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Abstract

Soft sensors are increasingly gaining wide popularity in industrial processes. They
are becoming essential tools that contribute to building ultimately optimised and
fully controlled plants due to the soft sensor’s ability to address numerous hard-
ware sensor problems. Gaussian processes are among the techniques recently
utilised for soft sensor building. This research reviews the use of this tech-
nique as an adaptive soft sensor building method. It investigates di�erent model
structures, addresses issues associated with this technique, introduces Gaussian
process-based soft sensors in inferential control, and proposes a methodology to
enhance the reliability of the introduced inferential control system. These are
achieved by conducting various case studies and empirical experiments on real
and artificial data retrieved from real and simulated industrial processes. The
comparative case studies conducted on various Gaussian process model struc-
tures revealed that the Mate�n class covariance functions outperform the pre-
dominantly used squared exponential functions, particularly in clean and properly
pre-processed data sets. The results show the plausibility of Gaussian processes in
building adaptive soft sensors, particularly those based on windowing techniques.
Specifically, empirical results have revealed that the prediction accuracy of the
sensor can be improved by considering window-updating criteria. The research
results have also shown that the size of raw data used for soft sensor develop-
ment can be significantly reduced while preserving the informative properties of
the data. This results in a significant reduction in the associated computational
cost of Gaussian process-based models. Simulated results have also revealed that
an adaptive soft sensor with a high prediction capability can be integrated with
Proportional Integral controllers to build inferential control systems. The ro-
bustness and reliability of such a control system can be enhanced using a hybrid
Gaussian process and kernel Principle Component Analysis-based method. This
allows the implementation of the control system in the industrial process during
both healthy and faulty operating conditions.
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Chapter 1

Introduction

1.1 Problem Summary

In striving towards automated industrial processes and fully optimised, moni-
tored, and controlled plants, diverse industries (from food processing and paper
manufacturing to nuclear plants and chemical refineries) seek e�ective tools to
achieve these productivity targets for increasingly complicated processes. To fulfil
the requirements of control and optimisation systems and to achieve the above-
mentioned targets in complicated industrial processes, di�erent types of variables
and quantities are measured. While some of these variables, such as pressure,
temperature, and flow are easily measured by simply installing a hardware de-
vice, other variables, such as emissions, biomass, melt index, and concentration
cannot be measured as easily.

Classical measuring approaches implemented hardware sensors, where a di-
versity of a�ordable, accurate, and rapid sensors and transducers exist for mea-
suring variables, such as temperature or pressure. This make such variables easy
to measure. However, there are some other measurements that cannot be taken
by simply installing an instrument [1]. The reason for this could be the unavail-
ability of a suitable instrument, the high cost of the measuring device (hardware
sensor), or the unreliability of the sensor. For these reasons, such measurements
are considered di�cult-to-measure variables [2]. An alternative solution is to
measure these variables by laboratory analysis techniques, which are based on
samples taken from the process and sent to labs. Those samples are taken in-
frequently and are time-consuming to gather and test, which makes it di�cult,
if not impossible, to reach high levels of process monitoring and control. This
has several undesirable impacts including an increased cost of production, a high
number of o�-specification products, and safety or environmental issues [3].

1



Introduction

These di�culties categorise industrial process variables in terms of their mea-
surability into easy-to-measure and di�cult-to-measure variables [3]. Modelling
the relationship between these types of variables is the central idea behind infer-
ential sensing technology. This technology was originally developed to improve
the control of chemical and biological processes in the 1970s [4] and gained a wider
range of application and rapid development ever since. Inferential sensors, often
referred to as soft sensors, are inferential models that estimate primary variables
(di�cult-to-measure variables) from process secondary variables (easy-to-measure
variables).

As cited in [2], on a broad level, soft sensors are classified into two main cat-
egories. Model-driven soft sensors that can be defined as First Principle Models
(FPM) that focus on the steady state of the processes, describe their physical and
chemical backgrounds. Data-driven soft sensors, on which this research focuses,
are based on data models that describe the actual conditions of the plant based
on the true measurements available. Details of soft sensor types are given in
Section 2.3.

Soft sensors play an important auxiliary role in hardware sensor validation
when performance declines through fault accumulation [3], as they can be used
for fault diagnosis purposes.

Soft sensors are considered a valuable alternative approach to achieve the
above-mentioned tasks. In the last two decades, they have demonstrated the
ability to palliate and (in some cases) eliminate the problems they are developed
to address. However, there are many challenges that face the development, im-
plementation, and introduction of soft sensors into practice. These challenges are
[3, 5].

• Obtaining high-quality data to develop the soft sensors.
• Incorporating expert knowledge into the development and implementation

stages.
• Choosing independent variables to be used for prediction.
• Model identification and model structure selection.

Beyond these challenges, there is another recognised problem that recently
attracted researchers in the soft sensor field: adaptability or the ability of the
soft sensor to change its behaviour in a changing environment [6]. The poten-
tial for the soft sensor to adapt becomes important if the sensor is deployed in
rapidly changing processes. It would be useless to implement a soft sensor that
reflects process conditions and statuses that are not valid. The invalidity of these

2



1.2 Motivation

predictions and reflections are caused by the historical data used to develop the
sensor, as the historical data cannot contain all process conditions, especially
future ones. For this reason, soft sensors need to be adaptive to preserve their
prediction validity.

In addition to these concerns, identifying an adequate technique for build-
ing the soft sensor is a crucial part in the soft sensor design phase. Multivari-
ate statistics and artificial neural networks are among the techniques that are
widely reported and extensively investigated for building soft sensors. Contrar-
ily, Gaussian processes (GPs) are marginally explored, and their importance is
less emphasised. They were first used in the field of geostatistics where they are
termed kriging. It is only recently when Gaussian processes (GPs) attracted the
machine learning community. Specifically, Gaussian processes (GPs) were first
applied in machine learning in 1996, and ever since they have been an extensive
research area. The structure of Gaussian process (GP)-based models is relatively
easy to determine; moreover, model predictions are accompanied by a confidence
level that can be further utilised. In addition to these, expert knowledge can be
incorporated into the model through the Gaussian process (GP) prior. Despite
this, Gaussian process (GP) in the soft sensor domain are not extensively studied
nor thoroughly investigated.

This research is dedicated to reviewing Gaussian processes and determining
their practicality and applicability in the soft sensor domain. This research as-
sesses the adaptability of soft sensors and seeks to maximise the adaptive soft
sensor prediction capability by maximising data informativeness .

A known limitation in Gaussian process models becomes more evident in
adaptive soft sensors, and (more crucial in certain applications) the research
reviews this issue and targets this limitation in order to explore Gaussian process
soft sensor applicability in building inferential control systems.

1.2 Motivation

Developing a soft sensor that can aid process monitoring and improve control
system capabilities is important, as it would reduce production and operation time
as well as associated costs. In addition, measuring di�cult-to-measure variables,
such as product quality online not only reduces o�-specification material, but
also helps plant operators and experts take timely and e�ective corrective action.
This increases productivity and facilitates a smooth operation. In addition, the

3
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adaptability of soft sensors is a crucial attribute that enhances their value and
usability and further increases the importance of their role in achieving optimised,
fully controlled, and monitored plants.

Developing an adaptive soft sensor that reliably, accurately, and continuously
predicts di�cult-to-measure variables allows building inferential control systems
that control inferentially measured variables. This contributes towards building
fully controlled plants, optimises plant operations, and enhances the e�cient use
of resources.

1.3 Research Contributions

• Improvement of the moving window paradigm as a soft sensor adaptabil-
ity mechanism to e�ectively reflect the actual process status and process
current concepts under minor and major process changes is achieved by
proposing window-updating criteria as an extra parameter in building adap-
tive soft sensor models.

• Studying Gaussian process model selection and devising a practical rec-
ommendation in the context of industrial applications, specifically in the
absence of expert knowledge, is achieved by a thorough comparative study
between the widely used squared exponential covariance function and the
Mate�n class type.

• Addressing the computational time demanded by a Gaussian process-based
soft sensor, particularly when the soft sensor is applied online or o�ine
when the training data exceeds a few thousand observations, is achieved
by compressing and filtering the data to extract a representative and fully
informative data subset.

• Utilising Gaussian process-based soft sensors in building data-driven in-
ferential control systems is achieved by integrating the Gaussian process
soft sensor with a PI controller, and further exploring and enhancing the
inferential control robustness in faulty process conditions is attained by hy-
bridising Kernel Principle Component Analysis with Gaussian process to
build the control system.
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1.4 Thesis Structure
This section briefly outlines the organisation of the thesis, describes the subse-
quent chapters, and highlights the focal points of each chapter as detailed below.

1.4.1 Chapter 2

The outset of the chapter introduces soft sensors on a general level and briefly
describes the industrial environments where soft sensors are deployed. The chap-
ter contains a critical analysis and analytical discussion on state-of-the art in
the field of soft sensors, particularly data-driven soft sensors. It explores their
design procedures and applications with an initial focus on data pre-processing,
model selection, and identification. The chapter concludes with a summary of
open issues and pinpoints some of the questions the research aims to answer.

1.4.2 Chapter 3

This chapter starts by introducing the most widely used soft sensor building
techniques, and the remainder of the chapter is dedicated to detailing Gaussian
process principles and the theory underpinning these models. It outlines their
advantages and limitations in addition to their applications in regression prob-
lems. The chapter then reports a comprehensive critical review focused on related
work on Gaussian process-based soft sensors and open issues in this area before
concluding with a brief summary.

1.4.3 Chapter 4

This chapter is a two-part chapter. The first part details the research general
methodology and describes the data sets used to conduct the experiments and
studies throughout the research, while the second part of the chapter details
the first contribution of the research that investigated Gaussian process model
selection.

1.4.4 Chapter 5

This chapter utilises the results achieved in the previous chapter and further
reviews soft sensor adaptation mechanisms, specifically mechanisms based on
instance selection. The contribution made is detailed in this chapter, in addition
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to dealing with an issue that hinders Gaussian process models. Addressing this
issue is another contribution the research is presenting in this chapter.

1.4.5 Chapter 6

This chapter details and proposes a scheme to address the problem of controlling
inferentially measured variables. The scheme proposed is based on utilising Gaus-
sian process data-driven soft sensors developed based on the results achieved in
previous chapters. Besides this contribution, the chapter discusses an enhanced
version of the proposed control system before it concludes with summarising re-
marks.

1.4.6 Chapter 7

This is the final chapter of the thesis, where the overall concluding remarks are
summarised and the most significant findings are outlined. Limitations of the re-
search and open research issues are discussed with brief details on future research
directions.
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Chapter 2

Soft Sensors in Industrial Processes

2.1 Soft Sensors

Soft sensors have been shown to be valuable alternatives to their hardware coun-
terparts. This is due to their ability to measure and predict important process
quantities that are di�cult to measure using hardware/physical sensors, such as
measuring quality indices (e.g., melt index, kappa number, particle size, and vis-
cosity) and pollutant emissions (e.g., sulphur oxides, nitrogen oxides, and ozone).

Measurement di�culties can be technical or economical limitations that in-
clude long time delays, reduction of the e�ciency of feedback control policies,
lack of appropriate measuring devices, unavailability of certain instruments, and
the cost associated with some measuring devices.

Di�culties include reliability issues because measuring devices are often re-
quired to work in harsh environments that require very restrictive design stan-
dards and maintenance scheduling [3]. Real-time measurements of such important
process quantities are key to building a successful monitoring and control system
in industrial plants. In contrast, failure to measure these may cause product
loss, energy loss, resource loss, toxic by-product generation, and other health and
safety problems [7]. The di�culties that soft sensors overcome and the limita-
tions that they address establish them as a widely adopted alternative to physical
sensors and an active research area among researchers in the last two decades.
What Is a Soft Sensor?
Soft sensors are a subgroup of empirical/mechanical predictive models that es-
timate target variables based on their correlation with readily available process
independent variables.
Di�cult-to-measure variables are referred to as responses, dependent variables,
target variables, primary variables, or model output; whereas easy-to-measure
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Table 2.1: Hardware Sensor Problems

Percentage Recognised Problem
27 Time-consuming maintenance
21 Need for calibration
15 Aged deterioration
13 Insu�cient accuracy
10 Long down time, slow dynamics
8 Large noise
2 Low reproducibility
4 Other

variables are often referred to as independent variables, process features, predic-
tors, secondary variables, covariates, or model inputs. Target variables and input
variables are used consistently throughout the thesis.

Soft sensor applications are increasing, not solely in the process industry,
but also in other engineering fields. An example of which is hydroinformatics,
where soft sensors are referred to as data driven models and are undergoing a
fast development for their ability to replace physical based model [8].

Bioinformatics is another field where soft sensors are referred to as data driven
models, and are used to derive insights from large scale biological data like for
example, using kinase-activity data to predict substrate phosphorylation using
PLS data driven models as detailed in [9].

In addition, econometrics is an application area where data driven models
are extensively used to examine economic data and derive empirical economic
relations that can be used to make di�erent types of predictions like stock prices.
They are often referred to as estimators as described in [10]. However, the term
soft sensors is commonly used in chemical process to describe data driven models.

Soft sensors are capable of addressing inadequacies in hardware sensors and
conventional measuring techniques. As per the results of a survey conducted
in 2004 on 26 companies in Japan, soft sensors can now solve or at least help
problems reported in Table 2.1 [11]. Other than the above-mentioned problems
that soft sensors can address, the major objective of using soft sensors in the
process industry is to:

• Measure product quality stabilisation via online predictions.
• Reduce time and costs via e�ective operation.
• Online validation of analyses via parallel operation.
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• Back-up and fault detection devices.

For the aforementioned advantages and being a key technology for the task of
controlling infrequently measured variables, soft sensors are increasingly deployed
in industrial plants, particularly in chemical processes as outlined in the literature
review.

2.2 Chemical Processes
A chemical process is a transformation of raw materials into chemical products
through a series of interconnected intermediate transformation steps, such as
reaction, separation, heating, cooling, and mixing, where the interconnection be-
tween these steps provides the overall raw materials transformation as illustrated
in Figure 2.1. Chemical processes are sought to [12]:

• E�ciently use raw materials to prevent resource loss and production waste.
• Consume as little energy as is economic and practicable to minimise carbon

dioxide emissions.
• Sustainably consume water to preserve its source quality.
• Flexibly operate under di�erent conditions.
• Meet health and safety criteria.

These are the basic evaluation criteria for the design performance of chemical pro-
cesses. However, to further optimise the plant and improve its performance, other
adjustments and variations are pursued including structure and parameter optimi-
sation. Data-driven soft sensors are among the tools utilised for real-time process
optimisation, online process operation monitoring, and process fault detection
[13]. At a general level, chemical processes can be classified as batch/semibatch
processes and continuous processes.

Continuous Process

A continuous chemical process is a continuously operated process in which the
inlet and outlet feeds flow continuously throughout the duration of the process
as illustrated in 2.2. From a dynamic prospective, continuous processes can be
steady-state or transient. Steady-state implies that the process is stable around
one point and operating within a stationary region, whereas transient implies
that process variables are changing progressively with time [13]. An example of
a continuous process is the Haber process for ammonia production [14]. From
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Fig. 2.1: An Example of a Chemical Process

Fig. 2.2: Continuous Process Illustration

the perspective of a data-driven soft sensors, it is di�cult to collect su�ciently
informative data from continuous processes for soft sensor development. This
is due to the dynamic behaviour of the steady-state processes, excluding start-
ups, shut down phases, and abnormal operation conditions. A soft sensor based
on such a dataset focuses on the description of the steady-state operation. For
this reason, a non-adaptive soft sensor cannot tackle fluctuations or changes that
might be progressively encountered in steady-state conditions.

Batch Process

A discontinuously operated process is where raw materials are charged at the
beginning of the process, and products are delivered at the end of the batch cycle
time as illustrated in 2.3. Batch processes have a definite duration and perform
a fixed series of steps and tasks. In these processes, products are delivered in
discrete amounts and in relatively small quantities. In contrast to continuous
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processes, batch processes are always transient processes [15], and they play an
important role in industry for their low-volume, high-value products. An exam-
ple of these is the manufacturing of colourants, pharmaceutical products, and
the biochemical industry [16]. Batch-to-batch conformity is an issue in batch
processes where a subtle change in a batch operation causes deviations from dif-
ferent products of di�erent batches. From a soft sensor modelling aspect, batch

Fig. 2.3: Batch Process Illustration

processes are more challenging to model than continuous processes in that they
require more sophisticated modelling techniques to account for the inherent char-
acteristics of batch processes (e.g., process dynamics and stochastic disturbances)
[17]. In addition, when developing a soft sensor for a batch process application,
the developer has to take into account other factors, such as batch trajectory,
high batch-to-batch variances, and starting conditions of the batches [18].

2.3 Types of Soft Sensors
Soft sensors can be categorised according to di�erent criteria. Based on their
modelling methodology, soft sensors are fundamentally classified into two primary
categories: [2, 19]:

• Data-driven Soft Sensors
These are black box data-based models, which describe the actual condi-
tions of a plant, induced from input-output observed measurement data.
Unlike model driven soft sensors, which will be described next, they resem-
ble process states more realistically and describe input-output relationships
more accurately. As their name implies, they are based on measured data,
which can be either collected from the plant for which the soft sensor is
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being developed for, or from especially designed experiments (experimental
data) [2, 20].

• Model Driven Soft Sensors
These are First Principle Models (FPM) that focus on the state of the
processes, describing their physical and chemical backgrounds. Unlike data-
driven models, this type of sensor is primarily based on deriving equations
that can describe process characteristics, and due to this they are also
referred to as knowledge-driven models or white box models [21]. Since
industrial processes are so complex and a great amount of phenomenological
knowledge about the process is required for developing such a sensor, they
are often impractical, if not impossible to develop [20].

A model that combines both empirical and physical models in estimating
the target variable is termed a hybrid or grey box soft sensor [19]. Data-
driven soft sensors are more likely to return more accurate predictions than
their two counterparts because of the built-in flexibility; which is achieved
on the expense of the significant amount and quality of training data needed
during the design stage [19]. In addition, they are relatively easy to develop
as intensive expert knowledge is not required. Conversely, model driven
models are entirely based on phenomenological knowledge, which is often
not attainable in a complex process. Consequently, the focus of this research
is on data-driven soft sensors.

2.4 Data-Driven Soft Sensor Design
Data-driven soft sensors are designed to be valuable alternatives, not solely to
hardware sensors, but also to model-driven soft sensors. This is primarily due
to the relatively high cost for the former and the cost and complexity of the
latter. In addition, modern measurement techniques in industrial plants enable
data collection, storing, and analysing, which strongly suggests the use of data-
driven soft sensors by manipulating the use of the available measurements in
plant databases [22]. Consequently, the quality of a soft sensor is dependent on
the quality of the data used for its development [23]. In addition, the design of
a soft sensor largely depends on the purpose it is designed for and the tasks it
is expected to accomplish. This means soft sensor design procedures for back-
up purposes di�er from those designed for online predictions. However, they all
share a virtually unified framework that can be divided into stages as presented
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in the diagram in Figure 2.4.
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Fig. 2.4: Soft Sensor Design Block Diagram

The block diagram explains the basic classical steps of soft sensor design.
These steps do not demonstrate methods to incorporate and integrate expert
knowledge into those steps. Expert knowledge and use of the experience of
plant experts, control room operators, and field operators cannot be empha-
sised enough, as it greatly improves the overall performance of the sensors and
facilitates the design phase. It is overlooked in literature; however, its impor-
tance is recognised. Without expert help and knowledge, soft sensor design is a
complicated and di�cult task.

The design of a data-driven soft sensor is primarily based on historical data
retrieved from industrial plant databases. In such plants, production is the pri-
mary goal of the process while the variable measurements, recording samples,
data retrieving, reconciliation, and synchronisation are subsidiary goals [23].

This poses a number of challenges to soft sensor developers, such as evaluating
data quality (e.g., reliability, accuracy, completeness, and representativeness),
selecting relevant independent variables and measurements, identifying sampling
rates and time lags, and extracting system dynamics from steady-state patterns
of the data. As a result, data pre-processing steps that tackle these issues are
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pivotal in the quality of the soft sensor as discussed in subsequent sections.

2.4.1 Data Collection and Inspection

Data inspection is a preliminary step in the design of data-driven soft sensors
as it aids choosing the most influential independent variables, guides identifying
data patterns, helps classifying process profiles, and allows extracting relevant
information contained in the data [3]. It is usually performed as an initial step
as it allows the designer to gain an overview of the data structure, for instance
whether it was retrieved from a batch process or a continuous process. This step
helps the developer to identify obvious problems that can be handled at an early
stage. It helps to understand apparent relationships between process variables,
and detect steady-state and time-varying variables. A variable x

t

is said to be
steady at t0 if the ratio of change with time around t0 is less than or equal to a
certain threshold value T

x

:
x

t

≠ x
t0

t ≠ t0
6 T

x

(2.1)

Most of the techniques proposed in literature for Steady-State Detection
(SSD) are based on Student’s t tests performed on two means and the pooled
standard deviation of two adjacent windows. A recently proposed method that
adopts this procedure and accounts for the drift components is detailed in [13].
Detection of steady-state conditions is carried out solely for continuous processes,
as batch process are transient processes and do not encounter steady-state con-
ditions [12].

Data inspection involves a thorough assessment of the target variable to en-
sure that it is of a su�cient quality, variability, representativeness, and can be
modelled [2]. As pointed out in [21] the target variable is most often measured us-
ing lab analysis techniques, and the quality of laboratory data is often negatively
a�ected due to factors, such as:

• Redundant instances are not recorded.
• Human errors.
• Laboratory equipment calibration accuracy.

For these reasons, acquiring su�cient knowledge about the characteristics of
the lab data, such as sampling intervals, sampling procedures, and techniques
adopted, contributes to the quality of the developed sensor. Data inspection in-
volves conducting a critical analysis in cooperation with process experts. The

14



2.4 Data-Driven Soft Sensor Design

cooperation normally takes the form of meetings, interviews, and informal dis-
cussions [3]. Although it is not reported in literature, this stage should involve
selecting influential variables phenomenologically, running experiments, critically
analysing results, and comparing the results to empirically selected influential
variables.

A judicious investigation at this stage is important in order to determine
whether the data collected contains any missing values, outliers, or collinearity.
These data issues are results of failures in measurement devices and transmis-
sion nodes. Other operational conditions, such as process disturbances, o�sets,
and seasonal e�ects, are also possible causes of the above issues that soft sensor
developers need to consider during the design stage.

Data inspection contributes to the assessment of the requirements of model
complexity and determining reasonable decisions for the selection of the model
and structure and whether to use simple linear models or more complex non-
linear models. In some data sets this can be done visually from the pattern of
the target variable.

To sum up, this step gives the designer an idea about the procedure to be
followed during data pre-processing and the solutions that are to be considered
for solving data problems.

2.4.2 Data Pre-processing

Industrial datasets are collected from di�erent sources, including online plant
acquisition systems and plant laboratories. Data quality is crucial in building
data-driven soft sensors and has a crucial significance on their performance [24].
In other words, a soft sensor cannot be better than the data used to develop it [3].
However, the quality of industrial data is susceptible to various factors including:

• Di�erent types of sensor failures.
• Programming e�ects of plant archiving systems.
• Interaction with di�erent sources of noise.
• Delays and sampling rates.

Therefore, data pre-processing is required to address the process data issues
briefly mentioned above and visually depicted in Figure 2.5. The data pre-
processing procedure involves the following steps:

• Variable Selection.
• Data missing value.
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Fig. 2.5: Common Process Data Issues

• Data outliers.
• Data collinearity.
• Delays and sampling rates.

Because all process variables are available regardless of their relevance and
importance to predicting the target variable, phenomenological and empirical
variable selection and identifying time lags are the very first steps considered
when developing soft sensors.

Variable Selection

Variable selection or feature selection is defined in [25] as the optimal subset of
the whole set. It is one of the crucial steps in soft sensor development and is
directly related to the prediction accuracy of the soft sensor. Availability of all
variables in plant databases does not imply that they are all influential on the
target variable. Including irrelevant input variables or even less relevant inputs
in the model deteriorates overall performance [26]. As cited in [27], incorrect
variable selection may have unwanted consequences, such as singularity, over-
parameterisation, and marked reduction of model prediction accuracy.
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Reducing input space by excluding irrelevant variables simplifies model de-
velopment, facilitates model structure, and reduces training time [27]. While in
non-parametric models, such as Gaussian processes, this reduces the computa-
tional load associated with inverting the covariance matrix. In addition, in certain
model structures, it reduces the number of hyper parameters, as the latter is de-
termined by the input space dimensionality, and it is preferred to keep them as
low as possible [28].

Striving towards the above advantages, di�erent techniques and methods were
developed for appropriate selection of relevant variables. Prior knowledge from
plant experts is usually exploited initially to screen the collected variables. Then
statistical or other machine learning techniques are used to refine the selection
further. An example of one of those techniques is a Multi-Layer Perceptron
(MLP) based on variable salience (measure of variable importance) and uses the
mean squared error as a selection criterion [25]. In the MLP method, less rele-
vant variables are excluded iteratively by a network backward search until a stop
criterion is met. The latter method is computationally demanding, as the MLP
is retrained whenever a variable is excluded [25]. This shortcoming is rectified
in [29] through an Iteratively Adjusted Neural Network (IANN) algorithm that
exploits the mean squared error and mutual information as selection criteria.

[30] argues that many approaches in literature use Mean Squared Error (MSE)
as evaluation and selection criteria, which do not actually measure tracking pre-
cision between the observed target and the predicted one, instead the authors
propose the Input Variable and Delay Selection (IVDS) algorithm that employs
Relevance Variance Tracking Precision (RVTP) as a selection measure.

IVDS uses mutual information to select the best delay for each variable and
then linearly redundant variables are removed. The algorithm then uses MLP for
variable selection with MSE and RVTP as a stopping criterion. It showed that it
is only suitable if the MLP model can accurately predict the target variable.

A stochastic optimisation-based method is detailed in [26] where the problem
of selecting the minimised optimal subset of variables is combined with max-
imising the monitoring performance of a Principle Component Analysis (PCA)
model. This multi-objective optimisation problem is approached using genetic al-
gorithms and experimentally demonstrated that focusing on the relevant variables
significantly improved the monitoring performance of the PCA model.

These methods assume that the data is retrieved from a single operating
mode; however, this is not valid for batch processes where di�erent operating
conditions during di�erent product profiles are encountered. For this reason, an
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algorithm that selects variables for each operating mode (locally) is required.
Such an algorithm is proposed in [31]. However, the selection criteria is based on
the loading weights and scores of a Partial Least Square (PLS) regression model.
This makes it inappropriate for nonlinear processes. The virtue of the suggested
algorithm is that it does not assume a fixed correlation in the entire dataset,
rather it utilises a moving window technique adaptively to select variables.

Conversely, most algorithms developed for variable selection do not consider
the long-term changes in plant conditions or that these changes can influence
and deteriorate the overall performance of the sensor. In [32] this issue is also
dealt with by introducing an online adaptive technique such that variables are
reselected in cases where new process dynamics are detected. The selection tech-
nique is a standard stepwise linear regression, while the adaptation is based on a
moving window.

A novel technique that can be used to extract relationships and understand
dependencies of process variables on one another is detailed in [33]. The technique
is based on exploring the data by measuring the Maximal Information Coe�cient
(MIC). The authors argue that this measure of statistical dependence virtually
fulfils generality (capturing a wide range of associations), and equality (similar
noisy data with di�erent types of relationships should receive scores similar to
MIC). Although the authors demonstrated the significant performance of this
technique and the usefulness of using the by-product statistical properties ac-
companied with the MIC calculation, it has not yet been applied when selecting
variables in soft sensor design.

The procedure of selecting variables can vary depending on the problem being
handled and the models being considered. [34] provides a review of variable
selection in linear models, the review focuses on generalized information criterion,
and regularization approaches, where selecting penalty parameters is discussed
and dimensionality reduction and screening procedures are investigated.

Di�erent factors should be considered when selecting input variables, an im-
portant one of which is the algorithm identifying the relationship between the
variables. Methods successfully applied to select variables in linear models are
not suited to non-linear models like ANNs. Authors in [35] review di�erent vari-
able selection algorithms for ANN based methods. The algorithms are categorized
according to the criterion adopted, the relationship assumed, and the search pro-
cedure followed. Authors argue that a criterion like mutual information gives
generic measure for both kinds of relationships linear and non-linear, in addition
to being more reliable than other criteria for linear data analysis applications.
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A review of the state of the art in MI feature selection methods is presented
in [36] where the idea of maximizing relevance, minimizing redundancy, and iden-
tifying complementarity is clearly defined. The authors also further develops an
existing unifying approach for mutual information based variable selection algo-
rithms. The review also identifies open problems in the field such as the urgency
to develop a more e�cient and e�ective methods to select variables in high di-
mensional data.

A common critique of most of the variable selection algorithms is that the
importance of selecting time delays before selecting input variables is overlooked.
Variable selection should be accompanied by identification of corresponding time
lags, where the latter has a direct substantial influence on the relationship between
input variables and the target variable.

Sampling Rate and Time Lags

In chemical processes, target variables are infrequently and irregularly measured
with random time delays. The irregularity and randomness arise from many
factors, such as lab manual analysis, and uncertainty associated with the actual
sample time. In contrast, the input variables are readily measured at various
rates. Another factor contributing to the complication of the problem is the
Process Information Management System (PIMS). It records new data samples
solely if one of the input variables changes more than a pre-defined threshold
value. These asynchronous sampling and recording times give rise to multi-rate
systems, which are typical situations in industrial plants.

Therefore, one of the soft sensor design problems is the state estimation of
multi-rate systems and the identification of time lags associated with each inde-
pendent variable. This is as crucial as the selection of the independent variables.
This step should be carried out iteratively with the variable selection stage; yet,
it is not emphasised enough in the literature.

To achieve this the down-sampling technique is most frequently used; how-
ever, as emphasised in [2] extensive expert knowledge is required, which is not
always available, particularly in complex plants. Consequently, a soft sensor de-
signer appeals to empirical methods. Most methods proposed are based on simple
correlation, partial correlation, and Mallows Coe�cient. However, these methods
are criticised in [37] as they are solely suitable for linear models. While Mallows
Coe�cient is suitable for non-linear models, it is computationally demanding as
data dimensionality increases.
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Recently, there has been a focus on exploiting Mutual Information (MI) to
jointly select variables and their optimum time lags as presented in the previous
section by the Input Variable and Delay Selection (IVDS) algorithm. In [37], a
method is proposed that is also based on a multidimensionality mutual informa-
tion estimator based on the l≠ nearest neighbour. The two primary stages of the
algorithm first transform the possible variables and their time lags into one set
and (using a forward search) maximise the MI where the MI estimator is used
as a cost function. The authors assert that this method has a low computation
cost, it can detect non-linear relationships, and thus it can be used for nonlinear
processes. Nonetheless, the suggested algorithm is tested on target variables mea-
sured using gas chromatographs. As such, it does not consider target variables
and their associated uncertain random delays.

In [38] the authors suggest resolution to this issue by Expectation-Maximization
(EM)-based algorithm that takes into account uncertain random delays. The
algorithm treats these random delays as hidden states estimated as a model pa-
rameter. In [37] it is stressed that performing the selection of time lags before
selection independent variables improves the overall performance of the sensor.
Selecting variables before selection time lags may lead to biased results because
variables with correct time lags may be more informative than those with incor-
rect time lags.

In [39] the authors recognised the significance of identifying time lags; however,
the method proposed selects variables and then selects the best time lags using
Lipschitz quotients. Because variables and their respective time delays are co-
related, it is suggested in [40] that each time a variable is selected or deselected
or a time delay is changed, the evaluation test should be repeated until the most
influential variables with their corresponding time delays are identified.

Missing Values

Missing values are defined in [41] as either single or a set of values whose mea-
surements do not represent the actual physical quantity being measured. Missing
values are virtually always present in data retrieved from industrial plants. This
is due to various reasons, including missing samples, measurement errors, sensor
failures, sampling frequencies, database accessibility, and irregular measurement
intervals, to name few. Missing values might not be present in the original dataset
retrieved from the plant, rather it is introduced as a post processing step in the
data [42]. The author in [27] claims that it is not surprising for many datasets
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to have 10% - 30% of missing data, and for some variables (due to less frequent
sampling) to have up to 90% of the data missing [27]. The relationship between
a measured variable and the missing values is termed missing values mechanisms,
which can be categorised as:

Randomly Missing Values (RMV)

This pattern is the simplest and infrequently found in practice. The missing
values are randomly scattered over a vector of observations without a specific
pattern. It typically arises in a process where di�erent sensors are monitoring
one quantity at a time when one of those sensors temporarily stops functioning.
RMV may also occur in processes where quantities are measured at di�erent
intervals.

Randomly Missing Spectra (RMS)

This pattern resembles cases where the entire spectrum is randomly missing. It
usually occurs in processes where a multivariate instrument (e.g., spectrometer)
is monitoring a specific quantity in time. If for any reason the multivariate in-
strument malfunctions, the whole spectrum may not be measured. Analogously,
if a single sensor is monitoring a certain quantity and it malfunctions without re-
placement until the end of the process, it causes the whole block of measurements
to be missed.

Systematically Missing Value (SMV)

Systematic missing values appear if di�erent sensors are measuring a certain
quantity at di�erent sampling rates, such that missing values are constant over
the samples.

Di�erent approaches have been suggested to remedy the issue of missing val-
ues. In [22] the authors developed a soft sensor for a cement kiln system to
estimate two product-quality indices. The authors proposed a procedure to deal
with the missing data. They defined a template using the kiln drive measurement
to identify the length of the missing block; if the block was less than two hours,
interpolation based on neighbouring values was inserted (likelihood), otherwise
the entire block was discarded (case deletion). This is not adequate, particularly
for chemical data sets, which are usually multivariate datasets, as the discarded
block might have useful predictive information.
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In [27] the authors compared and summarised di�erent approaches to dealing
with missing data that included single imputation and multiple imputation. In
the former, missing values are replaced in single steps, which generally lead to
data distortion and biased derived statistics of the data, while the latter replaced
the missing values in a multiple iterative manner. This can produce unbiased and
accurate estimates provided a su�ciently high number of imputations are drawn
[43].

In [44] three di�erent neural network-based soft sensors were developed for
real-time prediction of cement clinker properties using three di�erent data sets.
The missing values were treated by linear interpolation imputation. Linear in-
terpolation was demonstrated in [45] where it outperformed the straightforward
mean imputation method. Although the latter is widely adopted, it was theoret-
ically proven and empirically demonstrated in [46] that when the input variables
are correlated and the mean imputation is adopted, soft sensor prediction accu-
racy rapidly deteriorates.

Data Outliers

Outliers are observations that abnormally deviate from the normal data variabil-
ity such that they seem to be generated from a di�erent mechanism, and they
do not follow any pattern. They are generally caused by inaccurate observation,
inappropriate recording, incorrect data entry, sensor malfunction, and transpos-
ing values when recording measurements [47]. Outliers can be divided into two
categories [41, 48]:

• Obvious Outlier
These are values that violate physical and technological limitations and can
be detected by providing the detection system with upper and lower limiting
values.

• Non-obvious Outliers
These are values that lie within the typical ranges of the quantity being
measured but do not reflect the correct variable status and do not violate
any limitations. Such types of outliers are harder to detect.

At a very general level, outlier detection techniques are classified as follows [49]:

• Distribution Based
• Distance Based
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• Clustering Based
• Depth Based
• Density Based

Detecting and handling outliers are critical steps in improving soft sensor pre-
diction accuracy. In contrast, the failure to detect or correctly address outliers
can have serious ramifications on the prediction accuracy of the soft sensor[41].
However, the influence of the outliers on prediction accuracy depends on the
method used for soft sensor development [50]. For instance, in a multi-model-
based soft sensor, data cannot be appropriately clustered if outliers exist, which
leads to poorly predicting sub-models. Conversely, in Gaussian process regression
models with Student’s t noise, outliers can have a weaker e�ect, and prediction
accuracy is widely una�ected [51]. That is because the e�ect of one single outly-
ing observation on the predictive posterior distribution becomes more negligible
as this observation tends towards infinity. In contrast to this, is the Gaussian
noise model assumption, where every single observation influences the posterior
regardless its location whether it is in the tails or near the mean of the distribu-
tion. This robustness of t-distribution can altered from very heavily tailed data
to Gaussian by varying the degree of freedom [52].

A simple outlier detection technique that is frequently employed is the 3‡

[22] and it is argued in [53] that it is the most widely used heuristics to detect
outliers, in addition, authors in [54] declared that this technique is the best-known
criterion to detect an outlier. The 3‡ rule states that nearly all (99.73%) of data
points lie within the boundaries of 3 standard deviations of the mean. If a data
point exceeds these boundaries, it is classified as an outlier.

However, this approach cannot distinguish between outliers and extreme data
variations, which results in detecting outliers in clean data that might be an
informative observation. In addition, if it is employed online, it cannot distinguish
between new process dynamics and outliers [22]. Moreover, it is likely to have
poor performance in when the sample size is small [54]

This shortcoming is addressed in a more sophisticated, but e�ective technique
proposed in [50], where outliers can be detected online, and the algorithm still
discriminates between new process states and outliers. The suggested method is
based on measuring the Squared Prediction Error (SPE) of the target variable and
the input variables whenever a new data point is available. If the SPE violates
a predefined threshold, it is classified as suspicious and is investigated further.
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SPE is given by:
SPE =

ÿ

i=1
(y

new,i

≠ ŷ
new,i

)2 (2.2)

where y
new,i

and ŷ
new,i

are the ith real target and the ith soft sensor prediction,
respectively. The basic assumption is that if the new data point is an outlier,
then the time series in the SPE encounters a short step and the change will
not be sustainable, while if the new data point is a new process state, the SPE
encounters a ramp disturbance or a sustainable step.

These techniques are based on the detection strategy, and if outliers are in-
accurately detected, soft sensor prediction accuracy will be susceptible to dete-
rioration. For this reason, more robust algorithms are needed to accomplish the
task.

Aiming to minimise the e�ect of outliers on the soft sensor model, the authors
in [55] propose Least Square-Support Vector Machine (LS-SVM) based on a fuzzy
pruning approach, where the sensitivity of the algorithm to outliers is reduced
through membership scores assigned to data observations. Despite the availabil-
ity of those methods, soft sensor designers still face the challenge of choosing the
optimal technique that best suits their data and that best balances the sophisti-
cation of the method and ease of the implementation.

Data Collinearity

As far as process control is concerned, it is necessary to have detailed measure-
ments of all process variables and to have redundant measurements for certain
other variables. This delivers highly correlated measurements that are data rich,
but information poor as described in [41]. This data characteristic is termed
collinearity [56].
Collinearity and near-collinearity are issues encountered in data acquired from
industrial plants. Whereas the former refers to the linear relationship between
two or more independent variables [3], the latter refers to closely related linear
variables (i.e., when the correlation matrix of a set of variables is near singular,
the variables are said to be near collinear). This linear dependency can be a
result of a duplicated variable or its o�set version, or by one input variable that
is equal to the linear combination of other variables.

Collinearity has negative e�ects on the data and causes instability in the
coe�cients of the least squares regression models. Therefore, in the presence
of collinearity developing models (in particular Ordinary Least Squares (OLS)
models) make the model predictions susceptible to deterioration whenever slight
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disturbance occurs in process dynamics. Collinearity can take three distinct forms
in the context of linear regression problems [57]:

• Little Variability
• Large Correlation
• Exact Linearity

Correlated variables increase the complexity of the model, reduce its interpretabil-
ity, and may deteriorate its prediction accuracy [2]. The author in [58] explains
that collinearity is a more of an obstacle in understanding relationships within
process variables than an obstacle in building a perfect model.

As cited in [58] Hocking suggests a measure of collinearity for a set of vari-
ables by decomposing their correlation matrix using PCA to assess the degree
of collinearity. Hocking argues that if the smallest eigenvalue is less than 0.05,
then the variables are seriously collinear, and they are moderately collinear if the
eigenvalues are less than 0.10.

The most common techniques for dealing with this issue are PLS and PCA.
PCA is based on decomposing the data covariance matrix, where eigenvalues are
then sorted in order of significance (i.e., the first principle component has the
maximum variance). Transposing the new vector and multiplying by the original
data results in a new informative uncorrelated dataset. An industrial case study
is demonstrated in [59] in which a soft sensor based on PCA-ANN is developed to
predict parameters in a petroleum reservoir. In the hybrid algorithm suggested,
PCA is exploited to address collinearity in the input variables and extract the
most relevant variables.

However, classical PCA has some drawbacks, for example, it has a poor in-
terpretation of the actual process variables, it is prone to error in presence of
outliers, it is inadequate in dealing with nonlinearities, and it is time invariant.

These issues are addressed by di�erent extensions of PCA to nonlinear PCA
as cited in [27]. Recursive PCA has been used to adapt to process changes
and remedy the problem of time invariance. However, a common disadvantage
to PCA-based methods is that these techniques do not account for correlation
between input and target variables. Conversely, PLS methods simultaneously
maximise the variance in input variables and maximise the correlation with the
target.

In [60] a novel approach based on PLS and False Nearest Neighbour (FNN)
was proposed to deal with variable selection (discussed in section 2.4.2); however,
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the first part of the algorithm deals with the multi-collinearity problem. PLS is
used to extract principle components and reduces the complexity of the model.

A recent algorithm proposes the use of mix-PLS to build a soft sensor de-
signed to predict the viscosity in a polymerisation batch process. In the proposed
algorithm, the collinearity of the input data is addressed using PLS, and it is
argued that the use of PLS to address the collinearity allowed mix-PLS to be less
susceptible to over-fitting [61].

2.4.3 Model Identification

Model identification is the procedure of building plant empirical/mechanical mod-
els based on data observations retrieved from that plant or based on phenomeno-
logical knowledge acquired from experts of that plant. This step comprises model
structure selection and model parameter optimisation. As the focus of this re-
search is on data-driven soft sensors, First Principle Models of soft sensors are
not considered here. To accurately describe model identification from a dataset,
we consider data acquired from a chemical process D = {x

i

, y
i

|i = 1, · · · n}, after
pre-processing, assuming a Multiple Input Single Output (MISO) model; it can
be represented as an input matrix X œ Rn◊m and an output vector y œ Rn◊1.

Model identification is finding a function f that best approximates the de-
pendence of the output vector on the input matrix f : Rn◊1 æ Rn◊m. The
approximation function is used such that y = f(x, �), where yú is the output
corresponding to any unseen test input xú, and � is a vector of parameters.

As noted in [62], in data-driven models flexibility, generality, and simplicity
are the three primary criteria for model structure selection. However, flexibility
might reduce generality and compromise between the two is a key element in the
model structure selection step.

The model structure should match the key characteristics of the process, such
as whether the process is static or dynamic, linear or nonlinear, constant or
time-variant. In industrial processes, dynamic models most often resemble the
reality of the process more than static models. This is because even steady-state
processes encounter dynamic behaviours during di�erent operation phases, such
as process fluctuations, shutdowns, start-ups, and depressurisation [63].

A theoretical methodology or superior approach for model selection does not
exist; however, there are some techniques that can aid in the accomplishment
of this task. Kadlec in [2] suggests starting with simple models, such as linear
models; model complexity can be gradually increased by considering nonlinear
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structures based on improved or deteriorated performance. Neural networks as
declared in [64] are the most popular nonlinear approximators and represent a
large class of model structures. Fuzzy approximators, on the other hand, can be
successfully used to represent linguistic knowledge and add it into the model [65].

Model selection depends on the training data available, the type of applica-
tion, the framework of the model structures considered, and the problem domain
the soft sensor is aimed to solve [66]. K-fold cross-validation can be used for a
proper model selection when there is insu�cient data. This method can make
use of all available data by partitioning it so that it can be used for validating
the model [2, 19].

In Bayesian-based methods, a set of model structures are evaluated and se-
lected based on Bayesian Information Criterion (BIC) given by 2.3.

BIC = L(◊) ≠ n
◊

2 logn (2.3)

where L(◊) is the marginal likelihood of the model hyper parameters, n
◊

is
the number of hyper parameters in the model, and n is the number of observa-
tions in the training data [67]. BIC minimises the prediction error of the model
and penalises for the increased number of parameters. Thus, it tends to select
parsimonious and accurate models.

Model selection in Gaussian process mounts to the selection of the covariance
function and the associated hyper parameters [68], and thus it is relatively simple
to select Gaussian processes models. However, Gaussian processes are still not
as widely adopted as other soft sensor building techniques (e.g., Artificial Neural
Networks (ANN), PLS, and Principle Component Regression (PCR)). Despite the
simplicity of their model selection, there is no clear methodology or criterion that
guides the choice of the Gaussian process model. Contrarily, all reported Gaussian
process-based soft sensors used a widely reported model that comprises squared
exponential covariance function and a zero mean function. Therefore, a heuristic
or/and meta-heuristic practical method is required to aid in the development
process of Gaussian process-based soft sensors.

Once the model is selected, model parameters are optimised in the second step
of the model identification procedure. In Gaussian process-based models, hyper
parameters are usually optimised by maximising the marginal log likelihood of
the model [69]. However, if the Gaussian process-based soft sensor is deployed
online, it might be not computationally feasible to perform the optimisation for
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every test point.

2.4.4 Model Validation

Model validation is the final step in soft sensor design and is defined in [70] as
the level of agreement between the identified model and the system being mod-
elled. Once the model is identified, its performance is evaluated on an unseen set
of data to check model plausibility, model falseness, and model purposiveness [70].

Plausibility indicates whether the model conforms to the prior knowledge
of the process (whether it behaves logically). Falseness reflects the agreement
between the real process output and the model output, while purposiveness ex-
presses model practicality and whether a model satisfies the purpose for which it
is developed.

An identified model can perform satisfactorily on the identification/training
data and simultaneously perform poorly on the validation or test data [21]. This
phenomenon is known as over-fitting and indicates a poor model generalisation
capability. In [3] model validation criteria are divided into two groups: tech-
niques that derive an analysis to understand model residual properties and other
techniques required by the soft sensor application.

In industrial processes it is frequently challenging to acquire a su�cient amount
of data to develop the model and validate it; therefore, it is advised in [2] to resort
to statistical techniques such as cross-validation or re-sampling methods. How-
ever, re-sampling techniques such as bootstrapping and bagging, as [71] concludes
are e�ective but computationally demanding.

Model validation can be carried out quantitatively by measuring Pearson
correlation-the most common measure of correlation in statistics - which eval-
uates the correlation between the observed and the predicted values and is given
by:

R =
q

n

i=1((yi

≠ ȳ)(ŷ
i

≠ ˆ̄y))
Ú
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n
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≠ ȳ)2 q
n

i=1((ŷi

≠ ˆ̄)y
2

(2.4)

Where ˆ̄y is the mean of the predicted variable, and ȳ is the mean of the observed
variable.

Quantitative model validation can also be done by measuring MSE given in
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2.5 to evaluate the overall prediction performance in terms of the accuracy and
reliability of predictions.

MSE = 1
n

nÿ

i=1
(y

i

≠ ŷ
i

)2 (2.5)

where y is the observed target, while ŷ
i

is the predicted target, and n is the
number of test samples. Alternatively, Relative Mean Squared Error (RMSE)
given in 2.6 is often used as an alternative to MSE for its interpretability.

RMSE =
ı̂ıÙ 1
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i

≠ ŷ
i

)2 (2.6)

The size and the dimension of the target variable impact RMSE as criticised
in [72]; therefore, the authors recommended using Relevance Variance Tracking
Precision. RVTP given by (2.7) reflects whether the soft sensor preserves its
prediction accuracy when input measurements vary. The best approximating
model has a maximum value of RVTP.

RVTP is a measure of the precision of the soft sensor output. (i.e., how the
precision changes when the output changes) and is given by:

RV TP = 1 ≠ ‡2
error

‡2
measurement

(2.7)

where ‡2
error

and ‡2
measurement

are the prediction error variance and the measured
output variance, respectively.

Another quantitative validation measure suggested in [73] is Theils Inequality
Coe�cient (TIC). It provides a measure of how well a predicted time series of
values corresponds to another observed set of time series values. It is given by:

TIC =

ı̂ıÙ
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(2.8)

where y and ŷ are the observed target and the predicted target, respectively.
TIC ranges between zero and one; the closer the TIC value is to zero, the better
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the prediction quality of the model. It is asserted that values of TIC that are
smaller than 0.3 indicate good model performance; however, such values depend
on the application and the modelled problem. It should be emphasised that TIC
is a more appropriate measure for comparison of di�erent model than for indica-
tion of model quality in an absolute sense. Despite its applicability, TIC has not
yet been reported for soft sensor validation or identification purposes.

It is more appropriate however to evaluate the performance of non-parametric
models in terms of the entire predictive distribution which can be captured by
the predictive density error given by:

LD = 1
2 log 2fi + 1

2N

Nÿ

i=1
(log ‡2

i

+ e2
i

‡2
i

) (2.9)

where ‡2
i

is the (i-th) prediction variance and e2
i

is the error between the (i ≠ th)
actual output and its corresponding prediction. This loss function takes into
account model accuracy by measuring the prediction error and model uncertainty
by measuring the variance.

By subtracting the loss of the model that predicts using a Gaussian with the
mean E(y̨) and the variance ‡2

y

of the training data from the model LPD, The
mean standardised log loss (MSLL) is obtained by as given below [69]:
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The MSLL is approximately zero for simple models and negative for better per-
forming ones.

Model validation can also be performed qualitatively. This involves plotting
the time series of the model predicted target and the observed target. Overlaying
the plots gives an immediate indication of the level of agreement between the
two plots. It can also provide insight regarding model deficiencies and where im-
provements are necessary. Residual plots aid analysing any potential agreements
and disagreements between the predicted and the observed targets [73]. Model
validation is often under emphasised despite its importance [74]; the approach to
this step depends on soft sensor specifications, customer requirements, and the
application area for which the soft sensor is developed [2].
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2.5 Soft Sensor Applications

Soft sensors have a broad range of applications and can fulfil a wide range of
tasks. This is primarily due to their relatively low cost in comparison to their
hardware counterparts; in addition, hardware sensors require acquisition, instal-
lation, operation, and maintenance costs. Soft sensors are becoming routine tools,
not only as an informative source to control room operators, but also for closed
loop inferential control [3].

It is reported in [75] that ten years ago 80% of soft sensors were deployed in
open loop applications while 20% were used in closed loop applications, whereas
now 80% are being used in closed loop control applications. Nonetheless, data-
driven soft sensors (as yet) do not represent the reported percentage as detailed
in Section 2.5.3.

The dominant application area of soft sensors is the online prediction of
di�cult-to-measure process variables. However, other application areas include
process monitoring and fault detection [76]. A review of these applications is
given below with a focus on soft sensors based on Gaussian processes as a build-
ing technique.

2.5.1 Online Predictions

Predicting process target variables in a real-time manner is an application area
that elevated soft sensors as critical optimisation tools in industrial processes. In
contrast to this approach, samples are taken to labs for o�ine analysis, which
creates long time delays or variables are measured online by an analyser, which
creates time delays and reliability issues.

Predicted targets are frequently quality indices or another key process vari-
ables and predicting these continuously online is of paramount significance for
process operationalisation and resources optimisation. An example of a Gaussian
process-based soft sensor tasked with the online prediction of a superheated steam
flow in a power generation plant is reported in [77]. The suggested algorithm ad-
dresses online computational complexity with a two-fold procedure: i) the hyper
parameters of the Gaussian process model are not re-optimised for every new
data point added into the model training matrix; they are retained until an error
threshold point is reached, and ii) the model training data matrix is updated
recursively through a pruning technique that excludes redundant points. The
limitation of the suggested procedure is that the pruned data is selected based on
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an absolute error criterion, which does not account for redundancy. This can be
addressed by introducing a similarity measure (e.g., Euclidean or Mahalanobis
distance). Such measures account for the informativeness and data variability in
the training data matrix.

Typical data-driven soft sensors developed for online predictions are based
on supervised learning approaches; the training data comprises both input data
and corresponding target variable measurements. This raises the issue of data
scarcity, as the target variable is not measured as frequently as the input vari-
ables. To remedy this issue, [78] proposes a mixture of semi-supervised proba-
bilistic principal component regression models that incorporate all input data,
including the unlabelled inputs. From a probabilistic prospective, this approach
to data utilisation improves the estimation for data distribution, which improves
prediction accuracy. The idea behind the mixture of models is to address the
issue of multi-mode nonlinear non-Gaussian variables. However, the algorithm
lacks an adaptivity mechanism to account for process behaviour changes.

A recent and innovative ANN-based soft sensor was applied to an industrial
case to estimate the heavy diesel 95% cut point of a Crude Distillation Unit (CDU)
was proposed in [64]. The novelty in the suggested approach is the adoption of
deep learning as a training strategy for deep neural networks. The virtue of the
proposed algorithm is the network structure that: i) yields more accurate predic-
tions, ii) handles highly correlated data, and iii) e�ciently deals with big data.
Although the novel deep neural network algorithm outperformed the traditional
ANN, Support Vector Machine (SVM), PLS, and ANN-PLS, it is computationally
more challenging. The authors argue that the algorithm reduced estimation er-
rors such that it can be employed in a quality control loop (inferential controller).
However, the computation time could impede the applicability of the algorithm
in inferential control, particularly if the online computation time is longer than
the sampling interval of the Distributed Control System (DCS) of the plant.

2.5.2 Process Monitoring

Product quality and process safety are two primary criteria considered during
the design of industrial processes. It is often infeasible to have a fully monitored
process, as this necessitates building heavily instrumented plants with high costs.
Therefore, soft sensors are considered an alternative to enable monitoring process
safety and enhancing product quality. Process monitoring is defined in [22] as de-
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tecting abnormal process operations resulting from a shift in the mean or variance
of one of the process variables. As noted in [79] process monitoring is also termed
fault detection and diagnosis. Monitoring processes allows problem diagnostics
and highlights process weak points. It provides a framework that can be utilised
for product quality improvement. This is particularly useful in batch processes,
as it reduces the number of rejected batches, allows fault detection before the
batch is completed, and helps mitigate faults in subsequent batches[80].

The typical inherent characteristics of batch processes (e.g., finite duration,
nonlinear behaviour, insu�cient online sensors, and change of production grades)
make the task of developing online monitoring soft sensors more complicated than
in continuous processes.

The lack of appropriate monitoring techniques represents another obstacle to
building an e�ective monitoring system. Although classical techniques of moni-
toring and fault detection are simple and reliable, they react late and in-depth
diagnosis is usually not possible [81]. Therefore advanced techniques that can
fulfil the following tasks are needed:

• Early detection of faults.
• Diagnosis of faults of sensors, actuators, and processes.
• Monitoring and supervision of processes.

Several techniques are used to accomplish the monitoring task and fulfil the afore-
mentioned requirements; Multivariate Principle Component Analysis (MPCA) is
among the techniques employed. The idea behind this method is extracting in-
formation from process data by compressing and projecting it onto a lower space.
The data is stored in three items: variables, time, and batch number. Once the
normal behaviour of the process is learnt, new batches are monitored by compar-
ing the time progression of the projections in the reduced space with the normal
batch data. However, multivariate statistical process control-based methods such
as PCA and PLS are based on easily violated assumptions such as Gaussian
distributed process data, linearly correlated process variables, and single-mode
operated processes [79]. Although kernel PCA can address some of the aforemen-
tioned limitations (e.g., the linear correlation assumption), it cannot cope with
multi-mode operated processes [82].

To rectify this issue, the authors in [80] modified the MPCA technique to build
Multivariate Independent Component Analysis (MICA). While PCA searches
for Gaussian components, ICA searches for non-Gaussian components. As such
MICA provided a more meaningful online monitoring tool compared to the MPCA.
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The limitations of ICA-based methods are that their monitoring results are un-
stable; in addition, it is di�cult to select the number of independent components.

As Gaussian process is a relatively new option for soft sensor building, Gaus-
sian process-based soft sensors for process monitoring have (as yet) merely been
reported in [82]. Yet, the objective application of the proposed sensor is on-
line prediction, and it was subsequently utilised for process monitoring. The
proposed adaptive soft sensor, which is based on Gaussian mixture models, was
outperformed by the widely used recursive PLS and recursive PCA. This could
be due to the developing method adopted, where the objective application of the
soft sensors is a primary factor that determines the development methodology.

To continuously monitor online NO
x

and O2 emissions from industrial boilers,
[83] proposed an e�cient Radial Basis Functions (RBF) network soft sensor to
accomplish the emissions monitoring task. The soft sensor was developed o�ine
using experimental data and validated using real data acquired from the boiler
plant. The results confirmed soft sensor plausibility and purposefulness. In addi-
tion, the authors asserted that the soft sensor could be utilised in an inferential
control system and be integrated with the boiler controller to optimise operation
and maintain production.

2.5.3 Data-Driven Inferential Control

Building fully optimised and controlled processes involves building heavily in-
strumented plants and calls for monitoring and measuring key plant variables
and quality indices (target variables). However, on one hand, such a task is fre-
quently not feasible due to the di�culty of directly and continuously measuring
these variables, and on the other hand, accomplishing the task contributes to
a safer working environment, less environmental impacts, more enhanced prod-
uct quality, more e�cient use of resources, and lower levels of waste due to o�-
specification products.

Inferential control schemes were introduced to circumvent this problem and
competently control the infrequently measured target variables. Systems con-
trolling inferentially measured variables are termed inferential control systems.
The term "data-driven inferential control" stems from the data-driven estimation
technique employed for the prediction of the target variables.

The authors in [84] note that the two key elements of an inferential control
system are the estimator (e.g., soft sensor) and the controller. Inferential control
systems are employed in di�erent schemes in industry. Foremost among them is
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Model Predictive Control (MPC). It utilises an explicit process model to compute
a control signal and optimise a cost function based on the desired output trajec-
tory over a predefined length of prediction horizon [85]. They are extensively
utilised due to their ability to handle constraints, uncertainties, and time-varying
system dynamics[86].

Data-driven soft sensors have been integrated with this type of control scheme
in designing inferential control systems. An example is detailed in [87], in which
a data-driven Latent Variable-MPC system is proposed to control product com-
position in a distillation column (continuous process). Identification of the model
cannot be e�ectively performed if the control variable is not su�ciently excited,
and if not feasible to excite, the paper proposes performing the identification
procedure in the latent variable space.

The other reason behind the implementation of MPC in the latent space is
to reduce the computational complexity of the MPC and the correlation among
the manipulated variables. The cost function that the MPC is minimising is
the sum of the squared two-norms of prediction error and control actions, where
predictions are attained by a multi-step ahead PLS soft sensor.

The proposed algorithm outperformed the conventional data-driven MPC de-
tailed in [88]. However, as the accuracy or suitability of MPC actions are based
on the prediction accuracy of the controlled variable, the overall system per-
formance significantly deteriorates if the process exhibits any time-varying be-
haviour. Thus, the consideration of adaptivity helps to alleviate this issue. In
addition, as the soft sensor is PLS-based, the suggested system is not suited
to nonlinear processes. Nonlinear and dynamicity are typical characteristics of
industrial processes.

[89] developed a Data-Driven Direct Predictive Control (DDPC), which is
primarily based on multi-modal data-driven predictors developed using subspace
identification, to address the above-identified shortcoming. The suggested con-
trol system eliminates the need for MPC modelling, and thus the problem of
model mismatching is addressed, computational complexity is significantly im-
proved, nonlinearity is tackled by the multi-modal approach, and the adaptivity
is considered through an online update strategy. The algorithm is validated on
a boiler turbine unit to regulate power output in safe and friendly-environmental
conditions.

Although the suggested system fulfils the task it was developed for, it is
demanding in terms of engineering and implementation. As indicated, the per-
formance of the MPC-based control system is dependent on the validity of the
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process model [90], where a model-process mismatch (resulting from employing a
linear model in nonlinear processes) can deteriorate process behaviour predictions
and consequently reduce control performance. To ensure that the model is not
used outside the range of its validity, a movement suppression weighted term is
used that sets the controller degree of freedom. However, di�culty adjusting the
term and the controller sensitivity to the term are drawbacks of this strategy,
which are addressed in [91], where the authors propose defining four validity in-
dicators on model performance. The defined indicators are integrated with the
MPC optimisation function as constraints to bound the controller decision space
and ensure a valid utilisation for the model.

The drawback of the suggested method (as pointed out by the authors) is
that the constraints result in a computationally expensive optimisation problem.
An alternative and simpler indication of model validity and process-mismatch is
o�ered by Gaussian process models. Such models provide confidence intervals
(uncertainty) associated with model predictions. These uncertainties are har-
nessed in [92] to design a nonlinear model-based predictive control. The authors
argue that the suggested strategy allows the MPC to optimise the manipulated
variable such that it avoids regions with high uncertainty. This results in a more
robust system that optimises actions according to model validity.

Controlling a continuous process is di�erent from a batch process. In the for-
mer the control objective is to reach the equilibrium point, while in the latter the
primary objective is to attain a specific product quality by the completion of the
batch cycle [93]. Batch process direct control is frequently impractical; therefore,
other approaches are utilised. An example of which is Statistical Process Control
(SPC) and Midcourse Correction (MCC) in which the target variable is predicted
(via a soft sensor) at every sample interval, and midcourse corrective actions are
taken accordingly. However, as the target variable is estimated during the run
of the batch, measurements of easy-to-measure variables are available solely up
to the current sampling instance, and for predictions that are more accurate, fu-
ture measurements are required. Consequently, control actions will be based on
a poorly predicted quality.

To alleviate this problem, [93] proposed an algorithm that integrates two
data-driven soft sensors with model-predictive control. The first sensor is a multi-
modal soft sensor that predicts the future process conditions based on the batch
input trajectories, which are embedded in the MPC optimisation function (mak-
ing use of MPC prediction horizon), while the second soft sensor relates these
predicted batch conditions with the final product quality.
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In addition to MPC-based controllers, a Proportional Integral Derivative
(PID) controller is a type of feedback control that minimises the error between
the measured variable and the process set point. It is widely adopted in industry
and represents more than 95% of the control loops deployed, most of which are
Proportional Integral (PI) controllers [94].

Soft sensors have been integrated with this type of controller in di�erent in-
dustrial applications. An example was demonstrated in [95] where a Dynamic
Partial Least Square (DPLS)-based soft sensor is designed to predict the kappa
number (quality index) in a Kaymr digester process. The predictions are fed
back to a Proportional Integral Derivative controller to minimise variations of
the Kappa number and maximise pulp quality. Simulated studies demonstrate
that the soft sensor can capture the process dynamics in both closed and open
loop modes. However, because some chemical processes are of a higher order
and in order to alleviate the influence of the initial state of the process, the past
horizon of the DPLS model should be much larger than the process order. This
necessitates including a large number of input variables including their lagged
value, which results in a slower response to process change in addition to the dif-
ficulty of maintaining and building the model. Therefore, the authors proposed a
Reduced Order Partial Least Square (RD-DPLS) that reduces the system order
by estimating time delays and using time-shifted variables. It has been shown
that the RD-DPLS has superior performance over the Dynamic Partial Least
Square (DPLS). Nonetheless, both soft sensors cannot handle process drifts and
do not account for process time-varying behaviour.

To remedy the drawbacks identified, [96] proposed a recursive RD-DPLS that
is constantly updated online. The authors argued that the Proportional Integral
Derivative (PID) fed back by the soft sensor predictions significantly outper-
formed the one fed back by kappa number lab measurements. Regardless, lab
measurements are not as frequent as predictions for the soft sensor, consequently,
the Proportional Integral Derivative (PID) fed back by those infrequent measure-
ments performs incompetently.

In addition to multivariate statistical-based soft sensors, Artificial Neural Net-
works (ANN)-based soft sensors are also utilised in Proportional Integral Deriva-
tive (PID) closed loop controls. A Recurrent Neural Networks (RNN) soft sensor
was reported in [97] to predict a column distillation product composition, which
is then fed back to decentralised PI controllers to control a reactive distillation
process. The suggested RNN approach was compared with Extended Kalman
Filter (EKF) and Feed Forward Neural Network (FFNN) in open and closed loop
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modes, where it quantitatively and qualitatively outperformed both types of neu-
ral networks, (RNN and FFNN). Yet the outperformance of the EKF is at the
expense of computational complexity and the engineering and modelling e�ort
involved.

In a comparable application area, specifically in a multicomponent distillation
process, two di�erent ANNs algorithms (Levenberg Marquardt (LM) and Adap-
tive Linear Network (ADALINE)) are compared in designing soft sensors. The
sensors are then utilised as feedback elements in a Proportional Integral Deriva-
tive (PID) controller to control product composition in the mentioned process
[98]. Experiments show that the ADALINE soft sensor’s performance is superior
to that of the LM soft sensor. Based on this result, the ADALINE soft sensor
was further improved by developing a dynamic version that demonstrated even
better performance. Despite the achieved results, ANN-based models have some
limitations, such as random and uncontrolled convergence, local optima issues,
and di�culty identifying model structure.

2.6 Summary

In terms of their metastability, industrial process variables can be categorised
as easy-to-measure variables or di�cult-to-measure variables. The importance
of measuring di�cult-to-measure variables arises in applications where such vari-
ables are the key to building successful monitoring and control systems and where
the failure to measure them may result in undesired complications.

This chapter discusses the increasingly indispensable role of data-driven soft
sensors in industry, particularly in chemical processes. It briefly describes indus-
trial data issues, reviews the data pre-processing techniques that address them,
and highlights some of the limitations of these techniques.

The review outlines the general procedure for soft sensor design and highlights
some of the limitations therein. For instance, the current adopted procedure
does not fully exploit expert domain knowledge, and is there no framework that
formalises and systematises the procedure. Such a framework can be utilised
with Gaussian process soft sensors as the latter allows prior expert knowledge
incorporation in the form of a GP prior.

The reliability of data-driven soft sensors in open and closed loop applica-
tions is not rigorously validated despite the critical tasks some of the reported
soft sensors are deployed to fulfil. In addition to validating the reliability, data
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reconciliation procedures that can address data issues are obviously overlooked
and are not described in soft sensor development procedures. Is this due to a
misconception between data pre-processing and data reconciliation?

This chapter brings into focus the limited employment of Gaussian processes
as a soft sensor building technique compared to other techniques that are exten-
sively used, such as PLS, ANN, and PCR. As a result, the review identifies poten-
tial application areas where Gaussian process-based soft sensors can be utilised
and critical tasks can be fulfilled. For instance, inferential control application can
be further investigated using Gaussian processes data-driven soft sensors.
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Chapter 3

Gaussian Processes as a Data-Driven Soft Sen-

sor Modelling Technique

3.1 Introduction
Data driven soft sensor modelling is essentially analysing data and extracting an
approximation function that approximates the functional dependence between
the selected input variables (easy-to-measure variables) and the target variables
(di�cult-to-measure variables) [5]. They are more widely adopted than their
model-driven counterparts because data-driven soft sensors are independent on
a prior phenomenological knowledge. Various statistical and machine-learning
inference techniques are employed for the modelling task; foremost among them
are:

• Multivariate Statistical Techniques
Multivariate statistical techniques are extensively utilised in soft sensor
building because of their simplicity and clear mathematical background.
They are based on projecting the input and output space into a lower
dimensional space[5]. Among them are Principle Component Regression
(PCR), which is primarily a Principle Component Analysis (PCA) inte-
grated with a regression model Independent Component Analysis (ICA),
Kernel Principle Component Analysis (KPCA), and Partial Least Square
(PLS).

• Artificial Neural Networks (ANN)
Artificial Neural Networkss are by far the most adopted nonlinear formalism
in soft sensor modelling [64]. In the process industry and in soft sensors
in particular, the most widely used paradigm is Multi-Layer Perceptron
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(MLP). This is due to its inherent characteristics and ability to extract
nonlinear relationships between independent and target variables. MLP (if
properly trained) has an excellent generalisation capability; moreover, MLP
can not only model Multiple Input Single Output (MISO) models, it can
also model Multiple Input Multiple Output (MIMO) [99].

• Gaussian processes (GPs)
Gaussian processes, as highlighted in [100], are utilised in various areas;
however, this utilisation is largely meagre compared to their merits, virtues,
and advantages. It is speculated that this is due to the confusion between
the properties of the unknown function underlying the data and those of
the optimal model for this unknown function. In the soft sensor context,
Gaussian processes are a relatively new alternative to the aforementioned
techniques, and recently a few publications have started to appear. This can
be isolated to their computational complexity scale that might hinder them
from being adopted more widely in soft sensor applications. Despite this,
Gaussian processes have indispensable features over other machine learning
techniques and in particular in the field of dynamic nonlinear modelling[70].

As the research focuses on Gaussian process as a soft sensor building tech-
nique, this chapter is dedicated to introducing them in more detail, outlining their
advantages and limitations, highlighting the motivation behind adopting them,
and summarising their applicability in the soft sensor domain.

3.2 Gaussian processes
A Gaussian process, which is a type of continuous stochastic process, attracted
the attention of the machine learning community in the nineties when Neal in
[101] demonstrated a link between neural networks and Gaussian processes.

A Gaussian process is a set of continuous random variables f = {f1, f2, ..., f
N

}
indexed by their inputs X = {x1, x2, ..., x

N

}, any finite subset of those random
variables follows a joint multivariate Gaussian distribution with mean vector µ

and covariance matrix K [69]:

p(f) ≥ N (µ, K) (3.1)

A Gaussian process is a fully probabilistic Bayesian model, where Bayesian
inference can be used to make predictions from the data. However, whereas
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a Bayesian model defines a prior over unknown model parameters, a Gaussian
process model defines a prior directly over the functional relationships between
the test inputs and training inputs and outputs. This Gaussian prior is defined
by the mean and the covariance functions [67, 69]:

m(x) = E[f(x)] (3.2)

k(x, xÕ) = Cov[f(x), f(xÕ)] (3.3)

The mean and the covariance functions are su�cient to specify the joint dis-
tribution for any number of samples of a Gaussian process [102].

p(f) ≥ GP(m(x), k(x, xÕ)) (3.4)

where (x, xÕ) are a pair of input vectors (in a univariate data, (x, xÕ) are a pair
of inputs and denoted as (x, xÕ)). The definition above implies marginalisation,
conditioning, and summation properties, which are the keys to Gaussian process
regression models [67, 69, 103].

In cases where the mean function is assumed to be zero, which is often the
case, the covariance function - on its own - relates one observation to another
[104]. As it is often the case that there is no enough prior knowledge to assume
a mean function, the GP prior is defined as

p(f) = N (0, K) (3.5)

Where K is a self covariance matrix of the training inputs computed from 3.3.
Assuming that the observed output y is generated with Gaussian white noise ‘

around the underlying function f :

y = f(x) + ‘, (3.6)

This noise assumption together with the model gives rise to the likelihood:

p(y|f) = N (f , ‡2
n

I) (3.7)

where I is the identity matrix and ‡2
n

is noise variance. Integrating over the
function values f gives the marginal likelihood which is simply the integral of the
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likelihood times the prior:

p(y) =
⁄

dfp(y|f)p(f)

= N (0, K + ‡2I)
(3.8)

3.2.1 Covariance Functions

As mentioned previously, to specify a Gaussian process prior, the mean and the
covariance functions are needed. All Gaussian process models developed through-
out the thesis assume zero mean priors. This leaves the model developer with a
selection of the covariance function to construct the covariance matrix K.

A covariance function, often referred to as a kernel function, is a parametric
function that specifies the covariances among pairs of random variables [105].

It has a central role in Gaussian process models, as it conveys all the informa-
tion on the kind of function generated by the process, determines the properties
of the samples drawn from the Gaussian process, and (in regression problems)
controls the smoothness of the function underlying the data. Thus, if the covari-
ance function was not chosen appropriately, it may worsen the performance of
the model [106].
The choice of covariance functions is one of the elements in Gaussian process
model selection; however, any covariance function can be used, provided it is pos-
itive semi definite (xTKx Ø 0, ’x). In other words, it generates a non-negative
definite covariance matrix for any set of inputs [67–69].

There are di�erent types of covariance functions that satisfy this requirement,
and the next section describes those functions commonly used in regression prob-
lems.

Stationary Covariance Functions

Stationary functions are functions that depend on the distance between the in-
puts x ≠ xÕ (Euclidean Distance), and are invariant to translations, meaning that
they only depend on the distance between the inputs, not on their values. A sta-
tionary function can also be an isotropic function if it is invariant to translations
and rotations. A widely used example of this type of function is the Squared
Exponential (SE) covariance function given in the multivariate case (ARD) by

44



3.2 Gaussian processes

[107]:

k(r) = ‡2
f

exp
A

≠ 1
2

Dÿ

d=1
( r

l
d

)2
B

(3.9)

where r = |xd ≠ xÕ
d| the hyper parameters ‡2

f

, and l
d

are, respectively, signal
variance and characteristic length scale in dimension d (how far to move the inputs
space for the function values to be uncorrelated). The two hyper parameters,
denoted by � = [‡2

f

, l1, ..., l
d

], govern the properties of sample functions drawn
from the defined Gaussian process as illustrated in Figure 3.1, where two samples
are drawn from a Gaussian process prior with a squared exponential covariance
function with a fixed variance and two di�erent length scales.
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Fig. 3.1: Sample GP Prior with SE Function
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Fig. 3.2: Sample GP Prior with MC Function

This function gives rise to smooth sample functions that are infinitely di�er-
entiable. Such smoothness stems from the structure of the function. Where l

controls the influence of the distance between x, xÕ, when inputs are distant from
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each other, the function tends to be zero and new inputs will have a negligible
e�ect. As inputs get closer, the function reaches its maximum and the spectral
density increases resulting in a very smooth function as illustrated in 3.1 [68, 69].
Although this smoothness is not realistic in practical problems, SE is widely ac-
cepted and used. In addition, all Gaussian process-based soft sensors (published
so far) are developed using the SE.

Another example of a stationary covariance function is the Matérn Class (MC)
covariance function given by 3.10 in the multivariate case (ARD):

k
Mate

Õ
rn

(r) = ‡2
f

21≠v

�(v)(
Ô

2vr

l
d

)vk
v

(
Ô

2vr

l
d

) (3.10)

where r = |xd ≠xÕ
d|, �(.) is a Gamma function, k

v

is the modified Bessel func-
tion, and the hyper parameters l and ‡2

f

are the signal variance and characteristic
length scale, and v control the roughness of the sample function as illustrated in
Figure 3.2.

As per Rasmussen in [69], the two interesting cases in machine learning are
when v = 3

2 or 5
2 , and as v moves toward infinity the function converges to the

SE covariance function. This function produces samples that are significantly
rougher than those drawn from the SE as depicted in Figure 3.2 and Figure
3.1. The figures also illustrate the e�ects of the length scale on the shape of the
functions.

The comparative study this research conducted considers the above two sta-
tionary covariance functions. The squared exponential was chosen as a base line
for being used in all previously published GP-based soft sensors, while the Matérn
Class (MC) was chosen because it is declared in [69] that it has the two most
interesting cases in machine learning as pointed out previously. In addition to
the comparative study, the neural network covariance function was considered
as it is a non-stationary covariance function and investigating its performance in
comparison to the stationary functions reveals the di�erences in the properties of
both type of functions.

3.2.2 Advantages and Limitations of Gaussian process

Gaussian processes have attractive features over all machine-learning techniques,
particularly in the field of dynamic nonlinear modelling. These include: [70, 108]

• Ability to measure prediction confidence through the measured variance.
• Model has few training hyper-parameters.
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• Model structure can be determined relatively easily.
• Possibility to include prior knowledge in the model.

In contrast, Gaussian processes are not appropriate solutions for all problems,
in that they are frequently not the appropriate prior for the modelled problem
and cannot be used, for instance, to express functions with discontinuities. This
can be addressed by using non-stationary covariance functions [100].

In addition to those modelling limitations, Gaussian process computational
cost scales up to N3 where N is the number of samples in the training data. This
drawback may hinder Gaussian process soft sensor from online implementation
in general, and in particular in the application of rapidly changing processes and
high sampling rates. This issue is addressed by various approximation techniques,
though they trade o� prediction accuracy.

Another practical limitation of Gaussian process models is the ine�ciency
and the poor prediction accuracy that arises from the data dimensionality [67].
Hybrid methods (e.g., PCA and GP) are proposed to tackle this deficiency.

3.2.3 Gaussian process Regression

As Gaussian processes define a prior distribution on the underlying function being
modelled, this Gaussian prior p(f) is used to make inferences from the data, where
the objective is to get the posterior distribution over the most likely functions
from the data p(f |D). By defining a noise model that links the data to the most
likely functions p(D|f) the regression is simply a Bayesian inference as in 3.11:

p(f |D) = p(D|f)p(f)
p(D) (3.11)

This means that only the conditional distribution is modelled, whereas the
distribution of the inputs themselves is not specified.

Consider a data set of n observations and d dimension D = {(x
i

, y
i

)|i =
1, · · · n}, where x denotes a training input vector, and y denotes its associated
training output (target variable). All training inputs can be aggregated in n by
d matrix X, and the scalar targets in an n by 1 vector y. The regression problem
is to predict the target yı that corresponds to the inputs vector xı.

Introducing the noise term above gives the joint prior distribution of the
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training and test targets:

(y, yı) = N
A

0,

S

U K + ‡2
n

I kı

k
ı

k
ıı

T

V
B

(3.12)

The expression K + ‡2
n

I denotes a covariance matrix between training inputs,
where ‡2

n

is the noise variance and I is the identity matrix. While k
ı

is a vector
of covariances between the training inputs and a ’single’ test point, k

ıı

is the
variance of the test point [68, 69, 100, 109]. Based on the above declared prior,
the predictive distribution is computed by conditioning on the training outputs
as in 3.13:

(yı|y) = N (µ, ‡2) (3.13)
µ = k

ı

[K + ‡2
n

I]≠1y (3.14)
‡2 = k

ıı

≠ k
ı

[K + ‡2I]≠1kı + ‡2I (3.15)

The computations in 3.13 become problematic as the number of training in-
puts exceeds a few thousand. This is due to the cost of computing the inverse of
[K + ‡2

n

I], which requires O(N3) computation cost, and O(N2) memory cost for
training, and at least O(N) for testing where N is the number of training inputs
[110].

These computational and memory requirements can be a major obstacle to
implementing Gaussian process-based adaptive soft sensors online. To circum-
vent this limitation, which is a known disadvantage of Gaussian processes, many
sparse methods have been proposed. A common strategy to most of these sparse
methods is the construction of M data points variously referred to as inducing
points, active set, support variables, or pseudo inputs [111]. The inducing points
are exact whereas the remaining data is given some approximation which yields
cheaper costs but less accuracy [111].

Although these approximation techniques allowed a reduction of the time
complexity from O(N3) to O(NM2) and further to O(M3) as detailed in [111],
and [112], respectively, a common drawback of the approximation techniques is
finding the optimal size and the location indices of inducing points. The latter
limitation is addressed in [113], where the locations are treated as extra hyper
parameters of the Gaussian process model that are also optimised by maximising
the marginal likelihood as detailed in Section 3.2.5.
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Another approach to handling the computational cost issue is the use of local
learning methods. It is argued in [114] that computational costs can be alleviated
using multiple model methodologies such as mixtures of Gaussian processes.

However, the applicability of the approximation techniques in the soft sensors
domain is still limited, particularly for soft sensors developed for predicting high
sampling rate target variables or those employed in closed loop control. This is
due to the reduced time complexity by approximation techniques of O(NM2) and
O(M3), which are still not practical in the mentioned application, particularly if
N is large or if the application demands a large number of inducing points M to
get to the desired prediction accuracy.

3.2.4 Gaussian process Model Selection

As Gaussian processes are entirely determined by the mean and the covariance
functions, model selection solely involves selection of the covariance function and
the associated hyper parameters. However, it is often feasible to determine some
properties of the covariance function, such as stationarity, from the context of
the data, but it is more di�cult to determine hyper parameters with confidence,
such as the length scale [104].

A major virtue of Gaussian processes is the adequacy of selecting hyper param-
eters from the training data. Ideally this is done by placing a prior and computing
the posterior p(�|D) on hyper parameters. However, the computations involved
in the integrals over the hyper parameter space are not analytically tractable
[103]. Instead, the hyper parameters can be optimised using an appropriate cost
function, such as the marginal likelihood given in 3.8. More specifically, the neg-
ative log marginal likelihood given in 3.16 is minimised with respect to each of
the hyper parameters in the vector � [69]. GP hyper parameter optimisation is
sometimes referred to as type II maximum likelihood [103].

The marginal likelihood given in 3.16 distinguishes Bayesian inference scheme
from other optimisation based schemes [69]. Its ability to automatically trade-o�
between model fit and model complexity makes it valuable [69].

L(�) = ≠1
2yT K≠1y ≠ 1

2 log |K| ≠ n

2 log(2fi) (3.16)

The ≠1
2yT K≠1y part is a data-fit, 1

2 log |K| part is a complexity penalty, and
n

2 log(2fi) is a normalisation constant.

49



Gaussian Processes as a Data-Driven Soft Sensor Modelling
Technique

Minimising the negative log likelihood L(�) requires the computation of L(�)
derivative with respect to each hyper parameter in the vector � given in 3.17
where Tr denotes the trace:

ËL(�)
Ë�

i

= ≠1
2Tr

C

K≠1 ËK
Ë�

i

D

+ 1
2yT K≠1 ËK

Ë�
i

K≠1y. (3.17)

Cross-validation can also be used to select Gaussian process models. Cross-
validation is a statistical method for evaluating and comparing models by dividing
data into two segments: one used to train the model and the other to validate
it. In typical cross-validation, the training and validation sets must crossover
in sequential rounds in a method that ensures each data point has a chance of
being validated. Cross-validation can be used with any loss function. In machine
learning, the most widely used function is the squared error loss. However, as
Gaussian process is a probabilistic model, it is argued in [67] that it is natural to
use the predictive log probability loss function given by:

LD = 1
2 log 2fi + 1

2N

Nÿ

i=1
(log ‡2

i

+ e2
i

‡2
i

) (3.18)

where ‡2
i

is the (i-th) prediction variance and e2
i

is the error between the (i ≠ th)
actual output and its corresponding prediction.

3.2.5 Gaussian processes Approximation

One of the fundamental problems in Gaussian processes is their computational
complexity in large data sets when implemented in their full form as mentioned
in Section 3.2.3.

Di�erent approximation techniques are proposed to cure this limitation, most
of which are based on reduced rank approximation to the covariance matrix
(equivelent to QN in 3.23):

K = K
NM

K≠1
M

K
NM

(3.19)

where K
NM

is the covariance between the training data and a subset of the
data variously referred to as inducing points, pseudo inputs, support points, or
active set, while K

M

is a self-covariance between the inducing points.
An example of these approximation techniques is the Sparse Gaussian Pro-

cesses using Pseudo-inputs which is considered in this research and its perfor-
mance is further improved by rationally selecting the pseudo inputs.
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Sparse Gaussian Processes using Pseudo-inputs

This approximation technique considers the model with the a likelihood given
by the GP predictive distribution given in 3.13 and parametrized by a subset of
the data referred to as pseudo set D̄. The sparsity in the model arises from the
fact that only pseudo data set of size M π N is used with X̄ pseudo inputs and
pseudo outputs f̄. As such the signle data point likelihood is given by [103]:

p(y|x, X̄, f̄) = N (µ
spgp

, ‡2
spgp

) (3.20)
µ

spgp

= k
xX̄[KX̄]≠1f̄ (3.21)

‡2
spgp

= k
xx

≠ k
xX̄[KX̄]≠1kX̄x

+ ‡2 (3.22)

Where k
xX̄ is the covariance between the single input x and the pseudo inputs

X̄, KX̄ is the self covariance between the pseudo inputs, and k
xx

is the self-
covariance between the single input point x which is simply its variance.

It worth noticing here that this likelihood is the GP predictive distribution,
however, the real data set replaced by the pseudo-data set and with no noise on
the pseudo-outputs and thus there were denoted by f̄ rather than ȳ to emphasis
that they are not the real observation with noise variance [103].

Assuming that the output data is i.i.d generated given the inputs, the complete
model likelihood is then given as:

p(y|X, X̄, f̄) = N (KXX̄[KX̄]≠1f̄ , diag(K ≠ Q
N

) + ‡2I) (3.23)

Where QN = KXX̄[KX̄]≠1KX̄X is a low rank covariance matrix between the
training inputs and the pseudo inputs.

Learning in SPGP involves finding a suitable pseudo data that explains the
real data, which is accomplished by integrating out the pseudo outputs f̄ instead
of maximizing the likelihood with respect to X̄ and f̄ . This is done by first placing
a Gaussian prior on the pseudo output such that [103]:

p(f̄) = N (0, KX̄) (3.24)

This prior reflects the assumption that the pseudo data is similarly distributed
as real data, and by integrating over the pseudo-outputs, the SPGP marginal
likelihood (equivalent to the full GP marginal likelihood given in 3.8) is found
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[103]:

p(y) =
⁄

df̄p(y|̄f)p(f̄) (3.25)

y = N (0, KXX̄[KX̄]≠1f̄ + diag(K ≠ QN + ‡2I)) (3.26)

It is noted that the SPGP marginal likelihood can be obtained by replacing
the covariance matrix K in the full GP case by the low rank covariance matrix
KX̄. The hyper parameters and the locations of the pseudo data can be found
by maximizing the above derived SPGP marginal likelihood given in 3.26

To obtain the predictive distribution the joint distribution p(y
ı,y) is first

found, which is exactly the marginal likelihood given in 3.26 extended one new
test point. Then by conditioning on the observed targets, the predictive distri-
bution is computed whose mean and variance are given by [103]:

µ
ı

= K
xX̄[Q

N

+ diag(K ≠ Q
N

) + ‡2I]≠1y (3.27)
‡2

ı

= k
xx

≠ K
xX̄[Q

N

+ diag(K ≠ Q
N

) + ‡2I]≠1KX̄x

+ ‡2 (3.28)

Where KX̄x

is the covariance between the test input and the pseudo inputs.
The predictive distribution form is written such that it can be compared to the
full GP predictive distribution given by 3.13, however, the di�erence is that the
matrix being inverted is low rank + diagonal. This brings down the computational
complexity from O(N3) to O(M2N) where N and M are the number of data
points and the number of pseudo inputs respectively.

3.2.6 Gaussian processes in Soft Sensor Domain

In recent years, Gaussian process has been successfully employed in various appli-
cations in machine learning including soft sensors. Gaussian process is a relatively
new option compared to other soft sensor building techniques; however, they are
now more widely employed with promising results.

In [66] a Gaussian process-based soft sensor was proposed to estimate the
freezing point of light diesel in a refinery. The soft sensor model employs the
squared exponential covariance function, and the associated hyper parameters
are optimised by maximising the marginal likelihood. The proposed sensor is
benchmarked against ANN and SVM soft sensors, where experiments demon-
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strated that the Gaussian process soft sensor showed a satisfactory performance.
It was outperformed by the SVM soft sensor. The authors recommend using a
maximum likelihood framework to optimise the hyper parameters, in contrast to
this, the author in [115] criticised this framework and argued that it is sensitive
to the initial choice of the hyper parameters. For this reason, it is recommended
to complete multiple random restarts of the algorithm to avoid local minima
problems. The proposed soft sensor has other limitations: i) it lacks adaptivity
and cannot cope with the process drifts, ii) the choice of the covariance function
is based on the process smoothness assumption, and iii) the target variable is
often dependent on past process status, and thus dynamic modelling should be
considered as an alternative to static.

To address the shortcomings of static soft-sensor modelling methods, [108]
presents a dynamic Gaussian process soft sensor that captures process dynam-
icity. The Gaussian process model exploits the squared exponential covariance
function. Fuzzy curve is utilised to determine the past most critical data points
to the corresponding output, and the new data is then used to build the Gaussian
process soft sensor. The dynamic characteristics of the process are incorporated
into the model. The developed sensor is tasked to predict 4-CBA in a PTA
oxidation process, and simulation results showed precise generalisation and an
accurate prediction capability. However, the suggested model was not bench-
marked against other methods, where a comparison between static and dynamic
versions is crucial to pinpoint the virtue of capturing process dynamicity.

The authors in [72] address a common problem in industrial processes, where
a process often encounters di�erent operation modes. Modelling such a process
by collecting a large number of data points to reflect all process operation modes
and using a single model gives rise to poor prediction accuracy and over-fitting
problems. Therefore, the authors proposed a soft sensor based on A�nity Prop-
agation, Gaussian process and Bayesian Committee Machine (BCM).

The A�nity Propagation algorithm groups input data into clusters according
to the process operation mode. Gaussian process is used to develop multiple local
models that adopt the squared exponential covariance function; a mode for each
cluster and BCM is used to combine predictions from the local models. BCM
addresses traditional methods of forming global predictions from local models,
such as the use of weighted averaging suggested in [116]. In such methods if a
local model over-fits the data subset, it will be assigned a larger weight. Conse-
quently, over-fitting is propagated and amplified and the prediction accuracy is
compromised.
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The soft sensor is employed in a real application and is tasked to estimate
the light naphtha endpoint in hydro-cracker fractionators. The authors argued
that the sensor has contributed to improving production. However, the reported
results and findings are based on a qualitative validation. In addition, the sensor
lacks an adaptivity mechanism to preserve the high prediction accuracy over time.

Because single model Gaussian process often perform poorly and demand more
computational power, [117] emphasise a multimodal-based approach in order to
enhance the predictive capabilities and computational cost. The authors set out
bagging for Gaussian process soft sensors, where a number of Gaussian process
models are built for bagged data. The local models are then combined to give
a global prediction. The merits of this novel approach are the utilisation of
the following two advantages of Gaussian processes: i) the predictive variance
associated with Gaussian process model predictions, where the inverse of the
variance is used to assign weights for the local models such that the higher the
variance of the model prediction, the lower the weight assigned and ii) the product
of two Gaussian distributions is still Gaussian. Based on this, the algorithm
combines the weighted local models using a product rule that results in a global
predictive distribution with a global mean and variance. The novel suggested soft
sensor is validated to predict the melt flow rate in a polypropylene polymerisation
process, and the results demonstrate its superior performance compared to other
models, including the single-based model.

Striving to retain soft sensor prediction accuracy during online operation, [118]
presented a Gaussian process adaptive soft sensor based on a moving window.
The window slides as a new data point becomes available such that the oldest
data point is excluded. The authors assert that this method allows the window
to contain new and updated information about the process. The new data point
is added by updating the covariance matrix such that an appropriate row and
column is added. The virtue of the proposed method is that it exploits the
previous matrix inverse and does not call for inverting the matrix each time the
window is updated. Conversely, discarding old points to include new ones in
the moving window might not be the optimal approach in some processes, as an
old point may contain valuable predictive information. Similarly to previously
reported and reviewed Gaussian process soft sensors, the authors used the squared
exponential covariance function for developing the Gaussian process model.

The same window updating method and the adopted covariance function are
applied in building the soft sensor presented in [119]. However, the proposed soft
sensor model is a dynamic model that includes past input and output measure-
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ments in an attempt to simultaneously capture process dynamics and nonlineari-
ties. To enhance the predictive accuracy of the dynamic model, the bias between
the observed and predicted targets is updated online taking into account the lat-
est previous bias weighted factor. Additionally, online de-noising of the inputs
and the target variables is performed to enhance the prediction accuracy of the
dynamic model. The authors stress that this has contributed to enhancing overall
sensor performance. Nonetheless, the suggested algorithm re-optimises the hyper
parameters of the Gaussian process model at every new test point. This proce-
dure is unnecessary, as these hyper parameters often do not significantly di�er
from each other. Thus employing a threshold-based updating method serves to
preserve the computational demand in retraining and re-optimising the model as
detailed in [120].

Adaptivity calls for adding data points online, and hyper parameter re-optimisation,
which in Gaussian process based models entails expensive computational time.
Striving to address the computational burden of Gaussian process, [120] presents
an online dynamic model to predict ozone concentration in the air, multiple steps
ahead. To overcome the computational burden of implementing Gaussian pro-
cess-based models online, a sparse Gaussian process learning method is imple-
mented. The sparse method is a combination of the Bayesian online approach
and a sequential construction of the optimal subset of the data. The proposed
model gave su�ciently accurate predictions and performed the task successfully.
The employed Gaussian process model uses the squared exponential covariance
function as widely reported in the literature [72, 108, 115, 118–120].

3.3 Summary

Gaussian processes are emerging as a promising alternative to other well-established
soft sensor building techniques. This chapter gives the accounts and reasons for
rendering and adopting Gaussian processes in the soft sensor domain, outlines the
adequacy of Gaussian process model structure, and highlights Gaussian process
model identification and selection.

Gaussian processes have the advantage over other soft sensors building tech-
niques by being moderately simple to implement, being non-parametric models,
and having a simpler model structure that is relatively easy to identify in compar-
ison to other parametric techniques. Moreover, uncertainty of Gaussian process
model predictions can be straightforwardly computed as a Bayesian model. This
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lays a solid base for implementing soft sensors in industrial processes in closed
loop applications (inferential control systems).

This chapter, on the other hand, pinpoints the fact that (so far) in all pub-
lished Gaussian process-based soft sensors, developers assume that input points
near each other result in similar predictions, and for this reason, the squared ex-
ponential covariance function is utilised in building the Gaussian process model.
Other publications rationalise the choice of the squared exponential covariance
function arguing that it has been proven to work well in a variety of applica-
tions and has been widely used in practice. In fact, the squared exponential is
used blindly and as a default function in the soft sensor domain without a rigid
reasoning in most of the publications reviewed. In contrast, the squared expo-
nential covariance function implies smoothness, stationarity, and continuity that
are often not practical.

This chapter attempted to review the few Gaussian process based soft sensors
in chemical processes, and an important and obvious finding from the review is
the lack of adaptivity in most of the soft sensors reported. This is attributed
to the undesired computational power entailed by the online retraining and re-
optimisation of the Gaussian process model that might not be feasible in some
applications. Although di�erent sparse techniques are proposed to address the
issue, they have not been reported in soft sensor building. This could be ascribed
to the poor prediction accuracy traded-o� for the lower computational expense
or to the unsatisfactory computational cost that sparse techniques o�er.
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Chapter 4

Model Structure Selection in Gaussian Process-

based Soft Sensors

4.1 Introduction

Gaussian process models have a comparatively easy-to-determine model structure
facilitated by the fact that Gaussian process models are completely determined
by their mean and covariance functions. Thus, Gaussian process structure se-
lection solely calls for selecting three elements: i) selection of input variables, ii)
selection of a mean function, and (most importantly) iii) selection of a covariance
function [67]. While variable selection is beyond the scope of this thesis, from a
practical viewpoint and due to the lack of su�cient expert knowledge, the mean
function is virtually always assumed to be zero. This is a valid practical and
non-restrictive assumption; in addition, the posterior arising from the Gaussian
process regression model is not a zero mean as was indicated in Section 3.2.3.

The last element in selecting Gaussian process model structure is the co-
variance function, which is the core theme of this chapter. The choice of the
covariance function is crucial to the soft sensor predictive capability, as it reflects
the assumptions made about the underlying function of the data.

This chapter investigates five Gaussian process model structures. The ra-
tionale is to make a practical recommendation on the choice for the covariance
function in the case of insu�cient expert knowledge. As it is often the case in
industrial plants, a diligent recommendation that stems from a practical perspec-
tive is expected to facilitate the soft sensor development phase and improve soft
sensor predictive accuracy.

The remainder of the chapter is organised as follows: as this chapter is the first
practical chapter of the thesis, the general methodology adopted in developing all
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soft sensors throughout the thesis is first introduced. All datasets and evaluation
criteria are described before detailing the comparative study between the five
Gaussian process model structures.

4.2 General Methodology

This section describes the methodology adopted in developing all soft sensors
investigated in this chapter and throughout the thesis. It primarily embraces the
steps detailed in the general block diagram shown in Figure 2.4. All data sets are
pre-processed for the development process in the order shown in the procedure
illustrated in Figure 4.1.

Input Space Identification

Select VariablesIdentify Time Lags

Mutual
Information
Maximized?

Split Data

YES

Training SubsetTesting Subset

Normalize Data

Treat Outliers & Missing Values

End

Start

NO

Fig. 4.1: Data Pre-processing
Procedure

Time lags

Time lags between input process variables and tar-
get variables are identified by maximising the mu-
tual information between them. Input variables are
shifted backward by a one to twelve hour period,
and the time shift that maximises the Mutual In-
formation (MI) between the variables is identified
as the adequate input variable lag.

Input Variable Selection

The optimal and most influential input variables
are selected based on computing the Maximal In-
formation Coe�cient (MIC) between the input
variables and the target variable. This was facil-
itated by the Maximal Information Nonparamet-
ric Exploration (MINE) algorithm detailed in [33].
Depending on the data and based on the MIC score
between inputs and target variables, the top n in-
put variables are selected. The selection decision
of the top n variables is a model selection and iden-
tification step that trades o� between performance
and computational cost.
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Data Splitting

In order to simulate unseen data, the data set is split into two subsets: 75% for
training and 25% for testing. The testing subset, which was not pre-processed,
represents every 4th point of the data to interpolate the training subset. The
training subset was fully pre-processed and used for training and validation.

Outliers and Missing Values

As data preprocessing is not the focus of the research, sophisticated outlier de-
tectors were not used, rather, outliers are identified using the 3‡ rule and the
Hampel identifier. 3‡ rule is used because it is a widely adopted strategy [53],
in addition to being the best-known criterion to detect an outlier [54]. Missing
values are treated using the case deletion strategy. Case deletion was adopted,
as the number of missing values was small, and some data did not contain any.

Data Standardisation

To overcome the influence of the dimensional e�ect of the input variables, all data
is normalised to have a zero mean and unit variance to have normalised model
parameters. For a given data set X œ Rn◊m, where n are observations (rows),
and m are variables (columns), it is scaled as in 4.1:

X
Scaled

= x
j

≠ x̄

‡
(4.1)

where x̄ and ‡ are the mean and the standard deviation of the jth variable (x
j

)

4.3 Data Sets Description
This section provides a brief description for all the data sets explored and utilised
to develop all soft sensors throughout the thesis, where the soft sensors’ tasks were
to predict the target variables summarised in Table 4.1:

4.3.1 Sulphur Recovery Unit (SRU)

In order to prevent air pollution, a sulphur recovery unit degases acid gases,
such as H2S and NH3 from acid gas streams before they are released into the
atmosphere. The inlets of the unit stream from two plants that produce acid
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Table 4.1: Description of Data Sets used

Data Set Abbreviation Data Type Target Variable Type of Target
Sulphur Recovery Unit SRU Measured Hydrogen Sulphide On-line Analysers
Debutanizer Column DC Measured Butane Concentration Measuring Device
Industrial Drier ID Measured Residual Humidity Lab Measurement
Thermal Oxidiser TO Measured NOx concentrations Not Known
Refinery Process RP Measured Kerosene Freezing Point Lab Measurements
Polymer Batch Process PBP Measured Polymer Quality Index Online Analyser
Catalyst Activation CAT Simulated Catalyst Activity Simulated Measurements
Polymerisation Process PP Simulated Concentration Simulated Measurements

gases (MEA and SWS), which are rich in H2S and NH3. Acid gases are burnt
in a reactor, deoxidised, and transformed into pure sulphur. Other gaseous
by-products are cooled causing the generation of liquid sulphur, which is then
converted through high temperature converters into water vapour and sulphur
vapour. The final tail gas stream of the SRU contains H2S and SO2 residuals.

Online analysers are used to measure the volume of the two gas residuals
to monitor the conversion process and the performance of the SRU. Hydrogen
sulphide (H2S) and sulphur dioxide (SO2) frequently damage the online analysers.
Hence, a soft sensor that predicts the quantity of those two gases is of great
importance to enhance and monitor the performance of the SRU process [3].
As the soft sensors considered in this research are multiple input, single output
based models, the soft sensors developed from this data set are tasked to predict
only the hydrogen sulphide shown in Figure 4.2. The size of the data is 10081
observations of 7 variables listed below:

• Gas flow MEA-GAS
• Air flow AIR-MEA
• Secondary air flow
• Gas flow in SWS zone
• Air flow in SWS zone
• H2S

• SO2

4.3.2 Debutanizer Column

The debutanizer is a column in a de-sulphuring and naphtha splitter plant. It
extracts the butane (C4) and the propane (C3) from the naphtha stream. The
debutanizer maximises the C5 (stabilized gasoline) content in the debutanizer
overheads and minimises the C4 (butane) content in the debutanizer bottoms
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Fig. 4.2: Target Variable of the Sulphur Recovery Unit Data Set

measured by gas chromatographs. Because of the associated delays with gas
chromatograph measurements and the cost of these measurements, a soft sensor
is required to replace the gas chromatographs and predict the C4 content shown
in Figure 4.3 [3]. To design the soft sensor, data was collected for about a three
month period, which is represented in the 2394 observations by 8 data matrix.
The process variables are listed below:

• Top temperature
• Top pressure
• Reflux flow
• Flow to next process
• 6th tray temperature
• Bottom temperature
• Bottom temperature
• C4 Content
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Fig. 4.3: Target Variable of the Debutanizer Column Data Set
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4.3.3 Industrial Drier

The target variable of this data set is the residual humidity depicted in Figure
4.4 of the industrial drier processes. The humidity is measured using manual lab
analysis, and because of the high associated costs of the lab measurements, it is
analysed once every four hours. Data is collected for a seven month period, which
is represented by the 1219 observations by 19 inputs data matrix to design the
soft sensor [121].
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Fig. 4.4: Target Variable of the Industrial Drier Data Set

4.3.4 Thermal Oxidiser

In order to minimise the emissions of nitric oxide (NO) and nitrogen dioxide
(NO2), collectively referred to as NO

x

shown in Figure 4.5, the resulting fumes
of a large number of refineries and industrial plants are conveyed to a refinery’s
big chimneys. An online analyser installed in the top of the chimneys is used to
measure the emissions rate of the NO

x

. Due to harsh environmental conditions,
the analyser is frequently o�ine for scheduled maintenance. For this reason a
soft sensor that can continuously predict the emissions rate, particularly during a
maintenance period is crucial to monitoring (NO

x

) [121]. Data collected for a six
month period is represented in the 2053 observations by 40 inputs data matrix.

4.3.5 Catalyst Activity in a Multi Tube Reactor

The reactor consists of 1000 tubes filled with a catalyst used for gas oxidisa-
tion. The reaction speed depends on the reactor temperature, which is cooled
with a coolant to keep control over the reactor temperature. The cooling process
causes the exothermal reaction to counteract to reach a maximum temperature
somewhere along the tube. As the catalyst activity decays, this counteraction
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Fig. 4.5: Target Variable of the Thermal Oxidizer Data Set

gradually degrades along the tube. The input variables of this process are taken
from another external large process, which means that the inputs are time variant
and the feed varies over time; however, the catalyst activity decays more slowly
than those e�ects. Several measurements, such as temperatures, flows, and con-
centrations are measured along the tubes to identify the process state. Fifteen
inputs are chosen as input variables, while the target variable is a simulated cat-
alyst activity inside the reactor as shown in Figure 4.6. One year of observations
is considered in this data set, which is represented in the 5808 observations by 16
process variables data matrix [121]. The process variables are listed below:

• Time
• Measured flow of air
• Measured flow of combustible gas
• Measured concentration of combustible component in the combustible gass
• Total feed temperature
• Cooling temperature
• Temperature at length 1/20 of reactor length
• Temperature at length 2/20 of reactor length
• Temperature at length 4/20 of reactor length
• Temperature at length 7/20 of reactor length
• Temperature at length 11/20 of reactor length
• Temperature at length 16/20 of reactor length
• Temperature at length 20/20 of reactor length
• Product concentration of Oxgyne
• Product concentration of combustible component
• Catalyst Activity
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Fig. 4.6: Target Variable of the Multi Tube Reactor Data Set

4.3.6 Refinery Process

In the refinery process, crude oil is distilled into a number of fractions in a distil-
lation column where light fractions rise up the column and heavy ones cascade in
a liquid stream down the column. The freezing point of the kerosene streaming
from the column is a quality index of plant production. The freezing point is
measured by lab analysis once a day and adequate actions are taken accordingly
to meet product specifications. A soft sensor that overcomes the lab measurement
time delay and continuously predicts the kerosene freezing point is of significant
importance to enhancing productivity and minimising o�-specification products
[122]. One year of observations is considered, which is represented in the 336
observations by 26 input variables data matrix. A plot of the target variable is
shown in Figure 4.7.
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Fig. 4.7: Target Variable of the Refinery Process Data Set

4.3.7 Polymer Batch Process

This data set resembles a typical example of a lack of expert knowledge, which is
a major challenge that soft sensor developers confront during development and
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deployment phases of soft sensors. There is no operational description of the
process from which this data set was retrieved, and thus the entire soft sensor
development process is data-driven dependent. The size of the data set is 1485
observations by 52 input variables, and the task is to predict the size of the
polymer balls illustrated in Figure 4.8 before the completion of the batch process.
This is to take timely corrective actions to meet customer product specifications.
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Fig. 4.8: Target Variable of the Polymer Batch Process Data Set

4.3.8 Polymerisation Process

The polymerisation process is a simulated chemical process that converts monomer
into polymer through a dilution technique. The technique utilities a solvent flow
that reduces the concentration of the monomer solution. The process is exother-
mic in that it requires an initiator to commence the reaction and then runs
without the need for any external factors. The reaction temperature is controlled
by adjusting the coolant temperature. In addition to intermediate by-products,
the main product is converted from monomer into polymer [123]. To evaluate
the e�ectiveness of the conversion process, a soft sensor is required to predict
the volume of the converted polymer. The size of the data set generated is 9878
observations by 19 variables. A plot of the target variable is shown in Figure 4.9.

4.4 Evaluation Criteria
The plausibility, purposefulness, falseness, and overall performance of all soft sen-
sors developed are validated and evaluated using ten di�erent evaluation criteria.
The criteria are described below and are used throughout the thesis:

• Mean Squared Error (MSE) - the lower, the better.
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Fig. 4.9: Target Variable of the Polymerisation Process Data Set

• Correlation (R) - the higher, the better.
• Relevance Variance Tracking Precision (RVTP) - the higher, the better.
• Theils Inequality Coe�cient (TIC) - the lower, the better.
• Fitness Function (FF) - the higher, the better.
• Log Predictive-Density Error (LPD) - the lower, the better.
• The Mean Standardised Log Loss (MSLL) - the lower, the better.
• Condition Number (CN) - the lower, the better.
• Rising Time (RT)
• Settling Time (ST)
• Overshoot Percentage (OP)
• Steady State Error (SSE)

MSE is used as a regular method to measure how the model predictions devi-
ate from the true targets (prediction error). The RVTP is used to assess model
prediction accuracy and consistency when input variables change. TIC is used
to assess and compare two models rather than as an indication of model per-
formance. R is used to measure the Pearson correlation between predicted and
real targets, and FF scaled measure is used to capture goodness-of-fit in time
series data. In addition, CN is used to evaluate covariance matrices used to make
predictions in Gaussian process models. It measures how close a matrix is to
singularity. LPD is used for evaluating GP models taking into account not only
the mean of the model output, but the entire distribution.

MSLL is obtained by subtracting the loss from the model LPD. The MSLL is
approximately zero for simple models and negative for better ones.

The last four measures are utilised to evaluate the performances and to assess
the robustness and reliability of the control systems developed in the last chapter
of the thesis.
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These evaluation measures are used appropriately and according to the ob-
jective of the chapter, whereas some chapters use all ten criteria, others use only
a selection.

4.5 Covariance Function Selection

The covariance function selected determines the quality of the soft sensor. As
such, the selection of the covariance function should: i) be based on experts’
prior knowledge, ii) reflect the soft sensor developer’s assumptions about the
characteristics of the functional relationship between input and target variables,
and iii) adapt to the modelled data. However, the lack of su�cient prior expert
knowledge, particularly in complex industrial plants, partially hinders selecting
a covariance function phenomenologically. Therefore, especially in multivariate
data sets, it is often ambiguous as to how to tune the covariance function structure
to the data set being modelled.

As a result, often in the soft sensor domain the squared exponential covariance
function is selected as a default function. This frequently yields a misspecified soft
sensor model that does not ultimately fit the modelled data. So far (to the best
of our knowledge), all previously published Gaussian process-based soft sensors
used the squared exponential covariance function given in (3.2.1) despite the fact
that it has mean squared derivatives of all orders (infinitely di�erentiable), which
implies strong impractical and unrealistic smoothness.

In contrast to most covariance functions, the Matérn class covariance functions
given in (6.4) are v ≠ 1 times di�erentiable [124] where v is a hyper parameter
that controls the smoothness. The principal argument for selecting the squared
exponential in previously published Gaussian process-based soft sensor papers is
either the dominant use of the function or the smoothness assumption underlying
the data.

This ambiguity of covariance function selection, specifically in complex multi-
variate data sets, and the scarcity of expert knowledge motivates devising a more
practical heuristic recommendation to aid covariance function selection. This
is proposed according to the detailed comparative empirical study reported in
section 4.6. The conducted study is between the most widely used covariance
function Squared Exponential (SE), the SEard (SE with Automatic Relevance
Determination), the Matérn Class covariance functions (MC), the MCard (MC
with Automatic Relevance Determination), and the ANN covariance function.
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4.6 Case Study
Adopting the general methodology described in section 4.2, five Gaussian process-
based soft sensors are developed for each of the data sets described in Table 4.1.
The five soft sensors are built using the five covraince functions listed above. This
sums up to 40 soft sensor models built to conduct the comparative study between
the five covariance function. The sensors’ task is to predict the target variables
associated with each data set listed in Table 4.1.

Objectives

The primary objective behind conducting the comparative case study is to for-
mulate empirical evidence that supports a particular covariance function choice
in the context of Gaussian process-based soft sensors. This formulation is drawn
from:

• Evaluating and comparing the predictive capabilities of the soft sensors
built using the five aforementioned covariance functions.

• Investigating the numerical invertibility of the covariance matrices com-
puted from both covariance functions.

• Analysing the influence of the noise on the accuracy of matrices’ inversion
and the consequent e�ect on the prediction performance.

4.6.1 Prediction Accuracy

Adopting the evaluation criteria summarised in Section 4.4, the prediction accu-
racy and performance stability of all soft sensors are evaluated quantitatively as
reported in Table 4.2. Because the objective of the experiments is comparative-
based, the soft sensors considered here are non-adaptive; they were trained o�ine
where the hyper parameters were optimised only once 1 by minimising the neg-
ative log marginal likelihood as given in (3.16) described in Section 3.2.4. The
hyper parameter v of the Matérn class covariance function is fixed to 3

2 for all
MC soft sensors. The motivation behind the choice of this value is as argued in
[69] that 3

2 and 5
2 are the two most interesting values in machine learning.

The evaluated measures reported in Table 4.2 reveal that the best performing
soft sensors are either MC or MCard based soft sensors. Precisely, MC and
MCard based soft sensors slightly outperformed the SE, SEard, and ANN based

1There is no further training carried out during the testing phase.
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Table 4.2: Quantitative Performance of the Five Soft Sensors

Data Soft Sensor MSE R RVTP TIC FF LPD MSLL

Sulphur Recovery Unit SE 0.4859 0.6868 0.4628 0.0922 0.5836 1.0943 -0.2942
MC 0.4312 0.7269 0.5228 0.0591 0.8884 0.9932 -0.3953

SEard 0.4453 0.7344 0.5354 0.0673 0.7383 1.0893 -0.3083
MCard 0.4224 0.7497 0.5592 0.0383 0.8902 1.0938 -0.3038
ANN 0.6119 0.7268 0.5208 0.0546 0.0207 1.1180 -0.2796

Debutanizer Column SE 0.0885 0.9461 0.8946 0.0553 0.9585 0.2593 -1.0720
MC 0.0782 0.9523 0.9068 0.0445 0.9815 0.3836 -0.9478

SEard 0.1700 0.8930 0.7976 0.0636 0.9336 0.2691 -1.0622
MCard 0.1325 0.9177 0.8421 0.0502 0.9711 0.2005 -1.0308
ANN 0.2050 0.9495 0.8495 0.0693 0.9676 0.1929 -1.0385

Industrial Drier SE 0.7876 0.6064 0.3602 0.01172 0.6833 1.2633 -0.2587
MC 0.7844 0.6111 0.3621 0.0967 0.8287 1.2624 -0.2595

SEard 0.9476 0.4847 0.3296 0.1132 0.7684 1.3178 -0.2042
MCard 0.8359 0.5742 0.3872 0.0522 0.9850 1.2814 -0.2605
ANN 0.8593 0.5666 0.3798 0.1141 0. 7486 1.3276 -0.1943

Thermal Oxidiser SE 0.1386 0.8756 0.7682 0.1449 0.4991 0.7772 -0.3777
MC 0.1361 0.8790 0.7725 0.1445 0.5028 0.7721 -0.3828

SEard 0.1272 0.8870 0.7864 0.1313 0.6082 0.7726 -0.3823
MCard 0.1265 0.8874 0.7874 0.1289 0.6220 0.7568 -0.3981
ANN 0.0009 0.8838 0.7810 0.1310 0.0757 0.7751 -0.3798

Refinery Process SE 0.6265 0.6085 0.3685 0.0552 0.9948 1.456 -0.1405
MC 0.6190 0.6153 0.3760 0.0459 0.9963 1.1692 -0.2457

SEard 0.8329 0.4411 0.1603 0.1205 0.9986 1.3765 -0.0384
MCard 0.6209 0.6241 0.3953 0.1093 0.8727 1.1637 -0.2513
ANN 0.3042 0.6195 0.3836 0.1653 0.8506 1.1752 -0.2397

Polymer Batch Process SE 0.6123 0.5653 0.3194 0.1104 0.7845 1.1721 -0.1933
MC 0.4895 0.6794 0.4556 0.0903 0.8844 1.0825 -0.2829

SEard 0.5064 0.6609 0.4365 0.1686 0.9537 1.0856 -0.2799
MCard 0.5184 0.6777 0.4230 0.1223 0.9932 1.0779 -0.2675
ANN 0.5630 0.6755 0.4518 0.3107 0.3129 1.0807 -0.2847

Catalyst Activation SE 0.0024 0.9734 0.9475 0.0906 0.9572 -1.5209 -1.3746
MC 0.0011 0.9868 0.9738 0.0383 0.9985 -2.0973 -1.9510

SEard 0.0034 0.9984 0.9968 0.0596 0.7727 3.8234 2.4045
MCard 0.0034 0.9984 0.9968 0.0593 0.7757 4.6688 3.2499
ANN 0.0070 0.9854 0.9692 0.0000 0.7141 -0.4421 -1.8610

Polymerisation Process SE 0.0552 0.9447 0.9720 0.0872 0.3270 -0.3680 -1.7781
MC 0.0444 0.9556 0.9775 0.0842 0.3505 -0.8909 -2.3010

SEard 0.0468 0.9762 0.9529 0.0816 0.3821 -2.7817 -4.1919
MCard 0.0276 0.9860 0.9722 0.0712 0.5107 -3.1950 -4.6052
ANN 0.02351 0.9807 0.9815 0.2365 0.3782 2.6016 2.6202
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Fig. 4.10: RVTP of SE and MC Soft Sensors

soft sensors in all of the data sets investigated and at most of the evaluative
measures used as indicated by the figures set in bold and qualitatively depicted
in Figures 4.10 - 4.14.

Looking at Figure 4.10, it can be noticed that the less performing models are
those based either on SE or SEard depending on the data set. That is down to the
smoothness property of the squared exponential functions. Such smoothness can
be captured by the Mate�n class functions as clearly indicated by the performance
of the functions in CAT data set where the SEard is performing comparatively
as accurate as the MCard.

The quantitative results also reveal that the use of simple covariance func-
tions to model some of the data sets (e.g the refinery process data set) is not
appropriate, and for this reason, composite covariance functions that models dif-
ferent structures like linearity, seasonality, and periodicity in the data are more
appropriate and results to more accurate predictions.

Slight improvement in performance is of significant importance, particularly
if the soft sensor is to be employed in critical closed-loop control applications.
In such applications the soft sensor prediction is not used just as indication for
control room operators (open loop) but is fed back to a controller to generate
a control signal that targets tracking a process set point. The control signal is
usually applied to the most influential independent variables used as in the soft
sensor input space. In which case, enhancement in prediction accuracy plays a
central role in fulfilling the control system targets and in achieving the application
objectives.
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(a) Sulphur Recovery Unit
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Fig. 4.11: Qualitative Evaluation of the Five Covariance Functions Studied
71



Model Structure Selection in Gaussian Process-based Soft Sensors

0 100 200 300

−5

0

5

R
e

si
d

u
a

l H
u

m
id

ity

 

 

Test Input Points

SE

0 100 200 300

−5

0

5

Test Input Points

R
e

si
d

u
a

l H
u

m
id

ity

 

 
MC

0 100 200 300

−5

0

5

SEard

Test Input Points

R
e
si

d
u
a
l H

u
m

id
ity

0 100 200 300

−5

0

5

MCard

Test Input Points
R

e
si

d
u
a
l H

u
m

id
ity

0 100 200 300

−5

0

5

ANN

Test Input Points

R
e
si

d
u
a
l H

u
m

id
ity

(a) Industrial Drier

0 100 200 300 400 500
−4

−2

0

2

4

N
O

x 
co

n
ce

n
tr

a
tio

n

 

 
SE

0 100 200 300 400 500
−4

−2

0

2

4

Test Input Points

N
O

x 
co

n
ce

n
tr

a
tio

n

 

 
MC

0 100 200 300 400 500
−4

−2

0

2

4

SEard

Test Input Points

N
O

x 
co

n
ce

n
tr

a
tio

n

0 100 200 300 400 500
−4

−2

0

2

4

MCard

Test Input Points

N
O

x 
co

n
ce

n
tr

a
tio

n

0 100 200 300 400 500
−4

−2

0

2

4

ANN

Test Input Points

N
O

x 
co

n
ce

n
tr

a
tio

n

(b) Thermal Oxidiser

Fig. 4.12: Qualitative Evaluation of the Five Covariance Functions Studied
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Fig. 4.13: Qualitative Evaluation of the Five Covariance Functions Studied
73



Model Structure Selection in Gaussian Process-based Soft Sensors

0 500 1000

−2

0

2

4

Test Input Points

C
a
ta

ly
st

 A
ct

iv
ity

 

 

SE

0 500 1000

−2

0

2

4

Test Input Points

C
a
ta

ly
st

 A
ct

iv
ity

 

 

MC

0 500 1000

−2

0

2

4
SEard

Test Input Points

C
a
ta

ly
st

 A
ct

iv
ity

0 500 1000

−2

0

2

4
MCard

Test Input Points
C

a
ta

ly
st

 A
ct

iv
ity

0 500 1000

−2

0

2

4
ANN

Test Input Points

C
a
ta

ly
st

 A
ct

iv
ity

 

 

(a) Catalyst Activation
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Fig. 4.14: Qualitative Evaluation of the Five Covariance Functions Studied
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Significance Test

To investigate the statistical significance of the above reported results, one way
ANOVA (Analysis Of Variance) tests are conducted and the P-values are reported
in Table 4.3 at – = 0.05 (95% confidence level):

Data Set P-Value
Sulphur Recovery Unit 0.8156
Debutanizer Column 0.0.9535

Industrial Drier 0.0.9567
Thermal Oxidiser 0.0.9912
Refinery Process 0.0.9234

Polymer Batch Process 0.0.9273
Catalyst Activation 0.0078

Polymerisation Process 0.0034

Table 4.3: P-Values of the ANOVA Sta-
tistical Significance Test

Data Set P-Value
Sulphur Recovery Unit 0.9467
Debutanizer Column 0.7762

Industrial Drier 0.9324
Thermal Oxidiser 0.9861
Refinery Process 0.8169

Polymer Batch Process 0.8862
Catalyst Activation 0.0001

Polymerisation Process 0.0048

Table 4.4: P-Values of the Kruskal–Wallis
Statistical Significance Test

The ANOVA test is based on assumptions that are likely to be violated,
such as equality of variance, normality of distribution, level of measurement, and
sample size. Therefore, to avoid these assumptions that might be restrictive and
to perform a distribution-free statistical test, we resorted to the non-parametric
Kruskal–Wallis test. It is an alternative to the ANOVA test in case of non-
normality, di�erent sample sizes, inhomogeneity of variances assumption [125].
The P-values of the test are reported in Table 4.4.

Noticeably, some of the data sets have high P-values that fail to accept that
MC and MCard-based soft sensors are always outperforming the rest of the sen-
sors; however, this (as explained in [114]) cannot be interpreted as support of the
null hypothesis but as a lack of evidence against it that might be caused by error
variability in the data. Thus, proving and accepting the null hypothesis does not
mean failing to reject it.

Assuming the validity of these significance tests, it can be clearly observed
that low P-values have been recorded for the two simulated data sets (catalyst
activation and polymerisation process), which are characterised as noise free data.
This motivates investigating the noise e�ect on the overall performance of the soft
sensors in general and on the significance tests in particular.
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4.6.2 E�ect of Noise

To further investigate the above-formulated argument and study the e�ect of the
errors and noise in the data on the overall performance of the soft sensors and
on the significance tests, a random noise is added to the two clean simulated
data sets (catalyst activation and polymerisation process). The performance of
the soft sensors built from these data sets is observed along with the significance
tests as reported in Tables 4.5 and 4.6.

Table 4.5: Performance of Simulated Noised Catalyst Activation Data.

Model MSE R RVTP TIC FF LPD MSLL ANOVA Wallis
SE 0.1035 0.5571 0.3088 0.1241 0.6834 1.4855 -0.1825

0.9879 0.9562
MC 0.1030 0.5611 0.3125 0.1271 0.6623 1.4839 -0.1841
SEard 1.004 0.1172 0.3450 0.1104 0.7974 1.4334 0.0128
MCard 0.1282 0.5974 0.3553 0.1065 0.8063 1.3370 -0.0836
ANN 0.1404 0.3833 0.2465 0.2733 0.1016 1.3419 -0.0787

Comparing the results of the clean simulated catalyst activation and the poly-
merisation process data sets reported in Table 4.4 and the results of the same data
sets after adding the noise reported in Tables 4.5 and 4.6, it can be observed that
the noise added to the data a�ected the P-values of the significance tests and the
overall performance of the sensors. The added noise precluded MC and MCard
based soft sensors to be statistically distinguishable from those based on the rest
of the three covariance functions (where it was statistically distinguishable in
Table 4.4 before adding the noise).

This can be explained by the fact that an SE, SEard, and ANN covariance
functions accumulates more rounding errors when computing the covariance ma-
trix, and if the data is already noisy, the rounding errors accumulated from the
inversion process are indiscernible and have negligible e�ects in the presence of
noise. Consequently, MC and MCard models appear almost as the rest of the
models; therefore, the significance test fails at a 95% confidence interval. If the
covariance matrix is computed from clean data, the errors caused by the use of the
SE covariance function for instance will be more evident, as there is no another

Table 4.6: Performance of Simulated Noised Polymerisation Process

Model MSE R RVTP TIC FF LPD MSLL ANOVA Wallis
SE 0.1160 0.9403 0.8820 0.0551 0.7451 0.1063 -1.1609

0.230 0.968
MC 0.1089 0.9448 0.8894 0.0697 0.5267 0.1306 -1.2502
SEard 0.0926 0.9521 0.9052 0.0387 0.9000 0.1577 -1.2494
MCard 0.0873 0.9547 0.9106 0.0313 0.9238 0.1428 -1.2643
ANN 0.1873 0.8919 0.7401 0.1013 0.8631 0.2147 -1.1924
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source of errors, and thus they propagate to a�ect the accuracy of the solution.
As a result, MC and MCard appears statistically distinguishable from SE at 95%
confidence intervals and higher.

In order to validate the above interpretation, the study investigates, evaluates,
and compares covariance matrices computed from all covariance functions via the
matrix condition number.

Condition Number

The condition number for an n by n data matrix X, given by 4.2, is defined as
the measure of relative errors in the inverse of X and can be used to measure
the sensitivity of a system to numerical errors in the data [126]. It is a means of
estimating the accuracy of a result when solving linear systems. Specifically, it
indicates how far a matrix is from singularity [90, 127].

cond(X) = ÎXÎ.ÎX≠1Î (4.2)

where ÎXÎ is any norm of the matrix X. However, the Euclidean norm is used
to conduct the study in this chapter. In this context, the condition number is
an indication of the accuracy of the predictions resulting from a matrix inversion
process. Based on this, the condition number is utilised in this study to compare
covariance matrices computed from all covariance functions for all data sets used
as reported in Table 4.7.

Looking at Table 4.7, it is easily observed that in seven of the data sets MC
and MCard covariance function has always resulted in covariance matrices with a
lower condition number than those computed from the rest covariance function.
It is only in the Thermal Oxidiser data set where the ANN function resulted to a
covariance matrix with a lower condition number. This explains why ANN based
soft sensor had the lowest MSE score in that data set.

A matrix with a low condition number is said to be well conditioned, and the
matrix tends to singularity and turns into a non-invertible matrix as the condition
number tends to infinity. In other words, matrices with low condition numbers can
be inverted with less rounding errors than those with higher condition numbers.
Consequently, predictions resulting from inverting matrices computed from MC
and MCard covariance functions are more accurate than those resulting from
matrices computed from the rest of the functions, as the former is susceptible to
fewer errors than the rest, particularly in clean data sets.

In the context of soft sensor in cases of a lack of prior knowledge regarding
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the underlying function of the data, these quantitative and qualitative results
reveal that the MC or MCard covariance function should be considered instead
of the widely used SE covariance function, as the former will either perform,
as accurately as or more accurately than the latter, particularly in clean data
sets. In addition, MC should be considered a base kernel among the four kernels
considered in the compositional kernel search algorithm proposed in [128] that
attempts to automate covariance function selection.
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Table 4.7: Condition Numbers of the Five Covaraince Matrices

Data Set Model Condition Number

Sulphur Recovery Unit
SE 1.1851e+13
MC 7.7792e+06

SEard 9.4429e+06
MCard 1.5488e+04
ANN 6.3893e+08

Debutanizer Column
SE 1.0217e+06
MC 1.8301e+04

SEard 1.8382e+06
MCard 1.2885e+05
ANN 3.9569e+05

Industrial Drier
SE 2.7402e+12
MC 6.1144e+06

SEard 7.3400e+12
MCard 3.3141e+07
ANN 3.1072e+06

Thermal Oxidiser
SE 1.4826e+16
MC 4.3860e+08

SEard 1.9520e+15
MCard 1.8074e+06
ANN 7.3149e+04

Refinery Process
SE 1.6185e+05
MC 3.4760e+03

SEard 82.0937
MCard 37.3836
ANN 6.7020e+03

Polymer Batch Process
SE 2.2091e+08
MC 1.0936e+06

SEard 4.4415e+06
MCard 2.0122e+02
ANN 4.5363e+03

Catalyst Activation
SE 2.6607e+18
MC 2.2797e+14

SEard 1.1073e+19
MCard 1.2964e+11
ANN 5.5246e+18

Polymerisation Process
SE 4.7205e+18
MC 2.7637e+17

SEard 7.7417e+17
MCard 3.0250e+11
ANN 3.7446e+13

79



Model Structure Selection in Gaussian Process-based Soft Sensors

4.7 Summary
This chapter investigates the structure of Gaussian process-based soft sensors
applied in industrial plants. The investigation is conducted by an empirical com-
parison between 40 di�erent soft sensors built from eight industrial data sets The
soft sensors built are based on five di�erent covariance functions. Striving to-
wards achieving the ultimate performance from the sensor built, the objective of
the study is to devise a practical recommendation on covariance function selec-
tion in the absence of prior phenomenological knowledge when building Gaussian
process-based soft sensors.

The results demonstrate that the Mate�n class functions (with and without
ARD) marginally outperform the rest of the functions including the widely used
squared exponential covariance function, particularly in cases of clean, de-noised,
and properly pre-processed data sets. Empirical results reveal that matrices com-
puted from the Mate�n class functions have a lower condition number. This hints
that covariance matrices computed from Mate�n class functions are further from
singularity than those computed from squared exponential function, and thus are
less susceptible to rounding errors, thus improving the accuracy of the predictions
resulting from those matrices.

The slight improvement in prediction accuracy is of a paramount importance
if the soft sensor is developed for inferential control applications where accuracy
directly influences the reliability of the control system.

Based on the empirical results reported, the chapter concludes that the Mate�n
class covariance functions should be favoured over the widely used squared ex-
ponential function when there is not su�cient prior knowledge regarding the
underlying function that states otherwise.
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Chapter 5

Adaptive Gaussian Process-based Soft Sensors

5.1 Introduction
Adaptation is modifying the behaviour to fit the environment [129], while in the
context of soft sensors, adaptation is the capability of the sensor to change its
model structure during online operation [6] to cope with process changes.

When soft sensors were first introduced, they were mainly based on o�ine
modelling using historical data. As expected, historical data does not contain all
process conditions, statuses, behaviours, dynamics, and (most importantly) can-
not contain future data. Even if that was possible, it would be di�cult to identify
the model, select the structure, and optimise the parameters or hyper parameters
1 with a method that could comprehend di�erent conditions. Moreover, most of
the industrial processes exhibit time-variant behaviours, unpredictable fluctua-
tions, and non-stationary operating phases, the most common causes of which
are [6]:

• Process input materials.
• Production of di�erent product quality grades.
• Changes in the external environment.

As a result, model performance deteriorates, which necessitates building adap-
tive models that are capable of handling these changes (concept drift). This can
be mitigated by one of the following approaches [6]:

• Instance selection: moving window techniques
This technique is based on adapting the model on a selected set of points.

1The terms "parameters" and "hyper parameters" are to distinguish the parametric and
nonparametric models.
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As new data points become available, the oldest point is excluded and the
window slides to include the new data point. The model is retrained in a
sample-wise or block-wise manner. The former refers to model retraining
at every new observation, while the latter refers to the retraining process
after collecting a set of observations. In the block-wise approach, the model
is retrained at a fixed number of observations or at a threshold point of
performance deterioration.

• Instance weighting: recursive adaptation techniques
Recursive based techniques use the model in the form of a set of coe�-
cients and covariance matrix, which is usually down weighted by means of
a forgetting factor, while new data points are added to the window sample-
wise or block-wise. The new data points are usually given a higher weight
than the previous points through the forgetting factor, which determines
the strength of the adaptation process [130]. In such techniques, there is
no need to store all the data in the memory.

• Ensemble methods
This type of framework contains local models deployed to give predictions
based on local data clusters, and the global prediction is computed by merg-
ing all local predictions.

As Gaussian process is a nonparametric model, the training data creates part
of the model and cannot be omitted, as is the case with adaptive models based on
recursive methods, this chapter adopts windowing-based techniques to approach
adaptability in Gaussian process-based soft sensors. Specifically, it proposes dif-
ferent moving Gaussian process window algorithms updated using di�erent cri-
teria, and the rationale is to maximise the predictive information of the window
to enhance the prediction accuracy and the overall performance of the sensor.

The structure of the soft sensors developed in this and subsequent chapters is
based on the findings and results achieved in the previous chapter. The Matérn
class covariance function with ARD is utilised in building all soft sensors models.
However, unlike the soft sensors developed in the previous chapter, the soft sensors
developed here are adaptive, and the adaptivity is based on di�erent instance-
based selection mechanisms.
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5.2 Moving Window Mechanism

In concept drift, the moving window mechanism is used to adapt the model to
the current process concept or state. The moving window (often referred to as
the sliding window) selects a set of data observations that capture current process
conditions and cope with its dynamics.

The moving window approach is based on two crucial and influential param-
eters: the window size and the step size. The former encodes the amount of
data contained in the window, while the latter encodes the interval at which the
window is updated.

Once the window is updated, the model can be retrained sample-wise (every
new data point) or block-wise (every n accumulated number of data points) ac-
cording to the specified step size that determines the updating frequency, whereas
the window size parameter determines the learning/forgetting factor (often re-
ferred to as the stability-plasticity dilemma). Stability-plasticity dilemmas entail
finding an optimal compromise between forgetting old process states and learning
new process conditions.

Setting a plasticity factor too high corresponds to a step size that is too short
and leads to catastrophic forgetting and an unstable model, where important
data points that reflect the current process concepts are excluded, and thus the
current process concept is forgotten. Consequently, the adaptive soft sensor tends
to adapt to noise. In contrast to this is setting a plasticity factor too low, which
leads to a model that is too stable and fails to adapt to abrupt and unexpected
process changes.

Analogous to step size, inappropriately setting the window size leads to model
performance deterioration; therefore, window size should reflect the current pro-
cess states.

Striving to build a window that reflects the current process states and repre-
sent its current concept, the majority of moving window-based techniques assumes
that the most recent data points are the most relevant to the current process con-
cept, and based on this, all published moving windows utilise the time stamp of
the data to update the window. However, this chapter assumes that old data
points may contain valuable predictive information that contributes to reflect-
ing the current process concept. As such, a third parameter for moving window
techniques that comprehends the window-updating criterion is introduced. This
aims to perform data selection more intelligently rather than using the data time
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stamp.

Window Update Criterion

This section describes the general framework adopted for building moving window
algorithms, which are distinctively updated using the criteria listed below:

Train Model

Initialize Window

Target Variable
Available?

YES

Update Window

Retrain Model

Make Predictions

End

Start

NO

Fig. 5.1: Procedure of Moving
Window Algorithms

1. Predictive Density Error.
2. Prediction Variance.
3. Mahalanobis Distance.
4. Time Stamp.

The first two criteria are based on the accuracy
and uncertainty of the model predictions, whereas
the last two are based on a specific characteristic of
the input data. However, all algorithms share the
same building procedure. The motivation behind
excluding observations based on the above listed
criteria is to investigate how to preserve the in-
formativeness of the window and improve the ac-
curacy of the predictions. The general procedure
comprises three stages illustrated in Figure 5.1 and
detailed below:

1. Window initialisation: a) An initial window is constructed that contains
inputs from the o�ine training data or when the algorithm is online from
the streaming data associated with their observed targets as in 5.1. The
size of the window is chosen based on the type of process and the data set
retrieved.

X =

S

WWWU

x1,t≠1 · · · x
j,t≠1

... . . . ...
x1,t≠k

· · · x
j,t≠k

T

XXXV , Y =

S

WWWU

y
t≠1
...

y
t≠k

T

XXXV (5.1)

Where (x
j,t≠k

) is jth input variable at time t ≠ k. The time t is the time at
which the target variable is predicted.

b) The model is trained and hyper parameters are optimised by minimising
the negative log marginal likelihood given in(3.16). To update the window
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on the basis of the predictive density error or the variance of the predictions,
any output y

t+1 predicted for a new vector of input points xt+1, the log
predictive density error, and the variance of the ith prediction at the ith

predicted target is computed, and is stored to be used as an updating
criterion.

2. Normal prediction: when the target variable is not available, the algorithm
predicts the target variable at the ith point with a prediction confidence;
however, the point is not added to the window as the target variable is not
available.

3. Adaptation: when the real target variable is available at the ith data point,
the algorithm adapts by retraining the model and re-optimising the hyper
parameters, and the window is updated according to one of the following
updating criteria:

• Predictive Density Error: the log predictive density error of the
ith prediction is computed, and the new data point is added to the
window after deleting the one that gave rise to the highest predictive
density error.

• Prediction Variance: the variance of the ith prediction is computed,
and the new data point is added to the window after deleting the one
with the highest variance.

• Mahalanobis Distance: Mahalanobis distance between the ith new
data point and the data points in the window is first measured, and
the new data point is added to the window after deleting its nearest
neighbour.

• Time Stamp: this is the conventional updating criteria that utilises
the time stamp of the observation, where the most recent data point
is added to the window after deleting the oldest data point.

Finally, the model is retrained online as in (3.16).

As noted above, the window is updated according to the highest predictive
density error. This step aims to delete the less informative data points and to
maximise the information contained within the window. Deleting points with the
highest predictive density error means deleting the inputs that give rise to an
output with the highest uncertainty and least accuracy.
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5.3 Experiments and Results
Following the soft sensor building procedure described in the previous chapter in
Section 4.2, four adaptive soft sensors based on four di�erent selective moving
windows are developed. The four sensors are benchmarked against a soft sensor
built using the widely accepted Partial Least Square moving window. The ex-
periments were carried out on the eight data sets described in Section 4.3, where
they were evaluated quantitatively by means of MSE, R, and RVTP. In addition,
qualitative plots of the residual standard deviation are reported for each data set
as detailed below:

5.3.1 Predictive Density Error Moving Window

The predictive density error is analogous to the mean squared error; however, the
former is a more adequate measure for the evaluation of probabilistic models as
argued in [67]. As such, this moving window is based on deleting inputs that give
rise to less accurate predictions. The achieved results are reported in Table 5.1
and Figure 5.2:

Data Set W.Size MSE R RVTP LPD MSLL
SRU 1200 0.6434 0.5969 0.3532 1.1052 -0.3108
DC 500 0.3481 0.8092 0.6513 0.8474 -0.5707
ID 300 1.0219 0.3644 0.1328 1.4792 -0.0181
TD 300 0.2339 0.7908 0.6077 0.7941 -0.3609
CAT 20 0.0038 0.9982 0.9963 0.2275 -1.1901
RP 120 0.6758 0.5408 0.2898 1.2192 -0.1712
PBP 450 0.8283 0.2882 0.0659 1.3494 -0.0091
PP 200 0.0143 0.9930 0.9860 -0.7873 -2.2166

Table 5.1: Quantitative Performance of Predictive Density Error Window
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Fig. 5.2: Residual Standard Deviation of Predictive Density Error Window
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5.3.2 Variance Moving Window

Aiming to fully utilise the Gaussian process model output that comprises the
prediction and its associated uncertainty level (variance), the variance moving
window is based on excluding the data points that give rise to a prediction with
the highest uncertainty level. A summary of the quantitative and evaluative
results is reported in Table 5.2 and Figure 5.3:

Data Set W.Size MSE R RVTP LPD MSLL
SRU 1200 0.6798 0.5628 0.3164 1.1167 -0.2993
DC 500 0.3309 0.8178 0.6686 0.7873 -0.6307
ID 400 0.9497 0.4363 0.1902 1.4548 -0.0424
TD 300 0.1436 0.8744 0.7624 0.4336 -0.7213
CAT 20 0.0310 0.9845 0.9689 -0.6209 -2.0385
RP 120 0.6356 0.5740 0.3295 1.1810 -0.2094
PBP 450 0.8325 0.2947 0.0607 1.2978 -0.0607
PP 200 0.0159 0.9923 0.9844 -0.8310 -2.2603

Table 5.2: Quantitative Performance of the Variance Window
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Fig. 5.3: Residual Standard Deviation of the Variance Window

5.3.3 Mahalanobis Distance Moving Window

Striving towards maximising the informativeness of the window and minimising
redundancy and correlation among data points, Mahalanobis distance is adopted
as a basis to update the window because Mahalanobis distance accounts for the
scale and covariance of the data as declared in [131]. Evaluation results are
detailed in Table 5.3 and Figure 5.4:

5.3.4 Time Stamp Moving Window

This is the dominant approach to updating windows, where it is assumed that
the most recent points reflect current process conditions, while the oldest data
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Data Set W.Size MSE R RVTP LPD MSLL
SRU 1200 0.6779 0.5645 0.3183 1.1186 -0.2974
DC 450 0.3548 0.8032 0.6446 0.8254 -0.5927
ID 400 0.8799 0.5069 0.2568 1.3289 -0.1684
TD 300 0.1369 0.8804 0.7724 0.4096 -0.7454
CAT 20 2.7584e-04 0.9999 0.9997 -2.6181 -4.0356
RP 120 0.6385 0.5739 0.3293 1.1775 -0.2129
PBP 450 0.8476 0.2795 0.0436 1.2996 -0.0588
PP 200 0.0088 0.9957 0.9914 -1.0005 -2.4299

Table 5.3: Quantitative Performance of the Mahalanobis Window
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Fig. 5.4: Residual Standard Deviation of the Mahalanobis Window

points are deemed less informative. As such, the window excludes the oldest data
point when a new one is available. Details of the results are given in Table 5.4
and illustrated in Figure 5.5:

5.3.5 PLS Moving Window

Like the preceding window, this moving window adopts the time stamp of the
data point as updating criteria to update the window. However, it di�ers in the
model structure, in that it is based on a multivariate statistical technique, PLS.
This technique is utilised as a benchmark to comparatively evaluate the above
reported Gaussian process moving windows.

Data Set W.Size MSE R RVTP LPD MSLL
SRU 1200 0.9589 0.2398 0.0354 1.3961 -0.0199
DC 500 0.7115 0.5385 0.2879 1.2112 -0.2069
ID 400 0.9174 0.4747 0.2249 1.3566 -0.1407
TD 300 0.1377 0.8795 0.7706 0.4088 -0.7461
CAT 20 2.7370e-04 0.9999 0.9997 -2.7815 -4.1991
RP 120 0.7283 0.4979 0.2291 1.2598 -0.1307
PBP 450 0.8793 0.2977 0.0132 1.3627 0.0042
PP 200 0.0092 0.9955 0.9910 -0.6475 -2.0768

Table 5.4: Quantitative Performance of the Time Stamp Window
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Fig. 5.5: Residual Standard Deviation of the Time Stamp Window

Data Set W.Size MSE R RVTP
SRU 1200 0.9639 0.1750 0.0304
DC 500 0.8563 0.3772 0.1423
ID 400 0.9876 0.4234 0.1556
TD 280 0.1547 0.8603 0.7400
CAT 20 0.1479 0.9256 0.8526
RP 120 0.7723 0.4608 0.1870
PBP 450 0.8699 0.2351 0.0201
PP 200 0.0118 0.7257 0.5160

Table 5.5: Quantitative Performance of the
PLS Window
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Fig. 5.6: Residual Standard Deviation of the
PLS Window

The results are summarised in Table 5.5 and Figure 5.6:

5.4 Analysis

The above results clearly indicate the superior performance of the Gaussian pro-
cess-based soft sensors over the benchmark PLS method. It is noteworthy; how-
ever, that the latter method represents 38% of the overall published soft sensor
papers as per the survey conducted in [121].

Comparing the four criteria adopted to update the Gaussian processes win-
dows, it is notable that the Mahalanobis distance outperformed the other criteria
in three data sets out of eight, whereas the time moving window (the most widely
accepted), has only outperformed the other windows in the thermal deoxidiser
data set.

The outperformance shown by the Mahalanobis distance is due to the pre-
served informativeness of the moving window that is achieved by accounting for
the covariance and scale among the data points. Empirical results place the
window-updating criterion forward as a third critical parameter among window
size and step size when adopting instance selection as an adaptation scheme.
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On the other hand, moving window techniques su�er from a major drawback;
they demand memory space to collect the data contained within the window. In
large windows this drawback is prohibitive and restrictive, particularly in limited
memory applications. In addition, in Gaussian process-based soft sensors, large
windows demand considerable computational cost. This is primarily due to the
known computation cost limitation of Gaussian processes. Being a nonparametric
method, Gaussian process models require training data during the prediction
phase. Therefore, addressing the computational cost and minimising the size of
the window are among the research objectives detailed next.

5.5 Computational Complexity

Computational and memory requirements can be a major obstacle in the imple-
mentation of Gaussian process-based adaptive soft sensors online. To circumvent
this limitation, which is a known disadvantage of Gaussian processes, many sparse
methods have been proposed. A common strategy to most of these sparse meth-
ods is the construction of M data points variously referred to as inducing points,
active set, support variables, or pseudo inputs [132], which are treated as exact
whereas the remaining data is given some approximation, which yields a cheaper
cost and less accuracy [132]. These approximation techniques allowed a reduction
of the time complexity from O(N3) to O(NM2) as in [113] and to O(M3) as [112].

The active set M is selected based on di�erent criteria, such as maximum
information gain, matching pursuit, or greedy posterior maximisation. Another
approach in addressing the selection of the active set is proposed in the Sparse
Gaussian Processes using the Pseudo-inputs algorithm detailed in [113] where the
authors proposed optimising the locations of the active set M by a gradient-based
optimisation.

While [112] proposed an approximation technique that is independent on N

in which the computational cost is O(M3), [133] approached the computational
and memory problem in a completely di�erent scheme. A sparse covariance func-
tion is proposed that can provide intrinsically sparse covariance matrices without
the need for any approximation. The output of the suggested sparse covariance
function vanishes outside some region R, as k(x, xÕ) = 0 when xÕ is outside R.
The region R can be specified automatically during model training through one
of the function hyper parameters (the characteristic length scale) [133].

Although the above techniques have improved the computational time, they
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5.6 Moving Clustering Filter

are still limited in terms of their practicality in some applications of the soft
sensor domain, particularly if the soft sensors are developed for predicting high
sampling rate target variables or developed for inferential control tasks. This
is due to the fact that the reduced time complexity by the approximation tech-
niques of O(NM2) and O(M3) is still not practical in the mentioned applications,
specifically, if N is large or if the application demands a large number of inducing
points M to get to the desired prediction accuracy.

This section proposes a pre-processing technique that minimises the size of
the data used to develop soft sensors and meanwhile preserve the informativeness
of the original data. The newly extracted subset can then be utilised to develop a
soft sensor based on either full Gaussian processes or based on a Gaussian process
approximation technique.

The suggested technique is essentially based on clustering and filtering the
data to significantly reduce the number of observations N by constructing an
informative and representative subset of the original data. However, in the case
of adopting Gaussian process approximation techniques, the constructed subset
is further clustered to choose the M inducing points from this subset to base the
approximation upon.

The proposed method exploits the results in the previous section, where the
Mahalanobis distance is utilised as a similarity measure criterion to construct the
informative subset as detailed in section 5.6. The adaptive soft sensors developed
to investigate and demonstrate the e�ectiveness of the proposed method are all
based on the Mahalanobis distance moving window described and investigated
in the previous section. It is noteworthy that in order to simulate large window
situations, all training data are stored in the moving window, hence window sizes
are equal to the length of the training data.

5.6 Moving Clustering Filter

Data retrieved from industrial processes is recorded from sensors that are in-
stalled for process monitoring and controlling purposes, and therefore this data
contains redundant and highly correlated points. As a result, billions of data
points can be reduced to millions without any loss of information [134]. For this
reason, eliminating such redundant, irrelevant, and misleading points from the
data significantly saves time, while preserving the information contained. Com-

91



Adaptive Gaussian Process-based Soft Sensors

putation time is reduced by reducing N and M , the number of data points and
the number of inducing points (described in the previous section), respectively.

In the case of using full Gaussian processes, the algorithm addresses the N in
the original data (D) by retrieving an informative representative subset (D

sub

)
from the original data (D), while in the case of Gaussian processes approxima-
tion techniques, along with addressing the N in the original data, the algorithm
improves the selected set of inducing points M from the retrieved subset (D

sub

).
Retrieval of an informative representative subset is based on a clustering tech-

nique that starts by constructing a tree of agglomerative hierarchical clusters C
n

from the data contained in the window.
Clusters are created using a single-linkage method, which is based on the

minimum distance between points as a similarity measure as in (5.2). Single-
linkage is used as it produces more elongated clusters than other methods, thus
the data variability can be preserved (besides being considered the most versatile
method [135]).

D
mah

(C
i

, C
j

) = min
xœC

i

,x

ÕœC

j

D
mah

(x, xÕ) (5.2)

where D
mah

(C
i

, C
j

) is the Mahalanobis distance between the ith and jth clus-
ters, and (x, xÕ) is a pair of input vectors. Once the input space is clustered,
the data points are selected based on their first occurrence, and their associated
outputs are selected accordingly. While the choice of the data point selection
criterion is a performance dependent process, the idea behind adopting the clus-
tering method in the proposed filter is to group the most comparable points based
on the minimum Mahalanobis distance between them. This is to aid in choosing
which points to include in subset D

sub

to preserve the informativeness of the data
and which points to exclude to reduce data size (N).

Measuring Mahalanobis distance between the data points and clustering them
accordingly serves to screen the data by selecting one data point from each cluster
to be representative of the cluster (this implies that the number of clusters deter-
mines the size N of the data subset D

sub

), where choosing the number of clusters
is a model selection process that is data and application dependent, and the num-
ber of clusters can be optimised accordingly. Once the data size is reduced and
the representative subset is constructed, the same clustering and filtering method
is used to choose the number of inducing points M from the constructed subset.
Choosing M is also a model selection step that is dependent on the issue to solve.

The number of clusters (C
n

) in the original data (D) and in the constructed
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subset (D
sub

) can be an arbitrary numbers or optimised numbers that trade o�
accuracy and computational time.

The moving window algorithm described in section 5.2 and illustrated in Fig-
ure 5.1 is adopted in this section such that it is combined with the clustering and
filtering algorithm proposed in this section as outlined in the pseudo code below:

Algorithm 1 Mahalanobis Moving Window with Data Filter
1: W Ω initialWindow(X train, Y train) Û initialize training data window W
2: D

Sub

Ω ClusterF ilter(W) Û cluster W and construct subset D
3: M Ω ClusterF ilter(D

Sub

) Û cluster subset and get inducing points M
4: GP Ω optFun(D

Sub

, �, M) Û optimize hyper paramters
5: if yonlineavailable then Û in case the target is avialable
6: M

dist

Ω MahDist(X new, D
Sub

) Û measure Mahalanobis between points
7: Vshort, I

short

Ω min(M
dist

) Û find shortest distance index
8: P old Ω (X I

short , YI

short) Û find point with that index
9: Pnew Ω (X new, Yonline) Û find new data point

10: D
Sub

Ω removePoint(D
Sub

, Pold) Û add new points and update window
11: D

Sub

Ω addPoint(D
Sub

, Pnew) Û delete point with shortest distance
12: D

Sub

Ω ClusterF ilter(D
Sub

) Û cluster updated W and get subset D
13: M Ω ClusterF ilter(D

Sub

) Û cluster subset and construct M
14: GP Ω optFun(D

Sub

, �, M) Û optimize hyper paramters
15: else Û in case the target is NOT avialable
16: Yp Ω predictTarget(�, D

Sub

, X test) Û make prediction
17: end if

5.7 Experiments and Results

The plausibility of the proposed method is validated on four data sets from those
listed in Table 4.1. These are SRU, CAT, DC, and TD. The first two are com-
paratively large sized data sets whereas the last two are smaller sized sets, and
for this reason, they were chosen to investigate the e�ectiveness of the proposed
method on both data sizes.

The competency of the method proposed is demonstrated by combination
with Gaussian process approximation techniques and with full Gaussian processes
techniques that also. In the former, the developed soft sensors are adaptive soft
sensors, whereas in the latter they are non-adaptive soft sensors that employ
the Mater Ò class covariance functions. The rationale behind this is to conduct
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a thorough evaluation that looks into adaptive and non-adaptive soft sensors.
The training time reported for the proposed filtering method includes the hyper
parameter optimization time and the clustering time demanded by the moving
filter.

5.7.1 Gaussian Process Approximation

The sparse Gaussian processes using Pseudo-Inputs Approximation Technique
(SPGP) is used to develop the eight adaptive soft sensors from the four data sets
mentioned above. Whereas four of these sensors adopt the filtering and clustering
method to minimise the window of the data (referred to as SPGP-F soft sensors),
the other four do not, and thus are referred to as SPGP soft sensors.

SPGP is chosen among other approximation techniques, as it provides a more
accurate approximation of the full Gaussian processes than other techniques, in
addition to the method used to learn the pseudo inputs, which allows improved
accuracy [136].

Sulphur Recovery Unit

Tables 5.6, 5.7 and Figures 5.7(a), 5.7(b), and 5.7(c) show the e�ectiveness of
the proposed filtering method. It can be easily deduced that the same perfor-
mance accompanied with a paramount computational time reduction, illustrated
in Figure 5.7(c) and reported in Table 5.7, is achieved by the SPGP-F soft sensor.
Table 5.6 indicates that the proposed method e�ciently constructed a subset of
39% of the data used by the SPGP soft sensor. While still preserving the infor-
mativeness of the window, the SPGP-F soft sensor performs as accurately as the
SPGP soft sensor.

Reducing the data to 39% significantly saves computational time (training
and testing time) by more than 75% of the time used by the SPGP before the
proposed method is applied.
It is also noticeable that the SPGP-F soft sensor performs slightly better than
the SPGP; this is clearly seen by TIC, which is usually used to compare di�erent
models rather than evaluating one particular model on its own [137].

A visual comparison of performance and time costs between the SPGP and
the SPGP-F soft sensors is shown in Figure 5.7. While Figures 5.7(a) and 5.7(b)
show that both soft sensors are performing similarly accurately, Figure 5.7(c)
clearly shows the time saving achieved by the SPGP-F soft sensor.
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Table 5.6: Soft Sensors Quantitative Performance - Sulphur Recovery Unit Data

Method MSE R RVTP TIC Data Used

SPGP 0.5727 0.6268 0.3913 0.0163 100%

SPGP-F 0.5690 0.6315 0.3953 0.0093 39%

Table 5.7: Computational Times - Sulphur Recovery Unit Data

Method Training Time Testing Time
Min Max Avg Min Max Avg

SPGP 119.25 170.53 146.24 0.0068 0.0226 0.0104
SPGP-F 24.96 35.15 30.98 0.0019 0.0109 0.0031

Catalyst Activation Process

The results reported in Tables 5.8, 5.9 and Figures 5.8(a) and 5.8(b) confirm the
findings outlined above, where the SPGP-F soft sensor uses a quarter (24%) of the
data that the SPGP soft sensor uses, indicating that the proposed pre-processing
method retrieved 24% of the data that can still provide information that 100%
of the data provided. This significant data compression contributes towards time
savings achieved in Figure 5.8(c) an reported in Table 5.9, which is of essential
importance if the soft sensor is deployed in high sampling rate applications (e.g.,
inferential control systems).

In addition, this demonstrates the competency of the proposed filtering method
as the data size gets larger. In applications where the computational time is not a
bottleneck, this time saving shown in Figure 5.8(c) can be utilised to further im-
prove the prediction accuracy by adding more informative data points N into the
filtered data or increasing the number of the inducing points M in the Gaussian
process model.

Table 5.8: Soft Sensors Quantitative Performance: Catalyst Activation Process Data

Method MSE R RVTP TIC Data Used

SPGP 0.0065 0.9968 0.9936 0.0397 100%

SPGP-F 0.0048 0.9976 0.9952 0.0387 24%

A visual comparison of performance and time cost between the SPGP soft
sensor and the SPGP-F soft sensor is demonstrated in Figures 5.8(a), 5.8(b),
and 5.8(c). The predictions are accurate, whereas the computational time of
the SPGP-F soft sensor is significantly lower than the computational time of the
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(a) Performance of SPGP-F Soft Sensors - SRU
Data
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(b) Performance of SPGP Soft Sensors - SRU Data
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(c) Comparison of Online Training Time - SRU Data

Fig. 5.7: Performance of SRU Data Soft Sensors

Table 5.9: Computational Times - Catalyst Activation Process Data

Method Training Time Testing Time
Min Max Avg Min Max Avg

SPGP 103.88 139.06 124.39 0.0051 0.0090 0.0067
SPGP-F 7.53 10.51 9.1047 6.2e-04 0.0181 0.0011

SPGP soft sensor.

Debutanizer Column

This data set consists of 2394 observations. There was no need to use an approxi-
mation technique, but it was used to demonstrate the plausibility of the proposed
method on small data sets. It is worth mentioning that in the larger sized data,
the plausibility of the proposed filtering method becomes more apparent.

Looking at Tables 5.10, 5.11 and Figures 5.9(a), and 5.9(b), it can be clearly
noted that the informativeness of the data can be preserved while the size is
reduced to 60% of the original data size. This significantly reduces the compu-
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(a) Performance of SPGP-F Soft Sensors - Catalyst
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(b) Performance of SPGP Soft Sensors - Catalyst
Data

5 10 15 20 25 30 35 40 45
0

20

40

60

80

100

120

140

Number of Iterations

On
line

 Tra
inin

g T
ime

 

 

SPGP Time

SPGP−F Time

(c) Comparison of Online Training Time - Catalyst Data

Fig. 5.8: Performance of Catalyst Data Soft Sensors

tational time by more than 50% as it is shown in Figure 5.9(c), which compares
the SPGP and SPGP-F online training times.

Table 5.10: Soft Sensors Quantitative Performance - Debutanizer Column Data

Method MSE R RVTP TIC Data Used
SPGP 0.3257 0.8217 0.6739 0.0909 100%

SPGP-F 0.3263 0.8217 0.6739 0.0621 60%

Table 5.11: Computational Times - Debutanizer Column Data

Method Training Time Testing Time
Min Max Avg Min Max Avg

SPGP 41.149 47.788 44.98 0.0035 0.0050 0.0040
SPGP-F 18.91 27.19 21.76 0.0017 0.0038 0.0024

The visual comparison shown in Figure 5.9 also emphasises that the SPGP
and the SPGP-F soft sensors are performing correspondingly in terms of accuracy
as depicted in Figures 5.9(a), 5.9(b).
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Fig. 5.9: Performance of Debutanizer Data Soft Sensors

Thermal Oxidiser

This is the second small sized data set. The results reported in Tables 5.12, 5.13
show that the soft sensor using the suggested filter. (SPGP-F) is performing
relatively as accurately as the SPGP soft sensor, using only 76% of the data used
by the SPGP sensor.

Table 5.12: Soft Sensors Quantitative Performance - Thermal Oxidiser Data

Method MSE R RVTP TIC Data Used
SPGP 0.1284 0.8861 0.7844 0.1319 100%

SPGP-F 0.1306 0.8840 0.7802 0.1244 76%

The visual comparison between the online training times of the both soft
sensors depicted in Figure 5.10 noticeably illustrates the time reduction achieved
by the suggested method.
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Table 5.13: Computational Times - Thermal Oxidiser Data

Method Training Time Testing Time
Min Max Avg Min Max Avg

SPGP 22.33 40.00 34.45 0.0021 0.0046 0.0030
SPGP-F 12.22 39.83 23.349 0.0012 0.0092 0.0023
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Fig. 5.10: Performance of Thermal Oxidiser Data Soft Sensors

5.7.2 Full Gaussian Process Models (FGP)

To show the plausibility of the suggested method, and to further emphasise the
method robustness of extracting informative subsets from industrial data sets, it
is tested on Full Gaussian Process (FGP) non-adaptive soft sensors. The sensors
are also developed from the above four outlined data sets. Full Gaussian Process
models demand more computational time and give more accurate predictions
than approximation methods.

The chapter reports in this section the results achieved from eight non-adaptive
full Gaussian process soft sensors as summarised in Table 5.14. While four of the
soft sensors employ the proposed clustering and filtering method during the de-
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velopment stage (referred to as FGP-F), the other soft sensors do not (referred
to as FGP).

The table details the quantitative performance of both soft sensors, where it
can be observed that the sensors are similarly performing in terms of prediction
accuracy; while in terms of computational training and testing time, the soft
sensors employing the method proposed are demanding significantly less time
than those referred to as FGP. This is due to the capability of the method to
extract a representative subset of the original data that contributes the same
informativeness of the original data.

It is noteworthy that the times reported in Table 5.14 are the o�ine training
and testing times (the times taken to train and to test the model on all data at
once) as the soft sensors are non-adaptive. Being non-adaptive, the sensors were
trained and tested only once, unlike the case with adaptive soft sensors where they
were trained iteratively online whenever a new training point becomes available.

Table 5.14: Quantitative Performance of FGP and FGP-F Soft Sensors

Data Method MSE R RVTP TIC Data Used T
train

T
test

SRU FGP 0.3908 0.7804 0.6069 0.0362 100% 4.30e+03 19.997
FGP-F 0.3934 0.7814 0.6042 0.0216 78% 2.68e+03 19.997

CAT FGP 0.0028 0.9986 0.9972 0.0269 100% 1.35e+03 3.6392
FGP-F 0.0068 0.9966 0.9933 0.0492 11% 4.7275 0.1672

DC FGP 0.2664 0.8563 0.7333 0.0592 100% 132.07 0.6918
FGP-F 0.2666 0.8563 0.7332 0.0720 90% 66.243 0.4244

TD FGP 0.1255 0.8887 0.7895 0.1337 100% 45.266 0.2467
FGP-F 0.1310 0.8845 0.7805 0.1416 59% 14.279 0.1216

A qualitative comparison between the computational time and prediction ac-
curacy demanded by all the soft sensors for the four data sets is illustrated in
Figure 5.11. The left plot shows that the FGP-F soft sensors have a comparable
prediction accuracy to that achieved by the FGP sensors. This comparable per-
formance is obtained in substantially less time than that demanded by the FGP
soft sensor as depicted in the right plot 5.11(b).

The above results reported in Sections 5.7.1 and 5.7.2 empirically demonstrate
the potentiality of the proposed method and its enhancement of the practicability
of the Gaussian process-based soft sensors in the industrial process. This is
attained by minimising the size of the moving window in adaptive soft sensors
and minimising the size of the o�ine training data in non-adaptive soft sensors.
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Fig. 5.11: Comparison of Overall Performance of FGP and FGP-F Soft Sensors

The data reduction gained is of a great importance considering Gaussian process
non-parametricity where training data is a part of the predicting model.

The virtue of the proposed data filter is its capability to preserve the infor-
mativeness of the original data and save computational time.

5.8 Summary

The chapter reviewed adaptive Gaussian process soft sensors and their practicality
in industrial processes. The core adaptive schemes investigated were the window-
ing techniques, which are essentially based on an instance selection paradigm.

Empirical results indicated that in addition to the two main critical param-
eters of moving windows (window size and step size) window-updating criterion
should be considered a third parameter. Conventionally, windows are updated
by including new data points and excluding old ones; presumably they do not
reflect the current process state and contribute less predictive information.

The chapter falsifies the above assumption and emphasises a more rationally
selective window in which informativeness regarding the current process concept is
maximised. Comparing di�erent updating criteria that include predictive density
error, Mahalanobis distance, prediction variance, and the time of the data point,
it can be concluded that the updating criteria influences the informativeness of the
window and deteriorates or enhances the model prediction accuracy. Mahalanobis
distance has empirically shown that it resulted in a superior performance as an
updating criterion in most of the data sets investigated.

The chapter addresses the computational time complexity of Gaussian pro-
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cess-based soft sensors particularly when applied to online predictions using mov-
ing window techniques. It proposes a data filtering method that can be combined
with full Gaussian process or approximation techniques. The objective is to re-
duce computational complexity by reducing the number of data points N and
selectively choosing the number of inducing points M , while preserving the same
prediction accuracy realised as when harnessing the full data, where results show
that the developed sensors based on filtered and compressed data that can pre-
dict target variables significantly more quickly and accurately as those developed
using the full data.

Time reduction, which does not trade o� prediction accuracy, is a result of
selectively constructing a representative and informative subset by ignoring re-
dundant and correlated points in addition to appropriately choosing a number
of inducing points on which the predictive distribution of the Gaussian process
model is based.

In applications where the time can be traded o�, time reduction can be utilised
in improving prediction accuracy by creating more clusters and including more
data points into the model. Alternatively, as full Gaussian process models give
more accurate predictions than Gaussian process approximation techniques, the
suggested method can be used with full Gaussian process models to save time
and preserve the accuracy of the exact Gaussian process models.

The proposed method is appropriate for industrial data sets where redun-
dancy, irrelevance, and multi-collinearity are expected, which are typical char-
acteristics of industrial data sets. The method importance is more evident in
applications where the target variable is acquired at high sampling rates, such as
in inferential control applications.
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Chapter 6

Gaussian Process Inferential Control Systems

6.1 Introduction

The problem with controlling inferentially measured process variables, which are
often quality indices of particular products, has been an active research area since
the 1970s. An adopted solution to address the problem is the implementation of
a data-driven inferential control, which is a control scheme that controls inferred
di�cult-to-measure variables by utilising manipulated influential easy-to-measure
variables [138].

Inferential control service as a solution to the problem of direct feedback con-
trol when expensive on-line sensors are not feasible [139]. Feedback control prin-
ciple is based on corrective actions so as to minimize di�erences between desired
set point and actual process output, and that is the key point of implementing
feedback control in industry. Feedback control is also used for the purpose of
changing the dynamics of a system from unstable to stabilized, from sluggish
to responsive, and from drifting to constant. These behaviours can be altered
accordingly to meet the application needs. In addition, it is used to reduce sys-
tem sensitivity to disturbance, and to get rid of undesired e�ects of noise and
distortion [140].

The majority of the publications in the area of inferential control are model
driven. Conversely, this chapter approaches the problem from the data-driven
prospective. This chapter proposes an inferential control system that employs a
data-driven Gaussian process-based soft sensor. The task of the sensor is to infer
the di�cult-to-measure variable and use it as a feedback signal to an adequate
controller. Hence it is termed Gaussian Process Inferential Control System (GP-
ICS).

The GP-ICS is validated on controlling the concentration of a chemical prod-
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uct in a chemical reactor process. The control system capability of controlling
the concentration is further compared and benchmarked against an ANN and
KPLS-based inferential control system.

This chapter, further, investigates the reliability of the suggested control sys-
tem, and it enhances the robustness such that the system dependency on the
process variables is minimised, and thus it can be reliably implemented in indus-
trial application.

This chapter employs and utilises the results outlined in previous chapters such
that: i) it adopts the Mate�n class covariance function to develop the Gaussian
process soft sensor, which is used as the feedback element in the inferential control
system as recommended in Chapter 4, ii) it utilises Mahalanobis distance as
a window-updating criteria to improve prediction accuracy, and iii) it employs
the suggested filtering method to minimise the size of the moving window as
concluded in chapter 5.

6.2 Gaussian Process Inferential Controller

The work presented in this section can be categorised as a model-based predictive
control according to [90, 141]. However, instead of building an explicit process
model to predict the di�cult-to-measure variable, a Gaussian process-based soft
sensor is used to provide continuous, reliable, and accurate predictions for the
di�cult-to-measure variables, which are then fed back to a PI controller.

The Gaussian process inferential control system consists of three elements: i)
GP-soft sensor, ii) proportional integral PI controller, and iii) process as depicted
in 6.1:

PI Controller Process

Soft Sensor

Set Point

-
+

Fig. 6.1: Inferential Control System

For comparison and benchmarking purposes, an ANN Inferential Control Sys-
tem (ANN-ICS) and a KPLS Inferential Control System (KPLS-ICS) are de-
veloped. The former utilises an ANN-based soft sensor as a feedback element,
whereas the latter utilises a Kernel PLS soft sensor. A description of the chemical
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reactor process and the details of the GP, ANN, and KPLS soft sensors are given
below:

6.2.1 Process Description

The suggested inferential control system is validated on a chemical reactor model
to control chemical product concentration. Figure 6.2 depicts a simple sketch
for the chemical reactor process. Seven easy-to-measure process variables are
available: three flow measurements (F1, and F2 are the inlet flows, whereas F3
is the outlet flow), and three temperature measurements (T1 and T2 are the
inlet flow temperatures, whereas T3 is the outlet flow temperature). In addition,
a level measurement that is controlled via F1 using an existing PI controller
whose proportional parameter (k

p

) and integral parameter k
i

are 0.0056 and 3600,
respectively. These parameters are dealt with as a fixed part in the chemical
reactor process as they belong to an existing PI controller, whose feedback signal
is generated based on a real observed (non-inferential) flow measurement (F1).

The chemical reaction in the reactor is dependent on the concentration of a
particular component (target variable) inside the reactor. The concentration is
measured every 90 minutes using a lab analysis technique, and because of this
delay, it cannot be appropriately controlled. The task is to continuously infer the
concentration from the seven available measured process variables using the GP-
soft sensor and feed the inferentially measured concentration to a PI controller
so as to meet the product specified quality and take actions accordingly.

6.2.2 GP-Soft Sensor

As the soft sensor developed in this section is a part of the inferential control
system, and the control system performance is entirely dependent on its prediction
accuracy, the sensor predictions must be accurate, reliable, and continuous. These
properties are obtained by harnessing the conclusions of the previous chapters as
described below:

1. A Gaussian process model is first identified adopting the Mate�n class co-
variance function as justified in 4.7.

2. A window of training or online streaming data is initialised.
3. The training window is clustered and filtered accordingly to minimise win-

dow size, reduce the computational cost, and retain the informativeness of
the original data as detailed in 5.6.
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Fig. 6.2: Chemical Reactor Process

4. The model is then trained and the hyper parameters are optimised as ex-
plained in 3.2.4.

5. The model is deployed online and adapted when the target variable is avail-
able as suggested in 5.2.

6. The updated window is then clustered and accordingly filtered as in step
three.

7. The model is finally retrained and hyper parameters are re-optimised as in
step four.

The above steps enable soft sensor adaptability, enhance sensor prediction
accuracy, and save computational time when delivering continuous predictions
back to the PI controller.

6.2.3 ANN-Soft Sensor

As was previously outlined, ANN soft sensors are predominantly deployed in data-
driven inferential control applications. Therefore, an ANN-based soft sensor is
developed to be integrated with a PI controller and to build the ANN Inferential
Control System used for benchmarking purposes. The ANN soft sensor structure
is optimised, where the number of neurons and hidden layers were cross-validated
ranging from one to 40 and one to five as demonstrated in Figure 6.3, respectively.

The box plots in panel 6.3(a) and 6.3(b) show that a one-hidden layer network
is more accurately capable of predicting concentration than other multi-hidden
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Fig. 6.3: Performance of Di�erent ANN Network Structures

layer structures, where the former has the lowest prediction error MSE and the
highest prediction accuracy RVTP. As such, the one-hidden layer structure is
selected. The number of neurons in the one-hidden layer structure is then opti-
mised. The optimisation criterion is based on the mean squared error and the
relative variance tracking precision as shown in Figure 6.4.
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Fig. 6.4: Performance of Di�erent ANN Structures

Based on the model selection procedure above, the ANN soft sensor network
structure consists of one-hidden layer with eight neurons. The network is based on
a feed-forward neural network trained using the Levenberg Marquardt algorithm.
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6.2.4 KPLS-Soft Sensor

Multivariate statistical techniques have also been deployed in inferential control
systems; therefore, kernel PLS is used as a second benchmark method to compare
with the suggested GP-ICS. A PLS based technique is particularly selected as it
was deployed in practical real applications as detailed in [142]. However, to
capture the process non linearities, the non linear KPLS variant of the method is
adopted. The main idea behind this approach is mapping the original data into
a high dimensional feature space. Using the kernel trick, 1 the linear PLS can
then be applied in the mapped space.

Identifying the model structure in a kernel PLS involves the selection of a
kernel function, and a number of PLS components. The kernel function used to
develop the soft sensor is the MSE function, whereas the number of components
are cross-validated and selected based on their MSE and RVTP. The number of
components explored ranged from one to 30 components as illustrated in Figure
6.5.
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Fig. 6.5: Performance of KPLS Soft Sensor

According to the RVTP and the MSE as model evaluating criteria illustrated
in Figure 6.5, 18 components are chosen as an optimal number. Eighteen com-
ponents give rise to the highest prediction accuracy and lowest prediction error.

1The kernel trick is based on the fact that the dot product of two vectors in the feature
space is evaluated by the kernel function.
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6.2.5 PI Controller

A Proportional Integral Derivative (PID) controller is a process controlling tool
that emerged in the 1940s and gained wide popularity ever since. The pro-
posed inferential control methodology is suited to fixed-structure conventional
controllers, however, PID controller is chosen as it is the appropriate controller
for the chemical processes case study presented in the thesis, in addition to being
the most common way of using feedback control in engineering systems [12].

It is also declared in [94] that in today’s process control PID represents more
than 95% of the control loops deployed, most of which are PI controllers whose
formula is given by [12]:

u(t) = k
p

e(t) + k
i

⁄
t

0
e(t)dt (6.1)

where u(t) is the control signal and e is the control error (the di�erence between
the set point and the actual process variable). While k

p

= 100 and k
i

= 0.05 are
the proportional and the integral parameters, which are empirically tuned.

Control System Requirements

In order to implement the proposed inferential control system in the real chemical
reactor plant, the control system controlling the simulated reactor should meet
the following design requirements:

1. Closed Loop Stability

(a) Minimize variability (minimize excessive variation in the manipulated
variable T1)

(b) robust stability (stable for the worst disturbance)

2. Dynamic Response

(a) Minimum rise time
(b) Minimum settling time
(c) Minimum overshoot percentage (for saftey reasons)

6.3 Experiments & Results
In order to evaluate and validate the proposed inferential control system Gaussian
Process Inferential Control System (GP-ICS), it is tasked to control the concen-
tration of the target variable in the simulated chemical reactor process described
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above. In order to mimic the real measurements retrieved from the seven sensors
in the chemical reactor, a random white noise is added to each measurement and
all evaluation in this chapter ere conducted in the presence of this noise.

The GP-ICS is benchmarked against two inferential control systems: ANN-
ICS, and KPLS-ICS.

The three control systems are further compared to an Ideal Control System (I-
CS). The I-CS omits the soft sensors and uses the actual concentration acquired
every minute from the simulated chemical reactor process model. Although the
target variable is available every 90 minutes in the real plant, in the I-CS case, it
is simulated such that it is available every minute to simulate this ideal optimal
and unrealistic situation.

MIC Analysis

The Maximal Information Coe�cient (MIC) analysis is utilised to select the ma-
nipulated variable. The analysis, which is facilitated by the Maximal Information
Nonparametric Exploration (MINE) algorithm described in [128], is conducted
between the seven process variables and the concentration as illustrated in Figure
6.6. It suggests that the level (L) and (T1) are the most influential variables on
the concentration. Because (L) is a controlled variable using an existing con-
troller, T1 is chosen as a manipulated variable to control the concentration.
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Fig. 6.6: MIC Analysis

6.3.1 Performance Evaluation

The performance of the control systems is assessed using seven evaluative mea-
sures. Rising Time (RT), Settling Time (ST), Overshoot Percentage (OP), and
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Steady State Error (SSE) are used to evaluate the overall performance of the
inferential control systems during the step tests shown in Figure 6.7. Mean
Squared Error (MSE), Correlation (R), and Relevance Variance Tracking Pre-
cision (RVTP) are used to observe the performance and the prediction capability
of the soft sensors. These quantitative results are summarised in Table 6.1.
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(a) Ideal Controller Step Test
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(b) GP Controller Step Test
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(c) ANN Controller Step Test
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(d) KPLS Controller Step Test

Fig. 6.7: Responses of ICSs to Step Tests

Table 6.1 shows two groups of evaluating criteria. The first three (MSE, R,
and RVTP) demonstrate the performance of the soft sensors developed, and the
prediction accuracy for the target variable. The prediction accuracy delivered
by a soft sensor is reflected on the overall performance of the inferential control
system employed. While the last four (RT, ST, OP, and SSE), which stand for
rising time, settling time, overshoot percentage, and steady-state error, assess the
control systems’ performances, respectively.

It is clearly observed that the GP-based soft sensor outperforms the ANN
and KPLS soft sensors, and it more accurately predicts the concentration of the
product inside the reactor. This accords the GP-ICS close-loop stability of the
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Table 6.1: Comparison between Di�erent Inferential Control Systems

Controller MSE R RVTP RT ST OP SSE

PI-CS 0 1 1 2.10e-7 115.96 14.725 6.43e-6
GP-ICS 0.9669 0.9863 0.9692 1.23e-6 120.24 14.093 3.78e-5
ANN-ICS 3.8718 0.9434 0.8842 0.5112 121.93 17.218 0.1877
KPLS-ICS 1.3249 0.9830 0.9599 0.0654 138.83 14.055 0.0244

process at a closer point to the set point and in a shorter time than the other
two control systems, as indicated by the steady-state error (SSE) and the settling
time (SE), respectively.

The SSE and the RT reveal that the GP-ICS performs virtually as accurately
as the ideal ’unrealistic’ control system and stabilises the process more rapidly
and accurately than the ANN and KPLS ICSs.

These findings emphasise that the prediction capability of the soft sensors
plays a central role in determining the overall performance of the control systems.
This was observed in the GP-ICS and can also be seen in the KPLS-ICS, where
the KPLS soft sensor has a higher prediction accuracy than the ANN sensor,
hence its steady-state error is lower than the ANN-ICS, despite the fact that the
settling time is longer.

The remarks outlined above are confirmed by the step tests depicted in the
four panels shown in Figure 6.7. The tests are carried out by exciting the pro-
cess variables during the reactor steady-state condition. Panel 6.7(a) and 6.7(b)
illustrate the comparable performance of the GP-ICS to the Ideal Control Sys-
tem where the step responses are virtually as smooth. Conversely, panels 6.7(c)
and 6.7(d) indicate the oscillatory responses of the ANN and KPLS ICS systems,
where both systems took a longer time to stabilise. In addition, the panels re-
vealed that the steady-state condition of the reactor before exciting the process
variables was not at the desired set point (60%) as a consequence of the controller
performance that failed to minimize the error signal as accurately as the GP-ICS
controller. This contributed to a longer rising time, higher steady-state error,
and a longer settling time.

From an adaptation prospective, it can be observed that the KPLS soft sensor
requires more data points to adapt than the rest of the sensors. In contrast is the
GP soft sensor case, where two data points su�ced the online hyper parameter
re-optimisation to adapt the model to the new process concept and preserve the
soft sensor prediction accuracy. As a result, a quicker and more accurate process
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stabilisation is achieved.
The control systems are also tested on disturbance rejection and set point

tracking. The former is carried out by randomly introducing disturbances into
the chemical reactor feeds at steady rate of every 5000th iteration, and the latter
is carried out by changing the set point to 50%, 25%, and 75%. The qualitative
results of these tests are reported in Figure 6.8.
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(a) GP-ICS Set Point Tracking
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(b) GP-ICS Disturbance Rejection
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(c) ANN-ICS Set Point Tracking
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(d) ANN-ICS Disturbance Rejection
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(e) KPLS-ICS Set Point Tracking
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Fig. 6.8: Performance of the Inferential Control Systems at Di�erent Process Operating Con-
ditions
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A visual assessment of the six panels shown in Figure 6.8 reveals that the GP-
ICS system outperforms the other two systems during both cases: the disturbance
rejection and the set point tracking. It can clearly be noted that the GP-ICS is
closer to the Ideal Control System than the ANN-ICS and the KPLS-ICS. It can
also be observed that the GP-ICS performs more satisfactorily, in particular in
the regions where the disturbance is introduced or the set point is changed.

In cases where the disturbance lies outside the range of the training data, the
prediction is accompanied by a higher confidence interval, which is advantageous
to GP-ICS as the confidence interval is an indication of the reliability of the
controller.

The figures also highlight the closed-loop stability achieved by the three sys-
tems, where the GP-ICS stabilises the process earlier and more accurately than
the ANN-ICS as was empirically indicated. It is clearly noticeable that the KPLS-
ICS performs comparably to the GP-ICS, where the two controllers successfully
stabilised the process at the desired set point. Conversely, the ANN-ICS failed
to perform as accurately.

The empirical results reported reveal that not only can the proposed GP-ICS
system fulfil the task of predicting and controlling the di�cult-to-measure variable
(concentration), but it also outperforms the widely used ANN-based inferential
controller and performs comparably to the ideal controller in all conducted tests,
including disturbance rejection and set point tracking. Nevertheless, the system
is susceptible to deterioration because it is process-variables dependent. Conse-
quently, if one of the hardware sensors that measures the utilised easy-to-measure
variable fails, the prediction accuracy degrades and the overall performance of the
system is a�ected. This issue is the main theme of the next section.

6.4 Improving Robustness of the GP-ICS

Considering robustness in data-driven inferential control systems arises from the
fact that the hardware sensors that measure input variables are susceptible to fail-
ures in any part of their components. These failures can be for various reasons,
such as contamination, faulty installation, calibration, power supply, communi-
cation, environmental reasons, and/or improper service procedures.

The failure becomes more crucial if the failure occurs in the sensor measuring
the variable being manipulated by the inferential control system. Such a failure
directly disturbs the feedback signal, (i.e., the predictions of the soft sensor) and
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consequently, the overall performance of the control system is disturbed.
To ensure proper reliability and robust functionality of the inferential control

system and to preserve its performance during healthy and faulty conditions, this
chapter proposes a remedy that minimises the failure e�ects on the performance
of the inferential control system. It is noteworthy that the proposed remedy does
not seek to detect, diagnose, accommodate, and /or isolate failure, instead aiming
at coping with the failure and maintaining the soft sensor prediction accuracy
under this new process concept.

This is accomplished by mapping the input-output data to the feature sub-
space and extracting the nonlinear scores S before it is fed to the Gaussian process
soft sensor model. The nonlinear scores are extracted using the KPCA. As such,
the Gaussian process model is fed by the KPCA scores rather than the original
data that may contain faulty measurements. The control system employing this
pre-processing step is referred to as GP-KPCA-ICS throughout this section.

To evaluate and compare the e�ectiveness of extracting the nonlinear scores
by KPCA, Gaussian Process Latent Variable Model (GP-LVM) is used to build
another inferential control system whose input data is the extracted scores via
GP-LVM.

While the motivation behind the previous section focuses on integrating data-
driven Gaussian process soft sensors with PI controllers to build an inferential
control system, and benchmarking it with the state-of-the-art in the area, this
section focuses on improving the robustness and the reliability of the overall
control system, particularly during sensor input failures. This is accomplished by
hybridising the kernel principal component analysis with the Gaussian process
inferential control system to achieve the desired practical robustness during all
process operating conditions (healthy and faulty statuses). The performance of
the hybridized GP-KPCA-ICS system is compared to a GP inferential control
system hybridized with GP-LVM. This control system is termed GP-LVM-ICS.

6.5 Kernel PCA

A crucial weakness in the conventional PCA methods is that they cannot gener-
alise data that has complicated nonlinear structures, which cannot be simplified
in a linear subspace [94]. To remedy this shortcoming, di�erent nonlinear versions
of PCA are proposed, an example of which is the kernel PCA .

KPCA implicitly transforms an input data vector x into a vector �(x) in a
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d dimensional feature space H so linear PCA is performed in the feature space
[143], where � is a nonlinear mapping function. However, such a computation
in H has a high computational cost associated with diagonalising the covariance
matrix given in [16]:

K = 1
n

nÿ

i=1
xixi

T (6.2)

Using a kernel function, the dot product in the feature space can be computed
directly in the input space, where it is possible to work implicitly in H while all
computations are done in the input space (kernel trick). The kernel trick is used
to map data points into an inner product space where linearity is introduced by
means of the dot product. This eliminates the need to explicitly perform feature
space mapping [144]:

�(xi).�(xj) = K(xi, xj) (6.3)

Any kernel function that satisfies Mercerú theorem is a valid kernel [145, 146],
which ensures that the kernel can act as a dot product in the feature space [16].
An example of which is the Mate�n class kernel function given by:

k
Mate�n(r) = 21≠v

�(v)(
Ô

2vr

l
)vk

v

(
Ô

2vr

l
) (6.4)

where r = (x
i

, x
j

), � is the Gamma function, k
v

is the modified Bessel function,
and v and l are non-negative hyper parameters.

Using such a kernel, KPCA is performed in the original input space as sum-
marised in the following steps [16, 143]:

1. Use 6.4 to construct the covariance matrix K.

2. Centre the covariance matrix K to get K
centred

as in 6.5.

K
centred

= HKH (6.5)

where H = I
n

≠ J

n

n

is the centring matrix, J
n

is an n ◊ n of ones matrix.

3. Use the eigen equation 6.6 to solve for the vectors –

K2
centred

–k = n⁄kK–k (6.6)

116



6.6 Robust GP Inferential Control

where –k = (–1, ...–
n

)T is an eigenvector, and ⁄k is the kth eigenvalue
corresponding to kth eigenvector –k.

4. Normalise the eigenvectors:

⁄k(–k, –k) = 1 (6.7)

5. Compute the k principle components:

vk
kpc(X) =

nÿ

i=1
–k

i

K(xi, xj) (6.8)

6. Project data observations onto the principle components to get the scores.

6.6 Robust GP Inferential Control

The suggested algorithm builds upon the soft sensor building procedure described
in Section 6.2.2, where it is modified such that the scores of the data are extracted
and fed into the soft sensor model instead of feeding the original data, which may
contain faulty measurements of the faulty sensor. Details of the algorithm are
described in the pseudo code 6.6.1 in which the data is mapped to a feature space
using the KPCA. The data can also be analogously mapped to a feature space
using GP-LVM:

6.6.1 Pseudo Code

The suggested algorithm is tested and validated on the simulated process de-
scribed in Section 6.2.1 as discussed next.

6.7 Algorithm Evaluation

The evaluation of the suggested GP-KPCA-ICS is carried out on the simulated
chemical reactor process described above. The experiments conducted build upon
the results and conclusions found in Section 6.3 where T1 is utilised as the ma-
nipulated variable as suggested in Section 6.3, and the GP-ICS is adopted as
the primary control system used for assessing the proposed robustness improving
algorithm.
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Algorithm 2 Robust GP Inferential Control Algorithm
W Ω initialWindow(X train, Y train) Û initialize training data window W
S

pca

Ω kernelPCA(W) Û extract data scores via KPCA
GP Ω optFun(S

pca

, �, M) Û optimize hyper paramters
if yonlineavailable then Û in case the target is avialable

M
dist

Ω MahDist(X new, W) Û measure Mahalanobis between points
Vshort, I

short

Ω min(M
dist

) Û find shortest distance index
Pold Ω (X I

short , YI

short) Û find point with that index
Pnew Ω (X new, Yonline) Û find new data point
W Ω removePoint(W , Pold) Û add new points and update window
W Ω addPoint(W , Pnew) Û delete point with shortest distance
S

P CA

Ω kernelPCA(W) Û extract data scores via KPCA
GP Ω optFun(S

pca

, �, M) Û optimize hyper paramters
else Û in case the target is NOT avialable

Yp Ω predictTarget(�, W , X test) Û make prediction
end if

As mentioned in Section 6.6 the proposed algorithm does not employ any
fault detection mechanism, where monitoring, isolation, and diagnosis are dealt
with accordingly. The algorithm presumes that it is enabled during all process
operating conditions. As such, the pre-processing procedure performed using
KPCA, and GP-LVM to extract the scores of the data is conducted in both
statuses: normal (healthy) and faulty conditions of the process. For this reason
Section 6.7.1 is dedicated to empirically show and demonstrate that during normal
operating conditions of the process, the prediction accuracy and the controller
performance achieved using the KPCA scores in the GP-KPCA-ICS are virtually
the same as those achieved using the original data in GP-ICS. However, scores
extracted using GP-LVM are not performing as accurately.

The behaviour of the process when the most influential variable (T1) is faulty
is investigated at three di�erent operation conditions that include steady state,
set point tracking, and disturbance rejection as detailed in Section 6.7.2.

In the real process, the target variable is available every 90 minutes. However,
for qualitative comparison purposes, it is plotted continuously so that it can be
compared to the continuous soft sensor predictions.

6.7.1 Normally Operating Process

This evaluation case is to establish that the use of the KPCA , and GP-LVM scores
extracted from the original data results in the same performance as achieved using
the original data. As a result, there is no need to perform any fault detection
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procedure that detects when to enable KPCA or GP-LVM, and when to disable
it. This allows a continuous use of the KPCA or GP-LVM as a pre-processing
during all process concepts. This precondition is explored and results are reported
in Figures 6.9(a), 6.9(b), 6.9(c), and Table 6.2:

Table 6.2: Quantitative comparison between GP-ICS and GP-KPCA-ICS during normal pro-
cess condition.

Controller MSE R RV TP RT ST OP SSE

GP 0.7663 0.9892 0.9757 8.66e-8 117.63 11.49 4.07e-5
GP-KPCA 0.6341 0.9909 0.9801 1.77e-7 120.64 11.54 8.16e-5
GP-LVM 3.2298 0.8841 0.9087 4.5091e-04 126.0652 15.4625 0.0012
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(a) GP- ICS without KPCA
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(b) GP- ICS with KPCA
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(c) GP- ICS with LVM

Fig. 6.9: Comparison between GP-ICS, GP-KPCA-ICS , and GP-LVM-ICS - Normal Condi-
tions

The results reported in Figure 6.9 and in Table 6.2 validate and demonstrate
that the use of the KPCA scores is as su�cient as the use of the original data.
As a result, employing the GP-KPCA-ICS controller during the normal operat-
ing conditions of the process does not deteriorate controller performance, rather
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it performs comparatively and slightly better than the GP-ICS. Consequently,
the GP-ICS performance can be maintained, the need to detect system failures
is eliminated, and the KPCA can be continuously deployed during all process
operating conditions. Nonetheless, it is noticeable that the inferential control
system employing GP-LVM is not performing as accurately, and the confidence
intervals associated with the model predictions are higher. For this reason, GP-
LVM-ICS is expected to fail to minimize the e�ect of hardware sensor faults as
demonstrated next.

6.7.2 Fault Conditions

As described in Section 6.3, T1 is used for controlling the process. It was for this
reason that T1 was chosen to be simulated as the faulty variable, as a failure in
T1 depicts the worst-case scenario. Failure in T1 was simulated during three op-
erating conditions of the process. These are steady state, set point tracking, and
disturbance rejection. Qualitative and quantitative comparisons were conducted
between the performance achieved by the GP-ICS controller, which utilises the
raw data, and the performance achieved by GP-KPCA-ICS and GP-LVM-ICS,
which utilise scores extracted from the raw data.

Steady State

Figures 6.10(a) and 6.10(b) show the behaviour of the processes when the failure
first occurred and how the controller systems responded to the failure. It is
generally expected - in all modes of operation - that the controller has the worst
performance when a failure first occurs as the soft sensor is not yet adapted and
trained on the failure condition, consequently the soft sensor prediction accuracy
significantly deteriorates, which severely a�ects the controller performance.

Table 6.3: Quantitative comparison between GP-ICS and GP-KPCA-ICS during the steady-
state condition.

Controller MSE R RV TP RT ST OP SSE

GP 830.8 0.2377 -0.2369 0.1238 128.13 53.22 0.3292
GP-KPCA 825.7 0.2983 -0.0816 0.1088 128.12 36.33 0.0569
GP-LVM 1.1694e+03 0.1823 -4.3909 0.0025 136.92 44.24 28.6677

Comparing the figures, it is noticeable, as indicated in Figure 6.10(b), that
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(a) GP- ICS without KPCA - Steady State
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(b) GP- ICS with KPCA - Steady State
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(c) GP- ICS with LVM - Steady State

Fig. 6.10: Comparison between GP-ICS, GP-KPCA-ICS, and GP-LVM-ICS during Steady
State

the GP-KPCA-ICS minimised the e�ect of the failure such that the system has
a shorter rising time and a lower overshoot percentage, which can be seen by the
smoother response depicted in panel 6.10(b). This allowed the process to settle
earlier and with a smaller steady-state error than the process controlled by the
GP-ICS as shown in Figure 6.10(a) and empirically reported in Table 6.3.

The achieved performance could not be replicated by the GP-LVM-ICS as
shown in Figure 6.10(c) where the predictions of the soft sensor are noticeable
inaccurate and thus the controller failed to meet the design requirements in terms
of closed loop stability and robustness against fluctuations as indicated by the
steady state error.

Figure 6.10(b) and Table 6.3 reveal GP-ICS and GP-KPCA-ICS have virtually
the same settling time; however, the soft sensor trained by the KPCA scores
slightly outperforms the sensor trained using the raw data as indicated by the
MSE, R, and RVTP. In addition, Figure 6.10(b) reveals that the process has
settled even before the failure is fixed, which is not the case in Figure 6.10(a).
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This is due to the more accurate predictions fed back to the GP-KPCA-ICS than
those fed back to the GP-ICS. As a result GP-KPCA-ICS has a shorter rising
time, a lower overshoot percentage, and a lower steady-state error as can also
be observed in Table 6.3. Conversely, the GP-LVM-ICS has a higher overshoot
percentage as a consequence of the simulated fault, and has a significantly higher
steady state error that indicates the system’s inability to stabilise the process at
the desired set point.

Setpoint Tracking

This is to investigate how inferential control systems precisely track a set point
change once a failure occurs. The results reported in Figures 6.11(a), 6.11(b),
6.11(c), and Table 6.4 detail the systems’ behaviour at two di�erent set points,
40% and 80%. The GP-KPCA-ICS settled the process more quickly (as indicated
by the settling time) and more accurately (as indicated by the steady-state error)
than the GP-ICS and the GP-LVM-ICS.
Table 6.4: Quantitative comparison between GP-ICS, GP-KPCA-ICS, and GP-LVM-ICS
during the setpoint tracking condition.

Controller MSE R RV TP RT ST OP SSE

GP 2.0844 0.8977 0.7890 8.28e+4 6.21e+5 1.37e-5 0.0234
GP-KPCA 0.1444 0.9879 0.9686 4.86e+3 5.34e+5 0.52e-6 1.33e-6
GP-KPCA 1.9e+03 0.1541 -1.7822 1.5e+04 8.3e+05 40.19 23.83

Disturbance Rejection

This section describes the robustness of both systems against an extreme scenario
simulated as an input disturbance introduced immediately after a failure occurred
and before the systems adapted to the failure.

It is clearly noticeable that the GP-KPCA-ICS alleviated the e�ect of the
failure (as demonstrated by Figure 6.12(b)) such that it attenuated the magnitude
of the disturbance and prevented the process from extreme overshoots as is the
case with both GP-ICS and GP-LVM-ICS depicted in Figures 6.12(a), and 6.12(c)
and indicated by the overshoot percentages reported in Table 6.5.

This robust behaviour of the GP-KPCA-ICS is a result of the prediction
accuracy of the employed soft sensor used as the feedback element as reported by
the MSE, R, and RVTP in Table 6.5.
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(a) GP- ICS without KPCA - Setpoint Tracking
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(b) GP- ICS with KPCA - Setpoint Tracking
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Fig. 6.11: Comparison between GP-ICS, GP-KPCA-ICS, and GP-LVM-ICS during Setpoint
Tracking

Table 6.5: Quantitative comparison between GP-ICS and GP-KPCA-ICS during the distur-
bance rejection condition.

Controller MSE R RV TP RT ST OP SSE

GP 307.37 0.1802 -0.339 0.1532 159.10 61.31 0.3495
GP-KPCA 41.49 0.4763 0.0513 0.3578 160.57 26.68 4.52e-4
GP-LVM 1.05e+03 0.0867 -3.798 9.683 119.7 83.75 29.39

6.7.3 Analysis

The quantitative and qualitative results detailed above assert the validity, relia-
bility, and robustness of performing model identification procedures in the feature
subspace mapped using KPCA during both extreme error-in-variable (faulty) and
standard process (healthy) conditions.

During normal operating conditions, performing model identification in the
projected input-output data using KPCA preserved the system’s overall perfor-
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Fig. 6.12: Comparison between GP-ICS, GP-KPCA-ICS, and GP-LVM-ICS during Distur-
bance Rejection

mance achieved using the original input-output data. However, the empirical
results reported in Table 6.2 indicate that the use of the projected data intro-
duced longer rising and settling times; nevertheless, the process is stabilised with
a lower steady-state error. It is noteworthy that mapping the data using GP-
LMVM does not produce similar results as those achieved using KPCA.

The results also reveal the advantages of performing the model identifica-
tion procedure in the projected data subspace where scores of the projected data
summarised the informativeness of the raw data una�ected by the faulty measure-
ments contained therein. This is due to the numerical reliability of the subspace
model identification [147] performed by the KPCA. In addition, as argued in
[148] properly extracting features can reduce the e�ect of noise and eliminate
redundant information in the data that is irrelevant to the task the data is used
for.

In contrast, scores retrieved using GP-LVM were strongly correlated that dete-
riorated the soft sensor prediction accuracy, and consequently the ICS employing
the GP-LVM failed to meet the control system design requirements detailed in
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6.2.5.
The Gaussian process soft sensor identification and validation in the KPCA

feature subspace resulted in more accurate predictions, observed in the three fail-
ure conditions explored, which always caused the GP-KPLS-ICS control system
to have a lower steady-state error than the GP-ICS despite the fact that this
is often achieved at the expense of a longer settling time as noticed during the
disturbance rejection validation case.

The GP-KPCA-ICS system has a considerably smoother response to the T1
simulated failure than the GP-ICS system. This is observed in the three failure
conditions simulated as visually demonstrated in all plots reported. That can be
explained by the reduced correlation and increased informativeness attained from
the data extracted KPCA scores.

A fundamental issue with data generated under closed loop conditions is the
high level of correlation between noise and process measurements [149]. Min-
imising the correlation in the input-output data matrix achieved by the subspace
projection matrix (scores) allowed for a better-conditioned covariance matrix used
by the Gaussian process soft sensor to predict the feedback signal. This, in turn,
gave rise to more accurate predictions achieved by the hybridised model (GP and
KPCA). Providing the controller more accurate predictions essentially influenced
the control system’s overall performance; therefore, GP-KPLS-ICS alleviated the
e�ect of T1 failures, had a smoother response, and consequently settled the pro-
cess more accurately and in a virtually similar time as the GP-ICS system.

6.8 Summary

This chapter introduces and explores the applicability of Gaussian process-based
soft sensors in closed loop PI controllers and the reliability and robustness of
the constructed control system, which is examined and enhanced using a hybrid
method. The suggested algorithms are validated on a simulated chemical reactor
process to control the concentration of a particular component inside the reactor,
which is designated the reactor quality index.

The first part of the chapter looks into utilising the developed Gaussian pro-
cess soft sensor in the previous chapters and explores its practicality in building
inferential control systems. The proposed data-driven Gaussian process infer-
ential control system is benchmarked and compared to ANN and KPLS-based
inferential controllers, where the two systems employ ANN and KPLS soft sen-
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sors, respectively. In addition, the suggested system is compared to an ideal
optimal controller that mimics an unrealistic situation in which the target vari-
able (concentration) was assumed to be continuously measured. As such, the
optimal controller utilises continuously observed measurements acquired every
minute from the process simulator.

Empirical results show that the proposed system accomplishes the task of
predicting and controlling the target variable and outperforms the benchmarking
systems, particularly the ANN inferential controller. The GP-ICS performs as
accurately as the ideal controller in all tests including disturbance rejection and
set point tracking tests.

The second part of the chapter explores the reliability of the GP-ICS, as it is
data-driven and process variable dependent. Process variables are susceptible to
failures for di�erent reasons, and such failures can significantly a�ect the predic-
tion accuracy of the Gaussian process sensor employed as the feedback element
of the control system.

This scenario is mitigated by projecting the input-output raw data into a new
subspace using Kernel PCA and performing model identification and validation
in the new data subspace. In other words, using the KPCA scores as Gaussian
process soft sensor inputs instead of using the raw data. For comparison and
evaluation purposes, mapping the data to the feature space was performed us-
ing GP-LVM and another inferential control system was built that employ this
pre-processing step, however, the GP-LVM mapping resulted to very strongly
correlated scores that in consequence a�ected the soft sensor prediction capabil-
ity. This in turn caused the control system failure to stabilize the process timely
and accurately.

The proposed readability-enhancing techniques are validated on a worst-case
scenario where the sensor of the manipulated variable (T1) is simulated as a faulty
sensor during various process operation conditions. Empirical results show that
not only can the GP-KPCA-ICS proposed system minimise the failure e�ects,
but can also maintain and preserve controller performance during the normal
operating conditions of the process. This eliminated the need to perform fault
detection procedures and allowed the continuous deployment of the system during
all process conditions.
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Chapter 7

Conclusions

7.1 Research Summary
Data-driven soft sensors are gaining wide popularity as they o�er valuable solu-
tions to problems associated with their hardware counterparts. This is attained at
low costs, less time, and with e�cient use of resources. In addition, they are con-
sidered valuable alternatives to the first principle models due to the complexity
and di�culty of development associated with the latter.

The Gaussian process is emerging as a promising soft sensor modelling tech-
nique that retains a relatively easy implementation and o�ers a comparatively
simpler model identification. Despite this, the use of Gaussian processes in the
soft sensor domain is hindered, its wide adoption is hampered, and its modelling
advantages are not well recognised.

This research targets the applicability of Gaussian processes in the soft sensor
domain. It explores their practicality in industrial applications and investigates
their appropriateness in critical chemical processes.

This research first outlines the central role of data-driven soft sensors, par-
ticularly in chemical processes. It reviews and critically analyses conventional
soft sensor building procedures. It pinpoints some current shortcomings and em-
phasises the importance of a systematic integration of expert knowledge into soft
sensor building procedures.

The research steps through the stages of building soft sensors and sheds light
on the data pre-processing phase where it brings into focus some of the draw-
backs involved. Specifically, it underlines the overlooked importance of iteratively
identifying time lags and influential input process variables rather than approach-
ing the two steps separately. In extreme cases, identifying time lags is entirely
omitted or is not reported.
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Conclusions

Most importantly, the critical review synthesises the first stage of the research
and reveals that Gaussian processes are not well investigated in the soft sensor
domain, and are not thoroughly assessed in terms of their applicability, appropri-
ateness, and practicality in developing adaptive soft sensors tasked with online
predictions. In addition, the research points out the scarcity of publications in
this area compared to multivariate statistics and neural networks as soft sen-
sor modelling techniques when very recently Gaussian process-based soft sensor
publications began to appear.

Being moderately simple, Gaussian processes are increasingly adopted within
the machine-learning community as a powerful modelling technique. The simplic-
ity of implementation, which does not sacrifice any prediction accuracy, is one
of the virtues of Gaussian processes and among their strongest properties that
distinguish them from other machine-learning modelling techniques. Despite this
simplicity in model structure selection, soft sensor developers tend to use one
widely used and extensively reported model structure: the squared exponential
covariance function and its associated hyper parameters. The structure is utilised
as a default model that presumes smoothness in the underlying function that is
often not realistic in data retrieved from industrial processes.

Therefore, the research looks into Gaussian process model identification and
structure selection. It conducts a thorough comparative study between the pre-
dominantly used squared exponential and the Mate�n class covariance functions.
The study utilises di�erent data sets and uses various evaluation criteria that al-
low a rigorous assessment of the two functions. The study explored the properties
of these two functions and assessed their e�ects on the prediction accuracy of the
models, adopting each of the functions. Empirical results reveal that under the
condition of clean de-noised and properly pre-processed data, the Mate�n class
outperforms the widely accepted squared exponential. In addition, the Mate�n
class performs at least as accurately as the squared exponential in noisy data.
The study concluded that in the case of insu�cient phenomenological knowledge
that recommends otherwise, the Mate�n class should be selected instead.

Adaptability is the property that distinguished soft sensors from their first
generation and enhanced their central role in a variety of applications. For this,
the research investigates building adaptive Gaussian process soft sensors based
on instance selection techniques (windowing). The rationale behind this investi-
gation is to suggest a strategy that maximises the informativeness of the block
of instances selected, which reflects the predictive capability of the model. This
is attained by introducing a new dimension (parameter) that determines the up-
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dating criteria adopted to include new data points and exclude irrelevant points
to the current process concept.

Three di�erent updating strategies are compared to the conventional strategy.
The latter assumes that the time stamp (age) of the data point determines the
relevancy of the point to the process concept. Nevertheless, in most of the data
sets reviewed, the Mahalanobis distance strategy is found to be more adequate
than the rest of the strategies including the prediction variance of the GP model.
As a result, the research summarises that the window-updating strategy should
be considered along with the commonly optimised parameters: window and step
sizes.

Striving towards minimising the window size, and preserving the informative-
ness obtained in the previous research stage, this research proposes a clustering
and filtering technique capable of extracting a data subset that is predictively as
informative as the original data. This significantly compresses the data size, con-
siderably reduces computational time, and (most importantly) allows deploying
the GP soft sensor in predicting high sampling rate target variables continuously,
reliably, and accurately.

An example of such an application is a data-driven inferential control, where a
data-driven soft sensor is utilised as a feedback element integrated with an appro-
priate controller. Harnessing the results in the previous stages of the research, the
research explores the applicability of Gaussian process soft sensors in this control
domain. It first proposes a GP soft sensor that feeds the predictions back to a
PI controller to build a Gaussian process inferential control system (GP-ICS).

The control system is tested and validated on controlling the concentration
of a chemical product inside a simulated chemical reactor process. The system is
further evaluated by benchmarking it against ANN and KPLS inferential control
systems. Empirical results show a superiority in the GP-ICS performance that
primarily stems from the predictive capability of the GP soft sensor.

Because data-driven inferential control systems exploit hardware sensor mea-
surements to make predictions and to manipulate process variables accordingly,
the reliability of the inferential control system is entirely dependent on these
measurements. Based on that, the research further investigates the reliability
and robustness of the proposed control system. Specifically, it proposes a miti-
gation procedure that seeks to preserve control system performance in cases of
hardware sensor failures, particularity, failures occurring in sensors measuring the
manipulated variable.

This is attained through a subspace identification based method, where KPCA
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is utilised to project the input-output data into a new subspace where the model
identification and validation is performed. This allows minimisation of the e�ects
of the failure and quick recovery of the functionality of the control system. This
is achieved by training and validating the GP soft sensor using the KPCA scores
instead of the raw data that contain faulty measurements. The suggested strategy
is tested using the chemical reactor process previously introduced and is further
compared to a control system that does not employ the proposed method. The
results demonstrate the plausibility and the e�ectiveness of the suggested miti-
gation procedure where the e�ects of the failure is considerably minimised and
the control system reliability is e�ciently preserved.

7.2 Summary Research Contributions
This section describes the main research contributions and the achieved set of
goals that answered the research questions raised during the research.

7.2.1 GP Model Structure Selection

Chapter 4 addressed Gaussian process soft sensor model identification and model
structure selection. The maximal information coe�cient (MIC) was employed
to conduct various data analyses that included identifying influential input vari-
ables. The MIC criteria, which indicate linear and nonlinear complex relation-
ships among the data being analysed, was not reported in the soft sensor literature
previously. Previous analysis reported in the soft sensor literature mainly focused
on utilising the Pearson correlation coe�cient.

Gaussian process model structure was the central theme in chapter 4, where
the research contributed by putting forward the use of the Matérn covariance
function instead of the squared exponential. This, as per the research results,
ensures that the soft sensor model adopting the Matérn covariance performs at
least as accurately as adopting the squared exponential. This contributed towards
enhancing soft sensor prediction accuracy particularly in clean data sets.

7.2.2 Adaptability and Computational Time

Chapter 5 investigated a critical attribute in data-driven soft sensor models: adap-
tivity based on instance selection. The contribution in this area is the introduc-
tion of various criteria (other than the time stamp of the data point) that can be
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considered for updating the window containing the selected instances (observa-
tions). Window updating criteria is a third parameter that the research suggests
for optimising soft sensor model identification procedures.

Being a non-parametric model, the training data of the Gaussian process soft
sensor is a part of the model that is required during prediction time. The size of
the data can be a bottleneck to employing the soft sensor for online predicting
applications due to the required memory and the necessary computational time.
Chapter 5 contributed in this area by proposing a data filter that retains the
informativeness of the data, while simultaneously significantly reducing its size.

7.2.3 GP in Inferential Control Systems

Chapter 6 explored the application of predicting high sample rate target variables
and controlling them accordingly. The main contribution of the chapter is the
introduction of Gaussian process-based soft sensors in building inferential control
systems, in addition to demonstrating their superior performance over ANN and
KPLS inferential control systems. This facilitated a more accurate, stable control
over the controlled process by using a model that is easier to identify, select, and
implement, the Gaussian process soft sensor model.

This chapter further contributed by addressing critical scenarios, such as a
failure in the controller-manipulated variable. This is obtained by considering
subspace model identification. Such a contribution enables a more robust and re-
liable operation of the inferential control system than feeding raw data possessing
faulty measurements.

7.3 Research Limitations
This research conducted five di�erent studies that su�er from several limitations.
The Gaussian process model selection study relied mainly on data sets retrieved
from continuous processes where fewer data set were retrieved from batch pro-
cesses. The latter type of processes as outlined in Section 2.2 are characteristically
and dynamically di�erent from continuous processes. Consequently, this may cast
a minor doubt on the validity of data representativeness and the generalisation
of the conclusions drawn.

More batch process data allow more generalisable results for both types of
processes. The issue of data representativeness is due to the di�culty of retrieving
batch process data sets for knowledge protection and confidentiality reasons.
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The time constraints and lack of the immediate expert knowledge necessi-
tated conducting all experiments based on empirical conclusions without the in-
corporation of phenomenological views, particularly those needed during the data
pre-processing phase (e.g., time lag identification).

7.4 Open Issues
The research results demonstrated the e�ectiveness of Gaussian processes as soft
sensor building techniques and have shown their promising practicality and appli-
cability in industrial processes. However, there are some potential improvements
in the soft sensor domain, in general, and in GP-based models in particular.

• Data reconciliation for soft sensor development:
Chemical process data inherently contains random or/and systematic mea-
surement errors, and the objective of data reconciliation is to correct and
adjust these measurements to satisfy balance equations. It is argued in
[24] that resolving these small measurement errors results in a consider-
able improvement in overall process performance and economy. Based on
this, soft sensors could be developed using not only pre-processed data, but
also reconciled data. Such a research direction may enhance the value of
data-driven soft sensors.

• Enhance model transparency and improving prediction accuracy:
Model transparency is of substantial importance in industrial processes, as
it supports the decision making process. In the Gaussian process-based soft
sensor context, such a research direction can be assisted by the automatic
selection of composite components of covariance functions, where each com-
ponent can capture a particular process concept or trend. These separate
components convert the GP model into a more transparent one via di�erent
local covariance functions.

• Model adaptivity and computation complexity:
The training data and the set of the covariance function hyper parameters
are the two elements comprising a Gaussian process model. For this reason,
GP model adaptation should be considered at di�erent levels (local and
global). While the local level involves adding data points into the model,
the global level involves re-optimisation of the hyper parameters once a data
point is added. Rather than re-optimising at every added point, a threshold
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should be considered to trigger the adaptation. In addition, the threshold
should be utilised such that the global adaption is carried out rigorously
and based on the data and the process. This stems from the fact that a re-
optimisation of a set of hyper parameters during steady-state status is not
as important as a re-optimisation during a change in the process dynamics.

• Exploiting GP Prior:
Because GP is a way of defining a prior over functions, expert knowledge
can be incorporated into the GP prior. This property of Gaussian processes
should be fully utilised in the soft sensor domain, where expert knowledge
plays a central role at all levels in all soft sensor design phases. Although
this research was conducted in an industrial environment, the unavailability
of expert domain knowledge and the associated cost of achieving it were the
two main limitations that burdened this research direction.

This is a potential future direction for additional research, as the lack of an
appropriate incorporation procedure is one of the shortcomings identified
in the review conducted in this research.

• Robust GP for outlying observations:
Outliers are a typical issue in most datasets retrieved from industrial pro-
cesses, and they are usually addressed in the data pre-processing phase of
soft sensor development. Because of the masking and swamping issues that
an outlier detection mechanism may encounter, pre-processed data may still
contain outlying observations. In GP modelling, a single outlying observa-
tion influences the function modelled by the rest of the observations due
to the Gaussian assumption of the observation model (likelihood). This is
referred to as outlier rejection and is dealt with by replacing the Gaussian
assumption with a Student’s-t distribution. However, it is another potential
research direction as in the soft sensor domain it may eliminate the need to
perform some data pre-processing steps, such as dealing with missing values
and outlying observations. The result of this future work could be a soft
sensor model with more accurate and more robust predictive capabilities.
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ADALINE Adaptive Linear Letwork. 34

ANN Artificial Neural Networks. 23, 25, 29, 34, 35, 37, 45, 91–93, 98–100, 111

ANN-ICS ANN Inferential Control System. 92, 93, 97, 99, 100

BCM Bayesian Committee Machine. 46

BIC Bayesian Information Criterion. 25

CDU Crude Distillation Unit. 29

CN Condition Number. 59

DCS Distributed Control System. 29

DDPC Data-Driven Direct Predictive Control. 32

DPLS Dynamic Partial Least Square. 33, 34

EKF Extended Kalman Filter. 34

EM Expectation-Maximization. 19

FF Fitness Function. 59

FFNN Feed Forward Neural Network. 34

FGP Full Gaussian Process. 87, 88

FNN False Nearest Neighbour. 24

FPM First Principle Models. 2, 11, 24
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GP-KPLS-ICS GP-KPLS Inferential Control System. 102, 105–110

GPs Gaussian processes. 3, 4, 25, 28, 35, 38, 41–46, 48, 78–80, 83

I-CS Ideal Control System. 97, 99, 100

IANN Iteratively Adjusted Neural Network. 16

ICA Independent Component Analysis. 30, 37

IVDS Input Variable and Delay Selection. 17, 18

KPCA Kernel Principle Component Analysis. 37, 102, 103, 105, 106, 108, 110,
111

KPLS Kernel Partial Least Square. 91, 92, 94, 98, 99, 111

KPLS-ICS KPLS Inferential Control System. 92, 97, 98, 100

LM Levenberg Marquardt. 34, 93

LS-SVM Least Square-Support Vector Machine. 22

LV Latent Variable. 31

MC Matérn Class. 5, 40, 60, 61, 63–68

MCC Midcourse Correction. 33

MI Mutual Information. 18, 19, 52

MIC Maximal Information Coe�cient. 17, 18, 52, 97

MICA Multivariate Independent Component Analysis. 30

MIMO Multiple Input Multiple Output. 38

MINE Maximal Information Nonparametric Exploration. 52, 97

MISO Multiple Input Single Output. 24, 38
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MPC Model Predictive Control. 31–33
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MSE Mean Squared Error. 16, 17, 26, 27, 59, 93, 95, 98, 109

OLS Ordinary Least Squares. 23

OP Overshoot Percentage. 59, 98

PCA Principle Component Analysis. 17, 23, 24, 30, 31, 37, 42, 102

PCR Principle Component Regression. 25, 35, 37

PI Proportional Integral. 33, 34, 91–93, 95, 96, 102, 111

PID Proportional Integral Derivative. 33, 34, 95

PIMS Process Information Management System. 18

PLS Partial Least Square. 17, 23–25, 29–32, 35, 37, 95

R Correlation. 59, 98, 109

RBF Radial Basis Functions. 31

RD-DPLS Reduced Order Partial Least Square. 34

RMS Randomly Missing Spectra. 20

RMSE Relative Mean Squared Error. 26, 27

RMV Randomly Missing Values. 20

RNN Recurrent Neural Networks. 34

RT Rising Time. 59, 98

RVTP Relevance Variance Tracking Precision. 17, 27, 59, 93, 95, 98, 109

SDD Steady-State Detection. 14

SE Squared Exponential. 40, 41, 60, 61, 63, 65–67
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SMV Systematically Missing Value. 20

SPC Statistical Processes Control. 33

SPE Squared Prediction Error. 22

SPGP Pseudo-Inputs Approximation Technique. 83–86

SSE Steady State Error. 59, 98

ST Settling Time. 59, 98

SVM Support Vector Machine. 29, 45
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Notations

R real numbers.
� vector of Gaussian process model hyperpa-

rameters.
xú row vector of test input data.
yú test instance of the target variable.
L the marginal likelihood of the Gaussian pro-

cess model.
n number of elements in a vector/matrix.
f a set of random variables.
x mean function.
k(x, xÕ) covariance function of a pair of inputs.
x

t

a data point at time t.
(x, xÕ) pair input vectors.
K covariance matrix.
GP Gaussian process.
‡2

f

variance of the modeled function.
d dimension of a vector.
l characteristic length scale.
l
d

characteristic length scale of dimension d.
�(.) Gamma function.
k

v

Modified Bessel function.
‡2

error

variance of prediction error.
|K| determinant of the covariance matrix K.
K≠1 inverse of the covariance matrix K.
yT transpose of the target variable y.
LD predictive density error.
I identity matrix.
k

ı

test and training covariance matrix.
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k
ıı

test inputs covariance matrix (variance).
‡2

n

noise variance.
x̄ mean of the vector x.
‡2

measurement

variance of observed target variable.
‡ standard deviation.
D

sub

subset of data D.
D

mah

mahalanobis distance.
min

xœC

i

,x

ÕœC

j

minimum distance between the point x and xÕ

in clusters C
i

and C
j

.
N data size.
u(t) control signal.
k

p

, k
i

proportional and the integral parameters.
–k = (–1, ...–

n

)T vector of eigenvectors.
⁄k eigenvalue of the kth eigenvectors.
y

i

The ith data instance of the observed target
variable.

ŷ
i

The ith data instance of the predicted target
variable.

x
i

Row vector of the ith data instance of the in-
put data.

X Matrix of input data.
y Column vector of the target variable.
D data set.
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