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Abstract

Hydrothermal liquefaction of microalgae is recognised as a favourable route to

produce renewable fuel from high moisture feedstocks such as microalgae. However,

there are still some uncertainties regarding the fate of nitrogen and the best approach

to reduce the level of nitrogen in the bio-crude oil.

The aim of this study is to gain a better understanding of the main degradation

route of carbohydrates, lipids and proteins and use this to predict the behaviour of

microalgae. To reach this goal, different model compounds were selected including

vegetable oils containing different degrees of saturation, proteins and carbohydrates

(sugars and polysaccharides). The results from the model and study were compared

with four different microalgae; stressed and non-stressed strains of P. ellipsoidea,

Chlorella v. and Spirulina. Mixtures were prepared using the same model compounds

to simulate the composition of microalgae. Reaction variables such as temperature

(250, 300 and 350 °C), and influence of additives such as organic acids were

investigated.

As the temperature increases, the nitrogen in the bio-crude decreases in general

from 250 to 300 °C; in contrast the ammonium compound concentration in the process

water increases with temperature. Carbohydrates enhance the formation of

carbonaceous residues. Protein and lipids enhance the formation of amides. The

protein and carbohydrates enhanced the formation of “heavy molecular weight”

materials. A higher yield of 52.9 wt.% of bio-crude containing 1.5 wt.% of nitrogen

was achieved with the stressed P. ellipsoidea at 300 °C. The addition of organic acids

affected the molecular weight distribution of the bio-crude but had little effect on the

heteroatom content.

In a parallel study, the influence of metal doped HZSM-5 on liquefaction

behaviour was carried out. Different metal salts were incorporated into HZSM-5 to

study the effect on reducing the nitrogen content of the bio-crude. MoZSM-5 was

selective in producing aromatics from sunflower oil. In general, NiZSM-5 enhanced

the deoxygenation of the bio-crude, but, lower effect on the nitrogen content.
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Chapter 1 Introduction and objectives

1.1 Introduction

The discovery of low carbon sustainable fuels is considered a major priority

for modern society in order to tackle climate change and to find an alternative to fossil

oil. Microalgae are seen as a strong candidate to displace fossil fuel. Indeed, these

microorganisms produce more lipids and have the highest growth rate compared to

arable plants (for example palm and rapeseed oils). Additionally, microalgae are able

to fix the carbon dioxide via the photosynthesis process and use this technology to

sequester carbon from coal power plants flue gas for example .

Transesterification of the lipids extracted from the microalgae was initially

developed to produce biodiesel. However, a high amount of energy was required to

dry the biomass and waste was produced as the non-lipids fraction was not used.

Hydrothermal liquefaction is an alternative method to convert the whole microalgae

into a bio-crude oil which requires no drying prior to processing of the feedstock. A

schematic of the potential integration of algal cultivation and hydrothermal

liquefaction is described Figure 1-1.

This technique involves reactions in subcritical water from 250 to 350 °C and

a pressure from 50 to 170 bar. Higher bio-crude yield can be obtained from

hydrothermal liquefaction compared to the initial lipid content of the feedstock.

Another advantage of this process is that the aqueous phase is enriched in ammonium

and phosphate cations and can be recycled in order to grow more microalgae [2].

Although, some major advances have been made over the last ten years, there is still a

need to improve the quality of the bio-crude and in particular reduce the heteroatom

content (nitrogen and oxygen). These heteroatoms could cause formation of

environmentally undesirable NOx from fuel bound nitrogen during combustion and

complicate refinery operations during catalytic upgrading. Also fuel oxygen decreases

the energy content of the bio-crude.
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Figure 1-1: Diagram of the overall process

1.2 Aims and objectives

The purpose of this project is to produce refinery ready bio-petroleum by

hydrothermal liquefaction of microalgae. The research is focused towards developing

a better understanding of the fate of nitrogen. Catalysts including HZSM-5 doped with

different metals were selected to investigate their influence on reducing the level of

nitrogen and oxygen in the oil and to increase the fraction of hydrocarbons.

Furthermore, model compounds (proteins, lipids and carbohydrates) were used in

order to provide a better understanding of their degradation in subcritical water from

250 to 350 °C. Four different strains of microalgae with different compositions

(Chlorella vulgaris, Spirulina and Pseudochoricystis ellipsoidea (stressed and non-

stressed strain)) were compared to the processing of model compounds. The PhD

thesis is divided into six result chapters where experiments carried out with each

model components are detailed. Chapter 2 includes the literature review, Chapter 3

includes the general methodology; Chapter 4 contains the analysis of the stability of

process catalyst under hydrothermal condition; Chapter 5 describes the processing of

different lipids; Chapter 6 includes the results regarding the processing of different

carbohydrates; Chapter 7 contains the results concerning the processing of proteins;

Chapter 8 includes the results of the processing of microalgae, Chapter 9 describes

microalgae

Coal power
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the experiments of the mixture of different model compounds and Chapter 10 is the

conclusion.

- The first main goal was to develop a clear understanding of the

degradation route of each model compounds and microalgae under hydrothermal

liquefaction. The study is focussed more on understanding the formation of nitrogen

compounds in the bio-crude and in the aqueous phase. The formation of high

molecular weight compounds was investigated in particular during the processing of

lipids.

- The second goal was to investigate the hydrothermal stability of

HZSM-5 in subcritical condition. The effect of different doped metals on HZSM-5 is

investigated on the processing of different model compounds and microalgae.

- The effect of in-situ hydrogen donor compounds such as formic acid

was studied to determine the influence on the bio-crude oil quality and product

distribution.

- The other aim was to study the effect of each component (protein, lipid

and carbohydrate) on the formation of the bio-crude and their interactions with each

other. The processing of four microalgae with different composition was investigated

in parallel.

1.3 Description of each chapters

In Chapter 2, the literature review includes the current advances in the

research into hydrothermal liquefaction of microalgae and describes the advantages

compared to first and second generation biofuels and the use of different conditions to

cultivate microalgae. This includes recent progress towards improving bio-crude

yields and quality in particularly lowering the amount of oxygen and nitrogen in the

bio-crude. Previous studies using heterogeneous catalysts are reviewed in this section.

Studies carried out concerning the upgrading of biomass in pyrolysis and

hydrothermal processing are included. The use of microalgae producing high value

chemicals and the life cycle assessment are briefly discussed. The different chemical

reactions that occurred during hydrothermal liquefaction are also reviewed to

understand the different pathways during the hydrothermal liquefaction (HTL).

In Chapter 3, the methodologies used for hydrothermal liquefaction is

presented. A description of the reactor facilities, variables and operation are included.
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The methods for the characterisation of the bio-crude oil, aqueous phase and the

residue are described. A brief description of the theory of the instrumentation is also

included.

In Chapter 4, the stability of different zeolites HZSM-5 doped with metal

(molybdenum, copper, iron and nickel) is investigated at 350 °C. The activity and the

regeneration of HZSM-5 during the processing of sunflower oil is studied. The

objective of this section is to demonstrate the tolerance of the catalyst under

subcritical conditions and the reuse of the catalyst. The stability of catalysts was

measured using X-ray, transmission electronic microscope (TEM), BET (Brunauer–

Emmett–Teller) techniques. Further, the metal leaching was measured by ICP

(induced coupled plasma).

In Chapter 5, different vegetable oils (sunflower, linseed, jatropha, soya bean

and palm oils) are processed at different temperatures (250, 300 and 350 °C). The

influence of degree of saturation of fatty acids is investigated by use of different

model fatty acids (oleic, linoleic and linolenic acids). The effect of HZSM-5 doped

zeolite was also investigated in water and in formic acid for the decarboxylation of

fatty acids. The other aim was to elucidate a degradation pathway of the lipids during

liquefaction. Lipids were transesterified in order to quantify the different fatty acids

and analysed by gas chromatography mass spectrometry (GC-MS). Gel permeation

chromatography was used to measure the molecular weight of the products.

Thermogravimetric analysis (TGA) of bio-crude oil provides information on the

boiling point distribution of the oils. The elemental analysis determines the carbon and

hydrogen contents (C and H wt.%). The total organic carbon (TOC) provides the

carbon fraction within the aqueous phase.

In Chapter 6, the hydrothermal liquefaction of different carbohydrates (starch,

glucose, alginic acid and mannitol) was investigated at 250, 300 and 350 °C. The

purpose of the chapter was to study the degradation of carbohydrates at different

temperatures, and the influence of additives such as formic acid and potassium

hydroxide (KOH). The formation of chars was investigated using thermogravimetric

and elemental analysis. Starch, glucose, mannitol and alginic acid were processed with

HZSM-5.

In Chapter 7, the hydrothermal liquefaction of proteins (soya and hemps) and

asparagine acids are processed at different temperatures (250, 300 and 350 °C) in
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water and in formic acid at 350 °C. The purpose of this chapter is to investigate the

degradation of proteins. For this, the ammonium compound concentration in the

aqueous phase was used to determine the nitrogen balance. The elemental analysis

measured the nitrogen content in the bio-crude oil. Subsequently, at 350 °C

experiments were performed with the metal doped catalyst (HZSM-5) in water and

formic acid. These experiments were conducted in order to investigate the influence of

these conditions on the fate of nitrogen and other parameters. The bio-crude oil was

combusted and the gas released was analysed by mass spectrometry, the emission of

nitric oxide provides insight into the molecular weight distribution of nitrogen in the

bio-crude oil.

In Chapter 8, different microalgae and cyanobacteria such as stressed and

non-stressed strains of P. ellipsoidea, Chlorella v. and Spirulina) are processed. The

same conditions to Chapter 7 are applied in this chapter. The results are combined

and compared with previous chapters using different model compounds in order to

explain the behaviour of microalgae with different compositions. A global degradation

route for the macromolecules in microalgae has been elucidated.

In Chapter 9, an investigation of hydrothermal behaviour of different binary

mixtures is carried out to study the interaction between proteins, carbohydrates, and

lipids (two vegetable oils: sunflower and linseed oils). Subsequently, the results are

compared to the processing of each model compound. In addition, ternary mixtures

are also prepared with similar composition to microalgae such as Chlorella and the

stressed P. ellipsoidea in order to have a better comprehension towards the general

interaction of each element combined and the results will be compared to the real

microalgae. Similar techniques are performed in Chapter 9 than with Chapter 7.

In Chapter 10, a summary of the different chapters is included and an overall

conclusion of the research project. The future work and the feasibility of the use of

hydrothermal liquefaction of microalgae are discussed.
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Chapter 2 Literature review

2.1 Production of fuels from biomass

2.1.1 Current status of technology

Mankind has used biomass (especially wood as charcoal) as a source of energy

for thousands of years. Nevertheless, humans had really started to efficiently master

the use of biomass energy since the first industrial revolution in the eighteenth

century. However after the Second World War, petroleum oil became one of the

predominant sources of fuels within the transport sector. The high availability and low

price triggered the rapid expansion and development of western countries over the last

60 years. After 1973, with the first petroleum crisis, the price of crude oil began to

rise, inducing research in alternative fuels to be launched [3]. However, at the

beginning of the 2000’s, research regarding renewable energy has been considered a

priority as there is clear evidence carbon dioxide produced from the combustion of

petroleum oil is associated with climate change and global warning.

According to IPCC data, the atmospheric concentration of carbon dioxide has

risen from 200 ppm at the beginning of the twentieth century to 400 ppm in 2015 [4].

Research communities have anticipated a decrease in the carbon dioxide uptake within

the ocean. Therefore, this has induced a modification to the climate explaining the rise

in carbon dioxide levels within the atmosphere [5]. The International Energy Agency

(IEA) has predicted in their latest forecast that by 2050 the world emission of

greenhouse gases will still increase, ranging between 41 Gt and 55 Gt (best case

prediction model), with an increase in temperature of 6 °C [6]. The reduction of

carbon dioxide emissions within the next fifty years will be made difficult by the rapid

economic growth of China and India. By 2050, these two countries will represent at

least 41 % of the total carbon dioxide emissions or a combined total consumption of

approximately 2000 million tonnes of oils [6]. Therefore, the shift to renewable

energy and biofuels is imperative in order to meet the different targets set out by the

climate summits of Kyoto (1997) and Copenhagen (2009) recommending that

countries need to reduce their emission of carbon dioxide by half.
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Renewable energy is widespread to produce electricity from the sun (solar

panel), water power (hydraulic with dam) and wind power. For example, Denmark

aims in the following years to produce 50 % of its total electricity consumption by

wind power and by 2050, 100 % of its electricity capacity generated from renewables

[7]. In the transport sector, the usage of biofuels seems currently to be the better

alternative even though some other technologies are available such as electric cars or

hydrogen (still in development). Little is known about the environmental impact

regarding the production of lithium batteries [8].

Within the European Union (EU), directive (229/28/EC) states that the EU

members must use at least 20 % their total energy with renewable energy and 10 % of

biofuels in the transport sector by 2020 [9]. The United Kingdom is committed to

reducing its carbon dioxide emission by 80 % of the levels produced in 1990. Now a

percentage of fossil fuels should come from sustainable sources which represents

450,000 litres of biofuel a year blended into normal fuel [10, 11]. The IEA has

predicted by 2050 the use of biomass and waste as a source of energy will surpass

fossil oil (164 EJ compared to 110 EJ) [6].

2.1.2 Biofuels

2.1.2.1 First generation

Biofuels could offer an alternative to fossil fuel and lower the carbon dioxide

emissions as the carbon of biofuels produced during combustion was already part of

the carbon cycle and thereby does not increase the amount of carbon dioxide in the

atmosphere. Biofuels are divided into three categories depending on the progress of

research, and the sources. The first generation of biofuels includes the production of

biodiesel from vegetable oils, and bioethanol from the fermentation of corn starch and

sugar cane. Nevertheless, the concept of biodiesel was not a novelty as in 1892 Rodolf

Diesel designed one of the first engines working with peanut oil [12].

- Biodiesel

Vegetable oils contain lipids in the form of triglycerides which are made of

three fatty acids (long chain carboxylic acid) attached to a glycerol molecule. Table

2-1 lists examples of fatty acids and their origin in nature. The presence of double

bonds in the chain referred to as unsaturated fatty acids, changes the chemical and

physical properties of the compounds. For example, stearic acid (no double bond) has
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a melting point of 70 °C, whereas oleic acid (1 double bond) is liquid at 14 °C [13].

Vegetable oils can be extracted from edible plants (sunflower, rapeseed or palm oil)

and non-edible (jatropha oil) by mechanical processes. Palm oil yields the highest

amount of lipids amongst terrestrial plants with 5,000 kg oil/ha compared to jatropha

with 1590 kg oil/ha [14].

Table 2-1: Example of different fatty acids and their origin [13].

Common Name IUPAC name
Number of carbon

and double bonds

Principal

source

Caprylic acid Octanoic acid C8:0

Capric acid Decanoic acid C10:0

Lauric acid Dodecanoid acid C12:0 Coconut oil

Myristic acid Tetradecanoic acid C14:0
Coconut, tallow

oils

Myristoleic acid 9-tetradecenoic acid C14:1

Palm or

cottonseed, lard

oils

Palmitic acid Hexadecanoic acid C16

Palmitoleic acid (Z)-9-hexadecenoic acid C16:1

Stearic acid Octadecanoic acid C18:0 Lard, tallow oils

Oleic acid (Z)-9-octadecenoic acid C18:1

Rapeseed,

peanut, jatropha

oils

Linoleic acid cis,cis-9,12-octadecadienoic acid C18:2 Sunflower oil

Arachidic acid Icosanoic acid C20:0

Raw vegetable oils, for example rapeseed oil, possess poor thermal properties

because of its high kinematic viscosity of 33 m2/s [13]. In order to have similar

properties to current fuel, oils need to be transformed. Biodiesels are fatty acids

methyl esters (FAME) produced from the reaction of triglycerides and methanol

(called transesterification) using catalysts (Figure 2-1). Table 2-2 illustrates the

difference in the physical properties between the raw rapeseed oil, FAME and diesel.
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Figure 2-1: Transesterification reaction of triglyceride (Reaction 2-1)

Table 2-2: Comparison of properties between crude vegetable oils and FAME and diesel
[15]

Characteristics Rapeseed oils Rapeseed methyl ester Diesel

Specific gravity 0.9 0.9 0.8

Viscosity at 40 °C
(m2/s)

33.0 4.0 3.0

Cloud point ( °C) -21.0 -3.0 -23.0

Cetane number 32.0 48.0 49.0

Heating value (MJ/kg) 40.2 37.7 45.4

There are several techniques in order to produce FAME, the most common are

as follows: alkali (NaOH) or acidic (H2SO4) catalysts [16, 17], heterogeneous catalyst

such as TiO2 [18], microwave [19] and at high temperature under subcritical methanol

[20]. Biodiesel is now sold in petrol stations in a blended form as B5, B10 and B20 (5

to 20 vol.%). Special engines are required to use pure biodiesel. The production of

biodiesel soared in the last twenty years reaching 140 barrels/day in 2012 but

remained insignificant compared to the production of crude oil (90,026 barrels/day)

for the same year [21].

Glycerol is produced as waste and separated from the FAME by distillation. In

order to have a stable fuel, the majority of the fatty acids should be saturated, as

unsaturated could undergo oxidation and form dimers [22]. Even though the use of

biodiesel allows the emission of carbon dioxide to be reduced; the cultivation of these

seeds, in particular sunflower oil or rapeseed, requires a large amount of fertilisers

which enhances the eutrophication phenomena. Moreover, the emission of nitrous
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oxide (N2O), a powerful greenhouse gas with an impact 298 times greater than carbon

dioxide is boosted [23, 24]. When biodiesel was combusted, emissions of NOx and

particulate matter compared to diesel combustion was measured [25]. The other

drawback is ethical: debates concerning the impact of biofuels on the rise of the price

of food especially for sunflower, rapeseed corn or sugarcane for the production of

bioethanol. The production of biofuels occupied 1 % of the world arable land to

produce 1 % of the world fuel demand [26]. Developing countries would have the

most impact on their economy caused by the rise in price of first necessity products

(flour, vegetable oils). Jatropha oil, a non-edible oil, could be used in place of the

aforementioned crops, although the crop would still require fertilisers. Furthermore,

the high demand would enhance deforestation, as already observed in Malaysia for the

production of palm oil. In order to meet half of the fuel demand in the USA, 77 % of

the total area used for growing crops would be required to produce the requisite yield

of jatropha oil (oil yield of 1892 L/ha) [1].

- Bioethanol from starch

Bioethanol could be a potential candidate to replace gasoline. Fermentation of

starch is the common route to synthesise this fuel. Corn starch and sugarcane are the

most widespread feedstock. Ethanol is readily produced from the hydrolysis of

Saccharomyces yeasts [27]. The chemical equation (Reaction 2-2) shown below

summarises the fermentation of glucose under anaerobic conditions:

C6H12O6 → 2C2H5OH +2CO2 (Reaction 2-2)

Starch material would need a treatment prior to fermentation in order to hydrolyse into

glucose. A chemical reaction facilitates the breakdown of the cell wall with acidic or

alkali media, and enzymes such as α-glucoamylase and α-amylase participate in the

depolymerisation of the starch chain [28]. Brazil has been using bioethanol as a blend

or pure fuel for at least the last 30 years. Its annual production of ethanol from sucrose

represents approximately 17 billion litres. The United States reached this level of

production in 2006 from the processing of corn starch [27]. The blends which are

currently available are E5, E15, E85; the latter necessitates a special type of engine

because of corrosion problems. Ethanol has a higher octane number (108) compared to

isooctane or gasoline (100), also it has a larger flammability limit which allowing for

an easier compression ratio [29].
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The production of ethanol from first generation crops leads to the same

drawbacks as with the biodiesel: eutrophication, increase of the nitrous oxide (N2O)

emissions, and erosion of soils, etc [30]. The further disadvantage for this fuel is the

problem of corrosion (fuel tank) and carburet for the miscibility of water [31].

Although not straight forward, the first generation fuels are easily produced and

economically viable. Alternative sources of biomass should be investigated for the

production of sustainable and ethical fuels.

2.1.2.2 Second generation of biofuels

- Bioethanol from lignocellulose

Currently, research focuses predominantly on producing ethanol from waste

biomasses (lignocellulose) such as wheat straw, bagasse or wood belonging to the

second generation of biofuels. However, the actual technologies available for first

generation fuels are not suitable for the production of ethanol from lignocelluloses as

they contain more complex structures such as cellulose, and lignin. Figure 2-2

represents the chemical structure of cellulose.

Figure 2-2: Cellulose structure

Each year, 3-5 tonnes per hectares of waste cereal straw is produced in the

United States which could yield a production of ethanol between 350 to 1600

L/ha/year depending on the method of conversion [32, 33].

Several pre-treatment steps are necessary to produce bioethanol from the

conversion of lignocellulose into cellulose and subsequently into simple sugars such

as glucose which can be fermented into ethanol. Although, cellulose could be

hydrolysed using different types of microorganisms such as bacteria or fungi, this

process is slow and inefficient. The first step would involve the removal of lignin or

any impurities contained within the cellulose. The most widespread technique is to use

alkali or acidic salts, for example dilute sulphuric acid at 160 °C under reflux [34]. At

the last stage, 85 % of bioethanol could be produced, even though the acidity of the
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solution could hinder the activity of the yeasts [27]. Pre-treating cellulose using the

steam explosion method has given encouraging results in terms of enzymatic

efficiency in the final step [35]. The remaining methods include ozonolysis [36],

ammonia fibre explosion [37], and supercritical CO2 [38].

These methods are not currently commercially viable as they include multiple

steps involving onerous techniques which are necessary to produce ethanol. The

production of bioethanol from lignocellulose will have a better impact compared to

the first generation with lower emissions of greenhouse gases (depending on the

method used) and lower eutrophication, depending on the source of lignocellulose

[39].

- Thermo-chemical processing of lignocelluloses

Lignocelluloses (or biomass) could be converted into different products and

fuels or gas commonly called biomass-to-liquid (BTL) using thermo-chemical

processes (Figure 2-3) which involved thermal conditions such as pyrolysis,

combustion, liquefaction and gasification. The grey represents where an oil is obtained

and the red a gas.

Figure 2-3: Diagram of the different process

Combustion involves the processing of biomass at high temperature in the

presence of oxygen. The purpose is to generate heat, for direct use, or to raise stream

for electricity production.

Gasification refers to the formation of gas, usually syngas, hydrogen and

carbon monoxide (CO and H2), at high temperatures in the presence of air above 1000

°C with or without a catalyst [40]. The first application was to produce hydrogen via

the water gas shift reaction (Reaction 2-3) in the chemical equation.

CO + H2O → H2 + CO2 (Reaction 2-3)

Thermo-chemical processing of biomass

Combustion Pyrolysis Gasification Liquefaction
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A development on this is the Fisher Tropsch process which converts the

syngas into hydrocarbons or green diesel using iron or cobalt catalysts, although

catalysts are susceptible to poisoning from the biomass [41]. The composition of the

oil, for example the chain length, depend on the conditions used during the reaction,

for example the reaction time [42]. This technology still faces several challenges.

Gasification pilot plants already exist, for example, the fluidised reactor in Austria in

Güssing which is a fluidised bed gasification plant producing 8 MWth [14, 43].

Pyrolysis involves the conversion of dried biomass into a bio-oil or bio-char in

the absence of air. At lower temperatures, char is produced; a greater yield of oil is

obtained at higher temperatures. The composition of the bio-oil is dependent on the

pyrolysis heating rate, reaction time and temperature. Slow pyrolysis is conducted at

temperatures between 270 and 680 °C with a slow heating rate and timespan from 45

to 550 seconds with larger size particles. Fast pyrolysis takes place between 580 to

970 °C in less than ten seconds with particle sizes of 1 mm. Flash pyrolysis requires

temperatures above 1000 °C in less than one second and a particle size of 0.2 mm

[44]. In the absence of a catalyst, the typical pyrolytic oil, with a yield of 60 %

contains a high fraction of oxygenated compounds and has poor thermal properties.

Compounds from the pyrolysis of lignocellulose are: aliphatic alcohols/aldehydes,

furanoids, pyranoids, benzenoids [29].

Second generation biofuels (lignocellulose and wood) face similar challenges

to that of vegetable oils, as previously discussed. Nevertheless, this is a different route

compared to first generation biofuels in the production of green diesel by

hydrotreatment under pyrolysis conditions. A comparable diesel composition has been

achieved [45].

Liquefaction involves the process of compressing a feedstock into a liquid at

high pressure in order to obtain an oil in the presence of hydrogen. This technology

was used several years ago to liquefy coal into fuels [46]. Currently, hydrothermal

liquefaction is more commonly applied to the processing of wet biomass feedstock

(refer to section 2.2).

Although, some promising results have been achieved, however it is noted that

a new generation of biofuels could rapidly overtake first and second generation

biofuels. This is due to second generation biofuels presently not being an

economically viable option because of the high investment costs.
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2.1.2.3 Third generation of biofuels

Third generation biofuel production is based on the extraction of

microorganisms (fungi, microalgae or yeasts) [47]. Microalgae offer an encouraging

potential which in the future could be a viable alternative to fossil fuel.

2.1.3 Microalgae

2.1.3.1 Generalities

Microalgae are one of the Earth oldest living microorganisms. They are an

attractive feedstock for the production of a biofuel in comparison to terrestrial plants

due to the following factors:

 Not enter in competition with the food crops and therefore do not use

arable land.

 Ability to grow in fresh, salty or brackish water.

 Strains of microalgae are present in the major part of ecosystems.

 Their growth rate allows them to be harvested several times a year, in

contrast to other plants.

These organisms are composed of lipids, proteins and carbohydrates; Table 2-3

illustrates the lipids and proteins compositions for the most common strains of

microalgae. The variation between the different strains is dependent on their

environmental conditions and nutrient availability [47].

Table 2-3: Composition of oils from different strains of microalgae

Biomass Lipids

(wt.%)

Proteins

(wt.%)

reference

Chlorella pr. 14.6 52.6 [23]

Chlorella v. 25.0 55.0 [48]

Nannochloropsis sp. 28.0 52.0 [49]

Spirulina 5.0 65.0 [48]

Scenedesmus

Obliquus

12.0 50-55 [50]

Chlorella py. 2.0 57.0 [50]

Dunaliella s. 6.0 57.0 [50]

Synechococcus sp. 11.0 63.0 [50]
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According to Chisti et al. [1], the algae lipid content has potential of reaching

80 wt.% on a dried basis (db). 136,900 L/ha of oil from microalgae containing 30

wt.% lipids could be achieved in comparison the palm oil production yield production

is 5950 L/ha/year. Approximately 3 % of the total landmass for the United States

would be required in order to produce half of the country’s annual consumption.

The second advantage in using microalgae is that they had the highest

photosynthesis efficiency compared to terrestrial plants, in other words, microalgae

are able to covert approximately 7 % of the total solar energy arriving on the surface

of the Earth (170 W/m2). In contrast, switch grass (a fast growing terrestrial plant)

could only convert 0.5 % (1 W/m2) of the irradiation in normal latitude [51]. It was

estimated by Zhu et al. [52] that with 3 % photosynthesis efficiency, it would require

from 0.4 to 0.7 % of the total surface area of the planet to produce enough biomass to

meet global energy demand [53]. Via the photosynthesis process (Reaction 2-4),

microalgae could be a solution for carbon dioxide mitigation to transform into glucose

as in the chemical equation:

6 CO2 + 6 H2O+ light → C6H12O6 + 6 O2 (Reaction 2-4)

On a dry basis, one kilogram of microalgae is able to sequester 1.8 kg of

carbon dioxide [54]. As the carbon dioxide in the ambient air limits the development

for microalgae, Chisti et al. [55] suggested using the flue gas emission from coal

combustion power plants as a sequestration solution, reducing the cost of biofuel

production. However, it must be noted that some acidic flue gas species such as NOx

and sulphur dioxide (SO2) could be toxic for the growth of microalgae. Chlorella v.

has the highest carbon dioxide fixation rate [55].

2.1.3.2 Cultivation

Three different growth conditions are possible for microalgae: phototrophic

(autotrophic), mixotrophic and heterotrophic. Under phototrophic conditions,

microalgae utilise carbon dioxide as a carbon source via photosynthesis. In contrast

under heterotrophic conditions the microorganisms use organic compounds (glucose

or glycerol) as the source of carbon.

Microalgae can be grown in a dark environment and use other sources of

carbon for their metabolism. In this case, the lipid accumulation was found to be more

rapid and reproducible compared to the phototropic condition for example Chlorella v,

Chlorella sa., Chlorella pr., Chlorella so., could accumulate four times more lipids
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than under autotropic conditions [56]. Espinosa Gonzalez et al. [57] succeeded in

growing Chlorella p. using dairy waste or whey protein; a maximum biomass of 9 g/L

was achieved with 42 wt.% of lipids. However, only a limited amount of strains could

be grown within these conditions. Another disadvantage is that the microalgae are

dependent on the concentration of carbon fed.

Nitrogen as ammonia (NH3) and phosphorus as phosphate (PO4
3-) are the most

common inorganic nutrients for the autotrophic organism. However calcium or

magnesium salts are also needed; an empirical formula would give

CO0.48H1.83N0.11P0.01 of total nutrients [58]. To lower the production costs, waste water

from industry or domestic houses could be used and it would not be necessary to add

nutrients. Domestic waste water contains enough nutrients to produce 77.6 million

kg/day [59]. Cyanobacteria develop well in streams from agricultural waste water

(rich in carbohydrate and proteins) [60]. By starving the microalgae strain of nitrogen

nutrients, the microalgae will become stressed in response producing more lipids

despite a slower growth rate [61]. Microalgae could even be used to remove toxic

metal such as mercury from waste streams by bio-sorption [62]. Nevertheless, the

growth of some microalgae (Chlorella) could be inhibited by some metal ions such as

copper (with a concentration of 240 ppm) and nickel [63].

There are several reactors where microalgae could be cultivated either in open

space (ponds, lagoons, raceways ponds) or in photobioreactors.

 The open ponds are the most common low cost technique to grow algae

on a large scale. The microalgae slurry is circulated by the way of a paddlewheel in a

close and shallow pond (less than 0.3 m). Baffles are present to regulate the flow. This

technology is currently in use for strains such as Chlorella, Spirulina or Dunaliella.

Waste water could be fed into this reactor. In addition, ponds are more efficient where

the photosynthesis is higher, as in southern Spain and in Texas. Water is continuously

supplied and harvesting occurs at constant intervals. Open raceway is an economic

process and with low maintenance. The inconvenience is that contamination by

external sources is frequent, thus multi-culture of different strains is easier to achieve

[64].

 Photobioreactors (PBR) are more efficient and sophisticated than open

pond in order to avoid contamination. They can be described as an array of small

diameter tubes transparent in order to let the light penetrate efficiently. There are two
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categories: the flat-plate PBRs and the tubular PBRs. Tubes are arranged in a north to

south direction to enable the optimum exposure to the sun, which has allowed

achieving 47 g/m2/day of dried biomass [65]. The flat plated bioreactor has a large

surface area which results in a low accumulation of oxygen. The microalgae are

circulated via the pump (mechanical or air lifted). Degassing was found to be

important, as oxygen could damage or inhibit their growth [64]. Carbon dioxide from

flue gas has been injected more efficiently in PBR than in open ponds. However the

optimum level should be 1.7 g CO2/g of biomass in order not to raise the pH level.

The PBR has yielded a higher production of microalgae; for example with

Nannochloropsis the harvesting yield was 20 to 40 g/m2/day in a tubular reactor [66].

PBR require complex materials which increase their cost to £51.8/kg for a 3 m3

tubular photobioreactor. It was estimated that the cost could drop to £9.9/kg of dry

biomass if the production exceeds 200 tonnes/year [55]. The cost would fall five times

lower, if raceway ponds were used, to £0.15/kg [67].

Different techniques of harvesting microalgae such as flocculation,

centrifugation, filtration, flotation and electrophoresis have been considered. The

flocculation method involves adding some metal salts such as ferric chloride to allow

the biomass to aggregate and settle down by sedimentation; the problem in using this

method is the feedstock could not be treated under anaerobic digestion. Flotation

processes separate the biomass in relation to their density, and this is only suitable on

a small scale. Electrophoresis sends an electric discharge into the broth to induce

coagulation and subsequently sedimentation. Centrifugation is an expensive

technique. The method of harvesting depends on the strain of microalgae to be

cultivated; for example for Botryococcos b. dispersed air flotation is the most suitable,

whereas with cyanobacteria as Spirulina a simple microscreening is only necessary

from the filamentous shape [1, 68]. Yet, the most suitable and economic method is by

filtration or gravimetric sedimentation [69].

2.1.3.3 Extraction of lipids and chemicals

As reported earlier, microalgae have the potential to accumulate more lipids

than terrestrial plants. In order to carry out lipid extraction, drying steps are necessary

to increase the yield. There are two possible routes either by mechanical (cell

disruption) or chemical treatments. Figure 2-4 shows the products which can be

extracted from microalgae.
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Figure 2-4: The use of microalgae

 In 1959, Bligh and Dyer were the first to develop a chemical extraction

method by soxhlet using chloroform and methanol with a 3:1 ratio [70]. This

technique has been widely used; however it does not meet the green chemistry

principles because of high flammability and toxicity of the solvents. Ionic liquid is a

more environmentally friendly technique as the solvent can be regenerated at the end.

Compared to normal solvent extraction the total lipid yield was improved from 12 to

19 wt.% with ionic liquid [71].

 Supercritical carbon dioxide seems to be the most efficient technique as it

allows a 100 % recovery of the lipids from the microalgae [72]. Once extracted, the

same procedure of transesterification used for the vegetable oils is performed

producing a microalgal oil with a 90 to 100 % conversion [73]. In-situ esterification

avoids extracting or even drying the microalgae by carrying out the esterification

reaction with the whole biomass. Ultrasonic or microwave methods are investigated,

the second enhanced the lipids recovery and the production of ester with catalyst [74,

75]. Levine et al. [76] demonstrated the efficiency of the transesterification with

supercritical ethanol to produce fatty ethanol ester with 100 % of biodiesel and 66 %

of ester at 325 °C for Chlorella.

The disadvantages of the extraction and the production of FAME is that only

lipids are used and the remaining part of the microalgae is considered as waste; more

energy or oil could be produced when the entire microalgae is processed.

Microalgae

β-carotene

Lipids

Omega 3/6

Proteins for
animals/fishs

Medicinal/
vaccine



Chapter 2

19

- Extraction of other chemicals

Not only lipids can be extracted from microalgae but high value compounds

such as omega-3 and 6; β-carotene and astaxantin. Food and pharmaceutical

companies have a huge interest in these compounds. Omega-3 such as eicosapentanoic

acid (EPA) 20:5, and decosahexaenoic acid (DHA) 22:6 have proven to be efficient in

the treatment of some diseases, for example with asthma or heart problems.

Phaeodactylum contain a high level of these fatty acids [77]. Chlorophyll a and b from

Chlorella could be used to help recovery from ulcers and application within the

cosmetic industry [78]. Dunaliella is well recognised to produce β-carotene used as a

food supplement because of its antioxidant propriety. For example, the revenue from

β-carotene could to £559/kg; in 2006 the industry had generated approximately £511

million of benefit by selling carotenes. Haematococcus sp. contains the highest level

of astaxantin, it is fed to salmons to give their pinkish texture and the cost of this

product was £1518/kg [79].

Microalgae have other potential applications. Recently, the research group in

San Diego has designed a stem cell from microalgae to produce a vaccine against

malaria or to fight against cancer [80]. Whole algae, for example Spirulina, are used

as a food supplement, and some other strains are fed to livestock or fish farms.

Hypnea cer. is used to feed shrimps [78]. In order to make the production of biofuels

profitable, most companies in microalgae now sell these products in parallel, as with

Solazyme. Chisti et al. [67] estimated that to compete with fossil oil the cost of

production of microalgae should be approximately £0.15/kg. The large array of

applications makes microalgae very challenging.

2.1.4 Conversion of microalgae to energy and fuels

Microalgae have been processed via different routes, biological and

thermochemical conditions, producing either a bio-gas, bio-oils or other products.

 Some microalgae strains are able to hydrolyse water to produce

hydrogen; for example, using the energy of the sun a marine strain Chlamydomonas r.

is found to hydrolyse water into hydrogen under anaerobic conditions [81].

 Anaerobic digestion of biomass produces methane by microorganisms

at 35 °C in a digester in the absence of air. Residues from lipids extraction could also

be treated under this condition. The processing of a seaweed, Ulva, produces 180 ppm

of methane [82]. In comparison to sludge, the conversion of microalgae was quite
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slow as the bacteria could be poisoned by the ammonia from the proteins; in order to

obtain a 500 kW bio-methane plant it would be necessary to have 10,000 tons of

microalgae [83]. These technologies are not efficient as they require a long time to

produce gas and a large amount of feedstock.

 Bioethanol could also be obtained from the algal strains with a high

carbohydrate content which could be an alternative from the first generation of

biofuels (corn and sugarcane). The fermentation of marine green alga, Chlorococcum

l. has also been investigated with a conversion of 25 % [84]. However, macroalgae

Saccharomy ces. gives better results as higher carbohydrate content is present [78].

- Thermochemical processing of dried microalgae

Thermal processing techniques give a low yield and require challenging

conditions. Consequently, the research in to thermochemical processing is less

advanced. Milne et al. [85] were the first group which carried out the pyrolysis of a

microalgae with catalyst obtaining challenging results. Miao et al. [86] pyrolysed

Chlorella pro. at 500 °C. A yield of 17.5 wt.% of bio-oils was obtained with a high

production of chars. The heating value of the pyrolysis oil was approximately 29

MJ/kg contrary to pyrolysis wood oil which has an energetic value of 17 MJ/kg. In

another study, the same authors pyrolysed the same algae grown under heterotrophic

conditions, a larger yield of 57.9 wt.% was achieved with a calorific content of 41

MJ/kg, even though the bio-oil had a large amount of polar compounds, 20-25 wt.%

oxygen [86, 87]. Slow pyrolysis reduced the formation of bio-char. The inconvenience

of this technique is that high amount of energy is required to heat the reactor to 500 °C

and furthermore to dry the microalgae, which contains initially 80 wt.% of moisture.

Due to the presence of oxygenated compound, the resultant bio-oil was unstable and

corrosive.

Direct combustion and gasification have been carried out on dried microalgae

to either produce heat or syngas, however the efficiency is compared to other biomass

and coal. In order to pyrolyse microalgae, a significant heat input is initially required

for drying, as the moisture content can be up to 80 wt.% [88]. Therefore, it would be

more convenient and efficient to process the wet biomass directly, using a technique

known as hydrothermal processing.
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2.2 Hydrothermal processing

Hydrothermal processing consists of processing biomass in hot compressed water above
200 °C where the water is first liquid (subcritical), and subsequently after 375 °C in a
supercritical state. As the temperature increases, the properties change, such that different
results can be achieved. Hydrothermal processing is divided into three regions, depending on the
pressure, as presented in This image has been removed by the author of this thesis for copyright
reasons

Figure 2-5:

- Hydrothermal carbonisation (HTC) from 170 to 250 °C where biomass is

transformed into bio-chars.

- Hydrothermal liquefaction (HTL) from 250 to 370 °C where the production of

bio-crude oils is maximal.

- Hydrothermal gasification (HTG) above 370 °C where gas phase is the main

outcome from the processing.

In comparison to dried pyrolysis, liquefaction and gasification, hydrothermal

processing takes place at lower temperatures which allows saving some heating

energy. Furthermore, water is a green solvent, highly available compared to chemical

solvents.

Hydrothermal processing was historically used in the early 1980’s to treat

hazardous waste or sludge under supercritical oxidation (SCWO), this process has

been industrialised [89]. During the same decade, the company, Shell, started to

perform research on the hydrothermal liquefaction of biomass [90]. The research

group in Pittsburgh carried out research on the liquefaction of wood and coal in water

and other solvents [91].

The aim of hydrothermal processing is to replicate the natural formation of

crude oil, natural gas and coal. Crude oil was formed over millions of years trapped in

pressurised cavities from the decay of microorganisms (zooplankton or

phytoplankton) [92]. Ideally, hydrothermal liquefaction could bring a green alternative

to petroleum depletion when this system is optimised. It is noted that hydrothermal

conditions are present in the bottom of the ocean within hydrothermal vents [93]. Bio-

crude oil is viscous with a high energy content ranging from 30 to 40 MJ/kg. The oil
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composition is a complex mixture of oxygenated and aliphatic compounds. Bio-crude

derived from microalgae, may further contain cyclic nitrogen compounds.

This image has been removed by the author of this thesis for copyright reasons

Figure 2-5: Phase diagram of water with hydrothermal processing regions diagram from
Peterson et al. [94]

Subcritical water is a more advantageous medium to work with as at high

temperature; the water has different chemical and physical properties.

 The water density decreases from 1000 at room temperature to approximately

650 kg/m3 at 350 °C. This temperature change lowers the polarity of water or dipole

moment from 78 F/m at room temperature to 14 F/m at 350 °C and 20 bar, above the

supercritical point water forms a single gaseous phase [95]. Likewise water would

have proprieties similar to acetone at this temperature and be able to dissolve polar

molecules such as triglycerides. Khuwijitjaru et al. [96] demonstrated that the

solubility of fatty acids increased with the temperature and in relation to the carbon

chain length. Benzene is miscible in water at 300 °C and 170 bar [94].

 In the temperature region between 200 to 350 °C, the ion product or the

dissociation constant defined in Equation 2-1 is at its maximum of 10-11. At these

temperatures the concentration of hydroxyls and protons is increased improving the

hydrolysis of macromolecules and avoiding the need for additional inorganic acids

[97].

Kw = Hൣ3O+൧ x ቂOH-ቃ Equation 2-1

 The solubility of salts is lowered before the supercritical point and induced

reactor plugging. For example, sodium sulphate (Na2SO4) precipitates at a lower

temperature compared to sodium chloride (NaCl) [98]. This problem of precipitation

could be exacerbated during the processing of microalgae grown in salt water.

Corrosion of the reactor could be an issue depending on the biomass processed.
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However, a suitable material for a reactor such as inconel 625 has demonstrated to

robust under subcritical water [2].

2.2.1 Chemical degradation under hydrothermal liquefaction

The main chemical pathways involve proton reactions with radical reactions

being dominant at temperatures higher than 375 °C. Physical and chemical properties

could be tuned in relation to the water loading. Three major steps are found to occur

during the hydrothermal liquefaction of biomass according to Toor et al. [2]:

- Depolymerisation of the biomass

- Decomposition of the monomer by cleavage or dehydration

- Recombination of some molecules.

During the first stage, macromolecules such as carbohydrates, proteins and

lipids are hydrolysed. At higher temperature, these molecules are broken down further

and recombined to form “heavy molecular weight” materials.

Subcritical water is able to undergo a range of chemical reactions without the

need of a catalyst. The increase of the dissociation constant enhances the

concentration of proton and hydroxyl species. The hydrolysis of organic compounds

for example alcohols, ester, ether and amines are readily carried out at temperatures

between 200 and 300 °C [97]. This is important as the majority of macromolecules in

the biomass form polymers; for example amino acids are bonded together with amide

group to form the peptide chains.

Ester hydrolysis at 350 °C is fast occurring, where 96 % of ethyl acetate is

hydrolysed within 170 seconds to ethanol and acetic acid in the absence of a catalyst

[99]. The hydrolysis of amides for example N-methylacetamide occurs between 200 to

400 °C and decomposes into acetic acid and methyl amine, although the hydrolysis

kinetics are faster at a pH < 3 and > 10 [100].

The hydration of alcohols such as ter-butanol (ternary alcohols) to yield methyl

propene occurs in less than 60 seconds due to a higher water dissociation rate between

250 to 350 °C. The addition of sulphuric acid is recommended to hydrate primary or

secondary alcohols such as butanol to butene with a pH ranging from 2-3 [101].

Condensation reactions occur commonly in subcritical water including

Friedel–Crafts alkylation, aldol and Claisen condensation. Friedel Craft involves the

addition of an alcohol or acyls group into an aryl cycle (with an electron withdrawing
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group). This reaction is considered to be common in the liquefaction of biomass as

phenol and alcohol (as tert butanol) are commonly present in the water phase [102].

The aldol reaction involves the condensation reaction of two aldehydes as

acetaldehydes and the Claisen reaction consists of the condensation between two

esters (Figure 2-6). These reactions necessitate the addition of basic catalysts. For

example in hot compressed water, the conversion of butyraldehyde into 2-ethyl-2-

hexanal was carried out at 250 °C with a yield 40 % [103].

Figure 2-6: Example of Claisen reaction condensation between two ethyl acetate (reaction
2-5) [103]

The reverse reaction of the aldol condensation also occurs, splitting into two

aldehydes, this is observed during the hydrolysis of glucose to glycolaldehyde [104].

Sub or supercritical is an interesting media to carry out the Diels-Alder

reaction as at high pressure; the polarity of the water decreases, thus apolar molecules

are soluble, and the reaction is able to take place at room temperature. Furthermore,

compressed water is found to be more selective for certain isomers (endo or exo ratio)

in comparison to standard temperature and pressure. Figure 2-7 shows a typical

reaction of Diels-Alder between a diene and a dienophile. This reaction could take

place in the presence of unsaturated fatty acids such as oleic and linoleic acids [105].

Figure 2-7: Diels-Alder reaction (Reaction 2-6)

Rearrangements could also take place under these conditions, such as the

delocalisation of the double bonds from the migration of the protons (1,8) leading to

cyclisation. The other rearrangement observed is the Beckman reaction; it is widely

used during the production of nylon 6 with the synthesis of caprolactam [106].
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Oxidation and reduction reactions could be carried out in subcritical water using a

catalyst. However, it is noted that different mechanisms take place after the critical

point, involving radical reactions [105].

Therefore, there are many advantages of working with subcritical

temperatures, as the properties of the solvent rely on the operating conditions

(temperature and pressure). Water can be used as catalyst for the hydrolysis in the

solvation of a reactant in particular with the Diels-Alder reaction. The water can have

an impact on the kinetic of a reaction. The large variety of compounds present in bio-

crude can be explained by the different reactions possible in subcritical water. One

purpose of this present study is to reduce the oxygen and nitrogen content in the bio-

crude. The dehydration and hydrolysis reactions of macromolecules occurring within

these conditions maybe are a potential solution. Nevertheless the historical studies

indicate that the oxygen and nitrogen contents are still significant. Therefore, it is

observed that further investigations need to be performed.

A large variety of biomass has been investigated under hydrothermal

liquefaction, such as woods [91, 107], lignocelluloses [108], vegetable oils [109, 110],

and protein [111, 112]. For instance, most of carbohydrates (cellulose, starch,

hemicelluloses) underwent a rapid hydrolysis under subcritical conditions to degrade

in the aqueous or gaseous phase [2]. Degradation of other feedstocks (lipids,

carbohydrates or proteins) are further detailed within this present study (refer to

Chapter 5, 6 and 7).

As previously discussed, microalgae, because of it high productivity, and large

amounts of lipids, are more suitable for hydrothermal liquefaction processing. Hence,

it is why more detailed research has been conducted in this in comparison to other

biomass. The next section includes research on hydrothermal carbonisation and

gasification.

2.2.2 Hydrothermal carbonisation (HTC) of microalgae

This process involves the formation of bio-chars at temperatures below 250 °C

and a low pressure (not greater than 20 bar). The objective of this method is to

synthesise bio-coal with a low environmental impact for the production of an

absorbent and carbon dioxide sequestration. Bio-chars are produced from simple

carbohydrates (glucose, xylose). At lower temperatures, these compounds (hexoses)

are degraded into hydroxymethyl-furfural and subsequently into a carbon material.
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Chars obtained previously possess a lower surface area. Furthermore, the shape of

pores can be modified in the presence of different additives, such as silica [113].

Heilmann et al. [114] investigated the HTC with different strains of

microalgae. A 62 wt.% carbon recovery was achieved in less than one hour at 190 °C.

Higher energy content was present from the bio-char of chlorella r. when compared to

natural coal or from lignocellulose materials. The char from microalgae contained

more than 5 wt.% of nitrogen which could lead to the production of NOx emissions

during combustion. High value compounds could be extracted from the aqueous

phase, such as sugars and organic acids, produced during the carbonisation of

Spirulina. The mass yield was superior at 175 °C with half of the energy recovery

compared to 215 °C [115]. During the HTC reaction, lipids were absorbed into the

chars and they could be retrieved by organic solvents [116]. Du et al. [117] produced

bio-chars from Chlorella at low temperature and recycled the nutrient from the waste

water to cultivate the same strain. When microalgae were mixed with glucose, the

fixation of nitrogen was enhanced [118].

Hydrothermal carbonisation has received less interest than gasification and

liquefaction as it is a novel technique, and for the moment, the product has low

economic impacts.

2.2.3 Hydrothermal liquefaction (HTL) of microalgae

The attention in hydrothermal liquefaction of microalgae was triggered by

early research carried out in Japan (Tsubaka) during the 1990’s. The first detailed

publication was released by Dote in 1994 investigating the liquefaction of

Botryococcus b. in the presence of sodium carbonate (5 wt.%) at 300 °C. A 64 wt.%

yield was reported, which is superior than the lipid content (50 wt.%). Further, a

similar energy content to petroleum crude oil was measured at 42 MJ/kg with low

nitrogen and oxygen content. However, it was observed that not all the algae had been

processed, only the extracted oil [119, 120]. Furthermore, the strain of Botryococcus

was not easy to cultivate with a high yield [121]. One year later, Minowa et al. [48]

carried out the hydrothermal liquefaction of Dunaliella t, a microalga with higher

protein content, obtaining a maximum yield of 42.0 wt.% with a 5 wt.% loading

sodium carbonate. The energy content obtained was 37 MJ/kg, and approximately 7

wt.% of nitrogen within the bio-crude oil. The energy consumption rate (ECR) was

calculated at a ratio of 0.34 implying that the energy balance was positive. From these
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studies Sawayama et al. [54] investigated that the Botryococcus strain in large scale

could be used for carbon dioxide mitigation, with the conversion of this gas

approximating to 1.5 105 ton/year, in the space of 8400 hectares. Again the difficulty

of cultivation of this microalgae was not taken into account [122].

Yang et al. [123] selected a microalga strain Microcystis v. produced during

eutrophication in lakes. The reaction was carried out in 5 wt.% sodium carbonate

loading, as previously producing a good yield of 39.5 wt.% at 340 °C for 30 minutes.

With one hour a slightly lower yield was achieved (37.8 wt.%). The composition of

the bio-crude oil included a high oxygen and nitrogen contents (approximately 6

wt.%).

Since the late 2000’s, there has been a remarkable interest in hydrothermal

liquefaction. Zou et al. [124] carried out the liquefaction of Dunaliella t using

different conditions with ethylene glycol and 3 vol.% sulphuric acid instead of water,

to producing a 23 wt.% yield at 170 °C. The bio-crude oil produced had some acidic

properties. A low yield of 25.8 wt.% compared to the study of Minowa [48] was

achieved by Shuping et al. [125] processing Dunaliella t cake with the same

concentration of sodium carbonate at 360 °C for 50 minutes. A high oxygen content

was measured in the bio-crude oil, it was elucidated that temperature influenced the

increase the bio-crude yield. The change in concentration of sodium carbonate was

reported to have no impact on the yield.

The advantage of hydrothermal liquefaction is the selection of the strain is not

dependant on the lipid content in contrast to the lipid extraction. Thus Yu et al. [126]

investigated the processing of chlorella py. with 0.1 wt.% of lipids at 280 °C with a 20

wt.% loading. A maximum bio-crude yield of 34.0 wt.% was obtained with a reaction

time of 120 minutes. An increase of bio-crude yield was observed with an increase the

temperature (200 to 300 °C) and reaction time. Brown et al. [127] measured similar

trends selecting Nannochloropsis with the highest yield obtained at 350 °C of 43.0

wt.%. A higher temperature, gasification was favoured compared to the liquefaction.

The maximum content of nitrogen was measured at 300 °C with 4.3 wt.%. A

comparison was investigated by Vardon et al. [128] between a normal (with 13 wt.%

of lipids) and defatted strain of Scenedesmus and Spirulina (approximately 5 wt.%).

Lipids enhanced the bio-crude oil yield with 45.0 wt.% instead of 36.0 wt.% for the

defatted strain and 31 wt.% for Spirulina. Furthermore, the nitrogen content was
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higher with the defatted microalgae (7.8 wt.%) compared to the original (6.5 wt.%).

Ross et al. [129] investigated the effect of alkali salts and organic acids on the bio-

crude yield and compositions at two different temperatures, 300 and 350 °C, on two

strains Chlorella and Spirulina. Compared to the studies described above, lower yields

were achieved. Biller et al. [112] examined the fate of nitrogen by processing different

biomasses and model compounds with different nitrogen content. These included

Chlorella, Nannochloropsis Porphyridium and Spirulina .for microalgae, albumin and

soya proteins, and two acids (asparagine and glutamine acids). It was established with

combining the results of the processing of the microalgae and model compounds, that

lipids had the highest impact on the bio-crude yield, compared to proteins and

carbohydrates. Materials with a high protein content gave high aqueous phase yield

and the opposite for the biomass with high lipids.

Vardon et al. [130] demonstrated that bio-crude achieved from Spirulina was

superior (32.6 wt.%) compared to the processing of swine manure and sludge,

although the nitrogen was higher with oil from the microalgae. The simulated

distillation showed that the main fraction of the bio-crude oil was present in the

vacuum gas oil. Greater bio-crude of 39.9 wt.% and energy content of 35.3 MJ/kg was

reported by Jena et al. [131] in a larger reactor size (1.8 litres) and with a loading of

20 wt.% of biomass. Increasing the temperature from 200 to 380 °C enhanced the

deoxygenation however the level of nitrogen progressed from 5.5 to 6.5 wt.%, while

the nitrogen was progressively reduced from 6.4 to 0.4 wt.% in the solid residue. Toor

et al. [132] achieved a maximum yield of 46.0 wt.% with Nannochloropsis s. carried

in a 400 ml reactor and 40.0 MJ/kg of heating content.

In a complete investigation of the hydrothermal degradation of Desmodesmus

sp. operating under different parameters (temperature and reaction time), the

maximum bio-crude oil of 49.7 wt.% was achieved at 375 °C with a holding time of

five minutes. For one hour the yield decreased slightly to 47.9 wt.%, yet with a high

concentration of nitrogen. The residue degraded at different temperatures was

analysed via scanning electron microscopy (SEM); from 175 to 200 °C no major

change in the cell structure was observed, above 200 °C the microalgae started to form

clusters together, and at 250 °C, the cell wall strength was completely degraded [133].

This statement was emphasised by the study of López Barreiro et al. [134] where

different strains of microalgae in the form of a paste (Scenedesmus o., Phaeodactylum,
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Nannochloropsis g., Scenedesmus a., Tetraselmis s., Chlorella v., Porphyridium p.,

Dunaliella) were processed at extreme temperatures (250 and 375 °C) with a short

reaction time (five minutes). A relationship between the cell wall strength and the

yield and temperature is elucidated. Indeed, Dunaliella, at low temperature (250 °C),

with a low cell wall strength yields 44.8 wt.% of bio-crude oils in contrast to

Scenedesmus o. (17.5 wt.%) which have a resistant cell structure. At higher

temperatures, this parameter did not affect the yield. The maximum yield was

achieved with Scenedesmus a., with 58.0 wt.% even though the strain containing high

carbohydrate content give low bio-crude oil.

Valdez et al. [135] produced a complete study of the liquefaction of

Nannochloropsis, as did Garcia Alba et al. [133] except that the kinetics were

investigated in detail. At low temperature and short time the microalga is converted

into products found mainly in the aqueous phase. As the temperature increased to 400

°C, the oxygen content in the fraction of heavy crude oil decreased, and nitrogen

content was mostly converted to ammonium compound. 80.0 % of the total energy

was contained in the bio-crude oil [135]. The same author elucidated that the primary

pathway with a short time was the degradation from the solid biomass into aqueous

products, light and heavy crude oil. Higher activation energy is required for the

conversion of the aqueous phase or the heavy oil into the gaseous phase. A model

prediction is deduced suggesting that the main degradation or yield occur within the

first twenty minutes and subsequently levelled out at most temperatures. This model

was relatively close to the literature results [136]. Torri et al. [137] suggested a

general route for the degradation of microalgae of each element present in the

microalgae (proteins, carbohydrates and lipids), basing the result on the pyro-probe

studies. Proteins depolymerise by forming cycles which are reduced with times and

temperatures to obtain diketopiperazines; the reaction with proteins and carbohydrates

forms “heavy molecular weight” compounds called melanoidin.

In order to achieve higher bio-crude yield with superior quality, pre-treatment

is proposed as an alternative. Miao et al. [138] were the first to propose this solution

for the processing of Chlorella s. grown heterotrophically. During the first step, the

alga was treated at 160 °C where the carbohydrates and high value chemicals were

recovered and the remaining residues were processed at 240 °C for 20 minutes with a

maximum yield of 32.0 wt.%; the denitrogenation is also more efficient. The
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sequential process is more energy efficient than the direct liquefaction. Furthermore,

the concentration of fatty acids increased in the bio-crude from the two steps, and had

the advantage that the energy input was reduced from 15.0 MJ/kg of bio-crude oils

[138, 139]. This method is also carried out to extract proteins and chemicals from

Scenedesmus sp. at 240 °C for 10 seconds to recover 60.0 wt.% of the total nitrogen in

the water [140].

Microwave was selected as a technique to extract valuable chemicals and

lipids from three strains Nannochloropsis o, Chlorogloeopsis f and P. ellipsoidea

[141]. Cheng et al. [142] carried out in situ transesterification of Nannochloropsis o in

a microwave and subsequently processed the remaining residue at 300 °C and finally

combined the bio-crude oils with FAME. In this way, 40 wt.% of bio-crude oil is

obtained, and the amount of nitrogen was lower; it also avoided the formation of

amides.

Biller et al. [143] used the processed water produced during hydrothermal

liquefaction at 300 and 350 °C to cultivate Chlorella v., Scenedesmus d, Spirulina p,

and Chlorogloeopsis f.. The liquefaction yielded 47.0 wt.% as maximum bio-crude oil.

A dilution higher than 400 times is necessary to have a similar culture growth using a

normal media. In order to accelerate the culture growth of Desmodesmus, Alba-Garcia

et al. [144] added supplementary nutrients to the diluted aqueous phase from HTL. In

a different aspect, Chen et al. [145] processed a mixed microalgal strain which treated

waste water, the maximum bio-crude oil was achieved at 300 °C with 49.0 wt.% of

oil. The nitrogen content was recovered in the aqueous phase and subsequently

recycled in the cultivation process. Recently, the same authors performed a co-

processed liquefaction with swine manure and mixture of algae (75 wt.% of manure

with 25 wt.% of microalgae), and a bio-crude oil yield of 35.7 wt.% was achieved

[146].

The optimum yield of 82.4 wt.% was reported recently by Li et al. [147] from

the processing of a modified strain Chlorella sp. (Y) at 220 °C with a 25 wt.% loading

and a reaction time of 90 minutes in a stirred reactor. In addition, the oil contained 20

wt.% of hydrocarbons. Nannochloropsis with low lipids also yielded encouraging

results with 50.5 wt.% with the same condition.
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In parallel, the processing of seaweeds has been studied, although lower bio-

crude yields are achieved. For example, Zhou et al. [148] carried out the liquefaction

of the macroalgae Enteromorpha p. and produced 23.0 wt.% of bio-crude oil at 300

°C using 5 wt.% of sodium carbonate for 30 minutes. The inconvenience of this

feedstock was the high level of ash, approximately 30.0 wt.%. Anastasaki and Ross

[149] operated different reaction parameters during the liquefaction of Laminaria s.,

the optimum temperature was at 350 °C for 15 minutes to achieve lower yield (19.3

wt.%) compared to Zhou et al. [148] Sargassum, a marine alga, was liquefied at

different temperatures by Li et al. [150]. The maximum bio-crude oil yield of 32.0

wt.% was achieved at 340 °C for 15 minutes. Recently, Neveux et al. [151] screened

different strains of macroalgae from fresh water and marine origin. Fresh water algae

yielded more bio-crude oil (Oedogonium 26.2 wt.%) as they originally contain less

ash (less than 20 %) compared to seaweed (from 20 to 30.0 wt.%). Nevertheless,

producing bio-crude oil from this biomass could not be viable as the yield compared

to microalgae was inferior and the quality of the oil was low in energy (approximately

30.0 MJ/kg) with a high concentration of salts in the aqueous phase.

To conclude, since the first publication of Dote et al. [119], an extensive

amount of research has been carried out for 20 years. Table 2-4 summarises the main

bio-crude oil yields obtained by the studies which had the most impact. Chlorella,

Spirulina, Nannochloropsis and Dunaliella are strains which are most commonly used

with low production price and these microalgae are used in the food industry. The

selection of the strains depend on the wall strength structure [134]; likewise lipids

content play an important role. The highest yield achieved so far is 82.4 wt.% from a

strain containing initially 60 wt.% of lipids [147]. New pre-treatment has been carried

out using microwave or two sequential steps in order to extract chemicals at low

temperatures and process the biomass more readily. The kinetic studies suggest that

the reaction time should be less than 20 minutes in low temperatures (200-330 °C)

[136]. Faeth et al. [152] developed a novel method to rapidly process microalgae

doing fast liquefaction in less than five minutes at high temperature reaching 600 °C,

although important energy is required to heat the reactor in a short time; this gave a

bio-crude oil of 66 wt.%. In general a high biomass loading of more than 15 wt.% is

recommended to enhance the bio-crude oil yield [131]. In most of the cases, the

nitrogen content in the bio-crude oil was 2 to 8 wt.%. In comparison the proportion of

total nitrogen in the aqueous phase was approximately 60-80 wt.%. Elliott et al. [153]
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were the first researchers in developing a semi continuous reactor using two steps.

During the first step, the biomass is hydrolysed under subcritical water and

subsequently the oil is upgraded as fuel under pyrolysis with the hydrodeoxygenation

process. The system could process 35 wt.% of biomass. This represented one of the

ultimate steps before the scale up of the hydrothermal liquefaction and a potential

commercialisation.

2.2.4 The addition of organic and inorganic salts

As mentioned in the previous section, some hydrothermal liquefaction has

been carried out with the addition of organic acids (formic acid, acetic acid), and other

salts (sodium carbonate). It should be pointed out that sodium carbonate and formic

acid are referred to as catalysts; however these compounds decompose during the

reaction into hydrogen or carbon dioxide. Alkali and acids, such as sodium hydroxide

and sulphuric acid, for example, are homogeneous catalysts, and the initial and the

final concentration should be identical. Salts are added in order to improve the quality

of the bio-crude oil.

During the early stage of the research on hydrothermal liquefaction, sodium

carbonate was commonly added with 5 wt.% loading [48, 119, 123]. At low

temperatures from 250 to 300 °C, sodium carbonate enhances the formation of oil and

the deoxygenation, for an experiment time of one hour [48]. Yang et al. [123]

suggested that this salt had a greater effect at 300 °C with a reaction time of 30

minutes compared to the experiment at 340 °C for one hour. The same observation

was found with the deoxygenation. Ross et al. [129] illustrated that sodium carbonate

compared to other salts was more efficient for the processing of Chlorella and

Spirulina for the production and also for the deoxygenation of oil, while clear

behaviour of the removal of nitrogen content was found in this study. Biller et al.

[112] reported that at 350 °C the deoxygenation and denitrogenation was favoured

with Chlorella and Spirulina and for soya protein. This alkali salt also reduces the

formation of residues during the processing of carbohydrates. The formation of

amides was not observed under this solution. Jena et al. [154] obtained a bio-crude

yield of 51.6 wt.% during the processing of Spirulina containing a low amount of

nitrogen (5.4 wt.%). Sodium carbonate helps to promote deoxygenation and the

formation of bio-crude at low temperature however the side effect was that with high
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amount of lipids, soap was formed. The impact is not fully understood during

hydrothermal liquefaction.

The purpose of formic acid is to produce in-situ hydrogen. This acid has been

demonstrated to have a rapid decomposition (less than two minutes) under subcritical

water either via decarboxylation to produce carbon dioxide and hydrogen or

decarbonylation with carbon monoxide and water. The solvent water has an influence

in stabilising the transition state. Above 253 bar and relatively high concentration

(0.01 mol/L), the production of hydrogen was predominant [155]. Ross et al. [129]

were the first researchers to investigate the effect of formic acid on the liquefaction. It

is elucidated that this organic acid improves the viscosity (flow properties) and

diminish the boiling point range; in addition, gas formation is enhanced. Nevertheless,

no effects on the nitrogen and oxygen contents were observed and lower bio-crude

yield was produced [129]. Biller et al. [112] found that formic acid enhanced the

formation of the gaseous and residue phases. Duan et al. [156] added formic acid to

produce in-situ hydrogen during the upgrading of algal oil in supercritical water. An

increase in concentration of this organic acid enhanced the formation of bio-crude oil

to 70 wt% and increased gaseous yield. Furthermore, the level of coke was reduced. A

mild reduction of nitrogen in the oil was observed with high concentration of formic

acid.

Acetic acid was also selected by Ross et al. [129], but had minor impact during

the liquefaction. Potassium hydroxide (KOH) was used by the same authors without

giving significant changes compared to sodium carbonate. In another study from

Anastasakis and Ross [149], the variation of different concentration of potassium

hydroxide was investigated and as the concentration increased the production of bio-

crude oil decreased to favour the aqueous phase.

Jena et al. [154] investigated the effect of NiO and Ca3(PO4)2 powders on the

liquefaction of Spirulina. These powders enhance the formation of the gaseous phase

with lower bio-crude oil formation. Furthermore, the analysis of the oil indicated that

nickel oxide enhanced the formation of aromatics.

The effect of alkali and organic salts needs to be investigated in more details to

elucidate the effect during the hydrothermal liquefaction of microalgae. Some new

acids such as oxalic acid should be tested under these conditions as interesting results

were achieved with carbohydrates [157].
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There has been some speculation as to whether oxalic acid could be a better

hydrogen donor compared to formic acid. Indeed, particularly at temperatures below

300 °C, oxalic acid is less stable compared to formic and acetic acids. Furthermore,

low acidic pH enhances the rate of decarboxylation of oxalic acid. This organic acid

was found to decompose into formic acid as in Reaction 2-7:

H2C2O4 → H2CO2 + CO2 Reaction 2-7 [158]

Oxalic acid is identified as an intermediate during the decomposition of

glucose to formic acid in the presence of oxygenated water (H2O2) at a lower

temperature (150 °C) [159]. The only application for in-situ hydrogen from oxalic

acid was carried out by Izhar [160] for the denitrogenation in pyrolysis conditions.
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Table 2-4: Yields of different strains of microalgae

Authors Algae used
Homogeneous or

hydrogen donors
Oil conversion

Dote et al. [119] Botryococcus b., Na2CO3 (5%) 64.0 wt.% at 300 °C, 57.0 % without catalyst

Minowa et al. [48] Dunaliella t. Na2CO3 37.0 wt.%

Yang et al. [123] Microcystis v. Na2CO3 (5%) 33.0 wt.%

Zou et al. [124] Dunaliella t. Na2CO3 25.8 wt.%

Yu et al. [126] Chlorella py 39.0 wt.% 280 °C (120 minutes)

Vardon et al. [130] Scenedesmus

Scenedesmus defatted

22.7 and 21.3 wt.% deffated (300 °C)

Brown et al. [127] Nannochloropsis sp. 43.0 wt.% at 350 °C

Jena et al. [131] Spirulina 40.0 wt.% 350 °C

Garcia Alba et al. [133] Desmodesmus sp 49.7 wt.% 5 minutes at 375 °C
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Authors Algae used Homogeneous or
hydrogen donors

Oil conversion

Ross et al. [129]

Chlorella v.

Spirulina

KOH, NaOH

CH3COOH

HCOOH

For KOH 9.0 wt.% Spirulina and 13.6 wt.% for

Chlorella

With formic acid 19.5wt.% and acetic acid 15.7

wt.%

Biller et al. [112]

Chlorella v., Nannochloropsis

occulata Porphyridium c.

Spirulina.

Na2CO3

HCOOH

Spirulina 17-18.0 wt.% with catalyst (formic acid or

Na2CO3)

Valdez et al. [135] Nannochloropsis sp. 46.0 wt.% 300 °C 15 minutes

Miao et al. [138] Chlorella so. 31.0 wt.% two steps preatment 2steps

López Barreiro et al. [134]

Scenedesmus o., Phaeodactylum,

Nannochloropsis g.,

Scenedesmus a., Tetraselmis s.,

Chlorella v., Porphyridium p.,

Scenedesmus 58.1 wt.% 375 °C

Dunaliella 44.8 wt.% 250 °C

Chen et al. [145] Waste water culture algae 49.0 wt.% (300 °C)
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2.2.5 Hydrothermal gasification (HTG) of microalgae

Hydrothermal gasification is an interesting technique as different gas

compositions can be achieved in relation to the catalysts and the temperature selected.

Compared to dry gasification, lower temperatures are used from 400 to 700 °C and a

pressure range between 250 to 300 bar under supercritical water.

At the first stage of the research on this topic, researchers were more interested

in producing methane (CH4). Elliot and Antal first conducted the early research in to

the processing of wastes or slurries [161]. Minowa and Sawayama [162] investigated

gasification at 400 °C with a high loading (15 g) of catalyst (Ni/Al2O3). These

conditions favour the formation of methane (35 vol.%) and carbon dioxide (49 vol.%).

They also suggested recycling the aqueous phase, which contains a significant

ammonia content for the cultivation of Chlorella. The SunChem project developed by

the Paul Scherrer Institute in Switzerland followed the same initiative to gasify

Spirulina or Phaeodactylum t. with ruthenium and carbon or zirconia supports (Ru/C,

Ru/ZrO2) [63]. Their objectives were to design a semi continuous reactor. Ru/C with a

2.5 wt.% loading at 400 °C for five hours achieved a 100 % carbon conversion with

the formation of carbon dioxide (49 vol.%) and methane (41 vol.%). Ru/ZrO2

enhanced the formation of hydrogen to approximately 20 vol.% in one hour. The

inconvenience of this process is metal leaching from the catalysts (for example nickel

or copper) which could be poisonous to the development of the microalgae when the

aqueous phase is recycled; also sulphur poisoning of the catalyst was an issue [63,

163]. The complete gasification involves loading the reactor with a higher proportion

of catalyst compared to the feedstock which is not economically viable.

Some authors were more interested in producing hydrogen. Brown et al. [127]

carried out the hydrothermal gasification and liquefaction of Nannochloropsis from

200 to 500 °C without a catalyst. As the temperature increased, the formation of bio-

crude decreased, in contrast to the gaseous phase. 39 vol.% of hydrogen was produced

at 400 °C. Chakinala et al. [164] obtained a full gas conversion or gas efficiency of

Chlorella at 700 °C with Ru/TiO2 with a high proportion of hydrogen. Guan et al.

[165] elucidated that the reaction time favoured the formation of hydrogen and

methane whereas the loading of microalgae tended to reduce the concentration of

these gases. An increase in the water loading enhanced the gaseous phase carbon

yield. The addition of sodium hydroxide improves the concentration of hydrogen and
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reduces the formation of tars [166]. The hydrothermal gasification of seaweed gave a

good yield; for example 16 g of hydrogen per kg of macroalgae was obtained by

Schumacher et al. [167] despite the high ash or carbohydrate content. Cherad et al.

[168] proposed a new route to gasify the aqueous phase produced via the liquefaction

of microalgae into hydrogen for upgrading the bio-crude oils and increasing the

quality of bio-crude.

In order to achieve full gaseous conversion, it has been found that high loading

of catalysts is necessary, which makes the scale up of this process difficult and

expensive.
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2.3 Catalytic upgrading

A catalyst is a chemical compound which helps to reduce the activation energy

during a particular reaction. During the processing of biomass, the selection of

catalysts should satisfy the following criteria:

 Robustness: the catalyst should be stable to harsh conditions, for example in

hydrothermal liquefaction at high temperature and pressure. It should have good

mechanical resistance (a high surface area and good metal dispersion and a low

leaching), and be resistant to poisoning from the heterogeneous atoms (nitrogen,

sulphur) from the biomass.

 Selectivity: in relation to the desired products, the catalyst should have

adequate properties (pore size, chemical functions, for instance acidic or basic,

oxidant or reductant).

 Activity: heterogeneous catalyst should give consistent results after several

regeneration cycles.

In the case of upgrading biomass, the catalyst should be designed to be

selective for deoxygenation and denitrogenation. In other words, it should be able to

yield a good hydrolysis rate of ester and carboxylic group and subsequently be able to

cleave the C-O bonding in the carbohydrates and lipids and the C-N bonding for

proteins [169]. Zeolites represent good candidates to convert biomass into a high

energetic fuel as this type of material is widely used in industry. Their chemical

properties can be tuned without difficulty.

2.3.1 Introduction to zeolites

Zeolites are composed of networks of aluminium and silica oxides forming a

microporous or mesoporous complex framework. The incorporation of other elements

such as phosphorus or gallium is possible. Natural zeolites, for example modernites,

occur naturally during volcano eruptions. They have different usages including

detergents, ion exchange for water purification, catalysts for petrochemical industry

[170].

The coordination of the bonding of silica oxide to alumina induces the

presence of two different acidic sites, the Brønsted acid site is created by the Si-(OH)-

Al bridge, and the Lewis acid site by the aluminium atom (weak acidic site) [171].

Zeolite X and Y belong to the faujasite family; ZSM-5 and silicatite are MFI
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(Mordenite Framework Inverted). Synthetic alumina silicate zeolites are classified in

relation to the pore size and also depending of the ratio on silica over alumina Si/Al:

- Low Si/Al ratio up to 1.5: zeolite A and X

- Between to 2 to 5: modernite, Y, omega, clinoptilolite

- High Si/Al from 10 to 100: HZSM-5, beta β, natural erionite, MCM-41

The zeolites A and X contain the largest amount of alumina. These classes of

zeolites are used as detergents especially in laundry powder to remove stains from

clothes. The high silica zeolites or molecular sieves are used to absorb organic

molecules [172].

Aluminophosphate zeolites are widely used as molecular sieves. These zeolites

are divided into two classes: the first group contains VPI-5 which has large pore sizes

and an 18 membered ring structure. The other class includes the silico

aluminophosphate commonly names SAPO, for example SAPO-34 which has an

average pore size of 0.4 nm. These catalysts are reputed to have good hydrothermal

stability [173-175].

Fluid catalytic cracking (FCC) was developed by the petroleum industry to

crack down and isomerise heavy crude oil to smaller light fuel fractions. Zeolites,

including Y, β, USI or HZSM-5, are commonly used because of their high Brønsted

acidity. For instance, zeolite Y has a narrow pore size of 0.8 nm which allows only

long straight alkane chains to diffuse inside the pore whereas branched alkanes could

not go through the pore. The inconvenience of FCC catalysts is the significant

production of coke and for example HZSM-5 can be deactivated rapidly. This is the

reason why this process is carried out with a fluidised bed reactor, where zeolites can

be constantly regenerated in a combustion chamber [176].

Because of these interesting properties, the investigation of processing biomass

with selected micro and meso porous zeolites has been significant, especially for

experiments carried out under pyrolysis conditions.

Zeolites can also be used as an alternative compared to the homogeneous

catalyst during the transesterification process, for example with ETS-10 (a

titanosilicate catalyst type) a 80 % conversion of FAME was obtained with a mild

temperature 60 °C [177]. Side reactions such as saponification are likely to take place

with mesoporous catalysts. The addition of different salts change the propriety of the
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catalyst, for example lanthanum enhanced the Brønsted acidity of beta zeolite and

improve the conversion of FAME [178]. The research community has selected

zeolites for the production of green diesel from triglycerides by cracking. Idem et al.

[179] processed canola oil with HZSM-5 producing principally aromatics and gaseous

compounds. MCM-41 doped with a mixture of cobalt and molybdenum (Co/Mo)

showed good conversion of vegetable oils into hydrocarbons [180]. Twaiq et al. [181]

converted palm oil in a continuous reactor with different zeolite (HZSM-5, USY and

β). USY and β was more selective for producing diesel range fuel, while with HZSM-

5 more gasoline-like fuel was obtained. Nevertheless, the yield of aromatics could be

reduced by doping with potassium.

Hydrodeoxygenation has been widely studied; this technique consists of

producing hydrocarbons by hydrogenation at high temperature. Several companies

such as Neste oil develop this process at large scale to produce green diesel. An added

advantage is that unsaturation of the vegetable oil could be reduced to improve the

fuel quality. HZSM-5 and other zeolites were selected for this reaction, combined with

doped metals which were oxygen labile such as molybdenum, cobalt, cerium and

activated towards carbonate functional groups. Furthermore, these metals are more

efficient if they were combined with noble metals such as palladium, platinum or

rhodium, which has the function to hydrogenise biomass [182, 183].

The hydrolysis of carbohydrates including starch and cellulose is possible but

is a complex process using zeolites. HZSM-5 and USY with ruthenium converts

cellulose into glucose and subsequently short alcohols at 160 °C in the presence of

hydrogen [184]. French et al. [81] pyrolysed aspen wood selecting HZSM-5 doped

with different metals such as bismuth, cerium, cobalt, iron, copper, nickel and gallium

(Bi, Ce, Co, Fe, Cu, Ni, Ga) at 500 °C. The incorporation of these metals helps to

reduce the oxygen content of the oil. Nickel enhances the formation of hydrocarbons,

although when good activity is obtained the level of coke produced was significant.

Milne et al. [85] were the first researchers to process an unknown oil from

algae with HZSM-5 achieving a good deoxygenation. Peng et al. [185] converted, in

high hydrogen pressure (40 bar), an algal oil in dodecane as solvent selecting HZSM-5

and Hβ doped with nanoclusters of nickel. As the ratio of Si/Al increased from 45 to

200, the selectivity for alkanes reached up to 93 %. With low Si/Al ratio, cracking to

light fraction was enhanced. The full hydrogenation of the double bonds was
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achieved. Du et al. [186] compared the pyrolysis of Chlorella and three different

model compounds (egg protein, canola oil and cellulose) with HZSM-5. Cellulose

produced the highest amount of aromatic compounds such as naphthalene. Chlorella

pyrolysis yielded 16 wt.% of aromatics (toluene, xylene and furfural) also 3-methyl-

indole. The proteins degrade into phenol and indole which the canola oil yielded

benzene, toluene and xylene Thangalazhy Gopakumar et al. [187] carried out the

pyrolysis of Chlorella with HZSM-5 obtaining a bio-oil yield of 52.4 wt.%.

The inconvenience of pyrolysis is that a large amount of coke is produced with

HZSM-5 and products are mainly aromatics and gases. An oil produced with the main

boiling range in the kerosene would be more favourable. Doped metals-HZSM-5 such

as copper, nickel or molybdenum enhances and changes the chemical properties of

this zeolite and by producing different products. It would be interesting to test some of

them and to investigate their activities and hydrothermal stabilities.

2.3.2 Hydrothermal liquefaction using HZSM-5 or other zeolites

Ravenelle et al. [188] assessed the stability of two zeolites, Y and HZSM-5, in

hot compressed water (low temperature 150-250 °C and pressure 5 bar). The authors

illustrated that HZSM-5 was more robust in these conditions and that the de-

alumilation was low in contrast to the modification of the silica groups. Mo et al.

[189] investigated the stability of HZSM-5 in supercritical water at 500 °C. No major

structure and crystallinity change was observed. Furthermore, a good conversion into

hydrocarbons was achieved from palmitic acid after several regeneration cycles.

Duan et al. [190] and Yang et al. [191] investigated the activity of zeolite on

the conversion of microalgae strains into a fuel. Yang et al. [191] selected Ni/REHY

(the zeolite Y doped with rare earth group metal). The nickel group reduces the

surface area of the catalyst as the metal blocked the pores even though a good

deoxygenation was achieved at 200 °C from Dunaliella s.; the resulting oil had a

heating content of 30.0 MJ/kg. Sinag et al. [192] observed that the processing of baby

food (a mixture of carbohydrates and proteins) in the critical region with HZSM-5

yielded large amount of acetic acid and acetaldehyde in the aqueous phase.

Li et al. [189] upgraded, in supercritical water, a bio-crude produced from

Nannochloropsis with a good conversion rate. Dodecane was successfully cracked

into light compounds in sub and supercritical water by HZSM-5 [193]. Research is
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still needed to be carried out to investigate the effect of HZSM-5 for the hydrothermal

liquefaction of microalgae.

2.3.3 In-situ catalytic liquefaction of microalgae

The selection of a heterogeneous catalyst is more advantageous compared to

homogeneous ones, as the catalyst can be recovered and used several times. The use

of catalysts is to improve the deoxygenation and denitrogenation reaction of the bio-

crude oil. The first study relating the catalytic processing of microalgae was reported

by Hillen et al. [194] on Botryococcus oil using a CoMo catalyst at 440 °C in apolar

solvent. The oil obtained was composed of 67.0 wt.% of petrol fraction. Matsui et al.

[195] carried out the liquefaction of Spirulina under liquefaction in tetralin as a

solvent at 350 °C with an iron catalyst (Fe(CO)5-S). 60 wt.% of hexane soluble

material was obtained. Working with water is more suitable as it was a green solvent

(environmentally friendly) and highly available.

The publication of Duan and Savage (2011) was the first to mention the

heterogeneous catalytic screening under subcritical water during the liquefaction of

microalga Nannochloropsis. Catalysts such as Pd/C, Pt/C, Ru/C, Ni/SiO2-Al2O3,

CoMo/γ-Al2O3 (sulfided), and zeolite were selected for the screening in two

conditions in helium and pressurised hydrogen. Most of the catalysts yielded a higher

amount of bio-crude compared to the run without catalyst (obtaining 35.0 wt.%). Pd/C

was the most efficient catalyst with a bio-yield of 55.0 wt.%. The lowest nitrogen

content was detected with Ni/SiO2-Al2O3 with 3.3 wt.%. Under hydrogen noble metals

led the increase of the H/C ratio. The deoxygenation was more advanced with

CoMo/γ-Al2O3 (sulfided) with approximately 8.5 wt.% of remaining oxygen content.

In the case, the addition of hydrogen do not have a high impact on improving the

propriety of the bio-crude [190].

Biller et al. [196] carried out comparable research with two microalgal strains

(Chlorella v. and Nannochloropsis o.) and soya bean oils selecting a mixture of cobalt

molybdenum, platinum and nickel (CoMo, Ni and Pt) supported on alumina catalysts.

Lower bio-crude oil yield was achieved with the nickel catalyst as it promoted

gasification. Platinum improved the bio-crude oil yield slightly to 38.9 wt.% with

Chlorella in contrast to the run in water (35.8 wt.%). The results agreed with the trend

observed by Duan and Savage regarding the deoxygenation. CoMo/γ-Al2O3, nickel

and platinum had a mild effect on the denitrification [196]. Nevertheless, results with
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these catalysts were not outstanding as the difference in product yields and properties

with and without catalysts was not significant. Post catalytic hydrothermal

liquefaction of microalgae has been attempted with HZSM-5 and Raney nickel in

sub/supercritical ethanol. Experiments with this solvent could be carried out at lower

temperatures below 300 °C, with higher bio-crude yield. For example with Raney

nickel and hydrogen, 70.0 wt.% bio-crude oil yield was achieved. The low degree of

denitrogenation was the drawback of this process [197].

2.3.4 Post catalytic upgrading

In an attempt to reduce the level of heteroatoms, Duan and Savage [198]

proposed the upgrade of bio-crude oil from Nannochloropsis sp. under supercritical

water conditions (Pt/C in pressurised hydrogen, reaction time two to three hours). The

first results published were encouraging, producing an oil with a high energy content

(43 MJ/kg), similar to a petroleum crude oil (42 MJ/kg). The nitrogen was reduced by

half and the oxygen content from 6 to 4 wt.%. Hydrochloric acid and sodium

hydroxide were used as an additive without influencing the composition of the bio-

crude oil. In their second study, the upgrading with more catalysts such as Mo2C, Pt/C

and HZSM-5 was investigated with a longer reaction time. A high proportion of

aromatics are produced above 430 °C especially with HZSM-5 and Pt/C with a long

reaction time (four to six hours). The optimum parameter for the denitrogenation was

at 530 °C using Pt/C for six hours, whereas complete deoxygenation was achieved

using Mo2C at 530 °C for two hours. The same catalyst promoted the formation of

saturated hydrocarbons (42 %) presumably from fatty acids, at a lower temperature of

420 °C and six hours [199]. 20 wt.% of Pd/C loading was the best catalyst to obtain

the maximum bio-crude oil. An 80 wt.% catalyst loading with a four hour reaction

time yielded less bio-crude. The principal compounds detected were hydrocarbons

from octane to dotriacontane with less than 2.0 wt.% of nitrogen content [200].

Duan et al. [156] upgraded for one hour at 400 °C a bio-crude oil with Pt/γ-

Al2O3 produced from a different strain Chlorella p. The variation of catalyst loading

enhanced the formation of gas by 15 wt.% with a 30 wt.% loading and subsequently

reduced the bio-crude oil yield. In addition, the formation of coke was non-negligible

at high temperatures. When the catalyst was recycled, after the third cycle the

production of bio-crude oil increased while the nitrogen content decreased to 2.4 wt.%

which was the lowest amount of this study. The change of water density (the increase
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of water:oil) did not affect the amount of nitrogen in the oil. A complete catalytic

screening was carried out by Bai et al. [147] who selected 5% Pt/C, 5% Pd/C, 5%

Ru/C, 5% Pt/C (sulfided), Mo2C, MoS2, alumina, CoMo/γ-Al2O3 (sulfided), Ni/SiO2–

Al2O3, HZSM-5 processing of the same algae. Ru/C and Raney Nickel was more

selective for the conversion of saturated hydrocarbons and aromatics from the original

bio-crude oil. This explains why the combination of the two catalysts produced a non-

viscous oil containing less than 2.0 wt.% of nitrogen and oxygen compared to other

bio-crude oils. In addition, the heating content exceeds the petroleum value at 45.0

MJ/kg. Indeed, these catalysts have been demonstrated to deoxygenate fatty acids. The

support alumina had a good deoxygenation of the oil.

Although research results carried out by Peigao Duan [156, 201] is promising,

severe conditions are required within supercritical water, as well as expensive

catalysts with high value metal such as ruthenium in order to obtain high quality oil.

Therefore, the final cost of the algal fuel would rise, making it uncompetitive

compared to fossil fuels. The non-catalytic run resulted in 40.0 wt.% of oil and during

the catalyst processing approximately 77.0 wt.% was obtained. In order to produce the

equivalent of one barrel of crude oil (138.8 kg), 460 kg of algae would be necessary.

2.4 Life cycle analysis

Life cycle analysis has been used to estimate potential yields of bio-crude from

different technology approaches. Comparing the lipid extraction and the hydrothermal

liquefaction, more biofuels were produced with the latter with 10,4000 m3/year,

compared to 91,300 m3/year although the greenhouse gas emissions were lower with

the lipid extraction. Delrue et al. [202] stated that the greenhouse emissions were

dependant on the bio-crude yield. Furthermore, lipid extraction necessitated 1.8 more

biomass feedstock compared to HTL which also has a surplus of energy of 9.2 MJ as

no drying was required. It was calculated that when the bio-crude oil yield exceeded

40.0 wt.%, the emission of greenhouse gases would increase as the organic

concentration in the water would be lessened and thus some extra energy needed to be

added [203].

One of the challenges for the HTL process is the nitrogen removal, as the bio-

crude oil contains at its best approximately 2-3 wt.% of nitrogen content. This is lost

from the cycle, and in order to have enough nutrients some additional nitrogen
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compounds should regularly be injected into the system. Denitrogenation is possible

however a large amount of hydrogen is necessary. According to Franck et al. [203]

compared to lipids extraction 5.2 times of ammonia and 1.5 times of phosphorus

would be needed for the HTL process, which represents 3 m3 ton of ammonia for 45.5

billion of m3 of oil produced.

The production of fuels from microalgae via the hydrothermal liquefaction

route could emit less greenhouse gases compared to the production of corn ethanol

and conventional fuels such as gasoline and diesel [204]. Furthermore, the potential

energy return on investment (EROI) could be 1 for the pilot scale production and

approximately 3 for the full scale production which is approaching the EROI for

gasoline which was 4. A sensitivity analysis for the pilot scale emphasised the supply

of nutrients and fertilisers [204]. According to Liu et al. [205], the recycling of

hydrothermal water could bring only 12.5 % of the necessary nutrients. The carbon

dioxide supply was the other problematic factor as pointed out by Chisti et al. [55] and

in order to be economically viable the production should be located near to a coal

power plant. For the large scale, the bio-crude yield and the recovery of the energy

could be more problematic. Fortier et al. [206] emphasised that in order to produce bio

jet fuel, the production should be carried out in the facility of a waste water treatment

plant, as the emission of greenhouse gases could be reduced by up to 76 % (to 35 kg

CO2/GJ) compared with the transport to the biomass to a special refinery. In general,

nitrogen was found to play a major role in the production of biofuels with respect to

the nutrients recycle and the emissions and the presence of nitrogen content in the bio-

crude oils. Furthermore, LCA assumes that the bio-crude oil obtained has similar

properties with regular fuels. At the present time, many upgrading steps are necessary

to obtain ready use fuel. Therefore, in order to achieve the commercialisation of an

algal fuel, many hours of research remain to be done in particular to reduce efficiently

the nitrogen content in the bio-crude oil.
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2.5 Conclusion

The depletion of fossil fuels and the accumulation of greenhouse gases

underline the importance of finding new sustainable fuels. The production of biofuels

from microalgae could offer an alternative, which reduces the amount of arable land

required. Microalgae can be cultivated in non-arable land, require less water and

fertilisers than crops also containing a high lipid content (superior to palm oil).

Microalgae could be used as a solution for carbon dioxide mitigation and waste water

recycling. The extraction of lipids involves prior drying of the biomass which

consumes a large amount of energy. Hydrothermal liquefaction has been demonstrated

as a better solution, as low lipid microalgae can yield large amounts of bio-crude. The

other advantage is that the aqueous phase can be recycled to feed microalgae, thus

potentially representing a closed loop system with no waste. The challenge is

removing the nitrogen compounds still present within the bio-crude oils, and the harsh

conditions required for removal. In theory the addition of 5.2 wt.% of ammonia would

be required for each regeneration cycle due to the nitrogen losses within the bio-crude.

This however, could be offset by the use of municipal waste water and other low cost

nitrogen sources such as the flue gas from coal power plants.

Some progress has been observed in the reduction of the nitrogen within the

bio-crude over the last 20 years. One solution could be to select microalgal strains

grown in a stressed environment with a high lipid content and low protein content.

The other option would be to upgrade, prior to liquefaction using microwave

treatment, or post liquefaction under supercritical water using noble catalysts (Pd/C or

Pt/C). Changing operating conditions (time, temperature, weight loading) has been

extensively investigated and the best results were obtained with a reaction time below

15 minutes at a temperature between 250 to 350 °C. Even so, there are still some

uncertainties concerning the fate of nitrogen and the production of nitrogen

heterocycles in the bio-crude. Thus further work is needed to understand the

degradation reactions of nitrogen compounds taking place during the hydrothermal

liquefaction of microalgae. This would allow for the enhanced development of process

strategies in achieving a better quality bio-crude oil with a lower nitrogen content.

HZSM-5 is an economical substitute to precious metal catalysts as it is widely

used in the petrochemical industry. Furthermore, the upgrading of biomass (vegetable

oils, lignocelluloses) under pyrolytic conditions has been studied widely using this
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catalyst. Therefore, there is an interest in processing microalgae under hydrothermal

liquefaction conditions in the presence of HZSM-5. Doping with different metals

could change the selectivity of the catalysts and result in different bio-crude oil

compositions. However, there are still some challenges on improving the stability of

HZSM-5 and the reactivity of this catalyst with biomass under hydrothermal

liquefaction. Finally, the hydrothermal bio-refinery of microalgae appears to be an

encouraging solution to produce oil from an alternative bio-renewable source.
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Chapter 3 Methodology

In this chapter, details of the procedure of the hydrothermal liquefaction are

included first. Subsequently, a standard procedure describes how samples have been

analysed and processed. In this chapter, general techniques which have been used

throughout the project are listed; the others which are more specific to the individual

chapter are described at the beginning of each chapter.

3.1 Hydrothermal processing of biomasses

3.1.1 Analysis of biomass

Both strains of microalga Pseudochoricystis ellipsoidea (stressed and non-

stressed) were supplied by Denso Corporation. Chlorella vulgaris is obtained from a

commercial source. Hemp and soya proteins are food supplements from the food shop

Holland and Barrett; likewise for the strain of Spirulina. Asparagine was bought from

Alfa Aesar. Sunflower, soya bean and palm oil are refined oils of food grade obtained

from a local supermarket. Linseed oil was obtained from a local art supplier. Jatropha

oil is unrefined. Oleic acid was purchased from Alfa, linoleic acid and linolenic acid

from Sigma Aldrich.

3.1.2 Proximate analysis

Proximate analysis includes the determination of moisture, ash and volatile,

they are been carried out according the European standard procedure for ash, moisture

and volatile (CEN/TS 14775:2004, CEN/TS 15148:2005 and: CEN/TS 14774-1-

3:2004).

Moisture is determined using a duplicate of 1 g at 105 °C for four hours. Ash

of the biomass is calculated at 550 °C for three hours in the muffle furnace.

The weight % of ash was determined as follows in Equation 3-1:

% ash =
m2-m3

m2-m1
x 100

Equation 3-1

Where m1 is the weight of the empty crucible, m2 is the weight with the

biomass before ashing and m3 is the mass of the crucible after the ashing. The
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elemental analysis of the raw biomass is determined using the CHNS analyser and the

formulas are found in section 3.1.4.3.

3.1.3 Liquefaction

Hydrothermal liquefaction experiments are carried out in a 77 ml unstirred

stainless steel bomb reactor SS316 from Parr (USA) following methods described

elsewhere [129, 196]. The diagram of the reactor is shown in Figure 3-1. The reactor

has a bursting disk which released the pressure inside the reactor when the pressure

reaches 200 bar. A graphite gasket is placed at the top of the reactor ensuring that the

reactor is sealed. The temperature is measured by two thermocouples: one to control

the temperature of the heater and the other the temperature inside the reactor. Only the

temperature inside the reactor is recorded. (The pressure is measured thanks to the

controller by a pressure sensor), a cooling part is placed before in order to protect the

part from high temperature. A pressure gauge is also placed above the pressure valve.

The reactor is also connected with air and nitrogen cylinders.

Experiments are prepared as illustrated in Figure 3-2 for the work-up as

follows: 3 g (as received) of different biomasses (vegetable oils, vegetal proteins,

amino acids, microalgae, carbohydrates (mono-sugar and poly-sugars) were

introduced with or without 0.5 g of catalysts (in a stainless steel mesh basket) and

diluted with 27 ml of solvent (deionised water or 1 vol.% formic acid); a mesh was

introduced at the top of the reactor to avoid biomass escaping into the upper part of

the reactor following which the reactor was flushed to remove air and filled with 2 bar

of nitrogen and heated at temperatures from 250 to 350 °C with an average heating

rate of 9 °C/min. The reaction was considered to have started when the temperature

reached 249, 299 or 349 °C and lasted one hour. Finally, the reactor was allowed to

cool down for about two-three hours in air. When the temperature was below 35 °C,

the gas pressure and temperature were recorded and the gas was evacuated; this

pressure was subtracted from the initial pressure 2 bar to calculate the wt.% gaseous

mass balance as in the Equation 3-4.

After opening the reactor, the upper mesh and gaskets were washed with water

and dichloromethane, subsequently the content of the reactor was poured into a 250

ml separating flask; successively 10 ml of water and 10 ml of dichloromethane were

used to wash the reactor, it was repeated several times until solutions became clearer.

When catalysts were used in the experiments, the aqueous phase was filtered prior to
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being poured into the separating flask. In the last step, the upper part was washed with

20 ml of water and 10 ml of dichloromethane and flushed with nitrogen.

Figure 3-1: Schematics of the setting of the 77 ml Parr bomb reactor

Subsequently, the organic (the bottom part) and aqueous phase were mixed

together and allowed to settle for a moment. The organic phase was separated and

filtered (using a 9 cm PS (Phase Separator) filter) into a weighted beaker and left to

evaporate. More dichloromethane, (approximately 10-20 ml), was added again into the

aqueous phase and subsequently mixed and separated. Following the complete

evaporation of dichloromethane, the resulting bio crude oil was weighed to calculate

the mass yield. The aqueous phase was filtered with a Buchner filter using a 9 cm

grade 5 filter paper, and the resulting solution was made up to 1 litre. Bio-crude yields

(wt.%) are defined for two cases without the addition of salt as dried ash free basis in

Equation 3-2 and with the addition of salt as dried ash basis Equation 3-3:
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% yield bio-crude (daf) =
mass crude oil

mass of biomass (daf) - % ash % - % moisture
x 100

Equation 3-2

% yield bio-crude (daf) =
mass crude oil

mass of biomass(daf) + mass inorganic salt
x 100

Equation 3-3

Determination of the gaseous fraction:

ngas produced =
P x V

R x T

Equation 3-4

P is the pressure when the reactor is cold in bar, V is the volume in m3, R is the

gas constant (8.314 J/mol.K), T is the temperature in Kelvin (T (K) = 273+ T( °C)).

Figure 3-2: Schematic of the experimental procedure for hydrothermal liquefaction of
biomass

Some experiments were carried out in duplicate to investigate the

reproducibility. The coefficient of variance CV is used as the error measurement as in

Equation 3-5 where σ is the standard deviation over the average X (x2-x1) between two

repeat experiments.

Biomass + water

GasWaterResidue

Dichloromethane

Water Dichloromethane

Separation

Filter Evaporation

Hydrothermal liquefaction

Slurry

Bio-crude



Chapter 3

53

%CV =
σ

X
x 100

Equation 3-5

These are typically found to be in the range of 5-10 %, depending on the bio-

crude yield.

There are several factors which could explain the variance such as the particle

size of the sample, whether the sample is weighed accurately, or the homogeneity of

the feed slurry before the experiment. To reduce these impacts, ground samples are

used and the samples are measured accurately and subsequently mixed before carrying

out the hydrothermal liquefaction. During the working up and separation process, loss

of the samples could occur during transfer to different containers (from the separating

flask to the beaker); during the evaporation some volatile compounds could also be

evaporated with the dichloromethane. During the washing of the reactor, some

samples could be difficult to remove or stuck on the wall of the reactor. Some water

could be present in the bio-crude especially when high lipids content was used.

3.1.4 Analysis of liquefaction products (bio-crude oil)

Bio-crude oil is analysed using different techniques: gas chromatography mass

spectrometry (GC-MS) for the identification of the molecules, elemental analysis for

the determination of per cent carbon, hydrogen nitrogen and sulphur (CHNS), and gel

permeation chromatography (GPC) for determining the size of the compounds. The

diagram in Figure 3-3 illustrates the different techniques used to analyse the bio-crude.

The GPC is performed under the supervision of a technician.

Figure 3-3: Schematics of the different techniques used to analyse the bio-crude
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3.1.4.1 Gas Chromatography/Mass Spectroscopy (GC-MS)

3.1.4.1.1 Theory

Chromatography is a method which allows molecules to be separated from a

complex mixture. This mixture is dissolved into a solvent or gas called the mobile

phase. It subsequently passes or elutes through a column containing stationary phase

and depending on the interaction between them molecules will be retained as a

function of their physical (molecular weight) and chemical interaction (polarity).

When this molecule reaches the detector, retention times can be measured. There are

various sorts of chromatography involving different media: gas chromatography (GC),

liquid chromatography with high pressure liquid chromatography (HPLC) or ion

chromatography (IC) [207].

Gas chromatography, detailed in this section, allows volatile molecules to be

separated, using a gas as a mobile phase. Organic molecules require heating in order

to elute through the column, therefore, this is the reason why the compounds need to

be stable at high temperatures. Once injected, the sample enters a heated injection part

containing a liner retain any particulate and subsequently into a column. There are two

classes of column:

- Packed columns are generally short (approximately 2-3 m) and filled with

stationary phases such as silica or molecular sieves. They are usually used for gas

analysis.

- Capillary columns are more common for the analysis of complex mixtures.

The column consists of a long capillary to 60 meters in length. There are different type

of stationary phases including WCOT (Wall Coated Open Tubular) where the

stationary phase is a liquid; the SCOT (Support Coated Open Tubular) where the

stationary phase is deposited on an inert support and the PLOT (Porous Layer Open

Turbular) with a porous stationary phase [207].

The composition of the stationary phase depends on the nature of the analysed

product. Polysiloxanes are used for separating apolar molecules. They consist of

silicone chains where a carbon R group is added. The nature of the added R group

affects the polarity of the column. They are suitable for hydrocarbons, aromatics, PCB

etc. It was for this reason why it was the appropriate column for separating

heterocyclic, fatty acids and some apolar molecules [207].
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The column use in this study is the RTx 1701 which is semi polar with the

following composition 14 % cyanopropyl-phenyl 86 % dimethyl polysiloxane. It is

used to separate polar from apolar molecules. Therefore, it is suitable for a mixture of

small hydrocarbons with some polar molecules such as alcohols aromatic heterocyclic.

Detectors are used to monitor and quantify components. They should be

sensitive, give reproducible results and be robust. The most widespread detector for

GC includes TCD (thermal conductivity detector) for gas analysis, FID (flame

ionisation detector) for hydrocarbons and MS (mass spectrometer) for higher

molecules [208].

Mass spectrometry is a common method to determine the molecular weight

and therefore provide molecular information allowing compounds to be identified. In

order to be analysed, the analyte compound is fragmented and bombarded by a high

energy electron beam (19 eV). The collision induces the formation of charged specie

M+; as it is not stable the excited molecule fragment into smaller ions of different m/z

ratios. The charged fragment ions are separated in a mass analyser and attracted into

the detector. The detector plots the abundance of ions versus their mass/charged ratio

[208]. Figure 3-4 includes the general schematic of the gas chromatography mass

spectrometer [208].

Figure 3-4: Schematics of the gas chromatography mass spectrometer drawn in power
point

3.1.4.1.2 Preparation

About 10 vol.% of concentrated sample was dissolved into dichloromethane

and was analysed into Agilent 5975B inert MSD GC-MS using the following

program: 40 °C, hold time two minutes, ramped to 280 °C at 60 °C/min, hold time 10
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minutes. The column head pressure was 30 psi at 40 °C, using the RTx 1701 60 m

capillary column, 0.25 id, 0.25 µm film thickness with a split ratio 1:10.

3.1.4.2 Gel permeation chromatography (GPC)

3.1.4.2.1 Theory

High pressure liquid chromatography (HPLC) uses a liquid as a mobile phase.

This technique is more suitable for separating non-volatile, highly polar molecules,

and high molecular weight molecules. This technique is non-destructive thus it is

possible to purify the solution. The mobile phase is delivered into a column containing

a stationary phase thanks to a high pressure pump [207].

The choice of the eluent is crucial to achieve a good separation. It should

solubilise the sample. The solvent used needs to have a low viscosity and must be

compatible with the detector (if the detector is UV, the eluent needs to have a low

absorbance in this region) [207].

The pump is one of the most important parts of HPLC as it injects the eluent

into the column. Certain pumps can reach the pressure of 42 bar. They also regulate

the flow rate. The injector allows the mixing of the sample and the mobile phase. It

can be injected using a syringe or a loop injector. The injecting time should be short in

order not to fluctuate the flow rate. The sample is loaded inside a loop with a syringe

in the load mode; subsequently, for introducing it inside the column the valve is turned

to inject. Compared to the GC, HPLC’s columns are short (5-30 cm) with an internal

diameter of 3-10 mm. The packing of the reverse phase is made of silica bound to

functional groups with a wide range of polarity (octadecyl C18 for non-polar column

and nitrile group for polar column). The column for normal phase chromatography are

polar, a guard column is placed prior to this [207].

The type of separation used during this project is by gel permeation

chromatography (GPC) and also called size exclusion chromatography (SEC). It

separates molecules according to their size; they pass inside a porous stationary phase.

Large molecules have short retention times compared to low molecular weight. It is

commonly used for determining the size of the chain of proteins or polymers. Figure

3-5 illustrates a simple diagram of the size exclusion chromatography (GPC) [209].
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Figure 3-5: Schematic of the size exclusion chromatography

The average molecular weight Mn can be calculated using Equation 3-6 [208]:

Mn =
W

∑Ni
=
∑ (Mi Ni)

∑Ni

Equation 3-6

w is the total weight of the polymer over the sum of all the molecules in the

solution Ni.The weight average of the Molecular weight Mw was calculated as follows

in Equation [209]:

Mw =
∑(Mi wi)

w

Equation 3-7

Mi is the molecular weight of the polymer at i time, wi is the weight at i time.

The most common detector used is UV/visible, compared to fluorimetric detector

which is more sensible for polycyclic aromatic hydrocarbons. SEC is commonly

linked to a differential refractometor. This technique obeys the Fresnel law where the

light is deviated between two hollow phases [209].

3.1.4.2.2 Preparation

For the GPC, about 50-70 mg of sample was dissolved into 1 ml of stabilised

tetrahydofuran (THF) and analysed using a Perkin Elmer series 200 HPLC instrument

fitted with a refractive index detector. The column used was a Varian PGEl 30 cm

length with a diameter of 7.5 mm and a particle size of 100 Å, the flow rate of mobile

phase was 1 ml/min in stabilised tetrahydrofuran (THF). The instrument was

calibrated using different molecular weight polystyrene polymer standards (poly labs).

The per cent fraction of different weight was determined by the integration of curve

by the software Origin 8 at different molecular size ranges, the first fraction was

integrated between 8.5 to 11 minutes (0 to 200 g/mol), the second fraction from 8 to
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8.5 minutes (200 to 600 g/mol), third fraction from 7.5 to 8 minutes (600 to 1000

g/mol) and the last fraction 6 to 7.5 minutes (superior to 1000 g/mol).

3.1.4.3 Elemental analysis

Figure 3-6 shows the diagram of the elemental analyser. The sample is

enclosed into a tin cap and introduced into the auto sampler. The capsule is

subsequently transferred into a quartz tube where combustion takes place at 800 °C.

The gas evolved pass through a catalyst bed made of copper which reduces NOx to N2.

Water is collected in a trap containing magnesium perchlorate to measure per cent

hydrogen. Sulphur gases are reduced using a vanadium catalyst. Gases are quantified

and separated by passing the final gaseous products through a column and detected

with a TCD detector [210].

Figure 3-6: Schematics of the CHNS elemental analysis analyser.

3.1.4.3.1 Preparation

Elemental composition of raw biomass was measured using the CHNS

analyser CE instrument Flash EA 1112r. 2-3 mg of sample was weighed accurately

into tin caps with about 5 mg of vanadium pentoxide added and subsequently the caps

were crushed. A set of four chemical standards were used to calibrate the instrument

(for example 2,5-di(5-tert-butylbenzoxazol-2-Yl)-thiophene (BBOT), atropine,

cysteine and methionine). Some reference materials are incorporated every 10-15 caps

to check the reliability of the results. The type of reference materials depends on the
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sort of biomass analysed for example when raw microalgae was measured oat meal

and olive stone were selected whereas when the bio-crude and residue were used the

reference materials were a lubricants and coal sample.

For the elemental analysis, CHNS of the bio-crude was determined using the

CE instruments Flash EA 1112 series elemental analyser. Prior to analysis, samples

were filtered with a 1-PS (9 cm) grade to remove any moisture and remaining residue.

The viscous bio-crude was dissolved into 10 vol.% methanol/dichloromethane with a

ratio of 1:4 and about 20 μl was injected into smooth walled tin capsules and allowed

to evaporate. In the case of less viscous samples such as processed vegetable oils, a

different preparation was carried out as follows: approximately 1.5 mg of oil was

injected into a smooth wall tin capsule, 5 mg of chromosorb was added and capsules

were crushed. Per cent oxygen was calculated by the difference from the carbon,

hydrogen, nitrogen and sulphur.

The percentage of each element (wt.% C (carbon), wt.% H (hydrogen), wt.% N

(nitrogen) wt.% S (sulphur)) in weight % is determined as the free moisture basis as

follows in Equation 3-8 and the formula for calculating oxygen content as free dry

basis in Equation 3-9:

% Element(dry basis db) = 100 x
% element (CHNS)

100 - % moisture

Equation 3-8

% Odb = 100 - (%Cdb- %Ndb- %Sdb- %Hdb)

Equation 3-9

HHV (higher heating value) energy content in MJ/kg is determined using the

Dulong formula [211] in Equation 3-10:

HHV = 0.338 x C + 1.428 x൬H -
O

8
൰+ 0.095 x S

Equation 3-10

H/C and O/C is calculated in the Equation 3-11 and Equation 3-12 represents

the energy recovery. Where the term in the equation implied HHVbio-crude HHVraw sample

is the energy value determined by the Dulong formula above for the bio-crude and the

raw sample respectively. wt.% H, C contents are determined by the CHNS analyser,

wt.% O is determined by difference of CHN, Mcarbon is the molar mass of carbon (12
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g/mol), Moxygen is the molar mass of oxygen (16 g/mol). mbio-crude and mraw sample is the

dried mass of the bio-crude and the raw sample.

H

C
=

% H

% C /Mcarbon

O

C
=

% O /Moxygen

% C /Mcarbon

Equation 3-11

% Energy recovery =
HHVbio-crude x mbio-crude

HHVraw sample x mraw sample
x 100

Equation 3-12

3.1.4.4 Thermogravimetry (TGA)

3.1.4.4.1 Principal

This method determines the weight change when a sample is heated between a

temperature range in different environment (in nitrogen or in air). It is possible to

observe a physical and chemical change from the sample. There are different ways to

perform thermogravimetric analysis:

The differential thermal analysis (DTA) consisted of measuring the difference

between the thermal behaviour of an inert reference material (alumina) and 10 mg of

sample. The sample is heated by a furnace in which nitrogen or air is introduced. The

difference measured by a thermocouple is plotted in relation to the temperature inside

the cell. The sample is heated inside a fragile microbalance. The sample could be

heated using an isothermal mode or using a defined heating rate. The constant change

of weight is plotted as a function of temperature. When the sample is heating under

nitrogen, pyrolysis occurs whereas with oxygen or air the sample is combusted [208].

Differential thermogravimetric analysis (DTG) is the same technique as

previously described except that the graph is the derivative of the weight loss over the

time Δw/Δt against the temperature. Using inert gases such as nitrogen, it is possible

to observe the volatile release profile [212].

3.1.4.5 Preparation

Less than 10 mg of sample was added in a pre-tared platinum pan;

thermogravimetry was analysed with the TGA Q5000 analyser as follows: as a drying
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process, the furnace was heated from room temperature to 105 °C at 10 °C/min and

subsequently at 20 °C/min until 900 °C with nitrogen (flow rate of 50 ml/min): 900 °C

was held for 15 minutes when the gas was switched to 20 % oxygen to combust the

remaining char. Boiling point distribution or simulated distillation was carried out in

nitrogen for the analysis of the processed lipids and detailed in Chapter 5.

3.1.5 Analysis of the aqueous phases

In this section, methods and instruments (total organic carbon, ion exchange

chromatography, pH) used to analyse the aqueous phase are developed as shown in

the Figure 3-7. The sample are filtered and diluted to a suitable concentration for ion

exchange chromatograph and total nitrogen. The TOC, IC was carried out under

supervision in a service laboratory. The ICP was carried out in different departments.

Figure 3-7: Schematics of the different techniques used to analyse the bio-crude

3.1.5.1 Total organic carbon

3.1.5.1.1 Principal

In aqueous solutions, there are two forms of carbon compounds: the inorganic

carbon which is the carbon dioxide dissolved into the water and the organic carbon

(organic molecules: alcohols, carboxylic acids…). Therefore the concentration of

TOC (in ppm) is determined as in Equation 3-13:

[TOC]= [TC]+ [IC]

Equation 3-13

The TOC and the inorganic carbon (IC) are generally measured and thus the

organic carbon (TC) is calculated by subtraction. The NPOC or Non-Purgeable

Aqueous phase

Total organic carbon (TOC)

Ion exchange
chromatography (IC)

pH
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Organic Carbon is a technique where only the TC is measured; the inorganic carbon is

discarded by purging and acidifying the sample with a 2 M hydrochloric acid (HCl)

solution. The total carbon is determined by oxidising the carbon into carbon dioxide

(CO2). There are various ways to achieve the oxidation:

- Combustion: the sample is heated under an excess of oxygen.

- Photooxydation: the UV break down the organic carbon.

- Catalytic oxidation: the carbon is oxidised by the help of catalysts (platinum or

chromium oxide) [207].

3.1.5.1.2 Preparation

Once filtered, aqueous samples were analysed using several techniques

including total organic carbon analyser (TOC) and ion chromatography (IC). Samples

were diluted by 37. The analysis was performed using HACH TOC IL 550 analyser.

In this project, only the total organic concentration was determined using the NPOC

method where inorganic carbon was initially removed by automatically adding a

concentrated acidic solution to remove any inorganic carbon.

3.1.5.2 Ion exchange Chromatography

3.1.5.2.1 Theory

The principal of ion chromatography is relatively similar to HPLC, instead of

the separation by polarity the column separates the species in relation to the ionic

interaction of chemical species with the column. Columns are composed in general of

ionic long chain molecular weight resins with sulphate groups for example. The

exchange in the cation column happens as follow where Mx+ is the metal salt analysed

and xRSO3
-H+ the mobile phase in (RQ-5) [207]:

xRSO3
-H+ + Mx+ → (RSO3

-)xM
x+ + xH+ (Reaction 3-1)

The retention of the species depends on their size and their ionic strength with

the column for instance potassium would have a longer retention time than sodium or

lithium [207].

3.1.5.2.2 Preparation

Anions and cations were analysed by ionic chromatography from Dionex using

a different column for cationic DX100 with IonPacCS12A column, methyl sulfonic
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acid (0.2 M) mobile phase and anionic column using the column AS14A ionPac and

the eluent Na2CO3/NaHCO3 8 mM/1 mM) and a flow rate of 1 ml/min. The main

anions observed were acetate chloride, bromide, sulphate and phosphate and the main

cations were sodium ammonium, potassium and calcium ions.

3.1.5.3 Other techniques

The pH was measured by a HACH pH meter (HQ 40d) and calibrating with

three sets of standard with a pH of 4,7 and 10.

3.1.6 Analysis of solid residue

Solid residues were obtained from the filtration of the liquid and organic

phase. In this study, elemental analysis was carried out in order to determine the wt.%

C, wt.% H, wt.% N and wt.% S. and oxygen content by difference. Some chars were

analysed by thermogravimetry as the same procedure for that of the bio-crude.

3.2 Catalyst

3.2.1 Preparation of metal doped HZSM-5

20 g of NH4-ZSM5 was ion exchanged in one litre of a 0.05 M solution of

different metal salts copper, iron, molybdenum and nickel (Cu (II), Fe (III), Mo (II),

Ni (II)) under constant stirring at room temperature for 24 hours. For copper, and

nickel acetate salts were used; for ammonium molybdate (NH4)6Mo7O24 4H2O),

subsequently zeolite was filtrated under vacuum and washed. The solid was dried in

the oven at 110 °C overnight. Finally the doped zeolite was calcined in a tube furnace

at 550 °C under a constant flow (50 ml/min) for five hours according to the method

found in Long et al. [83].

HZSM-5 was prepared by calcination of NH4-ZSM5 for three hours at 550 °C

in a tube furnace under a constant air flow (50 ml/min). The method for the

determination of silica and aluminium can be found in Chapter 4.

3.2.2 Hydrothermal stability of zeolites

0.5 g of catalysts was added with 27 ml of deionised water into the Parr reactor

and heated to 350 °C for one hour. Once the reactor was cooled down to room

temperature, the content was poured into a beaker and solids were recovered via

vacuum filtration with a filter grade 5 (9 cm). The aqueous solution was made up to
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250 ml and subsequently metals dissolved were analysed by ICP-OES and AAS to

measure the % metal leachate. The catalysts were dried overnight at 105 °C.

3.2.3 Atomic absorption (AAS)

Atomic absorption spectroscopy (AAS) is a common technique used to

determine metallic salts concentration in a solution. The measurement is carried out by

exciting metallic ions in a flame and by measuring the absorbance under the resonance

wavelength produced by a hollow cathode lamp. The sample is introduced into a

nebuliser via a capillary tube to be passed into the flame as small droplets. The

temperature of the flame could be tuned by the ratio of fuel/oxidant according to the

element studied, for example with acetylene-air the temperature would be 2400 K

(2127 °C) whereas with acetylene-nitrous oxide the temperature can reach 3400 K

(3127 °C). Absorbance is determined by a detector which measured the difference

between the absorbance from the flame and from the lamp. A monochromator with a

narrow slot of 0.04 mm allows high resolution to be obtained [212].

Several chemical interferences might be encountered depending on the

element; however, some solutions are available to reduce them:

- The formation of refractory compounds could be reduced by increasing the

temperature of the flame, such as for aluminium.

- High concentration of ionisation in the flame could be suppressed by adding a

saturated solution, for example 2000 ppm of potassium.

- Some elements such as zinc and sodium chloride have a close absorption

wavelength of 213.9 nm. To correct this, a background correction would allow

separating absorbance [208].

3.2.4 Inductively coupled plasma- optical emission spectroscopy (ICP-OES)

The inductive plasma (ICP) is a device used for determining metals inside

plasma. The analysis was performed in another department in the school of geography

(university of Leeds). It is composed of ionised gas forming an electrically neutral

mixture. This plasma is created by three concentric silica tubes; three coils generated a

high radio frequency current (40 MHz). The argon is passed into the burner chamber

thanks to a quartz tube (15-30 mm). The magnetic field regulates the circulation of

ions and electrons, and subsequently they collide with an argon atom. This process

generates more electrons creating an avalanche effect. The sample is introduced into
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the flame thanks to a nebuliser at a low flow rate. The temperature of the plasma is

enough to excite most elements of the periodic table. The matrix effect is quite low.

Measurements take place at the hottest point of the flame [212].

The only interference was that molybdenum and magnesium have close

absorbance, an overlap is also observed for zinc and chromium.

Light is diffracted thanks to grating and was measured by a photo cathode

detector. Less interference occurs because the temperature of the flame is higher 7000

K (6727 °C) [212].

The preparation of the sample for AAS and ICP is detailed in Chapter 4. AAS

was used for the metal content from the digested zeolite samples and the ICP-OES

was used to measure the leachate from the processed water during the stability tests.

3.2.5 Brunauer-Emmett-Teller (BET) Physisorption

The BET technique is the measurement of adsorption of an inert gas (nitrogen

argon, carbon dioxide, etc) on a surface of a material. The diagram measured is called

isotherm with the absorption (unit of volume, ml/g) in ordinate versus the P/P0 (unit of

pressure) with the equation 3-12, analysis was carried out at 77 K (-196 °C). As

surfaces of catalysts or materials are irregular, the isotherm (produced by number of

layers) measured will depend on the size and shape of the pores. Pores are separated,

according to the IUPAC (International Union of Pure and Applied Chemistry), into

three categories from 0.3 to 2 nm for the micropores, 2 nm to 50 nm for mesopores

and above 50 nm for macropores [213].

The type I isotherm is more characteristic for microporous materials where

monolayers are formed with chemisorption (formation of different bond between the

gas and the material) for example with graphite. The type II and III isotherms are

typical of macroporous solids where multilayers are produced. The type IV and V

isotherms are usually observed for mesoporous materials, they have a particular

behaviour, where because of the shape of the pores, condensation could occur creating

a desorption loop on the isotherm called hysteresis [213]. Figure 3-8 shows the

different shape of curves for the gas adsorption for different materials.
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Figure 3-8: Different shape of isotherm curves of adsorption in relation to the pore size
[213].

To extract the data and determine the surface area, the method of isotherms of

Brumauer, Emmet and Teller should be used in Equation 3-14 [213].

P

V(P0-P)
=

1

VmC
+

C-1

VmC
x

P

P0

Equation 3-14

P is the gas pressure (Pa, Pascal), V is the volume adsorb (m3); Vm corresponds

to the volume adsorb for a monolayer, C is a constant, and PR = P/P0 is the reduced

pressure.

To obtain a linear plot from the previous formula it should be rearranged as in

Equation 3-15 as linearized BET and the surface area is given in Equation 3-16:
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Equation 3-15

S BET =
VM

22.414
Nax Sm

Equation 3-16

Vm is the volume of the monolayer, Sm is the area occupied one molecule of

nitrogen (16.2 Å2 at -196 °C) , 22.4 M (L/mol) is the standard molar volume for a gas

and Na is the Avogadro’s number [170].

3.2.6 X-Ray Diffraction (XRD)

The X-ray diffraction method determines the crystallinity of material by

emitting through a beam some X-ray wavelength to the crystal; they are diffracted or

deviated in relation to the morphology and position of the atom network in the

materials. Bragg’s law is used to measure the diffracted angle as in the equation in

Equation 3-17 [213].

n λ = 2 d(hkl) sin 2Θ

Equation 3-17

Where λ is the wavelength measured, 2θ is the incident angle, d is the distance

from the different lattice and the orientation indicated by the Miller indices hkl. [213]

Zeolites are complex materials. They had different composition of silica and

alumina therefore the interpretation of XRD spectrum is quite complex. Reference

zeolites are collected on an online data base created by the Structure Commission of

the International Zeolite Association (IZA-SC). Ion exchanged moities have an impact

on the intensity of spectrum [170].

The intensity of the reference spectrum could be used for calculating the

crystallinity of the sample as in Equation 3-18 [170]:

Xray crystallinity =
Intensity of peak sample

Intensity of peak standard
x 100

Equation 3-18
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3.2.6.1 Physical characterisation

The XRD measurements are performed with a BRUKER-binary V3 machine

and used to determine the crystallinity. 0.125 g of used or fresh zeolites was mixed

with 0.375 g of corundum Al2O3 (reference materials) and measured from 20 to 45°

with an increment step of 0.01.

3.3 Conclusion

This chapter briefly described the different instruments used during this

project. The resulting bio-crude was analysed by GC-MS, elemental analysis, gel

permeation chromatography and the aqueous phase by total organic carbon analyser,

ionic chromatography. This section also describes the preparation and the analysis of

the catalyst.



Chapter 4

69

Chapter 4 Hydrothermal behaviour of catalysts

Throughout this first results chapter, catalysts (ion metal doped HZSM-5) have

been characterised by various analytical techniques (BET, XRD, TGA). Subsequently,

these catalysts have been treated under hydrothermal conditions at 350 °C. Reactions

with sunflower oil have been carried out four times with the plain HZSM-5 and with a

regeneration step after each tests in order to study the activity of the catalyst. The

amount of coke deposed and the surface areas of the catalysts have been measured.

4.1 Introduction

Originally developed by MOBIL (a chemical company), HZSM-5 is one of the

most common zeolites. This catalyst is used widely in the petrochemical industry; due

to its high acidity which allows heavy crude to break down into lighter fractions. This

propriety is explained by the presence of Brønsted and Lewis acidic sites in the

framework of the catalyst [170]. The other advantage is their high selectivity due to

micropores and the ability to separate isomers, for example xylene [214]. The main

drawbacks of this material are that under cracking of crude oils, high amounts of coke

are produced at high temperature, consequently blocking the acidic sites and

subsequently in presence of steam, structural changes were observed [215].

Steam conditions enhance the deoxygenation of short oxygenated molecules

(e.g. alcohols, and aldehydes…), the most famous technique is called methanol to

olefins (MTO). In the presence of steam, there is a change in the zeolite, whereby

migration of aluminium occurs out of the framework forming AlO+ species which

decrease of the acidity of the materials [216-218]. Nevertheless, even with a low

acidity, the formation of olefins is enhanced and the formation of aromatics or cokes is

reduced. Sano et al. [219] remarked that the zeolite could regain its initial acidic

proprieties by processing under reflux in concentrated hydrochloric acid (HCl) at 80

°C for one hour, which allowed the reinsertion of non-framework aluminium.

Metals are incorporated into the framework in order to improve the stability of

zeolite and tune the reactivity of the zeolite. Gayubo et al. [220] illustrated that doping

HZSM-5 with nickel by the wet impregnation method (from 0.5 to 3 wt.% loading)

enhanced the stability and the performance during the production of hydrocarbons
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from bioethanol, reducing as well the formation of coke. Molybdenum was

impregnated with the same method and demonstrated a stable behaviour under steam

conditions. Furthermore, MoZSM-5 was shown to convert methane into aromatics in

the process called “de-hydroaromatisation” due to their high acidic sites [221, 222].

Metal doped HZSM-5 can be prepared with other techniques such as ion

exchange. For example, CuZSM-5 (Cu+) and FeZSM-5 (Fe2+) are used in car exhausts

catalytic converters to convert NOx and ammonia to nitrogen [83, 223]. The aim in

this study was to investigate whether these catalysts have the same properties and

stability under subcritical hydrothermal conditions.

Upgrading of different sources of biomass or compounds such as

carbohydrates or woods [81], lipids [179] and microalgae [187] has been investigated

with HZSM-5 under pyrolysis conditions. The problem is the energy penalty required

in order to dry and subsequently processes the feedstock. Thereby, hydrothermal

liquefaction is a more appropriate method to undertake. Yang et al. [189] and Duan et

al. [190, 191] already used zeolite to process microalgae at 350 °C.

Ravenelle et al. [188] demonstrated the robustness of HZSM-5 in hot

compressed water (from 150 to 200 °C) with a low loss of crystallinity compared to

HY (the acidic Y zeolite). Recently, Mo et al. [189] investigated the stability of

HZSM-5 under supercritical conditions and their reactivity with palmitic acid. A mild

change in the structure regarding the silica bonding was observed at 400 °C.

Otherwise, this catalyst appeared robust after several regeneration cycles with a

consistent activity to produce hydrocarbons. The regeneration involved the oxidation

of the catalyst to remove any coke deposits. However, no studies detail the stability of

HZSM-5 at lower temperatures, as water has different properties to that 400 °C.

The purpose of this chapter is first to characterise HZSM-5 by itself and

subsequently the metal doped zeolites by different methods (the ion exchange and wet

impregnation); subsequently their stabilities are investigated under subcritical water

(350 °C). The changes of physical or chemical properties are observed using

techniques such as x-ray crystallography, surface area (BET) and by transmission

electronic microscopy (TEM). Moreover, the robustness of HZSM-5 is studied by

carrying out four regeneration experiments and testing with sunflower as a feedstock.

After these analyses it could be deduced if subcritical water has an impact on the
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structure of zeolites. Additionally it is investigated if the metals have an impact in

improving the stability of HZSM5.

4.2 Methodology

4.2.1 Preparation of HZSM-5 metal doped

The preparation method for ion exchanging of HZSM-5 (molybdenum, copper,

iron and chromium) is discussed in the methodology chapter.

For the preparation of the impregnated sample of molybdenum (5 wt.%), 0.9 g

of ammonium molybdate tetrahydrate (NH4)6Mo7O24 4H2O) was dissolved into 1.5 ml

of water (pore of the HZSM-5 is 0.15 ml/g) and poured in 10 g of HZSM-5. The slurry

was crushed, mixed well and finally dried overnight (more than 12 hours) at 105 °C.

The final step was the calcination of the solid at 550 °C for four hours under a

constant flow of air at 50 ml/min.

The preparation of the kaolin-HZSM-5 pellet was carried out as follows: 2.1 g

of kaolin clay and 1.0 g binder polyvinyl alcohol (PVA) with a molecular weight of

88,000 g/mol were mixed in 20 ml of water for 30 minutes. Subsequently, 22 ml of

concentrated hydrochloric acid (HCl) (35 vol.%) was carefully added drop-wise for

one hour under stirring, forming a foam. Subsequently, a suspension of 2 g of

HZSM-5 in 20 ml of water was added into the slurry under constant mixing for 30

minutes. The water was evaporated on a hot plate for six hours and the residue was

further dried in an oven overnight. The solid was calcined at 500 °C for one hour,

once it had cooled down. The solid was washed in 45 ml of water and 0.094 g of

ammonium chloride (NH4Cl) to remove any trace of sodium. The mixture was stirred

under a mild heating at 60 °C for 30 minutes. The residue was retrieved by filtration

and subsequently calcined at 550 °C for three hours.

4.2.2 Characterisation of the unprocessed catalyst

Detailed procedures for the analysis of the metal content (silica, aluminium

and the different metals) are incorporated in this section.

4.2.2.1 Silica and aluminium determination

In a nickel crucible, around 1.5 g of sodium hydroxide (NaOH) was fused

above a burner flame. After cooling, 0.05 g of the sample were weighed and added

and the crucible was placed in the flame again for approximately five minutes at the
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dull of the flame. When the crucible was cold, 20 ml of water was added and placed in

the water bath for 60 minutes. The content of the crucible was precisely transferred

into an 800 ml beaker containing 400 ml of water and 25 ml of hydrochloric acid

(HCl) (diluted 5.8 M solution) and finally made up to 1 litre in a volumetric flask.

Silica is measured using a colorimetric method. In each 100 ml volumetric

flask, 10 ml of the solution previously prepared, 10 ml of the standard (30 ppm of

silica) and 10 ml of water for the blank were added. Subsequently 1.5 ml of

ammonium molybdate (NH4)6Mo7O24) was poured in to each flask, the solution was

mixed and allowed to rest for 10 minutes. 4 ml of a solution of tartaric acid was added

followed immediately by 1 ml of a reducing agent. Measurements were carried out

using a UV/visible spectrometer at 650 nm with a glass cuvette.

For aluminium determination, 0.2 g of sample was weighed accurately into a

60 ml polyethylene beaker. Subsequently, 2 ml of water was initially added to the

beaker before carefully adding 10 ml of hydrofluoric acid (HF) (handled in the fume

cupboard). The beaker was heated in a water bath to dryness following which, 10 ml

of water was added and the contents completely transferred into a nickel crucible by

washing with water to avoid any losses. The water was evaporated in a sand bath.

When, the crucible was dry, 2 g of potassium hydroxide (KOH) was weighed and

added to the crucible which was further heated over the flame for at least five minutes.

Once, the crucible was cold, 20 ml of water was added and heated in a water bath for

30 minutes. The content was finally transferred into a 250 ml volumetric flask

together with a 25 ml solution of potassium at 1000 ppm. Aluminium ion was

measured by AAS using an oxidant mixture of acetylene and nitrous oxide because it

forms refractory compounds. Five standard solutions were prepared from 10 ppm to

50 ppm of aluminium ion made up from a certificated 1000 ppm aluminium solution.

The Equation 4-1 is used for the determination of silica by UV/visible at 650 nm:

% SiO2 =
A1 x C x V1 x V3 x d

A2 x w x 104 x V2

Equation 4-1

Where A1 is the absorbance of the sample; A2 the absorbance of the standard,

C the concentration of standard (ppm or mg/L); V1 is the volume of the standard (ml);

V2 is the volume or aliquot of the original sample (ml), w is the weight and d is the
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dilution factor. The Equation 4-2 is used for the determination of % of aluminium or

% of metal loading:

% X =
c x V x d

w x 104

Equation 4-2

4.2.2.2 Determination of the metal inside the zeolite

The metal content was determined according to the following method: 0.2 g of

sample was weighed accurately into a 60 ml polyethylene (PE) beaker. Subsequently,

2 ml of water was first added to the beaker before carefully adding 10ml of

hydrofluoric acid (HF). The beaker was heated to dryness in a water bath. 10 ml of

concentrated hydrochloric acid (HCl) is added for 10 minutes afterwards, 30 ml of

water was subsequently added carefully and the solution was transferred into a 400 ml

pyrex beaker and heated on a sand heater plate until dry. 3 ml of 1:1 sulphuric acid

(H2SO4) (diluted by 2) was added to the dried residue, beakers were covered with a

clock glass and left heating until constant fumes were appearing for more than five

minutes. Once cooled down 50 ml of deionised water was added and heated for 30

minutes at around 100 °C. Finally, solutions were transferred into 250 ml volumetric

flasks. 10 ppm standard solution for each metals studied were made up and an auto

diluter prepared successively five solutions. For the analysis of molybdenum by AAS,

solution of 1000 ppm of aluminium is added as suppressant and the gas used was

acetylene/NO flame for the aluminium determination.

4.2.3 Other techniques

Transmission electronic microscope (TEM) is conducted using a FEI Tecnai

F20 field emission gun (FEG)-TEM operated at 200 kV and equipped with a Gatan

Orius SC600A CCD camera and an Oxford Instruments 80mm X-Max SDD detector.

TEM samples were prepared by dispersing powders in isopropanol, with a drop placed

on a holey carbon coated copper grid (Agar Scientific).

4.2.4 Stability and regeneration of the catalyst

For the regeneration experiment, 3 g of sunflower oil, 0.5 g of catalyst in

compressed pellet form and 27 ml of water were added into the reactor and heated to

350 °C for one hour. Pellets were prepared by using a press and bringing a pressure of

one ton following which the HZSM5 was crushed to have a size of 100-80 mesh.
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HZSM5 was recycled four times. The first experiment was performed five times, for

the second cycle, three experiments were carried out, subsequently two and for the last

cycle only one. After each run the reactor was cleaned according to the procedure in

Chapter 3, the organic phase was separated from the aqueous phase; the catalyst was

separated from the aqueous phase by filtration, dried and recycled. Results relating to

the weight mass balance, the coke content and the BET surface area are included in

this chapter.

The determination of coking during the recycling step was carried out using

the Netzsch STA (simultaneous thermal analysers), according to the method found in

the paper of Ortega et al. [224]. During the first step, any impurities were removed by

pyrolysing approximately 20 mg of samples in a constant flow of helium at 100

ml/min with a heating rate of 10 °C/min and holding at 500 °C for 30 minutes. This

step was also used to age the coke. In the second step, combustion was performed, the

amount of coke was measured from 300 to 550 °C with a heating rate of 10 °C/min in

a gaseous mixture of 12.5 vol.% O2/He, and this temperature is held for 30 minutes.

Combustion gases were determined using an on line FT-IR. The spectrometer was

previously calibrated using CaCO3. The wavelength measured of carbon dioxide

(CO2) is 2362 cm-1 and for carbon monoxide (CO) 2175 cm-1 and water (H2O) 3400

cm−1.The concentration of carbon dioxide, carbon monoxide and water are calculated

in order to know the H/C of the coke. The equation deduced from the calibration for

the water in Equation 4-3 where x is the mass of water and y the absorbance. The

equation for carbon monoxide is in Equation 4-4 and carbon dioxide is in

Equation 4-5.

y = 0.6363x + 0.2291 Equation 4-3

y = 0.2147x + 0.2703 Equation 4-4

y = 3.4127x + 4.4405 Equation 4-5

4.3 The stability of HZSM5 under subcritical condition

4.3.1 Unprocessed sample

HZSM-5 is produced by the calcination of NH4-ZSM-5. Hydrofluoric acid is

used to discard the silica, and sulphuric acid to obtain sulphate metal salts which are
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ionised in a flame. Potassium is added in order to avoid interferences and so that

aluminium does not form the refractory materials (Al2O3) in the AAS’s flame. This

technique is carried out in duplicate and using Feldspar potash as a reference material.

From the Equation 4-2, the amount of aluminium calculated is 4.9 % (with a

coefficient of variance of 9.6 %), while 82.2 wt.% for the silica (with 2.1 %

coefficient of variance). The % difference between the experimental value and from

the reference clay is 6.9 % for the silica. nSiO2/nAl2O3 (Si/Al) ratio is calculated by

the Equation 4-6 giving a value of 28.8.

nSiO2

nAl2O3
=

nalumina
Mൗ alumina

nsilica
Mൗ silica

Equation 4-6

A low ratio (<30) indicated that the zeolite is acidic with a high number of

Brønsted sites, whereas higher ratios, up to 280, exhibit more amphoteric behaviour

with a large proportion of silica.

The following percentage composition is found for the ion exchanged metal:

FeZSM-5 0.3 wt.%, CuZSM-5 1.25 wt.%, NiZSM-5 0.12 wt.% MoZSM-5 0.14 wt.%.

These values are lower than the ones obtained by the same conditions used by Long et

al. [83] with 1.59, 0.85 and 4.30 wt.% for iron, nickel and copper respectively. For the

impregnated molybdenum sample, 4.5 wt.% of metal was measured which is higher

than the ion exchanged samples. There is an efficient impregnation with the majority

of molybdenum retained in the pores.

These metals are probably present as oxide form. Thus, the method of ion

exchange is the most efficient with copper. The loading of metal probably depends on

the size of the element to enter through the pore. STEM images of FeZSM-5 and

MoZSM-5 with EDX and Annular dark-field imaging (haadf) are included in Figure

4-1 and Figure 4-2. Figure 4-3 illustrates HZSM-5 with a zoom of 20 nm. The copper

found in the EDX scan was from the grid. It was difficult to obtain clear pictures with

this material because after a few minutes, the structure was starting to deteriorate.

Haadf is a technique that indicates the heavy molecular weight atoms with a brighter

colour.
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Figure 4-1: (a) STEM analysis of FeZSM-5 with (c) analysis of the haadf (high-angle
annular dark-field) (b) EDX

Figure 4-2: (a) STEM using the haadf (high-angle annular dark-field) zoomed from the
picture (a) (c) methods and the EDX (b) to confirm the position of Mo

Figure 4-1 suggests that iron formed clusters on the edge of the particle with a

size of approximately 16 nm, the presence of iron is confirmed by EDX although this

technique does not allowed the quantification of metals. Figure 4-2 proposes that

molybdenum is located inside the pores as observed with the image (c) forming a little

dot of approximately 1 nm. Nickel (STEM not shown) probably forms a thin layer as

the EDX identifies nickel without seeing any difference to Figure 4-3. This picture

shows a good lattice network with a size of 1.6 nm for the unprocessed HZSM-5. The

circle indicates where the lattice measurement is taken.

(a)

(c)

(b)(c)

(a)
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Figure 4-3: STEM of the unprocessed HZSM-5 and the lattice interstice

4.3.2 Stability test

The method of subcritical water liquefaction involves harsh conditions with

high pressure between 140 and 150 bar at 350 °C. Therefore, catalysts should be

robust under these circumstances.

Metal leachates from the reactor are measured by ICP-OES, a blank

experiment is carried out and the main cations detected are iron, calcium and nickel

with a concentration of 1.1, 1.0 and 2.7 ppm respectively. Ideally some insert should

have been used to avoid the corrosion of the reactor or influence of the wall.

Generally, the de-alumination is low with approximately 0.2 wt.% leaching of

the HZSM-5. As said earlier, migration of aluminium was possible out of the

framework [217]. The loss of silica is more significant with approximately 20.0 wt.%.

This result is in accordance with the one obtained by Ravenelle et al. [188] where the

hydrolysis of the siloxane bond (Si-O-Si) was enhanced under hot compressed water

(150-200 °C), this phenomena does have an impact on the reactivity for HZSM-5 as

will be discussed later. The leaching of the doped metal at 350 °C is high with 6.2

wt.% for FeZSM-5, 7.9 wt.% for CuZSM-5, 10.0 wt.% with NiZSM-5 and 34.0 wt.%

with MoZSM-5. These results are counter-intuitive with the TEM analysis, as iron is

located outside the particle which is more subject to sintering, while molybdenum is

found in the pores. Yet, these leachate ions could have a catalytic impact during the

liquefaction of biomass. For MoZSM-5 between the impregnated and ion-exchanged

samples, a similar value is measured (35.0 wt.%). Molybdenum might have reacted

with the silica leachate as the aqueous phase is blue after the stability test.
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The loss of aluminium and silica are lower with the doped metal especially

with FeZSM-5 and MoZSM-5 with 11.2 and 7.2 wt.% of leachate of silicon. Thus,

these metals could have an impact on the strength of the silica framework. The STEM

imaging for the samples treated under subcritical water at 350 °C suggests that the

lattice interstice widens to 2.3 nm. With the processed MoZSM-5, the EDX shows no

indication of the presence of molybdenum but the sample is degraded under the beam

for a long time and it is difficult to be certain. Agglomeration of iron is observed in

some concentrated part, whereas elsewhere no iron has been detected. Some traces of

nickel are detected for the processed sample although the size is too small to be seen

by stem haadf.

In future, doped metal HZSM-5 could be doped with phosphorus (from

phosphoric acid) to enhance the stability of the metal and also their performance

[225].

4.3.3 Effect of the surface area and pore sizes

The BET method determines the surface area by absorption of nitrogen at 77

K. Figure 4-4 shows an example of BET isotherm with the unprocessed HZSM-5. The

loop shape curve indicated the pores of this material are bottle neck types (with a

narrow end); this process is called hysteresis [213]. The pore size of HZSM-5 is

located in majority in the microporous region below 1.8 Å (radius) calculated by the

HK (Horváth-Kawazoe) method.

Figure 4-4: BET isotherm of HZSM-5

Table 4-1 compares the surface area (m2/g) and the cumulative pore volume

(ml/g) of the fresh and the used metal doped HZSM-5. The BJH (Barrett, Joynet and

Halenda) method allowed the calculation of the cumulative volume in the micro and
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mesoporous. This method predicts the pressure when condensation happens inside the

cylindrical pore, subsequently pore size is determined by the Kevin equation. t-plot

was also a method used commonly to determine the pore size.

Table 4-1: BET values calculated for fresh and used doped HZSM-5; pore volume and
desorption calculated by the BJH methods

Catalysts
Surface

area
(m2/g)

Cumulative
Pore volume

(ml/g)

Surface area after
hydrothermal run

(m2/g)

Cumulative
hydrothermal Pore

volume (ml/g)

HZSM-5 382 0.09 141 0.05

CuZSM-5 384 0.09 285 0.05

FeZSM-5 399 0.09 52 0.03

MoZSM-5

ion-exchanged
435 0.1 250 0.07

NiZSM-5 370 0.1 219 0.1

MoZSM-5
impregnated

321 0.1 184 0.1

kaolin pellet
HZSM-5

174 0.09 200 0.4

During the hydrothermal treatment using HZSM-5, the pore size remains

unchanged i.e 1.8 Å. The volume of the micropores (t-plot) is 0.17 ml/g and the

mesoporous is 0.05 ml/g. The difference between the fresh and doped samples is

probably caused by the metal blocking the pores. Copper increase the cumulative pore

volume compared to HZSM-5. Impregnated HZSM-5 has a lower surface area than

HZSM-5 doped by ion exchange. In the literature, a surface area of 324 m2/g was

measured which was lower than the value during this study [179]. A surface area of

334 m2/g and a pore volume of 0.11 ml/g was determined by Gayubo et al. [220] for

impregnated HZSM-5 with nickel (0.5 wt.%). The surface area of the pellet was lower

compared to the pure material as the binder (the clay kaolin) had a very low surface

area of approximately 15 m2/g.

Under subcritical condition, abrasion of the catalyst was observed with the loss

of surface area. Indeed, a 25 % of loss was calculated between the fresh and the used

sample at 350 °C. The reduction was more significant with FeZSM-5 with 87 % of

loss (between the two values). Pieterse et al. [226] established that under steam, iron

enhanced the migration of aluminium from the framework and reduced the dispersion

of the metal, the same phenomena might result in the loss of surface area. The



Hydrothermal behaviour of catalysts

80

observation in the STEM confirmed that iron formed cluster during this condition.

Ravenelle et al. [188] determined that no change in pore volume was noticeable in the

microporous and mesoporous under hot compressed water (150-200 °C).

For the majority of samples, with the exception of the kaolin pellet HZSM-5, a

decrease of cumulative pore volume (mesopores) is apparent probably caused by the

destruction of pores during the elevated pressure. Nevertheless, the BJH desorption

profile indicates that new pores have been created in the region of 20-30 Å for

HZSM-5 and CuZSM-5, from 80 to 110 Å for FeZSM-5 and in the region of 120 Å

for MoZSM-5. Interestingly, the surface area of the kaolin-pellet increases the surface

area to 200 m2/g which implies that the binder and the clay enhance the stability

toward abrasion. Moreover, the pore volume is larger than the fresh catalyst.

To conclude, subcritical water has an impact on the physical aspect of

HZSM-5, yet binder could enhance the stability of the catalyst. Unfortunately, no time

is available to undertake the experiment with metal doped pellets, since only wet

impregnation could be used as HZSM-5 was already calcined.

4.3.4 Crystallinity of HZSM-5

HZSM-5 has high crystallinity as explained earlier and as represented in the

Figure 4-5 (reference spectrum). The spectrum displays the complexity of the material

which makes the interpretation difficult. The metal loading was too small to observe a

peak on the XRD spectrum.

Figure 4-5: Reference spectrum for HZSM-5 from the Structure Commission of the
International Zeolite Association (IZA-SC)
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In the order to determine the crystallinity and be able to compare the fresh and

the processed sample, HZSM-5 is mixed with a standard solution of alumina

corundum with a ratio of 3:1 of reference. Indeed, intensity depends on different

parameters such as the moisture and the presence of amorphous material; with the

mixture this parameter is reduced. The sum of the intensity between 20 to 25° is

chosen as this peak is influenced by the Si/Al [227] and 35 to 40° for the alumina as

represented in the spectrum of Figure 4-6. Crystallinity is estimated using

Equation 4-7 where the ratio of the fresh sample with the used was taken, I is the

increment of the measurement. The results are included in Table 4-2.

% crystallinity =

∑ Intenstity fresh[20-25] x I
∑ intensity fresh[35-40]

∑ Intenstity htl[20-25] x I
∑ intensity htl[35-40]

Equation 4-7

Figure 4-6: XRD spectrum of the mixture 25 % of HZSM-5 and 75 % of Al2O3 corundum
where ▪ represents signals of HZSM5 and ●  signals of Al2O3 corundum
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Table 4-2: Peak area ratio of mixture 25 % HZSM-5- 75% γAl2O3 for the determination of
the % of crystallinity

HZSM-5 FeZSM-5
MoZSM-5
exchanged

CuZSM-5 NiZSM-5
MoZSM-5

impregnated

%
Crystallinity
compared to

the fresh
catalyst

75.5 77.4 86.2 72.4 79.2 75.6

Doped metal with the exception of CuZSM-5 enhanced the percentage of the

crystallinity after the stability test compared to the plain HZSM-5. Yet, molybdenum

prepare with ion-exchange had the highest effect compared to the other samples.

Generally, impregnated samples have a lower crystallinity with respectively 75.6 for

molybdenum compared to ion-exchange metal doped HZSM-5. Even though,

FeZSM-5 has a low surface area, its crystallinity is higher to HZSM-5. Copper

contains slightly more amorphous material than HZSM-5 however, no explanation is

found.

Figure 4-7 represents the x-ray spectrum overlay between the fresh and the

sample treated sample in subcritical water for the kaolin-pellet HZSM-5. The main

difference with the used sample is the presence of new peak at approximately 12° and

the intensity is larger between two regions of 21-25° and 35-40°. The change in

intensity could be caused by the presence of moisture and amorphous material

(explaining why previously zeolite was mixed with a reference material). This pellet is

mixed with kaolin clay which was an amorphous material.
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Figure 4-7: Overlay of the fresh and used pellet 40-40 kaolin-HZSM-5

Mo et al. [189] remarked how two new peaks appeared after two regeneration

tests under supercritical water with no effect though on the activity as these peaks

disappeared after calcination. No change of structure was noticed under low
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To summarise, although the metal loading achieved via ion exchange is low

and that the leaching is something not negligible, these metals have an impact on

enhancing the crystallinity or for some the surface area. Impregnated doped metals

with a high loading do not have an effect on the physical propriety of HZSM-5. The
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4.3.5 Regeneration cycles

The hydrothermal liquefaction of sunflower oil is investigated with the metal

doped HZSM-5 by ion exchange (HZSM-5, MoZSM-5, FeZSM-5, NiZSM-5 and

CuZSM-5); results are presented in details in Chapter 5. Basically, some metals did

have impacts on the selectivity regarding the degradation of the bio-crude and the

formation of aromatic compounds for MoZSM-5. The mass of bio-crude for the pellet

made with 40 wt.% of kaolin was about 86 wt.% (similar to processing of sunflower

oil without catalyst). The impregnated MoZSM-5 give a higher mass bio-crude yield

with 75 wt.% compared to the ion exchanged MoZSM-5 with 60 wt.%. Thereby, the

aspect and the preparation of the catalyst have an impact on the bio-crude yield.

The regeneration and the stability of pellet HZSM-5 (compressed pellet) is

investigated in this section. The analysis was focused on the production of coke rather

than the propriety of the bio-crude. Table 4-3 includes the bio-crude yield measured

after the HTL reaction with a coefficient of variance of 4.6 % and the wt.% of coke

which is calculated from the thermogravimetric curve, weight loss (from 300 to 900

°C) in Figure 4-8. During this process according to the detail in the study from Ortega

et al. [224], the first stage heated the catalyst to 500 °C under high flow of helium to

age the coke and subsequently the coke was combusted from 300 to 900 °C.

Table 4-3: % Yield of the hydrothermal processing of sunflower oil at 350 °C for one hour
in a 77 ml bomb reactor recycling HZSM5 four times

experiment
Bio-crude yield

(wt.%)
Coke formed

(wt.%)

HTL of sunflower with pellet
HZSM5 cycle1

82.4 2.6

HTL of sunflower with pellet
HZSM5 cycle2

92.0 3.9

HTL of sunflower with pellet
HZSM5 cycle3

84.5 4.2

HTL of sunflower with pellet
HZSM5 cycle4

91.5 3.4
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Figure 4-8: Temperature profile and weight loss curve for the catalyst after the four
regeneration test

The initial size of the pellet was approximately 1 mm of diameter, yet after

each experiments, the size of the particles was reduced due to the abrasion; this is the

reason that cycle 1 is carried out six times, in order to have sufficient catalyst (0.5 g)

for the last cycle. The bio-crude yield increases from the step one to two and

subsequently the bio-crude yield is levelled out with cycle three (regarding the error

margin) and cycle four. Yet the yield is higher than with the powder HZSM-5 with

68.0 wt.% (experiment presented in the next chapter) indicating that the cracking is

less efficient with compressed pellet as the surface area of contact was higher with the

powder. In other word, lipids could not access the acidic site. The coke content

increases throughout cycle 1 to 3 and decreases for the last regeneration 4. Between

each stage, the catalyst is dried but not calcined. Compared to pyrolysis the formation

of coke is up to 6 wt.%, whereas under subcritical condition the coking was lower

[228]. The gas emission is analysed by the FT-IR where absorption of the carbon

monoxide and dioxide and the water are detected during the combustion stage. Thanks

to a calibration, the mass is calculated and presented in Table 4-4 and Equation 4-8 is

used to calculate the H/C ratio. nH2O represents the molar amount of water calculated

from the infrared spectrum, nCO and nCO2 is also determined from the absorbance of

carbon monoxide and dioxide. % C is the represents the total carbon content for both

gases.
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H

C
=

% H in water x nH20

2
൫nCO+nCO2

൯x % C
12

Equation 4-8

Table 4-4: Mass of water, carbon monoxide and dioxide determined by the FT-IR and the
H/C ratio for a sample of mass of approximately 20 mg

Pellet cycle1 Pellet cycle2 Pellet cycle 3

Mass of water (mg) 4.5 7.7 7.4

Mass of carbon
dioxide (mg)

17.6 47.9 44.0

Mass of carbon
monoxide (mg)

1.0 1.8 1.9

Wt.% Carbon 40.3 43.3 43.1

Wt.% Hydrogen 2.3 1.5 1.5

H/C ratio 1.1 1.5 0.7

The H/C ratio of the coke increased for the first cycle to the second and is

reduced for the third regeneration cycle. Previous study proposed that the reduction of

the H/C ratio was caused by the de-alumination and the increase of formation of coke.

Moreover, a low H/C ratio indicates the presence of aromatics in the coke [228]. Thus,

HZSM-5 started to degrade after the third cycle. Figure 4-9 shows the emission of

methane, carbon dioxide during the different steps of the analysis. During the first step

with pyrolysis, a large amount of methane is produced implying that even with the

washing with dichloromethane, some aliphatic compounds are trapped inside the

structure of HZSM-5. Subsequently, during the combustion stage mainly carbon

monoxide and dioxide are formed.
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Figure 4-9: Emission of methane, water and carbon dioxide in function of time

Figure 4-10 represents the plot of the number of experiments against the

surface area (m2/g) during the regeneration cycle. A reduction of the surface area is

caused by the abrasion of the pellet and the saturation of the pores by coke is

observed. The surface area levels out between the cycles three and four.

Figure 4-10: Plot of the number of experience against the surface area explaining the
regeneration of HZSM5 HTL sunflower oil

Despite some physical change during the regeneration experiment no major

change is observed in the bio-crude yield. Thus, HZSM-5 is stable during the

recycling process. Unfortunately, no time is available to carry out the same types of

experiments with the other catalysts. The stability of the pellet (kaolin-HZSM-5)

should be investigated as it showed good resistance to abrasion and also the ion

exchanged catalysts. In the next chapter for hydroprocessing of vegetable oils,
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carbohydrates, proteins and microalgae, the catalysts are be used as powders for the

reason that more surface contact was available compared to pellet. Even though,

impregnated metal doped catalysts have a larger metal doped than ion exchanged, the

latter show a higher stability and these catalysts are selected during the processing of

the different biomass.

4.4 Conclusion

To conclude, the condition during subcritical water did have some influences

on the physical (abrasion) and less on the chemical structure of HZSM-5. The

leaching of silica in general was higher than aluminium. Less leaching occurred for

nickel compared to molybdenum. The STEM imaging showed no change in the

structure after the stability test, except that the metals were difficult to observe

compared to the fresh catalyst. The doped metal HZSM-5 had some impact on

enhancing the stability for example molybdenum with HZSM-5 improved

crystallinity, and copper improved the surface area. Nevertheless, FeZSM-5 was

subjected to high abrasion in hydrothermal condition. Finally, ion exchange HZSM-5

seemed to be more stable than the impregnated catalysts. HZSM-5 was processed with

sunflower oil four times. It was found that the coke amount increased after each test

and that the surface area decreased as well. In the next chapter, the processing of

different vegetable oils and fatty acids was carried out and the effect on the bio-crude

from the processing of sunflower oil with different metal doped is discussed more in

detail.
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Chapter 5 Hydrothermal liquefaction of lipids with and without

HZSM-5

This chapter includes results from the liquefaction reactions of different

vegetable oils (sunflower, soya, linseed, jatropha and palm oil) at different

temperatures (250, 300, 350 °C) for one hour. Unsaturated fatty acids (oleic, linoleic

and linolenic acid) have been processed at 350 °C. Synthetic mixtures have been

prepared from model fatty acids with similar compositions to sunflower, linseed and

jatropha. HTL experiments have also been undertaken with the different metal doped

HZSM-5 (nickel, iron, copper, and molybdenum) in water and formic acid at 350 °C.

5.1 Introduction

Lipids are a major constituent produced by vegetal and microalgae as

triglycerides and used to store energy. For this reason, triglycerides are commonly

extracted and converted by esterification to produce biofuels such as fatty acids

methyl esters [229]. Microalgae can potentially contain up to 60 dry weight per cent of

lipids and in theory they are able to produce up to 136,900 L/ha compared to palm oil

5,950 L/ha [64].

Watanabe et al. [230] studied the reactivity of stearic acid in supercritical

water for 30 minutes and showed that the conversion into alkenes was low. By adding

sodium and potassium hydroxide, the concentration of alkane C16 was more prevalent.

Linoleic acid is more reactive than oleic and stearic acids particularly above 300 °C,

emphasising that the degree of saturation has an impact on the reactivity of the fatty

acid in subcritical water [231]. Holliday et al. [109] demonstrated that 97 % of the

triglycerides from soya bean and linseed oils are hydrolysed below 300 °C with a

water density of 0.7 ml/g. Similar results were reported for the hydrolysis of soya bean

oil in a continuous reactor by King et al. [110].

Final upgrading of the fatty acids can be performed using catalytic upgrading.

HZSM-5 has been demonstrated to be a reliable catalyst under pyrolysis conditions

yielding aromatic and alkane compounds [179, 232]. Peng et al. [185] used NiZSM-5

with and without hydrogen to upgrade a microalgal oil; a good conversion of fatty

acids into alkane was achieved with 60 wt.% yield of octadecane at 260 °C and 40 bar
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of hydrogen. Mo et al. [189] have recently proven that HZSM-5 could convert 99 % of

palmitic acid at 400 °C and could be regenerated without any structural change.

Thereby, HZSM-5 was selected as a catalyst for cracking the vegetable oils;

furthermore the addition of metals into the structure of the zeolite improved its activity

toward the reduction of triglycerides and fatty acids.

The aim of this chapter is first to use vegetable oils (sunflower, soya bean,

linseed, jatropha and palm oils) and a series of model compound studies using fatty

acids to study the effect of temperature on the composition of the unsaturated fatty

acids and the hydrolysis of triglycerides. Subsequently, the addition HZSM-5 with

different doped metals is investigated to verify the effect on sunflower oil for cracking

and isomerisation. Microalgae can contain high levels of unsaturated fatty acids and it

is unclear how the degree of saturation influences the reaction pathways and product

quality. The main aim of this chapter is to understand the fate of lipids from

microalgae during the hydrothermal liquefaction process.

5.2 Methodologies

In this chapter, some specific analyses for the lipids are carried out and thus

are described here such as the quantification of fatty acids methyl ethers following

esterification.

5.2.1 Quantification of fatty acids

Fatty acids methyl ethers (FAME) analysis is used to quantify the fatty acid

composition of the raw vegetable oils and is performed as follows: 0.2 g of oil was

mixed with 3 ml of methanol and one drop of sulphuric acid (96 vol.%) and heated to

60 °C for one hour. Once cooled, 2 ml of water and 2 ml of pentane were added to the

solution and mixed. The pentane phase was separated and placed in a pre-weighed

vessel and the pentane solvent was allowed to evaporate. The resulting FAME

(approximately 3-5 mg) was dissolved in dichloromethane (1 ml) and analysed by

GC-MS (Agilent 5975B inert GC-MSD). The GC-MS was calibrated using FAME

standards (100 mg FAME Mix C8-C24 obtained from Supelco); the calibration

equations are found in Table 5-1, and the samples were diluted 1000 times. Separation

of the products was achieved using an RTx 1701 using the same program described in

Chapter 3. FAME content is expressed in g/kg of oil from the Equation 5-1 using the

equation y= ax + b, y is the integration of the GC-MS graph, a is the gradient, and b is
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the intercept when y = 0 from the standard divided by the ratio of the mFAME mass of

sample in mg, to Vdichloromethane the volume of dichloromethane (ml).

Table 5-1: Equation calculated by a set of standard from 100 mg FAME Mix C8-C24
obtained from Supelco

Fatty acids Calibration equation

Hexadecanoic acid, methyl ester y = 357,335x – 4,000,000

8,11-octadecadienoic acid, methyl ester y = 355,939x – 2,000,000

Octadecanoic acid, methyl ester y = 400,760x – 3,000,000

9,12,15-octadecatrienoic acid, methyl ester y = 345,005x – 4,000,000

Docosanoic acid, methyl ester y = 123,456,204.90x - 2,860,853.50

Octanoic acid, methyl ester y = 73,582,151.00x - 122,212,450.00

Decanoic acid, methyl ester y = 77,391,063.00x - 47,568,276.33

Dodecanoic acid, methyl ester y = 81,484,220.90x - 13,970,313.50

Methyl-tetradecanoate y = 88,060,167.40x - 1,122,292.50

8-octadecenoic acid, methyl ester y = 228756x+168511

Eicosanoic acid, methyl ester y = 115,771,350.60x - 1,067,620.00

Concentration FAME =
(
൫(y) ± (b)൯

(a)
)

(mFAME)/(Vdichloromethane)

Equation 5-1

5.2.2 Other techniques

The boiling range of the bio-crude oils is estimated using thermogravimetric

analysis (TGA) using a TA instrument (Q5000IR). A fraction of the oil, less than 10

mg, was heated from 40 to 900 °C at a heating rate of 10 °C/min under nitrogen (50

ml/min). The boiling curve was divided into five distinct boiling fractions; (i) the

gasoline fraction (< 170 °C) also named gasoline range, (ii) the kerosene fraction or

diesel range (170 to 250 °C), (iii) the diesel fraction (250-350 °C), (iv) the vacuum

diesel fuel fraction (350-400 °C) and (v) residue (> 400 °C).

The carbon balances in the bio-crude and in the aqueous phase are calculated

as follows in Equation 5-2. The carbon in the bio-crude oil is calculated similarly

using the elemental value. [TOC] is the concentration of the organic carbon in ppm
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(mg/L), mintial biomass is the mass of the dried biomass ash free, % Craw sample is the per

cent carbon measured by the elemental analyser of the raw vegetable oil and % Craw

sample is the per cent carbon measured by the elemental analyser of the bio-crude oil %

C bio-crude (CHNS) and mbio-crude is the mass of the bio-crude obtained.

% Caqueous phase =
[TOC] / 1000

m raw sample x % Craw sample

Equation 5-2

% Cbio-crude =
% C bio-crude (CHNS) x m bio-crude

m raw sample x % Craw sample

Equation 5-3

5.3 Chemical composition of the raw vegetable oils

Table 5-2 includes the per cent FAME and the amount of triglyceride and free

fatty acids of the raw vegetable oils: sunflower, linseed, soya, jatropha and palm oil.

Some mixtures have been prepared using different concentrations of stearic acid

(C18:0), oleic acid (C18:1), linoleic acid (C18:2) and linolenic acid (C18:3) as a

comparison of linseed, sunflower and jatropha oils. An average coefficient of variance

of approximately 7.5 % is calculated. The elemental analysis of raw vegetable oils was

performed as explaining in Chapter 3. The % normalised fatty acids is calculated by

the ration of the concentration over the total sum of all the fatty acids.
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Table 5-2: Chemical composition of the raw vegetable oils and mixtures

Elemental analysis Normalised % Composition Fatty acids % Size range

C

wt.%

H

wt.%

O

wt.%

HHV
(MJ/kg)

C16:0 C18:0 C18:1 C18:2 C18:3 Total polyunsaturated Triglycerides
Free fatty

acids

Sunflower oil 72.9 11.1 16.0 37.6 14.6 13.8 27.3 43.7 - 43.7 93.8 2.0

Linseed oil 72.8 11.3 16.0 37.9 6.9 8.2 16.7 11.7 56.0 67.7 96.0 1.5

Soya bean oil 75.5 12.6 11.9 41.4 11.0 5.3 32.7 45.5 5.4 50.9 90.5 2.5

Jatropha oil 76.5 12.4 11.1 41.5 12.3 15.8 39.5 32.4 - 32.4 73.1 11.6

Palm oil 77.4 12.2 10.3 41.8 39.3 9.6 39.9 11.3 - 11.3 82.4 5.3

Synthetic linseed 81.5 12.3 6.3 43.2 - 4.0 12.5 8.3 75.0 83.3 - -

Synthetic sunflower 70.9 11.6 17.4 41.7 - 6.0 26.7 67.0 - 67.0 - -

Synthetic jatropha 75.8 12.0 12.2 40.7 - 33.3 33.3 33.3 - 33.3 - -

Oleic acid 76.5 12.1 11.3 41.8 - - - - - - - -

Linoleic acid 77.1 11.5 11.4 41.1 - - - - - - - -

Linolenic acid 77.6 10.9 11.5 40.4 - - - - - - - -
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From Table 5-2, linseed oil contains mainly linolenic acid with approximately

56.0 % whereas sunflower and soya bean oils contain mainly linoleic acid with

approximately 43.7 and 45.5 %. For Jatropha and palm oil, the main fatty acid is oleic

acid although palm oil also contains high level of palmitic acid; this is the reason why

a paste forms at room temperature. The fatty acids for each plant depend on the factors

such as growth conditions of the species. In a dry climate, plants such as sunflower oil

produce more unsaturated fatty acids [233]. According to Thomas et al. [13], the

typical composition of linseed oil is: oleic acid 18-26 %; linoleic 14-20 % and

linolenic 51-56 %; comparing this with the values obtained in this study, the amounts

of oleic, linoleic and linolenic acids are relatively close to these ranges. Sunflower,

soya bean and linseed oils are initially refined as they contain mainly triglycerides (up

to 90 %) whereas jatropha and palm oil are crude oils and as such contained higher

levels of free fatty acids (11.6 and 5.3 %). These values have been determined using

GPC by integrating the peaks but it was also possible to measure by potassium

hydroxide titration with 10.3 wt.% and 3 wt.% for the same oils. However, titration

requires a large amount of samples whereas with GPC only approximately 70 mg is

necessary and other materials could also be detected; as for jatropha oil some free

glycerol and other compounds are identified with a molecular weight around 120

g/mol. Soya bean oil, palm and jatropha oils contain the highest energy content.

Sunflower and linseed oils contain the largest oxygen content compared to the other

vegetable oils. The elemental composition of the synthetic mixtures is determined by

the average of value from the model oleic, linoleic and linolenic acids. The synthetic

linseed contains higher carbon content compared to the original oil.

Figure 5-1 lists the chemical formula and the elemental composition of the

three model fatty acids used. The isomer of linolenic acid used in this study is (Z,Z,Z)-

9,12,15-octadecatrienoic acid or the α-linolenic acid also call ALA, this fatty acid is

part of the omega 3 well known dietary nutrition and is mainly found in linseed oil,

and canola oil.

The isomer of linoleic is the 9-cis,12-cis-linoleic acid and cis-9,cis-12-

octadecadienoic acid. It is mainly found in sunflower oil or poppy seed [13]. Most

fatty acid configurations found in vegetable oils are cis-form.
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Figure 5-1: Chemical structure for oleic, linoleic and linolenic acids

5.4 Effect of HTL temperature on oil compositions for the different vegetable oils

5.4.1.1 Mass balance yield

Table 5-3 includes the percentage bio-crude oils mass yield for sunflower,

linseed, soya, jatropha and palm (equation in Chapter 3) for all the experimental runs

carried out with vegetable oils. The typical experimental error or coefficient of

variance for these values is approximately 3-4 %. The bio-crude oil is shown as

received as it is assumed that the original vegetable oils do not contain ash and

moisture.
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Table 5-3: Mass bio-crude oils yield, for the processing of different vegetable oils at
different temperature

Reaction conditions Bio-crude yield wt.%

Sunflower oil

250 °C 74.0

300 °C 87.0

350 °C 86.0

Linseed oil

250 °C 91.0

300 °C 99.0

350 °C 93.0

Soya bean oil

250 °C 91.0

300 °C 99.0

350 °C 93.0

Jatropha oil

250 °C 89.0

300 °C 89.0

350 °C 93.0

Palm oil

250 °C 89.0

300 °C 88.0

350 °C 90.0

HTL oleic acid 97.0

HTL linoleic acid 92.0

HTL linolenic acid 93.0

HTL synthetic sunflower 86.0

HTL synthetic linseed 86.0

HTL synthetic jatropha 73.0

As vegetable oils are liquid, it is not surprising at the end to recover high yield

of bio-crude oils. In this chapter, only the bio-crude oil is presented here although in

the following chapters the mass balances of the different phases (bio-crude oil, gas,

residue and aqueous phases) are included. In theory, if the hydrolysis of 3.0 g of

triglycerides with a molecular weight of 883 g/mol is predicted to yield 92.0 wt.% of

bio-crude (about 2.7 g) with three fatty acids (molecular weight of 280 g/mol each);



Chapter 5

97

the remaining phase would be glycerol 8 wt.% soluble into the aqueous phase. This

accounts for the loss in yields from the different oils.

At 250 and 300 °C, no gas production is observed as the initial and final

pressures are equalled, whereas at 350 °C one bar of gas is released. Pressures, at 250,

300 and 350 °C, are 38, 82 and 161 bar respectively. It would be likely if the gas

composition had been analysed, it would mainly be carbon dioxide [94], a product of

decarboxylation. C16 and C18 fatty acid chains start to be soluble above 230 °C with

10-3 mol/kg of H2O [96].

For most of the vegetable oils, the maximal bio-crude yield is achieved at 300

°C. For jatropha and palm oil, the difference between each temperature is rather low.

The appearance of the processed oil from jatropha and palm oils is different from the

other vegetable oils (brownish-liquid oil) resulting in a white-solid, suggesting that it

contains mainly saturated fatty acids which are not liquid at room temperature.

After the HTL reaction, most of the model fatty acids are been recovered, the

results are consistent with those obtained by Shin et al. [231] with 99 wt.% for oleic

acid and 87 wt.% for linoleic acid. An identical mass yield is obtained between the

HTL run of sunflower and synthetic mixtures; for the two other mixtures the mass

yield is lower compared to the use of vegetable oils.

5.4.1.2 GPC analysis

Figure 5-2 contains the per cent of integrated fraction between a set retention

time representing different molecular weight ranges as follows: “heavy molecular

weight” (≥ 1000 g/mol), oligomers (between 1000 to 600 g/mol), free fatty acid or

“long chain” (600-200 g/mol) and low molecular weight (≤ 200 g/mol). The average

coefficient of variance of this analysis is approximately 5 %. It is observed that the

initial molecular weight of triglyceride is above 1000 g/mol whereas the theoretical

molecular weight of sunflower oil is 886 g/mol. The difference is caused by a shift in

the retention time. In addition, The GPC does not allow distinguishing between fatty

acids and long chain alkanes because of their close molecular weight. However, it is

an efficient technique to give an estimation of the different molecular size range.
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Figure 5-2: Different different molecular weight fractions for (a) sunflower, (b) linseed, (c)
soyabean, (d) jatropha (e) palm oils at different temperatures.
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The GPC results with the raw jatropha and palm oils (Figure 5-2 (c), (d)) are

slightly different compared to the other vegetable oils as explained previously. These

oils are unrefined which explained why the fraction of triglycerides is lower.

The GPC results at 250 °C (Figure 5-2) show that a large fraction of vegetable

oils are been hydrolysed into lower molecular weight materials compared to the raw

vegetable oils. At this temperature, some oligomers are observed which could be

assigned as diglycerides. It has been demonstrated that above 300 °C, the hydrolysis

of triglyceride are complete [110]. The hydrolysis of corn oil started at 200 °C and

was complete at 280 °C under subcritical water [234]. Holiday et al. [109] observed a

97 % conversion of vegetable oil into fatty acid between 260-280 °C for less than 20

minutes. Alenezi et al. [235] obtained a 90 % hydrolysis of sunflower oil using a

continuous reactor at 330 °C for 12 minutes. It was concluded that the time and

temperature were affected the conversion.

The GPC result above 300 °C, some cross linking reactions could take place

[236]. This is particular noticeable for linseed oil (Figure 5-2 (c)) which contained

high amounts of polyunsaturated fatty acids, explaining the large fraction of oligomers

materials. A decrease of the “heavy molecular weight” materials in relation to the

temperature is observed for sunflower and soya bean oils.

The GPC result at 350 °C, the bio-crude of processed of jatropha and palm oils

contain in majority “long chain” materials or fatty acids (higher to 90 %) as these

vegetable oils have lower amount of polyunsaturated oils. More “heavy molecular

weight” materials for palm oil are found in comparison to jatropha oil. The formation

of crossed linked could be more significant at 350 °C as the oligomers materials

increase for sunflower oil between 300 to 350 °C.

Figure 5-3 shows the different molecular weight fractions for unprocessed

fatty acids and processed at 350 °C and the different mixtures.
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Figure 5-3: Molecular weight fraction determined by GPC of the different model compounds and
mixtures
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In general, there is an overall decrease of the “heavy molecular weight”

materials with temperature suggesting a hydrolysis of the triglycerides. Nevertheless,

when the concentration of polyunsaturated fatty acids for example with linseed oil are

significant, crossed-linked materials are being formed.

5.4.1.3 Composition of FAME

Figure 5-4 represents the concentration in g/kg of different fatty acids palmitic

or hexadecanoic acid (C16:0); stearic or octadecanoic acid (C18:0); oleic acid

(C18:1); linoleic acid (C18:2) and linolenic acid (C18:3), for (a) sunflower oil, (b)

linseed oil, (c) soya bean oil, (d) jatropha oil and (e) palm oil, the concentration was

calculated as in section 5.1.1 and the coefficient of variance for the analysis is

approximately 6-8 %.

The FAME results (Figure 5-4 (b), ((c)) for linseed and soya bean oils show

the instability of linolenic acid, the concentration in the case of linseed oil decreases

from 500 g/kg with the raw materials to almost zero at 350 °C. Holidays et al. [109]

explained that as the temperature approaches 270 °C linolenic acid cis cis, cis can be

isomerised into different configurations as trans, cis, cis. The processing of the model

linolenic acid alone shows the presence of some oleic acid (160 g/kg) and linoleic acid

(approximately 560 g/kg) and also 11,14-octadecadienoic acid. Some FAME with

cyclic groups are also detected such as methyl 9-(o-propylphenyl)-nonanoate, and the

methyl-2-octylcyclopropene-1-heptanoate. It confirms that some internal cyclisation

happens [239].
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Figure 5-4: Normalised fatty acid distribution of oils following hydrothermal liquefaction
at different temperatures without catalyst for (a) sunflower oil, (b) linseed oil, (c) soya bean oil,
(d) jatropha oil and (e) palm oil
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The FAME results for sunflower, soya bean and jatropha oils (Figure 5-4 (a),

(c), (d)) indicate a decrease of the concentration of linoleic acid between 250 to 350

°C. Li et al. [236] illustrated that at low temperature the linoleic acid (9,12 cis, cis)

underwent a conjugation to 10,12 cis. Most of the configurations of the unsaturated

fatty acids are cis-form. King et al. [110] clarified that during the hydrolysis of soya

bean oil in a continuous reactor that linoleic and linolenic acids underwent trans-

isomerisation or by the conjugation of the double bonds. Only 11 % (peak ratio) of

linoleic acid has been recovered after the processing at 350 °C of the model

compound. Delocalisation and conjugation of the double bonds from the initial

linoleic acid are identified by the NIST library with 8,11-octadecadienoic acid, 11,14-

octadecadienoic acid, 6,9-octadecadienoic acid; however, these compounds could not

be quantified because there were not present in the standard solution. Also some

aldehydes are present with the Z,Z-10,12-hexadecadienal, indicating that linoleic acid

can be reduced.

There is no clear relation of the concentration of oleic acid with the

temperature. Nevertheless, the concentration of oleic acid decreases with jatropha and

palm oil which could be explained by the formation intra-cyclisation between oleic

and linoleic acids [236]. Another justification could be explained by the isomerisation

of oleic acid caused by the delocalisation of the double bonds. Shin et al. [231]

explained that some 9-(E) isomer could also be formed. In the method selected for this

project and the column do not allow us to distinguish and separate the two isomers and

so this why is the peak areas are more important. 66 % of oleic acid has been

recovered after the processing of the pure fatty acid at 350 °C (the initial concentration

is 5692 g/kg to 3740 g/kg).

The FAME results (Figure 5-4 (e)) for palm oil show mainly palmitic acid and

stearic acid. During hydrothermal liquefaction, these two fatty acids are relatively

stable with a low change in concentration. Shin et al. [231] did not detect any

degradation of the stearic acid below 370 °C.

Figure 5-5 represents the diagrams of the synthetic mixtures of linseed,

sunflower and jatropha.
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Figure 5-5: FAME analysis of the mixtures

As with the sunflower and linseed oil, the most abundant fatty acid is oleic

acid with respectively 51 and 41 %. The amount of linolenic acid is higher compared

to the real linseed oil. For jatropha oil, the concentration of stearic acid has doubled

compared to the initial composition with 60 %. In general, it is deduced that

polyunsaturated fatty acids (linoleic and linolenic acids) are unstable in subcritical

water compared to stearic and palmitic acids.
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5.4.1.4 Elemental analysis

Table 5-4 lists the elemental analysis CHO, and heating value calculated using

the Dulong equation (HHV). Samples were prepared as duplicates with a coefficient

of variance of 2.5 %.

Table 5-4: Elemental analyis, as received, of the different oils at different temperatures for
the processing of 5 vegetable oils

C

wt.%

H

wt.%

O

wt.%

HHV
(MJ/kg)

H/C O/C
% Energy
recovery

Sunflower oil

250 °C 77.1 12.0 10.9 41.3 1.9 0.1 81.6

300 °C 78.0 11.43 10.6 40.8 1.8 0.1 94.0

350 °C 76.8 11.49 11.7 40.3 1.8 0.1 92.3

Linseed oil

250 °C 77.8 10.7 11.5 39.5 1.6 0.1 94.3

300 °C 74.67 10.42 14.91 37.46 1.7 0.2 97.4

350 °C 75.2 10.3 14.5 37.5 1.6 0.1 92.2

Soya bean oil

250 °C 79.8 11.6 8.5 42.1 1.8 0.1 91.7

300 °C 79.9 11.4 8.7 41.8 1.7 0.1 96.4

350°C 79.0 11.2 9.7 41.0 1.7 0.1 97.2

Jatropha oil

250 °C 78.3 11.4 10.3 40.9 1.7 0.1 87.6

300 °C 69.2 11.1 19.7 35.7 1.9 0.2 76.8

350 °C 68.3 12.6 21.7 37.2 2.2 0.2 89.0

Palm oil

250 °C 73.1 11.9 14.9 39.1 2.0 0.2 91.9

300 °C 73.2 11.0 15.9 37.6 1.8 0.2 61.7

350 °C 72.0 11.6 16.4 38.0 1.9 0.2 82.6

HTL oleic acid 77.9 12.5 9.6 42.5 1.9 0.1 99.9

HTL linoleic acid 77.1 8.3 14.6 35.3 1.3 0.1 80.3

HTL linolenic acid 71.7 10.2 18.1 35.6 1.7 0.2 83.2

Synthetic sunflower 80.0 10.0 10.0 39.5 1.5 0.1 78.7

Synthetic linseed 75.4 11.1 13.5 38.9 1.8 0.1 80.3

Synthetic jatropha 78.26 12.26 9.48 42.3 1.9 0.1 75.8
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The CHNS result shows a reduction of oxygen content between the raw and

processed samples. For most of the processed vegetable oils, as the temperature

increases from 250 to 350 °C, the oxygen content increases. This might emphasise the

reduction in molecular weight from the conversion of triglyceride to fatty acids or

aldehydes or alcohol chains.

For linseed oil, the hydrogen content decreases from 250 to 350 °C. For

jatropha oil, the hydrogen content is higher at 350 °C compared to the unprocessed

sample. The carbon content decreases more particularly for the same vegetable oil.

Comparing the HTL sample of linseed and sunflower oils, an energy content (HHV) is

calculated with the latter suggesting that sunflower oil would be more suitable to be

used as fuel. In general, the energy content (HHV) is higher at 250 °C. There is a sight

change in the elemental compositions for the model fatty acids. For example for

linoleic acid, the decrease of the hydrogen content shows that there could have been

more double bonds in the resulting product.

The carbon content in jatropha oil is higher than its synthetic mixture which is

correlated with the previous section where it is found that the concentration of stearic

acid is doubled. Taking into account the error, the synthetic linseed and sunflower oils

are similar to the respective vegetable oils. The oleic acid retains all the energy in the

oil. Previous lipid analyses under hydrothermal liquefaction do not include elemental

analysis therefore it is difficult to draw a conclusion.

5.4.2 Carbon mass balance

Table 5-5 includes the carbon mass balance in the aqueous and bio-crude; the

carbon in the gaseous phase is calculated by difference from the two others. For the

TOC, several measurements are obtained using the instrument until the repeatability

was below 1 % and displays an average value. The TOC concentration values in the

table are multiplied by the dilution factor (37) because the solution is made up to 1

litre.
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Table 5-5: TOC concentration in ppm and the carbon mass balance of the aqueous phase,
the carbon in the bio-crude oils and in the gas

TOC

(ppm)

% C

aqueous

% C

bio-crude

% C

gas

Sunflower oil

250 °C 1922 1.9 78.5 19.6

300 °C 3993 4.8 92.7 2.5

350 °C 1329 1.5 90.7 7.8

Linseed oil

250 °C 2263 2.6 96.7 0.7

300 °C 2407 2.9 101.1 -4.0

350 °C 2356 2.8 96.3 0.9

Soya bean oil

250 °C 2263 2.6 95.3 2.1

300 °C 2407 2.9 101.0 -3.9

350 °C 2356 2.8 102.7 -5.5

Jatropha oil

250 °C 4267 4.9 92.0 3.1

300 °C 3593 4.1 81.7 14.2

350 °C 1404 2.2 89.6 8.2

Palm oil

250 °C 4441 5.1 94.2 0.7

300 °C 2385 2.8 65.9 31.3

350 °C 785 0.9 85.8 13.3

HTL oleic acid 496 0.6 99.1 0.3

HTL linoleic acid 230 0.3 92.7 7.0

HTL linolenic acid 256 0.3 86.3 13.4

Synthetic sunflower 1618 1.8 88.7 8.0

Synthetic linseed 2315 3.3 79.7 18.0

Synthetic jatropha 2089 2.3 80.5 16.9

The majority of the carbon fraction is measured in the bio-crude oil for

vegetable oils and model fatty acids as high bio-crude oil yields are obtained over 80

wt.%. For linseed and soya bean oils, the carbon fraction, in the bio-crude, is over 100

%, which could be caused by the presence of remaining dichloromethane or some

absorbed water.

The highest TOC concentration is obtained at 300 °C for sunflower, linseed

and soya bean oils. For the experiment with jatropha and palm oils, there is a clear

trend indicating the decrease of the carbon fraction in the aqueous fraction. Carbon
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fraction, in the aqueous phase, can be found as glycerol because of its high solubility

(≥500 g/L) [240]. Some aqueous samples are analysed by ionic chromatography and

some acetate anions are detected for example with sunflower oil at 350 °C with a

concentration of 6290 ppm; although, the level of most the sample is below the

calibration range. It may indicate that mild cracking occurred to form carboxylic acid

compounds. Watanabe et al. [230] claimed without given proof that acetic acid could

be one product of the decarboxylation of stearic acid at 400 °C. The aqueous phase

from the model fatty acid contains a low amount of carbon fraction indicating that the

formation of low molecular carboxylic acid is low. The combination of fatty acids

enhances slightly the formation of the lower fraction (or soluble compound carbon in

the water) with higher the TOC concentration for the mixtures.

In summary, from this section, the following conclusions could be drawn:

- Triglycerides from vegetable oils during the HTL are mainly degraded

as bio-crude with little production of gas and residues. A slight increase of bio-crude

occurs with increasing temperatures.

- Sunflower, palm and jatropha oils are mainly hydrolysed to fatty acids.

In contrast to linseed and soya bean oil, where a larger fraction to oligomers is formed

caused by the formation of cross-linked compounds.

- The concentration of linoleic and linolenic acids decreases with

temperature for most of vegetable oils as they are converted as oligomers. In addition,

inter-cyclisation is observed with the formation of methyl-9-(o-propylphenyl)-

nonanoate.

- The results with the synthetic mixtures and the fatty acids results in

similar trends with the vegetable oils.

- From 250 to 350 °C, the oxygen content calculated from the elemental

analysis, generally increases. The carbon content of the bio-crude is higher than initial

vegetable oils explained by the hydrolysis of the triglycerides into fatty acids.
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5.5 Influence of metal doped HZSM-5 catalysts on oil composition in water and in

formic acid

In this section, the effect of the catalyst on the conversion of the vegetable oils

to lighter fraction is investigated.

5.5.1.1 Mass balance yield

Table 5-6 contains the weight per cent bio-crude yield. With catalyst the

coefficient of variance felt between 2-3 %.

Table 5-6: Mass balance yield of the bio-crude oil used to calculate the carbon mass
balance for the experiment of the catalytic screening of sunflower oil

Reaction conditions Bio-crude yield wt.%

Water

No catalyst 86.0

HZSM-5 68.0

MoZSM-5 60.0

FeZSM-5 58.0

NiZSM-5 55.0

CuZSM-5 73.0

HTL oleic HZSM-5 53.0

Formic acid

No catalyst 89.0

HZSM-5 55.6

MoZSM-5 68.0

FeZSM-5 70.0

CuZSM-5 65.0

NiZSM-5 77.0

HTL oleic acid 73.9

Bio-crude yields without catalysts are commonly above 85 wt.% whereas in

the presence of HZSM-5 it is reduced to about 60 wt.% indicating that some cracking

has occurred. Lower yields are obtained with NiZSM-5 and FeZSM-5 with 55 and 57

wt.%. After the experiment, 3 bar of gases is obtained with NiZSM-5 which suggests

that some gasification reaction might have occurred as nickel is known to promote

gasification [63]. For the other catalysts, the typical pressure obtained is 4 bar which is
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higher than without any catalysts. Unfortunately, the gas analysis could not be carried

out for these experiments thus it is not possible to determine the wt.% gas accurately.

Reactions were also carried out in 1 vol.% formic acid using the same catalyst

in order to investigate the effect on the hydrogenation or producing in-situ hydrogen to

reduce the unsaturated fatty acids in the oil. The pressure after the experiment is

higher than in water alone (approximately 5-6 bar) indicating that formic acid is

decomposing into hydrogen and carbon dioxide during the reaction. Without any

biomass, 4 bar is obtained at 17 °C after the reaction. Yu et al. [155] measured that at

358 °C with a residence time of 15.2 seconds after the processing of formic acid was

32 vol.% of hydrogen, 42 vol.% of carbon dioxide and 1.4 vol.% of carbon monoxide.

Compared with the run in water and in formic acid, the bio-crude yield is in the latter

which could indicate that the cracking is lower in formic acid.

5.5.1.2 Characterisation of the bio-crude oils by GPC, GC-MS and TGA

In this section, some further analyses are carried out in order to demonstrate

the activity of the catalyst using the gel permeation chromatography, the

thermogravimetric analysis and the gas chromatography mass spectrometry. These

techniques allow the investigation of the light fraction.

5.5.1.2.1 GPC analysis

Figure 5-6 represents the GPC fraction of the different molecular size during

the catalytic screening in water (a) and in formic acid (b).
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Figure 5-6: Diagrams representing the different molecular weight fraction of the catalytic
screening of vegetable oils in water (a) and (b) in formic acid at 350 °C

From this Figure 5-6 (a), HZSM-5 contains in majority “long chain” materials

and the lowest fraction of oligomers materials compared to the other catalysts.

MoZSM-5 contains the highest fraction of lower molecular weight materials which

could include aliphatic hydrocarbons and aromatic compounds. The fraction of

oligomers is more significant with CuZSM-5. It is possible that this catalyst enhances

the formation of oligomers.

From Figure 5-6 (b), for the run in formic acid, it illustrates that the overall
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MoZSM-5 contain the least fraction of oligomer materials. On the whole, the average

molecular weight of the bio-crudes falls within 300-400 g/mol.

The GPC analysis of the processing of oleic acid in water, formic acid and

with HZSM-5 is shown Figure 5-7. The molecular weight profile is similar compared

the run in water and formic acid. For the processing of oleic acid and HZSM-5, a new

peak (shoulder) appears at 8.5 minutes suggesting the presence of lower molecular

weight material compared to oleic acid, although this technique could not confirm that

some of oleic acid has been decarboxylised. A Similar shoulder-shape is observed in

the GPC profile during the screening of sunflower oil with HZSM-5.

Figure 5-7: GPC overlay of the three chromatograms of oleic at 350 °C oleic acid with
HZSM-5 or formic acid at the same temperature
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5.5.1.2.2 Simulated distillation

Table 5-7 displays the different % derivative curve from the thermo-analysis of

the different oils from sunflower oil using the catalytic screening. The different

fractions used is based on the literature [241]. The value below 100 °C is removed as

it is assumed that it is residual water and dichloromethane.

Table 5-7: The wt.% of the different distillation range for the catalytic screening of
sunflower in water

Gasoline-like

≤ 170 °C

Kerosene-like

170-250 °C

Diesel-like

250-350 °C

Fuel oil-like

350-400 °C

Residue

≥ 400 °C

Raw sunflower oil 0.0 2.9 37.7 14.2 45.2

Water

No catalyst 1.9 62.8 26.8 1.6 6.9

HZSM-5 8.8 81.0 7.0 0.6 2.6

MoZSM-5 16.1 71.1 9.0 0.6 3.2

FeZSM-5 3.6 23.9 61.5 3.6 7.3

CuZSM-5 14.6 73.8 8.8 1.4 1.4

NiZSM-5 21.0 69.1 7.6 1.2 1.2

Formic acid

No catalyst 7.7 68.7 18.1 1.6 3.9

HZSM-5 6.6 71.7 14.1 1.6 5.9

MoZSM-5 7.0 61.0 27.9 2.1 2.1

FeZSM-5 15.6 73.8 8.0 1.3 1.3

CuZSM-5 17.3 70.8 8.1 1.9 1.9

NiZSM-5 16.2 69.0 10.8 2.0 2.0

Initially, the boiling curve from the raw sunflower oil contains mostly high

temperature boiling compounds whereas for the run without catalyst the boiling range

is found in the diesel and kerosene range. Using different arrays of metal inside the

HZSM-5 have an impact on the boiling curve of the different bio-crude. With HZSM-

5, most of the fractions are kerosene-like with 81 wt.%. The curve using MoZSM-5

suggests the presence of 16.1 wt.% of gasoline-like fraction. The gasoline-like fraction

is more significant with NiZSM-5 with approximately 21 wt.%. It emphasises that

these catalysts enhance the cracking of sunflower oil. The diesel-like range is

enhanced by FeZSM-5 with 61.5 wt.%. The run with no catalyst 26.7 wt.% of diesel-

like range is produced and is explained by the presence of oligomers.
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More diesel-like range and kerosene-like with formic acid are measured for

most of the catalysts especially with MoZSM-5. NiZSM-5 in water contained more

gasoline-like ranges compared to the HTL run in formic acid. The analysis of the bio-

crude oils using GPC and the TGA do not match however since GPC shows that only

MoZSM-5 and FeZSM-5 contain low molecular weight materials. This anomaly is

difficult to explain although it could be due to interactions between molecules and the

stationary phase over estimating the molecular weight of the fractions during GPC.

5.5.1.2.3 GC-MS analysis

GC-MS is only capable of measuring the material which is volatile and has a

boiling point below approximately 300-400 °C. In other words, only the gasoline,

diesel and kerosene range could be analysed. With doped metal HZSM-5 catalysts

however this accounts for 70 % of compounds. The column and the method were

previously identified by Biller et al. [196] and Ross et al. [129] as the most suitable

parameter for bio-crude oils analysis. Figure 5-8 contains three different

chromatograms: (a) is the run without any catalysts, chromatograms with (b) MoZSM-

5 and (c) with HZSM-5. Table 5-8 lists the main compounds identified in the bio-

crude.
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Figure 5-8: GC-MS chromatograms of oil from hydrothermal processing of sunflower oil
at 350 °C in (a) water alone without a catalyst, (b) in the presence of MoZSM-5 catalyst and (c) in
the presence of the HZSM-5
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Table 5-8: Identification of compounds from previous chromatograms

Number
Retention

time
(minutes)

Compounds

1 12.8 o-xylene

2 14.7 3-ethyl-2-pentene

3 16.5 decene

4 17.4 1-ethyl-2-methyl benzene

5 18.2 3-undecene

6 19.0 4-undecene

7 19.2 1-methyl-3-propyl-benzene

8 19.8 decahydronaphthalene

9 21.8 dodecene

10 22.2 1,3-ethyl-dimethyl-benzene

11 24.3 1-methyl-butyl-benzene

12 25.8 1,4-methyl-2-(2-methyl-propyl)-benzene

13 26.6 1-methyl-2-methylenecyclohexane

14 27.1 1-methyl-3-hexyl-benzene

15 32.8 2,6-dimethyl-naphthalene

16 34.6 tridecanol

17 35.5 3-heptadecene

18 35.8 8-heptadecene

19 36.9 1,6-dimethyl-cyclohexane

20 37.0 Z,Z-10,12-hexadecadienal

21 40.9 1,2 dimethyl-cyclohexene

22 44.0 1,2,3-tetrahydro naphthalene

23 50.0 cyclohexyl

24 51.5 oleic acid

25 53.4 fluoranthene

26 57.0 Z,Z-9,12-octadecadienoic acid

The numerated peaks are identified by the NIST library with highest

probability. Chromatograms could be divided into three portions: the first section from

10 to 30 minutes contained the short alkenes (C5-C12), aromatics and some oxygenated

compounds such as alcohols and ketones; the second section with C16-C17 alkenes or
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aldehydes chains and the remaining section with C18 chain with fatty acids. The

chemical structures of some molecules are included in Figure 5-9.

Figure 5-9: Chemical structures of some molecules identified in GC-MS

An attempt to improve the quality of the chromatogram is engaged in order to

change the temperature program in order to improve the peak resolution however with

some minor changes for example between 30 and 40 minutes the poor resolution could

be explained by close molecular/polarity structure and the column is not able to

separate these materials further. Furthermore, the signal after 50 minutes is caused by

fatty acids which are poorly retained by the column.

The first chromatogram (a) shows that in the absence of catalysts, some fatty

acids are cracked into aliphatic compounds such as heptadecene in agreement with
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previous results by the TGA and the GPC analysis. The Z,Z-10,12-hexadecedienal

found at 37 minutes has been identified by Li et al. [236] as a key compound in the

reduction of linoleic acid but also for the possible formation of aromatics afterwards.

For the aliphatic chains, more alkenes rather than alkanes are identified, Watanabe et

al. [230] also identified alkenes as one of the major products from the decarboxylation

of stearic acid under supercritical water and using basic catalyst such as CeO2 or ZrO2.

More aromatics compounds such as the 1,3-ethyl-dimethyl-benzene; 1-methyl-

butyl-benzene; 1,4-methyl-2-(2-methyl-propyl)-benzene are identified with

MoZSM-5. It explains why with GPC a fraction of 18 % of low molecular weight

materials is observed. Less aromatic compounds are identified with HZSM-5 with

rather more short alkenes, suggesting that molybdenum improves the selectivity

toward the formation of aromatic compounds.

The chromatograms displayed in Figure 5-10 compare the bio-crude for the

run with (a) in formic acid, (b) HZSM-5 in formic acid and (c) MoZSM-5 in formic

acid.
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Figure 5-10: GC-MS chromatograms of the different samples as (a) run in formic acid (b) run of
sunflower oil with HZSM-5 and (c) with MoZSM-5 in formic acid

Similar chromatograms are observed when using catalysts and formic acid.

Lower aromatic compounds were produced compared to the GC-MS chromatograms

with water. It is likely that formic acid hindered catalytic activity. Peak intensity is

higher with the Z-Z-hexadecadienal, it would suggest that aldehydes is more stable
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under this solution, it is the reason why Diels-Alder reaction could not take place.

More alkenes are also observed compared to the experiment in water.

5.5.1.2.4 Composition of FAME analysis

The concentration of the different fatty acids after the hydrothermal reaction

with the catalytic screening was shown in the Figure 5-11. A coefficient of variance of

11 % was calculated.

Figure 5-11: FAME composition of the different metal doped ZSM-5 processing with
sunflower oil at 350 °C in water

The presence of catalysts increases the non-FAME content as it is observed in

the previous section however this could not be quantified. The analysis of FAME

indicates that the oleic acid concentration is reduced by HZSM-5. FeZSM-5, CuZSM-

5 and MoZSM-5 have less impact on reducing oleic acid compared to the other

catalysts. A slight decrease of stearic acid is observed for most of the catalyst yet it is

more pronounced compared to the other fatty acids. The palmitic acid concentration

fluctuates more which could be explained by a poor reproducibility of the peak. No

oleic acid is detected with NiZSM-5.

In order to emphasise that HZSM-5 has an impact on the isomerisation of the

fatty acid, oleic acid only is processed at 350 °C with HZSM-5. The initial
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concentration of oleic acid is 5692.0 g/kg, without catalyst the concentration is 3780.5

g/kg and with HZSM-5 is only 446 g/kg. The MS library has identified that the oleic

acid could be reduced as 7-octadecenoic acid and 15-octadecenoic acid. The fraction

of other molecules is also important with some alkenes 3 or 8-heptadecene however

these compounds could not be quantified.

Figure 5-12 includes the FAME composition using different metal doped

catalyst in formic acid.

Figure 5-12: FAME composition of the different metal doped ZSM-5 processing with
sunflower oil at 350°C in formic acid

Replacing water with formic acid in combination with FeZSM-5, MoZSM-5

also reduce the oleic acid concentration, although, there is no evidence that oleic acid

is hydrogenated to stearic acid as the concentration is not increased. On the whole, the

overall concentrations are much lower than without catalyst. The concentration of

linoleic acid is less significant compared that without any catalysts.

One experiment with oleic acid in 1 vol.% formic acid was carried out. The

FAME analysis shows different isomers of oleic acid are detected including the 7-

octadecenoic acid and the 8-octadecenoic acid. The concentration of the 9-Z is 510

g/kg whereas the raw is 5692 g/kg. No stearic acid (octadecanoic acid) is detected

implying that the gas produced from the decomposition of formic acid does not

hydrogenate the double bond but induces the conjugation of the double bond. Some

traces of E-14-hexadecenal and 2-(3H)-furanone-dihydro-5-tetradecyl are also

observed; the last compound are detected by Fu et al. [242].
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5.5.1.2.5 Elemental analysis

The elemental analysis of the bio-crude oils with the metal doped and

sunflower oil is found in Table 5-9.

Table 5-9: Elemental composition as received of the oils using the different catalysts in
water

C

wt.%

H

wt.%

O

wt.%

HHV
(MJ/kg)

H/C O/C
%

Energy
recovery

Water

No catalyst 76.8 11.49 11.7 40.3 1.8 0.1 92.3

HZSM-5 80.4 11.9 7.7 42.8 1.8 0.1 72.0

MoZSM-5 80.0 11.6 8.4 42.1 1.7 0.1 67.1

FeZSM-5 75.5 11.4 13.1 39.5 1.8 0.1 65.4

CuZSM-5 74.4 11.6 13.9 39.3 1.9 0.1 76.1

NiZSM-5 77.2 11.7 11.1 40.8 1.8 0.1 50.0

Oleic HZSM-5 78.3 12.3 9.5 43.2 1.9 0.1 55.9

Formic acid

No catalyst 74.2 11.9 14.0 39.5 1.9 0.1 44.6

HZSM-5 76.3 12.0 11.7 40.8 1.9 0.1 60.3

MoZSM-5 75.9 11.8 12.3 40.3 1.9 0.1 73.1

FeZSM-5 78.0 12.1 9.9 41.9 1.9 0.1 78.0

CuZSM-5 69.4 10.8 19.8 35.4 1.9 0.2 81.0

NiZSM-5 74.8 11.6 13.6 39.4 1.9 0.1 75.0

HTL oleic acid 72.2 12.0 15.8 43.0 2.0 0.2 76.0

For the run in water, the result illustrates that the addition of HZSM-5 and

metal doped HZSM-5 help to reduce oxygen content in the bio-crude oils. It is more

significant with HZSM-5, MoZSM-5 with respectively 7.7 and 8.8 wt.% of oxygen

content. In addition, the carbon content for HZSM-5 and MoZSM-5 is the highest, in

this way, a high heating content is calculated which is similar to the petroleum oil with

42-44 MJ/kg [243]. Higher oxygen content with CuZSM-5 is detected compared to the

reaction at 350 °C indicating that an oxidation might have occurred. It was also

possible that these samples contain more residual water. Yet the decarboxylation is

less pronounced compared to the result published by Mo et al. [189] because more

catalysts and higher temperature with supercritical conditions are used.
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For the runs in formic acid, HZSM-5 and MoZSM-5 have an oxygen content

slightly higher indicating that the deoxygenation is less significant in this solution.

The lowest oxygen content is calculated for FeZSM-5, moreover it has an high energy

content with 41.9 MJ/kg. It points out that catalysts are less active in formic acid

compared to water. Less products from the secondary cracking is found for example

with aromatic compounds enhancing only the primary cracking product with

heptadecene and Z,Z-hexadecadienal and fatty acids [215]. Formic acid has the

highest energy recovery compared to the run carried out in water. The hydrogen

content for the oleic acid processed in formic acid is slightly lower compared to the

run in water (12.5 wt.%). Higher hydrogen content implies that the double bond is

hydrogenated, for instance the hydrogen content of stearic acid is 13.3 wt.%. It

explained why no stearic acid is observed during the FAME analysis.

The amount of hydrogen formed during the decomposition of formic acid is

not sufficient to hydrogenate double bonds as they are more stable in hydrothermal

conditions. Noble metals are necessary to improve this reaction. In the case most of

formic acid is converted into hydrogen and carbon monoxide; 27 mol of hydrogen

would be necessary to hydrolyse a triglyceride containing 5 double bonds. The use of

1 vol.% formic acid or 0.26 M only 2 mM could be produced [155].

5.5.1.3 Carbon mass balance

Table 5-10 shows the TOC concentration and the carbon mass balance in the

aqueous phase, bio-crude and gaseous phases for the catalytic screening in water and

in formic acid.
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Table 5-10: TOC concentration in ppm and the carbon mass balance of the aqueous phase,
the carbon in the bio-crude oils and in the gas

TOC

(ppm)

% C

aqueous

% C

bio-crude

% C

gas

Water

No catalyst 1329 1.5 90.7 7.8

HZSM-5 925 1.3 69.8 28.9

MoZSM-5 958 1.3 65.8 32.9

FeZSM-5 1852 1.9 64.4 33.7

NiZSM-5 1251 2.1 48.8 49.1

CuZSM-5 2369 3.7 74.3 22.0

Oleic HZSM-5 2185 2.6 54.5 42.9

Formic acid

No catalyst 2619 3.9 43.1 53.0

HZSM-5 1080 1.5 58.2 40.3

MoZSM-5 3602 5.5 71.1 23.4

FeZSM-5 4979 7.2 78.6 14.2

CuZSM-5 9475 13.6 73.4 13.0

NiZSM-5 4949 7.5 81.9 10.5

HTL oleic acid 1480 0.6 70.1 29.3

For the run in water, HZSM-5 and MoZSM-5 reduce the level of organic

carbon in the aqueous phase with respectively 925 and 958 ppm. The opposite trend is

found with CuZSM-5 with higher bio-crude oils and TOC concentration. It could

suggest that these catalysts were less active for cracking sunflower oils. The pH range

of most of the processed water with vegetable oils is including within the 3-4 pH

range. This means that most of the compounds, in the aqueous phase are acidic

species. As expected half the carbon is converted in the gaseous phase selecting

NiZSM-5.

For the run in formic acid, except for HZSM-5, the concentration of organic

acids in the aqueous phase are more significant, in particular with CuZSM-5 with

9475 ppm. The high concentration gives a negative value for the gaseous phase; it is

possible that the bio-crude contains some water and gave higher yield. It could also

explain why a lower mass of bio-crude oils is found with the catalyst. It is likely that

formic acid enhances the formation of soap thus fatty acid became more soluble in the

aqueous acid but also some residual formic acid is present and increased the TOC
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value. A blank experiment was carried out with formic acid at 350 °C and it was

found that the concentration was 1472 ppm. Generally, the amount of carbon in the

bio-crude oil is higher in the formic acid compared to water.

To summarise, the following conclusions could be drawn from this section

- NiZSM-5 and MoZSM-5 are the most reactive towards sunflower oil

with the formation of the highest fraction of gasoline. HZSM-5 and MoZSM-5 have

the lower level of oxygen in the bio-crude.

- HZSM-5 enhances the isomerisation of oleic acid and with some extent

the reduction of size

- FeZSM-5 enhanced the formation of diesel-like fraction measured by

the simulated distillation.

- MoZSM-5 increases the formation of aromatics. Compared than the

runs without catalyst, the zeolite increases slightly the formation of alkenes.

- HZSM-5 has a lower reactivity in formic acid compared than in water.

- Formic acid enhances the delocalisation of the double bond of oleic

acid and increased the % carbon in the aqueous phase.
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5.6 Discussion of the degradation of lipids

There are several factors which can be drawn from most of the experiments

without catalysts carried out with the different vegetable oils. Figure 5-13 shows the

reaction from a triglyceride to a diglycerides where R represents C18 chains. Figure

5-14 contains the chemical pathways of the possible degradation of vegetable oils

including oleic, linoleic and linolenic acids.

1) The hydrolysis of most of the vegetable oils (sunflower, linseed, jatropha,

soya bean and palm oils) is completed around 300 °C. In previous literature, the

hydrolysis of triglyceride to diglyceride and free fatty acids involved a first kinetic

order [233]. The hydrolysis occurs in three steps where for each reaction, a fatty acid

is released resulting in three fatty acids and one molecule of glycerol. The equilibrium

of the full hydrolysis is reached in 2.5 hours in 225 °C whereas at 280 °C the

hydrolysis can be achieved in 30 minutes [244].

2) As the level of polyunsaturated fatty acid such as linoleic and linolenic

acids increase, the fraction of oligomers and “heavy molecular weight” materials is

more significant. Furthermore, delocalisation of the double bonds is observed with the

FAME analysis. Unfortunately the different isomers could not be quantified with this

technique.

3) As delocalisation occurred, it is possible that the fatty acids undergo

internal cyclisation as suggested Li et al. [236] and in depth by Dobson et al. [236,

239]. Two types of cycles have been identified with the GC-MS, a benzene aromatic

ring from the carbon position 10 and 15 and another C18 fatty acid with a propyl cycle.

The benzene ring might be formed by a 1,5 hydrogen shift involving a radical

mechanism [245]. Dobson et al. [105, 246] identified only the formation of fatty acids

containing non-aromatic cycles. These products are usually predicted during the

heating in air. In hot compressed water, most of the mechanism involves protons

however; as the temperature increased towards 350 °C a radical reaction may also be

likely, therefore a hydrogen shift could have happened.
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Figure 5-13: Proposed mechanism for the formation of diglycerides (Reaction 5-1) [215]

Figure 5-14: Proposed main mechanism step for the degradation of lipids in subcritical water
where 1= Inter-cyclisation of linolenic acid 2= Intra-cyclisation via Diels-Alder between oleic and
linoleic 3= Deoxygenation of linoleic acid

The formation of dimers could be possible by Diels-Alder, where the reaction

of the cross linking consisted of the formation of a “bridge” between each chain

forming a polymer. Moreover, it is possible with high concentration of unsaturated

fatty acids that the samples are oxidised and form dimers (peroxy) [22]. It is why it is

most suitable to produce biodiesel using saturated or hydrogenated fatty acids because

they are more stable. The long storage and the long heating and cooling stages could

induce the formation of epoxy chain (bonding) and increase the molecular weight of
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the bio-crude oils. Without catalyst, linoleic acid can be reduced into aldehydes for

example the Z,Z-10,12-hexadecadienal from the conjugated linoleic acid.

The formation of “heavy molecular weight” and oligomer materials is

problematic if the bio-crude is used as a fuel as these compounds have a low burning

capacity as was observed during the boiling curve of linseed oil. Li et al. [236]

claimed that the addition of saturated ZnCl2 at high temperature at 700 °C reduced the

amount of cross linking compounds but it was not relevant to use such high

temperature. An experiment with linseed oil was performed at 350 °C using ZnCl2

(0.1 M) although no effect has been observed on the reduction of the molecular size

fraction.

The result shows that HZSM-5 is more active with sunflower oil compared to

the other vegetable oils. As seen in the previous chapter, HZSM-5 has nanopores

approximately 3.6 Å, whereas the size of a model triglyceride here triolein (a

triglyceride with C9 chain) with a size of 6.3 by 4.03 Å could not enter in the pore.

Therefore, only fatty acids are small enough to go through the pore and undergo

cracking with the Brønsted site or Lewis [232]. Zeolites are involved in β cracking;

under pyrolitic environment and high temperature above 400 °C, the high acidity of

HZSM-5 favours the production of aromatic compounds, short olefins propene, butene

which form via the Diels-Alder reaction. The drawback is the formation of coke which

blocked the pore and deactivated the catalyst [179, 216].

Molybdenum (Mo) is more selective for the production of aromatic

compounds compared to the other catalyst as this metal with HZSM-5 is used to

produce benzene from methane at high temperature [221]. The majority of the

aromatics found in the bio-crude oils are bi or tri substituted as ortho (1,2) or metha

(1,3) configuration. Kubatova et al. [179] suggested that aromatics could also be

produced by internal cyclisation. HZSM-5 has a strong Brønsted and Lewis acidic

sites which allows the conversion of straight fatty acids. Doped metal has an impact

on the coordination and absorption of the carboxylic group in order to decarboxylase

and hydrolyse using the aluminium site inside afterwards [247]. Even with a small

loading the different metals seem to have an effect within the error range. From the

TGA analysis, it is observed that iron is more selective to produce diesel-like material;

it is surprised that it is not identified using the GPC method. However, it should be

pointed out that aromatic and alkene compounds do not represent a majority of the
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total compounds contained in the bio-crude oil, even though, with sunflower oil, the

GPC, GC-MS and TGA analysis indicate that the gasoline fraction is more abundant

compared with other vegetable oils.

Mo et al. [189] obtained full conversion of palmitic acid with the production of

long alkane chain and benzene, toluene and xylene (BTX). Nevertheless, this reaction

was carried out at 380 °C for 180 minutes and the catalyst loading was 1:1 with the

sample, at these conditions the water is in supercritical state [189]. Thus, the

properties are quite different and in this study only the loading is less 1:6, the reason is

because in industry a small amount of catalysts are usually preferred and also with a

lower temperature. One experiment is undertaken using palmitic acid however it failed

as at room temperature the fatty acid is insoluble in the water and it formed as crust

which blocked the reactor. Vardon et al. [248] proposed a novel system where

unsaturated fatty acids were hydrogenated by hydrogen produced in-situ from glycerol

and Pt/C at 300 °C; this would avoid using high pressure hydrogen, generally 40 bar,

which is a hazardous process.

5.7 Implications for the hydrothermal liquefaction of microalgae

The overall goal of this study is to have a better understanding of the fate of

the lipids during the hydrothermal liquefaction of microalgae as they are a major

constituent in the composition. Table 5-11 lists some examples of composition of fatty

acids for five microalgae from the publication of Volkman et al. [249].

Table 5-11: Examples of composition for different microalgae from Volkman et al. [249]

Fatty acids Spirulina Chlorella Dunaliella Nannochlopsis Skeletonema

Total lipids wt.% 7.0 9.0 22.0 28.0 13.0

polyunsaturated
C16

0 0 25.2 19.5 13.1

C16:1 7.8 18.7 2.9 11.3 30.5

C16:0 52.6 25.1 14.7 20.1 16.5

polyunsaturated
C18

28 16.1 51 32.1 2.8

C18:1 0 25.3 2.3 5.3 1.5

C18:0 8.3 5.6 0.4 1.1 0.8

Others 3.4 9.2 28.7 30.1 47.9
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Some microalgae contain more mono or saturated fatty acids which would not

affect the molecular weight. Dunaliella t. and Nannochloropsis contain more

polyunsaturated fatty acid thus it would be expected to see “heavy molecular

compounds” materials in the bio-crude oils.

Microalgae could also contain from 10 to 50 wt.% of phospholipids. Changi et

al. [250] investigated the hydrothermal degradation of 1,2-dioleoyl-sn-glycero-3-

phosphocholine (phospholipids). The hydrolysis into oleic acid, phosphoric acid and

choline occurred readily. Free fatty acids may catalyse the hydrolysis of other

macromolecules from microalgae.

Zou et al. [124] processed Dunaliella t. under sub to supercritical water where

a yield of 38 wt.% at 360 °C was achieved; although there is no study concerning this

lipids composition and the formation of oligomers. However, there are different

elements such as proteins and carbohydrates which also favoured the formation of

“heavy molecular weight” material; they will be discussed in more detail in the next

chapters. The presence of nitrogen as ammonium compound with lipid could be a

problem since long chain amide is formed.
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5.8 Conclusion

To conclude, it was deduced that hydrolysis of most triglycerides took place

below 300 °C. The gel permeation chromatography showed that the main molecular

fraction range was mainly fatty acids for sunflower, jatropha and palm oils. The large

concentration of linoleic or linolenic acids with linseed oil enhanced the fraction of

oligomers and “heavy molecular weight” materials in the bio-crude oil. It was

suggested from result in the literature that polyunsaturated fatty acids underwent cross

linking or oligomerisation reactions. As temperature increased, the concentration of

linoleic and linolenic concentrations decreased. The results with model compounds

were consistent with the vegetable oils. Oleic acid was more stable under

hydrothermal conditions. Without catalyst a low amount of linoleic acid was reduced

into aldehyde Z,Z-10,12-hexadecadienal. Delocalisation of the double bonds allowed

the Diels-Alder reaction to take place. There was evidence of internal cyclisation with

the identification of methyl 9-(o-propylphenyl)-nonanoate. Using catalyst, HZSM-5

had some impact on isomerisation of some fatty acids such as oleic acid, MoZSM-5

was slightly more selective for the production of aromatic, FeZSM-5 increased the

amount of diesel-like fraction measured by the boiling curve. The catalysts with

formic acid were less effective than in water and there was no evidence that the

hydrogen produced in-situ hydrolysed the unsaturation of fatty acids.

Finally, for microalgae it could be problematic especially when the strain

contains high amounts of polyunsaturated fatty acids as for example Dunaliella. In the

next chapter another element carbohydrate will be studied in order to investigate its

impact on the hydrothermal liquefaction of microalgae.
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Chapter 6 The effect of HZSM-5 on the hydrothermal liquefaction

of carbohydrates

This chapter presents and explains the results for the hydrothermal liquefaction

of carbohydrates. Starch, glucose, alginic acid and mannitol have been chosen as

model compounds. Experiments have been carried out at different temperatures in

water (250, 300 and 350 °C) and at 350 °C in an organic acid (formic acid), alkali salt

potassium hydroxide (KOH) and using heterogeneous catalyst HZSM-5 in water and

formic acid.

6.1 Introduction

Carbohydrates including saccharides are a class of compounds synthesised by

plants or animals which were used as fuels by organisms; they consist of polymers

chains referred to as polysaccharides with some sugar units or monosaccharaides

additionally oligosaccharides and disaccharides can be found. In chemical contexts,

they are composed of carbon chains or cycles with an empirical of unit of Cm(H2O)n ,

most commonly C5 cycles of fructose and C6 of glucose for example are the most

abundant. Cellulose and starch are both polysaccharides with glucose units but

different structures, the cellulose forms a robust and linear layer because of the way in

which it bonds β (1→4) in opposition to the starch which form a α (1→4) with a

twisted and branched structure. Cellulose is scarcely found in microalgae. The

composition and the amount of carbohydrates are dependent upon factors such as

growth conditions, the time of the harvests. Glucose is the most common sugar in

microalgae for example for Dunaliella t. with 85 wt.% of the total carbohydrate [251].

However, the total fraction of carbohydrates for the microalgae grown under

autotrophic conditions is less than 15 wt.% [252]. Alginic (alginate) acid is one of the

major constituents of the cell wall for brown seaweed, the polymer consists of two

sugar. It is widely used in the food or pharmaceutical industry as an excipient in the

form of a gel or a paste [253]. Mannitol is the linear version of mannose (cycle).

Phaeodactylum t. contains 45 wt.% of mannose [251]. Mannitol is extracted in

subcritical water from olive waste [254].

The behaviour of carbohydrates has been widely studied in hot compressed

water (subcritical water) and in particular the hydrolysis of polysaccharides such as
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cellulose and starch to produce glucose or organic acids [94, 255]. The hydrolysis of

starch has been studied by Nagamori et al. [256] at low temperatures from 180 to 240

°C. A 64 wt.% yield of glucose was obtained after 10 minutes, which subsequently

decreased with a rise in concentration of the products maltose, fructose and 5-

hydroxymethylfurfural (5-HMF) with longer reaction times. In another study, it was

shown that the molecular weight decreased in function of time (from 0 to 10 minutes)

indicating the conversion of starch into monosaccharides or aldehydes [257]. Above

300 °C, the conversion of glucose was fast 90 % was converted in less than 3 seconds

[258]. Similar trends were found with sodium salt of alginic acid with a fast hydrolysis

to monomers above 200 °C [259].

The aim of this chapter is to gain a clearer understanding of the degradation of

several carbohydrates (starch, mannitol, alginic acid and glucose) at different

temperatures under acid or alkali conditions in hot compressed water. Furthermore,

experiments with HZSM-5 in water and formic acid at 350 °C were performed to

study the impact on the conversion of the starch, glucose, alginic acid and mannitol. It

is proposed that these results will provide a deeper understanding of the significance

of carbohydrates have in the formation of microalgae derived bio-crude oil. Potassium

hydroxide was used in this chapter, because previous studies reported good results in

alkali solution for the processing of carbohydrates [260].

6.2 Methodologies

In this chapter, the analysis techniques used in Chapter 3 are repeated. The

residue and gaseous carbon mass balance used in the section 6.4.4 where calculated

according to the Equation 6-1 where % Cresidue is the weight per cent carbon of the

residue or chars measured by CHNS, mresidue is the mass of the residue in gram, mraw

sample is the mass of the initial sample and %Craw sample is the per cent carbon of the raw

biomass and the carbon remaining Equation 6-2.

Carbonresidue =
% Cresidue x mresidue

mraw sample x % Craw sample

Equation 6-1

% Cremaining(gaseous) = 100 − % Caqueous phase − %Cbio-crude − %Cresidue

Equation 6-2
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6.3 Chemical compositions

Table 6-1 includes the elemental composition on a dried basis with weight %

carbon, % hydrogen and % oxygen, higher heating value (HHV) determined from the

Dulong formula (Chapter 3) and the H/C ratio of the different sugars glucose, starch,

alginic acid and mannitol.

Table 6-1: Elemental analysis o of the raw carbohydrates with glucose, starch, alginic acid
and mannitol

C

wt.%

H

wt.%

O

wt.%

HHV

(MJ/kg)
H/C

Glucose 40.0 6.7 53.3 13.5 2.0

Starch 38.5 6.4 55.0 12.3 2.0

Alginic acid 38.6 5.2 55.4 10.7 1.6

Mannitol 39.7 8.1 51.9 15.7 2.4

Glucose and mannitol are monosaccharides whereas starch and alginic acid are

polysaccharides. The chemical formula of glucose is C6H12O6 with cycle structure and

mannitol C6H14O6 with a linear structure Most of the carbohydrates used in this study

contained high oxygen content, explaining their lower heating values. Alginic acid has

a more complex structure of starch and cellulose as D-mannuronic acid and L-

guluronic. These acids are the main constituent of the polymers. Therefore, it would

require a high energy input to process these compounds. Figure 6-1 includes the

chemical structure of glucose, mannitol, starch and alginic acid.
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Figure 6-1: Chemical composition of the carbohydrate used

6.4 Effect of HTL temperature on oil composition

6.4.1 Mass balance yield

The products degraded via hydrothermal liquefaction are distributed into the

oil, residue or chars, liquid and gaseous phases. Figure 6-2 represents the diagram for

the mass yield of the different phase after the processing of starch with the bio-crude

mass yield, the mass yield of the residue, the gaseous mass yield and the aqueous mass

yield. The overall average coefficient of variance is 10 % determined from replicate

the experiments. The coefficient of variance is higher than normal this is due to the

difficulty in recovering the residue from the bottom of the reactor.
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Figure 6-2: Diagram of the mass balance for the processing from 250 to 350 °C in water, formic
acid and KOH (a) starch, (b) glucose, (c) alginic acid (d) mannitol.
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For the processing of starch, glucose and alginic acid (Figure 6-2 (a), (b), (c)),

the production of bio-crude yield is almost negligible at less than 5 wt.%.

Carbohydrates are recognised for forming a lower amount of bio-crude oil or tar

[261]. Mannitol (Figure 6-2 (d)) produces a higher yield of bio-crude which increases

from 5 to 13 wt.% in relation to the temperature. Different values are obtained as

mannitol has a linear structure instead of cyclic for example with glucose. Biller et al.

[112] reported that the hydrothermal liquefaction of starch and glucose at 350 °C

produced less of 10 wt.% of bio-crude.

Carbohydrates in subcritical water form higher residue yield. Overall, the

gaseous and aqueous phase yields increase, whereas the residue (char) yield decreases

when the temperature increases. For mannitol, less gaseous and residue yields are

obtained implying that most of the degraded compounds are in the aqueous phase. The

formation of high residue is probably caused by the slow heating rate of more than 9

°C/min.

For alginic acid, higher gaseous yield is obtained at 300 °C. There is some

suggestion that the gas is produced from secondary cracking as no gas was detected

after 200 seconds by Srkol et al. [261]. Carbon dioxide, with approximately 44 vol.%,

was the major constituent of the gas measured from the degradation of starch for two

hours at 350 °C observed by Williams et al. [262]. Promdej et al. [263] observed for

glucose that the weight per cent of gaseous yield increased in relation to the

temperature.

Aida et al. [264] remarked that as the residence time and the pressure increased

the conversion of the glucose was higher, it was why at 350 °C the degradation was

more rapid. Aida et al. [259] illustrated that the depolymerisation of sodium alginic

was faster above 200 °C yielding high residue and gaseous yields.

For most of the carbohydrates, the addition of formic acid increases the

formation of the gaseous and residue yields. Biller et al. [112] observed an increase of

gas and residue in formic acid from the processing of starch at 350 °C. Potassium

hydroxide improves slightly the formation of bio-crude compared to the reaction in

water. Nevertheless, for mannitol, potassium hydroxide increases the yield of the

aqueous phases compared to the other phases with a lower bio-crude yield.
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6.4.2 Analysis of the bio-crude oils of carbohydrates

6.4.2.1 GPC analysis

Figure 6-3 contains the different fractions measured by integration of the

chromatograms of bio-crude oil produced by (a) starch, (b) glucose, (c) alginic acid

and (d) mannitol from the gel permeation chromatography (GPC).

The GPC analysis for the different carbohydrates, (Figure 6-3), show that as

temperature increases from 250 to 350 °C, the average molecular weight decreases

towards 200 g/mol signifying that most of the compounds could be composed of

phenolic or furfural in nature. For the alginic acid, (Figure 6-3 (c)), “heavy molecular

weight” and oligomers materials are higher at 300 °C to the other temperature. Formic

acid and potassium hydroxide increase the formation of compounds of “heavy

molecular weight” materials. This result would suggest that in these solutions, the

polymerisation is enhanced.

Nagamori et al. [256] detected a move in the molecular weight composition

from “heavy molecular weight” materials to monosaccharaides as the starch was

heated from 180 to 240 °C, the same trend was observed when increasing the reaction

time. Miyazawa et al. [257] confirmed that the average molecular weight decreased as

a function of time when using a semi batch reactor.
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Figure 6-3: Diagram representing the different fraction determined by GPC analysis for the
processing of mannitol from 250 to 350 °C in water, formic acid and KOH Where (a)
corresponds to starch, (b) glucose, (c) alginic acid and (d) mannitol.

0

20

40

60

80

100

250 °C 300 °C 350 °C
water

350 °C
formic acid

350 °C
KOH

%
fr

a
ct

io
n

(a)

Heavy molecular weight Oligomers Long chain Low molecular weight

0

20

40

60

80

100

250 °C 300 °C 350 °C
water

350 °C
formic acid

350 °C
KOH

%
fr

a
ct

io
n

(b)

0

20

40

60

80

100

250 °C 300 °C 350 °C
water

350 °C
formic acid

350 °C
KOH

%
fr

a
ct

io
n

(c)

0

20

40

60

80

100

250 °C 300 °C 350 °C
water

350 °C
formic acid

350 °C
KOH

%
fr

a
ct

io
n

(d)



The effect of HZSM-5 on the hydrothermal liquefaction of carbohydrates

140

6.4.2.2 GC-MS analysis

Low intensity mass chromatograms are obtained on the whole for the

processing bio-crude oil. Examples of some chromatograms are included in the shown

in Appendix 3, section 3.1 page A-9, page 325. There are several reasons for that: the

first is that the quantity of oils is not enough to produce good chromatograms; the

second is that the polarity of compounds is not suitable with column used. Yet, the

GPC results imply that at least 50 % compounds in the bio-crude oil has a molecular

weight lower to 200 g/mol which should be detected with the program used. The peak

at 32 minutes is assigned to butylated hydroxytoluene. There are limited mentions of

the composition of the bio-crude oil in the literature as most of the compounds were

soluble in the water phase. Figure 6-4 and Table 6-2 includes the chemical structures

of some molecules identified in the bio-crude of model carbohydrates.

Table 6-2: Peaks identification in the GC-MS

Number
Retention

time
(minutes)

Compounds

1 18.0 3-methyl-pentan-one

2 19.0 3,4-dimethyl-pentan-one

3 21.8 phenyl-undecen-1-ol

4 22.4 naphathalendione

5 26.0 2,3-dihydro 1H-inden-1-one

6 27.1 1,2,3,4-tetrahydro-1,5,7-trimethyl-naphthalene

7 28.0 5-methyl-2-(1-methylethyl)-2-cyclohexen-1-one

8 33.8 1-(3-hydroxyphenyl)-ethanone
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Figure 6-4: The chemical structure of some compounds identified during the processing of
carbohydrates

The majority of molecules identified in the bio-crude oil from the processing

of carbohydrates contain oxygen and cyclic functional groups. 1,4:3,6-

dianhydromannitol (rt = 25.3 min) is identified for the mannitol experiments, this

compound is formed by internal cyclisation of the mannitol. For alginic acid, 1-(3-

hydroxyphenyl)-ethanone is the most abundant compounds. 2,3-dihydro-1H-inden-1-

one is identified in the chromatogram of the bio-crude from mannitol and glucose.

Ketones such as cyclohexanone, indenone or ethanone were among compounds

detected by Biller et al. [112] in the bio-crude oil. No difference in the bio-crude oils

composition is observed between the processing of glucose and starch. The presence

of oxygenated compounds in bio-crude oils treated of glucose and starch under

subcritical water was demonstrated by Williams et al. [262] using the infrared

technique assigning typical functional group (OH, ketone or aldehydes).
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6.4.2.3 Elemental analysis

Elemental composition of the bio-crude oil from starch is included in Table

6-3. Samples are prepared in duplicate and the average value was presented. The

percentage energy recovery equation and the Dulong equation are found in Chapter 3.

It is assumed that no moisture was present in the oil therefore the values were dry as

basis.

Table 6-3: Elemental analysis as received of the bio-crude oil for starch, glucose, alginic
acid and mannitol and heating value, and % energy recovery for the processing of chars in water,
formic acid and KOH

C

wt.%

H

wt.%

O

wt.%

HHV
(MJ/kg)

H/C O/C
% Energy
recovery

Starch

250 °C 69.4 6.2 23.8 28.1 1.1 0.3 3.2

300 °C 63.9 3.8 32.1 21.3 0.7 0.4 2.7

350 °C water 76.1 4.4 19.0 28.6 0.7 0.2 4.7

formic acid 66.4 3.6 30.0 22.3 0.7 0.3 4.1

potassium hydroxide 68.9 3.0 27.8 22.6 0.5 0.3 8.3

Glucose

250 °C 62.9 3.6 33.5 20.4 0.7 0.4 5.1

300 °C 67.1 3.5 29.4 22.4 0.6 0.3 1.8

350 °C water 68.7 3.4 27.9 23.1 0.6 0.3 1.5

formic acid 63.8 3.2 33.1 20.2 0.6 0.4 1.8

potassium hydroxide 74.2 3.2 22.6 25.7 0.5 0.2 8.5

Alginic acid

250 °C 63.3 2.9 33.7 19.6 0.5 0.4 2.7

300 °C 55.8 3.2 41 16.1 0.7 0.6 4.7

350 °C water 69.1 3.4 27.5 23.3 0.6 0.3 4.7

formic acid 62.9 2.9 34.3 19.2 0.6 0.4 3.5

potassium hydroxide 71.0 6.5 22.5 29.3 1.1 0.3 15.6

Mannitol

250 °C 64.3 3.4 31.9 21 0.6 0.4 4

300 °C 62.1 2.9 35.1 18.9 0.6 0.4 14.1

350 °C water 65.3 3.1 31.6 20.8 0.6 0.4 17.3

formic acid 78.2 3.3 18.5 27.8 0.5 0.2 21.6

potassium hydroxide 61.8 6.0 32.2 23.7 1.2 0.3 3.8

Compared to the raw and processed carbohydrates, the oxygen content of the

processed samples decreases suggesting hydrolysis of the raw material. The oxygen
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content for starch, alginic acid is higher for 300 °C. For glucose, there is some

evidence that the carbon content increases with temperature, which reduces the

oxygen content from 250 to 350 °C. Biller et al. [112] measured 20 wt.% of oxygen

content from the bio-crude of starch. A lower oxygen content (18.1 wt.%) was

measured for the processing of glucose.

The oxygen content is increased with the addition of formic acid for starch,

glucose and alginic acid compared to the water runs. For mannitol, the oxygen content

is almost reduced by half. For mannitol the bio-crude yield is more significant, a

higher energy recovery is obtained which increases from 250 to 350 °C. For the other

carbohydrates, because of the low bio-crude yield, the energy is not contained in the

bio-crude. Potassium hydroxide enhances the energy recovery and energy content for

glucose, starch and alginic acid.
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6.4.3 Analysis of the residue

The elemental composition of the char from the HTL of starch is included in

Table 6-4. The typical coefficient of variance was approximately 2-3 %. The results

were shown as dried basis. At 250 °C for mannitol, no enough residue samples were

available to perform the measurement.

Table 6-4: Elemental analysis of the chars and heating value, and % energy recovery for
the processing of starch in water, formic acid and KOH

C

wt.%

H

wt%

O

wt.%

HHV
(MJ/kg)

H/C O/C
% Energy
recovery

Starch

250 °C 70.3 4.7 25.0 26.0 0.8 0.3 64.3

300 °C 72.0 4.7 23.4 26.8 0.8 0.2 62.5

350 °C water 75.0 4.6 20.5 28.2 0.7 0.2 45.1

formic acid 74.9 4.6 20.5 28.3 0 0.2 84.6

potassium hydroxide 76.3 5.8 17.9 30.8 0.9 0.2 42.0

Glucose

250 °C 66.9 2.1 31.0 20.1 0.7 0.3 56.8

300 °C 71.9 4.8 23.2 27.1 0.8 0.2 64.6

350 °C water 74.9 4.9 20.2 28.7 0.8 0.2 62.6

formic acid 79.4 5.2 15.4 31.5 0.8 0.1 61.2

potassium hydroxide 75.5 4.5 20.0 28.4 0.7 0.2 31.4

Alginic acid

250 °C 71.9 4.8 23.2 27.1 0.8 0.2 69.6

300 °C 73.7 2.2 24.1 23.7 0.8 0.2 58.3

350 °C water 75.6 4.8 19.6 28.9 0.8 0.2 64.9

formic acid 76.7 4.9 18.4 29.7 0.8 0.2 68.6

potassium hydroxide 74.3 5.3 20.4 29.1 0.9 0.2 48.0

Mannitol

250 °C - - - - - - -

300 °C 74.3 5.3 20.4 29.1 0.9 0.2 9.0

350 °C water 79.8 5.9 14.3 32.8 0.9 0.1 14.6

formic acid 75.5 5.6 18.9 30.1 0.9 0.2 17.3

potassium hydroxide 67.1 4.1 28.8 23.4 0.7 0.3 1.5
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From the CHNS analysis of starch and glucose, as the temperature increases

from 250 to 350 °C, the carbon content and the heating value increases for example

with glucose from 20.1 to 28.7 MJ/kg. In contrast, the oxygen content in the residue is

reduced. Comparing CHNS values of the char and the bio-crude oil, less oxygen

content is measured and the carbon content is above 74.0 wt.% for the starch which is

higher to the value obtained in the literature [265].

The formation of char is again a major phase during the conversion of alginic

acid. The highest oxygen content is measured at 300 °C. For mannitol, the residue

fraction increases with the temperature. The energy recovery is at its highest at 300 °C

for glucose. In contrast, the energy recovery decreases with temperature in parallel to

the residue yield for starch. Formic acid helps to reduce the oxygen content of the

residue from glucose, otherwise the effect of this acid and potassium hydroxide to the

residue is unclear.

Titiric et al. [265] studied the formation of char at 180 °C for 24 hours; the

elemental composition of the residue from starch at the condition used in their study

gave 64.5 wt.% of carbon, 4.6 wt.% of hydrogen and 31 wt.% of oxygen content. It

was revealed that 5-HMF was a precursor of the formation of spherical char. The

CHNS analysis at 250 °C from glucose is closely matched to this study. The reduction

of oxygen content could suggest an aromatisation or cyclisation of the compounds of

the char [266]. The formation of char from calcium alginic was studied for producing

nanoparticles or beads in order to absorb metals [267, 268]. Previous studies did not

report the formation of char as semi-continuous reactors were used [259, 269, 270].

Figure 6-5 (a) and (b) illustrate the analysis of char by thermogravimetry under

pyrolysis with the weight loss and the derivative curve for the raw carbohydrates

(starch, glucose, alginic acid and mannitol) and the resulting chars at 350 °C.
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Figure 6-5: Weight loss curve and the its derivative in function of the temperature for (a)
the four raw carbohydrates and (b) for the processed char

The weight loss curves (Figure 6-5 (a)) indicate that mannitol is fully degraded

between 250 to 300 °C, similar temperatures are measured for the start of degradation

with starch except that 20 wt.% of the char is still present at 900 °C. Alginic acid

contains more char at this temperature. Glucose, under pyrolysis, is degraded into two

steps at 216 °C and the second at 270 °C. The percentage weight loss is more

significant with mannitol at 290 °C.

The percentage weight loss curve for chars (Figure 6-5 (b)) produce during

hydrothermal liquefaction has a different behaviour compared to the raw materials.
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Moreover, among all the carbohydrates, the variation is low and chars are relatively

stable under pyrolytic condition as the average weight loss is approximately 40 wt.%.

The maximum for the DTA curve is observed at higher temperature 450 °C compared

to the unprocessed carbohydrates. These results demonstrate that the char is stable

under hydrothermal or pyrolysis condition. The low weight loss indicated that the

residue contained low amount of volatiles. These compounds are contained in the bio-

crude oil or the aqueous phase.
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6.4.4 Analysis of the aqueous phase

Table 6-5 contains the TOC concentration corrected for the dilution.

Calculation for the percentage carbon in the aqueous phase, carbon in the bio-crude oil

calculated was present in Chapter 5.

Table 6-5: TOC concentration and the carbon mass balance for the processing of starch in
water, formic acid and KOH

TOC

(ppm)

%C

aqueous

% C

bio-crude

% C

residue

% C

gas

Starch

250 °C 7136 22.9 2.6 55.7 18.9

300 °C 5011 16.0 2.6 53.7 27.7

350 °C water 4668 14.8 4.0 38.6 42.6

formic acid 5970 17.0 3.9 44.9 59.6

potassium hydroxide 4660 9.8 7.0 24.3 58.9

Glucose

250 °C 4447 13.8 5.8 55.6 25.3

300 °C 8332 25.6 1.8 58.0 14.6

350 °C water 4455 12.4 1.3 48.3 37.9

formic acid 6178 16.9 1.9 52.1 29.1

potassium hydroxide 3858 7.9 7.0 31.3 53.8

Alginic acid

250 °C 5459 17.0 3.0 49.7 30.2

300 °C 2660 8.5 5.7 55.9 29.8

350 °C water 7128 22.4 4.9 45.6 27.0

formic acid 10274 29.4 4.0 42.9 23.7

potassium hydroxide 2635 7.9 10.4 36.3 45.4

Mannitol

250 °C 28574 87.7 4.8 0 7.5

300 °C 12428 38.9 18.4 8.8 33.9

350 °C water 9350 28.7 26.6 14.2 45.4

formic acid 6091 17.0 19.48 12.8 50.8

potassium hydroxide 27749 81.9 3.2 1.7 12.2
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Results for starch and mannitol show a decrease of the TOC concentration

with the temperature. The TOC concentrations for glucose and alginic acid are not

affected by the temperature. Promdej et al. [263] measured an increase of the TOC

concentration from the processing of glucose with temperatures ranging from 300 to

400 °C for 10 seconds. Nevertheless, longer residence time reduced the TOC

concentration for the same temperatures. It is the reason why the TOC concentration

of glucose increases first, and subsequently decreases at 350 °C. Similar behaviour

was observed for starch, where the concentration of monosaccharaides increased in

relation to the temperature and subsequently decreased after more than 4-5 minutes

which explained the reduction of the TOC concentration [256, 257].

With a rise in temperature, for starch and mannitol, the carbon fraction has

been converted into gas and more likely into carbon dioxide. This may imply a

decarboxylation and reduction of the molecular weight size. The carbon fraction in the

bio-crude as well increases with the temperature for the same carbohydrates. The

opposite trend is observed with glucose. A clear decrease of the carbon fraction in the

residue is measured for starch. The fluctuation of the carbon fraction in the char is

minimal implying that the carbon fraction is converted mainly from the aqueous phase

to the gaseous phase.

The addition of potassium hydroxide allows an increase of the carbon fraction

into the bio-crude oil for starch, glucose and alginic acid. Furthermore, the TOC

concentration is reduced for the three carbohydrates. The opposite effect is measured

with mannitol correlating with the mass balance yield. Formic acid generally enhances

the TOC concentration for starch, glucose and alginic acid.

The general pH from the process water is approximately 3. Nevertheless, the

processed water from mannitol and potassium hydroxide, a pH of 6 is measured; it

could be explained by higher TOC concentration. No chemical composition of the

aqueous phase is carried out, yet several studies indicated that the main compounds

from the degraded starch were furfural, 5-HMF, fructose and purivicaldehyde [262].

Major compounds identified in the aqueous phase from the processing of glucose were

5 hydroxymethylfurfural, glycoaldehyde, 1,2,4 benzenetriol, acetic acid, it clarified

why the pH value in the aqueous phase were low in the acidic range [261]. Aida et al.

[259] and [270] measured a fast decomposition of alginic acid into monosaccharaides

which were converted to organic acids at higher temperature such as formic acid,



The effect of HZSM-5 on the hydrothermal liquefaction of carbohydrates

150

acetic acid, lactic acid, glycolic acid, 2-hydroxybutyric acid, succinic acid and malic

acid. Aida et al. [270] proposed the use of alginic as a green route in order to produce

short organic acids. Zhou et al. [271] studied the degradation of mannitol in sodium

hydroxide (1.2 M) at 300 °C, where, in the aqueous phase, lactic acid acetic, formic

and acrylic acid were detected.

To summarise, the degradation of carbohydrates (polysaccharides or

monosaccharides) in hydrothermal water is readily carried out even at low

temperatures.

 The formation of bio-crude oil with less than 5 wt.% of yield is

negligible compared to other feedstocks such as lipids (80 wt.%).

 More bio-crude yield is produced during the liquefaction of mannitol

with a maximum yield of 13 wt.%. The bio-crude is composed in majority of phenolic

compounds.

 The other drawback is the high amount of chars, approximately yield of

30 to 40 wt.% which is likely to be caused by the long heating rate or cooling down of

the reactor. These char are stable under pyrolysis and hydrothermal condition.

Additionally these chars contain the majority of the initial energy from the raw

carbohydrates.

 There was an obvious trend showing the increase of the aqueous phase

for starch, but also for the oxygen content in the char.

 On the whole, the addition of formic acid has an effect on improving

the gaseous formation whereas potassium hydroxide increases the formation of bio-

crude (tar) with a molecular weight approximately 500 g/mol and the carbon fraction

in the bio-crude oil.
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6.5 Catalytic processing of different carbohydrates with HZSM-5 in water and

formic acid

Experiments are carried out using HZSM-5 with different carbohydrates in

order to investigate whether the catalyst improve the formation of not. The screening

of metal doped catalysts was performed with starch, nevertheless, no significant

results have been observed.

6.5.1 Mass balance yield

Starch, glucose, alginic acid, and mannitol were processed in water and formic

acid with HZSM-5 as catalyst. Figure 6-6 includes the diagram of yields of the

different phases (starch, glucose, alginic and mannitol) obtained after processing

carbohydrates.

Figure 6-6: Diagram of the mass balance yield for the hydrothermal liquefaction with
starch, glucose, alginic, mannitol with HZSM-5 in water and formic acid at 350 °C

The results shown in Figure 6-10 indicate that using formic acid increases the

formation of gas, and the highest yield is achieved with starch. Moreover, the residual

fraction (chars) with the exception of starch is increased in this solution particularly

with alginic acid and mannitol. Thus, formic acid with HZSM-5 enhances the

formation of gas and chars which for liquefaction is not the ideal outcome. The bio-

crude formation is higher with mannitol in formic acid as with the run without the

catalyst.
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6.5.2 Analysis of the bio-crude oil

6.5.2.1 GPC analysis

To investigate the effect of HZSM-5 in water and in formic acid on the

molecular weight range, GPC analysis is carried out and is displayed in Figure 6-7.

Figure 6-7: Diagram of the different molecular weight fraction measured by GPC in THF
as solvent of the HZSM-5 in formic acid and in water for different carbohydrates

The use of formic acid enhances slightly the formation of “heavy molecular

weight” materials and oligomers with the exception of mannitol. Low molecular

weight materials production (below 200 g/mol) is enhanced with HZSM-5 by alginic

acid in water and mannitol in formic acid (58 %).

6.5.2.1.1 GC-MS analysis

Figure 6-8 illustrates one example of chromatograms of the processing bio-

crude oils for alginic acid with HZSM-5 and formic acid. The bio-crude oil from

alginic acid processed with HZSM-5 contains approximately 60 % of compounds with

a molecular weight lower than 200 g/mol. It is different from the run without catalysts.

Peaks at 28 minutes and 41 minutes could not be assigned. Table 6-6 lists the main

compounds identified in the chromatogram.
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Figure 6-8: Chromatograms alginic acid with HZSM-5 and formic acid

Table 6-6: Peaks identification in the GC-MS in the bio-crude oils from alginic in formic
acid HZSM-5

Number
Retention time

(minutes)
Compounds

1 18.0 3-methyl-pentan-one

2 19.0 2,3-dimethyl-2-cyclopenten-1-one

3 21.8 oxadispiro-undecen-1-ol

4 22.4 naphathadione

5 26.0 Menthol-2,3-dihydro 1H-inden-1-one

6 27.1 1,2,3,4-tetrahydro-1,5,7-trimethyl-naphthalene

7 28.0 5-methyl-2-(1-methylethyl)-2-cyclohexen-1-one

8 33.8 1-(3-hydroxyphenyl)-ethanone,

9 34.0 7-methylindan-1-one

10 36.0 1,2-diethoxybenzene

11 43.1 7-methyl-1-naphthol

12 46.2 (4-hydroxy-3-methoxyphenyl)-2-propenoic acid

The majority of compounds in the bio-crude oil contains a ketone functional

group and were mono or polycyclic. More aromatic compounds such as 1,2,3,4-

tetrahydro-1,5,7-trimethyl-naphthalene is observed compared to the run without

catalyst. Therefore, HZSM-5 could favour the formation of cycle compounds.
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6.5.2.1.2 Elemental analysis

To compare the effect on different carbohydrates on the chemical composition,

the CHNS value was calculated as dried basis and is shown in Table 6-7.

Table 6-7: Elemental analysis of the bio-crude oil of starch, glucose, alginic acid and
mannitol in water and formic acid with HZSM-5

C

wt.%

H

wt.%

O

wt.%

HHV
(MJ/kg)

H/C O/C
% Energy
recovery

Starch : water 74.2 5.3 20.5 28.9 0.9 0.2 5.1

Starch : formic acid 70.9 4.7 24.3 26.3 0.8 0.3 5.1

Glucose : water 62.4 2.9 34.7 19.0 0.6 0.4 2.4

Glucose : formic acid 65.2 2.9 31.9 20.5 0.5 0.4 3.6

Alginic acid : water 64.8 3.2 32 20.8 0.6 0.4 3.0

Alginic acid : formic acid 67.2 3.4 29.3 22.4 0.6 0.3 4.0

Mannitol : water 64.8 3.2 31.5 21.0 0.6 0.4 10.6

Mannitol : formic acid 79.6 3.3 16.5 28.8 0.5 0.2 22.5

HZSM-5 in formic acid enhances the deoxygenation and the percentage energy

recovery of the bio-crude oil. The oxygen content with mannitol in formic acid is 16.5

wt.% whereas in water it was 31.5 wt.%. There is no major change for the other

saccharides between the reaction in water and formic acid. It becomes apparent that

HZSM-5 is more active with mannitol.
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6.5.2.2 Analysis of the aqueous phase

The TOC concentration of the aqueous phase was measured for the different

carbohydrates with HZSM-5 in water and formic acid; the results are shown in Table

6-8.

Table 6-8: TOC concentration and the carbon mass balance for experiment in formic acid
and water of different carbohydrates

TOC

(ppm)

%C

aqueous

%C

Bio-crude

%C

remaining

Starch : water 5360 16.5 6.0 77.6

Starch : formic acid 6126 17.4 4.4 78.2

Glucose : water 7806 23.5 3.2 73.3

Glucose : formic acid 5497 15.0 3.8 79.2

Alginic acid : water 9360 30.1 3.2 66.7

Alginic acid : formic acid 856 2.5 4.2 81.2

Mannitol : water 15017 46.3 12.9 40.8

Mannitol : formic acid 7366 20.5 22.8 56.7

A low TOC concentration is measured for alginic acid (856 ppm) whereas the

others are approximately ten-fold increase since the production of gaseous and residue

phases are higher. In contrast, more carbon fraction is present with 46 % in the

aqueous phase with mannitol in water coinciding with the high yield of the aqueous

phase. As noted previously the percentage of carbon is greater in the bio-crude oils

with formic acid.

In conclusion, formic acid with HZSM-5 favours side reaction by increasing

the production of gas and residue or chars which is higher than without a catalyst.

More aromatic in the bio-crude of alginic acid is observed. The deoxygenation of bio-

crude oils from mannitol in formic acid is improved with an important high yield of

residue; nevertheless some further investigations would be necessary to explain this

result.
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6.6 Discussion about the degradation of carbohydrates

Oppositely to the lipids, the hydrolysis of polysaccharides into

monosaccharides is almost instantaneous (less than one minute) in subcritical water

above 300 °C [257]. Monosaccharides such as glucose or fructose are converted into

short carboxylic acids, 5-HMF and aromatic compounds [261]. Their high solubility in

water may explain the fast reactivity, although, few products are produced as bio-

crude oil. The major fraction is degraded into the water phase. There are different

pathways for the degradation of glucose in subcritical water as presented in Figure 6-

9:

1) During the first step, starch is hydrolysed into glucose. Afterwards, glucose

undergoes tautomerisation (isomers rearrangement) yielding D-fructose which is

subsequently converted to 5- hydroxymethylfurfuraldehyde (5-HMF) by hydrolysis

[264]. Glucose is interconnected to mannose, fructose and galactose thanks to the

Lobry de Bruyn-Alberda van Ekenstein (LBAE) rearrangement, which involves a 1,2-

enediol anion interconnection [272].

2) The hydrolysed glucose undergoes a retro-aldol reaction producing different

aldehydes such as the glycol aldehydes or the glyceralaldehydes, it was observed that

these aldehydes increased with time [261]. Some further hydrolysis occurs to produce

acids such as acetic acids, alcohols and lactic acid with further rearrangement. In order

to detect these compounds, it is recommended the water phase be analysed by HPLC.
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Figure 6-9: Brief degradation route of starch and glucose under hydrothermal liquefaction
according to Srokol et al. [261]

The production of char is enhanced over a long heating and cooling rate [273],

In the present research, a heating mantle is required to heat the 77 ml reactor because

of the high surface area, in order to reach 350 °C. A 40 minutes heating rate is

necessary and approximately two hours to cool down to 30 °C. Macromolecules

(starch) decompose during the first step of the heating; to recombine later during the

cooling step forming high molecular polymers or chars. Chuntanapum et al. [266]

studied in detail the formation of char from 5-HMF, there was a relationship with the

increase of formation of chars and the concentration of 5-HMF and the residence time

(1-50 minutes). 5-HMF could decomposed in the aqueous phase as 1,2,4-benzentriol,

benzenzendiol or furfural which later formed chars. The solidification occurred via the

polymerisation of the 2,5 substitution functional groups of the previous compounds or

by carbonisation.



The effect of HZSM-5 on the hydrothermal liquefaction of carbohydrates

158

The results found previously that with formic acid and more in particular with

HZSM-5 the formation of char is enhanced. Watanabe et al. [260] suggested that

sulphuric acid (H2SO4) had consequence on increasing the concentration of 5-HMF

and subsequently to produce more chars.

The study of 5-HMF is important because the formation of this compound

should be inhibited [274]. Srokol et al. [261] suggested that if the reaction were

carried out in alkali solution, the production of 5-HMF was suppressed instead the

concentration of glyceraldehyde was enhanced. Watanabee et al. [260] found that

sodium hydroxide also promoted the formation of fructose from glucose. It could

explain why less char is produced in the presence of potassium hydroxide. Mannitol is

more selective to produce bio-crude oil as the chemical structure of mannitol is linear,

thus the formation of 5-HMF from fructose is reduced. Nevertheless adding formic

acid increases the residue fraction.

Furthermore, hydrothermal liquefaction could be the start of a chemical

platform to transform them into suitable products [275], for example to produce lactic

acid from mannitol and subsequently polylactic polymer (PLA). Organic acids could

be produced (formic and acetic acids) from alginate acid instead of using petroleum

base [270].

The doped metals from HZSM-5 have a minor impact towards the processing

of starch it was the reason it was omitted from this chapter; the plain zeolite is even

more active. It is possible that the metal obstructs pore access to the Brønsted site.

However, the catalyst emphasises the gas and residue formation especially in presence

of formic acid which is not the desired route. It is possible that HZSM-5 enhances the

formation of formic acid from glucose and later degraded into gas [270]. The oxygen

content in the mannitol bio-crude oil is the lowest yet some char is also formed. In

different conditions, during pyrolysis HZSM-5 has been demonstrated to convert

cellulose into a green gasoline mixture (short alkanes and aromatics) [276].

6.7 Implications for the hydrothermal liquefaction of microalgae

These results made it clear that microalgae processed under hydrothermal

condition should contain fewer carbohydrates. On the whole, the carbohydrate range

in microalgae is not significant (within 5-20 wt.%); [251] although, with the high
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mixture complexity, the interaction between elements would reduce the production of

char, discussed in detail during Chapter 8. Carbohydrates (hexoses) reacts with

proteins in the Maillard reaction to form complex oil mixture including nitrogen

heterogeneous compounds (pyrrole) [277, 278].

Macroalgae such as L. Saccharina contained high amount of carbohydrates

including mannitol [279], brown seaweed D. ligulata contained 27.2 % of sodium

alginic acid [280]. Zhou et al. [148] investigated the liquefaction of E. prolifera from

220 to 320 °C, the highest yield 28 wt.% was achieved at 300 °C with approximately

10-20 wt.% of residue, it should be added that the drawback was their high ash content

with high halogens. Anastasakis et al. [149] obtained an lower bio-crude oils

(maximum of 19.5 wt%) yield with L. Saccharina and roughly 20-25 wt.% of residue,

as the temperature was increasing the amount of ash was also increased.

Recently, there is a high interest regarding growing microalgae under

heterotrophic condition using glucose to feed them, so this carbohydrate might reduce

the oil production [281]. Miao et al. [138] carried out sequential liquefaction (two

steps) of a strain of Chlorella grown under heterotrophic condition. In the first step at

175 °C, allowed the carbohydrates to be extracted and the second under normal

hydrothermal condition (350 °C). This method could also be used to reduce the

formation of chars when a microalgal strain contained high level of carbohydrates.



The effect of HZSM-5 on the hydrothermal liquefaction of carbohydrates

160

6.8 Conclusion

In this chapter, it was demonstrated that the hydrothermal processing of

carbohydrates (starch, glucose and alginic acids) did not enhance the formation of bio-

crude yield with less than 5 wt.%. Slightly more bio-crude was produced with

mannitol with approximately 13.1 wt.%. The majority of the carbohydrates were

converted to material retained in residue and in aqueous phase. The residue (char)

contained the greatest energy content. The high yield of char was caused by a long

cooling/heating rate. The major part of the carbon fraction was distributed in the

aqueous or the char. Formic acid enhanced the formation of gas phase whereas

potassium hydroxide increased slightly the bio-crude yield. The different metal doped

HZSM-5 showed no major difference. However, the gas formation increased with the

combination of formic acid and HZSM-5 especially with starch and alginic acid. One

of the reasons could be that HZSM-5 helps to degrade the carbohydrates into organic

acid which later decomposed into gas. Therefore, for microalgae carbohydrates would

probably reduce the bio-crude oil content. It is the reason probably why the HTL of

seaweed or high carbohydrate microalgae normally produce low bio-crude yield.

Therefore, it would be more suitable to remove the carbohydrate content first by fast

hydrolysis and produce in-situ organic acids. In the following chapter, proteins and

amino acids will be studied in the same conditions.
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Chapter 7 Hydrothermal liquefaction of proteins and amino acids

with and without HZSM-5

This chapter presents results from the hydrothermal liquefaction of two types

of proteins derived from soya and hemp at different conditions (250, 300 and 350 °C)

in water for one hour, and at 350 °C in formic acid. Moreover, the same conditions

have been run for asparagine, glutamine and a mixture of both amino acids as a

comparison. A catalytic screening with different metal doped HZSM-5 (nickel, iron,

copper, and molybdenum) using soya proteins at 350 °C in water and in formic acid

has also been conducted.

7.1 Introduction

Proteins and nucleotides are macromolecules which have a key role inside

living cells. Proteins are composed of different amino acids linked by peptide bonds

(amide bonds). The majority of the nitrogen in biomass originates from proteins and

nucleotides. The liquefaction of high protein containing feedstocks, typically produces

a bio-crude containing nitrogen compounds which will lower the heating value of bio-

crude oils and produced NOx upon combustion [94].

Dote et al. [282] were the first research group to process proteins (albumin

eggs) in subcritical water at 300 °C. They concluded that proteins produce less bio-

crude than biomass and that the nitrogen content in the bio-crude was relatively high

(9 %). Few amino acids were recovered after the reaction implying that they were

hydrolysed completely into ammonia.

Several research groups, particularly in Japan, succeeded in extracting amino

acids after short reaction times, less than one or two minutes, below 300 °C [283,

284]. Stabilities of amino acids are widely studied as a large part of the scientific

communities believe that the proteins had firstly been synthesised by the

polymerisation of amino acids in the bottom of the ocean in the hydrothermal vents

which have similar conditions to hydrothermal liquefaction [285, 286]. Dote et al.

[111] processed 19 amino acids at 300 °C; most of these products such as asparagine

or lysine decomposed mainly into ammonium compound and other water soluble

products; low bio-crude oils were produced with the exception of tryptophan and
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phenylalanine with resulting in yields above 10 %. Sato et al. [287] proposed that

under high temperature and pressure conditions, proteins decompose in two steps:

firstly a deamination step (ammonia and organics acids), and subsequently a

decarboxylation step (CO2 and amines). Aspartic acid and serine were found to

decompose at a faster rate compared to leucine and alanine which decomposed at a

slower rate. The reactivity depended on the chemical structure in the R groups of the

amino acid. The pH of the solution also had an effect for example, leucine, isoleucine,

phenylalanine, serine, threonine, and histidine were all stable in alkali medium while

methionine, tyrosine, lysine, and arginine were stable in acidic pH [288].

The aim of this chapter is to develop a better understanding of the

hydrothermal liquefaction of proteins and amino acids as well as the fate of nitrogen

compounds into the aqueous phase and the bio-crude. In this context, it can improve

our comprehension towards the processing of microalgae, a high protein feedstock,

which is discussed in the next chapter. Process variables investigated include

temperature ranging from 250 to 350 °C and the presence of formic acid. A catalytic

screening is performed at 350 °C in water and in formic acid to study the effect on

catalytic nitrogen chemistry with soya protein.

7.2 Methodologies

Further techniques are discussed in this chapter; in particular the methods used

in the aqueous phase to measure the anions, cations in the aqueous phase are included

in Chapter 3. The nitrogen balance in the aqueous phase is calculated as followed in

the Equation 7-1 where % Nammonium is the % of nitrogen in ammonium molecule

(0.77),[NH4
+] is ammonium compound concentration (ppm), Vwater is the volume of

water added (27 ml) and mraw biomass (daf) is the mass of the raw biomass on a dried ash

free basis and % Nraw biomass is the % nitrogen of the raw sample measured by the

CHNS analyser.

% Naqueous =

(
NൣH4

+൧
1000
൘ ) x % N ammonium x Vwater

mraw biomass (daf) x % N raw biomass

Equation 7-1
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Bio-crude oils are also characterised by STA-MS and infrared following the

methods described by Darvell et al. [289] and Jones et al. [290]. The bio-crude oils

were heated in oxidative mode in a Netzsch STA 449C Jupiter coupled to a Netzsch

QMS 403C Aeolos quadrupole mass spectrometer and an infrared spectrometer to

analyse the emission of evolved gases. Approximately 5 mg of bio-crude was

introduced into an alumina crucible. Prior to combustion the sample was dried from

room temperature to 105 °C with a heating rate of 10 °C/min. Afterwards, the evolved

of gases started from 110 to 900 °C using a heating rate of 10 °C/min. The reagent gas

used is composed of 12.5 vol.% oxygen in helium with a flow rate of 50 ml/min. After

the measurement, the thermogravimetric curve was corrected with the buoyancy

curve. For the infrared spectrometer there was a lag time between STA and the

infrared cell which was taken into account during measurements.

The mass spectrometer was set up to monitor ions corresponding to hydrogen

cyanide (HCN), nitric oxide (NO), and nitrogen dioxide (NO2). Hydrogen cyanide has

a mass ion of 27 (m/z) and the ion current is adjusted to reduce the interference from

tailing of the mass ion carbon monoxide 28 (m/z) as explained by Jones et al. [290].

For nitric oxide, the isotope ratio (12C18O/12C16O) is taken in account; the same

correction is applied for nitrogen dioxide 46 (m/z). The emission of ammonia could

not be measured as the water emission interfered with this mass ion. The experiment is

performed to see if it was possible to determine whether the nitrogen in the bio-crude

oil is associated with lighter lower molecular weight compounds, or heaver higher

boiling points compounds.

7.3 Chemical composition of proteins

Table 7-1 lists the elemental composition of raw materials on the dry ash free

basis, the energy content from the Dulong formula and ash content. The protein and

the lipid content were taken from supplier information.
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Table 7-1: Initial elemental analysis on a dry basis, ash and lipids and proteins content

N

wt.%

C

wt.%

H

wt.%

S

wt.%

O

wt.%

Dulong
HHV

(MJ/kg)
Proteins Lipids Ash

Soya protein 14.2 50.6 7.4 0.4 27.4 22.8 90 3.5

Hemp proteins 8.7 50.6 7.7 0.3 32.8 22.2 45 12 10.3

Asparagine 19.5 33.8 7.4 0.0 39.3 15.0 - - -

Glutamine 18.3 41.8 7.5 0.0 32.4 19.0 - - -

Mixture asn/gnu 18.0 37.0 7.3 0.0 37.7 16.2 - - -

Hemp and soya proteins are both food supplements therefore they are sold not

as pure proteins and contain some minerals such as iron salts, and phosphates, etc, to

improve the health benefits of the product. The ash content of these products is

relatively high for hemp proteins (10.3 wt.%) although lower for soya protein (3.5

wt.%). The hemp protein also contains approximately 12 wt.% lipids and some fibrous

material whereas the soya protein contained mainly protein (90 wt.%). Despite these

impurities, the two products contain high levels proteins and are relatively low cost

source of high protein feedstock. In addition, the manufacturer supplied each product

with a list of amino acids allowing some basic information on the type of protein in

the different feedstock. For the elemental composition, the major difference involved

the nitrogen content with 8.7 wt.% for hemp and 14.2 wt.% for soya protein while

carbon and hydrogen contents are similar.

Asparagine contains two nitrogen atoms as amides and primary amine for 4

carbon atoms as C4H8N2O3, the nitrogen level is higher than soya proteins at 19.5

wt.%. Glutamine has a very similar chemical structure with one extra carbon atom.

The chemical structure is included in Figure 7-1. These two amino acids are part of

non-essential amino acids for the diets. These amino acids are selected because of

their simple structure and they have two nitrogen groups (an amide and amine).
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Figure 7-1: Molecular structure of asparagine and glutamine and a general formula for
amino acid
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7.4 Effect of HTL temperature

7.4.1 Mass balance yield

Figure 7-2 (a), (b) and (c) present the mass balance of the different products

(bio-crude, gaseous, residue and mass aqueous phase yields) for the processing of

hemp, soya proteins and asparagine respectively. Experiments were carried out at

different temperatures and in formic acid. The experiment at 350 °C in water and

formic acid were in duplicate for soya and hemp proteins with a coefficient of

variance of 3.5 %.

Figure 7-2: Diagram mass balance yield of the different outcome phase for (a) hemp proteins, (b)
soya proteins and (c) asparagine at 250, 300 and 350 °C in water, in formic acid
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Proteins and amino acids, in general (Figure 9-2), are in majority degraded in

the aqueous phase especially for soya proteins (approximately 68.0-73.1 wt.%). Biller

et al. [112], at 350 °C, reported a yield of 60 wt.% for the processing of the same

proteins. The bio-crude formation is higher for hemp protein in Figure 7-2 (a) as this

protein contains other components such as lipids. An increase in bio-crude yield from

23.2 to 39.9 wt.% is observed for this protein as the temperature increases from 250 to

350 °C. The aqueous phase yield here decreases with temperature. These trends

suggest that molecules initially in the aqueous phase polymerise as the temperature

increases to 350 °C. The results for soya protein (Figure 7-2 (b)) show that less bio-

crude is obtained compared to hemp protein and the bio-crude yield does not increase

in relation to the temperature; the highest yield (21.3 wt.%) is obtained at 300 °C. The

formation of bio-crude is reduced with asparagine (Figure 7-2 (c)) with less than 7

wt.% compared to the proteins. At room temperature, asparagine is not soluble and

thus it implies that this amino acid is degraded during liquefaction [291].

Other experiments were performed for glutamine and a mixture of both amino

acids (shown in Appendix 2, page 323). This resulted in an increased bio-crude yield

compared to asparagine alone agreeing with previous reports [288]. The low levels of

bio-crude from the amino acids also agree with previous reports. Dote et al. [282]

started to observe the bio-crude formation above 300 °C but with a low yield below 10

wt.% with a majority of the product was degraded in the aqueous phase.

The addition of formic acid reduces the bio-crude yield and increases the

gaseous yield. There is more similarity from the study of Biller et al [112] with the run

using formic acid (even though a more concentrated formic acid was used) with a rise

of gas production. The use of formic acid with asparagine enhances the aqueous phase

yield.
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7.4.2 Bio-crude analysis of the non-catalytic runs

7.4.2.1 GPC analysis

Figure 7-3 presents the different molecular weight fractions determined in the

bio-crude oil from (a) the hemp proteins, (b) soya protein and (c) asparagine measured

by the GPC.

Figure 7-3: Different molecular weight fractions determined by GPC in THF of the bio-crude oils
of (a) hemp (b) soya proteins and (c) asparagine at different temperatures and conditions

The bio-crude oils from proteins shown in Figure 7-3 (a) and (b) indicate that

there is a relatively uniform distribution of each molecular weight fraction over the

whole temperature range. There is some evidence of an increase in lower molecular

weight materials as the temperature increases corresponding with a slight reduction in

0

20

40

60

80

100

250 °C 300 °C 350 °C
water

350 °C
formic acid

%
fr

a
ct

io
n

(a)

Heavy molecular weight Oligomers Long chain Low molecular weight

0

20

40

60

80

100

250 °C 300 °C 350 °C
water

350 °C
formic acid

%
fr

a
ct

io
n

(b)

0

20

40

60

80

100

250 °C 300 °C 350 °C
water

350 °C
formic acid

%
fr

a
ct

io
n

(c)



Chapter 7

169

the “long chain” materials for both proteins. The presence of lipids for the hemp

protein (polyunsaturated fatty acids indicated by the supplier particularly linolenic

acid) in this protein sample explains the large amount of “long chain” and oligomer

materials. The polymerisation of heterocyclic molecules could equally explain the

existence of “heavy molecular weight” materials.

In general, there are higher amounts of low molecular weight material present

for the results of asparagine (shown in Figure 7-3 (c)). The fraction of “long chain”

materials (200-600 g/mol) are reduced as the temperature increases. The reaction for

glutamine (shown in Appendix 2, page 323) contains larger fraction of “heavy

molecular weight” and “long chain” materials compared to asparagine. This result

suggests that glutamine forms more oligomers compared to asparagine. The mixture

of both amino acids follows a similar trend with slightly more “heavy molecular

weight” materials. Hemp proteins which contain higher levels of glutamine also lead

to the formation of high fraction of “heavy molecular weight” materials. Islam et al.

[285] observed the polymerisation of glycine between 250 to 350 °C. It suggests

thereby that amino acids can form oligomer chains in subcritical water.

The addition of formic acid appears to make very little difference to the

molecular weight fractionation. There is also a slight reduction in “heavy molecular

weight” material and an increase the lower molecular weight material below 200

g/mol particularly for soya proteins.

7.4.2.2 GC-MS analysis

Figure 7-4 shows the GC-MS chromatograms of the bio-crude from (a) hemp

protein at 350 °C and (b) soya protein in water at 350 °C. Table 7-2 lists the main

compounds identified in the chromatograms.
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Figure 7-4: GC-MS chromatogram of hydrothermal liquefaction of (a) hemp protein at 350
°C (b) soya protein in water at 350 °C

Table 7-2: Peaks identification in the GC-MS

Number
Retention time

(minutes)
Compounds

1 19.4 phenol

2 21.8 4-methyl phenol

3 24.3 4-ethylphenol

4 25.2 methyl-2-oxo-pyrolidine-acetate

5 28.2 2-pyrrolidinone

6 32.4 1-butyl-2-pyrrolidinone

7 34.4 1-(1-oxo-9,12-octadecadienyl)-pyrrolidine

8 38.6 2,5-dimethyl-indolizine

9 39.0 diisopropylpiperazin-2,5-dione

10 39.5 2,4,6-trimethyl-benzonitrile

11 41.4 3-methyl-1-H-indole

12 58.0 9-octadecenamide

The compounds are principally heterocyclic compounds (nitrogen and

oxygen), ketones such as 2-decanone, fatty acids and amides such as hexadecanamide
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or 9-octadecenamide. Phenol-compounds can be produced by the decomposition of

carbohydrates; and is a precursor to coke formation [292]. Pyrrolidinone is a key

compound and indicates the degradation of diketopiperazine (DKP) compounds such

as diisopropylpiperazin-2,5-dione [293]. This compound originate from the

degradation of the protein peptide chain [137]. There is a significant difference

between the composition of the hemp and soya protein bio-crude because for the

impurities. The soya protein contains higher amounts of phenols and pyrolidinone. On

the other hand, hemp protein contains some amides such as 9-octadecanamide and 1-

(1-oxo-9,12-octadecadienyl)-pyrrolidine. The formation of these compounds will be

developed in the next chapter.

The main compounds observed in the bio-crude oil from asparagine (in

appendix 3, section 3-2, 327) include 2-pyrrolidinone, 5,6,7-trimethyl-1H-indole, 2,6-

bis-(1-methylethyl)-benzenamine, ethyl-2-amino-3-cyano-5,6-dimethylpyridine-4-

carboxylate. A very similar chemical composition with glutamine is observed. Some

further compounds are been identified such as (formamide-N-methylpyrrodinyl-

butinyl) and cycle including one and two nitrogen atoms including and ergoline. Some

examples of molecular structures found during the processing of amino acids are

included in Figure 7-5. The bio-crude derived from the mixture of both amino acids

contains pyrrolidinone. The majority of the compounds remain unidentified by the MS

library as the compounds proposed by the software have a low probability match.

Biller et al. [112] identified mainly piperidine and cyclohexylamine

compounds in the bio-crude from asparagine. For soya protein, pyrrols, phenols and

piperidine were observed in the bio-crude at 350 °C. Nitrogen cycles such as

pyroglutamic acid was identified by Islam et al. [285] to be produced by condensation

of glutamic acid.
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Figure 7-5: Structure of some molecules found with the processing of amino acids
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7.4.2.3 Elemental analysis

The fate of nitrogen is an important aspect of the project and the main source

of nitrogen in the feedstock as the protein fraction. Table 7-3 lists the elemental

analysis, HHV and energy content. The heating content is determined using two

formulas the Dulong and the Milne (MJ/kg) as shown in Equation 7-2. Milne is

selected here because the nitrogen is included compared to the Dulong equation [294].

The H/C and O/C ratio and the energy recovery are calculated as in Chapter 3. It is

assumed that the bio-crude oil do not contain moisture and ash.

HHVMilne = 0.341 x % C + 1.322 x % H - 0.12 x % O - 0.12 x % N + 0.0686 x % S

Equation 7-2

Table 7-3: % Elemental analysis in the bio-crude oils, energy content (Dulong and Milne)
and % Energy recovery for experiments for different model compounds (hemp, soya and
asparagine)at different temperatures and conditions

N

wt.%

C

wt.%

H

wt.%

S

wt.%

O

wt.%

Dulong
HHV

(MJ/kg)

H/C O/C
Milne
HHV

(MJ/kg)

% Energy
recovery

Hemp proteins

250 °C 4.2 71.6 10.8 0.3 13.1 37.3 1.8 0.1 36.5 38.9

300 °C 4.6 69.1 9.5 0.2 9.1 35.3 1.7 0.1 34.3 41.8

350 °C water 4.9 70.8 9.6 0.4 7.0 36.5 1.6 0.1 35.3 65.6

formic acid 4.0 72.6 11.9 0.2 11.6 39.4 2.0 0.1 38.5 40.2

Soya proteins

250 °C 7.8 69.7 9.4 0.0 13.0 34.7 1.6 0.1 33.5 22.4

300 °C 7.2 72.8 9.3 1.1 9.6 36.2 1.5 0.1 35.0 30.7

350 °C water 6.1 72.8 9.2 0.4 11.5 35.7 1.5 0.1 34.7 25.6

formic acid 4.4 67.1 8.9 0.7 18.8 32.1 1.6 0.2 31.7 22.9

Asparagine

250 °C 5.4 68.1 9.4 0.0 17.1 33.4 1.7 0.2 32.8 2.5

300 °C 8.2 65.1 6.8 0.0 19.9 28.2 1.3 0.2 27.6 6.8

350 °C water 6.7 63.7 6.2 0.0 23.4 26.2 1.2 0.3 26.1 10.7

formic acid 4.5 65.7 7.9 0.0 21.9 29.6 1.4 0.2 29.5 9.6

glutamine 7.3 73.7 6.8 0.0 12.3 32.4 1.1 0.1 31.6 8.5

asn-gnu 8.4 71.3 4.2 0.2 16.0 27.3 0.7 0.2 26.8 14.0
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Opposite trends from hemp and soya proteins are obtained for the nitrogen

content in relation to the temperature. For hemp proteins, the nitrogen content only

increases slightly (4.2 to 4.9 wt.%) whereas for soya protein the nitrogen content falls

from 7.8 to 6.1 wt.%. The difference in nitrogen variance with temperature for both of

the protein samples may have been due to the presence of contaminants in the raw

proteins. The elemental analysis results of bio-crude derived from the soya protein

contain a higher nitrogen content since the raw materials has almost the double

nitrogen content (14 wt.%) compared to hemp protein. The high nitrogen content for

soya protein broadly agrees with the results from GC-MS indicating many of the

compounds identified contained nitrogen. Dote et al (1996) remarked that the nitrogen

content from the liquefaction of albumin protein was diminished from 9 to 6 wt.%

between 200 to 340 °C with a reaction time of 30 minutes [282].

The elemental analysis results of bio-crude derived from the asparagine show a

less obvious trend with the nitrogen content in relation to the temperature. The content

at 350 °C is 6.7 wt.% [112]. Dote et al. [111] measured a lower content from

asparagine at 300 °C (5.2 wt.%). The bio-crude from glutamine contains higher

nitrogen content than asparagine with 7.3 wt.% and a higher carbon content of 73.7

wt.%. Mixing the both of the amino acids increases further the nitrogen content to 8.4

wt.%.

The addition of formic acid results in a slight lowering for the two proteins and

asparagine. Previous work by Biller et al. [112] who used a higher concentration of

formic acid (1.0 M instead of 0.26 M) showed a lower reduction of nitrogen content

than the results obtained in this study which is interesting. A higher reduction could be

achieved however using sodium carbonate (1 M) rather than formic acid.

The elemental analysis results of bio-crude derived from the hemp protein

reveal that the oxygen content reduces as the temperature increases. The energy

recovery of asparagine is negligible as the bio-crude yields are small. The energy

recovery increases in relation to the temperature for hemp protein and asparagine. On

average, the difference between both formulas (by means of Dulong and Milne

formulas) is minor with approximately 3 %.
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7.4.2.4 Analysis of the bio-crude oil and raw materials by STA-MS

Figure 7-6 (a) illustrates the weight loss curve and derivative of raw asparagine

and raw soya protein. Samples were combusted and the evolved gas was analysed

with mass spectrometry and infrared detection. Figure 7-6 (b) illustrates the weight

loss curve and derivatives for the bio-crude from the soya protein and asparagine

processed at 350 °C.

Figure 7-6: Thermogravimetry and derivatives curves (a) raw samples and (b) of the bio-crude oil
asparagine and soya protein at 350 °C
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combustion profiles of the bio-crude oils shown Figure 7-6 (b) on the other hand are
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much more similar and once again show three main steps. These steps broadly

correlate with the release and combustion of volatiles, secondary degradation of larger

molecules to smaller molecules and lastly combustion of chars.

The measurement of carbon dioxide and carbon monoxide in relation to the

temperature are displayed in Figure 7-7 for the raw feedstocks (a) and bio-crude oils

(b). The wavelength measured of carbon dioxide (CO2) is 2362 cm-1 and for carbon

monoxide (CO) 2175 cm-1. As expected, production of carbon dioxide and carbon

monoxide are spread throughout the combustion profile for all the samples.

Figure 7-7: Heating profile of CO and CO2 measured by the FT-IR from 100 to 900 °C for
the raw samples (a) and the processed of soya protein and asparagine (b)
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processed bio-crude is less spread with a maximum at 530 °C for asparagine and 570

°C for soya protein.

Figure 7-8 (a) and (b) show the evolved gas analysis for nitric oxide (NO),

nitrogen dioxide (NO2) and hydrogen cyanide (HCN) for the raw and the processed

soya protein and asparagine. There is emission of nitric oxide associated with each of

the steps shown the thermogravimetry at 241, 370 and 644 °C. The production of

nitrogen dioxide is negligible. The emission of hydrogen cyanide is low compared to

nitric oxide. Two main peaks of the emission of the nitric oxide are detected at

approximately 340 and 574 °C, no nitrogen dioxide is produced and the emission of

hydrogen cyanide is spread between 300 and 500 °C.

Figure 7-8: Heating profile of NO and NO2 HCN measured by the MS from 100 to 900 °C for the
(a) raw samples and (b) processed bio-crude oil of soya protein and asparagine
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The evolved nitrogen gases from the bio-crude are shown in Figure 7-8 (b).

The main gas produced with the bio-crude oil of soya protein is nitric oxide with a

maximum at 579 °C. Hydrogen cyanide is also detected before within the 400-500 °C

regions. Surprisingly, no nitric oxide is detected during the combustion of bio-crude

oil from asparagine, an insignificant amount of nitrogen dioxide is produced; more

hydrogen cyanide at 440 °C is measured. The highest release of nitrogen is released at

579 °C which could imply that nitrogen in the oils is present in the “heavy molecular

weight” materials. Hydrogen cyanide is one precursor to nitric oxide and nitrous oxide

(N2O) explaining why the peak emission for hydrogen cyanide is observed first and

subsequently nitric oxide [295]. The gas released profile temperature is similar to

chars measured by Darvell et al. [129] with a maximum emission at high temperature

to the slow combustion rate (10 °C/min). It is important to note that after 500 °C, over

half of the bio-crude has been lost and so it is possible that the nitrogen is largely

associated with “heavy molecular weight” materials. Hydrogen cyanide was detected

in the gaseous phase from the hydrothermal liquefaction of microalgae. The pyrolysis

of 2,5-diketopiperazine originally from protein produces isocyanic acid (HNCO) and

hydrogen cyanide at high temperature [296]. Under combustion, a similar pathway

could be assumed except that hydrogen cyanide can be further degraded into nitric

oxide as a final product. Herrera et al. [297] measured the formation of hydrogen

cyanide at 410 °C during the degradation of polyamide polymers in air, nonetheless

the formation of nitric oxide was not mentioned.

7.4.3 Residue analysis

Table 7-4 lists the elemental analysis, energy content and the energy recovery

from the residue of the different reactions. Not all samples were analysed but the data

still provides some useful information. The ash content for the sample of soya protein

is 3.5 wt.% and 5.2 wt.% of moisture content. The ash content of hemp protein is 10.5

wt.% and 5.0 wt.% of moisture. The sample from the processing of hemp protein in

formic acid contains 20.5 wt.% of ash.
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Table 7-4: Nitrogen, carbon, hydrogen, sulphur and oxygen content in the residue energy
content (Dulong and Milne) and % energy recovery for experiments for different models (hemp,
soya)at different temperatures and conditions on a dried free ash basis

N

wt.%

C

wt.%

H

wt.%

S

wt.%

O

wt.%

Dulong
HHV

(MJ/kg)
H/C O/C

Milne
HHV

(MJ/kg)

%
Energy

recovery

Hemp proteins

250 °C 4.5 44.6 6.0 0.0 29.4 18.5 1.6 0.5 19.0 19.3

300 °C 3.8 39.9 4.6 0.0 36.2 13.6 1.4 0.7 14.7 9.4

350 °C water 4.2 47.1 5.3 0.0 27.9 18.5 1.3 0.4 19.1 9.5

formic acid 2.1 23.7 1.9 0.0 40.6 2.1 1.0 1.5 4.0 0.9

Soya proteins

250 °C 7.3 49.7 6.6 0.0 27.6 21.3 1.6 0.4 21.4 7.3

300 °C 6.8 38.0 5.2 0.1 41.3 12.9 1.6 0.8 13.9 2.9

350 °C water 5.4 48.8 3.6 0.0 33.8 15.6 0.9 0.5 16.5 2.9

formic acid - - - - - - - - - -

Firstly, most of the residue contains low amounts of carbon compared to the

bio-crude oils with exception of asparagine at 350 °C with 61.9 wt.% (not shown in

the table). For soya and hemp proteins, the carbon and nitrogen contents are reduced

indicating that the carbon content is moving towards the aqueous phase and the bio-

crude. The nitrogen content in the residues is relatively high suggesting there is indeed

“heavy molecular weight” nitrogen materials such as asphaltene being formed.

The presence of formic acid lowers the carbon and the nitrogen contents of the

residue further compared to in water alone. Ash is important because it could play a

role on catalysing reaction and in the presence of heterogeneous catalysts they could

foul or poison them [146].

7.4.4 Aqueous phase analysis

As a major part of products are fractionated into the aqueous phase especially

with asparagine and soya proteins, the analysis of the aqueous phase is important in

order to have a better knowledge about the fate of nitrogen. Thus, analysis of the

process water are performed in details for the pH, the ammonium compound

concentration, phosphate, sulphate, potassium, total organic carbon for all the

experiments. This data can be found in Appendix 1, section 1.1.1 page 317.
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For both proteins, the ammonium compound concentration increases in

relation to the temperature. The concentration is more significant with soya protein at

350 °C (18,537 ppm) compared to hemp proteins (4730 ppm), as the first one contain

more nitrogen content. The increase of ammonium compound induces a rise of the pH

value from 7.1 to 8.9 for soya protein and 6.8 to 7.2 for hemp proteins. In general, the

pH is significant factor as it has an influence on the concentration of the ionic and

cationic species, the pKa for NH4
+/NH3 is approximately 9.2, and it implies that below

a pH of 9.2 the concentration of NH4
+ is more significant compared to NH3 [298].

Therefore, in alkali pH, the presence of nitrogen species is enhanced and vice versa. A

lower ammonium compound concentration is observed when using formic acid (4437

ppm) with hemp protein. A lower ammonium compound concentration can be

explained by the formation of amides. In contrast, the ammonium compound

concentration increases for soya protein. Dote et al. [111] found that the majority of

nitrogen in processed water from protein was present as ammonium, (approximately

70 %), and only a small portion of organic nitrogen measured by the Kjeldahl method.

For the processed water from asparagine, the increase of ammonium

compound between the temperatures is less obvious than for soya proteins. It is likely

that the asparagine is already converted as explained by Abdelmoez et al. [288]; the

kinetic of decomposition was high with glutamic acid (similar structure to glutamine

with a carboxylic acid instead of an amide group). In the same study, it was deduced

that most of amino acids were stable in alkali pH and more reactive in acidic pH. For

the processed water from glutamine and the mixture, the ammonium compound

concentration is lower, it was demonstrated in the previous study that mixture of two

amino acids were more stable [288].

Asparagine contains two nitrogen functional groups, an amide and a primary

amine attached to a α-carbon, nitrogen functional group (amides + amines)

representing 24 % of the whole molecular weight. The conversion into ammonium

compound is calculated thanks to the Equation 7-3 where NൣH4
+൧ the ammonium

compound concentration is in ppm, Vwater is the volume of water in litre (27 ml or

0.027 L) and minitial asparagine the initial mass in g approximately 3 g.
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Conversion NH4
+ =

m initial asparagine- (
NൣH4

+൧
1000)
൘ x Vwater)

minitial asparagine
x 100

Equation 7-3

Approximately 76.4 wt.% of the initial asparagine is converted into

ammonium compound which is close to the value from Dote et al. [111]. The

hydrolysis of asparagine could yield several supposed products (Figure 7-9). A more

detailed analysis of the aqueous phase should be carried out to find out if these

products are present.

Figure 7-9: Likely product from the hydrolysis of asparagine after hydrothermal
liquefaction

In general, the TOC concentration of the processed water for both proteins

decreases as the temperature increases. The TOC concentration of glutamine is double

(20,220 ppm) compared to asparagine, where the concentration of acetic acid is also

significant with 51,000 ppm. The acetate ion is not detected for the other sample as

high dilution is prepared to fall within the ammonium compound calibration range.

The high concentration in acetate explained why a pH of 7.5 is determined. Rogalinski

et al. [284] discovered that amino acids could decompose into carboxylic acids (acetic

or propanoic acid), amides (ethanolamide) and other products.

7.4.5 Carbon and nitrogen mass balance

Using the data collected, it is possible to determine the carbon and nitrogen

mass balance and this data is listed in Table 7-5. When the CHNS of the residue is not

available, the carbon or nitrogen gaseous and residue mass balance is calculated as a

single term.



Hydrothermal liquefaction of proteins and amino acids with and without HZSM-5

182

Table 7-5: Carbon and nitrogen mass balance for the aqueous, bio-crude oils and
remaining phases for the experiments model compounds (soya, hemp and asparagine) at different
temperature and conditions

% C

aqueous

% C

bio-crude

% C

residue

% C

gas

% N

aqueous

% N

bio-crude

% N

residue

% N

gas

Hemp proteins

250 °C 31.6 30.6 20.4 17.3 21.0 12.6 13.6 52.8

300 °C 26.5 36.5 12.1 24.9 45.2 15.7 7.5 31.6

350 °C water 15.5 57.2 10.7 16.6 49.5 25.4 6.2 18.9

formic acid 16.8 28.8 3.3 51.1 42.3 12.9 2.2 42.6

Soya proteins

250 °C 57.2 20.3 7.6 14.8 63.5 8.2 4.0 24.3

300 °C 42.0 30.7 3.9 23.4 91.0 10.9 2.5 -4.4

350 °C water 36.8 28.1 4.2 30.9 97.8 8.3 1.6 -7.7

formic acid 38.5 21.2 0 40.3 93.3 4.9 0 1.8

Asparagine

250 °C 60.5 2.3 0 37.2 92.0 0.3 0 7.7

300 °C 25.4 7.7 7.1 59.7 84.7 1.5 0.1 13.7

350 °C water 25.6 10.2 8.1 56.1 95.2 2.1 0.5 2.2

formic acid 37.3 8.2 11.6 42.9 86.4 1.0 0.3 12.4

glutamine 59.8 8.5 0 31.7 49.2 2.0 0.0 48.8

Mix asn-gnu 33.8 14.0 0 52.2 54.1 3.9 0.0 42.1

The nitrogen fraction in the aqueous phase and in the bio-crude generally

increases as the temperature increases and is explained by ammonium compound

being produced. At 300 °C, Dote et al. [282] detected that 80 % of the nitrogen was in

the aqueous phase which was coherent with the result above. The use of formic acid

generally reduces the nitrogen content in the bio-crude. Similar trends are observed for

each of the feedstock investigated.

There is a reduction in carbon fraction in the process waters as the temperature

increases for soya protein. At higher temperatures, the carbon fraction is generally

transferred into the bio-crude and into the gaseous phase. For hemp protein, the

transfer of the carbon fraction from the aqueous phase and the residue to the gaseous
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phase and the bio-crude oils is observed suggesting a polymerisation of the polar

molecule to form the bio-crude. There is a slight increase in carbon fraction in the

process waters when using formic acid and it is possible this is due to unreacted

formic acid.

To summarise this section, during the hydrothermal liquefaction of proteins

and amino acids, most of the products are decomposed into the aqueous phase.

 More bio-crude oils were obtained with hemp protein because of the

initial presence of lipids.

 The presence of lipids also led to the production of fatty acid amides in

the bio-crude.

 As the temperature increases from 250 to 350 °C, the carbon fraction is

transferred from the aqueous phase into the bio-crude oils and in the gaseous phase.

 The ammonium compound concentration in the aqueous phase

increases in relation to the temperature.

 Most of compounds in the bio-crude oil are identified as heterocyclic

compounds which are relatively stable.

 The result from the STA-MS could suggest that most of the nitrogen

were present in the “heavy molecular weight” materials.

Finally, comparable to starch and triglycerides the hydrolysis of proteins under

subcritical water was rapid and subsequently amino acid decomposed into ammonium

or organic nitrogen compounds.
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7.5 Influence of metal doped HZSM-5 catalysts on bio-crude composition

In this section, screening undertaken with different metal (molybdenum, iron,

copper and nickel) doped HZSM-5 in water and in formic acid solution (1 vol.%) with

soya protein is discussed. These metal doped zeolites are investigated whether they

have any impact on the fate of nitrogen.

7.5.1 Mass balance yield

Determination of the mass balance allows evaluation of the activity of catalyst

for enhancing more bio-crude production from soya proteins. Results in water and

formic acids are presented in Figure 7-10. Experiments were carried out in duplicate

therefore average values are shown here. The coefficient of variance for the following

experiment in water was 9.5 % in water respectively and in formic acid for the same

order of catalysts the variance was 6.6 %.

Figure 7-10: Diagrams representing mass balance for the different fractions of bio-crude
oils, gaseous, residue and aqueous fractions for the catalytic screening using metal doped HZSM-
5 for soya proteins (a) in water and (b) in formic acid.
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Using water alone, doped metal HZSM-5 does not enhance the production of

bio-crude yield compared to the experiments without catalyst. Similar bio-crude yields

are obtained with copper and molybdenum, the bio-crude yield is lower than 15 wt.%

for the other catalysts. FeZSM-5 enhances the production of gas compared to the

others catalysts and MoZSM-5 enhances the production of residue.

Using formic acid, as with the carbohydrate experiments, the gas fraction is

more pronounced than with water alone and particularly with iron and nickel, in

contrast the bio-crude production is lower than in water (approximately 12-14 wt.%).

On the whole, the difference between each catalyst is subtle. A major part of the

products are detected in the aqueous phase.
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7.5.2 Bio-crude analysis of the catalytic runs

7.5.2.1 GPC analysis

The bio-crude oils were analysed using the same techniques as previously

analysed with GPC, CHNS analyser and GC-MS. Figure 7-11 presents the different

molecular weight fraction for the catalytic screening of soya protein in (a) the water

and (b) in formic acid.

Figure 7-11: Different molecular weight fraction of the bio-crude oils for soya proteins for the
catalytic screening (a) in water (b) in formic acid

In water, half of the bio-crude oils are composed of low molecular weight

materials (lower than 200 g/mol), materials with a molecular weight above 200 g/mol

increase with CuZSM-5 and MoZSM-5.

In formic acid, there are lower impacts with HZSM-5, FeZSM-5 and

NiZSM-5. CuZSM-5 is more selective for the production oligomers and “heavy

molecular weight” materials. One study from Imai et al. [286] suggested that in

hydrothermal vents CuCl2 enhances oligomerisation of glycine where the excess

0

20

40

60

80

100

HZSM-5
water

FeZSM-5
water

CuZSM-5
water

MoZSM-5
water

NiZSM-5
water

%
fr

a
ct

io
n

(a)

Heavy molecular weight Oligomers Long chain Low molecular weight

0

20

40

60

80

100

HZSM-5
formic acid

FeZSM-5
formic acid

CuZSM5
formic acid

MoZSM-5
formic acid

NiZSM-5
formic acid

%
fr

a
ct

io
n

(b)



Chapter 7

187

amino acid formed a chain with diketopiperazine. Obviously, the goal of the catalyst is

to obtain low molecular weight materials and here leachate metals seemed to have

more effect than the HZSM-5 as the acidic sites enhance slight the fractionation of the

proteins into the formation of low molecular weight materials. On the other hand,

metal or leachate metal favoured other chemical reaction such as condensation.

7.5.2.2 GC-MS analysis

A typical example of GC-MS chromatograms is shown in Figure 7-12 for the

bio-crude formed using CuZSM-5 in water with soya proteins. Figure 7-13 contains

some examples of molecule identified in the chromatogram. Table 7-6 lists the main

compounds identified in the chromatogram.

Figure 7-12: Examples of chromatograms for CuZSM-5 in water with soya proteins
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Table 7-6: Peaks identification in the GC-MS

Number Retention time
(minutes)

Compounds

1 27.5 1-butyl-2-pyrrolidinone

2 32.6 N-(1-methyl-2-propynyl)-benzenamine

3 36.1 1-(2-phenylethyl)-pyrimidine-2,4,6trione

4 39.6 methyl-2-oxo-pyrolidine-acetate

5 28.2 (1-ethyl-2-pyrrolidinyl)-methylamine

6 45.8 5,10-diethoxy-2,3,7,8-tetrahydro-dipyrrolopyrazine

7 48.3 L-Leucine-N-cyclopropylcarbonyl-methyl ester 9H-
pyridoindole

8 53.1 N-(5-methyl-3-isoxazolyl)-2-(4-methyl-4H-1,2,4-
triazol-3-ylthio)-acetamide,

9 55.0 hexahydro-3-(phenylmethyl)-pyrrolopyrazine-1,4-
dione

Figure 7-13: Main molecule identified from the bio-crude processed with CuZSM-5 in
water
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These compounds are mainly nitrogen heterocycles such as pyrazine with two

nitrogen atoms formed by the condensation of two amino acids. Compared to the run

without catalyst more aromatic nitrogen compounds are identified such as N-(1-

methyl-2-propynyl)-benzenamine. Compounds 7 and 8 are an indication of the

condensation of several cycles and amino acids to form later oligomers. The

compound 9 is a derivative of a diketopiperazine from a phenylalanine and probably a

serine. The complexity of the molecules identified with CuZSM-5 could explain why

the fraction of “heavy molecular weight” determined by GPC is more significant.
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7.5.2.3 Elemental analysis

To investigate the effect of catalysts on the nitrogen content of the bio-crude

oils, elemental analysis is lists in Table 7-7.

Table 7-7: % nitrogen, carbon, hydrogen, sulphur and oxygen content in the bio-crude oils,
energy content (Dulong and Milne) and % energy recovery for experiments for soya proteins for
the screening of metal doped HZSM-5 as dried basis

N

wt.%

C

wt.%

H

wt.%

S

wt.%

O

wt.%

Dulong
HHV

(MJ/kg)
H/C O/C

Milne
HHV

(MJ/kg)

%
Energy

recovery

water

HZSM-5 7.5 71.5 9.7 0.6 10.7 36.1 1.6 0.1 34.9 28.9

FeZSM-5 6.6 70.5 9.5 0.7 12.8 35.2 1.6 0.1 34.1 19.8

CuZSM-5 7.8 79.1 10.5 0.7 1.9 41.5 1.6 0.0 39.6 30.3

MoZSM-5 5.7 67.6 9.3 0.5 16.9 33.2 1.6 0.2 32.5 15.1

NiZSM-5 7.3 75.7 9.9 0.9 6.3 38.7 1.6 0.1 37.1 30.3

Formic acid

HZSM-5 5.9 71.3 9.1 0.6 13.1 34.9 1.5 0.1 33.9 17.9

FeZSM-5 6.4 72.2 9.3 0 12.1 35.5 1.5 0.1 34.5 22.4

CuZSM-5 6.3 74.6 9.4 0.2 9.6 36.9 1.5 0.1 35.8 19.4

MoZSM-5 5.8 71.2 9.2 0.3 13.4 34.8 1.5 0.1 34 17.8

NiZSM-5 6.2 75 9.6 0 9.3 37.4 1.5 0.1 36.2 23.7

For the experiment in water, for most of the catalyst, a high carbon and

hydrogen contents are determined in the bio-crude resulting in an increase in energy

content. Nitrogen content is still high and above the run without any catalysts with 6.5

wt.%, however for MoZSM-5 a reduction of the nitrogen content is measured.

CuZSM-5 and NiZSM-5 achieved a good deoxygenation capacity with 1.9 wt.% and

6.3 wt.%. It is confirmed by the GC-MS chromatogram where few compounds with

oxygen are identified. The energy content is higher with CuZSM-5, nevertheless; the

bio-crude oils contains 8.4 wt.% of nitrogen content.
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For the experiment in formic acid, lower amounts of nitrogen and hydrogen

content is detected compared to reaction in water. The same conclusion can be drawn

that the runs in formic acid alone reduce the nitrogen content. For NiZSM-5 in formic

acid a good energy recovery is achieved with 23.7 % even though it is below of the

value obtained in water. In general, the impact of the impact of doped metal is

negligible.

7.5.3 Aqueous phase analysis

The aqueous phase was analysed to measure TOC, ammonium, phosphate,

sulphate, potassium concentrations and the pH value, displayed in the shown in

Appendix 1, section 1.1.2 page 318. The trend for the ammonium compound

concentration is significant in understanding the impact on the effect of metal doped

catalyst.

In water, the highest ammonium concentration is measured with MoZSM-5

(12,415 ppm), the other catalysts have a close concentration (approximately 11,800

ppm). In presence of formic acid, the ammonium compound concentration with

NiZSM-5 is enhanced to 9130 ppm compared to 2224 ppm in water. The pH in the

alkali region (8-9) could emphasise the high ammonium compound concentration.

HZSM-5 and MoZSM-5 result in TOC concentration above 16,000 ppm.

Conversely, NiZSM-5 reduces the fraction of aqueous compounds. There is no link

with the mass balance and the TOC concentration for MoZSM-5 (16,343 ppm) since

the yield of the aqueous phase is the lowest (57 wt.%). Iron effects by reducing the

level of phosphate to 1810 ppm in the solution contrary to MoZSM-5 in water (2447

ppm). In general, phosphate (PO4
3-) concentration is more significant above a pH of

12.7 because of its pKa. The sulphate concentration (SO4
2-) is not affected by the

change of catalysts, the concentration is low because of the alkali pH and biomass

contains also low sulphur.

7.5.4 Carbon and nitrogen mass balance

Table 7-8 contains the balance for nitrogen and carbon for catalytic screening

of metal doped HZSM-5 with soya protein. The carbon and nitrogen fraction in the

aqueous phase and in the bio-crude oils are calculated and the nitrogen and carbon in

the residue and gaseous phase are determined by difference of the two others.
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Table 7-8: Carbon and nitrogen mass balance for the aqueous, bio-crude oils and
remaining phases for the experiments using soya protein with metal doped HZSM-5

% C

aqueous

% C

bio-crude

% C

remaining

% N

aqueous

% N

bio-crude

% N

remaining

Water

HZSM-5 45.1 15.7 39.1 89.0 9.0 1.9

FeZSM-5 31.1 24.9 44.0 89.8 12.9 -2.7

CuZSM-5 31.3 23.3 45.4 89.7 14.4 -4.1

MoZSM-5 43.5 18.4 38.1 91.7 8.5 -0.2

NiZSM-5 25.2 21.6 53.2 16.4 13.0 70.5

Formic acid

HZSM-5 39.9 16.5 43.6 80.1 7.5 12.4

FeZSM-5 32.6 20.5 46.9 46.9 10.0 43.0

CuZSM-5 26.3 17.7 56.0 62.3 8.2 29.5

MoZSM-5 35.5 16.4 48.0 66.2 7.4 26.4

NiZSM-5 34.1 21.4 44.5 61.7 9.7 28.6

HZSM-5 and MoZSM-5 are selective towards enhancing the carbon fraction in

the aqueous phase. FeZSM-5 is more selective towards increasing carbon fraction to

the bio-crude. The addition of formic acid increases the amount of nitrogen fraction

partitioned in the aqueous phase. The lowest nitrogen fraction is obtained for HZSM-5

and formic acid.

Lastly, the influence of metal doped HZSM-5 is somehow minimal on

enhancing the formation of bio-crude of soya proteins. MoZSM-5 reduces slightly the

nitrogen fraction in the aqueous phase but on the other hand, copper and iron increase

the nitrogen fraction into the bio-crude. Copper in formic acid could enhance the

polymerisation of molecules to form oligomers.

To summarise, the following general conclusions can be drawn:

 Compared with the non-catalytic run, no increase of bio-crude yield is

observed with the catalyst.

 The addition of metal doped zeolite seems to have an impact on the

mass balance in particular with CuZSM-5 to improve the carbon and also reduces the

oxygen content to 1.6 wt.% in the oil and likewise result in an increase for the

nitrogen in oil and aqueous phase.
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 Metal doped catalyst enhances the production of ammonium compound

(up to 90 wt.%) in water compared to formic acid.

 FeZSM-5 reduces slightly the nitrogen content in the bio-crude oil.

 There is a question whether the metal leachate had more effect on the

conversion than the zeolite alone.

7.6 Discussion about the degradation of proteins

As with polysaccharides, the hydrolysis of protein is rapid and occurs at low

temperatures probably 250-275 °C. The study of Pińkowska et al. [299] showed a full

hydrolysis of soya protein completing after 15 minutes at 268 °C. Rogalinski et al.

[284] showed that the hydrolysis of bovine serum albumin protein (BSA) readily

occurred in semi continuous reactor below 300 °C in a few seconds; yielding different

amino acids (for example asparagine). Torri et al. [137] suggested that the most likely

degradation route under hydrothermal conditions for proteins was by formation of

oligopeptide based on the condition observed under pyrolysis by Meetani et al. [293].

Figure 7-14 shows the degradation towards the hydrolysis of proteins for forming

nitrogen heterocyclic compounds [293].

1) The both end extremity of the peptide chain (amide and carboxylic group)

reacts together to form a cycle. As the temperature increases the cycle size

subsequently decreases by losing amino acids. It is possible to observe with the GPC

analysis that the fraction of oligomers is reduced in relation to the temperature to form

lighter compounds.

2) Released amino acids condense together to form diketopiperazine (DKP).

This compounds are found in the bio-crude at low temperature (250 and 300 °C) in the

study suggested that the degradation of protein is similar than explained by Meetani et

al. [300]. One example of DKP is given where the first one was produced by the

cyclisation of two valine amino acids (Figure 7-15). Faisal et al. [301] gave evidence

of the formation of the formation of cyclodipeptides from glycine dipeptide between

240 to 300 °C. The reaction of cyclodehydration is reversible in a short time at low

temperature.
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3) Above 300 °C, diketopiperazine (DKP) could decompose by rearrangement

into ammonium compound and 1-butyl-2-pyrrolidinone. This compound is considered

as a key compound for the degradation of proteins and amino acids [302].

Figure 7-14: Decomposition route of proteins [137]

Figure 7-15: Formation of diketopiperazine from condensation of two valine amino acids

The degradation of amino acids is also rapid to occur under subcritical water.

Yoshida et al. [283] showed that asparagine was fully degraded in less than five

minutes at 270 °C in subcritical water. The decomposition depend on their R

functional groups; for example, the decomposition of aspartic acid occurred rapidly

whereas glycine and alanine were more thermally stable [285]. As Dote et al. [282]

observed, most of the nitrogen in the aqueous phase was present as ammonium.

Nevertheless, other compounds were detected by several studies such as ethylamine

which was transformed further to ammonium compound [287]. At higher temperature,

the formation of “heavy molecular weight” materials could have happened, it is one of

the hypotheses advanced by several research groups which was that primitive life was

created in the bottom of the ocean in hydrothermal vents [303]. Basically, amino acids

polymerise to create oligomer chains [93, 286]. Thus, it could indicate that under

hydrothermal liquefaction an equilibrium between depolymerisation and

recombination occurs [2].

Figure 7-16 illustrates the different decomposition of asparagine under

hydrothermal liquefaction from the compounds identified by the GC-MS in the bio-

crude where the dash square represents possible compounds in the aqueous phase and

the plain square the compound in the bio-crude oils.
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Figure 7-16: Decomposition route of asparagine under hydrothermal liquefaction

The main route involves the formation of acids and amides/amines as the main

fraction is the aqueous phase. The bio-crude oil yield is mainly composed of

heterocyclic compounds and oligomers probably pyrrole polymers. Obviously some

products are not present as they are not stable and degraded into further compounds.

The presence of lipids in the hemp protein leads to the formation of amides in

the bio-crude oils. This point will be discussed in more detail in the next chapter. It is

important to emphasise that high yield of bio-crude is not necessarily a good effect

when the main composition is made of nitrogen heterocyclic compounds resulting in a

low energy content and production of NOx during the combustion. To finish, amino

acids forms low bio-crude yields similar to the level of carbohydrates (less than 10

wt.%). Soya and hemp protein yield more bio-crude (approximately 20-30 wt.%). The

consistency is dark and very viscous and not suitable for any usage.

CuZSM-5 is more selective to enhance the carbon fraction in the bio-crude oil

and the nitrogen fraction in the bio-crude oil and in the aqueous phase. The addition of

metal salts such as copper enhance the kinetic reaction and the formation of “heavy

molecular weight” materials, that is the reason why the GPC, the fraction of

compounds in the processed bio-crude from soya protein with a molecular weight

above 600 g/mol is more significant.

The purpose of these catalysts is to improve the production of ammonium

compounds, for soya protein this cation is more predominant with HZSM-5 compared
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to the run without catalyst. Yet, it should be mentioned that some compounds

containing nitrogen and sulphur could poison the catalyst or the metal active site or

even block the pore explaining why there could have been no major difference during

the screening [163, 304]. Zeolites with larger pore size (mesoporous or macropores)

would have been more suitable. HY (a meso porous zeolite) was used by Liu et al.

[305] to absorb nitrogen heterogeneous cyclic compounds. In future work, the

development of a similar material stable under hydrothermal conditions such as

molecular sieves would be one solution to reduce the nitrogen content of the bio-crude

oil or even in the aqueous phase by absorbing compounds and afterwards regenerate

them for a another run.

7.7 Implications for the hydrothermal liquefaction of microalgae

Proteins are a key component in microalgal cells, the composition depends on

the strain and even the growth condition whether the algae was put under nitrogen

starvation or not [306]. Cyanobacteria such as Spirulina are known to contain high

protein between 60-68 wt.% and, Chlorella with 55 wt.% [307] whereas

Nannochloropsis o. contains 35 wt.% protein [251]. The composition of amino acids

was different for example with Chlorella is as follows: glutamic acid with 11.6 wt.%,

aspartic 9 wt.%, leucine 8.8 wt.% and lysine 8.4 wt.% [308].

Essentially, the processing of low lipids algae could cause a similar behaviour

than hemp protein where products degraded into the aqueous phase and bio-crude oils.

In conclusion, it could be deduced that compounds such as diketopiperazine and

pyrrolidone would be identified in the bio-crude oils. Therefore, the most suitable

strain would have fewer amounts of proteins. It would be expected to find a high

amount of ammonium and phosphate compounds in the aqueous phase in general after

the processing of microalgae. Nutrient recycling could subsequently be carried out for

the algae culture growth [143].

Fast liquefaction of nitrogen containing biomass such as microalgae could be

considered as a pre-treatment. The hydrolysis of proteins and even carbohydrates

would be readily carried out. Garcia Moscoso et al. [140] succeeded to extract 60

wt.% of nitrogen from the microalgae (Scenedesmus sp) in to the aqueous phase at 240

°C in a couple of seconds. Yet, a solution should be investigated to avoid
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recombination of small molecules in the next step to form “heavy molecular weight”

materials.

7.8 Conclusion

This chapter gave an insight about the processing of nitrogen model

compounds under subcritical conditions. Amino acids were mainly degraded into the

aqueous phase as ammonium and organic compounds. Hydrothermal reaction of

proteins yielded more bio-crude such as 39.9 wt.% for hemp proteins and 17.5 wt.%

for soya proteins at 350 °C in water. The bio-crude oil obtained was composed of

nitrogen heterocyclic compounds such as diketopiperazine or pyrrolidinone.

Moreover, compounds with a molecular weight above 200 g/mol represented half of

the bio-crude oil partition. Ammonium compound concentration was significant in the

water in particular with soya proteins. Furthermore, the concentration increased from

250 to 350 °C. As the temperature was increased, the nitrogen content was decreased

with soya protein from 7.8 to 6.8 wt.% in the oil whereas an opposite trend was

measured by hemp proteins. CuZSM-5 in formic acid had an impact on enhancing the

% carbon in the bio-crude but also the nitrogen in the aqueous and bio-crude oils. The

deoxygenation of the bio-crude was higher with NiZSM-5 and CuZSM-5. During the

next chapter, microalgae with different compositions were processed using the same

conditions as in this chapter.
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Chapter 8 HTL of microalgae with and without catalysts

Throughout this chapter, four different microalgae (stressed and non-stressed

strains of P. ellipsoidea, Chlorella and Spirulina) have been processed at three

different temperatures (250, 300 and 350 °C). At 350 °C, experiments have been

carried out in water and formic acid. A catalytic screening with different metal doped

HZSM-5 (nickel, iron, copper, and molybdenum) using Chlorella and the stressed P.

ellipsoidea at 350 °C in water and in formic acid has been conducted. The overall

purpose is to associate these results with the previous chapters and to evaluate the

impact of lipids, carbohydrates and proteins.

8.1 Introduction

Interest in the production of bio-crude from microalgae was prompted by

promising results obtained by Dote et al. [119]. In this paper, a bio-crude yield of 64

wt.% is achieved from Botryococcus b. at 300 °C (30 minutes). The drawback of this

algal strain is its slow growth rate and a poor harvesting yield [309]. Since

subsequently, various microalgae strains have been processed under subcritical

conditions to obtain bio-crude including Chlorella v. [112, 129, 134, 310],

Nannochloropsis sp. [112, 127, 134, 135, 190, 199], Dunaliella t. [48, 124, 134],

Spirulina [112, 129, 131, 310], Porphyridium cr. [112, 134], Desmodesmus sp. [133]

Scenedesmus o. [134], Phaeodactylum t. [134]. Indeed, these species are less scarce

and obtainable at a reasonable cost. Furthermore, the influence of process variables

such as time (5 to 120 minutes) [124, 131, 133, 134], temperature (175 to 450 °C)

[124, 129, 131, 133-135] and concentration of initial slurries (10-50 wt.%) [124, 131]

on the quality of the bio-crude oil has been investigated in detail.

There is a logical trend that the lipid content in the microalgae will impact the

bio-crude yield. Biller et al. [112] proposed that the bio-crude yields are influenced by

the biochemical components in the alga and that yield is based on the content of each

following the relationship, lipids ≥ proteins ≥ carbohydrates. The nitrogen content in

the bio-crude oil is also dependent upon the initial composition of the feedstock and

which is evident by the presence of heterocyclic compounds such as pyrrole or indole.

The challenge is to produce a high quality fuel; to do so ideally the processed bio-
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crude oils should contain hydrocarbon and aromatic compounds with a low fraction of

molecules containing hetero-atoms such as nitrogen, oxygen and sulphur.

In order to improve the bio-crude yield and to reduce the level of nitrogen

compounds, various heterogeneous catalysts were examined. A broad range of

catalysts have been investigated including Pd/C, Pt/C, Ru/C, Ni/SiO2-Al2O3, CoMo/γ -

Al2O3 (sulfided), and zeolites with and without pressurised hydrogen [190] likewise

by Biller et al. [196] with metal impregnated (Co/Mo, Ni, Pt) on alumina. These

catalysts have an impact on the deoxygenation of the bio-crude from Chlorella and

Nannochloropsis although only a mild effect is observed on the reduction of nitrogen.

In most cases, the use of catalysts often enhances the gas formation and the bio-crude

yield is lower. Yang et al. [191] upgraded Dunaliella s. at 200 °C with REHY (a HY

zeolite doped with rare-earth metal) doped with nickel with and without hydrogen.

Lower oxygen content was measured in the bio-crude oils with this catalyst; REHY

was robust under this condition with a negligible deactivation of the active site.

Over the last year, some research groups including Savage et al. [147, 189,

199] (Michigan, US) and Duan et al. (Henan, China) focussed their research towards

the catalytic upgrading of pre-treated oil. This has demonstrated the reduction in the

nitrogen content from 8 % to 1-2 wt.%, although high temperatures were required and

the amount of coking and gas formation was significant. HZSM-5 favour the

formation of paraffin oil with a yield of 75 wt.% at 400 °C for four hours [189].

In this work, four different strains of microalgae Chlorella vulgaris, Spirulina

and (stressed strain and non-stressed) Pseudochoricystis ellipsoidea are processed

under subcritical water at different temperatures (250, 300 and 350 °C). At 350 °C, the

experiments were carried out in water and formic acid (one hour). The Chlorella

vulgaris and stressed Pseudochoricystis ellipsoidea were also processed at 350 °C for

one hour with different metal doped HZSM-5 in water and formic acid. Products were

analysed by the same techniques used in Chapter 7.

The purpose of this chapter is to improve the understanding of the chemical

pathways occurring during processing of different microalgae strains, in particular the

fate of nitrogen. Experimental results are compared with results from the literature and

a model for the fate of nitrogen is proposed. By combining results obtained from the

previous chapter an overall mechanism is elucidated.
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8.2 Methodologies

The same techniques were used to investigate the processing of microalgae as

were as discussed previously in Chapter 3. The lipid from the raw microalgae was

extracted using 3:1 chloroform: methanol. The corresponding fatty acids were

analysed as the method in Chapter 5.

8.3 Chemical composition of the microalgae

Table 8-1 lists the elemental analysis on a dry basis, the energy content (HHV)

determined from the Dulong equation and the proximate analysis (ash and the

moisture) of the microalgae investigated. The protein and lipid content of the algae

and Spirulina were measured by Biller et al. [141].
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Table 8-1: Proximate and elemental analysis as dried basis of the raw feedstock with the lipids and proteins content.

Elemental analysis Composition microalgae (wt.%)

N
wt.%

C
wt.%

H
wt.%

S
wt.%

O
wt.%

HHV
(MJ/kg)

Lipids Proteins Carbohydrates Ash Moisture

Chlorella 10.3 49.4 7.4 0.5 21.5 21.5 25.0 55.0 10.0 10.9 5

Stressed P. ellipsoidea 2.9 63.4 9.5 0.0 30.6 30.6 67.0 25.0 7.0 0.8 2.5

Non-stressed P. ellipsoidea 8.7 53.5 7.7 0.6 23.9 23.9 23.8 48.0 28.2 4.0 2.5

Spirulina 10.9 48.3 3.7 2.4 15.6 15.6 14.4 73.8 11.8 8.0 5

Table 8-2: FAME of both raw P. ellipsoidea strains in g/kg and in per cent composition

C16:0

(g/kg)

C18:0

(g/kg)

C18:1

(g/kg)

C18:2

(g/kg)

C18:3

(g/kg)
% C16:0 % C18:0 % C18:1 % C18:2 % C18:3

Stressed P. ellipsoidea 17.6 23.4 139.7 60.0 2.5 7.2 9.6 57.4 24.7 1.0

Non-stressed P. ellipsoidea 131.6 40.1 7.2 22.9 46.8 52.9 16.1 2.9 9.2 18.8
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P. ellipsoidea and Chlorella are classified as green algae whereas Spirulina is

a cyanobacterium. Spirulina exhibits the highest nitrogen content with 10.9 wt.%.

Cyanobacteria are well known to have high protein content; this partly explains their

use as a dietary supplement. The most abundant amino acids in Spirulina are glutamic

acid with 11.4 wt.%, arginine acid 10.2 wt.% and aspartic acid 8.3 wt.% [307].

Chlorella also has a high nitrogen content with 10.3 wt.% correlating with the protein

content although it also contains a significant amount of chlorophyll [311]. The two

samples of P. ellipsoidea were cultivated under different conditions. The lipid content

was increased by starving the microalgae of nitrogen nutrients for several days.

Furthermore, under these conditions, 9 wt.% hydrocarbons was produced among the

lipids [61]; this strain is highly innovative and can replace Botryococcus b.in the

future. Indeed, P. ellipsoidea has a faster growth rate (3.5 g dry weight/day) compared

to Botryococcus [61, 312]. Based on the result from Chapter 5 on the processing of

lipids, a high yield of bio-crude is expected from the stressed microalgae compared to

the non-stressed. The high ash and protein contents from Spirulina and Chlorella

would also reduce the production of bio-crude yield.

As discussed in the last section of Chapter 5, microalgae contain mainly C18

unsaturated fatty acids (mono or polyunsaturated). Table 8-2 shows the lipids

compositions in g/kg from both strains of P. ellipsoidea. These strains are selected to

show the different lipid profile for the same species. The two different P. ellipsoidea

strains have different profiles for example the stressed strain contains mainly oleic and

linoleic acids. On the other hand, the non-stressed microalga contains mostly linoleic

and palmitic acids. The nitrogen composition has an impact on the lipids profile thus

oleic acid is common for microalgae grown under nitrogen starvation while with a

normal nutrient algae, linoleic, linolenic acids and poly unsaturated C16 fatty acids are

the main lipids [313].
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8.4 Hydrothermal processing of microalgae without catalyst

8.4.1 Mass balance yield

The mass percentage yield of the different phases (bio-crude, residue, the

gaseous and aqueous phase) for the different microalgae and cyanobacteria are

illustrated in Figure 8-1 (a) for Chlorella; (b) stressed P. ellipsoidea (stressed); (c) P.

ellipsoidea (non-stressed); (d) Spirulina. The HTL runs with Chlorella were

performed in duplicate resulting in a coefficient of variance of 5.6 %. The main reason

for this variance includes the difficulty in obtaining complete removal of the oil from

the reactor and losses due to evaporation. The residue analysis is also difficult due to

losses during filtration. The gas composition is assumed based on Biller et al. [112]

and therefore this measurement is semi quantitative. In some cases, the alga are

difficult to weigh out accurately, for instance P. ellipsoidea is quite electrostatic

resulting in small errors in transferring the alga during weighing. Despite these

problems, the errors associated with the experimental design are minimised as much

as possible allowing the trends to be investigated with confidence.



Chapter 8

204

Figure 8-1: Diagrams representing mass balance for the different fractions: bio-crude oils,
gaseous, residue and aqueous fractions for the four different microalgae for (a) Chlorella; (b) P.
ellipsoidea (stressed); (c) P. ellipsoidea (non-stressed); (d) Spirulina.
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During the processing of microalgae, from 250 to 300 °C, a general increase of

bio-crude yield is observed. The processing of stressed P. ellipsoidea at 300 °C

(Figure 8-1 (b)) achieves the maximum bio-crude yield of 52.9 wt.% (with a

coefficient of variance of 2.8 %). For the non-stressed P. ellipsoidea (Figure 8-2 (c)),

a lower bio-crude yield is obtained which emphasises that the bio-crude is related to

the initial lipids content as suggested Biller et al. [112]. Nevertheless, the initial lipid

content of the stressed P. ellipsoidea is approximately 67.0 wt.% [141], thus it would

be expected to obtain a high bio-crude yield; in contrast to Chlorella (Figure 8-1 (a)),

the yield (29.0 wt.%) is above the initial lipid content (25.0 wt.%). It is possible that

some free fatty acids are soluble in the aqueous phase reducing the yield of the bio-

crude. The lowest bio-crude yield at 350 °C is achieved for Spirulina (Figure 8-1 (d))

as it contains the highest amount of proteins. An increase between the bio-crude yield

and the temperature was observed by Jena et al. [131] and Zou et al. [124] with the

processing Spirulina and Dunaliella. López Barreiro et al. [134] suggested that the

bio-crude yield especially at low temperature (250-300 °C) depended on the cell wall

strength. Here, it could be deduced from the bio-crude yield for example that P.

ellipsoidea has a lower cell wall compared to Spirulina.

The residue yield generally decreases in relation of the temperature suggesting

the degradation of the microalgae as observed by Garcia Alba et al. [133]. The

gaseous yield is the highest for Spirulina compared to the other microalgae, the same

observation was drawn by Biller et al. [112].

Formic acid enhances the formation of gas, and leads to a slightly lower bio-

crude yield. Ross et al. [129] showed with formic acid (1 M) using the same algae,

lower bio-crude yield with 14.5 wt.% while Biller et al. [112] obtained a higher bio-

crude with 20 wt.%. This acid by decomposing could lead to the hydrolysis of large

molecules in the bio-crude oil with the increase of pH [112, 129].

Looking to the previous chapter, the processing of the stressed strain P.

ellipsoidea shows a similar trend mass balance to vegetable oils. For the case of

Chlorella and Spirulina, most of degraded products are found in the aqueous and in

the gaseous phases similar to the experiments carried out with soya protein and

asparagine which implies that proteins have a major role on the mass balance. An

increase of bio-crude yield in relation to the temperature was observed with hemp
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proteins and Chlorella whereas the maximum of bio-crude oil produced was obtained

at 300 °C with the stressed strain P. ellipsoidea and soya protein.

8.4.1 Bio-crude analysis of the non-catalytic runs

8.4.1.1 GPC analysis

Figure 8-2 illustrates the different molecular weight range of the bio-crude oils

from the different microalgae (a) Chlorella, (b) stressed P. ellipsoidea (c) non-stressed

P. ellipsoidea (d) Spirulina.

From Figure 8-2, as observed from the degradation of carbohydrates in

Chapter 6, the fraction of low molecular weight materials increases in relation to the

temperature. This trend is more significant with the bio-crude of Chlorella observed in

Figure 8-2 (a). It suggests that there is a breakdown of the oligomers and “heavy

molecular weight” materials into smaller molecules. The reduction of the molecular

weight size is advantageous as low molecular weight materials generally have a low

boiling range. The stressed P. ellipsoidea (Figure 8-2 (b)) contains the largest fraction

of “long chain” materials (up to 50.0 %) as this microalga initially contain up to 67.0

wt.% of lipids. There is a slight reduction of this fraction suggesting a mild cracking.

For the other microalgae, this fraction is not affected by the temperature change.
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Figure 8-2: Different molecular weight fraction of the bio-crude oils of the different microalgae at
different temperatures and conditions for (a) Chlorella; (b) stressed P. ellipsoidea; (c)non-stressed
P. ellipsoidea; (d) Spirulina.
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The addition of formic acid has generally a mild effect on the molecular

weight distribution with evidence for reduction in the “heavy molecular weight”

materials. Opposite results was found for the processing of carbohydrates in Chapter

6 where formic acid enhanced the formation the “heavy molecular weight” materials.

The difference is caused by different chemical structures. It was demonstrated by Ross

et al. [129] and later by Biller et al. [112] using the simulated distillation method that

organic acid in particular formic acid (1 M) enhanced the formation of the lighter

fraction. There was a high probability that the same observation would have been

drawn with the GPC technique. In this study, with other model compounds (sunflower

oil, starch, and asparagine acid) there are little differences between runs in water and

in formic acid. For future work, it would be interesting to test different concentrations

of acid to investigate when the molecular weight would start to diminish.

Figure 8-3 represents the molecular profiles of the different feedstock used in

this project such as Chlorella, stressed P. ellipsoidea, soya protein, glucose sunflower

and asparagine. The molecular weight profile of P. ellipsoidea is similar to the

sunflower oil in Chapter 5 with mainly “long chain” materials (200 to 500 g/mol).

The molecular weight profiles of Chlorella are broader such as those observed for

soya protein in Chapter 7. Asparagine acid and some carbohydrates for instance

glucose (in Chapter 6) contained up to 50 % compounds with a molecular weight

lower than 200 g/mol.

Figure 8-3: GPC chromatogram for different model compounds

López Barreiro et al. [134] noticed that at lower temperatures the molecular

size was focused between 400-500 g/mol indicating mainly a lipid extraction whereas
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at the higher temperature of 375 °C, there was a broader distribution. Garcia Alba et

al. [133] observed the same trend, explaining that the bio-crude oil at high temperature

was forming a broader molecular weight range due to the presence of hydrophobic

polypeptide or proteins. Vardon et al. [128] obtained a bio-crude oil with high

molecular weight with approximately 3260 mol/g with raw Scenedesmus; it was lower

with Spirulina with 1860 mol/g.

8.4.1.2 GC-MS analysis

Figure 8-4 shows the chromatograms obtained from each microalgae processed

at 350 °C in water where (a) Chlorella (b) P. ellipsoidea (stressed) (c) P. ellipsoidea

(non-stressed) (d) Spirulina. The compounds identified are listed in Table 8-3. At 32.2

minutes, butylated-hydroxytoluene could be observed in some chromatograms, this

compound was extracted from the caps of the vials where the bio-crude oil was stored.

Figure 8-5 shows the chemical structures of some of the nitrogen compounds found in

the bio-crude oils.

The processing of high content protein microalgae such as Chlorella, Spirulina

and non-stressed P. ellipsoidea (Figure 8-4 (a), (c), (d)) yields a majority complexes

compounds containing hetero-atoms (oxygen and nitrogen). These compounds

includes nitrogen heterocyclic compounds (1-butyl-2-pyrrolidinone, 1-methyl-

piperidine, indole); oxygenated long chain compounds such as alcohols (6-nonen-1-

ol); aldehydes (8-hexadecenal); ketones (1-methoxy-3-(2-hydroxyethyl)-nonane), free

fatty acids (palmitic acid), amides (hexadecanamide) and some aliphatic compounds

such as alkanes (heptadecane), alkenes (hexadecane) and non-aromatic cycles (1,2-

dimethyl-cyclooctane).
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Figure 8-4: GC-MS chromatograms of the bio-crude oils at 350 °C in water where (a)
Chlorella (b) P. ellipsoidea (stressed) (c) P. ellipsoidea (non-stressed) (d) Spirulina
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Table 8-3: Identification of compounds from previous chromatograms

Number
Retention

time
(minutes)

Compounds

1 25.4 4-methyl-phenol

2 27.8 3-ethyl-phenol

3 29.4 1-pentadecene

4 31.7 1-butyl-2-pyrrolidinone

5 34.3 3-methyl-indole

6 35.1 heptadecane

7 36.6 benzonitrile

8 38.2 1-methoxy-3-(2-hydroxyethyl)-nonane

9 38.3 3,7,11,15-tetramethyl-2-hexadecene

10 39.1 1,4-eicosadiene

11 39.5 7-hexadecyn-1-ol

12 10.1 9-octadecyle

13 42.4 palmitic acid

14 43.1 isophytol

15 44.1 ethyl-phenyl-piperidine

16 44.5 (hydroxypropyl)-piperidine

17 46.7 octadecanoic acid

18 46.9 11-octadecenoic acid

19 47.3 9,12,15-linolenic acid

20 49.3 1-nonadecene

21 52.8 hexadecademide

22 52.9 dodecanamide

23 53 9-octadecenamide

24 53.2 hydroxymethyl-propanone-1-(2-hydroxy-3-indolylazo)

25 56.2 octadecenamide

26 56.3 (5-amino-thiadiazol-2-yl)-propyl-3H-benzooxazol-2-one

27 56.8 N-butyl-octadecanamide

28 59.8 octanoic acid, morpholide

29 61.2 1-(3,6-dimethyl-1-oxopentadecyl)-pyrrolidine
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Figure 8-5: Chemical structure of some molecules with nitrogen identified in the bio-crude
oil

The processing of high lipid microalgae, such as the stressed P. ellipsoidea, (

Figure 8-4 (b)) yields a majority of long chain compounds as suggested by the GPC

analysis in the previous section. These compounds include oxygenated compounds

such as ketone, alcohols. Aldehydes and fatty acids (3,5-dimethyl-cyclohexanone,

dodecanol, hexadecanal, nonanoic acid, oleic acid), a lower fraction of nitrogen

containing compounds (piperidine, hexadecanamide) and finally aliphatic compounds

such as alkenes (8-heptadecene); alkanes and naphsubsequentlyic (tridecane, propyl-

cyclohexane).

At lower temperatures (250 and 300 °C), there is evidence of the formation of

some piperazinediones (DKP, where the K stand for ketones) which are identified

such as 3-benzyl-6-isopropyl-2,5-piperazinedione and 3,6-bis(2-methylpropyl)-2,5-

piperazinedione (MS spectrum is present in the appendix 3, section 3.3 page 332) with

Chlorella and Spirulina, and are similarly observed by Torri et al. [137]. As discussed
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previously in Chapter 7, this group of compounds could be characteristic of the

degradation of proteins.

Other nitrogen compounds containing one or two nitrogen atoms such as 5,10-

diethoxy-2,3,7,8-tetrahydro-dipyrrolo-pyrazine identified in the bio-crude of Chlorella

can result from the Maillard reaction [314]. Indole is found principally with Chlorella,

this compound is likely to originate from the degradation of amino acids (tyrosine and

tryptophan). Indole derivatives are known to be stable under hydrothermal

liquefaction [315]. Biller et al. [112] observed pyrrolidine and piperidine compounds

in the bio-crude from the processed Spirulina and Chlorella.

For microalgae, the major compounds with the highest peak areas are the

amides including hexadecanamide and octadecanamide; pyrrolidine, 1-(1-

oxooctadecyl). Morpholide octanoic acid are also identified but with a lower

abundance. They are present in the bio-crude for Chlorella v., P. ellipsoidea at

different temperatures and in formic acid. Chiaberge et al. [316] investigated the

reaction between different amino acids and palmitic acid. Most of the hydrothermal

reactions with amino acids and fatty acids yielded unsubstituted hexadecanamide for

example with arginine, aspartic acid and asparagine acids. Furthermore, secondary and

tertiary amides were also observed in the bio-crude oils, produced by β-elimination

which is favoured by the conjugation of the double bonds. Reddy et al. [317]

identified 8-morpholino-4-cycloocten-1-one oxime and 9-octodecenamide in the bio-

crude oil from the processing of Duanaliella t.. In order to lower the amount of amide,

Cheng et al. [142] first processed the microalga Nannochloropsis o. under microwaves

to extract the lipids and subsequently the remaining residue was upgraded under

hydrothermal liquefaction, 26.7 % of nitrogen removal was achieved in the bio-crude

oil using this method.

For all the microalgae strains, hydrocarbons (alkanes or alkenes) such as 1-

pentadecene, heptadecane, 3,7,11,15-tetramethyl-2-hexadecene and 1,4 eicosadiene

are identified in the bio-crude oils. The presence of 3,7,11,15-tetramethyl-2-

hexadecene is a derivative from lipids [133]. Other aliphatic chain compounds could

have been produced by decarboxylation of lipids or alcohol chains. Isophytol is

commonly identified in the bio-crude from microalgae as described by Biller et al.

[112]. This compound could be formed from the reaction of chlorophyll and lipids

[166].
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FAME analysis is performed with the bio-crude oil of the four different

microalgae according to the procedure in Chapter 5 and the results are included in

Figure 8-6.

Figure 8-6: FAME profile for the different microalgae at 350 °C in water

For the stressed P. ellipsoidea, the main fatty acid in the bio-crude oil is oleic

acid, followed by stearic acid; in addition some further fatty acids are identified from

the NIST library such as 14-methyl-pentadecanoic acid, heptadecanoic acid, 11-

eicosenoic acid. For the non-stressed strain, FAMEs are present in lower

concentrations for example with palmitic acid. The delocalisation of the double bond

from oleic acid to position 7 or 11 instead of 9 could have occurred making difficult

their quantification. For Chlorella, oleic, stearic and palmitic acids are the most

abundant fatty acid with some 9-hexadecenoic acid. For Spirulina, the most abundant

FAME is palmitic acid followed by linoleic acids. Related results with the vegetable

oils at the same temperature 350 °C are achieved with low concentration of

polyunsaturated fatty acids. Torri et al. [137] observed that the recovery of

polyunsaturated fatty acid was reduced as the temperature increased.

8.4.1.3 Elemental analysis

The elemental analysis of the bio-crude oils is listed in Table 8-4 and includes

the elemental values, HHV Dulong energy content, H/C, O/C, the Milne energy

content (formula in Chapter 7) and energy recovery (formula in Chapter 3).
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Table 8-4: Weight % nitrogen, carbon, hydrogen, sulphur and oxygen content in the bio-crude
oils as dry basis, energy content (Dulong and Milne) and % energy recovery for experiments for
different model and microalgae at different temperatures and conditions

N

wt.

%

C

wt.

%

H

wt.

%

S

wt.

%

O

wt.

%

Dulong
HHV

(MJ/kg)
H/C O/C

Milne
HHV

(MJ/kg)

%
Energy

recovery

Chlorella

250 °C 7.0 73.5 9.9 0.5 9.2 37.4 1.6 0.1 36.1 36.3

300 °C 6.2 69.5 8.9 0.5 14.9 33.6 1.5 0.2 32.8 52.1

350 °C water 5.9 74.9 9.3 0.6 9.4 36.9 1.5 0.1 35.9 50.3

formic acid 5.2 68.6 8.9 0.5 16.8 32.9 1.6 0.2 32.4 41.1

Stressed P. ellipsoidea

250 °C 1.3 75 11.5 0 12.2 39.6 1.8 0.1 39.0 53.2

300 °C 1.5 71.1 10.6 0 16.8 36.2 1.8 0.2 35.94 62.6

350 °C water 1.0 70.5 10.3 0 18.2 35.3 1.8 0.2 35.23 56.9

formic acid 2.3 84.1 12.3 0 1.3 45.8 1.8 0 44.3 61.4

Non-stressed P. ellipsoidea

250 °C 6.1 77.7 6.8 - 9.4 34.3 1.1 0.1 33.6 34.4

300 °C 6.4 80.7 7.1 - 5.9 36.3 1.1 0.1 35.4 50.5

350 °C water 4.9 70.4 3.8 - 20.9 25.5 0.6 0.2 25.9 38.8

formic acid 5.2 72.4 4.3 - 18.1 27.4 0.7 0.2 27.5 33.1

Spirulina

250 °C 7.7 72.6 7.6 - 12.1 33.2 1.3 0.1 32.4 40.9

300 °C 6.3 66.6 7.4 - 19.6 29.6 1.3 0.2 29.4 44.3

350 °C water 5.6 70.3 8.1 - 15.9 32.5 1.4 0.2 32.2 50.7

formic acid 5.1 63.4 7.2 - 24.3 27.3 1.4 0.3 27.6 34.8

For the bio-crude of Chlorella and Spirulina, the nitrogen content is reduced as

the temperature increases. The same trend is observed for soya proteins with close

values (7.8 to 6.1 wt.%). The decrease is less obvious for both strain of P. ellipsoidea,

as the nitrogen content increases slightly at 300 °C. In general, the nitrogen content in

the bio-crude in average is related to the initial protein content, as the high nitrogen

content are measure measured for Chlorella and Spirulina (with relatively close

value), followed by the non-stressed (5.0 wt.%) and finally to the stressed P.

ellipsoidea (1.0 wt.%). It is encouraging to measure less than 1.5 wt.% of nitrogen in

the bio-crude of the stressed P. ellipsoidea. This result meets the initial target.
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In literature such as Alba Garcia et al. [133], Brown et al. [127] and Valdez et

al. [135], Jena et al. [131], most of studies observed an increase from low temperature

to approximately 300 °C, subsequently levelled out until the supercritical point (375

°C). The increase of the nitrogen could be explained by the recombination of nitrogen

monomers to form long chain polymers.

For Spirulina and Chlorella, the nitrogen content decreases with the addition

of formic acid. The opposite trend is been observed with both strain of P ellipsoidea.

Biller et al. [112] showed that the nitrogen content of the bio-crude increased in the

presence of formic acid compared to the run in water at 350 °C for Nannochloropsis

and Porphyridium whereas the nitrogen content was reduced with Chlorella and

Spirulina. The same trends are observed in this case for the previous microalgae

although with a lower concentration of formic acid [112, 129]. In Chapter 7, formic

acid also reduces the nitrogen content during the processing of soya proteins and

asparagine. It could imply that this organic acid is more efficient with high protein

content.

In general, the highest energy content is measured at 250 °C except for the

non-stressed P ellipsoidea. The reduction of hydrogen and carbon contents with the

temperature is unexpected for the stressed P. ellipsoidea, which results in diminishing

the energy content and increasing the oxygen content. The addition of formic acid

enhance the carbon content for the stressed P. ellipsoidea and yield an energy content

of 45.0 MJ/kg.

The deoxygenation in relation to the increase of temperature between 250 to

350 °C occurs with soya and hemp proteins. Nevertheless, the opposite trend is

observed with microalgae and lipids (Chapter 5) especially between 250 and 300 °C.

At 250 °C, high hydrogen content is detected generally. The other reason could be that

the polymerisation of molecules from the aqueous phase takes place above 250 °C. Yu

et al. [318] stated that the removal of hydrogen was maximal at approximately 220 °C

in the bio-crude oil processed from Chlorella sp.. The energy recovery from the bio-

crude oil is at its maximum at 300 °C. Garcia Alba et al. [133] determined that the

energy recovery increased constantly between 175 to 300 °C and subsequently

levelled out between 300 to 350 °C and finally decreased at higher temperature.

The van Krevelen diagram (Figure 8-7) represents the ratio of molar H/C

versus the O/C. For P. ellipsoidea (stressed and non-stressed), the ratio O/C is lower at
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300 °C, additionally the stressed strain has a better hydrogen/carbon ration compared

to petroleum oil of 1.8 [319]. Spirulina bio-crude oil contained a lower O/C at 250 °C.

The ratio O/C is similar between 250 and 350 °C with a higher H/C with the later

temperature. The liquefaction of microalgae overall allows the reduction of the

oxygen in the bio-crude oil compared to the unprocessed microalgae. Garcia Alba et

al. [133] measured the decrease of the O/C and H/C ratio from the processing of

Desmodesmus sp. from 175 to 300 °C which levelled out between 300 to 400 °C

implying that the major deoxygenation reactions occurred at temperatures below 300

°C. An increase of the H/C ratio and decrease of O/C ratio was measured by Yu et al.

[318] from the temperature of 220 °C.

Figure 8-7: Van Krevelen diagram of the raw algae and bio-crude oil at 250, 300 and 350
°C a) represents the stressed P. ellipsoidea; b) Chlorella; c) Spirulina; d) the non-stressed P.
ellipsoidea, the number 1) is experiment carried out at 250 °C; 2) 300 °C and 3) 350 °C

Consequently, the fate of nitrogen under subcritical conditions in the bio-crude

oils is dependent on the temperature and on the initial composition of the microalgal

strain.

8.4.1.4 Analysis of the bio-crude oil by STA-MS

Temperature programmed oxidation of the bio-crude oils from three different

microalgal strains (Chlorella, P. ellipsoidea (stressed) and Spirulina) has been

analysed. Additionally the raw Chlorella was analysed by the STA under combustion
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conditions; the thermogravimetric curve of the weight loss and the DTA are shown in

Figure 8-8. The evolved gases was analysed by a mass spectrometer (MS) and Fourier

transformer infrared (FT-IR) detectors. Figure 8-9 represents the absorption values of

carbon dioxide and carbon monoxide by FT-IR, Figure 8-10 shows nitric oxide (NO),

nitrogen dioxide (NO2) and hydrogen cyanide (HCN) absorbance for the processed

bio-crude.

Figure 8-8: Thermogravimetry and derivatives for the combustion of Chlorella, P.
ellipsoidea (PE) and Spirulina of the bio-crude oil

The combustion of bio-crude of the stressed P. ellipsoidea, Spirulina and

Chlorella can be subdivided into two major steps, the first at 230 °C and 520 °C. The

weight loss curve and DTA are relatively alike between the bio-crude oils of Spirulina

and Chlorella as these microalgae have a similar level of protein. The result are

similar with Gai et al. [320] who observed that the combustion profile of Spirulina

contained three stages of mass loss corresponding to the dehydration (from room

temperature to 120 °C) (not observed in the TGA), devolatilation (120 to 377 °C) and

the char oxidation (from 400 to 900 °C). The bio-crude oil from P. ellipsoidea shows

a greater weight loss within the 200-300 °C window and corresponded to the

combustion of the lipid content and volatile compounds.
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Figure 8-9: Heating profile of carbon monoxide and carbon dioxide measured by the MS
from 100 to 900 °C for Chlorella, P. ellipsoide (PE), Spirulina of the biocrude oil

The production of carbon dioxide is spread throughout the combustion of the

bio-crude Chlorella. Similar to Chapter 7, carbon monoxide is realised at lower

temperature and lower intensity. The intensity of carbon dioxide with P. ellipsoidea is

lower to the other microalgae.

Figure 8-10: Heating profile of nitric oxide and nitrogen dioxide, hydrogen cyanide
measured by the MS from 100 to 900 °C for Chlorella, P. ellipsoidea (PE), Spirulina bio-crude

The formation of nitric oxide (in Figure 8-10) is spread through a large
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lower for P. ellipsoidea as the nitrogen content in the bio-crude is lower than the other

algae. By comparing the DTA curve and the nitric oxide curve, the peak at

approximately 530 °C correspond mainly to the combustion of nitrogen present in

“heavy molecular weight” material identically than in Chapter 7.

To conclude, this analysis allows predicting that during the processing of

microalgae at 350 °C, hydrogen cyanide are the first to be produced during the

combustion followed from nitric oxide and carbon dioxide and monoxide. The

intensity of the gases is greater with Spirulina, Chlorella and finally with stressed P.

ellipsoidea. The evolved gases measured from the MS suggest that the nitrogen

fraction is mainly present in the “heavy molecular weight” materials. The intensity

depends on the initial nitrogen content of the microalgae.

8.4.2 Residue analysis

The thermogravimetric analysis of the residue included in Figure 8-11 suggests

that Spirulina contains up to 60 wt.% volatiles, followed by P. ellipsoidea (stressed)

with approximately 50 wt.%, whereas Chlorella has only 10 wt.%, where the

remaining microalgae residue is ashes. This is important information as until now, the

research community has taken little interest on the effect of ash during hydrothermal

liquefaction regarding the mass balance yield, and the degradation route.

Figure 8-11: TG and DTA of the residue of the processed residue of the four microalgae
strains at 350 °C stressed P. ellipsoidea (PE), non-stressed P. ellipsoidea (PE) and Spirulina
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The elemental analysis, energy content (Milne and Dulong equations), H/C,

O/C and energy recovery are displayed in Table 8-5 for the sample analysed.

Unfortunately, the residue of the sample from formic acid and P. ellipsoidea was not

carried out as there were insufficient samples available.

Table 8-5: Weight % nitrogen, carbon, hydrogen, sulphur and oxygen content as received
in the residue, energy content (Dulong and Milne) and % energy recovery for experiments with
four microalgae at different temperatures and conditions

N

wt.

%

C

wt.

%

H

wt.

%

S

wt.

%

O

wt.

%

Dulong
HHV

(MJ/Kg)
H/C O/C

Milne
HHV

(MJ/kg)

%
Energy

recovery

Chlorella

250 °C 2.0 41.5 2.2 0.1 38.8 10.2 0.6 0.2 12.0 9.6

300 °C 1.3 50.3 1.4 0.1 31.4 13.4 0.3 0.2 14.9 10.2

350 °C water 0.8 44.3 1.2 0.1 38.1 9.8 0.3 0.2 11.8 5.7

formic acid 1.6 37.0 2.1 0.2 43.7 7.7 0.7 0.2 9.8 3.7

Stressed P. ellipsoidea

250 °C 4.3 68.5 6.9 0.1 20.1 29.5 1.2 0.2 29.4 17.8

300 °C 4.2 74.4 7.6 0.2 13.6 33.6 1.2 0.1 33.1 14.7

350 °C water 4.5 77.0 6.8 0.1 11.5 33.8 1.1 0.1 33.2 10.6

formic acid - - - - - - - - - -

Non-stressed P. ellipsoidea

250 °C 7.3 64.4 3.4 1.3 23.6 22.5 0.6 0.3 22.6 13.4

300 °C 5.9 62.4 3.2 1.3 27.2 21.0 0.6 0.3 21.5 8.0

350 °C water 1.9 55.2 2.1 0.2 40.7 14.3 0.4 0.6 16.3 3.1

formic acid 5.6 53.5 2.9 2.0 36.0 16.1 0.7 0.5 17.1 4.5

Spirulina

250 °C 7.4 53.0 2.8 1.9 21.9 18.2 0.6 0.3 20.2 10.8

300 °C 6.6 43.4 2.6 1.6 32.8 12.7 0.7 0.6 16.7 5.4

350 °C water 7.7 41.1 2.7 1.8 33.7 11.9 0.8 0.6 15.8 4.8

formic acid 2.5 21.1 2.0 0.0 41.4 2.6 1.1 1.5 5.3 1.8

For Chlorella and Spirulina, the carbon and hydrogen contents are low

compared to the elemental composition of the bio-crude; It is assumed that the major

part of the residue (up to 80 wt.%) is composed of ash measured by TGA.

For both strains of P. ellipsoidea, higher carbon content is measured compared

to the previous biomass and furthermore the nitrogen level is higher than in the bio-

crude oil which implies that nitrogen compounds formed chars preferentially at low
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temperature. Formic acid, in general, reduces the formation of residue; it is the reason

why a low carbon and hydrogen contents are measured. It should be observed that the

level is higher in the residue whereas in the bio-crude, it is negligible.

According to Garcia Alba et al. [133], residue represented the undegraded

microalgae. As the temperature increases, the microalgae form clusters and decrease

in size; this explains why the carbon matter is reduced as carbon compounds are

soluble in the bio-crude oils. Finally, the energy recovery decreases as the temperature

increases, being recovered preferentially to the bio-crude oils.

Finally, the formation of residue containing a high volatile fraction from P.

ellipsoidea could be seen as a drawback as it decreases the amount of bio-crude yield.

The particle seize used in hydrothermal liquefaction is shown to have impact on the

formation of char or residues. Large particles of biomass favour the formation of chars

to the detriment of the bio-crude. This could be due to that more energy being required

to convert solid residues into oil.

8.4.3 Aqueous phase analysis

Results obtained from the analysis can be found in the Appendix 1, section

1.2.1 page 319. The analysis of this phase is important as it represented up to 50 wt.%

of the total mass balance with the exception of P. ellipsoidea (stressed).

In all the processed water from microalgae, as the temperature increases from

250 to 350 °C, the ammonium compound concentration increases. Valdez et al. [135]

drew a similar conclusion that ammonium compound concentration was influenced by

temperature. For Chlorella, the concentration is higher (6284 ppm) compared to the

stressed P. ellipsoidea (397 ppm). It can be deduced that the high proportion of lipids

induce the formation of amides which reduce the ammonium compound

concentration. It is surprising to observe that the ammonium compound concentration

is lower with Spirulina compared to Chlorella. Because Spirulina is a cyanobacteria

and have a different compositions, the nitrogen in the aqueous phase could be

decomposed in different compounds such as amines instead of ammonium. Further

analysis should be performed to know the molecular composition of the aqueous

phase.

Ammonium compound is mainly produced generally by the deamidation of the

amino acids or the peptide bonds; the increased concentrations with temperature are
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explained by the increase of protonation which favours the deamination of amino

acids or others nitrogen compounds [119, 282]. There is a linear relationship between

the three microalgae (Chlorella and the stressed and non-stressed P. ellipsoidea) and

the protein content given the following equation:

y = 197.7x - 4526.9 Equation 8-1

Formic acid for the case of Chlorella and the stressed P. ellipsoidea increased

the ammonium compound concentration. For the other microalgae, formic acid has the

opposite effect.

The pH of the process water increases and becomes more alkali with

increasing temperature for each of the four algae. The pH for the processed water from

the stressed P ellipsoidea with 7 compared to Chlorella with 9.2. The difference is

caused by a higher ammonium compound concentration. Similar behaviour was

observed by Yu et al. [318] from 180 to 300 °C which was explained by the increase

of organics from the decomposition of protein dissolved into the aqueous phase. The

pH is important as it has some impact on the solubility of some species as explaining

in Chapter 7.

The TOC concentration generally decreases as the temperature increases for all

the processed microalgae. In this study, the identification could be not be performed;

nevertheless, Garcia Alba et al. [321] identified in the aqueous phase the following

organics: acetone, polyols, amines, amino acids, nitrogen containing aromatics and

pyrrolidones (in high concentration) compounds. Sudasinghe et al. [322] analysed the

processed water from Nannochloropsis s. using the Fourier transform ion cyclotron

resonance mass spectrometry (FT-ICR MS) method. It was observed that in the

aqueous phase contained complex compounds with an average molecular weight of

400 g/mol, suggesting the presence of long chain amides.

There is no relationship apparent between the phosphate concentration and

temperature. For the stressed microalgae, the concentration is low, just above the

detection limit. Valdez et al. [135] measured a decrease in total phosphorus

concentration from 76 % to 38 % when the temperature increased from 250 °C to 350

°C, whereas Ross et al. [129] observed 20-30 % of phosphorus compounds in the

aqueous phase in formic acid, sodium potassium and carbonate ions.
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One of the concepts being proposed for hydrothermal liquefaction of

microalgae is to have a closed loop by recycling the aqueous phase as a growth media

for the microalgae (to be considered as a green process). To generate a greater

understanding of the fate of carbon and nitrogen, the following section discusses the

elemental mass balance of carbon and nitrogen.

8.4.4 Carbon and nitrogen mass balance

Table 8-6 lists the elemental mass balance of the nitrogen and the carbon

calculated according to the formula in the previous chapters.

For Chlorella and Spirulina, as the temperature increases, the carbon fraction

in the aqueous phase and in the residue decreases whereas the carbon fraction in the

bio-crude increases. Formic acid increases the carbon fraction in the aqueous phase.

As the ammonium compound concentration increases with temperature, the nitrogen

fraction in the aqueous phase increases also. The nitrogen fraction, in the bio-crude,

decreases from 300 to 350 °C. The results are, for both microalgae, coherent with

Biller et al. [112] who found that at 350 °C, the carbon fraction was the highest in the

bio-crude, and for the nitrogen fraction in the aqueous and in the gaseous phases.

For both strains of P. ellipsoidea, the carbon fraction is in majority present into

bio-crude oils with a maximum at 300 °C. The nitrogen fraction, in the aqueous phase,

is lower for the stressed P. ellipsoidea, compared to the non-stressed. Yet, formic acid

enhances the production of this ammonium compound for the stressed algae. The

nitrogen fraction is the highest at 300 °C in the bio-crude. The stressed P. ellipsoidea

contains higher nitrogen fraction in the residue compared to the other microalgae.

A large nitrogen fraction is determined in the gaseous phase for most of the

microalgae. Nevertheless, no gas analysis has been performed; Ross et al. [129],

observed the formation of nitrogen gaseous compounds such as ammonia, nitric oxide

and hydrogen cyanide for Chlorella and for Spirulina in presence of organic acids at

350 °C.
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Table 8-6: Carbon and nitrogen mass balance for the aqueous, bio-crude and remaining
phases for the experiments using microalgae and model compounds at different temperatures and
conditions

% C

aqueous

% C

bio-crude

% C

residue

% C

gas

% N

aqueous

% N

bio-crude

% N

residue

% N

gas

Chlorella

250 °C 45 30.7 16.9 7.4 20.6 14.0 2.2 63.2

300 °C 38 41.5 16.6 3.9 33.3 17.8 3.1 45.8

350 °C water 37.2 44.2 11.1 7.5 49.7 16.7 1.6 32.0

formic acid 27 41.3 7.1 24.6 61.1 13.5 0.7 24.7

Stressed P. ellipsoidea

250 °C 6.6 48.6 19.7 25.1 1.5 18.3 27.4 52.8

300 °C 7.3 59.4 15.3 33.4 5.7 28.4 19.4 46.5

350 °C water 15.9 54.8 11.5 29.3 9.7 18.1 23.9 48.2

formic acid 10.2 54.5 0.0 35.4 30.1 33.7 0.0 36.1

Non-stressed P. ellipsoidea

250 °C 35.9 34.5 17.1 12.6 4.7 16.6 11.9 54.9

300 °C 34.8 52.4 10.5 2.3 31.2 25.6 6.1 30.1

350 °C water 14.9 47.5 5.2 32.3 45.6 20.4 1.1 33.0

formic acid 14.9 41.2 6.6 37.2 11.6 18.1 4.0 41.7

Spirulina

250 °C 45.2 29.5 10.3 15.0 9.0 13.8 6.8 70.3

300 °C 35.2 32.7 6.1 26.0 18.3 13.7 4.3 63.6

350 °C water 27.0 36.1 5.5 31.4 23.7 12.8 4.9 58.7

formic acid 38.5 26.4 1.2 33.9 21.2 9.1 0.7 69.0

To summarise, as the temperature increases from 250 to 350 °C, the carbon

fraction in the aqueous phase is reduced while the nitrogen fraction in the aqueous

phase increases. The nitrogen fraction, in the bio-crude, decreases towards 350 °C.

The processing of P. ellipsoidea yields promising results, with a low nitrogen

content, and a high bio-crude yield. Moreover, this alga contained mostly

monosaturated fatty acids which reduced the formation of cross linked compounds.

The low nitrogen content in the processed oil with less than 1.5 wt.% is an

encouraging result. Nevertheless, the fraction of amides represents a large part of the

bio-crude oil composition.
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The type of the reactor was a predominant parameter which could have an

influence on the composition of the bio-crude oils. With the batch reactor used, a long

heating and subsequently cooling rate was achieved, recombination of small

molecules forming high polymers could reduce the quality of the bio-crude oil.

Temperatures also have an influence on the yield and bio-crude composition. For the

two varieties of P. ellipsoidea best conditions is achieved at 300 °C whereas with

Chlorella and Spirulina was found at 350 °C. In terms of energy, it would be more

suitable to carry out the experiment at milder temperature (between 200 to 300 °C) in

order to save some energy. Long reaction times at temperature below 300 °C are

recommended in order to achieve the lowest nitrogen recovery in the bio-crude. One

explanation could be that the polymerisation of short nitrogen heterocyclic compounds

such as pyrrole were not favoured compared to higher temperatures [323].

To conclude this section:

- The protein and lipid contents have an impact on the bio-crude yield.

- Chlorella and Spirulina have similar behaviour during hydrothermal

liquefaction with temperature in increasing the bio-crude yields and the fraction of

low molecular weight compounds.

- The ammonium compound concentration, in the aqueous phase,

increases in relation to the temperature for the four microalgae whereas the nitrogen

decreases in the bio-crude oils. There is a linear fit between the protein content of the

three microalgae and the ammonium compound concentration.

- A large range of nitrogen compounds are identified in the bio-crude oil

including piperidine, indole, 1-butyl-2-pyrrolidone and C18 amide chains. The most

abundant fatty acid in the bio-crude is oleic acid.

- The same conclusion is observed with the STA as for the processing of

proteins

- The carbon fraction is transferred from the aqueous phase into the bio-

crude oils or the gaseous phases with increasing temperature. The best condition to

produce the highest bio-crude with low nitrogen depends on the composition of the

strain used.
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8.5 Influence of metal doped HZSM-5 catalysts on Chlorella and the stressed P.

ellipsoidea

In the following section, a catalytic screening with metal doped zeolite will be

carried out in order investigate the effect on the nitrogen and in the mass balance

yield.

8.5.1 Mass balance yield

In order to reduce the work load, the catalytic screening is performed using

two different strains, Chlorella and P. ellipsoidea, using the following metals: iron,

copper, molybdenum and nickel doped in HZSM-5. Experiments are performed in

water and in formic acid. The mass balances for both microalgae are illustrated in

Figure 8-12. Some experiments were carried out in duplicate with HZSM-5 in water

and formic acids with the following coefficient of variance for the bio-crude oil

production: 4.2 % in water and 6.4 % in formic acid. (a) represents the experiment

Chlorella in water; (b) the experiments Chlorella in formic acid; (c) stressed P.

ellipsoidea in water; (d) stressed P. ellipsoidea in formic acid.
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Figure 8-12: Diagrams representing mass balance for the different fractions bio-crude oils,
gaseous, residue and aqueous fractions for the catalytic screening using metal doped HZSM-5
with Chlorella and stressed P. ellipsoidea.
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For the catalytic processing with Chlorella, FeZSM-5 and NiZSM-5 enhance

the yield of the bio-crude compared with the other doped zeolites. MoZSM-5 is

selective for the production of gas. Nevertheless, bio-crude yields are reduced

compared to the experiments in water especially with FeZSM-5. Copper is more

selective to enhance the aqueous phase fraction.

For the catalytic processing with P. ellipsoidea, a lower bio-crude yield is

observed compared to without catalyst, for example with 33.5 wt.% for NiZSM-5 and

49.3 wt.% without catalyst at 350 °C. Nickel and iron result in the highest yield of

bio-crude. As stated, the gaseous fraction is more significant with MoZSM-5 which is

unexpected as nickel was known to promote gasification. In contrast to Chlorella, a

higher bio-crude yield is achieved with formic acid; with NiZSM-5 with a yield of

42.0 wt.%. With this alga, the bio-crude yield differed compared to soya protein where

the yield was higher in water.

Overall, FeZSM-5 and NiZSM-5 enhances the formation of bio-crude yield,

while MoZSM-5 promotes gasification and CuZSM-5 increases the level of product

into the aqueous phase.

8.5.2 Bio-crude analysis of catalytic runs

In order to investigate the impact of metal and HZSM-5 towards the

composition of the bio-crude oil, GPC, GC-MS analysis and elemental analysis were

carried out.

8.5.2.1 GPC analysis

Figure 8-13 shows the molecular weight fraction in the bio-crude oil using

GPC for the catalytic screening of both microalgae. (a) represents the experiment with

Chlorella in water; (b) the experiments with Chlorella in formic acid; (c) stressed P.

ellipsoidea in water (d) stressed P. ellipsoidea in formic acid.
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Figure 8-13: Different molecular weight fraction of the bio-crude oils of for Chlorell. and stressed
P. ellipsoidea for the catalytic screening.
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presence of catalyst did not have a significant impact on level of “long chain”

materials which remains constant. Contradictory results are found with soya proteins

as discussed in Chapter 7 which indicated that with CuZSM-5, polymerisation was

enhanced. The variation between each experiment with formic acid is insignificant.

For the processing of P. ellipsoidea, the “long chain” material is the highest

fraction since this alga contains 67 wt.% dry weight lipids. MoZSM-5, in water,

enhances the formation of “heavy molecular weight” materials. In general, it is with

HZSM-5 and formic acid that the fraction of low molecular weight materials is the

largest with low polymerisation with microalgae and proteins (Chapter 7).

8.5.2.2 GC-MS analysis

Figure 8-14 represents one example of GC-MS chromatogram for the

processing with MoZSM-5 in water of P. ellipsoidea (a) and Chlorella (b). Table 8-7

lists the main compounds in the chromatograms of the two algae processed with

MoZSM-5.

The processing of the stressed P. ellipsoidea with the metal doped zeolite for

example with MoZSM-5 Figure 8-14 (a) show mainly long chain compounds such as

alkenes, amides and fatty acids. Except the formation of amides and pyrrole, less

nitrogen compound is identified compared to Chlorella. For CuZSM-5, the formation

of amide, such as 9-octadecenamide (57.2 minutes), is lower in formic acid compared

to water with a ratio of 92 of difference between the two areas. Copper has been

demonstrated to promote the hydrolysis of amides [324]. Biller et al. [196] observed

that formic acid alone increase the formation of amides, it could suggests that

HZSM-5 reduces the formation of amides.
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Figure 8-14: GC-MS chromatograms of the bio-crude oils at 350 °C in water where (a)
Chlorella (b) stressed P. ellipsoidea with MoZSM-5

Table 8-7: List of compounds identified in chromatogram using Chlorella and stressed P
ellipsoidea with MoZSM-5

Number
Retention

time
(minutes)

Compounds

1 29.2 Hexadecane

2 35.3 3-octadecene

3 37.5 2,3-dihydro-1-methyl-1H-pyrrole

4 38.6 3,7,11,15-tetramethyl-2-hexadecene

5 40.2 2-n-octylfuran

6 43.2 isophytol

7 44.5 1-phenyl-5-(1-piperidinyl)-pentan-1-one

8 52.9 hexadecamide

9 56.3 2-butylhexanoic acid, 3-pentyloxycarbonylpropyl ester

10 59.0 triazin-5(2H)-one compounds

The processing of Chlorella with the metal doped zeolite for example with

MoZSM-5 (Figure 8-14 (b)) produces lower oxygenated compounds included 2-n-
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octylfuran with more hydrocarbons such as 3,7,11,15-tetramethyl-2-hexadecene.

Complexes nitrogen compounds are identified at 59.0 minutes one molecule

containing an atriazin-5-(2H)-one group. A large formation of isophytol (43.2

minutes) is identified in most of the chromatogram from the processed catalyst. As

shown previously, 2-pyrrolidinone is only observed in formic acid with CuZSM-5 and

HZSM-5, whereas with CuZSM-5 a compounds containing imidazole attached to a

long alkane chain is identified. 1-ethyl-2-undecylimidazole is shown in Figure 8-15.

A large range of alkenes are typically observed for the other catalysts. In

general, new compounds has been identified performing the catalytic screening which

indicates that metal doped zeolite enhance the formation of compounds.

Figure 8-15: Chemical structure of 1-ethyl-2-undecylimidazole

8.5.2.3 Elemental analysis

Table 8-8 lists the elemental analysis of the bio-crude oil from the catalytic

experiments from the two microalgae in water and formic acid.

For Chlorella, a slight decrease in nitrogen is measured with FeZSM-5 and

MoZSM-5 in formic acids, otherwise for the remaining catalysts; there is little effect

on the level of nitrogen compared to the runs without the zeolites. MoZSM-5 gives an

encouraging result by lowering the oxygen content to 0.5 wt.%.

For P. ellipsoidea, the nitrogen content for the catalyst is higher with the

catalysts compared to the run without any catalysts. Similar results were observed

with soya protein in the previous chapter. Duan and Savage (2010) found that the

addition of “zeolite” reduced the nitrogen content from 6.3 to 4.3 wt.% which was

slightly higher than with the non-catalytic run [190].
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Table 8-8: Weight % nitrogen, carbon, hydrogen, sulphur and oxygen content as received
in the bio-crude oils, energy content (Dulong and Milne formula) and % energy recovery for
experiments for microalgae during the screening of metal doped HZSM-5

N

wt.%

C

wt.%

H

wt.%

S

wt.%

O

wt.%

Dulong
HHV

(MJ/kg)

H/C O/C
Milne
HHV

(MJ/kg)

%
Energy

recovery

Chlorella

Water

HZSM-5 5.5 75 9.3 0.4 9.7 37.0 1.5 0.1 36.0 36.5

FeZSM-5 5.2 73.4 8.8 0.8 11.8 35.4 1.4 0.1 34.5 48.9

CuZSM-5 6.7 80 10.1 0.4 2.8 41.0 1.5 0 39.3 42.4

MoZSM-5 6.2 82.5 10.5 0.4 0.5 42.8 1.5 0 41.0 51.1

NiZSM-5 6.5 75.5 9.7 0.6 7.7 38.0 1.5 0.1 36.7 38.5

Formic acid

HZSM-5 6.1 67.6 9.5 0.2 16.7 33.4 1.7 0.2 32.7 31.4

FeZSM-5 5.0 74.3 8.9 1.2 10.5 36.1 1.4 0.1 35.2 48.9

CuZSM-5 6.1 73.7 10 0.5 9.7 37.5 1.6 0.1 36.3 32.6

MoZSM-5 5.0 71.5 9.4 0.4 13.8 35.1 1.6 0.1 34.3 30.0

NiZSM-5 5.9 76.4 9.9 0.4 7.5 38.6 1.6 0.1 37.3 38.5

Stressed P. ellipsoidea

water

HZSM-5 2.1 78 11.7 0 8.1 41.7 1.8 0.1 40.7 35.8

FeZSM-5 1.6 75.2 11.3 0 11.9 39.4 1.8 0.1 38.8 33.9

CuZSM-5 2.2 81.5 11.9 0 4.5 43.7 1.8 0 42.5 33.7

MoZSM-5 2.2 80.4 11.2 0 6.2 42.1 1.7 0.1 41.1 46.2

NiZSM-5 1.5 74.6 11 0 12.9 38.6 1.8 0.1 38.1 47.7

Formic acid

HZSM-5 1.4 66.5 9.7 0 22.4 32.3 1.8 0.3 32.5 50.9

FeZSM-5 1.9 80.6 11.7 0.4 5.4 43 1.7 0.1 41.9 38.0

CuZSM-5 1.7 74.5 10.9 0 12.9 38.4 1.8 0.1 37.9 44.6

MoZSM-5 1.7 77.8 11 0 9.5 40.3 1.7 0.1 39.6 50.5

NiZSM-5 1.5 77.1 11.3 0 10.1 40.4 1.8 0.1 39.6 35.8

MoZSM-5 and CuZSM-5 enhance the deoxygenation of the bio-crude yielding

higher level of carbon (above 80 wt.%) in water. The result is emphasised with the

GC-MS composition where lower oxygenated compounds are observed in the bio-

crude. The hydrogen content, for the stressed P. ellipsoidea, increases to more than 10
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wt.% resulting in higher energy content due to the increase of the “long chain” range.

For both algae, the most efficient energy recovery is achieved in formic acids with

FeZSM-5 and NiZSM-5.

8.5.3 Aqueous phase analysis

The results from the analysis of the aqueous phase are shown Appendix 1,

section 1.2.2 page 320. For Chlorella, the ammonium compound concentration is at its

maximum with MoZSM-5 (5158 ppm) with the aqueous phase being alkali with a pH

of 9. On the other hand, the production of ammonium compound is reduced with

NiZSM-5 and CuZSM-5 (in water with a pH of 8.5).

For P. ellipsoidea, the ammonium compound is 2-5 times lower compared to

the other algae. Nevertheless, with formic acid an increase is measured. As explained

before, the formation of amide reduces the ammonium compound concentration in the

aqueous phase. In formic acid, the formation of amides is lower resulting in an

increase in ammonium compound in the aqueous phase. The pH of the processed

water phase with this alga is acidic (4-6) possibly due to lower nitrogen content. The

Brønsted acidic site of HZSM-5 and formic acid could promote the hydrolysis of the

amides and enhances the formation of ammonium compounds. It explained why the

abundance of amides in the bio-crude is lowered compared to the run in water. In

general, the ammonium compound concentration is lower using the catalysts than the

non-catalytic run.

The TOC concentration is enhanced by FeZSM-5 and HZSM-5 with formic

acid. From the previous chapter, similar results were obtained using the nickel and the

copper catalyst. There is incoherence with CuZSM-5 where with Chlorella, the largest

aqueous phase mass balance (40.7 wt.%) is deduced while the low TOC concentration

is measured (8942 ppm).

The production of phosphate concentration increase with Chlorella compared

to soya protein particularly with MoZSM-5 in formic acid. The sulphate concentration

is enhanced with NiZSM-5 in formic acid.
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8.5.4 Carbon and nitrogen mass balance

In order to understand the influence of the addition of catalyst, the carbon and

nitrogen mass balance is calculated and the values are lists in Table 8-9.

For the processing of Chlorella, the use of CuZSM-5 in water and formic acid

enhances the carbon fraction in the bio-crude followed by NiZSM-5. FeZSM-5

favours the distribution of carbon fraction to the aqueous phase and HZSM-5 to the

gaseous phase. MoZSM-5 is more selective at increasing the nitrogen fraction in the

aqueous phase in water and FeZSM-5 reduces the nitrogen fraction in the bio-crude oil

to the lowest value. CuZSM-5, in formic acid, seems the most suitable catalyst to

process Chlorella as high carbon and a relatively low nitrogen fraction are achieved.

For the processing of P. ellipsoidea, MoZSM-5 and FeZSM-5, in water, and

NiZSM-5, in formic acid, yield the highest carbon fraction in the bio-crude oil. In

Chapter 5, the processing of lipids with MoZSM-5 showed the highest propensity

towards aromatics. In this case, there is no evidence for the increase of aromatic

compounds being produced. In formic acid, the nitrogen fraction in the aqueous phase

is increased by a factor of three. Here the most suitable catalyst is NiZSM-5 which

produces a bio-crude with a high carbon fraction and low nitrogen fraction.
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Table 8-9: Carbon and nitrogen mass balance for the aqueous, bio-crude oils and
remaining phases (gaseous and residues) for the experiments using microalgae and model
compounds using metal doped HZSM-5

% C

aqueous

% C

bio-crude

% C

remaining

% N

aqueous

% N

bio-crude

% N

remaining

Chlorella

Water

HZSM-5 22.5 25.3 52.2 29.4 8.4 62.2

FeZSM-5 33.4 39.8 26.8 32.8 13.6 53.6

CuZSM-5 28.3 54.7 17.0 21.3 17.7 61.0

MoZSM-5 30.0 38.0 32.0 39 14.5 46.5

NiZSM-5 31.3 53.7 15.0 13.1 21.1 65.8

Formic acid

HZSM-5 9.1 27.4 63.4 28.5 12.1 59.4

FeZSM-5 3.6 25.8 70.6 28.6 8.8 62.6

CuZSM-5 9.3 36.6 54.2 29.5 12.0 58.5

MoZSM-5 9.5 27.8 62.7 36.0 11.3 52.7

NiZSM-5 10.2 32.6 57.2 22.1 12.3 65.6

Stressed P. ellipsoidea

Water

HZSM-5 15.5 32.4 52 6.6 19.1 74.3

FeZSM-5 7.8 31.2 61.0 16.5 14.5 68.9

CuZSM-5 8.7 30.3 60.9 13.4 17.9 68.7

MoZSM-5 7.8 44.8 47.4 16.6 26.8 56.6

NiZSM-5 6.5 40.1 53.4 18.8 17.6 63.5

Formic acid

HZSM-5 12.9 35.5 51.5 32.2 16.3 51.5

FeZSM-5 8.1 45.1 46.8 30.2 23.3 46.5

CuZSM-5 13.1 36.6 50.3 32.0 18.3 49.8

MoZSM-5 9.0 43.0 48.0 31.4 20.5 48.1

NiZSM-5 10.1 46.7 43.3 31.2 19.8 48.9

After the CHNS, GPC and GC-MS, the best bio-crude oil is achieved with

CuZSM-5 containing more than 45 % of low molecular weight for Chlorella and a

high carbon and low oxygen content are achieved. Even though with FeZSM-5 and

NiZSM-5 the highest bio-crude yield are obtained.
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To summarise, FeZSM-5, MoZSM-5 and NiZSM-5 have an impact on the

formation of the bio-crude oil and result in a slight reduction in nitrogen. CuZSM-5

improved the carbon distribution of the bio-crude oil for Chlorella and NiZSM-5 and

MoZSM-5 for the stressed algae. So far, noble metals such as Pd/C, Ru/C or Pt/C

achieved good bio-crude yields and low nitrogen and oxygen content in the oil [156,

190, 196]. The problem is that these catalysts are expensive and when this process is

scaled up this system would not be competitive compared to the traditional route

without catalyst.

In this section, the following points are observed:

- FeZSM-5 in water increases the bio-crude yield for Chlorella even

though more “heavy molecular weight” materials are produced.

- MoZSM-5 promotes gasification in water and in formic acid for

Chlorella.

- CuZSM-5 and MoZSM-5 enhances the reduction of oxygen in the bio-

crude of Chlorella.

- Compared to HZSM-5, the iron has an effect on reducing the nitrogen

content in the bio-crude. The reduction of nitrogen is not improved by the catalysts.

- Formic acid and metal doped HZSM-5 enhances the formation of

ammonium concentration compared to the run in water and thus reduces the formation

of amides in the bio-crude.

8.6 Discussion about the degradation of microalgae

Reactions occurring during hydrothermal liquefaction of microalgae are

complex as a range of interactions and reactions can take place. According to Toor et

al. [2], there are three reaction steps occurring during the hydrothermal liquefaction of

microalgae as explained in the literature reviews. Figure 8-16 gives a brief insight

regarding the different interactions and the degradation of the main component of the

microalgae (protein, carbohydrates and lipids). This diagram is drawn in relation with

the results obtained from literature [325].
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Figure 8-16: Diagram of the main degradation routes during hydrothermal liquefaction of
microalgae, the grey represent product soluble in the bio-crude oil, the blue the product soluble in
the aqueous phase and red in the residue

1) As explained in the previous chapters, during the first step, the

macromolecules (proteins, carbohydrates and lipids) from the microalgae are been

depolymerised and hydrolysed. For instance, the degradation of carbohydrates and

lipids molecules from microalgae occurs rapidly [326]. The same conclusion was

drawn for the proteins by Garcia Moscoso et al. [140]. Using SEM, Garcia Alba et al.

[133] observed that the degradation of the cell from the microalgae began at 225 °C by

forming a cluster which coagulated together. At 250 °C, most of the cells were broken

down producing bio-crude oil.

2) In the second step, the following monomers (for examples glucose, amino

acids and fatty acids) produced from the hydrolysis, degrade further and subsequently

recombine together. It is at this stage that the bio-crude oil is forming. It is the reason

why Valdez et al. [135] achieved high bio-crude yield (50 wt.%) in less than 10

minutes from Nannochloropsis at 300 °C. From the HTL processing of Chlorella py,

Gai et al. [327] found that the bio-crude drastically increased from 260 to 280 °C and

subsequently started to decrease between 280 to 300 °C as secondary cracking was

more preponderant which followed the result obtained by Li et al. [147]. The same

degradation pathway as in Chapter 7 could be deduced for the proteins of the
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microalgae, as diketopiperazine has been identified in the bio-crude of Chlorella such

as 3-benzyl-6-isopropyl-2,5-piperazinedione and 1-butyl-2-pyrrolidinone. Further

interactions can occur between other components even in low proportion such as with

ashes, nucleotides, chlorophylls, etc…

3) Cross linking between different molecules creates side reaction for example

between carbohydrates and proteins for example [314]. This reaction (explained more

in detailed in the next chapter) is known to produce “heavy molecular weight”

materials. In order to reduce the nitrogen content into the bio-crude oil, the formation

of these compounds should be hindered as these compounds are stable under high

temperature [315].

The formation of amides is one example of cross linking reaction. This

compound is produced via nucleophilic substitution of fatty acids and ammonia. The

mechanism is shown in Figure 8-17 from Clayden et al. [328] between a carboxylic

group and the ethylamine. In the first step, the nucleophilic group of the amine attacks

the carboxylic group; subsequently there is a proton transfer which leads to the leave

of the hydroxyl group. At room temperature, acyl chloride is more reactive compared

to a carboxylic acid group. As the polarity of water decreases with an increase in

temperature, the long chain fatty acids become soluble into the aqueous phase and

react with ammonium cations. At room temperature, a catalyst would be necessary in

order to activate the carbonyl groups and allow the condensation to occur. However, at

high temperatures, the ion dissociation constant Kw is increased from 250 to 350 °C

(close to a pK of 10-11), with higher proton donation characters [94].

Figure 8-17: Mechanism for the formation of amides [328]

Duan et al. [100] illustrated that the hydrolysis of N-methylacetamide was

reversible for a neutral pH (between 3 and 8). Under an acidic pH (below 3) and alkali

pH (upper than 9), the hydrolysis of this amide was enhanced followed an SN2
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mechanism. It is why the concentration of ammonium is higher with the addition of

formic acid and HZSM-5 as the hydrolysis of amides is more significant. Within the

pH range 3-8, amides are more stable.

8.7 Conclusion

The hydrothermal liquefaction of the four different microalgae was

investigated at different conditions (temperature, time, in water and formic acid). The

maximum bio-crude yield was achieved with P. ellipsoidea (stressed) with 52.9 wt.%

at 300 °C. The bio-crude oil increased with temperatures for Chlorella and Spirulina;

molecular weight of the bio-crude decreased with temperature as temperature

increased. Formic acid enhanced the formation of gas however the bio-crude oil was

reduced compared to the experiment in water. Contrary to results in the literature, the

nitrogen content decreased from 250 to 350 °C for Chlorella and Spirulina, while the

ammonium compound concentration increased in the aqueous phase. With both P.

ellipsoidea strains, the nitrogen was reduced from 300 to 350 °C. The high lipid

content enhanced the formation of amides in the bio-crude which reduced ammonium

compound concentration. Oleic acid was the main fatty acid observed in the bio-crude.

There is some evidence that the use of formic acid and zeolites decreased the level of

amides formation. Diketopiperazines were observed as a key product derived from the

degradation of proteins. NiZSM-5 and MoZSM-5 for the stressed algae increased the

carbon content in the bio-crude oil and were more active promoting deoxygenation.



Chapter 9

242

Chapter 9 HTL of model compounds and their mixtures

This chapter includes HTL experiments with various binary mixtures

composed of soya proteins, sunflower or linseed oils and starch; they have been

processed at different temperatures (250, 300 and 350 °C). Afterwards, proteins, lipids

and carbohydrates have been mixed together to obtain synthetic alga compositions.

Experiments have been carried out at three temperatures and at 350 °C in formic acid

and with HZSM-5.

9.1 Introduction

The formation of Maillard compounds between glycine and glycerol was

studied by Peterson et al. [314] and Minowa et al. [329]. Products called melanoidin

decompose into chars and subsequently at higher temperature into oils. Kruse et al.

[278] determined that the processing of protein and carbohydrates mixtures at high

temperature forms some scavengers (eg pyrazine molecules) which reduce the

formation of gas. Chiaberge et al. [316] investigated the formation of amide with

stearic acid and different amino acids. A wide array of primary and secondary amides

were synthesised with 20 amino acids.

A mixture of models containing lipids and carbohydrates has been studied by

co-processing sunflower and soya bean stalk with sunflower and with rapeseed meal

(high protein and fats) [330, 331]. The outcome of these experiments yielded a high

char content and many carbonyl and phenolic compounds in the bio-crude oils. Sinag

et al. [192] studied the decomposition of baby food (a blend of proteins, carbohydrates

and minerals) below the supercritical point (375 °C). Carbohydrates are mainly

degraded into aqueous products such as formic acid or glycolic acid and 20.0 wt.% of

solid residue is obtained. Biller et al. [112] mentioned a tertiary mixture with the

following composition: 43.0 wt.% protein, 27.6 wt.% carbohydrate and 28.7 wt.%

lipid, a similar bio-crude yield is achieved between the synthetic and the real

microalgae. Valdez et al. [152] predicted a numerical model from experimental results

of different microalgae as a continuity of Biller et al. [112]. It was deduced that the

bio-crude formation was more favourable with less carbohydrates and more lipids.
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The chapter aims to discuss the processing of different mixtures from

feedstocks used in the previous sections. The different interactions between each

mixture will be studied depending on the proportion and temperature. Furthermore,

synthetic mixtures similar to two microalgae Chlorella and P. ellipsoidea are

processed using hydrothermal liquefaction. These results are compared with real algal

biomass.

9.2 Methodologies

Different binary mixtures were prepared with the following proportion of

starch-protein, sunflower-protein, linseed-protein, sunflower-starch and linseed-starch

(25-75, 50-50 and 75-25). The 50-50 composition of the previous mixtures was used

at 250 °C and 300 °C. The synthetic microalga called Chlorella or high nitrogen

microalga was prepared with the following composition for 3 g: 9.0 wt.% of starch;

34.8 wt.% of sunflower oil and 56.3 wt.% of proteins. The stressed P. ellipsoidea was

simulated with: 7.3 wt.% starch, 66.3 wt.% sunflower oil, 26.3 wt.% proteins.

Experiments were carried out at 250, 300 and 350 °C, in water and in formic acid and

HZSM-5 for the highest temperature. Two additional experiments were carried out

using a mixture of glucose, different fatty acids (oleic 67.0 wt.% and linoleic acid 33.5

wt.%) and amino acids (50-50 asparagine-glutamine) using the same proportion of the

algal mixtures. The resulting products (bio-crude oil and aqueous phase) were

analysed using the same procedures as in the previous chapters.

9.3 Binary mixtures

9.3.1 Initial composition

Table 9-1 contains the initial composition of the raw mixture between each

element (starch, soya protein, sunflower and linseed oil) and for the model mixture

asn-glucose represents the mixture asparagine and glucose with a 50-50 ratio. The

mixture of starch and protein is determined by the elemental analyser, and the other

value was calculated by doing the average of the initial component.
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Table 9-1: Elemental composition as dried basis of the raw mixtures and the exact wt.%
composition in proteins, carbohydrate and lipids for the mixtures

N

wt.
%

C

wt.
%

H

wt.
%

O

wt.
%

HHV
(MJ/kg)

Proteins
wt.%

Lipids
wt.%

Carbohydrates
wt.%

Starch-protein

75-25 3.3 40.7 6.4 49.6 14.1 23.5 - 76.5

50-50 6.9 43.2 6.6 43.3 16.3 47.4 - 52.6

25 -75 10.2 45.5 6.7 37.6 18.2 66.8 - 33.2

asn-glucose 9.7 35.3 6.6 48.4 12.7 49.3 - 50.7

Sunflower-protein

75-25 3.6 67.3 10.2 19.0 33.9 28.6 71.4 -

50-50 7.1 61.8 9.3 21.9 30.2 58.1 41.9 -

25-75 10.7 56.2 8.3 24.9 26.4 78.7 21.3 -

Linseed-protein

75-25 3.6 67.3 10.3 18.9 34.1 23.2 76.8 -

50-50 7.1 61.7 9.4 21.9 30.3 44.5 55.5 -

25-75 10.7 56.2 8.4 24.8 26.5 74.0 26.0 -

Sunflower-starch

75-25 - 64.3 9.9 25.8 31.3 - 73.3 26.7

50-50 - 55.7 8.8 35.6 25.0 - 49.2 50.8

25-75 - 47.1 7.6 45.3 18.6 - 25.2 74.8

Linseed-starch

75-25 - 64.2 10.1 25.7 31.5 - 73.8 26.2

50-50 - 55.7 8.9 35.5 25.1 - 51.6 48.4

25-75 - 47.1 7.6 45.3 18.7 - 27.1 72.9

The weight per cent nitrogen against the protein content of the microalgae is

included in Figure 9-1 as reference. This plot suggests that the nitrogen content is

related to the protein content.
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Figure 9-1: Relationship between unprocessed protein and the nitrogen between starch and
soya-protein in dark and red was the four microalgae (1) stressed P. ellipsoidea (2) non-stressed P.
ellipsoidea (3) Chlorella v. and (4) Spirulina.

Between the stressed P. ellipsoidea and Chlorella, there is a linear relationship

with the three microalgae; nevertheless there is no difference with Chlorella and

Spirulina. It suggests that for the raw microalgae after 60 wt.% of proteins the

nitrogen content is not proportional to the protein content, although proteins have a

major impact with high lipid algae.

9.3.2 Mass balance yield

The effect of different compositions on the mass balance yield of the various

phases is investigated. Figure 9-2 shows the mass balance of the experiments with

proteins mixed with (a) starch-protein; (b) sunflower-protein; (c) linseed-protein. In

the first diagram, an extra run is shown with 50-50 asparagine-glucose (asn-glucose)

for comparison and the experiments with starch and sunflower oil in (d) and linseed

oil in (e).
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Figure 9-2: Mass balance (oil, gaseous, residue and aqueous phase) of binary mixtures: (a)
carbohydrate-protein; (b) sunflower-protein; (c) linseed-protein (d) starch-sunflower; (e) starch-
linseed.
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For the mixture starch-protein (Figure 9-2 (a)), the residue yield decreases in

relation to the temperature. Similar bio-crude yields are obtained between the

experiment starch-protein and asparagine and glucose, although the aqueous phase

yield is higher for the latter mixture. Minowa et al. [329] measured a constant increase

of bio-crude yield with temperature using a combination of 70 % of glucose and 30 %

of glycine. The authors explained that low temperatures were more selective for the

production of chars which decomposed above 250 °C into bio-crude oil or secondary

products in the aqueous phase.

For the mixture sunflower-protein and linseed-protein (Figure 9-2 (b) and (c)),

the bio-crude yield reduces as the temperature increases from 250 to 350 °C. This is

unexpected, as generally, the opposite trend is measured in the previous experiments

for example in Chapter 5. Commonly, lipids are fractionated into the bio-crude yield

and proteins into the aqueous phase. At 350 °C, the bio-crude yield is approximately

25 wt.% less than the lipids content probably resulting in the solubilisation of them in

the aqueous phase either by formation of amides or possible due to saponification

reactions. At room temperature, the solubility of stearic acid is negligible (0.4 mg/100

g of water at 25 °C), in contrast sodium stearate is completely soluble in water [332].

The aspect of the aqueous phase is different from the other samples; the water has a

“viscous” and turbid appearance supporting the promotion of saponisation reaction

which is more likely in alkali pH caused by the degradation of the protein [333]. This

result confirms what has been discussed in the previous chapter where some fatty

acids are lost with the stressed P. ellipsoidea.

For the mixture sunflower-starch (Figure 9-2 (d)), a reduction of the bio-crude

yield is also observed. For linseed-starch, the temperature has a minor impact on the

bio-crude yield compared to sunflower-starch. The residue yield decreases in relation

to the temperature. The result is different suggesting that the unsaturated fatty acids

could have an effect on the outcome of the yield.

Figure 9-4 represents the protein content against the different yield (a) bio-

crude and aqueous (b) gaseous and residue for the mixture starch-protein, sunflower-

protein and linseed-protein.
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Figure 9-3: Plot of the different phase yield in relation of protein content the mixture
starch-protein, sunflower-protein and linseed-protein where (a) is the bio-crude and the aqueous
phase; (b) is the gaseous and the residue

For starch-protein, there is a clear pattern indicating that the bio-crude and

gaseous yield increase in relation to the protein content. For 75 wt.% of starch at 350

°C, the mass balance is similar during the processing of pure starch and glucose where

the degradation of product is enhanced towards the residue and gaseous fraction. The

hydrolysis of starch has previously been shown to be faster than protein [2]. On the

contrary, proteins favour the formation of bio-crude and aqueous phase fractions,

however as explained in Chapter 7, the majority of molecules formed in the bio-crude

contained nitrogen. Results are in agreement with Inoue et al. [334] where a mixture

of cellulose and ammonia with different C/N ratio were processed at 300 °C. There

was a relationship between the C/N with an increase of the bio-crude and aqueous

phase yield and a decrease of the residue. For linseed-protein and sunflower-protein,
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there is an inversion from the bio-crude yield to aqueous phase yield when the protein

content increases. It is observed that at high concentration of lipids, the bio-crude

yield is lower compared to the initial amount. For example, the per cent loss of the

initial lipids for the 75 wt.% sunflower and linseed mixtures are 18.1 and 27.3 wt.%

respectively.

Figure 9-4 represents the lipids content against the different yield (a) bio-crude

and aqueous (b) gaseous and residue for the mixture sunflower-starch and linseed-

starch.

Figure 9-4: Plot of the different phase yield in relation of protein content the mixture
sunflower-starch and linseed-starch where (a) is the bio-crude and the aqueous phase; (b) is the
gaseous and the residue
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is achieved which implies that there are 12 wt.% of lipids lost. When sunflower and

linseed oils were processed in Chapter 5, the yield of bio-crude was above 80 wt.%.

In conclusion, when carbohydrates are added, the residue yield is greater. As

expected, more lipids enhance the bio-crude yield in contrast to proteins and

carbohydrates where the opposite trend is observed. Some further investigations are

required to explain why a decrease bio-crude yield is measured with temperature using

sunflower-linseed and protein but also between sunflower-starch.

9.3.3 Bio-crude analysis

9.3.3.1 GPC analysis

The molecular size range is measured by gel permeable chromatography and is

displayed in Figure 9-5 where (a) represents the mixture protein-starch where asp-

glucose meant glucose-asparagine; (b) sunflower-proteins and (c) linseed-proteins. (d)

sunflower-starch and (e) linseed-starch.

For the experiment starch-proteins (Figure 9-5 (a)), the formation of “heavy

molecular weight” materials slightly increases in relation to the temperature. The

reaction between glucose asparagine produce lower amount of “heavy molecular

weight” materials and higher amount of smaller compounds (200 g/mol).

For the experiment sunflower-proteins and linseed-starch, (Figure 9-5 (b), (c))

an increase of the formation of oligomer materials is observed in relation to the

temperature. In Chapter 5, especially with linseed oil, the high concentration of

linolenic and linoleic acids enhanced the intra-cyclisation and the formation of cross

linking compounds. For linseed-protein, the decrease of the fraction of “long chain”

materials from 250 to 350 °C could indicate the formation of soap and amides soluble

in the aqueous phase as explained previously. For sunflower-protein, the formation of

“heavy molecular weight” materials decreases with the temperature contrary to

linseed-protein.
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Figure 9-5: Different molecular weight fraction of the bio-crude oils of the different
mixtures between (a) starch-protein, (b) sunflower-protein and (c) linseed-protein at different
temperatures
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Figure 9-6 represents the per cent of the different fraction in function of the

protein content (a) “heavy molecular weight” and oligomers and (b) “long chain” and

low molecular weight for the mixture starch-protein, sunflower-protein and linseed-

protein.

Figure 9-6: Plot of the molecular weight fraction in in relation of protein content the
mixture starch-protein, sunflower-protein and linseed-protein where (a) is “heavy molecular
weight” and oligomers; (b) is the “long chain” and low molecular weight
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effect on the molecular weight when starch is mixed with soya protein. Finally, when

the lipids proportion is dominant more materials between 200 to 600 g/mol are present

whereas for proteins, more materials below 200 g/mol are present.

Figure 9-7 represents the per cent of the different molecular weight fraction in

function of the lipids content (a) heavy molecular weight and oligomers and (b) long

chain and low molecular weight for the mixture sunflower-starch and linseed-starch.

Figure 9-7: Plot of the molecular weight fraction in in relation of the lipids content the
mixture sunflower-starch and linseed-starch where (a) is “heavy molecular weight” and
oligomers; (b) is the “long chain” and low molecular weight
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To summarise, the analysis of the bio-crude oils allows us to deduce that

linseed oil enhances the formation of “heavy molecular weight” materials with higher

protein content. It again emphasises that biomasses containing high level of

polyunsaturated fatty acids is not suitable for hydrothermal liquefaction. In order to

have more detailed chemical composition of the bio-crude oils, results obtained by

GC-MS analysis will be shown in the following section.

9.3.3.2 GC-MS analysis

In this section, some example chromatograms will be presented with peak

identification. The first chromatogram (Figure 9-8) represents the bio-crude oil of 75

% soya protein with starch. Identified molecules are listed in Table 9-2.

Figure 9-8: GC-MS chromatogram of the sample 75-25 protein-starch in DCM

Table 9-2: Peaks identification in the GC-MS the sample 75-25 protein-starch

Number
Retention time

(minutes)
Compounds

1 19.4 2-pyrrolidinone

2 19.5 phenol

3 20.7 1-ethyl-2-pyrrolidinone

4 21.5 4-methyl-phenol

5 23.8 1-ethyl-6-methyl-piperidinone

6 26.7 butyl-2-pyrrolidinone

7 29.7 6-methyl-indole

8 39.2 (1-ethyl-2 pyrrolidinyl)-methanol

9 42.2 cyclopropaneoctanoic acid

10 48.2 1-methyl-9H-pyridoindole

11 57.0 4,5,6,7-tetramethyl-2H-isoindole

Figure 9-9 contains some chemical structures of molecules identified during

the processing of the mixture of starch and proteins.
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Figure 9-9: Chemical structures of some compounds found in the bio-crude during the
processing of starch and proteins

In the bio-crude from these experiments, heterocyclic compounds mainly are

identified, for instance methyl-phenol, pyrrolidinone, piperidinone, indole etc. DKP

molecules such as cyclo-(L-leucyl-L-phenylalanyl), pyrrolo-pyrazine-1,4-dione,

hexahydro-3-(phenylmethyl) are identified at 250 °C. These compounds are

characteristic of the degradation of proteins explained in Chapter 7.

3,3-diethoxy-2,3-dihydro-1H-pyrrole-4-carboxylic acid observed at 250 and

300 °C could be an indicator of the Maillard reaction [277]. These molecules

containing pyrrole can form polymers with a molecular weight higher to 1000 g/mol

called melanoidins. More complex oxygenated molecules, compared to the run with

starch are detected, for example 2,4,6-cycloheptatriene-1-one, oxahomoadamantan-5-

one (two cyclohexanes link together), some similar to the group of sterols and one

derivative of cholesterol. For the reaction between glucose and asparagine, the most

abundant compound is 2,3,5-trimethyl-indole. Overall, compounds produced between

carbohydrates and proteins are complex and relatively stable.

Figure 9-10 shows on example of the chromatogram from the reaction of

linseed and soya protein at 250 °C, molecules identified are listed in Table 9-3. The
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following compounds are found during the processing of sunflower and protein at

different temperatures: ketones (undecanone), carboxylic acid (non-7-enoic acid), and

amides (oleic diethanolamide). The majority of the compounds contained a long chain.

The majority of amides identified in this study are formed between oleic and stearic

acid chains. Nevertheless, (1-oxo-9,12,15-octadecatrienyl)-pyrrolidine is also

identified which is produced between a linolenic acid and a pyrrolidine.

Figure 9-10: GC-MS chromatogram of linseed-protein at 250 °C

Table 9-3: Peaks identification in the GC-MS linseed-protein at 250 °C

Number
Retention

time
(minutes)

Compounds

a 43.6 3,6-diisopropylpiperazin-2,5-dione

b 44.3 3,3-diethoxy-2,3-dihydro-1H-pyrrole-4-carboxylic acid

c 46.0 3,6-bis(2-methylpropyl)-2,5-piperazinedione

d 52.2 9-octadecenamide

e 52.5 N,N-dimethyl-9-octadecenamide

f 55.1 1-(1-oxo-9-octadecynyl)-pyrrolidine

g 57.6 oleic diethanolamide

h 60.7 1-(1-oxo-9,12,15-octadecatrienyl)-pyrrolidine

Figure 9-11 shows the different concentration of FAME at different

proportions with sunflower and linseed oil at 350 °C.
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Figure 9-11: FAME of the different mixture composition between sunflower and linseed
with soya protein

For sunflower-protein, the FAME profile indicates that linoleic acid is the

most abundant fatty acid, contradicting the result in Chapter 5 where linoleic acid

from sunflower oil was completely degraded at 350 °C. For linseed-protein, lower

linoleic and linolenic acids is observed in the bio-crude. For linseed-protein, the ratio

between the oleic acid (9-octadecenoic acid) and the amide form (using the area)

increases from 4 to 13.5 between the 25 % and the 75 wt.% mixtures. For sunflower-

protein, the ratio is greater, from 15 to 18, suggesting that fatty acids are in larger

proportion than the corresponding amides as the concentration of oleic acid is higher

in sunflower oil. Yet, this is a semi-quantitative measurement only judged using the

peak areas.

Table 9-4 lists the main compounds identified. Most of the compounds with

the mixture of vegetable oils (linseed and sunflower) and starch are long chain

compounds or fatty acids.

The compounds are similar to those from processing lipids alone; compounds

from starch are limited and are primarily soluble in the aqueous phase. Surprisingly,

some FAMEs are detected whereas no esterification is performed in the bio-crude oil,

as protonation is more likely to occur under hydrothermal liquefaction, the formation

of the ester is possible under this condition [94]. 9-(o-propylphenyl)-nonanoic acid is

an example of the internal cyclisation of linolenic acid. Dihydro-5-tetradecyl-2-(3H)-

furanone is a common molecule produced from formic acid and a fatty acid. Formic

acid could originate from the degradation of starch. This compound was also

identified in Chapter 5 with the experiment of formic acid and sunflower oil.
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Figure 9-12: GC-MS chromatogram of the HTL experiment between linseed-starch (75-25)
at 350 °C

Table 9-4: Peaks identification in the GC-MS linseed-starch at 350 °C

Number
Retention

time
(minutes)

Compounds

A 30.6 8-heptadecene

B 33.0 hexadecanoic acid, methyl ester acid

C 42.7 octadecanoic acid, methyl ester

D 44.8 9-(o-propylphenyl)-nonanoic acid

E 50.7 dihydro-5-tetradecyl-2(3H)-furanone

F 52 1-(1-methyl-2-propenyl)-4-(2-methylpropyl)-benzene

Moreover, for sunflower-starch, less aliphatic compounds are found, instead

aldehydes such as E-14-hexadecenal and Z,Z-10,12-hexadecadienal and other

compounds such as 2-pentyl-phenol and phthalic acid. Cyclohexylmethyl-2-

phenylethyl ester (observed with the run 50-50 sunflower-starch at 350 °C) could be

produced between carbohydrate and lipids. The effect of carbohydrate on lipids is low

compared to protein.

To conclude, the majority of identified compounds are produced by

condensation reaction and some of these compounds are similar from the molecules

produced from the processing of microalgae.
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9.3.3.3 Elemental analysis

Table 9-5 includes the elemental value, the energy content and energy

recovery. For the energy recovery it should be pointed out that for starch and proteins

the initial energy content is calculated according to mixture of unprocessed sample

otherwise the other mixture samples are determined by doing the average value in

function of the raw energy content of mixtures.

For the mixture of starch-protein, the nitrogen content is constant for all the

conditions used (for the three temperatures). Minowa et al. [329] observed a slight

increase of the nitrogen content from 250 to 350 °C for short reaction time.

Nevertheless, for glucose-asparagine, the nitrogen content in the bio-crude oils is

lower, suggesting this element is decomposing to a different phase. In the case for

linseed-protein, there is a reduction of the nitrogen content with temperature from 3.4

to 2.4 wt.%. For the mixture sunflower-protein, the nitrogen content is doubled with

75 wt.% of protein compared to 50 wt.%.

For the mixture of sunflower-protein, the carbon content decreases in relation

to the temperature; it explains why the highest energy content is achieved at 250 °C.

For the mixture linseed-protein, the carbon content is highest at 300 °C yielding a

good energy recovery. The presence or not of double bonds in fatty acids could have

an impact on the carbon and nitrogen contents in the bio-crude. For the mixture

sunflower-starch and linseed-starch, vegetable oils enhance the carbon and hydrogen

contents and yield a better energy content and energy recovery. As for in Chapter 5

for linseed oil, the hydrogen content decreases for linseed-starch in relation to the

temperature and the carbon content is at its highest at 300 °C for sunflower-starch

similar to the experiment with sunflower oil at the same temperature. For the

processing carbohydrates in Chapter 6, for example of glucose, the carbon content

increased with temperature.
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Table 9-5: Nitrogen, carbon, hydrogen, sulphur and oxygen content in the bio-crude oils as
received, energy content (Dulong and Milne) and % energy recovery for experiments for
different mixtures at different temperatures and proportions

N

wt.
%

C

wt.
%

H

wt.
%

O

wt.
%

Dulong
HHV

(MJ/kg)
H/C O/C

Milne
HHV

(MJ/kg)

%
Energy

recovery

Starch-protein

250 °C 6.3 76.2 8.5 9.0 36.4 1.3 0.1 35.3 8.6

300 °C 6.3 66.5 7.3 19.8 29.4 1.3 0.2 29.0 34.5

350 °C 50-50 6.0 74.0 7.9 12.1 34.1 1.3 0.1 33.3 37.0

25-75 6.3 76.2 8.5 9.0 36.4 1.3 0.1 35.3 48.9

75-25 7.1 81.0 9.0 2.9 39.7 1.3 0.0 38.1 20.6

asn-glucose 1.0 67.4 9.5 22.1 32.4 1.7 0.2 32.6 45.1

Sunflower-protein

250 °C 3.0 83.0 12.4 1.7 45.5 1.8 0.0 44.0 72.2

300 °C 3.6 78.3 11.6 6.5 41.9 1.8 0.1 40.7 47.7

350 °C 50-50 2.0 74.6 11.4 11.9 39.4 1.8 0.1 38.7 36.3

25-75 4.1 72.3 10.6 12.9 37.3 1.8 0.1 36.5 35.4

75-25 1.7 73.7 11.5 13.1 39.0 1.9 0.1 38.4 75.9

Linseed-protein

250 °C 3.4 62.5 10.1 24.0 31.3 1.9 0.3 31.2 47.1

300 °C 3.1 81.1 11.7 4.2 43.3 1.7 0.0 42.0 63.8

350 °C 50-50 2.4 78.5 5.5 13.6 32.0 0.8 0.1 32.0 29.7

25-75 3.7 71.0 9.9 15.4 35.3 1.7 0.2 34.8 31.9

75-25 1.7 75.5 5.6 17.1 30.5 0.9 0.2 30.8 51.2

Sunflower-starch

250 °C 0.0 67.6 11.2 21.2 35.1 2.0 0.2 35.2 67.6

300 °C 0.0 70.7 11.4 17.9 36.9 1.9 0.2 36.8 64.1

350 °C 50-50 0.3 62.3 8.8 28.6 28.6 1.7 0.3 29.3 48.5

25-75 0.0 69.8 9.4 20.8 33.3 1.6 0.2 33.6 40.7

75-25 0.0 72.0 11.7 16.3 38.1 1.9 0.2 37.8 89.1

Linseed-starch

250 °C 0.0 72.4 11.5 16.1 38.0 1.9 0.2 37.8 71.5

300 °C 0.0 67.9 10.6 21.6 34.2 1.9 0.2 34.4 63.2

350 °C 50-50 0.0 68.7 10.0 21.3 33.7 1.7 0.2 33.9 66.7

25-75 0.0 61.6 8.9 29.4 28.3 1.7 0.4 29.1 44.4

75-25 0.0 67.9 9.2 22.9 32.1 1.6 0.3 32.5 84.0
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9.3.4 Analysis of the residues

Table 9-6 lists the elemental analysis, heating content and energy recovery of

the residues (when available).

Table 9-6: Nitrogen, carbon, hydrogen, sulphur and oxygen content in the residue, energy
content (Dulong and Milne) and % energy recovery for experiments for different mixtures at
different temperatures and proportions as dried basis

N

wt.
%

C

wt.
%

H

wt.
%

O

wt.
%

Dulong
HHV

(MJ/kg)
H/C O/C

Milne
HHV

(MJ/kg)

%
Energy

recovery

Starch-protein

250 °C 7.0 71.6 6.1 15.3 30.2 1.0 0.2 29.7 22.2

300 °C 5.9 69.5 5.8 18.8 28.5 1.0 0.2 28.3 18.9

350 °C 50-50 7.2 74.9 6.0 11.8 31.8 1.0 0.1 31.0 11.6

25-75 5.0 65.0 5.2 24.8 25.0 1.0 0.3 25.4 13.6

75-25 6.0 69.8 5.7 18.5 28.4 1.0 0.2 28.2 29.0

asn-glucose 8.2 69.5 4.7 17.6 27.1 0.8 0.2 26.7 6.8

Sunflower-starch

250 °C - 69.5 4.9 25.7 25.8 0.8 0.3 26.9 17.4

300 °C - 73.9 5.7 20.4 29.5 0.9 0.2 30.1 17.4

350 °C 50-50 - 75.0 5.5 19.4 29.8 0.9 0.2 30.4 11.6

25-75 - 84.8 5.0 10.1 34.0 0.7 0.1 34.2 27.2

75-25 - - - - - - - - -

Linseed-starch

250 °C - 65.4 4.5 30.0 23.2 0.8 0.3 24.5 7.2

300 °C - 71.4 5.2 23.4 27.4 0.9 0.2 28.3 12.3

350 °C 50-50 - 62.3 8.8 28.6 28.6 1.7 0.3 29.3 15.8

25-75 - 76.3 6.2 17.5 31.4 1.0 0.2 31.9 28.1

75-25 - 72.5 4.6 22.9 26.9 0.8 0.2 27.8 6.2

For the char of glucose and asparagine, higher nitrogen content is measured

compared to the mixture starch-protein explaining why the nitrogen content in the bio-

crude is low for the first mixture. Lower nitrogen content is measured for the char

from starch-protein at 300 °C compared to the other temperatures. Minowa et al. [329]

observed that temperature had a minor impact on the nitrogen content in the char.
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For the char produced from the processing of sunflower-starch and linseed-

starch, the energy content (HHV) increases with the temperature. For sunflower-

starch, more specifically, the carbon content increases in relation of the temperature in

opposition to the oxygen content. For linseed-starch, higher hydrogen content is

measured compared to sunflower-starch. The difference could be caused by a higher

saturation for linseed oil. The energy recovery is reduced with temperature for

sunflower-starch similar to the residues from carbohydrates in Chapter 6.

Figure 9-13 shows the three curves of the weight loss and the DTA for starch-

protein; sunflower-starch and glucose asparagine chars. The thermogravimetric

analysis indicates that starch-protein and glucose-asparagine contains 47 wt.% of

volatiles whereas sunflower-starch contains a lower level with 38 wt.%. The other part

of the char is combusted (up to 60 %) above 900 °C. The results imply that residues

(chars) are stable under hydrothermal conditions. For starch-protein, the DTA shows a

shoulder at 280 °C and a main peak around 410 °C.

Figure 9-13: TG and DTA of the residue of the processed residue of the mixture: protein-
starch; sunflower-starch; glucose-asparagine

To summarise, for protein-starch, the elemental analysis is similar between the

bio-crude and the residue. The experiment using glucose and asparagine yields more

nitrogen in the char which is probably due to the Maillard reaction. Compared to the

elemental analysis of the starch in Chapter 6, chars from the sunflower-starch, higher

hydrogen content is achieved. Finally, the formation of residue is a drawback in

-10

-8

-6

-4

-2

0

0

20

40

60

80

100

50 250 450 650 850

Δ
w

ie
ig

h
t/

Δ
ti

m
e

%
W

ei
g

h
t

lo
ss

Temperature ( °C)

TG starch-
protein

TG sunflower-
starch

TG glucose
asparagine

DTA starch-
protein

DTA sunflower-
starch

DTA glucose
asparagine



HTL of model compounds and their mixtures

263

particular when experiments will be carried out in continuous reactor as plugging

could occur.

9.3.5 Aqueous phase analysis

The concentrations are listed in the Appendix 1, section 321. page A-5. For the

sample mixed with soya protein (starch, sunflower and linseed oil), in general, when

the protein content increases from 25 to 75 wt.%, the ammonium compound

concentration increases in the aqueous phase. For the processing of starch-protein, an

increase of ammonium compound concentration is measured from 250 to 350 °C.

Minowa et al. [329] also mentioned an increase of ammonium with temperature. For

the glucose-asparagine mixture, less ammonium compound concentration is detected

compared to the starch mixture as probably different compounds are produced such as

nitrogen heterocyclic compounds. For linseed-protein mixture, the highest

concentration is measured at 250 °C.

There is a linear relationship between the protein content and the ammonium

compound in particular with starch-protein with R2 of 0.97 and with linseed-protein a

good coefficient R2 of 0.99; the curve is shown in Figure 9-14. The equations for

starch-protein are found in equation 9-1 and sunflower-protein in Equation 9-2. Yet,

these curves are linear from 25 to 75.

y = 225.2x - 5320.7 Equation 9-1

y = 107.1x - 214.2 Equation 9-2

When, the first equation is used for Chlorella, a concentration of 6370 ppm is

calculated using the average value from the both formulas, which is close to the

experimental concentration 6284 ppm. Close value are also found for the non-stressed

P. ellipsoidea with 5208 ppm compared to 5051 ppm. For the stressed P. ellipsoidea,

only the first formula from starch-protein give a close value 309.3ppm compared to

the experimental concentration. The formation of amides could suggest why a lower

concentration was measured. However, these models do not work to predict the

ammonium concentration of Spirulina. It implies that for these algae the formation of

ammonium compound is caused by other factors than proteins, carbohydrates and

lipids such as chlorophyll, nucleotides, but also the cell wall strength as described D.

López Barreiro et al. [134]. In Chapter 8, it was deduced that the stressed P.
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ellipsoidea had lower cell wall compared to Spirulina, this could explain the

difference.

Figure 9-14: Concentration of ammonium versus the protein content

For the samples mixed with starch (proteins, sunflower and linseed), the TOC

concentration decreases in relation to the temperature. A pH value of 3 from

sunflower-starch and linseed-starch is determined suggesting that the processed water

contains a majority of acidic species. For the mixtures sunflower-protein and linseed-

protein, the TOC concentration is higher at 300 °C where the pH of aqueous phase is

in the mild acid (pH 6-7) region.

Peterson et al. [314] indicated that the main product in the aqueous phase

produced by the Maillard reaction was pyruvic aldehyde and ethanolamine. Kruse et

al. [278] mentioned that the concentration of phenol increased with temperature. Sinag

et al. [192] measured more acetic acid and acetaldehyde during the decomposition of

baby food close to the supercritical water. To summarise, a relationship is observed

with the protein content and ammonium compound concentration yet this model does

not match the results obtained from some microalgae.

9.3.6 Carbon and nitrogen mass balance

In order to have a clear picture of the degradation of the products, the mass

balance is calculated for carbon and the nitrogen. The results are listed in Table 9-7.

An average carbon and nitrogen value was calculated from the percentage of the pure

raw materials for sunflower, linseed with starch and proteins.
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Table 9-7: Carbon and nitrogen mass balance for the aqueous, bio-crude and remaining phases

for the experiments using mixtures at different temperatures and conditions

% C

aqueous

% C

bio-crude

% C

residue

% C

gas

% N

aqueous

% N

bio-crude

% N

residue

% N

gas

Starch-protein

250 °C 31.7 6.8 41.8 19.7 30.1 3.5 25.7 40.7

300 °C 25.4 29.4 28.1 17.1 41.3 17.7 15.0 26.0

350 °C 50-50 8.6 30.3 29.4 31.8 47.4 15.5 17.9 19.2

25-75 23.1 43.1 14.4 19.4 73.5 15.0 4.9 6.6

75-25 8.4 13.7 42.9 34.9 7.8 15.9 3.7 72.6

asn-glucose 18.6 27.6 10.4 43.4 6.9 1.8 1.2 90.1

Sunflower-protein

250 °C 33.4 64.4 - 2.2 28.7 13.8 - 57.5

300 °C 42.8 43.6 - 13.6 35.5 17.4 - 47.0

350 °C 50-50 32.5 33.6 - 33.8 43.5 9.7 - 46.7

25-75 30.3 32.4 - 37.3 73.5 13.7 - 12.8

75-25 7.4 72.1 - 20.5 48.5 16.1 - 35.4

Linseed-protein

250 °C 29.0 46.2 - 24.8 55.5 14.6 - 29.9

300 °C 34.6 58.8 - 6.7 30.7 17.5 - 51.7

350 °C 50-50 33.4 35.9 - 30.7 48.1 9.7 - 42.2

25-75 28.1 30.4 - 41.5 50.7 13.1 - 36.2

75-25 8.5 64.3 - 27.2 41.1 15.5 - 43.5

Sunflower-starch

250 °C 9.9 58.3 9.1 22.7 - - - -

300 °C 8.7 55.0 14.3 22.0 - - - -

350 °C 50-50 6.3 47.4 18.2 28.1 - - - -

25-75 6.2 33.8 19.7 40.3 - - - -

75-25 3.0 82.0 8.2 6.9 - - - -

Linseed-starch

250 °C 13.2 53.0 21.1 12.6 - - - -

300 °C 9.9 67.6 19.6 2.9 - - - -

350 °C 50-50 6.8 70.1 13.2 10.0 - - - -

25-75 5.1 44.2 26.9 23.8 - - - -

75-25 5.9 97.0 0.0 -2.9 - - - -
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For the experiments of starch-protein and sunflower-protein, the nitrogen

fraction in the aqueous phase increases in relation to the temperature. Contrary to the

experiment for linseed-protein, where there is no clear trend with the nitrogen fraction

and the temperature. When the mixture contains 75 wt.% of protein, the majority of

the nitrogen fraction is contained in the aqueous phase. This observation was the same

for protein and microalgae with low lipid content in Chapter 7 and 8. The opposite is

observed with 75 wt.% starch, the nitrogen fraction is more prominent in the gaseous

phase. Interestingly, the nitrogen fraction in the bio-crude is higher with 75 wt.% of

sunflower oil compared to the mixture with 50 wt.% confirming the formation of

amides.

For experiments with starch (starch-protein, sunflower-starch and linseed-

starch), the carbon fraction is reduced in the aqueous phase with temperature.

Meanwhile, the carbon fraction at 350 °C is more prevalent in the bio-crude oils and

in the residue. For sunflower-starch, a decrease of the carbon fraction is noticed in

bio-crude. For the processing of starch in Chapter 6, lower carbon fraction is

observed in the residue as the temperature increased. Increasing the amount of lipid

from 25 to 75 wt.% enhances the fractionation of carbon toward the bio-crude oil to

around 80 wt.%. There is no obvious explanation for the variation among the two

vegetable oils. When starch is added to other components the bio-crude yield is higher

than alone. For the sunflower-protein experiments, with larger protein content, the

carbon fraction is more predominant in the aqueous phase. The carbon fraction using

glucose and asparagine is largest in the bio-crude oil and in the aqueous phase

compared to the mixture starch-protein. Minowa et al. [329] observed a transfer of

carbon fraction from the solid residue to the bio-crude oil and the aqueous phase

during the processing of glucose and glycine; here it was unclear whether this trend

occurred.
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It is deduced from the results of the binary mixture experiment that lipids

played a major role in the formation of bio-crude.

- Proteins and carbohydrates favour the formation of aqueous

compounds and residue phase. The protein increases slightly the formation of “heavy

molecular weight” materials when linseed oil is mixed with soya protein. Interestingly

for sunflower-protein, the fraction of oligomers decreases with higher proteins

content, furthermore more linoleic acid is observed compared to the run alone.

- The mixture of carbohydrate and protein form melanoidin compounds

which enhance the complexity and the viscosity of the oil. The bio-crude from the

experiment between glucose and asparagine contains more nitrogen content in the char

compared to the bio-crude oil.

- A linear relationship was elucidated between the formation of

ammonium compound and the amount of protein and carbohydrates.

- On the whole, results with mixtures are coherent with the experimental

results for starch, sunflower and soya proteins. It implied similar trends with the mass

balance and elemental analysis.
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9.4 Synthetic of Chlorella and P. ellipsoidea mixture

9.4.1 Mass balance yield

In this section, two ternary mixtures were prepared similar to Chlorella and P.

ellipsoidea. The elemental composition is included in Table 9-8. Figure 9-15

represents the diagram of the mass balance yield of the different phases with

corresponding (a) mixture stressed P. ellipsoidea and (b) mixture Chlorella. The last

diagram included results regarding the simple model compounds mixture. In this

section, the metal doped zeolites were not use as only the interactions between the

three components were studied. HZSM-5 was only used as comparison with the run in

water.

Table 9-8: Elemental composition of the raw mixtures and % composition in proteins,
carbohydrate and lipids as dried basis

N

wt.
%

C

wt.
%

H

wt.
%

O

wt.
%

HHV
(MJ/kg)

Proteins
wt.%

Lipids
wt.%

Carbohydrates
wt.%

Stressed
P. ellipsoidea
mixture

3.6 64.5 9.8 22.1 31.9 24.4 68.1 7.5

Chlorella
mixture 7.8 56.4 8.5 27.3 26.3 53.8 36.8 9.5

Chlorella
model 9.9 50.0 7.6 32.5 22.0 25.5 67.7 6.8

Stressed
P. ellipsoidea
model

4.5 64.1 10.2 21.2 32.5 56.8 32.9 10.3
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Figure 9-15: Diagrams representing mass balance for the different fractions bio-crude, gaseous,
residue and aqueous fractions for (a) the of stressed P. ellipsoidea synthetic mixture and (b)
Chlorella synthetic mixture

For both synthetic mixtures (Figure 9-12 (a), (b)), the highest bio-crude yield

is achieved at 300 °C. For the stressed P. ellipsoidea in Chapter 8, the highest bio-

crude yield is also achieved at this temperature with 52.9 wt.%. For the Chlorella

mixture, higher bio-crude yield is obtained compared to the real microalgae with

approximately 28.9 wt.%. Lower bio-crude yield is achieved at 250 and 350 °C. The

run in formic acid enhances the formation of bio-crude oils compared to the

experiment with water. For the stressed P. ellipsoidea mixture with HZSM-5, the bio-

crude yield is greater to the yield obtained in Chapter 8 (25.4 wt.%) suggesting that

here more lipids is recovered.

Using model fatty acids compounds yields, less bio-crude yield is achieved

compared to the experiment with sunflower oil. Emulsification could have occurred as

during the filtration of the aqueous phase bubbles were observed. The presence of

glucose enhances the formation of chars.
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Biller et al. [112] prepared a synthetic microalgae with the same compounds at

350 °C with 1/3 proportions, a bio-crude oil of 30.4 wt.% was obtained. The following

equation was generated (Equation 9-3):

Bio-crude yield % = (protein yield wt.% x protein content %) + (carbohydrate

yield wt.% x carbohydrate content %) + (lipid yield wt.% x lipid content yield %)

Equation 9-3

Via this formula, a yield of 62.0 wt.% is calculated for P. ellipsoidea which is

close to the yield obtained with the synthetic mixture (58.0 wt.%), while with

Chlorella a value of 31.0 wt.% is determined. The difference for the yield between the

synthetic mixture and the real microalgae implies that the other elements (such as the

ash, chlorophyll, etc.) in the biomass have an influence on the formation of bio-crude

oils. Furthermore, conditions such as reactor size, stirring and heating rate, in which

the experiment is carried out played a role as well. The other factor which explains the

alteration is complexity and the linkage of each element together in the real biomass.

Therefore, some techniques such as microwaves or the pre-treatment which break

“these connections” should be investigated in order to improve yields.
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9.4.2 Synthetic mixture bio-crude oils analysis

9.4.2.1 GPC analysis

The different molecular weight fraction calculated from the GPC was shown in

Figure 9-16 for the experiments using ternary mixture.

Figure 9-16: Different molecular weight fraction of the bio-crude oils of the different
mixture microalgae (a) P. ellipsoidea stressed (b) Chlorella at different temperatures and
conditions
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processing of synthetic Chlorella, the fraction of lipids is 17.5 % higher with HZSM-5

compared to the run in water.

Runs with the model fatty acids achieves higher fraction of “long chain”

materials in the bio-crude oils compared to the results when sunflower oil is used. It

could suggest that the saponification process is lower. The “heavy molecular weight”

materials are composed of reaction between the two amino acids and glucose.

Both mixtures shows nearly identical pattern under hydrothermal liquefaction

concerning the mass balance. GC-MS, CHNS is carried out in order to obtain more

information about the composition of the bio-crude oils.

9.4.2.2 GC-MS analysis

Figure 9-17 (a) represents an example of the chromatogram with the synthetic

mixture of P ellipsoidea at 350 °C in water and (b) synthetic mixture of Chlorella.

Table 9-9 includes the list of compounds identified within the chromatograms

Figure 9-17: GC-MS chromatogram for the (a) stressed P. ellipsoidea (b) mixture Chlorella at 350
°C in water
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Table 9-9: Peaks identification in the GC-MS

Number
Retention time

(minutes)
Compounds

1 24.7 1-butyl-2-pyrrolidinone

2 45.8 4-butyl-phenol

3 48.2 hexadecanamide

4 52.0 9-octadecenamide

5 52.4 N,N-dimethyl-9-octadecenamide

6 54.9 n-butyl-9-octadecenamide

7 55.1 N,N-diethyl-9-octadecenamide

8 56.6 N-(2-phenylethyl)-acetamide

9 57.6 oleic diethanolamide

10 59.7 1-(1-oxo-9-octadecenyl)-pyrrolidine

11 60.3 1-(1-oxo-9-octadecenyl)-piperidine

Figure 9-18: FAME profile for both model mixtures of synthetic microalgae.

The main compounds from the GC-MS of the synthetic P ellipsoidea are

amides, some compounds have not been identified previously such as 4,4-dimethyl-2-

(1-hydroxy-heptadec-8-enyl)-2-oxazoline and 2-heptadec-10-enyl-4,4-

dimethyloxazoline.

The main compounds from the GC-MS of the synthetic Chlorella (Figure 9-17

(b)) are amides such as N-propyl-9-octadecenamide, and N,N-dimethyl-9-

octadecenamide. Some fraction of stearic acid with the high lipid mixtures is observed

which is not present originally suggesting that a small amount of oleic acid could be

hydrogenated.
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Figure 9-18 includes the main FAME in the bio-crude oil of the prepared

microalgae mixture with oleic and linoleic acids. Both mixtures show that the main

fatty acid presents in the oil is oleic acid as for the real stressed P. ellipsoidea. The

concentration of linoleic acid is reduced however it is possible that delocalisation of

the double bonds occurred to 7,10 or 9,12 position explaining the reduction of this

compound.

9.4.2.3 Elemental analysis

Table 9-10 lists the elemental values of the bio-crude oil obtained during the

hydrothermal processing of two synthetic microalgae using three components. For the

energy recovery, the initial energy content is determined using the percentage

composition of the different elements (proteins 22.8 MJ/kg, and 37.6 MJ/kg for

sunflower oil). Thus the heating content for the synthetic mixture of P. ellipsoidea was

31.9 and 23.2 MJ/kg for Chlorella in contrast to the real algae with 36.9 and 35.3

MJ/kg respectively.

For the stressed P. ellipsoidea mixtures, an increase of the nitrogen content is

noticed between 250 to 350 °C compared to the bio-crude oils from the real

microalgae. For the Chlorella mixtures, the nitrogen content decreases this time from

4.2 to 3.8 wt.% which was coherent with the real Chlorella with lower values.

Opposite trends are also found for the carbon content between the stressed P.

ellipsoidea and Chlorella mixtures. For the stressed P. ellipsoidea mixtures with

formic acid and HZSM-5, the hydrogen content is lower compared to the other

samples; a problem of measurement could be the reason as samples are liquids and

molecular sieves are used for this sample. Interestingly, HZSM-5 enhances the

nitrogen content in the bio-crude oil with both sets of experiments.

The HTL run using fatty acid and amino acids yields similar figures to the bio-

crude oil of the real stressed P. ellipsoidea at 350 °C. The maximum energy recovery,

for both mixtures, is measured at 300 °C.
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Table 9-10: Nitrogen, carbon, hydrogen, sulphur and oxygen content in the bio-crude oils,
energy content (Dulong and Milne) and energy recovery for experiments for the ternary mixtures
of the two algae as dried basis

N

wt.%

C

wt.%

H

wt.%

O

wt.%

Dulong
HHV

(MJ/kg)
H/C O/C

Milne
HHV

(MJ/kg)

% Energy
recovery

stressed P. ellipsoidea mixtures

250 °C 1.8 76.1 11.8 10.3 40.7 1.9 0.1 39.9 75.9

300 °C 2.3 76.3 11.5 10.0 40.4 1.8 0.1 39.6 92.6

350 °C 3.7 79.2 12.0 5.1 43.0 1.8 0.0 41.6 81.1

formic acid 3.0 69.9 5.3 21.8 27.3 0.9 0.2 27.7 53.4

HZSM-5 3.7 67.8 5.7 22.9 26.9 1.0 0.3 27.3 56.5

model 1.4 72.3 11.2 15.0 37.8 1.9 0.2 37.4 43.7

Chlorella mixtures

250 °C 4.2 76.3 8.7 10.8 36.3 1.4 0.1 35.6 75.9

300 °C 4.0 69.5 10.2 16.2 35.2 1.8 0.2 34.7 92.6

350 °C 3.8 62.8 9.0 24.4 29.7 1.7 0.3 29.7 81.1

formic acid 3.2 56.5 8.0 32.3 24.8 1.7 0.4 25.4 53.4

HZSM-5 5.8 69.6 9.3 33.3 30.9 1.6 0.4 31.2 56.5

model 3.2 71.0 10.6 15.2 36.4 1.8 0.2 35.8 43.7

9.4.3 Aqueous phases analysis

The concentrations are listed in Appendix 1, section 1.3.2 page 322. The

ammonium compound concentration of P ellipsoidea mixture increases with the

temperature, from 1250 to 2040 ppm; these values are larger than with the real

microalgae. There is no clear trend for the Chlorella mixture where the highest

concentration is achieved at 300 °C. For the real Chlorella, a constant rise from 2576

to 6284 ppm is measured from 250 to 350 °C.

The concentration of cations or anions might be less accurate as the viscosity

of the sample is greater compared to other processed water samples which caused a

slight lag in the retention time and causes a co-elution of some species. The

concentration of ammonium is relatively close between the model experiment (with a

mixture of amino acids) and the synthetic mixture with soya protein. By themselves,

soya proteins and asparagine acid yields different concentrations of ammonium.
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For the P ellipsoidea mixture, the maximum TOC concentration (4065 ppm) is

measured at 350 °C in water; with a neutral pH (7.3). In contrast, the maximum TOC

concentration is achieved with formic acid for the Chlorella mixture with an alkali pH

of 8.8.

9.4.4 Carbon and nitrogen mass balance

Table 9-11 includes the mass balance of nitrogen and carbon for the synthetic

mixture of two microalgae. No residues are available to calculate the mass balance of

the carbon and nitrogen.

Table 9-11: Carbon and nitrogen mass balance for the aqueous, bio-crude oils and
remaining phases for the experiments using mixtures at different temperature and conditions

% C

aqueous

% C

bio-crude

% C

remaining

% N

aqueous

% N

bio-crude

% N

remaining

stressed P. ellipsoidea mixtures

250 °C 5.2 70.1 24.8 24.7 17.1 58.1

300 °C 3.0 86.4 10.6 29.2 21.8 49.0

350 °C 5.8 73.9 20.3 40.9 35.7 23.4

formic acid 1.8 67.6 30.7 54.3 25.8 19.9

HZSM-5 3.9 70.2 25.9 49.4 35.2 15.5

model 10.6 42.2 47.1 32.0 10.0 58.0

Chlorella mixtures

250 °C 33.4 30.8 35.8 60.5 18.8 20.6

300 °C 35.3 44.9 19.8 63.1 17.9 18.9

350 °C 26.7 24.6 48.8 41.7 17.0 41.2

formic acid 40.6 29.4 30.0 83.9 12.8 3.3

HZSM-5 27.3 29.0 43.6 32.9 26.0 41.2

model 44.2 25.5 30.4 25.4 10.7 63.8

For the processing of P. ellipsoidea mixtures, the carbon fraction is in majority

present in the bio-crude with a maximum (86.4 wt.%) at 300 °C and less in the

aqueous phase. The highest fraction is found in the gaseous phase with the model

mixture. Overall, the nitrogen fraction is more predominant in the aqueous phase and

in the gaseous phase compared to the bio-crude.
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For the processing of Chlorella mixtures, different results are achieved

particularly with the carbon fraction. Contrary to the previous experiment, the carbon

fraction is higher in the aqueous phase with the exception of the experiment of the

model compound. The nitrogen fraction is higher in the aqueous phase at 300 °C and

in formic acid at 350 °C. Likewise for real Chlorella, formic acid enhances the

formation of ammonium compounds.

To summarise this section:

- Similar patterns were found between the two synthetic mixtures of

microalgae especially with the mass balance yields and fraction of molecular weight.

- The yield depended on the lipid content. Yet, the value was below the

yield obtained with the true algae because of the simplicity of the mixture.

- When amino acids with glucose were used together, the formation of

bio-crude is hindered. It can be deduced that the proportion of protein is higher the

nitrogen content is reduced in the bio-crude oil with temperature while when the

content of lipids is higher than 50 %, the opposite trend was observed. Thus, the P.

ellipsoidea mixture is most suitable at 300 °C whereas Chlorella it is at 350 °C.

9.5 Discussion of mechanism of reactions

When proteins are added with carbohydrate compounds, a tangle of reaction

networks takes place leading to the formation of “heavy molecular weight” materials

compared to the processing of soya protein or amino acids alone. Peterson et al. [314]

and Kruse et al. [278, 335] remarked that amino acids such as glycine or alanine

enhanced the fractionation of glucose. The Maillard reaction is illustrated in Figure

9-19 with the reaction of asparagine and glucose; with this example it was slightly

more complex as the amino acids contained two nitrogen groups [336].

The first and second steps involve a condensation between the amine group

(proteins or amino acids) with a carbonyl group (from a carbohydrate) to form N-

substituted glycosylamine. The following step from 3 to 4 leads to the rearrangement

to an Amadori compound by the delocalisation of the double bonds. The compound in

step 4 is enediol, from there, lot possible pathways can lead to cyclisation via a retro-

aldol obtaining pyrrole or furans [277]. Furan and pyrrole with an aldehyde group can

condensate with alcohol molecules etc. Subsequently, there are various possibilities as

different monomers can be formed and moreover, polymers could even react together
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via cross linking [323, 336]. In the bio-crude from the processing of Nannochloropsis,

Sudasinghe et al. [337] identified imidazole-like molecules (compounds with two

nitrogen atoms) as the most abundant compounds. This class of compounds were

produced during the Maillard reaction.

All these reactions are developed for pyrolytic conditions and low

temperatures; yet Peterson et al. [314] assumed that under hydrothermal liquefaction

similar reactions happen. In order to have a clearer idea of the “heavy molecular

weight” materials, the different fractions should be separated using a technique similar

to the size exclusion chromatography where the different fractions are analysed by

proton NMR.

Figure 9-19: Main steps for the Maillard reaction between the asparagine and glucose
according to Peterson et al. [94] or Tressl et al. [277]
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The reaction between vegetable oils and soya proteins produces mainly long

chain compounds with fatty acids, primary amides for example 9-octadecenamide or

tertiary amide with oleic diethanolamide (shown in Figure 9-20). This molecule is

produced from the condensation of two ethanolamides. This compound is more stable

than C18 amide chains. The second molecule represents the 2-heptadec-10-enyl-4,4-

dimethyloxazoline; it is a long chain with an oxazoline group, they were used as

protecting groups for carboxylic acid [338].

Figure 9-20: Structure of oleic diethanolamide and 2-heptadec-10-enyl-4,4-
Dimethyloxazoline 1-(1-oxo-9-octadecynyl)-pyrrolidine

9.6 Implications for the hydrothermal liquefaction of microalgae

For the binary mixture, the yield is plotted in function of the protein content

for the experiment performed between the mixture sunflower-protein, linseed-protein

and starch-protein and displayed in Figure 9-21. A polynomial fit is applied for the

curve with the lipids with a second order.
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Figure 9-21: Relationship between yield and the protein content for the different mixture of
proteins

The equation for the sunflower is shown below in Equation 9-4 and for linseed

in Equation 9-5

y = 0.0368x2 - 4.1737x + 138.1 Equation 9-4

y = 0.024x2 - 2.9872x + 113.6 Equation 9-5

The curve which is closest to the bio-crude oil mass yield obtained is with

linseed as for 55 wt.% of protein for Chlorella a theoretical yield of 21 wt.% instead

of 28.9 wt.% and 56 wt.% for P. ellipsoidea instead of 49 wt.% at 350 °C. Above 60

wt.% of protein, the bio-crude yield seems to level out before 50 wt.% with both

sunflower and linseed oil, a linear trend suggesting that proteins do not have an impact

on the yield. Therefore, a microalga strain with protein content lower than 40-45 wt.%

would be recommended to obtain a yield higher than 40 wt.%.

Interestingly, with the mixture starch-protein a linear curve is obtained when

the per cent of protein increased from 25 to 75 wt.% with the following equation

(Equation 9-6).

y = 0.3975x - 1.73 (R² = 0.9957) Equation 9-6

The yield decreases to 17.5 wt.% for “100 wt.% of protein” (bear in mind that

the soya protein used was 90 wt.% pure). On the whole, carbohydrates with lipids or

proteins are not beneficial to obtain a good yield, contrary to lipids. On one hand, in

the case of low lipid and high protein, the carbohydrate could slightly improve the bio-

crude yield; on the other hand, the bio-crude oil would contain high pyrrole and furans
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polymers. Cyanobacteria, such as Spirulina pl. and Arthrospira m. (with high protein

content above 60 wt.%), are not suitable for use during hydrothermal liquefaction but

better as nutritional purpose or to extract high value chemicals [308].

Figure 9-22 represents the bio-crude oil wt.% yield of model compounds

(glucose, starch, soya protein, asparagine acids and sunflower oil) and microalgae

(Spirulina, Chlorella, stressed and non-stressed P. ellipsoidea) against the

temperature. Between 250 to 300 °C, the majority of bio-crude yield increases

whereas after 300 °C, a decrease of the yield for the stressed P. ellipsoidea, soya

protein and glucose. It could suggest the largest portion of the formation of the oil

occurred before 300 °C. Subsequently, the high nitrogen compounds (soya protein,

Chlorella and Spirulina have a relatively similar behaviour to the bio-crude oil

production.

Figure 9-22: Graphic showing the bio-crude oil yield against the temperatures for the
model compounds and the microalgae where PE is P. ellipsoidea.

Moreover, the result for the ternary mixture suggests that it would be more

suitable to process high lipids content at lower temperatures such as at 300 °C whereas

for high protein microalgae at a temperature of 350 °C.
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9.7 Conclusion

Binary and tertiary synthetic mixtures were prepared in order to have a better

understanding of the hydrothermal liquefaction of microalgae. Similarities were found

in the bio-crude yields for example P. ellipsoidea had a maximum bio-crude yield at

300 °C. The yield in general depended on the amount of lipids but also on the protein

content of the microalgae. Carbohydrates enhanced the formation of residue when

mixed with vegetable oils. Because of the Maillard reaction, the mixture of starch-

protein gave a different behaviour with an increase of the bio-crude oil using 75 wt.%

protein mixture. The fraction of “heavy molecular weight” materials using the starch-

protein mixture increases with the temperature. During the reaction of sunflower,

starch and protein the energy recovery is highest at 250 °C. The nitrogen content is

higher in the char compared to the oil for starch-protein. There is a linear relationship

between the amount of protein and the concentration of ammonium for the mixture

starch-protein. At large proportion of lipids in mixtures, the carbon fraction is located

mainly in the bio-crude. Different amides are produced with fatty acids and primary

and secondary amides and pyrrole as well. A linear relationship between the amount

of ammonium and the % protein within the mixture of linseed and protein is obtained.

It was deduced in order to obtain a good quality bio-crude yield of 40-45 wt.% , a

microalga should contain less 40 wt.% of protein.
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Chapter 10 Conclusion and future works

10.1 General conclusion

More research groups and commercial companies are today considering

hydrothermal liquefaction of microalgae as an alternative to produce bio-crude oil

(green crude). This technique is more efficient compared to the first and the second

generations of biodiesel. The life cycle assessment indicates that this technology

would be more economically viable whether the processing is carried out in the

surroundings of a coal power station to supply the carbon dioxide and a waste water

treatment plant for the supply of nutrient to grow the microalgae. Ideally, a closed

loop could be achieved; the aqueous phase could be diluted and fed as nitrogen

sources for the microalgae. In theory, all the nitrogen should be fractionated into the

aqueous phase however in reality approximately 5 to 10 % is usually lost in the bio-

crude.

The challenges of this project are to:

- Have a better understanding of the formation of the bio-crude and in

particular the formation of nitrogen compounds. For this purpose, different model

compounds were processed separately and in combination such as proteins,

carbohydrates and lipids. Afterwards these results were compared with real

microalgae.

Instead of using expensive catalysts with noble metals, it would reduce the cost

of the process if low cost materials or catalysts such as zeolites (HZSM-5) could be

selected. Different metals have been incorporated into HZSM-5 in order to change the

physiochemical proprieties to this zeolite. The stability of this catalyst under

hydrothermal condition was therefore investigated. The supply of hydrogen for

upgrading of biomass requires large amounts of molecular hydrogen. One proposal

suggested was to use organic acids to supply hydrogen and promote water gas shift

reactions. The project also investigated the effect of the formation of hydrogen donors

such as formic acid.

In Chapter 4, one of the first goals of this project was to investigate the

stability and the robustness of HZSM-5. In contrast to steaming conditions, during
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hydrothermal treatment, the de-alumination was less significant compared to the loss

of silica. Some metals such as molybdenum reduce the loss of crystallinity and copper

lowered the loss of surface area. It was observed that zeolite incorporated via the

metal ion-exchanged technique was more robust compared with using wet

impregnation. HZSM-5 was recycled four times with sunflower oil. The bio-crude

yield was constant even though the amount of coke increased after each test. It was

observed that after the third test the coke contained more carbon compared to

hydrogen content.

In Chapter 5, different vegetable oils (sunflower, soya bean, linseed, jatropha

and palm oils) were processed at different temperatures (250, 300 and 350 °C).

Triglycerides were readily hydrolysed into free fatty acids at low temperatures.

Experiments performed with model polyunsaturated fatty acids (linolenic acid) and

linseed oil suggested that the cross linking reaction producing “heavy molecular

weight” materials were significant. Fatty acids produced high energy content bio-

crude oil. Palmitic and stearic acids were more stable during hydrothermal

liquefaction. Therefore, it is more suitable to process microalgae containing higher

concentration of monounsaturated fatty acids.

In Chapter 6, the processing of carbohydrates (glucose, starch, and alginic

acid) demonstrated a propensity towards higher residues and lower bio-crude yields.

Nevertheless, for mannitol the formation of bio-crude is slightly enhanced. The char

residues were stable under hydrothermal conditions and contained the highest energy

recovery amongst all the phases. The long cooling rate probably enhanced the

formation of chars. As temperature increased, the fraction of “heavy molecular

weight” materials decreased. Therefore, carbohydrates favour side reactions and

should be removed in order to favour the formation of high quality bio-crude.

In Chapter 7, the processing of soya hemp proteins and asparagine was

carried out. Hemp protein produced a higher yield of bio-crude compared to soya

proteins. Amino acids principally degraded in to aqueous phase, glutamine produced

slightly more bio-crude than asparagine. Soya proteins produced more ammonium

compared to hemp proteins. The side reaction from the degradation of protein was the

production of heterocyclic compounds which contributed to the high nitrogen content

in the bio-crude. Finally, the STA suggested that the nitrogen content was mostly

containing in the “heavy molecular weight” materials.



Conclusion and future works

285

In Chapter 8, the maximum bio-crude yield was achieved with P. ellipsoidea

(stressed) with 52.9 wt.%. For Chlorella and Spirulina, P. ellipsoidea (non-stressed)

containing a high protein content, the bio-crude yield increased with temperature. The

GPC analysis indicated that the “heavy molecular weight” materials in the bio-crude

were reduced with the temperature. The result from the yield of stressed P. ellipsoidea

was coherent with the bio-crude yield of vegetable oils in Chapter 5 and Chlorella

with the yield of protein in Chapter 7. Most of the compounds identified in the

processed bio-crude from stressed P. ellipsoidea contained long chain compounds and

amides. The ammonium compound concentration in the aqueous phase increased with

temperature. In general, it was demonstrated that the same microalgae grown under

different condition yielded different bio-crude compositions. The stressed P.

ellipsoidea is a strong candidate for the hydrothermal liquefaction as the nitrogen

content in the bio-crude is low.

In Chapter 9, different mixtures were prepared using different model

compounds (vegetable oils, proteins and starch). There was a proportional relationship

between the protein content mixed with starch for the bio-crude yield. In contrast, the

bio-crude yield decreased when the amount of proteins increased with the lipids. The

bio-crude yield was lower than the initial amount of vegetable oils added suggesting

the formation of amides and saponification process. The high fraction of

carbohydrates enhanced the formation of residues. Two mixtures were prepared

according to the composition of the Chlorella and P. ellipsoidea microalgae. The

maximum bio-crude yield was achieved at 300 °C for both microalgae mixtures.

10.1.1 General trends

 Formic acid, in this study, enhances the formation of the gaseous phase

with most of the model compounds and algae at 350 °C compared to experiments

performed in water. The gas formation is more significant in the presence of formic

acid and HZSM-5. However, bio-crude yield is reduced slightly compared with in

water. For high protein content materials, formic acid reduces the nitrogen content in

the bio-crude with Chlorella, Spirulina and soya proteins compared to in the water.

Ross et al. [129] observed that formic acid lowers the boiling point of the simulated

distillation range and thereby improves the bio-crude viscosity. Using formic acid and

oleic acid, the delocalisation of the double bonds is observed with no major hydrolysis
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of the unsaturation. Formic acid increases the nitrogen content in the bio-crude with

high lipid materials by forming more amides. Formic acid enhanced the

deoxygenation for stressed P. ellipsoidea compared to the other microalgae. A low

concentration of formic acid lowers the formation of gas and avoids the loss of some

bio-crude oil.

 Compared to the reactivity in pyrolytic condition, the effect of

HZSM-5 is less efficient in subcritical condition. HZSM-5 is more efficient upgrading

vegetable oils compared to the other components (carbohydrates, proteins) and for

microalgae. Doping with molybdenum increases the fraction of aromatics whereas

iron enhances the fraction of heavy molecular weight. Lipids are more reactive with

these catalysts as they have a simpler structure. It is likely that some fatty acids could

diffuse inside the pores whereas carbohydrates yielded more complex molecules.

Furthermore, HZSM-5 because of high acidity in combination of formic acid enhances

the hydrolysis of amides. Copper and iron have an effect on the molecular weight for

processing of proteins and amino acids by enhancing the polymerisation. Metal doped

zeolites have no effect on the upgrading of starch as most of degrading molecules

were soluble in water. For the microalgae experiment, NiZSM-5 enhances the

deoxygenation in general. For the Chlorella bio-crude MoZSM-5 gives good result

which is an encouraging result.

 The general trend in the aqueous phase, the carbon fraction decreases

whereas the ammonium concentrations increase with the temperature. The carbon

fraction is mostly transferred to the bio-crude and the gaseous phase. For the nitrogen

fraction, an opposite trend is observed between in the aqueous phase and the nitrogen

in the bio-crude oil which decreases with temperature. In general, protein and

carbohydrate favours the formation of compounds soluble in the aqueous phase.

However, when these are combined together, the production of bio-crude and residue

increases.

10.1.2 General mechanism

At the first stage, the macromolecules are hydrolysed. Carbohydrates have the

fastest hydrolysis rate into monomers (sugar units) below 200 °C, subsequently to

proteins into amino acids and finally triglycerides into fatty acids above 250 °C [261,

299, 339]. With the exception of lipids, at the beginning, the majority of monomers

are located in the aqueous phase. Nevertheless, because of the complex structure of
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the membranes, Garcia Alba et al. [133] observed no degradation of the cell until 200

°C. In the second step, monomer molecules decompose further either the degraded

product are found in the aqueous phase or into the bio-crude. In the third step,

molecules undergo condensation or recombination to form oligomers and higher

molecular weight polymers. The most likely step is that the polymers could cross-link

together.

The hydrolysis of starch or other carbohydrates such as cellulose and alginic

acid into monomers is rapid [261]. Subsequently, the sugars cycles such as glucose

and xylose are hydrolysed to form linear molecules and carboxylic acids. A small

amount of bio-crude is formed compared to the other model compounds as molecules

were hydrophilic. 5-HMF is one known precursor for the formation of char [266]. One

of the drawbacks of using carbohydrates is the large amount of residue. Alginic acids

favour the formation of gas especially with the addition of formic acid and HZSM-5.

It is possible that HZSM-5 enhances the formation of small organic acids including

formic acid which subsequently decomposes into hydrogen and carbon monoxide

[270]. Therefore, if the formation of chars could be reduced, alginic acid could be

used to form in-situ hydrogen. Furthermore, the batch reactor was not suitable for

carbohydrate as there was no possibility to quench the reaction and to have a faster

heating rate as in this way, the char amount could be reduced.

One of the initial aims was to convert most of the nitrogen function of the

proteins into ammonium or other water soluble compounds such as amines. However,

in reality, it is more complicated and side reactions occur. The identification of

various diketopiperazine compounds in the bio-crude oil indicates that the proteins

have the same degradation route as during pyrolysis as Torri et al. [22] had suggested

[137, 293]. At low temperatures, proteins form macrocycles. As the temperature

increases, the cycles decrease in size releasing amino acids. At the end,

diketopiperazines and pyrrolidinones are found in the bio-crude. Amino acids

decompose further into either ammonium or different compounds in the water phase

or in the bio-crude oil. One of the solutions would be to pre-treat the microalgae with

fast liquefaction as with carbohydrates. It is also investigated that the aqueous phase

could be gasified to produce hydrogen to upgrade the bio-crude in the second

processing bio-crude to obtain a ready-to-use fuel.
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The hydrolysis of triglycerides is slower than proteins and carbohydrates. Fatty

acids are relatively stable under hydrothermal conditions. Therefore, catalysts need to

be added to enhance the decarboxylation [339].

There were more complex reactions during the decomposition of microalgae as

different elements react together. The most known is the Maillard reaction between

carbohydrates and proteins. This reaction enhances the formation of “heavy molecular

weight” materials. It reduces the quality of the bio-crude and increases the viscosity

[314]. Thus, this reaction should be hindered. The formation of amides is observed in

addition, not only does the ammonium react with fatty acids but primary and

secondary amines and pyrrole could react as well. Nitrogen chemical functions, such

as amines and amides, are problematic as they are reactive; at the first stage of the

liquefaction, hydrolysis occurs whereas during the cooling stage, the hydrolysed

molecules recombine by condensation. In the future, a reagent should be added in

order to avoid these chemical groups reacting after the HTL reaction.

To summarise, hydrothermal liquefaction is the stage of complex chemical

reaction which explains the extreme complexity of the bio-crude oil with a succession

of hydrolysis and recombination of molecules. Therefore, the elucidation of the

accurate chemical degradation route of the microalgae is challenging.

10.1.3 Concluding remarks

In 2018, Sapphire Energy one of the companies claiming to produce green bio-

crude, expects to produce 5,000 barrels/day. It would represent approximately 681,000

litres of oil and 653,710 kg (with a specific gravity from bio-crude of 960 kg/m3) [153,

340]. For the highest yield with P. ellipsoidea of 52.9 wt.% (daf), it would require

1,257.2 tonnes of dried algae which is a tremendous amount of algae counting that this

specie has a slow growth rate of 3.5 g/L/day. If there was still 1 wt.% of nitrogen it

would represent 6.5 tons of nitrogen lost in the bio-crude. For the moment, it seems

difficult to realise this with a high lipid microalgae. In the case of Chlorella, a bio-

crude of 28.9 wt.% (daf), 2,334.7 tons of microalgae would be necessary and 37.3 tons

of nitrogen would be lost in the system. Davis et al. [340] determined that in order to

produce 19 billion of bio-crude from the HTL of Chlorella/year, it would require 1671

sites measuring 485 hectares each. For several years, the production fluctuated

particularly between the winter and summer. The authors suggested shutting down the
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process during the winter as the emissions were greater than fossil fuel production.

Furthermore, the increase of productivity of the microalgae lowered the price of the

fuel.

Chisti et al. [55] emphasised that in order to have a competitive algal fuel, the

processing should be carried out near a carbon dioxide source facility (a coal power

plant). It is estimated that 1.5 billion tons of carbon dioxide could help to produce 82

million tons of microalgae. Furthermore, to replace 1 % of the annual US consumption

of fuel, microalgae would require the amount of wastewater produced by a city of 10

million inhabitants. To lower the cost, it would be more efficient to mix different

strains of microalgae with sludge produced by waste water and swine manure [145,

146].

The development of this technology will depend on the price of crude oil as

investment money is required to finance spin off companies. Today, with the high

interest in fracking shale gas and the low price of crude oil (the price was close to $50

(£33.5) in end of March 2015 [341]), these companies struggle to develop. It is the

reason why a company such as Solazyme sells high value compounds extracted from

microalgae in order to gain money. The scale up and increase of investment could

lower the production cost of the overall system and make the algal bio-crude more

competitive compared to petroleum oil.

In order that the upgraded algal bio-crude should be used as jet fuel, the oil

should be good quality. The level of heteroatoms should be the lowest possible to

improve the stability of the fuel. The fuel Jet A contained 20 vol.% by volume of

aromatics and less than 3 wt.% of naphtha fraction [342]. Until now, there is no

complete study of the physical analysis of the bio-crude from microalgae. Bai et al.

[147] identified 43.9 % (of total peak area) of saturated hydrocarbons and 21 % (of

total peak area) for aromatics upgrading bio-crude oil from Chlorella py. with Raney

Ni catalysts. The per cent of aromatic should be measured in per cent volume to know

whether this fuel meets the regulation, in addition, 4.6 wt.% of nitrogen compounds

was identified.
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10.2 Future works

In order to improve the quality of the bio-crude oil and therefore meet the

expectation and producing a ready-to-use fuel, some further works need to be

performed.

- The SAPO-type zeolites should be investigated in more details. SAPO

would be interesting as they have larger pore sizes (in the mesopores region)

compared with HZSM-5 (micropores) and their hydrothermal stabilities have been

demonstrated. A low cost alternative to Pt/C should be investigated, SAPO could be

designed in order to produce selected products [343].

- The development of absorbent for nitrogen heterocyclic compounds

(pyrrole for example) with molecular sieves and traps deserves further investigation in

order to remove the refractory nitrogen materials during the upgrading stage [305].

- The effect of different parameters such as the heating rate should

investigate. It will help the development of the continuous reactor. In fact, research

about processing of microalgae should be more focussed on the continuous processing

of microalgae instead of doing batch reaction.

- In order to reduce further the nitrogen content, the bio-crude oil should

be upgraded with two steps. The first step consists of pre-treating the microalgae using

flash liquefaction for a short times as performed by Garcia-Moscoso et al. and Faeth et

al. [140, 152]. In the second step, the upgraded microalgae should be processed at a

temperature below 350 °C with the help of SAPO catalyst for example. The hydrogen

should be produced from the gasification of the aqueous phase produced during the

first step or by organic acids (formic acids). Figure 10-1 illustrates the overall process

of the hydrothermal upgrading of the microalgae using two steps.
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Figure 10-1: Diagram of hydrothermal liquefaction of microalgae using two steps

- The variation of the per cent loading or concentration of formic acid

should be studied in more details. Some other hydrogen donors should be investigated

such as oxalic acid. As this organic compound decomposes into formic acid more

hydrogen should be supplied.

- The kinetic of degradation of microalgae using the technique of TGA-

DSC should be investigated in more details. A pressurised cap should be used in order

to recreate the hydrothermal condition.

- Some new methods need to be developed in order to have a better

identification of organic compounds soluble in the aqueous phase and especially with

nitrogen functions. Samples could be analysed through HPLC-MS liquid mass

spectrometer. C18 absorbent cartridge (reverse phase) could be used to absorb the

organic compounds. The development of these methods deserves further

investigations.

- The other area which requires more research is to increase knowledge

of the chemical structures of the heavy molecular compounds. It would improve

knowledge of how “heavy molecular weight” materials form and therefore how they

can be reduced. The characterisation of the molecular weight compounds is carried out

by proton NMR. Figure 10-22 includes the setting up for the method of fractionation

of the bio-crude oil. Proton and carbon NMR should identify “heavy molecular

weight” materials [327].
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Figure 10-2: Schematics of the set up for the fractionation of the different molecular weight
compounds in the bio-crude oil
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Appendix 1. Appendix about the aqueous phase
Appendix 1 gives further information concerning the concentration of

ammonium, TOC concentration, sulphate, phosphate and potassium concentrations for

the different chapter.

1.1 Chapter7

1.1.1 The analysis of the processed water of soya protein, hemp protein and

asparagine without catalyst

Table A1-1 lists the concentration of ammonium, phosphate, sulphate and

potassium in ppm, the TOC concentration in ppm and the pH water for the processed

water from the experiment with soya protein, hemp protein and asparagine. Mix

gua/asp represents the mixture asparagine and glutamine.

Table A1-1: Including the main anion (sulphate, phosphate) and cation (ammonium,
potassium) in the water phase in ppm, TOC (ppm), pH and total nitrogen concentration

pH
TOC

(ppm)

Ammonium
(ppm)

Phosphate
(ppm)

Sulphate
(ppm)

Potassium
(ppm)

Soya proteins

250°C 7.1 21176 11748 2042 184 303

300°C 7.3 15590 16902 1754 555

350 °C 8.9 13948 18537 1366 103 386

formic acid 8.1 16049 19425 1076 60 183

Hemp proteins

250°C 6.8 10600 2029 1387 8278

300°C 7.2 8751 4306 1629 7820

350 °C 7.2 5127 4730 1824 5300

formic acid 7.5 6105 4437 1728 6439

Asparagine

250°C 8.5 16721 26119 26119

300°C 8.7 6899 23687 23687

350°C 9.0 7166 27389 35192

formic acid 8.6 5786 26101 32436

glutamine 7.5 20220 13024

mix gnu/asn 7.7 10162 14090
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1.1.2 The analysis of the processed water of soya protein with the catalytic screening

Table A1-2 lists the concentration of ammonium, phosphate, sulphate and

potassium in ppm, the TOC concentration in ppm and the pH water for the processed

water from the experiment for soya protein with the different catalyst in water and

formic acid.

Table A1-2: Including the main anion (sulphate, phosphate) and cation (ammonium,
potassium) in the water phase in ppm, TOC (ppm), pH for soya protein for the screening of metal
doped HZSM-5

pH
TOC
(ppm)

Ammonium
(ppm)

Phosphate
(ppm)

Sulphate
(ppm)

Potassium
(ppm)

water

HZSM-5 9.2 16745 11865 2434 103 377

FeZSM-5 8.8 11975 11843 1810 106 373

CuZSM-5 8.9 11764 12100 2150 94 370

MoZSM-5 8.9 16343 12415 2447 94 389

NiZSM-5 8.5 9485 2224 2357 94 318

Formic acid

HZSM-5 8.7 16610 11972 1480 94 303

FeZSM-5 8.9 13527 7001 1428 104 287

CuZSM-5 8.6 10976 9342 1613 106 276

MoZSM-5 8.5 14912 9980 1561 95 963

NiZSM-5 8.8 14035 9130 1876 115 1074

1.2 Chapter 8

1.2.1 The analysis of the processed water of microalgae without catalyst

Table A1-3 lists the concentration of ammonium, phosphate, sulphate and

potassium in ppm, the TOC concentration in ppm and the pH water for the processed

water from the experiment with the microalgae Chlorella, stressed and non-stressed P.

ellipsoidea and Spirulina without catalyst.
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Table A1-3: Including the main anion (sulphate, phosphate) and cation (ammonium,
potassium) in the water phase in ppm, TOC (ppm), pH

pH
TOC

(ppm)

Ammonium
(ppm)

Phosphate
(ppm)

Sulphate
(ppm)

Potassium
(ppm)

Chlorella

250°C 7.3 15069 2576 3207 815 1482

300°C 8.1 11197 4175 3282 770 1178

350°C 9.2 12617 6284 3038 282 924

formic acid 8.9 10190 8599 2811 305 1015

Stressed P ellipsoidea

250°C 6.0 3583 61 121 500

300°C 5.9 3262 229 450

350°C 6.0 7943 397 111 29 165

formic acid 6.5 5646 1366 502 94 234

Non-stressed P ellipsoidea

250°C 6.5 14629 518

300°C 6.7 14224 3541 762

350°C 7.1 5956 5051 137 577

formic acid 7.3 6791 1462 1025 1376

Spirulina

250°C 6.6 15628 1258 2316 1743

300°C 6.9 12164 2546 2882 2205

350°C 6.9 9218 3260 2905 2412

formic acid 7.6 14629 2683 2557 2150

1.2.2 The analysis of the processed water of the microalgae catalytic screening

Table A1-4 lists the concentration of ammonium, phosphate, sulphate and

potassium in ppm, the TOC concentration in ppm and the pH water for the processed

water from the experiment with Chlorella and the stressed P. ellipsoidea with the

different catalysts.
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Table A1-4: Including the main anion (sulphate, phosphate) and cation (ammonium,
potassium) in the water phase in mg/L, TOC (mg/L), pH

pH
TOC
(ppm)

Ammonium
(ppm)

Phosphate
(ppm)

Sulphate
(ppm)

Potassium
(ppm)

Chlorella

water

HZSM-5 8.1 7133 3710 2307 537 1026

FeZSM-5 7.9 10765 4211 2715 659 1541

CuZSM-5 8.9 8942 2685 2852 604 796

MoZSM-5 9.2 9669 5011 3041 656 1022

NiZSM-5 8.8 9925 1659 3178 774 963

Formic acid

HZSM-5 8.2 9604 4011 3230 678 956

FeZSM-5 9.1 7214 4063 2570 704 885

CuZSM-5 8.5 7474 4228 3307 759 1467

MoZSM-5 8.6 9909 5049 3211 796 1037

NiZSM-5 8.8 7487 3131 2648 707 1074

Stressed P ellipsoidea

water

HZSM-5 6.0 7846 272 125 65 184

FeZSM-5 5.6 3937 680 177 62 ?

CuZSM-5 5.9 4398 548 273 96 227

MoZSM-5 5.6 3950 683 255 77 239

NiZSM-5 5.5 3267 777 300 75 349

Formic acid

HZSM-5 6.4 7142 1448 541 117 260

FeZSM-5 5.5 4455 1359 446 115 264

CuZSM-5 5.6 7077 1409 562 114 276

MoZSM-5 5.6 5009 1427 535 107 204

NiZSM-5 4.5 5549 1402 639 120 276

1.3 Chapter 9

1.3.1 The analysis of the processed water for binary mixtures

Table A1-5 lists the concentration of ammonium, phosphate, sulphate and

potassium in ppm, the TOC concentration in ppm and the pH water for the processed

water from the experiment with the binary mixtures.
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Table A1-5: Including the main anion (sulphate, phosphate) and cation (ammonium,
potassium) in the water phase in ppm, TOC (ppm), pH concentration for the mixture solution

pH
TOC
(ppm)

Ammonium
(ppm)

Phosphate
(ppm)

Sulphate
(ppm)

Potassium
(ppm)

Starch-protein

250°C 6.4 14521 2842 752 113.7 4975

300°C 6.4 11570 3894 1104 109.9 4285

350°C 50-50 7.1 3925 4486 647 117

25-75 6.7 9830 10203 1327 139

75-25 6.1 4198 361 155 16

asn-glucose 7.1 7428 966 0 0 0

Sunflower-protein

250°C 5.9 23079 2964 800.5 920

300°C 6.1 28226 3506 684.2 100

350°C 50-50 6.7 21635 4325 425.9 108

25-75 7.2 17633 10521 845.4 164

75-25 6.4 5373 2421 226.4 50

Linseed-protein

250°C 6.3 18909 5418 793 104

300°C 5.9 22635 3006 762 75

350°C 50-50 6.7 22276 4798 454 108

25-75 6.8 17085 7609 669 124

75-25 6.2 6403 2128 192 57

Sunflower-starch

250°C 3.5 6161

300°C 3.7 5478

350°C 50-50 3.6 4017

25-75 3.6 3248

75-25 3.5 2140

Linseed-starch

250°C 3.4 8303

300°C 3.2 6233

350°C 50-50 3.6 4343

25-75 3.2 2689

75-25 2.0 4340

1.3.2 The analysis of the processed water for ternary mixtures

Table A1-6 lists the concentration of ammonium, phosphate, sulphate and

potassium in ppm, the TOC concentration in ppm and the pH water for the processed

water from the experiment with the ternary mixtures with different additifs.
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Table A1-6: Including the main anion (sulphate, phosphate) and cation (ammonium,
potassium) in the water phase in ppm, TOC (ppm), pH and total nitrogen concentration for the
mixture solution

pH
TOC

(ppm)

Ammonium
(ppm)

Phosphate
(ppm)

Sulphate
(ppm)

Potassium
(ppm)

Mixture stressed P. ellipsoidea

250°C 7.8 3648 1251 248 37

300°C 7.8 2142 1479 283 37

350°C 7.3 4065 2043 322 50

formic acid 6.7 1384 3030

HZSM-5 6.5 2725 2497

model 6.9 7817 2146

Mixture Chlorella

250°C 6.6 19927 6495 669

300°C 7.8 21034 26337 2433

350°C 6.5 15900 4477 653

formic acid 8.8 27189 10113 843

HZSM-5 6.5 16314 3529 642

model 8.6 24584 3644
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Appendix 2. Mass balance and molecular weight fraction of

glutamine and the mixture

Appendix 2 includes some extra data for the mass balance of glutamine and the

mixture glutamine-asparagine in the Chapter 7. Figure A2-1 represents the mass

balance (bio-crude, residue, gaseous and aqueous phase) for the glutamine and the

mixture asparagine-glutamine. Figure A2-2 represents the molecular weight fraction

measured by the GPC for the sample samples.

Figure A2-1: Mass balance for glutamine and the mixture glutamine and asparagine in
Chapter 7

Figure A2-2: Molecular weight fraction balance for glutamine and the mixture glutamine
and asparagine in Chapter 7
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Appendix 3. GC-MS Chromatograms

3.1 Chapter 6

This section contains extra chromatograms which are not shown in the main

thesis. Figure A3-1 shows the chromatogram of (a) starch, (b) glucose, (c) alginic acid

and (d) mannitol at 350 °C in formic acid. Table A3-1 lists some examples of

compounds identified.

Table A3-1: Peaks identification in the GC-MS

Number
Retention

time
(minutes)

Compounds

1 18.0 3-methyl-pentan-one

2 19.0 3,4-dimethyl-pentan-one

3 21.8 phenyl-undecen-1-ol

4 22.4 naphathalendione

5 26.0 2,3-dihydro 1H-inden-1-one

6 27.1 1,2,3,4-tetrahydro-1,5,7-trimethyl-naphthalene

7 28.0 5-methyl-2-(1-methylethyl)-2-cyclohexen-1-one

8 33.8 1-(3-hydroxyphenyl)-ethanone
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Figure A3-1: Spectrums of the 4 carbohydrates where (a) represents starch in formic acid, (b)
glucose in formic acid, (c) alginate in formic acid (d) mannitol in formic acid
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3.2 Chapter 7

This section, the chromatograms (Figure A3-2) are included of the processed

bio-crude oil from the amino acids, (a) asparagine, (b) glutamine and (c) mixture

glutamine-asparagine at 350 °C. Table A3-2 lists the main molecules identified within

the chromatograms.

Table A3-2: Peaks identification in the GC-MS

Number
Retention

time
(minutes)

Compounds

1 22.5 2-pyrrolidinone

2 32.4 2,3-dimethyl-1H-Indole

3 34.4 5,6,7-trimethyl-1H-indole

4 35.7 1H-Indole, 2,3-dihydro-1,3,3-trimethyl-2-methylene-

5 38.5 ergoline

6 41.2 2,6-bis(1-methylethyl)-benzenamine,

7 42.3 2-(2,4-dichlorophenoxy)-N-(2,6-diethylphenyl)-propanamide

8 43.9
Pyridine-4-carboxylic acid, 2-amino-3-cyano-5,6-dimethyl-,

ethyl ester

9 48.3 formamide-N-methylpyrrodinyl-butinyl)



Appendix 3

328

Figure A3-2: GC-MS chromatogram of (a) asparagine, (b) glutamine and (c) mixture
asparagine-glutamine processed at 350 °C
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3.3 Mass spectrum

Figure A3-3 represents the mass spectrum of the 3,6-diisopropylpiperazin-2,5-

dione comparing the mass spectrum (a) of the compounds at a retention time of 48.0

minutes the library (b) and the compounds identified in the bio-crude for the

processing of Chlorella at 300 °C

Figure A3-3: Mass spectrum of 3,6-diisopropylpiperazin-2,5-dione, compared the mass
spectrum at 48 minutes and the library
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