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Abstract

A permutation group G acting transitively on a set Ω is a Jordan group if there is a proper

subset Γ ⊂ Ω, subject to some non-triviality conditions, such that the pointwise stabiliser

in G of Ω \ Γ is transitive on Γ. Such sets Γ are called Jordan sets for G. Here we study

infinite primitive Jordan groups which are automorphism groups of first order relational

structures. We find a model theoretic application in classifying the reducts of an infinite

family of semilinearly ordered partial orders, and apply a model-theoretic construction

technique to obtain examples of Jordan groups.

The kinds of structures preserved by an infinite primitive Jordan group with a primitive

Jordan set were classified by Adeleke and Neumann [4]. In Chapter 2 we apply

this classification and further results on the combinatorial behaviour of the families

of primitive Jordan sets to obtain an infinite family of non-conjugate, maximal closed

subgroups of Sym(ω). We obtain a classification of the reducts (up to first order

interdefinability) of an infinite family of semilinearly ordered trees.

The classification of Jordan groups was continued by Adeleke and Macpherson [2], and

they determined the kinds of structures preserved by infinite primitive Jordan groups,

without the assumption that there is a primitive Jordan set. This list includes some exotic

kinds of relational structures, including so-called ‘limits of betweenness relations’. Non-

isomorphic examples of infinite primitive Jordan groups preserving a limit of betweenness

relations have been constructed by Adeleke [1] and Bhattacharjee and Macpherson [6].

In Chapter 3 we develop the construction of Bhattacharjee and Macpherson to construct

what we believe to be a limit of betweenness relations preserved by the group constructed

by Adeleke.
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Chapter 1

Introduction

This thesis is a contribution to the study of Jordan groups, which can be traced back to

work of Camille Jordan in the 1870’s for finite permutation groups (see P. Neumann [28]).

A permutation group G acting transitively on a set Ω is a Jordan group if there is a proper

subset Γ ⊂ Ω, subject to some non-triviality conditions, such that the pointwise stabiliser

of Ω\Γ is transitive on Γ. Such sets Γ are called Jordan sets forG. An example of a finite,

primitive Jordan group is the n–dimensional projective general linear group PGL(n, F ),

for a F a finite field, acting as automorphisms on the n–dimensional projective space over

F . Complements of n − 1 – dimensional projective subspaces are proper Jordan sets for

PGL(n, F ). In [28] (Theorem J1) it is stated as a theorem known to Jordan that a finite

primitive group (G,Ω) with a non-trivial Jordan set Γ is at least 2-transitive on Ω. The

finite 2-transitive permutation groups are classified (see Cameron [13] for a catalogue), via

the Classification of Finite Simple Groups. From this the finite primitive Jordan groups

are classified in independent work of Neumann [28] and Kantor [24]. Similar results on

finite Jordan groups were applied in model theory by Cherlin, Harrington and Lachlan

in [17] to classify the geometries of strictly minimal sets in ℵ0 – stable, ℵ0 – categorical

structures.

We are interested in infinite primitive Jordan groups. An example of an infinite, primitive

Jordan group is G = Aut(Q, <), the automorphism group of the linear ordering on the

rationals. The group G naturally acts both faithfully and transitively on Q. As (Q, <) is

dense, an open interval (a, b) ⊆ Q is a proper Jordan set for G, so G is a Jordan group.
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Note that Aut(Q, <) is not 2-transitive, as it preserves the linear order. This serves as

an example that the study of infinite Jordan groups is quite different from the finite ones.

Unlike the finite case, infinite primitive Jordan groups are not necessarily 2-transitive. In

this work we study infinite primitive Jordan groups as automorphism groups of countably

infinite first order structures.

This approach is motivated by results by Adeleke, Neumann and Macpherson towards

the classification of infinite primitive Jordan groups. These results are stated precisely

in Section 3 of this chapter. From the results of Adeleke and Neumann [4] we know

that if a primitive Jordan group G acting on Ω with a proper primitive Jordan set Γ ⊆
Ω preserves some relational structure on Ω, then G preserves on Ω either some kind

of ‘linear’ relational structure or one of certain ‘tree-like’ structures. In Section 2 of

this chapter we explain what is meant by a ‘linear’ or ‘tree-like’ structure. The ‘linear’

relational structures are one of four derived from a linear ordering, which are present in

Cameron’s Theorem (proved in [12]) on infinite primitive permutation groups that are

highly homogeneous but not highly transitive. The four kinds of ‘tree-like’ structures

are relational structures studied extensively by Adeleke and Neumann in [3], after such

structures appeared in work by Cameron in [14] and [15] and are related to certain partial

orders studied by Droste in [18]. The theorem of Adeleke and Macpherson in [2] gives

a list of the kind of structures which are preserved by a primitive Jordan group (G,Ω),

removing the assumption that Ω contains a primitive Jordan set which was required in

the theorem of Adeleke–Neumann. In this situation there are exotic possibilities, which

are mentioned in Section 3 of this chapter. This includes certain structures which are

described as limits of tree-like structures.

In this chapter we give an introduction and background to the various topics required,

including stating classification theorems for primitive Jordan groups.

In Chapter 2 we apply results on the classification of infinite primitive Jordan groups and

the combinatorics of primitive Jordan sets to study the reducts of relatively 2–transitive

semilinear orderings, an infinite family of ω–categorical partial orderings. This is the class

of semilinear orderings called 2–homogeneous trees by Droste and classified in [18]. As

a result, we obtain an infinite family of non-conjugate maximal closed subgroups of S∞.
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In Chapter 3 we use a generalised form of Fraı̈ssé amalgamation, a construction technique

from model theory, to construct a structure which we believe to be a limit of betweenness

relations. The automorphism group of this structure is thought to be a primitive Jordan

group which preserves a limit of betweenness relations.

In Chapter 4 we discuss possible extensions and some directions for further work.
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1.1 Generalities on permutation groups

There are a few notions which are standard in the theory of permutation groups which

we will review. A proper introduction to the theory of permutation groups is given in

Cameron [10] or Dixon and Mortimer [19]; Cameron’s book [11] is a good introductory

text. Throughout this thesis we will write (G,Ω) to mean a permutation group G acting

on a set Ω. Usually Ω will be a countably infinite set. For x ∈ Ω and g ∈ G the image of

x under g will be denoted by g(x) or xg. We will be explicit about conjugation when we

are conjugating.

Definition 1.1.1. Let (G,Ω) be a permutation group. For any x in Ω, the orbit of x under

the action of G is the subset of Ω written as

xG := {xg : g ∈ G}.

An alternative notation for the same thing is

Gx := {g(x) : g ∈ G}.

It is implicit in this definition that orbits are always non-empty subsets of Ω.

Definition 1.1.2. We say that a permutation group (G,Ω) is transitive if there is only one

orbit on Ω. That is, for all x, y in Ω there is a g in G such that g(x) = y.

Any action of G on Ω induces an action of G on ordered pairs of elements given by

g(x, y) := (g(x), g(y)). Extending this to an action by coordinates on n-tuples gives rise

to the action (G,Ωn). Note that in this action on ordered pairs, if y 6= z then (y, z) is not

in the orbit of (x, x) for any x; the same for n-tuples. So we will have more concern for

the natural action of G on n-tuples of distinct elements, the x = (x1, ..., xn) such that∧
i 6=j

xi 6= xj.

Definition 1.1.3. Given a permutation group (G,Ω), we will refer to the set of n-tuples

of distinct elements from Ω specifically by the notation Ωn
6= and generally regard this as

the natural domain of action of G on n-tuples.
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Definition 1.1.4. A permutation group (G,Ω) is k-transitive if (G,Ωk
6=) is transitive.

Thus, (G,Ω) is k-transitive if and only if there is only one orbit on k-tuples of distinct

elements in the natural coordinate-wise action of G on Ωk
6=. Note that 2-transitivity is

strictly stronger than transitivity and for m > n, m-transitivity is strictly stronger than

n-transitivity. Sometimes we may say doubly transitive in place of 2-transitive.

Definition 1.1.5. The action (G,Ω) is highly transitive if it is k-transitive for every natural

number k.

Above we considered the natural action of G on n-tuples of distinct elements. We now

turn to the action of G on n-sets. An n-set from Ω is a finite subset of Ω of size n. Let

Ω{n} := {A ⊆ Ω : |A| = n}, the set of n-sets of Ω. The action of (G,Ω) lifts to an action

on n-sets given by

g(A) := {g(a) : a ∈ A}.

Definition 1.1.6. A permutation group (G,Ω) is called k-homogeneous if the natural

action of G on Ω{k} is transitive. If it is k-homogeneous for all k then we say that (G,Ω)

is highly homogeneous.

Remark 1.1.7. If (G,Ω) is k-transitive then it is k-homogeneous.

Definition 1.1.8. A primitive action (G,Ω) is one which admits no non-trivial, proper

congruence relations. In other words, there are no non-trivial, proper equivalence relations

on Ω preserved by the action of G.

Definition 1.1.9. A group (G,Ω) is k-primitive if and only if it is k-transitive and for

any k − 1 distinct a1, ..., ak−1 ∈ Ω, the action of the pointwise stabiliser G(a1,...,ak−1) on

Ω \ {a1, ..., ak−1} is primitive.

For some examples, we will consider structures related to the linear ordering of the

rationals (Q, <). They all have automorphism groups which are highly homogeneous.

First consider the automorphism group of the ordering of the rationals Aut(Q, <) acting

on Q. It is highly homogeneous and it is primitive, but not 2-transitive (and hence not

k–primitive or k–transitive for any k ≥ 2).
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A related structure on the rationals is given by the linear betweenness relation, written

bet(x; y, z) for x, y, z ∈ Q. Defined in terms of the linear order, bet(x; y, z) is a ternary

relation which holds when x is between y and z in the linear ordering. That is, for x, y, z

in Q,

bet(x; y, z) ⇐⇒ (y ≤ x ≤ z) ∨ (z ≤ x ≤ y).

We use the semi-colon in bet(x; y, z) to emphasise the symmetry among the variables in

this definition; we have that bet(x; y, z) ⇐⇒ bet(x; z, y). The automorphism group

Aut(Q, bet) of (Q, bet) can be thought of as the collection of order preserving and order

reversing permutations of Q, with the ordering (Q, <) in mind. Therefore Aut(Q, <) is

an index 2 subgroup of Aut(Q, bet). Hence, Aut(Q, bet) is highly homogeneous and

primitive on Q; it is also 2-transitive but not 2-primitive.

Another way to build a new relation on Q from the linear order is to turn the linear

ordering (Q,≤) into a circular ordering of Q. Consider Q as a dense subset of the

unit circle in C , say the collection of roots of unity. Then for x, y, z in Q the relation

circ(x, y, z) holds if going around the circle clockwise from x to y to z to x passes

through x twice and every point on the circle once. Then for every x, y, z ∈ Q the

relation circ(x, y, z) satisfies the following in terms of the linear order,

circ(x, y, z) ⇐⇒ (x ≤ y ≤ z) ∨ (y ≤ z ≤ x) ∨ (z ≤ x ≤ y).

The automorphism group Aut(Q, circ) is highly homogeneous and 2-primitive, but not

3-transitive, on Q and contains Aut(Q,≤) as the pointwise stabiliser of any a ∈ Q.

By considering the circular order up to order reversal, we have the separation relation on

Q. Again consider Q as a dense subset of the unit circle in C , as in the circular ordering

above. For x, y, z, w inQ, define sep(x, y; z, w) if both of the arcs (one clockwise and one

anticlockwise) from x to y pass through {z, w}. The automorphism group Aut(Q, sep)

contains Aut(Q, bet) as a pointwise stabiliser and Aut(Q, circ) as an index two subgroup.

Then Aut(Q, sep) is highly homogeneous, 2-primitive and 3-transitive but not 4-transitive

nor 3-primitive on Q.

It turns out that any highly homogeneous permutation group which is not highly transitive

on an infinite set Ω preserves one of these kinds of structure. Note that if G is highly
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transitive on Ω then the only relational structure it preserves on Ω is trivial, that is the

structure (Ω,=) given by the relation of equality on Ω. Indeed Cameron has classified

the relational structures preserved on Ω by permutation groups on Ω which are highly

homogeneous but not highly transitive.

Theorem 1.1.10 (Cameron [12]). Let G be a group of permutations of an infinite set

Ω and suppose that G is highly homogeneous but not highly transitive on Ω. Then G

preserves on Ω either

1. A linear order;

2. A linear betweenness relation;

3. A circular order;

4. A separation relation.

While we have not given the abstract definition of the above relations for arbitrary sets Ω,

they can each be built in a similar fashion from a given linear ordering on (Ω, <). This

can be found in Chapter 11 of [7], where there are also lists of axioms for each of these

kinds of structure.

In the above examples we have given permutation groups as automorphism groups of

certain relational structures. In order to properly talk about automorphism groups of first

order structures, we will briefly give the definition of a first–order structure.

Definition 1.1.11. A first–order language is a triple L = ({fi}i∈I , {Rj}j∈J , {ck}k∈K),

where {fi}i∈I is a collection of function symbols (in which each fi has arity ni), {Rj}j∈J
is a collection of relation symbols (in which each Rj has arity mj) and {ck}k∈K is a

collection of constant symbols.

Definition 1.1.12. Given a language L = ({fi}i∈I , {Rj}j∈J , {ck}k∈K) a first–order L –

structure on a set Ω is an M = (Ω; {fi}i∈I , {Rj}j∈J , {ck}k∈K) such that for each

1. function symbol fi we have an ni–ary function fi : Mni →M ;
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2. relation symbol Rj we have an mj–ary relation Rj ⊆Mmj ;

3. constant symbol ck we have an interpretation of this constant ck ∈M .

The set Ω is called the domain of the L –structure M .

Definition 1.1.13. Given an L –structure M = (Ω; {fi}i∈I , {Rj}j∈J , {ck}k∈K) on the

domain Ω we say that a permutation g of Ω is an automorphism of M if

1. for every ni–ary function fi, we have fi(g(x1), ..., g(xni
)) = g(fi(x1, ..., xni

));

2. for everymj–ary relationRj , we haveRj(g(x1), ..., g(xmj
)) ⇐⇒ Rj(x1, ..., xmj

);

3. g fixes every constant symbol ck.

The collection of all automorphisms of M is the subgroup Aut(M) ≤ Sym(Ω) of the

group of all permutations of Ω. When G ≤ Sym(Ω) is a subgroup of the group of all

permutations of Ω such that every g ∈ G satisfies 1 and 2 above, we say that G preserves

the functions fi and that G preserves the relations Rj respectively.

Note that when G preserves all of the functions, relations and constants of the structure

M , then G ≤ Aut(M) is a subgroup of the automorphism group of M . In particular

Aut(M) preserves all of the functions, relations and constants in M .

When (G,Ω) is the automorphism group of a first–order L –structure on Ω, then there

is another homogeneity condition, relative to the L –structure on M , which we will

consider.

Definition 1.1.14 (following [3]). Let M be an L –structure with domain Ω and let G =

Aut(M) act on Ω as the automorphisms ofM . For k a natural number we say the structure

M is relatively k–transitive if every isomorphism ϕ : A → B between k–sets A,B ⊆ Ω

extends to an automorphism g ∈ G.

Note that, for any k, the relative k–transitivity of M is dependent on the language L of

M , as the notion of isomorphism depends on the language L . It is quite possible for
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M an L –structure and N an L ′–structure to be two structures on the same domain Ω

such that Aut(M) = Aut(N) and M is relatively k–transitive for some k, but N is not

relatively k–transitive.

As a ready example, note that (Q, <) is relatively k–transitive for every k.

Definition 1.1.15. A countably infinite L –structure M is ℵ0-categorical, or ω–

categorical, if every countably infinite L –structure N which satisfies the same first order

sentences as M is isomorphic to M .

1.1.1 Jordan groups

We are now in a position to give the definition of our main objects of study.

Definition 1.1.16. Let (G,Ω) be a transitive permutation group on an set Ω. A Jordan set

for G is a subset Γ ⊆ Ω such that |Γ| > 1 and the pointwise stabiliser G(Ω\Γ) is transitive

in its induced action on Γ.

Definition 1.1.17. When Γ is a Jordan set for G we call the pointwise stabiliser G(Ω\Γ)

the Jordan subgroup associated to Γ.

Note that If (G,Ω) is k + 1–transitive and Σ ⊆ Ω is any co-finite subset of Ω such that

|Ω \ Σ| ≤ k and |Σ| > 1, then Σ is a Jordan set for G. This is a direct consequence of

the k + 1–transitivity of (G,Ω). We call such subsets Σ improper Jordan sets. A proper

Jordan set Γ for G is any Jordan set which is not improper.

Definition 1.1.18. Let (G,Ω) be a transitive permutation group on an set Ω. Then (G,Ω)

is a Jordan group if there is Γ ⊆ Ω which is a proper Jordan set for G.

Consider the automorphism group Aut(Q, <) of the linear ordered rationals and let G :=

Aut(Q,<) act naturally on Q. Let Γ ⊆ Q be a bounded open interval Γ = (a, b) for

some a, b ∈ Q with a < b. Then G(Q\Γ) is transitive on Γ, as Q is dense and Γ has no

endpoints, so as this Γ is infinite and co-infinite, Γ is a proper Jordan set for G. As G

is 2–homogeneous, all Γ = (a, b) for a, b ∈ Q lie in one orbit ΓG. Moreover, G(Q\Γ)
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is isomorphic to G and, in particular, G(Q\Γ) is primitive on Γ. That is, Γ is a primitive

Jordan set for G.

Definition 1.1.19. Suppose G is a primitive Jordan group acting on Ω and Γ a proper

Jordan set. If G(Ω\Γ) is primitive in its action on Γ, then Γ is a proper primitive Jordan set

for G.

1.1.2 Reducts and maximal closed subgroups of Sym(Ω).

Let Ω be a countably infinite set. The group of all permutations of Ω, is called the

symmetric group on Ω and is denoted by Sym(Ω). It is implicit in this name and notation

that Sym(Ω) acts on Ω. Sometimes Sym(Ω) is called S∞, and we may do so too. There

is a natural topology on Sym(Ω) given by the topology of pointwise convergence. This

comes from the product topology on ΩΩ, where the topology on Ω is discrete. A typical

neighbourhood of g ∈ Sym(Ω) is, for a finite subset A ⊂ Ω,

[g]A := {h ∈ Sym(Ω) : h �A= g �A}.

The topology is generated by open sets of the form [g]A for g ∈ Sym(Ω) and finite

subsets A ⊂ Ω. This is a separable, metrizable and, in fact, totally disconnected topology

endowing Sym(Ω) with the structure of a Polish group. A group G is a Polish group with

respect to the topology τ if τ is a complete, separable and metrizable topology on G such

that the functions of group multiplication and taking of inverses is continuous with respect

to τ .

Any permutation group of countably infinite degree can be considered as a subgroup

of S∞ and so inherits the Polish group topology from S∞ by restriction. There is a well

known, and extremely useful, characterisation of closed subgroups of Sym(Ω). For details

see, for example, [10] Theorem 5.8.

Proposition 1.1.20. Let (G,Ω) be a subgroup of Sym(Ω). Then G is the automorphism

group of a first-order structure M on Ω if and only if G is a closed subgroup of Sym(Ω).

In the examples above, we considered a structure (Q, bet) obtained by defining the ternary

relation bet on the domain Q in terms of < in the structure (Q, <). In an intuitive sense
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the structure (Q, bet) is obtained from (Q, <) by ‘forgetting’ about the direction of the

order <. This is an example of a more general relationship that may hold between two

structures.

Definition 1.1.21 (See also [9]). Let M be an L –structure and N an L ′–structure, we

say that N is a definable reduct of M if

1. N and M have the same domain Ω;

2. each function, relation and constant of L ′–structure N is definable (without

parameters) in the L –structure M .

The structures M and N are interdefinable if N is a definable reduct of M , and M is a

definable reduct of N . When N is a definable reduct of M such that M and N are not

interdefinable, then N is a proper definable reduct of M .

Via Proposition 1.1.20, there is a closely related notion given in terms of automorphism

groups of the structures.

Definition 1.1.22 (See also [9]). The structure N is a group reduct of the structure M if

1. N and M have the same domain Ω;

2. The automorphism group Aut(N) of N acting on Ω is a closed supergroup

Aut(N) ≥ Aut(M) of the automorphism group Aut(M) of M acting on Ω.

We say thatN is a proper group reduct ofM if, in addition, Aut(N)  Aut(M) properly

contains Aut(M).

We remark that when M , and hence also N , is ω–categorical, then the two notions

coincide; N is a (proper) group reduct of M if and only if N is a (proper) definable reduct

of M . So when M is ω–categorical we may consider reducts of M without ambiguity.

Definition 1.1.23. Suppose Ω is a countably infinite set and G a closed proper subgroup

of Sym(Ω). We say that G is a maximal closed subgroup of Sym(Ω) if whenever H > G

is a closed subgroup of Sym(Ω), then in fact H = Sym(Ω).
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In this context, Cameron’s Theorem 1.1.10 stated above classifies the reducts of (Q, <)

up to interdefinability (see also [26]).



Chapter 1. Introduction 13

Theorem 1.1.24 (Cameron [12]).
Let M be a reduct of the linear ordered rationals (Q, <). Then M is interdefinable with:

1. The linear order (Q, <);

2. The linear betweenness relation (Q, bet) on Q;

3. The circular ordering (Q, circ);

4. The separation relation on (Q, sep) on Q;

5. The trivial structure (Q,=) of Q considered only as a countably infinite set.

Corollary 1.1.25 (of Theorem 1.1.24). Let H = Aut(Q, sep) be the group of all

permutations of Q preserving the separation relation sep defined in (Q, <). Then H

is a maximal closed subgroup of Sym(Q).
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1.2 Tree-like structures

Various kinds of tree-like structures are found in many parts of mathematics, in different

contexts and for different purposes. Hence the word ‘tree’ can refer to many different

kinds of mathematical structure. As we will not attempt to make a comprehensive

survey, we focus on the structures which are relevant to this thesis. They are all

relational structures (Ω, R) for various kinds of relation R. In order of introduction,

they are semilinear orders, betweenness relations, C–relations and D–relations. The

semilinear orders are fundamental in understanding the others. Semilinear orders are

certain partial orderings, in which any two points have a uniquely defined ‘path’ between

them. Betweenness relations are ternary relations that, in a certain semilinear order, retain

just the structure given by these ‘paths’; a point x of the semilinear order is between y and

z if it lies on the path between y and z. A C–relation is a ternary relation on a collection

of maximal chains, linearly ordered subsets, of a semilinear order. A D–relation is a

quaternary relation on the ‘ends’ of a betweenness relation. All of these statements are

made precise in the work of Adeleke and Neumann, published in the memoir [3]. We give

some extracts below to cover what we need in this thesis.

A major study of semilinear orders was carried out by Droste in the memoir [18], in which

these structures are called trees. In that memoir, Droste sets out many of the features

of semilinear orderings which are important to us. In particular, the countably infinite

semilinear orders which Droste calls 2–homogeneous trees, which he classifies in [18],

will be of particular importance in Chapter 2.

First we give the definition of a (lower) semilinearly ordered set. It is a partially ordered

set (T,≤) such that for each x ∈ T , the restriction of ≤ to {y : y ≤ x}, the predecessors

of x, is a linear order and such that

(∀x, y)(∃z)(z ≤ x ∧ z ≤ y).

We will usually use the term semilinear order rather than tree to avoid ambiguity with

notions from other areas of mathematics.

A semilinear order is of positive type if it contains its meets. That is, given any x, y in

T the maximum of {z ∈ T : z ≤ x ∧ z ≤ y} exists in T , it is called the meet of x and
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y and is denoted by f(x, y) or by x f y. We will use the notation a < b to mean that

(a ≤ b) ∧ (a 6= b) and the notation c ⊥ d means that (c 6≤ d) ∧ (d 6≤ c).

Definition 1.2.1. Given any (non maximal) point t in a semilinear order (T,≤), there is

an equivalence relation Ct on {s ∈ T : s > t}, the vertices above t. The equivalence

relation Ct is defined by setting

yCtz ↔ (∃w)(t < w ∧ w ≤ y ∧ w ≤ z).

The classes of this equivalence relation are called the cones at t. Given t ∈ T and x > t,

the cone at t containing x will be denoted by Ct(x).

We will also need a more general notion of cone, which allows us to define cones at ‘gaps’

of a semilinear order.

Definition 1.2.2 (See [3], Section 4). A subset Λ ⊆ T of a semilinear order (T,≤) is a

lower section if for all x ∈ T and a ∈ Λ, if x ≤ a then x ∈ Λ. If Λ is a lower section

of (T,≤) such that for some t ∈ T we have that Λ = {x ∈ T : x ≤ t}, then Λ is lower

section of positive type. Otherwise, if Λ is a lower section of (T,≤) that is not of positive

type, then we say that Λ is a lower section of negative type.

Definition 1.2.3 (See [3], Section 4). Given a lower section Λ of a semilinear order (T,≤)

which is not of the form {x : x < a}, there is an equivalence relation on T \Λ defined by

saying that elements x, y ∈ T \ Λ are in the same cone at Λ if there is some w ∈ T \ Λ

such that w ≤ x, y. If there is more than one cone at Λ, then Λ is called a ramification

point. In this case, the ramification order of Λ is the number of cones at Λ.

A lower section Λ can be of positive or negative type, so also as a ramification point Λ

has either positive or negative type. If Λ is a lower section of negative type which is not a

ramification point, so there is only one cone above Λ, then we will call Λ a cut of negative

type.

Note that if Λ is a lower section of positive type and t ∈ T is such that Λ = {x ∈ T :

x ≤ t}, then the cones at Λ, as in Definition 1.2.3, coincide exactly with the cones at t,

as in Definition 1.2.1. In this situation we say that t is a ramification point if and only if
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Λ is, and define t to have the same ramification order as Λ. In this way we can identify

lower sections of T of positive type with points of T . We will refer to lower sections of

negative type as points of negative type, although they are not elements of T . However

such points of negative type are elements of the Dedekind – MacNeille completion T+ of

T . The Dedekind – MacNeille completion is a general notion of completion for a partial

order that we will not go into here. We remark that in our context T+ contains a unique

infimum of {x, y} for every x, y in T . When we write xf y for x, y in T such that {x, y}
has no infimum in T , we treat xf y as an imaginary element of T 2, which can otherwise

be considered as an element of the Dedekind – MacNeille completion T+.

A subset ∆ ⊆ T is a cone of (T,≤) if ∆ is a cone at Λ for some lower section Λ ⊆ T .

Moreover, ∆ is a cone at a ramification point of negative type if such a lower section Λ is

of negative type.

Definition 1.2.4 (Following [3], Section 4). A semilinear ordering (Ω, <) is called normal

if no cone at a ramification point of negative type has a minimum element.

Definition 1.2.5. Let (T,≤) be a semilinear order. For r, s ∈ T , we say that the element

s is a successor of r if

r < s ∧ (∀u ∈ T )(u < s→ u ≤ r).

Given r ∈ T , the set of successors of r will be denoted by

succT (r) = {s ∈ T : r < s ∧ (∀u ∈ T )(u < s→ u ≤ r)}.

Definition 1.2.6. If (T,≤) is semilinear order and (A,≤) a substructure of (T,≤) then A

is convex in T if for all a ≤ b in A, the interval in T between a and b is contained in A,

a ≤ b ∈ A→ {x ∈ T : a ≤ x ≤ b} ⊆ A.

Definition 1.2.7. Let (T,≤) be a semilinear order. We say that (T,≤) is discrete if for

every a, b ∈ T such that a < b there exists c ∈ T such that c ≤ b and c is a successor of a.

Definition 1.2.8. Given a semilinear order (T,≤), a chain of T is a subset L ⊆ T such

that the restriction of ≤ to L is a linear order.
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In other words a chain is a subset L of T , for a semilinear ordering (T,≤), such that the

substructure (L,≤) of (T,≤) is a linear ordering. A maximal chain is a chainM in (T,≤)

such that any proper subset N of T such that M ⊂ N ⊆ T is not a chain.

Now we will consider two examples of discrete semilinear orders. The first is called the

N–tree. Its name comes from the fact that the maximal branches in this semilinear order

are isomorphic to the ordering of the natural numbers reversed. By adding a level above

the N–tree we obtain the N+1–tree which we use in Chapter 3.

Definition 1.2.9. Let S be a countably infinite set and N be the natural numbers (with 0).

The N–tree is a semilinear ordering (T,≤) described as follows. The domain T of the

N–tree is the union of the set of natural numbers k ∈ N together with all finite sequences

of the form v = (k, si1 , ..., sin) where n ≤ k ∈ N and Sin ∈ S for 1 ≤ n ≤ k. The order

≤ is defined on T as follows. If v = k and u = l then u ≤ v if l is greater than or equal to

k in the normal ordering of N. If v = (k, si1 , ..., sin) then u ≤ v if u = l and l is greater

than or equal to k in N, or if u = (l, sj1 , ..., sjm) with m ≤ l ∈ N and l = k and m ≤ n

and sjr = sir for 1 ≤ r ≤ m.

Definition 1.2.10. The N+1–tree is obtained from the N–tree by adding an extra level.

For each leaf of the N–tree add a binary splitting above that leaf. The N+1–tree is the

resulting ordered structure (V,≤) on an infinite set V .

1.2.1 B–sets and betweenness relations

One feature of semilinear orderings is that, between any two points y and z from a

semilinear ordering (Ω,≤), there is a naturally defined notion of path. Let Ly := {u :

u ≤ y} and Lz := {v : v ≤ z} be the chains below y and z respectively, and y f z the

meet of y and z (which may either be an element of Ω, or an imaginary element, lying the

Dedekind–MacNeille completion). What we mean by the natural path between y and z in

Ω is the set

(Ly 4 Lz ∪ {y f z}) ∩ Ω;

where Ly4Lz is the symmetric difference between the chain below y and the chain below

z. The geometric intuition behind betweenness relations is that a point x is between y and
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z if x lies on the path between y and z. This is the motivation behind the formal definition

given below in terms of axioms worked out in [3].

Definition 1.2.11 (following [3]). A B-relation is a ternary relation on a non-empty set,

X , satisfying the following axioms:

(B1) B(x; y, z)→ B(x; z, y);

(B2) B(x; y, z) ∧B(y;x, z)↔ x = y;

(B3) B(x; y, z)→ B(x; y, w) ∨B(x;w, z).

A B-set is a non-empty set together with a B-relation. A B–set with only one element

will be called a trivial B–set. It should be noted that a B-set may be enhanced with

various properties. The relation B is called a betweenness relation (or sometimes a true

betweenness relation for emphasis) if

(B4) ¬B(x; y, z)→ (∃w)(B(w;x, y) ∧B(w;x, z)).

For all B–sets (X,B) used in this thesis, B is betweenness relation (satisfying (B4)).

A B–set (X,B) is dense if

(B5) x 6= y → (∃z)(z 6= x ∧ z 6= y ∧B(z;x, y)).

Saying that it is of positive type means that

(B6) (∀x, y, z)(∃w)(B(w;x, y) ∧B(w; y, z) ∧B(w; z, x)).

Given {x, y, z}, any w witnessing the relationship required in (B6) is called a centroid of

{x, y, z}. In a B-set of positive type, a triple {x, y, z} for which B does not hold (in any

permutation) has at least one centroid. A B-set of positive type always satisfies (B4), and

so is automatically a betweenness relation.
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Definition 1.2.12. A combinatorial tree is a graph (T,E) with symmetric graph relation

E which is simple, connected and with no cycle.

Any finite, connected, unrooted combinatorial tree gives rise to a betweenness relation

of positive type. Hence, we will often use graph-terminology when referring to finite

connected B-sets. The relation B(x; y, z) holds if the (unique) path from y to z passes

through x. Conversely, a finite B-set (X,B) of positive type can be viewed as a

connected, unrooted combinatorial tree. Given x and y from X , then x and y are adjacent

in the graph if they are distinct and there is no z ∈ X \ {x, y} such that B(z;x, y). Given

this characterisation, we will refer to the degree of the vertex in the corresponding graph

as the valency of an element of a finite B-set. A leaf is an element of valency 1, a dyadic

element has valency 2 and an element having valency at least 3 is called a ramification

node. The set of ramification nodes will be written ram(B). We will habitually call

elements x ∈ X nodes of the B-set (X,B).

Given a betweenness relation on X and a node a ∈ X , there is an equivalence relation

Ka on X \ {a} given by

yKaz ⇔ ¬B(a; y, z).

The classes of Ka will be called branches at a. If there are at least 3 distinct branches at

a, then we call a a branch point of positive type. Some authors use the term ‘cone at a’

for such a set. In order to avoid ambiguity we use the term branches when referring to

classes of Ka for some a in a B–set (X,B), and reserve the term cones for the classes of

Ct in a semilinear order (T,≤) with t in T .

Note that if (X,B) is a finite B-set of positive type then the number of Ka classes at a in

X is clearly equal to the valency of a in the corresponding combinatorial tree as described

above and a is a ramification node if and only if it is a branch point of positive type. For

an arbitrary B-set (X,B), we generalise the notion of valency by defining the valency of

a ∈ X to be the number of branches at a.

Definition 1.2.13 (Section 18, [3]). Let (Ω, E) be a B–set and Λ ⊆ Ω a subset of Ω.

The subset Λ is convex for E if and only if x, z ∈ Λ and E(y;x, z) implies y ∈ Λ. For

x, z ∈ Ω, the interval between x and z is [x, z] := {w : E(w;x, z)}.
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Definition 1.2.14 (Section 18, [3]). Suppose (Ω, E) be aB–set and Λ ⊆ Ω. We follow [3]

in calling Λ a component of (Ω, E) if the following conditions are satisfied.

1. Both Λ and Ω \ Λ are non-empty and convex;

2. If x 6∈ Λ, y, z ∈ Λ then |[x, y] ∩ [x, z] ∩ Λ| ≥ 1.

Given aB–set (Ω, E) withE a general betweenness relation on Ω and a ∈ Ω, the branches

at a are components of (Ω, E) (see Theorem 18.3 of [3]).

We will say that an element e of a component Λ is an endpoint if for any y ∈ Λ and

z ∈ Ω \ Λ we have e ∈ [y, z].

Let (Ω, E) be a B–set and let Λ ⊆ Ω be a subset of Ω. Points x, y, z ∈ Λ are collinear if

E(x; y, z) ∨ E(y; z, x) ∨ E(z;x, y).

The B–set (Λ, E) is called linear if x, y, z are collinear for all x, y, z ∈ Λ. If (Λ, E) is

not linear then there are a, b, c ∈ Λ such that ¬E(a; b, c) ∧ ¬E(b; c, a) ∧ ¬E(c; a, b).

Recall that in a semilinear order (T,<) we were able to consider points of negative type

(around Definition 1.2.2). We need an analogous notion of negative points in a B–set.

First we define gaps in a linear B–set.

Definition 1.2.15. Let (Λ, E) be a linear B–set so that E is a linear betweenness relation

on Λ. A cut of Λ is a partition Λ = L ∪ R of Λ into disjoint convex subsets L and R. If

both L and R have no end-points then {L,R} is a gap of (Λ, E).

We also need to consider branching points of negative type in a general betweenness

relation.

Definition 1.2.16. Let (Ω, E) be a B–set such that E is a general betweenness relation

on Ω. A cut of Ω is a partition Ω =
⋃
i∈I Ωi into disjoint components Ωi. A cut of

Ω =
⋃
i∈I Ωi such that |I| ≥ 3 and none of the components Ωi has an endpoint is a

branch point of negative type. For such a partition, the Ωi are branches at the branch

point of negative type they define.
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When (Ω, E) is a B–set with E a general betweenness relation on Ω, then branches at

points of negative type are components of (Ω, E) (see Theorem 18.3 of [3]).

Given a B–set (Ω, E) with a general betweenness relation E, the points of negative type

of Ω are branch points of negative type or gaps of Λ where Λ is a maximal linear subset

of Ω.

Definition 1.2.17. Let (Ω,≤) be a normal semilinear order. We define the natural

betweenness relation defined in (Ω,≤) to be the relation B on Ω defined from ≤ as

follows.

B(y;x, z) :⇐⇒

(x ≤ y ≤ z) ∨ (z ≤ y ≤ x) ∨ (y ≤ x ∧ y ⊥ z) ∨ (y ≤ z ∧ y ⊥ x) ∨ (y = xf z).

We remark (see [3], Theorem 17.1) that whenever (Ω,≤) is a normal semilinear ordering

then (Ω, B) as defined above is a B–set on which B is a betweenness relation.

Definition 1.2.18 (Section 33 in [3]). Let (Ω,≤) be a semilinear order andE aB–relation

on Ω. As in [3] we say that E is compatible with the ordering ≤ if

(AB1) y ≤ x ≤ z → E(x; y, z);

(AB2) (y ≤ z ∧ E(x; y, z))→ (y ≤ x ≤ z).

Theorem 1.2.19 (A special case of Theorem 33.1 from [3]). Let S = (Ω, <) be

a relatively 2–transitive semilinear order, which is normal, and E a dense general

betweenness relation that is compatible with the ordering (Ω,≤). Then (Ω, E) = (Ω, B)

where B is the natural betweenness relation defined in S.

1.2.2 C–relations

Let (T,≤) be a semilinear ordering and let M := {mi}i∈I be a collection of maximal

chains of (T,≤), indexed by I . Let C, standing for chain relation, be a ternary relation
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on this collection M = {mi} of maximal chains in (T,≤) defined for mi,mj,mk ∈ M
by

C(mi;mj,mk) if (mi ∩mj) = (mi ∩mk) ⊂ (mj ∩mk).

In other words, the chains mj and mk are closer to each other then they are to the chain

mi. We call such a structure (M,C) a (proper) C–set.

From [3] we have the following formalisation of this notion of C–set.

Definition 1.2.20 (Section 10 of [3]). Let C(x; y, z) be a ternary relation on the set X .

The relation C is called a C–relation if it satisfies following axioms (C1) – (C4) for every

x, y, z, w ∈ X .

(C1) C(x; y, z)→ C(x; z, y);

(C2) C(x; y, z)→ ¬C(y;x, z);

(C3) C(x; y, z)→ C(x;w, z) ∨ C(w; y, z);

(C4) x 6= y → C(x; y, y).

The structure (X,C) is called a C–set when C is a C–relation on X . If, in addition, C

satisfies (C5) and (C6), (X,C) is called a proper C–set.

(C5) (∃v)C(v;x, y);

(C6) x 6= y → (∃v)(v 6= y ∧ C(x; y, v)).

Let (X,C) be a C–set such that, for all x, y, z ∈ X ,

(C7) C(x; y, z)→ (∃w)(C(w; y, z) ∧ C(x; y, w)

then (X,C) is a dense C–set.
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1.2.3 D–relations

In a similar way to a C–relation being considered as a ternary relation on the maximal

chains of a semilinear order, a D–relation is a certain relation on a collection of maximal

linear subsets of a B–set.

Definition 1.2.21 (Section 22 of [3]). Let D(x, y; z, w) be a quaternary relation on the set

X . The relation D is called a D–relation if it satisfies following axioms (D1) – (D4) for

every x, y, z, w, s ∈ X .

(D1) D(x, y; z, w)→ D(y, x; z, w) ∧D(x, y;w, z) ∧D(z, w;x, y);

(D2) D(x, y; z, w)→ ¬D(x, z; y, w);

(D3) D(x, y; z, w)→ D(s, y; z, w) ∨D(x, y; z, s);

(D4) (x 6= z ∧ y 6= z)→ D(x, y; z, z);

The structure (X,D) is called a D–set if D is a D–relation on X . If in addition, (X,D)

satisfies (D5) below, then it is called a proper D–set.

(D5) (x, y, z distinct)→ (∃v)(v 6= w ∧D(x, y; z, v).

Let (X,D) be a D–set such that, for all x, y, z, w ∈ X ,

(D6) D(x, y; z, w)→ (∃v)(D(v, y; z, w) ∧D(x, v; z, w) ∧D(x, y; v, w) ∧D(x, y; z, v)

then (X,D) is a dense D–set.

Analogous to the notion of cones in the semilinear order S, there are sectors in a D-

relation, which we use in order to analyse potential D-relations definable in S.

Definition 1.2.22 (See [3], Section 24). Let (Ω, D) be a D-set and consider a partition of

Ω as a disjoint union
⊎
i∈I Σi of non-empty subsets {Σi}i∈I . Let λ be the associated

equivalence relation on Ω, with equivalence classes {Σi}i∈I . The partition, or the

equivalence relation λ, is called a structural partition with sectors Σi if
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1. |I| ≥ 3;

2. (∀i ∈ I)(ω1, ω2 ∈ Σi ∧ ω3, ω4 6∈ Σi → D(ω1, ω2;ω3, ω4));

3. ω1, ω2, ω3, ω4 distinct mod λ → ¬D(x, y; z, w) for all permutations (x, y, z, w) of

(ω1, ω2, ω3, ω4).

Lemma 1.2.23 ( [3], Section 24, paragraph 2). If {Σi}i∈I is a structural partition of the

D-set (Ω, D) and we have D(ω1, ω2;ω3, ω4) then there is either some sector Σi such that

ω1, ω2 ∈ Σi or else some sector Σj such that ω3, ω4 ∈ Sj .

Theorem 1.2.24 (Theorem 24.2 from [3]). Let a, b, c be distinct elements of the D–set

(Ω, D). There is a unique structural partition of Ω with the property that a, b, c lie in

different sectors.

Definition 1.2.25 (As in [3]). Let (Ω, D) be a D–set and λ, µ structural partitions of Ω.

When Λ is an equivalence class of λ and Σ an equivalence class of µ such that

Λ ∪ Σ = Ω,

we say that the structural partitions λ and µ are linked and that Λ is the link from λ to µ.

Theorem 1.2.26 (Theorem 25.1 and Corollary 25.2 (1) from [3]). Let (Ω, D) be a D–

set and λ, µ distinct structural partitions of Ω. Then λ and µ are linked and there is a

unique link from λ to µ. Moreover, a sector Γ of a D–set (Ω, D) uniquely determines its

structural partition.

For such λ and µ the set Λ is called the link from λ to µ and we write

link(λ, µ) := Λ.

Lemma 1.2.27. Let (Ω, D) be a D–set. If a, b, c, d ∈ Ω are such that D(a, b; c, d) then

there exist disjoint sectors Γ1 and Γ2 such that a, b ∈ Γ1 and c, d 6∈ Γ1 and a, b 6∈ Γ2 and

c, d ∈ Γ2.

Proof. We assume D(a, b; c, d) and that a, b, c, d ∈ Ω are distinct. By Theorem 1.2.24

for each of the triples a, b, c and a, c, d there is a unique structural partition separating
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the elements in the triple. Let λ be the equivalence relation associated to the structural

partition separating a, b, c.

We proceed to show that d ∈ λ(c). The equivalence classes of λ form a structural partition

(see Definition 1.2.22) of Ω. If d ∈ λ(a) then Definition 1.2.22 (2) then D(a, d; b, c),

contradicting (D2), as we have assumed D(a, b; c, d). Similarly if d ∈ λ(b). If λ(d) is

distinct from λ(a), λ(b), λ(c), then a, b, c, d are distinct mod λ, so by Definition 1.2.22

(3), then we contradict D(a, b; c, d). Hence we must have d ∈ λ(c).

Similarly, we let µ be the equivalence relation associated to the structural partition

separating a, c, d. Arguing as in the last paragraph, we have b ∈ µ(a).

This part of the proof above is a special case of point (4) under the definition of structural

partition in [3] Section 24. The paragraph below finishing the proof of the present lemma

does not appear in [3].

If λ(c) and µ(a) are disjoint, we are done. Suppose otherwise, that there is x ∈ λ(c) ∩
µ(a). Let ν be the structural partition separating a, c, x given by Theorem 1.2.24. Of

course, λ(c) is the only λ class containing x and ν(a) is the only ν class containing a.

Recall that λ separates a, b, c and that all structural partitions are linked (Lemma 1.2.26).

So as ν(a) ∪ λ(c) = Ω and b 6∈ λ(c), we must have that link(ν, λ) = ν(a) contains b.

As λ(c) ∪ ν(a) = Ω and d 6∈ λ(a), we have that link(λ, ν) = λ(c) contains d. Similarly,

link(ν, µ) = ν(c) contains d and link(µ, ν) = µ(a) contains b. That is ν(c) is the sector

of ν containing c, d and ν(a) is the sector of ν containing a, b; as they are both sectors of

ν, they are disjoint.

If a, b, c, d are not pairwise distinct, then either a = b or c = d. If both a = b and c = d,

let s be any element distinct from a and c, then by Theorem 1.2.24, there is a unique

structural partition σ separating a, c, s. Then σ(a) and σ(c) are disjoint sectors and we

are done. Now, without loss of generality, assume that a = b and c, d are distinct. Let τ

be the structural partition separating a, c, d provided by Theorem 1.2.24. Then let t be an

element distinct from a, c, d such that t ∈ τ(a). Then D(a, t; c, d) with a, t, c, d distinct,

in which case the proof above gives disjoint sectors Γ1 and Γ2 such that a, t ∈ Γ1 and

c, d 6∈ Γ1 and a, t 6∈ Γ2 and c, d ∈ Γ2. Hence, as a = b also b ∈ Γ1 and b 6∈ Γ2.
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Theorem 1.2.28 (Theorem 25.3 from [3]). Let Λ be the family of structural partitions of

a D–set (Ω, D). Define a ternary relation BD on Λ by setting, for λ, µ, ν ∈ Λ structural

partitions of Ω,

BD(λ; ν, µ) :⇐⇒


λ = ν or

λ = µ or

link(λ, ν) 6= link(λ, µ).

Then (Λ, BD) is a betweenness relation of positive type on Λ.

Theorem 1.2.29 (Theorem 26.6 from [3]). Let (Ω, D) be a proper D–set and (Λ, BD)

be the B–set with betweenness relation BD on the set Λ of structural partitions of Ω as

defined in Theorem 1.2.28. Then (Λ, BD) is dense if and only if (Ω, D) is dense.

Let (Ω, D) be a D–set and (Λ, BD) be the B–set interpreted on the set Λ of structural

partitions of (Ω, D). Take any µ, ν ∈ Λ and consider [µ, ν] = {λ : BD(λ;µ, ν)} the

linear interval with end-points µ, ν. Let a, b ∈ Ω be points in the D–relation such that

µ(a) omits b and ν(b) omits a. Then for any λ ∈ [µ, ν], we have λ(a) is disjoint from λ(b)

and that λ(a) ⊇ µ(a) and λ(b) ⊇ ν(b).

Definition 1.2.30 (As in Section 28, [3]). Given the context of the preceding paragraph,

let (Γ1,Γ2) be a cut at a gap of [µ, ν]. The subsets of Ω defined by

Σ1 :=
⋃
λ∈Γ1

λ(a), and

Σ2 :=
⋃
λ∈Γ2

λ(b),

are called convex halves of (Ω, D).

Lemma 1.2.31. If (Ω, D) is a dense D–set, then there is no disjoint pair of sectors Γ1

and Γ2 such that Γ1 ∪ Γ2 = Ω.

Proof. Suppose that Γ1 and Γ2 are disjoint sectors such that Γ1 ∪ Γ2 = Ω. Via Theorem

1.2.26, let λ1 be the structural partition determined by Γ1 and λ2 be the structural partition

determined by Γ2. Note that λ1 6= λ2, as structural partitions have at least 3 parts. If µ is



Chapter 1. Introduction 27

a structural partition of (Ω, D) with a sector Σ properly containing Γ1, then by Theorem

1.2.26 the partition µ is distinct from λ1 and linked to λ1. But Σ∪Γ1 = Σ 6= Ω as Σ ⊃ Γ1,

and Σ \ Γ1 is non-empty, so Γ1 cannot be the link from λ1 to µ. Hence Ω \Σ is contained

in a sector of λ1 and Σ = link(µ, λ1). But as Γ1 ∪ Γ2 = Ω we have that Σ ∪ Γ2 = Ω,

so also Σ = link(µ, λ2). Hence, as link(µ, λ1) = link(µ, λ2), the definition of BD in

Theorem 1.2.28 gives that ¬BD(µ;λ1, λ2).

As (Ω, D) is a dense D–set, then by Theorem 1.2.29, the B relation (Λ, BD) is dense. So

there is some structural partition µ such that BD(µ;λ1, λ2).

By the previous paragraph and the property that Γ1 and Γ2 are disjoint such that Γ1∪Γ2 =

Ω, this structural partition µ cannot have a sector properly containing Γ1 or Γ2. Suppose

that Γ1 (or Γ2) is a sector of µ. Then by Theorem 1.2.26 we have that µ = λ1 (or µ = λ2).

However, this contradicts that (Λ, BD) is dense, so we are done.
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1.3 Theorems around Jordan groups

In this section we are collecting together the classification results and technical results on

Jordan sets which we will use in Chapters 2 and 3; in particular various detailed results

on Jordan sets of tree–like structures for use in Chapter 2.

1.3.1 Primitive Jordan groups with primitive Jordan sets

First we note a couple of useful observations. Corollary 1.3.2 is the first step in being

able to apply the Theorem 2.1.3 in the study of reducts of structures which contain proper

primitive Jordan sets for their automorphism groups.

Theorem 1.3.1 (Theorem 0 of [4]). IfG is a primitive Jordan group and if Σ is a primitive

cofinite Jordan set then Σ is improper.

In other words, if Σ is a proper, primitive Jordan set for (G,Ω) an infinite primitive

permutation group, then Σ is infinite and co-infinite.

Corollary 1.3.2. If (G,Ω) is a primitive Jordan group for which Σ is a proper, primitive

Jordan set, and H ≥ G is a supergroup, then Σ is a proper, primitive Jordan set for

(H,Ω).

Proof. As the action of G(Ω\Σ) induced on Σ is primitive, given any proper, non trivial

equivalence relation ρ on Σ, and x, y ∈ Σ such that xρy, there is g ∈ G(Ω\Σ) such that

¬(g(x)ρg(y)). But g ∈ H(Ω\Σ) as H is a supergroup of G. So H(Ω\Σ) preserves no non-

trivial proper equivalence relation on Σ. So Σ is a Jordan set for H . It is a consequence

of Theorem 1.3.1 that Σ is infinite and co-infinite, and so Σ is also a proper Jordan set for

H .

Theorem 1.3.3 (Adeleke-Neumann Theorem 3 of [4]). Suppose that (G,Ω) is an infinite,

primitive Jordan group with primitive proper Jordan sets. If (G,Ω) is not highly transitive

then there is a G-invariant relation R on Ω which is one of
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1. A dense linear order (R is binary);

2. A dense linear betweenness (R is ternary);

3. A dense circular order (R is ternary);

4. A dense separation relation (R is quaternary);

5. A dense semilinear order (R is binary);

6. A dense general betweenness relation (R is ternary);

7. A C-relation (R is ternary);

8. A D-relation (R is quaternary).

Additionally we make use in Chapter 2 of the finer information given by the following

theorem. In this statement the term ‘connected region’ in the case of a semilinear order

or a betweenness relation means what we call a convex set for the appropriate structure;

while there are analogous notions for C and D–relations, we will not make use of them

so have not given the specific definition.

Theorem 1.3.4 (Adeleke-Neumann, Theorem 5.4 of [4]). Suppose that G is primitive on

Ω, has a primitive proper Jordan set Σ0, and is not highly homogeneous. Then there

is a G-invariant semilinear order, C-relation, betweenness relation, or D-relation on Ω.

Furthermore, in each case, the relation is dense and Σ0 is a connected region of Ω with

respect to the relevant relation.

The following notion of a connected system, and the following Theorem 1.3.6 on unions

of connected systems of Jordan sets is crucial in the proof of Theorem 2.1.3 in [4]. We

will use it in the proof of Lemma 2.1.13.

Definition 1.3.5. A family F of subsets of a set Ω is a connected system if for all Γ1,Γ2 ∈
F there exist Σ0,Σ1, ...,Σk ∈ F such that Σ0 = Γ1 and Σk = Γ2 and Σi ∩ Σi+1 6= ∅ for

i ∈ {0, 1, ..., k − 1}.
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Theorem 1.3.6 (A particular case of Lemma 3.2 from [4]). Let (G,Ω) be a permutation

group acting on Ω and F be a connected system of primitive Jordan sets for G. Then the

union of all sets in F , that is ⋃
Γ∈F

Γ,

is a primitive Jordan set for G.

Definition 1.3.7. A pair (Γ1,Γ2) of subsets Γ1,Γ2 ⊆ Ω is called a typical pair if Γ1∩Γ2 6=
∅ and Γ1 6⊆ Γ2 and Γ2 6⊆ Γ1.

Definition 1.3.8 (following [3]). A collection Σ of subsets of Ω is called syzygetic if every

typical pair (Γ1,Γ2) ∈ Σ × Σ of sets from Σ covers Ω, that is Γ1 ∪ Γ2 = Ω. A subset

Γ ⊆ Ω is syzygetic for G, where G is a group acting on Ω, if ΓG := {Γg : g ∈ G} is

syzygetic.

Lemma 1.3.9. If (G,Ω) is a permutation group and Γ ⊆ Ω is syzygetic for G then its

complement Ω \ Γ is syzygetic for G.

Lemma 1.3.10 (See Theorem 6.9 of [3]). Suppose S = (Ω, <) be a relatively 2-transitive

semilinear order and let G := Aut(S).

1. Let Λ be a lower section of S which is not of the form Λa := {w : w < a} for

any a ∈ Ω. If ∆ is a cone of S above Λ then ∆ is a primitive Jordan set for

G := Aut(S). If Γ is a union of cones at Λ then Γ is a Jordan set for Γ.

2. Conversely, if Γ is primitive Jordan set for G then there is a lower section Λ, not of

the form Λa := {w : w < a}, such that Γ is a cone of S above Λ.

Lemma 1.3.11 (See Theorems 5.17 and 5.26 and Lemma 5.22 of [18]). Let S = (Ω, <)

be a relatively 2-transitive semilinear order and G = Aut(S). If Λ is a ramification point

and C1 and C2 are distinct cones at Λ then there is a g ∈ Aut(S) of order 2 such that

Cg
1 = C2 and Cg

2 = C1 which fixes the complement of C1 ∪ C2.

Lemma 1.3.12 (See Theorem 28.6 from [3]). Given a D-relation (Ω, D) with

automorphism group H := Aut(Ω, D), if Γ is a primitive Jordan set for H then Γ is

a sector of D or a convex half of D.
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Proof. This is a special case of the classification of proper Jordan sets of a D relation

given by [3] Theorem 28.6.

Lemma 1.3.13 (Corollary 25.2 of [3]). If D is a D-relation on Ω then the family C of

sectors of (Ω, D) is syzygetic.

Corollary 1.3.14. Assume D be a D-relation on Ω with automorphism group G :=

Aut(Ω, D). Let C be the family of sectors of D and Σ be the collection of sectors and

convex-halves of (Ω, D). Suppose Γ ∈ C .

1. The set of translates ΓG under G = Aut(Ω, D) is syzygetic;

2. For any g ∈ G, if (Γ,Γg) is typical then Γ ∪ Γg = Ω;

3. Σ is syzygetic.

Proof. It is clear from the definition of a syzygetic family of subsets that a subfamily of

a syzygetic collection is syzygetic. As the family of all sectors C is syzygetic (Lemma

1.3.13), then ΓG ⊆ C is syzygetic. Part (2) is nearly a restatement of (1).

Lemma 1.3.13 states exactly that for any typical pair (Γ,Σ) of sectors of (Ω, D) we have

that Γ ∪ Σ = Ω. We need to consider typical pairs (U, V ) where either one or both of U

and V are convex halves of (Ω, D). First assume that U is a sector and V is a convex half

and (U, V ) is a typical pair. So V can be written V = ∪i∈ISi where each Si is a sector of

(Ω, D) and Si ⊆ Sj for all i < j in I . As U ∩V 6= ∅ there is some i such that Si∩U 6= ∅,
then for all j ≥ i, Sj ∩ U 6= ∅. Similarly there is some k ≥ i such that Sk 6⊆ U . As

U 6⊆ V , for all i we have U 6⊆ Si. So (U, Sk) is a typical pair of sectors and by Lemma

1.3.13, U ∪ Sk = Ω. Hence U ∪ Sk ⊆ U ∪ V = Ω. The case remains is when U and V

are convex halves such that (U, V ) is a typical pair. Write V as above and U =:
⋃
j∈J Tj

where Ti ⊆ Tj for all i < j in J . Similarly to the process above, we find, for large enough

i ∈ I and j ∈ J , a typical pair (Si, Tj) of sectors and by Lemma 1.3.13 conclude that

Si ∪ Tj = Ω and hence U ∪ V = Ω.

Theorem 1.3.15 (Theorem 18.5 from [3]). The collection of components of a B–set

(Ω, E) is syzygetic.
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Theorem 1.3.16 (Theorem 20.2 in [3]). Let (Ω, E) be a B–set and H := Aut(Ω, E). Let

Σ ⊆ Ω be a proper Jordan set for H in (Ω, E) and let (Σ, E) be the B–set substructure

induced from (Ω, E) on Σ. If (Ω, E) is not linear and H is primitive on Ω then either

1. both Σ and its complement Ω \ Σ are components of (Ω, E); or

2. there is a branch point a ∈ Ω of positive type such that Σ is a union of branches at

the branch point a; or

3. there is a branch point α of negative type such that Σ is a union of branches at the

branch point α.

Corollary 1.3.17 (of Theorem 1.3.16). Let (Ω, E) be a B–set such that E is a dense

general betweenness relation and assume H := Aut(Ω, E) is 2-transitive on Ω. Then if

Σ ⊆ Ω is a proper primitive Jordan set then either,

1. both Σ and its complement Ω \ Σ are components of (Ω, E); or

2. there is a branch point a ∈ Ω of positive type such that Σ is a branch at a; or

3. there is a branch point α of negative type such that Σ is a branch at α.

In particular, all of the sets described in the conclusion of this Corollary are of the type

described in Definition 1.2.16. Hence if Σ is a proper primitive Jordan set for Aut(Ω, E)

in the betweenness relation (Ω, E) as above, then Σ is a component of (Ω, E) and, in

particular, Σ is convex in E.

Proof. Assume (Ω, E) is a B–set such that E is a dense general betweenness relation and

that H = Aut(Ω, E) is 2-transitive on Ω.

Let Σ ⊆ Ω be a proper primitive Jordan set for H . Then Σ is a Jordan set for H , which

is 2-transitive on Ω and hence primitive on Ω, so by the first part of the previous Theorem

1.3.16, it is of one of the required types described in the conclusion of this corollary.

Note that if X ⊆ Ω is a union of more than one branch, as in either case (2) or (3) of

Theorem 1.3.16, it is not a primitive Jordan set for H; the pointwise stabiliser H(Ω\X) of



Chapter 1. Introduction 33

the complement of X preserves the branch classes which are proper, non-trivial subsets

of such an X .

Corollary 1.3.18. Let (Ω, E) be a B–set with 2-transitive automorphism group H :=

Aut(Ω, E) then the collection Σ of proper primitive Jordan sets for H , is syzygetic.

Proof. Combine Corollary 1.3.17 with Theorem 1.3.15.

1.3.2 Primitive Jordan groups without primitive Jordan sets

The moral of Section 1.3.1 is that if G is a primitive Jordan group on Ω such that Ω

contains a proper primitive Jordan set, then Theorem 2.1.3 of Adeleke and Neumann

tells us that G is highly transitive or preserves some familiar tree-like or linear-like

relational structure. If we consider primitive Jordan groups (G,Ω) for which there are

only imprimitive proper Jordan sets then G might preserve only other types of relational

structure. One of these possibilities is that G preserves a kind of incidence geometry on

Ω called a Steiner system.

Definition 1.3.19 (See Definition 11.2 of [7]). Let k be a natural number greater than 2

and Ω a set. A Steiner k–system on Ω is a collection L of subsets of Ω, called lines, such

that every line in L has the same size l > k such that

1. There is more than one line;

2. If a1, a2, ..., ak are distinct point of Ω then there is a unique line l ∈ L such that

a1, a2, ..., ak ∈ l.

Other more unfamiliar examples that turn up in the classification theorem of Adeleke and

Macpherson are certain limits of tree–like structures or limits of Steiner systems. We state

the definitions below.

Definition 1.3.20 (See Definition 2.1.9 in [2] and Definition 2.4 in [6]). Let (G,Ω) be

a permutation group. We say that G preserves a limit of betweenness relations if it is a

Jordan group such that there are: a linearly ordered set (J,≤) with no lower bound in J ,
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a chain (Γi : i ∈ J) of subsets of Ω, and a chain (Hi : i ∈ J) of subgroups of G such that

if i < j then Γi ⊃ Γj and Hi ⊃ Hj , and the following hold:

(i) for each i,Hi = G(Ω\Γi), Hi is transitive on Γi and has a unique non-trivial maximal

congruence ρi on Γi;

(ii) for each i, (Hi,Γi/ρi) is a 2-transitive but not 3-transitive Jordan group preserving

a betweenness relation;

(iii)
⋃
i∈J Γi = Ω;

(iv) (
⋃
i∈J Hi,Γi/ρi) is a 2-primitive but not 3-transitive Jordan group;

(v) if t ≥ s then ρt ⊇ ρs �Γt;

(vi)
⋂
t∈T ρt is equality on Ω;

(vii) (∀g ∈ G)(∃i0 ∈ J)(∀i < i0)(∃j ∈ J)(Γgi = Γj ∧ g−1Hig = Hj);

(viii) for any α ∈ Ω, Gα preserves a C-relation on Ω\α.

Definition 1.3.21 (See Definition 2.1.9 in [2] and Definition 2.4 in [6]). Suppose that

(G,Ω) satisfies all the above assumptions with associated chains of subsets (Γi : i ∈ J)

of Ω and subgroups (Hi : i ∈ J) of G and equivalence relations (ρi)i∈J witnessing the

conditions above except (ii), but instead of (ii) satisfying (ii)′ below.

(ii)′ for each i, (Hi,Γi/ρi) is a 2-transitive but not 3-transitive Jordan group

preserving a D–relation.

Then we say that (G,Ω) preserves a limit of D–relations.

Definition 1.3.22 (Definition 2.1.10 of [2]). Let (G,Ω) be an infinite n–transitive but not

(n + 1)–transitive Jordan group, where n is a natural number greater than 3. Then G is

said to preserve on Ω a limit of Steiner systems if there is a totally ordered index set (I,≤)

with no greatest element, and an increasing chain (Πi : i ∈ I) of subsets of Ω such that:

(i)
⋃
i∈I Πi = Ω;
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(ii) for each i ∈ I the setwise stabiliser G{Πi} of Πi is (n − 1)–transitive on Πi and

preserves a non–trivial Steiner (n− 1)–system on Πi;

(iii) if i < j then Πi is a subset of a line of the G{Πi}–invariant Steiner (n − 1)–system

on Πi;

(iv) for all g ∈ G there is i0 ∈ I , dependent on g, such that for every i > i0 there is

j ∈ I such that g(Πi) = Πj and the image under g of every (n− 1)–Steiner line on

Πi is an (n− 1)–Steiner line on Πj;

(v) for each i ∈ I , the set Ω \ Πi is a Jordan set for (G,Ω).

We are now able to state the main result of Adeleke and Macpherson in [2], a classification

of the structures which may be preserved by any infinite primitive Jordan group.

Theorem 1.3.23 (Theorem 1.0.1 from [3].). Let (G,Ω) be an infinite primitive Jordan

group. Then either G is highly transitive on Ω or G preserves on Ω one of the following

structures:

(a) a dense linear order;

(b) a dense circular order;

(c) a dense linear betweenness relation;

(d) a dense separation relation;

(e) a dense semilinear order;

(f) a dense general betweenness relation (induced from a semilinear order);

(g) a C–relation;

(h) a D–relation;

(i) a Steiner system;

(j) a limit of betweenness relations;
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(k) a limit of D–relations;

(l) a limit of Steiner systems.

In addition, in cases (j), (k) and (l) of the above statement, none of the structures in cases

(a)–(i) are preserved by G.
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1.4 Fraı̈ssé constructions

The constructions known as Fraı̈ssé constructions from model theory have seen a number

of applications in combinatorics and in studying infinite permutation groups. For an

introduction to standard Fraı̈ssé constructions we refer the reader to Macpherson’s survey

of homogeneous structures [26] and Cameron’s book [11]. The exposition of a more

general form of Fraı̈ssé–Hrushovski constructions given here is similar to that in Section

3 of [5] by Baudisch, Martin-Pizarro and Ziegler. I am grateful to Isabel Müller for

bringing that paper to my attention.

Let K be a class of finite structures with countably many members up to isomorphism

and let E be a countable class of embeddings between them. If an embedding ε is in E

then it may be called an E –embedding, or a strong embedding.

Definition 1.4.1. The class (K ,E ) has the amalgamation property if, given A,B1, B2 ∈
K and embeddings εi : A→ Bi for i ∈ {1, 2} in E , there exists C ∈ K and η1, η2 in E ,

where ηi : Bi → C, such that, for i ∈ {1, 2}, the composition ηi ◦ εi is an E –embedding

of A into C and η1 ◦ ε1 = η2 ◦ ε2.

We consider direct limits along sequences

A0 → A1 → ...→ Ai → Ai+1 → ...

of L –structures Ai ∈ K , where arrows are E –embeddings.

Definition 1.4.2. A sequence of E –embeddings

A0 → A1 → ...→ Ai → Ai+1 → ...

where Ai ∈ K for i ∈ N is rich if, for all B ∈ K and strong embeddings ε such that

ε : Ai → B there is a j ≥ i and a strong embedding η : B → Aj such that η ◦ ε is the

embedding Ai → Aj given by composition along the sequence.

Definition 1.4.3. The direct limit M of a rich sequence in (K ,E ) is called a Fraı̈ssé

limit.
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Definition 1.4.4. If Ai ∈ K is an element of some rich sequence of E –embeddings

A0 → A1 → ...→ Ai → Ai+1 → ...

with Fraı̈ssé limit M , we say that Ai is E –embedded in M .

This theorem is more general than the classical Theorem of Fraı̈ssé from [21]. It

generalises a construction of Hrushovski in [22] of which my understanding mostly comes

from lectures given by David Evans in Lyon (May 2011), and papers of Evans [20] and

Wagner [30]. This Theorem is published in a paper [5] of Baudisch, Martin-Pizarro and

Ziegler, citing results of Ziegler in [31].

Theorem 1.4.5 (From [5], citing [31]). If (K ,E ) is countable and has the amalgamation

property then rich sequences exist and the Fraı̈ssé limit M is unique up to isomorphism.

If p : A → B is an isomorphism between finite A,B ∈ K that are E –embedded in M ,

then p extends to an automorphism of M .

Given some embeddings ε1 : A→ B1 and ε2 : A→ B2, in some special cases we say that

we can identify B1 \A with B2 \A. This means that the required result of amalgamation,

C, can be chosen so to be a copy of B1 so that η1 can be chosen to be the identity, and

then η2 to be an isomorphism of B2 so that η2(B2) = B1.
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Chapter 2

Reducts of semilinear orders

One recent application of the classification of infinite primitive Jordan groups has

been in determining the reducts up to first order interdefinability of certain structures.

In particular, this strategy may be used when a structure has a primitive Jordan

automorphism group by applying the classification results on primitive Jordan groups

by Adeleke and Neumann [4] and Adeleke and Macpherson [2] (See Chapter 1.3). This

strategy has been used by Bodirsky and Macpherson [9] and Kaplan and Simon [25] in

different contexts.

We use this approach in determining the reducts of certain dense semilinear orders. The

structures we consider here are countably infinite, relatively 2-transitive, lower semilinear

orders. They are semilinear orders S = (Ω, <) for which any partial isomorphism ρ

between two element substructures A,B ≤ S extends to an automorphism g ∈ Aut(S)

of (Ω, <). These are called 2-homogeneous trees by Droste and studied extensively by

him in [18]. In Section 6 of [18], Droste classifies such semilinear orders and proves

that there are countably many non-isomorphic, relatively 2-transitive lower semilinear

orders. Such semilinear orders are either of positive type, containing all their meets, or

of negative type containing no meets of incomparable elements. The results of Droste

give that the isomorphism type of a countably infinite, relatively 2-transitive semilinear

order is determined by whether it is of positive or negative type, and a countable cardinal

(at least 2) stipulating the number of cones at each ramification point (see Theorem 6.21

of [18]).
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2.1 Applying the classification of Jordan groups

The starting point for this approach is the observation that if (G,Ω) is a primitive Jordan

group (with a primitive Jordan set) then for any supergroup H ≥ G, (H,Ω) is a primitive

Jordan group (with a primitive Jordan set), and all (primitive) Jordan sets for G are

(primitive) Jordan sets for H (see Lemma 1.3.2). First we fix S = (Ω, <) any of the

relatively 2-transitive semiliner orders on a countably infinite set Ω, as classified by Droste

in [18]. Note that G = Aut(S) is a primitive Jordan group on Ω in which cones of

S are primitive Jordan sets for G, so by the observation above, any supergroup H is a

primitive Jordan group on Ω with primitive Jordan sets. Then we use the classification

theorem of Adeleke and Neumann, along with combinatorial information about Jordan

sets, to determine which kinds of structures can be preserved by closed supergroups and

then, exactly which structures (up to first order interdefinability) are preserved by such

supergroups. We state the main theorem here. The rest of this chapter is dedicated to

proving this theorem.

Theorem 2.1.1. Let S = (Ω, <) be a countably infinite, relatively 2-transitive lower

semilinear order. Let (H,Ω) be a closed permutation group such that Aut(S) =

Aut(Ω, <) ⊆ H ⊆ Sym(Ω). Then either

(i) H = Aut(S) = Aut(Ω, <);

(ii) H = Aut(Ω, B), where B is the natural betweenness relation on S;

(iii) H = Sym(Ω).

Corollary 2.1.2. Every Aut(Ω, B) above is a maximal closed subgroup of Sym(Ω). There

are countably infinitely many such maximal closed subgroups up to conjugacy in Sym(Ω).

It is asked in [9] (Question 5.10) whether there are 2ℵ0 maximal closed subgroups up to

conjugacy in Sym(Ω), for Ω a countably infinite set.

Our starting point is the classification theorem of Adeleke and Neumann, which we recall

below.



Chapter 2. Reducts of semilinear orders 41

Theorem 2.1.3 (Adeleke-Neumann [4], Theorem 3). Suppose that (G,Ω) is an infinite,

primitive Jordan group with primitive proper Jordan sets. If (G,Ω) is not highly transitive

then there is a G-invariant relation R on Ω which is one of

1. A dense linear order (R is binary);

2. A dense linear betweenness (R is ternary);

3. A dense circular order (R is ternary);

4. A dense separation relation (R is quaternary);

5. A dense semilinear order (R is binary);

6. A dense general betweenness relation (R is ternary);

7. A C-relation (R is ternary);

8. A D-relation (R is quaternary).

Theorem 2.1.4 (Adeleke-Neumann [4], Theorem 5.4). Suppose that G is primitive on

Ω, has a primitive proper Jordan set Σ0, and is not highly homogeneous. Then there

is a G-invariant semilinear order, C-relation, betweenness relation, or D-relation on Ω.

Furthermore, in each case, the relation is dense and Σ0 is a connected region of Ω with

respect to the relevant relation.

The structure of the proof of Theorem 2.1.1 is to argue that it is not possible for a relation

R of type (1), (2), (3), (4), (7) or (8) in Theorem 2.1.3 to be ∅–definable in S and that

there is no proper reduct of type (5). We deduce that if Γ is a proper non-trivial reduct of

S with automorphism group (H,Ω), then there is a general betweenness relation R on Ω

preserved by H . Finally we show that such a relation R on Ω has the same automorphism

group as the natural betweenness relation B defined in the semilinear order S = (Ω, <).

Lemma 2.1.5. Let S = (Ω, <) be a relatively 2-transitive semilinear order and let R

be a proper reduct of S. Then the automorphism group H := Aut(R) acting on Ω is

2-transitive.
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Proof. Let G := Aut(S) act on Ω as the automorphisms of S. As S is relatively 2-

transitive, there are three orbits on pairs of distinct elements. They are:

(A) (x, y) such that x < y;

(B) (z, w) such that z > w;

(C) (u, v) such that u ⊥ v.

Let H := Aut(R) be the automorphism group of R acting on Ω. Then H ≥ G, that is,

H is a supergroup of G, as R is ∅–definable in S. Suppose that for f ∈ H is such that

we have xf < yf if and only if x < y. Such an f is an automorphism of S = (Ω, <)

and hence f ∈ G. Therefore, for R to be a proper reduct of S, then there must be some

h ∈ H \ G and some pair of distinct elements a, b ∈ Ω such that (a, b)h is in a different

G-orbit to that of (a, b). So let h ∈ H \ G and (a, b) be a pair such that (a, b)h is in a

different G-orbit to that of (a, b). We consider, in turn, the six possibilities.

Case 1. Assume a < b and ah ⊥ bh. As every incomparable pair is in the sameG-orbit,

there is some g ∈ G such that (ah, bh)g = (bh, ah). So also (a, b)hgh
−1

= (b, a) where

b > a. Hence there is a unique H-orbit on distinct pairs, so H is 2-transitive.

Case 2. Assume a > b and ah ⊥ bh. Switching the roles of a and b, we reduce to Case

1 and conclude that H is 2-transitive.

Case 3. Assume a ⊥ b and ah < bh. As there is only one G-orbit on incomparable

pairs, there is a g ∈ G such that (a, b)g = (b, a). Hence (a, b)gh = (bh, ah) where

agh > bgh. So again there is a unique H-orbit on distinct pairs and H is 2-transitive.

Case 4. Assume a ⊥ b and ah > bh. Swapping a and bwe reduce to Case 3, concluding

that H is 2-transitive.
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Case 5. Assume a < b and ah > bh. Consider any c > a such that c ⊥ b. If ch > bh

then H is 2-transitive by considering (c, b) in the context of Case 4. If ch < bh then

H is 2-transitive by considering (c, b) in Case 3. So we assume that ch ⊥ bh. By the

semilinearity of S, we have that ch ⊥ ah. But as a < c we can consider (a, c) in Case 1

and conclude that H is 2-transitive.

Case 6. Assume a > b and ah < bh. Swapping a and bwe reduce to Case 5, concluding

that H is 2-transitive.

Having considered all the possibilities, we conclude that H is 2-transitive on Ω.

Corollary 2.1.6. If R is ∅–definable in S = (Ω,≤) of type (5), a dense semilinear order,

then R is the relation ≤ of (S;≤).

Proof. This is an immediate corollary of Lemma 2.1.5, as a 2-transitive permutation

group does not preserve any non-trivial binary relations.

Lemma 2.1.7. There is no relation of type (1) a linear order, (2) linear betweenness, (3)

a circular order or (4) a separation relation, ∅–definable in S = (Ω,≤).

Proof. Let G := Aut(S) acting on Ω and H ≤ Aut(Ω, R) acting on Ω as a subgroup of

automorphisms of a reduct (Ω, R) of S. It suffices to show that G preserves no separation

relation on Ω. Let Γ ⊆ Ω be a cone of S and let a, b ∈ Γ such that a ⊥ b. Such a Γ is

a proper primitive Jordan set for G and there is a g ∈ G(Ω\Γ) such that (a, b)g = (b, a).

But for the automorphism group of a separation relation, any Jordan subgroup associated

to a proper primitive Jordan set ∆ preserves a linear order on ∆. By Lemma 1.3.2, any

proper primitive Jordan set for G is a proper primitive Jordan set for H ≥ G. So Γ is a

proper primitive Jordan set for H with distinct a, b ∈ Γ and g ∈ G(Ω\Γ) ≤ H(Ω\Γ) such

that (a, b)g = (b, a). So H(Ω\Γ) does not preserve a linear order on the associated proper

primitive Jordan set Γ, and so cannot preserve any separation relation; in other words R

cannot be a separation relation on Ω.

Lemma 2.1.8. Let (Ω, R) be a reduct of a relatively 2-transitive semilinear order S =

(Ω, <) such that R is a D–relation.
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1. If x, y, z ∈ Ω such that B(y;x, z) is the natural B–relation defined in S and U is a

sector (or convex half) ofR such that U contains x and z but omits y then y = xfz

and U is the union of all cones of S above y.

2. In particular, if y 6= x f z and x, y, z ∈ Ω such that B(y;x, z) in the natural B–

relation defined in S, then there is no sector (or convex half) U of R such that U

contains x and z but omits y.

Proof. Let G := Aut(S) = Aut(Ω, <) and let H := Aut(Ω, R) be the automorphism

group of the reduct (Ω, R) where the relation R is a D-relation definable without

parameters in the semilinear order S. Let B be the natural ternary betweenness relation

defined in S = (Ω, <) as follows.

B(y;x, z) :⇐⇒

(x ≤ y ≤ z) ∨ (z ≤ y ≤ x) ∨ (y ≤ x ∧ y ⊥ z) ∨ (y ≤ z ∧ y ⊥ x) ∨ (y = xf z).

Let x, y, z be distinct elements of Ω and assume that B(y;x, z) in the natural B-relation

of S. Let U ⊆ Ω be a sector (or convex half) of R containing x and z while omitting y.

Case 1. Assume we have x < y < z in S. Let V be the cone Cy(z) of S = (Ω,≤) at

y containing z. This V is a proper primitive Jordan set for Aut(S) and thus a primitive

Jordan set for H . By Lemma 1.3.12, V is a member of Σ, the collection of sectors and

convex halves of R. Hence by Corollary 1.3.14 part 3, if (U, V ) is a typical pair then

U ∪ V = Ω. But U ∪ V omits y, so (U, V ) is not a typical pair. As x ∈ U \ V and

z ∈ U ∩ V we have V ⊆ U .

Next, let W be a cone of S at y which omits z. Let g ∈ Aut(S) fix all elements of Ω

outside {w : y < w}, with V g = W and W g = V . Note that such a g exists by Lemma

1.3.11. By Corollary 1.3.14, (U,U g) cannot be typical as its union omits y. If there is

some t ∈ W \ U then tg ∈ W g \ U g = V \ U g ⊆ U \ U g, as V ⊆ U . But we already

have x ∈ U ∩ U g and t ∈ U g \ U as W ⊆ U g and certainly t 6= tg. So if W \ U is
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non-empty, then (U,U g) are typical, contrary to Corollary 1.3.14. So we conclude that

U ⊃ W . Hence w ∈ U for all w > y.

Now consider y′ such that x < y′ < y < z and assume that U omits y′. Let V ′ be the

cone Cy′(z) of (S, <) at y′ containing z. Then reading the first paragraph with y′ in place

of y, we conclude that V ′ ⊆ U . But then y ∈ Cy′(z) = V ′, contradicting the primary

assumption that U omits y. So instead we conclude that U cannot omit any such y′; so

(x, y) ⊆ U .

Next we consider the possibility that U omits some x′ such that x′ < x < y < z. As

the cone Cx(y) at x containing y also contains z and omits x, we have that (U,Cx(y))

is typical, as y ∈ Cx(y) \ U and x ∈ U \ Cx(y). But note that U ∪ Cx(y) omits x′.

As Cx(y) is a primitive Jordan set for Aut(S,≤), it is a primitive Jordan set for H . By

Lemma 1.3.12, Cx(y) is a member of Σ, the collection of sectors and convex halves of R.

Corollary 1.3.14 part 3 requires that if (U,Cx(y)) is a typical pair, then U ∪ Cx(y) = Ω.

But we have just noticed that U ∪Cx(y) omits x′. So we conclude that {w : w < x} ⊆ U .

At this stage we know that {w : w > y} ∪ {w : w < y} ⊆ U .

Suppose there are y′, z′ ∈ Ω \ U such that y′ < z′ and y ⊥ y′, z′. Let x′ be some element

such that x′ < y and x′ < y′. As x′ < y, we have that such an x′ is in U . By the relative

2-transitivity of Aut(S, <), Lemma 1.3.11 and that cones of S are Jordan sets (Lemma

1.3.10), there is a g ∈ Aut(S, <) such that (y′, z′)g = (y, z) and (y, z)g = (y′, z′).

Moreover, we choose such a g which fixes x′. Then U ∩ U g contains x′, U \ U g contains

z and U g \ U contains z′. So then (U,U g) is a typical pair. Yet U ∪ U g omits y and y′

in contradiction to Corollary 1.3.14 part 2. We conclude that there is no such pair y′, z′

omitted by U . So Ω \ U must be an antichain containing y.

As U is a proper Jordan set, we must have |Ω\U | > 1. That is, there must be some z′ 6= y

which is omitted by U . For such a z′ we have z′ ⊥ y.

Let z′ ∈ Ω \ U be such an element distinct from y. As Ω \ U is an antichain, for any

w < z′ and t > z′, we have w, t ∈ U . As Aut(S, <) is relatively 2-transitive, there is

some g ∈ Aut(S, <) such that (w, z′)g = (z′, t). Moreover, such a g can be chosen to fix

y and z. Then we have U ∩ U g containing z, U \ U g containing t and U g \ U containing
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z′. So then (U,U g) is a typical pair. But U ∪ U g omits y in contradiction to Corollary

1.3.14 part 2. So in fact, there is no such z′.

We conclude that in this case there is no sector or convex half U of R containing x, z and

omitting y.

Case 2. Assume we have z > y and z, y ⊥ x in S. Let V be the (open) cone Cy(z) of

(S,≤) at y containing z. Note that z ∈ U ∩ V . This V is a proper primitive Jordan set

for Aut(S,≤) and thus a primitive Jordan set for H . By Lemma 1.3.12, V is a member

of Σ, the collection of sectors and convex halves of R. Hence by Corollary 1.3.14 part 3,

if (U, V ) is a typical pair then U ∪ V = Ω. But U ∪ V omits y, so (U, V ) is not a typical

pair. As x ∈ U \ V and z ∈ U ∩ V , we have V ⊆ U .

Now consider the possibility that there is a y′ such that x f y < y′ < y < z and with

U omitting y′. Let V ′ be the cone Cy′(z) of S = (Ω, <) at y′ containing z. As in the

previous paragraph (U, V ′) cannot be a typical pair, and so V ′ ⊆ U . But y ∈ Cy′(z) = V ′,

contradicting the primary assumption that U omits y. Instead we conclude that U cannot

omit any such y′; so (xf y, y) ⊆ U .

If we now take w ∈ (x f y, y), we have found a triple w < y < z such that U contains

w and z and omits y. So by Case 1, we conclude that there is no such sector (or convex

half) U of (Ω, R).

If S is of negative type, it suffices to consider Cases 1 and 2 to exhaust the possible

configurations of x, y, z such that B(y;x, z) and we conclude that there is no sector (or

convex half) U of R such that U contains x and z but omits y.

However, if S is of positive type and B(y;x, z) holds then it is possible that x, z > y and

x ⊥ z and y = xf z. We consider this situation in Case 3 below.

Case 3. Assume we have x, z > y and x ⊥ z and y = xf z in S. Let V be the (open)

cone Cy(z) of (S,≤) at y containing z. Note that z ∈ U ∩V . This V is a proper primitive

Jordan set for Aut(S,≤) and thus a primitive Jordan set for H . By Lemma 1.3.12, V is

a member of Σ, the collection of sectors and convex halves of R. Hence by Corollary



Chapter 2. Reducts of semilinear orders 47

1.3.14 part 3, if (U, V ) is a typical pair then U ∪ V = Ω. But U ∪ V omits y, so (U, V )

is not a typical pair. As x ∈ U \ V and z ∈ U ∩ V we have V ⊆ U . By symmetry, we

consider the cone V ′ := Cy(x) in the same way, concluding that V ∪ V ′ ⊆ U . By the

same argument, if t ∈ U and t > y then Cy(t) ⊆ U .

Let w′ ∈ Ω be such that w′ < y < z and w ∈ Ω such that w ⊥ y. Then w′ 6∈ U by Case

1. If w ∈ U then, as w ⊥ z, we can reduce to case 2 by considering the configuration of

z, y, w. Hence all such w and w′ are omitted by U and so ({y} ∪ {w′ : w′ < y} ∪ {w :

w ⊥ y}) ∩ U = ∅.

Let W := Ω \ U be the complement of U , so we have {y} ∪ {w′ : w′ < y} ∪ {w : w ⊥
y} ⊆ W . As U is syzygetic for H , so by Lemma 1.3.9, W is syzygetic for H . Say W

contains some v > y, note in particular that v 6= x and v 6= z. Take some g ∈ Aut(S)

fixing {u : u ≤ y} such that vg = z and zg = v and xg = x. Then there is y ∈ W ∩W g

and v ∈ W \W g and z ∈ W g \W so (W,W g) is a typical pair. But W g ∪W omits x

contradicting that W is syzygetic. Hence we conclude that W omits {v : y < v}.

As W is defined to be the complement of U , this means that {v : y < v} ⊆ U . As

we have already noted, ({y} ∪ {w′ : w′ < y} ∪ {w : w ⊥ y}) ∩ U = ∅. So in fact

U = {v : y < v}. But then U is the disjoint union of cones Cy(vi) of S for i ∈ I .

Lemma 2.1.9. Let (Ω, R) be a proper reduct of S = (Ω, <) such that R is a D-relation.

Then R(x, y; z, w) if and only if ({x, y} ∩ {z, w} = ∅ and (x = y or z = w or there is

some cone of S containing x, y and omitting z, w or vice versa)).

Proof. Let G := Aut(S) in its action on Ω and let H := Aut(Ω, R) act naturally on Ω.

First note that Aut(Ω, R) does not preserve a separation relation (Lemma 2.1.7) and is

not highly transitive, so by Cameron’s Theorem, Aut(Ω, R) is not highly homogeneous.

Hence Theorem 2.1.4 requires that R is a dense D–relation. So throughout this proof, we

may assume thatR is a denseD–relation. In particular this means that, by Lemma 1.2.31,

there can be no disjoint sectors Γ1 and Γ2 of R such that Γ1 ∪ Γ2 = Ω.

(⇐) If x = y or w = z, then R(x, y; z, w) holds by axiom (D1) for a D–relation.

So we assume that x, y, z, w are distinct. As cones of S are primitive Jordan sets for G



Chapter 2. Reducts of semilinear orders 48

(Lemma 1.3.10), they must also be primitive Jordan sets for H (Lemma 1.3.2). Hence by

Lemma 1.3.12 any cone ∆ of S is either a sector or a convex half of (Ω, R). If this ∆ is a

sector of R containing x, y and omitting z, w, then by part 2 of the definition of a sector

(Definition 1.2.22), we have R(x, y; z, w). Similarly, if ∆ is a sector of R containing z, w

and omitting x, y, we have R(z, w;x, y) and by (D1) we have R(x, y; z, w). If ∆ is a

convex half of R containing x, y and omitting z, w, there is a sector Γ ⊆ ∆ containing

x, y. Such a Γ omits z, w, and we have R(x, y; z, w).

(⇒) Let H := Aut(Ω, R) and let Σ be the collection of sectors and convex halves of

the D-relation R. Then, by Lemma 1.2.27, R(x, y; z, w) implies that there are disjoint

sectors Γ1 and Γ2 such that (x, y ∈ Γ1 ∧ z, w 6∈ Γ1) ∧ (z, w ∈ Γ2 ∧ x, y 6∈ Γ2).

We assumeR(x, y; z, w) and that Γ1 and Γ2 are disjoint sectors ofR such that Γ1 contains

x, y and omits z, w while Γ2 contains z, w and omits x, y. Certainly {x, y} ∩ {z, w} = ∅,
so if x, y, z, w are not pairwise distinct, then x = y or z = w, trivially satisfying the right

hand side of the statement. So we may assume that x, y, z, w are distinct.

Case 1. Assume z 6= y f x 6= w and x 6= w f z 6= y. In this case, by Lemmas 1.2.27

and 2.1.8, we have that neither x nor y are between z and w in the natural betweenness

relation B of the semilinear order S. Similarly, neither z nor w are between x and y in the

natural betweenness relation B.

Subcase (a). Assume x > z. As z cannot be between x and y then also y > z and by

assumption z 6= y f x so z < y f x. Then, whatever the relationship between x and y,

because x f y > z, we have x ∈ Cz(y). Yet Cz(y) certainly omits z, so if Cz(y) also

omits w then the right hand side of the result is satisfied and we are done. So assume that

w ∈ Cz(y) so w ≥ (w f y) > z.

Now we have that either xfy > w or xfy ⊥ w or xfy < w. If xfy > w then Cw(y) is

a cone of S at w containing x, y and omitting z, w. If xfy ⊥ w then let a := (xfy)fw.

Then Ca(y) contains x, y and omits z, w. In either of these configurations, the right hand
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side of the statement is witnessed and then we are done. We rule out the remaining

configuration in which xf y < w in the following paragraphs.

So suppose that x f y < w, then as we have already assumed z < x f y, so in fact

z < x f y < w. As neither x nor y are between w and z and vice versa we have x ⊥ y,

so x and y are in distinct cones at x f y. For the same reason, w is not above x or y and

the point w is in a cone at xf y which omits x or y (or omits both x and y).

Let c := xf y.

First assume that Cc(w) omits both x and y. As x 6∈ Cc(y), we have that x, y and w are

in distinct cones at c and z < c. Hence x, y, w are incomparable, with the same pairwise

meet c and c > z. In this case, making use of Lemmas 1.3.10 and Lemma 1.3.11, we

let g ∈ Aut(S) be an automorphism of S fixing y and z such that (w, x)g = (x,w). As

g ∈ Aut(S) ≤ H certainly g ∈ H . But then R(x, y; z, w) ∧ R(w, y; z, x) contradicting

axiom (D2) of a D-relation. So this configuration cannot arise.

Now we assume that Cc(w) omits exactly one of x and y. Without loss of generality,

assume that the cone Cc(w) contains y and omits x. So w ⊥ x ⊥ y and w is not below

y, as w cannot be between x and y and w is not above y, as y cannot be between z and

w. In this configuration we have that x, y, w are incomparable, with y f w > xf y > z.

But then there is g ∈ Aut(S) ≤ H fixing x and z such that (y, w)h = (w, y). So

R(x, y; z, w) ∧R(x,w; z, y) in contradiction with axiom (D2) of a D-relation.

Subcase (b). Assume that either y > z or x > w or y > w. Using the symmetry of the

assumptions in Case 1, we use the argument of Subcase (a) after appropriate relabelling

of x, y and z, w to produce a cone of S which witnesses the right hand side of the lemma.

Subcase (c). Assume that either w > x or z > x or w > y or z > y. Using

the symmetry of the assumptions in Case 1, we use the argument of Subcase (a) after

appropriate relabelling of x, y and z, w to produce a cone of S which witnesses the right

hand side of the lemma.
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Subcase (d). Assume that x, y ⊥ z and x, y ⊥ w.

Subsubcase (i). Suppose that x f y = w f z Let a := x f y = w f z. Note that

a 6= x, y, z, w by the assumption from Case 1. It follows under the assumptions of Case

1(d) that x, y, z, w is an antichain.

If x, y, z, w are in distinct cones at a then there is an automorphism g ∈ Aut(S) ≤ H of S
such that (x, y, z, w)g = (x,w, z, y) so that R(x, y; z, w) ∧ R(x,w; z, y) in contradiction

with axiom (D2) of a D-relation.

If y and w are in a cone at a omitting x, z then there is again an automorphism h ∈
Aut(S) ≤ H of S such that (x, y, z, w)h = (x,w, z, y) so thatR(x, y; z, w)∧R(x,w; z, y)

in contradiction with axiom (D2) of a D-relation.

If x and z are in a cone at a omitting y, w then there is an automorphism f ∈ Aut(S) ≤
H of S such that (x, y, z, w)f = (z, y, x, w) so that R(x, y; z, w) ∧ R(z, y;x,w) in

contradiction with axiom (D2) of a D-relation.

If x and w are in a cone at a omitting y, z then there is an automorphism h ∈ Aut(S) ≤
H of S such that (x, y, z, w)h = (w, y, z, x) so that R(x, y; z, w) ∧ R(w, y; z, x) in

contradiction with axiom (D2) of a D-relation.

Finally, if y and z are in a cone at a omitting x,w then there is an automorphism f ∈
Aut(S) ≤ H of S such that (x, y, z, w)f = (x, z, y, w) so thatR(x, y; z, w)∧R(x, z; y, w)

in contradiction with axiom (D2) of a D-relation.

Subsubcase (ii). Suppose that x f y > w f z. Let a := x f y and b := w f z. The

cone Cb(a) contains x and y so if it omits w, z then we are done. The cone Cb(a) cannot

contain both w and z, as w 6= z and if w = b (or z = b) then Cb(a) omits w (or z). So we

assume that Cb(a) contains exactly one of w, z.

Without loss of generality, say z ∈ Cb(a) and w 6∈ Cb(a).

If z < a then Cz(a) ⊆ Cb(a) is a cone of S containing x, y and omitting z, w witnessing

the right hand side as required.
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Alternatively, if z ⊥ a then b < a f z and there is c such that a f z < c < a. So

Cc(a) ⊆ Cb(a) is a cone of S containing x, y and omitting z, w witnessing the right hand

side of the Lemma as required.

Now suppose that z > a. If there is some point r ∈ Ω \ {a} such that B(r;x, y) ∧
B(r;w, z) then, by Lemma 2.1.8, we have r ∈ Γ1 ∩ Γ2 contradicting the assumption

that Γ1 and Γ2 are disjoint. So we may assume that there is no point r ∈ Ω \ {a} such

that B(r;x, y) ∧ B(r;w, z). If x ≥ y so y = a := x f y then we have that z > y >

b := z f w giving B(y;w, z). So by Lemma 2.1.8 we have y ∈ Γ1 ∩ Γ2 contradicting

the assumption that Γ1 and Γ2 are disjoint. Similarly, if y ≥ x then x = a := x f y

and we reach a contradiction. So we may assume that y ⊥ x and that there is no point

r ∈ Ω \ {a} such that B(r;x, y) ∧ B(r;w, z). The only possibility is that a = x f y is

not a point of Ω and that x, y, z is an antichain such that a is the meet of any pair. But

then there is an h ∈ Aut(S) ≤ H fixing w and x such that (y, z)h = (z, y), whence

R(x, y; z, w) ∧ R(x, z; y, w) contradicting (D2). We conclude that no such configuration

arises such that z > a.

Subsubcase (iii). Suppose that x f y < w f z. Follow the previous paragraph,

exchanging the roles of x, y with z, w.

Subsubcase (iv). Suppose that x f y ⊥ z f w Let s := x f y and t := z f w and

u := sft. Then s and t are in distinct cones of S at u, and x, y ∈ Cu(s) and w, z 6∈ Cu(s),

witnessing the right hand side. Hence, under the assumptions of Case 1, we are done.

Case 2. Assume x ⊥ y and z = y f x. By Lemma 2.1.8 we have that Γ1 is the union

of all cones above z, so that Γ1 = {t : t > z}. In particular, by the assumptions on Γ1,

we have that w 6> z.

Subcase (a). Assume w < z. Let Γ2 be a sector of R as above, that is Γ2 is disjoint

from Γ1 and such that (x, y ∈ Γ1 ∧ z, w 6∈ Γ1) ∧ (z, w ∈ Γ2 ∧ x, y 6∈ Γ2). By Lemma
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2.1.8 the sector Γ2 contains all t such that B(t;w, z), that is the interval of t such that

w < t < z.

If we suppose that Γ2 omits some u < w, then as x > z > w > u we can take g ∈ Aut(S)

such that (x, z, w)g = (x,w, u). Then x 6∈ Γ2 ∪ Γg2 while w ∈ Γ2 ∩ Γg2 and z ∈ Γ2 \ Γg2

and u ∈ Γg2 \ Γ2, contradicting that sectors of R are syzygetic (see Corollary 1.3.14). So

we conclude that {u : u ≤ z} ⊆ Γ2.

If we suppose that Γ2 omits some v ⊥ z then, by Lemma 2.1.8, Γ2 omits all t ≥ v;

as v is between t and z in the natural betweenness relation B and v 6= t f z for such

t. So fix some t > v. Take w′ < z such that w′ < z ∧ v and g ∈ Aut(S) fixing w′

such that (v, z)g = (z, v). Then t 6∈ Γ2 ∪ Γg2, while w′ ∈ Γ2 ∩ Γg2 and v ∈ Γg2 \ Γ2 and

z ∈ Γ2 \ Γg2, contradicting Corollary 1.3.14, that the sectors of R are syzygetic. So we

have that {u : u ≤ z} ∪ {v : v ⊥ z} ⊆ Γ2.

As Γ1 and Γ2 are disjoint by assumption, we now have that {u : u ≤ z} ∪ {v : v ⊥ z} =

Γ2. That is, Γ1 and Γ2 are disjoint, but Γ1 ∪ Γ2 = Ω. As R is a dense D–relation (see the

first paragraph of the proof of this Lemma) this contradicts Lemma 1.2.31.

Subcase (b). Assume w ⊥ z. By Lemma 2.1.8, Γ2 contains {s : wfz < s < w}∪{r :

w f z < r < z}. In particular Γ2 contains z and some r < z. As Γ2 is a sector of the

D-relation R, which contains z, r and omits x, y then also R(x, y; z, r). So following the

previous paragraph with r in place of w we again conclude that {u : u ≤ z} ∪ {v : v ⊥
z} = Γ2. So we have found that Γ1 and Γ2 are disjoint, but Γ1 ∪ Γ2 = Ω. As R is a dense

D–relation this contradicts Lemma 1.2.31.

Case 3. Assume w ⊥ z and y = w f z. The proof that this case does not arise is as in

Case 2 with w, z in place of x, y.

The other two cases, in which either w ⊥ z and x = w f z or x ⊥ y and w = y f x are

dealt with with the same argument as in Case 2 after appropriate relabelling.

Lemma 2.1.10. The relation given in Lemma 2.1.9 is not a proper D-relation. Hence

there is no proper D-relation ∅–definable in S.
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Proof. Following [4], for a D-relation (Ω, D) to be proper it is required to satisfy

(D5) For all x, y, z ∈ Ω, (∃w)(D(x, y; z, w).

To see that R does not satisfy (D5), take x, y, z ∈ Ω such that x < z < y. Note that there

is no cone of S containing x, y and omitting z. So by Lemma 2.1.9, R satisfies (D5) if

and only if there is w ∈ Ω and a cone U of S such that U contains z, w and omits x, y.

But as z < y any cone of S containing z also contains y. So R does not satisfy (D5), so

it is not a proper D–relation.

Having eliminated D–relations as possible reducts of S, it is now easy to eliminate C–

relations.

Lemma 2.1.11. Let S = (Ω, <) be a relatively 2-transitive semilinear order with

automorphism group G = Aut(S). Let R be a proper reduct of S on the domain Ω

and let H = Aut(R) be the automorphism group of R acting on Ω. There is no dense

proper C-relation on Ω preserved by H .

Proof. First note that, as G is a primitive Jordan group with primitive Jordan sets in Ω, so

is H . To prove the contrapositive, suppose that R is a proper C-relation on Ω preserved

by H . By Theorem 2.1.4 we may assume that (Ω, R) is a dense proper C–set, that is

axioms (C1)–(C7) hold for R. From R we make a proper D-relation L on Ω, which will

contradict Lemma 2.1.10. We take our inspiration from [3] Theorem 23.5 and define

L(x, y; z, w) :⇐⇒ ((R(x; z, w) ∧R(y; z, w)) ∨ (R(z;x, y) ∧R(w;x, y)).

We now prove that L is a dense proper D–relation on Ω. Although this is similar to [3]

Theorem 23.5, we are working with slightly different conditions on the C–relation and

we need a different conclusion.

Axioms (D1) to (D4) for L follow from (C1) to (C4) for R making use of the symmetries

in the definition of L as in the proof of [3] Theorem 23.5. So (Ω, L) is a D–set. To see

(D5), and that (Ω, L) is a proper D–set, we take x, y, z distinct in Ω, we need to establish

that there exists v ∈ Ω such that L(x, y; z, v). As R is a proper C-relation we consider the
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internal semilinear order interpretable in (Ω, C). By considering possible configurations

of x, y, z as maximal chains in that semilinear order, by using (C5) and (C6) we see that

there is a suitable chain v satisfying L(x, y; z, v).

Next, we investigate betweenness relations on Ω, aiming to show that the only

betweenness relation arising in a proper reduct of S is the natural one.

Lemma 2.1.12. Let (Ω, E) be a betweenness relation with 2-transitive automorphism

group H := Aut(Ω, E). Assume that a, b, c are distinct and E(a; b, c). Then there is no

proper Jordan set for H containing a and omitting b and c.

Proof. Assume that a, b, c are distinct and E(a; b, c) and Γ is a proper Jordan set

containing a and omitting b, c. Then the interval between b and c, excluding the end-points

is the set (b, c) := {x : E(x; b, c) ∧ x 6= b ∧ x 6= c} is definable over b, c. If y ∈ (b, c)

and z 6∈ (b, c) there is no automorphism h ∈ H fixing b and c pointwise such that yh = z.

As we have assumed that a ∈ Γ and a ∈ (b, c), the Jordan set Γ cannot contain anything

outside (b, c), so Γ ⊆ (b, c). But as Γ is a proper Jordan set, it contains some a′ 6= a. Then

take d ∈ Ω \ Γ such that E(a; b, d) ∧ ¬E(a; c, d) and ¬E(a′; b, d) ∧ E(a′; c, d) so that

a ∈ (b, d) ∩ (b, c) and a′ ∈ (c, d) ∩ (b, c). Such a d exists as by 2-transitivity, there is a

branch point δ between a and a′ such that b, c, d lie in different sectors at this branch point

α. Now there is no h ∈ H(b,c,d) fixing b, c, d pointwise such that ah = a′, contradicting

the assumption that Γ is a Jordan set.

Lemma 2.1.13. Let S = (Ω, <) be a relatively 2-transitive semilinear order and (Ω, E)

a reduct of S such that E is a dense general betweenness relation on Ω. Let G := Aut(S)

and H := Aut(Ω, E) and let Λ ⊆ Ω be a component at δ where either δ is an element of

Ω. Then Λ is a primitive Jordan set for H .

Proof. Take S, (Ω, E), G, H , Λ and Σ as in the statement of the Lemma.

For any x, y ∈ Ω such that x < y, there is a cone ∆ of S containing y and omitting x.

By Lemma 1.3.10, the set ∆ is a primitive Jordan set for G and hence for H (Lemma
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1.3.2). By Lemma 2.1.5, H is 2-transitive on Ω. Hence, for any distinct x, y in Ω, there is

a primitive Jordan set for H (an H-translate of ∆) containing y and omitting x.

Let I be a convex linear subset of Ω such that I is maximal subject to lying in a component

at δ. By fixing δ, the betweenness relation E induces the structure of a dense linear order

≺ on I . As (I,≺) is dense and by the maximality on I , the point δ is the infimum

of (I,≺). Take a sequence (yn)n∈N of yn ∈ I such that δ ≺ yn+1 ≺ yn for every

n ∈ N which converges to δ in the sense that, for all yn ∈ I there is m > n such that

ym ∈ I \ {yn} with B(ym; yn, δ). For each n ∈ N let Un be a primitive Jordan set for

H which contains yn−1 and omits yn. Considering the possibilities given by Corollary

1.3.17 we have that Un+1 ⊇ Un for every n ∈ N. So {Un}n∈N make up a connected

system of primitive Jordan sets (Definition 1.3.5). Because (I,≺) is dense we have that

Λ = bigcupn∈NUn. In other words, Λ is the union of a connected system of primitive

Jordan sets, and by Theorem 1.3.6 it is a primitive Jordan set.

Lemma 2.1.14. Let (Ω, E) be a proper reduct of S = (Ω,≤) such that E is a B-relation

on Ω. Then E is compatible with ≤ in the sense of Definition 1.2.18. That is, we have:

(AB1) y ≤ x ≤ z → E(x; y, z);

(AB2) (y ≤ z ∧ E(x; y, z))→ (y ≤ x ≤ z).

Proof. Let G := Aut(S) and H := Aut(Ω, E).

To prove (AB1) we assume that y ≤ x ≤ z. If x = y or x = z then E(x; y, z) holds

trivially. So we may assume that x 6= y and x 6= z, so then y < x < z.

Let a be such that x < a < z, and let Ca(z) be the cone of S at a containing z, note that

Ca(z) omits x, y. Then as Ca(z) is a primitive Jordan set for G, it is a primitive Jordan

set for H , containing z and omitting x, y. So by Lemma 2.1.12, we have ¬E(z;x, y).

Let b ∈ Ω be such that y < b < x. The cone Cb(x) is a cone of S containing x, z and

omitting y, so as it is a primitive Jordan set for G, it is a primitive Jordan set for H . By

Corollary 1.3.17, any primitive Jordan set for H is convex in E. So we have ¬E(y;x, z).
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We now assume that

¬E(y;x, z) ∧ ¬E(z;x, y) ∧ ¬E(x; y, z). (2.1.1)

Therefore, in the betweenness relation (Ω, E) the elements x, y, z are in distinct branches

at some branch point δ, which may be of positive or negative type. For t ∈ {x, y, z}, let

Ut be the branch at δ containing t and omitting {x, y, z} \ {t}. By Lemma 2.1.13, Ux, Uy
and Uz are all primitive Jordan sets for H . We follow a similar line of argument to that

used in Lemma 2.1.8, especially Case 1: we seek a contradiction in order to rule out this

configuration. Recall that the collection of primitive Jordan sets for H is syzygetic (see

Theorem 1.3.15).

Let W be the branch of (Ω, E) at x containing y and z. From Lemma 2.1.13 we know

that

W is a proper primitive Jordan set for H. (2.1.2)

Let U := Cx(z) be the cone of S at x containing z. Then U is a proper primitive Jordan

set for H . Note that z ∈ W ∩ U and x 6∈ U ∪W and y ∈ W \ U , so by Theorem 1.3.15

we must have that U ⊆ W .

Suppose that W omits some t > x. From the last paragraph, we know that t 6∈ Cx(z).

From the relative 2-transitivity of G ≤ H and Lemma 1.3.11, we can find h ∈ G ≤ H

fixing x and y and flipping the cones U and Cx(t) such that (z, t)h = (t, z). Note that

y ∈ W ∩W h and z ∈ W \W h and t ∈ W h \W but that x 6∈ W ∪W h, in contradiction

with Theorem 1.3.15. So we conclude that W contains {t ∈ Ω : t > x}.

Now suppose that W omits some s ∈ Ω such that y < s < x. Fix some t ∈ Ω such that

x < t < z. Let g ∈ G ≤ H be some automorphism of S such that (y, s, x)g = (s, x, t).

Clearly zg > xg = t > x and as we have chosen t > x, we know from the conclusion of

the previous paragraph that both zg, t ∈ W . But now we have that x 6∈ W ∪W g while

zg ∈ W ∩W g and t ∈ W \W g and s ∈ W g \W . This contradicts Theorem 1.3.15, so

we conclude that W contains {s ∈ Ω : y < s < x}.

Now suppose that W omits some r < y. Let f ∈ G ≤ H be an automorphism of S
fixing r such that (y, x)f = (x, z). Hence zf > xf = z > x and so zf ∈ W . Note that
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r 6∈ W ∪W f while zf ∈ W ∩W f and z ∈ W \W f and x ∈ W f \W . This contradicts

Theorem 1.3.15, so we conclude that W contains {r ∈ Ω : r ≤ y}. We now have that W

contains {t ∈ Ω : x < t} ∪ {s ∈ Ω : s < x}.

Suppose that W omits some r′ ⊥ x such that r′ f y < y. Let h ∈ G ≤ H be an

automorphism of S fixing r′ such that (y, x)h = (x, z). As zh > xh = z > x we

know that zh ∈ W . Note that r′ 6∈ W ∪ W h while zh ∈ W ∩ W h and z ∈ W \ W h

and x ∈ W h \ W . This contradicts Theorem 1.3.15, so we conclude that W contains

{r ∈ Ω : r f y < y}.

It remains to consider the case in which W omits some v such that v ⊥ x and y ≤
(x f v) < x. Suppose that W omits a pair of such elements u, v which are comparable

and distinct. Without loss of generality say u < v, so we have u, v ⊥ x and y ≤ (u f

x) = (v f x) < x. Let g ∈ G ≤ H be an automorphism of S fixing y such that

(u, v, x, z)g = (x, z, u, v). But then x, u 6∈ W ∪W g while y ∈ W ∩W g and z ∈ W \W g

and v ∈ W g \W in contradiction with Theorem 1.3.15. So there are no comparable pairs

of elements omitted by W . Therefore the complement Ω \W of W is an antichain in S
and for all v ∈ Ω \W , we have y ≤ (v f x) < x.

Suppose now that there is some v ∈ Ω \W such that v ⊥ x and y ≤ (v f x) < x. Let

d := v f x and let w be an element such that d < w < v. As w is comparable to v we

know that w ∈ W . Note that y ≤ d, the cones Cd(v) and Cd(x) at d are distinct and

that w ∈ Cd(v). So let h ∈ G ≤ H be an automorphism of S fixing y and flipping the

cones Cd(v) and Cd(x) such that (w, x, v)h = (x, v, z). Then we have that v 6∈ W ∪W h,

while y ∈ W ∩W h and z ∈ W \W h and x ∈ W h \W in contradiction with Theorem

1.3.15. Therefore we have deduced that x is the only element in Ω \W . But then, as H

is 2-transitive on Ω, the subset W is not a proper Jordan set for H; its complement has

cardinality |Ω \W | = 1. This contradicts (2.1.2).

From this analysis, we conclude that the configuration required by assuming (2.1.1) is

impossible and so that assumption is false. Having exhausted the other possibilities, we

conclude E(x; y, z) as required by (AB1).

For (AB2) we assume (y ≤ z ∧ E(x; y, z)). If y = z, then under the assumption that

E(x; y, z), the axiom (B2) implies that x = y = z and we are done. Hence we may
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assume that y < z.

If x > z then let a ∈ Ω such that z < a < x and let Ca(x) be the cone at a of S containing

x. Then Ca(x) contains x and omits y and z. But Ca(x) is a primitive Jordan set for G

and hence for H . In fact, Cz(x) is a primitive Jordan set for H containing x and omitting

y,z such that E(x; y, z) in contradiction to Lemma 2.1.12.

Now assume x ⊥ z. Let b be such that b ⊥ z and x f z < b < x. Let U be the cone of S
at b containing x, then U omits y, z. As U is a primitive Jordan set for G it is a primitive

Jordan set for H . But U contains x and omits y, z and E(x; y, z), in contradiction to

Lemma 2.1.12.

So we assume that x < z. Suppose x < y and then let c be such that x < c < y. Then

the cone Cc(y) contains y and z while omitting x. But as Cc(y) is a Jordan set for G it is

a Jordan set for H . But as E(x; y, z), this contradicts that Cc(y) is convex for E, as all

primitive Jordan sets for H are convex for E by Corollary 1.3.17.

Hence we must have that y < x < z.

Lemma 2.1.15. If (Ω, E) is proper reduct of S for which E is of type (6), a dense general

betweenness relation, then Aut(Ω, E) = Aut(Ω, B) where B is the natural betweenness

relation defined in S.

Proof. Assuming that (Ω, E) is proper reduct of S = (Ω,≤) and E is a dense general

betweenness relation Lemma 2.1.14 proves that E is compatible with the ordering ≤.

Then using Theorem 1.2.19, we conclude that Aut(Ω, E) = Aut(Ω, B) as required.
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Chapter 3

A tree of betweenness relations

After the classification theorem for primitive Jordan groups of Adeleke and Macpherson

[2], efforts have been made to construct primitive Jordan groups which preserve the

unfamiliar ‘limit’ structures which appear in that classification, while preserving none

of the more familiar structures. The two known examples of a primitive Jordan group

preserving a limit of betweenness relations have been constructed by Adeleke [1] and

by Bhattacharjee and Macpherson [6]. These two examples are certainly non-isomorphic:

Bhattacharjee and Macpherson’s example is the automorphism group of an ℵ0–categorical

relational structure, whereas it is known that Adeleke’s example is not oligomorphic. The

goal of this chapter is to adapt the methods in [6] to obtain a group like that of [1].

The key idea in [6] is to define a class of finite structures called ‘trees of B–sets’; a

carefully arranged collection of B–sets in some sense parametrised by finite semilinear

orders. They prove that it is possible to amalgamate the finite structures in this class

and, using a generalised form of Fraı̈ssé’s Theorem, they obtain a Fraı̈ssé limit. The

automorphism group of their limit structure is their example. In this limit structure it

is possible to recover a countably infinite, ℵ0–branching semilinear order of positive

type with dense maximal chains which could be considered the structure tree for their

construction.

In contrast, Adeleke in [1] constructs his example as a direct limit of groups constructed

in ω many steps, with no explicit reference to an invariant structure. We adapt the ideas
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in [6] to construct ‘trees of B–sets’ indexed by a semilinear order with discrete levels

(which we call the N+1–tree, as described by Definition 1.2.10), in order to construct,

using an appropriate adaptation of Fraı̈ssé’s theorem, a limit structure which we believe

is preserved by Adeleke’s group.

3.1 Trees of B-sets

This is the combinatorial description and is based on that given in [6], though there are

differences. The main difference is that we work with a class of certain finite subtrees

TA of the tree T which will be fixed. The section after this will detail how to view this

class of structures in a first order language. First, we give the definition of a finite tree of

B-sets.

Figure 3.1: An illustrated example of a tree of B-sets over T .

Throughout this section, we fix T to be the N+1–tree (T ;<) as given in Definition 1.2.10.

We enrich T with f, the infimum function on (T ;<), and work in the enriched structure

(T ;f, <). We call T the structure tree for the following structures. A finite tree of B-sets

over T , call it A, consists of a finite, convex (Definition 1.2.6) subtree (TA,f, <) of T ,
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together with a finite set MA on which a structure is coded via a careful arrangement of

finite B-sets {(B(t), Bt)}t∈TA . So for each vertex t in the tree TA, there is a finite B-

relation Bt with respective domain B(t). The nodes of each B(t) will be identified with

certain subsets of MA; these nodes are set up to be equivalence classes of an equivalence

relation defined by Definition 3.1.4 and Lemma 3.1.5. The notation [a]t stands for the

subset of MA represented as a node of B(t) and containing the element a ∈ MA. Being

finite and meet closed, the tree TA has a unique minimal element, the root. When r ∈ TA

is the root of TA, we require that the nodes [x]r of the root B–set B(r) are in bijection

with the singleton subsets of MA. Informally we identify MA with B(r), so in some

sense MA becomes a B–set with extra structure.

We will sometime say that TA ⊆ T is the subtree of T which is populated by A.

Recall from Section 1.2 that given a node a of a B-set, the equivalence relation Ka is that

of B-set branches around a. Above a vertex t in the tree TA, there is also the set of cones

above t, each cone being an equivalence class of the equivalence relation Ct. As TA is

discrete, it suffices to consider the immediate successors succ(t) of a vertex t in TA and

note that succ(t) ⊆ {s ∈ TA : s > t} provides a natural set of representatives for the set

of cones in TA above t; each distinct successor of t representing a distinct cone.

The constraints on the arrangement of B-sets on the tree are given by two families of

functions, one between the tree and B-sets and another between pairs of B-sets.

For each vertex t ∈ TA such that |B(t)| > 1, there is a function

ft : {s ∈ TA : s > t} → B(t).

We require that for each t ∈ TA, ft is a surjection onto the nodes in B(t) and we require

that the induced map f−1
t is a bijection from the nodes of B(t) to the set of cones in TA

above t. With that in mind, f−1
t can be considered as a bijection between the successors,

in TA, of t and the nodes of the B-set B(t). Hence, a condition required between the

tree TA and the system of B-sets is that the number of cones above any vertex t ∈ TA is

equal to the cardinality of B(t), unless |B(t)| = 1. In fact, |B(t)| = 1 if and only if t is

maximal in TA.
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The relationships between B-sets of comparable vertices in TA will be governed by a

family {gts}t<s, where t, s ∈ TA. Here we define the gts for s ∈ succA(t), and later

this is extended to any s > t in TA by composition. Given t and a successor s, gts is a

surjection from B(t)\{ft(s)} to B(s); we require that each fibre g−1
ts (a) of any a ∈ B(s)

is a branch of Bt at ft(s) and moreover, that branches of Bt around ft(s) are in bijection

with the elements of B(s) via g−1
ts . In particular, when s ∈ succ(t) the cardinality of B(s)

is equal to the number of branches around ft(s) in Bt.

Definition 3.1.1. A finite tree of B–sets, A consists of a finite semilinear ordered set

TA, a finite set MA along with all of the B–sets and the functions between them to the

requirements described above.

Let A be a finite tree of B–sets and take v < s < t consecutive in TA. Then gst is

defined on B(s) \ {fs(t)} and, one step below, gvs is defined on B(v) \ {fv(s)}. Now,

as gvs is a surjection onto B(s), we can consider the composition gst ◦ gvs on the domain

B(v) \ {fv(s) ∪ g−1
vs (fs(t))}.

Definition 3.1.2. For any v < t ∈ TA of a finite tree ofB–setsA, there is a unique strictly

increasing chain of si ∈ TA, {s0, s1, ..., sn} such that s0 = v, sn = t and si+1 ∈ succ(si).

We define gvt to be the composition

gvt := gsn−1t ◦ ... ◦ gsi−1si
◦ ... ◦ gvs1 .

As such, it is defined on

g−1
vs1
◦ ... ◦ g−1

si−1si
◦ ... ◦ g−1

sn−1t
(B(t)) ⊆ B(v).

Lemma 3.1.3. Let A be a finite tree of B–sets and take v < s < t in TA. Then

gvt = gst ◦ gvs,

and each g−1
vt (a) is a union of branches around fv(t) ∈ B(v).

Proof. This is clear from definitions.
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Definition 3.1.4. Given a finite tree of B–sets A, in which r is the root of TA, we have

already defined the notation [a]r for a ∈ MA as denoting the singleton {a}, so [a]s ∈
B(s). In the definition of a tree of B–sets above, we required that we may identify

{[a]r}a∈MA with B(r), the domain of the root B–set. For any s > r, and a ∈ MA

such that a ∈ Dom(grs), we define

[a]s := grs([a]r).

Lemma 3.1.5. Following from the definition above, for any s > v ∈ TA, [.]s induces

an equivalence relation ρvs on B(v). For a, b ∈ B(v) then aρvsb if [a]s = [b]s or if

a, b ∈ B(v) \ Im(g−1
vs ). The subset of MA represented by [b]s is g−1

vs ([b]s).

As an example, if s is a successor of r (in the tree TA) and b ∈ MA, then [b]s is a branch

of the B–set (B(r), Br) at the node fr(b), an element of B(r).

Soon, we aim to present trees of B–sets in a different way, as first order structures in a

2–sorted language. To do so, we need a relation which captures the structure of theB–sets

on the structure tree. The meaning of this relation is given in the following definition.

Definition 3.1.6. To encode the structure of a finite tree of B–sets in a relation, we shall

define a relation L(v;x, y, z) on T ×M3. We define L(t; a, b, c) to hold if and only if, one

of the following occurs in A:

1. In the B-set at t, we have Bt([a]t; [b]t, [c]t);

2. For some s ≥ t at which [a]s, [b]s, [c]s are non-empty and distinct, we have

Bs([a]s; [b]s, [c]s).
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Figure 3.2: An instance of L(r;x, y, z).
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Definition 3.1.7. An arboreal isomorphism between two finite trees of B-sets A and A′

over the common structure tree T consists of a tree automorphism τ ∈ Aut(T ;<) and for

each s ∈ TA, a B-set isomorphism ϕs : B(s)→ B(τ(s)) such that

1. the tree automorphism τ restricted to TA is an order isomorphism

τ �TA : TA → TA
′
;

2. for each s in TA and all t ≥ s in TA the B-set isomorphism ϕs and the tree

automorphism τ commute with the all the relevant bijections

fs : {u ∈ TA : u > s} → B(u)}

and

fτ(s) : {v ∈ TA : v > τ(s)} → B(τ(s))}

and the collection of bijections {gst}t≥s, each with domain B(s) \ {ft(s)}, in the

following manner:

gτ(s)τ(t) ◦ ϕs = ϕt ◦ gst; (3.1.1)

fτ(s) ◦ τ = ϕs ◦ fs. (3.1.2)

Definition 3.1.8. Given a countable tree T , we shall write AT for the class of all finite

trees of B-sets over T considered up to the notion of arboreal isomorphism above.

The formalism we need to work in is that of first order structures. We begin by giving a

desirable language in which to parse the N+1-tree. Let (T,<,f) be the N+1-tree with f

interpreted as the meet function. Let D0(t) be a predicate for the leaves of T . For each

n ∈ N, let Dn(t) be a predicate on T saying that t is the predecessor of some s such that

Dn−1(s). These Dn so defined are disjoint and, for each n, the predicate Dn picks out the

vertices of T at depth n below the leaves.

Lemma 3.1.9. When the N+1–tree, T , is parsed in the language

LT := {<,f, {Dn}n∈N},
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every isomorphism between finitely generated substructures of T extends to an

automorphism of T . Moreover,

(Aut(T,<,f), T ) = (Aut(T,LT ), T ),

that is, the LT–automorphisms of T are exactly the automorphisms of (T,<,f).

Proof. It is clear that any automorphism of (T,<,f) is an automorphism of (T,LT ).

We can show directly that in the language {<,f, {Dn}n∈N} every isomorphism between

finitely generated substructures A and B of T extends to an automorphism of T by

induction on the depth Dk(r) of the root of A.

Let T be the N+1–tree and L be the two–sorted language

L := {M,T ;f(s, t), < (s, t), {Dn(t)}n∈N, L(t;x, y, z), L(x, y, z)}.

The function symbol f : T × T → T is interpreted as the poset infimum function, the

binary relation < is the poset relation on the tree, and each Dn(t) is a unary predicate on

T expressing that the vertex t is depth n below a leaf of T . The relation L(t;x, y, z) ⊆
T ×M3 is a quaternary relation. The ternary relation L(x, y, z) ⊆M3 holds if, for some

t, the relation L(t;x, y, z) holds.

Given A ∈ AT , a finite tree of B–sets over T , recall that TA is a finite, convex (Definition

1.2.6) subtree of T of positive type. As the subtree TA is also of positive type, we have

additionally that for all a, b in TA, the maximum of {x ∈ T : x ≤ a ∧ x ≤ b} is in TA.

Let Ã be a finite L –structure, such that the structure induced on TA is the finite structure

tree (TA,f, <, {Dn}n∈N), which is convex in T . The set M Ã = MA carries the structure

induced by Ã on the M sort. For t in TA and a, b, c from MA, we declare that Ã |=
L(t; a, b, c) if and only if, one of the following holds in A:

1. In the B-set at t, we have Bt([a]t; [b]t, [c]t);

2. For some s ≥ t at which [a]s, [b]s, [c]s are non-empty and distinct, we have

Bs([a]s; [b]s, [c]s).
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Definition 3.1.10. The ternary relation L(a; b, c) holds in Ã if a, b, c ∈ M Ã are distinct

and at the root r ∈ T Ã = TA we have L(r; a, b, c) and [a]r, [b]r, [c]r are distinct nodes of

B(r).

Let CT be the class of finite L –structures arising in this way from finite trees of B–sets.

A simple, but useful fact to note from the definition of L(t; a, b, c) is the following.

Lemma 3.1.11. ((∃c)L(t; a, b, c) ∧ L(t; b, a, c))↔ [a]t = [b]t.

This fact can be used as the L definition of [.]t in the L –structures CT . As a convention

we say that the B–set at t is trivial if in the B–set at t in TA is such that there is only one

such node [a]t.

Definition 3.1.12. Let A ∈ AT (or similarly A ∈ CT ), we say that L(a; b, c) is witnessed

at the vertex s if and only if

L(s; a, b, c) ∧ (s = Max{t ∈ TA : L(t; a, b, c) ∧ [a]t, [b]t, [c]t non-empty and disjoint}).

Lemma 3.1.13. Given two trees of B–sets, A and B in AT , for every arboreal

isomorphism (in the sense of Definition 3.1.7) from A to B there is a corresponding L –

structure isomorphism between Ã and B̃.

Conversely, given two L –structures Ã and B̃ in CT , arising from trees of B–sets A and

B respectively, for every L –isomorphism from Ã to B̃ there is an arboreal isomorphism

(in the sense of Definition 3.1.7) from A to B.

Proof. For the forward direction, assume that A and B in AT are arboreally isomorphic.

Let τ : T → T be a tree isomorphism and {ϕs}s∈TA a collection of B–set isomorphisms

witnessing this. Then the restriction τ �TA , of τ to the finite subset TA, is an isomorphism

from TA = T Ã to TB = T B̃ which preserves all of LT := {f, <,Dn}. It remains to

show that this extends to an L -isomorphism β : Ã→ B̃. On the tree sort, TA, we define

β �T to be τ �TA; that is, for every t ∈ TA,

β �T (t) := τ �TA (t).
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Let r be the root of TA, clearly τ(r) is the root of TB. We are given the B–set

isomorphism ϕr : B(r) → B(τ(r)) as part of the system {ϕs}s∈TA . By definition, the

elements of B(r) and B(τ(r)) are all singletons of MB. We define β on MA pointwise

by, for each a ∈ MA, setting β �M (a) to be the unique element of ϕr(a). It remains to

check that, for all t ∈ TA and a, b, c ∈MA,

Ã |= L(t; a, b, c)⇒ B̃ |= L(τ(t); β(a), β(b), β(c)).

This is a matter of following through definitions.

Conversely, we assume that Ã and B̃ from CT are isomorphic as L –structures and that

A and B, respectively, are trees of B-sets that give rise to them. Let β : A 7→ B be

the L –isomorphism. By Lemma 3.1.9, the partial LT -isomorphism β �TA : TA 7→ TB

extends to τ an automorphism of T . To obtain an arboreal isomorphism we need to define

the collection {ϕs}s∈TA of bijections ϕs : B(s) → B(τ(s)). For each s ∈ TA, define ϕs
at each a ∈MA by

ϕs([a]s) := [β(a)]τ(s).

These ϕs are B–set isomorphisms, as β preserves L(s;x, y, z), which by definition of L

requires that the structure of each B–set is preserved between B(s) and B(β(s)). To see

that the relationships required by equation 3.1.1 hold, we calculate that for each [a]s in

B(s) we have, for t > s,

ϕt ◦ gst([a]s) = ϕt([a]t) = [β(a)]τ(t) = gτ(s)τ(t)

(
[β(a)]τ(s)

)
= gτ(s)τ(t) ◦ ϕs ([β(a)]s) .

To see the relationships of equation 3.1.2, note that they clearly hold for the leaves l of

TA. Also if equation 3.1.2 holds for s |= Dn then, by assumptions on β, it holds for

t |= Dn+1 the predecessor of s; so by induction on the (finite) depth n, we conclude that

equation 3.1.2 holds for all of the ϕt.
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3.2 Amalgamation in CT

In this section, we use a version of Fraı̈ssé amalgamation, applied to the class of finite

trees of B-sets parsed as L–structures, to obtain a new structure whose automorphism

group preserves a limit of betweenness relations. We refer to Chapter 1, Section 4 for the

details of the amalgamation property for strong embeddings and the generalised version

of Fraı̈ssé’s Theorem 1.4.5 which we need for this construction.

We have already identified a class of L –structures CT , the members of which can be

described by respective counterparts in the class AT (by Lemma 3.1.13). We now describe

certain ‘one-point’ extensions in CT ; embeddings between trees ofB–setsA andE where

|ME| = |MA| + 1. It is clear in the description that these ‘one-point’ extensions of the

sort M also involve extensions on the sort T of at least one vertex, and often more. After

defining this class of basic extensions, we show that embeddings realising these basic

extensions are L –embeddings, and define our class E of strong embeddings to be those

which realise finite sequences of basic extensions.

Let A ∈ CT be a finite L –structure which, by Lemma 3.1.13 can be pictured via the

corresponding tree of B–sets over T . There are various possible arrangements of E ∈ CT

such that |ME| = |MA| + 1 and where A is the induced substructure of E obtained by

restriction ofME toMA and TE to TA. Such a pairA ⊆ E is called a one–point extension

over A. The element e is the sole member of ME \MA. We define the following kinds of

one–point extensions: σ, ε, ν. We call these basic extensions. To describe each extension,

we specify how the tree TE relates to TA, and how the quaternary relation L(t;x, y, z)

in E is related to that in A (using parameters from A). Given such an extension of A

witnessed by E ⊇ A, the corresponding embedding is the inclusion, A ↪→ E. In the

following we fix the convention that ME = MA ∪ {e}.

→σ A star extension. Intuitively in this extension, we are adding a new root r in TE

below the root s of TA such that the B–set B(r) at r is a ‘star’ of leaves around a

single ramification point fr(s) whose leaves correspond (via grs) to the elements of

B(s). More formally, we mean that the root r of TE is the predecessor of the root

s of TA, so for some n, we have Dn+1(r) ∧ Dn(s). Take an enumeration {ai}i≤k
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of MA. In TE , the root r has |ME| = |MA|+ 1 = k + 1 successors {ti}i≤k ∪ {s},
including s, the root of TA. The domain of TA is the subset {v ∈ TE : v ≥ s} ⊆
TE . We choose the enumeration {ti} of succ(s) ⊆ TE so that, in the tree of B–sets

version of E, ti = f−1(ai) for each i. As n is such that Dn+1(r) ∧Dn(s), we also

have
∧
i≤kDn(ti). At the root r, we have:

(i) LE(r; e, e, e);

(ii) LE(r; e, e, aj) ∧ LE(r; e, aj, e);

(iii) LE(r; ai, aj, e) ∧ LE(r; ai, e, aj) ⇐⇒ i = j;

(iv) LE(r; e, ai, aj) ⇐⇒ i 6= j;

(v) LE(r; ai, aj, ak) ⇐⇒ [LA(s; ai, aj, ak) ∧ i, j, k distinct ] ∨ [i = j ∨ i = k].

The relations (i) and (ii) and (iii) are saying that e is in a node of the root B–set

which is different to the nodes containing each of the aj . The relations in (iv) say

that the node containing e is between nodes containing distinct ai in the root B–set.

Item (v) is stating, as usual, that the instances of L between the ai at the root r are

either between distinct ai and inherited from the successor s or that ai is equal to

one of the aj, ak. For the vertices in {ti}i≤k, we have LE(ti;x, y, z) ⇐⇒ x, y, z 6=
ai; in the tree of B–sets, the B–set at ti has just one node containing points of

ME except the vertex ai. For any vertex t ≥ s, we have LE(t;x, y, z) ⇐⇒
LA(t;x, y, z). This is illustrated in Figure 3.3. For the sake of completeness, we

will consider a basic extension of the empty structure on ∅ to an E with |TE| = 1 =

|ME| to be a star extension.

Otherwise, we may make a root extension, where r, the root of TE , is also the root of TA.

In the following fix n such that Dn(r), so n := Maxk≥0{(∃t ∈ TA)Dk(t)}, and m the

level of the highest leaf of TA, that ism := Mink≤n(∃t ∈ TA)Dk(t). In the tree ofB–sets

description ofA, the new node [e]r is added as a singleton to theB–set (B(r), Br). Doing

this may add requirements higher in TE , which are satisfiable in CT by Lemma 3.2.1. In

this situation, there are two cases we describe.

→ε If 0 < m < n, the B–set at r is non-trivial, meaning there are at least two nodes

in (B(r), Br) and hence an edge. In this case, we allow the following kind of
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Figure 3.3: A star extension, A→σ E.

extension. We take an edge in (B(r), Br) in A, between two nodes [a]r and [b]r.

We replace this edge with the new dyadic node [e]r and two new edges, {[a]r, [e]r}
and {[e]r, [b]r}. We also add a new successor s of r in TE , that is, Dn−1(s) holds

and n − 1 ≥ m > 0. In E, the B–set at s contains two nodes, [a]s and [b]s

corresponding (via the function fs) to the two branches of (B(r), Br) at [e]r. Here

TE = TA ∪ {s, t1, ts} arranged such that above s in TE there are two vertices

t1, t2 such that Dn−2(t1) and Dn−2(t2) and both with trivial B–sets. Note that

n− 2 ≥ m− 1 ≥ 0 by assumption, so such t1 and t2 exist in T . See Figure 3.4b.

→ν If n > 1, we have the following kind of extension. The new node [e]r is added as

a leaf to an existing node [a]r ∈ B(r). Consequently, we add a new successor s of

r, so Dn−1(s), with a trivial B–set. The B–set B(t) at t := f−1
r ([a]r) gains another

node, grt([e]r). This part of the definition is inductive: adding the node [e]t =

grt([e]r) to the B-set B(t) is treated as a one–point extension of the substructure

of A induced on {v ∈ TA : v ≥ t}. See Figure 3.4a. If n = m = 1 we also
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have a version of the ν-extension. That is, we have D1(r) for r the only vertex in

TA. The new node [e]r is added as a leaf to the existing node [a]r ∈ B(r). Then

TE = TA∪{s1, s2} = {r, s1, s2} where σ1, σ2 are successors of the root r such that

s1 = f−1
r ([a]r) and s2 = f−1

r ([e]r). In B(s1) there is one node [e]s1 = grs1([e]r)

and in B(s2) there is one node [a]s2 = grs2([a]r).

(a) Adding a leaf to a node, A→ν E. (b) Adding a node on an edge, A→ε E.

Figure 3.4: Two kinds of root extension.

As promised above, we show that the basic extensions described above are each

consistent.

Lemma 3.2.1. Let A ∈ CT and α be a basic extension of A. Then there is an E ∈ CT

such that α is realised by an embedding of A into E and |ME \MA| = 1.

Proof. We consider each kind of extension in turn.

α is a σ–extension. As T has no root, and every vertex has an immediate predecessor,

and all vertices have infinitely many immediate successors, it is always possible to extend

TA in the manner required by a σ extension. It is then clear from the description of σ that

A can be extended.
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α is an ε–extension. For there to be an edge in the B–set at the root of A, we must have

m − n ≥ 1. In the definition of an ε extension, we also have that m ≥ 1 and n ≥ 2. An

ε extension requires populating two more vertices of T above the root of TA. Under the

assumptions on n and m, in particular that n ≥ 2, it is clear that there is room to do this

for any relevant A.

α is a ν–extension. If we have n = m = 1, then |MA| = 1 and TA has just one vertex,

r, at which the B–set has just one node. Let E be such that TE has 3 vertices, r, t1 and t2
such that r < t1 ∧ r < t2 ∧ t1 ⊥ t2 with D0(t1) ∧D0(t2) ∧D1(r). The domain ME has

2 elements a, b, so the B-set at r has two distinct nodes, the B-sets at t1 and t2 are trivial.

Then A embeds into E as the structure induced on the element a in the desired way.

Otherwise n > 1, which we will now assume.

We consider first the case n = 2. Say |MA| = k and that the B-set at the root r of A

is a linear B-set of length k, so B(r) viewed as a finite connected graph is linear with

k elements. Enumerate B(r) as [a0]r, [a1]r, ..., [ak]r so that [a0]r and [ak]r are the end

points of the line. The successor s of r in TA given by s = f−1
r ([ak]r) has a trivial B-

set and we have D1(s). Let E have a linear B-set at r of length k + 1, enumerate this

[a0]r, [a1]r, ...[ak]r, [b]r so that [a0]r and [b]r are the end points. As [ak]r is a dyadic node in

the structure E the successor s of r in TA given by s = f−1
r ([ak]r) has 2 nodes [a0]s, [b]s

and s has 2 successors u and v at depth 0, D0(u) ∧D0(v). Taking A to be embedded as

the substructure of E induced on a0, ..., ak we see that A embeds into E witnessing a ν

extension at ak. In doing so we also satisfy a ν-extension of {a0} with the element b1 to a

structure on {a0, b1}; where s is the appropriate root for the purpose of this extension. for

any size of A.

Now we assume that n > 2 and ν-extensions at any depth l such that 1 < l < n can be

satisfied. So we are extending an A with root r with Dn(r). Adding a leaf to any node

[a]r requires populating a new successor of r, at depth n − 1, and adding a node to the

B–set at the vertex f−1([a]r). Populating the new successor can clearly be done. To add a

node to the required B–set, we can use a ν–extension by the induction hypothesis, as the

vertex f−1([a]r) is at depth n− 1 and 1 < n− 1 < n.
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Definition 3.2.2. Given some A ∈ CT , let E1(A) be the set of embeddings realising basic

extensions over A, together with isomorphisms of A. Let E1 be the set of embeddings

realising a basic extension of some A ∈ CT , that is

E1 =
⋃
A∈CT

E1(A).

The following lemma establishes that all one–point extensions of the home sort are basic

extensions; so are realised by an embedding in E1(A).

Lemma 3.2.3. For allE ∈ CT , ifA ∈ CT is a substructure ofE such that |ME\MA| = 1,

then the one–point extension A ⊆ E is witnessed by an embedding in E1(A), realising

one of the basic extensions above.

Proof. Take E ∈ CT and consider the possibilities of removing a point b from ME to

obtain a subset MA. In order to obtain a substructure A of E we will also remove vertices

of the tree TE related to b, that is the vertices in the pre-image of [b]r via fr, the set

f−1
r ([b]r) ⊆ TE . We first divide into three cases based on the type of [b]r in the rootB–set

(B(r), Br).

(i) [b]r is a leaf of Br and Dn(r) with n > 1, in which case A ⊆ E is a ν–extension, so

realised in E1;

(ii) [b]r is one of the two leaves of Br and D1(r), and TA is the single vertex r, in which

case A ⊆ E is a ν–extension, so realised in E1;

(iii) [b]r is one of the two leaves of Br and D1(r), and TA a single vertex s > r with

D0(s), in which case A ⊆ E is a σ–extension, so realised in E1;

(iv) [b]r is a dyadic node of Br, and Dn(r) for r > 1, in which case A ⊆ E is an

ε–extension;

(v) [b]r is a ramification node of Br. If the root B–set of E, (B(r), Br), is a star with

[b]r the ramification node, then A ⊆ E is a σ–extension. Otherwise, if (B(r), Br)
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is not a star, we show there is no induced L –structure on ME \ {b}; that is, this

situation can never arise as a one–point extension A ⊆ E between structures in CT .

Under these conditions, we can find w, x, y, z having the configuration depicted in

Figure 3.5a in the root B–set of B. We focus our attention on formulas concerning

{x, y, z, w, b} ⊆ E and remain aware that {x, y, z, w} ⊆ A but that b 6∈ A. Note that at the

root r of TE we have L(r; z, x, w)∧L(r; z, y, w)∧ [x]r 6= [y]r, so r must be populated in

A too. In E there are populated vertices s, u, v ∈ succ(r) where s = f−1
r (b), u = f−1

r (x)

and v = f−1
r (z). We use Figure 3.5b as a guide. Note that in the B–set at u we have

[y]u = [z]u = [w]u and at the B–set at v we have [x]v = [y]v. As [b]r is the centroid

(ramification point) of the nodes [x]r, [y]r, [z]r and s = f−1
r (b), for some t ≥ s in E, we

have exactly one of

Bt([z]t; [x]t, [y]t), Bt([x]t; [y]t, [z]t), Bt([y]t; [z]t, [x]t).

Which one depends on the structure of E, so we divide into the corresponding 3 cases.

Case 1: (∃t ∈ TE)(t ≥ s ∧ Bt([z]t; [x]t, [y]t)). So E |= L(r; z, x, y) and A |=
L(r; z, x, y). But as b 6∈ A, so s 6∈ A and {t ∈ TE|t ≥ s} ∩ A = ∅. Hence LA(r; z, x, y)

must be witnessed in the B–set at the root r of A. So in A we have Br([z]r; [x]r, [y]r).

But the B–set at v = f−1
r (z) demands that [x]v = [y]v, requiring that, in A as well as E,

the nodes [x]r and [y]r are in the same branch at [z]r in the root B–set (B(r), r). This

contradicts that Br([z]r; [x]r, [y]r) holds in A.

Case 2: (∃t ∈ TE)(t ≥ s ∧ Bt([x]t; [y]t, [z]t)). In this case E |= L(r;x, y, z), so as

above A |= L(r;x, z, y) which must be witnessed in the B–set at the root r of A. But in

A, as in E, the B–set at u witnesses [y]u = [z]u where u = f−1
r (x); this contradicts the

assumption that Br([x]r; [y]r, [z]r) holds in A.

Case 3: (∃t ∈ TE)(t ≥ s ∧ Bt([y]t; [z]t, [x]t)). As in Case 2, switching x and y in the

argument and using the vertex l = f−1
r ([y]r) in place of u.
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(a) (b)

Figure 3.5

As all basic extensions of A ∈ CT are realised in CT , we can consider finite sequences

(αi)i≤m of basic extensions. In this sequence, we mean that α1 is a basic extension over

an initial finite structure A which is realised by an embedding ψ1 ∈ E1(A) into a larger

finite structure A1. Then αi is a basic extension over a realisation Ai−1 of αi−1, itself

being realised by an embedding ψi ∈ Ei(Ai−1).

Corollary 3.2.4. Any finite sequence (αi)i≤m of basic extensions of length m can be

realised by an embedding ϕ between finite structures A and E in CT .

Proof. Let A be the structure being extended by the first extension α1. By induction on

m, the above Lemma 3.2.3 allows us to realise each basic extension αi, each defined over

a structure Ai−1, with an embedding ψi of Ai−1 into an Ai such that |Ai \ Ai−1| = 1.

In particular 3.2.3 establishes the corollary for sequences of length 1. For the induction

argument, assume that the corollary holds for sequences of length strictly less than m.

Then there is an embedding ϕm−1 = ψm−1...ψ1 of A into some Am−1 which realises the

sequence of extensions (αi)i≤m−1. However, αm is a basic extension over Am−1, so by

3.2.3, is realised by some embedding ψm of Am−1 into Am. Then ϕm := ψm...ψ1 is an

embedding of A into Am as desired.

Definition 3.2.5. Let En be the class of embeddings realising sequences (αi)i≤n of basic

extensions of length ≤ n. Let E be the class of embeddings, between members of CT ,

realising finite sequences of basic extensions of members of CT .
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Corollary 3.2.6. The class E is the closure of E1 under composition.

Proof. This follows from the definition of E and Corollary 3.2.4.

Lemma 3.2.7. If ϕ : A → E is an embedding of finite structures A,E in CT , then

there is a finite sequence (Ai)i≤n of structures from CT and embeddings ψi ∈ E1 such

that A0 = A, An = E, for each i, the embedding ψi from Ai into Ai+1 realises a basic

extension of Ai and

ϕ = ψn...ψ0.

Proof. Lemma 3.2.3 is the special case of the required statement restricted to embeddings

ϕ : A → E between finite structures A and E for which |ME \MA| = 1. We make

the inductive assumption that the Lemma holds for embeddings ϕ : A → E where

|ME \ MA| < n. We continue under the assumption that |MA \ ME| = n. We

want to find some b ∈ ME \MA such that E ′ = A ∪ {b} is a substructure of E which

realises a basic extension of A. Then |ME′ \ME| < n so there is θ = ψn...ψ1 embedding

E ′ into E where ψn, ..., ψ0 are in E1; setting ψ0 from E1(A) embedding A into E ′ we have

ϕ = θψ0 as required.

So we have that TA ⊆ TE . If the root r of TE is also the root of TA, then by the proof of

Lemma 3.2.3 there is a b in E which realises either an ε extension or a ν extension of A.

This b suffices for our argument.

Otherwise the root r of TE is strictly below the root s of TA. If TE ∩ {t ∈ TE|t ≥ s} )
TA then let E ′ be the structure induced by restriction of E to TE ∩ {t ∈ TE|t ≥ s}
with corresponding domain ME′ ⊆ ME . Such E ′ is a structure strictly extending A and

clearly |ME′ \MA| < n and |ME \ME′| < n. So we are done by induction. Otherwise,

if TE ∩ {t ∈ TE|t ≥ s} = TA then we take E ′ ⊂ E realising a σ extension of A.

Lemma 3.2.8. The class of structures CT has the amalgamation property with respect to

embeddings from E1.

Proof. Let ψ1 and ψ2 be embeddings from E1 of A into E1 and E2 respectively. We will

assume thatE1 andE2 both strictly containA, that is neither ψ1 nor ψ2 is an isomorphism,
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as otherwise the amalgamation is trivial. Let α1 and α2 be the basic extensions over A

realised by ψ1 and ψ2 respectively. We will refer to the new points of the extensions as

b1 ∈ ME1 \MA and b2 ∈ ME2 \MA. If E1 and E2 are isomorphic over A then we may

identify b1 and b2, thus identifying E1 and E2. In this case amalgamation is completed

with identities.

We are proving that there is a C ∈ CT and η, θ ∈ E1 such that E1 →η C and E2 →θ C

satisfy η.ψ1 = θ.ψ2.

Case 1: α1 and α2 are σ extensions. There is only one way to realise a σ extension

over A. So in this case, we identify b1 and b2 (see Figure 3.6).

Figure 3.6: Amalgamating two σ–extensions (b1 = b2 = b).

Case 2: α1 and α2 are ε extensions. First assume that each extension is done via

different edges in the root B–set of A, (B(r), Br), so b1 and b2 cannot be identified. Let

η : E1 → C witness the extension of E1 by α2, where α2 should strictly speaking be

considered as an extension of ψ1(A) ⊆ E1. This is possible as there are infinitely many

successors in T of the same type above r, the root of TA. Then note that η.ψ1 embeds

A into C ∈ CT . Similarly θ.ψ2 embeds A into C where θ witnesses the extension of

ψ2(A) ⊆ E2 by α1 ∈ E1. These embeddings into C witnesses both the extension of A by

α2 ◦ α1 and α1 ◦ α2 (see Figure 3.7).
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Otherwise, if the extensions α1, α2 operate on the same edge of (B(r), Br) then, as there

is only one type of successor of the root r of TA in T , α1, α2 describe the same 1–type

over A so we may identify b1 and b2.

Figure 3.7: Amalgamating two ε–extensions.

Case 3: α1 is an ε–extension and α2 is a σ–extension. Let ψ1 be the embedding A→
E1 and let ψ2 be the embedding A → E2. We let C be the extension of ψ1(A) ⊆ E1

by α2, being witnessed by η : E1 → C; which is easy to do as T has no root. We need

to check that the embedding θ : E2 → C is in E1. Consider the basic extension β of

E2 which adds a new node [b1]r as a leaf to the ramification node [b2]r at the root B–set

(B(r), Br), which is a star, and where the restriction of β to ψ2(A) is the same as the

extension α1 on E2 \ {b2} = A (see Figure 3.8).

Case 4: α1 and α2 are ν–extensions. Let ν1 be the embedding A → E1 and let ν2 be

the embedding A → E2. First we describe this amalgamation assuming |MA| = 1, so

TA has one vertex, r and the B–set (B(r), Br) has one node, [a]r. The two extensions

α1 and α2 of A must both add a new node as a leaf at [a]r. Let C be the extension α1 of

ν2(A) ⊆ E2, which witnesses the amalgamation as required.

Next, we assume that amalgams of this type exist in (CT ,E1) for A such that |A| < n.

We then prove the claim for A ∈ AT such that |A| = n. If we can identify b1 and b2, we
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Figure 3.8: Amalgamating an ε extension with an σ extension.

do. Assume otherwise, so the extensions α1 and α2 do differ. One possibility is that they

differ in the root B–set (B(r), Br), in that the [bi]r, for i = 1, 2, are added to different

nodes of (B(r), Br). In that case we let C and embedding θ witness the extension α2 of

ν1(A) ⊆ E1 by ν2. Otherwise, the [bi]r, for i = 1, 2, are added as leaves to the same node

[a]r of (B(r), Br) resulting in two nodes being added to the B–set at the vertex f−1
r ([a]r);

that can be considered as an amalgamation over A \ {a}, which can be completed by the

inductive assumption on |A|. See Figure 3.9 as a guide to the typical case.

Case 5: α1 is a ν extension and α2 is an ε extension. Let ν1 be the embeddingA→ E1

and ε2 the embedding A → E2. We take C witnessing the extension α2 of ν1(A) ⊆ E1.

Then b1 and b2 will not be identified, as they have different types over A. As there are

infinitely many successors of r of the required type, we find in C the successor associated

to b1 is distinct from that associated to b2. In this caseC suffices to witnesses the extension

α1 of ε2(A) ⊆ E2.
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Figure 3.9: Amalgamating two ν extensions.

Case 6: α1 is a ν extension and α2 is a σ extension. Let ν1 be the embedding A→ E1

and let σ2 be the embeddingA→ E2. We letC and embedding η witness the extension α2

of ν1(A) ⊆ E1. We need to show that there is an embedding θ : E2 → C inE1 witnessing

a basic extension of E2. Consider a ν extension β of E2 which adds a new node [b1]r at

the ramification node [b2]r at the root B–set (B(r), Br) of E2 and which witnesses α1 on

E2 \ {b2} = A.

Corollary 3.2.9. The class of structures CT has the amalgamation property with respect

to embeddings from E .

Theorem 3.2.10. The class (CT ,E ) has, up to isomorphism, a unique (generalised)

Fraı̈ssé limit MT . For any A ∈ CT any E -embedding of A into MT extends to an

automorphism of MT . The T–sort of MT is the whole of T .

Proof. As noted in Corollary 3.2.6, E is the closure under composition of E1 and by

Lemma 3.2.8 we have the amalgamation property with respect to the countable class of

embeddings E1. Hence we have the amalgamation property with respect to E . So (CT ,E )

satisfies the conditions of Theorem 1.4.5.

As MT is the Fraı̈ssé limit of (CT ,E ), every member of CT is E –embedded into MT .
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Definition 3.2.11. If A ⊆ MT is a finite, E –embedded substructure of MT , we write

A ≤ MT . Moreover, for A ∈ CT and E ∈ CT ∪ {MT}, we reserve the substructure

notation A ≤ E only for cases in which A is E –embedded in E.
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3.3 Recovering the tree of B–sets.

The aim of this section is to describe how the whole combinatorial structure of the tree of

betweenness relations we have constructed is encoded in the action of the automorphism

group G0 := Aut(M ;L(x; y, z)). That is, we interpret the structure

MT = (M,T ;∧(s, t), < (s, t), {Dn(t)}n∈N, L(t;x, y, z), L(x, y, z))

in the reduct

M0
T = (M ;L(x, y, z)) .

The following is adapted from a similar interpretation in the work of Bhattacharjee and

Macpherson, and appears in [6], although their example is different. We adapt their

interpretation to our current setting and much of their work is used here to prove analogous

results.

Definition 3.3.1.

To save on notation, we make the following definitions

L(x; y, z/w)↔ L(x; y, z) ∧ L(x; y, w);

L(x; y, u/v/w)↔ L(x; y, u) ∧ L(x; y, v) ∧ L(x; y, w).

Definition 3.3.2. We will use for a 4-ary relation L′(x; y, z;w) which says that L(x; y, z)

holds and is witnessed at some t ∈ T , where the B–set Bt omits w. The B–set Bt omits

w if for all [a]t ∈ B(t), w 6∈ [a]t. Formally, the relation L′ is defined from L by

L′(x; y, z;w) ↔ L(x; y, z) ∧ L(w;x, y) ∧ L(w; y, z) ∧ L(w; z, x) ∧

¬(∃r)(L(r; y, x/z/w) ∧ L(r; z, x/w) ∧ L(w;x, r)).

The typical situation for which L′(x; y, z;w) occurs is depicted in Figure 3.10. At s, the

B–set induced on x, y, z, w is a star with [w]s at the centre. The L relation L(x; y, z) is

witnessed in some B–set Bt where t > s and t ∈ f−1
s ([w]s), so w is omitted from Bs.
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Figure 3.10: The relation L′(x; y, z;w).

Definition 3.3.3. We also define a 6-ary relation P which holds on (x, y, z, u, v, w)

whenever L(x; y, z) ∧ L(u; v, w) and are witnessed in the same B–sets.

P (x; y, z : u; v, w) ↔ L(x; y, z) ∧ L(u; v, w) ∧

(∀r)(L′(x; y, z; r)↔ L′(u; v, w; r))

Figure 3.11: An instance of the relation P (x; y, z : w;u, v).

Lemma 3.3.4. If A,C ∈ CT are finite such that, strongly embedded in M0
T both

containing {x, y, z, u, v, w} such that x, y, z are distinct in A. If A ≤ C, then

A |= P (x; y, z : u; v, w)⇔ C |= P (x; y, z : u; v, w). (3.3.3)
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Proof. We prove this in the same way that Bhattacharjee and Macpherson prove an

analogous statement (Lemma 5.1) in [6]. As the definition of P in terms of L is universal

(Definition 3.3.3), its validity is preserved by substructure. So the right-to-left direction is

clear. For the right-to-left direction, we recall Lemma 3.2.7. As a consequence of Lemma

3.2.7, if the statement 3.3.3 above holds for situations when C is a basic extension of A,

then the result follows. Then it remains to check that 3.3.3 holds for cases when C is a

basic extension of A as given in the list before Lemma 3.2.1.

Corollary 3.3.5. The structure M0
T |= P (x; y, z : u; v, w) if and only if there is a finite

A ∈ CT , strongly embedded substructure A ≤ M0
T containing {x, y, z, u, v, w} such that

A |= P (x; y, z : u; v, w).

Proof as in [6], remarks after Lemma 5.1. It is clear that if M0
T |= P (x; y, z : u; v, w)

then there is a finite strongly embedded substructureA ≤M0
T containing {x, y, z, u, v, w}

lying in CT and such that A |= P (x; y, z : u; v, w). Conversely, by Lemma 3.3.4, there is

such an A if and only if for every finite, strongly embedded C ∈ CT such that C contains

{x, y, z, u, v, w}, we have C |= P (x; y, z : u; v, w). By the construction of MT , Theorem

3.2.10, if it holds for all such C, then it holds in MT . But as P is defined just in terms of

L, it holds in M0
T .

Definition 3.3.6. Take x, y, z ∈M such that L(x; y, z).

(i) We define sets which will consist of all the points w ∈ M which appear in the

betweenness relation witnessing L(x; y, z);

Sxyz := {w : P (x; y, z : w; y, z) ∨ P (x; y, z : x;w, y) ∨ P (x; y, z : x;w, z)}.

(ii) Letting L∗ := {(u, v, w) ∈ M3 : L(u; v, w)}, we will have that P defines an

equivalence relation on L∗ with equivalence classes containing the triples which

define the same set Sxyz. That is,

P (u; v, w : a; b, c)↔ Suvw = Sabc.

We use 〈u, v, w〉 as notation for the P–class containing (u, v, w).
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(iii) Define a partial order ≤ on P–classes by reverse set inclusion:

〈u, v, w〉 ≤ 〈a, b, c〉 ↔ Suvw ⊇ Sabc.

We intend that this recovers the partial order of the structure tree (see Proposition

3.3.7 (c)), with the P–classes 〈u, v, w〉 corresponding to vertices of T . From this

point on, we may consider the P–class of the tuple (x, y, z) to be the vertex t ∈ T .

We now define

Γt := Sxyz.

(iv) The classes Sxyz collect together as subsets of M the elements of M appearing in

some node of each betweenness relation. We now define subsets of M which are

the nodes of Bt. Define an equivalence relation (see Prop. 3.3.7 (e)) Exyz on Sxyz.

Set uExyzv if and only if:

(∀r, s ∈ Sxyz) [(P (x; y, z : u; r, s)↔ P (x; y, z : v; r, s))

∧(P (x; y, z : r;u, s)↔ P (x; y, z : r; v, s)).]

Where 〈x, y, z〉 = t, the class of Exyz containing a ∈M will be denoted by [a]t.

(v) We then define Rxyz := Sxyz/Exyz. The elements of Rxyz are interpreted as the

nodes B(t) of the betweenness relation at t witnessing L(x; y, z).

(vi) Now to recover the Bt relation on Rxyz. For 〈x, y, z〉 = t and [u]t, [v]t, [w]t ∈ Rxyz

classes of Exyz, define

Bt([u]t; [v]t, [w]t)↔ [u]t = [v]t ∨ [u]t = [w]t ∨ P (x; y, z : u; v, w).

Proposition 3.3.7. (a) If P and L∗ are defined as in Definition 3.3.3, then P induces an

equivalence relation on L∗;

(b) For triples x, y, z and u, v, w from L∗, then

Sxyz = Suvw ⇐⇒ M0
T |= P (x; y, z : u; v, w);

(c) If the binary relation ≤ on L∗ is defined as in Definition 3.3.6 (iii) then it is a

semilinear order of positive type on L∗ whose elements are P–classes;
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(d) Moreover, if ≤ is defined as in Definition 3.3.6 (iii), then (L∗/P,≤) is isomorphic to

(T<1,≤) as a semilinear order where T<1 = T \ {t ∈ T : D0(t) ∨ D1(t)} is the

subtree of T consisting only of elements of depth at least two in T ;

(e) If Exyz is defined as in Definition 3.3.6 (iv), then it is an equivalence relation on Sxyz;

(f) The relation Bt, for t = 〈x, y, z〉, given by Definition 3.3.6 (vi) is well defined and Bt

is a betweenness relation of positive type on Rxyz = Sxyz/Exyz.

Proof of (a). Reflexivity and symmetry are clear from the definition. To deal with

transitivity, consider (x, y, z), (u, v, w) and (a, b, c) from L∗ such that

P (x; y, z : u; v, w) ∧ P (u; v, w : a; b, c).

Expanding via the definition of P , we have

L(x; y, z) ∧ L(u; v, w) ∧ L(a; b, c)

∧ (∀r)(L′(x; y, z; r)↔ L′(u; v, w; r))

∧ (∀s)(L′(a; b, c; s)↔ L′(u; v, w; s)).

Clearly implying P (x; y, z : a; b, c), as required.

Proof of (b).

(⇐) We follow closely the proof of Proposition 5.3 (i) from [6]. Assume that (x, y, z)

and (u, v, w) are triples in L∗ such that P (x; y, z : u; v, w). Now we suppose that r ∈ Sxyz
and we proceed to show that r ∈ Suvw. Take some strongly embedded, finite structure

A ≤ M0
T containing {x, y, z, u, v, w, r}. The formula defining P is universal in terms

of L. So as A is a substructure of M0
T , and M0

T |= P (x; y, z : u; v, w), so also A |=
P (x; y, z : u; v, w). As A is a finite, strongly embedded structure, we can consider its

structure as a finite tree of B–sets. So in this sense we read P (x; y, z : u; v, w) as saying

that in A, the relations L(x; y, z) and L(u; v, w) hold and are witnessed at the same vertex

t ∈ TA. As r ∈ Sxyz, then [r]t is in the same B–set of the structure A. So we can

take a finite structure C ≤ A, such that the vertex t is the root of TC and C contains
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{x, y, z, u, v, w, r}. As L(u; v, w) holds in C, by viewing C as a finite tree of B–sets, the

betweenness relation Bt at the root of C witnesses Bt({u}; {v}, {w}), so as axiom (B3)

holds for the betweenness relation Bt we have Bt({u}; {r}, {w}) ∨ Bt({u}; {v}, {r}).

Hence,

P (u; v, w : u; r, w) ∨ P (u; v, w : u; v, r) ∨ P (u; v, w : r; v, w).

By Corollary 3.3.5, as this holds in C it also holds in M0
T . So checking Definition 3.3.6

(i), we conclude that r ∈ Suvw.

(⇒) Again we follow the arguments in [6], here of Proposition 5.3 (ii). As we assume

Sxyz = Suvw, we may assume L(x; y, z) and L(u; v, w). So ifM0
T |= ¬P (x; y, z : u; v, w)

then, considering Definition 3.3.3, there is r witnessing ¬P (x; y, z : u; v, w). We may

assume that we have L′(x; y, z; r) ∧ ¬L′(u; v, w; r). For this to hold in M0
T , it must

hold in some finite structure containing {x, y, z, u, v, w, r} coming from a finite tree of

B–sets A. Hence in this finite tree of B–sets, A, we have that at some vertex t of TA

the nodes [x]t, [y]t, [z]t are in distinct branches around [r]t, but that vertex t of TA, the

triple [u]t, [v]t, [w]t are not in distinct branches around [r]t. So r 6∈ Sxyz, as the B–

set witnessing L(x; y, z) excludes [r]t. But, as [u]t, [v]t, [w]t are not in distinct branches

around [r]t, either L(u; v, w) is witnessed at t, in which case r ∈ Suvw, or else r shares a

node with one of u, v, w in the B–set in which L(u; v, w) is witnessed, whence r ∈ Suvw.

We conclude that any such r witnessing ¬P (x; y, z : u; v, w) is such that r ∈ Suvw \Sxyz,
in contradiction to the assumption that Sxyz = Suvw.

Proof of (c). Firstly, as sets are partially ordered by set inclusion, it is clear that ≤ is a

partial order from its Definition 3.3.6 (iii).

Following the proof in [6] (see there Proposition 5.3 (ii)), to check semilinearity it

suffices to show that given two sets Sxyz and Suvw with neither containing the other,

there is some Sabc containing both (satisfying (S4)) but that there is no {l,m, n} such

that Slmn is contained in both Sxyz and Suvw. To obtain such an Sabc, consider a finite

L –structure A ∈ CT and a triple (a, b, c), such that {x, y, z, u, v, w, a, b, c} ⊆ MA and
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A |= L(a; b, c) ∧ L(x; y, z) ∧ L(u; v, w) ∧ ¬P (x; y, z : u; v, w) in which L(a; b, c) is

witnessed at the root B–set of A. By construction (see Proposition 3.2.10) this A is

E –embedded in MT . Taking Sabc to be the subset of M defined in Definition 3.3.6

(i), then Sabc ⊇ Sxyz and Sabc ⊇ Suvw. To show that there is no {l,m, n} such that

Slmn ⊆ Sxyz ∩ Suvw. Assume the contrary, that there is such a triple (l,m, n). As neither

Sxyz nor Suvw contains the other, there is r ∈ Sxyz \ Suvw and s ∈ Suvw \ Sxyz. We also

have a, b, c as in the above, so Sabc ⊇ Sxyz ∪ Suvw. Under these assumptions, there would

be a finite, strongly embedded A ≤ MT containing {a, b, c, r, x, y, z, s, u, v, w, l,m, n}
witnessing that SAlmn ⊆ SAxyz ⊆ SAabc and SAlmn ⊆ SAuvw ⊆ SAabc. Hence we would have, in

TA, distinct vertices 〈x, y, z〉 6= 〈u, v, w〉 and 〈l,m, n〉 such that 〈x, y, z〉 ⊥ 〈u, v, w〉 with

〈x, y, z〉, 〈u, v, w〉 ≤ 〈l,m, n〉, contradicting the semilinearity of (TA,≤A). Hence there

can be no such A ≤MT , and hence no (l,m, n) or Slmn.

Again following the proof in [6] (of Proposition 5.3 (ii)) we consider finite, strongly

embedded substructures to see that (L∗/P,≤) is of positive type. Take 〈x, y, z〉 and

〈u, v, w〉 incomparable in (L∗/P,≤) and some finite, strongly embedded A ≤ M

containing {x, y, z, u, v, w}. AsA ∈ CT the vertices 〈x, y, z〉 and 〈u, v, w〉 have a greatest

lowest bound in TA, say 〈a, b, c〉, as TA is of positive type. In every finiteB ≥ A in which

A is strongly embedded, 〈a, b, c〉 is the greatest lowest bound of 〈x, y, z〉 and 〈u, v, w〉,
and hence also in MT .

Proof of (d). Let θ : L∗/P → T be defined by θ(〈x, y, z〉) := t if every finite, strongly

embedded A ≤MT containing {x, y, z} witnesses L(x; y, z) at t ∈ TA ⊆ T . Note that if

this is witnessed in some finite, strongly embedded A ≤MT , then it is witnessed in every

finite, strongly embedded A ≤ B ≤ MT . So θ is well defined. It is an embedding from

(L∗/P,≤) to (T,≤), as it is an embedding for all finite, strongly embedded A ≤ M . To

see that it is surjective, consider any s ∈ T . Then there is a B ≤ MT such that s ∈ TB.

As it is a member of CT , such a B contains a triple of distinct elements (u, v, w) such that

L(u; v, w) is witnessed at s ∈ TB. So s is in the image of θ. Hence θ is an isomorphism

between (L∗/P,≤) and (T,≤).



Chapter 3. A tree of betweenness relations 90

Proof of (e). Reflexivity and symmetry are clear from the Definition 3.3.6 (iv).

Transitivity follows upon expanding (uExyzv)∧ (vExyzw) using the Definition 3.3.6 (iv).

So we have,

(∀r, s ∈ Sxyz) [(P (x; y, z : u; r, s)↔ P (x; y, z : v; r, s))

∧(P (x; y, z : r;u, s)↔ P (x; y, z : r; v, s))],

as well as,

(∀a, b ∈ Sxyz) [(P (x; y, z : v; a, b)↔ P (x; y, z : w; a, b))

∧(P (x; y, z : a; v, b)↔ P (x; y, z : a;w, b))].

By combining these statements, we have that,

(∀r, s ∈ Sxyz) [(P (x; y, z : u; r, s)↔ P (x; y, z : v; r, s)↔ P (x; y, z : w; r, s))

∧(P (x; y, z : r;u, s)↔ P (x; y, z : r; v, s)↔ P (x; y, z : r;w, s))].

From which we conclude (uExyzw).

Proof of (f). As in [6] (of Proposition 5.3 (iv)), we show thatBt is well defined by proving

that for all u′ ∈ [u]t, v
′ ∈ [v]t and w′ ∈ [w]t we have that L(u; v, w)↔ L(u′; v′, w′). The

nodes [u]t, [v]t and [w]t are classes of the equivalence relationship Exyz, where 〈x, y, z〉,
defined as in Definition 3.3.6 (iv) in terms P . We follow the equivalences

P (u; v, w : x; y, z)↔ P (u′; v, w : x; y, z)↔ P (u′; v′, w : x; y, z)↔ P (u′; v′, w′ : x; y, z),

from which we conclude that L(u; v, w) ↔ L(u′; v′, w′). Following the proof in [6] (of

Proposition 5.3 (iv)) we check axioms for a betweenness relation. Axioms (B1) and (B2)

follow immediately from the symmetry of Definition 3.3.6 (vi). We proceed to prove

(B3), which for convenience, we state here in the relevant form in the current context; for

all [u]t, [v]t, [w]t and [r]t ∈ Rxyz,

Bt([u]t; [v]t, [w]t)→ Bt([u]t; [v]t, [r]t) ∨Bt([u]t; [r]t, [w]t). (3.3.4)
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Assume we have Bt([u]t; [v]t, [w]t). If either [u]t = [v]t or [u]t = [w]t then (B3) follows

easily, so we assume [u]t 6= [v]t and [u]t 6= [w]t. In that case, directly from Definition

3.3.6 (vi) and Definition 3.3.3, we have P (x; y, z : u; v, w) and L(u; v, w). Whence

from part (b) of this Lemma, Sxyz = Suvw and we have t = 〈x, y, z〉 = 〈u, v, w〉.
So then we consider some r ∈ Suvw. First assume that r 6∈ [u]t, so we witness

the negation of Definition 3.3.6 (iv) in every finite, strongly embedded substructure

containing {u, v, w, x, y, z, r}. So in these finite substructures, considering the negation

of Definition 3.3.3, we have

P (u; v, w : u; r, w) ∨ P (u; v, w : u; v, r).

Back to Definition 3.3.6 (vi), as [r]t 6= [u]t and [u]t = [v]t and [u]t = [w]t, we have,

covering either case in the last line,

Bt([u]t; [r]t, [w]t) ∨Bt([u]t; [v]t, [r]t),

as required by (B3), in the right hand side of statement (3.3.4). On the other hand, if

r ∈ [u]t, so that [r]t 6= [u]t, then the implication in statement (3.3.4) holds, which is clear

in Definition 3.3.6 (vi).

To show that these B–sets are of positive type, we need them to satisfy (B6). In the

present context, that is, fixing t = 〈x, y, z〉:

(∀[u]t, [v]t, [w]t ∈ Rxyz)(∃[r]t)(Bt([r]t; [u]t, [v]t)→ Bt([r]t; [v]t, [w]t)∨Bt([r]t; [w]t, [u]t)).

(3.3.5)

However, in the construction, this is a requirement for every structure in CT , thus

for any finite, strongly embedded substructure of MT that contains {x, y, z, u, v, w}.
So as every finite, strongly embedded substructure of MT has a witness r such that

(Bt([r]t; [u]t, [v]t) → Bt([r]t; [v]t, [w]t) ∨ Bt([r]t; [w]t, [u]t)), by the construction in

Chapter 4, in particular Theorem 3.2.10, r is also a witness of this statement in the limit

structure MT . As pointed out in [6] (proof of Proposition 5.3 (iv)) and [3] (first page

of Section 15), the positive type condition (B6) together with (B1),(B2) and (B3) imply

(B4), so Bt is a betweenness relation of positive type on Rxyz.
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3.4 Summary of claims about MT

The work in this chapter was motivated by the task of producing a relational structure

which is invariant under the Jordan group preserving a limit of betweenness relations

constructed by Adeleke in [1] in the style of the Fraı̈ssé style construction used by [6].

One major difference to that of [6] is that the structure they construct is ℵ0–categorical,

but Adeleke’s group in [1] is not oligomorphic, so a preserved structure cannot be ℵ0–

categorical.

We provide this as a synopsis of the intended results of this chapter. I am fairly certain

that the following assertions are correct, and proved by small adaptations of the arguments

in [5]. However, due to shortage of time they cannot be claimed at this stage. In this

chapter we have constructed a 2-sorted Fraı̈ssé limit of finite trees of B–sets. By fixing

the semilinear order (T,<) on one sort to be the so-called N+1–tree in advance, and

stipulating that the finite trees of B–sets carry appropriate finite substructures of T in that

sort, in the 2-sorted limit it is the N+1–tree which is the induced semilinear ordering on

that sort. The picture we have is that the limit structure can be considered as an infinite

tree of B–sets, with each vertex of the tree populated by a B–set. The vertices in the top

level, the t ∈ T with D0(t), are populated by B–sets of size 1. Below that, for the s ∈ T
such that D1(s), the B–sets at s are populated with B–sets of size 2, up to isomorphism

there is only one such B–set. For the u ∈ T such that D2(u), the B–sets at u have

infinitely many nodes and are dense linear B-sets. For all other v ∈ T , such that Dn(v)

for n ≥ 3, all the B–sets are isomorphic, we see them as infinite dense ℵ0–branching B–

sets of positive type. The functions ft and gst from the finite structures carry through to

MT as direct limits and, in essence, the structure on MT is controlled by these functions.

In Section 3.3, we were able to recover essential parts of the structure of MT from the

reduct of MT down to just the main sort M and the ternary relation L on M ; this reduct

is called M0
T .

As in [6], our Jordan group G is the group of automorphisms of (M,L). Adapting the

arguments in [6] we see that an example of a proper Jordan set is a non-empty node [a]t,

for a ∈ M and t ∈ T such that [a]t is a non–empty node of the B–set at t ∈ T . Strictly
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speaking, the vertex t is recovered as a triple of distinct elements of M . As such, it turns

out that G is primitive, as there are no equivalence relations preserved on elements of M .

To satisfy the definition of a group preserving a limit of betweenness relations (Definition

1.3.20), we select an infinite chain from T to serve as the infinite chain in the definition.

As in [6], our group G does not preserve any of the more familiar structures preserved by

primitive Jordan groups.

The sense in which this seems to produce a group like Adeleke’s example in [1] is that his

construction works as an iterated process. We see this iterated process in our construction

by considering larger and larger finite portions of the N+1–tree with consecutively lower

roots. To capture each of Adeleke’s iterations, we consider upward closed finite subtrees

of the structure tree with the induced structure fromMT such that the root of the finite tree

in the next structure in the process is immediately below the root of the previous one; at

each stage we have an infinite structure and can consider the limit. Adeleke takes a limit

of the groups obtained at each stage to construct his example. We believe that his limit of

groups preserves the limit of our approximating structures.
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Chapter 4

Extensions and discussion

The aim with the construction in Chapter 3 is to provide a flexible method of construction

which can unify the techniques used in [1] and [6]. The flexibility lies in the choice of

semilinear order which is fixed in advance on the tree sort for the construction. As we saw

in Chapter 3 (for the example on the N+1–tree), the underlying tree can be recovered from

the reduct of the limit structure to the structure induced on theM sort by the relation L. So

structures obtained by fixing non-isomorphic trees in advance of the construction should

be non-isomorphic, giving rise to a rich supply of examples of Jordan groups preserving

a limit of betweenness relations.

4.1 More trees of betweenness relations

Our first task in generalising the construction in Chapter 3 is to build a source of

semilinear orders to play the role that the N+1–tree did in that construction. In this section

we sketch out a conjectured program for future work. This program should, if realised,

produce an infinite class of suitable structure trees.

First we fix a countable linear order (I;≺), enriching the language of a semilinear order

with depth predicates ordered as (I;≺) and building an infinitely branching semilinear

order with depths from I .
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Fix a countable linear order (I;≺).

Let LI := {<, V, C, {Di}i∈I} be a language consisting of a binary relation <, ternary

relations V and C and countably many unary predicates {Di}i∈I .

Let CI be the class of finite structures (A;<A, V A, CA, {DA
i }i∈I), considered up to

isomorphism, satisfying the following. Note that x ⊥ y is notational shorthand for

¬(x < y) ∧ ¬(y < x) ∧ (y 6= x).

(K1) (A;<A) is a partial order such that for all x the set {y : y < x} is linearly ordered

by <A;

(K2) The relation V A(x; y, z) says that

(x < y ∧ x < z ∧ y ⊥ z) ∧ (∀w > x)((w ⊥ y) ∨ (w ⊥ z));

(K3) The relation CA(x; y, z) says that

(x ⊥ y ⊥ z) ∧ (∀w < x)((w ⊥ y ∧ w ⊥ z) ∨ (w < y ∧ w < z));

(K4) An axiom says that CA(x; y, z) says

(∀r)¬(V A(r; y, z) ∧ V A(r; z, x) ∧ V A(r; z, x));

(K5) For all a ∈ A there is a unique i ∈ I such that DA
i (a);

(K6) If a < b and i, j ∈ I such that DA
i (a) and DA

j (b), then i < j.

From this point, we usually drop the superscript (as in A above), as the interpretation of

the language is taken in the structure which should be clear from context.

Conjectured Theorem 4.1.1. The class CI is an amalgamation class, so by Fraı̈ssé’s

theorem, there is a unique, countably infinite LI-structure TI which is homogeneous and

has age CI .

Proof. We check the conditions of Fraı̈ssé’s Theorem.
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There are only countably many isomorphism types in CI . Each finite structure A

only makes use of finitely many levels, say JA, from the countable linear order (I,<),

so there are only countably many choices of such finite JA. Given a finite selection J of

levels from I , there are only finitely many semilinear orders occupying just those levels.

Hence there are only countably many isomorphism types for finite A in CI .

CI has the hereditary property. The properties above characterising the class CI are

universal, which are preserved under taking induced substructures.

CI has the amalgamation property. See Conjectured Lemma 4.1.5 below.

Definition 4.1.2. For A ∈ CI , say A is E –closed if the following hold.

1. If a ⊥ b then (∃c)(c < a ∧ c < b);

2. If b > a and c > a and b ⊥ c then V (a; b, c) or (∃d > a)V (d; b, c);

3. If a ⊥ b ⊥ c ⊥ a then C(a; b, c) ∨ C(b; c, a) ∨ C(c; a, b) or (∃d)(V (d; a, b) ∧
V (d; b, c) ∧ V (d; c, a));

4. If a < b such that Dn(a)∧Dm(b) with n,m ∈ I where there are only finitely many

i ∈ I with n ≺ i ≺ m, then (∃cn, ..., ci, ..., cm) such that, for all such i, Di(ci) and

a = cn < ci < ci+1 < cm = b.

Lemma 4.1.3. If A ∈ CI is E –closed then

1. x ⊥ y if and only if (∃w)V (w;x, y);

2. V (x; y, z) if and only if y ⊥ z and x = sup{w : w < y ∧ w < z};

3. C(x; y, z) if and only if x ⊥ y ⊥ z ⊥ x and (∃w)(w < y ∧ w < z ∧ w ⊥ x).

Lemma 4.1.4. Let A,B1, B2 in CI be an amalgamation problem where A,B1 and B2 are

E –closed and |B1 \A| = |B2 \A| = 1. Then we can solve the amalgamation on B1∪B2.
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Proof. Let b1 ∈ B1 \ A and b2 ∈ B2 \ A. We describe how b1 and b2 relate. As B1 and

B2 are in CI , we have that there are n and m in CI such that Dn(b1) and Dm(b2). As the

Di are unary predicates, they remain in the amalgam B1 ∪ B2. The following cases may

not be mutually exclusive, so we treat them in order of preference. First considering the

conditions of case 1, then if they are not satisfied for the case in question, moving on to

later cases in turn.

Case 1: (∃a ∈ A)(b1 < a∧ b2 < a). Let a be minimal in A such that (b1 < a∧ b2 < a).

By (K1), we may only have b1 ≤ b2 or b2 ≤ b1. If n ∈ I is such that Dn(b1) and Dn(b2),

we identify b1 and b2. Otherwise, there is n 6= m in I such that Dn(b1) and Dm(b2).

Without loss of generality, say that in this case we have n ≺ m. By (K6) this forces

b1 < b2 < a. Certainly there is no instance of the relation C involving both b1 and b2,

as b1 and b2 are comparable. It remains to determine what happens with the relation V .

Certainly, by (K2), ¬V (x; b1, b2) for all x in A, as b1 and b2 are comparable by < and

¬V (b2; b1, x) for all x in A as b2 6< b1. In fact, by (K2), we may only have V (b1; b2, c)

for some c ∈ A if b1 < c and b2 ⊥ c. But then, as a > b2, also c ⊥ a. But a and c are

in A and a ⊥ c, as A is E –closed, already there exists d in A such that V (d; a, c). So we

conclude ¬V (b1; b2, c) for all c in A.

Case 2: (∃a ∈ A)(b1 < a ∧ a < b2). We must be in a situation such that Dn(b1) and

Dr(a) and Dm(b2) with n ≺ r ≺ m and by transitivity of <, we have b1 < b2. Similarly

to Case 1, we have no instances of C or V involving both b1 and b2.

Case 3: (∃a ∈ A)(b2 < a ∧ a < b1). This is included to make the case listing clear. It

is just the same as Case 2 with the roles of b1 and b2 reversed.

Assuming none of the above situations arise, we argue that we may reduce to Case 4

below. Because, if A is non-empty and bi ⊥ a for all a in A, then Bi is not E –closed. So

for i = 1, 2 there is ai ∈ A such that bi > ai. As A is E –closed there is an a ∈ A such

that a ≤ a1 and a ≤ a2.
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Case 4: (∃a ∈ A)(a < b1 ∧ a < b2). We take a maximal in A such that (a < b1 ∧ a <
b2). Keeping note of the assignments in the following analysis, note that the following

designations makeB1∪B2 into a structure in CI . If there is an x ∈ A such that a < x < b1

and x 6< b2 then in fact x ⊥ b2, or else if x > b2 we would be in Case 3, whence

we conclude that b1 ⊥ b2. Then we have V (a; b1, b2) if and only if V (a;x, b2). For

y 6∈ Bx(b1) we have

• C(y; b1, b2) if and only if C(y;x, b2);

• C(b1; y, b2) if and only if C(x; y, b2);

• C(b2; y, b1) if and only if C(b2; y, x).

For y′ ∈ Bx(b1) we have either y > b1 or y < b1 or C(b2; b1, y). Similarly if there is a

z ∈ A such that a < z < b2 and z 6< b1, then z ⊥ b1 hence b2 ⊥ b1 and we follow the

lines above with z in place of x and switching the roles of b1 and b2. If there is v ∈ A

such that a < b1 < v and b2 ⊥ v then b1 ⊥ b2. Then we have V (a; b1, b2) if and only if

V (a; v, b2). For y ⊥ b1, we have

• C(y; b1, b2) if and only if C(y; v, b2);

• C(b1; y, b2) if and only if C(v; y, b2);

• C(b2; y, b1) if and only if C(b2; y, v).

Similarly if there is w ∈ A such that a < b2 < w and b1 ⊥ w then b1 ⊥ b2 and the V and

C relations are determined as in the previous lines concerning v. Otherwise, there is no

such x, z, v or w and we may set b1 to be comparable to b2. In fact, say n,m ∈ I are such

that Dn(b1) and Dm(b2). Then set

• b1 < b2 if and only if n ≺ m;

• b1 = b2 if and only if n = m;

• b1 > b2 if and only if m ≺ n.
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Conjectured Lemma 4.1.5. CI has the amalgamation property.

Conjectured Proposition 4.1.6. There is an infinite substructure C of T such that (C;<)

is a maximal chain of T and, as a linear order, is isomorphic to (I,≺).

Conjectured Theorem 4.1.7. If (I;≺) and (J ;≺) are non-isomorphic, countable linear

orders, then the semilinear orders TI and TJ as constructed above are not isomorphic
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