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ABSTRACT

This thesis describes investigations into a number of coating processes using exper-

imental, analytical and computational techniques.

The first problem, considered experimentally, is that of reverse roll coating with a
liquid reservoir positioned directly above horizontally aligned rollers. Measurements
of the film thickness as a function of the height of fluid in the reservoir and speed
ratio are presented. When the wetting line is located downstream of the nip, either
a decrease in the height of the associated hydrostatic head or an increase in the
speed ratio causes a reduction in the thickness of the outgoing film. However, when

the wetting line is located upstream of the nip the opposite i1s found to be true.

The bead—break instability in forward meniscus coating is considered both experi-
mentally and analytically. Agreement between predictions from a simple mathem-
atical model of the stable bead and experimentally determined meniscus positions
is seen to be excellent. A perturbation hypothesis is used to predict the onset of the
bead-break instability, at which the upstream meniscus accelerates rapidly towards
the downstream one, so the two collide and the bead collapses. The results from
the model compare well with experiments. An outline of a method for using the

bead-break instability as a design criterion is also presented.

Typically in a slot, blade or knife coater the downstream meniscus 1s assumed to
pin at a corner of the coating device. In chapter 5, a series of experiments and a
corresponding computational study, are presented which illustrate that the meniscus
can advance up the face of such coating devices (in this case a roll-flat plate system).
Reducing the corner angle is seen to reduce the size of the climb region and the
associated recirculation at this point at the downstream meniscus. It is also shown

that the meniscus can detach from the corner and retreat into the gap, which can

in turn give rise to the ribbing instability.

An offset gravure coating arrangement is considered in chapter 6. The coating
arrangement is split into two areas of study — the offset gravure nip and the kiss

coating bead. An experimental investigation of the offset nip with the two rolls



vertically aligned and running at the same speed in forward mode reveals two ways
in which the metered film thickness can be influenced. Either increasing the nip force
by pressing the two rolls together or decreasing the roll speeds causes a reduction in
the metered film thickness. At higher speeds the metered film thickness is observed

to asymptote to a limiting value, the value ot which depends on the gravure pattern.

The reverse mode kiss coating bead operating at speed ratios greater than one is
also 1nvestigated. Experiments reveal that under these conditions, all the fluid is
transterred from the roll surface to the web and the two make contact due to the
generation of a sub—ambient pressure field within the bead. Two models based
on lubrication theory are derived, one assuming an infinitely tensioned web and a
second that incorporates the effect of web flexibility. The latter is found to give much
better agreement with the experimental data. Finally a perturbation hypothesis 1s
applied to these to models in order to predict the onset ot the ribbing instability,

both of which are found to give reasonable agreement with the experimental data.

Finally, the results of a systematic experimental investigation of reverse mode direct
gravure coating is reported, where the web runs directly over a gravure roll surface.
This wide ranging parametric study illustrates the effect of the operating parameters
on the final film thickness. Key findings are that speed ratio, fluid properties and
cell shape and size can significantly influence the final film thickness. For a fixed roll
speed it is observed that as the web speed is increased the gravure bead becomes

unstable. This results in streaking on the web, and gives an upper limit to the speed

ratio.
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NOMENCLATURE

Most of the symbols used in this thesis have different meanings in different chapters
while others are only relevant to short sections of text. Below are listed some of
the symbols which have a general meaning, however specific definitions will depend
on the context. A convention used throughout the thesis is that, unless otherwise

indicated (and except for Re, Ca, S), quantities in upper case are dimensional while

those 1n lower case are dimensionless.

Capillary number

Minimum gap width

Outlet film thickness

Inlet film thickness

Gap width

Gap at upstream meniscus

Gap at downstream meniscus
Roll radius

Radius of upstream meniscus
Radius of downstream meniscus

Reynolds number
Speed ratio

Speed

Flux

Velocity components
Cartesian coordinates
X position of the minimum gap
Dynamic viscosity
Density

Surface tension
Static contact angle

Dynamic contact angle
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1.1 Introduction

Liquid film coating is simply the process of replacing one fluid (usually air) on a

solid surface by a liquid. The range of coated products in everyday use is vast —

paper, photographic products, packaging materials, magnetic media (for example
floppy disks; video cassettes) and aluminium sheets, to name but a few. The coated

web or substrate range from being very flexible (thin plastic sheet) to being stiff

(such as wood, board or metal).

Generally speaking, to produce coated films economically, three requirements need

to be met :

e The film is evenly coated on the substrate to provide a product that meets

with customer specification.

¢ The coated film is thin to minimise the drying load (as after coating the web the
solvent — either aqueous or organic — needs to be removed by evaporation)

and to minimise the solvent inventory in the process.

e The production rate of coated films needs to be high such that capital equip-

ment costs can be minimised.

It is relatively easy to meet any two of these requirements, but it 1s becoming

increasingly important from an economic and environmental perspective to meet

all three. This has lead to a great deal of fundamental research in the area of wet

coatings, predominantly in the last 20 years.

Of central importance to coating operations is the ‘surtace tension’ of a fluid and

the ‘contact line’ where the liquid meets a stationary or moving boundary. These

are discussed in the following sections.

1.1.1 Surface Tension

Across a liquid—gas interface (as we are concerned only with single layer coatings 1n

this thesis) is a steep gradient in density, where the properties change from those 1n




the bulk liquid to those in the bulk gas. At the interface the molecules are attracted
more strongly to neighbouring molecules than those in the bulk, as illustrated in

figure 1.1. This results in the surface layer acting with a tension along it. Mathem-

atically this layer is assumed to have zero thickness.

Interface

Figure 1.1: Surface tension of a liquid at an interface with a gas. The thicker
lines represent a greater attractive force causing a tension at the
surface.

Surfactants are commonly added to aqueous coating fluids to reduce the static sur-
face tension. The partially hydrophobic/hydrophilic nature of a surfactant molecule
means that they preferentially reside at the interface. As the intermolecular forces
between the surfactant molecules is less than that between water molecules, the sur-
face tension is reduced. The dynamic surface tension is caused by a concentration
egradient of surfactant along the interface. This is generated when a new interface is
formed, for example at a contact line, and fluid from the bulk comes onto the sur-
face. It will take a small, but finite, time for the dispersed surfactant molecules to
diffuse to the interface and an equilibrium to be established. Tricot (1997) presents

a thorough review ot this phenomenon.

1.1.2 The contact line

The contact line is a three phase boundary where two immiscible fluids meet at a
solid boundary. The contact line is referred to as ‘static’ where the relative motion

is zero, and ‘dynamic’ where the point of apparent contact moves relative to the




solid.

The static contact line can be quantified by a ‘static contact angle’, .. For the
liquid/gas system common in many coating flows this is the angle the liquid makes

with the solid (measured through the liquid, as shown in figure 1.2). It can best be
understood from a balance of forces given by the Young (1805) equation, shown in

figure 1.2, where 054, 01, and oy; are the surface tensions of the solid—gas, liquid—gas

and solid-liquid interfaces. The horizontal forces balance when
Osg = Og| + OgCOS O, (1.1)

where 0, 1s the contact angle. The work of adhesion of the liquid to the solid is

defined (Atkins, 1998) as

Wad = Olg + Osg — Ogl (1'2)
and equation (1.1) can be written as

Wad -

O‘lg

cos @, = 1. (1.3)

A liquid with a strong adhesion to the solid will wet well (and completely if Wyq >

207,) whilst those with strong cohesive bonds within the liquid will not.

0, ‘
Gas Solid

Liquid
S %l

Figure 1.2: Balance of forces at the three phase boundary.




The physics at a contact line is still poorly understood, particularly when there is
relative motion between the liquid and solid. In the modelling of this problem the
Jjump from non-slip at the solid surface to the zero shear stress at the free surface
gives rise to a stress singularity, and to calculate the flow field some property of the
system must be relaxed. Commonly, the no—slip boundary condition at the wetting
line 1s replaced by an explicit velocity distribution which increases from zero to
the speed of the substrate over a distance given by the slip length; see Dussan
(1979) for a comprehensive review of the physical arguments for the form the slip
length expression can take. However, using this approach both the slip length and
the dynamic contact angle, 8p, need to be introduced into the model and have
an (unknown) dependence on the speed and the fluid properties. A more recent
theoretical approach by Shikhmurzaev (1993, 1994, 1996) is based on the flow near
the contact line giving rise to a surface tension gradient along the two interfaces.
Here the contact angle and slip length need not be imposed as part of the solution;
however the model introduces several physical parameters, including a coefficient ot
sliding friction (in effect a slip length), which are difficult to interpret in physical

terms, or to measure.

1.2 Classification of coaters

Coaters generally fall into one of two broad categories (Benjamin and Scriven, 1992)
— gelf metered where the flux on the web depends on the fluid properties, geometry
and operating conditions of the coater and pre-metered where the flux is set extern-
ally (for example via a selected pump rate) and all fluid is transferred to the web.
Cross—sections through the metering region of common coating devices are shown

in figures 1.3 (self metered) and 1.4 (pre-metered), some of which are discussed in

more detail in the following sections.
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(a) (b) (c)

Figure 1.3: Examples of self metered coaters: (a) forward roll coater, (b)
reverse roll coater, (c) dip coater.

(a) (b) (c)

Figure 1.4: Examples of pre-metered coaters: (a) slot coater, (b) slide
coater, (c) curtain coater.

1.3 Roll coaters

Roll coating 1s the process of depositing a thin layer of fluid on a web or substrate
by using one or more rolls. Between each roll/web or roll/roll pair the speeds, roll
radii, gap and fluid properties govern the film-split ratio and hence the thickness
of the outgoing films. Roll coaters can be sub—classified, depending on the relative

directions of the rolls, whether the rolls are rigid or if covered in a soft elastomer

covering or possibly if the surface is patterned with gravure cells. These roll systems

are reviewed below.




Figure 1.5: Classification of a forward roll coater based on the inlet film
thickness: (a) fully flooded, (b) moderately starved and (c)
ultra—starved.

1.3.1 Forward roll coaters

A forward roll coater consists, most simply, of a pair of counter—rotating rolls, such
that the motion of the surfaces through the ‘nip’ is in the same direction. The ‘nip’

refers to the part of the coater where the two roll surfaces are in closest proximity.
Forward roll coaters are generally used to coat films of between 25 ym and 60 pm

thickness, at speeds of between 3 and 60 m/min for fluids of viscositys in the range

1-50 mPa s (Zink, 1979).

A forward roll coater can be further classified into fully flooded, moderately starved
or ultra starved depending on the ratio of the inlet film thickness to the minimum

gap, as illustrated in figure 1.5. This distinction was first observed experimentally

by Malone (1992) and investigated computationally and analytically by Gaskell et

al. (1995). The characteristic flow structures within the bead were tound to be

strongly dependent on the state of the inlet condition.

The speed ratio S for a forward roll coater is defined as 5 = g—;, as shown in figure

1.6.
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Figure 1.6: The location of the outgoing films H; and H, and the speeds of
the rolls, U; and U; in forward roll coating.

The i1nlet flooded regime

The inlet flooded regime is the most extensively investigated of the three modes of
operation, indeed it was not until 1992 that Malone highlighted the importance of
the feed condition on the flow structures. In this regime of operation a rolling bank
of fluid forms upstream of the nip, the inlet film being thicker than the gap so that

some fluid rolls back into the reservoir.

Taylor (1963) was the first to suggest the flow in such a device could be split into
two distinct regions — unidirectional flow through the nip and two-dimensional flow
downstream of the nip where the film split occurs (figure 1.7). The flow in the
nip can be modelled using Reynolds lubrication equation (1886) where the pressure

distribution is determined subject to appropriate boundary conditions :

d (. .dP dH
O\ _ o2 1.4
dX (H dX) 20V % (14

where U is the characteristic speed, u the viscosity, H(X) the gap measured between

the two roll surfaces, P the pressure and X the distance along the nip.




X= X=C X=D

Figure 1.7: Pressure profile and flow structure in fully flooded forward roll
coating.

Experimentally, Malone (1992) showed using a roll flat—plate arrangement that the
pressure rises to a maximum and then falls to a minimum (below atmospheric pres-

sure), before relaxing to capillary pressure at the meniscus (Decré et al. 1995).

The first boundary condition locates the upstream meniscus at —oo since it is far
from the nip compared to a typical length scale in the Z direction. Three further

boundary conditions are needed, two for the (2nd order) Reynolds equation and one

to locate the downstream meniscus.

The first is a condition stating that the pressure decays to ambient at the upstream

interface, P(—oo0) = 0 where ambient pressure is taken as the reference pressure of

ZETO.
The other two conditions at the downstream interface (located at X = D) are for
P and %}I%__

Reynolds (1886) suggested boundary conditions for the split of a liquid film, pos-
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tulating that the capillary pressures are small and the pressure gradient is zero at

X = D:

P(D) = (%)X___D 0. (1.5)

These conditions are also known as the Swift—Stieber condition after the independ-
ent work of Swift (1931) and Stieber (1933), however such conditions do not predict

the experimentally observed pressure profile, which has led others to propose altern-

atives.

Hopkins (1957) in a study of a lubricated sheet passing between two rolls proposed
that the film split occurred at a stagnation point such that the flux divided in two.

For equal speed rolls then the velocity and shear stress are zero at this point i.e.

U(D) = (%)X:_D _0 (1.6

These separation conditions (sometimes referred to at the Prandtl — Hopkins con-
ditions due to Prandtl’s (1904) work in this area) are often supplemented with
the condition that the fluld pressure is constant through the recirculation region

(C < X < D) and predicts the experimentally observed sub—ambient pressure loop.

Coyne and Elrod (1970,1971) derived a condition on pressure gradient by invest-
igating a film smoothly separating from a flat plate and being dragged away by a
nearby parallel plate. They assumed a quadratic velocity profile normal to the free

surface and by matching the inlet and outlet flux found

dP  6uU 2H>
— T e—— 1 —_— 1-7
dX = H?2 ( Hp ) (1.7)

where H® is the outlet film thickness, Hp is the distance between the two roll
surfaces at the filmm split point and the ratio -2-%; depends on capillary pressure.
This condition was used to solve Reynolds equation in a two roll problem and the
predictions found to be in good agreement with experimentally determined load

carrying capacity and downstream meniscus location.

A second boundary condition that can be used to relate the film thickness to the

height at the wetting point is due to Landau and Levich (1942). They modelled
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the withdrawal of a plate from a bath and showed that radius of curvature of the

meniscus is related to the film thickness by
H*® = 1.34RCa*/3. (1.8)

where R is the radius of the meniscus, although they did not explicitly determine the
coefficient. The coefficient was determined later by Bretherton (1961) and Deryagin
and Levi (1964). Ruschak (1976) and Wilson (1982) showed this expression to be
valid as Ca — 0. Ruschak (1982) showed it was only accurate for Ca < 0.01 and
proposed

H® = 0.54RCal/? (1.9)

to extend this range to Ca € [0.01,0.1] using finite element calculations.

Flow rate and film split

The flow rate and film split ratio between the two rolls is important as these two
parameters determine the final film thickness. Gatcombe (1945) in an investigation
of flow between fully submerged rolls replaced the condition for pressure at the

interface with P(oo) = 0 and calculated that
4

A= - 1.10

- (1.10)

where A = 7 ) and () is the volumetric flux per unit length of roll. Benkreira

+U2)Hy
et al. (1981) in a study of forward roll coating under typical operating conditions

determined experimentally that

A\ = 1.31. (1.11)

Coyle (1984) and Coyle et al. (1986) using finite element methods with an inlet

profile given by lubrication theory at the nip showed the film split ratio was given

by
2 _ 5965 § ¢ [0.1,10]. (1.12)
H,
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This is in good agreement with Benkreira et al. (1981) who determined

%2_ — 0.8758%%5 § € [0.03,14.9] (1.13)
1

for vertically aligned rolls. Decré et al. (1995) expressed the film split as

H2 o ,6

and found « to lie in the range 0.67 to 0.87, and 3 to lie in the range 0.52 to 0.73.
Walker (1995) investigated the film split ratio and showed it to be dependent on
(S, St, Ca, Hy/R) in order of decreasing importance which supports Decré et al.’s

findings.

Ruschak (1985) modelled the withdrawal of rolls as flat plates such that

Hy  Lo/3
1 S/, ( )

whereas Savage (1982) used the separation conditions to derive

Hy 1/2
1.16
H; > (1.16)

but later questioned the validity of using these conditions for S # 0,1. Savage
(1992) and Gaskell et al. (1998c) derived an alternate model based on U = V' = (

at the stagnation point giving:

Hy S(S+3)
= —— 1< S<I10. 1.17
H, (14 3S) ( )

Decré et al. (1995) showed equation 1.17 fitted the film split data well over a large

range of speed ratios.

Moderately starved forward roll coating

As the inlet flux is reduced the rolling bank of fluid diminishes, as illustrated in figure

1.5. Malone (1992) using experiments, and later Gaskell et al. (1995) using finite
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element analysis showed the flow domain can be characterised by two stagnation

points in the nip between which the flow is essentially unidirectional.

The meniscus regime

Although used in industry for many years, this mode of operation escaped the
coating community at large, until recently (Gaskell et al. 1995). Malone (1992),
Gaskell et al. (1998a) and Wicks et al. (1995) experimentally showed the flow domain

to consist of a small bead of fluid located between the two rolls and went on to
elucidate the remarkable flow structures within the bead (figure 1.8). Thompson
(1992) formulated a ‘zero flux model’ where the upper and lower rolls were replaced
by flat plates and the menisci by vertical planes along which shear stress was zero.
Neglecting the flux, he solved the biharmonic equation and produced streamline
plots similar to those observed by Malone (1992). Gaskell et al. (1995) used a

small flux model with arc—of—circle approximations for the radius of curvature of
the free surface to show meniscus coating is a small capillary number regime with
a completely sub—ambient pressure profile in which the capillary pressure plays a
dominant role. Gaskell et al. (1995) also showed, using finite element calculations
that there exist two modes of fluid transfer from one roll to the other (figure 1.8):
ultra-starved where only a primary transfer jet exists and starved where a secondary

jet is responsible for part of the transfer.

Gaskell et al. (1998a) confirmed experimentally the film split ratio shown 1n equation
1.15 for meniscus roll coating, and went on to include a gravity correction term in

this equation, which gave better agreement with the experimental data.
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Figure 1.8: Transfer of fluid from the lower to the upper roll in ultra—starved
and starved forward roll coating.

1.3.2 Reverse roll coating

A reverse roll coater is similar to a forward roll coater except that the direction of
one of the rolls is reversed such that the two roll surtaces move through the nip in
opposite directions, as shown in figure 1.9. Reverse roll coaters are used to coat

films down to thicknesses of 25 um at speeds of between 30-500 m/min with fluids

of viscosities over a range of 0.01 to 50 Pa s (Richardson 1996).

The work of Richardson (1996) highlighted two regimes, inlet flooded and inlet

starved where the incoming film is the same order or smaller than the gap width,

respectively.

The speed ratio S is defined as § = %—, as shown in figure 1.9.
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Figure 1.9: The location of the outgoing films H; and H» and the speeds of
the rolls, U; and U, in reverse roll coating.

Inlet flooded

Broughton et al. (1950) performed an experimental study on an inlet flooded reverse
roll coater and derived an empirical relationship for the lower film thickness as a

function of the gap and speed ratio.

Lubrication models were formulated by Cheng and Savage (1978), Ho and Holland
(1978), Greener and Middleman (1981) and Benkreira et al. (1982) which all gave

expressions for the non-dimensional film thickness hy = ho/Hj of the form:

ho =A(1—-S5) A€ [1.23,1.33], (valid for S < 1). (1.18)

More accurate finite element based models were formulated by (for example) Coyle
(1984), Coyle et al. (1990a) and Richardson (1996) which highlighted the structures
in the flow field. Coyle et al. (1990b) asserted that lubrication theory does not
predict the flow accurately enough, however Richardson (1996) applied the visco-
capillary boundary condition (the Landau-Levich condition combined with a simple
model for the shape of the interface) at both the upstream and downstream interface.
This was based on a earlier model of Fukazawa et al. (1992), who applied this
condition at just the downstream interface. In this way Richardson (1996) derived
a model that predicted key transitions in the flow structure for S < 1, which are 1n

close agreement with those obtained using finite element calculations.
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Meniscus regime

Malone (1992) was the first to identify a meniscus regime in reverse roll coating.

Richardson (1996) performed an exhaustive computational study and identified two
different means of transter from the lower to the upper roll, ultra-starved where

transter 1s via one jet, and starved where fluid is also transferred via a second jet.

1.3.3 Deformable roll coating

Detormable roll coaters are used in both forward and reverse modes, to coat films
that are generally thinner than those of their rigid counterparts. A deformable roll
palr most commonly consists of one steel and one elastomer covered roll. The rolls
can be operated with a positive gap or with a negative gap where the rolls are 1n
interference at rest, as shown in figure 1.10. Previous research in this area has been

concerned only with deformable forward roll coating systems.

Elastomer covered roll

Figure 1.10: A deformable forward roll coater set with (a) a positive gap
and (b) a negative gap.

Coyle (1988a) studied a deformable roll system and measured the sensitivity of the
film thickness to a range of parameters — fluid properties, roll speeds and load —
for a typical range of operating conditions. Adachi et al. (1988) considered flow
between a roll and a flat-plate covered with a deformable layer; Cohu and Magnin
(1995) performed similar experiments to Coyle (1988a) but showed the thickness of

the deformable layer could affect the flux on the roll surtfaces.

Coyle (1988b) formulated a one dimensional model (a Hookean spring model) for the

<olid where the deformation of the solid is directly proportional to local pressure of
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the fluid, although this is strictly valid only for thin deformable layers with Poisson’s
ratio not equal to 0.5. The results for film thickness as a function of fluid viscosity,
roll velocity, load and Youngs modulus of elasticity compared qualitatively with his

experimental findings, but consistently over—predicted the film thickness.

Later, Carvalho and Scriven (1995) (again using a Hookean spring model for the
deformable layer) considered two-dimensional flow between a rigid and deformable
roll. They confirmed the experimental findings of Carvalho (1995) who showed for
equal roll speeds the film thickness on the deformable roll was 10% higher than that
on the rigid roll. They attributed this to the modified curvature of the deformable

roll local to the downstream meniscus.

Recently Young (1998) has refined and extended the theoretical work ot Carvalho,
Scriven and Coyle to provide results for incompressible layers (Poissons ratio equal

to 0.5) and more negative gaps and to consider the stability of such a system.

1.3.4 Multiple roll coaters

Often in practice a roll coater consists of more than a single pair of rolls. With a
full understanding of the film split between a pair of rolls under all possible feed
conditions it is possible to derive the final film thickness as a function of the para-
meters at each nip. Benjamin (1994) studied the double fed forward film split where
each roll surface enters the nip with a film. Later, for a series of rolls with each nip
operating in forward mode, Benjamin et al. (1995) derived an expression relating

the final film thickness to the feed film thickness and speed ratio of all the gaps.

Each film split was modelled by a power—law relationship h;:l = ;(S;41,4)"" with
the parameters o;, (; depending on factors such as strength and direction of gravity,

roll diameters and fluid rheology.

The equivalent system of reverse mode rolls proved more difficult to analyse as the
expression for the film split ratio in such an arrangement is more complex. Wilson
(1997) derived a lubrication model for a three roll arrangement, with the central roll

having a film on both incoming surfaces. He concluded that no simple model could

be derived to analyse multiple reverse roll coaters.
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1.3.5 Gravure roll coaters

In the 1870’s the first continuous gravure printing (intaglio) process was developed
whereby an image was transferred from an inked patterned roll to a web (paper in
this case). Over the next 20 years the gravure printing method developed into the
gravure coating method as a substitute for plain roll coating, having the advantage
of speed and accuracy in terms of the laid down film (Larkin, 1984). It is just this
property that has ensured the continued use and development of gravure coating
for the last 100 years. Gravure coaters can be operated at speeds of up to 15 m/s

and are generally used with low viscosity fluids to give a final wet coat thickness of

between 1 and 10 pm.

A gravure roll is a roller that has had a regular pattern of small depressions (‘cells’)
cut into the surface. The pattern can be continuous in nature, for example a tri-
helical groove which runs around the cylinder, or it may consist of discrete cells.
The cells can be one of a range of shapes (see section 2.3.2), and are generally made

by one of two approaches. The older of the two is to take a copper plated cylinder
and knurl the roll with a hard steel mesh. The roll is then nickel plated giving 1t

a smooth surface. Recently laser engraved ceramic rolls have gained in popularity.
Here a ceramic powder is sprayed through a hot flame onto a rotating roll to which
it sticks. The built up layer of ceramic can then be etched using a laser and finally
the surface is ground back to leave cells of a given volume. These rolls ofter the
advantage of good wear resistance so that the cell volume remains constant over a

long period of operation.

Gravure coaters fall into one of two categories: offset or direct as shown in figure
1.11. For both cases the rotating gravure roll first picks up fluid which fills the
gravure cells, for example by rotating in a reservoir. In direct gravure coating, a.
doctor blade held against the roll removes excess fluid from above the lands, a more
detailed review of this process can be found in section 7.1.2. The action of the web
(moving in the opposite direction to the roll) causes a proportion of the fluid to be
removed from the cells. In offset gravure coating the fluid picked up by the gravure

roll is metered by the action of the deformable roll. A fraction of the film on the
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deformable roll is then coated onto the web, again moving in the opposite direction

to the roll.

Web
c (

Doctor
Blade Elastomer covered roll

(b)

Figure 1.11: A cross—section through (a) a direct and (b) an offset gravure
coater.

The web can also be driven in the same direction as the roll — this is termed forward
gravure coating. The expression ‘ofiset gravure’ or ‘direct gravure’ used throughout

this thesis always reters to the reverse mode of operation.

Offset gravure coating

Offset gravure coaters are used to coat films of around 10 ym thickness. They can
coat substrates of a variety of thicknesses and ofter good control over the final film
thickness by varying the speed ratio and the nip pressure (Rees, 1995). The offset
gravure coater shown in figure 1.11 can be split into two distinct regions (i) the nip
region where fluid is transfered from the gravure roll to the deformable roll and (ii)

the coating bead where fluid is transferred from the deformable roll to the web.
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Nip region

The flow in the nip region is complex and is dominated by an interaction between
a (rough) gravure roll and an elastomer covered roll. Rees (1995) showed the trans-
ferred film to be a function of nip pressure, the gravure pattern, the speed ratio
and the magnitude of the roll speeds. Hanumanthu and Scriven (1996) studied flow
between a gravure roll an a deformable roll. By using a transparent elastomer layer

they were able to visualise the nip flow and concluded that past analyses of smooth

rolls indicated trends that could be applied to the gravure system.
Coating bead

The region where the fluid is transferred from the roll to the web is commonly
referred to as a kiss coater. Pearson (1985) examined a kiss coater operating in
forward mode, and derived an expression for film thickness as a function of the
operating parameters. Rees (1995) studied the (reverse mode) kiss coating bead
experimentally and observed two distinct regimes, in keeping with the experiences
of coating practitioners. When the speed of the web is slower than the roll (§ < 1)
then only a fraction of fluid is transferred to the web. However when § > 1 all the
fluid is transferred to the web and the film thickness depends on the relative speed

of web to roll and the thickness of film on the incoming roll surface.

Rees (1995) used a lubrication model to predict the amount of fluid left on the roll
but was unable to calculate the fraction transferred to the web as he assumed an
infinite bank of fluid upstream of the nip. Later Storey (1996) extended the analysis

with more realistic boundary conditions and derived an expression for the final film

thickness Ho on the roll,

% = gCa(l — 5)? (_CZ_%) (S <1) (1.19)

where R is the roll radius, Ca the capillary number based on the roll, S the speed
ratio, o the surface tension, T the web tension and § the wrap angle. As 5 —

1, Hp — 0 in accordance with experimental observations. Further details of the




21

lubrication models derived by Rees and Storey can be found in Gaskell et al. (1998b).
Storey also extended his work to a full two dimensional solution using finite elements,

with a fully flexible web. The fluid flow proved to be rich in the flow structures and

features observed in other coating devices used in reverse mode.

The foil bearing

The geometry of the kiss coating bead is similar to that of a foil bearing, and for
this reason a brief review is presented here. Typically a foil bearing has a large
angle of wrap with the minimum gap between the roll and web as small as 1 ym.

The domain 1s infinite as it is lubricated only by air, with no wetting lines present.

Eshel and Elrod (1965, 1967) studied foil bearings with a high degree of wrap (>
180°) and divided the domain into three : a convergent entrance region, a central
region of constant gap and a divergent exit region. They used a numerical method

to solve the lubrication equations in the entrance and exit regions.

Barlow (1967a) used shell theory to derive a general set of equations for the beha-
viour of a foil that included bending stifiness, foil inertia and fluid compressibility.
Barlow (1967b) went on to present solutions for a reduced set of equations, Licht
(1968) confirmed many of these findings in an extensive experimental study. More

recently Stahl et al. (1974) used a finite difference scheme to solve the time depend-
ent problem of the foil passing over a non—circular roll. The results were confirmed
experimentally by Vogel and Groom (1974). Heinrich and Connolly (1992) used a

finite element method to solve the equivalent problem in three dimensions.

Direct gravure coating

Direct gravure coating is one of the most difficult coating operations to study ex-
perimentally due to the extremely small length scales associated with the coating
bead. Little is known about the actual mechanism that transfers fluid from the cells
onto the moving web. Previous studies of gravure coating have concentrated on the

emptying characteristics of the cell as a tunction of operating parameters.
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