreted as follows: 

1. If Tool rotational speed is “low” and Traverse speed is “medium-low” 

then % elongation is “medium-high” (elongation values predicted are 

slightly > 21.5%) 

2. If Tool rotational speed is “high” and Traverse speed is “high” then % 

elongation is “medium-low” (elongation values predicted slightly < 21.5%) 

3. If Tool rotational speed is “medium-high” and Traverse speed is 

“medium-low” then % elongation is “medium-low” (elongation values 

predicted slightly < 21.5%) 

4. If Tool rotational speed is “low-high” and Traverse speed is “medium-

high” then % elongation is “medium-low” (elongation values predicted 

slightly < 21.5%) 
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5. If Tool rotational speed is “medium-low” and Traverse speed is “low” 

then % elongation is “medium” (elongation values predicted = 21.5%) 

6. If Tool rotational speed is “medium-high” and Traverse speed is “low-

high” then % elongation is “medium-high” (elongation values predicted 

slightly < 21.5%) 

7. If Tool rotational speed is “high” and Traverse speed is “medium-low” 

then % elongation is “high” (elongation values predicted > 25%) 

This is a clear example of the interpretability of the models created using NF 

modelling approaches. The model shows how the linguistic output-performance 

can be directly used by the process experts.  
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Model 2: reduction of area 

For Model 2, 16 data samples were used for training and 4 for testing (Table 9.5, 

appendix 2). Figure 3.11 shows the high accuracy of the model developed to 

predict ROA. In Figure 3.12, the 9 fuzzy-rules generated to predict this mechanical 

property for FSW can be observed. Table 3.4 summarises the performance of this 

model. The ROA is an important requirement to ensure the mechanical properties 

of the materials welded by FSW. For this reason, this investigation project presents 

a NF model which can be used to predict this property. 

 

Table 3.4 Reduction of area model's performance 

 Fuzzy rules RMSE of training RMSE of testing 

Grid partition 9 1.6500 5.0381 

Subtractive clustering 6 0.2372 13.5468 

 

 

Figure 3.11 The NF sub-process model developed via grid partition to simulate the 

behaviour of ROA during the FSW process 
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Figure 3.12 Fuzzy-rules and aggregation process created using grid partition techniques to 

described the behaviour of ROA during the FSW process 

1. If Tool rotational speed is “low” and Traverse speed is “low”, then ROA is 

“medium-high” (% ROA predicted slightly > 30.9) 

2. If Tool rotational speed is “low” and Traverse speed is “high”, then ROA 

is “medium” (% ROA predicted slightly < 30.9) 

3. If Tool rotational speed is “low” and Traverse speed is “low-high”, then 

ROA is “very-low” (% ROA predicted = fail weld) 

4. If Tool rotational speed is “high” and Traverse speed is “low”, then ROA 

is “low” (% ROA predicted slightly < 30.9) 

5. If Tool rotational speed is “high” and Traverse speed is “high”, then ROA 

is “medium” (% ROA predicted = 30.9) 

6. If Tool rotational speed is “high” and Traverse speed is “low-high”, then 

ROA is “very-high” (% ROA predicted > 30.9) 

7. If Tool rotational speed is “low-high” and Traverse speed is “low”, then 

ROA is “medium-high” (% ROA predicted slightly > 30.9) 

8. If Tool rotational speed is “low-high” and Traverse speed is “high”, then 

ROA is “low” (% ROA predicted < 30.9) 

9. If Tool rotational speed is “low-high” and Traverse speed is “low-high”, 

then ROA is “low” (% ROA predicted slightly < 30.9) 
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Model 3: ultimate tensile strength 

For Model 3, 20 data samples were used for training and 5 for testing (Table 9.6, 

appendix 2). Figure 3.13 shows the high accuracy of the model developed to 

predict this mechanical property. In Figure 3.14, the 9 fuzzy-rules generated to 

predict the UTS of the FSW process can be observed. Table 3.5 summarises the 

performance of this model. 

Table 3.5 Ultimate tensile strength model's performance 

 Fuzzy rules RMSE of training RMSE of testing 

Grid partition 9 13.6031 19.0387 

Subtractive clustering 7 1.1466 94.2895 

 

 

Figure 3.13 The NF sub-process model developed via grid partition to simulate the 

behaviour of UTS during the FSW process 

The created NF model to predict the UTS can be compared with the results 

reported in (Mourad, Allam, and El Domiaty, 2014), where the mechanical 

behaviour of friction stir-welded aluminium alloys is studied, this work reports 

that higher rotational speeds leads to better properties of the weld joint, but by 
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increasing the traverse speed up to a certain speed, the properties start to degrade 

and inverse effects on the properties take place. 

 

 

Figure 3.14 Fuzzy-rules and aggregation process created using grid partition techniques to 

described the behaviour of UTS during the FSW process 

Model 4: yield strength 

For model 4, 20 data samples were used for training and 5 for testing (Table 9.7, 

appendix 2). Figure 3.15 shows the good accuracy of the model developed to 

predict the yield strength. In Figure 3.16 the 7 fuzzy-rules generated to predict the 

mechanical properties of the FSW process in this case yield strength are presented. 

Table 3.6  summarises the performance of this model. 

Table 3.6 Yield strength model's performance 

 Fuzzy rules RMSE of training RMSE of testing 

Grid partition 9 2.0788 2.6862 

Subtractive clustering 7 0.0023 1.9643 

 

The relation of speeds and tensile strength has been studied before using NN, in 

(Elangovan et al., 2009), the tensile strength is predicted for aluminium alloys 

AA6061. The tensile strength was assessed using different probe profiles, and 
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various tool rotational speeds between 800-1600 RPM. The research work 

reported the use of NN to accurately predict this mechanical property. 

 

 

Figure 3.15 The NF sub-process model developed via subtractive clustering to simulate the 

behaviour of YS during the FSW process 

 

Figure 3.16 Fuzzy-rules and aggregation process created using subtractive clustering 

techniques to described the behaviour of YS during the FSW process 
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Similar results were reported by (Zhang et al., 2011), where the prediction of the 

optimal yield strength was reported to be between 170-185 MPa, which is 

comparable with the NF model presented in Figure 3.15 which also predicts YS. 

3.5.2 Multiscale models to simulate the performance of 

microstructure in FSW 

Model 5: average grain size 

In Model 5, 10 data samples were used for training and 5 for testing (Table 9.8, 

appendix 2); Figure 3.17 shows a good prediction of the model developed to 

predict the average grain size. In Figure 3.18, the 9 fuzzy-rules generated to predict 

the average grain size of the FSW process are presented. Table 3.7 summarises the 

performance of this model. 

Table 3.7 Average grain size model's performance 

 Fuzzy rules RMSE of training RMSE of testing 

Grid partition 9 0.0002 2.4401 

Subtractive clustering 6 0.0036 22.0430 

 

 

Figure 3.17 The NF sub-process model developed via grid partition to simulate the 

behaviour of average grain size during the FSW process 
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An example of the linguistic understanding of the fuzzy-rules presented in Figure 

3.18  can be interpreted as follows: 

For rule 2: If the tool rotational speed is “LOW” and traverse speed is “MEDIUM” 

then the average grain size is “SMALL”.  

 

 

Figure 3.18 Fuzzy-rules and aggregation process created using grid partition techniques to 

described the behaviour of average grain size during the FSW process 

 

The FSW process results in significant micro evolution, the average grain size 

behaviour predicted in this model can be compared with micrographs of the pre-

weld and post weld materials where the different grain sizes can be identified 

(Zhang et al., 2011): 



 

89 

 

Figure 3.19 Micrographic of the parent 

material 

 

Figure 3.20 Micrographic of the weld at 

280rpm and 392 mm/min 

 

Figure 3.21 Micrographic of the weld at 

580 rpm and 348 mm/min 

 

Figure 3.22 Micrographic of the weld at 

580 rpm and 812 mm/min 

 

Similar results about the prediction of the average grain size in the nugget zone are 

reported in (Livan Fratini et al., 2009). The average grain size calculated within 

this zone is between 15-20 µm which shows a good agreement with the NF model 

presented in Figure 3.17.  
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Model 6: Cooling rate 

In Model 6, 13 data samples were used for training and 5 for testing (Table 9.9, 

appendix 2); Figure 3.23 shows a good prediction of the model developed to 

simulate the cooling rate behaviour during the FSW process. Figure 3.24 shows the 

5 fuzzy rules generated to describe the cooling rate of the FSW process. Table 3.8 

summarises the performance of this model. 

The NF model created to predict the cooling rate, is one of the original 

contributions of this research investigation, this is the first time that the cooling 

rate, is calculated with thermal information created during the welding routine.  

 

Table 3.8 Cooling rate model's performance 

 Fuzzy rules RMSE of training RMSE of testing 

Grid partition 9 6.4042 16.8897 

Subtractive clustering 5 0.1487 36.7035 

 

 

Figure 3.23 The NF sub-process model developed via subtractive clustering to simulate the 

behaviour of cooling rate during the FSW process 
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Figure 3.24 Fuzzy-rules and aggregation process created using subtractive clustering 

techniques to described the behaviour of cooling rate during the FSW process 

3.5.3 Multiscale model to predict the quality of the welds during 

the FSW process 

Model 7: Quality of the welds index 

For Model 7, 20 data samples were used for training and 5 for testing (Table 9.10, 

appendix 2). Figure 3.25 shows the simulation response to predict the weld 

quality. In Figure 3.26, the 4 rules generated to predict the weld quality of welds 

produced by FSW are presented. 

Table 3.9 Weld quality model's performance 

 Fuzzy rules RMSE of training RMSE of testing 

Grid partition 9 0.6616 0.5481 

Subtractive clustering 4 0.5146 0.4106 
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Figure 3.25 The NF sub-process model developed via subtractive clustering to predict the 

quality of materials welded during the FSW process 

 

Figure 3.26 Fuzzy-rules and aggregation process created using subtractive clustering 

techniques to predict the quality of welds produced during the FSW process 

The example shown above (in Figure 3.26), demonstrates how the transparency of 

these models can be translated into linguistic-based knowledge. The model shows 

how the behaviour of the process variables can significantly influence the quality 

of the materials welded by FSW. When higher traverse and tool rotational speeds 

are set, the weld quality of the final product will decrease. In practice, this is 

because the material cannot be properly stirred if the speeds are too high or too 
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low. This is due to the rate of temperatures needed to plasticise the material. From 

the point of view of industry, the production of welds with poor quality joints can 

result in high resource losses and high associated costs (scrap material, rework 

costs etc.). 

Neural-Fuzzy models for monitoring the POW in real-time 

Figure 3.27 shows a screenshot of the developed Graphical User Interface (GUI), 

which is based on LabView V.10. On the left hand side of the GUI window the raw 

signals (ARTEMIS unit) are plotted and monitored (process settings, internal 

parameters as well as the tool bending forces), while on the right hand side the 

software monitors the current performance based on the model-predicted POW. 

The depicted sample screenshot is based on the NF model previously presented in 

Figure 3.25, this application predicts in real-time the WQ index based on the 

current welding speed and tool rotational speed for AA5083 aluminium alloy, 6mm 

thick, welded with a Tri-flute™ MX tool. 

 

Figure 3.27 FSW model-based monitoring tool, sample screenshot of the graphical user 

interface 
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3.6 Summary 

In this Chapter, multiscale and data-driven modelling techniques were proposed as 

tools which can analyse and simulate complex industrial processes. The models 

presented in this Chapter were developed using NF modelling approaches. These 

are CI paradigms based on fuzzy systems and NN with the ability to learn from 

data, predict behaviour of complex systems, and are capable of creating 

transparent models. It was demonstrated that by using these techniques, a better 

understanding of complex interactions present in manufacturing processes can be 

achieved. More importantly, the multiscale models assist the process experts to 

better comprehend and easily identify the POW’s of the system under 

investigation. 

The NF models presented in this Chapter have successfully simulated a complex 

manufacturing process, in this case FSW. The transparency of the NF models was 

demonstrated, and the interpretability of these models was exemplified with the 

use of IF-THEN sentences. It was demonstrated that NF-models can be translated 

into natural human reasoning which help experts better understand the complex 

interactions of their systems. 

The study of two classification techniques was also evaluated: subtractive 

clustering and grid partitioning. The aim was to compare the modelling 

performance resulting from the use of each technique for the given datasets. 

Subtractive clustering techniques were found to be more flexible than grid 

partitioning as they can reduce the number of rules. This investigation has shown 

that NF modelling can accurately predict the behaviour of FSW, even with few 

parameters and small data samples. The NF models were produced with only two 

inputs: tool rotational speed and traverse speed, and various process 

characteristics were also evaluated. The NF models predicted crucial mechanical 

properties of the materials welded by FSW. Elongation, ROA, YS and UTS were 

accurately predicted for aluminium alloys AA5083. The microstructure of the 

material was evaluated by simulating the process data at two different scales: 



Chapter 3.  Multiscale Neural-Fuzzy modelling of complex manufacturing 
processes for Friction Stir Welding 

95 

average grain size and cooling rate. Furthermore, the performance of the models 

was successfully simulated to predict the quality of welds produced by FSW. It is 

worth emphasising that the NF models presented in this Chapter are highly 

transparent. Compared with related studies, the NF models showed a satisfactory 

accuracy of the variables and the interpretability of the final models has been 

enhanced with the use of linguistic sentences. The NF models have been confirmed 

to follow the expected behaviour as predicted by theory and knowledge experts. 

As presented in the literature review Section 2.5, NF models have been proposed 

to analyse complex manufacturing process. NF models of FSW have been 

previously developed. In this investigation, however, for the first time, a multiscale 

approach is proposed to gain insights into FSW. This is a significant contribution 

for process experts as the models have been used as tools to study in depth the 

complex interactions within the system, as well as its influence over the whole 

FSW process.  

Another important contribution from the simulations presented in this Chapter, 

was the creation of a NF model which can predict the cooling rate using thermal 

information from the process. This is a promising approach which can potentially 

be used for real-time applications. 

One of the limitations of this study was the over-fitting of the models, due to the 

lack of data, the learning process of these models is challenging. In the following 

Chapters this issue will be addressed by using evolutionary algorithms to optimise 

the models. 
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4 A CI modelling and 
optimisation approach 
based on spectral-
temporal analysis – An 
application to FSW 

Overview 

One of the main challenges in manufacturing processes is the detection of 

behaviour which can affect the process. Many advanced devices, which can collect 

data, are available, but it is often difficult to extract significant information from 

the temporal data generated. The analysis of variables which can change through 

time has been extensively used to extract information from signals which can affect 

the process. Signals such as vibration, force, temperature, among others, are 

usually analysed in micro scales using spectral analysis. This technique is widely 

used as it examines the frequency of a signal to understand its contribution to the 

whole process. The FFT is extensively used because it allows the spectral analysis 
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of signals, deep understanding of the signal generation and can be used to 

understand what physical frequency components are contributing to a signal 

(Bracewell, 1965) . Spectral analysis finds applications in industry and many other 

fields such as vibration monitoring, economics, meteorology, astronomy, speech 

analysis, medicine, seismology, control systems among others  (Nandagopalan, 

1994; Stoica and Moses, 2005). FFT is clearly a form of multiscale representation 

of the signals (at various scales/frequencies). For this reason, this investigation 

proposes a spectral analysis framework which analyses the forces generated from 

a complex manufacturing system, and for the first time, a spectral analysis 

approach is developed to extract indices which can correlate the frequency-based 

behaviour of the signals with the quality of the final product. The force’s 

information is extracted from 24 monitoring channels. After extracting this 

information, a data-driven model-based on NF is created to predict the 

performance of the system. The novelty of this approach is that the construction of 

the intelligent NF model describes the manufacturing process with only little 

information extracted from the signals. Additionally, the proposed approach 

indicates that the monitoring points can be considerably reduced which can lead to 

the development of more simple monitoring tools. 

The spectral analysis based NF model presented in this Chapter is first developed 

using a Sugeno-type fuzzy inference system, and then an optimisation of the model 

is proposed to improve the performance. The optimisation based on GA and NN is 

proposed to enhance the performance of the spectral analysis based NF model. As 

predicted, the experiments showed a better performance of the models using the 

GA-based optimisation. For this reason, the proposed optimisation approach is 

then used to improve the multiscale models presented in the previous Chapter. 

The experiments showed a good accuracy for all the multiscale facets of the 

process under investigation. Furthermore, the optimised models showed potential 

to use these techniques for online applications, as the computational complexity 

was reduced by using only five rules to describe the models.  



Chapter 4.  A CI modelling and optimisation approach based on spectral-
temporal analysis – An application to FSW 

98 

This Chapter will demonstrate the use of NF models to describe complex processes 

even with small datasets. The spectral analysis based on FFT shows encouraging 

results to correlate the signals of the process with quality performance. Finally, a 

GA optimisation, which enhances the performance of the multiscale models, is 

presented.  

4.1 Spectral-temporal analysis and manufacturing 

processes 

Spectral analysis is applied in many fields of engineering, economics, meteorology, 

astronomy and several others. Spectral analysis permits the study of ‘hidden 

periodicities’ in data which in manufacturing processes is normally collected from 

advance data acquisition devices (Stoica and Moses, 2005). Signals are being 

generated continuously from industrial processes and many monitoring 

applications have been developed base on signal analysis. As a result, there is a 

significant interest in the study of spectral analysis. Spectral analysis is very useful 

for the examination of frequency content in a signal; this analysis is widely used 

when trying to understand what physical components are contributing to a signal. 

Physical quantities such as forces, vibration and temperature can easily represent 

the effect of frequency from signals. 

For the case of FSW, several signal variables such as force, torque and temperature 

can be recorded during the welding routine. Currently, as reviewed in Sections 

2.1.9 and 2.1.10, the data acquisition devices used for FSW can collect high-

definition data from different forces involved in the process. Attempts to study the 

effect that forces can have over the joint and to potentially apply this approach for 

online applications have been made. For instance, an interesting study presented 

by (Boldsaikhan et al., 2011), used NN and discrete Fourier transform to evaluate 

the oscillations of forces, this approach demonstrates the potential of spectral 
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analysis of forces to monitor the FSW in real-time, and more importantly, the study 

revealed that the frequency patterns from the forces can detect wormhole defects.  

4.1.1 Fast Fourier transform  

The use of Fourier analysis is very common in industry. One common application is 

machinery condition monitoring. Fourier analysis is used to gain understanding of 

the signal generation. More insight is gained from observation of the spectrum, i.e., 

the signal decomposed as a function of frequency (Purdue-University, 2011). In 

this investigation, FFT are used to study the forces generated by the ARTEMIS tool. 

FTT finds the frequency components of a signal in a time domain environment. The 

spectrum of forces presented in this investigation was created by using the ‘fft’ 

function of MATLAB, the details of the algorithm can be found in (MathWorks, 

2012). 

4.1.2 A neural-fuzzy model-based on spectral-temporal 

information of FSW 

As discussed in the literature review, the cost of test to identify defects on welds is 

high and implies destroying the tested material. There is also a lack of techniques 

which can predict (analytical or otherwise) the behaviour of welds or analyse the 

FSW process in real-time. However, as previously discussed, by using CI and 

modelling frameworks, model-based structures can be developed to simulate the 

behaviour of the underlining processes. 

This Chapter focuses on a model-based technique as an approach that uses CI 

methods to build models that describe the behaviour of the FSW process. Data-

driven modelling is usually proposed as a lower computational cost method, as 

compared to FE and CFD which are frequently used to model the FSW process (He 

et al., 2014). One of the drawbacks of some CI modelling techniques, such as, NN is 

the lack of interpretability of the resulting models (‘black box’). This is because for 
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complex processes, such as FSW, or process with a high amount of numerical data, 

it is challenging to create more transparent, easier to understand, i.e., linguistic-

oriented models. However, as previously discussed, by combining CI modelling 

techniques with human-cognition-based modelling approaches such as FL and NF 

systems, hybrid models can be developed to create transparent structures.  

In this Section, spectral-temporal process information is analysed to develop 

transparent and accurate model-based ‘process mappings’ of signals generated by 

FSW. For the proposed approach, spectral indices are created directly from high-

resolution information recorded using the ARTEMIS tool. This is a novel approach 

which studies the relationship between the process parameters and the overall 

quality of the welds. The process parameters include, tool rotational speed, 

traverse speeds and bending forces (see Figure 4.1).  

 

 

Figure 4.1 NF modelling approach based on spectral-temporal analysis of internal variables 

of the FSW process 
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4.1.3 Neural-fuzzy modelling 

For the experiments presented in this Chapter, the use of CI Modelling techniques 

was proposed to create a model-based approach for the monitoring of the FSW 

process. It is achieved by transforming the data process information into process 

knowledge (transparency) that may allow deeper study of this complex industrial 

process. This Section employs NN due to its ability to capture complex patterns in 

the data, as well as fuzzy systems that offer the ability to develop hybrid models 

that are transparent to the user. As discussed in the literature review, NF 

modelling techniques have been successfully applied in the past to model complex 

industrial processes which are both computationally efficient and highly 

transparent (Abbod et al., 2006; George Panoutsos and Mahfouf, 2010; Zhang et al., 

2011). 

FL is an approach to computing based on ‘degrees of truth’ rather that ‘true or 

false’ (1 or 0). The approach attempts to solve problems by trying to mimic human 

cognition (LA Zadeh, 1965). The main advantage of FL systems for modelling 

approaches is their transparency and enhanced interpretability of the resulting 

models via the use of ‘linguistic variables’. Via these systems, it is possible to 

extract knowledge from data which then can be presented in human-based 

reasoning terms (linguistic ‘IF-THEN’ rules). The aim of NF modelling approaches 

is to combine the transparency of rule-based fuzzy systems, such as FL, with the 

flexible learning capability of NN. 

4.2 Methodology 

4.2.1 Experimental data 

A high-resolution dataset was recorded during welding trials, at TWI Ltd., using 

the ARTEMIS tool which collected the high-resolution information of the bending 

forces for 34 welds of varying process conditions (traverse and tool rotational 



Chapter 4.  A CI modelling and optimisation approach based on spectral-
temporal analysis – An application to FSW 

102 

speeds) see Table 4.2. For each weld, the tool bending forces were measured 

around 24 points (channels) every 7.5 degrees on the tool circumference. The 

material used for these trials was 6mm thick of AA5083 aluminium alloy, the welds 

were performed using the Tri-flute™ MX tool.  

The quality of the welded samples was quantified by process experts via four 

different indices: bend test-root, bend test-face, surface finish and cross sectional 

inspection. Using expert knowledge, each index was expressed in numerical values 

between [0 – 3] as follows: 

  

Table 4.1 WQ indices evaluation by process experts 

Numerical Value Expert interpretation 

0 Free from identifiable flaws 

1 Slight indication/witness 

2 Partial failure 

3 Complete failure 

 

A final index was then constructed by aggregating the four sub-indices. This overall 

index measures the ‘Weld Quality’ (WQ) of the joints, it ranges between [0 – 12], 

where 0 = Good weld quality and 12 = Poor weld quality.  
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Table 4.2 Quality assessment and process conditions of 34 weld samples performed using 

the Tri-flute™ MX tool for 6mm thick sheets of AA5083 aluminium alloys 

Weld 
sample 

Tool 
rotational 

speed (RPM) 

Traverse 
speed 

(mm/min) 

Bend  
test-root 

(0-3) 

Bend 
test-face 

(0-3) 

Surface 
finish 
(0-3) 

Cross 
section 

(0-3) 

Weld Quality 
‘WQ’  

(0-12) 

C04 380 304 0 0 0 0 0 
C05 380 304 0 0 0 0 0 
C06 380 304 1 0 0 1 2 
C11 280 168 0 0 0 0 0 
C12 280 224 0 0 0 0 0 
C13 280 280 0 0 0 0 0 
C14 280 336 0 0 0 0 0 
C15 280 392 0 0 1 1 2 
C16 355 213 0 0 1 0 1 
C17 355 284 0 0 0 0 0 
C18 355 355 0 0 0 0 0 
C19 355 426 0 0 0 0 0 
C20 355 497 1 0 0 0 1 
C21 430 258 0 0 0 0 0 
C22 430 344 0 0 0 0 0 
C23 430 430 0 0 0 0 0 
C24 430 516 0 0 1 0 1 
C25 430 602 0 0 1 0 1 
C26 505 303 0 0 0 0 0 
C27 505 404 0 0 0 0 0 
C28 505 505 0 0 0 1 1 
C29 505 606 0 0 0 0 0 
C30 505 707 0 0 0 2 2 
C31 580 348 0 2 0 0 2 
C32 580 464 0 2 0 0 2 
C33 580 580 0 1 0 0 1 
C34 580 696 0 1 1 3 5 
C35 580 812 3 1 1 3 8 
C36 380 304 0 0 0 0 0 
C37 380 304 2 0 0 0 2 
C38 380 456 0 0 0 0 0 
C39 380 532 0 0 0 1 1 
C40 380 608 0 0 1 1 2 
C41 380 684 0 0 1 2 3 

 

As a consequence of the large quantity of high-resolution data generated in a single 

weld, the use of spectral-temporal analysis was proposed to analyse the temporal 

signal of the bending forces. Several 3D frequency spectra plots of the 34 welds 

were developed to observe the behaviour of the process in the frequency domain 

(0-15 Hz) across all the 24 channels.  

Based on the spectral-temporal analysis, two indices were extracted from the 

amplitude of the signal to then generate the process model using an ANFIS (Jang, 

1993). This approach is proposed to capture spectral-temporal patterns from the 
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tool bending forces of the FSW process, in order to map the non-linear 

relationships between the process data and the resulting weld quality. The 

hypothesis predicts that the bending forces will reveal a frequency behaviour 

which will differentiate the levels of weld quality between the welds. In addition, 

this modelling approach allows the development of a transparent model structure 

easy to analyse (in a linguistic format) and with a good accuracy of the WQ. The 

model-based approach was evaluated using the RMSE as a cost function to 

calculate the relationship between the bending forces and the predicted response. 

4.3 Spectral-temporal analysis of the bending forces 

extracted from friction stir welded samples 

The proposed model-based approach is focused on the spectral-temporal analysis 

of the high-resolution bending forces recorded via the ARTEMIS tool. The spectral-

temporal methodology was developed by using a FFT (MathWorks, 2012) to 

analyse the temporal signal generated in the 24 channels across the weld, for all 

the 34 weld samples. The spectral analysis was created using the ‘fft’ function in 

MATLAB, the parameters used for the function were:  

Table 4.3 FFT sampling settings 

Sampling settings Value Variable 

Sampling frequency 25 (Hz) Fs 

Sample time 1/Fs (Hz) T 

Time vector Initial time welding : T : Final time welding t 

Length of signal 1024 L 

 

After the spectral-temporal analysis of the 34 welds, 3D frequency spectra plots, in 

the frequency domain from 0 to 15 Hz, were created to observe the behaviour of 

the process across all the monitoring channels. The analysis of the 3D plots 

showed the high correlation of the amplitude of the signal with the quality of the 

weld, which is influenced by the process speeds. All the welds above 580 rpm 
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presented defects. Spectral samples of (a) a defect-free weld, (b) a weld with flaws, 

and (c) a weld with poor quality are shown and explained below.  

Figure 4.2, illustrates the original signal from the bending forces of weld sample 

C11, the plot is an example of only a single channel, in this case the plot shows 

channel 12. In the same figure, the amplitude spectrum generated using FFT is 

plotted. For a better visualisation of the behaviour of the 24 channels for each 

weld, 3D plots were generated. The spectral-signal of all channels for weld sample 

C11 is illustrated in Figure 4.3. This weld was evaluated as defect-free with WQ = 0. 

The settings of this weld were: tool rotational speed of 280 rpm and traverse speed 

of 168 mm/min. For this weld sample the amplitude of the signal can be clearly 

observed across the 24 channels.  

A different exemplification of the amplitude for a weld with flaws is presented in 

Figure 4.4; the plots in this figure show the original signal from the bending forces 

of weld sample C24, for channel 09, and the amplitude spectrum for that weld 

sample. The amplitude spectrum of all channels for weld sample C24 is illustrated 

in Figure 4.5. This weld was evaluated as weld with flaws WQ = 1 .The settings 

used for this weld sample were: tool rotational speed of 430 rpm and traverse 

speed of 516 mm/min.  

The amplitude behaviour for a weld with poor quality, WQ = 8, is presented in 

Figure 4.6, the original signal from the bending forces of weld sample C35, for 

channel 12, and the amplitude spectrum generated using FFT are also shown in 

this figure. While, in Figure 4.7, it can be observed that the parameters of the welds 

can have a significant influence in the spectral behaviour of the bending forces. 

This figure shows the amplitude spectrum of all channels for weld sample C35. The 

settings used to produce this weld sample were: tool rotational speed of 580 rpm 

and traverse speed of 812 mm/min.   
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Figure 4.2 Amplitude and time domain spectrum generated from weld sample C11 in 

channel 12 

 

 

Figure 4.3 Amplitude spectrum of the high-resolution weld sample C11, WQ = 0 produced at 

280 rpm, 168 mm/min 
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Figure 4.4 Amplitude and time domain spectrum generated from weld sample C24 in 

channel 09 

 

 

Figure 4.5 Amplitude spectrum of the high-resolution weld sample C24, WQ = 1 produced at 

430 rpm, 516 mm/min 
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Figure 4.6 Amplitude and time domain spectrum generated from weld sample C35 in 

channel 12 

 

 

Figure 4.7 Amplitude spectrum of the high-resolution weld sample C35, WQ = 8 produced at 

580 rpm, 812 mm/min 
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As can be observed from the 3D spectral plots, the temporal signal across the 

frequency domain shows ‘peaks’ in the amplitude values related with the process 

parameters. The challenge, from a data-driven modelling and computational point 

of view is to capture the spectral patterns and use them to directly evaluate weld 

quality. Within the 3D spectral plots of the 34 welds, seven significant ‘peaks’ were 

identified on the spectral frequency across various signals. The ‘peaks’ identified 

were analysed in two dimensions (amplitude vs. frequency) the behaviour is 

illustrated as follows: 

 

 

Figure 4.8 The amplitude behaviour of 

three peaks out of the seven peaks 

identified within the spectral analysis 

 

Figure 4.9 The amplitude behaviour of 

two peaks out of the seven peaks 

identified within the spectral analysis 

 

Figure 4.10 The amplitude behaviour of two peaks out of the seven peaks identified within 

the spectral analysis 
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As illustrated in Figure 4.8, Figure 4.9, and Figure 4.10, the frequency peaks 

appeared at different points of the frequency domain, the behaviour of the seven 

frequency peaks with respect to the amplitude is explained as follows: 

i. Low frequency peak []. Appears in all welds at the beginning of the 

signal (Figure 4.8). 

ii. RPM peak []. Appears in all welds at the RPM frequency value (based on 

the tool rotational speed setting) (Figure 4.8). 

iii. Right harmonic peak []. Appears after the ‘RPM peak’ (Figure 4.8). 

iv. Left harmonic peak []. Appears before the ‘RPM peak’ (Figure 4.9). 

v. First short peak []. Appears immediately next to the ‘Low frequency 

peak’ (Figure 4.10). 

vi. Second short peak []. Appears directly adjacent to the ‘RPM peak’, just 

before the peak appears (Figure 4.10). 

vii. Middle short peak []. Appears directly adjacent to the harmonic peak 

(‘Left harmonic peak’ and ‘Right harmonic peak’), shortly after the peak 

appears (Figure 4.9). 

 

The spectral analysis of the bending forces revealed a potential to correlate 

frequency features to weld quality. An exhaustive analysis of the spectral signals of 

the 34 weld samples across the 24 monitoring points was performed; interesting 

behaviour related with the amplitude was identified and important information 

was extracted, Table 4.4 summarises the significant spectral features that 

contribute to the weld quality. 
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Table 4.4 Analysis of the behaviour of the peaks across the 24 channels 
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 
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            C33 580 580 1 
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            C35 580 812 8 
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 

            C04 380 304 0 
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           C05 380 304 0 
           



 


          C06 380 304 2 
           



   


        C36 380 304 0 
        



  


            C37 380 304 2 
     



  


  


            C38 380 456 0 
       



  
 

            C39 380 532 1 
        



  
 

           C40 380 608 2 
     



     
 

           C41 380 684 3 
     



     
 
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The activity zone, between channel 5 and channel 17 was analysed using a 

correlation approach (Pearson’s coefficient) (MathWorks, 2011) in order to 

establish the one-to-one relationship of these channels as compared to the weld 

quality of the process. Based on the correlation results of the channels and the 

amplitude of the signal, channel 12 showed a high correlation to the weld quality, 

this can also be observed in Table 4.4. From this analysis, it is evident that not all 

the ARTEMIS channels need to be used for weld quality prediction, which can lead 

to a simplified ARTEMIS unit instrumentation. 

The relation between channel 12 and weld quality was evaluated using Pearson’s 

correlation approach, the calculated value obtained was 0.8295 (high correlation 

of the variables evaluated) also, the peak analysis across the welds samples (3D 

spectra) identified the amplitude of the ‘RPM peak’ as a possible influence for the 

prediction of the weld quality, this peak also appears in all the 34 welds. 
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4.3.1 Neural-fuzzy model-based on spectra-temporal analysis of 

FSW 

The process of directly linking spectral indices to weld quality and embedding 

information in a model/mathematical structure is relatively complex. The use of 

FL, however, allows this ‘translation’ to be done via the use of expert knowledge 

(FSW experts, modelling experts). It is possible to appreciate the complexity and 

non-linearity of the resulting data (spectral-temporal analysis). This Section 

describes the link between the indices extracted from the bending forces to 

develop an accurate NF model that predicts the behaviour of the FSW process. This 

approach demonstrates the potential of using CI modelling techniques as a tool to 

transform data process information into an efficient computational model.  

After analysing the behaviour of the amplitude of the rpm signal, two parameters 

were identified as possible candidates for directly influencing on the quality of the 

process: (i) maximum amplitude value and (ii) limit 1 (+2% of amplitude value). 

Using these parameters, two indices were extracted directly from the spectral-

temporal analysis:  

i. Index 1: represents the amplitude value from limit 1 

ii. Index 2: represents the maximum amplitude value  

By using these indices two datasets were created via cross-validation to develop 

the NF model. Cross-validation is a statistical method of evaluating and comparing 

learning algorithms by dividing all available data into subsets (Jerome et al., 2001). 

Leave ‘x’ out cross-validation is a procedure used when the available data samples 

are sparse; this procedure is proposed for performance estimation and model 

selection to avoid over-fitting.  

For the original dataset, two subsets were created, 25 weld samples were used to 

train the model and the rest of the data to validate the model (see Table 4.5). The 

process of ‘leave 9 out’ cross-validation was employed and repeated several times 

per model in order to establish the best model training regime. 
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Table 4.5 Dataset used to create a spectral analysis based NF model of FSW. 

 

By using both, (i) the new indices extracted from the spectral analysis and (ii) the 

weld quality assessment, a NF model was created to map the non-linear 

relationships between the process data and the weld quality.   

 Weld 
sample 

Index 1  
(Max Amp) 

Index 2  
(Amp. at Freq. +2%) 

Weld 
Quality 

TRAINING 
DATA 

C11 1.1346 0.0374 0 

C12 2.2573 0.1152 0 

C13 2.7225 0.1551 0 

C14 3.4049 0.2019 0 

C15 3.7965 0.2628 2 

C16 1.8744 0.1217 1 

C17 1.7298 0.0339 0 

C18 2.0752 0.0957 0 

C19 2.8183 0.2056 0 

C20 3.1397 0.0559 1 

C21 2.5185 0.0803 0 

C22 2.9208 0.1438 0 

C23 3.5618 0.1074 0 

C24 4.1595 0.1491 1 

C25 3.7177 0.3444 1 

C26 2.7711 0.1518 0 

C27 3.7057 0.1523 0 

C28 3.2342 0.2039 1 

C29 4.4280 0.2320 0 

C30 4.4956 0.2403 2 

C31 3.5349 0.0088 2 

C32 4.1610 0.0934 2 

C33 3.8975 0.1451 1 

C34 4.0199 0.2118 5 

C35 5.7697 0.2940 8 

TESTING 
DATA 

C04 2.1678 0.0313 0 

C05 2.5312 0.0749 0 

C06 2.9524 0.1961 2 

C36 1.9780 0.0607 0 

C37 1.4899 0.0296 2 

C38 2.9819 0.1700 0 

C39 2.8468 0.0855 1 

C40 4.1959 0.0329 2 

C41 4.7754 0.2532 3 
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Figure 4.11 Modelling structure developed for the performance of quality of the FSW process 

based on spectral analysis 

 

As illustrated in Figure 4.11 , the fuzzy-model structure was created based on the 

spectral-temporal dataset of 34 high-resolution weld samples, with 2 inputs: Index 

1, Index 2 and one output: weld quality. The accuracy of the fuzzy model-based 

was evaluated using the RMSE as a cost function.  

For these models, the RMSE was used to calculate the error between the weld 

quality measured (real industrial data) and the weld quality predicted (NF model) 

for both training and testing datasets. The RMSE of training data calculated was 

0.99245 (Figure 4.12) and the RMSE calculated for the testing data was 1.0942 

(Figure 4.13), the performance of the weld quality predicted can be observed in the 

following figures. 
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Figure 4.12 Predicted output of the 

dataset used to train the model 

 

Figure 4.13 Predicted output of the 

dataset used to test the model response 

The resulting simulations, illustrated in Figure 4.14, show a relatively good 

performance in the prediction of the weld quality, it can be observed that the 

model extrapolates in a certain area, resulting in negative values; this is due to lack 

of data in the extrapolated area. In this case, the model naturally estimates beyond 

the original range. 

 

Figure 4.14 Model-based developed using NF systems, it can be appreciated the good 

accuracy the model to predict the WQ performance with the information from just one 

channel (channel 12) 
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The enhanced interpretability of the model can be demonstrated in the linguistic 

rule-based structure generated to predict the weld quality (Figure 4.15). 

 

Figure 4.15 The linguistic rule-based structure and aggregation process created to predict 

the WQ of the FSW process with 2 indices extracted from the spectral analysis 

As it is shown in Figure 4.15, three linguistic rules were developed to predict the 

quality of welds produced by FSW. The developed rules can be interpreted as 

follows: 

1. If Index 1 is ‘high’ and Index 2 is ‘medium-high’ then WQ is ‘medium’. 

(Weld with flaws) 

2. If Index 1 is ‘medium-high’ and Index 2 is ‘medium’ then WQ is ‘low. 

(Defect-free weld) 

3. If Index 1 is ‘low’ and Index 2 is ‘low’ then WQ is ‘large’. (Poor quality of 

welds) 

Overall, in this Section, a NF model-based approach was successfully developed 

allowing the deep analysis of the performance and the behaviour of the FSW 

process. 
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4.4 Optimisation of the neural-fuzzy models using genetic 

algorithms 

At this stage, CI approaches have been applied to demonstrate the ability of 

adaptive NF inference systems to simulate the behaviour of FSW process. The 

limitations of these approaches, however, concern mainly in the rule generation. 

Such a complex process requires the study of more advanced learning algorithms 

that can improve the models. As reviewed in Section 2.4, the use of intelligent 

hybrid approaches combining RBF neural networks with learning algorithms such 

as Fuzzy C-Means (FCM) and GA is widely applied in data-driven modelling due to 

its capability and computational efficiency.  

In this Section, a model-based framework is proposed using the FCM algorithm to 

initialise the RBF network structure. Due to the absence of any differential 

equations describing the hybrid system, a GA was used for the optimisation of the 

RBF (Figure 4.16). Its parameters are subsequently optimised using a GA as 

introduced in the literature review Section 2.4.3. 

Initial Structure 

To generate the initial structure of the model and assign the initial conditions for 

the optimisation, the training dataset is partitioned into multi-dimensional clusters 

of information using the FCM algorithm, subsequently the training dataset is 

normalised between [-1 and 1]. FCM is frequently used in modelling approaches as 

a result of its ability to group and form clusters of data that have similar attributes. 

As shown in (Bezdek, 1981), by presenting a input-output dataset and assigning 

the number of clusters, the algorithm creates a list of optimal centres (Nefti and 

Djouani, 2002a, 2002b). With this information, the initial rule-base for the RBF 

neural network (centres (𝑐), sigma (𝜎) and weights (𝜔) values) can be extracted as 

detailed in (Zhang and Mahfouf, 2007). The FCM methodology is used here as it 

conveniently creates FL clusters that can be used directly in the RBF system at low 

computational processing cost. For the proposed GA-RBF model approach, the 
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number of clusters corresponds to the number of rules. The best response for the 

welding datasets was obtained with five clusters and sigma value of 0.3 (see Table 

4.6). 

Optimisation 

A GA is used as an optimisation tool that searches for the optimum solution (rules 

and membership functions) for the RBF neural network structure given a training 

dataset. The integration of GA, NN and Fuzzy Systems has been used to train and 

learn complex and non-linear input-output mappings. As discussed in the 

literature review, Section 2.4, the capability of RBF-NN and GA algorithm to 

analyse complex systems, learn from information, and seek accurate modelling 

structures has been successfully applied in previous studies (Linkens and 

Nyongesa, 1996). Several approaches have been proposed to optimise RBF neural 

networks using GAs. The optimisation presented in this Chapter is similar to the 

one shown in (Billings and Zheng, 1995), where the genes to build the 

chromosomes are defined based on the RBF network weights(membership 

functions width, membership functions centre, output weights).  

Using the information obtained from the FCM, the variables to optimise (𝑁𝑣𝑎𝑟𝑠) and 

the structure of the chromosome can be defined. The initial population (𝐼𝑛𝑖𝑡𝑃𝑜𝑝) is 

built as follows:  

𝑝1 = (𝑐1, … , 𝑐𝑟 , 𝜎1, … , 𝜎𝑟 , 𝜔1, … , 𝜔𝑟  ) 𝑟 = 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑟𝑢𝑙𝑒𝑠,  

𝑐ℎ𝑟𝑜𝑚𝑜𝑠𝑜𝑚𝑒 = [𝑝1 , … , 𝑝𝑁𝑣𝑎𝑟𝑠]  

𝐼𝑛𝑖𝑡𝑃𝑜𝑝 =  𝑁𝑝𝑜𝑝  ×  𝑁𝑣𝑎𝑟𝑠 

Where, 𝑁𝑝𝑜𝑝 is the population size, in this case,  𝑁𝑝𝑜𝑝 = 80, centres (c), sigma (σ) 

and weights (ω) values are the rule-base for the RBF neural network and each 

chromosome represents the whole system. 

The GA evaluates the fuzzy model structure by minimising the error between the 

desired output and the trained output. The fitness function is computed the RMSE. 
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During the evaluation of the fitness function, the GA generates possible solutions 

for the RBF. Using Equation 2.3 the RBF computes the output of the system. When 

the termination criterion is achieved, the optimisation routine stops and the final 

output of the fuzzy model can be obtained. 

 

Figure 4.16 Flow chart of the suggested GA-RBF optimisation 

 

This GA-RBF optimisation was proposed in this Chapter to improve the spectral 

model and also to enhance the multiscale models presented in Chapter 3. The 

results are resumed in the following Section. 
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4.4.1 Optimisation of the FSW models using a GA-RBF intelligent 

hybrid approach 

The aim in this Section is to demonstrate the benefits of the proposed GA-RBF 

optimisation and its ability to improve the efficiency of the NF models previously 

produced using ANFIS. For the first set of experiments, the training dataset used 

was based on the spectral analysis obtained in Section 4.3.1, using the two indices 

as inputs to predict one output, in this case, weld quality. First, the model was 

presented with the training data (Table 4.5) for 3 rules, its performance was 

analysed several times increasing the number of rules. As can be observed in Table 

4.6, the best response for the welding datasets was obtained with 5 rules. 

Table 4.6 The GA-RBF performance evaluation of spectral indices 

 RMSE of training RMSE of testing 

3 Rules 0.6130 0.7920 

5 Rules 0.6150 0.6600 

10 Rules 0.5450 0.7270 

 

Based on the optimised GA-RBF model from the spectral-temporal analysis, a 

second set of experiments was performed to improve the response of the 

multiscale models presented in Chapter 3. The training datasets from the previous 

created multiscale models were evaluated in this Section in order to demonstrate 

how the proposed GA-RBF hybrid approach can improve the response and 

learning process of the models developed to describe the FSW process. The 

improved fuzzy models were performed using 2 inputs (tool rotational speed and 

traverse speed) and one output which describe the various sub-processes of FSW 

(elongation, ROA,UTS, YS, average grain size, cooling rate and WQ). A summary of 

the improved models is presented in Table 4.7. As can be observed, the overall 

behaviour of the models shows a clear improvement of the response.  
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Table 4.7 Comparison of GA-RBF vs. ANFIS performance of the multiscale FSW models 

Fuzzy model 
evaluated 

ANFIS model’s accuracy GA-RBF model’s accuracy 

Fuzzy-
rules 

RMSE of 
training 

RMSE of 
testing 

Fuzzy-
rules 

RMSE of 
training 

RMSE of 
testing 

Time 
training 
routine 

(sec) 

Spectral indices 3 0.9925 1.0942 5 0.6150 0.6600 111.16 

Elongation 7 0.0608 4.6683 5 0.3510 0.7380 686.51 

ROA 9 1.6500 5.0381 5 0.4620 0.8180 955.68 

UTS 9 13.6031 19.0387 5 0.4800 0.8710 464.58 

YS 7 0.0023 1.9643 5 0.3350 0.7080 476.02 

Average Grain Size 9 0.0002 2.4401 5 0.4010 0.7730 388.72 

Cooling Rate 5 0.1487 36.7035 5 0.1820 0.7920 665.68 

WQ 4 0.5146 0.4106 5 0.4280 0.7230 388.72 

 

The use of GA is usually proposed to ensure a good performance and better 

prediction of the NF models. In this case, the model performance was better for 

each prediction. It was conclude, however, that the generation of more samples in 

the area of poor quality (WQ > 4) will be helpful for the development of even more 

accurate models. 

 

Figure 4.17 Fitness vs. Generations to optimise % elongation of FSW with population size = 

80. Elapsed time for training = 686.51 sec 
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Figure 4.18 Fitness vs. Generations to optimise ROA of FSW with population size = 80. 

Elapsed time for training = 955.68 sec 

 

Figure 4.19 Fitness vs. Generations to optimise UTS of FSW with population size = 80. 

Elapsed time for training = 464.58 sec 
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Figure 4.20 Fitness vs. Generations to optimise YS of FSW with population size = 80. Elapsed 

time for training = 476.02 sec 

 

Figure 4.21 Fitness vs. Generations to optimise Average grain size of FSW with population 

size = 80. Elapsed time for training = 388.72 sec 
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Figure 4.22 Fitness vs. Generations to optimise Cooling rate of FSW with population size = 

80. Elapsed time for training = 665.68 sec 

 

Figure 4.23 Fitness vs. Generations to optimise Weld quality of FSW with population size = 

80. Elapsed time for training = 388.72 sec 
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4.5 Summary 

Overall, in this Chapter, two major contributions were presented: (i) a NF model 

approach-based on spectral analysis and (ii) a GA-RBF optimisation which 

improves the performance of the models from previous simulations (Chapter 3) 

and maintains their simplicity and transparency.  

In this Chapter, a NF model-based approach was successfully developed, allowing 

the deep analysis of the multiscale behaviour of the FSW process. The use of 

spectral-temporal analysis was proposed as the main vehicle to capture process 

information from bending forces. It was demonstrated how the tool bending forces 

measurements can be used to predict the final weld quality of the materials welded 

using FSW. Furthermore, the contribution of this spectral analysis can be extended 

to the potential reduction of the number of monitoring channels which are 

currently used to collect the bending forces information. This can lead to the 

development of simpler instrumentation of monitoring tools.  

This is the first time that a spectral analysis has been used to capture indices 

related with the weld quality of the FSW process, and a NF model-based has been 

developed to evaluate the performance of the FSW. The spectral analysis may be 

used as a NDT. More importantly, the model based on spectral analysis of the 

bending forces may be used for real-time applications as this approach is 

computationally low.  

The model presented shows good accuracy in the prediction of the weld quality of 

AA5083 aluminium alloys using 6mm thick sheets with the MX Tri-flute™ tool. It 

should be noted that it would be beneficial and useful to evaluate the performance 

of this technique in different materials and tool combinations. Moreover, it would 

be beneficial to perform more ‘poor quality’ welding trials to test the 

generalisation ability of the model, which is often a problem in data-driven 

modelling of FSW, as the current data consist of mostly good to average weld 

quality. 
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The aim of presenting a GA-RBF optimisation in this Chapter was to demonstrate 

that even with lack of data, the models previously developed can be improved by 

using hybrid techniques. The hybrid modelling technique proposed in this Chapter 

uses: (i) FCM to classify the data and create the rules which will describe the 

system; (ii) GA to search for optimum solutions and (iii) RBF to improve the 

learning process of the model. A clear enhancement of the multiscale models of the 

FSW process was summarised and presented in this Chapter. The knowledge 

acquired from the optimised models may serve as a basis for future studies in the 

area. 

In general, the work presented in this Chapter, contributes to a deep 

understanding of the FSW from the perspective of force analysis. The 

simplification of the models via hybrid approaches can accurately describe 

complex behaviour of manufacturing processes at different scales.  One of the main 

challenges in industry is, however, not only the collection and extraction of 

significant information, but also the identification of uncertain behaviour that can 

affect the process and how the system communicates this behaviour to the user. 

There is a lack of techniques which can accurately evaluate the prediction of 

models and present this information in human-reasoning context. The following 

Chapter will present a novel approach which has the ability to detect and evaluate 

new behaviour from the system in order to efficiently communicate the 

performance to the user. 
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5 A new ‘Novelty Detection’ 
framework based on 
fuzzy entropy with 
linguistic feedback 

Overview 

NF modelling has been extensively used to accurately describe and predict the 

behaviour of complex systems. However, one of the main challenges in CI-based 

modelling for complex manufacturing process is the interaction with humans. 

There is a need for developing models which can naturally interact and 

communicate unexpected behaviour from the systems. ND has been proposed as 

an approach which identifies new system dynamics that the model has not 

encountered before. There are several techniques based on ND which detect new 

process dynamics from data. Only a few of these approaches, however, deal with 

human reasoning which can lead to the natural interaction of machine-human. As 

presented in the literature review, FL systems are used to create models based on 

human reasoning. In this Chapter, a new ND framework is presented based on 
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fuzzy entropy, a property of FL which is proposed as a measure of the quantity of 

information in a fuzzy set.   

This Chapter presents a new ND framework which is created by taking advantage 

of the fuzzy entropy. The aim of this framework is to create a linguistic-based 

feedback mechanism which can advise the process users on the performance of 

complex manufacturing process. The main goals of the proposed framework can be 

listed as (i) warn the user when a new condition appears in the system, (ii) advise 

the user in regards to the reliability of the model’s prediction when a novelty 

occurs.  

The framework creates NF data-driven models, as discussed in previous Chapters, 

these models learn from complex dataset. The models in this Chapter are used to 

predict the quality of materials welded by FSW. During this investigation, the 

significance of predicting the quality of the welds produced by this welding 

technique was identified. It is very difficult to detect the generation of defects 

during the welding routine. This framework informs the performance of new 

behaviour in the system which can be linked to process variables affecting the 

quality of the joints. 

The information presented regarding the performance of the system is given to the 

user in a simple sentence; this feedback concludes the human-centric concept of 

this novel framework. This Chapter starts with a brief introduction to the main CI 

concepts applied to develop the proposed framework: HCS, fuzzy systems and ND, 

later, the main contribution of this Chapter is presented. The methodology to 

create this framework based on fuzzy entropy is explained in detail. Finally, the 

results of this framework are applied to FSW. The models presented predict the 

weld quality of the system, and more importantly, provide linguistic feedback to 

the user from three different data sources: Experimental data, real-time data 

recorded in a single weld and synthetic data. The latter was evaluated to 

demonstrate the potential of this framework for real-time applications. 
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5.1 Fuzzy systems and novelty detection, a human-centric 

approach 

One of the challenges in HCS is to design systems which can interact with humans 

by using simple and transparent features. Hybrid NF modelling techniques address 

this challenge by taking advantage of the interpretability features of FL systems, 

while maintaining a very good learning ability via the neural-network 

computational structure. The NF models have a simple structure. They are easy to 

understand (by the process users) and have the ability to not only process complex 

information, but also adapt and learn from the environment (data-driven 

supervised learning). As presented in the literature review, there are particular 

benefits of developing computational intelligent models based on neural networks 

and fuzzy systems: the relatively low computational cost and the good 

generalisation performance in describing complex nonlinear systems (Paiva and 

Dourado, 2004). A range of disciplines including engineering, healthcare and 

business informatics have taken advantage of such traits by developing intelligent 

systems based on NN and fuzzy systems approaches (Gupta, Jin, and Homma, 

2003a). In manufacturing, several data-driven model-based approaches focused on 

NF modelling have been proposed to describe nonlinear mappings of complex 

industrial data (Elangovan et al., 2009; G. Panoutsos, Mahfouf, Beamish, and Norris, 

2010; Zhang et al., 2011). Although models are used to accurately describe and 

even predict the behaviour of complex systems, the communication with human 

operators is often not intuitive, for example, when computational models need to 

communicate unexpected behaviour from the system (i.e., novelty detection). 

In this Chapter, an ND framework, data-driven model-based, is proposed (Figure 

5.1) to monitor the FSW process conditions, predict the performance of the 

process, and communicate to the user any new/unexpected system behaviour via a 

linguistic feedback mechanism. 
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Figure 5.1 Data-driven model-based on novelty detection for FSW 

5.2 A Novelty detection approach based on fuzzy entropy 

5.2.1 Radial basis function and neural-fuzzy systems 

As previously introduced in Chapter 2, Section 2.4.1, RBF is a powerful artificial NN 

used for learning complex input-output mappings (Gupta et al., 2003b). The RBF 

structure (see Figure 5.2) is commonly used with FL to model complex systems 

when there is a need for inherent system transparency and interpretability. This 

NN is a multidimensional nonlinear function mapping that can use data to learn 

input-output non-linear relationships. 

 

Figure 5.2 RBF neural network structure 

One advantage of combining RBF neural networks with fuzzy systems is that 

linguistic fuzzy IF-THEN rules, which are naturally related to fuzzy membership 

functions, can be mathematically described in the model as a Gaussian radial basis 
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function (L. X. Wang and Mendel, 1992). It thus provides a degree of inherent 

linguistic interpretability.  

Consider a fuzzy system with inputs 𝑥 ∈  ℜ𝑛, 𝑀 IF-THEN rules, the membership 

function 𝜇
𝐴𝑖
𝑗  for the 𝑗𝑡ℎ rule (𝑗 = 1,2, … ,𝑀) , and the 𝑖𝑡ℎ component (𝑥𝑖) of the 

input vector 𝑥. If a singleton fuzzifier is used, the summative result of the 𝑗𝑡ℎ rule 

on the input vector (x) is given by (𝑢𝑖(𝑥) =  ∏ 𝜇
𝐴𝑖
𝑗

𝑛
𝑖=1 (𝑥𝑖)), where 𝑢𝑖(𝑥) =

 𝜇
𝐴1
𝑗 (𝑥1)𝜇𝐴2

𝑗 (𝑥2)… 𝜇𝐴𝑛
𝑗 (𝑥𝑛). 

As demonstrated in (Gupta et al., 2003a), the input-output equation of a fuzzy 

system with a singleton fuzzifier, product inference, and centroid defuzzifier can 

be expressed as: 

𝒚 =  ∑ 𝒘𝒋(∏𝝁
𝑨𝒊
𝒋

𝒏

𝒊=𝟏

(𝒙𝒊))                               (𝟓. 𝟏) 
𝑴

𝒋=𝟏
 

Where 𝑤𝑗 ∈  ℜ
𝑛 (𝑗 = 1,2,… ,𝑀) are the weight parameters, since the membership 

functions are nonlinear parameterised functions. Equation 5.1 represents a 

nonlinear neural network with a non-fuzzy input vector 𝑥, with membership 

functions (MFs) 𝜇
𝐴𝑖
𝑗(𝑥𝑖), weights 𝑤𝑗 , and the nonfuzzy output 𝑦 ∈  ℜ.  

There are several possibilities for the choice of a basis function. One of which are 

Gaussian networks. They are highly nonlinear and provide good locality for 

incremental learning (Gupta et al., 2003b). Here a Gaussian radial basis function is 

chosen as the membership function, consequently: 

 

𝝁
𝑨𝒊
𝒋(𝒙𝒊) = 𝒆𝒙𝒑(−

𝟏

𝟐
∑(

𝒙𝒊 − 𝒄𝒊𝒋

𝝈𝒊𝒋
)

𝟐𝒏

𝒊=𝟏

)                          (𝟓. 𝟐) 
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When Equation 5.2 is used, Equation 5.1 can be rewritten as follows: 

𝒚 =∑𝒘𝒋

𝑴

𝒋=𝟏

 (∏𝒆𝒙𝒑(−
𝟏

𝟐
∑(

𝒙𝒊 − 𝒄𝒊𝒋

𝝈𝒊𝒋
)

𝟐𝒏

𝒊=𝟏

)

𝒏

𝒊=𝟏

)  

=∑𝒘𝒋

𝑴

𝒋=𝟏

 𝒆𝒙𝒑 (−
𝟏

𝟐
∑(

𝒙𝒊 − 𝒄𝒊𝒋

𝝈𝒊𝒋
)

𝟐𝒏

𝒊=𝟏

)                              (5.3) 

𝒚 =∑𝒘𝒋

𝑴

𝒋=𝟏

 𝒖𝒋                                               (𝟓. 𝟒) 

Where  

𝝁𝒋 = 𝒆𝒙𝒑 (−
𝟏

𝟐
∑(

𝒙𝒊 − 𝒄𝒊𝒋

𝝈𝒊𝒋
)

𝟐𝒏

𝒊=𝟏

)                               ( 𝟓. 𝟓) 

The parameters 𝑐𝑖𝑗  and 𝜎𝑖𝑗  associated with the Gaussian membership functions are 

to be determined by process data. 

As reviewed in Section 2.4, the use of intelligent hybrid approaches combining RBF 

neural networks with learning algorithms such as FCM and GA is widely applied in 

data-driven modelling due to its capability and computational efficiency. They can 

represent the fuzzy rule-based knowledge through a self-adaptive process 

(Jantzen, 1998). The proposed model-based framework applies the FCM algorithm 

to initialise the RBF network structure (initial clustering for the estimation of the 

membership functions). Its parameters are subsequently optimised using a GA as 

introduced in Section 2.4.3. 

One of the challenges of manufacturing systems is the identification and 

communication of unexpected process performance. This involves the 

identification of new behaviours that have not been previously encountered by the 

model, and the evaluation and communication of this behaviour to the user. In this 

Chapter, the ND framework addresses this challenge. 
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5.2.2 Novelty Detection 

ND deals with the identification of new and/or unknown system dynamics which 

the computational system has not previously encountered. NN have been used to 

design effective ND techniques with the ability to identify and evaluate ‘unseen’ 

data. These approaches have been used extensively for industrial applications, 

especially to detect possible faults during the process and diagnose the 

performance of the system (Brotherton and Johnson, 2001; Li, Pont, and Barrie 

Jones, 2002; Surace and Worden, 1998). One of the advantages of these techniques 

when monitoring an industrial process is that its results can be used online as 

demonstrated in (Crook, Marshland, Hayes, and Nehmzow, 2002; Sohn, Worden, 

and Farrar, 2001); The use of ND techniques in relation with fuzzy systems is, 

however, limited (Chaghooshi, Fathi, and Kashef, 2012; Lee, Kim, Cheon, and Kim, 

2005; Liangqun, Hongbing, and Xinbo, 2006), despite the user-centric features 

offered by such techniques. 

5.2.3 Fuzzy entropy 

Fuzzy entropy based on Shannon’s function was proposed in (Luca and Termini, 

1972) as a measure of the quantity of information in a fuzzy set (fuzziness). The 

authors propose this approach for fuzzy modelling as a potential tool to analyse 

the information. This information is received when the user has to make a decision 

and in pattern analysis to classify information described by Fuzzy Systems (Luca 

and Termini, 1972, 1974).  

By using Shannon’s definition of entropy (Shannon, 1948) in fuzzy systems, the 

fuzziness measure of a membership degree 𝜇 can be written as: 

 

𝒇(𝝁) =  − 𝝁 𝒍𝒏 𝝁 − (𝟏 −  𝝁)                                    (𝟓. 𝟔) 
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Thus, a fuzzy entropy formula on a finite universal set 𝑋 = {𝑥1, … , 𝑥𝑛} is defined 

as:  

𝑯(𝑨) =  −𝑲 ∑[𝝁𝑨(𝒙𝒊) 𝒍𝒏𝝁𝑨(𝒙𝒊) + (𝟏 − 𝝁𝑨(𝒙𝒊)) 𝒍𝒏(𝟏 − 𝝁𝑨(𝒙𝒊))], 𝑲 > 𝟎

𝒏

𝒊=𝟏

        (𝟓. 𝟕) 

  

Where, 𝐻 represents a type of fuzziness of the fuzzy set 𝐴 and 𝜇 is the membership. 

The ‘fuzziness’ of a given information set can be used to aid the novelty detection 

in a computational system, this is demonstrated in the following Sections 5.3 and 

5.4. 

Friction stir welding  

Recently, the use of NF modelling techniques to describe the performance of the 

FSW process and predict its behaviour was presented in (George Panoutsos and 

Mahfouf, 2010). As presented in the literature review (Section 2.5), the use of CI 

techniques has also been proposed as tools to develop applications that can 

monitor this process in real-time.  In the following Section, the creation of an ND 

framework is presented. It serves to identify possible new conditions during the 

FSW process (in real-time) and provides feedback of any process dynamics back to 

the user in a linguistic format. 
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5.3 A Novelty detection framework based on fuzzy 

entropy  

5.3.1 Novelty detection framework 

In this Section, the ND framework based on fuzzy entropy is presented in detail; 

Figure 5.3 illustrates the overall methodology. 

 

Figure 5.3 Flow chart of the novelty detection framework based on fuzzy entropy 
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5.4 Methodology 

Initial structure 

To generate the initial structure of the FL rule-base and assign the initial 

conditions for the optimisation of the model, the raw dataset is partitioned into 

multi-dimensional clusters of information using the FCM algorithm. This algorithm 

is frequently used in modelling approaches as a result of its ability to group and 

form clusters of data that have similar attributes. As shown in (Bezdek, 1981), by 

presenting a input-output dataset and assigning the number of clusters, the 

algorithm creates a list of optimal centres. With this information, the initial rule-

base for the RBF neural network (centres (𝑐), sigma (𝜎) and weights (𝜔) values) 

can be extracted as detailed in (Zhang and Mahfouf, 2007). For this framework, the 

number of clusters corresponds to the number of rules. The FCM methodology is 

used here as it conveniently creates FL membership clusters that can be used 

directly in the RBF system at low computational processing cost. 

Optimisation 

A genetic algorithm is used as an optimisation tool that searches for the optimum 

solution (rules and membership functions) for the RBF neural network structure 

given a training dataset (Table 5.2). The integration of GA, NN and fuzzy systems 

has been used to train and learn complex and non-linear input-output mappings. 

As discussed in the literature review, Section 2.4, the capability of RBF-NN and GA 

algorithm to analyse complex systems, learn from information, and seek accurate 

modelling structures has been successfully applied in previous studies (Linkens 

and Nyongesa, 1996). Several approaches have been proposed to optimise RBF 

neural networks using GAs. The optimisation presented in this Chapter is similar 

to the one shown in (Billings and Zheng, 1995), where the genes to build the 

chromosomes are defined based on the RBF network weights.  
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Using the information obtained from the initial structure, the variables to optimise 

(𝑁𝑣𝑎𝑟𝑠) and the chromosome can be defined, each chromosome is one fuzzy logic 

rule. The initial population (𝐼𝑛𝑖𝑡𝑃𝑜𝑝) is built as follows:  

𝑝1 = (𝑐1, … , 𝑐𝑟 , 𝜎1, … , 𝜎𝑟 , 𝜔1, … , 𝜔𝑟  ) 𝑟 = 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑟𝑢𝑙𝑒𝑠,  

𝑐ℎ𝑟𝑜𝑚𝑜𝑠𝑜𝑚𝑒 = [𝑝1 , … , 𝑝𝑁𝑣𝑎𝑟𝑠]  

𝐼𝑛𝑖𝑡𝑃𝑜𝑝 =  𝑁𝑝𝑜𝑝  ×  𝑁𝑣𝑎𝑟𝑠 

Where, 𝑁𝑝𝑜𝑝 is the population size, in this case, 𝑁𝑝𝑜𝑝 = 30. 

The GA evaluates the fuzzy model structure by minimising the error between the 

desired output and the trained output. The fitness function is computed the Mean 

Square Error (MSE). During the evaluation of the fitness function, the GA generates 

possible solutions for the NN. Using Equation 5.4 the RBF computes the output of 

the system (𝑦𝑂𝑈𝑇) and the resulting rules (denoted as 𝑀𝑅𝑈𝐿𝐸𝑆) are computed 

according to Equation 5.5.  

When the termination criterion is achieved, the optimisation routine stops and the 

final output of the model and the fuzzy rules are obtained. At this stage, the fuzzy 

entropy of the optimised fuzzy rules is measured using Equation 5.7, this fuzzy 

entropy measurement (𝐻(𝑀𝑅𝑈𝐿𝐸𝑆)) is the main contribution to create ND 

approach. 

The optimisation of the RBF parameters includes the following steps: 

Step 1: Initial structure, raw dataset is partitioned into 𝑛 clusters  using 

 FCM. Centres (𝑐), sigma (𝜎) and weights (𝜔) values are produced 

 for the RBF neural network.  

Step 2: Set  𝑡 =  1 . Randomly generate 𝑁  solutions to form the first 

 population, 𝑃1. Evaluate the fitness of solutions in 𝑃1 . Using the 

 information obtained from Step 1, the variables to optimise  ( 𝑁𝑣𝑎𝑟𝑠 ) 

 and the chromosome can be defined.  

 𝑝1 = (𝑐1, … , 𝑐𝑟 , 𝜎1, … , 𝜎𝑟 , 𝜔1, … ,𝜔𝑟  ) 𝑟 = 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑟𝑢𝑙𝑒𝑠,  
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 𝑐ℎ𝑟𝑜𝑚𝑜𝑠𝑜𝑚𝑒 =  [𝑝1 , … , 𝑝𝑁𝑣𝑎𝑟𝑠]  

 𝐼𝑛𝑖𝑡𝑃𝑜𝑝 =  𝑁𝑝𝑜𝑝  ×  𝑁𝑣𝑎𝑟𝑠 

 𝑁𝑝𝑜𝑝 is the population size, in this case, 𝑁𝑝𝑜𝑝 = 30. 

 Step 3: Crossover, Generate an offspring population 𝑄𝑡  as follows: 

 Choose two solutions 𝑥 and 𝑦 from 𝑃𝑡 based on the fitness values. 

 Using a crossover operator generate offspring and add them  to 𝑄𝑡 . 

Step 4: Mutate each solution 𝑥 ∈ 𝑄𝑡  with a predefined mutation rate. 

Step 5: Fitness assignment: Evaluate and assign a fitness value to  each 

 solution 𝑥 ∈ 𝑄𝑡  based on its objective function value. The fitness 

 function is computed by minimising the error between the desired 

 output ( 𝑅𝐵𝐹𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 ) and the trained output 

 (𝑅𝐵𝐹𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑). Using Equation 5.4 the RBF computes the output 

 of the system and the resulting rules (M𝑅𝑈𝐿𝐸𝑆 ) are computed 

 according to Equation 5.5 

Step 6: Selection: Select 𝑁 solutions from 𝑄𝑡  based on their fitness  and 

 copy them to 𝑃𝑡+1. 

Step 7: If the stopping criterion is satisfied, terminate the search  and 

 return to the current population, else, set 𝑡 =  𝑡 +  1 got to Step 3. 

Step 8: When the termination criterion is achieved, the final output of the 

 model and the fuzzy rules are extracted.  

Step 9: The fuzzy entropy of the optimised fuzzy rules (𝐻(𝑀𝑅𝑈𝐿𝐸𝑆)) 

 is measured using Equation 5.7.  



Chapter 5.  A new ‘Novelty Detection’ framework based on fuzzy entropy with 
linguistic feedback 

140 

Novelty detection 

The fuzzy entropy of the optimised rules (𝐻(𝑀𝑅𝑈𝐿𝐸𝑆)) is the main component used 

to aid the creation of the ND approach. Figure 5.4 shows an overview of the applied 

methodology. 

 

Figure 5.4 Overview of the novelty detection approach 

a) Relevance of rules: At this stage of the algorithm, the rules which are 

relevant to a given data class are identified. For each data point (process 

measurement) presented to the system/model, the relevance of a given rule 

to a specific output class can be estimated by correlating the firing strength 

of each rule to each of the output classes. This process will result in a 

ranked list of rules (𝑅𝑢𝑙𝑒𝑓𝑖𝑟𝑖𝑛𝑔) which contribute to certain output classes. 

Each rule is then assigned a linguistic label ( 𝐿𝑉𝐶𝑜𝑟𝑟𝑉𝑎𝑙 ) which is 

subsequently used in the linguistic feedback provide to the user, as 

previously shown in Figure 5.4.  

b) Novelty Indices: Using the fuzzy entropy 𝐻(𝑀𝑅𝑈𝐿𝐸𝑆), two indices were 

created to evaluate the novelty of each data sample: 

i. Index 1. This monitors the entropy of the system and detects if 

new/unseen conditions are encountered in the system in real-time. 

The hypothesis predicts that a new data point, with different process 

dynamics to the ones included in the system, will trigger an entropy 

value (sum from all the fired rules) that identifies the ‘new’. An 

upper boundary +1% (𝑈𝐵𝐻) and lower boundary (𝐿𝐵𝐻) -1% are set 

based on the minimum value (𝑀𝑖𝑛𝑉𝐻𝑅) of  𝐻(𝑀𝑅𝑈𝐿𝐸𝑆) to then obtain 
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a numerical index (𝑁𝐷) which determines if the current sample is a 

new condition or not. This process creates a binary decision on the 

novelty of the sample, and is produced as follows: 

𝑰𝒇 𝑴𝒊𝒏𝑽𝑯𝑹 𝒊𝒔 > 𝑼𝑩𝑯 𝒐𝒓 <  𝑳𝑩𝑯 𝒕𝒉𝒆𝒏 𝑵𝑫 = 𝟏                (𝟓. 𝟖) 

𝑰𝒇 𝑴𝒊𝒏𝑽𝑯𝑹 𝒊𝒔 < 𝑼𝑩𝑯 𝒐𝒓 >  𝑳𝑩𝑯 𝒕𝒉𝒆𝒏 𝑵𝑫 = 𝟎                (𝟓. 𝟗) 

Where 𝑁𝐷 = 0 indicates that no new condition is present and 

𝑁𝐷 = 1 indicates that a possible new condition is present in the 

system.  

ii. Index 2. Measures the reliability of the prediction for each sample. 

Although, the first index (𝑁𝐷) is a criterion of data novelty, (𝑁𝐷) is 

based on the assumption that the rules are sufficiently reliable to 

extract such information. This is not always the case given the 

uncertainty of the training data. The normalised ratio of the entropy 

of a rule over the maximum presented entropy in the system is used 

a measure of how ‘fuzzy’, or relatively reliable, a rule is within the 

overall rule-base. This is calculated as follows: 

𝑷𝒆𝒓𝒄𝑽𝑯𝑹 = 𝑯(𝑴𝑹𝑼𝑳𝑬𝑺) 𝒎𝒂𝒙𝒊𝒎𝒖𝒎 𝒗𝒂𝒍𝒖𝒆(𝑯(𝑴𝑹𝑼𝑳𝑬𝑺)) ∗ 𝟏𝟎𝟎     (𝟓. 𝟏𝟎)⁄  

The scope of the above indices is, to extract the following information in 

real-time: (i) to identify samples with relatively ‘new’ dynamics/behaviour 

and (ii) for each sample to estimate how reliable the predicted output is. 

This information is summarised in a linguistic feedback mechanism that is 

returned to the process user as a form of decision support. 

Linguistic-based feedback 

Using the information from the indices previously described, a knowledge-

structure is created by assigning numerical and linguistic hedges to the system’s 

variables: ‘sample value’ is a numerical variable that describes the sample 

evaluated; ‘rule label’ is a linguistic label that describes the classification of the 

rules; ‘prediction value’ is the output predicted for the sample evaluated (numerical 
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variable), and ‘reliability label’ is a linguistic label related with the reliability 

measurement. ‘WQ’ is a linguistic variable that describes the output of the system. 

The performance of the system is summarised as follows: 

Table 5.1 Linguistic-based knowledge structure 

System variables Values Linguistic hedges 

Sample No sample value  

Index 1: Novelty detection 

(Equations 5.8 and 5.9) 

ND 

 

ND = 0 ‘Not new‘, ND = 1 ‘New‘ (sample is a 

‘New‘/‘Not new‘ condition  

Index 2: Reliability 

(Equation 5.10) 
PercVHR  

For the Rulefiring prediction is associated with: LVCorrVal 

(rule label)  

Output predicted 

(Equation 5.4) 
prediction value 

For WQ = prediction value, reliability of prediction is 

reliability label  

From the information in Table 5.1, a linguistic-based feedback is created and 

presented to the user as a simple sentence:  

“Sample ‘ sample value’ is a ‘new’ / ‘not new’  condition, 

with a system predicted output of WQ = ‘prediction value’ . The most 

relevant rule in the system relates to ‘rule label’ weld quality , and 

this prediction is of ‘reliability label’ reliability ”. 
  

 Novelty 
  

 Prediction 
  

 Reliability  
  

 Relevance of rule 
  

The demonstration of the ND framework is shown in the following Section. 

5.5 A new novelty detection framework and its 

application to FSW 

A dataset of 34 weld samples was used to simulate the ND framework. The model 

simulation was produced using two inputs (tool rotational speed, traverse speed) 

and one output (weld quality), 70% of the data samples were used for training, and 
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30% for testing (Table 5.2). The weld samples were obtained by welding plates of 

AA5083 aluminium alloy (6mm thick) at different process conditions: tool 

rotational speed (from 280 RPM to 580 RPM), and traverse speed (between 280 

mm/min to 812 mm/min).  

Table 5.2 Training and testing dataset used to create the ND framework for FSW 

 Weld 
Sample 

Tool Rotational 
Speed (RPM) 

Traverse Speed 
(mm/min) 

Weld Quality 
(WQ) 

TRAINING 
DATA 

1 280 168 0 

2 280 224 0 

3 280 336 0 

4 280 392 2 

5 355 213 1 

6 355 284 0 

7 355 426 0 

8 355 497 1 

9 380 304 0 

10 380 304 0 

11 380 304 2 

12 380 304 0 

13 380 456 0 

14 380 532 1 

15 380 608 2 

16 380 684 3 

17 430 258 0 

18 430 344 0 

19 430 516 1 

20 430 602 1 

21 505 303 0 

22 505 404 0 

23 505 606 0 

24 505 707 2 

25 580 348 2 

26 580 464 2 

27 580 696 5 

28 580 812 8 

TESTING 
DATA 

1 280 280 0 

2 355 355 0 

3 380 304 2 

4 430 430 0 

5 505 505 1 

6 580 580 1 
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The resulting simulations exhibited good system performance in the prediction of 

the weld quality as shown in Figure 5.5. The performance measured for training 

was 0.411 and 0.986 for testing. 

 

Figure 5.5 Weld quality training and testing performances 

The quality of the welded samples was quantified by process experts, using four 

different indices: bend test-root, bend test-face, surface finish and cross sectional 

inspection (to identify internal flaws). Each index was expressed in a numerical 

value between 0 – 3 using expert knowledge: 

A final summative index was then created by aggregating the four sub-indices: 

‘Weld Quality’ (WQ) and it results in a range between 0 – 12, where 0 = ‘Good WQ’ 

and 12 = ‘Poor WQ’.  

Figure 5.6 shows the correlation of the rules with the weld quality of the system 

and the relevance of rules per sample. The rules were analysed using Pearson’s 

coefficient (MathWorks, 2011; Nandagopalan, 1994; Pearson, 1895) as correlation 

approach in order to establish the one-to-one relationship of the rules as compared 

to the weld quality of the process. Based on the correlation results in Table 5.3, 

Rules R2 and R3 are rules related to ‘Good WQ’, R1 and R5 are rules related with 

‘Poor WQ’. The relevance of the rules to the weld quality is estimated by assessing 
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which rules are ‘fired’ for each data sample, and also the relevant firing strength. 

This is achieved via the calculation of the Fuzzy Entropy (Equation 5.7). 

Table 5.3 Relation of rules with WQ 

Rule Pearson’s correlation value Relation with WQ 

R1 0.75 Poor 

R2 -0.48 Good 

R3 -0.21 Good 

R4 0.13 Neutral 

R5 0.86 Poor 

 

For example, the correlation between the relevancy of rules and the WQ can be 

described as follows: out of the five rules (R1-R5), for sample No. 28, the rule firing 

the highest is R1 which is related with ‘Poor WQ’ (Figure 5.6). 

 

Figure 5.6 Relevance of rules and relation with WQ (y-axis represent the Fuzzy Entropy) 

The ND framework was evaluated with testing data from three different sources: 

Experimental data (Figure 5.7) and real-time data pre-recorded in a single weld 

(Figure 5.8), the real-time dataset was also evaluated using synthetic process data 
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(Figure 5.9) the aim is to demonstrate the potential of this ND approach towards 

real-time applications. 

5.5.1 Experimental results and simulations 

The ND indices are calculated for a number of process samples and these are 

shown in Figure 5.7.  The average entropy value of the rule-base is shown in Figure 

5.7 (a) for the experimental testing dataset. The novelty detection index (Index 1) 

is calculated per sample according to the rule described in Equation 5.8 and 

Equation 5.9. For the dataset samples 2, 4, 5 and 6, it was detected that new 

conditions occur. 

Figure 5.7 (b) shows the most relevant rule associated with each prediction for 

each sample, along with the linguistic reliability indicator for that rule. For 

example, in the samples 1, 2, 3 and 4, rule 2 (R2) is the most relevant rule to the 

corresponding prediction and this rule is also related with ‘Good WQ’ (as shown 

previously in Figure 5.6). The rules in samples 5 and 6 (R5 and R1) are related 

with ‘Poor WQ’. In each case, the reliability of the weld quality prediction for each 

sample is described by the linguistic label associated with the rule.  

Figure 5.7 (a) and Figure 5.7 (b) show the relationship of the entropy calculation 

and the prediction of the reliability of each rule. For example, for each weld sample 

the average Fuzzy Entropy of all rules is calculated, and this information is used to 

assess the reliability of the prediction for this particular weld sample (noted on 

Figure 5.7 (b)). Depending on the % outcome of Equation 5.10, the linguistic 

variables for the reliability measurements are described in Table 5.4.  

Table 5.4 Linguistic interpretation of reliability 

% Value Linguistic interpretation Linguistic value 

0%-25% Low reliability ‘L’ 

26%-50% Medium-Low reliability ‘ML’ 

51%-75% Medium-High reliability ‘MH’ 

>76%-100% High reliability ‘H’ 
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Figure 5.7 ND performance of the experimental testing dataset: (a) monitoring the entropy, 

(b) relevance of rules and reliability of prediction 

To summarise the information concerning the ND performance, a linguistic-based 

knowledge structure is created. Table 5.5 illustrates an example for the case of 

sample 4. 

Table 5.5 A linguistic-based knowledge structure for experimental testing dataset 

System variables Values Linguistic hedges 

Sample No 4  

Index 1 1 ND = 1; sample is a ‘New Condition‘ 

Index 2 R2 Index 2 = R2 then prediction is related with ‘Good‘ WQ 

Output predicted 0 For WQ = 0, reliability of prediction is ‘High‘ 

 

Based on this data set, a linguistic-based feedback on the ND is presented to the 

user in a simple sentence formed as follows: 

“ Sample 4 is a New condition ,  

with a system predicted output of WQ = 0.   

The most relevant rule in the system relates to Good weld quality , 

and this prediction is of High reliability ” 

For the second experiment, the model was presented with a dataset recorded in 

real-time for a single weld. The process conditions of the system were evaluated 

every 30 seconds. The results are shown in  (Figure 5.8), as in the first example, 
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Figure 5.8 (a) shows the average entropy value for the real-time dataset and Figure 

5.8 (b) presents the values of Index 2 per sample. 

 

Figure 5.8 ND performance of the pre-recorded real-time dataset: (a) monitoring the 

entropy, (b) relevance of rules and reliability of prediction 

The linguistic-based knowledge structure for sample 6 is created as follows: 

Table 5.6 A linguistic-based knowledge structure for pre-recorded real-time dataset 

System variables Values Linguistic hedges 

Sample No 6  

Index 1 0 ND = 0; sample is a ‘Not New Condition‘ 

Index 2 R2 Index 2 = R2 then prediction is related with ‘Good‘ WQ 

Output predicted 0 For WQ = 0, reliability of prediction is ‘High‘ 

 

“ Sample 6 is a Not new condition ,  

with a system predicted output of WQ = 0 .  

The most relevant rule in the system relates to Good weld quality , 

and this prediction is of High reliability ” 

Finally, for the third experiment, the synthetic dataset was presented to the model 

with 20% of weld samples altered from the normal process conditions. The results 

are shown in Figure 5.9. As in the previous example, Figure 5.9 (a) shows the 

average entropy value for the synthetic dataset and Figure 5.9 (b) presents the 

values of Index 2 per sample. 
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Figure 5.9 ND performance of the synthetic dataset: (a) monitoring the entropy, (b) 

relevance of rules and reliability of prediction 

The new data samples (6 and 8) are correctly identified by the system as ‘new’ 

conditions. The knowledge structure extracted from the model and the linguistic 

feedback are shown below for sample number 8: 

Table 5.7 A linguistic-based knowledge structure for pre-recorded synthetic dataset 

System variables Values Linguistic hedges 

Sample No 8  

Index 1 1 ND = 1; sample is a ‘New‘ condition 

Index 2 R2 Index 2 = R2 then prediction is related with ‘Good‘ WQ 

Output predicted 2 For WQ = 2, reliability of prediction is ‘Medium-High‘ 

 

“ Sample 8 is a New condition ,  

with a system predicted output of WQ = 2.   

The most relevant rule in the system relates to Good weld quality , 

and this prediction is of Medium-High reliability ” 

These experiments have demonstrated that the linguistic feedback is an efficient 

and simple mechanism. It can provide meaningful process information to end-

users by taking advantage of the computational elements of FL systems, including 

simple and transparent models; the framework is computationally inexpensive 

which can lead to the development of real-time applications. 
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5.6 Summary 

There is a clear need for developing intelligent models that can communicate with 

humans in a natural way. For manufacturing processes it is crucial to implement 

HCS which can communicate unexpected behaviour and can accurately evaluate 

the performance of the system. ND was proposed in this Chapter to address these 

challenges. Fuzzy entropy was used as an effective ND approach as it identifies 

information that the system has previously not seen. A new framework based on 

fuzzy entropy which makes use of a model-based approach to identify new process 

conditions was created. The fuzzy entropy proposed is based on Shannon’s 

entropy. An NF modelling structure was used to develop the core knowledge of the 

system, while an FCM algorithm along with a GA were used to optimise the 

system’s structure and parameters.  

Several contributions were presented in this Chapter: namely, the benefits of the 

use of fuzzy entropy to measure information in data were demonstrated, as well as 

the linguistic interpretability of the FL systems to create an HCS capable of 

providing feedback to the user via linguistic information. The proposed framework 

based on HCS presents information regarding the system’s performance and 

detects new behaviour. Furthermore, the feedback presented is summarised in 

simple sentences which can communicate naturally with the user. 

The framework was successfully applied for FSW in order to study its complex and 

non-linear process conditions and predict the weld quality of the materials welded 

using this technique. This framework was applied for the first time to investigate 

experimental, real and artificial datasets which evaluate the quality of the material. 

The results of these experiments, demonstrated the linguistic feedback of the 

system for the three industrial-based scenarios. Furthermore, the system’s 

computational efficiency allows it to run in real time. This was demonstrated in the 

artificial data experiments. Another contribution in this Chapter is the ability of 

this framework for potential applications in real-time. The framework was tested 

with pre-recorded real-time data. The results were produced in less than two 
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seconds, assuming that a welding routine takes between one to four minutes, the 

proposed framework has the potential to be used as an autonomous/semi-

autonomous system for monitoring complex manufacturing processes in real-time 

while, also providing linguistic feedback to experts and non-experts.  

So far, the models presented in this investigation, have demonstrated the ability of 

CI modelling techniques to accurately predict the performance of complex 

industrial processes using only two inputs and one output. Mechanical properties, 

microstructure and quality of the welds have been successfully modelled. Potential 

applications for online techniques have been proposed in this thesis. The 

experiments so far presented are encouraging to use these CI models to monitor 

and evaluate industrial processes in real-time. Nevertheless, many industrial 

processes required the evaluation of not only one solution (output) but multiple 

solutions which are inter-connected which each other. The CI models developed so 

far have been optimised to find a single solution. However, due to the multiscale 

nature of FSW and most real-world problems, it is necessary to use approaches 

which can simultaneously optimise various solutions. Multi-Objective optimisation 

is proposed in this investigation to address this issue. Its ability to map 

relationship and find multiple solutions of complex systems such as FSW is 

demonstrated in the next Chapter. 
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6 Real-time Multi-Objective 
Optimisation of Process 
Operating Windows for 
Friction Stir Welding 

Overview  

Optimisation usually refers to finding one or more feasible solutions which 

correspond to optimal values of one or more objectives. The need for finding such 

optimal solutions in a problem comes mostly from the extreme purpose of either 

designing a solution for minimum possible cost of fabrication, or for maximum 

possible reliability (Deb, 2001). The models so far presented have demonstrated 

the effectiveness of CI modelling techniques to optimise, predict and evaluate the 

performance of a complex manufacturing process. The approaches presented in 

previous Chapters are suited for real-time applications to optimise single-objective 

problems. However, many manufacturing processes and real-world problems 

demand simultaneous optimisation of various solutions. For this reason, multi-

objective optimisation, based on evolutionary algorithms, is proposed in this 
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investigation. Multi-objective optimisation is proposed for either designing a 

solution for minimum possible cost of fabrication, or for maximum possible 

reliability or quality. Evolutionary algorithms such a GA mimic nature’s 

evolutionary principles to guide their search towards optimal solutions. Nowadays 

optimisation methods are of significant importance particularly in engineering 

design, scientific experiments and decision-making (Deb, 2001; A. Mukhopadhyay 

et al., 2014; Anirban Mukhopadhyay et al., 2014). 

It is worth mentioning that for manufacturing applications, process experts often 

wish to determine the minimum or maximum values of the input process 

parameters at which the responses can reach their optimum. The design of 

systems which can find the optimal design for a set of given inputs (process 

parameters) allows insights into the underlying processes on their various scales. 

In this chapter, a multi-objective optimisation of the created NF models was 

proposed for the first time to find optimal solutions which can help the user to 

optimal design of FSW. The multi-objective optimisation is based on micro-GA 

which is proposed to considerably reduce the computational cost of this algorithm. 

The novel multi-objective optimisation framework presented in this Chapter, is 

highly suitable for real-time applications. This framework is applied to study the 

multiscale behaviour of FSW; its application is also useful for finding the optimal 

POW of this complex process for the analysis of two trade-off properties. 

This Chapter begins by presenting the background of multi-objective optimisation 

and the GA and micro-GA Evolutionary Algorithms. The hybrid approaches used in 

this Chapter are briefly reviewed. NN are used in this Chapter within the 

optimisation routine, RBF is proposed not only for the optimisation of the 

solutions but also, its learning ability is used from previous NF models. 

A brief review of investigations that have used and developed hybrid multi-

objective optimisation for manufacturing process is presented. Then, the early 

stage of the optimisation framework for the design of manufacturing process is 

presented and the results for single-objective optimisations are discussed. It is 
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important to demonstrate how the single-objective problem leads to the 

development of a more advanced framework for multi-objective problems. Based 

on preliminary results obtained for a single-objective problem, the optimisation 

was extended to find multiple solutions of two variables. It is demonstrated that 

the proposed approach is computationally inexpensive and suited to optimise 

multiple solutions of complex manufacturing processes such as FSW. Finally, the 

results of this real-time approach are presented. Six models which describe the 

multiscale behaviour of FSW were evaluated and encouraging results were 

obtained. This is the first time in this area that a multi-objective framework was 

applied to find the optimal speeds which satisfied certain requirements from the 

user for the various scales of the FSW such as specific mechanical properties, 

microstructure and quality of the welds. 

6.1 Multi-objective optimisation using hybrid CI-based 

paradigms 

Multi-objective optimisation and genetic algorithms 

GA are population-based evolutionary systems with the ability to solve single-

objective and multi-objective optimisation problems. A single-objective GA can be 

modified to find a set of multiple non-dominated solutions. The ability of GA to 

simultaneously search different regions of a solution space makes it possible to 

find a diverse set of solutions for difficult problems. As reported by Jones et al 

(Jones, Mirrazavi, and Tamiz, 2002), GA have been the most popular approach to 

multi-objective design and optimisation problems. 

 As most real-world problems are multi-objective (i.e., solutions are in conflict with 

each other), many engineering problems require minimize costs while maximising 

performance (Konak, Coit, and Smith, 2006). The use of multi-objective 

optimisation is therefore proposed in this investigation.   
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Multi-objective optimisation involves the minimization or maximization of more 

than one objective function. The general multi-objective optimisation problem can 

be formally defined as: 

Find the vector 𝑥⃗∗ =  [𝑥1
∗, 𝑥2

∗, … , 𝑥𝑛
∗ ]𝑇 which will satisfy the 𝑚 inequality constraints 

(Coello Coello, 2001):  𝑔𝑖(𝑥⃗) ≥ 0      𝑖 = 1,2,… ,𝑚, with the 𝑝 equality constraints 

ℎ𝑖(𝑥⃗) = 0     𝑖 = 1, 2,… , 𝑝 , and will optimise the vector function: 𝑓(𝑥⃗) =

 [𝑓1(𝑥⃗), 𝑓2(𝑥⃗),… , 𝑓𝑘(𝑥⃗) ]
𝑇 . Where 𝑘 is the number of objective functions and 𝑥 is the 

vector of 𝑛 decision variables that represent a solution in the feasible space.  

In many multi-objective optimisation problems, the objective functions are usually 

in conflict with each other. Therefore, it is not possible to obtain a solution that 

minimises each objective function concurrently. One answer for these problems 

consists of a set of solutions called Pareto optimal. But, prior to defining Pareto 

optimal, the concept of dominant must be introduced. Assume that 𝑥1 and 𝑥2 are 

vectors in n-dimensional space and 𝑓 is a function, 𝑥1 dominates 𝑥2 if the following 

conditions are satisfied: 

{
𝒇𝒊(𝒙𝟏) ≤  𝒇𝒊(𝒙𝟐)      (∀𝒊 = 𝟏, … , 𝒌)

𝒂𝒏𝒅
𝒇𝒊(𝒙𝟏) <  𝒇𝒊(𝒙𝟐)      (∃𝒊 = 𝟏,… , 𝒌)

                        (𝟔. 𝟏) 

 

Pareto optimal is a solution which is not dominated by any other solution in the 

solution space. Pareto optimal solution cannot be improved with respect to an 

objective unless at least another objective is deteriorated. A series of all these non-

dominated solutions is called Pareto optimal set, and the objective function values 

in the objective space are the Pareto front. The major goal in multi-objective 

optimisation is to find the Pareto front, which consists of Pareto optimum solutions 

(Deb, 2001).  

The first multi-objective GA, known as VEGA was proposed by (Schaffer, 1985). 

Since then, several multi-objective algorithms based on evolutionary algorithms 
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have been developed. In (Deb, 2001), Deb presents an exhaustive analysis of the 

most widely known algorithms. He introduces the background, describes the 

theory, and analyses the advantages and disadvantages of each algorithm. In this 

Chapter, the use of micro-GA is proposed to create a multi-objective optimisation 

framework which is suitable for real-time applications. 

Micro-GA 

A micro-GA is a genetic algorithm which uses a very small population and a routine 

which continuously generates genetic diversity throughout generations (Alvarez, 

2012; Coello and Pulido, 2001a). The idea of using small populations was first 

suggested by Goldberg (Goldberg E., 1989), he reported that by using a population 

size of only 3, enough converge could be achieved. The first micro-GA algorithm 

was implemented by (Krishnakumar, 1989), he used a population size of 5, a 

crossover rate of 1, a mutation rate of zero and an elitist strategy which copies the 

best string found in the current population to the next generation, and the 

selection process was created by declaring as a winner the individual with the 

highest fitness. The author compared his approach with a classic GA. He reported 

faster and better results when using a micro-GA for single-objective optimisation. 

As a result, a micro-GA for multi-objective optimisation was proposed first by 

(Coello and Pulido, 2001a). This algorithm uses two memories: (i) as a source to 

maintain the diversity and (ii) to achieve members of the Pareto optimal set. The 

population is operated in a similar way to that of the single-objective micro-GA. 

The authors compared this micro-GA multi-objective approach with NSGA-II. The 

multi-objective micro-GA exhibited a lower computational cost than NSGA II. An 

approach which applies a micro-GA for single-optimisation problems is presented 

by (Liu, Lin, Shi, and Teng, 2011), the study shows the effectiveness of micro-GA 

for the design of mechanical problems. 

It is worth mentioning that little literature was found regarding the use of micro-

GA for multi-objective optimisation problems, especially for real-time applications.  
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Radial basis function neural network for optimal design of FSW 

As previously discussed in the literature review (Section 2.4) and demonstrated in 

the previous Chapters, RBF neural networks are proposed in this thesis, because of 

their transparency and learning abilities. One of the advantages of using RBF for 

modelling approaches is their adaptability when combined with fuzzy systems and 

GA. RBF have been widely used to create hybrid models that are computationally 

efficient and transparent (M. Y. Chen and Linkens, 2001; Hong et al., 2001; Pedrycz 

and Gomide, 2007a; Sánchez et al., 2010). RBF have successfully been used to deal 

with multi-objective problems, as presented in (Santana-Quintero, Serrano-

Hernández, Coello, Hernandez-Diaz, and Molina, 2007) a hybrid approach based 

Gaussian RBF and rough sets theory was applied for several functions and the 

results were compared against NSGA-II. This approach suggests the use of these 

hybrid multi-objective algorithms for real-time applications.  

In this Chapter, the knowledge acquired from previous NF models is used to create 

hybrid models which are able to use little information from the system and design 

the optimal solutions for manufacturing processes, in this case for FSW. The 

previously calculated centres (𝑐), sigma (𝜎), and weights (𝜔) values from each one 

of the NF models presented in Chapter 4 are used to estimate the output of the 

system based on the user settings. The RBF neural network structure is used as 

follows: 

 

Figure 6.1 RBF neural network structure 
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In this investigation, the Gaussian function was chosen as the active function of the 

hidden layer nodes of the RBF. 

𝝋𝒍(𝒙) = 𝒆𝒙𝒑 [−
‖𝒙 − 𝒄𝒍‖

𝟐

𝝈𝒍
𝟐 ] ;          𝒍 = 𝟏,… , 𝑳             (𝟔. 𝟐) 

Where 𝑥 is an n-dimensional input vector, 𝑐𝑙  is the centre of the Gaussian function, 

𝐿 is the number of nodes in the hidden layer, and 𝜎𝑙  is the width of the Gaussian 

function. The output of each node is computed as: 

𝒚𝒋(𝒙) =  ∑𝝎𝒍𝝋𝒍(𝒙)

𝑳

𝒍=𝟏

                                         (𝟔. 𝟑) 

Where 𝜔𝑙  denotes the weight between the 𝑗𝑡ℎ  output and the 𝑙𝑡ℎ node in the 

hidden layer. 

6.2 Multi-objective optimisation for manufacturing 

applications 

Many manufacturing systems involve multiple conflicting measures of 

performance, or objectives, which need to be optimised simultaneously. A recent 

two part reviews of multi-objective evolutionary algorithms for data mining 

approaches is presented in (A. Mukhopadhyay et al., 2014; Anirban Mukhopadhyay 

et al., 2014). These reviews reflect the use of approaches such as Fuzzy Systems, 

NN, and clustering techniques to create more advanced and efficient applications 

of multi-objective algorithms for real-life problems.  

In the last decade, multi-objective optimisation techniques based on intelligent 

modelling have been applied for the design of materials and specially alloys of 

different metals. For instance, (Zhang and Mahfouf, 2010, 2011) developed multi-

objective optimisation mechanisms to design the optimal microstructure  and 

predict mechanical properties of alloy steels using  bio-inspired algorithms, 
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evolutionary algorithms  and data-driven approaches. Their approaches, find the 

best parameters (i.e. chemical composites) that satisfy the requirements for 

specific mechanical properties of steels (ROA, UTS). Another examples of multi-

objective algorithms applied to the design manufacturing processes was presented 

by (A R Yildiz and Ozturk, 2006), their hybrid approach, which consisted of GA and 

Taguchi methods, was applied to optimise tuning operation for the determination 

of cutting parameters considering minimum cost and a set of machining 

constraints. An extensive review of multi-objective evolutionary algorithms for 

aeronautical and aerospace engineering optimisation and design problems is given 

by (Arias-Montano, Coello, and Mezura-Montes, 2012), among other issues, the 

authors pointed out the lack of approaches using micro-GA despite successful 

applications in this area (Szőllős, Šmíd, and Hájek, 2009). Another challenge which 

is highlighted in this study is the need of applying multi-objective approaches for 

complex physical simulations to improve or avoid the use of CFD techniques which 

are computationally expensive. ANN (Chandrasekaran, Muralidhar, Krishna, and 

Dixit, 2010), NF systems (Gama and Mahfouf, 2009) and other evolutionary 

algorithms such as particle swarm optimisation (A. R. Yildiz, 2012) have been 

proposed to design and optimise industrial processes. 

More recently, investigations regarding the optimisation of multiple parameters 

and optimal design of FSW have been proposed. For example, in (PERIYASAMY, 

MOHAN, BALASUBRAMANIAN, RAJAKUMAR, and VENUGOPAL, 2013), a multi-

objective optimisation of FSW parameters was proposed using Response Surface 

Methodology (RSM) to optimise the FSW parameters and obtain the maximum 

tensile strength and weld nugget of the joints. A different approach which uses 

particle swarm optimisation was presented by (Shojaeefard, Behnagh, Akbari, Givi, 

and Farhani, 2013), where the Pareto optimal set of solutions to predict the UTS 

and hardness of aluminium alloys AA7075-AA5083 was obtained as functions of 

weld and rotational speeds.  Another recent approach which aims the optimal 

design of FSW using artificial NN was presented by (Chiteka, 2014), the author 

presents to the system UTS information to obtain the possible optimal speeds. 
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However, as the author states, this technique is computationally expensive due to 

the multiple combinations of speeds which form a more complex hidden layer, the 

author also highlights that the training information could be improved if more 

experimental data is  available. Most of the approaches dedicated to optimise FSW 

(for single or multiple problems) do not address the use of these approaches for 

real-time applications.  

6.3 Optimal design of FSW for a single-objective problem 

This Section presents the preliminary results which lead to the development of a 

real-time multi-objective optimisation framework which is presented later in this 

Chapter. In this Section, detailed information regarding to the use of knowledge 

generated from the models created in Chapter 4 is presented. The knowledge used 

for this optimisation is related with the centres (𝑐), sigma (𝜎), and weight 

(𝜔) values generated from the training data during the RBF evaluation. In Chapter 

4, two inputs were used to predict one output; the RBF then was used to find the 

optimal values of  𝑐, σ, and ω used to create the NF models.  

In this section, the RBF is used as a fitness function to find the optimal solutions 

based on a given settings. In this case, the optimal solutions are the tool rotational 

speed and traverse and the given settings are the properties desired. The GA 

implemented for a single-solution is illustrated in Figure 6.2.  
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Figure 6.2 Flowchart of the GA optimisation for a single-objective problem 
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Using the information obtained from the previous NF models (𝑐, σ, and ω), the 

structure of the chromosome can be defined. First, the variables to optimise are 

defined (𝑁𝑣𝑎𝑟𝑠). In this case   𝑁𝑣𝑎𝑟𝑠 = 2: Tool rotational speed (𝑆𝑝𝑒𝑒𝑑1)and 

traverse speed (𝑆𝑝𝑒𝑒𝑑2). Within the limits: 𝑚𝑖𝑛𝑆𝑝𝑒𝑒𝑑1 ≤ 𝑆𝑝𝑒𝑒𝑑1 ≤ 𝑚𝑎𝑥𝑆𝑝𝑒𝑒𝑑1 

and 𝑚𝑖𝑛𝑆𝑝𝑒𝑒𝑑2 ≤ 𝑆𝑝𝑒𝑒𝑑2 ≤ 𝑚𝑎𝑥𝑆𝑝𝑒𝑒𝑑2. 

𝑝1 = 𝑆𝑝𝑒𝑒𝑑1, 𝑝2 = 𝑆𝑝𝑒𝑒𝑑 2 

The initial population (𝐼𝑛𝑖𝑡𝑃𝑜𝑝) is built as follows: 

𝑐ℎ𝑟𝑜𝑚𝑜𝑠𝑜𝑚𝑒 = [𝑝1 , … , 𝑝𝑁𝑣𝑎𝑟𝑠]  

𝐼𝑛𝑖𝑡𝑃𝑜𝑝 =  𝑁𝑝𝑜𝑝  ×  𝑁𝑣𝑎𝑟𝑠 

Where, 𝑁𝑝𝑜𝑝 is the population size. 

The GA minimises the error between the desired property and the calculate 

property which is given by the RBF. Using Equation 6.3, the RBF computes the 

output of the system. During the evaluation of the fitness function, the GA 

generates possible solutions for the speeds (𝑆𝑝𝑒𝑒𝑑1𝑜𝑝𝑡𝑖𝑚𝑎𝑙𝑆𝑜𝑙), (𝑆𝑝𝑒𝑒𝑑2𝑜𝑝𝑡𝑖𝑚𝑎𝑙𝑆𝑜𝑙), 

and calculates the property value desired (𝑃𝑟𝑜𝑝𝑒𝑟𝑡𝑦𝑡𝑎𝑟𝑔𝑒𝑡). When the termination 

criterion is achieved, the optimisation routine stops and the final optimal design 

can be obtained. 

The demonstration of this algorithm is shown in the following Section. It will 

illustrate that the use of small populations can be used for the design of 

manufacturing processes without sacrificing the efficiency of the algorithm and 

enhancing the computational time.   
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6.3.1 Initial results on optimisation 

The GA for a single-objective problem was performed to study the multiscale 

behaviour of FSW, i.e., optimal properties belonging to the POW of the NF models 

previously created have been evaluated. Figure 6.3 and Figure 6.4 clearly illustrate 

that, as previously discussed in the literature review, it is possible to achieve 

optimal results with the use of small populations and more importantly, the time 

to achieve the best solutions can significantly be reduced.  

In Figure 6.3 the elongation desired was achieved in the 25th evaluation and the 

time for the evaluation was 1.68 seconds. On the other hand, Figure 6.4 shows that 

the elongation desired was achieve in the 5th evaluation in just 0.23 seconds. The 

simulations were performed for meso-scale and micro-scale properties of the FSW;  

Table 6.1 summarises the encouraging results.  

 

Figure 6.3 Average fitness of 10 runs vs. 

Generations to find the optimal design of 

elongation of FSW with elongation target 

= 18.7 (%) and population size = 30. 

Elapsed time (200 generations) = 1.68sec. 

 

Figure 6.4 Average fitness of 10 runs vs. 

Generations to find the optimal design of 

elongation of FSW with elongation target 

= 18.7 % and population size = 6. Elapsed 

time (200 generations) = 0.23sec. 

 

From the simulations performed in this Section, it can be conclude that the use of 

micro-GA is recommended to find the optimal design of FSW. In this case, the 

simulations evaluated showed that for populations = 6, the optimal design can be 
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found within the 5th and 6th evaluations (see Table 6.1). Another important 

contribution regarding the use of small populations is that the computational 

efficiency of the algorithm, in terms of time, can be enhanced which leads to the 

use of this hybrid algorithms for real-time applications. 

 

Table 6.1 Performance of population size for the optimal design of FSW for single-

optimisation problems 

FSW outputs 
predicted 

Desired 
property 

value 

Fitness reached at 
evaluation (for population 

size =30) 

Fitness reached at 
evaluation (for population 

size = 6) 

Elongation 18.7 25 5 

ROA 20.3 28 6 

UTS 310.6 26 5 

YS 171.4 26 5 

Average grain size 11.2 29 6 

Cooling rate 66.5 26 6 

 

The GA optimisation presented in this Section was applied for a single-objective 

problem, despite the results in terms of time and optimal design were encouraging, 

there is a need to develop systems that can optimise multiple objectives. For 

example in FSW the mechanical properties and microstructure can affect the 

overall quality of the joint, while users expect to achieve good mechanical 

properties, it is also important to ensure that the process parameters (speeds) will 

produce good quality welds. In the following section, the algorithm is updated for 

multi-objective optimisation and is applied to the optimal design of FSW.  

Based on the encouraging results presented in Table 6.1, in terms of time and 

accuracy, further research was conducted to find the optimal solutions for multiple 

objectives. The results presented in this Section were obtained with small 

populations and the converge behaviour showed that the optimal solution can be 

reach within the 40th generation, reason why this criteria was used to develop a 

multi-objective optimisation framework for real-time applications. 
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6.4 A hybrid multi-objective optimisation framework 

based on micro-GA for the optimal design of 

manufacturing processes 

In this Section, a fast multi-objective framework based on micro-GA is proposed for 

the optimal design of manufacturing processes; the general framework is 

presented in Figure 6.5. The framework consists of knowledge extracted from NF 

models presented in Chapter 4. The NF models were created with two inputs and 

one output. The several NF models used two FSW process parameters: tool 

rotational speed and traverse speed, to calculate different properties at different 

scales of the process, including, mechanical properties (elongation, reduction of 

area, ultimate tensile strength, and yield strength), microstructure (average grain 

size, cooling rate) and weld quality. 

 

Figure 6.5 A multi-objective optimisation framework for the optimal design of 

manufacturing processes 

As presented in the previous section, the knowledge learned in Chapter 4 from the 

RBF is used in this Chapter to create the initial population for the optimisation. In 

this Section, the multi-objective optimisation is based on a micro-GA, which 

optimises two objectives which are in conflict with each other (mechanical 
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properties - weld quality, and microstructure - weld quality). More importantly, 

the proposed framework performs in real-time and estimates the optimal design of 

the system according to the settings given by the user (desired properties and 

constraints). This is the first time that a framework based on hybrid CI-modelling 

approaches is used with a micro-GA and applied for real-time and optimal design 

of FSW. 

6.5 A real-time multi-objective algorithm to optimise and 

design the FSW process 

The proposed algorithm which minimises two objectives, and estimates the 

optimal design of the FSW process is presented in Figure 6.6. For a multi-objective 

problem given as follows: 

{
 
 
 
 

 
 
 
 𝑴𝒊𝒏𝒊𝒎𝒊𝒔𝒆 𝒇𝟏(𝒙) =  (𝒑𝟏(𝒕𝒂𝒓𝒈𝒆𝒕) − 𝒑𝟏(𝒄𝒂𝒍𝒄𝒖𝒍𝒂𝒕𝒆𝒅))

𝟐

𝑴𝒊𝒏𝒊𝒎𝒊𝒔𝒆 𝒇𝟐(𝒙) =  (𝒑𝟐(𝒕𝒂𝒓𝒈𝒆𝒕) − 𝒑𝟐(𝒄𝒂𝒍𝒄𝒖𝒍𝒂𝒕𝒆𝒅))
𝟐

−
𝑺𝒖𝒃𝒋𝒆𝒄𝒕 𝒕𝒐

(𝒊)          − 𝟐% 𝒑𝟏(𝒕𝒂𝒓𝒈𝒆𝒕) ≤ 𝒑𝟏 ≤ +𝟐% 𝒑𝟏(𝒕𝒂𝒓𝒈𝒆𝒕)
(𝒊𝒊)          𝒎𝒊𝒏𝒑𝟐 ≤ 𝒑𝟐 ≤ 𝒎𝒂𝒙𝒑𝟐                                     

(𝒊𝒊𝒊)         𝒎𝒊𝒏𝑺𝒑𝒆𝒆𝒅 ≤ 𝑺𝒑𝒆𝒆𝒅𝒔 ≤ 𝒎𝒂𝒙𝑺𝒑𝒆𝒆𝒅               

       (𝟔. 𝟒) 

Where 𝑝1 is the target of the parameter from the manufacturing process that is 

needed to be optimised together with the weld quality (𝑝2). The parameters to 

optimise in this Chapter are the mechanical properties (elongation, ROA, UTS and 

YS) and microstructure properties (average grain size and cooling rate) of the 

welds produced by FSW. The constrains are proposed based on expert knowledge 

with the aim of optimise the parameters within the POW, for instance, the 

boundaries of constrain (i) -/+ 2% are set to achieved good mechanical properties, 

constrains (ii) and (iii) are the speed limits (traverse speed and rotational speed) 
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which reflect the maximum and minimum values of speeds to maintain the system 

within its optimal POW.  

 

Figure 6.6 Flowchart of the multi-objective optimisation for FSW 

The proposed multi-objective optimisation includes the following steps: 

Step 1:  Set up desired properties: user defines desired properties from the 

system (𝑝1(𝑡𝑎𝑟𝑔𝑒𝑡), 𝑝2(𝑡𝑎𝑟𝑔𝑒𝑡)). 

Step 2:  Assign optimised RBF parameters: from previous training 

knowledge (Chapter 4), extract centres (𝑐1… 𝑐𝑟), sigma (𝜎1…𝜎𝑟  ), 

and weights (𝜔1… 𝜔𝑟) values, where 𝑟 = 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑟𝑢𝑙𝑒𝑠. 
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Step 3:  Define micro-GA parameters: for this Chapter, generations = 

200  (𝐺𝑒𝑛) ; population size = 6  (𝑁𝑝𝑜𝑝) ; mutation rate = 

0.02 (𝑚𝑢𝑡𝑟𝑎𝑡𝑒); crossover rate = 0.3 (𝑐𝑟𝑜𝑠𝑠𝑟𝑎𝑡𝑒); number of variables 

to optimise = 2 (𝑁𝑣𝑎𝑟𝑠). 

Step 4:  Randomly generate the initial population within constrains (Haupt 

and Haupt, 2004) p. 54. Using constraints given in Equation 6.4 (iii). 

𝐼𝑛𝑖𝑡𝑃𝑜𝑝 =  𝑁𝑝𝑜𝑝  ×  𝑁𝑣𝑎𝑟𝑠 

𝐼𝑛𝑖𝑡𝑝𝑜𝑝𝑀 = [
𝑥1,1 𝑥𝑖,1
𝑥1,𝑗 𝑥𝑖,𝑗

]  𝑖 = 𝑁𝑣𝑎𝑟𝑠; 𝑗 = 𝑁𝑝𝑜𝑝 

Step 5: The initial population (𝐼𝑛𝑖𝑡𝑝𝑜𝑝𝑀) and previous knowledge variables 

(𝑐, 𝜎, 𝜔, 𝑁𝑖𝑛𝑝𝑢𝑡𝑠 , 𝑁𝑟𝑢𝑙𝑒𝑠)  are used to estimate 𝑝1(𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑑)  and 

𝑝2(𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑑) using the following equation:  

𝑝𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑑 = 𝑅𝐵𝐹𝑜𝑢𝑡(𝑁𝑟𝑢𝑙𝑒𝑠 , 𝑁𝑖𝑛𝑝𝑢𝑡𝑠 , 𝑐, 𝜎, 𝜔, [𝐼𝑛𝑖𝑡𝑝𝑜𝑝𝑀𝑖,𝑗]) 

    𝑅𝐵𝐹𝑜𝑢𝑡 is calculated using Equation 6.3. 

Step 6:  Evaluate the fitness function of the first population by minimising 

  both: 

    𝑓1(𝑥) =  (𝑝1(𝑡𝑎𝑟𝑔𝑒𝑡) − 𝑝1(𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑑))
2

  

    𝑓2(𝑥) =  (𝑝2(𝑡𝑎𝑟𝑔𝑒𝑡) − 𝑝2(𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑑))
2

 

Step 7:  Randomly select a set of individuals that will be used to maintain 

diversity of the micro-GA: 

  (i)  Generate a random number (𝑟𝑎𝑛𝑛𝑢𝑚𝑏𝑒𝑟) which is < 𝑗 

  (ii)  Set 1 of best individuals is generated from the set of solutions 

   𝑓1(𝑥) which are closest to 𝑝1(𝑡𝑎𝑟𝑔𝑒𝑡) . The number of  

   individuals which are selected for set 1 is decided by  

   𝑟𝑎𝑛𝑛𝑢𝑚𝑏𝑒𝑟 2⁄  



Chapter 6.  Real-time Multi-Objective Optimisation of Process Operating 
Windows for Friction Stir Welding 

169 

  (iii)  Set 2 of best individuals is generated from the set of solutions 

   𝑓2(𝑥) which are closest to 𝑝2(𝑡𝑎𝑟𝑔𝑒𝑡). The number of  

   individuals which are selected for set 2 is decided by  

   𝑟𝑎𝑛𝑛𝑢𝑚𝑏𝑒𝑟 2⁄   

  (iv)  A combination of both sets creates a set of best individuals 

   (𝐵𝑒𝑠𝑡𝐼𝑛𝑑𝑑𝑖𝑣𝑒𝑟𝑠𝑖𝑡𝑦) which is then used to maintain diversity. 

Step 8:  After evaluation of the fitness function of the first generation, a pool 

  of solutions is generated: 

𝑃𝑜𝑜𝑙𝑆𝑜𝑙 =  [𝑥1, 𝑥2, 𝑓1 , 𝑓2] 

Step 9:  Using 𝑜𝑙𝑆𝑜𝑙  , perform micro-GA multi-objective optimisation as 

  follows:  

Step 10:  Execute stochastic uniform selection and single point crossover for 

  𝑃𝑜𝑜𝑙𝑆𝑜𝑙 (Haupt and Haupt, 2004) , then randomly mutate individuals 

  (Deb, 2001) p.122. 

Step 11:  Combining the mutated individuals and  𝐵𝑒𝑠𝑡𝐼𝑛𝑑𝑑𝑖𝑣𝑒𝑟𝑠𝑖𝑡𝑦  a more 

  diverse set of new individuals is created. 

Step 12:  Evaluate the fitness function of the new individuals. Optimise the 

  problem according to objectives and constraints given in Equation 

  6.4. 

Step 13:  Select non dominated individuals to start next generation and find 

  the Pareto optimum solutions according to  

  Equation 6.1 (Deb et al., 2002). 

Step 14:  Repeat steps 9-13 until stopping criterion is achieved (for this  

  algorithm, stopping criterion: maximum number of generations, time 

  limit of two seconds). 

 



Chapter 6.  Real-time Multi-Objective Optimisation of Process Operating 
Windows for Friction Stir Welding 

170 

6.5.1 Experimental results and simulations 

In this Section, details relating to finding the optimal solutions (tool rotational and 

traverse speeds) for achieving predefined mechanical properties and 

microstructure values of the FSW are presented. Six models are created to: (i) 

describe the behaviour of the FSW at its different scales (micro, meso and micro-

scale) (ii) achieved predefined properties within boundaries, (iii) find the possible 

candidate solutions for the multi-objective problem. The efficiency of this 

algorithm is given by the little information that the system needs to produce a set 

of various solutions and also the low computational cost is demonstrated. The 

latter was achieve by different contributions: (i) the constrains are used to reduce 

and guide the search space which reduces the evaluation time (ii) the multi-

objective optimisation based on micro-GA uses a small population and maintains a 

good diversity (iii) for the future implementation of this algorithm in real-time 

applications, the stopping criteria is based on time (no more than 2 seconds 

evaluation time). 

Model 1: elongation and weld quality 

The first model produces a set of optimal solutions for the elongation target = 

18.7% and weld quality ≤ 1.3. The constraints used for this simulation were strictly 

limited to only +/-2% of the elongation target value (+2% = 19.07; -2% 18.32). The 

design problem for model 1 can be described as follows:  

 𝑶𝒃𝒋𝒆𝒄𝒕𝒊𝒗𝒆𝟏 = (𝐸𝑙𝑜𝑛𝑔𝑎𝑡𝑖𝑜𝑛 (𝑡𝑎𝑟𝑔𝑒𝑡) − 𝐸𝑙𝑜𝑛𝑔𝑎𝑡𝑖𝑜𝑛(𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑑))
2

𝑶𝒃𝒋𝒆𝒄𝒕𝒊𝒗𝒆𝟐 = (𝑊𝑒𝑙𝑑 𝑄𝑢𝑎𝑙𝑖𝑡𝑦(𝑡𝑎𝑟𝑔𝑒𝑡) − 𝑊𝑒𝑙𝑑 𝑄𝑢𝑎𝑙𝑖𝑡𝑦(𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑑))
2

−
𝑺𝒖𝒃𝒋𝒆𝒄𝒕 𝒕𝒐

(𝑖) − 2% 𝐸𝑙𝑜𝑛𝑔𝑎𝑡𝑖𝑜𝑛 (𝑡𝑎𝑟𝑔𝑒𝑡) ≤ 𝐸𝑙𝑜𝑛𝑔𝑎𝑡𝑖𝑜𝑛 ≤ +2% 𝐸𝑙𝑜𝑛𝑔𝑎𝑡𝑖𝑜𝑛 (𝑡𝑎𝑟𝑔𝑒𝑡)
(𝑖𝑖) 0 ≤ 𝑊𝑒𝑙𝑑 𝑄𝑢𝑎𝑙𝑖𝑡𝑦 ≤ 1.3

(𝑖𝑖𝑖) 𝑚𝑖𝑛𝑇𝑆 ≤ 𝑇𝑟𝑎𝑣𝑒𝑟𝑠𝑒 𝑠𝑝𝑒𝑒𝑑 ≤ 𝑚𝑎𝑥𝑇𝑆
(𝑖𝑣) 𝑚𝑖𝑛𝑅𝑃𝑀 ≤ 𝑅𝑃𝑀 ≤ 𝑚𝑎𝑥𝑅𝑃𝑀
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It can be observed in Figure 6.7, that the solutions are located between the design 

constraints. The six different solutions around the elongation and weld quality 

target values are listed in Table 6.2. The time for this evaluation was 0.30 seconds.  

 

Figure 6.7 Pareto optimal solutions: elongation (%) and weld quality 

 

Table 6.2 Pareto optimal solutions model 1: elongation and WQ 

Solutions RPM Traverse Speed 
Elongation (%) 

Calculated 
WQ Calculated 

1 280.0 168.0 18.3 1.2 
2 406.1 262.6 18.6 0.7 
3 406.1 474.9 18.6 0.7 
4 537.9 262.6 18.8 0.2 
5 537.9 474.9 18.8 0.2 
6 580.0 515.5 18.9 0.1 

 

Figure 6.8, Figure 6.9, and Figure 6.10 show the behaviour of the POW for the 

Pareto front for both solutions. Figure 6.11 shows the behaviour of the Pareto 

optimal solutions for real-time applications, this plot will describe to the final user 

the performance of both elongation and WQ. This approach can be used as a 

support for decision making and monitoring the quality of the welds during the 

FSW process. 
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Figure 6.8 POW of Pareto optimal solutions and speeds 

 

Figure 6.9 POW of Pareto optimal 

solutions of elongation and speeds 

 

Figure 6.10 POW of Pareto optimal 

solutions of weld quality and speeds 

 

 

Figure 6.11 Pareto optimal solutions of elongation (%) - weld quality and speeds, plot 

presented to the final user for real-time applications  
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Model 2: reduction of area 

Model 2, produces a set of optimal solutions for the ROA = 20.3% and weld quality 

≤ 1.3. The constraints used for this simulation were also +/-2% of the ROA target 

value (+2% = 20.71; -2% 19.90). The design problem for model 2 can be described 

as follows:  

 𝑶𝒃𝒋𝒆𝒄𝒕𝒊𝒗𝒆𝟏 = (𝑅𝑂𝐴 (𝑡𝑎𝑟𝑔𝑒𝑡) − 𝑅𝑂𝐴(𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑑))
2

𝑶𝒃𝒋𝒆𝒄𝒕𝒊𝒗𝒆𝟐 = (𝑊𝑒𝑙𝑑 𝑄𝑢𝑎𝑙𝑖𝑡𝑦(𝑡𝑎𝑟𝑔𝑒𝑡) − 𝑊𝑒𝑙𝑑 𝑄𝑢𝑎𝑙𝑖𝑡𝑦(𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑑))
2

−
𝑺𝒖𝒃𝒋𝒆𝒄𝒕 𝒕𝒐

(𝑖) − 2% 𝑅𝑂𝐴 (𝑡𝑎𝑟𝑔𝑒𝑡) ≤ 𝑅𝑂𝐴 ≤ +2% 𝑅𝑂𝐴 (𝑡𝑎𝑟𝑔𝑒𝑡)
(𝑖𝑖) 0 ≤ 𝑊𝑒𝑙𝑑 𝑄𝑢𝑎𝑙𝑖𝑡𝑦 ≤ 1.3

(𝑖𝑖𝑖) 𝑚𝑖𝑛𝑇𝑆 ≤ 𝑇𝑟𝑎𝑣𝑒𝑟𝑠𝑒 𝑠𝑝𝑒𝑒𝑑 ≤ 𝑚𝑎𝑥𝑇𝑆
(𝑖𝑣) 𝑚𝑖𝑛𝑅𝑃𝑀 ≤ 𝑅𝑃𝑀 ≤ 𝑚𝑎𝑥𝑅𝑃𝑀

 

The five different solutions around the ROA and weld quality target values are 

listed in Table 6.3 . The time for this evaluation was 0.34 seconds.  

 

Figure 6.12 Pareto optimal solutions: reduction of area (%) and weld quality 

Table 6.3 Pareto optimal solutions model 2: reduction of area 

Solutions RPM 
Traverse 

speed 
ROA (%) 

calculated 
WQ 

calculated 

1 280.0 174.0 19.9 1.1 
2 351.5 168.0 20.0 1.0 
3 396.2 318.0 20.5 1.0 
4 396.2 732.5 20.5 1.0 
5 396.2 812.0 20.5 1.0 
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Model 3: UTS 

Model 3, produces a set of optimal solutions for the UTS = 310.6 (MPa) and weld 

quality ≤ 1.3. The constraints used for this simulation were also +/-2% of the UTS 

target value (+2% = 316.81; -2% 304.34). The design problem for model 3 can be 

described as follows:  

 𝑶𝒃𝒋𝒆𝒄𝒕𝒊𝒗𝒆𝟏 = (𝑈𝑇𝑆 (𝑡𝑎𝑟𝑔𝑒𝑡) − 𝑈𝑇𝑆(𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑑))
2

𝑶𝒃𝒋𝒆𝒄𝒕𝒊𝒗𝒆𝟐 = (𝑊𝑒𝑙𝑑 𝑄𝑢𝑎𝑙𝑖𝑡𝑦(𝑡𝑎𝑟𝑔𝑒𝑡) − 𝑊𝑒𝑙𝑑 𝑄𝑢𝑎𝑙𝑖𝑡𝑦(𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑑))
2

−
𝑺𝒖𝒃𝒋𝒆𝒄𝒕 𝒕𝒐

(𝑖) − 2% 𝑈𝑇𝑆 (𝑡𝑎𝑟𝑔𝑒𝑡) ≤ 𝑈𝑇𝑆 ≤ +2% 𝑈𝑇𝑆 (𝑡𝑎𝑟𝑔𝑒𝑡)
(𝑖𝑖) 0 ≤ 𝑊𝑒𝑙𝑑 𝑄𝑢𝑎𝑙𝑖𝑡𝑦 ≤ 1.3

(𝑖𝑖𝑖) 𝑚𝑖𝑛𝑇𝑆 ≤ 𝑇𝑟𝑎𝑣𝑒𝑟𝑠𝑒 𝑠𝑝𝑒𝑒𝑑 ≤ 𝑚𝑎𝑥𝑇𝑆
(𝑖𝑣) 𝑚𝑖𝑛𝑅𝑃𝑀 ≤ 𝑅𝑃𝑀 ≤ 𝑚𝑎𝑥𝑅𝑃𝑀

 

The five different solutions around the UTS and weld quality target values are 

showed in Figure 6.13 and listed in Table 6.4. The time for this evaluation was 0.33 

seconds.  

 

Figure 6.13 Pareto optimal solutions: ultimate tensile strength (MPa) and weld quality 

Table 6.4 Pareto optimal solutions model 3: ultimate tensile strength 

Solutions RPM 
Traverse 

speed 
UTS (MPa) 
calculated 

WQ 
calculated 

1 280.0 339.6 310.6 0.0 
2 280.0 812.0 310.6 0.0 
3 424.2 522.3 310.6 0.0 
4 430.2 168.0 310.4 0.9 
5 580.0 195.3 309.7 0.9 

309.6 309.8 310 310.2 310.4 310.6 310.8
0

0.2

0.4

0.6

0.8

1

1.2

Pareto front

UTS (MPa)

W
e
ld

 Q
u
a
lit

y



Chapter 6.  Real-time Multi-Objective Optimisation of Process Operating 
Windows for Friction Stir Welding 

175 

Model 4: yield strength 

In this model, a set of optimal solutions for YS = 171.4 (MPa) and weld quality ≤ 1.3 

are produced. The constraints used for this simulation were also +/-2% of the YS 

target value (+2% = 174.83; -2% 167.97). The design problem for model 4 can be 

described as follows:  

 𝑶𝒃𝒋𝒆𝒄𝒕𝒊𝒗𝒆𝟏 = (𝑌𝑆 (𝑡𝑎𝑟𝑔𝑒𝑡) − 𝑌𝑆(𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑑))
2

𝑶𝒃𝒋𝒆𝒄𝒕𝒊𝒗𝒆𝟐 = (𝑊𝑒𝑙𝑑 𝑄𝑢𝑎𝑙𝑖𝑡𝑦(𝑡𝑎𝑟𝑔𝑒𝑡) − 𝑊𝑒𝑙𝑑 𝑄𝑢𝑎𝑙𝑖𝑡𝑦(𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑑))
2

−
𝑺𝒖𝒃𝒋𝒆𝒄𝒕 𝒕𝒐

(𝑖) − 2% 𝑌𝑆 (𝑡𝑎𝑟𝑔𝑒𝑡) ≤ 𝑌𝑆 ≤ +2% 𝑌𝑆 (𝑡𝑎𝑟𝑔𝑒𝑡)
(𝑖𝑖) 0 ≤ 𝑊𝑒𝑙𝑑 𝑄𝑢𝑎𝑙𝑖𝑡𝑦 ≤ 1.3

(𝑖𝑖𝑖) 𝑚𝑖𝑛𝑇𝑆 ≤ 𝑇𝑟𝑎𝑣𝑒𝑟𝑠𝑒 𝑠𝑝𝑒𝑒𝑑 ≤ 𝑚𝑎𝑥𝑇𝑆
(𝑖𝑣) 𝑚𝑖𝑛𝑅𝑃𝑀 ≤ 𝑅𝑃𝑀 ≤ 𝑚𝑎𝑥𝑅𝑃𝑀

 

The five different solutions around the YS and weld quality target values are 

showed in Figure 6.14 and listed in Table 6.5. The time for this evaluation was 0.32 

seconds.  

 

Figure 6.14 Pareto optimal solutions: yield strength (MPa) and weld quality 

Table 6.5 Pareto optimal solutions model 4: yield strength 

Solutions RPM 
Traverse 

speed 
YS (MPa) 

calculated 
WQ 

calculated 

1 280.0 168.0 171.4 1.2 
2 337.1 812.0 171.9 0.5 
3 453.7 313.8 171.7 0.5 
4 580.0 378.3 171.6 0.5 
5 280.0 168.0 171.4 1.2 
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Model 5: average grain size 

In this model, a set of optimal solutions for the average grain size = 11.2 (µm) and 

weld quality ≤ 1.3 are produced. The constraints used for this simulation were also 

+/-2% of the average grain size target value (+2% = 11.42; -2% 10.98). The design 

problem for model 5 can be described as follows:  

 𝑶𝒃𝒋𝒆𝒄𝒕𝒊𝒗𝒆𝟏 = (𝐴𝐺𝑟𝑎𝑖𝑛𝑆𝑖𝑧𝑒 (𝑡𝑎𝑟𝑔𝑒𝑡) − 𝐴𝐺𝑟𝑎𝑖𝑛𝑆𝑖𝑧𝑒 (𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑑))
2

𝑶𝒃𝒋𝒆𝒄𝒕𝒊𝒗𝒆𝟐 = (𝑊𝑒𝑙𝑑 𝑄𝑢𝑎𝑙𝑖𝑡𝑦(𝑡𝑎𝑟𝑔𝑒𝑡) − 𝑊𝑒𝑙𝑑 𝑄𝑢𝑎𝑙𝑖𝑡𝑦(𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑑))
2

−
𝑺𝒖𝒃𝒋𝒆𝒄𝒕 𝒕𝒐

(𝑖) − 2% 𝐴𝐺𝑟𝑎𝑖𝑛𝑆𝑖𝑧𝑒  (𝑡𝑎𝑟𝑔𝑒𝑡) ≤ 𝐴𝐺𝑟𝑎𝑖𝑛𝑆𝑖𝑧𝑒 ≤ +2% 𝐴𝐺𝑟𝑎𝑖𝑛𝑆𝑖𝑧𝑒  (𝑡𝑎𝑟𝑔𝑒𝑡)
(𝑖𝑖) 0 ≤ 𝑊𝑒𝑙𝑑 𝑄𝑢𝑎𝑙𝑖𝑡𝑦 ≤ 1.3

(𝑖𝑖𝑖) 𝑚𝑖𝑛𝑇𝑆 ≤ 𝑇𝑟𝑎𝑣𝑒𝑟𝑠𝑒 𝑠𝑝𝑒𝑒𝑑 ≤ 𝑚𝑎𝑥𝑇𝑆
(𝑖𝑣) 𝑚𝑖𝑛𝑅𝑃𝑀 ≤ 𝑅𝑃𝑀 ≤ 𝑚𝑎𝑥𝑅𝑃𝑀

 

The six different solutions around the average grain size and weld quality target 

values are showed in Figure 6.15 and listed in Table 6.6. The time for this 

evaluation was 0.32 seconds.  

 

Figure 6.15 Pareto optimal solutions: average grain size (µm) and weld quality 

Table 6.6 Pareto optimal solutions model 5: average grain size 

Solutions RPM 
Traverse 

speed 
Grain size  

(µm) calculated 
WQ 

calculated 

1 280.0 306.4 10.9 1.0 
2 334.7 168.0 10.9 1.1 
3 567.5 237.7 11.2 0.8 
4 567.5 306.4 11.2 0.8 
5 580.0 522.0 11.2 0.1 
6 580.0 812.0 11.2 0.1 
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Model 6: cooling rate 

In this model, a set of optimal solutions for the average grain size = 66.5 (˚C/s) and 

weld quality ≤ 1.3 are produced. The constraints used for this simulation were also 

+/-2% of the cooling rate target value (+2% = 67.83; -2% 65.17). The design 

problem for this model can be described as follows:  

 𝑶𝒃𝒋𝒆𝒄𝒕𝒊𝒗𝒆𝟏 = (𝐶𝑜𝑜𝑙𝑖𝑛𝑔 𝑅𝑎𝑡𝑒 (𝑡𝑎𝑟𝑔𝑒𝑡) − 𝐶𝑜𝑜𝑙𝑖𝑛𝑔 𝑅𝑎𝑡𝑒(𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑑))
2

𝑶𝒃𝒋𝒆𝒄𝒕𝒊𝒗𝒆𝟐 = (𝑊𝑒𝑙𝑑 𝑄𝑢𝑎𝑙𝑖𝑡𝑦(𝑡𝑎𝑟𝑔𝑒𝑡) − 𝑊𝑒𝑙𝑑 𝑄𝑢𝑎𝑙𝑖𝑡𝑦(𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑑))
2

−
𝑺𝒖𝒃𝒋𝒆𝒄𝒕 𝒕𝒐

(𝑖) − 2% 𝐶𝑜𝑜𝑙𝑖𝑛𝑔 𝑅𝑎𝑡𝑒 (𝑡𝑎𝑟𝑔𝑒𝑡) ≤ 𝐶𝑜𝑜𝑙𝑖𝑛𝑔 𝑅𝑎𝑡𝑒 ≤ +2% 𝐶𝑜𝑜𝑙𝑖𝑛𝑔 𝑅𝑎𝑡𝑒 (𝑡𝑎𝑟𝑔𝑒𝑡)
(𝑖𝑖) 0 ≤ 𝑊𝑒𝑙𝑑 𝑄𝑢𝑎𝑙𝑖𝑡𝑦 ≤ 1.3

(𝑖𝑖𝑖) 𝑚𝑖𝑛𝑇𝑆 ≤ 𝑇𝑟𝑎𝑣𝑒𝑟𝑠𝑒 𝑠𝑝𝑒𝑒𝑑 ≤ 𝑚𝑎𝑥𝑇𝑆
(𝑖𝑣) 𝑚𝑖𝑛𝑅𝑃𝑀 ≤ 𝑅𝑃𝑀 ≤ 𝑚𝑎𝑥𝑅𝑃𝑀

 

The six different solutions around the average grain size and weld quality target 

values are showed in Figure 6.16 and listed in Table 6.7. The time for this 

evaluation was 0.30 seconds.  

 

Figure 6.16 Pareto optimal solutions: cooling rate (˚C/s) and weld quality 

Table 6.7 Pareto optimal solutions model 6: cooling rate 

Solutions RPM Traverse speed 
Cooling rate (˚C/s)  

calculated 
WQ 

calculated 

1 327.0 168.0 67.2 0.8 
2 327.0 277.8 67.2 0.8 
3 327.0 310.9 67.2 0.8 
4 327.0 758.5 67.2 0.8 
5 483.4 182.6 66.8 0.8 
6 580.0 168.0 66.5 1.0 
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As presented in Sections 6.1 and 6.2, a micro-GA optimisation algorithm has been 

applied for multi-objective problems and some efforts have been made for 

manufacturing problems, however, most of the publications reviewed did not 

present results in terms of time evaluation of their algorithms, for this reason it is 

challenging to compare the presented results. Nevertheless, these results can be 

compared with the work presented by (Coello and Pulido, 2001b), the authors 

analyse four test functions commonly proposed in the literature review to 

compare three algorithms including, NSGA II, PAES and micro-GA. The results are 

reported over 20 runs and the micro-GA shows the best average running time 

which for the four test functions is 1.7 seconds. The results presented in this 

Chapter to optimise two objectives of the FSW and find its optimal design were 

evaluated over 10 runs and the average running time of the six models was 0.32 

seconds, which is suitable for using in FSW for taking decisions in ‘near real-time’. 

In terms of the quality of the proposed results, it is shown that there is close 

agreement between the target objectives and the achieved solutions while also the 

achieved solutions appear to be (based on expert process knowledge) feasible 

from a process perspective. 

The proposed framework has the ability to find the optimal design (process 

parameters) for a complex manufacturing process. The converge speed, accuracy 

of the predictions and total time of the system development make this approach an 

attractive technique suitable for online monitoring the condition of the FSW 

process. The multi-objective optimisation proposed can be used as a tool to design 

the optimal POW for aluminium alloys, hence, it has the potential to reduce 

production costs and at the same time monitor the quality of the welds produced 

by FSW. The solutions are selected from a ‘pool’ of Pareto front solutions, which in 

our case could be done by an expert. To achieve a real autonomous real-time 

system operation, one would need to also develop a solution selection mechanism, 

to allow the system to select one solution only in real time; however this is not 

within the scope of this thesis. One could achieve this, by investigating multi-

criteria decision-making methods (Coello, Aguirre, and Zitzler, 2001; Carlos M 
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Fonseca, Fleming, Zitzler, Deb, and Thiele, 2003; Purshouse, Fleming, Fonseca, 

Greco, and Shaw, 2013). 

6.6 Summary 

In this Chapter, a new multi-objective optimisation algorithm based on hybrid CI 

modelling techniques such as micro-GA and RBF was presented. The algorithm 

extracts knowledge from previous NF models and integrates the experience from 

process experts to achieve the optimal design of complex manufacturing processes 

and find the Pareto optimal solutions of two functions. The use of micro-GA which 

consists of very small populations (based on preliminary results, the population 

size in this Chapter was set to only six) and a routine which maintains diversity 

based on the best individuals, was proposed in this Chapter because it is 

computationally inexpensive and is highly suited for real-time applications. 

The multi-objective optimisation presented in this Chapter, contributes to better 

understanding of complex manufacturing processes, in this case, for FSW. The 

simulations presented, allowed the study of this process at its various scales and 

the location of the optimal POW, factors that are key for industries when designing 

effective production schedules. The framework may be used as a tool for decision 

making and design of control quality approaches which can ensure the production 

of free-defect welds.  

The various simulations presented in this Chapter have found the optimal 

solutions for the design of two objectives which are usually in conflict with each 

other. Six multi-objective problems were presented to the framework to find the 

Pareto optimal of solutions which are based on the set up of the parameters given 

by the speeds. Due to the small set of welding data available to find the optimal 

design of FSW, the Pareto of optimal solutions consisted on average of only six 

solutions. This means that the user will be presented with a small quantity of 
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information which may be helpful when taking decisions and designing the optimal 

POW’s. 

The results presented in this Chapter were performed for aluminium alloys 

AA5083 and using MX Tri-Flute tool, it is recommendable to evaluate the response 

of the proposed framework for different materials and tool designs. It will also be 

worth studying different techniques to maintain a good diversity for micro-GA. 

Concisely, the contributions of the investigation presented in this Chapter can be 

listed as follows: (i) For the first time, a new multi-objective optimisation 

framework based on micro-GA, hybrid CI approaches, and expert knowledge was 

presented; (ii) Micro-GA was proposed as an optimisation tool which has 

considerably reduced the computational cost of this algorithm; (iii) the algorithm 

is suited for real-time applications and the design of POW’s of complex 

manufacturing processes;  (iv) the framework has the ability to find optimal 

parameters (tool rotational and traverse speed) within a strictly constrained 

search space; (v) for the first time, the trade-off between the various mechanical 

properties (elongation, ROA, UTS, and YS) and weld quality was studied, similarly, 

the micro-scale of the FSW was investigated for the trade-off between 

microstructure (average grain size, cooling rate) and weld quality. 

The framework presented in this Chapter may be used as integration of a more 

complete system for predicting, monitoring, evaluating, and optimising the multi-

objective problems presented in manufacturing processes. 
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7 Conclusions and Future 
Work 

Overview  

In this thesis, the use of data-driven models has been proposed as an alternative 

solution to numerical modelling, for the understanding and optimisation of 

complex manufacturing processes. Key research challenges include the availability 

of only a conservative number of data samples, as well as the creation of HCS and 

real-time computational frameworks. The data-driven models are based on hybrid 

CI structures, which use the best characteristics of FL Systems, NN, evolutionary 

algorithms and multi-objective optimisation to describe, predict, monitor and 

optimise the performance of complex manufacturing processes. FSW has been 

utilised as the case study for this research work, representing a complex and so far 

ill-understood thermomechanical process. It is worth highlighting that the 

computational framework presented in this thesis is specific to FSW; it can be 

extended, however, to applications in other manufacturing sectors. A summary 

follows, of the main research results and the new contributions that this PhD 

project has made to better understanding of this welding technique, as well as in 

the discipline of Systems Engineering and CI. 
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7.1 Summary of main results and contributions 

In this thesis, the background and motivation of this investigation were presented, 

the main issues related to the modelling of complex manufacturing systems were 

discussed and the challenges related to the modelling of FSW were presented. 

To begin with, the FSW process was reviewed from a theoretical and practical 

perspective in order to demonstrate the significance of this novel technique for 

industry, and also to expose the complex phenomena and engineering challenges 

involved in this manufacturing process. The current literature on processing 

variables, tool design, and materials was presented with the aim of gaining a 

deeper understanding of the process. The advantages and disadvantages of this 

welding technique were also addressed. The literature presented revealed that one 

of the main advantages of this welding technique is the quality of welds. For this 

reason, there is a specific interest from companies to develop techniques that can 

provide significant information about the quality and characteristics of the 

products, without the need of destructive testing techniques. It was also identified 

the lack of intelligent systems that can monitor the process in real-time and, at the 

same time, can detect the behaviour which influence the quality of the final welds. 

Evidence presented revealed that one of the main challenges to simulate FSW is 

the development of models that can describe the complex interactions involved in 

this process. These include heat generation, material flow, and the influence of 

welding parameters over the final weld.  

Based on the findings from the literature review, preliminary data-driven 

modelling techniques based on CI were proposed to create computational models 

of complex industrial processes. Particular challenges related to the development 

of intelligent models for FSW were discussed. More importantly, it was identified 

the lack of intelligent techniques which are able to effectively monitor the process 

for real-time applications and at the same time can communicate significant 

information on the performance of the process.  
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Multiscale and data-driven modelling techniques were proposed as computational 

tools which can analyse and simulate complex industrial processes. The models 

were developed using NF modelling approaches. The ability of these CI paradigms 

based on Fuzzy Systems and NN to learn from data, and predict behaviour of 

complex systems, was demonstrated. It was also demonstrated that by using these 

techniques, a better understanding of complex interactions present in 

manufacturing processes can be achieved at multiple scales. More importantly, the 

multiscale models assist the process experts to better comprehend and identify the 

POW’s of the process under investigation. 

The NF models presented in this investigation have successfully simulated a 

complex manufacturing process, in this case FSW. The transparency of the NF 

models was demonstrated, and the inherent interpretability, due to the use of FL, 

of these models was exemplified with the use of IF-THEN sentences. It was 

demonstrated that NF-models can be translated into natural human reasoning 

which help experts better understand the complex interactions of their systems. 

The main contribution described in this Chapter was to prove that NF modelling 

can accurately predict the behaviour of FSW, even with few parameters and small 

data samples, by providing appropriate model training and optimisation 

techniques. The multiscale NF models were produced with only two inputs: tool 

rotational speed and traverse speed. Various process characteristics were also 

evaluated, including mechanical performance, microstructural characterisation 

and high-level product quality assessment. The NF models predicted crucial 

mechanical properties of the materials welded by FSW. Elongation, ROA, UTS and 

YS were accurately predicted for aluminium alloys AA5083. The microstructure of 

the material was evaluated by simulating the process data at two different scales: 

average grain size and cooling rate. Furthermore, the performance of the models 

was successfully simulated to predict the quality of welds produced by FSW.  

In this investigation, for the first time, a multiscale approach was developed to gain 

insights into FSW. This is a significant contribution for process experts as the 

models have been used as tools to study in depth the complex interactions within 
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the system, as well as its influence over the whole FSW process at three different 

scales (micro-, meso- and macro-). This was achieved while using only a 

conservative number of data samples (experiments) which were carefully 

designed in collaboration with the process experts at TWI Ltd. 

Another important contribution from the multiscale models presented in this 

thesis, was the creation of a NF model, which can simulate the cooling rate using 

thermal information from the process. The experimental approach was based on 

thermal imaging recordings, and extraction of relevant features, which was carried 

out at Cambridge, at TWI Ltd. facilities. This is a promising approach, which can 

potentially be used for real-time applications. 

Two significant contributions were presented in this thesis, both relevant to 

systems engineering and CI: (i) An NF model approach-based on spectral-temporal 

analysis and (ii) a GA-RBF optimisation, which further improves the performance 

of the multiscale models. A NF model-based approach was successfully developed, 

allowing the in-depth analysis of the multiscale behaviour of the FSW process. The 

use of spectral-temporal analysis was proposed as the main vehicle to capture 

process information from bending forces. This approach was enabled by creating a 

feature extraction process, out of the spectral-temporal data, which relates to the 

identification of suitable markers in the spectral domain. It was demonstrated how 

the tool bending force measurements can be used, via the FFT-based markers, to 

directly predict the final weld quality of the materials welded using FSW. The 

hypothesis, which was confirmed, was that the vibration and force profile of the 

tool’s bending forces are directly linked to the final product quality. The 

contribution of the spectral-temporal analysis can be extended to the potential 

reduction of the number of monitoring channels, which are currently used to 

collect the bending forces information. This can lead in the future to the 

development of simpler instrumentation of monitoring tools. The spectral-

temporal models may be used as a form of non-destructively evaluating the 

process’ performance. More importantly, the models based on spectral analysis of 
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the bending forces may be used for real-time applications; this is due to the low 

computational cost of the RBF-based modelling structure. 

The aim of presenting a GA-RBF optimisation was to demonstrate that even with a 

few data samples, the models previously developed can be further improved by 

using hybrid techniques. The hybrid modelling techniques proposed used: (i) FCM, 

to classify the data, and create the rules which describe the system; (ii) GA, to 

search for optimum solutions, and (iii) RBF, to improve the learning process of the 

model. A clear enhancement of the multiscale models of the FSW process was 

presented.  

A further significant contribution was the development of a new computational 

framework for model-based monitoring of manufacturing processes was created. 

The new framework is based on Fuzzy Entropy, and makes use of a model-based 

approach to autonomously identify abnormal process behaviour. The fuzzy 

entropy proposed is based on a Shannon’s entropy criterion. An NF modelling 

structure was used to develop the core knowledge of the system, while a FCM 

algorithm along with a GA were used for the system’s parametric optimisation. 

Several contributions were presented in this investigation: namely, the use of 

Fuzzy Entropy to measure information in model-created data, as well as taking 

advantage of the linguistic interpretability of the FL systems to create a HCS 

capable of providing feedback to the user automatically via natural language. The 

proposed HCS framework presents information relevant to the system’s 

performance and detects new behaviour.  

The proposed approach was successfully applied to FSW in order to study its 

complex and non-linear process conditions and predict the weld quality of the 

materials welded using this technique. This framework was applied for the first 

time to investigate experimental, real and synthetic datasets which evaluate the 

quality of the material. The results of these experiments, demonstrated the 

linguistic feedback of the system for the three industrial-based scenarios. 

Furthermore, the system’s computational efficiency allows it to run in real-time. 

This was demonstrated in the synthetic data experiments, which emulate real-life 
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operating conditions. The framework has the potential to be used as an 

autonomous/semi-autonomous system for monitoring complex manufacturing 

processes in real-time while, also providing linguistic feedback to experts and non-

experts.  

A multi-objective optimisation algorithm based on hybrid CI modelling techniques 

micro-GA and RBF was presented. The algorithm extracts knowledge from 

previous NF models to achieve the optimal design of complex manufacturing 

processes. The proposed framework is computational inexpensive and highly 

suited for real-time applications. The framework may be used as a tool for decision 

making and design of control quality approaches which can ensure the production 

of free-defect welds.  

The various simulations presented in this investigation have found the optimal 

solutions for the design of two objectives which are usually in conflict which each 

other. Six multi-objective problems were presented to the framework to find the 

Pareto optimal front of solutions which are based on the set up of the parameters 

given by the speeds. Due to the small set of welding data available to find the 

optimal design of FSW, the Pareto front of optimal solutions consisted in average of 

only six solutions. This means that the user was presented with a conservative 

quantity of information which may be helpful when taking decisions and designing 

the optimal POW’s. 

Concisely, the contributions of this investigation can be listed as follows: (i) a new 

multi-objective optimisation framework based on micro-GA, hybrid CI approaches, 

and expert knowledge was presented; (ii) a micro-GA was proposed as a 

optimisation tool for multi-objective problems which has considerably reduced the 

computational cost of this algorithm; (iii) the algorithm is suited for real-time 

applications and the design of POW’s of complex manufacturing processes;  (iv) the 

framework has the ability to find optimal parameters (tool rotational and traverse 

speed) within a strictly constrained search space; (v) for the first time, the trade-

off between the various mechanical properties (elongation, ROA, UTS, and YS) and 

weld quality was studied, similarly, the micro-scale of the FSW was investigated 
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for the trade-off between microstructure (average grain size and cooling rate) and 

weld quality. The framework may be used as an integrated system for predicting, 

monitoring, evaluating, and optimising the multi-objective problems presented in 

manufacturing processes. 

The data-driven models and frameworks presented in this thesis, have contributed 

to better understanding of FSW, while also created new systems engineering tools 

and methodologies based on CI to address specific challenges related to FSW. Data-

driven modelling techniques have proved their ability of learning from data and 

describe complex industrial processes even when small datasets are available. 

Several novel techniques were proposed to analyse FSW and predict the quality of 

the welds. The proposed techniques were NF modelling, spectral analysis and 

novelty detection. These techniques extract significant information from complex 

systems and simplify the models presented to the user. The develop techniques 

have the ability to communicate in a natural language with the user. The use of 

multi-objective optimisation was proposed to achieve optimal design of FSW. The 

approaches are computationally inexpensive and potential applications for real-

time systems can be developed. With further research and development, the 

studies presented in this thesis can be extended into other manufacturing 

processes. 

Although only limited information is available in the public domain (Research 

Excellence Framework, 2014), it is worth mentioning that the use of the data-

driven models for FSW presented in this thesis has already had a significant impact 

for industries, particularly for the aerospace sector. The data-driven models and 

optimisation frameworks have been used by TWI for a number of their industrial 

partners which has resulted in the reduction of extensive and expensive 

experimentation. The reductions of experiments lead to notable savings on: 

product development times of 50%, reduction of costs of 25% and significant 

reduction of materials needed for expensive weld trials. Furthermore, online 

monitoring frameworks based on real-time optimisation have contributed to the 

development of a relevant ISO certification for FSW applications. In terms of 
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environmental impact, the production of lightweight aerospace components and 

structures which have been possible through the use of the developed data-driven 

and optimisation models, this has led to the improvement of fuel efficiency which 

also results in less CO2 emissions.  

The results presented in this thesis were performed for aluminium alloys only, it is 

recommended to evaluate the response of the proposed algorithms for different 

materials and tool designs, perhaps materials with more complex microstructure 

behaviour (e.g. steel). In terms of the GA optimisation, it will be worth studying 

different techniques to maintain and improve the diversity. The simulations 

presented in Chapter 6 were produced for two objectives, it would be helpful to 

increase the number of objectives and evaluate the time that the algorithm takes to 

find the optimal solutions with more than two objectives. The solutions presented 

were selected from a ‘pool’ of Pareto front solutions, to achieve an autonomous 

real-time system operation, one would need to develop a solution selection 

mechanism, to allow the system to select one solution only in real time, however 

this is not within the scope of this thesis. The proposed selection could be achieved  

by investigating multi-criteria decision-making methods (Coello et al., 2001; Carlos 

M Fonseca et al., 2003; Purshouse et al., 2013). A limitation of the developed 

models was the over-fitting, where the model tried to learn from data that has 

never been presented to the system; the learning routine of the models can be 

improved with weld data generated within the ‘poor’ welding zone. 

7.2 Future research directions 

Based on the studies described in this investigation, some future research 

directions can be suggested: 

The NF models presented in this thesis have used dataset from aluminium alloys 

AA5083 and MX Tri-Flute tools; it would be beneficial to assess the response of 

these models in a different material and with different tools. For instance, it would 
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be very interesting, if datasets are available, to evaluate the behaviour of the 

presented studies in more challenging materials such as steels or titanium alloys. 

The studies presented in this thesis can be extended to the analysis of different 

manufacturing processes. Nowadays, several companies are producing and storing 

data of their processes but the information is not used at its full potential 

(extracting value from Big Data). The systems engineering frameworks and models 

presented in this research investigation are generic could be applicable to other 

processes. 

In terms of the ‘Novelty Detection’ framework and spectral analysis, their 

applications could be extended to identify the different types of flaw or defects that 

can affect the quality of the process. Some of the defects are difficult to detect even 

with destructive testing techniques. An application which can indicate the type of 

defect would be extremely helpful for industries. 

Finally, in terms of HCS, it was demonstrated how one can take advantage of traits 

of FL systems and develop human-friendly computational systems. Further such 

opportunities can be explored in the field of Systems Engineering, in particular in 

the area of natural language processing and Cognitive Computing. A fully 

autonomous system which integrates the prediction, novelty detection, multi-

objective optimisation and natural communication with the user would be an 

interesting application to demonstrate how the system can work within a loop 

based on the feedback provided from the models. 
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Appendix 1 

Table 9.1  Summary of weld data for individual probe features 

Tool component 
Spindle torque, 

Nm 
Down force kN 

Maximum tool 

temperature C 

Traverse force 

kN 

Average 

maximum 

bending force, 

kN 

Plain cone 102.7 39.6 466 6.3 6 

Threaded cone 105.7 45.7 503 4.3 5.5 

TrifluteTM 104.3 38.4 507 3.9 4 

TriflatTM 103.0 39.2 485 4.2 4.5 

MX-TrifluteTM 104.0 45.3 511 3.1 3.5 

MX-TriflatTM 107.8 46.8 510 3.2 3.75 

(Beamish and Russell, 2010a) 

 

Table 9.2 Summary of weld microstructural features for individual probe designs 

Tool 

component 

Material 

movement 
Weld surface Weld root 

Joint line 

remnant 

present 

Plain cone Some material 

movement. 

Shoulder dominates 

material movement. Deep 

layer of scalloped bands. 

Linear feature created by 

discontinuity in material flow. 

Yes  

Threaded cone Improved 

material 

movement. 

Tool probe features effect 

material movement. 

Reduced layer of scalloped 

bands. 

Material heavily worked 

however flow discontinuity 

remains. Characteristic bulge 

added to advancing side of weld 

root. 

No  

TrifluteTM Significantly 

improved flow 

and weld 

formation. 

Material aggressively 

worked by probe. Very 

shallow shoulder scallops. 

Good weld formation, flow 

discontinuity removed. Inward 

facing striations in root. 

Yes 

TriflatTM Significantly 

improve flow and 

weld formation. 

Gradual transition from 

shoulder to probe induced 

material movement. 

Good weld formation, flow 

discontinuity removed. 

Outward facing striations in 

root 

Yes 

MX-TrifluteTM Good material 

flow and weld 

formation. 

Material aggressively 

worked by probe. Very 

shallow shoulder scallops. 

Good weld formation, flow 

discontinuity removed. Inward 

facing striations in root. 

No 

MX-TriflatTM Good material 

flow and weld 

formation. 

Gradual transition from 

shoulder to probe induced 

material movement. 

Good weld formation, flow 

discontinuity removed. 

Irregular striation pattern. 

No  

(Beamish and Russell, 2010a) 
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Table 9.3 Summary of online and offline inspection techniques for FSW 

Monitoring / 

inspection type 
Application Advantages Disadvantages 

Online monitoring 

(e.g., process 

parameters, 

temperature, weld 

path errors) 

Correlation to flaws 

detected during process 

development and 

qualification 

Simple and quickly identifies problems 

while a part is being made 

Requires well-defined process window 

that accurately determines range of 

process parameters 

Visual monitoring Flash, galling, lack of 

shoulder or pin 

penetration, cracking, 

misalignment, distortion 

Quickly identifies problems while a part 

is being made 

Minimal surface preparation 

Reduced need for other (Nondestructive 

examination) NDE methods 

Only able to detect visible surfaces flaws 

Observations vary with personnel 

experience  

Surface cleaning and preparation 

Distractions 

Poor resolution  

Eye fatigue 

Good illumination required 

Analytical sensing  Detection of flaws 

correlated to signal 

analysis study 

Capable of predicting weld flaws while 

part is being made 

Reduced need for other NDE methods 

In early phase of research and much work 

still needs to be performed 

Offline monitoring 

of data 

Correlation to flaws 

detected during process 

development and 

qualification 

Simple and quickly identifies problems Requires well defined process window 

that accurately determines range of 

process parameters 

Radiography Inclusions, cracks, 

porosity, corrosion, 

debris, lack of fusion, 

lack of penetration, leak 

paths 

Sensitive to finding discontinuities 

throughout the volume of materials 

Easily understood permanent record 

Full volumetric examination 

Portability  

Radiation hazard, relatively expensive, 

long set-up time, necessary access to both 

sides of specimen 

Depth of indication not shown  

High degree of skill required for technique 

and interpretation 

Lack of sensivity to fine cracks 

Dye penetrant Cracks, porosity, leak 

paths, seams, laps 

Inexpensive, sensitive, minimal 

equipment, application to irregular 

shapes, versatile, minimal training 

Non-porous surfaces only 

Detection of surface flaws only 

Messy  

Ventilation requirements 

Ultrasonic Detect lack of 

penetration 

Detect wormholes 

Discontinuities in 

surface and subsurface 

Thickness 

measurements 

Fast 

Only single-sided access is required 

Full volumetric information 

Minimal part preparation is required 

Instantaneous results 

Detailed images can be produced 

automatically  

Permanent record 

Can be used for thickness measurements 

Surface must be accessible and smooth 

Can have operator dependence 

Flaw orientation important: linear defects 

oriented parallel to the sound beam may 

go undetected 

Interpretation can be difficult 

Need for reference standards 

Difficulty with complex geometries 

Inability to pads through air – need for 

couplant. 

Phased array eddy 

current 

Cracks, inclusions, 

dents, and holes 

Detect lack of 

penetration 

 Detects galling 

Coating and material 

thickness 

Surface and near surface 

defects  

Composition / 

conductivity / 

permeability 

Grain size / hardness 

Dimensions and 

geometry 

Alloy sorting 

Fast 

Inspection done in one pass 

Allow bead width sizing (indirect 

detection of oxide layers) 

Full coverage of weld 

c-scan imagining for easy interpretation 

easy to operate 

automation available 

permanent record available 

specimen contact not necessary 

Manual surface testing is slow 

Interpretation may be difficult 

Depth of penetration is limited 

Flaw orientation is critical 

Specimen must be electrically conductive 

Sensitive to many specimen parameters 

Surface roughness can produce non –

relevant indications. 

(Zappia, 2010)  
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Table 9.4 Training and testing data for elongation 

 Tool rotational speed (RPM) Traverse speed 
(mm/min) 

Elongation (%) 

TRAINING DATA  280 168 19.9029 
280 224 21.4184 
280 336 20.7682 
280 392 18.6968 
355 213 21.1851 
355 284 18.5264 
355 426 21.5080 
355 497 20.0090 
430 258 21.3005 
430 344 25.3713 
430 516 19.6417 
430 602 19.1110 
505 303 18.8152 
505 404 19.6443 
505 606 21.1323 
505 707 20.7148 
580 348 20.0604 
580 464 12.1529 
580 696 10.7151 
580 812 09.8258 

TESTING DATA 280 280 20.1078 
355 355 21.7179 
430 430 17.9744 
505 505 13.4041 
580 580 14.9365 
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Table 9.5 Training and testing data for ROA 

 Tool rotational speed (RPM) Traverse speed 
(mm/min) 

Reduction Of 
Area (%) 

TRAINING DATA  280 168 33.9460 
280 224 31.8447 
280 336 30.9170 
280 392 29.8833 
355 213 28.2068 
355 284 28.4004 
355 426 30.7075 
355 497 29.3227 
505 303 27.2983 
505 404 27.2994 
505 505 20.3864 
505 707 30.9903 
580 464 13.6552 
580 580 18.0198 
580 696 15.1141 
580 812 13.0070 

TESTING DATA 280 280 32.9301 
355 355 32.6291 
505 606 33.3349 
580 348 30.3553 
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Table 9.6 Training and testing data for UTS 

 Tool rotational speed (RPM) Traverse speed 
(mm/min) 

UTS (MPa) 

TRAINING DATA  280 168 314.7806 
280 224 314.0579 
280 336 314.2965 
280 392 314.9759 
355 213 313.5182 
355 284 310.5434 
355 426 312.5699 
355 497 310.6121 
430 344 295.9089 
430 430 266.3400 
430 516 281.3056 
430 602 296.1344 
505 303 315.2544 
505 404 305.9747 
505 505 275.7257 
505 707 315.9479 
580 464 229.0648 
580 580 292.1812 
580 696 263.5498 
580 812 258.1556 

TESTING DATA 280 280 314.5284 
355 355 312.6803 
430 258 300.2489 
505 606 320.1107 
580 348 315.2621 
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Table 9.7 Training and testing data for yield strength 

 Tool rotational speed 
(RPM) 

Traverse speed 
(mm/min) 

Yield strength 
(%) 

TRAINING DATA  280 168 171.8666 

280 224 173.0938 

280 336 176.6526 

280 392 184.0504 

355 213 171.4650 

355 284 172.5717 

355 426 174.7096 

355 497 173.4202 

430 258 163.3000 

430 344 169.9000 

430 516 163.6000 

430 602 169.0000 

505 303 173.8484 

505 404 173.5826 

505 606 177.3667 

505 707 177.8281 

580 348 173.6538 

580 464 175.7041 

580 696 177.7214 

580 812 176.5837 
TESTING DATA  280 280 173.0029 

355 355 173.9246 

430 430 162.8000 

505 505 174.9407 

580 580 175.8759 
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Table 9.8 Training and testing data for average grain size 

 

Table 9.9 Training and testing data for cooling rate 

 Tool rotational speed (RPM) Traverse speed 
(mm/min) 

Cooling Rate 
(°C/s) 

TRAINING DATA  300 300 13.1 
300 420 30.7 
300 480 35.2 
400 400 13.8 
400 560 63.3 
400 640 66.5 
500 600 87.9 
500 700 103.5 
500 800 84.2 
600 720 91.6 
600 840 93.9 
600 960 130 
700 800 129.8 

TESTING DATA 300 360 23.3 
400 480 18.9 
500 500 20.5 
600 600 40.8 
700 700 71.1 

  

 Tool rotational 
speed (RPM) 

Traverse speed 
(mm/min) 

Average grain size 
(μm) 

TRAINING DATA 280 168 11.9639 
280 336 8.6111 
280 392 6.9829 
355 213 11.7667 
355 284 11.9665 
355 426 9.7164 
430 516 10.7752 
505 303 12.8799 
505 707 11.2733 
580 812 9.3194 

TESTING DATA 280 280 8.8966 
355 355 10.7214 
430 258 14.5185 
505 606 13.0866 
580 348 12.2854 



Appendix 2 

212 

Table 9.10 Training and testing data for weld quality 

 Tool rotational speed 
(RPM) 

Traverse speed 
(mm/min) 

Weld quality 
(0-12) 

TRAINING DATA  280 168 0 
280 224 0 
280 336 0 
280 392 2 
355 213 1 
355 284 0 
355 426 0 
355 497 1 
430 258 0 
430 344 0 
430 516 1 
430 602 1 
505 303 0 
505 404 0 
505 606 0 
505 707 2 
580 348 2 
580 464 2 
580 696 5 
580 812 8 

TESTING DATA  280 280 0 
355 355 0 
430 430 0 
505 505 1 
580 580 1 

 

 


