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Abstract 

A set of Mn-based maraging TRIP steels was designed by Max-Planck-Institut für 

Eisenforschung GmbH (MPIE) for light weight and safe automotive applications. 

According to their research, these Mn-based maraging TRIP steels exhibited a 

simultaneous increase in both strength and ductility upon aging. They attributed this 

surprising effect to the combination of precipitation strengthening mechanism and 

TRIP effect of reverted/retained austenite.  

This thesis carried out a further study on this type of steels with minor modification 

of chemical composition (7-12 wt.% Mn, with additional ~ 1 wt.% Al). The 

unknown precipitates were characterized as L21-ordered Ni2TiAl intermetallic phase 

for the first time. This type of precipitates is not only coherent but also coplanar with 

the martensite matrix. Their special orientation relationship together with the small 

lattice misfit (1.24%) led to the precipitates remaining coherent with the martensite 

matrix even after a long-term aging for 10080 min. Analyses on precipitate size 

revealed that the coarsening rate constants follows the diffusion-controlled 

coarsening kinetics form  �̅�3~𝐾𝑡  predicted by LSW theory, but the experimental 

precipitate size distributions (PSDs) is much broader than the theoretical PSD 

function. In addition, a core/shell structure was observed within the precipitates, but 

the exact structure of this structure is still not clear. 

The formation of reverted austenite nanolayers initiated at the onset of aging by a 

diffusionless shear mechanism since the critical Mn concentration for austenite 

reversion at the interface is very low. The accumulated Mn segregation at grain 

boundaries in the following aging led to the austenite nanolayers that grew to lath-

like reverted austenite, which means the lateral growth of austenite was supported by 

the diffusion of Mn. Due to the low diffusion rate of Mn and the thermodynamic 

resistance to coalescence, the growth rate of lath-like reverted austenite is slow and 

thus the austenite maintained in the range 70-200 nm for a long time. The 

segregation of Ti and Mo on grain boundaries in the initial aging stage resulted in the 

Mn concentration of austenite nanolayers being far from that indicated by the 

equilibrium Fe-Mn phase diagram. The segregation of Ti and Mo gradually vanished 
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with the enrichment of Mn during the succeeding aging process. The TEM-EDS 

analyses revealed the Mn concentration of lath-like austenite was at the level of ~24 

at.% which is higher than that of retained austenite (8-12 at.%) reported in 

conventional Mn-based TRIP or Q&P steels. Nanoindentation testing revealed that 

the high stability of reverted austenite in Mn-based maraging steels was mainly 

attributed to the high Mn concentration of austenite. The nano-size of reverted 

austenite was also considered to be responsible for the high stability. 

Severe embrittlement occurred in samples aged at lower temperatures or for short 

times. Increasing aging temperatures and duration can significantly improve the 

embrittlement phenomena. An ultimate tensile strength (UTS) of 1120 MPa with 

total elongation (TE) of 18.4% was obtained in the 12% Mn alloy by aging at 500 °C 

for 5760 min. It was demonstrated that the dense precipitates contributed to the 

increase in yield strength whereas the work hardening of reverted austenite 

contributed to the enhanced strength and ductility after yielding. The TRIP effect of 

reverted austenite reported by Raabe et al. does not occur to any significant amount 

owing to the high stability of reverted austenite in Mn-based maraging steels. 
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Chapter 1 Introduction 

Steels possessing a good balance of mechanical properties (tensile strength × 

elongation) are of great importance to their applications. Specifically in the 

automotive industry, they are regarded as the future key materials for light-weight 

strategies and related fuel and car emissions savings. The huge commercial demand 

therefore has driven both industry and academia to make great progress in 

developing various high strength steel (HSS) grades and corresponding processing 

technology. 

High-strength low-alloy (HSLA) steels, as the most conventional HSS group, have a 

microstructure of fine ferrite grains strengthened by carbides and/or nitrides of Ti, V 

or Nb. Generally their strength is at the level of 700-800 MPa. As this type of steels 

can be manufactured by simple processing paths, they have been widely used in 

automotive applications. In order to further improve the combining properties of 

strength and ductility, other alloying elements have been added and hence more 

sophisticated alloy systems have been designed, such as Dual Phase (DP) steels, 

Transformation Induced Plasticity (TRIP) steels, Twinning Induced Plasticity (TWIP) 

steels and martensitic (MART) steels. Global tensile strength-elongation profile of 

those steel families is displayed in Figure 1-1 [1]. Dual phase steels are mainly 

constituted of soft ferrite with dispersed islands of hard martensite. Their strength is 

dependent on the amount of martensite and its morphology and distribution 

[2][3][4][5]. TRIP steels are multiphase grades which utilize specially designed 

alloying additions and processing paths to retain certain amount of austenite down to 

room temperature within a ferritic matrix. This metastable austenite transforms to 

martensite when subjected to plastic deformation, which leads to a volume and shape 

change of the resulting martensite and matrix to accommodate the transformation 

misfit and thus increases the ductility [6][7][8]. TWIP steels normally have a fully 

austenitic microstructure at room temperature. The formation of mechanical twins of 

austenite during deformation induces high strain hardening and prevents necking, 

which maintains a very high strain capacity and achieves a better balance of strength 

and ductility [9][10][11]. Another group of HSS is martensitic (MS) steels, among 
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which maraging steels is the most widely studied category. Maraging steels are 

known for its ultrahigh strength which is attributed to the heavily strained martensite 

matrix upon quenching and further precipitation strengthening by aging treatment. 

These precipitates act as highly efficient obstacles against dislocation motion via 

Orowan mechanism. The detailed microstructure and properties of maraging steels 

will be introduced in Section 2.2. 

 

Figure 1-1 Global tensile strength-elongation profile for various kinds of steels [1]. 

 

It is recognized that deformation-induced martensitic transformation plays an 

important role in improving the mechanical properties of TRIP steels. 

Conventionally, high level of carbon content is added to retain austenite at room 

temperature, but the poor weldability resulting from high carbon addition restricts its 

application in the automotive industry. Hence, Mn, as another effective austenite 

stabilizer, is used to substitute carbon. In 1960s, Goldshtein et al. first reported an 

excellent toughness obtained in a low-carbon TRIP steel (0.1 wt% C, 8 wt.% Mn) 

with a considerable amount of austenite [12]. Since then many researches on 

medium Mn steels have been carried out [13][14][15][16]. A recent study by Luo et 

al. [17] reported a 5Mn steel, which contained more than 30 vol.% austenite, 

exhibited an ultimate tensile strength (UTS) of 1-1.5 GPa with total elongation (TE) 

of 31-44%. 

On the other hand, it is generally accepted that the superior mechanical properties in 

maraging steels are attributed to the formation of strengthening nano-precipitates 
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upon aging. In fact, as the aging process is normally performed at the two-phase field, 

another phase transformation reaction, the partial reversion of martensite to austenite, 

is expected to occur. Evidence has demonstrated that austenite reversion can 

significantly affect the mechanical properties [18][19][20]. The most classical 

maraging group is nickel-based maraging steels (18 wt.% Ni) with considerable 

additions of elements such as Co (8 wt.%), Ti, Cr and Mo. Owing to the sharp drop 

of the availability of Co since the 1960s, many researchers have focused on 

developing alternatives to expensive Co and Ni containing maraging steels. Among 

them, studies on Mn-based maraging steels have made great progress in minimising 

the strength sacrifice resulting from the absence of Co and Ni. 

Based on the above discussion, the strategy of combining the two strengthening 

mechanisms in the form of Fe-Mn alloys was proposed. According to this strategy, a 

microstructure including hard martensite strengthened by nano-precipitates and 

ductile austenite in which transformation-induced plasticity can occur should be 

attained. Raabe et al. [18] designed a type of low carbon content (0.01 wt.% C), 9-12 

wt.% Mn steels with minor additions of Ni, Ti and Mo (1-2 wt.%). Contradictory to 

the common knowledge that the increase in strength is accompanied by a decrease in 

ductility (Figure 1-1), those steels exhibited a simultaneous increase in strength and 

ductility. A UTS of ~1300 MPa with a tensile elongation of 21% was reported in a 

12 wt.% Mn maraging TRIP steel. 

This great achievement opens a new approach to develop ultra-high steels at 

relatively lean alloying costs. However, there are still some unsolved questions about 

this new type of steels, e.g. the nature and composition of precipitates are debated. 

The respective formation mechanisms governing the austenite reversion and 

precipitation are not clear. Given that the chemical composition, morphology and 

grain size of reverted austenite are different from those of retained austenite, the 

deformation mechanism of reverted austenite in these steels is supposed to be 

different from that of retained austenite. The strengthening mechanism of this type of 

steels is also worth studying. Therefore, it is necessary to carry out a detailed study 

on this type of steels and based on the study, the optimal microstructure and related 

processing paths can be proposed. 
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The present work is undertaken in collaboration with Tata Steel. The aim was to 

proceed with a further study on a series of 7-12% Mn maraging steels. 

Characterization of the unknown precipitates is the primary task of this work. Then 

the formation mechanism of precipitates and reverted austenite are discussed, 

respectively. Based on the investigation on the strengthening mechanisms, optimal 

chemical composition and processing techniques are determined. 

This thesis continues with Chapter 2 which presents a general survey of relevant 

literature for the study on Mn-based maraging steels. After the introduction on the 

development of Mn TRIP steels and Mn maraging steels, various precipitation 

behaviours in different maraging steels are reviewed. Subsequently, the basic 

knowledge about precipitate coarsening is given. Then, the discussion on the 

mechanical stability of austenite and its formation mechanism is followed by a brief 

overview of grain refinement in maraging steels. 

Chapter 3 provides the information about the materials studied in this thesis and the 

relevant processing paths. Various sample preparation methods and characterization 

techniques are also described. 

Chapter 4 presents the results of some basic analyses on these steels to give the most 

straightforward understanding about Mn-based maraging steels, e.g. the 

thermodynamic calculation results, phase identification by X-ray diffraction (XRD), 

hardness and tensile testing results, etc. 

In Chapter 5, microstructural evolution of nano-scale precipitates during aging is 

described. Based on the observation, the precipitate coarsening kinetics is discussed. 

Then the chemical composition and crystal structure of precipitates are studied to 

identify the precipitates. In addition, their orientation relationship with martensite 

matrix and the core/shell structure are also investigated. 

Chapter 6 mainly focuses on the austenite reversion in maraging steels. Apart from 

the microstructural observation on reverted austenite in various aging conditions, the 

quantity and chemical composition of reverted austenite are measured to provide 

information about its mechanical stability. Then, the analyses of nanoindentation 

results of different samples are given. Based on these results, the factors which are 

normally considered to affect the mechanical stability of reverted austenite, such as 
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morphology, orientation relationship, grain size and chemical composition etc., are 

discussed successively. 

After a brief comparison of the mechanical properties of Mn-based maraging steels 

in this work with other medium Mn steels reported in the literature, the focus of 

Chapter 7 is concerned with the definition of strengthening mechanisms mainly 

involving solid-solution strengthening, grain-refinement strengthening, precipitation 

strengthening and phase transformation strengthening mechanisms (TRIP effect). 

Chapter 8 draws conclusions of this thesis based on the results and discussion of all 

chapters and future work are proposed as well. 
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Chapter 2 Literature review 

2.1 The development of Mn TRIP steels 

Two primary motivations have been driving the development of advanced high 

strength steel (AHSS) for automotive applications. The first motivation is to 

decrease the consumption of fuel and car emissions by mass reduction. The second is 

the increasing requirement for comfort, safety and speed of vehicles. From this point 

of view, AHSSs with high strength to weight ratio are the key materials for 

automotive manufactures [1][21][22]. The first-generation automotive-grade AHSSs 

(Figure 1-1), such as DP steels, TRIP steels and complex-phase (CP) steels which 

possess multi-phase microstructures comprised of different percentages of bainite, 

martensite and carbon-rich austenite, have been extensively investigated in the past 

[1][22]. The second-generation AHSSs are the twinning-induced plasticity (TWIP) 

steels. These high Mn (> 15 wt.%) austenitic-based steels yield a combination of 

strength and ductility superior than those of the first-generation AHSSs [10][11], but 

the high alloying additions (e.g. Mn, Al and C) and complicated processing 

technology limited their application in automotive industry [23]. Recently, the 

development of third-generation AHSSs with medium Mn contents (5-12 wt.%) have 

been designed and developed. In these steels, varying fractions of metastable 

austenite with fine grain size were produced by adjusted intercritical tempering 

[16][24][25][26]. It is reported that the medium Mn steels containing sub-micro 

austenite grains can achieve a high ultimate tensile strength and excellent total 

elongation [27][22][26]. This is because the plasticity of the austenite is not only 

dependent on the mobile dislocations, two other plastic modes, i.e., strain-induced 

martensitic transformation and mechanical twinning, are also involved in the 

deformation of austenite. The operation of specific deformation modes is determined 

by the microstructural characteristics of austenite (which will be discussed in Section 

2.4). This feature is significant in the design of medium Mn steels containing 

austenite. Recent studies on 5-7 wt.% Mn steels revealed that elongation of up to 45% 

can be achieved by optimized intercritical tempering. However, so far the yield 
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strength of this steel grade hardly goes beyond 1 GPa, which obviously cannot meet 

the demand for the various intrusion application of hole-expanded components in 

automotive industry [26]. Therefore, strategies to improve the strength of these steels 

in which the excellent ductility can be retained are the focus of current study. 

2.2 The development of maraging steels 

Maraging steels are a special group of ultrahigh-strength martensitic steels which are 

hardened by intermetallic precipitates instead of universal carbide precipitates. 

Therefore, the carbon content in maraging steels is controlled to be as low as is 

commercially practicable [28]. The term ‘maraging’ refers to the aging of martensite. 

The supersaturated martensite is obtained by fast cooling from the austenite phase 

field and the martensite with low carbon content is very soft but heavily dislocated. 

This microstructural feature is believed to benefit the hardenability, toughness and 

formability before aging [29], and more importantly, provide an excellent nucleation 

condition for precipitation. The subsequent aging treatment leads to the formation of 

intermetallic precipitates. The nature of precipitates largely depends on the alloying 

compositions and aging parameters. The detailed discussion about the precipitation 

in maraging steels will be given in Section 2.2.3. On the other hand, the excessive 

softening of martensite matrix by recovery during aging should be avoided if a good 

balance between strength and toughness is required. 

The development of maraging steels initiated in 1962 with the publication of a paper 

by Decker et al. [30] on 18 wt.% Ni steels containing significant levels of Co (8 

wt.%) and Mo (5 wt.%) but low carbon content (0.01-0.03 wt.%). According to their 

report, tensile strengths of up to 2068 MPa, 12% elongation, 60% reduction in area, 

low ductile-brittle transition temperature (DBTT) and notch tensile strengths of 

~3034 MPa were achieved. Additionally, excellent stress-corrosion resistance and 

weldability were inherent in these alloys [30]. The following researches led to the 

development of the well-known maraging systems, such as 18Ni (200 (ksi)), 18Ni 

(250) and 18Ni (300) alloys. However, the costly alloying additions of maraging 

steels restricted their applications in the most critical industry. The sharp drop of the 

availability of cobalt during the period 1978-1980 promoted the exploitation of 
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alternatives to Co-containing maraging steels. Intensive efforts were directed at 

reducing the concentration of expensive alloying elements, such as Co and Ni. As a 

result, a new class of Co-free maraging steels containing Fe, Ni, Mo and Ti emerged. 

These Co-free steels generally presented inferior mechanical properties compared to 

Co-containing steels, but their mechanical properties appeared sufficient for typical 

applications of maraging steels [31][32]. Moreover, due to the similarity of the 

equilibrium phase diagrams between Fe-Ni and Fe-Mn systems, the partial 

substitution of Ni by Mn was applied in the development of lean maraging steels. An 

excellent combination of strength and ductility was reported in an Fe-20.8Ni-

2.13Mn-0.8Ti maraging steel after aging at 550 °C for 1 h which exhibited a yield 

strength (YS: 1371 MPa) and total elongation (TE: 18.8%) [33]. It should be noted, 

however, steels with high Mn contents were found to suffer from embrittlement after 

aging for short times.  

The main strength of maraging steels is generally attributed to the dense precipitation 

of fine intermetallic compounds in a soft but heavily dislocated martensite matrix. In 

some cases, reverted austenite may form when aging at high temperatures or for a 

long period. The effect of reverted austenite on the mechanical properties is 

controversial. It is generally accepted that the toughness of quenching and 

partitioning (Q&P) steels for low-temperature service can be improved via the 

formation of metastable reverted austenite after fast cooling from intercritical 

tempering (holding in the temperature range where the austenite and ferrite phases 

coexist) [27][34][26]. However, in maraging steels, different opinions exist on the 

effect of reverted austenite on mechanical properties (which will discuss in detail in 

Section 2.4.1) [19][35][36][37].  

Maraging steels are known for their excellent combination of ultrahigh strength with 

an acceptable ductility. Due to the low carbon content, they exhibit excellent 

machinability and weldability in the solution-treated condition. Besides, they also 

possess high strength to weight ratio and dimensional stability during aging. All of 

these attractive properties make maraging steels as a class of promising materials and 

numerous researches have been carried out on the development of maraging steels. 

More recently, a newly-developed 12 wt.% Mn maraging TRIP steel with minor 

addition of Ni, Ti, Mo and Al was reported to possess an excellent combination of 
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strength and ductility (UTS (ultimate tensile strength): 1.3 GPa, TE (total elongation): 

21%) due to precipitation strengthening mechanism and TRIP effect of austenite. But 

there are some unsolved questions about this new materials, i.e. the nature of 

precipitates, the formation mechanism of retained/reverted austenite and its 

contribution to strengthening [18]. 

2.2.1 The role of alloying elements in maraging steels 

The high Ni content in maraging steels, which significantly lowers both the 

equilibrium 𝛾/𝛼 transformation temperature (𝐴𝑒3) and martensite start temperature 

( 𝑀𝑠 ), ensures the formation of martensite after quenching from solid-solution 

treatment. Precipitation strengthening by aging is subsequently acquired via aging at 

480-510 °C for a range of times [29]. Ni, Co, Ti, and Mo are normally added as 

essential elements to generate intermetallic precipitates. In recent studies on Cu-

bearing maraging steels, Cu precipitates were demonstrated to accelerate the 

nucleation of intermetallic precipitates [38][39][40]. In some maraging steels, the 

additions of high levels of Cr are required to achieve effective aging hardening in 

stainless grades resistant to corrosion [41][42][43]. As mentioned above, the price 

jump of Co and Ni drove extensive researches to develop lean maraging steels. In 

recent years, the development of lean maraging steels by substituting Ni with 

cheaper elements such as Mn (the price of Ni: 14410 USD/t, Co: 27750 USD/t, Mn: 

2200 USD/t by Aug 2013) has made remarkable progress. As an alternative austenite 

stabilizer, Mn can take over the role of Ni in conventional maraging steels. Besides, 

experimental evidence indicated that Mn was also involved in the precipitation of 

Mn-containing maraging steels [44][45] and Mn additions were found to accelerate 

the age hardening process [46]. However, high maraging strength at the expense of 

dramatic loss in ductility was found in several Fe-Ni-Mn steels [33][47][48]. Some 

researchers suggested that the segregation of Mn to grain boundaries was responsible 

for the embrittlement phenomena in those alloys (which will discuss in Section 2.2.4) 

[47][49]. While further study on these Mn-containing maraging steels revealed that 

the embrittlement vanished by proceeding segregation of Mn at grain boundaries 

leading to the austenite reversion [50]. 
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2.2.2 Behaviour of intermetallic precipitates in conventional 

maraging steels 

Since the development of maraging steels in the 1960s, numerous researches have 

been carried out on the precipitation behaviour in this steel grade. Thanks to the 

development of advanced characterization techniques, such as high resolution 

electron microscopy (HREM) and atom probe tomography (APT) which enables the 

characterization of extremely fine precipitates, the nature and composition of those 

intermetallic precipitates in maraging steels have been generally understood. Most of 

studies agreed that in conventional 18Ni maraging steels, Ni3Ti(Mo,V,W)-type 

phases generally appear at the very early aging stage, whereas a more stable 

FeMo(W)-type phase is formed after long-term aging [51]. 

The formation of N3Ti(Mo)-type phases at the initial aging stage in conventional 

maraging steels had been proposed since this type of steels was invented. The 

modern techniques which allow atomic-scale resolution make the direct observation 

on the nano-precipitates possible and finally confirm the existence of Ni3Ti(Mo) 

phase (η-phase) in those steels. The morphology of Ni3Ti precipitates was found to 

be needle-like [31][52], plate-like [53] or rod-like [31]. The Ni3Ti phase exhibits 

hexagonal lattice with a = 0.255 nm and c = 0.42 nm [38]. Selected area electron 

diffraction (SAED) analyses indicate that the orientation relationship between η-

Ni3Ti and 𝛼′-martensite matrix is (011)𝛼′ ∥ (0001)𝜂 , [11̅1]𝛼, ∥ [112̅0]𝜂 [54]. There 

was debate about the formation mechanism of Ni3Ti phase in the literature. Most 

studies suggested the heterogeneous nucleation on dislocations followed by growth 

via pipe diffusion [48][54]. Other researchers insisted that the precipitate nucleation 

occurs homogeneously, or at larger undercooling, by spinodal decomposition [55]. 

There were also divergent opinions about the dominant strengthening effect of each 

type of precipitates in these steels. Some studies revealed that in maraging steels 

where both Ti and Mo were present, Ti was much more active in the beginning due 

to its rapid diffusivity in martensite at the specific aging temperature. Apart from the 

kinetic advantage, the smaller lattice misfit between Ni3Ti and martensite and 

consequently a lower barrier for nucleation is another reason for the formation of 
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Ni3Ti in the early stage of aging (just a few minutes or even faster). Therefore, a 

sharp rise in hardness shortly after the onset of aging was usually observed in Ti-

containing maraging steels (C-300 and T-300 steels) [51]. At this stage, Mo is more 

likely to be incorporated into the Ni3Ti phase and partially substitute Ti atoms. As 

the substitution is limited, there are still sufficient Mo atoms for the following 

formation of FeMo-type phases. Conversely, the growth of FeMo phase would 

consume the Mo atoms in Ni3Ti(Mo) phase and therefore the stoichiometry of 

Ni3Ti(Mo) becomes more closer to that of Ni3Ti. The activity of Mo has been shown 

to be strongly affected by other elements. The presence of Co is generally found to 

promote the formation of Mo-rich precipitates. When Co is absent, the driving force 

for the precipitation of Mo-rich precipitate is significantly reduced. In this case, the 

precipitation of Mo-rich phases would take 3 to 8 hours to occur [56]. Thus the 

major precipitates in Co-free maraging steels are entirely Ni3Ti phase and thus 

higher Ti content is required to achieve the same level of precipitation strengthening. 

In addition, the stoichiometry of FeMo-type phase is still debated. Previous TEM 

and SAED studies suggested it as Fe2Mo Laves phase [54][56], whereas the 

compositional result by a more recent ATP analysis corresponded to Fe7Mo6 µ phase. 

Moreover, the possibilities of FeMo and Fe3Mo2 cannot be excluded as well. 

Apart from the primary Ni3Ti(Mo)-type and FeMo-type phase, several other 

intermetallic phases may also form as well due to the composition variation of 

maraging steels. In Ti-free maraging steels, the role of Ti is taken over by Mo. A 

precipitation sequence of Ni3Mo followed by equilibrium FeMo-type phase was 

reported in Ref. [56]. Besides, a type of metastable ω phase (ordered isothermal 

phase enriched in Ni, Co and Mo) was always generated before the formation of the 

more stable Ni3Mo phase. Researches revealed that this ω phase had a higher level of 

coherency with the matrix and hence was easier to form [57][58]. In addition, the 

precipitation of Ti6Si7Ni16 (G-phase) was found to be responsible for the 

precipitation hardening of Cr-containing high-Si steels [59]. 
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2.2.3 Precipitation behaviour in newly-developed maraging 

steels strengthened by other intermetallic phases 

Maraging steels strengthened by intermetallic phases have complex precipitation 

behaviours, which vary with the chemical compositions. In this section, some less-

known intermetallic precipitates in steels are briefly introduced. 

2.2.3.1  NiAl-strengthened Fe-Cr-Ni-Al steels 

Precipitation-strengthened ferritic steels are candidate materials for applications such 

as high-pressure steam piping and heaters in ultra-supercritical fossil-energy power 

plants [60][61][62]. These applications generally require a creep strain rate ~3 ×

10−11 𝑠−1 at temperatures of 760 °C and stress of 35 MPa [63][64]. Therefore, creep 

resistance is one of the most significant properties. Currently, most creep-resistant 

ferritic steels are strengthened by carbides. However, the coarsening of incoherent 

carbides in long-term high temperature application often leads to the decrease of 

creep resistance [65][66][67][68][69]. Consequently, a number of studies have been 

carried out to improve the creep properties of steels [70][71][72][73][74]. On the 

other hand, the investigation on the strengthening behaviour of high temperature 

materials suggests a uniform dispersion of coherent precipitates is beneficial to 

enhancing the strength [74]. The most classical group is the nickel-based superalloys 

where coherent L12-ordered precipitates are generated to strengthen the fcc marix. 

Analogously in steels, B2-ordered (CsCl-type) NiAl phase (a = 0.2887 nm) [75] is 

known to have a similar crystal structure to α-Fe matrix (a = 0.2866 nm) [75]. Its 

orientation relationship with matrix is (100)𝛼 ∥ (100)𝑁𝑖𝐴𝑙, [001]𝛼 ∥ [001]𝑁𝑖𝐴𝑙 , 

which means the NiAl phase is not only coherent but also coplanar with α-Fe matrix 

[76]. NiAl-strengthened ferritic steels have been found to possess better thermal 

conductivity, lower thermal expansion and production cost compared to other 

materials applied in high temperature [77]. Besides, it is believed that the additions 

of Al which varies from several to more than 10% contributes to the feature of lower 

density (~7 g·cm
-3

) [60]. All these advantages allow the NiAl-strengthened ferritic 

steels to be nominated as a promising substitution for carbide-containing ferritic 
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steels, austenitic steels and nickel superalloys applied in the high temperature field. 

Therefore, a series of NiAl-strengthened ferritic superalloys have been designed.  

High strength and toughness with an improved creep resistance have been achieved 

by the formation of B2-ordered NiAl precipitates in these alloys [61][62][73][76]. 

Tailard [76] reported an Fe-20Cr-4 Ni-2Al alloy aged at 550-650 °C which hardened 

rapidly in the initial stage owing to the precipitation of B2-ordered NiAl phase. 

Maximum hardening of ~420 HV was achieved at around 1000 minutes / 550 °C 

followed by the decrease in hardness due to precipitate coarsening. In terms of 

morphology, NiAl phase initially remains coherent with the α-Fe matrix and presents 

a spherical shape. Then it gradually transforms to a non-equiaxed cuboidal 

morphology up to 150 nm and eventually lose coherency at the dimension of 150-

300 nm after an extremely long time aging. This continuous growth in size during 

aging indicates that the resistance to coarsening of NiAl phase needs to be improved. 

In addition, the high volume fraction of NiAl precipitates leads to a better creep 

resistance, whereas the ductility is inversely related to the volume fraction of NiAl 

precipitates [60][61]. Moreover, the ductility is found to decrease with the increasing 

addition of Al in α-Fe matrix. Therefore, an improved microstructure which 

possesses (1) a volume fraction of 20% NiAl precipitates, (2) a solubility of Al 

below 4% in the α-Fe matrix and (3) appropriate Ni and Al additions to avoid the 

austenite reversion, has been proposed to achieve a better balance between the creep 

resistance and ductility [61][62]. 

On the other hand, some other studies were devoted to developing potential stainless 

maraging steels also strengthened by NiAl precipitates for application in machinery, 

aircraft and sports fields [78][79][80][81][82]. Ultra-fine NiAl precipitates (1–6 nm) 

with a high number density (10
23-25 

m
-3

) were found homogenously distributed in 

martensite matrix at the early stage when aging at 450-620 °C [82]. The size and 

elemental concentrations of precipitates were found to increase moderately with the 

aging temperature while the number density decreased. A maximum yield strength 

(YS) of ~1500 MPa was reported in an Fe-13Cr-8Ni-2.5 Mo-2Al stainless maraging 

steel aged at 510 °C [82]. It has been demonstrated that B2-ordered NiAl phase 

formed in stainless maraging steels remained fully coherent with the matrix even 
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after a significant coarsening [80][81][82]. According to Seetharaman’s calculation, 

the critical diameter of losing the coherency between NiAl phase and α-Fe matrix 

was ~150 nm [80]. 

2.2.3.2  The co-precipitation of NiAl and Ni3Ti phase in Fe-Cr-Ni-Ti-Al steels 

Ti is one of the most active elements in maraging steels due to its rapid, and strong 

precipitation effect during aging [56], hence a number of studies have been carried 

out to investigate the influence of Ti addition on the precipitation evolution in 

maraging steels [32][78][83][84]. Accelerated hardening was observed in an Fe-Ni-

Al-Ti-Cr stainless steel aged at 525 °C where ~86% of the total increase in hardness 

was achieved within 0.25 h [32]. The uniformly dispersed clusters formed at the 

initial aging stage were enriched in Ni, Al and Ti. At the peak hardness (525 °C / 3h), 

a splitting of the clusters occurred and two independent intermetallic phases, B2-

ordered NiAl phase and η-Ni3(Ti,Al) which were both responsible for precipitation 

hardening, were formed. In addition, the enrichment of Fe and Cr at the expense of 

Ni and Al was found in NiAl precipitates by Atom Probe tomography (APT), but the 

concentrations of Fe and Cr progressively decreased with aging time. In contrast, no 

substituting elements were found in Ni3Ti precipitates which indicated the Ni3Ti 

phase had a low solubility of other elements and maintained the chemically stability 

during aging [32]. 

Lately Leitner and co-workers further reported a supplement of Si in Fe-Cr-Ni-Ti-Al 

steels [78][84]. A heterogeneous nucleation sequence at dislocation lines was found 

in the very beginning of aging which resulted in a more significant increase in the 

cluster formation and hence the hardness of the alloy. This undefined precursor 

phase then acted as nuclei for the formation of precipitates after a long-time aging 

treatment. Therefore, two intermetallic precipitates, a spherical phase Ni16Si7Ti6 (G-

phase) and a rod-shaped η-Ni3(Ti,Al) phase were generated during aging either 

simultaneously or separately depending on the chemical composition of alloys 

[78][84]. Both of the two precipitates were demonstrated to be correlated to the 

precipitation hardening. Despite the strong increase in strength at the early aging 

stage, the alloy suffered from severe intergranular embrittlement (Figure 2-1). It is 
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speculated that the higher number density of undefined precursor precipitates was 

correlated to the embrittlement since neither precipitation nor segregation on the 

prior austenite grain boundaries was found at this stage. The embrittlement 

phenomenon was improved after prolonged aging due to the evolution of the 

precipitates and the reversion of austenite. 

 

Figure 2-1 Stress-strain curves of samples with different heat treatment conditions in Ti-

containing alloy [84]. 

 

2.2.3.3  L21-ordered Ni2TiAl type precipitates in Fe-Cr-Ni-Al-Ti steels 

In contrast to the co-precipitation of Ni3Ti and NiAl described in Section 2.2.3.2, 

some studies demonstrated that the addition of Ti to Fe-Cr-Ni-Al steels led to a type 

of precipitates which had rarely been reported in Fe-based alloys [62][85]. The nano-

sized precipitates which were observed in the as-quenched state presented a cuboidal 

morphology with an aspect ratio of ~ 2 and an average width of 15 nm. The structure 

was determined as L21-ordered and was fully coherent with the α-Fe matrix (Figure 

2-2(a) and (b) [85]). The precipitation of L21-ordered Ni2TiAl phase from a 

supersaturated B2 TiNi matrix has been reported in several Ni-Ti-Al shape-memory 

alloys [86][87][88][89][90], but it was seldom observed in Fe alloys. During the 

further aging, the precipitates grew to an elongated shape with an average width of 

40 nm and decomposed into a substructure with a network of B2-ordered NiAl zones 
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in L21-ordered Ni2TiAl precipitates as shown in Figure 2-2(c). The L21/B2 two-

phase system, with ordered structures based on a bcc lattice is analogous to the 

classical 𝛾/𝛾 , system with an fcc lattice in Ni-based superalloys [89][90]. Evidence 

showed that Ni2TiAl phase exhibited a better creep resistance than NiAl phase. In 

most creep-resistant form, the creep strength of L21-Ni2TiAl between 1026 and 1273 

K was about three times that of NiAl [91]. Further investigation revealed that the 

best creep properties in Ni-Al-Ti alloys was obtained by a two-phase microstructure 

of NiAl phase embedded in Ni2TiAl matrix [85]. Therefore, the formation of a 

similar two-phase precipitate which is composed of B2-ordered NiAl and L21-

ordered Ni2TiAl is a potential strategy to optimize the mechanical properties of 

precipitation-strengthened ferritic alloys. 

 

Figure 2-2 (a) An atomic resolution high-angle annular dark-field (HAADF)-scanning 

transmission electron microscope (STEM) image along the [001]bcc-Fe zone axis; (b) 

magnified HAADF-STEM image of the precipitate/matrix interface in (a); (c) Dark-field 

image of the precipitates using the unique 11̅1̅ reflection of L21-ordered Ni2TiAl phase 

where the B2-ordered NiAl zones are indicated by arrows [85]. 
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2.2.3.4  Effect of Mn on the precipitation in Fe-Ni-Mn-Ti-Al steels 

As discussed in Section 2.2.1, efforts of partial substitution of Ni by lean element 

such as Mn, which provides similar effects upon the austenite-martensite 

transformation, have led to the development of Fe-Ni-Mn-Ti-Al alloys. The increase 

of Mn content at the expense of Ni content is correlated to a considerable 

acceleration of the age hardening. A significant increase of hardness by ~200 VHN 

within 5 s was reported in an Fe-20Ni-1.8Mn-1.5Ti-0.59Al alloy aged at 550 °C and 

the yield strength increased by ~215 MPa to above 900 MPa [48]. Initially the co-

clustering involving the Ti+Al and Mn+Fe was observed before the formation of 

plate-shaped (Ni,Fe)3Ti precipitates and spheroidal (Ni,Fe)3(Al,Mn) precipitates after 

aging for ~60 seconds [46]. Out of these four alloying elements, Ti possesses the 

highest diffusion rate followed by Mn and Al, whereas Ni has the slowest rate. 

Therefore, the Ti-rich clusters normally acted as nuclei for the subsequent formation 

of η-Ni3Ti precipitates [46]. On the other hand, the (Ni,Fe)3(Al,Mn) precipitates were 

found predominantly at two sites: homogeneously within the matrix or the periphery 

of plate-shaped (Ni,Fe)3Ti particles which indicated the segregation of Al and Mn at 

the interface between the (Ni,Fe)3Ti phase and surrounding matrix (Figure 2-3). This 

segregation of Al+Mn atoms was attributed to the high thermodynamic affinity 

between Al and Mn [92][93][94] and the tendency of Mn atoms in steels to segregate 

on the interfaces [95][96].  
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Figure 2-3 (a) Three dimensional atom probe tomographic reconstructions of rod-shaped 

precipitates after treated for 3600 seconds and (b) corresponding Ni+Ti isoconcentration 

surfaces [46]. 

 

2.2.3.5  Cu-rich precipitation strengthened steels 

As Cu has limited solubility in Fe [97][98], Cu precipitates can serve as 

homogeneous nucleation sites for other precipitates [39][99]. It is also demonstrated 

that Cu accelerates the nucleation process due to a reduction in the activation energy 

when Cu is incorporated into precipitates [38][39]. Therefore, nano-sized Cu 

precipitates are extensively utilized in the development of precipitation-strengthened 

steels, and numerous studies have been carried out to study the hardening effect by 

Cu and Cu-rich precipitates [38][39][40][45][97][99][100][101][102][103][104]. 

Investigations on the Cu-containing steels revealed that Cu precipitates had a wide 

size range from 1 nm to 30 nm during aging [105][106]. Precipitation sequence was 

initiated with the rapid formation of metastable bcc copper phase which exhibited a 

spherical shape due to the coherency with bcc matrix [107]. The maximum hardness 

was achieved before Cu precipitates grew to the critical diameter of ~ 5 nm after 

which the precipitates gradually lost the coherency and transformed to an 

intermediate 9R structure [106][107]. The precipitate/matrix orientation relationship 

was proposed as (114̅)9R-Cuǁ(011)α-Fe, [1̅10]9R-Cuǁ[11̅1]α-Fe [45][108]. The twinned 9R 



Chapter 2 Literature review 

19 

 

precipitates maintained a spherical shape before coarsening to ~ 17 nm [105]. Then a 

more stable 3R structure followed by an equilibrium fcc structure were observed in 

Cu precipitates during further aging. The rod-like fcc Cu precipitates regained the 

untwinned structure and were aligned along the Kurdjumov-Sachs orientation 

relationship ((111)fcc-Cuǁ(110)α-Fe, [110]fcc-Cuǁ[111]α-Fe) with the bcc matrix 

[100][102][105]. 

Despite of the advantages discussed above, steels strengthened by Cu precipitates 

suffered from low hardness and rapid precipitate coarsening during annealing. 

Therefore, minor additions of Ni, Ti, Al and Mn are introduced to develop the co-

precipitation strategy so as to ultimately enhance the strengthening effect of Cu 

precipitates [38][40][102][109][110]. Two types of intermetallic precipitates, B2-

ordered NiAl and η-Ni3(Ti,Al), were generated into Cu-containing maraging steels 

[38][39][40][45][102][103]. Experimental evidence revealed that the addition of Cu 

accelerated the nucleation of the two precipitates and in turn, the two phases 

restrained the coarsening of Cu precipitates.  

It is worth discussing the different effects of Cu on the nucleation of the two 

precipitates. In the case of B2-ordered NiAl phase, approximately 10 at.% Cu was 

detected within the Ni+Al clusters in the as-quenched state [39] and this level 

remained constant during the following aging treatment. It is commonly believed 

that the incorporation of Cu reduced the nucleation energy by reducing the lattice 

misfit and thus promoted the precipitation of NiAl [38][39]. Moreover, Cu-rich NiAl 

precipitates exhibited a stability in both the size and morphology compared to the 

NiAl precipitates in Cu-free Fe-Ni-Al alloy [40]. In view of the rapid coarsening of 

both Cu precipitates and NiAl precipitates when present separately, it is supposed 

that there is an interaction effect between Cu and NiAl phase in terms of the 

resistance to coarsening. 

On the other hand, a different Cu-rich precipitation behaviour was reported in other 

Fe-Ni-Al alloys [45][102][103]. The initial precipitation was similar as described 

above: short-range ordering occurred before aging followed by the formation of B2-

ordered Ni-Al-Cu precipitates at the beginning of aging as shown in Figure 2-4(a) 

[45]. Then a decomposition of the primary precipitates led to a kind of core/shell 
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precipitates with Cu-rich core surrounded by a periphery enriched in Ni and Al 

(Figure 2-4(b) and (c)). The thermally stable B2-ordered shells hindered the 

diffusion-controlled growth of Cu-rich core, and more importantly, reduced the 

misfit between the fcc Cu-rich core and the bcc matrix, Figure 2-4(d) and (e) 

[45][102]. The low interfacial energy together with the atomic ordering of B2-

ordered shells allowed the precipitates to grow moderately without sacrificing the 

high-density feature during further aging, and moreover provided a complex obstacle 

for dislocation motion [103]. 

 

Figure 2-4 Atomic distribution of representative precipitates in the (a) 1 h, (b) 4 h and (c) 

1024 h aging stages [102]; (d) HAADF image of the core/shell precipitates and (e) Enlarged 

HAADF image of yellow rectangle part in (d) [45]. 

 

In terms of the Ni3Ti-strengthened steels, as the solubility of Cu in Ni3Ti phase is 

much lower than that in NiAl phase, the independent Cu-rich clusters were usually 

observed in the beginning of aging and acted as nucleation sites for Ni3(Ti,Al) phase. 

The precipitation of Ni3(Ti,Al) occurred mainly adjacent to the Cu-rich clusters [39]. 
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Other studies reported that the formation of η-Ni3Ti in Cu-containing maraging 

steels was restrained when NiAl precipitates were also present, as Cu could only be 

incorporated in NiAl phase and thereby, to a larger extent, accelerating the formation 

of NiAl phase in the initial aging stage[38]. 

2.2.4 The Mn embrittlement in Fe-Ni-Mn and Fe-Mn alloys 

As mentioned in Section 2.2.1, attempts have been made to develop cheaper 

alternatives to the conventional Ni-based maraging steels. Experimental studies on a 

series of Fe-Ni-Mn steels revealed that this type of steels exhibited a remarkable 

maraging strengthening owing to the formation of fine f.c.t θ-NiMn phase 

[111][112]. In some cases, the addition of Ti to Fe-Ni-Mn alloys was found to 

generate very fine and thermally stable Ni3Ti precipitates [33]. Other phases such as 

MnNi, fcc Ni3Mn and ordering were also considered as possible precipitation-

strengthening contributor [113][114]. Therefore, this grade of steels used to be 

regarded as a promising alternative to conventional maraging steels. 

Unfortunately, serious grain-boundary embrittlement was observed to occur at the 

very beginning of aging treatment in Fe-Ni-Mn steels [95][115][116][117]. A lot of 

researches were carried out on the source of grain boundary embrittlement and some 

possibilities have been proposed. It is generally accepted that the grain boundaries 

act not only as barriers against dislocation motion but also as zones where interface 

segregation may occur. More specifically, Raabe et al. [50] summarized the 

conceivable pathways by which the solute segregation could behave: (i) the 

segregation might increase the coherence and preferential bonding at the interface 

(grain boundary strengthening); (ii) the reverse could lead to a further loss of 

coherence and unfavourably directed bonding at the interface (grain boundary 

weakening); (iii) phase transformation might occur at the grain boundaries (grain 

boundary phase transformation); (iv) the formation of one or more second phases at 

the decorated interface could be initiated (grain boundary precipitation); (vi) 

discontinuous precipitation might be promoted. 

Squires and Wilson [95] first stated that the intergranular fracture observed in an Fe-

12Ni-6Mn alloy was associated with the segregation of embrittling elements like Mn 
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and P to prior austenite grain boundaries. A later study on a similar alloy 

complementally reported that the Ni and N were also found at the fractured grain 

boundaries [115]. Heo and Lee [117] tracked the segregation and desegregation of 

Mn at the prior austenite grain boundaries on the fracture surfaces of an Fe-8Mn-7Ni 

alloy in the embrittled condition. They pointed out that the embrittlement and de-

embrittlement of the alloy was directly correlated to the segregation and 

desegregation of Mn, but they also suggested that considering the low enrichment 

level of Mn, such serious embrittlement was not likely to be solely attributed to the 

Mn segregation alone [92].  

In contrast, Suto and Murakami argued that the slight segregation of Mn and Ni at 

grain boundaries detected would not result in the transition to brittle state [116]. 

Raabe and his colleagues [50] also hold an opposite opinion about the correlation 

between Mn segregation at grain boundary and mechanical behaviours. They 

believed that the embrittlement was associated with the susceptible crack penetration 

owing to the low mutual misorientation between adjacent lath boundaries [50]. 

Unfortunately, as the predominant interfaces in quenched martensite, a large amount 

of lath boundaries existed. However, given that the variation of bulk grain free 

energy was negligible, the primary thermodynamic driving force for solute 

segregation at interfaces was to minimize the interface free energy. As the decrease 

of the interfacial free energy reduced the driving force for grain growth, materials 

with reduced grain boundary energy were considered to have a finer and more stable 

grain size. Therefore, they proposed that the solute segregation at grain boundaries 

contributes to both strength and toughness by refining grain size, if the specific type 

of segregation does not lead to grain boundary embrittlement.  

On the other hand, other studies suggested the intergranular embrittlement in Fe-Ni-

Mn system as the result of the interaction of mobile dislocation with precipitates at 

grain boundaries. These researchers insisted that the precipitation on grain boundary 

was the main source of grain boundary failure in Fe-Ni-Mn maraging steels. Lee et 

al. [118] found θ-NiMn intermetallic precipitates at the grain boundaries in an Fe-

10Ni-5Mn alloy when aging at 753 K for short time and this type of precipitate was 

initially suspected to be responsible for the embrittlement. Later studies conducted 

by Nedjad et al. [119][120] on Fe-10Ni-7Mn maraging steels confirmed the 
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correlation between the intergranular failure and precipitation reactions at grain 

boundaries. They further pointed out that the formation of coarse precipitates at grain 

boundaries resulted in the soft solute-depleted precipitate-free zones at grain 

boundaries. Then the large strain localization resulting from the grain boundary 

weakening triggered the microcracks initiation under negligible macroscopic strains. 

Alternatively, Mun et al. [113] observed the precipitation of austenite particles along 

grain boundaries in an Fe-7Ni-8Mn steel and it was assumed that the austenite-ferrite 

interface boosted the intergranular fracture. However, Wilson and his colleagues 

[37][121] argued that the driving force for Mn segregation to prior austenite grain 

boundaries was indeed to form precipitates and reverted austenite, but the primary 

factor of grain boundary embrittlement was still the segregation of Mn rather than 

precipitation or austenite reversion.  

Binary Fe-Mn alloys in the range of 4-10 wt.% Mn, which possess a soft but heavily 

dislocated lath martensite after quenching, generally exhibit similar microstructural 

features to Fe-Ni-Mn maraging steels. Studies on their mechanical behaviours 

revealed that Fe-Mn alloys suffered from brittleness as well [121][122]. After 

cooling from the austenite phase field, brittle fracture occurred mainly by cleavage. 

While tempering at 250-500 °C increased the DBTT and the failure mode below 

DBTT was intergranular fracture. The maximum embrittlement was reported at 

450 °C [121]. Elevated temperature, e.g. 600 °C, has shown to overcome the 

embrittlement due to a faster kinetics to form ductile austenite [50][28]. 

Therefore, the embrittlement is of key importance in the mechanical behaviour of 

Fe-Ni-Mn and Fe-Mn alloys. To understand the embrittlement mechanism can 

provide not only an insight into the alloying element interaction in these alloys 

during thermal treatment but also pathways to improve their possible commercial 

exploitation. However, to the author’s best knowledge, the mechanism of 

intergranular fracture in Fe-Ni-Mn and Fe-Mn systems is still not clear yet and 

remains the subject of debate in the literature. 
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2.3 Evolution of precipitates 

Generally, the precipitation process is generally described as successive nucleation 

and growth followed by coarsening. In this section, the discussion about precipitate 

evolution will mainly focus on the growth of nuclei and then on the coarsening. 

2.3.1 Critical size in precipitation 

The real precipitation process is always complicated. It is worth introducing several 

critical sizes during the evolution of precipitation before discussing the precipitation 

mechanism. The critical precipitate radius (𝑟𝑐 ) below which the precipitate will 

dissolve is usually determined by [29]: 

 𝑟𝑐 = 2𝑐𝛼𝛤/(𝑐0 − 𝑐𝛼) (2.1) 

where 𝑐𝛼 is the solute concentration in the matrix phase during aging, 𝑐0 is the solute 

concentration in the matrix before aging. The capillarity constant Γ is described as 

[29]: 

 
𝛤 =

𝜎𝛼/𝛽𝑁𝐴𝛺𝛽(1 − 𝑐𝛼)

𝑅𝑇(𝑐𝛽 − 𝑐𝛼)
 (2.2) 

where 𝜎𝛼/𝛽 is the interfacial energy per unit area between the precipitate and matrix, 

𝑁𝐴 is Avogadro’s number, 𝛺𝛽 is the atomic volume of precipitates, 𝑐𝛽 is the solute 

concentration in the precipitate, R is the idea gas constant and T is the absolute 

temperature. 

The first critical precipitate radius 𝑟𝑐1  is defined to distinguish the growth 

mechanism of precipitates above which the interfacial-limited growth is taken over 

by the diffusion-limited growth. After that, further precipitation results in another 

critical precipitate radius 𝑟𝑐5 above which the diffusion-limited coarsening occurs. In 

Section 2.3.2, the detail about the growth and coarsening of precipitates will be 

discussed. 

As the interfacial free energy 𝜎𝛼/𝛽 (Equation (2.2)) varies depending on the nature of 

coherency, two more critical sizes, 𝑟𝑐0  and 𝑟𝑐3 , are introduced. 𝑟𝑐0  is the critical 
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radius below which precipitates will dissolve when the interface is coherent and 𝑟𝑐3 

is the critical radius below which precipitates will dissolve when the interface is 

incoherent. 

Another two critical sizes relating to the precipitation strengthening are also taken 

into consideration. 𝑟𝑐2  stands for the critical radius above which the coherency 

strengthening starts to decrease, whereas 𝑟𝑐4 indicates the critical radius above which 

the interaction between dislocation and the precipitate transforms from shear-cutting 

mechanism to looping mechanism. 

In order to better understand the precipitation process, efforts have been made to sort 

out the order of these critical sizes. It is not difficult to understand that 𝑟𝑐1 < 𝑟𝑐5 and 

𝑟𝑐0 < 𝑟𝑐2 < 𝑟𝑐3. As 𝑟𝑐0 and 𝑟𝑐1are very small, they are usually considered as zero 

[29]. In most cases, the Orowan looping occurs when precipitates are incoherent with 

the matrix, thus we can obtain 𝑟𝑐3 < 𝑟𝑐4 (dislocation looping may also occur when 

the coherent precipitate is too large or strong to be cut through). Thus what is 

uncertain is the relationship of 𝑟𝑐5 with the other three critical sizes 𝑟𝑐2, 𝑟𝑐3 and 𝑟𝑐4 

and this will be further discussed in Section 2.3.4. 

2.3.2 Growth and Coarsening of precipitates 

During the early stage of precipitation, the nucleus is surrounded by a supersaturated 

matrix with a solute concentration gradient which provides the driving force for 

solute diffusion and promotes the precipitate growth. There are two factors which are 

considered to affect the growth rate: the interface reaction and the lattice diffusion 

[123]. When the average size of precipitates is below 𝑟𝑐1, as the distance of diffusion 

field is rather short, the interface reaction is the rate-controlling step. The precipitate 

size is proportional to the aging time: �̅� = 𝑟𝑐0 + 𝐺0𝑡 (Figure 2-5), where 𝐺0 is the 

growth rate during the interface-limited growth. In the case of larger precipitates 

(𝑟 > 𝑟𝑐1), the driving force for lattice diffusion gradually decreases owing to the 

continuous depleting of solute atoms in the matrix, the diffusion becomes the rate-

controlling step [123][124]. The relationship between the precipitate size and growth 

time follows the equation [29][125]: 
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�̅� = (𝑟𝑐1

2 + 2𝐷
𝑐0 − 𝑐𝛼

𝑒

𝑐𝛽 − 𝑐𝛼
𝑒 (𝑡 − 𝑡1))1/2 (2.3) 

where 𝐷  is the diffusion coefficient in the matrix, 𝑐0  is the initial solute 

concentration, 𝑐𝛼
𝑒  is the equilibrium solute concentration in the matrix, 𝑐𝛽  is the 

solute concentration in the precipitate and 𝑡1 is the time the diffusion-limited growth 

starts. 

At the end of the diffusion-limited growth period, Equation (2.3) cannot describe the 

dynamic evolution of precipitate size anymore which indicates that the diffusion-

limited coarsening initiates. It is difficult to accurately distinguish the diffusion-

limited growth and diffusion-limited coarsening. Generally, the diffusion-limited 

growth process is defined as a stage when the solute is from the surrounding matrix; 

whereas the solute for diffusion-limited coarsening is from the dissolving of smaller 

precipitates. According to the Gibbs-Thomson equation, the solubility of smaller 

precipitates which possess a larger ratio of surface area to volume is higher than that 

of larger precipitates. This size-dependent solubility results in a further size-

dependent driving force for coarsening. Based on the Gibbs-Thomson equation, the 

growth rate is positive for large precipitates with 𝑐̅ < 𝑐𝑅  and negative for small 

precipitates with 𝑐̅ > 𝑐𝑅, namely, larger precipitates grow at the expense of smaller 

precipitates which dissolve back into the matrix. Therefore, the coarsening process is 

featured by the decrease of number density and the broadening of size distribution. 

But in reality, coarsening may take place simultaneously with the growth process or 

even in the nucleation stage if the initial solid solution supersaturates [124]. In 

addition, due to the increase in the distances of diffusion field, the size increment 

rate in the coarsening stage is slower than that in the growth stage (Figure 2-5). The 

precipitate size in most coarsening process obeys the LSW (Lifshitz and Slyozov 

[126] and Wagner [127]) theory which suggests the time exponent is 1/3 (Figure 2-5). 
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Figure 2-5 The evolution of precipitate size during aging in terms of precipitation kinetics, 

after [29]. 

 

2.3.3 Precipitate coarsening theory 

Although it is difficult to describe the coarsening of randomly dispersed precipitate, 

Lifshitz and Slyozov [126] and Wagner [127] developed a theory attempting to 

interpret the diffusion-limited coarsening. The theory which is referred to as LSW 

theory has later achieved great success in the experiment application. Certain 

assumptions are made to confine the application [124][128]: 

1. Dilute solution theory applies and the linearized version of the Gibbs-

Thomson equation is valid. 

2. Diffusion fields of precipitates do not overlap and the particles only interact 

with the matrix, thereby limiting the precipitate volume fraction to zero. 

3. Coarsening takes place in a stress-free matrix. 

4. Precipitates possess a spherical morphology. 

5. The composition of precipitates is the same as given by the equilibrium 

phase diagram. 

Based on the above assumptions, the LSW theory provides three equations to 

describe the diffusion-limited coarsening. The first equation predicts the increase of 

the average precipitate radius, �̅�, with respect to the coarsening time according to: 
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�̅�3 − 𝑟𝑐5

3 =
8𝐷𝑉𝛽𝜎𝛼/𝛽

9(𝑐𝛽
𝑒 − 𝑐𝛼

𝑒)2𝐺𝛼
,, 𝑡 (2.4) 

where D is the diffusion constant, 𝑉𝛽 is the molar volume of 𝛽 phase, 𝜎𝛼/𝛽  is the 

interfacial energy per unit area between the precipitate and matrix, 𝑐𝛼
𝑒  and 𝑐𝛽

𝑒 are the 

equilibrium solute concentration in the matrix and precipitates respectively, 𝐺𝛼
,,
 is the 

second derivative of the molar Helmholtz energy of the 𝛼 phase. 

The second equation reveals that the decrease in the precipitate number density, 𝑁𝑉, 

follows: 

 
NV≅

3fp

4π

1

KRf3
t-1 (2.5) 

where 𝑓𝑝 is the volume fraction of precipitate, 𝐾𝑅 is the coarsening rate constant in 

Equation (2.4) and 𝑓3 is the third moment of the time-independent precipitate size 

distribution function 𝑓(𝑟/�̅�) when 𝑉𝑝 → 0 (will be discussed later). 

The relationship between the solute concentration within the matrix, 𝐶𝑖
𝛼 , and 

coarsening time is derived: 

 
∆𝑐 =

9(𝑐𝛽
𝑒 − 𝑐𝛼

𝑒)

4𝐷
𝐾𝑅

2/3
𝑡−1/3 (2.6) 

Numerous experimental studies on two-phase alloys have been carried out to 

examine the LSW coarsening theory. Advanced techniques such as CTEM[76][129], 

HREM, STEM and HAADF-STEM [45][130] provide direct observations of the 

local structural characteristics. In some studies, small-angle X-ray scattering (SAXS) 

and small-angle neutron scattering (SANS) approaches are applied for the 

quantitative analyses of average precipitate size, interparticle distance and volume 

fraction based on huge numbers of precipitates [97][131][132]. Moreover, SAXS can 

also provide information about the chemical heterogeneity of precipitates [133][134]. 

Recently, state-of-the-art APT offers not only an accurate quantitative measurement 

of precipitates [130][135] but also a three dimensional observation on the atomic 

distribution within the material. If combined with the complementary studies on the 

resistivity and hardness evolution, global information about the coarsening of 

precipitates can be obtained. 
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Most of these experimental studies revealed that the experimental plot of �̅�3 or 𝑁𝑉
−1 

vs. 𝑡 roughly fitted the straight lines given by LSW theory. However, experimental 

results also indicates that the shapes of size distribution function are much broader 

than that of the theoretical 𝑓(𝑟/�̅�). This deviation has later been demonstrated to be 

associated with the non-zero volume fraction of precipitate in reality. Therefore, 

many studies have been carried out to modify the LSW theory for better applications 

in cases where the volume fraction of precipitate has to be taken into consideration. 

The major challenge of this work is to determine the effects of interparticle 

diffusional interactions on the coarsening behaviour of a precipitate with a specific 

size. Modified theories [136][137][138][139] are all in agreement that the exponents 

of the Equations (2.4), (2.5) and (2.6) and the time-independence of precipitate size 

distribution will not change when the volume fraction of precipitates is taken into 

consideration. However, the values of 𝐾𝑅  and 𝐾𝑁  along with the shape of size 

distribution function will change. According to the modified theories, with the 

increase of precipitated volume fraction, the average distance of diffusion field 

become shorter and thus the concentration gradients will be larger, thereby resulting 

in the increase of the coarsening rate. Besides, the local diffusional interactions give 

rise to spatial correlations between adjacent precipitates which further leads to the 

broadening and symmetry of size distribution function.  

2.3.4 The effect of precipitate size on precipitation 

strengthening 

It is easy to get confused when discussing the relationship of coherency, coarsening 

and strengthening mechanism. It is generally thought that in the under-aged stage the 

growth of coherent precipitates leads to an increase in the strength with shear-cutting 

mechanism. While in the overaged stage, the coarsening of precipitates results in the 

incoherency and thus activates the looping softening mechanism. Although most 

precipitation-strengthened alloys obey this rule, there are several concepts which are 

confusing. 

First, the term ‘strengthening’ is usually utilized to describe the strength increase in 

the underaged stage and ‘softening’ means the decrease of strength during the 
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overaged stage. But it is worth noting that, the strength at both of the two stages is 

higher than that before aging, therefore both of two terms are actually defined as 

strengthening mechanisms. 

Secondly, although the softening during the overaged period is generally considered 

to result from lose of the coherency, a number of studies have shown that the 

extremely large coherent precipitate and the modulus difference between the 

precipitate and matrix can also lead to the decrease of strength. In the case of large 

precipitates, considerable flexing of dislocation occurs owing to the increase of the 

interparticle spacing (assuming the volume fraction of precipitate is constant), 

thereby resulting in the coherency softening. Namely, the coherency softening may 

occur before the lose of coherency. Another possible is the modulus difference 

which is suggested to result in the softening as well, but so far there is no 

experimental evidence to support this viewpoint yet [29]. 

Thirdly, the strengthening mechanism is only associated with the precipitate size 

regardless of how the precipitate approaches the critical size, by growth or 

coarsening. It means that 𝑟𝑐2 and 𝑟𝑐4 are irrelevant to 𝑟𝑐5. But according to Sha and 

Guo’s conclusion [29], the value of 𝑟𝑐2 should be somewhere between 𝑟𝑐1and 𝑟𝑐5. 

Based on the discussion, a more comprehensive precipitation-strengthening process 

is comprised of three stages: when the precipitate is small, coherency strengthening 

takes effective by cutting mechanism, the strengthening effect increases with the 

precipitate size; with the growth of precipitate size, the stress required to cut through 

precipitate is so high that Orowan looping mechanism takes place. Orowan 

strengthening is inversely related to the interpartical spacing, so initially the 

precipitate growth which reduces the interpartical spacing lead to the Orowan 

strengthening. The following coarsening of precipitate featured with the decrease of 

number density and thus the increase of interpartical spacing results in the Orowan 

Softening mechanism. On the other hand, the structure of the interface is also very 

important. For example, if the precipitates are small but have incoherent interface, 

the looping mechanism take place. Conversely, if the precipitates have a large size 

but coherent interface and a small misfit strain, the shearing will be the dominant 

mechanism. 
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It is worth emphasizing that apart from the coherency mechanism and modulus 

mechanism, there are more strengthening mechanisms, such as chemical (softening), 

stacking-fault (strengthening), order (strengthening), etc. As the effects of these 

mechanisms on the strengthening are irrelevant to the precipitate size, they are not 

taken into consideration when discussing the relationship between the strengthening 

and precipitate size. 

2.4 Austenite reversion in maraging steels 

As previously stated, engineering steels suffer from the fact that the increase of 

strength generally corresponds to a decrease in ductility. This inverse strength-

ductility relationship largely limits their application as structural materials. In order 

to overcome this problem, dual-phase microstructure, such as hard martensite with 

ductile ferrite or austenite which can coordinate during deformation, is developed. 

Moreover, for steels containing austenite, the deformation-induced martensitic 

transformation of austenite under external load can provide additional strength and 

elongation. This type of steels has now found wide applications in the body frame 

sector of automotive manufacture. Their high strength-to-weight ratio, low yield-to-

ultimate strength ratio, high initial work hardening rate and good formability make 

them particularly suitable for this application [140]. 

Austenite in steels is generally derived from two different processing technologies. 

The austenite phase retained after cooling from two-phase field is known as retained 

austenite and it has been investigated extensively in TRIP steels 

[141][142][143][144]. Austenite phase which is formed by a partial reversion from 

martensite when aging at two phase field but a lower temperature is defined as 

reverted austenite [145][146][147]. Compared to retained austenite, reverted 

austenite normally provides more significant microstructural synergy with martensite, 

as it creates thin compliant interlayers along both prior austenite grain boundaries 

and martensite lath boundaries. 

The influence of reverted austenite on the mechanical properties of maraging steels 

has been investigated by many studies. Conventionally, the intermetallic precipitates 

in maraging steels are thought to be the main contributor to the strength 
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enhancement upon aging [31][48][148][149][150][151]. However, it has been 

gradually recognized that reverted austenite formed in some maraging steels also has 

a pronounced effect on the mechanical properties [18][19][20][145][152][153]. It is 

proposed that [121]: 

1. Austenite can act as a sink for impurities; in this case, reducing N and P 

embrittlement during heat treatment. 

2. The ductile phases, (γ+ε (ε martensite)), may act as compliance layers or 

mechanical buffer regions impeding crack propagation otherwise prevalent along the 

{100} planes of martensite laths, which has been considered to improve toughness 

and reduce DBTT [36]. 

3. Transformation of austenite to martensite may occur during deformation 

which also improves toughness.  

2.4.1 Influence of reverted austenite on mechanical properties 

Many researches have been carried out to study the effects of reverted austenite on 

mechanical properties in maraging steels. Vylezhnev et al. [153] proposed that the 

poor ductility at low temperatures in a 18Ni maraging steel resulted from the fracture 

of reverted austenite along martensite lath boundaries. Viswanathan et al. [19] 

noticed that the austenite reversion in a 18Ni maraging steel corresponded to the 

decrease in both yield strength and ultimate tensile strength but the increase in 

ductility at the initial overaged stage. Vijay et al. [54] attributed the high strength 

after long-term aging in a Co-free, high-Ti 18Ni maraging steel to the high 

coarsening resistance of precipitates and a small amount of reverted austenite, 

whereas in the case of a Co-containing, low-Ti 18Ni maraging steel, the high volume 

fraction of reverted austenite are considered to result in the loss of strength at long 

aging times. Overall, the debate on this issue has been chaotic for years. However, 

recent researches tend to hold the same opinion that the formation of reverted 

austenite can lead to the increase of strength and toughness in Co-free maraging steel. 

Nakagawa et al. [20] reported a significant improvement in the balance of strength 

and ductility during the overaged stage in Cu-containing maraging steels, and they 

suggested this improvement is due to the increase in the amount of reverted austenite. 
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Raabe et al. [18], reported a significant increase in both strength and ductility upon 

aging in a 9 wt.% Mn maraging TRIP steel with the ultimate tensile strength 

increased by 25% (from 810 MPa to 1 GPa) and total elongation increased by more 

than 150% (from 6% to 15%), which is considered as a result of nano-precipitation 

and nano-scale austenite reversion. 

As revealed by these researches, the mechanical properties is directly associated with 

the quantity of austenite. An appropriate quantity of reverted austenite can lead to a 

good balance between strength and toughness. Generally, the quantity of austenite is 

determined by the chemical composition, aging temperatures and durations [27][18]. 

In addition to the quantity, the stability of reverted austenite also plays a critical role 

in the mechanical properties of maraging steels. As the literature about the stability 

of reverted austenite is limited, retained austenite may be discussed alternatively in 

this study. In TRIP and Q&P steels, retained austenite with proper stability to induce 

martensitic transformation is desirable. Retained austenite with low stability would 

transform at small strains and cannot improve the ductility; whereas extremely high 

stability does not lead to the TRIP effect and contributes little to ductility either. The 

stability of austenite is generally governed by the chemical composition 

[154][34][155][156][157][158][159], temperature [160][161], size 

[154][34][158][159][162][163], morphology [164][165], adjacent microstructure 

[157][159][165] and crystallographic orientation relationship [166][167][168][169]. 

The following part will discuss reverted/retained austenite in terms of these factors. 

2.4.1.1  Composition 

The chemical driving force for martensitic transformation of austenite involving the 

most potential austenite stabilizing elements, carbon and manganese, is described as 

[170]: 

 ∆𝐺𝑐ℎ = −7381.6 + 19296𝑋𝑀𝑛 + 69447𝑋𝐶 − 38776𝑋𝑀𝑛𝑋𝐶

+ (6.7821 − 33.45𝑋𝐶)𝑇 
(2.7) 

where ∆𝐺𝑐ℎ is the chemical driving force for martensitic transformation, 𝑋𝑀𝑛 is the 

mole fraction of manganese, 𝑋𝐶 is the mole fraction of carbon and 𝑇 is the absolute 

temperature. As shown in Equation (2.7), the increase in the mole fraction of 
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manganese and carbon leads to the increase of the driving force for martensitic 

transformation at specific temperature, namely, the addition of carbon and 

manganese is beneficial to the stability of austenite. 

Similarly, Ni, as another efficient austenite stabilizer, contributes to the austenite 

stability as well; whereas elements which are defined as ferritic stabilizer, such as Ti 

and Al, are demonstrated to decrease the austenite stability. 

2.4.1.2  Temperature 

The effect of temperature can be expressed by the equation [142]: 

 𝜕∆𝐺𝑐ℎ

𝜕𝑇
= 6.7821 − 33.45𝑋𝑐 (2.8) 

According to the Equation (2.8), a positive fluctuation in ∆𝐺𝑐ℎ is expected when a 

positive fluctuation in temperature occurs with a constant carbon content, i.e. 

austenite is more stable at higher temperature. This view point has been confirmed 

by tensile tests conducted at a range of temperatures which reveals the variation of 

austenite stability depending on temperatures [160][161]. 

2.4.1.3  Size 

Yang and Bhadeshia described the relationship between austenite grain size and 𝑀𝑠 

temperature as:  

 
𝑀𝑠

0 − 𝑇 =
1

𝑏
ln [

1

𝑉𝛾
{exp (

ln(1 − 𝑓𝑀)

𝑚
) − 1} + 1] (2.9) 

where the constant 𝑏 is 0.2689 for 𝛼 ,-martensite [162] and 0.19 for 𝜀-martensite [26], 

𝑉𝛾 is the average grain volume of austenite, 𝑓𝑀 is the volume fraction of martensite, 

𝑚 is the aspect ratio of the martensite (𝛼 ,-martensite: 0.05; 𝜀-martensite: 0.03), and 𝑇 

is the temperature at which 𝑓𝑀  is measured. In this equation, 𝑀𝑠
0 − 𝑇  becomes 

𝑀𝑠
0 − 𝑀𝑠 if 𝑓𝑀 is set to be the first detectable fraction of martensite, 𝑉𝛾 → ∞ and so 

𝑀𝑠 → 𝑀𝑠
0. According to their conclusion, the small size of austenite suppresses the 

𝑀𝑠 temperature and therefore contributes to the stability of austenite. The size effect 

on the austenite stability in steels has been extensively investigated by experiment as 
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well. In carbon TRIP steels, both experimental results and thermodynamic modelling 

have demonstrated that Ms temperature decreases as the carbon concentration of 

retained austenite increases or the mean size of retained austenite decreases [161]. In 

Mn-containing TRIP steels, it is shown that the size effect of ultrafine austenite grain 

and the partitioning of Mn to austenite during intercritical annealing were the two 

primary reasons for the high mechanical stability of retained austenite [34]. 

In contrast, recent work by Wang et al. [171] reported that small austenite grains 

were less stable against the deformation-induced martensitic transformation in a 9 

wt.% Mn TRIP maraging steel. They suggested the deformation-induced martensitic 

transformation was suppressed by the mechanical twinning in larger austenite grains 

while in smaller austenite grains, mechanical twinning is less favoured. Other work 

[166] proposed that because the intrinsic strength of austenite is lower than that of 

the martensite matrix, a parabolic distribution of the von Mises stress exists in 

reverted austenite, namely the stress in the outer layer is higher than that in the centre. 

Besides, there is an inverse distribution of austenite stabilizing element 

concentrations in the reverted austenite grains. Hence, it is easier for the outer layer 

of reverted austenite to transform into martensite during the deformation. Generally, 

the fraction of the outer layer region is smaller in the reverted austenite with a larger 

dimension and so it is proposed that the larger reverted austenite is more stable than 

the smaller one.  

2.4.1.4  Morphology 

Reverted austenite, which is distinguished from retained austenite, exhibits different 

morphologies [146][147]. Evidence indicates that the morphologies are correlated to 

the alloy compositions and processing paths [147]. Reverted austenite in maraging 

steels generally appears either an elongated or granular shape. More specifically, 

reverted austenite is classified into three types, i.e. matrix austenite, lath-like 

austenite and recrystallized austenite [146]. Matrix austenite is defined as an 

austenite phase that either develops from retained austenite and thus has the same 

orientation, or grows at the prior austenite grain boundaries and forms a single 

austenite grain (Figure 2-6(a)). Lath-like austenite can be generated along and within 

the martensite laths, thereby generating a lamellar structure of alternate austenite 
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laths and residual martensite laths (Figure 2-6(b)). Recrystallized austenite normally 

nucleates at high aging temperatures or after long aging times and it is characterized 

by a polygonal shape with low dislocation density, as shown in Figure 2-6(c). In 

addition, in high Ni alloyed and Ti-containing maraging steels, a type of 

Widmanstätten austenite was reported to become dominant when aging at high 

temperatures for a long time [52][172]. In terms of its effect on the austenite stability, 

the morphology does not directly affect the mechanical stability of austenite, it is 

actually the adjacent microstructure that determines the mechanical stability of 

reverted austenite and this will be discussed in the next section.  

 

Figure 2-6 (a) Matrix austenite at prior austenite grain boundaries [147] (b) the lamellar 

structure of alternate lath-like austenite and residual martensite [27] and (c) a recrystallized 

austenite grain free of defects [146]. 
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2.4.1.5  Adjacent microstructure 

Many studies on TRIP and Q&P steels reveal that the stability of retained austenite 

is also associated with the adjacent microstructure [142][164][165][173]. For 

example in TRIP steels, retained austenite in bainitic ferrite is found more stabilized 

than that in polygonal ferrite. Two possible mechanisms are given to explain this 

phenomenon. Grajcar [173] stated that the retained austenite surrounded by bainitic 

ferrite had a shorter diffusion path to carbon atoms and thus was more thermally 

stable. Another explanation is that the bainitic ferrite can stabilize retained austenite 

by stress partitioning. The stress partitioning mechanism points out that a harder 

phase adjacent to retained austenite can decrease the hydrostatic stress without 

affecting the equivalent stress, which in turn decreases the mechanical driving force 

for transformation as following [155]: 

 𝜕∆𝑔𝜎

𝜕𝜎
= −0.715 − 0.3206

𝜎ℎ

𝜎
 (2.10) 

where 𝜎ℎ is the hydrostatic stress and 𝜎 is the equivalent stress. The harder bainite 

may restrain the phase transformation of retained austenite as the adjacent bainite 

would have to deform so as to coordinate the volume expansion resulting from the 

martensitic transformation. Therefore, compared to polygonal ferrite, the harder 

bainitic ferrite can better shield the retained austenite located nearby and suppress 

phase transformation. It is worth noting that the morphology of retained austenite in 

bainitic ferrite is different from that in polygonal ferrite which may also be a reason 

for the difference in stress partitioning. 

A similar mechanism was proposed on the stability of retained austenite in a Q&P 

steel [164]. According to their study, the martensitic transformation occurred at the 

onset of deformation in blocky retained austenite surrounded by proeutectoid ferrite; 

while film-like retained austenite in lath martensite, despite having a lower carbon 

content, is more stabilized against deformation. Apart from the martensite/bainite 

shielding effect, Jacques et al. [157] speculated that the small size effect of film-like 

retained austenite, may also contribute to the higher mechanical stability of retained 

austenite. The discussion on multi-phase steels is never simple as the mechanical 

stability of austenite is generally determined by more than one factor.  
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2.4.1.6  Crystallographic orientation relationships 

Different crystallographic orientation relationships have been found between fcc and 

bcc crystals. Three relationships, i.e., Kurdjumov-Sachs (K-S) relationship 

[52][146][174][175], Nishiyama-Wassermann (N-W) relationship [146][176][177] 

and Pitsch relationship [178] are the most commonly known relationships in steels. 

A summary of these orientation relationships is displayed in Table 2–1 [169]. The 

Bain orientation relationship is the simplest one among those relationships, but has 

rarely been observed in steels. It is shown here as a reference relationship when 

discussing the orientation relationship. The Pitsch orientation is usually regarded as 

‘inverse NW’ orientation. To better explain these orientation relationships, the 

crystallographic structures are illustrated in Figure 2-7 [179]. The orientation 

relationships are interpreted by presenting the crystallographic planes and directions 

of the two phases. For example, in the case of Kurdjumov-Sachs (K-S) relationship, 

it is specified as one {111}𝛾  plane being parallel to one {100}𝛼  plane and a <

100 >𝛾  direction within the {111}𝛾  plane being parallel to a < 111 >𝛼  direction 

within the {100}𝛼 plane.  

The numbers of variants for each orientation relationship are also given in Table 2–1. 

For example in K-S relationship, there are four different {111}𝛾 planes, each {111}𝛾 

plane has three different < 110 >𝛾 directions and each < 110 >𝛾 has two different 

< 111 >𝛼 directions which are parallel to it. Therefore, there are 24 variants for K-S 

orientation relationship in total. The variants of orientation relationships between fcc 

and bcc phases are important when analysing the twinned austenite in bcc ferrite. 

<uvw>/ωmin, in the last column of Table 2–1, are the parameters to describe the 

misorientation between two crystallographic orientations. As the most reported 

orientation relationships, the difference in angular between K-S and N-W 

relationships is small, so distinguishing the two relationships by misorientation in 

experiment is difficult. As shown in Figure 2-7, the {111}𝛾 plane is parallel to the 

{011}𝛼 plane in the two types of orientation relationships (K-S: Figure 2-7(b); N-W: 

Figure 2-7(c)) and the misorientation between the NW variants and any of the two 

neighbouring KS variants is only 5.26°. 
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Table 2–1 Overview of the different orientation relationships between fcc and bcc crystals 

[169]. 

 Orientation relationship Number of 

variants 

<uvw>/ωmin 

Bain (B) [180] {100}𝛾ǁ{100}𝛼 

< 100 >𝛾 ǁ < 110 >𝛼 

3 <100>/45 

Kurdjumov-Sachs 

(K-S) [174] 

{111}𝛾ǁ{110}𝛼 

< 110 >𝛾 ǁ < 111 >𝛼 

24 <0.97 0.18 0.18> 

/42.85 

Nishiyama-Wasserman 

(N-W) [176][177]  

{111}𝛾ǁ{110}𝛼 

< 112 >𝛾 ǁ < 110 >𝛼 

12 <0.98 0.08 0.20> 

/45.98 

Pitsch (P) [178] {100}𝛾ǁ{110}𝛼 

< 110 >𝛾 ǁ < 111 >𝛼 

12 <0.08 0.20 0.98> 

/45.98 

 

Given that the only difference between the two orientation relationships is the 

rotational angle, it is proposed that the K-S and N-W relationships may co-exist in 

steels. But studies are in debate on the relatively dominant position between K-S and 

N-W relationships in steels [143][168][181][182][183]. Katz et al. [184] reported 

both of the two orientation relationships existed between reverted austenite and 

martensite matrix in 18Ni maraging steels. Shiang and Wayman [146], who also 

noticed the two relationships, suggested that the dominant orientation relationship 

was correlated to the aging temperatures. Suk et al. [167] found that reverted 

austenite had a specific orientation relationship not only with the surrounding 

martensite but also with the adjacent precipitates. In addition, the twinned austenite, 

which has been observed in both maraging steel [185][186] and dual-phase stainless 

steel [187], was found obeying the K-S orientation relationship [167]. The N-W 

orientation relationship, however, has not been found yet between the twinned 

austenite and martensite.  
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Although some researchers stated that the orientation effect of fcc phase on the 

strength is negligible [188][189][190], there are others who held a different view 

[166][191]. It is accepted that the local stress is heterogeneous at the microscopic 

level when the phase orientations and activated slip systems are taken into 

consideration. Wang et al., who studied the mechanical stability of reverted austenite 

in a 13%Cr-4%Ni martensitic steel, suggested that the stress at the 𝛼/𝛾 interface 

with N or K-S relationships was much lower than that without N or K-S 

relationships [166] and they attributed the difference to the activation of the slip 

systems. The activation of slip system is normally affected by two factors. One is the 

external load, the other one is the interaction between phases. In the case of 

austenite/martensite, plastic strain occurs in the austenite earlier than martensite 

during deformation due to its lower critically resolved shear stress. Wang et al. [166] 

stated that when the slip system was activated in reverted austenite, it can penetrate 

the boundaries and activate the slip system in the adjacent martensite easily with the 

assist of N or K-S relationship. It means that if the special N or K-S relationship 

exists, a smaller slip strain in austenite is required to activate the slip systems of the 

surrounding martensite, and thus the local stress of austenite will decrease to a lower 

level. On the other hand, when the N-W or K-S relationship is absent, it needs higher 

stress and strain accumulation in austenite to activate the slip system of nearby 

martensite. However, the accumulated stress in austenite is highly likely to induce 

martensitic transformation and hence result in a lower mechanical stability of 

austenite. 

 



Chapter 2 Literature review 

41 

 

 

Figure 2-7 Different orientation relationships between fcc and bcc phases: (a) Bain, (b) K-S, 

and (c) N-W. Blue atoms belong to bcc unit cell and green atoms belong to fcc unit cell 

[179]. 

 

2.4.2 The formation mechanism of reverted austenite 

It has been acknowledged that the formation of granular reverted austenite is 

associated with a diffusion-controlled process. The granular reverted austenite is 

deemed to result from the dissolving of cementite or precipitates which leads to the 

enrichment of austenite stabilizing elements in localized areas [27][147][192]. On 

the other hand, the formation mechanism of lath-like reverted austenite is 



Chapter 2 Literature review 

42 

 

controversial [146]. Plichata and Aaronson supposed that the growth of lath-like 

austenite was also controlled by diffusion [193]. Sinha et al. [194] further pointed 

out that, instead of precipitate dissolution, the diffusion of Ni atoms in matrix to 

dislocations or other defects generated the local enrichment of austenite stabilizing 

elements. Schnitizer et al. [147], Nakagawa et al.[20] and Sinha et al. [194] reported 

the value of activation energy for reverted austenite formation was about 234-250 

kJ/mol which is in the range of the activation energy of Ni diffusion in pure Fe (246 

kJ/mol [195]). Conversely, some researchers suggested the formation of lath-like 

reverted austenite to be a shear-dominated process but assisted by a diffusion 

mechanism [52][146]. They believed that due to the segregation of solute elements 

to preferential locations, the reverse transformation start temperature (As) at these 

sites reduces to below the aging temperature. Phase transformation involving shear 

deformations, which is also referred to as displacive phase transformation, is 

expected to occur in the similar way as bainitic transformation [172]. The lattice 

correspondence for this phase transformation normally obeys K-S or N-W 

relationships. Besides, the twinned lath-like austenite in some maraging steels is 

another evidence for the occurrence of a shear motion in austenite reversion 

[146][172]. Lee et al., who studied the austenite reversion in both Fe-3Si-13Cr-7Ni 

(wt.%) martensitic stainless steel and medium Mn steels, suggested that the 

formation mechanism of reverted austenite was heating-rate related. Below the 

critical heating rate (10 K/s for Fe-3Si-13Cr-7Ni martensitic stainless steel and 15 

K/s for medium Mn steels), the austenite reversion process was diffusion-controlled 

and the reverted austenite presented a globular shape with a diameter of 200–250 nm. 

Besides, a lower dislocation density and a higher Mn concentration were observed in 

this type of reverted austenite. When the samples were heated faster than the critical 

heating rates, the phase transformation occurred by a diffusionless shear mechanism. 

Reverted austenite presented a lath-like shape with 200–300 nm in width and 400–

700 nm in length. They also mentioned that despite the diffusionless reverted 

austenite had a high density of dislocation, it yielded lower mechanical stability 

owing to the lower Mn concentration and larger grain size. In addition, it is worth 

noting that, 𝛼 , → 𝛾  transformation as well as bainitic transformation [196] is not 
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universally accepted to be shear-controlled. Further studies on the mechanism of 

𝛼 , → 𝛾 transformation are needed to support this viewpoint.  

It is suggested that some transformation-induced deformation may be induced during 

the formation of reverted austenite, and the stored strain energy may act as a driving 

force to cause recrystallization [146]. For steels in which retained austenite also 

exists, austenite reversion is governed by the competition between the nucleation of 

new reverted austenite and the growth of existing retained austenite. There are two 

mechanisms relating to the 𝛼 , → 𝛾  transformation, i.e. abnormal 𝛼 , → 𝛾 

transformation and normal 𝛼 , → 𝛾  transformation [192]. The abnormal 𝛼 , → 𝛾 

transformation proposes that the retained austenite grains within one prior austenite 

grain normally have the same orientation, therefore their growth may result in the 

coalescence and further, a reconstruction of the original prior austenite grain 

boundaries (Figure 2-8(a)). This process is called as the austenite grain memory 

effect (also known as austenite recrystallization). While the normal 𝛼 , → 𝛾 

transformation proposes that newly formed reverted austenite cannot coalesce as 

these austenite grains have different orientations. 

 

Figure 2-8 Schematic illustration of (a) abnormal 𝛼 , → 𝛾 transformation and (b) normal 

𝛼 , → 𝛾transformation [192]. 
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2.5 Grain refinement in maraging steels 

It is commonly known that there is an inverse relationship between strength and 

toughness. One of the methods to improve both simultaneously is the grain 

refinement. The famous Hall-Petch equation expresses the relationship between yield 

stress and grain size [197]: 

 𝜎𝑦 = 𝜎0 + 𝑘𝑦𝑑−1/2 (2.11) 

where 𝜎𝑦 is the yield stress, 𝜎0 is the intrinsic friction stress of an undeformed single 

crystal oriented for multiple slip, 𝑘𝑦 is the Petch constant representing the resistance 

against the slip propagation across grain boundary and is generally specific to 

materials, 𝑑 is the grain size [198]. 

The fracture strength, which is derived from dislocation theory [199][200] and 

classical Griffith theory [201], is an indication of the resistance to the propagation of 

a crack around a dislocation pile-up grain boundary: 

 𝜎𝑓 = 4𝐺𝛾𝑚𝑘𝑦
−1𝑑−1/2 (2.12) 

where 𝜎𝑓 is the fracture strength, 𝐺 is the shear modulus, 𝛾𝑚 is the surface energy. 

According to Equation (2.12), it is apparent that both the yield stress and fracture 

strength increase when the grain size is refined. 

In addition, since 𝜎0  is strongly dependent on the temperature, 𝜎𝑦  increases 

significantly as the temperature reduces; whereas 𝜎𝑓  is much less affected by the 

temperature. Consequently, the critical DBTT, 𝑇𝑐, is introduced when 𝜎𝑦 = 𝜎𝑓 as: 

 𝑇𝑐 = 𝐶−1 ln[𝐵𝑘𝑦𝑑
1

2⁄ /(𝛽𝐺𝛾𝑚 − 𝑘𝑦
2)] (2.13) 

where 𝐶, 𝐵 and 𝛽 are constants [202]. According to Equation (2.13), 𝑇𝑐 can also be 

decreased by refining grain size. 

2.5.1 Conventional methods to refine grains 

Thermomechanical processing, as one of the most well-known methods for grain 

refinement, has been intensively studied in various alloys. It has been demonstrated 



Chapter 2 Literature review 

45 

 

that the extraordinary improvement in both strength and toughness can be obtained 

in steels by refining grain size to < 1 µm via thermomechanical processing [203]. 

However, in the steel industry it is difficult to perform a uniform plastic deformation 

through the thickness of plates to produce uniform ultrafine grain size [204]. 

Therefore, in the case of thick plate steels (or bars and weldments, etc.) with high 

strength, alternative methods such as cyclic heat treatment are introduced to refine 

grain size. 

2.5.2 Effective grain size in lath martensitic steels 

In ferritic steels, as the cleavage normally occurs along {100} 𝛼  planes [204], the 

effective grain size, in terms of transgranular cleavage fracture, is determined as the 

coherent length on {100} 𝛼  planes, or the average free path of crack propagation 

along {100} 𝛼 planes [203]. 

In martensitic steels, the definition of effective grain size is more complicated. The 

interfaces in quenched martensite can be classified into several types: prior austenite, 

martensite packet, block and lath boundaries. They generally possess different 

energies, structures, misorientations, mechanics and segregation properties [50]. The 

effective grain size is correlated to the prior thermal processes. A typical 

microstructure of martensitic steel is illustrated in Figure 2-9. The prior austenite 

grains are divided into packets of fine, parallel distributed martensite laths (Figure 

2-9(b)). The thickness of laths is generally at nano-scale. Electron diffraction studies 

revealed that the laths within a packet are in close crystallographic alignment and the 

lath boundaries are low-angle boundaries [204]. It means that the martensite packet 

is actually a single crystal. Therefore, the size of the packet is defined as the 

effective grain size of lath martensite. 
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Figure 2-9 (a) The typical microstructure of a martensitic steel constituted by packets of 

martensite laths, (b) the dislocated laths which is at nano-scale in thickness. Both are the 

micrographs of a 10% Mn maraging steel after water quenching from solution heat treatment. 

 

2.5.3 Methods of grain refinement in lath martensitic steel 

If taking account of the effective grain size of lath martensite, there are mainly three 

approaches to refine the grain size of martensitic steel. The most common method is 

by refining the prior austenite grain size. The practical heat treatment to realize it is 

by quenching from austenization before the austenite grains coarsen, but it has been 

demonstrated that this method can hardly refine the prior austenite grain size further 

below 10 µm [203]. 

A more direct method is to generate high-angle misorientation between the adjacent 

laths and thereby breaking up the crystallographic alignment of laths within the 

packets [205]. Although this method seems to be the most direct way to completely 

refine the effective grain size, it is difficult to control in production. This is owing to 

the difficulty to design the martensitic transformation and the crystallographic 

relationships of martensite laths by thermal treatment.  

Based on the second approach, the third approach for grain refinement is to form a 

new phase at boundaries, such as austenite, so as to separate the martensite laths. 

This type of austenite islands is required to be very thin and remain stable during 

heat treatment. This is generally achieved by intercritical tempering (in most cases, a 
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temperature just above 𝐴𝑐1 is desirable). This mechanism of improving toughness 

via austenite reversion is a matter of debate. One possible explanation is that the 

formation of austenite, which generally has K-S or N-W orientation relationships 

with adjacent martensite, introduces high-angle misorientation between phases. Even 

when the metastable austenite transforms into martensite during deformation, the 

fresh martensite with different variant can still disrupt the crystallographic alignment 

of laths. This method has been widely used to in medium-Ni and medium-Mn steels 

[27][24][156][206] by Q&P treatment or in maraging steels by aging process 

[18][19][145][146]. 
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Chapter 3 Materials and Experimental Methods 

3.1 Alloys and processing details 

3.1.1 Alloys and Composition Analysis 

The present study is mainly focused on investigating the microstructure and 

mechanical properties of Mn-based maraging TRIP steels and hereby developing 

new alloy compositions to improve the properties. Three as-cast steels, namely, two 

(10 wt.% Mn, 12 wt.% Mn) based on the compositions mentioned in Ref. [18] with 

minor addition of Al (1 wt.%) and one with lower Mn content (7 wt.% Mn) were 

provided by Tata Steel. The chemical compositions of alloys are listed in Table 3–1. 

The low carbon content (<0.04 wt.%) is to achieve a soft but heavily dislocated 

martensite after water quenching. Minor elements, such as Ni, Mo, Ti and Al are 

added to form precipitates. Compared with the conventional 18Ni maraging steels, 

the main difference exists in the content of austenite stabilizer Mn. 7-12 wt.% Mn 

are added to ensure that an appropriate amount of austenite is obtained with 

appropriate stability and yet being substantially lower than the Mn contents in the 

twinning-induced plasticity (TWIP) steels. 

Table 3–1 Chemical compositions (wt.%) of the investigated Mn-based steels 

Materials C Mn Ni Mo Al Ti Si Cr Co Fe 

7% Mn 0.033 7.07 2.03 1.03 1.04 1.05 0.07 <0.005 <0.001 bal. 

10% Mn 0.015 9.97 2.03 1.19 1.00 0.84 0.07 0.02 0.008 bal. 

12% Mn 0.022 11.77 1.97 1.17 1.00 0.82 0.08 0.03 0.009 bal. 

 

3.1.1 Hot rolling and heat treatment procedure 

The equilibrium γ/α transformation temperatures (Ae3) of 7%, 10% and 12% Mn 

alloys were calculated as 722 °C, 644 °C and 614 °C, respectively. In order to 
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minimize the detrimental effect of coarse carbide, the three ingots were first 

homogenized under argon gas atmosphere at 1150 °C for 1 h and hot rolled between 

1140 °C and 850 °C. The thickness of ingots was reduced from 20 mm to 3 mm with 

six passes and the corresponding reduction ratio was 85%. Inter-stage re-heating to 

1150 °C was performed after every two passes. The detailed parameters for hot 

rolling process are presented in Table 3–2. The subsequent solution heat treatment 

(SHT) was carried out with argon protection at 1050 °C followed by water 

quenching. After SHT, the samples were then aged at 420 °C, 460°C and 500 °C for 

a range of times from 10 minutes to 168 hours (Figure 3-1). 

Table 3–2 Parameters for hot rolling process 

Temperature (°C) 1140 1040 1090 950 1030 860 

Thickness reduction 

(mm) 
20-14 14-10 10-7 7-5 5-4 4-3 

Reduction ratio 30% 28.6% 30% 28.6% 20% 25% 

 

 

Figure 3-1 Schematic diagram of processing conditions 
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3.2 Sample preparation 

3.2.1 Mircopreparation 

All hot-rolling and heat-treatment pieces for characterization were cut from bulk 

samples after each processing procedure. To avoid deformation-induced phase 

transformation, all the aged materials were cut by Isomet
TM

 5000 with feeding 

speeds of 2-4 mm/s. Small pieces of samples were then hot mounted with Bakelite 

for optical and scanning electron microscopy (SEM) observation. Samples without 

Bakelite were prepared for X-ray diffraction (XRD) and transmission electron 

microscopy (TEM) analyses. The subsequent mechanical grinding and polishing 

process needed to be carefully controlled as any inappropriate operation may induce 

undesired phase transformation. The grinding operation was carried out successively 

on 240, 400, 800 and 1200 grade silicon carbide papers with running water. The 

manual polishing operation was performed on 6 μm and 1 μm polishing cloth with 

corresponding diamond suspensions. Some techniques such as nanoindentation and 

electron backscatter diffraction (EBSD) demand an excellent sample surface finish, 

in these cases, 0.04 μm colloidal silica (silco) suspension was used for the final 

polishing. Silco suspension has a slight etching effect, thereby being able to remove 

the residual strain layer from the manual grinding and polishing procedure. The load, 

rotation speed and duration for each step of grinding and polishing varied depending 

on the surface condition. Generally a small load (10N) for approximately 5 minutes 

was desired for final polishing. All the samples were rinsed and dried with 

isopropanol after each step and final cleaning was done using ultrasonic agitation. 

3.2.2 Etching 

The 2% nital is the most widely used etchant for general steels. In this study, 2% 

nital worked effectively on hot-rolled and solution-treated samples, but failed to 

reveal the reverted austenite in aged samples. It was eventually found that picric acid 

can clearly distinguish reverted austenite from martensite matrix. The picric acid 

etchant was a mixed solution of 75 mL saturated picric acid and 25 mL wetting agent. 

The etching process was performed at 60-70 °C for a few seconds. The etching 
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temperature and duration was dependent on the amount of reverted austenite. 

Normally, a lighter etch than the conventional picric acid etch for the observation of 

prior austenite grain boundaries observation was more appropriate in this study.  

3.2.3 TEM thin foil preparation 

TEM thin foil samples were prepared by two methods, in which electropolishing was 

the mainly used one in this study. The bulk samples were manually ground to foils 

below 150 μm thick. Disks with a diameter of 3 mm were then punched and further 

thinned to 50-80 μm. Electropolishing was conducted with 5% perchloric acid, 35% 

butoxyethanol and 60% methanol solution (maintained at approximately -40 °C by a 

liquid nitrogen cooling system) running through a twin-jet electropolisher operated at 

25-35 V (being adjusted to ensure the current of ~40 mA). The whole process lasted 

approximately 2-3 minutes depending on the operation parameters (such as 

temperature, jet speed and sensitivity, etc.) and stopped once the foil was perforated. 

Then the foil was cleaned immediately and stored by methanol. 

High quality TEM thin foil can be obtained with carefully controlled parameters for 

most of steel samples. However, in this study, reverted austenite in aged samples 

was found disappeared after electropolishing. In this case, a combination of 

electropolishing with ion milling techniques was employed. Thin foils were thinned 

by electropolishing and stopped manually before perforation. Then ion milling was 

performed on Gatan model 600 or Fischione model 1010 for a few hours. Usually a 

voltage of 3 kV and milling angle of 6° were used for final thinning. Ion milling can 

be utilized to remove contamination and oxide layer before TEM observation as well. 

3.2.4 Carbon extraction replicas 

Precipitates, which are normally at the nano-scale size range, can be easily 

recognized under TEM by using carbon extraction replica, and thus be characterized 

by selected area electron diffraction (SAED) and energy-dispersive X-ray 

spectroscopy (EDS) in the absence of bulk matrix. The matrix is generally 

considered to absorb or overlap the faint signals of precipitates due to their small 

amount. In order to conduct accurate investigation on nano-size precipitates without 
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interference from the surrounding matrix (especially in this study the electron beam 

was distracted by the magnetic field introduced by martensite), carbon extraction 

replicas were prepared and examined by TEM. Firstly, the polished sample was 

cleaned carefully by ultrasonic agitation to exclude the particles retained from 

diamond polishing suspension. Precipitates embedded in the matrix were revealed by 

etching lightly with picric acid (at 60-70 °C) for approximately 10 seconds. The 

sample was then coated with amorphous carbon film, usually a thin carbon film is 

desired for TEM analysis. The carbon film which evaporated small particles from the 

matrix was scratched into 2mm squares. Then the sample was immersed into 10% 

nital to dissolve the matrix until the carbon film started to bubble and left the surface 

with the particles (Figure 3-2) [207]. The 400 square copper meshes were then used 

to catch those carbon film squares. 

 

Figure 3-2 Schematic steps of making the carbon extraction replication [207]. 

 

3.3 Characterization techniques 

3.3.1 Qualitative and quantitative analyses by X-ray diffraction 

(XRD) 

Samples of hot-rolled, solution-treated and aged steels were examined by XRD for 

phase identification and evaluating the volume fraction of austenite. Samples were 

cut into pieces with a size of 20 mm ×  20 mm ×  3 mm. The subsequent 

metallographic preparation has been described in Section 3.2.  
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X-ray diffraction work was performed on Siemens D500 Diffractometer using Co Kα 

radiation (λ = 1.78897 Å) and Siemens D5000 using Cu Kα radiation (λ = 1.54178 

Å). Both two diffractometers were operated at the condition of 40 kV and 40 mA. 

Samples were step scanned (0.02° per step) by a beam size of 0.2 mm covering a 

range of 2𝜃 angles. For quantitative phase analysis, more than two sites of each 

sample were scanned. XRD data were collected by WinXPOW (D500) and 

DIFFRAC plus XRD commander (D5000), respectively. The analyses were 

undertaken using ICDD PDF-4+. 

X-ray diffraction (XRD) measurement was applied to identify the austenite (face-

centred cubic, fcc) in martensite matrix (body-centred tetragonal, bct). It is worth 

noting that, to simplify the discussion, 𝛼 ,-martensite was treated as ferrite (body-

centred cubic, bcc) thermodynamically and kinetically in this study. But elevated 

elemental diffusivity should be taken into consideration when studying the kinetics 

of phase formation. The XRD patterns were compared to standard diffraction 

patterns by software to identify phases. Analogous to the illustration in Section 

3.3.4.2, each phase has characteristic X-ray peaks which allow them to be identified. 

The accurate d-spacings were calculated using Bragg’s law, λ = 2dsinθ (λ is the 

wavelength of target radiation and θ is half of the angle where the peak presents).  

XRD technique is considered as one of the most accurate and convenient methods to 

evaluate the volume fraction of austenite in steels. In this study, the volume fraction 

of austenite was calculated via comparison method described by Yang et al. [208] 

and the ASTM standard E975-03 [209]. Specific XRD patterns for each crystalline 

phase were produced during irradiation. For example, 𝛼 ,-martensite (211) crystalline 

plane peaks at 82° while austenite (220) crystalline plane peaks at 74° when a Co 

target is used. The volume fraction of austenite was measured by comparing the 

integrated intensity of austenite and 𝛼 ,-martensite. For a randomly oriented sample, 

the integrated intensities of the austenite (γ) and ferrite (α) diffraction peaks are 

determined by: 

 
𝐼𝛼

ℎ𝑘𝑙 =
𝐾𝑅𝛼

ℎ𝑘𝑙𝑉𝛼

2𝜇
  (3.1) 
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𝐼𝛾

ℎ𝑘𝑙 =
𝐾𝑅𝛾

ℎ𝑘𝑙𝑉𝛾

2𝜇
 (3.2) 

where K is the constant related to the instrumentation geometry and radiation. R is 

proportional to the theoretical integrated intensity which depends on the interplanar 

spacing (hkl), Bragg angle 𝜃, crystal structure and composition of the phase. V is the 

volume fraction of each phase and μ is the linear absorption coefficient of steels. 

Therefore, any pair of ferrite and austenite hkl peaks can be written as 

 𝐼𝛼
ℎ𝑘𝑙

𝐼𝛾
ℎ𝑘𝑙 =

𝑅𝛼
ℎ𝑘𝑙𝑉𝛼

𝑅𝛾
ℎ𝑘𝑙𝑉𝛾

 (3.3) 

For steels which contain carbides (or intermetallic precipitates in this study), 

 𝑉𝛼 + 𝑉𝛾 + 𝑉𝑐 = 1 (3.4) 

The volume fraction of austenite can be described as 

 
𝑉𝛾 =

1 − 𝑉𝑐

1 +
𝑅𝛾

ℎ𝑘𝑙

𝑅𝛼
ℎ𝑘𝑙

𝐼𝛼
ℎ𝑘𝑙

𝐼𝛾
ℎ𝑘𝑙

 
(3.5) 

It is implied by Equation (3.5) that the volume fraction of austenite is not much 

influenced by the presence of carbide. For example, when the volume fraction of 

carbide is 10 vol.%, the volume fraction of austenite is calculated as 9 vol.% by 

Equation (3.5). While if the carbide is ignored (𝑉𝑐 = 0), the volume fraction of 

austenite is calculated as 10%. But the volume fraction of carbide has to be taken 

into account when it is over 15 vol.%. In this case, the volume fraction of carbide is 

normally measured by chemical extraction and metallographic methods or currently 

TEM and APT techniques are utilized to obtain a more accurate result. 

In this study, the integrated intensities of ferrite peaks (200) and (211) and austenite 

peaks (200), (220) and (311) were measured by ICDD PDF-4+. Calculated 

theoretical intensity ratios 
𝑅𝛾

ℎ𝑘𝑙

𝑅𝛼
ℎ𝑘𝑙 using Co Kα radiation are illustrated in Table 3–3 

[208]. 

If assuming 𝑉𝑐 = 0 in Equation (3.5), the volume fraction of austenite can thus be 

averaged from 6 pairs of ferrite and austenite peaks. 
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Table 3–3 Calculated theoretical intensity ratios  
𝑅𝛾

ℎ𝑘𝑙

𝑅𝛼
ℎ𝑘𝑙 using Co Kα radiation [208] 

 (200)γ (220) γ (311) γ 

(200)α 2.46 1.32 1.78 

(211) α 1.21 0.65 0.87 

 

3.3.2 Grain size analysis by optical microscopy 

Hot-rolled and solution-treated samples for optical observation were prepared as 

described in Section 3.2.1 and 3.2.2. Optical observation was then undertaken on a 

Polyvar Optical Microscope to image the prior austenite grains and martensite 

packets. 

Grain size in this study was measured using the linear intercept method. The 

principle of this method is to count numbers of grain boundaries per unit length. First, 

parallel lines are drawn on the image of the microstructure as illustrated in Figure 

3-3. The number of times each line cross grain boundaries is counted. Thus, the 

average grain size �̅� is given by: 

 
�̅� =

𝐿𝑇𝑜𝑡𝑎𝑙

𝑁𝐿
 (3.6) 

 

Figure 3-3 Schematic diagram of linear intercepts for the measurement of grain size. 
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For the grains which are equiaxed, parallel lines can be drawn along random 

orientation as long as there is sufficient space larger than the grain size between lines. 

When the grains are not equiaxed, such as deformed materials, lines should be drawn 

in the rolling direction and the short transverse direction separately. The average 

grain size should be measured in two separate directions as well. 

3.3.3 Scanning electron microscopy 

The aged samples for SEM observation were manual prepared with the same 

standard as samples for optical observation. The picric acid etch was used to reveal 

reverted austenite and precipitates. The fracture behaviour of the three alloys in 

different conditions was also investigated by SEM. The fresh fracture surfaces of 

samples after tensile testing were examined to provide information about the fracture 

modes and the cause of fracture. In order to further study the damage mechanisms in 

microscopic level, the microstructure of the fractured samples was also observed by 

SEM. In addition, the volume fraction of reverted austenite after tensile tests was 

analysed by X-ray diffraction.  

A FEI InspectF FEG-SEM equipped with EDS was utilized for both imaging and 

EDS analysis. The working conditions were dependent on the characterization 

purposes. An operating voltage of 15 kV was usually used for microstructural 

observation and EDS analyses, whereas 10 kV was usually set for fractography. 

3.3.4 Transmission electron microscopy 

TEM technique was mainly used to analyse the nanoscale features like precipitate 

and reverted austenite in this study. The morphology, size distribution and 

composition of precipitates and reverted austenite were examined by conventional 

transmission electron microscopes. Due to the overlap of diffraction spots between 

fine precipitates and bcc matrix, high resolution electron microscopy (HREM) was 

used to explore precipitates. TEM observation was conducted on four different 

microscopes which are Philips EM 420 operated at 120 kV (for SAED analysis), FEI 

Tecnai operated at 200 kV (for microstructural observation and EDS analysis), JEOL 

2010F at 200 kV (HREM and TEM-EDS) and aberration-corrected FEG JEOL 
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Z3100R05 at 300 kV (HREM and scanning transmission electron microscopy 

(STEM)).  

3.3.4.1  Identification of the crystal structure by SAED 

The crystal structure of precipitates is of vital importance for the study of 

precipitation-strengthened materials as the structure of precipitates, to a large extent, 

determines their properties and thus their roles in precipitation-strengthened 

materials. SAED is one of the most frequently used experimental tools to identify the 

crystal structure of ultrafine phases which cannot be detected by XRD or SEM. 

Electron diffraction pattern is unique to the crystal structure and the patterns can 

provide information about the size and shape of the unit cells and atomic positions in 

the unit cell as well. 

It is known that Bragg’s conditions are satisfied when the Ewald sphere cuts a 

reciprocal lattice point specified by the indices of the reflecting plane, see Figure 3-4. 

 

Figure 3-4 The construction of Ewald sphere after [207]. 

 

The Bragg’s law is given as 

 
𝑠𝑖𝑛𝜃 =

𝑔/2

1/𝜆
=

𝜆

2𝑑ℎ𝑘𝑙
 (3.7) 

where O is the origin of the reciprocal lattice;  

           Phkl is the points of reciprocal lattice; 
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           λ is the wavelength of the electrons, which is determined by the accelerating 

voltage. 

           dhkl is the crystal lattice spacing between atomic planes; 

           𝜃 is the angle between the incident beam and the reflecting planes. 

As Figure 3-5 reveals, the distance (r) between the transmitted beam and diffracted 

beam as measured on the screen is determined by the camera length L, 

 𝑡𝑎𝑛2𝜃 =
𝑟

𝐿
 (3.8) 

when 
1

𝜆
≫ 𝑔, it can be expressed as, 

 𝑡𝑎𝑛2𝜃 ≈ 𝑠𝑖𝑛2𝜃 ≈ 2𝜃 (3.9) 

combined with the Bragg equation (Equation (3.7)), dhkl can be obtained 

 
𝑑ℎ𝑘𝑙 =

𝐿𝜆

𝑟
 (3.10) 

Lλ is known as camera constant. 

After measuring the nearest r1, r2, r3, crystal lattice spacing d1, d2, d3 can be 

calculated using Equation (3.10).  

 

Figure 3-5 The geometric relationship between reciprocal lattice and electron diffraction 

pattern after [207]. 
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3.3.4.2  Quantitative EDS analysis  

It is known that the most straightforward method to study an unknown phase is to 

identify its elemental constituents. The first step is the qualitative EDS analysis. The 

further quantitative analysis would be meaningless if the identification of element is 

inaccurate. The principle of qualitative energy-dispersive X-ray analysis is simple. 

When the incident beams interact with the host atoms, the secondary electrons 

escape and leave holes in the electron shells. To stabilize the energy of atoms, 

electrons from outer shells transfer into the inner shells, thus the X-rays with 

characteristic energy are emitted from the atoms. For example in an iron atom, when 

the K shell electron is replaced by an electron from L shell, a 6400 eV Kα X-ray is 

emitted from the sample, or a 704 eV Lβ X-ray is emitted if L shell electron is 

replaced by the M shell electron. Namely, each element has characteristic X-ray 

peaks which allow them to be identified. In addition, since elements with lower 

atomic number have fewer filled shells, normally they have fewer X-ray peaks. 

In general, it is necessary to remove Bremsstrahlung X-rays and spectral artefacts in 

order to obtain the integrated intensities for quantitative analysis. In so-called 

standardless quantitative or semi-quantitative analysis, a Gaussian fit of the 

elemental peaks is preformed to obtain the peak intensities. The most popular 

algorithm is ZAF where Z is the atomic number of the element, A is the absorbance 

coefficient and F is the fluorescence efficiency. The peak intensities are then 

converted into weight or atomic percent by sensitivity factors created by taking 

account of the accelerating voltage of the beam. Instead of fitting a Gaussian profile, 

fully standardized quantification compares the areas under the peaks to standard files 

which are reference spectra of the elements collected under the same conditions on 

the same instrument. As it requires the additional standard spectra, the fully 

standardized quantitative analysis is time-consuming. It is commonly considered that 

the advantage of this form of analysis is evident only in the situation when the peaks 

of the elements overlap or when quantifying the trace elements. Therefore, the 

quantitative analysis in this study was performed by the standardless analysis which 

has been proved reliable. 
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3.4 Mechanical property testing 

3.4.1 Vickers hardness measurement 

Vickers indentation was performed to measure the hardness of samples in different 

conditions. Hardness tests were carried out on a CV-430AAT Manual Vickers 

Hardness Tester with a load of 294 N (30kg) and indentation time of 15 s. Each 

result was averaged from at least eight measurements.  

It is commonly accepted that the strength is in a direct proportion to the Vickers 

hardness values. Therefore, the strength can be roughly predicted by the Vickers 

hardness results which are easier to obtain. Dieter [210] reports the conversion 

equation by which the yield strength can be evaluated: 

 
𝜎𝑦 =

𝐻

3
 (3.11) 

Cahoon [211] presented the expression relating the ultimate tensile strength σ to 

hardness: 

 
𝜎 =

𝐻

2.9
(

𝑛

0.217
)𝑛 (3.12) 

where H (MPa) is obtained by multiplying the Vickers hardness values by 9.807; 

            n is the strain hardening coefficient. 

3.4.2 Tensile testing 

Tensile testing was performed to examine the mechanical response of materials and 

to further study the deformation mechanisms, damage mechanisms and their 

relationships to the microstructure. All the tensile tests were conducted at room 

temperature on a Zwick Roell Z050 tensile testing machine at a constant cross head 

velocity corresponding to an initial strain rate of 0.002 s
-1

. Flat rectangular tensile 

samples were machined along the longitudinal direction based on ASTM standard. 

The dimensions of tensile test samples are given in Figure 3-6. The thickness is 

thinned to approximately 1.5 mm in order to remove the oxide surface from the 

preceding heat treatment. The tensile strain was recorded by an attached video 
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extensometer. Two special stickers attached within the gauge portion of the tensile 

samples were constantly captured in the video and the distance between them was 

tracked in real time. 

 

Figure 3-6 Geometry of the standard rectangular tension test sample. 

 

3.4.3 Nanoindentation 

As phases are deemed to have different strength, the mechanical response of 

different phases in the steels was examined by nanoindentation. This technique is 

based on indenting the selected area with a small load by an indenter tip with a 

specific geometry. The Berkovich tip is commonly used with the tip radius being at 

the range of 50-100 nm for a new indenter, see Figure 3-7(a). Since identifying the 

small area for indentation can be quite difficult, atomic-force microscopy (AFM) or 

SEM is usually used to image the microstructure and indents. Different from 

calculating the contact area by measuring the dimensions of indents in the 

conventional indentation tests, the size of residual impression in nanoindentation is 

on the order of nanometres and is too fine to be accurately measured even with 

microscopes. Therefore the depth of penetration is alternatively recorded during 

nanoindentation [212]. Together with the recorded force, a load-displacement curve 

can be obtained as shown in Figure 3-8 and different mechanical properties can 

therefore be evaluated: 
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Figure 3-7 (a) a standard Berkovich indenter where a = 65.03°; (b) a standard cube corner 

indenter where a = 35.26°. 

 

In this study, reverted austenite displays an elongated shape with the width of 

approximately 50-100 nm which is difficult to measure with conventional hardness 

testing. Thus nanoindentation was used to reveal the effects of aging parameters on 

martensite and austenite phases, respectively. In addition, the contribution of each 

phase to the strength can also be evaluated. For nanoindentation testing, aged 

samples were manually polished and etched with picric acid to reveal the 

microstructure under AFM. A cube corner tip (Figure 3-7(b)) was used for testing 

the ultrafine austenite grains. A 10 µN/s up to a maximum indentation load of 70 μN 

was employed in this study.  

 

Figure 3-8 A typical schematic of load-displacement curve for nanoindentation test. 
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Chapter 4 Brief study on microstructure and 

mechanical properties of Mn-based maraging 

steels 

The Mn-based maraging steels studied in this work contain Ni, Ti, Al and Mo which 

are deemed to form intermetallic precipitates. The precipitation, which occurred 

during aging, is expected to increase the strength of martensite, and consequently is 

referred as martensite aging hardening or maraging. On the other hand, the high Mn 

content in this type of steel promotes the formation of reverted austenite during 

aging which is believed to affect the mechanical properties as well. In this chapter, 

the mechanical behaviour of Mn-based maraging steels in various conditions is 

evaluated by hardness and tensile testing. The mechanical differences among the 

three alloys are compared and analysed. The equilibrium phases as a function of 

temperature are predicted by MatCalc software and XRD analyses are conducted to 

identify the phase constitutions. Based on these studies, a general concept about the 

newly-developed maraging steels is presented. 

4.1 Thermodynamic calculation 

Figure 4-1 presents the equilibrium phase volume fractions as a function of 

temperature, which was calculated by MatCalc using MC_FE_V2.0 database. The 

dominant equilibrium phases at the aging temperatures of 420-500 °C are ferrite and 

austenite. According to MatCalc, The only precipitate phase formed in the two-phase 

field is Laves phase with a composition close to Fe3Ti(Mo). This type of precipitate 

forms from ~800 °C and the fraction maintains between 3.45 vol.% to 4.42 vol.% at 

the temperature 420-500 °C. Another phase which is formed above the equilibrium 

γ/α transformation temperature (𝐴𝑒3) is fcc TiC. This carbide is thermally stable over 

a large temperature range up to 1300 °C. 
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Figure 4-1 The equilibrium phase fractions as a function of temperature in (a) 7% Mn, (b) 10% 

Mn and (c) 12% Mn alloys. 
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4.2 The effect of Mn content on grain refinement 

The grain size distribution of 7%, 10% and 12% Mn alloys in the SHT state was 

characterized by EBSD and the results are displayed in Figure 4-2. The left column 

presents the martensite phase (blue) with grain boundaries (black lines, >15°). The 

EBSD phase maps show that in the solution-treated condition, only martensite was 

present. This result disagrees with the EBSD observation by Raabe et al. [18] 

suggesting that a small amount of austenite was retained after quenching in 12 wt.% 

Mn alloy. Apart from the EBSD resolution limit, there are three possible reasons 

about this deviation. (i) Raabe may have used a slower cooling rate by which some 

austenite was retained rather than transformed to 𝛼′-martensite. (ii) Both experiment 

and model simulation demonstrated the dependence of the martensite-start 

temperature (Ms) on the prior austenite grain size [34][162][213]. It is reported the 

ultrafine prior austenite grain is one of the reason for the presence of retained 

austenite. The small grain size suppresses the martensitic transformation, and thereby 

contributing to the austenite stability during cooling [34][213]. (iii) The addition of 

Al in the present study increased Ms temperature. 

The right column presents the inverse pole coloured orientation maps of the same 

area, in which the packets of lath martensite can be clearly observed. It is evident 

that these martensite packets formed via water quenching possessed high-angle 

misorientation with adjacent packets. Each prior austenite grain was sub-divided into 

several martensite packets. In other words, the effective grain size was refined owing 

to the dense high-angle boundaries induced by martensite packets. In addition, it is 

noticed that the effective grain size was reduced as the Mn content of the alloy 

increased, which means that the Mn addition contributed to the grain refinement in 

these alloys. It is known that the addition of Mn lowers both the 𝐴𝑒3  and 𝑀𝑠 

temperatures. The reduction of 𝐴𝑒3  provides an increased driving force for phase 

transformation and thus a decreased driving force for grain growth. Similarly, a 

lower 𝑀𝑠 temperature leads to the refined packets of lath martensite. Therefore, finer 

prior austenite grains and martensite packets were observed in 12% Mn alloy in the 

SHT state compared to other two alloys. 
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Figure 4-2 Microstructure of the three alloys in the SHT state by EBSD analyses. Left 

column: phase maps showing martensite phase (blue) with grain boundaries (black 

lines, >15°). Right column: inverse pole maps of the same area, showing the orientation 

distribution of the martensite. 
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4.3 Phase identification by XRD and SEM 

X-ray diffraction (XRD) analyses were conducted on all the solution-treated and 

aged samples. Figure 4-3 displays the XRD results of the three alloys in the SHT 

state, which confirms only martensite could be detected in the three samples.  

 

Figure 4-3 X-ray diffraction patterns of solution-treated 7%, 10% and 12% Mn alloys. 

 

Although both XRD and EBSD analyses did not show any evidence of carbide 

formation, the SEM micrographs in Figure 4-4(a) and (b) reveals the existence of 

carbide in the SHT state. The SEM-EDS and TEM-EDS analyses (Figure 4-4(b) and 

(c)) confirm that this type of carbide is Ti-rich as MatCalc predicts. It is shown in 

Figure 4-4(a) that both the size and the number density of TiC particles are small 

(0.15-0.22 vol.% provided by MatCalc) and this is the reason why the XRD and 

EBSD failed to detect carbide. In addition, MatCalc indicated this kind of carbide is 

very stable and cannot be totally dissolved even heating up to 1300 °C, so in this 

work the carbides were retained and could be observed in both SHT and aged 

samples (Figure 4-4(d)). 
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Figure 4-4 (a) SEM micrograph of Ti-rich carbide present in 10% Mn alloy in the SHT state 

with (b) EDS line scan and (c) EDS spot detection results; (d) TEM micrograph of Ti-rich 

carbide existing in aged 7% Mn alloy in 500 °C / 10080 min state. 

 

Further aging treatment is supposed to lead to the precipitation and the formation of 

reverted austenite. However, the X-ray diffraction patterns of most aged samples 

only reveal the existence of martensite. Distinguishable austenite peaks were mainly 

observed in 10% and 12% Mn alloys in the overaged stage at 500 °C, see Figure 4-5. 

At 460 °C, the presence of austenite was only observed after long-term aging (not 

presented), while at 420 °C, there was no evidence of the formation of reverted 

austenite in the three alloys (not presented).  
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Figure 4-5 X-ray diffraction patterns of (a) 10% Mn and (b) 12% Mn alloys aged at 500 °C 

for various durations. 

 

Apart from peaks of martensite and austenite, additional peaks were noticed in the 

samples aged at 500 °C for a long duration (Figure 4-5), which were later 

demonstrated to be ε-martensite phase. The ε-martensitic transformation upon 

cooling has been interpreted by Schumann in his study on Fe-Mn steels [214]. The 

Schumann’s martensitic transformation diagrams are displayed in Figure 4-6 

[154][215]. According to Schumann, the martensitic transformation in Fe-Mn steels 
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can be summaries as: (i) when the Mn concentration of austenite is below 10 wt.%, 

𝛾 → 𝛼′ martensitic transformation occurs during cooling and only 𝛼′ martensite can 

be obtained at room temperature, (ii) when the Mn concentration is between 10 wt.% 

and 15wt.%, the Ms temperatures of 𝛾 → 𝛼′  and 𝛾 → 𝜀  transformations are close 

(Figure 4-6(a)). Although part of the 𝜀 -martensite may still transform into 𝛼′ 

martensite, the presence of both 𝛼′- and 𝜀-martensite along with untransformed 𝛾 

phase is expected after cooling, (iii) when the Mn concentration is between 15 wt.% 

and 25 wt.%, the thermally stable phases at room temperature are 𝜀-martensite and 𝛾 

phase which is retained due to fast cooling rate, (iv) when the Mn concentration is 

over ~25 wt.%, both the Ms temperatures of 𝛾 → 𝛼′ and 𝛾 → 𝜀 transformations have 

been reduced to below room temperature. In theory the alloy at room temperature 

should be constituted by fully austenite content, but some studies reported a trace of 

𝜀-martensite in alloys with Mn concentration higher than 25 wt.% [216]. In addition, 

it has been demonstrated that the 𝛾 → 𝜀 martensitic transformations is controlled by 

a displacement mechanism and thus there is no change in the concentration after 

phase transformation [214]. 

 

Figure 4-6 (a) Schumann’s martensitic transformation diagram of the Fe-Mn system [154]; 

(b) schematic map of the phase fractions after cooling to room temperature based on 

Schumann’s description [215]. 

 

It is worth noting that no peaks corresponding to precipitates were detected by XRD. 

But a large number of uniformly distributed precipitates were noticed in aged 

samples under microscope observation, as shown in Figure 4-7. The elongated 
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islands with brighter contrast are the reverted austenite phase, whereas the nano-

scaled spherical phases are the precipitates. A possible explanation is that the 

diffraction peaks of precipitates are overlapped by those of 𝛼′-martensite matrix. A 

more detailed study on precipitates will be given in Chapter 5. 

 

Figure 4-7 SEM micrographs of (a) lath-like austenite and precipitate-decorated martensite 

matrix and (b) homogenously distributed precipitates in 12% Mn alloy in 500 °C / 2880 min 

state. 

4.4 Hardness evolution 

The hardness curves of precipitation-strengthened alloys generally exhibit four 

regions: (i) incubation; (ii) a rapid increase in hardness (under-aged region); (iii) a 

plateau of hardness (peak-aged point) and (iv) a decrease in hardness (overaged 

region). Figure 4-8 displays the hardness evolution of 7%, 10% and 12% Mn alloys 

aged at different temperatures. 

It is apparent that aging at 420 °C for a limited time up to 10080 minutes did not lead 

to the peak hardness in the three alloys. As presented in Figure 4-8(a), the three 

alloys experienced a long incubation and under-aging process which indicated a very 

slow hardening kinetics in Mn-based maraging steels when aging at 420 °C. It 

should be noted that higher hardness of alloys with higher Mn content (i.e. 

𝐻12% 𝑀𝑛 > 𝐻10% 𝑀𝑛 > 𝐻7% 𝑀𝑛) can be observed for each state (Figure 4-8(a)). 

Aging at 460 °C led to the peak hardness in 10% Mn and 12% Mn alloys (Figure 

4-8(b)). Although the over-aged region was not that evident in 7% Mn alloy, a 
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decreasing slope of hardness curve leading to a plateau indicates that the peak 

hardness of 7% Mn alloy aged at 460 °C was achieved within 10080 minutes as well. 

As expected, 12% Mn alloy was the first who reached the maximum hardness (453 

HV, 480 min), followed by 10% Mn alloy approaching the peak (457 HV, 1440 min) 

and then 7% Mn alloy (454 HV, 5760 min). 

Figure 4-8(c) displays the hardness curves of the three alloys aged at 500 °C, which 

exhibit a typical hardness evolution of precipitation-strengthened alloys. A very 

rapid increase of hardness was visible in the early aging region of the 10% Mn and 

12% Mn alloys, over 90% of the total increase in hardness was achieved within the 

first 30 minutes. While an incubation in the first 30 minutes was evident in 7% Mn 

alloy followed by a sluggish hardening process leading to the hardness peak. On the 

other hand, the maximum hardness of the three alloys are very close (7% Mn alloy: 

418 HV at 240 min; 10% Mn alloy: 421 HV at 240 min; 12% Mn alloy: 432 HV at 

120 min). It is worth noting that in the over-aged region, what appears to be 

secondary hardening was observed in both 10% Mn and 12% Mn alloy. Actually, a 

less evident secondary hardening in the overaged stage could also be observed in the 

two alloys at 460 °C. This secondary hardening indicates there might be a new phase 

formed during this period. 
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Figure 4-8 Vickers hardness as a function of aging time at (a) 420 °C, (b) 460 °C and (c) 

500 °C for Mn-based maraging steels, respectively. 
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4.5 Tensile results 

4.5.1 Tensile behaviour of solution-treated samples 

Figure 4-9 displays the engineering stress-strain curves of 7%, 10% and 12% Mn 

alloys in the SHT state and the summarized data are listed in Table 4–1. It is obvious 

that the yield strength (YS), ultimate tensile strength (UTS) and tensile elongation 

(TE) increase with the Mn content of alloys, but the differences among the three 

alloys are small. It is believed that the more prominent solid solution strengthening 

owing to higher Mn content is responsible for the higher UTS and TE of 12% Mn 

alloy. In addition, the Mn addition leading to the refinement of both prior austenite 

grains and martensite laths which contributes to the improvement of strength and 

ductility. It should be noted that after reaching the yield point, the increase of 

engineering stress was small. Instead, an evident decrease of engineering stress as a 

function of strain was observed. This indicates that the Mn-based maraging steels in 

the SHT state did not possess a good work hardening during deformation. 

 

Figure 4-9 Engineering stress vs. strain of 7%, 10% and 12% Mn alloys in the SHT state. 

 

 



Chapter 4 Brief study on microstructure and mechanical properties of Mn-based 

maraging steels 

75 

 

Table 4–1 Summary of the mechanical properties of 7% Mn, 10% Mn and 12% Mn alloys in 

the SHT state. 

 YS (MPa) UTS (MPa) TE (%) 

7% Mn 770 852 6.9 

10% Mn 790 882 7.1 

12% Mn 820 931 7.5 

 

4.5.2 The embrittlement of aged samples 

After aging, the three alloys suffered from poor ductility at lower aging temperature 

or at higher temperature but for short time. Most of them failed before approaching 

the yield point (see Figure 4-10(a)). The images of the fracture surface reveal that 

there was no visible necking (reduction of area), and cracks along grain boundaries 

can be clearly observed (Figure 4-10(b) and (c)). Aging at higher temperatures or for 

longer times were demonstrated to significantly improve the embrittlement. Besides, 

the Mn content of alloy was also found to affect the ductility. In the following 

section, the tensile behaviour of Mn-based maraging steels will be studied in terms 

of the aging time, aging temperature and the Mn content, respectively. 
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Figure 4-10 (a) Engineering stress-strain curves of 10% Mn alloy in 460 °C / 10080 min 

state and 7% Mn alloy in 500 °C / 60 min state with their corresponding fracture images: (b) 

10% Mn alloy in 460 °C / 10080 min state and (c) 7% Mn alloy in 500 °C / 60 min state. 

 

4.5.3 The improvement of mechanical properties in overaged 

samples 

The engineering stress-strain curves of 10% Mn alloys aged at 500 °C where the 

plastic deformation was clearly present are displayed in Figure 4-11. The samples 

showing early embrittlement are not displayed here. After aging at 500 °C for over 

2880 minutes, both UTS and TE were considerably improved. The UTS was 

increased from 832 MPa in the SHT state to 1113 MPa in 500 °C / 2880 min state, 

whereas the TE increased from 7.0% to 12.1%. Further aging for 5760 minutes led to 

the TE gradually increasing up to 17.0% but the UTS slightly reducing to 1062 MPa. 

Aging up to 10080 minutes unexpectedly resulted in a decrease in TE to 13.7%, 

whereas the UTS stayed at the same level. A summary of YS, UTS and TE are listed 
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in Table 4–2. It is worth noting that, compared to the engineering stress-strain curves 

of the solution-treated samples, the engineering stress of aged samples in Figure 4-11 

reached a plateau after the yield point and stayed at the plateau over a wide strain 

range. 

 

Figure 4-11 Engineering stress vs. engineering strain of 10% Mn alloy aged at 500 °C for 

different durations. 

 

Table 4–2 Summary of the mechanical properties of 10% Mn alloys aged at 500 °C for 

different durations. 

 YS (MPa) UTS (MPa) TE (%) 

2880 min 1010 1113 12.1 

4320 min 920 1074 13.8 

5760 min 860 1062 17.0 

10080 min 970 1032 13.7 
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Similarly in the 12% Mn alloy aged at 500 °C, the aging led to the increase in 

strength but uncertain changes in ductility (Figure 4-12 and Table 4–3). In the early 

aging stage, samples failed without exhibiting any ductility (not displayed). After 

aging for 240 min, an improved TE to 5.5% with a remarkable UTS of 1306 MPa 

was noticed. Longer aging improved the ductility but was found detrimental to the 

strength (e.g. the sample in 500 °C / 2880 min state: UTS of 1142 MPa, TE of 

17.8%). However, further extended aging did not result in any obvious variation in 

the mechanical properties (④⑤⑥⑦ in Figure 4-12). What is worth emphasising 

is that similar but more flattened engineering stress-strain curves than 10% Mn alloy 

was present in 12% Mn alloy. It is evident that the decrease of engineering stress 

during the necking period was smaller than that in 12% Mn alloy for the same 

conditions. 

 

Figure 4-12 Engineering stress vs. strain of 12% Mn alloy aged at 500 °C for different 

durations. 
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Table 4–3 Summary of mechanical properties of 12% Mn alloy aged at 500 °C for different 

durations. 

 YS (MPa) UTS (MPa) TE (%) 

240 min 1250 1306 5.5 

1440 min 1015 1137 7.6 

2880 min 940 1142 17.8 

4320 min 910 1126 17.0 

5760 min 870 1120 18.4 

10080 min 960 1162 15.1 

 

In terms of the effects of aging temperature, all the three alloys exhibited poor 

ductility when aging at 420 °C even for 10080 minutes (Figure 4-13 exhibits the 

tensile curve of 12% Mn alloy in 420 °C / 10080 min state). Increasing aging 

temperature to 460 °C improved the embrittlement. The 12% Mn alloy in 460 °C / 

10080 min state attained a limited TE of 7.7% with a UTS of 1330 MPa. 

Significantly improved ductility but decreased strength existed when aging at 500 °C. 

 

Figure 4-13 Engineering stress-strain curves of 12% Mn alloy aged for 10080 minutes at 

different temperatures. 

Increasing the Mn content of alloy is considered to another effective method to 

improve both the strength and ductility. As stated above, at lower aging temperatures 
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(420 °C and 460 °C), 7% Mn and 10% Mn alloy failed before plastic deformation 

initiated. Only the 12% Mn alloy in 460 °C /10080 min state exhibited an acceptable 

combination of strength and ductility (Figure 4-13). At the aging temperature of 

500 °C where the embrittlement was supposed to be much improved, 7% Mn alloy in 

500 °C / 10080 state yielded a TE of 6.6%, while both the 10% Mn and 12% Mn 

alloys yielded even better ductility (13.7% and 15.3%, respectively). Moreover, the 

UTS was also increased from 1005 MPa of 7% Mn alloy to 1162 MPa of 12% Mn 

alloy (Figure 4-14). Figure 4-15 further compares the UTS and TE between 10% Mn 

and 12% Mn alloys aged at 500 °C for different durations, which reveals that both 

the UTS and TE of 12% Mn alloy were higher than those of 10% Mn alloy for the 

same conditions. 

 

Figure 4-14 Engineering stress-strain curves of 7% Mn, 10% Mn and 12% Mn alloys in 

500 °C / 10080 min state. 
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Figure 4-15 Comparison of UTS and TE between 10% Mn and 12% Mn alloys aged at 

500 °C for different durations. 

 

4.6 Fractography analyses 

4.6.1 The fracture surface after solution heat treatment 

Figure 4-16 displays the SEM fractographs of fracture surfaces in the SHT state. 

Figure 4-16(a) reveals a mixed fracture mode in solution-treated 7% Mn alloy. 

Specifically, the flat facets exhibiting river patterns are typical of cleavage brittle 

fracture while cup-and-cone dimples are the characteristic feature of good, ductile 

fracture. Increasing Mn content led to the improvement of ductility. As shown in 

Figure 4-16(b), the proportion of dimple fracture in solution-treated 10% Mn alloy is 

much higher than that in 7% Mn alloy. 12% Mn alloy exhibits a complete 

transgranular dimpled ductile fracture (Figure 4-16(c)). Compared to the uniform 

and shallow dimples in 7% Mn and 10% Mn alloys, the dimples in 12% Mn alloy are 

relatively larger and deeper. Besides, bimodal dimples, i.e. both large and small 

dimples were observed in the 12% Mn alloy.  
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Figure 4-16 The fracture surface of solution-treated (a) 7% Mn; (b) 10% Mn and (c) 12% 

Mn alloys. 

 

4.6.2 Intergranular brittleness in aged 7% Mn alloy 

As the intergranular brittleness was most severe in 7% Mn alloy, the 7% Mn alloy 

was taken as example to study the effect of aging parameters on brittleness. Figure 

4-17(a) reveals a nearly complete intergranular brittle fracture surface when aging at 

420 °C for 10080 min. Clear cracks along grain boundaries can be observed. 

Increasing aging temperature to 460 °C led to a small amount of cleavage fracture as 

shown in Figure 4-17(b). But the intergranular brittleness was still the dominant 

fracture mode. When subjected to the aging temperature of 500 °C, the intergranular 

brittleness was still evident in the initial aging stage (Figure 4-17(c)), then the 

fracture mode gradually transformed into cleavage fracture as the aging time 

increases (Figure 4-17(d)). 
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Figure 4-17 The fracture surface of 7% Mn alloy aged at: (a) 420 °C / 10080 min; (b) 460 °C 

/ 10080 min; (c) 500 °C / 60 min and (d) 500 °C / 10080 min. 

 

4.6.3 Improved fracture behaviour in aged 12% Mn alloy 

As both the tensile result and microstructural observation indicated, 10% and 12% 

Mn alloys revealed similar mechanical properties and microstructure with a small 

variation in austenite fraction, the 12% Mn alloy is representatively studied here to 

explore the effects of aging parameters on the fracture behaviour. At the aging 

temperature of 420 °C, the 12% Mn alloy revealed severe intergranular brittle 

fracture like 7% Mn alloy shown in Figure 4-17(a). Increasing the aging temperature 

to 460 °C led to the improvement of fracture behaviour. The fracture mode 

transformed from cleavage fracture in the 460 °C / 4320 min state (Figure 4-18(a) 

and (b)) to quasi cleavage fracture mode in the 460 °C / 10080 min state (Figure 

4-18(c) and (d)). The quasi cleavage is similar to the cleavage fracture but with an 
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increased ductile proportion. As illustrated in Figure 4-18(c) and (d), small dimples 

seem to become dominant although intergranular fracture can still be observed. 

 

Figure 4-18 The fracture surface of 12% Mn alloys aged at 460 °C for (a)(b) 4320 min and 

(c)(d) 10080 min. The right column is the enlarged fractographs. 

 

Although intergranular brittleness occurred at the onset of aging process (500 °C / 10 

min state, Figure 4-19(a)), further aging at 500 °C significantly improved the 

fracture performance of 12% Mn alloy. After aging for 1440 min, a microvoid 

coalescence fracture mode related to dimples was present with a small amount of 

river pattern (Figure 4-19(b)). In 500 °C / 10080 min state, obvious necking and 

large reductions in area were clearly observed (not displayed here) and the 

fractograph is fully occupied by dimpled fracture mode (Figure 4-19(c)). It is found 

that the proportion of intergranular fracture increased immediately at the start of 

aging and with prolonged aging it gradually decreased. Besides, granular inclusions 

in the size range 100-200 nm were found at the bottom of some dimples as shown in 

Figure 4-19(d). It is worth noting that compared to the dimples in solution-treated 
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stage (Figure 4-16), dimples were smoother and smaller in ductile aged samples 

(Figure 4-19(c) and (d)). 

 

Figure 4-19 The fracture surface of 12% Mn alloys aged at 500 °C for (a) 10 min; (b) 1440 

min and (c)(d) 10080 min. 

4.7 Summary 

1. Thermodynamic calculation by MatCalc confirmed that the dominant 

equilibrium phases at aging temperature 420-500 °C are ferrite and austenite. 

The only precipitate phase predicted by MatCalc was Laves phase Fe3Ti(Mo). 

A trace of fcc phase TiC was found thermally stable over a wide temperature 

range up to 1300 °C. The equilibrium γ/α transformation temperatures (𝐴𝑒3) 

are calculated as: 7% Mn alloy: 722 °C; 10% Mn alloy: 644 °C; 12% Mn 

alloy: 614 °C. 

2. The addition of Mn has been demonstrated to refine both the prior austenite 

grains and martensite packets via reducing 𝐴𝑒3  and 𝑀𝑠  temperatures. This 
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grain refinement is partially responsible for the higher strength and ductility 

in 12% Mn alloy in the SHT state. 

3. Phase identification by XRD confirmed the formation of reverted austenite 

during aging. Besides, XRD analyses revealed the existence of 𝜀-martensite 

in over-aged samples, but no evidence of precipitates was found in XRD 

patterns. 

4. Aging at 460 °C or 500 °C exhibited a typical hardness evolution of 

precipitation-strengthened alloys. Higher aging temperature led to a more 

rapid hardening towards peak hardness followed by a moderate decrease in 

hardness in the overaged region. A slower hardening kinetics but more 

significant hardening effect existed at 420 °C. In terms of the Mn content of 

alloy, a quicker response to thermal treatment and more significant hardening 

effect were observed in 12% Mn alloy when compared to other two alloys. 

5. Embrittlement occurred in the samples aged at lower temperatures or at 

higher temperatures but for short times. Increasing aging temperatures and 

durations could significantly improve the embrittlement phenomenon. Higher 

Mn content was also demonstrated to benefit the ductility as well. The 12% 

Mn alloy aged at 500 °C for 5760 min exhibited a UTS of 1120 MPa with TE 

of 18.4%. 

6. The fracture mode of solution-treated samples is a mix of cleavage brittle 

fracture and dimples fracture. Higher Mn content corresponded to an increase 

of the proportion of dimples fracture. Intergranular brittle fracture was 

observed in the early aging stage. The embrittlement phenomena were much 

improved after prolonged aging process and the fracture mode gradually 

transformed to a transgranular dimpled ductile fracture. Both higher Mn 

content and higher aging temperature were found to accelerate the 

improvement of ductility. 
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Chapter 5 Characterization of L21-ordered 

Ni2TiAl intermetallic phase and its precipitation 

behaviour 

5.1 Introduction 

The previous hardness study in Section 4.4 revealed a rapid and significant 

hardening during aging in the three Mn-based maraging steels and evidence has 

suggested that the hardening is mainly attributed to the formation of an unknown 

type of precipitate. Therefore, the primary objective addressed in this study is to 

investigate the nature of the precipitate. In this chapter, the chemical composition, 

coarsening behaviour, crystal structure and coherency of precipitates will be studied 

aiming to understand their effects on the strengthening behaviour of Mn-based 

maraging steels respectively. 

5.2 Experimental details 

The precipitates formed in 7%, 10% and 12% Mn alloys under different aging 

treatments were investigated. The solution-treated samples were aged at 420 °C, 

460 °C and 500 °C for 10, 30, 60, 120, 240, 480, 1440, 2880, 4320, 5760 and 10080 

mins. Various TEM techniques including bright field, electron diffraction, dark field 

and EDS were employed to obtain the information about size, composition and the 

crystal structure of precipitates. Most of these investigations were carried out on 

overaged samples as the ultrafine precipitates formed prior to the peak strengthening 

were difficult to be identified under conventional TEM observation. In this case, 

carbon extracted replicas were used for the investigation of early precipitation. 

Complementary studies on the crystal structure and core/shell structure were 

performed on HREM and HAADF. 
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5.3 Microstructural evolution 

5.3.1 The effect of Mn content on the precipitation 

Figure 5-1 presents the bright-field TEM micrographs of precipitates in 7% Mn and 

12% Mn alloys aged at 500 °C. The microstructural evolution of precipitates in the 7% 

Mn alloy aged at 500 °C is illustrated in the left column. The 480 min aged sample 

(Figure 5-1(a)), corresponding to the peak aging hardening, exhibited a fine, highly 

dispersed distribution of precipitates with weak contrast. Further aging led to the 

increase of the size of precipitates, as shown in the 2880 min aged sample (Figure 

5-1(c)). Precipitate coarsening, which resulted in a significant decrease of the 

number density, was obvious in the 10080 min aged sample (Figure 5-1(e)). For the 

12% Mn alloy, the precipitates in the 480 min aged sample have a larger average size 

and higher number density compared to the precipitates in the 7% Mn alloy for the 

same aging condition. Analogous to the 7% Mn alloy, further aging to 2880 min and 

then 10080 min resulted in a significant increase in the precipitate size but a decrease 

in the number density (Figure 5-1(d) and (f)).  
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Figure 5-1 Bright-field TEM micrographs of precipitates formed at 500 °C. Left: 7% Mn 

alloy for (a) 480 min (c) 2880 min and (e) 10080 min; right: 12% Mn alloy for (b) 480 min 

(d) 2880 min and (f) 10080 min. 
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5.3.2 The effect of aging temperature on precipitation 

The aging temperature is one of the key factors to determine the population and size 

of precipitates. It is believed that lower aging temperatures can introduce a high 

number density of fine precipitates, and thus a better strengthening contribution. On 

the other hand, the kinetics of precipitation is, to a large extent, also associated with 

the aging temperature. A relatively high temperature is generally desired by 

steelmakers to reduce the cycle time of aging process. Therefore, investigation is 

needed to determine the optimum aging temperature meeting both the 

thermodynamics and kinetics requirement. 

The representative 12% Mn alloy subjected to different aging temperatures was 

studied. As shown in Figure 5-2(a), the precipitates experienced an extremely slow 

growth process when aging at 420 °C. A small average size of ~5.5 nm was achieved 

after aging for 10080 min. A more rapid growth was observed at 460 °C where the 

average size grew up to ~7.5 nm after aging for 10080 min (Figure 5-2(b)), and a 

moderate increase in the number density is also visible. Further increasing the aging 

temperature to 500 °C led to a significant increase in the size but a decrease in the 

number density: the precipitates in the 10080 min aged sample have an average size 

of 19.4 ± 6.4 nm (Figure 5-2(c)). 
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Figure 5-2 TEM micrographs of precipitates on carbon extraction replicas of 12% Mn alloy 

aged at (a) 420 °C, (b) 460 °C and (c) 500 °C for 10080 min. 

 

5.4 Coarsening of precipitates 

5.4.1 Size distribution of precipitates 

Based on the TEM observation of precipitates, the precipitate size distributions 

(PSDs) were analysed and the representative results are displayed in Figure 5-3. Due 

to the limitation of the resolution of extraction replicas under TEM observation, 

precipitates with an equivalent radius below 1 nm could not be counted. The PSD 

function (g) was plotted as a function of reduced precipitate radius (𝜌 = 𝑟/�̅�) to 

allow comparison with the LSW model expressed as [76]: 
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∫ 𝜌2ℎ(𝜌)

3/2

0

𝑑𝜌 =
9

4
 (5.1) 

where 𝜌2ℎ(𝜌) is the theoretical distribution function. As displayed in Figure 5-3, the 

experimental PSDs results roughly agree with the theoretical PSD function 

superimposed on the histograms and the agreement in the early aging stage is better 

than that after long-term aging. Despite the variation of the average precipitate size, 

the PSDs of the three alloys exhibit a similar shape for the same aging condition, 

which means that the effect of Mn content was not that significant on the precipitate 

size distributions. In terms of the aging time, the PSDs of the three alloys were all 

narrow in the beginning (500 °C / 480 min) and fitted well with the PSD function 

predicted by LSW theory (Figure 5-3(a), (d) and (g)), but after aging for 2880 min 

the PSDs yielded a broader shape than the theoretical PSD distribution (Figure 

5-3(b), (e) and (h)), and this discrepancy maintained at this level to the end of aging 

process (10080 min state), as shown in Figure 5-3(c), (f)and (i). 
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Figure 5-3 Examples of PSDs plotted for various aged samples: 7% Mn alloy (a) 500 °C / 480 min, (b) 500 °C / 2880 min and (c) 500°C / 10080 min; 

10% Mn alloy (d) 500 °C / 480 min, (e) 500 °C / 2880 min and (f) 500°C / 10080 min; 12% Mn alloy (g) 500 °C / 480 min, (h) 500 °C / 2880 min and 

(i) 500°C / 10080 min. The histograms of the PSD function, g, are plotted as a function of reduced precipitate radius (𝜌 = 𝑟/�̅�). Theoretical LSW 

distribution is presented as well for comparison. 
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5.4.2 The growth and coarsening kinetics of precipitate 

The growth kinetics at the early stage of precipitation was studied. It is found that the 

size of early precipitates followed a linear increase with aging time, after which the 

rate of increase appeared to change indicating the initiation of the coarsening process 

(Figure 5-4). The trend of curves is consistent with the description of precipitate 

size-time relationship in Figure 2-5. Besides, the growth rate of precipitates in 7% 

Mn alloy is found slower than that in 12% Mn alloy. 

 

Figure 5-4 Evolution of the mean precipitate size r̅ as a function of aging time at 500 °C in 

(a) 7% Mn alloy and (b) 12% Mn alloy. 
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The precipitate coarsening in the 7%, 10% and 12% Mn alloys aged at 500 °C was 

assessed by plotting mean precipitate radius �̅�3 
(Table 5–1) as a function of aging 

time 𝑡 (Figure 5-5). Except the point of 500 °C / 10080 min state in 12% Mn alloy, 

the linear slopes in Figure 5-5 confirm to the relationship between the mean 

precipitate radius and aging time: 

 �̅�3 − 𝑟𝑐5
3 = 𝐾𝑅𝑡 (5.2) 

This indicates that the coarsening kinetics of precipitates in the three alloys follows 

the diffusion-controlled coarsening kinetics predicted by LSW theory. The slopes in 

Figure 5-5 reveal that the coarsening rate constants increase with the Mn contents of 

alloy. Besides, the �̅�3 of 12% Mn alloy aged at 500 °C / 10080 min, which shows a 

deviation from the expected value by LSW model. This could indicate a change in 

coarsening mechanism or possibly a change in precipitate structure. Further work 

would be required to understand this change. 

 

Figure 5-5 Evolution of the mean precipitate radius �̅�3 as a function of aging time 𝑡, in 7% 

Mn, 10% Mn and 12% Mn alloys aged at 500 °C. 
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Table 5–1 Experimental mean size of precipitates (�̅�) and coarsening rate constant (𝐾𝑅) of different alloys aged at 500 °C. 

Aging time 

(min) 

7% Mn 10% Mn 12% Mn 

�̅� (nm) 𝐾𝑅 (m
3
s

-1
) �̅� (nm) 𝐾𝑅 (m

3
s

-1
) �̅� (nm) 𝐾𝑅 (m

3
s

-1
) 

480 2.52 ± 0.72 - 3.39 ± 1.28 - 3.71 ± 1.43 - 

1440 4.43 ± 1.14 - 4.66 ± 1.56 - 5.15 ± 1.94 - 

2880 5.2 ± 1.79 - 5.99 ± 2.41 - 7.28 ± 2.21 - 

4320 5.76 ± 1.9 - 7.22 ± 2.44 - 8.74 ± 3.15 - 

5760 6.29 ± 1.8 - 8.29 ± 2.78 - 9.63 ± 3.17 2.83 × 10
-30

 

10080 7.81 ± 2.38 0.76 × 10
-30

 9.5 ± 3.33 1.48 × 10
-30

 9.71 ± 3.19 - 
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5.5 Chemical composition of precipitates 

The chemical composition of precipitates in Mn-based maraging steels is under 

debate in the literature [18][44][135][217][218]. Apart from the commonly reported 

θ-NiMn precipitates in Fe- Mn-Ni maraging steels, Heo et al. [217] found a type of 

precipitate with the chemical composition agreeing with Ni2MnAl phase in an Fe-

8.3Mn-8.2Ni-4.2Al alloy. The investigation of the newly developed 9-12% Mn 

maraging steels with minor additions of Ni, Ti, Al and Mo, which are chemically 

similar to the materials in our study, reported the precipitates were enriched in Ni, Ti 

and Al [18][44]. It was initially speculated the precipitates might be 𝛾′-Ni3(Ti,Al) 

phase which is the most common precipitates in conventional 18Ni maraging steels. 

Later, APT analysis, revealed that the average chemical composition was close to 

Ni50(Al,Ti,Mn)50 [135]. However, a more recent study proposed the formation of 

NiMn or/and Ni2MnAl precipitates depending on the Al contents in these Mn 

maraging steels [219]. Moreover, in a ternary Fe-10Mn-1Pd biodegradable maraging 

steel, the addition of Pd was found to promote the formation of (Pd,Mn)-rich 

precipitates. All the evidence suggests that the chemical compositions of precipitates 

in Mn-based maraging steels are variable and, to a large extent, depend on the 

elemental concentrations of alloys. 

TEM-EDS analyses were conducted on thin foil samples and the representative 

spectra of both precipitates and matrix (7% Mn, 500 °C / 12960 min) are presented 

in Figure 5-6. The spectrum in Figure 5-6(b) indicates that the precipitate contained 

Ni, Ti and Al when compared to the surrounding matrix (Figure 5-6(c)). The major 

elements of the matrix, Fe and Mn, were also detected by the EDS analysis of 

precipitates (Figure 5-6(b)). Some researchers suggested that the Fe and Mn 

concentrations were due to the residual matrix above or below precipitates [85], but 

this viewpoint is doubtable as the Mn/Fe mass ratio in Figure 5-6(b) is much higher 

than that in Figure 5-6(c). 
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Figure 5-6 (a) Bright-field TEM image of 7% Mn alloy aged at 500 °C for 12960 min and 

TEM-EDS spectra of (b) precipitate and (c) matrix. 

 

In order to minimize the interference from the matrix, carbon extraction replicas 

were utilized for further compositional analyses. Representative STEM-EDS 

analysis was conducted on 12% Mn alloy aged at 500 °C for 2880 min along the 

horizontal line crossing a precipitate, as shown in Figure 5-7. The corresponding 

concentration profiles of Al, Ti, Mn, Fe and Ni are plotted below the STEM 

micrograph. 
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Figure 5-7 STEM micrograph of precipitates in 12% Mn alloy aged at 500 °C for 2880 min 

and EDS results of concentration profiles measured along the red line. 

 

As displayed in Figure 5-7, the STEM-EDS analysis on replica sample confirms that 

the precipitates mainly comprised Ni, Ti and Al with some segregation of Fe and Mn. 

The considerable Fe and Mn concentration detected demonstrates that the 

segregation of Fe and Mn in precipitates is not an artefact. The APT study conducted 

by Millán et al. [135] also confirmed the existence of Fe and Mn atoms in 

precipitates and 20 at.% Fe and 25 at.% Mn were detected by APT in the precipitates 
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in a 9% Mn alloy aged at 450 °C for 192 h. As mentioned in Section 2.2.3.1, similar 

phenomenon of matrix elements segregating to precipitates has been reported in 

several NiAl-strengthened steels  [32][40][60][78][81]. It is worth noting that in an 

Fe-Ni-Al-Ti-Cr alloy, two independent precipitates, NiAl and Ni3Ti, were formed 

after a splitting of the precursor clusters. NiAl precipitates were found to contain a 

significant amount of Fe while Ni3Ti precipitates were Fe-free [32]. It is generally 

believed that NiAl precipitates which are formed out of the solute-rich clusters have 

a high solubility of Fe, thus the Fe atoms in precursor clusters tend to be retained in 

NiAl precipitates rather than in Ni3Ti precipitates [38][82]. Therefore, the presence 

of Fe atoms in the precipitates of Mn-based maraging steels in this study implies that 

the precipitate is more likely to be NiAl phase or similar phases with high Fe 

solubility, rather than the Ni3Ti phase in the conventional maraging steels. On the 

other hand, another possibility proposes that the existing of Fe and Mn in 

precipitates is associated with the lateral diffusion of Fe and Mn atoms from the 

matrix during aging [135]. Therefore, further investigation is needed to determine 

which viewpoint is more reliable. 

In order to quantify the elemental constituents of precipitates, standardless 

quantitative analysis on at least 10 precipitates within each sample was undertaken 

and the results are summarized in Table 5–2. As discussed in Section 3.3.4.2, 

standardless quantitative analysis cannot provide accurate quantitative results, but 

given that the precipitate forming elements in this study are not trace and their 

atomic numbers are not small, the standardless quantitative results should be 

acceptable.  

The data in Table 5–2 did not reveal significant variation in the chemical 

composition of precipitate among the three alloys. This suggests that the precipitates 

are quite chemically stable within the aging time up to 10080 min. The 7% Mn alloy 

is chosen to study the Fe evolution in precipitate in order to eliminate the 

interference from austenite reversion. In the 500 °C / 480 min state, 15.8 at.% Fe is 

detected in the precipitate followed by a decrease to 9.8 at.% Fe after aging for 2880 

min. Further aging to 10080 min did not further change the Fe concentration which 

suggests that the Fe in precipitates had reached its equilibrium concentration after 

prolonged aging. Owing to the limitation of the TEM-EDS technique, compositional 
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analysis was not carried out on the precipitates in the very beginning of aging 

process. But Millán et al. [135], who employed APT to measure the chemical 

composition of precipitates in a 9% Mn maraging steel, reported the precipitates with 

an average composition of 35 at.% Ni, 11 at.% Mn, 2 at.% Al, 2 at.% Ti, and 50 at.% 

Fe after aging for 0.5 hours. The evolution of Fe concentration in precipitates 

confirms our speculation that the Fe atoms in the precipitate are retained from the 

precursor clusters rather than via the diffusion from the Fe matrix during aging. 

Owing to the partitioning of Fe and Mn, the precipitates have a non-stoichiometric 

composition which can be described as Ni2TiAl or Ni(Ti,Al) phase. This deviation 

from the stoichiometric composition due to the element substitution is proposed to 

increase the local disordering and dislocation climb or cutting, thereby enhancing the 

ductility of phases [103]. 

It is important to emphasize that in Raabe et al.’s APT study [135], the Al and Ti 

concentrations of precipitates were relatively low and these low levels maintained up 

to aging for 196 h which was contradictory to the present results. On the other hand, 

as the Ni and Mn concentrations in their study increased moderately with the aging 

time, the composition of the precipitates in their work was Ni44Fe20Mn24Al6Ti4 

which, in their opinion, was more close to Ni50(Mn,Al,Ti)50. 
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Table 5–2 Average chemical composition in at.% of the nano-sized precipitates evolved at 500 °C measured by TEM-EDS. 

  Al-K Ti-K Mn-K Fe-K Ni-K 

7% Mn 480 min 30.2 ± 1.4 17.4 ± 1.0 4.3 ± 0.6 15.8± 0.6 32.4 ± 0.8 

2880 min 33.1 ± 1.2 17.2 ± 1.3 5.6 ± 0.5 9.8 ± 0.6 34.3 ± 0.9 

10080 min 33.4 ± 0.4 14.9 ± 0.5 7.1 ± 0.5 9.8 ± 0.3 35.0 ± 0.3 

10% Mn 480 min 30.4 ±0.5 15.6 ± 0.8 6.5 ± 0.6 14.7 ± 0.4 32.8 ± 0.8 

2880 min 33.0 ± 0.7 17.7 ± 0.6 5.4 ± 0.5 12.2 ± 0.4 31.8 ± 0.7 

10080 min 33.5 ± 0.7 18.1 ± 0.9 4.7 ± 0.5 13.4 ± 1.3 30.3 ± 1.5 

12% Mn 480 min 30.2 ± 0.9 15.6± 1.1 6.7 ± 0.4 15.1 ± 0.9 32.5± 1.1 

2880 min 32.9 ± 0.2 16.8 ± 0.5 5.7 ± 0.4 12.2 ± 0.3 32.5 ± 0.5 

10080 min 33.4 ± 0.8 17.3 ± 1.1 5.4 ± 0.9 12.7 ± 1.0 31.2 ± 1.3 
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5.6 Crystal structure of precipitates 

5.6.1 Determination of crystal structure  

According to the compositional study, the intermetallic precipitates in Mn-based 

maraging steels may be Ni2TiAl or Ni(Al,Ti). XRD analyses of the aged samples 

(see Section 4.3) did not reveal any diffraction signal of the precipitates even when 

the microstructural observation clearly showed a significant amount of precipitates, 

which further suggests that the precipitates are highly likely to be B2-Ni(Al, Ti) or 

L21-Ni2TiAl phase as most of their diffraction peaks overlap with the peaks of 𝛼 ,-

martensite matrix. Since the crystallographic constitution of the phase determines its 

electron diffraction behaviour which plays an important role in the precipitate 

characterization, the crystallographic details of B2-NiAl and L21-Ni2TiAl are 

discussed. 

 B2-ordered NiAl 

Figure 5-8 displays the crystal structure of B2-NiAl phase and its simulated electron 

diffraction patterns along low-index zone axis directions. The B2 phase has a CsCl-

type crystal structure. It is constituted by two primitive cubic lattices which are 

stacked alternatively along the vector 1/2<111> [17]. This structure can also be 

described as a body-centred cubic (bcc) lattice of Ni with the centre positions being 

replaced by Al atoms. The lattice parameter of the stoichiometric composition is 

0.2887 nm which is very close to that of 𝛼 ,-martensite (0.2884 nm) (see Appendix). 
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Figure 5-8 Crystal structure of the B2-ordered NiAl phase and simulated electron diffraction 

patterns along low-index zone axis directions simulated using ICDD PDF-4+ software. 

 

 L21-ordered Ni2TiAl 

The L21 structure simply involves a further ordering of the Al and Ti atoms on the 

Al sublattice in B2 structure. The structure can be regarded as possessing three sets 

of sublattice (Figure 5-9(a)), among which two interpenetrating face centred cubic 

lattices are occupied by Al and Ti atoms respectively and a primitive cubic lattice of 

Ni atoms is shifted by the vector 1/4<111>. Figure 5-10(a) is an equivalent way to 

illuminate the L21 structure but easier to understand. The unit cell is built up by eight 

small bcc lattices. The corners of each small cubic lattice are occupied by Ni atoms 

with the centre positions being orderly occupied by Al and Ti atoms. Thus, two 

different types of B2 structure are arranged successively in each direction. The 

lattice parameter of the small body centred cubic lattice (0.295 nm) is half that of the 



Chapter 5 Characterization of L21-ordered Ni2TiAl intermetallic phase and its 

precipitation behaviour 

106 

 

entire unit cell and is close to that of B2-NiAl phase (0.2887 nm). When the centre 

positions are fully occupied by one type of atom, for example Al, the phase is 

transformed to B2-ordered NiAl phase; when the Al and Ti atoms are randomly 

arranged, the phase is degraded to B2-ordered Ni(Al,Ti) phase. 

 

Figure 5-9 Crystal structure of the L21-ordered Ni2TiAl phase and its simulated electron 

diffraction patterns along low-index zone axis directions simulated using ICDD PDF-4+ 

software. 

 

The phase with the fully ordered L21 structure is named as Heusler phase. The 

Heusler phases become strongly ferromagnetic after quenching from 800 °C [220]. 

The structure is body centred cubic but with a face centred superlattice, as illustrated 

in the electron diffraction patterns (Figure 5-9(b), (c) and (d)). Comparing their 

standard electron diffraction pattern, it is found that the B2 and L21 structures have 
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similar diffraction patterns along the [001] and [1̅11] zone axes. In the [001] zone 

axis, the {220} and {002} reflections of L21-ordered Ni2TiAl coincide with the {110} 

and {001} reflections of B2-ordered NiAl, respectively (Figure 5-8(b) and Figure 

5-9(b)). In the [ 1̅11 ] zone axis, the {220} reflections of L21-ordered Ni2TiAl 

coincide with the {110} reflections of B2-ordered NiAl (Figure 5-8(d) and Figure 

5-9(d)). Although the theoretical intensity difference exists between the two phases, 

it is difficult to distinguish it under the real beam condition. The characteristic 

reflections to distinguish the two phases are only visible along the [011] zone axis. 

Figure 5-10 presents the electron diffraction patterns of both L21-ordered Ni2TiAl 

and B2-ordered NiAl along the [011] zone axis for a better comparison. The {222} 

and {002} reflections of L21-ordered Ni2TiAl coincide with the {111} and {001} 

reflections of B2-ordered NiAl, whereas the {111} and {311} reflections exclusively 

exist in the L21-ordered Ni2TiAl phase. Therefore, the {111} and {311} reflections 

along the [011] zone axis are considered as the characteristic diffraction spots for 

L21 structure. 
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Figure 5-10 (a) Eight unit cells of the B2-ordered NiAl for a better comparison with (b) the 

unit cell of L21-ordered Ni2TiAl; diffraction patterns along the [011] zone axis of (c) B2-

ordered NiAl and (d) L21-Ni2TiAl simulated using ICDD PDF-4+ software. 

 

A HREM study was carried out to identify the crystal structure of the precipitates. 

Figure 5-11 shows the HREM micrographs of precipitate along the [011] and [1̅11] 

zone axes, respectively. To better clarify the crystalline structure of the precipitate, 

fast Fourier transform (FFT) analysis is displayed as inset. The characteristic {111} 

reflections along the [011] zone axis of L21-ordered Ni2TiAl phase are indexed (see 

inset). Figure 5-11(b) and (d) reveal the inverse fast Fourier transform (IFFT) image 

by removing the background noise. The atomic arrangement is coincident with that 
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of Ni2TiAl; the indexed d-spacing of 0.3335 nm for the {111} planes and 0.206 nm 

for the {220} planes are very close to the standard d-spacing of Ni2TiAl phase 

(0.3377 nm for {111} plane and 0.2068 nm for {220} plane) given by the ICCD 

database. The slight deviation may be associated with either the non-stoichiometric 

composition or the error from the measurement and/or equipment. 

 

Figure 5-11 HREM micrographs of precipitates in 12% Mn alloy aged at 500 °C for 10080 

min, (a) [011] zone axis; (b) IFFT of (a); (c) [1̅11] zone axis; (d) IFFT of (c). 

 

More information about the crystal structure is obtained by SAED analyses (Figure 

5-12). The {111} and {311} reflections along the [011] zone axis, which are unique 

to the L21 structure, are displayed in the inset of Figure 5-12(b). The presence of 

L21-ordered Ni2TiAl phase in the dark-field images (white spherical phase in Figure 
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5-12(b)), which was acquired by using the (111̅) superlattice spots, further confirms 

the precipitate is, or at least consists of, L21-ordered Ni2TiAl phase.  

 

Figure 5-12 (a) Bright-field TEM micrograph of 7% Mn alloy aged at 500 °C for 10080 min 

along [011] zone axis and (b) corresponding dark-field micrograph using the [111̅] 

superlattice spots of precipitates (inset is the corresponding diffraction pattern). 

 

5.6.2 The orientation relationship between the precipitate and 

martensite matrix 

Representative selected area diffraction patterns (SADPs) along low-index zone axis 

directions (10% Mn alloy, 500 °C / 10080 min state) are shown in Figure 5-13.  

 

Figure 5-13 Selected area diffraction patterns taken on thin foil samples (500 °C / 10080 min, 

10% Mn alloy) along (a) [001], (b) [011] and (c) [1̅11] zone axes. 
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The coherency between precipitates and martensite matrix was investigated. The 

SADPs reveal that the orientation of L21-ordered Ni2TiAl precipitate is exactly 

coincident with that of the 𝛼 ,-martensite matrix (Figure 5-13). In both the [001] and 

[011] zone axes (Figure 5-13(a) and (b)), the {040} and {220} reflections of L21-

Ni2TiAl phase are overlapping with the {020} and {110} reflections of the bcc 

matrix, respectively; in the [ 1̅11 ] zone axis, the diffraction pattern of Ni2TiAl 

exactly matches that of the matrix, so no extra spots originating from the precipitate 

were observed (Figure 5-13(c)). 

The lattice parameter of L21-ordered Ni2TiAl phase was determined according to the 

SADPs. The camera length was calibrated using the lattice parameter of 𝛼 , -

martensite matrix obtained from the XRD analysis. Based on this calibration, the 

lattice parameter of the L21-ordered Ni2TiAl phase was calculated as 0.5819 nm. 

Half of the lattice parameter of L21-ordered Ni2TiAl, which is the dimension of the 

small cubic lattice in Figure 5-10(b), is close to the lattice parameter of 𝛼 ,-martensite 

matrix. The misfit between them is calculated as 

 

δ =
2 × |

1
2 aNi2TiAl  − abcc|

1
2 aNi2TiAl + abcc

× 100% = 1.24% (5.3) 

where aNi2TiAl is the lattice parameter of Ni2TiAl and abcc is the lattice parameter of 

the martensitic matrix measured by XRD. Owing to the small misfit of the lattice 

parameters and the special orientation relationship between the two phases, it is 

proposed that the L21-ordered Ni2TiAl precipitate is coherent and coplanar with the 

martensite matrix. Figure 5-14 presents the nano-scale precipitates were uniformly 

dispersed in martensite matrix in both the 7% Mn and 10% Mn alloys aged at 500°C 

for 10080 min. The dumbbell-shaped precipitates reveal that they remain coherent 

with the matrix even after aging at 500 °C for 10080 min, according to Ashby-

Brown contrast theory [221]. 
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Figure 5-14 Two-beam bright field micrographs of (a) 7% Mn and (b) 10% Mn alloys after 

aging at 500 °C for 10080 min. 

 

5.7 Core/shell precipitates 

Figure 5-15 shows the representative bright-field TEM micrographs (left column) of 

precipitates formed when aging at 500 °C for 10080 min in 7% Mn alloy (Figure 

5-15(a)), 10% Mn alloy (Figure 5-15(b)) and 12% Mn alloy (Figure 5-15(c)), 

respectively. Corresponding high-magnification TEM micrographs obtained from 

carbon extraction replicas are correspondingly displayed in the right column. As 

shown in Figure 5-15, precipitates with a well-developed core/shell structure can be 

distinguished by the darker central region surrounded by a periphery with brighter 

contrast. For the 7% Mn alloy aged at 500 °C for 10080 min (Figure 5-15(a)), the 

average size of precipitates ranges from less than 10 nm to ~20 nm with shells being 

2-3 nm thick. Similar microstructure is found in the 10% Mn alloy aged at 500 °C 

for 10080 min (Figure 5-15(b)). The thickness of the shell is approximately constant 

at 2-3 nm despite the sizes of precipitates varying from 12 nm to 24 nm, which 

indicates that the thickness of the shell did not increase with the growth of the core.  
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Figure 5-15 Left column: representative bright-field TEM micrographs. Right column: 

magnified carbon extraction replica TEM micrographs of precipitates. (a) 7% Mn alloy, 

500 °C / 10080 min; (b) 10% Mn alloy, 500 °C / 10080 min and (c) 12% Mn alloy, 500 °C / 

2880 min. 
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As shown in the HAADF micrograph (Figure 5-16), the contrast variation within 

each precipitate is evident. HAADF image was taken under conditions excluding any 

diffraction effect, and the image contrast under HAADF mode is Z contrast which 

depends on the mass and thickness. For the thickness contrast, the following 

equation describes the relationship between the beam intensity detected by camera, 

𝐼′, and the thickness of the object, 𝑡 [222]: 

 𝐼′ = 𝐼0(1 − exp(−𝜇𝑡)) (5.4) 

where 𝐼0 is the beam intensity before it enters the object and 𝜇 is the attenuation 

coefficient. If the object is spherical like the precipitate in this study, the beam 

intensity detected 𝐼′ should be continuous along the diameter. The mass contrast, on 

the other hand, is demonstrated to be roughly proportional to the square of atomic 

number [223]. Therefore, the sharp contrast at the periphery should be correlated to 

the mass contrast.  

 

Figure 5-16 HAADF image of core/shell precipitates in 12% Mn alloy aged at 500 °C for 

2880 min. 

 

HREM micrographs of precipitates on carbon extraction replicas were acquired to 

study the core/shell structure. Precipitates with evident core/shell structure can be 

observed in Figure 5-17(a). Although the interface is visible between the core and 

shell, the shell is found coherent and coplanar with the core (Figure 5-17(b)). A 
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magnified HREM micrograph at the periphery of precipitate (Figure 5-17(c)) 

suggests that the precipitate is one single crystal. The lattice structure is uniform 

despite a slight distortion at the smearing core/shell interface. 

 

Figure 5-17 HREM micrographs of the precipitate in 12% Mn alloy aged at 500 °C for 

10080 min. (a) The low-magnification images of precipitates, (b) core/shell structure at a 

higher magnification and (c) lattice information at the periphery of precipitate. 

 

The discussion on the non-stoichiometric composition of precipitates (especially the 

high Al concentration) in Section 5.5 implies the precipitates may be constituted by 

more than one phase. The existence of the core/shell structure in precipitates is 

another evidence for this speculation. It is proposed that the precipitate may possess 

a NiAl/Ni2TiAl structure. As discussed in Section 5.6.1, these two phases have very 

similar crystal structure, so they can be regarded as one single crystal. As the 

spherical phase in the dark-field micrograph in Figure 5-12 was acquired by using 
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the characteristic (111̅) superlattice spot of L21 structure, and the brighter core in 

HAADF micrograph (Figure 5-7) corresponds to a Ti-rich area of the precipitate as 

Ti has a higher atomic number than Al (
22

Ti vs. 
13

Al), we further propose that the 

core should be L21-Ni2TiAl phase and the shell should be B2-NiAl. A further 

investigation is required to examine the core/shell structure within precipitate. 

5.8 Discussion 

5.8.1 The effects of volume fractions on the coarsening 

behaviour 

 Precipitate size distribution (PSD) 

PSDs provide us a pathway to estimate the goodness of fit of the LSW theory to the 

precipitate coarsening. As discussed in Section 2.3.3, LSW model is strictly valid 

under the assumption that the volume fraction of precipitates (𝑓𝑝) is approaching 

zero and time-invariant. Modern theoretical and simulation studies, however, 

revealed a discrepancy between the LSW theory and experiment due to 𝑓𝑝 ≠ 0 in 

reality [224][225]. According to the modified LSW theories, the PSDs are predicted 

to broaden rapidly when 𝑓𝑝 is low and approach the distribution model for interface-

dominated coarsening when the limit 𝑓𝑝 → 1 [224]. The TK model (Tokuyama and 

Kawasaki, [226]) includes a correction for 𝑓𝑝  leading to the broadening in PSD 

function and decrease in the peak height compared to those of LSW model (see 

Figure 5-18). The results of TK model are in good agreement with LSW theory in 

the limit 𝑓𝑝 → 0 [136]. 
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Figure 5-18 The precipitate size distribution as a function of reduced precipitate radius 𝑅/�̅� 

for different volume fractions of precipitate 𝑓𝑝 [226]. 

 

The PSDs of the three alloys in different aging conditions were constructed to 

demonstrate the evolution of PSDs with aging time. As shown in Figure 5-3, the 

experimental PSD in the 500 °C / 480 min state follows the LSW theory which 

indicates that 𝑓𝑝 can be roughly regarded as zero. After that the width of PSDs grew 

significantly (500 °C / 2880 min and 500 °C / 10080 min state) and the PSDs were 

more consistent with the TK model.  

Apart from the volume fraction of precipitates, other attempts were also made to 

relate this discrepancy to the misfit of lattice parameter [224][227][228]. In this 

study, as the misfit of lattice parameters between phases has been demonstrated to be 

small, the broadening of the PSDs is not likely to be associated with the lattice misfit. 

 Precipitate coarsening 

Precipitate coarsening is controlled by either interface reaction or lattice diffusion, or 

sometimes by the combination of both. Generally the interface-dominated coarsening 

occurs at small size while the diffusion-dominated coarsening occurs at larger size. 

A combination of the two mechanisms takes effect at the transition stage. 

Experimental results in Section 5.4.2 reveal that at the early aging stage at 500 °C, 

the precipitates exhibited an interface-dominated growth (coarsening) kinetics 
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followed by a decrease in the growth rate indicating the initiation of the diffusion-

dominated coarsening kinetics (Figure 5-4). The coarsening evolution of precipitate 

size obeys the diffusion-controlled coarsening kinetics predicted by LSW theory 

(Figure 5-5). In contrast to the significant broadening of PSDs with the increase of 𝑓𝑝, 

experimental observation revealed that the dependence of coarsening rate constant 

on 𝑓𝑝 was small and the diffusion-controlled coarsening kinetic form �̅�3~𝐾𝑡 can be 

maintained even when 𝑓𝑝 was high. 

Many efforts have been made to investigate the effects of precipitated volume 

fraction on the coarsening kinetics and the shape of PSDs. Based on these studies, 

modified LSW theories, in which the precipitated volume fraction is taken into 

consideration, are established for the realistic case. All the modified theories agree 

that the non-zero volume fraction does not change the exponents of the temporal 

laws given by LSW (Equation (2.4), (2.5) and (2.6)) or the time-irrelevance of PSDs, 

but does change the amplitudes of the temporal power laws and the shapes of PSDs 

[136][137][138][139]. The presence of non-zero volume fraction, which leads to the 

interparticle diffusional interactions, can affect the coarsening of precipitates in two 

ways: (a) Different from the LSW theory claiming that the coarsening rate of a 

precipitate is solely a function of the precipitate size, the coarsening rate in the 

modified theories takes the surrounding precipitates into consideration. The 

precipitate will coarsen when surrounded by precipitates smaller than it and shrink 

when the surrounding precipitates are larger. (b) In the case where LSW theory is 

applied, the spatial distribution is considered as random. While in modified theory 

where the diffusional interaction is included, it is unlikely to find a small and large 

precipitate almost touching, as the small precipitate tends to shrink when it is close 

to a larger precipitate. Thus, the average interparticle separation is larger than that in 

a system with a random spatial distribution. Nevertheless, large precipitates prefer to 

locate near small precipitates as the small ones can feed solute for their coarsening. 

Therefore, both precipitate size and spatial distribution have to be considered when 

discussing the effect of volume fraction on the coarsening behaviours.  

According to the modified theories, the coarsening rate constants 𝐾𝑅 increase with 

the volume fraction 𝑓𝑝 , and the time-invariant PSDs become broader and more 
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symmetric as the precipitated volume fraction increases. However, Brailsford and 

Wynblatt [136] suggested that the coarsening rate constants are much less sensitive 

to the volume fraction and thus are more compatible with experimental observation. 

For the evolution of PSDs, the situation is complicated. One possible reason for the 

broadening is that the continuous nucleation during the precipitation provides an 

increase in the population of fine precipitates. Secondly, the coarsening of large 

precipitates at the expense of fine ones results in the increase of the number of large 

precipitates.  

In terms of this work, experimental observations on the coarsening behaviour of 

precipitates in Mn-based maraging steels revealed that the evolution of PSDs with 

the increasing volume fraction coincides with the prediction by modified LSW 

theories, which indicates the effect of precipitate volume fraction cannot be ignored. 

In the case of coarsening kinetics, the experimental evidence reveal that at the early 

aging stage (Figure 5-4), precipitates exhibited an interface-dominated growth 

followed by a decrease in the growth rate indicating the initiation of the diffusion-

dominated coarsening. The coarsening rate constant 𝐾𝑅  obeys the diffusion-

controlled coarsening kinetics predicted by LSW theory (Figure 5-5). It is also 

revealed that the Mn content of the alloy, which is not the main precipitate forming 

element, has a significant effect on the growth and coarsening kinetics of precipitates. 

This will be discussed in detail in Section 5.8.3. 

5.8.2 The formation mechanism of core/shell structure 

The most well-known precipitate with core/shell structure is, Al3(Sc,Zr) precipitates 

in Al-Zr-Sc alloys which have been widely investigated based on both experimental 

analyses and complementary first-principle calculations [229]. Elagin et al. first 

claimed that Zr could substitute the Sc atoms in Al3Sc precipitates in an Al-0.24Sc-

0.04Zr alloy [230]. Later, HREM studies [229][231][232] revealed that Zr was 

detected at the α-Al/Al3(Sc1-xZrx) interfaces. Then APT analyses further quantified 

an 8-10 at.% Zr concentration at the interface [233]. It is suggested that Zr acts as a 

barrier to the diffusion of Sc, and contributes to lowering the coarsening rate of 
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precipitates [234]. These experimental observations agree with the prediction by the 

thermodynamic calculation and model simulations [235]. 

Another well-known group is Cu-bearing precipitation-strengthening Fe alloys. In 

Fe-Cr-Ni-Al-Cu alloys [38][39], the decomposition of the Ni+Al+Cu clusters leads 

to a core/shell precipitates with Cu-rich core surrounded by a NiAl shell. The 

thermally stable NiAl shells hinder the diffusion growth of Cu core and more 

importantly, reduce the misfit between the fcc Cu-rich core and bcc matrix. While in 

the conventional maraging steels strengthened by Ni3Ti precipitates, the formation 

mechanism of core/shell structure is explained as: since the solubility of Cu in Ni3Ti 

phase is low, the Cu-rich clusters usually act as nucleation sites for Ni3Ti precipitates 

and thus a unique core/shell precipitate with Cu embedded in Ni3Ti phase can be 

found in these maraging steels. Detailed discussion about the core/shell structure in 

Cu-containing Fe alloys has been given in Section 2.2.3.5. 

Both thermodynamic and kinetic factors were studied in order to understand the 

formation of the core/shell structure in precipitates. Table 5–3 presents the diffusion 

rates of the constituent elements in bcc-Fe at 500 °C. Al possesses the highest 

diffusion rate followed by Ti and Mn which have the same order of magnitude. Ni, 

together with Fe itself, has the slowest diffusion rates in bcc-Fe at 500 °C. Except 

that Al has the highest diffusion rate which is about five or six orders of magnitude 

faster than other elements, the difference of the diffusion rates among Ti, Mn, Ni and 

Fe are not large. The APT analyses on a 9% Mn maraging steel reported that at the 

very early stage of precipitation (0.5 h at 450 °C), 50 at.% Fe, 35 at.% Ni, 11 at.% 

Mn, 2 at.% Al and 2 at.% Ti were detected [135]. It is obvious that Ni, which 

possesses the slowest diffusion rate at 450 °C, had a relatively high concentration in 

precipitates than other elements (expect the matrix element Fe); while Al and Ti 

which possess the fastest diffusion rates, had very low concentrations, thus it is 

unlikely that the precipitate heterogeneity is associated with the kinetic effect.  
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Table 5–3 The diffusion rates of the constituent elements in bcc-Fe at 500 °C 

Element Diffusion rate (cm
2
s

-1
) Equation References 

Al 6.05 × 10−11 58600 𝑒𝑥𝑝 (−53000/𝑅𝑇) [236] 

Ti 7.97 × 10−16 20.01 𝑒𝑥𝑝 (−58000/𝑅𝑇) [237] 

Mn 5.01 × 10−16 0.35 𝑒𝑥𝑝 (−52500/𝑅𝑇) [238] 

Ni 3.54 × 10−17 1.4 𝑒𝑥𝑝 (−58700/𝑅𝑇) [195] 

Fe 2.17 × 10−17 2.0 𝑒𝑥𝑝 (−60000/𝑅𝑇) [239] 

 

It is generally accepted that the precipitation process is governed by complex 

thermodynamic driving force [109]. The mixing enthalpy of elements, ∆𝐻𝑚𝑖𝑥, are 

displayed in Table 5–4 to discuss the precipitate stability in Mn-based maraging 

steels [240]. The three largest negative mixing enthalpy belong to Al-Ti, Ni-Ti and 

Al-Ni, which means there is a high tendency that these three elements will segregate 

and form a second phase. This conclusion agrees with the experimental results that 

Ni2TiAl is the dominant precipitates in Mn-based maraging steels. In addition, no 

positive mixing enthalpy in Table 5–4 suggests the other two elements, Fe and Mn, 

may also partition to the precipitates, especially considering that both of them have 

high concentrations in the matrix. In view of the negative mixing enthalpy between 

elements, the precipitates are not likely to decompose during aging. Therefore, 

additional factors, such as interfacial energy are taken into consideration. The lattice 

parameter of B2-NiAl phase (a = 0.2887 nm) is larger than that of bcc-Fe (a = 

0.2884 nm) but smaller than that of 1/8 Ni2TiAl lattice (a = 0.2925 nm). Therefore, 

the formation of NiAl at the interface is believed to contribute to the further 

reduction of the lattice misfit between Ni2TiAl and bcc-Fe matrix. Previous studies 

have reported the similar formation of B2 phase from the parent L21 phase in a Ni-

Ti-Al alloy [86]. Besides, a two phase L21-Ni2TiAl/B2-NiAl precipitates formed by 

spinodal decomposition: 𝐿21 → 𝐿21 + 𝐵2 were also observed in a ferritic alloy [85]. 
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It is proposed that the L21-Ni2TiAl/B2-NiAl precipitate is a more thermodynamically 

stable structure in the Mn-based maraging steels. 

Table 5–4 The mixing enthalpy of elements in the Mn-based maraging steels [240]. 

∆𝐻𝑚𝑖𝑥(𝑘𝐽𝑚𝑜𝑙−1) Al Ti Mn Fe Ni 

Al - -30 -19 -11 -22 

Ti - - -8 -17 -35 

Mn - - - 0 -8 

Fe - - - - -2 

Ni - - - - - 

 

5.8.3 The effect of Mn on the precipitation 

The microstructural observation revealed that the nucleation of Ni2TiAl was 

promoted by the Mn content of the alloy. As shown in Figure 5-1, a higher number 

density of precipitates was observed in the 12% Mn alloy compared to the 7% Mn 

alloy for the same aging conditions. Osamura et al. [241] found that Ni and Mn 

additions promoted the precipitation reaction in a Fe-Cu alloy. Jiao et al. [106] also 

reported that the additions of Ni and Mn in Fe-Cu alloy were beneficial to increasing 

the number density of precipitates. Complementary Langer-Schwartz simulation and 

first-principles calculation further demonstrated that Ni had a more significant effect 

than Mn on decreasing the critical energy for nucleation [242][243].  

According to the classical nucleation theory [244], the nucleation of Ni2TiAl 

precipitates can be described by: 

 𝑑𝑁

𝑑𝑡
∝ (

−𝜎𝑛

𝑘𝑇
) (5.5) 

where 𝜎𝑛 is the critical energy for nucleation, 𝑘 is the Boltzmann’s constant and 𝑇 is 

the temperature in kelvin. The critical energy for nucleation is expressed as: 
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𝜎𝑛 =

16𝜋𝜎𝛼/𝛽
3

3(𝜎𝑉 + 𝜎𝑒𝑙)2
 (5.6) 

where 𝜎𝛼/𝛽 is the interfacial free energy per unit area between the precipitate and 

matrix, ∆𝐺𝑉 is the chemical driving force of precipitates per unit volume and 𝜎𝑒𝑙 is 

the elastic strain energy. Therefore, the effect of Mn content on reducing 𝜎𝑛 can be 

discussed in two aspects: the elastic strain energy for nucleation and the 

precipitate/matrix interfacial energy. APT analyses on the early precipitation stage 

illustrated that the precipitates in a 9% Mn-based maraging steel contained a 

considerable Mn content (11 at.% Mn at 450 °C / 0.5 h) [135], which indicates that 

Mn was involved in the nucleation of precipitates. The study by Zhang et al. revealed 

that Mn has the capability of reducing the misfit strain energy at interface, namely, 

when Mn atoms enter the nuclei, the lattice parameter of the nuclei can be decreased 

and the strain energy barrier for nucleation is also decreased [242]. On the other 

hand, as the diffusivity of the constituent elements in Table 5–3 implies, Mn has a 

relatively fast diffusion rate. Moreover, the high mixing enthalpy of Fe/Mn (Table 5–

4), indicates that Mn tends to segregate from the Fe matrix. Based on these two 

reasons, it is highly possible that these Mn-rich clusters acts as nucleation sites for 

further precipitation, and thus the number density of precipitate and its growth rate 

was largely dependent on the Mn content. 

5.9 Summary 

1. Conventional TEM-EDS and STEM-EDS analyses demonstrate that the 

nano-scale precipitates in Mn-based maraging steels is a non-stoichiometric 

Ni2TiAl phase with a small amount of Fe and Mn substitution. This non-

stoichiometric composition is believed to enhance the ductility of the phase 

[103]. 

2. HREM combined with SAED study identifies the crystal structure of the 

precipitate. The L21-ordered Ni2TiAl phase is expected to have a better creep 

resistance than B2-NiAl phase [91]. The orientation relationship between the 

L21-ordered Ni2TiAl phase and bcc martensite matrix is found to be 

(220)𝐿21
ǁ(110)𝑏𝑐𝑐 , [001]𝐿21

ǁ[001]𝑏𝑐𝑐 ; (220)𝐿21
ǁ(110)𝑏𝑐𝑐 , 
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[011]𝐿21
ǁ[011]𝑏𝑐𝑐 ; (220)𝐿21

ǁ(110)𝑏𝑐𝑐 , [1̅11]𝐿21
ǁ[1̅11]𝑏𝑐𝑐 . One eighth of 

the crystal structure of L21-Ni2TiAl phase is a bcc cubic lattice which has a 

similar lattice parameter with the bcc matrix. The lattice misfit between them 

is calculated as 1.24%. This small lattice misfit together with the special 

orientation relationship illustrates that the L21-ordered Ni2TiAl precipitates is 

not only coherent but also coplanar with the matrix. The dumbbell-shaped 

precipitates in the 10080 min aged sample demonstrate that the precipitates 

maintained the coherency with the matrix even after long-term aging 

treatment (Figure 5-14). 

3. The shell of the precipitates in Mn-based maraging steels is found to have a 

strong resistance to coarsening and maintain a thickness of 2-3 nm regardless 

of the growth of core during aging. The presence of core/shell structure 

indicates the heterogeneity in precipitates. A sharp step of contrast at the 

periphery under HAADF observation (Figure 5-16) excludes the possibility 

of thickness contrast (assuming the precipitates are spherical) and thus 

confirms the sharp contrast corresponds to the mass difference. HREM 

analyses at the periphery suggest that the lattice structure of the shell is 

uniform with that of the core despite a slight distortion at interface. Along 

with the evidence of HAADF and dark-field micrograph, it is proposed that 

the core is Ni2TiAl and the shell is NiAl. It is believed that the L21-

Ni2TiAl/B2-NiAl structure can further decrease the lattice misfit between the 

precipitate and bcc-Fe matrix.  

4. Owing to the non-zero volume fraction in reality, a broadening of the 

experimental PSDs than the theoretical PSD function is evident, especially at 

the longest aging time when the volume fraction of precipitates cannot be 

ignored. However, the discrepancy is not that obvious in the coarsening rate 

as the coarsening rate constants (𝐾𝑅) are much less sensitive to the volume 

fraction compared to the PSDs [136]. Experimental results reveal that 

coarsening rate constants of precipitates in the three alloys follow the 

diffusion-controlled coarsening kinetic form �̅�3~𝐾𝑡  predicted by LSW 

theory.
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5. Microstructural observation reveals a higher number density and larger size 

of precipitates in 12% Mn alloy compared to 7% and 10% Mn alloys for the 

same aging condition. Both thermodynamic and kinetic analyses suggest that 

Mn atoms participated in the nucleation of precipitates and reduced the misfit 

strain energy at the interface [106]. Therefore, higher Mn content is believed 

to promote the nucleation and thus the growth and coarsening of precipitates. 

The faster coarsening rate as well as the higher volume fraction of precipitate 

in 12% Mn alloy is correlated to the large number of nucleation sites due to 

Mn segregation. 
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Chapter 6 The formation mechanism of reverted 

austenite and its mechanical stability 

6.1 Introduction 

As most Fe-Mn-(Ni) maraging alloys exhibit a poor ductility due to the Mn 

segregation at grain boundaries, many studies have been carried out to improve their 

ductility and some of them proposed that the ductility can be improved by generating 

reverted austenite via aging at higher temperatures or for longer times.  

In terms of the Mn TRIP steels, in the 1960s Goldshtein et al. [12] first reported an 

excellent toughness in an 8% Mn steel with a considerable amount of austenite. Later 

Miller found that, by intercritical annealing, 20-40% austenite was obtained in 0.1-5 

wt.% Mn steels with excellent stability [24]. Based on Miller’s work, Luo et al. 

modified the composition of 5 wt.% Mn steels and 30% austenite was formed in the 

new alloy, and thereby, the tensile strength was improved to 1-1.5 GPa and total 

elongation to 31-44% [27]. 

In this study, the approach to form Mn-rich austenite is different from the above 

intercritical annealing process in Mn TIRP steels. The austenite reversion in Mn-

based maraging steels took place simultaneously with precipitation when aging at 

relatively high temperature. The difference in the heat treatment process led to the 

microstructure and mechanical properties of reverted austenite being different from 

those of retained austenite. It is worth emphasising that as the austenite reversion 

occurred simultaneously with the precipitation, with Mn atoms involved in both 

processes, and therefore there might expect to be a competition in the role of Mn. 

As discussed in Section 2.4.1, both the amount and stability of austenite are of great 

importance for the mechanical properties of steels containing austenite, based on 

which the optimization of microstructure/properties can be feasible. Therefore, the 

major aim of this chapter is to characterizing the austenite phase in different aging 

conditions and investigating its formation mechanisms. The influence of the quantity 
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of reverted austenite on the mechanical properties will be discussed in the next 

chapter. 

6.2 SEM observation 

6.2.1 The effect of aging parameters on austenite reversion 

The typical microstructure of reverted austenite in 𝛼 ,-martensite matrix along with 

uniformly distributed precipitates has been given in Figure 4-7. In this section, the 

representative 12% Mn alloy was studied to explore the effects of aging 

temperatures/times on austenite reversion.  

Aging at 420 °C even for 10080 minutes did not result in any detectable austenite 

phase, however, a very small amount of matrix austenite layers at the prior austenite 

grain boundaries at the martensite packet boundaries were observed (Figure 6-1(a)). 

In contrast to the sluggish austenite reversion, a large number density of nano-scaled 

precipitates has been formed at this stage (Figure 6-1(b)).  

At 460 °C, the sample after aged for 2880 minutes also exhibited a typical 

microstructure of the austenite layers along boundaries (Figure 6-1(c)). The matrix 

austenite at prior austenite boundaries, denoted ‘M’, appears thinner and smoother 

than austenite layers at martensite lath/packet boundaries. As expected, prolonged 

aging for 10080 minutes led to the austenite layers growing into lath-like austenite, 

as shown in Figure 6-1(d).  



Chapter 6 The formation mechanism of reverted austenite and its mechanical stability 

128 

 

 

Figure 6-1 SEM micrographs showing the morphologies of reverted austenite in the 12% Mn 

alloy during aging. (a) Thin austenite layers formed along boundaries and (b) highly 

dispersed fine precipitates at 420 °C / 10080 min state; (c) evident matrix austenite and 

austenite layers at 460 °C / 2880 min state; (d) the amount of austenite increased after aging 

at 460 °C for 10080 min. 

 

When increasing the aging temperature to 500 °C, ultrafine precipitates were 

generated at the onset of aging, as shown in Figure 6-2(a). Thin matrix austenite and 

austenite layers at boundaries were also visible in the 10 min aged state (Figure 

6-2(b)). After a longer aging time, the austenite layers gradually grew into film-like 

and then lath-like austenite (Figure 6-2(c) and (d)). The lath-like austenite was 

formed not only along the boundaries, but also within the martensite laths. It is found 

that the lath-like austenite and residual martensite present a lamellar structure (see 

inset in Figure 6-2(d)). 
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Figure 6-2 (a) Fine precipitates and (b) thin matrix austenite at the onset of aging in the 12% 

Mn alloy (500 °C / 10 min state); (c) the lath-like austenite became dominant after aging for 

2880 min; (d) a lamellar structure of alternative lath-like austenite and residual martensite in 

the 10080 min aged sample. 

 

Raising the aging temperature to 540 °C led to a further increase in the driving force 

for austenite reversion. The initial point for austenite reversion was shorter than 10 

minutes, so it was not captured. The amounts of reverted austenite formed at 540 °C 

were higher than that formed at 500 °C for the same durations (Figure 6-3(a)). In 

addition, the thickness of lath-like austenite was also larger (Figure 6-3(b)).  
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Figure 6-3 (a) Reverted austenite in the 12% Mn alloy after aging at 540 °C for 10080 min; 

(b) reverted austenite is free of precipitates. 

 

6.2.2 The effect of Mn content on austenite reversion 

The kinetics of austenite reversion in the 7% Mn alloy was very slow. No reverted 

austenite was present within 2880 min when aging at 500 °C, but nano-precipitates 

have been found uniformly distributed in 𝛼 ,-martensite matrix (Figure 6-4(a)). Even 

after aging for 10080 min did not lead to an evident increase of the amount of 

reverted austenite, only matrix austenite layers was observed (Figure 6-4(b)). In the 

10% Mn alloy, the amount of reverted austenite was much higher than that in 7% Mn 

alloy for the same aging conditions. It also appears that the aging time did not 

appreciably affect the quantity of reverted austenite in the late aging stage, with the 

amount of reverted austenite in the 10080 min aged sample (Figure 6-4(d)) not much 

higher than that in the 2880 min aged sample (Figure 6-4(c)). In addition, the amount 

of reverted austenite in the 12% Mn alloy (Figure 6-2) was also much higher than 

that in 10% Mn alloy (Figure 6-4) for the same aging conditions. Clearly, therefore, 

the higher the Mn content of the alloy, the greater the austenite reversion. 
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Figure 6-4 SEM observation of (a) 7% Mn alloy (500 °C / 2880 min state); (b) 7% Mn alloy 

(500 °C / 10080 min state); (c) 10% Mn alloy (500 °C / 2880 min state); (d) 10% Mn alloy 

(500 °C / 10080 min state). 

 

6.3 TEM investigation 

TEM investigations were conducted on samples in which reverted austenite could be 

observed. At the beginning of austenite reversion (e.g. 10% Mn alloy, 500 °C / 1440 

min state (Figure 6-5(a)) or when the kinetics of austenite reversion was very slow, 

e.g. 7% Mn alloy, 500 °C / 10080 min state (Figure 6-5(b))), only thin matrix 

austenite, which looked like nanolayer, could be found along the prior austenite grain 

boundaries and this was consistent with what had been observed under SEM 

observations. 
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Figure 6-5 Matrix austenite formed along prior austenite grain boundaries in (a) 10% Mn 

alloy at 500 °C / 1440 min state and (b) 7% Mn alloy at 500 °C / 10080 min state. 

 

With the growth of austenite, the dominant morphology of reverted austenite 

gradually became film-like and then lath-like. Images of lath-like austenite from 

different orientations parallel to the elongated austenite were shown in Figure 6-6. 

Besides, the TEM observation demonstrated that the reverted austenite was free of 

precipitates, whereas a high dislocation density induced from cooling was observed 

within the austenite grains. 
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Figure 6-6 TEM micrographs of lath-like austenite in (a) 12% Mn alloy aging at 500 °C for 

2880 min and (b) 12% Mn alloy aging at 540 °C for 2880 min; (c) and (d) are the 

corresponding images from a different orientation. 

 

The evolution of the chemical composition in reverted austenite and adjacent 

martensite was analysed by TEM-EDS. The EDS analyses of the three alloys are 

presented in Table 6–1 and Table 6–2. Each data is the average of at least 5 

measurements. 

It is worth noting that the Al contents of solution-treated matrix in the three alloys 

were higher than the nominal content of the alloys (Al: ~2.5 at.%). This is probably 

due to the inaccuracy of the semi-quantitative analysis using EDS in the TEM, where 

Al gives the second highest peak per atomic fraction for the whole periodic table. 

Otherwise, the detected compositions of the martensite matrix in the SHT state are 

consistent with the nominal compositions of alloys. Schnitzer et al. [147] who 
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compared the composition results measured by TEM-EDS and APT when studying 

the reverted austenite in a PH 13-8 maraging steels, also stated that there was no 

evident difference between the results obtained by the two methods, except that the 

Al concentration by the TEM-EDS measurement was slightly higher than that 

obtained by the APT measurement.  

Table 6–1 presents the chemical compositions of austenite and martensite in the 7% 

Mn alloy. As the kinetics of austenite reversion in the 7% Mn alloy was slow, the 

composition analysis was only performed on film-like austenite (nanolayer) formed 

after aging at 500 °C for a long time. The Mn concentration of austenite nanolayer 

increased with aging time, from 12.9 ± 0.6 at.% in the 500 °C / 5760 min state to 

16.2 ± 0.3 at.% in the 500 °C / 10080 min state. What was unexpected is that the 

austenite nanolayer was also enriched in Ti and Mo. The Ti concentration of the 

austenite maintained at a level of 12.4-14.5 at.% and the Mo concentration 

maintained between 10.5 at.% and 13.6 at.%. A similar Ti and Mo enrichment in 

austenite was also observed in the 10% Mn alloy in the early stage of austenite 

reversion. This finding is very interesting as Ti is generally considered to raise the 

𝐴𝑒
3 temperature and therefore is not expected in the austenite phase. However, Ni, as 

an austenite stabilizer element, was present at a low concentration of 1.2-1.9 at.% in 

the reverted austenite. On the other hand, the composition of martensite matrix was 

approximately constant during the aging process, for example, the composition of 

matrix in the 500 °C / 10080 min state was similar to that in the SHT state (Table 6–

1). 
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Table 6–1 Chemical compositions (at.%) of reverted austenite and martensite in the 7% Mn 

alloy obtained by TEM-EDS 

Elements 
SHT 

 500 °C 

 5760 min  10080 min 

Matrix  Austenite  Matrix Austenite 

Al 5.0 ± 0.6  2.7 ± 0.5  3.7 ± 0.6 1.8 ± 0.4 

Mo 1.4 ± 0.3  13.6 ± 1.0  1.3 ± 0.1 10.5 ± 0.3 

Ti 1.1± 0.1  14.5 ± 0.8  1.1 ± 0.3 12.4 ± 0.5 

Mn 6.3 ± 0.3  12.9 ± 0.6  6.4 ± 0.2 16.2 ± 0.3 

Fe 84.4 ± 0.6  54.4 ± 1.5  85.3 ± 1.5 58.0 ± 0.6 

Ni 1.8 ± 0.1  1.9 ± 0.4  1.9 ± 0.6 1.2 ± 0.4 

 

The chemical compositions of lath-like reverted austenite in the 12% Mn alloy are 

listed in Table 6–2. The lath-like reverted austenite formed in the 12% Mn alloy had 

a considerably higher Mn concentration (24-26.1 at.%) compared to that in the 7% 

Mn alloy. While the Ti and Mo concentrations in the reverted austenite (Mo: 2.9-7.3 

at.%, Ti: 2.9-8.0 at.%) were lower than those in the 7% Mn alloy. On the other hand, 

there was an inversed relationship between the Mn concentration of the matrix and 

the aging time (the Mn concentration reduced from 11.5 at.% in the SHT state to 6.9 

at.% after aging at 500 °C for a long time), which is reasonable as the formation of 

reverted austenite consumed a large amount of Mn from the martensite matrix. 
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Table 6–2 Chemical compositions (at.%) of reverted austenite and martensite in the 12% Mn alloy under various heat treatment conditions obtained by 

TEM-EDS. 

Elements 
SHT 

 460 °C  500 °C  540 °C 

 10080 min  2880 min  10080 min  2880 min 

Matrix  Matrix Austenite  Matrix Austenite  Matrix Austenite  Austenite 

Al 3.8 ± 0.8  5.1 ± 1.4 1.5 ± 0.2  5.3 ± 1.0 2.8 ± 0.4  7.0 ± 1.5 4.4 ± 1.0  3.6 ± 0.7 

Mo 1.6 ± 0.2  1.5 ± 0.4 4.4 ± 0.5  1.5 ± 0.6 2.5 ± 0.6  1.6 ± 0.5 7.3 ± 1.6  2.9 ± 0.4 

Ti 1.1 ± 0.4  1.2 ± 0.2 3.3 ± 0.6  1.0 ± 0.3 2.9 ± 0.8  1.5 ± 0.4 8.0 ± 0.6  5.0 ± 0.6 

Mn 11.5 ± 0.5  9.8 ± 0.8 26.1 ± 1.0  9.6 ± 0.5 24.1 ± 1.5  6.9 ± 0.8 24.7 ± 1.1  24 ± 0.8 

Fe 80.1 ± 1.4  80.2 ± 1.5 63.5 ± 1.7  81.7 ± 1.9 66.4 ± 1.6  80.3 ± 1.4 53.0 ± 1.0  63.5 ± 1.7 

Ni 1.9 ± 0.2  2.2 ± 0.4 1.2 ± 0.3  1.7 ± 0.2 1.3 ± 0.2  2.6 ± 0.6 2.5 ± 0.9  1.0 ± 0.2 
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The SAED analyses reveal that the K-S relationship ((1̅11)𝛾ǁ(011̅)𝛼, 

[110]𝛾ǁ[111]𝛼)  and Nishiyama relationship ((1̅11)𝛾ǁ(01̅1̅)𝛼, [110]𝛾ǁ[100]𝛼) 

coexisted between reverted austenite and martensite (Figure 6-7). Some researchers 

suggested that adjacent austenite grains had nearly the same orientation in low 

carbon steels and were twin-related [54][171][185]. Due to the limited statistics of 

the TEM observations, so far there was no evidence from the TEM investigation to 

prove this. An analysis technique which can provide better statistics, such as electron 

backscatter diffraction (EBSD), is required for the further study of the orientation 

relationships between austenite and martensite. 

 

Figure 6-7 Bright-field TEM images of austenite in the martensite matrix and the 

corresponding selected area diffraction patterns presenting (a) K-S relationship and (b) 

Nishiyama relationship between austenite and martensite. 

 

6.4 XRD quantitative analyses 

As revealed by previous study, Mn-based maraging steels possessed a multi-phase 

structure comprised of α'-martensite matrix, Ni2TiAl precipitates, reverted austenite 

and ε-martensite in some conditions. In this section, the volume fractions of reverted 

austenite formed in different aging conditions were measured by XRD and the 

results are presented in Table 6–3. In order to better understand the austenite 

reversion, the evolution of austenite phase fraction in the 10% and 12% Mn alloys 

aged at 500 °C is illustrated in Figure 6-8. As shown in Figure 6-8, aging at 500 °C 
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led to a nearly linear increase in the volume fraction of reverted austenite as a 

function of time up to the maximum was reached for both alloys. In the 10% Mn 

alloy, the austenite phase fraction reached a maximum of ~10 vol.% in the 500 °C / 

5760 min state after which the content remained approximately constant; while in the 

12% Mn alloy, the austenite fraction increased linearly up to ~25 vol.% after aging 

for 4320 min and then slightly decreased with longer aging time. 

Table 6–3 The volume fractions (vol.%) of reverted austenite formed in different aging 

conditions. 

Aging time 

(min) 

10% Mn  12% Mn 

500 °C 460 °C  500 °C 460 °C 

1440 2.92 ± 0.67 -  8.48 ± 0.73 - 

2880 6.03 ± 0.65 -  17.13 ±1.76 - 

4320 7.99 ± 0.49 -  24.78 ± 1.31 - 

5760 10.35 ± 0.73 -  24.62 ± 1.49 5.58 ± 1.24 

10080 10.69 ± 0.45 4.14 ± 1.03  23.06 ± 1.42 9.32 ± 2.48 

 

 

Figure 6-8 The evolution of volume fractions (vol.%) of reverted austenite formed as a 

function of aging time at the temperature of 500 °C. 
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6.5 Nanoindentation 

As previously discussed, the key parameters of tensile deformation, i.e. yield 

strength (YS), ultimate tensile strength (UTS) and total elongation (TE) in multi-

phase steels, are determined by the fractions of phases and their mechanical stability 

[140]. Therefore, the contribution of each phase to the strength of the Mn-based 

maraging steels is the main focus of this study. 

In this study, the Mn-based maraging steels in aged conditions were mainly 

composed of tempered martensite decorated with uniformly dispersed nano-

precipitates and various amount of elongated reverted austenite which depended on 

the aging conditions and Mn contents. In addition, a trace of ε-martensite or coarse 

carbide might be present in some cases. The following discussion only considers the 

martensite (with precipitates embedded within it) and reverted austenite, as previous 

studies have suggested that these two phases constituted the most relevant 

microstructure relating to the mechanical properties of materials. 

As the mechanical characteristic of reverted austenite (with the size in the range 70-

200 nm) in this study is hard to obtain by conventional testing methods, the 

nanoindentation combined with atomic-force microscopy (AFM) was utilized. A 

cube corner tip, which has a three-sided pyramidal with an apex angle of 90° and is 

much sharper than the conventional Berkovich tip, was selected to perform the 

indentation. In addition, a small load of 70 µN was applied. Nanoindentation tests 

were performed on a number of austenite grains and martensite matrix separately. 

The typical load-displacement (P-h) curves of the austenite and martensite in the 12% 

Mn alloy in the 500 °C / 10080 min state are given in Figure 6-9. Different phases 

were clearly characterized by different load-displacement relationships. Subject to 

the maximum load of 70 µN, the maximum penetration displacement was 10-15 nm 

for austenite phase and ~25 nm for martensite phase. This indicated that in this study 

the reverted austenite was unexpectedly harder than the martensite. It is generally 

accepted that the austenite phase, as a fcc crystal, has a low yield strength [245], 

especially compared to the martensite with highly dispersed nanoprecipitates in 

maraging steels [52][246][247]. Despite the low yield strength, the working 

hardening of austenite is remarkable and the higher load required for martensitic 
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transformation of austenite phase further increased the strength. In terms of 

martensite, its high strength is generally due to the high dislocation density and 

tetragonal lattice containing supersaturated carbon atoms (supersaturated Mn, Ni, 

Mo, Ti and Al atoms in Mn-based maraging steels). In this study, as these solid-

solution strengthening elements in the martensite matrix were largely depleted by 

precipitation and austenite reversion and the dislocation density also reduced during 

the thermal aging process, the martensite could essentially be regarded as ferrite. In 

addition, a nanoindentation study on a similar medium-Mn TRIP steel revealed that 

retained austenite was significantly harder than ferrite (austenite: 7.7 GPa, ferrite: 3.4 

GPa) [188]. Therefore, it is not surprising to see that the hardness of tempered 

martensite after a long-term aging was lower than that of austenite in this study. 

 

Figure 6-9 Load-displacement curves of martensite and austenite in the 12% Mn alloy in the 

500 °C / 10080 min state. 

 

The representative hardness values of the 10% Mn and 12% Mn alloys in the 500 °C 

/ 10080 min state are given in Figure 6-10. In the 10% Mn alloy, the hardness of 

austenite and martensite are 8.5 ± 1.0 and 5.5 ± 0.3 GPa, respectively; in the 12% 

Mn alloy, the hardness of austenite and martensite are 9.0 ± 1.1 and 4.9 ± 0.5 GPa, 

respectively. It should be noted that the variation of austenite hardness in both alloys 

is larger than that of martensite. 
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Figure 6-10 Hardness distribution of austenite and martensite phases in (a) 10% Mn alloy, in 

500 °C / 10080 min state and (b) 12% Mn alloy, in 500 °C / 10080 min state. 

 

The P-h curve of the indexed point in Figure 6-10(b) is representatively illustrated in 

Figure 6-11. A pop-in point near the top of the curve is visible. According to the 

study by He et al. [188], the pop-in point may correspond to a phase transformation. 

It is believed there is a critical load for the martensitic transformation (Pc), which is 

regarded as an indication of the mechanical stability of single austenite grain [188]. 

As the load applied in this study was small, most indentations on austenite did not 

lead to the martensitic transformation. Even in the indentation displayed in Figure 

6-11, the martensitic transformation occurred when just approaching the maximum 

load, so the deformation behaviour of transformed martensite was not revealed. 

Otherwise a martensitic transformation strengthening is expected after the pop-in 

point. Furnemont et al. [245] reported that the slope of P-h curve after the pop-in 

point should be higher than that before the point. The martensitic transformation 

strengthening can be interpreted by dispersion hardening mechanism [248]. 

Accompanying with the phase transformation, a geometrically necessary dislocation 

(GND) prismatic loops [249] generate within the plastic zone close to the 

transformed martensite, leading to the increase of dislocation density and thereby 

strengthening the austenite phase [250]. During the loading, the untransformed 

austenite can be further strengthened when the GND prismatic loops bypass 

martensite and leave dislocation debris around the martensite. In terms of the 

martensite, the transformed martensite may have subjected severe deformation 

during the indentation which also contributes to the increase of hardness as higher 
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load is required to deform martensite. Another mechanism related to the pop-in point 

in P-h curves was proposed by Wo et al. [251]. According to these researchers, the 

high-angle grain boundaries of austenite phase can prevent dislocations from passing 

through grain boundaries and thus leads to the grain boundary strengthening. 

Therefore, when the indentation position is just located at high-angle grain 

boundaries, a higher hardness than that on lower-angle grain boundaries or within 

plastic zone is expected. Both these two mechanisms may explain the pop-in point 

shown in Figure 6-11. 

 

Figure 6-11 Load-displacement curve recording the martensitic transformation of an 

austenite grain. 

 

6.6 Discussion 

In the following sections the evolution of the grain size, chemical composition and 

volume fraction of reverted austenite will be discussed. Based on the discussion, the 

formation mechanism of reverted austenite is determined. Then the discussion will 

focus on the relationship between the mechanical stability of reverted austenite and 

its microstructure. 
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6.6.1 The size of reverted austenite grains 

The average sizes of reverted austenite formed under different aging conditions were 

measured based on the SEM observation. Although the austenite reversion occurred 

in the very beginning of aging process, the size evolution of reverted austenite 

nanolayers in the early aging stage was difficult to capture due to the resolution 

limits of the microscope, and therefore, the discussion inevitably focuses on the size 

of lath-like reverted austenite in the over-aged condition. On the other hand, as lath-

like austenite has a wide range of length and the length of lath-like reverted austenite 

may vary with different orientations, it is difficult to measure the average length 

accurately. Therefore, only the width of reverted austenite is analysed here. In Figure 

6-12 and Figure 6-13, the width of reverted austenite was averaged from at least 80 

measurements.  

As shown in Figure 6-12, at 500 °C there was a slow increase in the average width of 

austenite grains with aging time for both the 10% Mn and 12% Mn alloys from 2880 

min to 10080 min (Figure 6-12). This limited increase in the width is attributed to 

two reasons: (i) the decelerating kinetics of austenite growth for the over-aged stage, 

as a result of the slow diffusion of Mn atoms (EDS analyses revealed that the 

austenite formed at this stage had a high Mn concentration (~24 at.%)) [27]; (ii) 

thermodynamic resistance to coalescence with adjacent reverted austenite grains as 

discussed in Section 2.4.2. In addition, the influence of the Mn content of alloy on 

the austenite width was not evident, and the widths of reverted austenite seemed to 

be irrelevant to the Mn content and are almost the same between the 10% Mn and 12% 

Mn alloys (Figure 6-12).  
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Figure 6-12 Average width of lath-like reverted austenite after aging at 500 °C for different 

times in the 10% Mn and 12% Mn alloys. 

 

In contrast to the aging duration and alloying composition, the aging temperature had 

a more evident influence on the width of reverted austenite as presented in Figure 

6-13, which showed an approximately linear increase with the aging temperature. It 

is not difficult to understand as the higher driving force for Mn diffusion at elevated 

temperature promoted the growth of reverted austenite. 

 

Figure 6-13 Average width of reverted austenite aged at different temperatures for 10080 

min in the 12% Mn alloy. 

6.6.2 Chemical composition of reverted austenite 

In this study, Mo- and Ti-rich austenite was observed in some samples (see Table 6–

1). This phenomenon is contradictory to the common knowledge that Ti is regarded 
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as ferrite stabilizing elements. A similar finding on the M-A-M (M: martensite, A: 

austenite) region using APT was reported in a 9 wt.% Mn maraging steel by Raabe et 

al. [50]. They summarized the experimental grain boundary segregation data of 

various elements [50] and reported that the grain boundary enrichment factor of Mn 

is 2.3, Ni is 1.7, Mo is 2.3 and Ti is 5.2. Therefore, in the current study, it is assumed 

that the Ti and Mo-rich austenite nanolayers in the 7% Mn and 10% Mn alloys was 

due to the fact that most of the austenite phase was formed along the prior austenite 

grain boundaries and martensite packet/lath boundaries. These interfaces were also 

the preferential segregation sites for Mo and Ti. As Ti has a higher grain boundary 

enrichment factor and a faster diffusivity, the notably high Ti concentrations in the 

austenite cannot be avoided. Subsequently, continuous diffusion of Mn led to the 

newly-formed Mn-rich austenite on top of the preceding Ti, Mo-rich grain 

boundaries. On the other hand, in this type of austenite, there was no segregation of 

Ti and Mo, so these austenite grains were observed with higher Mn concentration. 

Another reason relating to the Ti and Mo enrichment in austenite was proposed by 

Schnitzer et al. who suggested that the high solubility of C in austenite drove the 

formation of Ti- and Mo-rich carbides within the austenite phase [147]. However in 

the present Mn-based maraging steels, as the nominal carbon content of the alloys 

was very low (0.02-0.03 wt.%) and no carbide was observed, it is not likely that the 

limited carbon atoms within austenite could lead to such high concentrations of Ti 

and Mo in austenite. 

The equilibrium binary Fe-Mn phase diagram is presented in Figure 6-14 to study 

the effects of temperature and nominal composition on the Mn concentration of 

austenite. According to the Fe-Mn phase diagram, the equilibrium compositions of 

Fe-10Mn alloy at 500 °C are ferrite with 3.7 at.% Mn and austenite with 21.3 at.% 

Mn. Increasing the Mn content of the alloy does not lead to the composition change 

in the ferrite or austenite, but different aging temperatures result in the variation of 

austenite composition. For example at 460 °C, ferrite with 3.9 at.% Mn and austenite 

with 25.0 at.% Mn can be formed regardless of the nominal Mn content. 
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Figure 6-14 Equilibrium phase diagram of the Fe-Mn system. 

The chemical composition profiles obtained by TEM-EDS are partially consistent 

with Fe-Mn phase diagram. The segregation of Ti and Mo on grain boundaries 

resulted in the Mn concentration of austenite nanolayers being far from that indicated 

by the equilibrium phase diagram. Although the phase diagram suggests that the Mn 

concentration of austenite is independent on the nominal Mn content of the alloy, 

experimental results reveal that higher Mn content contributed to a fast kinetics for 

the formation of reverted austenite and thus higher Mn concentration of reverted 

austenite for the same aging conditions. Otherwise, the chemical composition of 

ferrite and lath-like austenite exhibited good agreement with the phase diagram.  

It is worth discussing the thermodynamic possibility of the austenite formation with 

relatively low Mn concentration along the grain boundaries in the initial stage of 

aging. Wilson and his colleagues [121][122] worked on the grain boundary 

segregation of Mn in a Fe-8Mn alloys at 450 °C and revealed by Auger spectroscopy 

that about 18 at.% Mn enrichment at the grain boundaries upon aging at 450 °C for 

10-12 min. They suggested the Mn segregation to prior austenite grain boundaries 

supported the initial formation of reverted austenite at such sites. In our study, the 

Mn concentration of austenite nanolayers formed in the very beginning of aging was 

even lower owing to the Ti and Mo segregation at the grain boundaries. Raabe et al. 

[50] calculated the chemical driving force for the local austenite formation at 450 °C 

in different conditions. In the binary Fe-Mn system, a minimum 13.3 at.% Mn is 

required to approach the critical chemical driving force for austenite reversion. If 
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other alloying elements (Mo, Ti and Si) are included, the Mn concentration above 

12.4 at.% Mn has the potential to form austenite. In the case with the local 

segregation of ferrite stabilizing elements, higher Mn concentration (above 15.3 at.%) 

is needed for the phase transformation to austenite. However, structural defects such 

as interface disorder, which is a significant factor, are not taken into consideration in 

the above calculations. Therefore, Raabe et al. [50] used a phase field model to 

model both the segregation and phase transformation, which revealed a high driving 

force for the formation of austenite at grain boundaries. The low nucleation energy at 

interface (0.5-1 eV based on 24 at.% Mn concentration at 450 °C) is attributed to not 

only the enrichment of Mn at grain boundaries, but also the low energy of K-S 

austenite/martensite interface and specifically, the high elastic relaxation energy of 

martensite induced by phase transformation. 

In the present study, as the austenite reversion at the interface would be suppressed 

by the segregation of ferrite stabilizing elements (Ti and Mo), the critical Mn 

concentration for austenite reversion at the interface should be higher than that 

calculated on the basis of the nominal chemical composition. However, in view of 

the low nucleation energy at the interface due to structural defects, austenite 

reversion can still be realized with relatively low Mn concentrations at the grain 

boundaries. A detailed discussion on the formation of reverted austenite will be 

given in Section 6.6.4. 

In addition, Raabe et al. performed an APT analysis on the M-A-M interface where 

retained austenite served as a template for further austenite reversion to study the 

difference between retained austenite and reverted austenite in maraging TRIP steels 

[50]. They reported that this special M-A-M interface presented a different 

compositional profile from the self-nucleated reverted austenite. Retained austenite 

in the centre region of Mn profile revealed a Mn concentration of 12 at.%, while the 

reverted austenite formed on top of it had a Mn concentration of ~25 at.%. This 

indicates that the Mn concentration of reverted austenite was much higher than that 

of retained austenite. 
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6.6.3 The volume fraction of reverted austenite 

According to the Fe-Mn phase diagram, a sufficient long-time aging at 500 °C 

allows the formation of up to 36 vol.% austenite for a 10% Mn alloy. Increasing the 

Mn content of the alloy leads to an increase of the austenite fraction, so that at 

equilibrium, the volume fraction of austenite is 47.5 vol.% for the 12% Mn alloy. 

Different aging temperatures also result in the variation in composition and volume 

fraction of austenite. A summary of the equilibrium composition and volume 

fractions of phase as a function of aging temperature is presented in Table 6–4. 

Table 6–4 A summary of the equilibrium Mn concentration (at.%) and volume fraction 

(vol.%) of austenite and ferrite phases at different aging temperatures based on the Fe-Mn 

phase diagram in Figure 6-14. 

  
7% Mn 10% Mn 12% Mn 

at.% vol.% at.% vol.% at.% vol.% 

420 °C 
Austenite 28.4 13.1 28.4 25.0 28.4 33.3 

Ferrite 4.0 86.9 4.0 75.0 4.0 66.7 

460 °C 
Austenite 25.0 15.4 25.0 29.3 25.0 39.0 

Ferrite 3.9 84.6 3.9 70.7 3.9 61.0 

500 °C 
Austenite 21.3 18.7 21.3 36.0 21.3 47.5 

Ferrite 3.7 81.3 3.7 64.0 3.7 52.5 

 

The experimental results of the volume fraction of reverted austenite (Table 6–3) are 

compared to the data from the equilibrium Fe-Mn phase diagram (Table 6–4). It is 

obvious that the maximum austenite phase fractions (up to ~10 vol.% for 10% Mn 

alloy aged at 500 °C; up to ~24 vol.% for 12% Mn alloy aged at 500 °C) are 

significantly lower than the values predicted by the Fe-Mn phase diagram (~36.0 vol.% 

for 10% Mn alloy at 500 °C; ~47.5 vol.% for 12% Mn alloy at 500 °C). This may be 

attributed to the fact that a small amount of reverted austenite transformed to ε-

martensite during cooling. In addition, the addition of Ti and Al could raise the 𝐴𝑒
3 
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and reduced the maximum volume fraction of austenite. The segregation of Ti and 

Mo at grain boundaries is considered to suppress the formation of reverted austenite 

as well. 

6.6.4 The formation mechanism of reverted austenite 

As revealed in Section 6.2, in the initial aging stage, austenite nanolayers were 

preferentially formed along prior austenite grain boundaries and martensite packet 

boundaries due to low nucleation energy at interface. Further aging led to those 

austenite nanolayers gradually growing to film-like and then lath-like austenite. In 

some cases (e.g. 12% Mn alloy after prolonged/high-temperature aging), lath-like 

reverted austenite was also found within martensite laths. In addition, as both the 

prior austenite grains and martensite packets were largely refined due to higher Mn 

content (see Figure 4-2), the 12% Mn alloy provided more nucleation sites for 

austenite formation and this partially explains why the austenite reversion of 12% 

Mn alloy kinetically exceed that of the other two alloys. 

As discussed in Section 2.4.2, the formation of reverted austenite is generally 

considered to be dominated by a diffusion process [27][193][194]. but some 

researchers proposed that austenite reversion is shear-dominated and assisted by a 

prior or simultaneous diffusion mechanism [52][146]. In order to study the formation 

mechanism of reverted austenite in Mn-based maraging steels, the results of reverted 

austenite fraction were analysed. As the experimental study has confirmed that there 

was no retained austenite formed by quenching from solution heat treatment, the 

entire austenite detected in the aged samples is regarded as reverted austenite. 

It is worth noting that the complexity of austenite reversion process in maraging 

steels, such as the competition with precipitation and the presence of coherency 

strains, may have led to the experimental results that are contradictory to the 

common knowledge [54]. On the other hand, previous microstructural observation 

has demonstrated that the formation of precipitates and reverted austenite started 

from the very beginning of aging simultaneously, and the computer simulation also 

indicates that the dissolution of precipitates is not necessary for the initial driving 

force for austenite reversion in maraging steels [147]. Therefore, it is assumed that 
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the formation of precipitates and reverted austenite are independent processes in this 

study. It should be highlighted that this analysis of the kinetics is only regarded as a 

semi-quantitative description of austenite reversion. 

When the austenite reversion process is diffusion-controlled, its activation energy 𝑄, 

can be calculated by the following equation [147]: 

 
ln(𝑡) =

𝑄

𝑅𝑇
+ 𝑐 (6.1) 

where 𝑡 is the time to form certain volume fraction of reverted austenite, 𝑇 is the 

specific temperature at which austenite reversion occurs, and 𝑐 is the constant. In the 

current study, the analyses of austenite formation were performed on the 10% and 12% 

Mn alloys by measuring the time required to form the certain amount of reverted 

austenite at 460 °C, 500 °C and 540 °C, respectively. The volume fraction for 

Equation (6.1) was set as 4 vol.% for the 10% Mn alloy and 9 vol.% for the 12% Mn 

alloy. These figures were chosen as the point before which ε-martensite was formed. 

Thus, the time to attain the certain amounts of reverted austenite as a function of 

aging temperature could be determined for both alloys. The results are presented in 

Figure 6-15 and a linear correlation is found between 1/𝑇*1000 and ln(𝑡). Based on 

the slope of fitted line, the activation energy for austenite reversion was estimated as 

63.5 kJ/mol for the 10% Mn alloy and 85.7 kJ/mol for the 12% Mn alloy. These 

values are significantly lower than those reported in conventional maraging steels 

and the activation energy for Mn diffusion in pure iron as well. The activation 

energy for Mn diffusion in Fe is reported to be 219.8-261.7 kJ/mol [252]. Nakagawa 

et al. [20] reported the activation energy for austenite reversion was about 240 

kJ/mol in a 1.8Cu-7.3Ni-15.9Cr-1.2Mo steel. Schntizer et al. [147] reported the 

activation energy was 234 ± 20 kJ/mol in PH 13-8 Mo maraging steels. However in 

this study, the volume fraction of austenite chosen for the calculation is very low, 

which means that the calculation is mainly based on the early stage of austenite 

reversion. Therefore, it is considered that the austenite reversion in the early aging 

stage was not controlled by Mn diffusion. On the other hand, as the austenite 

reversion occurred at the onset of aging and the compositional change was small, the 

formation of reverted austenite is proposed to be a shear mechanism accompanied by 

a small amount of Mn diffusion. 
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Figure 6-15 Arrhenius plot for the determination of the activation energy of austenite 

formation in the 10% Mn and 12% Mn alloy. 

 

On the other hand, our TEM-EDS investigation on austenite reversion reveals that 

the Mn concentration of lath-like reverted austenite in the later aging stage (~24 at.%) 

was much higher than that of austenite nanolayers formed in the early aging stage 

(~12 at.%). The high concentration of Mn indicates that Mn was indeed involved in 

the formation of reverted austenite. Therefore, the variation of Mn concentration is 

considered as the result of the transition of austenite formation mechanism from 

diffusionless-dominant mechanism to diffusion-dominant mechanism. 

Based on the experimental results and discussion presented above, the sequence for 

reverted austenite formation in these Mn-based maraging steels is proposed as 

following: 

1) The nucleation of reverted austenite at prior austenite grain boundaries and 

martensite packet boundaries occurred at the onset of aging followed by the 

nucleation of austenite within martensite laths. The nucleation process was 

governed by a shear mechanism assisted by a prior or simultaneous diffusion of a 

small amount of Mn. Due to the structural disorder at interface, there is a higher 
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driving force for the segregation of Mn and phase transformation, which made 

the rapid nucleation of reverted austenite at grain boundaries easier. While the 

nucleation of reverted austenite within martensite laths needed higher Mn 

segregation and hence was kinetically slower. 

2) During the further aging process, the accumulated Mn segregation to grain 

boundaries led to the austenite nanolayers growing to lath-like reverted austenite, 

which means the lateral growth of austenite was mainly supported by the 

diffusion of Mn. As the diffusion rate of Mn in the martensite matrix was 

relatively low, the diffusion-controlled austenite growth was fairly slow. In 

addition, the thermodynamic resistance to coalescence between adjacent reverted 

austenite is another reason why the reverted austenite could maintain nano-scale 

dimensions for a long time. 

6.6.5 The stability of reverted austenite 

As discussed in Section 2.4.1, studies on reverted austenite suggest that the size 

effect and enriched Mn concentration of austenite grains are the two main intrinsic 

factors that affect the stability of reverted austenite. 

 Chemical composition 

Yen et al. [26] stated that the essential concept of austenite engineering in Mn-based 

TRIP steels is to tailor the Mn concentration in austenite in order to attain metastable 

austenite after heat treatment. This metastable austenite can therefore lead to the 

TRIP effect which enables strain hardening. 

The martensite transformation start temperature (𝑀𝑠) is regarded as a parameter that 

directly controls the stability of the austenite. The 𝑀𝑠 temperature based purely on 

the chemical compositions is designated 𝑀𝑠
0. Therefore, the 𝑀𝑠

0 of the 𝛼′-martensite 

can be calculated by the following equation [253]: 

 𝑀𝑠
0 (℃) = 545 − 330𝐶 + 2𝐴𝑙 − 23𝑀𝑛 − 5𝑀𝑜 − 13𝑁𝑖 + 3𝑇𝑖 (6.2) 

where the elements stand for their concentrations in wt.%. The equation is simplified 

to only present the primary elements involved in this study. 



Chapter 6 The formation mechanism of reverted austenite and its mechanical stability 

153 

 

According to Equation (6.2), the relationship between the austenite stability and 

chemical composition is quite straightforward. C and Mn significantly contribute to 

the stability of austenite while the Al and Ti additions lower the austenite stability. 

The influence of Ti and Mo enrichment on the initial formation of reverted austenite 

along the grain boundaries was discussed in Section 6.6.2. Here we mainly focus on 

the effects of Mn concentration on the austenite stability. 

Figure 6-16 presents the average hardness values of austenite and martensite in 

various aged samples. As displayed in Figure 6-16(a), the austenite hardness of the 

12% Mn alloy aged at 500 °C for 10080 min was higher than that of the 10% Mn 

alloy for the same aging condition, which is believed to be mainly attributed to the 

higher Mn concentration of austenite in the 12% Mn alloy (revealed by previous 

TEM-EDS analyses). On the other hand, the martensite hardness of the 12% Mn 

alloy was slightly lower than that of the 10% Mn alloy. This might be a result of the 

faster kinetics of the coarsening of precipitates and softening of martensite matrix in 

the 12% Mn alloy. In terms of the effect of aging temperature, it is clearly shown in 

Figure 6-16(b) that the hardness of both the austenite and martensite decreased as the 

aging temperature increased. The decrease of martensite hardness mainly resulted 

from the coarsening of precipitates and softening of martensite matrix at higher 

temperature. While the reverse relationship between the austenite hardness and aging 

temperature is considered to be related to the decreased Mn concentration of reverted 

austenite with the increase of aging temperature. 

It should be noted that the above discussion is based on the average statistics. Due to 

the relatively low diffusion rate of Mn, the Mn concentration of each single austenite 

grain may vary from grain to grain, leading to the variation of austenite hardness 

which manifests the large scatter in Figure 6-10. Therefore, a detailed analysis on the 

hardness and Mn concentration of each single austenite grain may be a more direct 

method to explore the relationship between Mn concentration and the mechanical 

stability of austenite phase. 
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Figure 6-16 (a) The average hardness of austenite and martensite in the 10% Mn and 12% 

Mn alloys aged at 500 °C for 10080 min; (b) the hardness of austenite and martensite in the 

12% Mn alloy as a function of aging temperature. 

 

 Austenite grain size 

It is generally accepted that the austenite with a small grain size has a high stability 

[154][34][158][159][162][163]. Although the interface is always a good site for 

heterogeneous nucleation, phase transformation is suppressed in materials with small 

grain sized even when there is a strong thermodynamic driving force. This has been 

shown to be true for both metals and ceramics.  

In contrast, Wang et al. [171] reported a ‘smaller is less stable’ effect of austenite in 

a 9Mn maraging steel. They stated that the mechanical twinning was activated in 

larger austenite grains within which the deformation substructures stabilized grains. 

While for smaller austenite grains, mechanical twinning was less likely to occur. 

Another study by Wang et al. [166] proposed it is easier for the outer layer of 

reverted austenite to transforms into martensite during deformation owing to the 

higher stress and lower concentration of austenite stabilizing elements. As the 

fraction of outer layer region is smaller the austenite grain with a larger dimension, 

the larger reverted austenite grains are more stable than the smaller ones. However, 

our study on Mn-based maraging steels did not find any evidence of mechanical 

twinning in the reverted austenite. Besides, the nanoindentation analysis confirmed 

that in the over-aged state when reverted austenite could be detected by AFM, 

reverted austenite was harder than the adjacent martensite matrix. On the other hand, 

the concentration variation between the outer layer and centre can be negligible 
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when the grain size of reverted austenite was so fine (e.g. < 200 nm in this study). 

Therefore, the above two ‘smaller is less stable’ effects apparently cannot be applied 

in the present work. 

In this study, since the reverted austenite exhibited an elongated shape with a wide 

range of lengths, it was not possible to obtain an accurate equivalent size of reverted 

austenite grains. On the other hand, lath-like reverted austenite exhibited a strong 

resistance to coarsening in the lateral direction, maintaining a size in the range 70-

200 nm under various aging conditions. Due to the resolution limit, nanoindentation 

study did not reveal a direct relationship between the stability and austenite size in 

this study. Although higher austenite hardness was found at lower aging temperature 

(Figure 6-12 (b)) where the average austenite size was smaller (Figure 6-13), it 

cannot be concluded that the smaller size of reverted austenite was the reason for the 

higher mechanical stability. Other factors, such as the higher Mn concentration at 

lower aging temperature (Table 6–4), have been demonstrated to have a more 

evident effect on the mechanical stability. Therefore, detailed investigation by 

performing nanoindentation on individual single austenite grain with measurable 

sizes and known Mn concentration is needed to understand the relationship between 

the size and the stability of austenite. 

6.7 Summary 

1. Owing to the high grain boundary enrichment factor of Ti and Mo, Ti and Mo-

rich austenite along the grain boundaries was observed in the initial aging stage. 

The high concentrations of Ti and Mo gradually vanished with the enrichment 

of Mn during the succeeding aging process. 

2. The experimental chemical composition profile of reverted austenite was 

partially consistent with that given by the Fe-Mn phase diagram. The 

segregation of Ti and Mo on grain boundaries resulted in the Mn concentration 

of austenite nanolayers in the initial aging stage being far from the value 

indicated by the equilibrium phase diagram. Otherwise, the chemical 

composition of ferrite and lath-like austenite exhibited good agreement with 

the phase diagram. The TEM-EDS analyses revealed the Mn concentration of 
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lath-like austenite was at the level of ~24 at.% which is much higher than that 

of retained austenite (8-12 at.%) reported in conventional Mn-based TRIP or 

Q&P steels [27][154][34][50]. The volume fraction of reverted austenite 

increased almost linearly with the logarithm of aging time until it was saturated. 

The experimental results of the equilibrium austenite fractions (e.g. ~10 vol.% 

for 10% Mn alloy aged at 500 °C and ~24 vol.% for 12% Mn alloy aged at 

500 °C) were significantly lower than the values predicted by the Fe-Mn phase 

diagram (36.0 vol.% for Fe-10Mn at 500 °C and ~47.5 vol.% for Fe-12Mn at 

500 °C). This is mainly attributed to the fact that an amount of reverted 

austenite transformed to ε-martensite during cooling. The addition of Ti and Al 

may be another reason for the discrepancy. 

3. The formation of reverted austenite nanolayers initiated at the onset of aging 

by a diffusionless shear mechanism accompanied by a small amount of Mn 

diffusion like bainite. The nucleation of reverted austenite within martensite 

laths was kinetically slower due to a lower driving force for phase 

transformation. In the following aging process, the accumulated Mn 

segregation to the newly-formed austenite/martensite grain boundaries led to 

the austenite nanolayers growing to lath-like reverted austenite, which means 

the lateral growth of austenite in the later aging stage was supported by the 

diffusion of Mn. 

4. As the diffusion rate of Mn in the martensite matrix was relatively low, the 

diffusion-controlled austenite growth was fairly slow. In addition, the 

thermodynamic resistance to coalescence between adjacent reverted austenite 

grains is another reason why the width of reverted austenite could maintain in 

the range 70-200 nm for a long time. The width of reverted austenite was not 

closely associated with the nominal Mn content of the alloy, but it is found that 

the width increased with the increase of aging temperature owing to the higher 

driving force for Mn diffusion at higher temperature. 

5. Most of the reverted austenite in Mn-based maraging steels exhibited a K-S or 

N orientation relationship with the residual martensite. It is believed that both 

the K-S and N orientation relationships contributed to the mechanical stability 

of reverted austenite. 



Chapter 6 The formation mechanism of reverted austenite and its mechanical stability 

157 

 

6. Nanoindentation testing revealed the high stability of reverted austenite in Mn-

based maraging steels was mainly attributed to the high Mn concentration of 

austenite. The nano-size of reverted austenite was also considered to be 

responsible for the high stability, but more evidence is needed to support this 

viewpoint. 
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Chapter 7 Strengthening mechanisms of Mn-

based maraging steels 

Table 7–1 summarizes the tensile properties of Mn-based maraging steels in this 

study together with other research results on medium Mn steels (mainly with 5-7 wt.% 

Mn). As shown in Table 7–1, impressive tensile properties have been reported in 

other Mn-based steels subjected to various processing paths. Nevertheless, in view of 

the low carbon content (<0.03 wt.%) of the steels in this work, the tensile strength of 

9-12% Mn steels are still remarkable compared to steels with the same level of 

carbon content in Table 7–1. It is proposed that the high UTS is attributed to the joint 

effect of the precipitation strengthening of Ni2TiAl intermetallic phase and the work 

hardening of reverted austenite. On the other hand, the ductility of the 10% and 12% 

Mn alloys in this study is relatively mediocre. One possible reason is the relatively 

lower austenite fraction than other alloys. Another reason we speculated is associated 

with the high mechanical stability of reverted austenite. In this chapter, the 

strengthening mechanisms of Mn-based maraging steels will be investigated and 

based on the discussion, the optimal microstructure and relevant processing paths to 

obtain the microstructure will be determined with the aim to achieve better 

mechanical properties.  

The strengthening mechanism for steels is complex and generally it can be expressed 

as: 

 𝜎𝑦 = 𝜎𝐵 + 𝜎𝑆𝑆 + 𝜎𝐺𝑅 + 𝜎𝑃𝐻 + 𝜎𝑑𝑖𝑠𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 (7.1) 

where 𝜎𝑦 is the total yield strength, 𝜎𝐵 is the yield strength of base steel, 𝜎𝑆𝑆 is the 

solid-solution strengthening, 𝜎𝐺𝑅  is the grain refinement strengthening,𝜎𝑃𝐻  is the 

precipitation strengthening and 𝜎𝑑𝑖𝑠𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛  is the dislocation strengthening. In the 

following sections, the dominant strengthening mechanism in different heat 

treatment conditions will be discussed. 
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Table 7–1 Summary of the tensile properties of Mn-based steels. 

Materials (wt.%) Heat treatment 𝑉𝛾 (vol.%) YS (MPa) UTS (MPa) TE (%) Ref. 

Fe-0.015C-10Mn-2Ni-1.2Mo-1Al-0.8Ti 500 °C / 5760 min, WQ 10.4 860 1062 17 * 

Fe-0.022C-11.8Mn-2Ni-1.2Mo-1Al-0.8Ti 500 °C / 5760 min, WQ 24.6 870 1120 18.4 * 

Fe-0.007C-8.86Mn-2.0Ni-1.07Mo-1.04Ti 450 °C / 48 h - 984 ~1000 ~15 [18][26] 

Fe-0.007C-8.86Mn-2.0Ni-1.07Mo-1.04Ti 450 °C / 48 h 
[a]

 - 978 1011 12.7 [18][26] 

Fe-0.01C-11.9Mn-2.06Ni-1.12Mo-1.09Ti 450 °C / 48 h - 1142 ~1300 21 [18][26] 

Fe-0.01C-11.9Mn-2.06Ni-1.12Mo-1.09Ti 450 °C / 48 h 
[a]

 - 1394 ~1500 ~10 [18][26] 

Fe-0.01C-11.9Mn-2.06Ni-1.12Mo-1.09Ti 650 °C / 144 h, AC 32.7 ~500 ~980 ~45 [27] 

Fe-0.11C-5.7Mn 560 °C / 1 h, AC 11 955 981 12 [24] 

Fe-0.11C-5.7Mn 520 °C / 4 h, AC 10 934 956 19.5 [24] 

Fe-0.11C-5.7Mn 600 °C / 1 h, AC 23 874 914 18.5 [24] 

Fe-0.11C-5.7Mn 640 °C / 1 h, AC 30 798 1145 30.5 [24] 

Fe-0.11C-5.7Mn 600 °C / 16 h, AC 29 727 879 34 [24] 

Fe-0.11C-5.7Mn 640 °C / 16 h, AC 30 87 174 18.5 [24] 
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Fe-0.04C-5Mn 590 °C / 16 h 
[b]

 75.5 952 1049 39.5 [13] 

Fe-0.045C-5Mn-3Ni 590 °C / 4 h 
[b]

 76.4 1104 1249 39.9 [13] 

Fe-0.2C-4.72Mn 650 °C / 1 min, AC 4.54 ~830 ~970 ~20 [27] 

Fe-0.01C-7.09Mn 575°C / 1 week, WQ 26 766 800 33 [23] 

Fe-0.01C-7.09Mn 625°C / 1 week, WQ 40 954 503 22 [23] 

Fe-0.01C-7.09Mn 675°C / 1week, WQ 1.4 775 1368 7 [23] 

Fe-0.08C-10.6Mn-0.36Si 550 °C / 2 h, WQ 47 1240 1360 8.5 [26] 

Fe-0.08C-10.6Mn-0.36Si 610 °C / 8 min, WQ 54 1080 1390 26.7 [26] 

Fe-0.12C-4.6Mn-1.1Al-0.55Si 720 °C / 2 min, 10°C/s 
[c]

 28 766 1204 12.9 [16] 

Fe-0.12C-4.6Mn-1.1Al-0.55Si 780 °C / 2 min, 10°C/s 
[c]

 6 940 1461 6.2 [16] 

Fe-0.12C-5.8Mn -3.1Al-0.47Si 720 °C / 2 min 
[c]

 26 814 854 14.7 [16] 

Fe-0.12C-5.8Mn -3.1Al-0.47Si 780 °C / 2 mi 
[c]

 31 714 994 23.8 [16] 

Fe-0.12C-5.8Mn -3.1Al-0.47Si 840 °C / 2 min 
[c]

 18 444 1161 11.2 [16] 

Fe-0.05C-9Mn 620 °C / 600 s, FC 30 830 1034 27 [254] 

Fe-0.05C-9Mn 620 °C / 600 s, FC 
[d]

 37 1110 1193 25 [254] 
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Fe-0.1C-5.22Mn 650 °C / 1 h, WQ - - 794 29 [14] 

Fe-0.1C-5.25Mn-2.09Si 675 °C / 1 h, FC - - 1029 27 [14] 

Fe-0.01C-5Mn 625 °C / 3 h, WQ ~4 ~500 ~800 ~10 [255] 

Fe-0.1C-5Mn 650 °C / 3 h, WQ ~30 ~450 ~1050 ~24 [255] 

Fe-0.4C-5Mn 675 °C / 3 h, WQ ~56 ~550 ~1700 ~20 [255] 

Fe-0.4C-5Mn 675 °C / 3 h, FC ~15 ~350 ~1550 ~10 [255] 

AC: air cooling; WQ: water quenching; FC: furnace cooling. 

* Tensile results of this work; 

[a] Cold rolled before annealing 

[b] four-step thermal cycling 2BT treatment, detail see [13] 

[c] single-step heat treatment of intercritical annealing 

[d] Cold rolled after hot rolling 
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7.1 The solid-solution and grain refinement 

strengthening 

As a large amount of solute atoms (e.g. Mn, Ni, Ti, Al and Mo) were added, the 

strength of alloys in the SHT state was increased when compared to that of the base 

steel. The strengthening achieved by substitutional solute atoms is, in general, 

greater the larger the difference in atomic size of the solute from that of iron. On the 

other hand, the differences in the elastic behaviour of solute and solvent atoms are 

also important in determining the overall solid solution strengthening. Mn is an 

effective strengthener, but other elements, such as Mo and Al, have more significant 

effect [197]. Therefore, increasing Mn content did not result in a significant increase 

in the lattice distortions (Table 7–2). Hence, there is no evident difference of the 

solid-solution strengthening among the three alloys. While after aging for a long 

time, owing to the precipitation and the formation of reverted austenite which 

consumed a large number of solute atoms, the supersaturated 𝛼′-martensite matrix 

gradually restored (Table 7–2). This indicates that the solid-solution strengthening 

after long-term aging was less important than that in the SHT and earlier aging state. 

Table 7–2 Lattice parameter (Å) of 𝛼′-martensite in the three alloy in different heat 

treatment conditions. 

 SHT 500 °C / 10080 min 

7% Mn 2.8820 2.8753 

10% Mn 2.8863 2.8776 

12% Mn 2.8878 2.8789 

 

EBSD maps of the 7%, 10% and 12% Mn alloys in the SHT state (Figure 4-2) have 

demonstrated that increasing the Mn content of alloy significantly refined both the 

prior austenite grain size and packet size of lath martensite. Therefore, finer prior 

austenite grains and martensite packets were observed in the 12% Mn alloy in the 

SHT state compared to other alloys. Despite this, the tensile curves in Figure 4-9 

reveal that the differences of YS, UTS and TE among the three alloys are small. It is 
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proposed that this is because the solid-solution strengthening prevailed in the SHT 

state. Another reason is the grain boundaries of martensite packets are too weak to 

resist dislocation. As experimental evidence reveals that the effective grain sizes had 

a good resistance against coarsening during aging owing to the segregation of Mn 

and the formation of reverted austenite (Figure 7-1), the grain refinement 

strengthening in the aged conditions was considered to be the same as in the SHT 

state. 

 

Figure 7-1 The optical micrographs of 7% Mn alloy (a) at SHT state and (b) 500 °C / 2880 

min state. 

7.2 Precipitation strengthening mechanism 

For precipitation-strengthened alloys, if the sum of 𝜎𝐵 + 𝜎𝑆𝑆 + 𝜎𝐺𝑅 + 𝜎𝑇𝑅 is defined 

as 𝜎0, the strengthening can be accounted for an Orowan mechanism [48]: 

 
𝜎𝑦 = 𝜎0 +

𝑇

𝑏𝛬
 (7.2) 

where 𝑇 is the line tension, 𝑏 is the Burgers vector and 𝛬 is the interparticle spacing. 

After examining Orowan theory in detail, Ansell and his colleagues [256][257] 

proposed a modified form of the Orowan equation in which 𝜎𝑦 is expressed as: 

 
𝜎𝑦 = 𝜎0 +

2𝐺𝑏∅ln (𝛬 − 𝑑/2𝑏)

4𝜋(𝛬 − 𝑑)
 (7.3) 
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where 𝐺 is the shear modulus of matrix, ∅ is related to the Poisson’s ratio of matrix 

by ∅ = [1 +
1

1−𝜐
] /2 and 𝑑 is the mean size of precipitates. In the present study, the 

peak hardness condition is considered to be strengthened mainly by the precipitation 

effects. However, in order to avoid the intergranular brittleness, a slightly overaged 

sample (12% Mn alloy, 500 °C / 240 min state) was studied to estimate the 

precipitation strengthening mechanism (see Figure 7-2(a)). Since this sample had a 

small amount of reverted austenite (below 3 vol.%), the effect of reverted austenite 

on strengthening would have been small. The value of 𝜎0 in peak hardness condition 

is assumed to be equal to that of 𝜎𝑦 in the SHT state. The average precipitate size of 

this sample is 7.4 nm (Table 5–1) and the interparticle spacing was ~40 nm. Taking 

𝐺 = 71 GPa  [33], |𝑏| = 0.249 𝑛𝑚  [48], 𝜐 = 0.3  [54] and 𝜎0 = 820 𝑀𝑃𝑎 , the 

calculated 𝜎𝑦 is 1258 MPa which is in good agreement with the experimental value 

(~1250 MPa). Moreover, this does suggest that the small amount of reverted 

austenite in this sample did not contribute greatly to strength. 

Based on the Orowan mechanism, it is not surprising to see a decrease in the YS 

during the overaged period. However, the experimental 𝜎𝑦 in the 500 °C / 5760 min 

state (882 MPa) is much lower than the value calculated by Equation (7.3) (1090 

MPa) and is almost at the same level with the YS in the SHT state (834 MPa). This 

discrepancy is attributed to two factors: (i) the precipitation and austenite reversion 

for the longer aging times consumed a large amount of solute atoms, which 

weakened the solid-solution strengthening of the 𝛼′ -martensite matrix; (ii) the 

annihilation of dislocation slips as a result of the recovery of 𝛼′-martensite matrix 

after long-term aging will have reduced its strength. The softening of 𝛼′ martensite 

matrix led to the fact that the hardness of 𝛼′ martensite matrix was even lower than 

that of reverted austenite in the overaged stage. 

Based on the above discussion, the precipitation strengthening mechanism is 

summarized as follows. At the early stage of aging, strengthening is associated with 

the stress required for dislocations to cut through coherent L21-ordered Ni2TiAl 

precipitates. The stress to cut through the precipitate is assumed to be governed by 

the coherency stresses and internal ordering of precipitates [33]. With the growth of 

the precipitates, the stress required for dislocation to cut through them increases and 
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so the yield strength increases. Unfortunately, it was not possible to investigate the 

strengthening behaviour at this stage due to the intergranular brittleness in this study. 

Further increasing in the precipitate size led to the initiation of Orowan mechanism. 

According to Orowan mechanism, the coarsening of precipitates featured with the 

increase of interparticle spacing after long-term aging result in the decrease of 

strength.  

 

Figure 7-2 (a) The engineering stress-strain curves of 12% Mn alloy in different heat 

treatment conditions; (b) the corresponding hardness evolution of 12% Mn alloy aged at 

500 °C. 
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7.3 Austenite engineering in overaged stage 

There are three essential plastic deformation mechanisms in austenite at room 

temperature: dislocation slip, deformation-induced martensitic transformation and 

mechanical twinning [26]. In this section, an attempt will be made to understand 

which deformation modes occurred in these Mn-based maraging steels. This is 

significant if further improvement of the mechanical properties is required, as both 

theoretical and experimental studies have demonstrated that invoking the desired 

operation modes of plastic deformation in austenite can avoid the loss of ductility 

shortly after yielding [26]. 

Figure 7-3 displays the microstructural observation and XRD quantitative analysis of 

the over-aged 10% and 12% Mn alloys (500 °C / 5760 min state) after tensile testing. 

The plastic deformation did not lead to a significant decrease in the amount of 

austenite. A more evident decrease in the volume fraction of austenite after tensile 

testing was observed in the 10% Mn alloy, which might be associated with a lower 

stability of the austenite due to lower Mn concentration. All the evidence indicates 

that the reverted austenite possessed such a high stability against deformation-

induced martensitic transformation that the TRIP effect was not a strong factor in the 

two alloys. This conclusion is in agreement with our previous nanoindentation study 

(Section 6.5) in which the TRIP effect was seldom observed during indentation. 
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Figure 7-3 SEM images of samples after-tensile (a) 10% Mn and (b) 12% Mn alloys aged at 

500 °C for 5760 min. (c) The volume fractions (vol.%) of reverted austenite as a function of 

aging time at the temperature of 500 °C (solid lines: before tensile testing; dash lines: after 

tensile testing). 

7.3.1 The effect of reverted austenite on strengthening 

As shown in Figure 4-8, when aging at 500 °C, the hardness of the 10 and 12% Mn 

alloys moderately decreased during the overaged stage. On the other hand, secondary 

hardening was observed at this stage in both alloys, which suggested the possible 

formation of an additional phase. Experimental evidence showed that it was 

associated with the austenite reversion in both alloys. As Figure 7-4(a) shows, it is 

clear that the formation of austenite (can be detected by XRD (> 3 vol. %)) in the 10% 

Mn alloy started from aging for 1440 min, which coincided with the onset of 

secondary hardening. Although the austenite nanolayers were observed earlier before 

the 500°C / 1440 min state, e.g. austenite layers along the prior austenite grain 

boundaries at the early aging stage in Figure 6-1, it is not believed that the plastic 

deformation mechanisms could occurred in the austenite nanolayers. A similar 
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coincidence of detecting reverted austenite formation and secondary hardening also 

existed in the 12% Mn alloys aged at 500 °C (Figure 7-4(b)).  

In order to discuss the work hardening behaviour, true stress-strain curves are 

introduced in this section. Figure 7-5(a) displays the representative true stress-strain 

curves of 12% Mn alloy when aged at 500 °C for 480 min and 5760 min. True 

stress-strain curves of the 12% Mn alloy in the SHT state and 10% Mn alloy at 

500 °C /5760 min state are also displayed in Figure 7-5(a) for a comparison. The 

following discussion about the tensile properties in this section is all based on the 

true stress-strain data.  

 

 

Figure 7-4 Hardness evolution vs. volume fraction of austenite as a function of time in (a) 10% 

Mn and (b) 12% Mn alloys when aged at 500 °C. 
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As shown in Figure 7-5, the 12% Mn alloy in the 500 °C / 480 min state exhibited an 

impressive yield stress of ~1320 MPa but failed shortly after yielding with a 

maximum true strain of 5.4%. The high yield stress was attributed to the 

precipitation strengthening mechanism which, however, could not provide sufficient 

work hardening after yielding, although the work hardening was still evident when 

compared to that of the SHT state. In contrast, the 12% Mn alloy in the 500 °C / 

5760 min state exhibited steady work hardening after reaching the yield stress of ~ 

900 MPa. This subsequent work hardening greatly enhanced both the strength (up to 

1490 MPa) and ductility (~16.9%). A significant but lower level of work hardening 

(maximum true stress: 1366 MPa, maximum true strain: 15.7%) existed in the 10% 

Mn alloy in the 500 °C / 5760 min state (Figure 7-5). This work hardening 

apparently compensated the loss of yield stress after long-term aging, and more 

importantly, it was accompanied by an increase of ductility. As it has been shown 

that there was limited transformation of the reverted austenite to martensite during 

the deformation of both alloys, it is not likely that the work hardening could be 

primarily attributed to the TRIP effect. Given that the twinned structure of austenite 

was not observed in the two samples either, it is proposed that the deformation 

mechanism of reverted austenite was dominated by the dislocation slip with a small 

amount of the TRIP effect. This is quite possible when considering the high stability 

of the reverted austenite in the two alloys aged at 500 °C. 
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Figure 7-5 (a) The true stress-strain curves of the 12% Mn alloy in different heat treatment 

conditions; the true stress-strain curves of the 10% Mn alloy in the 500 °C /5760 min state is 

also displayed for comparison. 

 

It is known that 𝛼 , -martensite tends to nucleate at grain boundaries by a strain-

controlled mechanism, or in some cases by stress-assisted nucleation process. Yen et 

al. [26] pointed out that when the grain size of austenite is small, it is difficult to 

form the multiple-variant fault structure which serve as the dominant sites for the 

nucleation of strain-induced martensite and therefore the stress-assisted martensite 

nucleation would became the predominant mechanism in this situation. In this work, 

a lot of evidence has confirmed that the reverted austenite formed in Mn-based 

maraging steels aged at 500 °C was very stable. Deformation-induced transformation 

to martensite did not occur by a large scale even when subjected to a true strain up to 

16.9%. As the deformation behaviours of nano-scale austenite in this work coincided 

with the factors required for the stress-assisted nucleation mechanism in Ref. [26], it 

is proposed that the limited TRIP effect in this work was the result of a stress-

assisted martensitic transformation process rather than the well-known strain-

induced martensitic transformation. 

The thermodynamic modelling has demonstrated that the stress-assisted mechanism 

for the deformation-induced 𝛼 , -martensite transformation is very sensitive to the 
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chemical composition of austenite, particularly the Mn concentration [26]. Based on 

the principles of stress-assisted martensitic transformation, Yen et al. [26] suggested 

that the compositional differences in austenite could lead to a remarkable difference 

in the efficiency of TRIP effect. It has been demonstrated by experiment that an 

additional stress of 587 MPa is required to trigger the deformation-induced 

martensitic transformation in austenite with 2.6 wt.% higher of Mn concentration. 

Therefore, reverted austenite with relatively high Mn concentrations (in the range of 

20-26.1 wt.%) in this study is believed to require a correspondingly high stress to 

induce the martensitic transformation. In reality, most austenite grains in Mn-based 

maraging steels reached the plastic instability before the stress threshold required for 

martensitic transformation was reached. Only a small amount of austenite grains 

with lower Mn concentrations had the martensitic transformation during deformation. 

7.3.2 The effect of reverted austenite on ductility 

In contrast to some literature suggesting that the brittleness was associated with the 

formation of reverted austenite [113], the present work suggests that the ductility is 

significantly improved by the formation of ductile austenite at grain boundaries. 

Basically, the embrittlement is caused by two factors, first, the segregation of 

impurity or alloying elements along grain boundaries and second, preferential 

precipitation of second phase(s) at grain boundaries. As discussed in Section 2.2.4, 

researches presented numerous experimental results to support both mechanisms in 

Fe-Mn alloys [92][95][113][116][117][118][119][121]. The main difficulty in 

studying the embrittlement phenomenon is the observation of atomic scale 

segregation at boundaries. Initially, the results were only speculative. Later, Auger 

electron spectroscopy (AES) was applied to elucidate possible segregation at grain 

boundaries and these investigations indeed identified the segregation of Mn to 

boundaries [49][121][122]. In this study, the Auger electron spectroscopy was not 

performed to study the elemental segregation at the interface. However, high-

resolution TEM-EDS analysis has confirmed the presence of Mn-rich nanolayer at 

grain boundaries in the early aging stage (Section 6.3). 
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The tensile results in conjunction with the fractographs of aged 10 and 12% Mn 

alloys revealed that the aging treatment resulted in the intergranular brittleness in the 

initial stage of aging. While after longer aging durations, or higher aging 

temperatures or increasing Mn content led to a transition in the fracture mode to 

transgranular dimpled ductile fracture. These factors have been demonstrated to 

benefit the formation of reverted austenite as well. For example, 12% Mn alloy aged 

at 500 °C exhibited intergranular embrittlement in the initial aging stage until the 

ductility suddenly increased to 5.5% after aging for 240 min. At this time, the 

volume fraction of austenite could not be detected by XRD, only thin austenite 

nanolayers were visible under SEM and TEM observations. As the increasing of 

aging time, the ductility gradually increased to 17.8% in the 500 °C /2880 min state 

with the austenite fraction of 17.2%. The whole transformation process can be 

described as: in the initial aging stage, the segregation of Mn at the grain boundaries 

increased the DBTT and thus gave rise to the intergranular embrittlement under 

external load. Although the subsequent formation of austenite nanolayers removed 

the intergranular embrittlement, the ductility was still unsatisfactory. Thanks to the 

growth of austenite layers via accumulated Mn segregation, the presence of ductile 

lath-like austenite significantly improved the ductility of these alloys. On the other 

hand, once the evident ductility was achieved, the further increase of austenite 

fraction did not lead to a corresponding improvement in ductility (Figure 4-11 and 

Figure 4-12). This finding once again confirmed that the TRIP effect was not likely 

to be extensive in these alloys, as the TRIP effect of austenite is known to improve 

the ductility and it is supposed that there is an approximately linear relationship 

between the volume fraction of austenite and the increment of ductility in the case of 

TRIP steels [15]. 

7.4 Summary 

Studies on newly-developed materials mainly focus on optimizing the microstructure 

by tailoring the heat treatment parameters and chemical composition with the aim of 

obtaining the desired properties. Specifically in this work, the Mn content of the 

alloy, aging temperature and duration are the most important factors. Based on the 
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above discussion, the 12% Mn alloy, which had a relatively smaller grain size and 

higher amount of reverted austenite after aging, had many advantages. Further 

increasing the Mn content beyond 12 wt.%, however, would lead to the TWIP 

austenitic steels [18]. In terms of aging conditions, the effort to attain a good balance 

between the aging temperature and duration has been made. The 12% Mn alloy in 

the 500 °C / 480 min state exhibits a high yield stress (~1320 MPa) which is 

attributed to the interaction between dense precipitates and dislocations in the 

martensite matrix, whereas the poor ductility (5.4%) and limited work hardening is 

due to the small amount of reverted austenite nanolayers which cannot provide 

plastic deformation. In contrast, the lower yield stress (~900 MPa) of the 12% Mn 

alloy in the 500 °C / 5760 min state is the result of coarse precipitates and martensite 

softening after long-term aging. But owing to the considerable amount of lath-like 

reverted austenite formed at grain boundaries, the alloys exhibited a good work 

hardening leading to a maximum stress of 1490 MPa after yielding. Therefore, there 

is a contradiction between the requirement for short aging time to avoid the 

coarsening of precipitates and the softening of martensite matrix and the requirement 

for long-term aging to form a certain amount of lath-like austenite. Previous studies 

have revealed that the precipitation kinetics of Ni2TiAl was very fast due to the rapid 

diffusivity of participating elements at 500 °C, whereas the formation of lath-like 

austenite was limited by the diffusion of Mn. The analyses on the formation of 

precipitates and reverted austenite have demonstrated that the kinetics of both 

processes were strongly associated with the aging temperature. Elevating aging 

temperature accelerated both processes, but some evidence indicates that the 

influence of aging temperature on the austenite formation was more prominent than 

that on the precipitation. For example, decreasing the aging temperature to 420 °C 

led to the volume fraction reducing to almost zero even after aged for 10080 min, 

whereas a number of precipitates with a size of ~5.5 nm could be observed in the 12% 

Mn alloy aged at 420 ºC for 10080 min (Figure 5-2). Based on this discussion, the 

idea of aging at a higher temperature for a shorter duration is proposed. Most 

importantly, it is suggested by the MatCalc calculation that higher aging temperature 

corresponds to a lower Mn concentration of austenite. As it has been demonstrated 

that the stability of austenite is closely dependent on the concentration of austenite 
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stabilizing elements, the increase of aging temperature is believed to lead to a less 

stable austenite in which deformation-induced martensitic transformation is possible. 

In this case, a further improvement of both strength and ductility due to TRIP effect 

can be expected in these alloys. 

Figure 7-6 shows the SEM images of the 12% Mn alloy aged at 540 °C for 360 min. 

It is clear that the reverted austenite had been formed at grain boundaries in this 

stage (Figure 7-6(a)). Besides, a large number of fine precipitates were observed as 

well (Figure 7-6(b)). In the future study, the tensile testing and nanoindentation will 

be carried out on this sample to examine its mechanical properties. 

 

Figure 7-6 SEM images of 12% Mn alloy aged at 540 °C for 360 min: (a) reverted austenite 

formed along grain boundaries and (b) nano-precipitates. 
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Chapter 8 Conclusions and future work 

8.1 Phase identification 

Thermodynamic calculations by MatCalc indicated that the dominant equilibrium 

phases of Mn-based maraging steels at the aging temperatures 420-500 °C are ferrite 

and austenite. But it did not predict the existence of Ni2TiAl intermetallic phase. 

Instead, a laves phase Fe3Ti(Mo) is considered to be the precipitate phase according 

to the calculation. This discrepancy implies that an improvement to complete the 

thermodynamic database is required. Another reason may be that the real 

microconstituent is far from the equilibrium and is difficult to comprehensively 

predict. The situation is further complicated when considering the variety of alloying 

elements in this alloying system and the substantial variations in heat treatment paths. 

Phase identification by XRD confirmed the formation of reverted austenite during 

aging at 420-500 °C. The amount of reverted austenite increased with the aging 

temperature and duration. Higher Mn content of the alloy also promoted the 

austenite reversion. In addition, XRD analyses revealed the existence of 𝜀-martensite 

in the over-aged samples, but no evidence of precipitates was found in XRD patterns. 

8.2 Hardness and tensile results 

In the SHT state, the addition of Mn has been demonstrated to refine both the prior 

austenite grains and martensite packets via reducing the 𝐴𝑒3 and 𝑀𝑠  temperatures. 

This grain refinement is believed to contribute to the higher hardness of 12% Mn 

alloy in the SHT state. 

Aging at 460 ºC and 500 °C exhibited a typical hardness evolution of the 

precipitation-strengthened alloys. Increasing the aging temperature led to a more 

rapid hardening towards the peak hardness followed by a moderate decrease of 

hardness in the over-aged regime. Slower hardening kinetics but more significant 

hardening effect existed at 420 °C. In terms of the effect of Mn content, a quicker 
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response to thermal treatment and more significant hardening was found in the 12% 

Mn alloy. 

Embrittlement occurred in samples aged at lower temperatures or for shorter times. 

Increasing the aging temperature and duration significantly improved the 

embrittlement phenomena. Increasing the Mn content of the alloy also benefited the 

ductility. The fracture mode of the solution-treated samples was a mix of cleavage 

brittle fracture and dimple ductile fracture. Intergranular brittle fracture was 

observed in the early aging stage. The embrittlement phenomenon was much 

improved after prolonged aging process and the fracture mode gradually transformed 

to a transgranular dimpled ductile fracture. Both increasing Mn content and aging 

temperature accelerated the improvement in the ductility. The 12% Mn alloy aged at 

500 °C for 5760 min exhibited a UTS of 1120 MPa with TE of 18.4%.  

8.3 Precipitation behaviour of L21-ordered Ni2TiAl 

phase 

The compositional analyses identified that the nano-scale precipitates in the Mn-

based maraging steels are a non-stoichiometric Ni2TiAl intermetallic phase with 

minor Fe and Mn substitution. This non-stoichiometric composition is considered to 

enhance the ductility of the Ni2TiAl phase.  

HREM in conjunction with SAED study revealed the crystal structure of Ni2TiAl 

phase is L21-ordered which is expected to have a better creep resistance than B2-

NiAl phase. The orientation relationship between the L21-ordered Ni2TiAl phase and 

𝑏𝑐𝑐 martensite matrix was: (220)𝐿21
ǁ(110)𝑏𝑐𝑐 , [001]𝐿21

ǁ[001]𝑏𝑐𝑐 ; 

(220)𝐿21
ǁ(110)𝑏𝑐𝑐 , [011]𝐿21

ǁ[011]𝑏𝑐𝑐 ; (220)𝐿21
ǁ(110)𝑏𝑐𝑐 , [1̅11]𝐿21

ǁ[1̅11]𝑏𝑐𝑐 . 

One eighth of the crystal structure of the L21-Ni2TiAl phase is a bcc cubic lattice 

which has a similar lattice parameter with the bcc matrix. The lattice misfit between 

them is calculated as 1.24%. This small lattice misfit together with the special 

orientation relationship indicates that the L21-ordered Ni2TiAl precipitates are not 

only coherent but also coplanar with the 𝛼′ -martensite matrix. The coherent 

relationship is confirmed by the bright-field TEM observation which exhibited 



Chapter 8 Conclusions and future work 

177 

 

classic dumb-bell dynamical diffraction contrast from the precipitates under two-

beam conditions. 

Various microstructural observations, such as by bright-field TEM, HREM and 

HAADF, suggested the existence of core/shell structure in the precipitates. So far, 

the exact nature of the heterogeneity is still not clear. The current evidence indicates 

that the two-phase L21-Ni2TiAl/B2-NiAl precipitates might be possible. 

Experimental results revealed that the coarsening rate constants of precipitates in 

Mn-based maraging steels obey the diffusion-controlled coarsening kinetic form 

�̅�3~𝐾𝑡  predicted by LSW theory (even though the alloy clearly broke the 

assumption of the LSW theory of a zero volume fraction of precipitates). On the 

other hand, the experimental particle size distributions (PSDs) were much broader 

than the theoretical PSD function, as the PSDs are believed to be more sensitive to 

the volume fraction than the coarsening rate constants. 

Both thermodynamics and kinetics analyses supported the view that the Mn atoms 

participated in the nucleation of precipitation and reduced the misfit strain energy at 

the interface. Hence, higher Mn content is considered to promote the nucleation and 

increase the number density of precipitates, which has been confirmed by the 

microstructural observations. 

8.4 Reverted austenite and its mechanical stability 

The formation of reverted austenite nanolayers at grain boundaries initiated at the 

onset of aging by a diffusionless shear mechanism since the critical Mn 

concentration for austenite reversion at the interface was very low. The nucleation of 

reverted austenite within martensite laths was kinetically slower due to a lower 

driving force for phase transformation. In the following aging process, the 

accumulated Mn segregation to the new martensite/austenite grain boundaries led to 

the austenite nanolayers growing to lath-like reverted austenite, which means the 

lateral growth of austenite was supported by the diffusion of Mn. As the diffusion 

rate of Mn in the martensite matrix was relatively low, the diffusion-controlled 

austenite growth was fairly slow. In addition, the thermodynamic resistance to 
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coalescence between adjacent reverted austenite grains is another reason why the 

width of reverted austenite could maintain in the range 70-200 nm for a long time. 

The width of reverted austenite was not closely associated with the nominal Mn 

content of the alloy, but it is found that it slightly increased with the increase of 

aging temperature owing to the higher driving force for Mn diffusion at higher 

temperature. 

The experimental chemical composition profile of reverted austenite was partially 

consistent with that given by the Fe-Mn phase diagram. The segregation of Ti and 

Mo on grain boundaries in the initial aging stage resulted in the Mn concentration of 

austenite nanolayers being far from that indicated by the equilibrium phase diagram. 

The high concentration of Ti and Mo gradually vanished with the enrichment of Mn 

during the succeeding aging process. Therefore, the chemical composition of ferrite 

and lath-like austenite exhibited good agreement with the phase diagram. The TEM-

EDS analyses revealed the Mn concentration of lath-like austenite was at the level of 

~24 at.% which is higher than that of retained austenite (8-12 at.%) reported in 

conventional Mn-based TRIP or Q&P steels [27][154][34][50].  

The volume fraction of reverted austenite increased almost linearly with the 

logarithm of aging time until it was saturated. The experimental results of the 

maximum austenite fractions (e.g. ~10 vol.% for 10% Mn alloy aged at 500 °C and 

~24 vol.% for 12% Mn alloy aged at 500 °C) were significantly lower than the 

values predicted by the Fe-Mn phase diagram (36.0 vol.% for Fe-10Mn at 500 °C 

and ~47.5 vol.% for Fe-12Mn at 500 °C). This is mainly attributed to the fact that an 

amount of reverted austenite transformed to ε-martensite during cooling. The 

addition of Ti and Al may also be a reason for the discrepancy. 

Most of the reverted austenite in the Mn-based maraging steels exhibited a K-S or N 

orientation relationships with the residual martensite. It is believed that both the K-S 

and N orientation relationships contributed to the mechanical stability of reverted 

austenite. However, nanoindentation results revealed that the high stability of 

reverted austenite in Mn-based maraging steels was mainly attributed to the high Mn 

concentration of austenite. The nano-size of reverted austenite was also considered to 
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be responsible for the high stability, but more evidence is needed to support this 

viewpoint. 

8.5 Optimal heat treatment suggestions 

Based on the above discussion, the 12% Mn alloy, which had a relatively smaller 

grain size together with a higher potential for austenite reversion, has been 

demonstrated to possess advantages for the automotive applications. In terms of the 

aging conditions, the optimum aging temperature for Mn-based maraging steels is 

460 °C if the balance between the strengthening effect and production efficiency is 

considered, but in reality the serious embrittlement that occurs at this temperature 

would limit its use. Therefore, the aging temperature primarily studied in this work 

was 500 °C. The 12% Mn alloy aged at 500 °C / 480 min state exhibited a high yield 

stress (true stress: ~1320 MPa) but poor ductility (true strain: 5.4%), which resulted 

from the interaction between dense precipitates and dislocations. In contrast, the 12% 

Mn alloy aged at 500 °C / 5760 min state exhibited a lower yield stress (true stress: 

~900 MPa) but good work hardening leading to a UTS of 1490 MPa (true stress), 

which was attributed to the formation of reverted austenite. Therefore, there is a 

contradiction between the requirement for a short aging duration to avoid the 

softening of martensite matrix (including the coarsening of precipitates) and the 

requirement for a long-term aging to form lath-like reverted austenite. Experimental 

studies revealed that the kinetics of both the precipitation and austenite reversion 

were strongly dependent on the aging temperature, but the influence of aging 

temperature on austenite formation was more prominent than that on precipitation. 

Therefore, it is proposed that aging at higher temperature for shorter duration might 

be a method to address the conflicting requirements. More importantly, higher aging 

temperature corresponds to a lower Mn concentration of austenite which made the 

occurrence of TRIP effect possible. 
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8.6 Future work 

Based on the findings and discussions in this study, the following suggestions for 

future research are proposed: 

1. It has been proposed that the 12% Mn alloy aged at higher temperature for a 

shorter duration to obtain a better combination of strength and ductility. The 

next step therefore is to define the optimal aging temperature and duration. 

Dilatometry measurements can be utilized to determine the austenite 

transformation kinetics instead of by trial and error method. A volume 

fraction of austenite (~20 vol.%) with a mechanical stability which enhances 

the capacity for work hardening during deformation is the main aim when 

designing the processing paths. 

2. Atom probe analysis which provides the information about the chemical 

composition, particle size and number density of precipitates at atomic scale, 

should be used for further characterization of precipitates formed in early 

aging stage. In addition, APT in combination with HREM can assist the 

investigation on the core/shell structure. 

3. The orientation relationship between the austenite and martensite needs to be 

further studied by EBSD which can provide better statistics than TEM 

observations, although this technique will be limited by its resolution. 

4. Detailed nanoindentation study on the hardness of each single austenite grain 

with known Mn concentration and grain size is a direct method to explore the 

relationship between the mechanical stability and Mn concentration/grain 

size of austenite phase. Besides, nanoindentation is also an effective 

technology to estimate the occurrence of martensitic transformation under 

deformation (a higher maximum force at least above 70 µN should be applied 

to trigger TRIP effect). 

5. As ε-martensite in Mn-based maraging steels vanished after tensile testing, 

investigation on its role in the deformation mechanism is required. 
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Appendix Crystallographic information of the phases in maraging steels 

 

 

Phase Formula 
Crystal 

structure 

Lattice 

parameter (nm) 
Space group 

Atomic position 

Atom X Y Z 

𝛼 , Fe83.5Mn16.5 bcc a = 0.2884 𝐼𝑚3̅𝑚 (229) Fe 0 0 0 

Mn 0 0 0 

𝛾 Fe65Mn35 fcc a = 0.3605 𝐹𝑚3̅𝑚 (225) Fe 0 0 0 

Mn 0 0 0 

𝜀 Fe83.5Mn16.5 hexagonal a = 0.2536 

c = 0.4089 

P63/mmc (194) Fe 1/3 2/3 1/4 

Mn 1/3 2/3 1/4 

η-NiAl NiAl B2 a = 0.2887 𝑃𝑚3̅𝑚 (221) Ni 0 0 0 

Al 1/2 1/2 1/2 
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Phase Formula 
Crystal 

structure 

Lattice 

parameter (nm) 
Space group 

Atomic position 

Atom X Y Z 

Ni2TiAl Ni2TiAl L21 a = 0.585 𝐹𝑚3̅𝑚 (225) 

Al 0 0 0 

Ti 1/2 1/2 1/2 

Ni 1/4 1/4 1/4 

 

Appendix 1 (continued) 


