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Abstract

Glasses are amorphous materials which do not exhibit the long-range

order or periodicity found in crystalline solids. A glass is formed by

cooling a liquid at a sufficient rate such that crystallisation can be

avoided. The structural disorder of glasses give them unique proper-

ties which make them suitable for a wide range of industrial, pharma-

ceutical or biological applications. Glass-forming materials generally

exhibit several characteristic mechanisms of molecular motion. The

physical origins and interrelation between these mechanisms are not

well understood. In order to address this, detailed investigations of

how glass-transition related dynamics are affected by systematic mod-

ification of the molecular structure are needed.

This thesis concerns the measurement of the glass-forming properties

of three series of molecular glass-formers. These series are comprised

of samples which vary systematically in their structure: an alkylben-

zene series involving the systematic variation of the length of an alkyl-

tail attached to a phenyl-ring and two series involving the successive

oligomerisation of styrene and α-methylstyrene. The glass forming

properties of these series were analysed using Broadband Dielectric

Spectroscopy (BDS) and Differential Scanning Calorimetry (DSC).

Thermogravimetric Analysis was also employed in order to optimise

the sample preparation procedure.

The work in this thesis identifies and characterises the detailed molec-

ular weight dependent behaviour of several key relaxation mechanisms

in the glassy and supercooled state of three different glass-forming sys-

tems. Strong similarities between the relaxation behaviour of the two

polymeric and the alkyl chain modified benzene series were found.

This demonstrates that much of the observed phenomenology is re-

markably general and the work forms a basis for developments of

models to address the glass-transition and glassy behaviour. More-

over, it is demonstrated that the glass transition in the three different

series of samples behave in a highly similar manner with regards to

the system molecular weight and strong support is found for a link

between the primary structural relaxation that exists in the super-

cooled state and the secondary relaxation mechanisms that persist

within the glassy state.
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Chapter 1

Phenomenology of glass

1.1 Introduction: What is a glass?

There are three well-defined thermodynamic states of matter: gas, liquid and

solid. One way in which materials can traverse these different states is as a

result of a change in temperature. If a gas is cooled below its boiling point, Tb,

a first order thermodynamic phase transition is encountered, characterised by a

significant release of energy and a large discontinuous change in the density; the

gas becomes a liquid. As a result of the change in density, the constituent particles

of the liquid are far more closely packed than they were in the gaseous state. This

means that, although they still have enough energy to move, the characteristic

timescales of their motion increase. As a liquid is cooled, these timescales continue

to increase. If the rate of cooling is slower than the timescales of motion for the

particles then another thermodynamic phase transition is found at the melting

temperature, Tm. At this phase transition the material again releases a significant

amount of energy and the constituent particles become fixed in regular positions

relating to a minimum in the free energy and the liquid becomes a crystalline

solid, characterised by long range order and periodicity. If, however, a liquid is

cooled at a sufficiently fast rate past Tm then crystallisation might be avoided.

The now supercooled liquid exhibits a dramatic increase in the viscosity upon

further cooling. At some point, the constituent molecules of the supercooled

liquid rearrange on such slow timescales that they cannot find their equilibrium

positions with further reduction of the temperature. Eventually the supercooled

1



1. PHENOMENOLOGY OF GLASS

liquid falls out of equilibrium on experimental timescales [1]. Dynamic arrest is

observed and the liquid becomes an amorphous solid-like material: a glass. The

temperature at which dynamic arrest is observed is termed the glass transition

temperature, Tg.

Glasses are ubiquitous in industrial and artistic production and the methods

required to form a glass have been known for thousands of years. The earliest

recorded example of a pure glass is an ancient Egyptian moulded amulet which

dates back as far as 7000 B.C. [2, 3]. Glass production in ancient Egypt varied

from the accidental to the controlled. In 1500 B.C. it is thought that the ancient

Egyptians had a regularised production routine for the creation of glass vessels.

Such production required in-depth knowledge of the high temperature properties

of the glass forming materials used [4].

We find a wide variety of amorphous materials or glasses in modern day

society. If you were to pose the question ”what is a glass?” to someone, they would

likely list a number of examples of glasses such as windows, containers, spectacle

lenses and television screens. These examples are typically made by supercooling

a molten mixture of, amongst other things, silica, limestone and sodium carbonate

[5]. However, there are many other examples of manufactured products made of

amorphous materials and new applications are still being discovered [2]. For

example the glass transition is thought to be a key issue in the preservation of

food [6] and has far reaching implications for the pharmaceutical industry [7, 8].

The humble STYROFOAMTM cup for example is an amorphous extruded

polystyrene foam. Atactic polystyrene is particularly interesting since, due to

its lack of steric order almost always forms a glass upon cooling rather than a

crystalline solid. Metals, which are highly likely to form crystals upon cooling,

can also form glasses if supercooled at a sufficient rate [9]. In fact it can be

stated that any liquid would be able to form a glass, if cooled fast enough to

avoid crystallisation [2, 10].

Although the method of how to create a glass is well known, this knowledge

is based purely on the empirical observation of the behaviour of supercooled

liquids. The question of what properties in a material control the dynamic arrest

behaviour does not presently have a definitive answer and remains an important

area of study in modern physics [1, 2, 11–13].
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1.2 The experimental glass transition

Glass formers generally exhibit several molecular relaxation mechanisms (usu-

ally designated using Greek letters: α, β, γ, δ et.c.) which characterise their be-

haviour. The slowest relaxation mode, the structural α relaxation process, in-

volves long range collective motions of the constituent molecules and the rapid

increase of the timescale on which this process acts is used to characterise the

transition to an amorphous glassy state. Glass formers also exhibit secondary

relaxations which occur on faster timescales than that of the α relaxation. At the

glass transition, a supercooled liquid falls out of equilibrium and the α relaxation

is effectively frozen on experimental timescales. In this regime, the secondary

modes of molecular motion become more important. Although there is no consen-

sus on the physical nature of the molecular motions involved in these secondary

modes, they have been shown to be important in many different systems and

applications [9].

Sugar-based glassy matrices can be used to stabilise proteins or preserve pro-

teins for instance in biotechnology or medical applications. It has been shown that

the stability of these proteins is directly linked to the timescale of the secondary

β relaxation in such systems [14]. Furthermore the β relaxation may prove to

be important in controlling glassy ion transport properties used in polymer elec-

trolytes for battery applications. On a more fundamental level, the temperature

dependence of the timescale of the β relaxation has been directly related to Tg

for a number of different molecular glasses and also metallic glasses and has been

suggested as a precursor to the α relaxation [9, 15]. Therefore the understanding

of the nature of secondary relaxation processes is of paramount importance and

may be the key to understanding the underlying physics of the glass transition.

The following sections serve as a brief introduction to the typical nomencla-

ture encountered when discussing the dynamics of supercooled liquids and the

characteristics of glass formation.

1.2 The experimental glass transition

A diagram depicting the behaviour of various thermodynamic quantities such

as the enthalpy, H, the entropy, S, and the specific volume V with decreasing

temperature at constant pressure is given in Figure 1.1. These properties are

3



1. PHENOMENOLOGY OF GLASS

V(T)

S(T)

H(T)

Temperature
Tg2 Tg1 Tm

liquid

supercooled liquid

TK

glass 1

glass 2

crystal

Figure 1.1: Diagram showing the variation of several thermodynamic proper-
ties (enthalpy, H; entropy, S; and the specific volume, V ) with decreasing tem-
perature at constant pressure. The red line indicates the behaviour of the liq-
uid/supercooled liquid. The black line indicates the behaviour of the crystalline
state, with the dashed black line indicating the discontinuity of H, S and V at
the melting point, Tm. The two blue lines indicated the behaviour of two glassy
states. Glass 1 is formed with a higher cooling rate than glass 2 and thus has
a higher glass transition temperature, Tg. The Kauzmann temperature [16],TK ,
indicates the point at which the supercooled liquid entropy would become lower
than that of the corresponding crystal. This so-called entropy crisis is explained
in the text.
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1.2 The experimental glass transition

all ’first order’ in the sense that they are obtained as first order derivatives of

the free energy and their temperature dependent behaviour in the liquid state

is denoted by the red line. Cooling a liquid thus sometimes results in a first-

order thermodynamic transition at the melting temperature, Tm. This results in

a discontinuous decrease in the thermodynamic parameters shown in the figure.

The material is now in the crystalline state, indicated by the black line in Figure

1.1. If the cooling rate is sufficiently fast, then crystallisation at Tm can be avoided

and the thermodynamic properties of the now supercooled liquid decrease at the

same rate below Tm as they did above Tm [1, 17].

Upon further cooling, the supercooled liquid exhibits a change in the temper-

ature dependence of H, S and V at a temperature where the material falls out

of thermodynamic equilibrium and becomes a glass at the glass transition tem-

perature, Tg. As these ‘first order’ thermodynamic quantities show continuity (as

opposed to discontinuity at the liquid to crystal transition, Tm) at Tg, the glass

transition can be said to resemble a second-order thermodynamic phase transi-

tion [2, 18]. However, a second-order transition of this type would also exhibit a

discontinuous change in the temperature derivative of H, S and V and this is not

the case. This is quantified by the specific heat capacity at constant pressure, Cp,

as will be described in Chapter 3. Moreover, Tg is not unique and is sensitive to

the cooling rate. The blue lines in Figure 1.1 denote the behaviour of two different

glasses where ‘glass 1’ has been formed with a faster cooling rate than ‘glass 2’

at glass transition temperatures Tg1 and Tg2 respectively. This suggests that the

observed glass transition is not a genuine thermodynamic phase transition and is

also coupled to the kinetics of the supercooled liquid.

The entropy of a material in the supercooled liquid state is significantly higher

that the entropy of the corresponding crystal state just below the melting point

[2]. However, as temperature is decreased the entropy of the supercooled liquid

decreases at a faster rate than that of the corresponding crystal. It follows that

at a certain temperature, the entropy of the supercooled liquid would become

lower than the entropy of the corresponding crystal, which is unphysical and

was termed an ‘entropy crisis’ by Kauzmann [16, 17, 19]. The temperature at

which this crisis occurs is known as the Kauzmann temperature, TK . In reality,

supercooled liquids exhibit a glass transition above TK and therefore the entropy

5



1. PHENOMENOLOGY OF GLASS

crisis is never realised. The idea has however motivated the idea of the possible

existence of an underlying true thermodynamic second-order phase transition

that would occur at TK [17] if experiments could be performed at slow enough

rates without interference from crystallization.

1.3 Dynamics of supercooled liquids

Supercooled liquids exhibit a significant increase in their shear viscosity, η with

decreasing temperature. In order to characterise this increase, we can consider

the relaxation mechanisms present in a supercooled molecular liquid. The α,

relaxation is the time-scale on which a particular disordered structure relaxes

and thus flow can take place. The temperature dependence of this structural

relaxation timescale, τα can be used in order to define the glass transition.

1.3.1 The structural relaxation

As a glass-forming system is cooled, the α relaxation involves an increasing num-

ber of collective molecular motions and thus the timescale on which this relaxation

take place, τα, increases. The increasingly cooperative nature of the α relaxation

as temperature is decreased also leads to an increase in the shear viscosity, η.

At a certain viscosity, the supercooled liquid will act ‘solid-like’ on experimen-

tal timescales [20]. The glass transition temperature, Tg, is often defined at

the temperature at which the shear viscosity, η, reaches values above 1013 Poise

[21]. Maxwell’s theory of viscoelasticity provides a relationship between η and τα

[2, 18, 22],

η = G∞τα, (1.1)

where, G∞ is the instantaneous shear modulus. If the glass transition is de-

fined at the point at which η = 1013 Poise, then this corresponds to a structural

relaxation timescale of around 100s. Although this definition of the glass transi-

tion is somewhat arbitrary, Tg values defined in this manner correspond well to

those defined from the variation of thermodynamic properties such as the heat

capacity.
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1.3 Dynamics of supercooled liquids

Molecular motions within a material can often be described as thermally

activated or Arrhenius processes with a fixed activation energy, EA [23]. The

timescale on which these molecular motions is thus simply related to the ratio of

the activation energy and thermal energy, as EA/kBT :

τ = τ0e
EA
kBT , (1.2)

where τ0 is the limiting timescale at infinite temperature and kB is the Boltz-

mann constant. Values of τ0 are usually comparable to typical microscopic

timescales of liquids at high temperature, between 10−12 and 10−14s [2, 24–26].

However, the timescale of the structural α relaxation often increases at a much

faster rate with decreasing temperature than that predicted by the Arrhenius

equation. This suggests that the mechanism of the structural relaxation process

in this case is not governed by a temperature independent energy barrier but

rather one which increases with decreasing temperature. The rapid change of τα

as the glass transition is approached is well described by the empirically derived

Vogel-Fulcher-Tammann equation [27–29],

τα = τ0e
DT0
T−T0 . (1.3)

Here, T0 is the temperature at which τα tends to infinity. D is the so-called

strength parameter and is a measure of the temperature dependence of τα.

The behaviour of the timescales of the α, β and γ relaxations in a so-called

Arrhenius plot (log10(τ) versus 1/T ) are shown in Figure 1.2a. The dashed line

indicates τα = 100s, the point at which Tg is often defined. The timescales for the

secondary relaxation processes generally follow an Arrhenius temperature depen-

dence in the glassy state, or in other words have a fixed gradient in an Arrhenius

plot. For some glass formers, the τβ data appear to cross the τα data implying a

relaxation bifurcation scenario [30], where a separation of the two relaxation pro-

cesses occurs. This occurs at a temperature, Tαβ (with a corresponding timescale,

ταβ) as marked in the figure.

It should be noted that although the VFT expression provides good descrip-

tion of the temperature dependence of τα at T < Tg, there are several examples

of experiments in which this description of τα breaks down in the highly viscous

7



1. PHENOMENOLOGY OF GLASS

Figure 1.2: a) Typical timescale behaviour of the α, β and γ relaxations. The
timescale at which the τβ data cross the τα data occurs at the so-called crossover
temperature, T ∗. b) VFT behaviour of τ with differing values of the strength
parameter, D.

regime above the empirically defined glass transition [2, 25, 31, 32]. However, for

the purposes of this research, in which values of τα will be considered at timescales

less than 100s, it provides a means through which the τα data can be accurately

described.

Dynamic Fragility

Different glass-formers vary in the behaviour of τα in the region close to Tg. The

departure from the fixed energy barrier behaviour suggested by the Arrhenius

equation is quantified by the D parameter in the VFT equation (Equation 1.3)

and this is most clearly observed in a Tg rescaled Arrhenius plot as shown in Figure

1.2b. The τα behaviour predicted by the VFT equation with differing values of

D as Tg is approached is shown in Figure 1.2b. It is clear from the figure that

glass-formers with smaller values of D have a stronger temperature dependence

of τα. This allows for the classification of glass-formers based on this temperature

dependence. Supercooled liquids with weaker temperature dependence of τα (high

D) are termed ‘strong’, whereas liquids with the greatest departure from this

behaviour are termed ‘fragile’.

Another metric for describing this behaviour is the fragility parameter, m,
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1.3 Dynamics of supercooled liquids

which is defined as the rate of change of log10τα at Tg, proposed by Angell [32].

m =
d(log10τα)

d(Tg
T

)

∣∣∣∣∣
T=Tg

(1.4)

Values of m are also shown in Figure 1.2b. If it is assumed that τ0 is 10−14 (a

typical microscopic timescale [2, 24–26]) then a value of m = 16 represents Arrhe-

nius behaviour of τα [2]. Strong glasses generally have low values of m, whereas

fragile glasses have much higher values of m. For example, the m value of toluene,

a typically fragile glass-former, is over 100 [33]. However it should be noted that

this definition of m does not necessarily imply a departure from Arrhenius be-

haviour. Indeed, one could imagine a situation in which the structural relaxation

timescale behaves in an Arrhenius manner (fixed gradient in an Arrhenius plot)

but is characterised by a large energy barrier. In this situation, the derivative

of the data at τ = 100s would be large, corresponding to a large m parameter

but also a low D parameter. In this sense it is perhaps more logical to describe

the temperature dependence of τα over the entire temperature range, rather than

considering the gradient of the VFT description at a fixed temperature.

Another method used in order to analyse the temperature dependence of

τα is to investigate whether τα(T ) behaves in a VFT-manner by linearizing the

relaxation time data using a derivative or so called Stickel [31] analysis of τα. We

introduce the quantity, Z, as follows:

Z =

(
dlogτα
d( 1

T
)

)− 1
2

=

(
loge1DT0

(T0

T
− 1)2

)− 1
2

. (1.5)

An example of such an analysis is shown for a molecular glass former, butyl-

benzene, in Figure 1.3a. The dashed horizontal line indicates Arrhenius behaviour

of τα and thus we can see that such a plot leads to yet another definition of the de-

parture from such behaviour. This is quantified by the gradient of the linearised

values, −S. The line interpolating the data is a result of the temperature deriva-

tive of the VFT fit to the τα data for butylbenzene, calculated using Equation

1.5. Furthermore, the gradient −S is related simply to the strength parameter

9



1. PHENOMENOLOGY OF GLASS

Figure 1.3: a) Linearised τα data determined for butylbenzene. The dashed hori-
zontal line represents Arrhenius behaviour. (b) Stickel parameters for determined
for butylbenzene with data from the literature (+)[34]. There is a marked change
in the VFT behaviour of τα at a specific temperature, T ∗, leading two regions (I
and II) to be defined.

D and T0 obtained through VFT fits of the τα data:

S =

(
T0

loge1D

)− 1
2

. (1.6)

In some instances, the linearisation of the timescale data can yield a change

in the temperature dependence of τα which can not be easily resolved in an

Arrhenius plot. An example of this is shown for butylbenzene in Figure 1.3b,

where the data in Figure 1.3 have been combined with data measured by Hansen

et. al. [34]. From this figure, we see a ‘kink’ in the data indicating a change in

the temperature dependence of τα. This allows us to define two dynamic regimes,

I and II, as indicated in the figure. Close to Tg (region II), the τα data follow

one VFT behaviour but as the temperature is increased past a certain point, the

VFT behaviour changes. This occurs at a temperature defined as the dynamic

crossover temperature, T ∗ [30, 35, 36].

A number of dynamic properties have been observed to change at T ∗ [37]. The

decoupling or bifurcation of the α and β relaxations has often been observed at

this temperature, indicating that Tαβ = T ∗ [30]. One can also observe the decou-

pling of rotational and translation diffusion [38] and changes in the temperature

dependence of the dielectric strength [37, 39].
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1.3 Dynamics of supercooled liquids

Non-exponential relaxation

The relaxation function, Φα(t) characterises the evolution in time of the α re-

laxation process. It is observed, that this relaxation function generally decays

in a non-exponential fashion [2, 40] and is often described using the Kohlrausch-

Williams-Watts stretched exponential function [41, 42]:

φ(t) = e−( tτ )
β

. (1.7)

Here, the stretching parameter, β, takes values between 0 and 1 and parametrises

the degree of non-exponentiality. In this research, measurements of a range of

molecular glass formers were studied in the frequency domain using Broadband

Dielectric Spectroscopy (BDS). Relaxation mechanisms are manifested as peaks

in the dielectric loss, ε′′. The stretched nature of φα(t) is evident in the frequency

response and results in the anti-symmetric stretching of the peak found for the

α relaxation. This will be fully explained in Chapter 2.

The origins of the non-exponential nature of Φα(t) are much debated. On the

one hand one could say that the relaxation function is inherently non-exponential

and each region in a glass former contributes equally to the decay of the relax-

ation function. This is an attractive scenario as it implies that the relaxation of

each region is representative of the macroscopic variation of the glass [43]. On the

other hand, one could consider the possibility of so-called dynamic heterogene-

ity, suggesting that a supercooled liquid contains many dynamic regions each of

which relaxes with an exponential nature and with its own relaxation time [44].

Although experimental evidence for either case depends on the time scale of the

probe used to analyse a supercooled liquid, the majority of measurements sug-

gest a dynamically heterogeneous scenario is more likely [45–47]. This does not,

however, mean the issue has been fully resolved [44].

1.3.2 Secondary relaxation mechanisms

In some molecular glass formers, relaxation mechanisms which occur on faster

timescales than the structural α relaxation are observed as the supercooled liquid

is cooled. Unlike the α relaxation, the timescales of these secondary mechanisms
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1. PHENOMENOLOGY OF GLASS

are usually well described by the Arrhenius equation (Equation 1.2). The typical

temperature dependence of the timescales of two secondary mechanisms (β and

γ) are shown in Figure 1.2a.

The first observed secondary relaxation mechanism is generally termed the β

relaxation process. This relaxation process has been the subject of many studies

into the the dynamics of glass formation. Below Tg, the α relaxation is completely

arrested on typical experimental timescales and thus much of the motion in the

glassy state can be attributed to the β relaxation process [9].

The secondary β relaxation was first observed in polymeric glass formers [48–

50]. For many polymeric systems, this relaxation mechanism was attributed to

the small, trivial rotation of a methyl-group or motion involving the side chains of

a polymer [49]. Thus, β relaxation processes were thought to be of intramolecular

origin and were often thought not to play an important role in the glass transition

[51]. However, Johari and Goldstein observed β relaxations in a number of ‘rigid’

molecular glass formers [52–54]. An example of the dielectric loss, ε′′, spectrum for

such a molecular glass-former, toluene, is shown in Figure 1.4a (a full description

of Broadband Dielectric Spectroscopy and the obtained spectra is available in

Chapter 2). Here we see two peaks in the spectrum relating to the α and β

relaxation mechanisms as indicated in the figure. The fact that such secondary

relaxations can be observed in ‘simple’ molecular glass formers comprised of rigid

molecules with no intramolecular degrees of freedom suggests that the observed β

relaxations could involve certain motions of the entire molecule [51]. Furthermore,

it could be said that the β relaxation is of intermolecular origin.

There is no general consensus on the microscopic origins of the β relaxation

but there have been several suggestions. Johari proposed that a supercooled liq-

uid could be thought of as a solid matrix with so-called islands of mobility which

arise due to the redistribution of the free volume [52, 54, 56, 57]. The β relax-

ation was thought to be a consequence of the relaxation of these liquid-like regions

within the solid matrix. Goldstein attributed the β relaxation to ‘connecting tis-

sue’ between amorphous clusters [18]. Tanaka introduced the idea of ‘metastable

islands’ of particles, the creation and destruction of which are controlled by the

α relaxation [58]. The β relaxation was suggested to be local restricted reorienta-

tional, vibrational or hopping motion within an island. Contrary to the idea that
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1.3 Dynamics of supercooled liquids

Figure 1.4: a) Dielectric loss, ε′′, spectrum for toluene at 121 K, showing both
α and β relaxation loss peaks. Data obtained from Ref.[55]. b) Dielectric loss
spectrum for ethylbenzene at 119 K showing so-called ‘excess-wing’ behaviour.

the β and α relaxations relate to small areas of motion within the supercooled

liquid, Williams and Watts stated that the β relaxation is due to the relaxation

of all molecules of a system where the microscopic motion involves small angular

fluctuations and is thought to be related to the so-called ‘primitive’ α behaviour

[59, 60]. Thus, we do not know what the β relaxation is; what molecular motions

it involves or what length scale it acts on. This enhances the need for further

study, particularly of systems in which the structure is varied systematically, in

order to determine the physical origins of the β relaxation.

Several interesting connections between the α relaxation and the β relaxation

have been observed and the relationship between the two relaxation processes will

be a key feature in the research presented in this thesis. Firstly, Kudlik et. al.

[55, 61] noticed that for several glass formers, Tg, is proportional to the activation

energy of the observed β relaxation and suggested the following relationship,

EA = KRTg, (1.8)

where R is the universal gas constant. They found that the proportionality

constant, K, was similar for the systems analysed and yielded a value of K =

24 ± 3. This was confirmed by Ngai through the analysis of a wide selection

of glass formers [15]. This observation also appears to hold also for metallic
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glasses for which K was found to be 26± 2 [9]. As Tg is defined through analysis

of the timescales of the α relaxation, this implies a direct connection between

the β relaxation and the α relaxation. Furthermore correlations between the

timescale of the β relaxation at the glass transition temperature, τβ(Tg), the

fragility parameter, m, and the stretching exponent of the KWW function have

been observed for more than 50 molecular glass formers [56]. In some situations

it has been observed that τβ ≈ τ0, where τ0 is the high temperature limiting

timescale of the α relaxation [62]. These observations all imply a connection

between the α and β relaxations and enforces the need for more comprehensive

analyses of secondary processes within glass forming materials.

1.3.3 The excess-wing

A different scenario is shown in Figure 1.4b. In this figure, the dielectric spectrum

for ethylbenzene at 119 K is shown. Toluene and ethylbenzene both contain ben-

zene rings with an attached alkyl-tail. Although they only differ by a methylene

group (CH2) the nature of their spectra are clearly different. The spectrum for

ethylbenzene does not have a resolvable loss peak relating to the β relaxation.

Instead, we observe a change of the exponent of the high frequency power law of

the α relaxation (from b to g as indicated in the figure). This so-called ‘excess-

wing’ has been observed for a number of molecular glass formers (for example:

glycerol [63] propylene carbonate [64] and salol [65]) and in the past this has led

to the classification of glass-formers based on whether they exhibit an excess-wing

(Type A) or a separately resolved β process (Type B) [55, 66].

Nagel and co-workers showed that the dielectric loss for a number of glass-

formers which exhibit excess-wing behaviour can be scaled onto one master-curve

[67]. This led them to suggest that the excess-wing is an intrinsic property of all

glass-formers [68]. However, more recently it has been shown that the excess-wing

is likely of a similar physical origin to the β relaxation in studies of an oligomeric

chain series of propylene glycol based dimethyl ethers in research published by

Mattsson et. al. [69]. In this research it was shown that for the longest chain

length the α and β processes were separately resolvable in dielectric loss spectra.

It was observed, for the shorter chain-length samples, that the peak frequencies of
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the observed β relaxation moved closer to that of the α relaxation: the timescales

of the β relaxation became increasingly slower with decreasing chain-length. For

the lowest molecular weight samples, this meant that the β loss peak was no

longer discernible as a separate process, and an excess wing was observed on the

high frequency flank of the α loss peak. This is evidence to suggest that the

excess-wing could be due to a ‘submerged’ β relaxation process. Several other

studies involving variation of pressure [70], ageing [71] and confinement [72] yield

similar conclusions. Evidence for similar behaviour in the systems studied in this

research will be presented in Chapters 4, 6 and 7.

Thus, in conclusion it appears that at least one secondary relaxation is gen-

erally present in molecular glass-formers and this relaxation is coupled to the

structural α relaxation and thus glass-formation. Thus, the importance of sec-

ondary relaxation modes together with their relatively ‘local’ nature makes them

ideal channels for controlling material behaviour if we can learn how to systemat-

ically control them and properly understand the link to the structural relaxation.

As described above, a lot of research has gone into trying to understand the ex-

act mechanisms of motion involved in β relaxations. However, we note that the

detailed motions are almost by necessity chemistry and system dependent and

this might not be the most interesting question to ask in order to reach a gen-

eral understanding of the glass-transition phenomenology. Recent work both on

molecular [15], metallic [9] and colloidal systems [73] indicate that the glass tran-

sition phenomenology might be largely emergent. Thus any secondary relaxation

mode that is efficient at ‘locally’ relaxing the material might serve to ‘nucleate’

the α relaxation and thus control the glass-transition.

1.4 Models to explain the dynamics of super-

cooled liquids.

Many models have been suggested in order to explain the rapid increase of the

structural relaxation timescale at temperatures close to Tg. Given the wide array

of approaches, it is beyond the scope of this thesis to provide a detailed analysis of

these models (the following references provide more detailed discussions: [1, 2, 11,
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13, 32, 44, 74, 75]). However, the following sections serve as a brief introduction to

those theories most commonly discussed in the literature and, more specifically,

those mentioned in latter chapters in this thesis.

1.4.1 Entropy models

Some models attribute the observed increase of the structural relaxation timescale

with decreasing temperature to a reduction in the number of molecular configu-

rations and therefore a decrease in the configurational entropy, Sc. Such models

consider the observed glass transition to be an indication of an underlying ther-

modynamic glass transition at which Sc = 0, equivalent to that of the ideal

crystalline state. The most commonly discussed example of an entropy based

model is that presented by Adam and Gibbs [76]. They introduced the concept

of cooperatively rearranging regions (CRRs) which are defined as a subsystem of

molecules whose relaxations between different configurational states are indepen-

dent of the surrounding media [2, 13, 75]. The minimum size of a CRR is assumed

to be temperature dependent, including more molecules as the temperature de-

creases. In this manner, the structural relaxation timescale can be expressed in

terms of Sc under the assumption that the activation energy of the structural

relaxation is proportional to the volume of a CRR [2]:

τα = τ0e
A

TSc(T ) . (1.9)

The constant, A, relates to the size of a CRR. The exponent in Equation

1.9 suggests that the increase in the structural relaxation time is related to the

increasing size of a CRR with decreasing temperature. If it is assumed that an

ideal thermodynamic glassy state exists at the Kauzmann temperature, TK (see

Section 1.2) and that the configurational entropy, Sc would be zero at TK , one

can define the temperature dependence of Sc as:

Sc = B
(T − TK)

T
, (1.10)

where B is a constant. Substitution of this into Equation 1.9 yields the VFT

equation with the identification that T0 = TK and that 1/B = DTK . The fact that
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experimentally determined values of T0 are sometimes close to those of TK yields

a level of validation for the Adam-Gibbs model [1] although this has also been

shown not to apply in general [77]. Furthermore, experimental determination

of the variation of configurational entropy is difficult for glass formers and even

if this is achieved (to a certain approximation), determination of the ‘size’ of a

CRR typically yields regions which consist of a very small number of molecules

[78] which makes it unlikely that the relaxations within CRRs act independently

of their surroundings [2].

1.4.2 Free volume models

Another approach used to explain the dynamics of the glass transition has been

to consider the ‘free volume’ of a glass former as originally suggested by Cohen

and Turnbull [79]. The fundamental principle of this approach is based on the

assumption that the constituent molecules within a glass former require a certain

free volume, Vf , in order for structural reorientation to take place [2]. The free

volume is simply defined as the volume in the system which is unoccupied, and the

free volume of the system is shared between the constituent molecules [1, 18]. As

the temperature of a glass forming material decreases, Vf decreases. At a certain

critical temperature, the system no longer has enough free-volume in order for

structural relaxation of the system to occur, resulting in dynamic arrest. The

prediction of the models is that the structural relaxation timescale is related to

the temperature dependent free volume per molecule, vf [2]:

τ = τ0e
A
vf . (1.11)

Under some assumptions, this equation can be shown to be related to the

VFT equation [2]. An extension to the simple free volume model was proposed by

Cohen and Grest [80] who suggested that a supercooled liquid could be described

as having solid-like and liquid like regions. Relaxation within the liquid was then

thought to be due to the exchange of the free volume between molecules in the

liquid regions. As the temperature of a system decreases the solid-like regions

become larger due to the lack of free volume. The glass transition is then defined
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at the point at which the solid-like regions span the entire system, at the so-called

percolation limit [1].

One obvious problem with models of this type is that the free volume of a

molecule can not be defined rigorously. Furthermore the structural relaxation

time is not only a function of the density of a glass former [2] and supercooled

liquids measured at constant volume (isochoric) conditions can still exhibit a glass

transition [81]. These problems suggest that one needs to consider more than just

the redistribution of free volume in order to explain dynamic arrest.

1.4.3 The coupling model

The ‘coupling model’ introduced by Ngai [18, 82–84] is a generalised approach

to the relaxation in complex systems which suggests the motions of molecules

are inhibited by interactions between them. The model predicts a temperature

insensitive crossover time, tc, and for times shorter than tc the relaxation of

constituent molecules occurs non-cooperatively. The correlation function is thus

described as a single exponential: Φ(t) = Φ0e
−t/τ0 , where τ0 is the primitive

relaxation timescale of the molecules. At t > tc, a stretching of the correlation

function is predicted, leading to non-exponential decay:

Φ(t) = e−( tτ )
1−n

(1.12)

This is characterised by the coupling parameter, n, which is dependent on

the interaction between the molecules. The coupling parameter can take values

between 0 and 1 and is related to the KWW stretching parameter: n = 1 −
β. In this regime, the decay of the correlation function is characterised by a

timescale, τ ∗. The crossover between exponential and non-exponential decay of

the correlation function occurs smoothly over a small region surrounding tc. The

continuity between these two relaxation regimes leads to the following expression:

τ ∗ =
[
t−nc
] 1

1−n (1.13)

Although no insight into the microscopic relaxations of molecules are provided

by this model, it has been shown to apply in a wide range of different fields
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1.4 Models to explain the dynamics of supercooled liquids.

dealing with complex dynamics[82]. It has also be used to predict the relationship

between Tg and the activation energy, Ea of the β relaxation [62]. An important

conceptual feature of the model is that it is based on the idea of a secondary

relaxation acting as the precursor for the α relaxation.

1.4.4 Mode coupling theory

Mode Coupling Theory (MCT) [18, 85–88] has been highly successful in explain-

ing the dynamics of supercooled liquids in a certain temperature regime above the

experimentally observed glass transition [1]. MCT is a purely dynamic picture of

the glassy state involving the idea of a molecule fluctuating within a ‘cage’ of its

neighbouring molecules. The motion of each individual molecule will affect both

the motion of the same molecule at a later time and the surrounding molecules.

The ‘coupling’ stems from the idea that there is an energy exchange between the

different dynamic modes of the system. MCT involves finding solutions to a set

of equations for the density autocorrelation function, φ(t) = 〈ρq(t)ρq(0)〉 / 〈|ρq|2〉,
where the subscript, q, denotes the wave vector dependence of φq(t). Density fluc-

tuations within a liquid are thought to govern the structural relaxation timescale

and are thus responsible for the glass transition. The simplest example of MCT’s

approach to describe the time variation of φq(t) can be expressed by considering

the density fluctuations to act as oscillators [85, 86]:

∂2
t φq(t) + νq∂tφq(t) + Ω2

qφq(t) + Ω2

t∫
0

mq(t− t′)∂tφq(t′)dt′ = 0. (1.14)

Here νq and Ωq set the frequencies of liquid dynamics and thus set the timescales

for microscopic motion, where νq is proportional to the bulk and shear viscosities

and Ωq is proportional to the the bulk and shear moduli [88]. The MCT ‘kernel’,

mq, is a so-called memory function which acts as a non-linear feedback mecha-

nism for density fluctuations of a single particle [85]. In other words, a moving

molecule will affect the density fluctuations of the surrounding molecules which

will in turn ‘feed back’ to the original molecule and this effect is encompassed by

mq. In order to solve Equation 1.14, appropriate choices of mq must be made.
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Figure 1.5: Diagram depicting the energy landscape as described in the text

The simplest choice is to describe mq in terms of two control parameters, v1 and

v2:

mq(t) = v1φq(t) + v2φ
2(t) (1.15)

Under this simple approximation of the memory function, a set of solutions to

Equation 1.14 can be obtained which predict the dynamic arrest associated with

the glass transition [86, 87]. The theory also predicts two separate relaxation

mechanisms, related to the structural relaxation and a more local relaxation [87].

1.4.5 The energy landscape

The energy landscape model, proposed by Goldstein [89], provides a description

of a viscous liquid by means of a potential energy hypersurface as a function of

the coordinates of the constituent particles [13, 18, 90]. In the simplest exam-

ple, in which N particles are considered to have no orientational or vibrational

degrees of freedom, the landscape has 3N + 1 dimensional shape [17] as each

particle coordinate can be described in three dimensions with the configurations

of all particles described by a potential energy. A representative diagram of this

landscape is shown in Figure 1.5 in which a generalised coordinate for all the

particles in the system is shown.

The landscape is considered to be virtually independent of temperature and

thus the temperature of the viscous liquid only affects the resolution at which
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1.5 Research aims

the liquid ‘feels’ the landscape [17]. For example, at T = T1 in Figure 1.5, the

system is unaffected by the landscape and the particles are free to diffuse. As

the temperature is decreased, T = T2, the topology of the landscape comes into

effect but the system still has enough energy to sample the entire landscape and

the energy minima appear shallow. In some cases, the system falls into the sharp

minimum corresponding to the crystalline state.

Further decreases of temperature mean the system no longer has enough en-

ergy to surpass the larger energy barriers between minima and is therefore forced

to sample the deeper, less common minima in the landscape. This leads to non-

exponential behaviour of the structural relaxation timescale due to the increasing

size of the energy barriers between different configurational minima [17]. At a

certain temperature, the system will effectively become ‘stuck’ in a certain en-

ergy minimum, corresponding to the glass transition. If we assume the suggestion

that there should be an ‘ideal’ thermodynamic glassy state, this will correspond

to a deep minimum on the order of the size of the crystal minimum. In terms of

the fragility, more fragile glasses are thought to have a greater density of states

[13, 91, 92]. It is also interesting to note that computer-based investigations of

the landscape properties have demonstrated that within one of the larger min-

ima corresponding to a particular glassy state, there is a secondary structure of

smaller minima [17]. Thus, a landscape approach can conceptualise the bifurca-

tion of the relaxation dynamics into α and β relaxations as the temperature is

reduced below a cross-over temperature, T ∗, denoted T2 in Figure 1.5.

1.5 Research aims

The work presented in this thesis is aimed at understanding the dynamics of glass-

forming systems through the analysis of three systematic series of molecular glass

formers. These series are characterised by the systematic variation of chemical

structure: an alkylbenzene series involving the systematic variation of the length

of an alkyl tail attached to a phenyl-ring and two series involving the successive

oligomerisation of styrene and α-methylstyrene, respectively. All three series are

structurally related which facilitates a consistent investigation of how structural

modification affects relaxation behaviour in supercooled liquids and polymers.
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1. PHENOMENOLOGY OF GLASS

The aims of the research are to i) quantify the connection between glass form-

ing properties such as the glass transition temperature and the fragility as a result

of the variation of molecular structure, ii) analyse the nature and behaviour of

the structural and secondary relaxation mechanisms and evaluate the connec-

tion between them and iii) observe the difference in glass forming dynamics with

different types of structure variations.
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Chapter 2

Experimental Techniques I:

Broadband Dielectric

Spectroscopy

2.1 Introduction

Glass forming liquids often demonstrate a dramatic increase in the structural

relaxation timescale as temperature is decreased towards their glass transition

temperature. Broadband Dielectric Spectroscopy (BDS) is a useful technique

for the study of glass-forming systems as its operational frequency range can be

between 10−6 and 1011Hz allowing the dynamics of glass forming systems to be

studied over a large range of timescales [93]. The spectrometers used in this

study have a frequency range of 10−2 to 106Hz corresponding to timescales be-

tween ∼15s and ∼0.15µs. BDS involves the application of a harmonic electric

field to a material. This perturbation results in a macroscopic polarisation. The

equilibrium polarisation depends on the structure and temperature of the mate-

rial and the underlying microscopic dynamics determine the timescale at which

equilibrium is attained. Thus, through measurement of the macroscopic polarisa-

tion as the result of an applied electric field, one can gain structural and dynamic

information about a material.

This chapter is split into several sections. Firstly, the theory of dielectric

relaxation will be introduced and this will mainly follow the books of Kremer
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2. EXPERIMENTAL TECHNIQUES I: BROADBAND
DIELECTRIC SPECTROSCOPY

and Schönhals [94], Böttcher, Bordewijk and Rip [95], Runt and Fitzgerald [96]

and also the theses of Gainaru [97] and Blochowicz [98]. Next, the different

components of the spectrometers used in this research will be explained. Finally

a brief compilation of functions used to describe dielectric spectra will be given

with an explanation of how the dielectric spectra were analysed in this research.

2.2 Dielectric properties of matter

Consider a charge, q, in vacuo. If another similar charge, q′ is placed nearby,

there will be a force between the two charges, according to Coulombs inverse

square law [95]:

F =
qq′

4πε0r2
r̂, (2.1)

where r is the distance between the two charges and ε0 is the permittivity

of free space. The electric field, E resulting from the charge q at a distance r is

defined as the force acting on a small positive test charge q′ divided by the test

charge,

E =
q

4πε0r2
r̂. (2.2)

If the assumption that the electric field intensity resulting from a distribution

of charges in a certain volume of space is an additive combination of the contribu-

tions from these charges, then the divergence of the total electric field is equal to

the charge density. In order to determine the electric field within matter, Maxwell

introduced a vector field termed the electric displacement field, D, which would

satisfy the condition that its divergence would be related to the charge density

[95]. This leads to the definition of Maxwell’s so-called ‘source equation’:

∇ ·D = ρe (2.3)

In the linear response regime, for relatively small electric field strengths, there
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2.2 Dielectric properties of matter

is a linear relationship between an applied electric field, E, and D [94, 95]:

D = εsε0E, (2.4)

where ε0 is the permittivity of free space and εs is the static dielectric per-

mittivity.

As mentioned in the introduction, a material subjected to an external electric

field results in a macroscopic polarisation, P, of the material. The polarisation

of dielectric, or insulating, materials occurs through several mechanisms [18, 94,

95, 97]:

1. the reorientation of permanent dipoles, µ,

2. a displacement of the electrons clouds relative to their nuclei and,

3. a displacement of the nuclei relative to each other.

Through these mechanisms, the electric field polarises the material. In the

study of glass forming materials, we are interested in the polarisation due to the

reorientation of permanent dipoles as this is the important mechanism of polarisa-

tion within the relevant frequency range and it probes the underlying microscopic

dipoles and thus molecular dynamics. Mechanisms 2 and 3 give rise to a so-called

induced polarisation, P∞. These mechanisms occur on timescales (< 10−13s)

which are inaccessible in the frequency range of the dielectric spectrometers used

in this research.

Additional mechanisms can also give rise to macroscopic polarisation. If a

polar material contains charged species, then the application of an electric field

will cause these species to diffuse. This so-called DC-conductivity is an important

consideration for many of the glass formers studied in this research as will be

shown in latter sections of this chapter. At very low frequencies, and thus very

long timescales, these charged species can accumulate at the boundaries set by

the containing electrodes. This is termed electrode polarisation. Furthermore,

if a material contains different structural domains, accumulation of charge at

the interfaces between domains can occur. This interfacial polarisation is called

Maxwell-Wagner polarisation [97, 99].
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2.2.1 The static case

We will now address what happens to a dielectric or insulating material under

the application of an electric field E . Firstly, let us consider the static case, in

which variations in applied electric field occur on greater timescales than those

of the microscopic mechanisms within the dielectric material. For the purposes

of the following discussion, it will be assumed that the material consists of rigid

molecules with permanent dipole moments. Let us also assume that the ma-

terial does not contain free charges. Thus we can neglect contributions to the

polarisation due to conductivity.

Before an electric field is applied, the permanent dipoles within the material

are effectively randomly oriented. When an electric field is applied, the dipoles

will preferentially orient in the direction of the applied field, creating a macro-

scopic dipole moment. This creates a so-called orientational polarisation of the

material, P0.

Under the application of an electric field, the total macroscopic polarisation

of the material, P, increases proportionally to the strength of the applied field,

E.

P = D − ε0E = (εs − 1)ε0E (2.5)

The term (ε− 1) in Equation 2.5 is a measure of how susceptible a particular

material is to polarisation by an applied field. One can define the static dielectric

susceptibility: χs = (ε− 1). In general, as E and P are vectors, εs (and therefore

χs) are thus tensors. However, given that the glass-forming materials we consider

in this work are macroscopically isotropic, the directionality of εs can be ignored

[99].

The absolute magnitude of the total macroscopic polarisation is the summa-

tion of the orientational polarisation and the induced polarisation, P = P∞+P0.

Let us introduce the quantity ∆ε = εs − ε∞, which is often termed the dielectric

relaxation strength or dielectric loss [94–96]. ε∞ is the dielectric permittivity as-

sociated with the response at much higher frequencies than those associated with
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2.2 Dielectric properties of matter

dipolar reorientation. We can now express the total macroscopic polarisation by

substituting εs = ∆ε+ ε∞ into Equation 2.5:

P = P∞ + P0 = ε0(ε∞ − 1)E + ε0∆εE. (2.6)

The orientational polarisation, P0, is the vectorial sum over all dipole mo-

ments, µ within the material per unit volume. For the purposes of this discussion

we shall consider that the electric field E acts in the ‘z’ direction and the projec-

tion of P0 on this direction is thus:

P0 =
1

V

N∑
i=1

µi · z =
N

V
〈µ〉z (2.7)

Here, 〈µ〉z denotes the average over all dipole moments in the z-direction and

N is the total number of dipoles.

The permanent dipoles are never all fully aligned with the applied electric

field due to thermal fluctuations . Therefore, we can consider the orientations

of these dipole moments as a distribution within a solid angle dΩ = 2πsinθdθ

around the direction of the applied field, z [97]:

〈µ〉z =

∫ π
0
µze

(
µzE
kBT

)
2πsinθdθ∫ π

0
e

(
µzE
kBT

)
2πsinθdθ

(2.8)

Here, µz = µcosθ. If it is assumed that the permanent dipoles within a

material are non-interacting, then one can define the potential energy of each

dipole as U = −µEcosθ [98]. Therefore an equilibrium value of 〈µ〉z can be

calculated and Equation 2.8 reduces to [94, 95]:

〈µ〉z =
µ2

3kBT
E (2.9)

Through substitution of Equation 2.9 into Equation 2.7 we can obtain a rela-

tionship between P0 and E in terms of the dipole moment, µ [94].

P0 =
µ2

3kBT

N

V
E (2.10)

27
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Thus, we can also define an equation relating the dipole moment to the di-

electric strength, ∆ε by using Equation 2.6.

∆ε =
µ2

3ε0kBT

N

V
(2.11)

This is known as the Curie law [94, 95]. Although this provides a means to

describe the dielectric strength in terms of the orientational polarisation created

by the motion of permanent dipoles, it does not take into account the interaction

between these dipoles and assumes that local field effects can be ignored. Firstly,

let us address the local field effects. Due to so-called shielding effects [94], there

is a difference between the applied field, E, and the electric field which affects a

specific dipole. Lorentz considered a ‘spherical cavity’ within a infinitely extended

medium with a homogeneous polarisation [94, 98]. The ‘local’ electric field in the

cavity, Eloc, is proportional to the applied electric field in the following manner

[94]:

Eloc =
εs + 2

3
E. (2.12)

If we now substitute E for Eloc in Equation 2.10 and consider the orientational

polarisation given in terms of the dielectric strength ∆ε (Equation 2.6) we obtain

the so-called Curie-Weiss law for ∆ε [98]:

∆ε =
(ε∞ + 2)TCW
T − TCW

, (2.13)

where TCW = nµ2

9ε0kB
and n is the number density of dipoles, n = N/V .

Another general extension of the relationship between µ and ∆ε was postu-

lated by Onsager [100] to describe materials containing polar molecules. This

extension considers the polarisation of the environment surrounding a permanent

dipole by introducing the so-called reaction field [94, 95] in which the dipole mo-

ment of a molecule, µ = µ0 + αEloc. The Onsager equation is defined as follows:

∆ε =
εs(ε∞ + 2)2

(2εs + ε∞)

n

9kBTε0

µ2. (2.14)

In order to correctly determine the relationship between the permittivity and

the average dipole moment we must also consider that each permanent dipole
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2.2 Dielectric properties of matter

within a material is surrounded by other dipoles and therefore dipole-dipole inter-

actions are important. These interactions are not taken into account in Equation

2.14. Kirkwood and Frölich [94, 96, 100–103] introduced the factor, gK , in order

to model the interaction between dipoles:

∆ε =
εs(ε∞ + 2)2

(2εs + ε∞)

n

9kBTε0

gKµ
2. (2.15)

In general gK can be greater or less than one depending on whether permanent

dipoles have a tendency to orient parallel or anti-parallel to each other.

2.2.2 The time/frequency dependent case

So far we have defined the polarisation of a dielectric material based on the

assumption of an applied electric field with no frequency or time dependence.

Firstly, we can consider the application of an electric field to a material and then

subsequent removal of that field. A diagram of this situation is shown in Figure

2.1.

E0
P0

time

E P

t=0

Figure 2.1: Diagram showing the effect of application and then subsequent re-
moval (at t = 0) of an electric field on the orientational polarisation, P0.

When the field is applied, the macroscopic polarisation due to the orientational

polarisation, P0, will not instantaneously reach its equilibrium value as it takes a

certain amount of time for the dipoles within the material to align with the field.

Alternatively one can investigate the case where an initially static applied field is

turned off and study how the polarisation relaxes towards its equilibrium value.

When the field is removed, the polarisation decays [97]. For the purposes of this
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discussion, by analogy with a so-called ‘step-off’ experiment, we can introduce

the relaxation function, Φ(t), where:

Φ(t) =
P0(t)

P0(t = 0)
. (2.16)

If the magnitude of the applied electric field, E, is relatively small then the

response of a material to this external perturbation is governed by the fluctuation-

dissipation theorem [94, 97]. This means that the response to the perturbation

results from the same mechanisms that control equilibrium fluctuations of the

polarisation (i.e. without the application of an applied field). This is important

as it means perturbation due to an applied field and analysis of the resulting

polarisation gives information about the microscopic motions of dipoles and thus

molecules within a material but does not change the fundamental nature of these

motions. In this regime, the relaxation function can instead be expressed as an

autocorrelation function, φP , of the orientational polarisation, where,

Φ(t) = φP (t) ≡ 〈P0(0) ·P0(t)〉
〈P0(0)2〉

. (2.17)

If one ignores inertial effects, the rate of change of the polarisation of a material

subjected to an externally applied field is proportional to the polarisation at a

given time [94]:

dP (t)

dt
= −P (t)

τD
(2.18)

Where τD is the Debye characteristic relaxation time. If Equation 2.18 holds,

there will be a single exponential decay of the autocorrelation function, φP in the

time-domain, occurring at t = τD. Furthermore, as the orientation polarisation

is due to the reorientation of permanent dipoles, µ, in the direction of an ap-

plied electric field, φP can be expressed in terms of the autocorrelation of dipole
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moments instead [95, 97]:

φp(t) =

N∑
i,j

〈
µi(0) · µj(t)

〉
N∑
i,j

〈
µi(0) · µj(0)

〉 =

N∑
i

〈µi(0) · µi(t)〉+
N∑
i 6=j

〈
µi(0) · µj(t)

〉
Nµ2 +

N∑
i 6=j

〈
µi(0) · µj(0)

〉 . (2.19)

In this manner, a connection between the effect of an applied electric field

on the macroscopic orientational polarisation has been intrinsically linked to the

microscopic dynamics within a material. It should be noted that this equation

contains not only autocorrelation terms but also cross-correlation terms between

different dipole moments. If it is assumed that cross-correlation terms can be

neglected [95, 97], the autocorrelation function of the orientational polarisation

is equivalent to the autocorrelation of dipole moments, φµ(t) [97]:

φµ(t) =
1

Nµ2

N∑
i

〈µi(0) · µi(t)〉 =
1

µ2
〈µ(0) · µ(t)〉 . (2.20)

Therefore, to a good approximation, through measurement of the macroscopic

polarisation, dielectric spectroscopy also indirectly probes dipole-dipole reorienta-

tions and thus probes the microscopic dynamics by probing molecular reorienta-

tions. In the research presented here, dielectric spectroscopy was performed in the

frequency domain in order to access timescales shorter than can be measured in

the time domain. Measurements in the frequency domain involve determination

of the complex dielectric permittivity, ε∗.

If we instead consider a harmonic applied electric field of the form E∗(ω) =

E0e
iωt, the polarisation becomes frequency dependent, according to Equation 2.5.

P ∗(ω) = (ε∗ − 1)ε0E
∗(ω) (2.21)

As the applied field is frequency dependent, it follows that the polarisation as

a result of that field must also vary harmonically. The response of a material to

the applied field, E∗ is characterised by the complex dielectric permittivity, ε∗,
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which can be split into its real and imaginary parts.

ε∗ = ε′ − iε′′ (2.22)

The real part of the permittivity, ε′, is a measure of the energy stored in the

system as a function of frequency. In the static case (ω = 0), ε′ is equivalent

to εs as defined in Equation 2.4 [95, 99]. The imaginary part, ε′′ is proportional

to the energy dissipated as a function of frequency. In terms of Equation 2.4,

ε′′ is a measure of the amplitude of the component of the displacement field, D,

with a π/2 phase difference to the applied electric field, E. The imaginary term

is often called the dielectric loss factor [95]. The complex dielectric permittivity

can be related to the response function, Φ(t) (as defined in Equation 2.16) in the

following manner, [94]:

ε∗(ω)− ε∞
∆ε

= 1− iω
∞∫

0

Φ(t)e−iωtd(t) (2.23)

The real and imaginary components of ε∗ are related by the so-called Kramers/Kronig

relations [18, 94] and as a result of this carry equivalent information about the

relaxation dynamics in materials. In summary, dielectric spectroscopy in the fre-

quency domain measures the complex dielectric permittivity, ε∗, which is related

to the change in the macroscopic polarisation, P , as a result of an applied fre-

quency dependent electric field, E∗. As the autocorrelation function of P , φp, is

related to the reorientation of permanent dipoles, this allows information about

the microscopic dynamics within a material to be probed.

2.2.3 The Debye response

If one ignores inertial effects, the rate of change of the macroscopic polarisation,

P, is proportional to its absolute value at a given time [94],

dP

dt
= − 1

τD
P(t), (2.24)
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=

1 1

Figure 2.2: Figure showing the real and imaginary parts of the Debye function
for ε∗.

where, τD, is the characteristic Debye timescale. This equation means that

the response function, Φ(t), decays in an exponential manner:

Φ(t) = e
− t
τD . (2.25)

Through substituting this behaviour of Φ(t) into Equation 2.23, this yields

the following behaviour of ε∗:

ε∗(ω) = ε∞ +
∆ε

1 + iωτD
. (2.26)

This is the so-called Debye function. An example of the dielectric spectra

predicted by Debye function in the real and imaginary parts of ε∗ as a function

of frequency are shown in Figure 2.2.

The Debye function is manifested as a step-like exponential decay in ε′ and

a peak in the dielectric loss,ε′′. The low and high frequency power-law flanks of

the loss peak follow a f 1 and f−1 frequency dependence respectively. It is often

observed that the dielectric loss peak is broader than that predicted by the Debye

function. This will be fully discussed in Section 2.5.

The dielectric strength, ∆ε, can be determined by taking the difference be-

tween the limiting values of ε′ at low and high frequencies (εs − ε∞). This is

equivalent to integrating the respective peak in ε′′ using an integral of the follow-
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ing form:

∆ε =
2

π

∫ ∞
0

ε′′(ω)
df

f
(2.27)

As ε′ and ε′′ are related through Kramer/Kronig relations it can be said that

the same physical information is contained within both ε′ and ε′′. Therefore,

in the remainder of this chapter (and in the subsequent analysis of the obtained

results) only the imaginary contributions to ε∗ will be considered. One advantage

of considering only ε′′ is that the value for the limiting dielectric constant at high

frequencies, ε∞, can be neglected as this only applies in ε′ and thus removes

a fitting parameter required to describe the spectra obtained through dielectric

spectroscopy [104]. Another advantage is that the shape parameters needed to

describe ε∗ are very well defined in the imaginary part.

2.2.4 DC conductivity

In Section 2.2.1 the discussion of the macroscopic polarisation was conducted

under the assumption of no charged species within a material. This is often

not the case in reality and a contribution due to ionic conductivity is normally

observed:

ε∗cond(ω) = −i σ0

ε0ω
. (2.28)

Therefore conductivity contributions are only observed in the dielectric loss,

ε′′ and are manifested as a power-law flank at low frequencies with an exponent

of unity. In samples containing a high number of mobile charge carriers, the

conductivity contribution can dominate ε′′ such that the contributions due to

the orientation of permanent dipoles can be obscured [18]. In such cases, it is

preferable to remove the charged species within a material in order to analyse the

relaxation phenomena due to dipolar orientation. Note that for a high degree of

conductivity particularly at low frequencies where there is enough time for the

charged species to move across the cell, polarisation effects can occur and these

will be observed in both the real and imaginary part of the permittivity.
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2.3 Experimental technique

In simple practical terms, a dielectric spectroscopic experiment involves placing

a sample of material between two electrically conducting electrodes and applying

a sinusoidally varying voltage across these electrodes. The sample volume is

effectively a filled capacitor with a complex capacitance, C∗, which is related to

the surface area of the electrodes, A, the separation between the electrodes, d

and the complex dielectric permittivity, ε∗:

C∗ =
ε∗ε0A

d
(2.29)

If two identical metal plates are placed parallel to each other and subjected to

a voltage, there will be a homogeneous accumulation of charge on each plate. The

voltage, V0 is related to the charge, Q0: V0 = Q0/C0 where C0 is the capacitance

of this empty capacitor [18]. If a material is placed between the plates, the

capacitance will increase and will scale with the dielectric permittivity of the

material, ε [49]. If we instead apply a sinusoidally varying voltage of the form

[18, 94, 98]:

V (ω) = V0e
iωt (2.30)

Then one can measure the resulting complex current, with a phase difference,

φ(ω), to the applied voltage [98].

I(ω) = I0e
i(ωt+φ(ω)) (2.31)

Using Ohm’s law, the complex impedance, Z∗ of the sample can be determined

and this in turn can be related to ε∗ [94].

ε∗(ω) =
1

iωZ∗(ω)C0

. (2.32)

2.3.1 The dielectric spectrometer

BDS was performed both at the University of Leeds and Chalmers Institute of

Technology. The dielectric spectrometers used were manufactured by Novocon-
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trol. The spectrometers consist of a frequency analyser (Novocontrol Alpha-

N (Leeds) or Alpha-S (Chalmers)) connected to a ‘sample cell’ through a high

impedance active test interface which is either part of the sample cell itself (Ac-

tive Sample Cell ZGS, Novocontrol: used at Chalmers) or connected separately

(Novocontrol 2-Wire Test Interface ZG2: used in Leeds) to a standard sample

cell (Novocontrol BDS 1200). The test-interface is required for high accuracy

measurements of the complex impedance, Z∗ [96].

The dielectric active test interface and frequency response analyser.

A schematic circuit diagram of the active test interface for the spectrometer is

shown in Figure 2.3. The interface function is based on the principles of Fourier

correlation analysis [94, 96]. Firstly we can consider the simpler case in which

the current to voltage converter is removed from the circuit and the reference

capacitor is replaced by a simple resistor of resistance, R. A sinusoidally varying

voltage V ∗1 is applied to the sample via a generator. The complex current, I∗S

which results from the application of V ∗1 to the sample is then converted into a

second complex voltage, V ∗2 . The voltages V ∗1 and V ∗2 are measured by two phase

sensitive sine wave correlators [94]. The complex sample impedance can thus be

calculated [18, 94, 96]:

Z∗S =
V ∗S
I∗S

= R

(
V ∗1
V ∗2
− 1

)
(2.33)

To provide a more accurate determination of Z∗S at lower frequencies (<100

kHz [94]) of the applied harmonic voltage, the simple resistor can be replaced

by a current to voltage converter with a variable impedance, Z∗X which can be

modified in resistance and capacitance [96] such that the output voltage, V ∗2 , can

be well matched to the input channels of the frequency analyser [18]. The sample

impedance can then be determined in a similar manner to Equation 2.33 [96]:

Z∗S = −V
∗

1S

V ∗2S
Z∗X (2.34)

Although this method leads to a more accurate determination of Z∗S one is

still limited to some extent by phase errors in the frequency analyser and the
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Sample Capacitor

Current to Voltage 
Converter

Zref*

ZS* ZX*
IS*

IR*

Active Test Interface

Sine Wave 
Correlators

Figure 2.3: a)Schematic of the circuitry involved in the dielectric analyser.

current to voltage converter itself [96]. In order to remove these limitations in

the accuracy of the determination of the impedance a low-loss reference capacitor

can be introduced with a variable impedance, Z∗ref . After each measurement

point of the sample impedance Z∗S, a measurement of the reference impedance

is made [105]. The capacitance of the reference capacitor can be varied such

that it is similar to that of the sample [96]. As both measurements involve the

same systematic phase-errors associated with the correlators and the current to

voltage converter, these deviations can be eliminated [18, 94, 96]. The complex

impedance of the reference capacitor can be determined in a similar manner to

Equation 2.34.

Z∗ref = −
V ∗1ref
V ∗2ref

Z∗X (2.35)

By combining Equations 2.34 and 2.35 an expression relating Z∗S and Z∗ref can
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Figure 2.4: Schematic diagram of the dielectric sample cell.

be defined [94]:

Z∗S =
V ∗1S
V ∗2S

V ∗2ref
V ∗1ref

Z∗ref (2.36)

The frequency response analysers used in this research (Alpha-A (Leeds) or

Alpha-S (Chalmers)) have a nominal an operating frequency range of 3µHz to

40MHz.

Sample cell

The lower portion of the sample cell (either BDS 1200 or the ‘Active Sample

Cell’) is shown in Figure 2.4. The cell consists of two sample cell electrodes

through which the voltage, V ∗1S is applied and the complex current,I∗S is measured

through the appropriate electrical connections. The electrodes can be tightened

together such that there is good surface contact between the electrodes and the

measurement sample. Rather than placing a material directly between the two

sample cell electrodes, specific sample geometries can be used depending on the

nature of the material to be measured (see Section 2.3.2). The top electrode is

held in position by an isolation housing to prevent electrical conduction through

the sample cell housing.

During measurement, the sample cell is placed into a cryostat and a tem-

perature control system (Novocontrol Quatro) regulates the temperature of the
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sample cell using pressurised nitrogen gas supplied by a connected liquid nitrogen

dewar. The pressure of the gas flow is regulated by a heater at the bottom of the

nitrogen dewar. A second heater is placed between the dewar and the cryostat

such that the temperature of the gas can be finely tuned in order to control the

temperature of the sample cell. The temperature of the sample cell itself is mea-

sured using a PT100 thermocouple connected to the lower sample cell electrode.

In this manner, the temperature of the sample cell can be controlled over a wide

range of operating temperatures, 100 K to 700 K, with an accuracy of ±0.1K.

2.3.2 Sample preparation

One of the major advantages of using dielectric spectroscopy in order to study

the dynamics of glass forming systems, aside from the wide frequency range,

is the ability to measure on a huge variety of different samples. BDS can be

used to study samples ranging from simple molecular liquids with a viscosity

similar to that of water at room temperature to high molecular weight, high

viscosity polymers. In order to measure the samples successfully, certain dielectric

geometries must be used depending on the behaviour of the material to be studied.

Polymeric samples

The basis of a dielectric experiment, as described in Section 2.3, is to place a

sample between two parallel electrodes such that a sinusoidally varying voltage

can be applied. For the polymeric samples studied during this research project,

the sample geometry was very simple. Polymeric samples were placed between

two circular electrodes with diameters of 20mm and 40mm and a thickness of

2mm. In order to maintain a fixed separation between the electrodes, several

silica spacers with a thickness of 50 or 100µm were placed between the electrodes

in a star-like formation such that the separation between the electrodes would

be maintained after applying pressure. A constant sample volume was achieved

by first placing the polymer on the bottom electrode and heating the sample

significantly above its expected glass transition temperature (∼ 473K). The silica

spacers and the top electrode were placed on top of the heated polymer. Pressure

was then applied to the top electrode to ensure a consistent sample thickness
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A = Bottom Electrode
B = Top Electrode
C = Silicon Spacer
H = Sample

A

B

C

Two Electrode Setup - Polymeric Samples

Figure 2.5: Schematic of the two-electrode set-up as described in the text

between the two electrodes. A schematic diagram of this setup is shown in Figure

2.5.

Removal of Ionic Conductivity

In some cases, the polymeric samples showed a significant conductivity contribu-

tion in ε′′ such that the α relaxation was completely obscured at low temperatures.

This conductivity contribution was attributed to ionic impurities within the poly-

meric samples. In order to remove this contribution, methanol precipitation of

the samples was conducted. The samples to be cleaned were dissolved in toluene

at a concentration of 3 wt % and then added to significantly larger volume of

methanol. The polymeric samples used in this research do not dissolve readily in

methanol and thus precipitated out of solution. The polymer/toluene/methanol

solution was allowed to sit undisturbed until the polymer had completely precipi-

tated and then the supernatant was pipetted off. The resulting polymer was then

dried in a vacuum oven at a temperature significantly above the glass transition

(∼ 473K) in order to remove any excess solvent. The dried polymer was then

redissolved in toluene at a concentration of 5 wt%, solution cast onto a 40mm

electrode and allowed to dry. The resulting solution cast sample was then placed

into a vacuum oven again in order to remove all traces of solvent. The dielectric

spectra for polystyrene shown before and after this cleaning procedure are shown

in Figure 2.6. The conductivity contribution to ε′′ is reduced by around a decade

thus leading to a more accurate determination of the position and strength of the

α relaxation peak.
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Figure 2.6: Comparison between dielectric spectra for both untreated and cleaned
polystyrene.

A similar approach to remove the conductivity contribution was also com-

pleted for another related research project (the results of which are out of the

scope of this thesis) based on a procedure published by Matsumiya et.al. for the

cleaning of bulk polystyrene [106]. In this procedure, the polystyrene is dissolved

in a solvent in a similar manner to the methanol precipitation procedure (in this

case, the solvent was cyclohexane). The dissolution of the polymer was com-

pleted in a beaker which had been thoroughly cleaned and baked at 120◦C for 4

hours prior to the experiment. The idea behind this procedure was that any ionic

impurities within the polymer would diffuse preferentially towards the edges of

the beaker. The solution was left undisturbed in the beaker for 24 hours before

being pipetted into another baked conical flask and concentrated under reduced

pressure. The resulting concentrated solution was then concentrated by evapora-

tion under vaccum using a cold trap to stop the removed solvent from entering

the pump. Finally, the sample was placed in a vacuum oven in order to remove

all solvent. It was found that this procedure also yielded a reduction of the con-

ductivity by an order of magnitude and is in this sense equivalent in efficiency

to the precipitation procedure. The precipitation procedure was chosen to clean
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Figure 2.7: Schematic of the dielectric liquid cell (BDS 1308, Novocontrol)

the polymeric samples used in this research as it was more easily implemented.

Low Molecular Weight Glass Formers

Many of the molecular glass formers in this work had a relatively low viscosity

(on the order of that of water) at room temperature and therefore could not be

simply applied to the electrodes in the same way as the polymeric samples. In

this case, a so-called ‘liquid-cell’ was used (BDS 1308, Novocontrol). A schematic

diagram of the cell is shown in Figure 2.7.

The basic functionality of the liquid cell is very similar to that of the two-

electrode method used to measure the polymeric samples. The sample mea-

surement volume sits between two circular gold-plated electrodes with a fixed

separation achieved through use of silicon spacers. In order to contain the liquid

and to account for thermal expansion, the electrodes sit within a Teflon ring with

O-rings above and below the ring in order to render the cell reasonably air tight

and prevent evaporation of the sample. The Teflon ring and electrodes sit within

a dish-like carrier plate. The cell is closed by fitting a closing plate to the top of

the set-up and electrical contact between this closing plate and the top electrode

is ensured by using a metal spring which accounts for uneven tightening of the

sample cell around the liquid cell. In order to get an accurate determination of

the capacitance (and therefore the permittivity) of a sample contained within the

liquid cell, the ‘stray’ capacitance of the cell had to be taken into account: i.e.

the capacitance of the sample-less cell. The stray capacitance of the liquid cell

could be determined by changing the compensation for the capacitance within

the dielectric control software and observing the behaviour of the real part of the

permittivity, ε′, between 10Hz and 100kHz [107]. A correct setting of the stray
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1 1 0.5

0.4

Figure 2.8: Figure showing a typical dielectric spectrum in ε′′. The grey points
are generated from an additive combination of a conductivity contribution (green
line) and examples of a typical α relaxation loss peak (red line) and a typical
secondary β peak (blue line).

capacitance would lead to a value of 1 in ε′: the correct setting of this particular

liquid cell was 4.25 pF.

2.4 Characteristics of dielectric spectra

Figure 2.8 shows an example of a typical spectrum obtained from dielectric spec-

troscopy. Temperature and frequency dependent relaxation processes within a

material are manifested as peaks in ε′′. In this case, contributions to the spectra

include the loss peaks in ε′′ relating to the primary α relaxation and a secondary

β relaxation in combination with a low frequency power law flank which can be

attributed to ionic conductivity. In Section 2.2.2, the Debye function was in-

troduced as a means of describing the frequency dependent behaviour of ε∗ as

a result of the reorientation of permanent dipoles, and thus relaxation processes

within a glass forming material. In general, the loss peaks in ε′′ relating to re-

laxation processes have a more complicated functional shape than that described

by the Debye relaxation. For example, the loss peak related to the structural or
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α relaxation of a material is, in general, anti-symmetric with a high frequency

flank described by a power law whose exponent is less than that of the exponent

used in the power law description of the low frequency flank. In contrast to this,

the loss peak relating to the β relaxation is usually symmetrically stretched in a

double logarithmic plot with an exponents that are different from the -1 and 1

values of a Debye expression. Therefore, in order to describe the functional shape

of these relaxation phenomena, modifications to Equation 2.26 are required.

2.5 Analysis of dielectric spectra

In this section a selection of susceptibility functions used to describe the relax-

ation mechanisms observed in the dielectric spectra will be introduced. Firstly,

empirical functions derived from the simple Debye description of the dielectric

permittivity will be explained and then a selection of other examples of functions

used to describe relaxation mechanisms will be shown.

2.5.1 Empirical response functions based on the Debye

function

In the imaginary part of the permittivity, ε′′, the so-called Debye relaxation is

manifested as a peak with a value of 1 and -1 for the gradients of the low and

high frequency flanks in a double logarithmic plot and with a peak position re-

lating to the characteristic relaxation time: ωp = 1
2πτD

. In most cases the peaks

observed in ε′′ corresponding to relaxation phenomena have a shape which cannot

be completely described through use of Equation 2.26. For example, the charac-

teristic loss peak of the α relaxation is usually asymmetric with a high frequency

gradient significantly less than the gradient of the low frequency flank. In order

to describe the spectral shape of such relaxation phenomena more thoroughly,

several empirical generalisations to Equation 2.26 have been made.
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Figure 2.9: The functional shapes of the a) Cole-Cole function with varying sym-
metric stretching parameter, α and b) the Cole-Davidson function with varying
anti-symmetric stretching parameter, β.

Cole-Cole function

The so called Cole-Cole (CC) function is an empirical extension to the Debye

function, which describes symmetric broadening of the relaxation peak in ε′′ [108].

ε∗CC(ω) = ε∞ +
∆ε

1 + (iωτCC)α
(2.37)

The symmetric stretching parameter, α, can vary between 0 and 1 and τCC is

equivalent to the peak frequency. Equation 2.37 reduces to the Debye function

if α = 1. The loss peak relating to the β relaxation is often observed as a

symmetrically stretched relaxation and therefore Equation 2.37 is well suited to

describe its spectral shape. The variation of the functional shape of Equation

2.37 with different values of α is shown in Figure 2.9a).

Cole-Davidson function

Many examples of dielectric loss peaks exhibit anti-symmetric stretching. In order

to describe their spectral shape, another empirical modification of Equation 2.26

is often used, the Cole-Davidson (CD) function [109].

ε∗CD(ω) = ε∞ +
∆ε

(1 + iωτCD)β
(2.38)
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Here, the β parameter describes the anti-symmetric stretching of the peak. In

this formulation, the β parameter is the gradient of the high frequency flank in a

log-log plot and a value of β = 1 reduces Equation 2.38 to the Debye relaxation.

The variation of the functional shape of Equation 2.38 is shown in Figure 2.9b.

It is clear from this figure that, for decreasing values of β, the peak position in

frequency increases. In order to obtain the position of maximal loss for the peak,

a transformation of τCD must be made [94]:

ωp =
1

τCD
tan

[
π

2β + 2

]
. (2.39)

Havriliak-Negami function

In order to completely describe the shape of a dielectric loss peak for which both

the low and high frequency powerlaws might differ from the Debye behaviour,

a further empirical generalisation was made by Havriliak and Negami [110] to

combine the stretching effects of both the CC and CD functions.

ε∗HN(ω) = ε∞ +
∆ε

(1 + (iωτHN)α)
β

(2.40)

In this formulation the gradients of the low and high frequency flanks of the

loss peak in a log-log plot of ε′′ are set by α and αβ respectively. As the Havriliak-

Negami (HN) function involves an anti-symmetric stretching term a correction

must be applied to the characteristic timescale, τHN , in order to obtain the peak

frequency, involving both shape parameters in a similar manner to Equation 2.39.

ωp =
1

τHN

[
sin

(
απ

2 + 2β

)] 1
α
[
sin

(
αβπ

2 + 2β

)]− 1
α

(2.41)

In most cases, the HN function is adept at fitting most relaxation spectra

and it could be said that in order to fit the dielectric loss peak relating to the

α relaxation, a function with no less than four shape parameters is required in

order to describe the shape of the relaxation peak over a wide range of frequencies

[94, 96, 111].
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2.5.2 Empirical response functions formulated to describe

the dielectric loss

So far, empirical functions derived from the Debye function have been presented

which describe the complete complex dielectric permittivity, ε∗, so that the real

and imaginary parts can be fit with the same function. In addition to these

functions, there are a range of other often used empirical equations which are

derived to describe loss peaks in the imaginary part of the permittivity directly.

Fuoss-Kirkwood function

The Fuoss-Kirkwood (FK) expression [104, 112] is an example of a function which

can be used to fit a symmetrically stretched dielectric loss peak in ε′′, with a

similar functional shape to that of the CC function.

ε′′(ω) =
2ε′′p (ωτ)m

1 + (ωτ)2m (2.42)

Here, ε′′p is the maximum of the dielectric loss peak and the stretching param-

eter, m, can vary between 0 and 1. In a log-log plot, m sets the gradient of the

high and low frequency flank. Interestingly, although the CC and FK functions

essentially describe the functional shape of a dielectric loss peak in a similar fash-

ion, the shapes show a slight but significant difference in the ‘bluntness’ of the

peak, even if the stretching parameters are set to the same value for each function

[104].

Jonscher function

The analogous expression to the HN function, for the description of a loss peak

which contains components of both symmetric and anti-symmetric stretching, in

ε′′ is the Jonscher (J) expression [104, 113].

ε′′(ω) =
KJ(

ω
ω1

)−m
+
(
ω
ω2

)1−n (2.43)

The shape parameters (often termed the Jonscher parameters [94, 96]) −m
and 1−n describe the gradients of the low and high frequency flanks (in a log-log
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scaling) respectively. The parameter KJ is a rescaling parameter proportional to

the amplitude of the loss peak in ε′′ and ω1 and ω2 are described as ‘thermally

activated characteristic frequencies’ [113]. Again, a comparison between the HN

and Jonscher functions with identical values of the shape parameters leads to

a slightly different widths of the resulting description of the dielectric loss peak

[104].

Rikard Bergman function

In general, when fitting experimental data with empirically derived equations, it is

best to reduce the number of fitting parameters in order to be able to relate these

parameters to physical properties of a material in an objective manner. Indeed,

one could create an empirical expression with a high number of free parameters

which would fit any spectral shape but this does not aid any physical description of

the system with the possible exception of a better determination of the timescale

of the maximal loss in ε′′. Having said that, the functions described thus far seem

to have a similar failing in that they do not directly account for differences in the

bluntness of the dielectric peak. Instead, the bluntness is approximated through

variations of the gradients of the high and low frequency flanks. Therefore, in

order to follow the development of the shape parameters describing the dielectric

loss peak it seems logical that one at least for some systems must include a

separate description of the bluntness.

An empirical function which, rather than being derived from the Debye expres-

sion for the dielectric loss, describes the shape of the peak directly was developed

by Rikard Bergman (RB) [104]. This function has a simple and elegant deriva-

tion which starts from a complete description of all the shape parameters of the

peak: amplitude, peak frequency, bluntness and the gradients of the high and

low frequency flanks. The number of the free parameters in a fitting procedure

can then be reduced if a selection of the parameters are locked appropriately.

The derivation begins with a description of the inverse loss peak rescaled by the

amplitude,
ε′′p
ε′′

which can mathematically easily be described as:

ε′′p
ε′′

= Aω−a +Bωb + C (2.44)
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The first and second terms in this equation relate to the power laws describing

the flanks of the minima, with the parameters a and b used to describe the gradi-

ents of these flanks in a log-log representation and thus the powerlaw exponents.

The parameter C does not affect the gradients of these flanks at frequencies

significantly different from the frequency of the minimum, ωp. The amplitude

parameters, A and B can be determined by differentiating Equation 2.44 given

that the resulting derivative should be zero at ωp:

A =

(
b (1− C)

a+ b

)
ωap (2.45a)

B =

(
a (1− C)

a+ b

)
ω−bp (2.45b)

By substituting these relationships into Equation 2.44 and rearranging for ε′′

a function can be obtained to describe the shape of a dielectric loss peak.

ε′′(ω) =
ε′′p

(1−C)
a+b

(b( ω
ωp

)−a + a( ω
ωp

)b) + C
(2.46)

In this formulation, the C parameter relates to the bluntness of the peak in

ε′′. The Debye loss peak shape is achieved when a = b = 1 and C = 0. The

affect of variation of the parameters in Equation 2.46 is shown in Figure 2.10.

The figure showing the variation of the C parameter (Figure 2.10c) demonstrates

how the bluntness affects the shape of the dielectric loss peak. It should also be

noted that for particularly low values of the a and b parameters, the breadth of

the peak also increases to some degree.

The RB function provides a complete description of loss peaks in ε′′. Equation

2.46 can be adapted to suit specialised fitting situations if certain assumptions

are made. For example, in many cases the low frequency flank of the α relaxation

loss peak can be described by a power law with an exponent, or a parameter, of

1. If this assumption is made, it can be shown that C = 1− b and thus, Equation

2.46 reduces to just three fitting parameters: b, ωp and ε′′. This 3-parameter

representation of the RB function can be shown to be a good approximation for
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Figure 2.10: Figures showing the affect of variation of the different shape param-
eters in Equation 2.46: a) a = 0.1 → 1, b = 1, C = 0 b) a = 1, b = 0.1 → 1,
C = 0 c) a = b = 1, C = 0→ 0.9
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the Kohlrausch-Williams-Watts (KWW) function (Section 2.5.3) in the frequency

domain [104].

2.5.3 Time domain analysis

So far, we have only considered fitting of the dielectric spectra in the frequency

domain of ε. One can achieve a similar description of the loss peaks in the spectra

by transforming the data into the time-domain followed by a fit of the response

function, Φ(t), in the time-domain.

Kohlrausch-Williams-Watts Function

The response function, Φ(t) often exhibits non-Debye like behaviour and this

is characterised by a stretched exponential decay in the time-domain as first

described by Kohlrausch in 1854 [41].

Φ(t) = e−( tτ )
β

(2.47)

Where, τ is a characteristic relaxation time and β describes the degree of

stretching. Williams and Watts were the first to apply this form of stretched

exponential to describe the dielectric relaxation behaviour in molecular glass for-

mers in the frequency domain by applying a Laplace transform to Equation 2.47

[42, 98, 114, 115]. An analytical solution to the transformation of Equation 2.47

into the frequency domain is only available for the specific case where β = 0.5.

Generalised Gamma Distribution

Another example of a fitting approach defined in the time-domain assumes that

Φ(t) can be described using a distribution of Debye-like single exponential decays.

It uses the so-called generalised gamma (GG) distribution of timescales [97, 98]:

GGG(lnτ) = NGG(α, β)e
−β
α

(
τ
τ0

)α ( τ
τ0

)β
(2.48)

The normalization factor NGG is constructed such that integration of Equa-

tion 2.48 over all possible timescales yields a value of 1 and τ0 is the timescale
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corresponding to the maximum of the distribution. The shape parameters α and

β describe the width and stretching of the distribution respectively. One can

transform the GG distribution such that it can be used to describe the complex

dielectric permittivity in the frequency regime [97]:

ε∗(ω)− ε∞
∆ε

=

∫ ∞
−∞

1

1 + iωτ
GGG(lnτ)dlnτ (2.49)

Through such a transformation the β parameter describes the gradient of the

high frequency flank of a loss peak in ε′′ and it can be shown that for values of

β < 0.7, this shape parameter is a close approximation to the anti-symmetric

stretching parameter in the CD function.

2.5.4 Functional description of the excess-wing

In some instances the α relaxation loss peak in ε′′ exhibits a change in the power-

law exponent of its high frequency flank (see Chapter 1). In these cases, it

is necessary to fit the loss peak with appropriate functional descriptions of the

change in the power-law exponent. Examples of this include a modified version

of the GGG distribution [97, 98] and a modified version of the CD expression [55].

The function used for samples that show an excess-wing behaviour in the results

presented in this thesis were fit using a modified version of the RB function.

In order to construct this modification, it was assumed that the excess-wing

was due to an underlying β relaxation and that the contributions to the spectra

would follow the Williams-Watts ansatz [115]:

Φ(t) = AΦα(t) + (1− A)Φα(t)Φβ(t) (2.50)

Here, the relaxation functions due to the α and β relaxation mechanisms,

Φα and Φβ are related by a correlation factor, A which sets the fraction of the

decay of the correlation function attributed to each relaxation process in the time

domain.

This ansatz assumes no interaction between the α and β relaxations and that

the nature of the β relaxation would remain the same even when the two relax-

ations are completely merged. Equation 2.50 implies that the observed excess-
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wing in the dielectric loss is not due to the actual β relaxation but a result of the

so-called effective β relaxation, ε′′eff . In the time-domain, the response function

of the effective β relaxation, φβeff (t), which is obtained through a multiplication

of φα(t) and φβ(t):

φβeff (t) = φα(t) · φβ(t) (2.51)

At temperatures far below Tg, φα(t) = 1 and this means that φβ(t) = φβeff (t).

However, at higher temperatures the α and β relaxations are much closer together

in timescale and therefore φβ(t) 6= φβeff (t).

Equation 2.51 corresponds to a mathematical convolution in the frequency

domain: εβeff (ω) = εα(ω)⊗εβ(ω). In the case of merging of the α and β processes

in the frequency domain, the low frequency shape of the β loss peak is largely

set by the α relaxation whereas the high frequency shape is set by the underlying

β relaxation. This behaviour can be modelled in the dielectric loss through an

addition of functional components describing the α relaxation and the effective

β relaxation: ε′′(ω) = ε′′α + ε′′βeff .

The functional form of the modified RB function is as follows [18]:

ε′′(ω) =
ε′′p

(1−C)
a+b

(
b
(
ω
ωp

)−a
+ a

(
ω
ωp

)b)
+ C

+
ε′′wing

(1−Ceff)
a+g

(
g
(
ω
ωp

)−a
+ a

(
ω
ωp

)g)
+ Ceff

(2.52)

The first component of this equation is identical to the ‘unmodified’ RB func-

tion given in Equation 2.46, with parameters describing the exponents of the high

and low frequency power-law flanks, a and b, the bluntness of the peak, C and

the amplitude, ε′′.

The second component describes the contribution of the ‘effective’ β relax-

ation. In this component, the exponent of the low frequency power-law is also

described by the a parameter in the first component. Furthermore, the peak fre-

quency, of both contributions is set by one parameter, ωp, thus assuming a strong

merging of the two relaxations. As discussed, the low frequency behaviour of the

effective β loss would be set by the shape of the α loss in a frequency convolution.
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The g parameter is the exponent of the power law describing the high frequency

flank of the effective β relaxation and thus the excess-wing. The amplitude is set

by ε′′wing.

If the α and β relaxations are strongly merged, one could assume that the

bluntness of the effective β relaxation, Ceff , could approximately be determined

as the bluntness of the α and underlying β relaxations weighted by the strength

of the two contributions. This is defined as follows:

Ceff =
Cε′′p + Cβε

′′
wing

ε′′pε
′′
wing

(2.53)

Here, it was assumed that the underlying β relaxation would be symmetrically

stretched and well described by the CC function as is often observed in the litera-

ture [33, 61, 94, 96, 116, 117]. An analytical description of the CC function using

the RB function yields a bluntness: Cβ = 1
2

[
1− tan2

(
gπ
4

)]
, for the underlying β

relaxation. Note that the ‘amplitude’ of the excess-wing, ε′′wing has been assumed

to be equivalent to the amplitude of the underlying β relaxation.

2.5.5 Fitting procedure

Dielectric spectra were fit using an additive combination of functional descrip-

tions of the observed contributions to the dielectric loss. In general, the anti-

symmetrically stretched α relaxations were described using the RB function in

order to provide a complete description of the loss peak, including the ‘bluntness’

described by the C parameter. In order for comparison, the loss peaks were also fit

using the HN function, as it is often used in the literature [33, 61, 94, 96, 116, 117].

The β relaxation is manifested as a symmetrically stretched loss peak and there-

fore the CC function was used in order to describe it.

In the case demonstrated in Figure 2.8, fitting would require an additive com-

bination of the RB or HN functions to describe the α loss peak, the CC function

to describe the β loss peak and a power law flank to describe the conductivity

flank observed at low frequencies of the form described by Equation 6.1. This

equation suggests that the conductivity should follow a ω1 behaviour: the gra-

dient of the power law flank in a log-log scaling should be 1. In some instances

it was necessary to generalise the behaviour by fitting a power-law of the form
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ε′′ = Aωk. Samples for which the α loss exhibited excess-wing behaviour were fit

using the modified RB expression described in Section 2.5.4.

Fitting of the various dielectric spectra obtained in this research was com-

pleted using the Novocontrol WinFit software which optimises a set of initial pa-

rameters based on the local minimisation of the mean squared deviation (MSD)

between the total fit function and the measured data points [118]. Winfit uses non

linear curve fitting algorithms based on the Gauss or Newton method. Further

data analysis of the spectra was performed using MATLAB [119].

2.6 Summary

Dielectric spectroscopy is a highly appropriate experimental technique for the

study of glass-forming liquids as its large operating frequency range means that

the dynamics of such materials can be analysed over a wide range of timescales.

The nature of the BDS set-up is such that one can measure on a variety of

different sample geometries meaning that it is an ideal technique for measurement

of samples ranging for low molecular weight liquids to bulk polymers.
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Chapter 3

Experimental Techniques II:

Thermal Analysis

3.1 Introduction

In the following chapter, the theory and experimental techniques for two dif-

ferent forms of thermal analysis, Differential Scanning Calorimetry (DSC) and

Thermogravimetric Analysis (TGA), will be explained. DSC was used in order

to characterise the calorimetric glass transition of the systems studied and TGA

was used in order to facilitate the sample preparation for measurements using

Broadband Dielectric Spectroscopy (see Chapter 2).

3.2 Differential Scanning Calorimetry

Differential scanning calorimetry (DSC) is a technique used to measure the dif-

ference between the heat flow through a sample and a reference sample resulting

from a systematic change in the temperature of the system. DSC is a particu-

larly applicable technique for the measurement of glass-forming systems as the

glass transition is manifested as a step-like transition in the heat flow, q, and the

specific heat capacity, CP ; thus, Tg can be determined very accurately.
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3.2.1 Heat flow as a function of temperature

As mentioned in the introduction, DSC involves the measurement of the difference

in the heat flow through a sample and a reference sample. The sample is placed in

a closed aluminium pan (see Section 3.2.5) and the reference sample is often just

an empty pan. Calculation of the difference in heat flow through both the sample

and the empty reference pan allows the actual heat flow through the sample to

be determined. This will be explained in more detail in Section 3.2.4.

A typical DSC trace of the heat flow, q ,is shown in Figure 3.1a for hexylben-

zene. This measurement was conducted upon heating of the sample. Firstly, we

note that the trace of q is negative at the beginning of the trace (low tempera-

tures). This is because heat has to be supplied to the sample in order to raise its

temperature and in the figure we define the heat flow as negative when it flows

into the sample. The heat flow is related to the rate of change of the enthalpy, H:

q = dH
dt

and the specific heat capacity at constant pressure, Cp, can be expressed

as the change of enthalpy as a function of temperature:

CP =

(
∂H

∂T

)∣∣∣∣
P

. (3.1)

Therefore, Cp can also be obtained from a DSC measurement by dividing the

heat flow, q, by the heating/cooling rate:

CP =
q

dT
dt

. (3.2)

The equivalent trace in the specific heat capacity, Cp is shown in Figure 3.1b.

There are three distinguishable features in Figures 3.1a and b. Firstly there

are two prominent peaks relating to first order thermodynamic transitions. The

first of these indicates crystallisation of the sample and thus results in an exother-

mic peak in q as the sample releases heat. Correspondingly for crystallization an

exothermic peak in Cp is observed. At higher temperatures there is another peak

that indicates melting of the sample and is characterised by an endothermic peak,

as heat is absorbed by the sample. Again, we see a corresponding endothermic

peak in Cp. If the material shown in Figure 3.1 is fully amorphous a the beginning
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Figure 3.1: a) The heat flow, q, trace for hexylbenzene. b) The equivalent Cp
trace for hexylbenzene.

of the temperature run, the area of these peaks is equivalent to the enthalpy of

fusion, ∆Hfus.

At low temperatures, we observe a ‘step’ in the trace of both q and Cp. This

indicates the glass transition as shown clearly in the insets of Figures 3.1a and b.

The calorimetric glass transition temperature, Tg is often defined as the ‘onset’

temperature of the step in Cp or q (see Section 3.2.2). The height of the step

in ∆Cp can be related to the degrees of freedom released in the transition [120].

It has also been used to define the so-called thermodynamic fragility of glass-

formers [91], with more fragile glasses having a greater difference between the

heat capacities in the glass and the supercooled liquid. This usually corresponds

well to dynamic definitions of the fragility, such as the m parameter introduced in

Chapter 1, for simple molecular glass formers [121] but can exhibit the opposite

behaviour for some polymeric systems [122]. This will be discussed further in

Chapters 4 and 6.

Importantly, one can determine the entropy at a specific temperature, S(T ),
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by integrating the DSC trace of Cp:

Cp(T ) = T

(
∂S

∂T

)∣∣∣∣
P

(3.3a)

S(T ) =

T∫
0

Cp(T )

T
dT (3.3b)

Note that here a ‘reference’ temperature of T = 0 K has been used in order

to define the actual value of S(T ). In principle, this is valid as the third law

of thermodynamics states that S = 0 at 0 K [123]. However it is often difficult

to determine the development of Cp to very low temperatures. This will be

explored in more detail in Chapter 4. Furthermore, one can define the so-called

excess entropy, Sx, as the difference in entropy between the supercooled liquid

and the corresponding crystal: Sx = Sliquid−Scryst. The total entropy Stot in the

liquid can be thought of as the combination of the vibrational and configurational

entropies [2]. The excess entropy can be shown to decrease strongly as the liquid

approaches the glass-transition and this property has been used in models to try

and understand the slowing down in the dynamics. There are even theories for

the glass-transition that are based on the idea that the configurational entropy,

Sc of a system should become zero when a supercooled liquid forms a glass even

though this is not the case since there are still configurational degrees of freedoms

remaining in the glassy state, as further described in more detail in Chapter 4.

3.2.2 Analysis of the observed glass transition

The DSC traces obtained in this research were analysed using TA’s Universal

Analysis software. A graphical representation of the approach used to analyse the

glass transitions are shown for the step in Cp observed for the liquid hexylbenzene,

as shown in Figure 3.2a. Steps in Cp were analysed by first choosing two points

within the analysis software at the low and high temperature baselines either side

of the glass transition step. The software determines tangents to these points and

also a tangent to the inflection point of the Cp step, as denoted by the dashed red

lines in Figure 3.2a. The point at which the extrapolated tangent line of the glass
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Figure 3.2: a) Glass transition step in Cp for hexylbenzene, indicating how anal-
ysis was performed. b) Diagram of the change in enthalpy as temperature is
increased for two different glasses as explained in the text.

baseline (low T ) crosses the inflection tangent is known as the onset temperature,

Tonset. The point at which the extrapolated tangent of the supercooled liquid

baseline crosses the inflection tangent is known as the offset temperature, Toffset.

In general, the extrapolated onset temperature of the endothermic step in

Cp is used to define Tg [32, 124]. Although the use of different rates of cooling

and heating a molecular glass-former into and out of the glassy state will change

the shape of the step in Cp at the glass transition [125], the onset temperature

is relatively insensitive to reasonable variation of the material’s thermal history

[126]. It has been shown that the repeatability of DSC analysis is such that the

onset temperature can be determined within an error of 1K [127].

Although the onset temperature is used to define Tg in most cases, there are

examples of different choices of Tg in the literature such as at the temperature at

half of the step height, ∆Cp/2 [128]. Also, if the derivative of Cp is taken, then

there will be a peak corresponding to the inflection point of the glass transition

step and one can define Tg as the temperature at which the peak occurs [129]. It

could be argued that this is a better method for determining Tg as it does not

depend on the somewhat arbitrary positioning of the tangents used to determine

the onset temperature. However, the inflection point of the step in Cp is much

more dependent on the thermal history of the material than the onset temperature

61



3. EXPERIMENTAL TECHNIQUES II: THERMAL ANALYSIS

and this method involves taking the derivative of the data which introduces errors.

Thus, in this study, the Tg, as obtained from analysis of DSC data, will be taken

as Tonset.

In some cases, an extra contribution to Cp is observed after the glass transi-

tion. This so-called enthalpy relaxation peak (as shown in Figure 3.2a) can be

explained by considering the variation of enthalpy with increasing temperature

for different glasses [125]. A diagram depicting the variation of H with tempera-

ture (as introduced in Chapter 1) is shown in Figure 3.2b. As a supercooled liquid

is cooled, H decreases at a certain rate. At Tg, there is an observed change in the

temperature dependence of H. Faster cooling rates lead to higher observed glass

transition temperatures and thus the change in the temperature dependence of

H occurs at a higher temperatures [130]. For example, in Figure 3.2b, ‘glass 1’ is

formed with a faster cooling rate than ‘glass 2’. If these glasses are then heated

at the same rate, the change in the temperature dependence of H at Tg is not

necessarily reversible. One can sometimes observe ‘superheated glass’ behaviour

of H where H increases at the same rate above Tg because the equilibrium liq-

uid behaviour of H can not be realised at the temperature at which vitrification

occurred on cooling [125]. At a certain temperature (T > Tg), the temperature

dependence of H rapidly falls back onto the expected temperature dependence

of H for the supercooled liquid. This is manifested as a peak in Cp, as shown

in Figure 3.2a. Therefore this effect is an indication of the thermal history of a

glass.

3.2.3 Different methods of calorimetry

Differential scanning calorimeters are generally manufactured using two different

principles of determining the heat flow through a sample. Power compensation

DSC involves placing the sample and reference in two separate furnaces and

monitoring the temperature difference between the sample and the reference,

∆T . The electrical power supplied to the sample furnace, PS ,and the reference

furnace, PR, are varied such that ∆T = 0. Measurement of the differential

between PS and PR yields the differential heat flow between the sample and the

reference [131].
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Heat-Flux DSC on the other hand involves placing the sample and reference

onto platforms with high thermal conductivity within the same furnace and mea-

suring ∆T directly, in order to determine the difference in heat flux [132]. In

this research, a turret-type heat-flux DSC was used and therefore the following

explanation of the determination of the heat flow through a material will be con-

ducted with reference to the direct measurement of ∆T between a sample and a

reference sample.

3.2.4 Accurate determination of the heat flow

The following description of the determination of the heat flow is based on the

work of Danley [132] and Hohne et. al. [130].

The measured heat flow in a DSC experiment, q, is the difference between the

heat flow through the sample, qS and the heat flow through a reference sample,

qR, as determined through measurement of the difference in the temperature of

the sample and the reference sample (TS and TR). In the simplest approximation

of steady-state heat flow, the conduction of heat can be described by the Biot-

Fourier equation (in this formulation of the equation, vector notation has been

ignored)[130, 133]:

q

A
= −λ∇ · T (3.4)

Here, A is the cross-sectional area of the connecting path between the heat

source and sink and thus the quantity q
A

is the heat flux. λ is the thermal

conductivity. A diagram depicting this scenario is shown in Figure 3.3a If we

consider that, in a DSC experiment, heat flows between the DSC furnace and

the sample and the reference respectively and that the lengths of the paths, ∆l,

between the sample/reference and the furnace are equivalent, one can construct
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expressions for qs and qR [130].

qS = −λA∆TSF
∆l

(3.5a)

qR = −λA∆TRF
∆l

(3.5b)

(3.5c)

Here, ∆TSF and ∆TRF are the temperature differences between the sam-

ple/reference and the furnace. We can now construct an expression for the dif-

ferential heat flow, q = qS − qR.

q =
−λA
∆l

(TS − TR) (3.6)

One can approximate the quantity −∆l
λA

as some thermal resistance in the

system, R. If we assume that the thermal resistances between the furnace and

the sample, RSF and the reference, RRF are equivalent (i.e. R = RSF = RRF ),

q is linearly related to the difference in temperature between the sample and the

reference, ∆T , with R as the proportionality factor [130, 132]:

q =
∆T

R
(3.7)

This equation for q is what all calorimeters are based on. We have made a

number of assumptions when constructing this equation, namely: i) the thermal

resistances RRF and RSF are the same, ii) the rate of heating in both the sample

and reference are the same and iii) the heat capacities of the sample and reference

are balanced. In order to get the most accurate determination of the heat-flow,

these assumptions need to be addressed. In general, one must consider the rate of

heat flow, q̇ = dq/dt, as ∆T would not be constant in time when endo- or exother-

mic transitions occur within a sample. The different thermal considerations can

be described in simple terms using a circuit diagram [132]. This interpretation

is valid, from a physical point of view, as heat transfer and charge transfer are

analogous [130]. In this manner, q and ∆T are analogous to the charge current

and the voltage respectively and therefore Equation 3.7 is the thermal equivalent
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Figure 3.3: a) Diagram of the functionality of the turret-type heat flux DSC as
explained in the text. b) Circuit diagram showing the thermal components of the
DSC.

to Ohm’s law. If we assume that the thermal resistances between the furnace

and the sample and the reference are not identical and that the heat capacities of

the sample and reference can be approximated as capacitors with so-called heat

capacitances, CS and CR, then we can form equations which describe the heat

flow through the sample, qS and reference, qR, in the circuit in a similar manner

to using Kirchoff’s laws to determine the flow of charge. We can also define T0

as the temperature of the furnace (as shown in Figure 3.3b). The equations for

qS and qR can be written as follows [132]:

qS =
T0 − TS
RSF

− CS
dTS
dt

(3.8a)

qR =
T0 − TR
RRF

− CS
dTR
dt

(3.8b)

For further simplification the differential temperatures ∆T and ∆T0 can be
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introduced where:

∆T = TS − TR (3.9a)

∆T0 = T0 − TS (3.9b)

We can now form an equation for the differential heat flow: q = qS− qR [132].

q = − ∆T

RRF

+ ∆T0

(
1

RSF +RSR

)
+ (CR − CS)

dTS
dt
− CR

d∆T

dt
(3.10)

The consideration of the temperature of the furnace T0 when calculating the

heat flow to correct for the influence of thermal inertia is the so-called TZeroTM

DSC technology invented by TA Instruments and is the fundamental basis for

measurement of the DSC used in this research (as will be described in section

3.2.5) [134]. The reasoning for measuring T0 as well as TS and TR is that the

measurement of the sample temperature is not strictly determined at the sample

itself: rather, it is determined at a thermocouple which sits below the sample

crucible. There are several components which could lead to some thermal resis-

tance between the thermocouple and the sample itself. Thus, due to the flow of

heat, the measurement of the temperature of the sample will be slightly delayed

in comparison to the actual sample temperature. One can picture this ‘delay’ as

follows [130]. If we consider the measured sample temperature, TmS and define a

characteristic time-constant τm to describe the temperature relaxation between

the sample and the measurement point, we can describe the difference between

TmS and TS:

TmS = TS − τm
dTmS
dt

(3.11)

By defining an analogous equation to describe the measured reference tem-

perature TmR and introducing the quantity ∆Tm = TmS − TmR one can obtain an

expression for the difference in temperature between the sample and the reference,
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∆T :

∆T = ∆Tm − τm
d∆Tm

dt
(3.12)

Therefore an accurate determination of ∆T (and thus the heat flow q) can be

obtained through knowledge of the time constant, τm. If this method of measuring

T0 is not used, then one can get smearing of the features in a DSC trace, the level

of which is set by τm.

Although we now have a more accurate way of determining the differential

heat flow than Equation 3.7, it has been based on the assumption that the sample

and reference are in direct contact with their respective ‘platforms’ within the

sample cell of the calorimeter. In an actual DSC measurement, a material to be

measured is placed into a ‘pan’ of some kind. The reference is most often just an

empty pan, of the same material as the sample pan. Therefore by calculating the

differential heat flow, the effects of the sample and reference pans can be factored

out of the heat flow through the sample qsam, which is the quantity we wish to

obtain.

One can construct a similar circuit diagram to that shown in Figure 3.3b in

order to describe the added effects of the sample and reference pans and therefore

we can define the associated thermal resistances and capacitances associated with

the sample pan, CSP and RSP and those associated with the reference pan CRP

and RRP .

The heat flow through the sample pan qSP is the product of the mass of the

sample pan, mSP , the specific heat capacity of the pan material, cpan, and the

heating rate of the pan. Thus qsam can be expressed in terms of the measured

sample heat flow as qS− qSP . If the reference sample pan is empty, then the mea-

sured reference heat flow, qR is equivalent to the heat flow through the reference

pan. Therefore we can construct the following equations:

qS = qsam +mSP cpan
dTSP

dt
(3.13a)

qR = mRP cpan
dTRP

dt
(3.13b)
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Equation 3.13b can be rearranged in order to obtain an expression for cpan and

therefore this can be eliminated from Equation 3.13a as the sample and reference

pans are made of the same material. We can then reformulate Equation 3.13a

in order to obtain an expression for qsam, which takes the difference between the

masses of the pans and the difference in the heat flow through each pan into

account [132].

qsam = qS − qR
(
mSP

mRP

)(
dTSP

dt

)(
dTRP

dt

)−1

(3.14)

In order to determine the temperatures TSP and TRP , relations must be con-

structed using the values of the measured temperatures TS and TR. This can

be realised by applying Equation 3.7, using the resistances RSP and RRP . In

this case, ∆T would be the difference between TS and TSP or TR and TRP . The

resistance associated with the pans can be constructed thorough addition of the

resistances due to the pan itself, the resistance of the temperature sensor and the

resistance associated with the gas layer between the pan and the sensor. These

resistances can be determined using the appropriate thermal conductivities and

geometries of the different components [132].

3.2.5 Measurement technique

The DSC used to complete the work presented in this thesis is a Q2000 from

TA Instruments. The DSC operates using the TZeroTM principle as explained in

Section 3.2.4. This type of calorimeter has a sample cell containing a turret type

heat-flux set-up [130] as depicted in Figure 3.4a.

Calorimeter sensor and measurement chamber

A diagram showing the measurement chamber of the Q2000 DSC is shown in

Figure 3.4a. The sample and reference platforms sit on a constantan base such

that the sample and reference are not in thermal contact with each other. In this

manner, one does not get so-called ‘cross-talk’ between the sample and the refer-

ence as the heat flow through the sample does not affect the heat flow through the
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Figure 3.4: a) Diagram of the calorimeter sensor and the measurement chamber.
b) Diagram depicting how the measurement chamber is cooled/heated

reference and vice versa. The temperatures, T0, TS and TR are measured using

thermocouples. A thermocouple is constructed by connecting two different metals

and recording the potential between them, which scales with the temperature of

the surface that they are connected to [135]. In the Q2000 DSC constantan and

cromel are used to construct the thermocouples as they have a higher potential

per unit change of temperature than any other thermocouple combination over

the temperature range of the DSC [136]. The temperature of the base (and thus

the furnace), T0 is measured between the cromel and constantan wires connected

to the base, equidistant between the sample and reference platforms. The tem-

perature of the sample and reference pans are measured between the cromel ‘area

detectors’ which are welded onto the underside of the respective platforms and

the base constantin wire. The sample cell is purged with either nitrogen or helium

(depending on the cooling system used) to prevent ice formation or condensation

and to ensure even heating of the cell [137].

Temperature Control

A diagram showing how the temperature of the measurement chamber is con-

trolled in the Q2000 DSC is shown in Figure 3.4b. The DSC was run with either

a refrigerated cooling system (RCS) or liquid nitrogen cooling system (LNCS).
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Unlike other types of heat-flux DSC, the furnace in the Q2000 system sits below

the sample chamber rather than surrounding it and is connected to the calorime-

ter sensor via a silver block to ensure good thermal conductivity. The furnace

block sits on top of a cooling flange plate, the temperature of which is kept at

close to the lowest operating temperature of the DSC cooling system (-180 ◦C

for the LNCS and -90◦C for the RCS). This cooling flange is connected to the

furnace and silver block by 54 nickel rods which enable rapid cooling of the sam-

ple cell and allow greater rate dependent control of the temperature of the DSC.

Although the Q2000 can attain reasonably fast heating/cooling rates, the cooling

rate is limited close to the operating temperature of the flange. In this research

however, we only consider the DSC traces on heating of the samples.

Sample preparation and operating procedure

For the research presented in this thesis, the samples were all prepared in hermet-

ically sealed aluminium pans (see Figure 3.4a). This ensured that evaporation

of the lowest molecular weight samples measured could be prevented. Although

it is not strictly necessary to use hermetically sealed pans to measure polymeric

samples, the same pans were used for all samples to ensure comparability between

the obtained data. Samples of between 5 and 15mg were placed into the pans.

In the case of the polymeric samples, it was necessary to ’pre-melt’ the sample in

order to guarantee good thermal contact between the sample and the bottom of

the pan.

In all cases for this research, samples were run with a heating/cooling rate

of 10 K per minute as it has been shown that this rate corresponds to a struc-

tural relaxation timescale of 100s [138–141], corresponding to the timescale at

which the dynamic Tg is often defined. The samples were first cooled below their

expected glass transition temperatures and then measurements were performed

whilst cycling the temperature around this transition.

Calibration

In order to obtain an accurate value for the heat flow through the sample, the

calorimeter must be calibrated in order to determine values for the machine spe-
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cific unknowns from Equation 3.10, namely the thermal capacitances associated

with the sample and reference measurement platforms, CS and CR, and the ther-

mal resistances between the furnace and the sample and reference, RSF and RRF .

The calibration involves first running the DSC with no sample or reference pans.

In this manner, the heat flows of both the sample and reference are effectively

zero and so Equations 3.8a) and b) can be rearranged such that an expression

for the so-called time constants of the calorimeter can be obtained where, for

example, τS = CSRS [132]:

τS = ∆T0

(
dTS
dT

)−1

(3.15a)

τR = (T0 − TR)

(
dTR
dT

)−1

(3.15b)

= (∆T0 −∆T )

(
dTS
dt
− d∆T

dt

)−1

(3.15c)

The next step in the calibration is to determine the thermal capacitances

directly. This can be achieved by placing sapphire disks with well known mass

onto the sample and reference platforms. The heat flow through the sapphire

disks, can be determined as a product of the mass of the disks,msapp, the specific

heat capacity of sapphire, csapp and the heating rate. Sapphire has no phase

transitions in the temperature region of measurement for this calorimeter and

therefore the assumption made during this calibration is that the rate of heating

of the sapphire disks is equivalent to the rate of heating through the sample and

reference platforms. We can thus set the heat flow in Equations 3.8a) and b)

equal to the heat flow expected for the sapphire disks and solve the equations

for CS and CR. As we have determined the time constants for the calorimeter,

τS and τR, we can now obtain expressions for the determination of the thermal
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resistances, RSF and RRF [132]:

RSF =
τS
CS

(3.16a)

RRF =
τR
CR

(3.16b)

(3.16c)

Therefore, by calibrating the machine using an empty sample cell (i.e. no sam-

ple or reference) and then calibrating with sapphire disks with well defined ther-

mal properties, we can determine all the machine dependent thermal unknowns

required to correctly measure the heat flow. This has the added advantage of

setting the baseline of the DSC measurement to (effectively) zero and thus this

type of DSC does not require the removal of a baseline from the resulting traces

in heat flow.

Further calibration

Although the method described above yields an essentially perfectly flat baseline

(q = 0 ± 10µW), there could still be some discrepancy of the measurement of

the onset temperature or enthalpy change ∆H of a transition, such as melting.

In order to account for this, a DSC can be calibrated using samples with a very

well defined melting temperature and enthalpy of fusion ∆Hfus [142]. Typically,

indium is used for such a calibration with a melting temperature of 156.6 ◦C and

a ∆H of 28.47 kJ/kg. One can measure a sample of indium and then adjust the

temperature correction and the so called ‘cell-constant’ of the calorimeter in order

to ensure a correct determination of the transition temperatures and enthalpies

for future measurements. Although this method is valid, by only applying the

temperature correction of the calorimeter with one reference material we are

assuming that the temperature correction is the same across the entire operating

temperature range. This is not always the case and often it is necessary to do a

multi-point calibration of the temperature correction of the calorimeter, especially
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for low temperature measurements [128, 143]. For this reason, adamantane was

also used to calibrated the temperature correction of the calorimeter.

3.3 Thermogravimetric Analysis

The term Gravimetric Analysis refers to the accurate determination of the mass

of a sample and therefore Thermogravimetric Analysis is the determination of

the mass of a sample as a function of temperature [144].

TGA was used to determined the degradation temperature, TD, of polymeric

samples to aid the sample preparation of these samples for measurement using

Broadband Dielectric Spectroscopy. In order to measure polymeric samples using,

BDS, the samples were applied to 40mm diameter electrodes with silicon spacers

and heated to temperatures significantly higher than their expected glass tran-

sition temperatures. A smaller 20mm diameter electrode was then placed onto

the polymer/spacer set up and pressure was applied in order to ensure a constant

sample thickness between the two electrodes. The inherent problem with this

procedure was that the temperature required in order to decrease the viscosity

of the polymeric samples enough such that an even sample thickness could be

attained was close to the degradation temperature of the polymers. Therefore, in

order to avoid degradation of the samples, thermal gravimetric analysis (TGA)

was performed to determine the temperatures at which they would degrade. This

provided an upper-bound for the temperature in the sample preparation process.

A diagram of a typical TGA set-up is shown in Figure 3.5a. A TGA instru-

ment consists of a sample platform which is connected to a balance in order to

measured the change of mass of the sample, contained within a metal pan. A

furnace is used to vary the temperature of the sample. This temperature, Ts, is

recorded by a thermocouple connected to the sample platform.

The mass of the sample is recorded through an electrobalance connected to the

sample platform via the ‘sample carrier’. In order for an accurate determination

of the sample mass, buoyancy corrections must be made. During measurement,

the apparent mass of a sample can appear to increase due to Archimedes’ Prin-

ciple [145]. As the sample is heated, the density of the surrounding gas decreases

whereas the density of the sample does not change at the same rate. This means
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A = Furnace
B = Sample Pan
C = Sample Platform
D = Thermocouple
E = Sample Carrier
F = Balance
H = Sample

TS = Sample temperature

F

Figure 3.5: a) Diagram showing a typical TGA set-up as described in the text.
b) TGA data for a sample of poly(α-methylstyrene) (Mw = 28000) with the
degradation temperature, TD, indicated by the dashed line.

that the ‘upthrust’ due to the mass displacement of the gas will decrease with

increasing temperature leading to an apparent increase in the mass of the sam-

ple. This effect can be reduced by using a small sample mass (∼ 10mg) and by

performing a baseline calibration by measuring a sample which will not change

in mass over the measured temperature range.

In this research, a Netzsch TG 209 F1 Libra R© TGA instrument was used.

The instrument has an operational temperature range of 283 - 1373 K and the

heating rate can be varied between 0.001 to 200 K/min. Measurements of the

samples in this research were placed into aluminium sample pans and heated to

a temperature of 620 K at a rate of 10 K/min. The result of this for a sample

of poly(α-methylstyrene) (Mw = 15900) is shown in Figure 3.5b. The percentage

mass remains at 100% for most of the temperature range measured before rapidly

decaying to 0 at a certain temperature. The temperature at which an appreciable

decrease of the mass was observed was defined as the degradation temperature,

TD, as shown in the figure.

3.4 Summary

Differential Scanning Calorimetry (DSC) and Thermogravimetric Analysis (TGA)

are useful tools in the determination the thermal properties of materials. Firstly,

this chapter included an explanation of how the heat flow is determined in a heat-
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flux DSC and a description of the TA Q2000 heat-flux DSC that was used in order

to determine the nature of the characteristic steps in the heat capacity relating

to the glass transition. Secondly, a brief description of the principles of TGA was

given which was used in order to determine the degradation temperature, TD, for

the polymeric samples measured in this research.
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Chapter 4

Results I: Relaxation dynamics in

a systematic series of simple

molecular glass formers

4.1 Introduction

In Chapters 4, 6 and 7 the dynamics of glass-formers as a function of the ‘size’ of

their constituent molecules will be considered. Chapter 4 focuses on a series of

alkylbenzenes where the alkyl tail attached to a phenyl ring is varied systemati-

cally. In contrast, Chapters 6 and 7 focus on chain-length series of oligomers or

polymers either of poly(styrenes) (Chapter 6) or poly(α−methylstyrenes) (Chap-

ter 7). This choice of systems makes it possible to systematically investigate

both how small structural modifications changes the glass transition temperature,

Tg, and how the building up of polymeric chains by adding monomers together

changes Tg.

An increase of the glass transition temperature, Tg, with increasing molecular

weight is a feature common to low molecular weight glass forming liquids. From

a simplistic point of view it makes sense that a higher temperature is necessary

to bring a system of larger molecules from the glassy to the fluid state. However,

there are no established theories or models that both describe this molecular

weight or size variation in detail and fit experimental data well. Figure 4.1a shows

a compilation of data obtained from the literature [146] for a large compilation
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of glass-forming liquids that interact through van der Waals interactions. Based

on this, Novikov et. al. suggest that the relationship between Tg and molecular

weight can be described by a simple power law expression: Tg ∝ Mα, where

α = 0.51± 0.02. This behaviour is denoted by the red dashed line in Figure 4.1a.

The authors provide some qualitative explanations for the general observed trend

of an increasing Tg with increasing Mw. One is based on the so called Lindemann

criterion for melting, which states that as the atomic mean square displacement

< x2 > reaches 10% of the squared inter-atomic distance a2 the system melts

[147]. The mean square displacement can be approximated as < x2 >∝ T/Mwω
2
D,

where T is the temperature and ωD the Debye frequency [148]. This means that

the melting temperature Tm ∝ Mw. Moreover, it is well known that to a good

approximation there is a simple relationship between the melting temperature

and the glass-transition temperature, Tg ≈ 2Tm/3 [149]. Following this simple

reasoning, one would thus expect that approximately Tg ∝ Mw. Another simple

argument is based on the fact that one can both motivate theoretically [2] and

show experimentally that Tg [2, 146] is proportional to a material’s elastic moduli,

e.g. a bulk modulus or a shear modulus, multiplied by a relevant volume where

the latter has a size of the order of the molecular volume. Novikov et. al. make

the argument that if the molecules interact through van der Waals interactions

a simple relationship between Tg and the molecular weight of the molecule can

be derived. The argument is that the bulk modulus B is proportional to the

volumetric density of the intermolecular interaction energy, U , so that B ∝ U/V ,

and U in turn is proportional to the surface of a molecule. Thus, one obtains an

approximate scaling B ∝ V 1/3, where V is a molecular volume. Using the general

relationship between Tg and modulus, one finally obtains, Tg ∝ B ∝ V 2/3 ∝M
2/3
w .

The authors state that these explanations are speculative and only a very rough

estimates but they do support the growth of Tg with increasing Mw.

Larsen et. al. also provide an argument for the increase of Tg for a range of

molecular glass formers based on their size [150]. The authors collate Tg data

for 13 non-polar glass formers [151–156] comprising of molecules which they ap-

proximate as rigid (based on the fact that the molecules contain alkane chains

less than 3 carbons long) and characterise their size based on their effective hard

sphere diameters, σ0, where σ0 < 1nm for the samples studied. The hard sphere

78



4.1 Introduction

Figure 4.1: a) Tg as a function of molecular weight reproduced from Ref.[146].
The red line indicates the predicted Tg ∝ Mα

w behaviour with α = 0.5. b) Tg as
a function molecular weight of a selection of molecular glass formers reproduced
from Ref.[150]. The dashed guide to the eye indicates the linear behaviour of the
Tg values with a log10(Mw) scaling.

diameters are derived from analysis of high-pressure equation of state data [157].

The authors found a systematic growth of Tg with increasing σ0. The authors

further provide a very interesting idea for how to think of their data, which is

based on the behaviour of the glass transition in colloidal systems. For suspen-

sions of relatively mono-disperse hard-sphere colloids it is well known that glass

formation occurs at a colloid volume fraction φ ∼ 0.58 [158]. Given the hard

sphere sizes of the molecules in the series, a similar argument can be used here

where one defines Tg as occurring when the molecules reach a φ ∼ 0.58. However,

this approach could not quantitatively account for the data over the full range

of molecular weights. Thus, for a more direct comparison to the discussions and

data discussed in this work, we have in Figure 4.1b replotted the Tg values from

the authors’ compilation as a function of molecular weight on a logarithmic scale.

This will later serve as a point of reference for the behaviour of a series of simple

molecular liquids for which the molecules can be considered as rigid.

Several other compilations of Tg and other dynamic data obtained for molecu-

lar glass forming liquids exist in the literature (for example Refs. [25, 37, 52, 151].

However, comparison between very different types of samples is difficult due to

their differing chemistries and interactions between constituent molecules. In or-
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der to explore the variation of parameters such as Tg, the most logical approach

should be to study series of samples where a quantifiable parameter relating to

the molecular structure or interactions is systematically varied. In the results pre-

sented in the following chapters of this thesis, the parameter chosen for systematic

variation was the molecular weight of a specific series of substances. In this man-

ner, we have chosen to investigate systematic modifications of structure. Studies

of a systematic nature exist particularly for polymeric systems where the effect of

increasing the degree of polymerisation is explored. However, the existing studies

generally focus on oligomeric chain-series where mainly the structural relaxation

and the related glass transition temperature are investigated. Very few studies

exist where the full relaxation behaviour is mapped out in detail and this lack

of systematic investigations is even more clear for non-polymeric glass-forming

systems.

To address this, in this chapter, an investigation of the effect of structure mod-

ifications in a series of simple molecular organic glass-forming liquids, alkylben-

zenes, will be presented. The alkylbenzenes are most commonly used as solvents

or as precursors in the synthesis of other chemicals. They also exist as integral

components of petroleum products [159]. The common feature of the samples in

this series is a single benzene ring covalently bonded to a ‘tail’ consisting of a

differing number of backbone carbon atoms. A schematic representation of the

chemical structure of the samples in this series is shown in Figure 4.2.

To facilitate the following discussion of the results for the alkylbenzenes, and

focus the attention of the reader to the length of the alkyl-chain tail, the pa-

rameter M will be used to represent the different samples where M relates to

the number of backbone carbon atoms in the tail (see Figure 4.2). For exam-

ple, ethylbenzene consists of a benzene ring connected to a tail consisting of

methylene (CH2) and methyl (CH3) groups. The number of carbon atoms in the

backbone of the tail in this instance is 2 and therefore, using this nomenclature,

ethylbenzene would be the M = 2 sample. Note that often, M , is used to refer

to the molecular weight. To avoid confusion, the molecular weight will be re-

ferred to as Mw in this thesis. The samples for this study were all obtained from

Sigma-Aldrich with a stated purity of better than 98%. Further details regarding
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Figure 4.2: Schematic representation of the chemical structure of the samples in
the alkylbenzene series.

the series, including their M value and values for the melting and boiling points

quoted by the manufacturer are shown in Table 4.1.

Sample M
Mw Density Stated

Tm (K) Tb (K)
(g/mol) at 298K (g/ml) Purity

Toluene 1 92.14 0.865 99% 180 383
Ethylbenzene 2 106.17 0.867 > 99.5% 178 409
Propylbenzene 3 120.19 0.862 > 99.5% 174 432
Butylbenzene 4 134.22 0.860 > 99.8% 185 456
Pentylbenzene 5 148.24 0.863 > 99.0% 198 478
Hexylbenzene 6 162.27 0.861 > 99.8% 212 499
Heptylbenzene 7 176.30 0.860 98% 225 506

Table 4.1: Table showing specific details for the samples in the alkylbenzene series
with the relevant quoted specifications from the manufacturer. All samples were
obtained from Sigma-Aldrich.

The research presented here combine results obtained from Broadband Dielec-

tric Spectroscopy (BDS) and Differential Scanning Calorimetry (DSC) in order to

analyse the effects of increasing alkyl tail-length on the dynamics of the glass tran-

sition. A systematic investigation of the relaxation dynamics of the alkylbenzene

series has not been reported before. However, data on some properties exist in the
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literature on the M = 1-4 and 6 samples in the series [33, 34, 55, 61, 78, 98, 160–

165]. These literature results will be discussed in relation to our new measure-

ments when this is relevant throughout the chapter.

4.2 Dielectric Spectroscopy: α relaxation

In this section the dielectric measurements and analysis of the α relaxation for

the alkylbenzene series will be discussed. Measurements were performed at both

the University of Leeds and at Chalmers University of Technology, Gothenburg,

using the Novocontrol Alpha-A and Alpha-S analysers (for more details, please

refer to Chapter 2). The two dielectric set-ups have an operating frequency range

of 10−2 to ∼ 106Hz allowing the characteristic relaxation mechanisms of the glass-

formers to be captured over a wide range of frequencies and timescales. As the

experiments were performed on two different spectrometers, this enabled the re-

peatability of the obtained spectra with regards to different experimental set-ups

to be determined. The low viscosity of the samples at room temperature meant

that the samples had to be run using the dielectric liquid cell (BDS 1308, Novo-

control) as described in Chapter 2. The samples were placed between two 20mm

diameter gold plated electrodes with a fixed separation of 100µm maintained

through the use of silica spacers. The temperature of the dielectric sample cell

was maintained using the Novocontrol Quatro cooling system with an operating

temperature range of −160 to 400◦C and an accuracy of ±0.1◦C.

4.2.1 Dielectric spectra

The dielectric response corresponding to the α relaxation manifests itself as a peak

in the dielectric loss, ε′′. In order to capture the development of the loss peak as

a function of temperature, the samples were run at a selection of temperatures

ranging from just below Tg to a temperature such that the α relaxation peak

for each sample was no longer visible in the measurable frequency window. The

dielectric measurements of this series in the α relaxation temperature regime

were conducted by first cooling the samples at the maximum rate of the cooling

system (∼20K/min) to a temperature below their expected Tg in order to avoid
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Figure 4.3: Dielectric spectra for different runs of M = 5 samples at 147 K in
order to check the repeatability of the observed α relaxation peak. The different
runs include comparisons between re-fillings of the liquid cell, the response from
two different dielectric spectrometers and the response from two different batches
of pentylbenzene.

crystallisation of the samples. The temperature was then increased in steps of 2

K and dielectric spectra were obtained at every temperature increment.

To illustrate the repeatability of the α relaxation spectra, several spectra

obtained for pentylbenzene (M = 5) are shown in Figure 4.3. This figure shows

spectra recorded on samples from the same batch in four separate runs, each

including a re-filling of the liquid cell. Measurements were performed using both

the two different dielectric set-ups at Leeds and Chalmers (as indicated in the

figure) and a measurement performed on a separate batch of pentylbenzene is

also shown in order to confirm that the obtained results were independent of

the batch studied. This figure illustrates that the dielectric spectra in the α

relaxation regime are highly repeatable between different spectrometers, different

sample batches and re-fillings of the liquid cell. Slight variations in the peak

frequency, particularly between the runs completed at Leeds and those completed

at Chalmers, can be attributed to small variations in the measured absolute

temperature of the spectrometer on the order of ±0.5K.
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Figure 4.4 shows the dielectric loss ε′′ obtained for the alkylbenzene series

(M = 2,3,4,5,6 and 7) in the temperature range for which the α relaxation was

clearly visible within the measurable frequency range. The solid lines are the

results of data fitting and the details of the fitting procedure will be described in

Section 4.2.3. Data are not shown for toluene (M = 1) as the sample could not

be quenched at a sufficient rate as to avoid crystallisation. As a result of this, the

data for toluene shown in latter parts of this chapter were obtained from the two

existing relevant literature studies on dieletric spectroscopy of toluene [33, 55, 61,

98]. The two literature studies addressed the problem with sample crystallization

differently. In the Refs. [55, 61, 98], two partially silvered microscope glass

plates were glued together at a fixed separation of 50µm. The sample was then

introduced into the cavity and the filled cell was placed into a cryostat pre-cooled

to 80K in order to quench the sample. With interfaces prepared in this manner,

crystallisation could be avoided. Measurements were performed upon heating of

the sample. In Ref. [33], the authors used small sample volumes to suppress

crystallisation. Purified toluene was placed into thin-walled glass capillaries and

measurements were performed by placing several of these capillaries between two

metal plates acting as electrodes. Measurements were made upon lowering of

the sample temperature. In this case, the effects on the electric field distribution

introduced by the specific measurement geometry was taken into account by

modelling the effect of a thin-walled cylinder in a parallel plate capacitor.

The most prominent features of Figure 4.4 are the clear loss peaks relating to

the α relaxations. The samples all demonstrate a decrease in the peak frequency

of these α relaxation loss peaks with decreasing temperature, and a slowing of

the structural relaxation timescale is generally observed as the glass transition

temperature is approached. This behaviour is characteristic of glass forming

liquids [2]. In the case of the M = 3, 4, 5 and 6 samples, crystallisation of the

samples was observed when the peak frequency of the α relaxation reached a

value of 104 Hz. The loss peaks could be obtained beyond this frequency for the

M = 3 and 4 samples by cutting the low frequency range at the appropriate

temperatures and thus decreasing the measurement time at each temperature

meaning that crystallisation could be avoided. However, the loss peaks for the

M = 5 and 6 samples were unobtainable in this temperature/frequency region.
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Figure 4.4: Dielectric loss spectra for the a) M = 2 b) M = 3, c) M = 4, d)
M = 5, e) M = 6 and f) M = 7 samples in the α relaxation regime. Fits of the
data are shown as solid lines in the figures and will be further described in the
text.
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The spectra for the M = 3 - 7 samples shown in Figures 4.4b-f additionally

show two extra contributions to the dielectric loss. The first of these is an inter-

mediate frequency relaxation contribution which is consistent with the secondary

relaxation process clearly observed at lower temperatures for the M = 3, 4, 5 and

6 samples. This secondary relaxation could not be resolved for the M = 7 sample

at lower temperatures, but the full spectra for this sample could not be described

in the α relaxation range without the introduction of an intermediate relaxation

process, which strongly suggests that the M = 7 sample has the same kind of

relaxation contribution. The nature of the observed secondary relaxations will be

discussed in Section 4.3. The second extra contribution to the spectra was a weak

high frequency contribution. The origin of this contribution is unclear, but its

existence and behaviour was repeatable through separate sample measurements.

The spectra for the M = 2 sample do not show any indications of the inter-

mediate frequency contribution or the high frequency contribution. Instead, the

loss peaks demonstrate a distinct change in the gradient of the high frequency

flank of the α loss peak, a so-called ‘excess-wing’, as indicated by the solid blue

lines in Figure 4.4a. This could be indicative of the merging of a secondary relax-

ation process as observed in an oligomeric chain series of propylene glycol based

dimethyl ethers in research published by Mattsson et. al. [69]. In this study,

samples with the degree of polymerisation N = 1, 2, 3, 7 and 69, were analysed

using dielectric spectroscopy and it was observed that for the longer chain-length

samples, a clearly separated α and β relaxation loss peak were observed. How-

ever, as the chains became shorter the two relaxations moved closer together and

eventually the secondary contribution was submerged under the high-frequency

flank of the α relaxation in effect leading to an excess wing. The implication was

that the excess-wing observed for the smaller chain length samples was due to the

merging of the α and β relaxations. Similar observations have also been made

in a series of polyalcohols [166] and for an oligomeric series of propylene glycol

[167]. Also, observations have been made in other systems where different routes

were used to control the separation of the α and β relaxations. In a study by

Schneider et. al. samples of propylene carbonate and glycerol were aged for up to

5 weeks at a temperature close to the glass-transiiton where aging leads to a sig-

nificant slowing-down of the α relaxation, whereas the β relaxation shows a much
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Figure 4.5: Figure showing a) the dielectric loss in the α relaxation regime and b)
the derivative of ε′′ against frequency for the M = 2 and 3 samples to demonstrate
the difference between the spectra.

weaker dependence thus leading to a separation of the two relaxations for longer

aging times [71]. In these experiments, the excess-wing observed for the samples

becomes a ‘shoulder’ with ageing, hinting at an underlying β relaxation. Casalini

et. al. studied the pressure evolution of the type B glass former, tripropylene

glycol (tri-PPG) [70]. The sample was held at a temperature of 220.5 K and

subjected from pressures increasing from atmospheric pressure to 591.3 MPa. At

atmospheric pressure, the dielectric spectra for tri-PPG showed clearly defined

loss peaks relating to the α relaxation and what the authors call the β relaxation.

As pressure was increased, an excess-wing developed on the high frequency flank

of the α relaxation. With further increasing pressure, this wing developed into

another well defined relaxation process further indicating that the excess-wing is

indicative of an underlying relaxation process.

The dielectric loss for the M = 2 and 3 samples are shown in Figure 4.5a and

the different behaviour of the M = 2 sample is clear. In order to investigate the

wing behaviour of the M = 2 sample further, the derivative of ε′′ for the M = 2

and M = 3 samples was derived as shown in Figure 4.5b. The derivative spectra

shows a minimum corresponding to the gradient of the high frequency flank close

to the peak frequency, fp, before increasing to a non-zero value which corresponds

to the power-law exponent representing the excess wing, as shown in Figure 4.4a).

In comparison, the M = 3 derivative spectra increases from the minima up to a

value of around zero as a combined result of the secondary relaxation and high
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frequency contribution entering the frequency window. We could not establish a

clear indication of an excess wing in the temperature regions shown in Figures

4.4b-f for the M = 3 to 7 samples. If we assume that the excess wing in the

dielectric spectra for the M = 2 sample is indicative of an underlying β relaxation

then the absence of this behaviour for the higher molecular weight samples poses

an obvious question: what happens to this secondary relaxation as tail-length is

increased? One possible scenario is that, for the higher molecular weight samples

in this series, the secondary relaxation becomes increasingly merged with the α

relaxation and is therefore indistinguishable in the spectra. This hypothesis will

be analysed in full in Section 4.3.7. Another hypothesis is that the secondary

relaxation responsible for the excess wing in the M = 2 sample has a direct

counterpart in the secondary relaxations directly observed for the other samples.

We will investigate both these hypotheses in detail.

4.2.2 Rescaled spectra

To directly compare the dielectric spectra from the different samples, spectra

corresponding to a peak frequency, fp (Figure 4.6a) of approximately 1 Hz were

chosen and rescaled both by their peak frequency and peak amplitude, ε′′max (Fig-

ure 4.6b), respectively. As shown in Figure 4.6a, the α relaxation amplitude

and shape show relatively little variation between the different samples in the

series with toluene as an exception and no systematic trend is observed in the

amplitude of the loss peaks. We note that the density of the samples is nearly

independent of the alkyl tail-length at 298K (see Table 4.1) and the molecular

dipole moments should be very similar which together supports a similar dielec-

tric strength. Again, the slight exception is the dielectric loss peak for toluene

(M = 1) which appears to have a smaller amplitude. Furthermore, the gradient

of the low frequency flank (in a log-log representation) for all spectra is very

similar across the range of samples. This observation ties in well with the fact

that the exponent of the power law describing the low frequency flank is normally

consistent with a value of 1 [168]. It is important to realise however that this is

not always true and in polymeric samples where a wider range of chain-related

relaxation modes exist the behaviour can be more complex. Also in associating

88



4.2 Dielectric Spectroscopy: α relaxation

systems extra long-time contributions could occur which will effectively change

the low-frequency slope. Finally, the gradient of the high frequency flank varies

across the range of samples increasing slightly with increasing molecular weight

for the M = 1 to 6 samples, as shown in Figure 4.6b.
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Figure 4.6: Dielectric spectra for the different samples rescaled by a) fp and b)
fp and ε′′max. Data for toluene was obtained from [61].

The most prominent feature of this figure, however, is the relatively strong β

relaxation observed for the M = 1 [61] sample. As discussed above, the M = 3 - 6

samples all demonstrate a secondary relaxation process which is clearly observed

at lower temperatures and the timescales, τβ, for the weak secondary contribu-

tions observed in Figure 4.6 are consistent with the τβ observed at much lower

temperatures (as shown in Figure 4.33 in Section 4.3.7). However, it is not clear

what the relationship is between the different secondary relaxation contributions

observed as separate but weak loss peaks for the M = 3-6 samples, an excess

wing for the M = 2 sample and a relatively strong secondary loss peak for the

M = 1 toluene sample. These relationships will be investigated in detail in latter

sections of this chapter.

4.2.3 Fitting procedure

In this section, the fitting procedure used in order to describe the dielectric spectra

in the α relaxation regime will be discussed. Firstly, a qualitative analysis of the

development of the α loss peak will be shown. Following this, the functions used
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to describe the spectra will be reintroduced. The full behaviour of these functions

is described in Chapter 2 but are defined here again for clarity.

General shape of the α loss peak

In order to gain a qualitative impression of the variation of the α loss peak with

increasing temperature for the samples in this series, the dielectric spectra for

each sample were first rescaled in both frequency and ε′′. As an illustration, the

rescaled spectra for propylbenzene (M = 3) for a selection of temperatures in

the α relaxation regime is shown in Figure 4.7a. The first thing we can see from

this figure is that the low frequency flank of the α relaxation peaks fall onto a

single curve which could be well expressed as a power law with an ω1 behaviour,

as indicated in the figure. The figure also shows that the peak becomes more

narrow with increasing temperature. This is illustrated by the slight increase of

the gradient of the high frequency flank and/or by the decreasing ‘bluntness’ of

the peak with increasing temperature. The parametrisation of this variation for

this series of samples will be shown in Sections 4.2.4 and 4.2.4.
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Figure 4.7: a) Plot showing a selection of dielectric spectra for propylbenzene,
rescaled in both frequency and ε′′ in order to collapse their low frequency flanks
onto one single curve. The low frequency flanks can be described power law flank
of the form ε′′ = Aω1 as indicated. b) The derivative of the spectra shown in a).

Figure 4.7b shows the derivative of the spectra with the same scaling in fre-

quency as in Figure 4.7a. The difference in the minimum value of the differential
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spectra indicate that as temperature is increased the exponent of the high fre-

quency power-law flank increases but the overlap of the derivative spectra at

lower frequencies suggests that the relaxation peaks can be described with the

same low frequency flank. All measured samples in the series (M =2-7) show

similar behaviour to that shown in Figures 4.7a and b.

Figures 4.7a and b thus demonstrate that the spectra cannot be fully rescaled

across the temperature range and therefore time-temperature superposition (TTS)

does not hold. TTS is predicted from the simplest mode-coupling theory approx-

imations (the so called ideal MCT) [13, 169], which can generally describe the

response of glass-forming molecular liquids for temperatures above a critical tem-

perature, Tc [169] that is typically situated at a temperature 1.2 - 1.6 times that of

Tg [85]. The validy of TTS for polymeric glass formers has been widely assumed

[170–173] and TTS has also been shown to apply to some molecular glass formers

close to Tg [174] but the authors concede that the behaviour is most likely not

universal of all molecular glass formers. The often observed break-down of TTS

has in some cases been attributed to the presence of a secondary relaxation pro-

cess [175]; the idea is either that TTS is broken due to interactions between the

primary and secondary relaxation or that the presence of secondary relaxations

makes the data fitting very difficult and a clear determination of the real shape

of the α response becomes impossible. Either of the latter interpretations, raises

the question of whether a secondary relaxation process is hidden within the high

frequency flank of the α loss peaks for the M = 3 to 7 samples. Furthermore,

it has been observed that if a sample appears to obey TTS in the data obtained

from one technique, this is not necessarily the case for data obtained from another

technique for the same sample [13]. If one make the assumption that TTS should

hold for all glass forming systems, then one could fix the value of the parameters

describing the ‘stretching’ of the α loss peak and ascribe any changes in the width

of the spectra to some secondary process. However, given the lack of consensus

as to whether this behaviour is to be expected the most pragmatic approach to

fitting the dielectric spectra obtained in this work is to fit the spectra without

such assumptions. The quantification of the lack of TTS for this series will be

shown in Section 4.2.3.
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The physical explanation underlying the stretching of the exponential decay

of the relaxation function in the time domain or the broadening of the dielectric

loss peak in the frequency domain is a controversial issue, as was explained in

Chapter 1. On the one hand one could hypothesize that the relaxation function is

inherently non-exponential. On the other hand, one could consider the possibility

of so-called dynamic heterogeneity, suggesting that a supercooled liquid contains

many dynamic regions each of which relaxes with an exponential nature and

with its own relaxation time. This would therefore lead to a distribution of

timescales and could explain the observed broadening [44]. For example, the

generalised Gaussian distribution function sometimes used to describe ε′′ assumes

a distribution of relaxation timescales in order to parametrise the α relaxation loss

peak [98]. Thus, one interpretation of the variation in the shape of the α loss peak

as shown in Figures 4.7a and b is that the distribution of relaxation timescales

becomes narrower with increasing temperature above the glass transition.

Fit functions

The fit functions used to describe the dielectric spectra will now be introduced.

Although a full explanation of the typical fit functions used to describe dielectric

spectra is available in Chapter 2, these will be redefined here for clarity. As shown

in Figures 4.4b-f, the dielectric spectra for the M = 3 - 7 samples feature three

contributions to ε′′: a peak corresponding to the α relaxation, an intermediate

frequency contribution corresponding to a secondary β relaxation and a high

frequency contribution. The loss peak relating to the α relaxation was fitted

using both the Rikard Bergman (RB) [104] and Havriliak-Negami [110] (HN)

functions. The two separate fits were performed in order to investigate the effect

the chosen fitting approach has on the resulting fitting parameter behaviours

and to provide a comparison between two different fitting routines. The RB

function was chosen since it has the flexibility to account for the peak bluntness

whereas the HN function was chosen as it is the most commonly used empirical

fitting function in the analysis of α relaxation loss peaks in dielectric spectra

[33, 61, 94, 96, 116, 117]. The RB function is defined as follows, with parameters
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relating to the amplitude, ε′′, peak frequency, ωp and power-law exponents of the

low, a, and high ,b, frequency flanks of the dielectric loss peak:

ε′′(ω) =
ε′′p

(1−C)
a+b

(
b
(
ω
ωp

)−a
+ a

(
ω
ωp

)b)
+ C

(4.1)

The parameter C relates to the ‘bluntness’ of the resulting loss peak. The

HN function provides description of the dielectric loss peak in ε′′ with parameters

relating to the timescale of the relaxation, τHN , dielectric strength, ∆ε and shape

parameters relating to the symmetric (α) and anti-symmetric (β) stretching of

the peak:

ε∗HN = ε∞ +
∆ε

(1 + (iωτHN)α)β
(4.2)

The symmetric stretching parameter, α, is the exponent of the low frequency

power-law flank of the a loss peak and the exponent of the high frequency power-

law flank can be obtained by multiplying the symmetric and anti-symmetric

stretching parameters: αβ. The secondary contributions were fit using the Cole-

Cole (CC) expression [176] which is obtained by setting the β parameter to 1

in Equation 4.2. The high frequency contribution was fit with a power law of

the form: ε′′ = Aωk. A full description of the dielectric spectra, as shown in

Figure 4.4, was achieved by using an additive combination of these three fitting

contributions.

As described above, the M = 2 sample displayed in Figure 4.4a) did not show

the same contributions to the dielectric spectra as the other samples. Instead, a

variation in the exponent of the high frequency power law of the α loss peak was

observed indicating a so-called excess-wing. The α loss peak was again described

using two different fitting approaches in order to facilitate comparison. In the

first, a modified version of the RB function was used, which is fully described

in Chapter 2. In order to construct this modification, it was assumed that the

excess-wing was due to an underlying β relaxation and that the contributions

to the spectra would follow the Williams-Watts ansatz [115] which is based on

a convolution of the relaxation contributions in frequency space. The functional
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form of the modified RB function is as follows [18]:

ε′′(ω) =
ε′′p

(1−C)
a+b

(
b( ω
ωp

)−a + a( ω
ωp

)b
)

+ C
+

ε′′wing

(1−Ceff)
a+g

(
g
(
ω
ωp

)−a
+ a

(
ω
ωp

)g)
+ Ceff

(4.3)

The first component of this equation is identical to the ‘unmodified’ RB func-

tion given in Equation 4.1. The second component describes the contribution of

the ‘effective’ β relaxation (see Chapter 2). The g parameter is the exponent of

the power law describing the excess-wing and ε′′wing describes its amplitude.Ceff

parametrises the bluntness of the ‘effective’ β relaxation (see Chapter 2).

For comparison the M = 2 sample was also fit with an additive combination

of Havriliak-Negami (HN) functions [110] to describe both the α and underlying

‘effective’ β contributions. In this combination, the parameter corresponding

to the exponent of the low frequency power-law flank, α, was set to the same

value for each HN function in order to mimic the behaviour of a mathematical

convolution of the two formulae in frequency.

In order to provide a more complete picture of the variation of the fitting

parameters across the series, fitting parameters for the data obtained from the

literature for toluene are also discussed and included in the plots. In Ref.[55],

the toluene spectra were fit under the assumption of the Williams and Watts

ansatz [60]. A generalised gamma (GGG) distribution of timescales [98] was used

to fit the α relaxation loss peak in which the parameter corresponding to the

exponent of the low frequency flank was fixed to 1 and another GGG distribution

was used to fit the observed β loss peak. In Ref.[33], the data shown were fit by

first rescaling the dielectric spectra onto a single master curve. The master curve

was then fitted using the HN function as well as the CD function for comparison.

The authors found that the HN fit provided a better interpolation of the data

and for this reason the fit parameters quoted for the fit of the HN function will

be used in this section in order to compare to the fit data presented for the other

alkylbenzene samples.
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4.2.4 Fit parameters

The following sections will detail the development of the fitting parameters from

the two functional descriptions of the α loss peak constructed using the RB and

HN functions.

Low frequency flank.

In this section, the fit parameters describing the exponent of the low frequency

power-law flank will be discussed. The α loss peaks for the M = 3 - 7 samples

were first fit using the RB function. Initially, the fits of Equation 4.1 were con-

ducted with no constraints on the five fitting parameters. In these initial fits, the

parameter relating to the exponent of the low frequency power-law flank of the α

relaxation, a, showed very little variation in comparison to the other parameters

and the spectra could generally be described well by setting a = 1. Indeed, many

of the functional descriptions of the α loss peak including the CD function [109],

the GGG distribution [98], the KWW function [41, 42] are all based on the as-

sumption that the low frequency flank of the α relaxation loss peak should have

an ω1 dependence. In subsequent fits, the value of a was fixed to 1 in order to

enable a more constructive analysis of the variation of the other parameters.

M = 2

Figure 4.8: α parameters obtained through fits of the HN function to the dielectric
spectra plotted against a) T and b)Tg/T .

The α parameter in a fit of the HN function is the exponent of the power law

that describes the low frequency flank of a relaxation peak in ε′′ [94]. In a loga-
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rithmic plot, α becomes the gradient of the low frequency flank and is therefore

comparable to the a parameter in Equation 4.1. The values for the α parameter

are shown in Figure 4.8. In contrast to the behaviour of a for the alkylben-

zene series, the α parameter is significantly lower than a Debye-like value of 1

at low temperatures, but increases towards 1 with increasing temperature. This

behaviour demonstrates the narrowing of the α relaxation peak with increasing

temperature. It also exemplifies the difference between the two functional de-

scriptions of the α loss peak as the HN function does not take into account the

bluntness of the peak. Therefore, the bluntness has to be approximated by the

use of a combination of the α and β parameters in Equation 4.2.

The similar behaviour observed for the variation of the α parameter with tem-

perature is emphasised through the Tg rescaling shown in Figure 4.8. Although

the variation of the α parameter is similar for the samples in this series there is

no discernible trend with increasing molecular weight. However the fact that the

a parameter can be set to 1 and that the α parameter tends to 1 as temperature

is increased is consistent with the increased bluntness observed for lower tem-

peratures using the RB-expression and is consistent with the gradient of the low

frequency flank reported in the literature for low molecular weight glass formers

[96].

Bluntness

The bluntness of the α loss peaks will now be addressed and this is parametrised

by the C parameter in the RB function. Values of C with temperature for the

series are shown in Figure 4.9a. The values decrease from a non-zero value close

to Tg to a value of 0 as temperature is increased indicating a narrowing of the

response peaks. This is in contrast to previous fitting of dielectric data for a

selection of dimethyl ethers, monomethyl ethers and glycols using the RB function

in which the C parameter was invariant with temperature for a given sample [18].

The Tg scaled plot shown in Figure 4.9a demonstrate that the decrease of C takes

place in a similar manner for all samples at temperatures above Tg. In order to

confirm this behaviour, a number of spectra (in which the C parameter was non-

zero) for the M = 3 sample were refitted with the C parameter locked to 0 and
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M = 2

Figure 4.9: C parameters obtained through fits of the RB function (modified for
the M = 2 sample) to the dielectric spectra plotted against a) T and b) Tg/T .

the a parameter left free instead. In this case, the spectra could not be well

described. The spectra were then fitted with all parameters set to vary freely. In

this case, the a parameter always tended to a value of 1 whereas the C parameter

demonstrated the variation shown in Figure 4.9a. This suggests that in order to

provide a full description of the spectra, the varying bluntness of the α loss peak

requires consideration.

The HN function does not contain a parameter relating to the bluntness of

the peak itself, unlike Equation 4.1 in which the bluntness is described by the C

parameter. It therefore follows that in order to fit an α relaxation peak with Equa-

tion 4.2, the bluntness must be fit through variations of the α and β parameters

describing anti-symmetric and symmetric stretching of the peak. The variation of

the low frequency power-law exponent, α, from the HN function shown in Figure

4.8 can therefore be explained by the narrowing of the α relaxation peak with

increasing temperature: at temperatures close to Tg where the peak is broadest,

a lower value of the gradient of the low frequency flank is required to successfully

describe the shape of the peak.

The indication of these fits is that, for these low molecular weight glass forming

liquids, a range of α relaxation loss peaks over a range of temperatures cannot be

described by a function with a single shape parameter such as the Cole-Davidson

equation [109] and this is consistent with what has been reported previously
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[94]. Havriliak et. al. demonstrated for 1000 sets of unbiased relaxation data

that both the α and β parameters in the HN function are required in order to

fit the spectra over an appreciable frequency range [111]. Furthermore it seems

that the variation in shape of the loss peak, for this series, is almost entirely

dependent on the bluntness and high frequency flank of the peak. We note that

the variation in bluntness or α parameter respectively might indicate the presence

of some additional underlying relaxation contributions which starts to affect the

spectral shape at the lower temperatures. As will be discussed in more detail

later on, we indeed find also other evidence supporting the the existence of an

extra contribution. Note however that it does not make sense to introduce any

extra relaxation contributions in the fitting procedure since the three introduced

contributions describe the data well and adding further contributions would only

introduce more fitting parameters without adding anything to the understanding.

High frequency flank.

In this section the exponent of the high frequency power-law of the α loss peak

will be discussed. In the RB function, this exponent is set by the b parameter

in Equation 4.1. The b parameters obtained through fits of the dielectric spectra

for the different samples are shown in Figure 4.10a and shows an increase with

increasing temperature. To further analyse the temperature dependence of the

b parameter, the values were rescaled by Tg as shown in Figure 4.10b. The

indication from this figure is that the b parameters show a similar temperature

dependence for the M = 1 (from Ref. [98]), 2, 3, 4, 5 and 6 samples. The b

parameter for the M = 7 sample appears to show slightly different behaviour as

it is largely invariant with increasing temperature. The horizontal dashed red

line in Figures 4.10a and b is indicates the value for the exponent of the high

frequency flank obtained from Ref. [33].

The high frequency power-law exponent of the α relaxation is the product of

the α and β parameters in the HN function. Values of αβ are shown in Figure

4.11 and the trends of this parameter with increasing temperature are generally

similar to the trends observed in the b parameter, as is to be expected. Again,
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Figure 4.10: b parameters obtained through fits the RB function to the dielectric
spectra plotted against a) T and b) Tg/T . Also shown are the fit parameters
obtained from the literature for toluene, where the red circles denote data from
[98] and the red dashed line denotes data from [33].

M = 1

Figure 4.11: αβ parameters obtained through fits of the HN function to the
dielectric spectra plotted against a) T and b) Tg/T . Also shown are the fit
parameters obtained from the literature for toluene, where the red circles denote
data from Ref.[98] and the red dashed line denotes data from Ref. [33].
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literature data for the high frequency flank exponent for the M = 1 sample are

shown in a similar manner to Figure 4.10.

Although these two separate descriptions of the high frequency power-law

exponent show the same temperature dependence, there is no particular trend

with molecular weight. The sample M = 3 to 6 demonstrate a very similar

variation of the high frequency flank as is shown very clearly in the rescaling of

the parameters by Tg. The M = 7 sample shows a much less pronounced trend

than the other samples however, suggesting that the exponent is almost invariant

with increasing temperature.

The fitting results for the M = 2-7 samples agree well with the literature

results for toluene from Ref.[98] (see the data points marked in red circles). In

Ref.[33], the authors obtained a single value of the exponent by assuming TTS

and rescaling the obtained spectra on top of eachother to create a master curve;

the resulting master curve was fit with the HN function. The value for the

high frequency exponent falls below the values obtained for the other samples,

but appears consistent near the glass transition temperature. Moreover, in the

analysis of Ref.[33], spectra were cut at a frequency of 100Hz, meaning that for

higher temperatures, a significant proportion of the α loss peak was cut before the

rescaled master curve was produced. The lower value obtained for the exponent

therefore makes sense as the fitting of the HN function to these rescaled spectra

would be largely dependent on the spectra at lower temperatures, presumably

(given the temperature dependence of the b parameters for the other samples

shown) with lower values of the high frequency exponent.

For the M = 1-7 samples we obtain a monotonic increase of the high fre-

quency exponent with increasing temperature and α loss peak becomes narrower

with increasing temperature as quantified by the C, b and αβ parameters. This

behaviour is a common feature of glass forming systems [13, 68]. One can con-

ceptualise this as a narrowing of the distribution of time-scales as the sample

temperature increases away from Tg; this would imply that the degree of dy-

namic heterogeneity decreases with increasing temperature which is a well known

observed trend [21, 44]. Also, Ngai’s coupling model links the increase of the

KWW stretching parameter, β, to the level of cooperative motions involved in
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the α relaxation, where a lower value of β indicates a greater degree of coopera-

tivity [83]. With regards to this model, the results presented in Figures 4.10 and

4.11 indicate that the degree of cooperativity decreases with increasing tempera-

ture for the samples in this series, which is indeed expected since less cooperative

motions are needed for motions to take place at higher temperatures. The high

frequency power-law exponent of the α loss peak has also been shown to be cor-

related to the dynamic fragility parameter, m [11]. It has been found that for a

range of glass formers a lower value of the exponent corresponds to a high value

of m. In the latter sections of this chapter, results of m will be presented that in-

dicate an increase of the fragility with increasing alkyl tail-length (Section 4.2.7).

We will also demonstrate that this holds also for a thermodynamic fragility met-

ric (Sections 4.4.2 and 4.4.3). Interestingly, since we do not observe a clear trend

in either the b or αβ parameters with increasing alkyl tail-length, we do not find

support for this correlation for the glass-formers investigated here.

In some systems, it is observed that, close to Tg, the stretching of the α

loss peak is temperature independent, implying that TTS should hold at these

temperatures. Olsen et. al. show that for a number of liquids that show TTS,

a high frequency power-law exponent of ∼ 0.5 is expected [174]. Indeed, it is

clear from Figures 4.10b and 4.11b that the exponents obtained through fits of

the HN and RB functions decrease to a value of 0.5. Furthermore, the stretching

exponent for toluene obtained from Ref.[33] (in which TTS was assumed over the

measured temperature range) is very close to a value of 0.5. Similar behaviour is

also observed for the M = 7 sample. However the increase of the exponent of the

high frequency power-law of the α loss peak for the other samples shown extends

across the whole temperature range.

Furthermore, above the critical temperature Tc , ideal mode-coupling theory

(MCT) predicts that the value of the high frequency exponent of the relaxation

function should ‘level off’ at a fixed value (less than 1) and and example of the

quantification of this has been observed for glycerol and propylene carbonate [93].

However, other measurements of the same samples have yielded high frequency

flank parameters which increase consistently towards a value of unity [177]. This

has also been shown for a wide range of glass forming liquids by Wang et. al. [178]

and light scattering measurements of another small molecule glass-former, salol,
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yield a consistently increasing ‘width’ of the relaxation function with increasing

temperature [179]. There is some slight indication of the levelling off of the

gradient of the high frequency flank in both representations shown in Figures

4.10 and 4.11 for the M = 3 to 6 samples but the data are not conclusive in this

regard.

Dielectric strength

The dielectric strength, ∆ε, of the α relaxation will now be considered. In Chapter

2 it was shown that ∆ε corresponds to the area underneath a loss peak in ε′′.

The first determination of ∆ε was performed by numerical integration of the fits

of RB function in ε′′, parametrised using the a, b and C parameters described in

the previous sections and the amplitude, ε′′, and peak frequencies, ωp, which will

be considered in later sections. This integral has the following form [18, 180]:

∆ε =
2

π

∫ ∞
0

ε′′(ω)
df

f
(4.4)

Values of ∆ε obtained from numerical integration are shown in Figure 4.12a.

The values decrease with increasing temperature for all samples. In order to

further analyse their development, the values were also rescaled by Tg as shown

in Figure 4.12b. It is clear from this figure that the temperature dependence of ∆ε

is similar for the M = 2, 3, 4, 5 and 6 samples. Also shown are dielectric strength

values obtained from Ref. [55] for the M = 1 sample. The dielectric strength for

the M = 1 sample appears to have a stronger temperature dependence than that

of the other samples. Another feature of Figure 4.12b is the systematic decrease of

∆ε with increasing alkyl tail-length for the M = 3, 4, 5 and 6 samples. However,

the values for the M = 1, 2, and 7 samples do not follow this trend.

The observed approximate 1/T behaviour of the dielectric strength is consis-

tent with the Kirkwood-Frölich generalisation of the Onsager relation between

∆ε and the dipole moment, µ [94, 96, 100–103]:

∆ε =
εs(ε∞ + 2)2

(2εs + ε∞)

ρNA

9kBTε0Mw

gKµ
2 (4.5)
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Figure 4.12: ∆ε parameters obtained from integration of the fits of the RB func-
tion to the dielectric spectra plotted against a) T and b) T/Tg. The dashed blue
line indicates a fit of the Onsager equation (Equation 4.5) to the M = 2 data.

Where ρ is the density of the material, NA is Avogadro’s number, ε0 is the

permittivity of free space and Mw is the molecular weight. εs and ε∞ are the

limiting values of ε′ at low and high frequency respectively (where ∆ε = εs −
ε∞) [94]. gK is the so-called Kirkwood/Frölich correlation factor. In a system

containing non-interacting dipoles, gK would be equal to 1. In other systems, gK

can become greater or less than 1 depending on whether the dipoles align parallel

or anti-parallel to each other [94, 96].

In order to test how well the ∆ε data conformed to the Onsager description

of dielectric strength, Equation 4.5 was tested using the M = 2 sample as an

example. A dipole moment of 0.59D was obtained from the literature [181]. The

temperature dependent density for this sample was also obtained from the liter-

ature between 273 and 178K [182]. In order to evaluate the density in the same

temperature region as the measurement of the M = 2 sample, the density values

were extrapolated with a linear fit. Values of εs and ε∞ were determined from the

real part of the dielectric spectra, ε′ (a figure depicting how these values can be

obtained from ε′ has been shown in Chapter 2). The dashed blue lines in Figures

4.12a and b are the resulting values obtained from Equation 4.5. The ∆ε data

are reasonably well described by this interpretation of the dielectric strength. A

gK value of 0.3 was used to scale the behaviour to the correct magnitude in ∆ε,

suggesting anti-parallel alignment of the dipoles within the sample. However, it
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Figure 4.13: ∆ε parameters obtained from fits of the HN function to the dielectric
spectra plotted against a) T and b) T/Tg. The dashed blue line indicates a fit of
the Onsager equation (Equation 4.5) to the M = 2 data.

is not clear that the density of the M = 2 sample would scale linearly to this tem-

perature range and therefore this could have lead to an incorrect determination

of gK . For example, if the density in this temperature range was significantly

higher than predicted, a gK value closer to 1 would be expected. The general

conclusion that the dielectric strength can be reasonably well described using the

Kirkwood-Frölich generalisation of the Onsager relation is clear.

Values of ∆ε were also determined through fitting of the HN function to the

dielectric spectra, as ∆ε is one of the fitting parameters. These values are shown

in Figure 4.13 and show a very similar temperature dependence to the values

obtained through numerical integration of the fits of the RB function to the di-

electric spectra. The only noticeable difference between these two interpretations

of the dielectric strength is in the determined values for the M = 2 sample, which

are better approximated by the generalised Onsager equation in Figures 4.13a and

b.

Amplitude

Although one usually considers the dielectric strength as a means to analyse the

‘size’ of a dielectric loss peak, another quantification of the size can be gained

from the amplitude of the peaks, ε′′p. This parameter is advantageous in some
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M = 2M = 2

Figure 4.14: a) Amplitude, ε′′p, parameters obtained through fits of the RB func-
tion to the dielectric spectra. b) Amplitude parameters rescaled by the peak in
the values, φε′′ and the temperature at which this occurs, φT .

respects as it can be directly ‘read off’ from the dielectric spectra without re-

course to integration or fitting and it is more sensitive to subtle variations in

the temperature dependence of the loss peak. Figure 4.14a shows the variation

of ε′′p, with temperature. In general, this parameter indicates a decrease in the

amplitude of the α relaxation with increasing alkyl tail-length for the M = 3, 4,

5 and 6 samples. The M = 2 and 7 samples do not conform to this trend but the

values show a similar temperature dependence to the others in the series. The

most striking feature of this figure is that there appears to be a maximum in the

amplitude at some intermediary temperature above Tg. This could be indicative

of the merging between the α relaxation and some underlying secondary relax-

ation. The idea of an underlying largely ’hidden’ secondary relaxation is discussed

further in Section 4.3.7. The amplitude values are also displayed in a rescaled

manner where both the amplitude and the temperature scaling factors, φε′′ and

φT , are introduced in Figure 4.14b. This scaling figure is used to approximately

determine the temperatures at which the peak in the amplitudes are observed.

See Section 4.3.7 for a more detailed discussion about these results.

4.2.5 Relaxation timescales

In the following section, the timescales corresponding to the peak position of the

α loss peak will be discussed. So far, we have observed that the two fitting ap-
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proaches used to describe the α relaxation loss peak give very similar values for

the parameters used to describe the shape of the loss peaks. Only small differ-

ences were observed, such as the variation of the exponent of the low frequency

flank and these were easy to conceptualise based on the differences in the fit func-

tion parametrisation. In order to quantify the similarities between the separate

functional descriptions of the α loss peak, the peak timescales, obtained from

each fitting routine were compared. The peak timescales can be directly acquired

through fits of the RB function. However, the characteristic timescale obtained

thorough fits of the HN function, τHN , must be transformed as a function of the

α and β parameters in order to gain the peak timescale. This transformation is

performed in the following way:

ωp =
1

τ pHN
=

1

τHN

[
sin

(
απ

2 + 2β

)] 1
α
[
sin

(
αβπ

2 + 2β

)]− 1
α

(4.6)

Values for the peak timescales obtained from both the RB and HN fit func-

tions, τRB and τ pHN , are shown in Figure 4.15. These values are in excellent

agreement with one another. The characteristic timescale for the HN function,

τHN , are also shown as a point of comparison but are also very similar to τRB

in this scaling. We note that sometimes the average relaxation times are deter-

mined instead of the time-scales corresponding to the maximum of the loss peak.

However, we choose here to consistently use the peak timescales since the deter-

mination of the average relaxation times depends on the full shape of the peak

and the sensitivity of the shape parameters to the used fitting function and addi-

tional relaxation contributions makes the average relaxation times more difficult

to determine with a similar accuracy as the peak timescales.

Figure 4.15 together with the previous discussion of the variation of the shape

parameters demonstrate that choosing empirical fitting approaches which include

four free fitting parameters enable the full shape of the α relaxation loss peaks

to be described well. Indeed, it has been stated previously that one can not fit

the α loss peak over an appreciable frequency range with a function with less

than four free parameters [94, 96, 104, 111]. The figure also shows that almost

identical values of the peak timescale can be obtained from two separate fitting

approaches.
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Figure 4.15: Figure showing the timescales for the α relaxation obtained from
fits of the dielectric loss peak of the M = 4 sample with both the RB and
HN functions. It is clear from this figure that both fit functions yield the same
timescales.

The relaxation timescales, τα, obtained through fitting of the dielectric loss

peaks corresponding to the α relaxations for the alkylbenzene series are shown

in Figure 4.16. Data for τα shown for toluene (M = 1) were taken from Refs.[55]

and [33]. Also shown is the Tg for benzene (M = 0) obtained from a DSC study in

the literature [183] involving the confinement of benzene within a microemulsion

in order to suppress crystallisation. The τα data move systematically to higher

temperatures with increasing alkyl tail-length indicating an increase of the glass

transition temperature. However, it appears the Tg values for the M = 0 sample

does not follow this trend. This will be discussed further in Section 4.2.6. The

horizontal dashed line in Figure 4.16 denotes τα = 100s, the point at which Tg is

often defined [2].

One of the fundamental characteristics of τα for glass forming materials is that

there is often a dramatic increase of τα as the glass transition is approached [2, 13].

This is clearly observed for the τα data shown in Figure 4.16. In many cases, τα

data are well described by the empirically derived Vogel-Fulcher-Tammann (VFT)
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Figure 4.16: τα data for the alkylbenzene series, obtained through fits of the RB
function to the dielectric spectra. Plot includes data from literature [33, 55] for
toluene (M = 1) and the Tg value for benzene (M = 0) [183]. Solid lines indicate
fits of the VFT equation to the data.

equation [27–29] as introduced in Chapter 1.

τα = τ0e
DT0
T−T0 (4.7)

T0 refers to the temperature at which τ tends to infinity, τ0 is the limiting

timescale at high temperatures and D is the so-called strength parameter. The

solid lines result from fitting of the τα data in Figure 4.16 to the VFT function; it

is clear that the data can be well described using such a description. The resulting

fit parameters are shown in Table 4.2. The values of T0 increase systematically

with increasing alkyl tail-length for the M = 2 to 7 samples but appear to be

higher for the two descriptions of the M = 1 sample. The values for τ0 adhere

to values close to typical microscopic timescales at high temperatures [2, 24–26]

for the M = 1, 2, 3, and 4 samples but are higher than the typical range (10−12

to 1014) for the M = 5, 6 and 7 samples and lower for the M = 2 sample. Also

shown are the determined values for Tg and the fragility parameter, m. These

parameters will be discussed in full in the following sections.
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M log10τ0(s) D T0(K) Tg(K) m References

0
118± 5 [183]

131 [184]

1

115 [184]
117 [78]

−(14.8± 0.3) 7.3± 0.4 96.6± 0.6 114.9 105.6 [33]
−(12.8± 0.4) 5.0± 0.3 101.2± (0.6) 115.9 116.8 [55]

117.5 [185]
113 [186]

2

113 [184]
115 [78]

−(17.1± 0.5) 12.7± 0.9 90± 1 115.6 85.2
111 [186]

115.7 [187]

3

122 69 [188]
−(14.5± 0.2) 11.6± 0.4 95.6± 0.7 124.7 70.7

122 [186]
122.5 [187]

4

125 [186]
−(13.1± 0.2) 8.5± 0.3 104.3± 0.6 129.8 76.9

129.6 [187]
127.5 [184]

5
128 [186]

−(11.5± 0.1) 5.9± 0.1 113.9± 0.2 135.4 84.5
135.7 [187]

6
137 [186]

−(10.4± 0.3) 4.4± 0.3 121.2± 0.9 139.7 93.7
140.4 [187]

7 −(9.5± 0.2) 3.3± 0.2 127.0± 0.6 143.0 102.9

Table 4.2: Fit parameters from the VFT fit of the τα data as well as Tg and
the fragility parameter, m. The reported errors were obtained from a least mean
squares fit of Equation 4.7 to the τα data.

109



4. RESULTS I: RELAXATION DYNAMICS IN A SYSTEMATIC
SERIES OF SIMPLE MOLECULAR GLASS FORMERS

4.2.6 Glass transition temperature

The horizontal dashed grey line in Figure 4.16a marks a time-scale of 100s, which

corresponds to the time-scale for which the glass transition temperature, Tg,

is normally defined; thus, the temperatures at which the VFT fits cross this

line indicate Tg for the different samples. This timescale is commonly used to

define the point at which the dynamics of a supercooled liquid become slower

than experimentally attainable timescales [189]. The values extracted from this

analysis are shown in Figure 4.17a in comparison with values obtained through

analysis of the DSC traces obtained for the series (as described in Section 4.4.1)

and values for the M = 1 [33, 55] and M = 0 [183] obtained from the literature .

130 150 170

130

140

Figure 4.17: a) Tg values obtained through VFT fits of the τα data in comparison
with values obtained through analysis of the DSC traces (both midpoint and
onset as described in Chapter 3). Also shown are Tg values for the M = 0
[183] and M = 1 [33, 55] samples obtained from the literature b)Tg values for a
variety of molecular glass formers in comparison to the Tg values obtained for the
M = 2 to 7 samples shown in a). Also shown are fit lines based on the power-law
relationship Tg ∝Ma

w postulated by Novikov et. al. [146].

For samples with alkyl tails longer than 2 units (i.e. M = 3 to 7) Tg increases

systematically with increasing molecular weight. Figure 4.17a shows the data in

a semilogarithmic representation on which the behaviour for M > 2 can be well

described by an exponential behaviour as represented by the dashed guide to the

eye. The inset shows the behaviour for the M > 2 samples also in a linear plot.

This indicates a weak bending over of the Tg values towards higher molecular

110



4.2 Dielectric Spectroscopy: α relaxation

weight indicating that the relationship might be better described using a non-

linear relationship. For the shortest tail-length samples with M ≤ 2 data appears

to show a limiting tail-length below which the glass transition temperatures no

longer decrease. The observed trends are indicated by the dashed guides to the

eye in Figure 4.17a.

A relationship between Tg and molecular weight of the form Tg ∝ Mα
w was

observed by Novikov et. al. [146] for a range of molecular glass-forming liquids

as described in Section 4.1. Figure 4.17b shows Tg values obtained for this range

of liquids in comparison with the Tg values obtained for the M = 2 to 7 samples

from VFT fits of the τα data. The dashed black line indicates a fit of the literature

data using the quoted value of α = 0.5. The red dashed line indicates a similar

fit of the Tg data obtained for the M = 2 to 7 samples. This fit demonstrates

that the obtained Tg values could be described by a similar relationship, with an

exponent α = 0.36.

Larsen et. al. [150] present a relationship between Tg and the effective hard-

sphere radius, σ0, of constituent molecules in a glass forming system. This implies,

from the results shown in Figure 4.17a, that σ0 increases for samples with an alkyl

tail-length of 2 units or more. A further implication of this is that the effective

size of the M = 0, 1 and 2 samples are similar, as Tg no longer demonstrates a

linear increase with increasing molecular weight for these samples. Interestingly

a similar molecular weight dependence of Tg has been observed for short-chain

polymeric samples as will be shown in Chapters 6 and 7.

4.2.7 Fragility

We have observed that the development of the τα values is in general non-

Arrhenius. To describe this variation in the temperature dependence of the al-

pha relaxation time and the deviation from Arrhenius behaviour, the concept

of ’fragility’ is introduced, as was described in detail in Chapter 1. The key

concept of fragility of glass forming materials will be reiterated here to aid the

discussion. Strong glass formers are defined as having a near Arrhenius depen-

dence of the structural relaxation timescale and fragile glass formers show the

most significant departure from Arrhenius-like behaviour. The fragility of glass
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Figure 4.18: a) Comparison between the D and m parameters obtained through
fitting of the VFT function to the τα data. b) Plot of m versus D in order to test
the relationship proposed by Böhmer et. al. [11]. The dashed red line indicates
a parametrisation of Equation 4.9.

formers can be parametrised by the fragility index m, which gives the gradient

at Tg of the temperature dependent α relaxation time scale in an Arrhenius plot

[2, 11, 13, 190, 191]:

m =
d(logτα)

d(Tg
T

)

∣∣∣∣∣
T=Tg

(4.8)

The fragility parameter or ‘steepness index’, m and the strength parameter in

the VFT equation, D, both quantitatively describe the departure of the behaviour

of τα from an Arrhenius description. The values for both the D and m parameters

are displayed in Figure 4.18a. The m parameters show a linear molecular weight

dependence for the M = 3 to 7 samples. However, this trend does not hold for

the M = 1 and M = 2 samples, which display higher values of m. This could be

indicative of some fundamental change in the dynamics of the alkylbenzene series

beyond a tail length of 2 carbon atoms as was observed from the variation of the

Tg values. Correspondingly, the D parameters show a decrease with increasing

molecular weight for the M = 2 to 7 samples.

Generally, for the higher tail length samples, the D and m parameters appear

to be inversely proportional to each other. This is not surprising since given that

the α relaxation follows a VFT behaviour one can calculate an expression for the
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fragility index m based on its definition and derive the following expression for

m as a function of D[11],

m = mmin +
m2
minln(10)

D
(4.9)

Here, mmin is the lower limit of the fragility which would occur for a completely

Arrhenius process, where mmin ≈ 16 (if τ0 = 10−14s is assumed) [2, 11]. In order

to test this relationship, a plot of m versus D was made as shown in Figure

4.18b. The overall trend is captured, but it appears the dependence of m with D

is far weaker than predicted by Equation 4.9. Note that the simple relationship

assumes that the microscopic time-scale τ0 is fixed at a certain value which is not

generally true and is only an approximation. Also, a general problem with using

D as a fragility metric is that it is a fitting parameter in the VFT expression

and as such is correlated to the values of the other two VFT fitting parameters,

τ0 and T0, which generally doesn’t make it ideal as a fragility metric. However,

it does to some extent parametrise the relaxation behaviour of the timescale of

the structural relaxation over the full temperature regime, if the τα data can

be described by the VFT function. On the other hand, the m parameter only

considers the gradient at a specific point in temperature, Tg [192] which can be

both be an obvious weakness even though the strength is that as the gradient at

one particular temperature it is largely model independent and can be determined

directly from the raw data if these are available near Tg.

4.2.8 Linearisation of the timescale Values.

An alternative and sometimes powerful method used in order to analyse the rate

of increase of the structural relaxation timescale with decreasing temperature is

is to plot the data in such a manner that if the data follows a VFT behaviour it

automatically results in a straight line. Such a linearisation of a VFT behaviour

is often called a Stickel analysis [31]. To linearise a VFT behaviour, the quantity

Z is determined by taking the temperature derivative of the timescale data in the
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following manner:

Z =

(
dlogτα
d( 1

T
)

)− 1
2

=

(
loge1DT0

(T0

T
− 1)2

)− 1
2

(4.10)

We see from this expression that Z describes the development with tempera-

ture of the slope of the relaxation time curve in an Arrhenius plot. This way of

plotting the data transfers a VFT behaviour into a straight line with a certain

slope and an Arrhenius behaviour into a horizontal straight line thus with a slope

of 0. The linearisation involves taking a derivative of the τα data which intro-

duces noise. However, it is easy to analytically derive the relationship between

the straight line parameters and the VFT parameters and in a plot of Z versus

1/T , the gradient S is related simply to the VFT strength parameter D and T0

as,

S =

(
T0

loge1D

)− 1
2

(4.11)

Since an Arrhenius behaviour of τ would lead to a horizontal line of fixed Z,

the gradient in the resulting linearized Stickel plot represent in one parameter

the deviation from Arrhenius behaviour and this one parameter in contrast to

the fragility parameter m is defined over the full temperature range of interest

and in contrast to the VFT parameters the parameter S is well defined. The

linearisation of the τα data for the alkylbenzene series is shown in Figure 4.19a.

The solid lines show the linearised VFT fits, constructed using Equation 4.10. It

is clear that for the M = 2 to 7 samples the S parameter giving the gradient of

the linearised τα data and representing the ’degree of non-Arrheniusness’. We see

that −S increases systematically with increasing alkyl tail-length indicating an

increased departure from Arrhenius behaviour and therefore a more temperature

dependent slowing down of dynamics for longer alkyl tails.

The gradient parameter, −S, as determined from Equation 4.11 is shown

in Figure 4.19b and demonstrate an approximately linear growth with increasing

molecular weight, shown in Figure 4.19a. The fragility parameter m is also shown

for comparison and appears to obey a similar linear trend with increasing alkyl

tail-length for the higher molecular weight samples. As discussed above, for the
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Figure 4.19: a) Stickel analysis of the τα data. b) Stickel parameter S in compar-
ison with the fragility parameter m.

variation of the Tg values, there appears to be a comparable change of behaviour

for the lowest molecular weights.

Furthermore, the linearisation of the τα data in the manner described above

is often used to determine subtle changes in the temperature dependence of τα,

which can be more easily resolved in a linearised Stickel representation than in an

Arrhenius plot. Of course it is important to keep in mind that the linearisation

requires a derivative so to be able to perform this constructively high quality

experimental data with a good temperature resolution is needed.

For a wide range of molecular liquids where the temperature dependent τα

values are available over a wide enough range of temperatures, a change in the

temperature dependence is observed, which is clearly seen as a change from one

straight line to another straight line where the change is observed at a temperature

termed the crossover temperature, T ∗ [30, 35, 36]. Of course this temperature can

be observed by fitting the data directly with VFT expressions, but the behaviour

is more clearly and easily observed by using the linearised representation. It is

important to note that in addition to a change of the temperature dependence

of τα, a number of dynamic properties have been observed to change at this

particular temperature [37]: i) the decoupling or bifurcation of the α and β

relaxations [30], ii) the decoupling of rotational and translation diffusion [38] and

iii) changes in the temperature dependence of the dielectric strength [37, 39].
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For alkylbenzenes, the crossover regime has been shown previously for the

M = 3 and 4 samples by Hansen et. al. [34]. Indeed, the authors show the

existence of two crossover points, one associated with T ∗ and another at higher

temperatures at which there is a zero gradient in Z and thus the behaviour be-

comes purely Arrhenius. For all alkylbenzene samples, we obtain data only in

a temperature range close to Tg, below the crossover temperatures. As we will

demonstrate for the alkyl benzenes and also for the oligostyrenes, it is still some-

times possible to resolve small changes in the VFT behaviour also at temperature

below T ∗. This has been observed for a few systems [193] and the change in the

temperature dependence of the α relaxation have been shown to closely corre-

spond to the decoupling of a secondary relaxation. However, this is an area of

research which needs much more focus and investigation since we do not presently

understand when and how the temperature dependence changes and when this is

linked to the decoupling or merging of a secondary relaxation mode.

To obtain a physical picture of what the variation in fragility means, one

sometimes refers to the energy landscape model as suggested by Goldstein (a

more thorough explanation of this is available in Chapter 1) [89]. In this model,

a viscous liquid is described by means of a 3N + 1 dimensional potential en-

ergy hypersurface [13, 18, 90]. This landscape can be considered as virtually

independent of temperature and thus the temperature of the liquid only affects

the resolution at which the liquid ‘feels’ the landscape [17]. The energy minima

in this landscape correspond to various glassy states; there will also be minima

associated with the crystallised state of the liquid and the so-called thermody-

namically ‘ideal’ glassy state [18]. In terms of the fragility, the density of these

glassy minima will depend on whether the glass-forming liquid is strong or fragile

and where a more fragile system is characterised by a greater density of minima

[13, 91, 92]. Thus, the increasing fragility observed through the m, D and S

parameters for the M = 3 to 7 samples indicates that the density of the minima

in the potential energy landscape increases with increasing alkyl tail-length.
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4.3 Dielectric spectroscopy: β relaxation

In this section the measurement and analysis of the β relaxation for the alkyl-

benzene series will be discussed. In order to obtain dielectric spectra for this

secondary process, the samples were cooled to 125 K and then measurements

were performed upon lowering the temperature of the sample to 101 K in steps

of 2 K.

4.3.1 Dielectric spectra

Sample 1
Run 1
Sample 1
Run 2
Sample 1
Run 3
Sample 2
Run 1

10
2

10
4

10
6

Figure 4.20: a) Comparison between dielectric spectra obtained for separate mea-
surements of pentylbenzene at 101 K and b) rescaled in ε′′ by a shift factor, φ.

For the M = 3 to 6 samples, secondary relaxation peaks were clearly observed

at low temperatures, in the range between 101 and 111 K. Although the β relax-

ations could be resolved also at higher temperatures with consistent timescales

(see Figure 4.33), only analyses of spectra in which the loss peak of the β relax-

ation could be fully resolved are shown here. In general, the β relaxation peaks

observed in the dielectric spectra for the samples had a much lower amplitude

that the α relaxation and were therefore more difficult to resolve in ε′′. In order to

investigate the repeatability of the observed relaxation contributions, each mea-

surement was repeated with separate re-fillings of the liquid cell. Figure 4.20a

shows separate measurements of the M = 5 sample at 101 K, indicated by the

‘run’ numbers in the legend. A separate batch of M = 5 sample was also mea-

sured (‘Sample 2’ in the figure) in order to confirm that the observed loss peaks
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were not batch specific. We can see that the amplitude of the loss peaks vary

slightly between measurements, but the peak is consistently observed in the same

frequency position and has the same overall shape. In Figure 4.20b, the displayed

spectra were rescaled in ε′′ by a shift factor, φ. It is clear from this rescaling that

although the amplitudes of the loss peaks vary somewhat, the shape and peak

timescales are very similar meaning the spectra can be completely rescaled on

top of each another. This serves to confirm that the same relaxation process is

being probed in each measurement.

In order to determine the reason why the amplitudes of the relaxations in ε′′

were different between runs, the spectra were also plotted as tan(δ) = ε′′/ε′. As

both the real and imaginary parts of the dielectric permittivity are dependent on

the sample area and thickness, rescaling in this manner removes this dependence

meaning that any effect of loss of sample or inconsistent sample filling could be

ruled out. However, it is clear from Figure 4.21 that there is still some small

differences in the amplitudes. The reason for this variation is uncertain but it is

important to remember that in the study of glass forming materials we are deal-

ing with an inherently out-of-equilibrium structure and that supercooling a liquid

into the glassy state twice will not result in the same structure [194]. For this

reason, the difference in amplitude could be due to a difference in the number of

dipoles that take part in this secondary relaxation process as a consequence of the

differences in structure between the glassy state obtained after each supercooling

of the sample. Ngai et. al. state that the dielectric strength ∆ε of a β relaxation

process is expected to be dependent on the thermal history of a glass: a lower

value of ∆ε is expected for a denser glassy state [51]. The idea that different

supercooling scenarios could lead to different amorphous structures and therefore

a variation in the strength of secondary, glassy relaxation phenomena has been

studied with reference to salol by Wagner et. al. [195]. The majority of measure-

ments of salol demonstrate that there is no indication of a Johari-Goldstein type

β process either above or below the glass transition. However, upon quenching at

an appropriately high rate (-490 K/min), the authors observed that a secondary

relaxation process becomes visible at low temperatures. This is further evidence

to suggest that the variation in the strength of the β process as observed in Fig-
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Figure 4.21: Figure showing tanδ = ε′′/ε′ for several separate runs of the M = 5
sample.

ures 4.20a and 4.21 could be due to the different thermal histories and therefore

different obtained glassy structures.

4.3.2 Rescaled spectra

In order the analyse the development of the shape of the β relaxation prior to

fitting, the β relaxation spectra for each sample were rescaled in both frequency

and ε′′ over the temperature range by the parameters φf and φ respectively. This

rescaling is shown in Figure 4.22. We observe that the spectra can be scaled well

for these samples. This scaling confirms that the relaxation peak can be resolved

well in this temperature range and that their shape is largely invariant, with a

slight broadening at higher temperatures. The overall breadth of the relaxation

peak is much larger than that of the α relaxation which is consistent with what

has been observed previously for secondary relaxations [51, 96, 196, 197].

4.3.3 Fitting procedure

To parametrise the development of the shape and timescale of the β relaxation

further, the relaxation peak was fit using the Cole-Cole (CC) function [176] (ob-
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Figure 4.22: Dielectric spectra for the a) M = 3, b) M = 4, c) M = 5 and d)
M = 6 samples in the β relaxation regime (111 K to 101 K) rescaled in both ε′′

and f .
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Figure 4.23: Dielectric spectra for the M = 6 sample at 101 K showing the
different fit contributions.

tained by setting the β parameter in the HN function to 1), as is often used to

describe secondary relaxation loss peaks [33, 61, 67, 94, 96, 116, 117]. The spectra

also show a high frequency contribution (similar to that observed in the α relax-

ation regime) and this was fit using a power law of the form ε′′ = AωB. The full

spectra for each sample were fit using an additive combination of both functional

descriptions of the observed features. An example of a fit of the M = 6 sample

at 101 K is shown in Figure 4.23, with the separate fit contributions indicated by

dashed lines.

As temperature increases, the β relaxation becomes harder to resolve due to

the proximity of the high frequency contribution. The values of A and B used

to parametrise the high frequency power-law contribution were determined at

the lowest measured temperature (101 K) and then kept constant for subsequent

temperatures. In other words, the fits were conducted under the assumption that

the shape of the high frequency flank was invariant with temperature and any

changes to the spectra would be due to the secondary relaxation process. The

dielectric spectra for all samples in the β relaxation regime could be well described

based on the assumption of a fixed high frequency contribution. Furthermore,
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Figure 4.24: Dielectric spectra for the a) M = 3, b) M = 4, c) M = 5 and d)
M = 6 samples in the β relaxation regime (111 K to 101 K). Fits through the
data are a combination of a Cole-Cole and a high frequency power law fit.

the rescaling of the spectra shown in Figure 4.22 demonstrates that the high

frequency contribution does not significantly affect the shape of the β loss peak.

The dielectric spectra and the resulting fits for the M= 3 to 6 samples are

shown in Figure 4.24. The spectra are well described by the combination of a

Cole-Cole function and a high frequency power law contribution. The peak fre-

quency of the relaxation increases with increasing temperature as is expected.

The β relaxation is completely resolvable for the M = 3 sample in the temper-

ature range shown. The other samples also show resolvable β relaxations but

at higher temperatures they become progressively hidden by the high frequency

contribution.
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Figure 4.25: a) ∆ε values obtained through fits of the dielectric spectra. b) α val-
ues obtained through fits of the dielectric spectra. Errors for the values obtained
from the hexylbenzene sample are the standard deviation between different runs.

4.3.4 Fit parameters

The dielectric strength and symmetric stretching parameters obtained through

fits of the CC function to the the β relaxation peak are shown in Figures 4.25a

and b. Error bars were determined by taking the standard deviation between fits

using the CC function to separate measurements of hexylbenzene. The symmet-

ric stretching parameter, α, does not appear to have any obvious temperature

dependence suggesting that the shape of the relaxation peak is fairly invariant

with increasing temperature, as was evident in the rescaling of the spectra (Fig-

ure 4.22). Also ∆ε is reasonably constant over the temperature range within the

accuracy of its determination. This is consistent with previously observed be-

haviour of secondary relaxation processes, which often have a weak temperature

dependence of their strength below Tg [51, 196, 198]. The dielectric strength of

the secondary relaxations appears to get weaker with increasing alkyl tail-length

and it appears that the α parameter becomes smaller for the higher tail-length

samples. Murthy et. al. determined the ∆ε of the secondary relaxation for the

M = 3 sample using dielectric spectroscopy [163] and this was reported to be

2× 10−3 in a tan(δ) renormalisation. This value is sightly larger than the range

of tan(δ) values observed in this research for the M = 3 sample which fell between

5× 10−4 and 7× 10−4.
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In order to test the robustness of the fits of the dielectric spectra in the β

relaxation regime, the ∆ε values as determined from fitting the CC function to

the dielectric spectra were compared to the rescaling parameters used to produce

the rescaled spectra shown in Figure 4.22. In order to determine the dielectric

strength, ∆ε from the rescaling parameter for the height of the peak, φ, the

amplitude of the spectra were determined at 101 K using the following relationship

determined by Bergman [104],

ε′′p =
∆ε

2
tan

(απ
4

)
(4.12)

The obtained values of ε′′p were then multiplied by the rescaling parameters, φ,

obtained for the higher temperatures (103 K, 105 K, 107 K, et.c.) for each sample,

thus providing the variation of the amplitude with increasing temperature. These

values were then used to calculate the equivalent ∆ε parameters using Equation

4.12 in order to compare with the fitted values of ∆ε. A comparison between

rescaled and fitted values of ∆ε for the different samples are shown in Figure

4.26. There is a very good agreement between the two sets of values suggesting

that the fitting of the β relaxations is robust and confirms the trends observed in

the parameters.

4.3.5 Comparison between samples.

We now consider the difference between the observed secondary relaxation pro-

cesses for the M = 3, 4, 5 and 6 samples. In order to aid comparison, the dielectric

spectra at two different temperatures, 101 K and 111 K, for each sample were

plotted on the same axis. This is shown in Figures 4.27a and b. There appears

to be a decrease in the amplitude of the secondary relaxation with increasing

alkyl tail-length. This trend has already been quantitatively observed from the

variation of the dielectric strength, ∆ε, between samples (Figure 4.25a).

Further comparison was achieved by rescaling the spectra by the peak ampli-

tude. This is shown in Figures 4.27c and d for 101 K and 111 K respectively. It

is clear from these figures that the secondary relaxations observed in the M = 3,

5 and 6 samples occur with similar peak frequencies, suggesting that they are the
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Figure 4.26: ∆ε values obtained from fitting and rescaling of the dielectric spectra
for the a) M = 3, b) M = 4, c) M = 5 and d) M = 6 samples.
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Figure 4.27: Dielectric spectra for the M = 3 - 6 samples at a) 101 K and b) 111
K. These spectra were then rescaled in ε′′ in order to see whether they collapse (at
c) 101K and d) 111 K). Samples M = 3,5 and 6 appear to collapse well at both
temperatures indicating that the β relaxations occur with similar peak frequency
for each sample.
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result of the same relaxation mechanism and that the timescale of this mecha-

nism is invariant with increasing molecular weight or alkyl tail-length. We also

observed that the spectra have a slight increase in the breadth of the secondary

loss peak with increasing alkyl tail-length, as quantified by the variation of the

symmetric stretching parameter, α, obtained from the CC fits of the data (see

Figure 4.25b). The peak frequency for the M = 4 sample, however, system-

atically occurs at higher frequencies than the other samples. This behaviour is

repeatable at both 101 K and 111 K and in separate measurements of the sample.

4.3.6 Relaxation timescales

A full discussion of the timescales, τβ obtained through analysis of the secondary

relaxations for the M = 3 to 6 samples will now be presented. Firstly, the values

obtained from the fits of the CC function to the dielectric spectra were compared

to the values obtained through the rescaling parameters, φf , required to scale the

dielectric spectra as shown in Figure 4.22. This was done so that the validity

of the values obtained from the fitting procedure could be checked. In order to

make this comparison, the τβ value obtained at the lowest measured temperature

(101 K) from fitting was multiplied by the values of φf for each sample. This

comparison is shown in Figure 4.28. It is clear from this figure that the values

obtained from fitting and rescaling correspond well with each other, confirming

the validity of the fitting process. Therefore, quoted values of τβ in the remainder

of this chapter will be those obtained from fitting of the CC function.

An Arrhenius plot showing the τβ values across the sample range in compar-

ison with the τα values (as discussed in Section 4.2.5) is shown in Figure 4.29a.

This figure shows that the timescale of the α and β relaxations occur at sig-

nificantly different timescales and have a different temperature dependence. A

separate plot featuring just the τβ data is shown in Figure 4.29b. The timescales

for the M = 3, 5 and 6 samples have similar values, quantifying the similar peak

frequencies of the secondary loss peak shown in Figure 4.27. The values for the

M = 4 are lower than those of the other samples again quantifying the observed

behaviour of the spectra. Also shown are τβ data for the M = 1 sample obtained
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Figure 4.28: τβ values obtained from fits (red circles) and rescaling (blue squares)
of the dielectric spectra for the a) M = 3, b) M = 4, c) M = 5 and d) M = 6
samples.
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Figure 4.29: a) Values of τα and τβ data for the alkylbenzene series. τβ data are
indicated by the open circles. b) Plot showing the values of τβ separately. Plots
include data from literature [33, 55] for the M = 1 sample. Dashed lines indicated
fits of the Arrhenius equation to the τβ data. Also plotted is an Arrhenius-like
line indicating the supposed behaviour of the M = 2 sample had it shown a
distinct secondary relaxation rather than an excess wing. A description of how
this data were obtained is given in the text.

from the literature [55]. The observed peak timescales for this relaxation pro-

cess are slower than those of the other samples. We saw in Section 4.2.1 that

the M = 2 sample exhibited an excess-wing and did not show any signs of a

secondary process at low temperatures. The dashed blue line indicates the hy-

pothesized behaviour for a submerged secondary relaxation for the M = 2 sample

as obtained through the analysis procedure detailed in Section 4.3.6. This line

indicates that the expected values of τβ for the M = 2 sample might also follow

the timescales of the M = 3, 5 and 6 samples.

Dashed lines through the τβ data indicate fits of the Arrhenius equation to

the τβ data. This equation was introduced in Chapter 1 but will be redefined

here to aid the following discussion:

τ = τ0e
EA
kBT (4.13)

Here, EA, is the activation energy barrier and τ0 is the limiting timescale at

high temperatures. It is clear from Figure 4.29a that the data are well described

by such an analysis, indicating that the observed secondary relaxation mechanism

is an ‘activated process’ with a fixed temperature independent energy barrier.
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M log10(τ0) (s) EA (kJ/mol) Tg (K) K (EA/RTg) Reference
1 -15.5 ± 0.2 24.1 ± 0.5 115.9 25.0 [55]
3 -13.0 ± 0.1 17.3 ± 0.3 124.7 16.6 -
4 -13.5 ± 0.2 17.1 ± 0.4 129.8 15.9 -
5 -12.9 ± 0.9 16 ± 2 135.4 14.1 -
6 -14.2 ± 0.4 19.6 ± 0.8 139.7 16.9 ± -

Table 4.3: Table showing the activation energies EA and τ0 obtained through
fitting of the τβ values and the constant, K, from the relationship between EA
and Tg (Equation 4.14) [15, 61]. Errors in the fitted parameters were obtained
from the covariance matrix resulting from non-linear mean squares fitting of the
data.

This is a feature common to secondary relaxation processes in the glassy state [51].

Fit parameters for the description of the τβ data with the Arrhenius equation are

shown in Table 4.3. The τ0 data are close to the expected microscopic timescales

of the bulk liquids at high temperature [2, 24–26]. The activation energies, EA,

show little variation between the M = 3 to 6 samples but is clearly higher for

the M = 1 sample. The obtained value of EA observed for the M = 3 sample is

consistent with values published previously [163, 165].

It has been shown that for a number of molecular liquids that there is an

empirical relationship between the activation energy and Tg [61]:

Eβ = KRTg, (4.14)

where R is the universal gas constant. Kudlik et. al. compared the values

of this constant for a selection of molecular glass formers and it was concluded

that, in general, Equation 4.14 holds with a value of K = 24± 3 [15, 55]. This is

also consistent with a value of K = 26± 2 obtained for a wide range of metallic

glasses [9]. The important implication of Equation 4.14 is that it connects the ac-

tivation energy of the β relaxation with Tg suggesting a fundamental connection

between the α relaxation (the timescale of which governs Tg) and the β relax-

ation, where the general idea is that the secondary relaxation can be thought

of as a a precursor to the structural relaxation [15, 51]. Values of K calculated

using Equation 4.14 are shown in Table 4.3 for the alkyl benzenes. We find that

the values of K deviate from the often observed value of around 24 and we find
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smaller values of ∼ 16−20 except for toluene which shows a value consistent with

24± 3. Such deviations of K (∼10-40) were also observed by Ngai et. al. when

they looked a wide range of different types of glass-formers and relaxations, but

the authors still assumed that Equation 4.14 holds [15]. Thus, it is not presently

clear how unique a specific value of K is in terms of indicating a link between

the primary and a generic secondary relaxation mechanism. However, it is an

experimental fact that the M = 3-6 samples all have secondary relaxations with

very similar activation energies within the glassy state, whereas toluene shows

a higher activation energy. The former values are lower than that generally ex-

pected to fulfil the often observed scaling relationship with Tg, but the value of

K for toluene is consistent with that of the standard values. These observations

thus suggests a different origin of the secondary relaxation in the M = 3-6 sam-

ples and that in toluene, respectively. The behaviour for toluene suggest that

the observed secondary relaxation corresponds to the standard beta-relaxation

whereas the M = 3-6 sample secondary modes might be of a different origin,

thus akin to what we observe and term the γ relaxation in the oligostyrenes. In

fact, as described in more detail in Chapter 6, the activation energy of the γ

relaxations and the secondary relaxation of the M = 3-6 samples is very similar.

Thus, if the secondary relaxation observed for the majority of the alkyl benzenes

is not the β relaxation, it suggest that this relaxation is instead hidden under

the α response. Indeed, as discussed above, we have found several indications

suggesting that another relaxation contribution is indeed present at time-scales

intermediate between the α and the observed secondary relaxation.

Rescaling using the glass transition temperature

In order to further analyse the variation of τβ, the data were plotted in a Tg

rescaled Arrhenius plot as shown in Figure 4.30a. An interesting consequence

of this rescaling of the timescale data is that the τβ values appear to decrease

systematically with increasing alkyl tail-length. This suggests an increased sep-

aration between the α and β relaxations with increasing tail-length. Of course,

as discussed above it is not clear whether the secondary relaxation for toluene

should be directly compared with those in the rest of the alkylbenzenes, but it
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Figure 4.30: a)τβ data for the M = 1, 3, 5, and 6 samples in a Tg rescaled
Arrhenius plot. Vertical dashed lines indicate cuts taken at 1.1 and 1.2 Tg/T .
b)τβ data taken at cuts of 1.1Tg/T and 1.2Tg/T . Open symbols refer to the
estimated cut τ for the M = 2 sample, obtained by fitting the cut values for the
other samples.

is still worth investigating this interpretation and in addition, it is important to

note that we can not be certain that the secondary relaxation in toluene as re-

ported in literature does not consist of several merged relaxation contributions.

Thus, in order to quantify the observed variation of the relaxation behaviour with

M -value, cuts of the data were made at specific values of Tg/T (1.1 and 1.2 Tg/T )

indicated by the vertical dashed red and blue lines.

The τβ values obtained from these cuts are shown in Figure 4.30b. Based on

the hypothesis that the cut values decrease systematically with increasing tail-

length then the data can be reasonably described by linear fits, as indicated by

the dashed lines (corresponding to the cut lines in Figure 4.30a). Note that this is

of course very speculative and for the highest M -values within the accuracy of the

data it is difficult to talk about any variation with tail-length. Still, assuming that

toluene can be compared to the other secondary relaxation, we do find a general

speed up for higher M when the data have been shifted with regards to their Tg

values. The open symbols in Figure 4.30b are extrapolations based on the linear

fits to roughly estimate the expected τβ values for the M = 2 sample. In turn,

the two extrapolated values allowed expected τβ values for the M = 2 sample to

be generated and the dashed blue line in 4.30b. show the expected behaviour of
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the τβ values for the M=2 sample. The blue dashed Arrhenius behaviour is also

added to Figures 4.29a and b.

Mixtures of toluene and polystyrene

It was shown in Section 4.3.6 that activation energy for the τβ data for toluene

(M = 1) is relatively different to that of the other samples. However, as discussed

above toluene is the only sample which we have not measured ourselves due

to the difficulty to avoid crystallization. That we need to rely on literature

measurements and the fact that special approaches had to be adapted to avoid

crystallization puts a question on how much we can trust the data for toluene.

To investigate this we investigate our own data where toluene was mixed with

polystyrene in different concentrations. The details of these experiments are

published elsewhere [199]. The idea of mixing toluene with a polymer is that

crystallization can be avoided and by performing measurements on samples with

varying polymer concentrations we can quantify the effects that the polymer

has on the observed behaviour. The τβ data obtained through measurements

of mixtures of toluene with differing amounts of polystyrene are shown in Figure

4.31 together with data for pure toluene, as obtained from literature and discussed

previously [55]. Interestingly, we find that the time-scale of the β relaxation is

largely unaffected by the addition of polystyrene. Importantly, we find that

the temperature dependence of the τβ values obtained from the mixtures are

consistent with the data obtained for pure toluene from literature and this serves

to confirm the τβ data for the pure sample.

The similarities between the different sets of τβ data were quantified by com-

paring the activation energies, EA, obtained through fits of the Arrhenius equation

to the data in Figure 4.31. The fitted parameters are shown in Table 4.4. Values

for EA show good agreement across the different samples, confirming the similar

temperature dependence of τβ. Furthermore, the values of τ0 agree between the

different samples but are lower than the typical range expected (10−12 to 10−14)

[2, 24–26].

The relationship between EA and Tg (Equation 4.14) was also tested for this

series and it was found that the constant of proportionality, K, was reasonably

close to values found for other molecular glass formers [15] as shown in the table.
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Figure 4.31: τβ data obtained from the literature for toluene [55] in compari-
son with data obtained through dielectric measurements of samples containing a
mixture of toluene and polystyrene.

PS/Toluene wt% log10(τ0)(s) EA (kJ/mol) Tg K (EA/RTg) Reference
0 -15.5 ± 0.2 24.1 ± 0.5 115.9 25.0 [55]
10 -16.8 ± 0.5 27 ± 1 118.7 27.1 [199]
14 -16.6 ± 0.6 26 ± 1 120.2 26.4 [199]
23 -15.2 ± 0.1 23.7 ± 0.3 124.1 23.0 [199]
29 -16.1 ± 0.1 25.0 ± 0.1 127.7 23.5 [199]

Table 4.4: Table showing the activation energy EA and τ0 values obtained through
fitting of the τβ values and the constant from the relationship between EA and
Tg (Equation 4.14) [15, 61] for mixtures of polystyrene and toluene. Also shown
are determined values of Tg from the VFT descriptions of the τα data.
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Figure 4.32: a) τα data obtained through dielectric measurements of samples
containing a mixture of toluene and polystyrene. b) Data rescaled by Tg

The affect of the addition of polystyrene to toluene is much more pronounced

in the timescale of the structural relaxation, as shown in Figure 4.32a. As a

higher percentage of polystyrene is mixed with toluene, the α relaxation is shifted

to longer timescales. This has the affect of increasing the glass transition of the

mixture, as shown in Table 4.4. The τα data are again well described by the

VFT expression (Equation 4.7) denoted by the lines through the data. In order

to further analyse the τα data, a Tg rescaling was performed and this is shown in

Figure 4.32b. This rescaling shows in a qualitative sense that as the percentage

of polystyrene is increased, the fragility of the mixture decreases. Both systems

also show an increase in the temperature regime of the α relaxation coupled to

an increase in the glass transition temperature. This variable behaviour of the τα

data is accompanied by τβ data which, to a certain approximation, is invariant

with polystyrene content. Even though the glass-transition increases the ratio

between the determined activation energy and the glass transition temperature

remains within the often observed 24± 3 range. If this relation holds one would

expect a variation in the activation energy as the glass transition temperature

varies. However, the varition in Tg is not enough to clearly determine whether

any systematic variation in activation energy takes place. Within the accuracy

of the measurement we do not observe a trend.
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4.3.7 Further analysis of the α and β relaxation timescales.

In this section the timescales for the α relaxations obtained through fitting of the

dilectric spectra, τα will be more closely compared with the the timescales of the

secondary relaxations observed samples at low temperatures, τβ. This comparison

is shown in Figure 4.33a-f for the M = 2-7 samples. Also shown in the figures are

τβ values obtained through the fitting of the observed ‘intermediate’ contribution

between the α relaxation loss peak and the high frequency power-law contribution,

as described in Section 4.2.3. These timescales show a strong resemblance to the

τβ data observed at lower temperatures for the fully resolved β relaxation in the

M = 3 to 6 samples. The resemblance is quantified by the fact the two sets of

τβ data can be described by the same Arrhenius fit, as indicated by the fit lines

through the data.

An extrapolated crossing of the Arrhenius fit to the τβ data and the VFT fit

to the τα data are observed for the M = 3, 4 and 5 samples. This crossing point

is indicated by the vertical dashed purple line. It was explained in Section 4.2.8

that the crossover temperature, T ∗, has been associated with the decoupling or

bifurcation of the α and β relaxations [30]. This crossover temperature is often

defined as the point at which the temperature dependence of τα changes and is

often observed through linearisation, or Stickel analysis, of the τα data [31]. In

this manner, the crossover temperature, which is outside the dynamic range of

our spectrometer, has been determined for the M = 3 and M = 4 samples by

Hansen et. al. [34]. This point is denoted by the vertical dashed light blue

lines in Figures 4.33b and c. For the M = 3 sample (Figure 4.33b) the crossover

temperature determined through Stickel analysis and the crossover of the VFT

and Arrhenius descriptions of the τα and τβ data are in good agreement with

each other. This provides evidence for the bifurcation scenario. However, there

is less agreement between these two definitions of the crossover temperature for

the M = 4 sample (Figure 4.33b). We note that although a secondary relaxation

process could not be fully resolved for the M = 7 sample, the timescales obtained

for the ‘intermediate’ contribution suggest an underlying secondary relaxation of

a similar nature to that observed for the M = 3, 4, 5 and 6 samples even though
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Figure 4.33: Values of τα and τβ for the a) M = 2 b) M = 3, c) M = 4, d)
M = 5 , e) M = 6 and f) M = 7 samples including their VFT and Arrhenius fits
respectively. Also shown are red dashed lines indicating the temperature of the
maximum of ε′′p for each sample in Figure 4.14. The blue dashed lines indicated
theoretical values of τβ obtained through application of the Arrhenius equation
with an activation energy determined using Equation 4.14. The vertical dashed
purple lines indicate the crossing of the Arrhenius and VFT fit lines and the
vertical dashed turquoise lines indicate crossover temperatures, T ∗, determined
by Hansen et. al. [34]
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for the M = 7 it is difficult to assign the exact time-scale with any significant

accuracy due to the weakness of the contribution.

In Section 4.2.4, a peak was shown in the fitting parameters describing the

amplitude, ε′′p, of the α relaxation loss peak and it was speculated that this might

be indicative of the merging of a ‘hidden’ secondary relaxation with the α peak.

The temperatures at which the peaks in ε′′ were observed are denoted by the

vertical dashed red lines in Figures 4.33a-f. If this temperature was indicative of

a merging of the observed secondary relaxation with the α relaxation then the

extrapolated Arrhenius fit of the τβ data should cross the VFT fit of the τα data

at this temperature. The figures clearly show that the two fit lines do not cross

at this temperature suggesting that the maximum in the amplitude is not due to

merging of these two observed processes. This suggests that if the amplitude peak

is due to a ‘hidden’ secondary relaxation, it will be an additional contribution

separate from the secondary relaxations directly observed in the data.

We previously observed that the activation energies of the secondary contri-

butions for the M = 3-6 samples are lower than what is normally observed for

‘standard’ beta relaxations. The secondary relaxation of toluene, however, shows

the expected behaviour. Thus, we can hypothesize that the ’hidden’ secondary

relaxation that we have found evidence might be of the same origin as the sec-

ondary relaxation observed for toluene and that its activation energies would

conform to K = 24 ± 3. To test this idea, τβ values were generated using the

empirically based relationship (Equation 4.14) between the activation energy of

the β process, EA, and Tg [15, 61]. For the purposes of this test, the constant

of proportionality, K, in this equation was set to 24 as is often observed for

molecular glass formers [15]. The values of τβ were generated by substituting the

determined activation energy into the Arrhenius equation. The values of τ0 were

chosen so that the crossing of the secondary relaxation and the alpha relaxation

took place at the temperature for which a peak in its amplitude was observed for

each sample. The peak amplitude temperatures are marked in Figure 4.33 with

vertical dashed red lines. The resulting τβ values are plotted as blue dashed lines

in Figure 4.33.

An Arrhenius plot, showing the timescales of the observed α and secondary

relaxations and also the ‘expected’ values of τβ obtained through the empirical
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Figure 4.34: a) τα, ‘expected’ values of τβ (dashed lines) and τγ values (open
circles) for the alkylbenzene series. b) Data rescaled by Tg. The figures include
data for the M = 1 sample (both τα and τβ) from the literature [33, 55]. Arrhenius
fits of the τγ data are denoted by dotted lines and VFT fits of the τα data are
represented as solid lines.

relationship between the activation energy of the β process and Tg (Equation

4.14), is presented in Figure 4.34a. For the purposes of the following discus-

sion, the faster directly observed secondary relaxation will now be termed the γ

relaxation.

There is a definitive trend in the expected τβ values which appear to approach,

with decreasing alkyl tail-length, the behaviour of the τβ data for the observed

secondary process in the the M = 1 sample. This provides further evidence

for an underlying secondary mode in the M = 2-7 samples which is likely to

be connected to the secondary mode observed for the M = 1 sample. The

timescale, ταβ at which the expected values of τβ cross the τα data also appears

to follow a systematic trend, increasing with increasing tail-length across the

range of samples. We note that the observed behaviour suggests that the α and

β relaxations become increasingly separated with increasing molecular weight,

which could explain both the clear secondary relaxation peak observed for the

M = 1 sample and the clear excess wing observed for the M = 2 sample. In

this representation, we observed no clear trend in the τγ data; the data for the

M = 3, 5 and 6 samples appear to occur at similar timescales but the relaxation

process appears faster for the M = 4 sample.
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The behaviour of τβ that slow down with increasing chain-length is fully con-

sistent with the observations of an oligomeric chain-length series of propylene

glycol dimethyl ethers [69, 193]. Also a chain length series of mono-methyl ethers

demonstrate the same trend [18]. In the following chapters, we will further demon-

strate a remarkable similarity between the behaviour observed for alkyl benzenes

and the behaviour observed in two different oligomeric chain-length series.

A Tg rescaled Arrhenius plot of the data is shown in Figure 4.34b. This figure

reiterates the scenario discussed in Section 4.3.6, in which we speculated that

there might be a trend for the τγ data in a Tg scaled representation. We noted that

if one used a rough extrapolation based on this trend to predict the relaxation

timescales for the M = 2 sample, they would overlap with the γ relaxation

timescales of the M = 3, 5, 6 and 7 samples. Given that the β relaxations appear

to speed up with decreasing molecular weight, whereas the γ relaxations appear

to be relatively fixed the apparent absence of these in the spectra for the M = 1

and M = 2 samples might just be due to the fact that their contributions are

submerged under the more significant β relaxation contributions.

In order to further investigate the hypothesis of a ’hidden’ β relaxation for

the higher molecular weight samples, β relaxation spectra for the M = 3 sample

and M = 4 sample were analysed at temperatures below their respective glass

transitions in order to detect any hints of an underlying secondary relaxation.

This analysis is shown in Figures 4.35a and b for the M = 3 and M = 4 samples

respectively. We observe that there are indeed indications of a weak excess wing in

both cases, as characterised by the variation of the exponent of the high frequency

powerlaw flank of the α relaxation. The characteristic timescale expected for the

β relaxations at the investigated temperature, based on the estimate above are

marked with a vertical dashed blue line in each case. This further suggests that

there is an additional secondary contribution to the spectra for all investigated

samples. This contribution could not be resolved in the spectra above Tg and

it would thus not made sense to attempt to perform the fitting described above

using an extra functional contribution.

The implication of this analysis is thus that in addition to the γ relaxation

observed at the shortest times, there appears to be one additional underlying

secondary process which is difficult to resolve in the dielectric spectra and that

140



4.3 Dielectric spectroscopy: β relaxation

Figure 4.35: Dielectric spectra for the a) M = 3 and b) M = 4 samples taken
at 123 K and 129 K respectively. The vertical dashed blue line indicates the
‘expected’ position of the β relaxation based on the analysis described in the
text.

merges with the α relaxation for all samples except for toluene. There are several

examples of other molecular glass formers that exhibit three relaxation processes,

termed α, β and γ. Several relaxation processes have also been observed for

polystyrene [200–204] which will be discussed in Chapter 6. Three relaxations

have also been observed for iso-propylbenzene which is chemically similar to the

M = 3 sample [205]. In summary, it appears that the nomenclature used to

describe the observed relaxation processes for the alkyl benzenes should more ap-

propriately be termed β relaxations for the largely ’hidden’ secondary relaxation

and γ relaxation for the observed secondary relaxation process for the M = 3, 4,

5 and 6 samples; following the standard of naming relaxations based on the order

in which they occur in the spectra.

4.3.8 The excess-wing behaviour of the M = 2 sample.

Unlike the M = 3 to 6 samples, the M = 2 sample demonstrated a clear excess

wing in the α relaxation peak also above Tg. As discussed above, one could make

the assumption that the excess wing observed in the dielectric spectra is a mani-

festation of the merging of the α relaxation and a secondary β relaxation [69]. It

is not clear what exactly determines when an α and β relaxation that approach
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Figure 4.36: Comparison of the dielectric spectra of several different type A glass
formers: a) ethylbenzene (M = 2) at 119 K) glycerol at 199K c)propylene carbon-
ate at 162K d) salol at 225K. The dielectric spectra were fit using a combination
of two HN functions in order to compare the strength of the α relaxation to the
strength of the wing/β relaxation.

eachother in frequency will be observed as separate relaxations or as one relax-

ation with an excess wing. However, it makes sense that the distance in frequency

between them and their relative dielectric strength must be of direct importance.

To investigate this in some more detail, dielectric spectra were analysed for both

the M = 2 sample and for three other so-called type A glass formers which also

exhibit an excess-wing: glycerol, propylene carbonate and salol. The spectra are

shown in Figure 4.36 and were fitted using an additive combination of two HN

functions. These separate contributions are shown as dashed red (α) and blue

(β) in the figure.

Through spectral analysis of these samples, the dielectric strengths of the α

and β processes (∆εα and ∆εβ) were directly obtained. Values of ∆εα and ∆εβ

were described using a linear fit in order to determine the dielectric strengths

of the α and submerged β relaxation at Tg through extrapolation. The ratios

between these dielectric strengths were then calculated and compared to the
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Figure 4.37: a) The ratio between the dielectric strengths for the α and β relax-
ations for several type A (M = 2 sample, glycerol, propylene carbonate (PC) and
salol) and type B (M = 3 to 6 samples, tri-propylene glycol (3PG), tri-propylene
glycol mono-methyl ether (3PG-MO) and tri-propylene glycol di-methyl ether
(3PG-DIMO)) glass formers. b) Further analysis of the M = 2 sample as de-
scribed in the text.

ratio obtained for so-called type B glass formers which demonstrate a clear (non-

merged) secondary relaxation including the M = 3, 4, 5 and 6 samples from this

series, tri-propylene glycol (3PG), tri-propylene glycol mono-methyl ether (3PG-

MO) and tri-propylene glycol di-methyl ether (3PG-DIMO). The values of this

ratio for the type A and type B glass formers are shown in Figure 4.37a.

The first conclusion we draw from Figure 4.37a is that the ratio appears to

increase for the glass formers which exhibit higher Tg values. We also observe

that the ratio for the M = 2 sample is similar to that of the other samples in the

alkyl benzene series. In general there appears to be no quantifiable difference in

the ratio for the type A or type B glass-formers which means that it is difficult,

based on ratios between the α and β dielectric strengths, to predict whether an

excess wing should be observed or not.

A further investigation of the behaviour of the M = 2 sample is shown in

Figure 4.37b. Here, the dielectric spectrum at 119 K is shown. The α loss contri-

bution is shown (dashed red line) together with an ‘estimated’ β loss contribution

(dashed blue line). The estimated β contribution was obtained by parametrising

the HN function (Equation 4.2) with estimated values of ∆ε, α, β and the char-

acteristic timescale τHN . The value of the exponent of the low frequency flank of
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the relaxation, α, was taken to be the same as that of the α loss peak in order to

mimic the frequency convolution of the two contributions. The value of τHN was

calculated using Equation 4.6 with a peak timescale, τ pHN determined from the

analysis shown in Section 4.3.6. The ∆ε and β values were varied such that the

best description of the spectral data could be achieved. The sum of the α and

estimated β contributions is shown as the solid black line in Figure 4.37b. This

sum provides a good description of the data. A value of ∆ε = 14×10−3 was used

and this is in reasonable agreement with the trend in the dielectric strength for

the observed γ relaxations for the M = 3 to 6 samples as shown in Figure 4.25a.

It was also found that a value of β = 0.16 provided the best description of the

data and this value is in good agreement with those obtained through both fits of

the M = 2 spectra with the modified RB expression (Equation 4.3) and through

the sum of two HN expressions. The analyses presented in this section thus fur-

ther imply that the excess-wing observed for the M = 2 sample is likely due to

a submerged secondary relaxation with similar characteristics to those observed

for the observable secondary relaxation of the M = 3 samples.

4.4 Differential scanning calorimetry

Differential scanning calorimetry (DSC) measurements were performed on the

samples in the alkylbenzene series in order to complement the data taken using

dielectric spectroscopy. The samples were first supercooled to the lowest tem-

perature attainable by the DSC and then scans at 10 K/min were performed,

cycling above and below their expected glass transition temperatures. This rate

of heating/cooling was chosen as it can be shown to be related to a structural

relaxation timescale of 100s [138–141] corresponding to the timescale at which Tg

was defined for dielectric measurements. Other authors have stated that a rate

of 10K/min could also relate to a timescale of 1s rather than 100 [206]. This

variation in the relation between DSC rate and τα could explain the difference

between Tg values obtained from DSC and those obtained through analysis of

dielectric data: if the probed timescale of the DSC at a rate of 10K/min is in

fact related to a shorter timescale than 100s then this would lead to a higher Tg

as shown in Figure 4.17a. However, for the purposes of this section it will be
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assumed that the glass transition observed with DSC is related to a timescale of

100s.

4.4.1 Traces of the heat capacity

The DSC traces during heating were used to extract thermal information about

the glass formers. Figure 4.38 shows the traces obtained during heating scans

of the samples in the alkylbenzene series. The traces show the same systematic

increase in the relevant temperature range of the glass transition shown for the

τα data (Figure 4.16). The M = 3 to 7 samples show a very systematic increase

in the onset temperature of the characteristic step in Cp relating to the glass

transition. As observed (to a certain extent) in the τα data, the glass transition

step for the M = 1 sample appears to occur at a slightly higher temperature

than the M = 2 sample. The samples have a very similar absolute value for Cp

within the glass (i.e. before the step) and demonstrate enthalpy relaxation peaks

of similar size.
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Figure 4.38: DSC traces for the alkylbenzene series. The traces shown are of
increasing temperature at a rate of 10 K/min.
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4.4.2 The ‘step height’ of the glass transition

The values quantifying the step height, ∆Cp, increase with increasing molecular

weight in a systematic fashion except for the M = 2 sample which shows a higher

value, as shown in Figure 4.39a. As the step in Cp at the glass transition is related

to the release of degrees of freedom [120] it follows that a larger ∆Cp relates to a

larger increase of entropy at the glass transition [207].
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Figure 4.39: a)∆Cp calculated from the DSC traces shown in Figure 4.38 and b)
rescaled by Tg.

The isobaric heat capacity is related to the entropy through the relation,

Cp = T

(
∂S

∂T

)∣∣∣∣
p

(4.15)

The difference in the heat capacities at Tg is given by ∆Cp as shown in Figure

4.39a. We can therefore reformulate Equation 4.15 in order to define ∆Cp as a

function of Tg and the rate of change of entropy in both the liquid and glass [208]

as follows:

∆Cp = Tg

[(
∂Sliquid

∂T

)∣∣∣∣
Tg

−
(
∂Sglass

∂T

)∣∣∣∣
Tg

]
p

. (4.16)

The difference in the temperature dependence of entropy in the liquid and

glass can be analysed by rescaling ∆Cp by Tg. Such a rescaling is shown in Figure

4.39b. Rescaling the values in this fashion removes the trend and normalizes

the ∆Cp values to a reasonably fixed value for the M = 1, 3, 4, 5, 6 and 7
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samples, as indicated by the dashed guide to the eye in Figure 4.39b. This implies

that the difference in temperature dependence of the entropies in the glassy and

liquid states is relatively fixed for these samples. Interestingly, the value for the

M = 2 sample does not rescale in this manner suggesting that the difference in

the temperature dependence of the entropy is higher in this sample in comparison

to the others.

Another indication from this analysis is that the trend shown in Figure 4.39a

could be related to the linear increase of Tg shown in Figure 4.17a. Further-

more, as Tg is related to the dynamic fragility parameter m, the observed trend

in Figure 4.39 could be related to the fragility. The difference in the glassy and

crystalline heat capacities was defined to be a measure of the so-called thermody-

namic fragility by Angell [91]. This idea was formulated based on the premise that

fragile glass formers should show large changes in their response at Tg and that

strong glass formers would show relatively small changes [122]. It can be shown

that the so-called excess heat capacity, ∆Cp can be related to the kinetic fragility

parameter, m [121]. It has also been suggested that one would expect a strong

correlation between the thermodynamic and kinetic descriptions of fragility for

molecular glass formers [122]. Indeed, we see a strong positive correlation of ∆Cp

with increasing molecular weight for the M = 3 to 7 samples and similar corre-

lations were observed for the m parameters and also the S parameters obtained

through linearisation of the τα data. We also observed that the M = 2 sample

does not follow this trend as was observed in the variation of the m and S pa-

rameters. However, the M = 1 sample does seem to follow the observed linear

trend in ∆Cp, contrary to what was observed in the dynamic definitions of the

fragility.

4.4.3 The width of the glass transition step

The width of the glass transition region, ∆T , is defined in this work as the differ-

ence between the onset and offset of the characteristic step in Cp. This definition

of the width has also been attributed to the fragility of the material in question

[209–211] although the validity of this relation has been questioned previously

[212]. It has been assumed that the onset temperature of the glass transition
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Figure 4.40: ∆T calculated from the DSC traces shown in Figure 4.38

step is related to a relaxation timescale of around 100s and that the offset tem-

perature is related to a timescale of around 1s and therefore the difference in

these temperatures could be related to the definition of the fragility parameter,

m. Within the confines of these assumptions, the implication is that the more

fragile a glass forming liquid is, the smaller ∆T would be.

Values of ∆T obtained through analysis of the DSC traces for this series of

samples are shown in Figure 4.40.

It is clear from this figure that the widths are significantly smaller for the

M = 1 and M = 2 samples. If the link between fragility and the width of the

glass transition presented in the literature is correct then these results corre-

spond reasonably well with the larger values of the dynamic fragility parameters

observed for these two samples. The ∆T values observed for the other samples

in the series are less conclusive but it could be said that there is a slight negative

correlation with increasing molecular weight indicating that the fragility for these

samples increases with increasing molecular weight: a conclusion also drawn from

the corresponding m parameters.
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4.4.4 Excess entropy

We will now consider the entropy for the samples in the alkylbenzene series. Mi-

crowave studies of the M = 2, 3 and 4 samples conducted by Maté et. al. have

shown that the number of stable molecular conformers for these samples increase

with increasing molecular weight: the determined number of stable conformers

were 1, 2 and 4 respectively [213] in this study. These results correspond well

to theoretical predictions for the number of conformers for the studied samples

[214–216]. The implication of these results is that if the number of conformers

increases with increasing tail length, it is likely that also the total liquid configu-

rational entropy should increase. Moreover, since configurational entropy is a key

element in many theoretical descriptions of supercooled liquids [217], it is very

interesting to determine how the entropy varies in the alkylbenzene series as the

glass transition is approached.

In order to achieve this for the alkylbenzene series, an integration of the DSC

traces of Cp was performed. The difference between the entropies at two differ-

ent temperatures can be determined from the heat capacity using the following

equation [130]:

S(T )− S(T0) =

∫ T

T0

Cp
T
dT (4.17)

Therefore, in order to determine the entropy at a certain temperature, S(T ),

one has to know the entropy at the reference temperature, T0. A well established

method of calculating S(T ) in the past has been to choose a reference temperature

of 0 K and then assume, based on the third law of thermodynamics, that the

entropy at 0 K must also be zero [123]. Although this reasoning is sound, the

method requires some knowledge of the variation of Cp to very low temperatures

in order to make appropriate extrapolations; such examples are available in the

literature for a selection of low molecular weight alkylbenzenes measured with low

temperature calorimetry [123, 160, 161], but not for the longer alkyl tail-length

samples. Also, due to the temperature restrictions of the calorimeter used in this

study, this method is not appropriate as we can not determine Cp sufficently far

below Tg in order to make a constructive extrapolation of the glassy behaviour

to 0 K.

149



4. RESULTS I: RELAXATION DYNAMICS IN A SYSTEMATIC
SERIES OF SIMPLE MOLECULAR GLASS FORMERS

Rather than using a reference temperature of absolute zero, a similar analysis

of the entropy can be performed by choosing the melting point or temperature of

fusion, Tfus, instead [78]. The entropy of fusion can be calculated if the enthalpy

of fusion, ∆Hfus, is known:

∆Sfus =
∆Hfus

Tfus
(4.18)

In most cases, the enthalpy of fusion, ∆Hfus, could not be determined from

the DSC traces either due to the proximity between the melting peak and a crys-

tallisation peak, observed after heating the samples above the glass transition, or

due to the absence of a melting peak altogether. Also, to determine a proper value

of the enthalpy of fusion either one needs to know that one creates a fully crys-

talline sample or alternatively quantiatively determine the degree of crystallinity.

Thus, in order to make the most constructive comparison, values for ∆Hfus and

the melting point, Tfus, were taken from the literature. The values obtained are

shown in Table 4.5.

The excess entropy Sx is usually defined as the difference between the en-

tropies in the liquid and crystalline states: Sx = Sliquid − Scryst and the total

entropy Stot in the liquid can be thought of as the combination of the vibrational

and configurational entropies [2]. It has been assumed in the past that when a

supercooled liquid forms a glass, the configurational component of the entropy

is ‘lost’ and therefore the total entropy in the glassy state is purely vibrational

[228, 229]. If the assumption that the vibrational contributions to the entropy

in the crystalline and supercooled liquid states are the same [2] then one can say

that Sx is equivalent to the configurational entropy, Sc which is lost (or gained)

through the glass transition. However, this conjecture is now widely assumed to

be incorrect [2, 57, 230] since the vibration contributions of the crystal can not

be easily extrapoltated into the liquid state. However, the excess entropy is still

largely a probe of the configurational part of the entropy even though we here,

for the purposes of the following analysis, will consider the excess entropy as a

separate entity to the configurational entropy. Sx can be determined through

integration of the difference between the heat capacities in the liquid state and
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Sample ∆Hfus (J/g) Tfus (K) Reference

Toluene

72.02 178.17 [218]
72.02 178.15 [161]
71.84 177.95 [219]
71.07 178.00 [220]
71.85 178.00 [221]

Ethylbenzene

86.56 178.17 [218]
86.33 178.08 [78]
86.52 178.15 [222]
86.30 178.17 [223]
86.28 178.20 [221]
86.30 178.00 [224]

Propylbenzene
77.16 173.65 [218]
77.11 171.60 [160]
77.28 173.60 [225]

Butylbenzene
83.66 185.18 [218]
83.89 185.14 [160]
83.59 185.31 [221]
81.80 184.61 [226]

Pentylbenzene 102.90 194.90 [218]
Hexylbenzene 113.50 206.15 [218]
Heptylbenzene 123.60 225.10 [227]

Table 4.5: Table showing values for ∆Hfus and Tfus obtained from the literature
for the alkylbenzene series.
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the crystalline state: ∆Cx
p = C liquid

p − Ccryst
p [75]. Equation 4.17 then becomes:

Sx =

∫ T

T0

∆Cx
p

T
dT (4.19)

A similar calculation can be performed in order to determine the difference in

entropy between the glassy and crystalline states. This can be achieved by using

the difference in heat capacities of the glass and crystalline states in a similar

fashion to Equation 4.19 [75]. This entropy could be approximated to be the

difference in vibrational entropies of the glass and crystal states [78] although

one would still expect a glass former to have some configurational contribution

to its entropy below Tg due to the fact that the constituent molecules are still

able to rearrange in the glassy state [231].

The change in the excess entropy of the samples in the alkylbenzene series

in the temperature range probed with the DSC experiments was determined

using the entropy of fusion as a reference point in the same way as presented

by Yamamuro et. al. [78] (it should be noted that in their original calculation,

the authors assume that the excess entropy was equivalent to the configurational

entropy.):

Sx(T ) = ∆Sfus−
∫ Tfus

T

C lq
p (T )− Cgl

p (T )

T
dT −

∫ Tfus

0

Cgl
p (T )− Ccr

p (T )

T
dT (4.20)

The third term in Equation 4.20 is a correction due to the difference in vibra-

tional entropy between the glass and the crystal states. As stated previously, the

heat capacity of the samples could not be determined down to 0 K and although

data exists in the literature for lower temperatures than were measured here the

glassy states formed in these experiments are not the same as the states formed

within our measurements [194]. Indeed, due to the amorphous nature of glasses

our samples might thus show different heat capacities compared to those in the

literature. Thus, there is no real justification for using literature data to extend

the data taken within the experiments presented here. However, the difference

between the entropies in the crystalline and glassy states is generally very small

(< 5%) compared with the entropy determined through the difference between
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Figure 4.41: Figure showing the extrapolated a) glass behaviour for the M = 4
sample and b) liquid behaviour for the M = 6 sample.

the heat capacities of the liquid and glassy states and and has therefore been

neglected in this calculation [78].

In order to calculate the second term in Equation 4.20, the glassy and liquid

behaviours of the samples were extrapolated to cover the relevant temperature

ranges. The extrapolation of the glassy behaviour to the melting point, Tfus, was

approximated with a linear fit to the low temperature (below Tg) Cp data. An

example of this extrapolation is shown in Figure 4.41a for the M = 4 sample,

where the blue dashed line indicates the extension of the glassy behaviour to

higher temperatures. Yamamuro et. al. [78] present a more detailed approach to

this extrapolation by fitting their low temperature heat capacity data to a func-

tion containing contributions for the translational lattice vibration, rotational

vibration, methyl-group rotation, intramolecular vibration and a correction be-

tween the heat capacities of constant pressure and constant volume.

The liquid behaviours of the samples were extrapolated based on a polynomial

fit to a combination the liquid data obtained for the samples just above Tg (before

a melting/crystallisation peak) and above Tfus. This extrapolation is similar to

an example in the literature where the extension of data was necessary due to

crystallisation [2, 232] of the sample at temperatures just above Tg [123]. An

example of such an extrapolaton is shown in Figure 4.41b for the M = 6 sample.

The determined excess entropies as a function of temperature determined us-
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Figure 4.42: Figure showing the entropy values as calculated from Equation 4.20
plotted against a)T and b) T/Tg.

ing Equation 4.20 for the alkylbenzene samples are shown in Figure 4.42. Sx

decreases in a similar manner for all samples with decreasing temperature, lead-

ing to an extrapolated value of zero at a certain temperature. The fact that the

configurational entropy decreases to zero indicates an ‘entropy crisis’ as predicted

by Kauzmann [16], whereby the entropy of a supercooled liquid decreases at a

faster rate than what would be expected for the equivalent crystal (in which the

entropy tends to zero as the temperature tends to zero). Therefore the temper-

ature at which Sx reaches zero in Figure 4.42 is equivalent to the Kauzmann

temperature, TK at which an ideal thermodynamic glass transition have some-

timed been speculated to exist [17], as postulated by Gibbs and DiMarzio [217].

We find that the determined TK values increase with increasing molecular weight.

If the conjecture that Sx ∼= Sc is correct, then the Adam-Gibbs model implies that

TK is equivalent to the temperature at which the structural relaxation timescale,

τα, tends to infinity, T0 in the VFT equation (Equation 4.7) [2, 233]. Values for

both TK (obtained from Figure 4.42a) and T0 (from fits of the VFT equation to

the τα data obtained from dielectric spectroscopy) are compared in Table 4.6.

There is reasonable agreement between values of TK and T0 for the lowest

tail-length (samples M = 1 to 4) but this correlation breaks down for longer

tail-length samples. Tanaka also observed this breakdown for a selection of glass

forming liquids [77]. It was observed that the ratio TK/T0 increases from a value

of unity (indicating perfect correlation) with decreasing fragility (characterised in
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M TK(K) T0(K)
1 91.5 96.6 ± 0.6 [33]

101.2 ± 0.6 [55]
2 91.5 90 ±0.1
3 96.7 95.6 ±0.7
4 102.0 104.3 ±0.6
5 100.1 113.9 ±0.2
6 105.9 121.2 ±0.9
7 121.7 127.0 ±0.6

Table 4.6: Table showing the comparison between the values of the Kauzmann
temperature, TK as obtained from Figure 4.42a and values of T0 obtained through
fitting of the VFT equation to the τα data obtained through dielectric spec-
troscopy.

this case by the strength parameter, D, from the VFT equation). We have already

seen that the fragility (defined in both the kinetic and thermodynamic senses)

appears to increase with increasing molecular weight and it is clear that TK/T0

decreases with increasing molecular weight, therefore confirming the results seen

by Tanaka.

In order to aid further comparison between the samples, the Sx data obtained

were rescaled by Tg, the result of which is shown in Figure 4.42b. STg for the

alkylbenzene samples were obtained by making a cut in Figure 4.42b, denoted

by the dashed line. These values are shown in Figure 4.43. The STg values for

the M = 1 to 6 samples show a systematic growth with molecular weight and

could be interpolated with a linear fit as denoted by the black dashed line in the

figure. The trend indicates that this measure of the entropy of the alkylbenzene

series increases with increasing molecular weight. Interestingly, a linear trend

of the total entropy, S, with molecular weight for the alkylbenzenes in the gas

phase has also been observed [234] and the entropy values for the series at 293

K are shown in the inset of Figure 4.43 for comparison. It is unclear why the

M = 7 sample does not follow the same trend as the other samples. Of course,

the determination of the absolute value of Sx relies on the values of ∆Hfus which

are obtained from the literature. We were unable to fully crystallise any of the

samples in this series and so the values of ∆Hfus could not be confirmed. One

possible reason for the discrepancy is therefore that the literature value of ∆Hfus
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Figure 4.43: Figure showing the entropy values for the alkylbenzene series at Tg.
The dashed black line is a linear fit to the M = 1-6 data.

is not accurate. However, we note that we expect any systematic behaviour

observed for short alkyl chains to break down for long enough chains since at some

point the alkyl-chains will stop acting essentially as a modification of phenyl ring

and start dominating the behaviour which inevitably will lead to new behaviour.

It can be shown that through drawing an analogy between the Adam-Gibbs

and VFT descriptions of the development of the structural relaxation timescale

with temperature, the dynamic fragility parameter, m, could be related to ∆Cp

and thus the excess entropy, Sx at Tg [121, 235]. Therefore, the systematic increase

of Sx can be linked to the similar increase in the dynamic fragility of the glass

formers in this series, quantifying that these separate measures of the fragility

are, to a certain extent, equivalent descriptions of the change in dynamics as the

glass transition is approached.

4.4.5 Testing the validity of the Adam-Gibbs expression.

One explanation of the drastically increased structural relaxation timescales as

the glass transition is approached is the theory presented by Adam and Gibbs
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[76] introduced in Chapter 1. This theory attributes the increase of τα to ‘coop-

eratively rearranging regions’ (CRRs), the size of which increases such that the

number of configurations available to a system in order to relax decreases, thus

the configurational entropy is closely related to the properties of a CRR. The

theory predicts the behaviour of τα in the following fashion:

τα = τ0e
A

TSc(T ) (4.21)

It has already been stated that one condition of the Adam-Gibbs entropy

based theory is that Sx ∼= Sc and that this implies that the thermodynamic and

kinetic definitions of the ’critical’ temperatures, T0 and TK should be equivalent.
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Figure 4.44: Plot of τα against 1/TSx in order to test the Adam-Gibbs equation.
If the relationship holds, the resulting plot should be a straight line with a positive
gradient, A.

We have observed that the T0 and TK values correspond well to each other for

the shorter tail-length samples in this series but this equivalence breaks down for

the higher molecular weight samples, suggesting that perhaps the Adam-Gibbs

equation would not be a good description of the development of the structural

relaxation timescale with decreasing temperature. In order to test the theory,

Equation 4.21 was fit to the τα data obtained from dielectric spectroscopy for all
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the samples in the series. The configurational entropy component in the equation

was assumed to be analogous to the excess entropy, as is required in order for

the theory to be valid [2]. If we take the natural logarithm of Equation 4.21 then

the τα should follow a linear behaviour with a positive correlation when plotted

against 1/(TSx(T )). Figure 4.44 shows the result of the plotting of the data in

this manner and interestingly we see that the τα values follow this expected linear

trend and that the data are well described by Equation 4.21 suggesting that the

entropy is an important property in a fundamental description of glass-formation.

4.5 Conclusions

In this chapter, results from the measurement of a series of alkylbenzenes using

both Broadband Dielectric Spectroscopy and Differential Scanning Calorimetry

have been presented. In a qualitative sense, there are two different scenarios

that we could expect from increasing the length of an alkyl tail. On one hand

we might expect that as the length of the tail increases, the tail could act to

plasticise the bulk material, leading to a decrease of the glass transition tempera-

ture with increasing tail length. This effect has been observed series of polymers

for which the length of a side chain is increased, for example the poly(n-alkyl

methacrylates)[51]. On the other hand, the increase of the tail length could sim-

ply mean that the effective size of the molecules is bigger meaning that the glass

transition increases proportionally to the length of the alkyl tail. We find a range

of evidence, presented in this chapter, which suggest that the second scenario is

the most likely.

We observe that values for the glass transition temperature, Tg, obtained

through analysis of the structural relaxation timescales, τα and the DSC traces

show an increase with increasing alkyl tail-length for the M = 3 to 7 samples.

This suggests that the tails themselves do nothing to plasticise the bulk material.

Furthermore, previous research has suggested that the Tg of simple molecular

glass formers in related to the effective hard sphere radius, σ0, of the constituent

molecules [146, 150]. We can infer that σ0 increases with increasing chain length

for the M > 2 samples. This suggests that the alkyl tails are reasonably ‘stiff’

in this series of samples, as the effective volume of the molecules appears to be
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systematically increasing with the length of the tail. In terms of glass formation,

this means that as the alkyl tail-length increases, the molecules become more

susceptible to dynamic arrest and therefore Tg is higher. The lowest tail-length

samples, M ≤ 2, appear to have similar values of Tg. The implication of this is

that the effective size of the M = 0, 1 and 2 samples are similar and that the

alkyl tail has no effect on the structural relaxation of the M = 1 and 2 samples.

Although we cannot state precisely what the dynamic processes involved in

the α relaxation are, we can imagine that bulk structural relaxation of the glass

formers in this series are likely to be largely dependent on the rearrangement

of benzene rings because they are the bulkiest part of the molecules. For the

M = 1 and 2 samples, it is possible that the alkyl tail is too short to effect the

rearrangement of the benzene rings and therefore Tg is unaffected. However, for

tail lengths longer than 2 units we might begin to see an effect on the dynamics

of the benzene rings.

Systematic variations as a function of tail-length were also observed in the

parameters describing the glass forming fragility of the samples in this series.

The kinetic fragility and the thermodynamic fragility of the samples in this series

were both calculated in several different ways. The kinetic fragility was deter-

mined through use of the strength parameter in the VFT expression, D, the m

parameter relating to the gradient of the VFT fits of the τα data at Tg and the

S parameter, obtained through linearisation of the τα data [31]. The thermody-

namic fragility was inferred from the trends seen in the difference in specific heat

capacity between the glassy and liquid states, ∆Cp, and the width of the step in

Cp, ∆T . It was also inferred from the increase in excess entropy as determined

through integration of the Cp traces. These separate measures of fragility all show

similar trends for the M = 3 to 7 samples, increasing with increasing tail-length.

In terms of glass formation, this means that not only does the glass transition

occur at higher temperatures for samples with a longer tail but that the struc-

tural relaxation timescale increases at a faster rate with decreasing temperature.

This again suggests that longer alkyl tails significantly hinder the structural re-

laxation process. The thermodynamic and dynamic definitions of fragility differ

for the lowest tail-length samples, again suggesting a change in behaviour for

these samples.
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The nature of the frequency response of the structural α relaxation as a func-

tion of temperature was captured with BDS. Interestingly, although systematic

variations with alkyl tail-length were observed for Tg and fragility, the overall

variation of shape of the α loss peak was similar, regardless of tail length. We

observe that, in general, there is a narrowing of the loss peak with increasing

temperature. If we accept the connection between the shape of the response peak

and dynamic heterogeneity [44], this suggests that the distribution of timescales

of the structural relaxation also narrows.

Indications of secondary relaxation processes were also found. Secondary re-

laxations, persisting at T < Tg, were clearly observed in the dielectric spectra

for the M = 3-6 samples and a secondary relaxation has also been observed for

the M = 1 sample previously [55, 61]. The M = 2 sample demonstrated an

excess-wing behaviour of the α loss peak. Through further analysis it was deter-

mined that the excess-wing was likely due to the manifestation of an underlying

secondary process with similar shape parameters and timescales of the secondary

process observed for the M = 3-6 samples. The timescales of this observed pro-

cess for the M = 3-6 samples were very similar. This suggests that this relaxation

process is relatively unaffected by alkyl tail-length. However, the timescales of

this process for the M = 1 and M = 2 samples are slower than those of the other

samples. This could be indicative of the physical mechanism responsible for this

relaxation process. For example, we could suggest that the this mechanism is due

to a characteristic motion of the ends of the alkyl-tails. For the M = 1 and 2

samples, the motion of a tail end would clearly be more hindered by the benzene

ring and thus the relaxation timescale is slower. For the longer tail-length samples

(M = 3-7), motion of the tail ends is no longer hindered by the benzene rings,

meaning that the relaxation timescale is faster. The fact that the timescales are

similar for the M = 3-7 sample could indicate a limiting timescale for the tail

ends.

A peak was observed in the amplitudes of the α relaxation process for the

samples which was thought to suggest the merging of an underlying secondary

relaxation with the α relaxation. Acting on this assumption, ‘expected’ τβ pa-

rameters were calculated using the relationship between the activation energy,

EA, and Tg suggested by Kudlik [55]. It was found that the dielectric spectra for
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the M = 3 and M = 4 samples at low temperatures T < Tg show indications of

an excess-wing. The expected values of τβ for these samples correspond with the

frequency at which this wing is manifested, suggesting that it was a manifestation

of an underlying β process.

The expected values of τβ increase (at a fixed temperature) with increasing

chain length. This suggests that the α and β relaxations become less separated

with increasing molecular weight, which could explain the clear secondary relax-

ation peak observed for the M = 1 sample and provide another explanation for

the excess-wing observed for the M = 2 sample. In polystyrene, the observed

β relaxation has been attributed to characteristic motions of the benzene ring

[200–202]. We could imagine a similar scenario occurring in the alkylbenzene

series: as the length of the alkyl tail increases, it becomes more difficult for the

benzene ring to move and therefore the timescale for the β relaxation increases.
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Chapter 5

Polymer dynamics and the

influence of chain-length

In Chapters 6 and 7, results will be presented relating to two different series of

glass formers characterised by the polymerisation of styrene and α−methylstyrene,

respectively. In order to describe the physics and dynamics of these systems cor-

rectly, it is first necessary to introduce the typical nomenclature used for poly-

meric systems. This nomenclature will be introduced together with a discussion

on polymer dynamics and some key coarse-grained approaches used to describe

polymer behaviour. Following this, the variation of various properties (such as Tg

and various definitions of fragility) associated with the glass transition of poly-

mers with varying chain-length will be discussed.

5.1 What is a polymer?

The word polymer is constructed from the Greek words poly, meaning many, and

mer, meaning part [236]. The ‘parts’ of a polymer are repeating units termed

‘monomers’ and the process which covalently binds these monomers together

to create polymers is termed polymerisation. Molecules consisting of a ‘few’

monomer units bound together are termed ‘oligomers’.

Different forms of polymerisation can lead to variations in the steric order

of the resulting polymer. For example, in PS the benzene ring could be placed

either side of the backbone of the polymer. This variation in the steric order is
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termed the ‘tacticity’ of the polymer [237]. Polymers in which the sustitutents

attached to the backbone are all situated on the same side are called isotactic,

those with substituents alternating between the two sides are called syndiotactic

and polymers with no steric order are said to be atactic. The steric configuration

of polymers does not change after synthesis unless the covalent bonds of the

polymer are broken [18, 236].

The polymerisation process does not usually lead to monodisperse polymers

with a unique degree of polymerisation [237] and thus a polymeric sample will dis-

play a certain level of polydispersity characterised by a distribution of molecular

weights, p(M), where M is the weight of a single polymer chain. The nature of

p(M) can be obtained through size exclusion chromatography [236]. A polymeric

sample can be described by either the number, Mn, or weight, Mw, averages of

the distribution, p(M) [18, 236, 237]:

Mn =
∑
M

p(M)M (5.1a)

Mw =
1

Mn

∑
M

p(M)M2 (5.1b)

The width of the distribution of molecular weights can be described using the

so called polydispersity index: d = Mw/Mn. Chain type polymerisations, such

as anionic polymerisation, yield particularly narrow distributions and thus the

degree of polymerisation can be reasonably well defined [237].

5.2 The Coarse-Grained Polymer Chain

When discussing the dynamics of a simple series of molecular glass formers, such

as the alkylbenzene series which were presented in Chapter 4, the length-scale

variation across the series is relatively small. However, for polymeric chain length

series of the type demonstrated in Chapters 6 and 7, the relevant length-scales

range from those similar to the alkylbenzenes to those with a much higher molec-

ular weight. Generally, above a certain length scale, the dynamic and structural

properties of polymers can be discussed at an effectively lower resolution and
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Figure 5.1: Diagram showing the coarse graining of a polymer. Details of the
description of this worm-like chain are in the text.

thus the microscopic chemical nature (for example the bonds between constituent

atoms and the angles between these bonds) can be omitted [237]. This is a use-

ful approximation to make as such an analysis does not depend on the material

specifics of the polymer and therefore a more general description of the behaviour

of polymer chains can be achieved. The point at which the ‘length scale of inter-

est’ for the polymeric samples changes will be discussed in detail in the results

pertaining to those series.

Figure 5.1 depicts a polymer chain as a coarse-grained worm-like chain. The

variation of the local chain direction can be described by the unit vectors r(l)

(represented by the green arrows in Figure 5.1), where l is a curvilinear coordinate

running along the length of the chain [237]. Firstly, we can consider the smallest

length scale in such a coarse-graining of the polymer chain, namely the internal

chain flexibility. The bond length between carbon atoms, lb, in a hydrocarbon

based polymer remains fixed at all times to 0.154 nm with an angle of 70.53◦

between successive bonds [238]. Although the angles between bonds are fixed,

there is a certain freedom of rotation of the carbon atoms (and any side-chains

attached to them) termed the internal rotation of the polymer chain. This allows

the carbon atoms and any attached atoms to rotate about the chain axis between

positions with local energy minima. The reference position, to which the rotation

angle φ is defined, is termed the trans position, which is in the plane specified
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by the preceding three carbon atoms [238]. For simple symmetric polymers, two

energy minima exist for φ = ±120◦, and these are termed gauche positions.

Different conformations of the polymer defined by these rotational states are

termed rotational isomers. The energy difference between the trans and gauche

positions is related to the flexibility of the chain and the average length of a

sequence of trans or gauche carbon atoms is defined as the persistence length, lp.

This is related to the energy barrier between the rotational states, ∆E [238]:

lp = lbe
∆E
kBT (5.2)

We can also consider the so-called ‘orientational correlation function’, Kor

which describes the correlation between two different chain directions separated

by a distance, ∆l. This correlation function can be constructed as an ensemble

average of all possible chain conformations and their statistical weights [237]:

Kor(∆l) = 〈r(l)r(l + ∆l)〉 (5.3)

As the chain has a finite flexibility, Kor decays to 0 over large length scales.

One can also define the persistence length as the point at which the correlation

function has decayed to 1/e [18] or the integral width of Kor [237]. In this

definition of the persistence length is the length scale over which ‘memory’ of the

orientation of a bond does not exist for future bonds. This value of lp for a melt

of PS (Mw = 117000) was determined by Brûlet et. al. [239] to be 9.2Å.

To further coarse-grain the worm-like chain, which represents a polymer,

in order to describe the properties of the chain as a whole, the chain can be

split into Ns uniformly spaced sub-chains described by the sequence of vectors

(a1, a2, a3, . . . , aN−1, aN) (represented by the blue arrows in Figure 5.1) connected

by nodes (1, 2, 3, . . . , N−1, N) (represented by the red circles in Figure 5.1). The

length of the sub-chains must be larger than the persistence length, lp, such that

there are no orientational correlations between successive sub-chains. In such a

manner, the polymer chain can be thought of as a Gaussian random walk, with

a mean segment length or step size as [238]. The distance between nodes i and

166



5.2 The Coarse-Grained Polymer Chain

j, dij is defined as [237]:

dij =

j∑
k=i+1

ak (5.4)

The end-to-end distance, REE, or the distance between nodes 0 and N as

depicted in 5.1 can also be defined:

REE =
Ns∑
k=1

ak (5.5)

The distribution function of REE is Gaussian in nature and is isotropic, thus

only depending on the absolute magnitude of REE [237]. We can now relate the

mean squared end-to-end distance, 〈R2〉, to the mean segment length, as and the

number of segments, Ns. 〈R2〉 is a measured of the size of the ideal polymer chain

[18, 237, 238].

〈R2〉 = Nsa
2
s (5.6)

The choice of nodes and vectors a used to describe the polymer chain is

somewhat arbitrary, meaning that many different combinations of the positions

of the nodes and the mean segment length can be made. The only caveat to

the choice of Ns or as is that they must yield the same value of the root-mean-

squared end-to-end distance,
√
〈R2〉. The arbitrary nature of the choice of Ns

and as can be removed by imposing the second condition that the length of the

fully extended chain Rmax must be related to Ns and as in the following manner

[237]:

Rmax = Nsas (5.7)

This means that the ‘real’ chain agrees in both size (as implied by Equation

5.6) and contour length. We can now substitute as in both Equations 5.6 and

5.7 for the so-called Kuhn length, aK which is a unique value for the length of a

segment of the polymer chain. The persistence length characterises the ‘stiffness’

of the chain at a more local length scale whereas the Kuhn length characterises

the stiffness of the entire chain: stiffer chains have a higher value of aK [237].
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Another related quantity is the characteristic ratio, C∞ which was introduced by

Flory.

C∞ =
〈R2〉
Na2

b

(5.8)

Here, a2
b is the sum of the squares of the lengths of the backbone bonds

contained in one monomer unit and N is the degree of polymerisation. C∞

scales with the degree of polymerisation for lower values of N but tends to an

asymptotic value at large N . If the chain were made up of freely jointed backbone

bonds then C∞ would equal unity. However, this value becomes different for ‘real’

polymers due to fixed angles between successive bonds and hindered rotational

freedom [237]. The C∞ values for bulk atactic PS has been estimated to be 9.6

[240] through small angle neutron scattering (SANS) experiments. Through the

combination of Equations 5.7 and 5.8 we can obtain the Kuhn length in terms

of C∞. Values of aK have been determined to be 20Å for PS. However, it

has been observed in some instances that polymers with similar values of C∞

have a different value for the length of a Kuhn segment as determined from

probe molecule analysis for poly(dimethylsiloxane) and poly(isobutylene) [241].

Indeed, although the theoretical value for aK for PS has been estimated to be

20Å, corresponding to N = 8 to 10, experimental determinations of the length of

the Kuhn segment have yielded a value closer to 50Å, corresponding to N ≈ 50

monomers [242]. This discrepancy is thought to be due to the assumption that

the chain is fully extended inside a Kuhn segment, which is clearly not the case

for ‘real’ polymer chains.

5.3 Rouse Model

The coarse-graining of the shape of a polymer chain allows for a model description

of the dynamics of polymer chains without having to consider the intricacies of

their chemical structure. One such description of the general dynamic properties

of polymers on this low resolution scaling is the Rouse model [243], which is

particularly applicable to polymers short enough that entanglement effects can

be ignored. If two node positions, as depicted in Figure 5.1 are held in a fixed
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position, a tensile force arises due to the net moment transfer onto the nodes

[237]. If the distance, ∆r, between the nodes is large enough such that Gaussian

statistics of the chain can be assumed then this tensile force, f can be defined in

terms of the mean squared node-to-node distance, 〈∆r2〉:

f =
3kBT

{∆r2}
∆r = bR∆r (5.9)

This equation suggests that the connection between the nodes can be ap-

proximated as a spring, with spring-constant bR, as shown in Figure 5.2a. The

Gaussian random walk description of the polymer chain can thus be extended

under the assumption that the nodes are connected by springs. The polymer

chain also ‘feels’ a force due to the surrounding polymer chains in the melt. This

viscous force is related to the velocity of a node, uN [237]:

f = ζRuN (5.10)

Where ζR is the friction coefficient. Through these definitions of the forces

acting on the nodes, the equation of motion for a single node at position, rl can

be constructed:

ζR
drl
dt

= bR(rl+1 − rl) + bR(rl − 1− rl) (5.11)

The left hand side of Equation 5.11 relates to the viscous force acting on the

node and the right hand side is related to the elastic forces between adjacent

nodes [237]. The Rouse model only considers local interactions of the nodes and

therefore ignores non-local interactions such as excluded-volume or hydrodynamic

forces between ‘distant’ nodes but these interactions are expected to be effectively

screened in a polymer melt [244]. We thus have a set of differential equations re-

lating to the motion of each node describing the polymer chain. The motion of

each node in all spacial directions decouple and are equivalent. Through appro-

priate choices of boundary conditions for the motion of the nodes, the equations

of motion for all nodes can be solved yielding Ns independent solutions, termed

the ‘Rouse modes’ of the polymer chain. For the Rouse mode with the lowest
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Figure 5.2: Pictorial representations of the a) Rouse and b) reptation models.

order, the characteristic timescale τR is proportional to the square of the number

of nodes:

τR =
ζR
bR

(Ns − 1)2

π2
(5.12)

5.4 Reptation

Beyond a certain degree of polymerisation, the polymer chains in a melt can

become entangled. We can define the entanglement molecular weight, Me, as

molecular weight between entanglement points [245]. The interpenetration of the

polymer chains and the fact that these chains cannot pass through each other

means that the motion of an individual chain becomes constrained. It could be

said that the main restriction of the polymer chains occurs in the direction per-

pendicular to the backbone of the polymer [237], a so-called topological constraint

[238]. It was suggested by de Gennes [246] and Edwards [247] that the dynamics

of an entangled polymer chain could be described as contained within a ‘tube’

defined by adjacent polymer chains as shown in Figure 5.2b. As depicted earlier

(Figure 5.1), the polymer chain can be thought of as a number of nodes separated

by the Kuhn length, aK . We can further coarse-grain this approach by assuming

that a high molecular weight polymer can be described as a series of ‘blobs’, each

containing a number of Kuhn segments [248] which occur between entanglements.

The motion of the chain within a blob, described as a rapid local ‘wiggling’ [237],

can be described by the Rouse model. The average of this local wiggling gives

the mean positions of the monomers constituting the chain and thus the so-called
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‘primitive path’ of the polymer, which is the shortest end-to-end distance of the

entire chain. This is represented by the red line in Figure 5.2b.

There are two possibilities of motion of the blobs describing the polymer

chain within the tube. If there is a local fluctuation in the concentration then a

blob can diffuse into the local environment in order to restore the concentration

back to the mean value [238]. The other possibility is that the blob can move

along the tube described by the surrounding polymer chains. The movement of

the polymer along the tube through the movement of its constituent blobs is

known as reptation [246]. Reptation of the polymer, and thus translation of the

primitive path, is a form of curvilinear diffusion and can be derived from the

Einstein relation [237]:

D̂ =
kBT

ζt
(5.13)

Where D̂ is the curvilinear diffusion coefficient and ζt is the fiction coefficient

of the entire chain, formed as the sum of the friction coefficients of all nodes:

ζt = NsζR. The reptation of the chain leads to its continuous disentanglement

from the polymer chains describing the tube. The characteristic timescale, τd, for

disentanglement is the time needed for the chain to reptate over a length equal

to the length of its primitive path. This timescale is proportional to the number

of repeating units in the following manner [237]:

τd ∝ N3
s (5.14)

This equation also implies a power-law dependence of τd with the molecular

weight: τd ∝ Mν
w. The experimental value of the exponent ν has been found to

be between 2.9 and 3.6 [237, 249–251] and is therefore in good agreement with

Equation 5.14.
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5.5 Variations of the glass forming properties of

polymeric chain-length series

In Chapters 6 and 7, the results of measurements performed on two different

glass-forming series based on the polymerisation of styrene and α−methylstyrene

will be presented. Firstly, the variation of glass forming properties with increas-

ing molecular weight will be discussed in general. Note that this represents a

small sample of parameters which are dependent on chain length. More detailed

discussions will be given in parallel to the discussion of the data obtained for the

two chain-length series.

5.5.1 The glass transition temperature

There is a significant molecular weight dependence of the glass transition temper-

ature, Tg for polymers. The chain-ends of a polymer have a higher mobility than

any of the repeat units within the chain as they are only bound on one ‘side’. As

the degree of polymerisation increases, it follows that the density of these chain-

ends must decrease and the average mobility of the polymer chain must decrease

[252, 253]. If a free-volume is associated with the chain-ends then a polymers

with lower molecular weights will have a greater free-volume at a specific tem-

perature due to the higher density of chain-ends. Free-volume models such as

presented by Cohen and Turnbull [79] (see Chapter 1) suggest that the increase

of the structural relaxation time is related to the decrease of the free-volume in a

glass forming system. It follows that a decrease of the density of chain-ends would

then lead to an increase of Tg. One can also formulate a similar argument for

the increase of Tg based on the configurational entropy instead through models

such as the Gibbs-DiMarzio theory [254]. The first quantitative description of

the development of Tg as a function of Mw for polymeric samples was made by

Fox and Flory [255]:

Tg = T∞g −
A

Mw

(5.15)

In this empirically derived equation, A is a constant and T∞g refers to a satura-

tion glass transition temperature: above a certain molecular weight, Tg remains
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= 1800

Figure 5.3: Tg values obtained from several sources of data for PS from the lit-
erature [258–261]. The red dashed line indicates a fit of the Fox-Flory equation
(Equation 5.15). The black lines indicate fits to the data in the three distinct
molecular weight regions, marked by the vertical dashed grey lines. The defi-
nition of the molecular weights marking the transition points were taken from
Hintermeyer et. al. [258].

constant with further increasing molecular weight. Although this function de-

scribes the behaviour of Tg well for high molecular weight polymers, it fails to

describe the variation of Tg for oligomeric glass formers below a certain molec-

ular weight threshold [253]. Some extensions to Equation 5.15 have been made

[256, 257] in order to describe the observed behaviour of Tg over a greater molec-

ular weight range but these extensions are still based under the assumption that

the variation of Tg can be described by a single functional shape over the whole

range.

In contrast to this, several measurements of polymeric chain-length series have

yielded three distinct regions in the molecular weight dependence of Tg. Data from

a selection of these measurements for chain-length series of oligostyrenes [258–

261] are shown in Figure 5.3. It is clear from this figure that the glass transition

temperatures for these measurements seem to fall into three distinct molecular

weight regions and the full behaviour cannot be described with the traditionally

used Fox-Flory equation. In 1975, Cowie proposed that one could describe the
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variation of Tg as discontinuous [259]. Region I indicates that there is a linear

dependence of Tg with log10(Mw) for the short-chain oligomers of PS, similar

to the dependence seen in the alkylbenzene series. Region II indicates another

linear dependence with a slightly lower gradient and Region III indicates the

point at which Tg becomes saturated for further increases of Mw The boundaries

between the regions were taken from those described by Hintermeyer et. al.

[258]. The authors attribute the distinctions between the three different regions

to the changes in the dynamics of the polymer chain as it becomes longer (with

larger molecular weight). The transition point between Regions I and II, M I
w,

is thought to be equivalent to the size of a Rouse unit as described in Section

5.3. The molecular weight they attribute to this point is equivalent to around

16 monomer units and therefore this could be related to the Kuhn length of

PS, although definitions of the Kuhn length vary for polystyrene as explained

previously [242]. The authors also attribute the transition point between Regions

II and III, M II
w , as the entanglement molecular weight, Me, and thus this point

could represent the onset of reptation behaviour of the polymer chain. They

quantify this description of M II
w by finding good agreement between its value and

values of Me for PS obtained from the literature. However this conjecture was

countered by Agapov et al. [262] who demonstrated that although the Me for

PS and polydimethylsiloxane (PDMS) are relatively similar, the values for the

saturation glass transition temperature, T∞g differ by a factor of 2. Whether or

not M II
w is related to Me, it is still clear from Figure 5.3 that the molecular weight

dependence of Tg may not be completely described by a continuous function, such

as Equation 5.15, and that it may be better to describe the variation using the

discontinuous description presented by Cowie [259].

5.5.2 Dynamic fragility

We saw for the alkylbenzene series that several definitions of the fragility of these

glass formers show a dependence on the alkyl-tail length. Hintermeyer et. al. also

show similar dependencies of the fragility parameter m for PS, PDMS and PB.

Interestingly, rather than falling into three separate regions in the same manner as

the Tg values, the m parameter appears to increase monotonically with molecular
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weight until a molecular weight equivalent to M II
w is reached at which point m

becomes invariant with further increasing chain-length. In other measurements

of polystyrene by Santangelo et. al. [26] it was noticed that the response peak of

the α relaxation in the imaginary part of the shear modulus, G′′ was completely

rescalable for a chain-length series of PS varying from chains with a degree of

polymerisation of 6 to those consisting of ≈ 36000 monomer units. The KWW

stretching exponent, β, has been linked to the so-called coupling parameter, n,

in Ngai’s coupling model [62, 83] (see Chapter 1), where β = 1− n. It has been

shown that for many systems n is correlated to the dynamic fragility parameter,

m. The fact that the shape of the dispersion of a range of oligo(styrenes) was

largely invariant also suggests a point at which m is no longer affected by changing

the chain-length.

5.5.3 Thermodynamic fragility

In the alkylbenzene series we also observed a correlation between the variation of

dynamic fragility parameters, such as m and D, with definitions of the thermo-

dynamic fragility, quantified by the difference in the heat capacities in the liquid

and the glass at Tg, ∆Cp, the width of the characteristic step in Cp, ∆T , and the

excess entropy, Sx. However, for polymeric systems this correlation appears to

break down. As discussed, metrics of the dynamic fragility tend to increase with

increasing chain-length whereas thermodynamic metrics appear to follow the op-

posite trend or indeed no trend at all [122, 263]. This lack of correlation between

thermodynamic and dynamic definitions of fragility will be discussed further in

Chapter 6 by introducing the concept of vibrational anharmocity [264].

5.5.4 Bifurcation temperature of the α and β relaxations

The bifurcation temperature, Tαβ, relates to the decoupling of the α and β re-

laxation mechanisms. It has been observed that Tαβ varies systematically with

increasing chain length for systems based on monomethyl ethers, dimethyl ethers,

glycols, polyalchohols and in certain polymeric gel systems [18, 166, 193, 265].

This behaviour was also observed for the alkylbenzene series suggesting a gener-

ality of the behaviour for systems which show systematic variations of size and
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structure and thus makes for an interesting avenue of research. The bifurcation

scenario as a function of chain-length will be fully discussed in Chapters 6 and 7

in relation to the samples studied in this research.

5.6 Summary

In this chapter, the typical nomenclature used to describe the size and dynamics

of polymers has been introduced. Also a brief introduction was given into the

variation of parameters associated with the glass transition with variation of

chain-length. We now have the required tools in order to describe the results

presented in Chapters 6 and 7.
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Chapter 6

Results II: An oligomeric series

of styrene

6.1 Introduction

In Chapter 4 results on the dynamics and glass-formation of a series of alkyl-

benzenes were presented. This series featured samples with an increase of the

molecular weight characterised by the systematic addition of methylene groups

to a carbon tail connected to a benzene ring. In this chapter in contrast, a chain-

lengths series resulting from the polymerisation of styrene will be considered.

Atactic Polystyrene (PS) is particularly applicable in a study of this type

as it does not crystallise readily upon cooling and is therefore ideal for the

study of glass forming properties. PS has been widely studied in the litera-

ture [204, 258, 266–275](some results are discussed in Chapter 6) and thus allows

for rigorous comparisons. Interesting variations of Tg with increasing molecular

weight have also been reported for polystyrene [258–261] which imply that the

Fox-Flory equation, commonly used to describe the molecular weight dependence

of Tg for polymers, may not hold for all polymeric glass forming systems. Further-

more, the moiety of PS is relatively simple, consisting of a carbon backbone with a

benzene ring bonded to alternate carbon atoms in the backbone chain. Although

several relaxation mechanisms have been observed for PS [204, 258, 266–275]

there is still no consensus regarding exactly what they are and not even what

relaxations do exist. Moreover, there is a lack of systematic measurements of the
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Degree of
Mw g/mol PDI

Measurement
Manufacturer

Polymerisation (N) Techniques
1 162 1 BDS and DSC PSS
2 266 1 BDS and DSC PSS
3 370 1 BDS and DSC PSS
4 545 1.16 BDS and DSC PSS
5 580 (Mp) 1.15 DSC PL
6 725 1.09 BDS and DSC PSS
16 1700 (Mp) 1.06 DSC PL
18 1920 1.08 BDS and DSC PSS
28 2960 (Mp) 1.04 DSC PL

1160 120586 1.04 BDS and DSC PS

Table 6.1: Table showing relevant information for the samples used in this
series. This includes the degree of polymerisation, N ; the weight averaged
molecular weight, Mw (in some cases, only the ‘peak’ molecular weight Mp was
quoted by the manufacturer as indicated in the table); the polydispersity index,
PDI = Mw/Mn; the experimental techniques used in their measurement (either
Broadband Dielectric Spectroscopy (BDS) or Differential Scanning Calorimetry
(DSC)) and the manufacturer (PSS: Polymer Standards Service, PL: Polymer
Laboratories, PS: Polymer Source) from which they were obtained.

observed secondary relaxation mechanisms for shorter chain oligomeric styrenes,

thus prompting the need for further study. To reach a better understanding of the

relaxation dynamics for polystyrene could thus help explain a wide variety of pre-

viously observed but not well understood phenomena. Examples of such include

the dramatic change of glass-transition behaviour observed for thin polystyrene

films either supported on a surface or free-standing [276–279].

The specific parameters for the samples used, including their degree of poly-

merisation, molecular weight and polydispersity index, are given in Table 6.1

together with the manufacturer of each sample. The samples will be referred

to by their degree of polymerisation N for the remainder of this chapter. Also

shown in table 6.1 are the techniques used for measurement. The majority of the

samples were measured using both broadband dielectric spectroscopy (BDS) and

differential scanning calorimetry (DSC). However, due to limited sample amounts,

the N = 5, 16 and 28 samples were only measured using DSC.

The samples, obtained from Polymer Standards Service and Polymer Source,
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Figure 6.1: Diagram showing the anionic polymerisation of styrene including
different representations of the tacticity of polystyrene.

used in this work were prepared using so-called anionic polymerisation. An ex-

ample of this polymerisation of styrene is shown in Figure 6.1. Anionic polymeri-

sation is an example of chain-growth polymerisation. The reaction is initiated

by degradation of an initiator, in this case sec-butyllithium. Lithium free rad-

icals are then created which break the unsaturated carbon-carbon bond of the

styrene and the radical centre joins the end of the chain. Propagation of the

chain, through consumption of monomeric species in the solution, then occurs.

This form of polymerisation is a form of ‘living’ polymerisation which means that

the propagation of the chains increases until all monomeric units have been con-

sumed (whereas other forms of polymerisation require chemical termination of

the process) [236]. Different forms of polymerisation can lead to variations in

the steric order of the resulting polymer. For example, in PS the benzene ring

could be placed in different positions as indicated in Figure 6.1. This variation

in the steric order is termed the ‘tacticity’ of the polymer [237]. In this series of

samples, the polymers are atactic and have no prefered steric order. As a result

of this lack of order, these polymers cannot form regular crystalline structures

and form amorphous glassy structures upon cooling from the melt.
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Figure 6.2: Diagram showing the position of the initiator group and the repeat
monomer unit for the samples in the styrene series.

As a result of the polymerisation process, the samples have an initiator group

attached to the polymer chain as shown in Figure 6.2. For the N = 2, 3, 4, 6, 18

and 1160 samples the initiator group is a sec-butyl group with a molecular weight

of 58 g/mol and the degree of polymerisation for these samples is determined by

substituting this value from the quoted values of Mw and dividing by the molec-

ular weight of styrene, 104 g/mol. The N = 1 sample has an attached n-butyl

group in order to saturate the double bond of the styrene monomer. This sample

is therefore chemically identical to hexylbenzene, the M = 6 sample from the

alkylbenzene series. We found that for the N = 1 sample from Polymer Source,

there were significant repeatability issues between different batches in the dielec-

tric measurements, which no other samples showed. This was possibly due to

its degree of purity, to contamination or to water-uptake by the sample. Further

measurements are required in order to determine the reason for this. Instead the

M = 6 sample from the alkylbenzene series, which should be chemically identical

and showed excellent repeatability, was used instead and will hereby be referred

to as the N = 1 sample. Information regarding the polymerisation process could

not be obtained for the samples obtained from Polymer Laboratories (N = 5,

16 and 28) shown in Table 6.1. It was thus assumed that these samples have

similar attached initiator groups and the degree of polymerisation was calculated

accordingly.
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6.2 Dielectric spectroscopy: α relaxation

Dielectric measurements were performed at both the University of Leeds and

Chalmers Institute of Technology, Gothenburg using the slightly different dielec-

tric set-ups explained in Chapter 2. The lower molecular weight samples in this

series had reasonably low viscosities at room temperature and were thus measured

using the dielectric liquid cell. In this set-up, the sample was contained between

two 20mm electodes kept at a fixed separation by silicon spacers of 100µm diam-

eter. On the other hand, the N = 6, 18 and 1160 samples were measured using

the two-electrode method in which the samples were sandwiched between a 20mm

electrode and a 40mm electrode kept at a fixed separation of 50µm. In order to

remove charged species from the N = 6, 18 and 1160 samples, and thus suppress

the ionic conductivity contribution to the imaginary part of the permittivity, ε′′,

methanol precipitation was performed. The samples were then redissolved in

toluene and solution cast to the 40mm electrode. The samples were dried for

24 hours prior to measurement at 473 K. The sample preparation methods are

described in detail in Chapter 2. After cleaning and solution casting, the samples

were heated on a hot-plate to lower their viscosity so that silicon spacers could

be added. The top 20mm electrode was then placed on top of the sample/spacers

and pressure was applied to ensure an even sample volume. For the N = 1160

sample, silicon spacers could not be added due to the high viscosity of the sample

even at elevated temperatures. This led to an uncertainty in the absolute sample

thickness and thus that the amplitude of the α relaxation loss peak, ε′′p, and the

dielectric strength ∆ε could not be determined accurately as these parameters

are dependent on the sample thickness. This sample does not ‘flow’ readily at

the temperatures measured and therefore the change in thickness of the sample

was assumed to be slight. It was also assumed that the majority of the change

in the thickness would have occurred at the highest measured temperatures and

that the sample would have had a relatively consistent thickness at lower temper-

atures. For the purposes of comparison with the other samples in this series, the

spectra for the bulk polystyrene were rescaled in ε′′ such that the amplitude of

the α loss peaks were comparable to dielectric measurements of a similar sample

(N ≈ 1000) in the literature [258].
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In order to obtain dielectric spectra in the α relaxation temperature regime,

the N = 2 to 1160 samples were heated (or cooled, depending on whether the

expected Tg was above or below room temperature) to a temperature such that the

α relaxation loss peak in ε′′ was just visible in the high frequency range (e.g. when

the peak frequency of the loss peak was 106Hz). The samples were then cooled

in steps of 2K to a temperature below the expected glass transition temperature

and spectra were obtained at each of these steps. On the other hand, for the

N = 1 sample, measurements were conducted by first cooling the sample at the

maximum cooling rate (∼ 20K/min) to a temperature just below the expected

Tg. This was done to suppress crystallisation in the sample. Measurements were

then obtained on heating the sample in steps of 2K. Furthermore, the frequency

range was also restricted in order to reduced the measurement duration at each

temperature and thus further hinder crystallisation.

6.2.1 Dielectric spectra

The dielectric loss ε′′ spectra obtained for the samples in the styrene series (N = 1,

2, 3, 4, 6, 18 and 1160) are shown in Figures 6.3a-g. Firstly, let us consider the

spectra for the N = 1 sample shown in Figure 6.3a. There are three resolvable

contributions, which are also observed for the N = 2 - 18 samples. The most

prominent of these is the loss peak relating to the α relaxation as marked in the

figure. A high frequency power-law contribution is also visible, designated HF in

the figure. Finally there is an intermediate contribution between the α loss peak

and the high frequency contribution. This contribution was also observed for the

alkylbenzene series (Chapter 4) and was likely due to an additional secondary

relaxation, and the evidence for this assignment will be outlined in the following

throughout the chapter. Thus, this secondary relaxation has been designated β in

the figure. The N = 1160 spectra do not exhibit resolvable intermediate or high

frequency contributions. However, a significant DC-conductivity contribution was

observed at low frequencies, manifested as a power-law flank. The lines through

the data in Figures 6.3a-h represent fits which were made by assuming an additive

combination of functional descriptions for the observed features. This will be

explained in detail in Section 6.2.3. The loss peaks of the N = 1 sample show a
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Figure 6.3: Dielectric spectra for a) N = 1 b) N = 2, c) N = 3, d) N = 4, e) N
= 6, f) N = 18 and g) N = 1160 samples in the α relaxation regime. The lines
through the data denote fits which will be described in Section 6.2.3 h) Fixed
frequency spectra for the N = 4 sample.
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decrease in the peak amplitude at high temperatures, which we interprete as due

to crystallization. In support of this, Hintermeyer et. al. observed crystallisation

of the same sample in a similar temperature regime in their measurements [258].

The spectra have been cut in frequency for samples N = 2, 3, 4, 6, 18(Figures

6.3b-h) in order to clarify the behaviour of the α loss peak. Similarly, the N =

1160 spectra have been cut in order to remove the conductivity flank at low

frequencies.

The loss peaks all follow the expected behaviour with decreasing temperature:

a decrease in the peak frequency indicating a slowing down of the structural relax-

ation timescale, τα. In the temperature/frequency range shown for these samples,

the α relaxation loss peaks appear to have a relatively straightforward functional

shape and no clear signature of an excess-wing is observed. The spectra presented

in Figures 6.3a-g were thus fit without the assumption of an excess-wing (see Sec-

tion 6.2.3) but the lowest temperature data for some of the samples (particularly

the higher molecular weight ones) do indicate a slight change in the exponent

of the high frequency flank of the α relaxation. This will be fully discussed in

Section 6.4, where we demonstrate that we do indeed find evidence supporting

the existence of an excess wing and thus implying the existence of a ‘hidden’

secondary contribution. The observation of an excess wing in the dielectric spec-

tra is consistent with data for the oligo-styrenes presented by Hintermeyer et.

al. [258] also appear to demonstrate a change in the power law exponent of the

high frequency flank of the α relaxation, suggesting excess-wing like behaviour.

However, we do not find it productive to introduce more fitting parameters to

account for this weak excess wing since we can describe the data well in the

presented dynamic range without introducing this extra complexity. In the inter-

pretation of the analysis we will, however, keep in mind the likely existence of an

underyling secondary relaxation and we will later investigate this further in the

low-temperature range, as described in Section 6.2.4 and shown in Figure 6.30.

In order to gain a qualitative measure of the relaxation contributions within

the samples, ε′′ at a fixed frequency of 4.2×103Hz was analysed as a function

of temperature. An example of this analysis is shown in Figure 6.3h for the

N = 4 sample. Two relaxation processes are clearly defined in this description

of ε′′ which have been attributed to the structural α relaxation and a secondary
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γ relaxation. In between the α and γ relaxations, there is also an indication of

a possible additional secondary contribution (β relaxation) and we will see later

that this can be confirmed in a detailed investigation. Given these observations,

we thus follow the standard nomenclature and name the relaxation based on

the order in which the appear, as α, β and γ. As discussed further below, the

similarities in timescale and activation energy of the observed γ relaxation and the

relaxation obtained from mechanical spectroscopy on PS and normally denoted

γ [204] (see Section 6.3.4) further supports this assignment.

6.2.2 Rescaled spectra

The functional shapes of the α loss peaks were compared by rescaling the dielectric

spectra. Spectra rescaled by the peak frequency, fp as shown in Figure 6.4a and

by both fp and the amplitude, ε′′p, as shown in Figure 6.4b. The dashed grey line

indicates the spectral fit of the bulk sample with the conductivity contribution

removed.

It is clear from Figure 6.4a) that the amplitudes of the α loss peaks for the

series decrease systematically with increasing degree of polymerisation for the

N = 1, 2, 3, 4, 6 and 18 samples. The amplitude of the loss peak for the N =

1160 sample occurs between those of the N = 6 and 18 samples. The spectral

shape of the loss peak for the N = 4 appears to be broader than those of the other

samples in the series. From Figure 6.4b it could be said that the breadth of the

α loss peak increases with increasing chain-length for the N = 1-4 samples. The

breadth then decreases and remains fixed for the N = 6, 18 and 1160 samples.

The very similar nature of the α relaxation peak for higher chain-length PS

(N ≈ 6 to ≈ 36000) was also observed by Santangelo et. al. in the imaginary

part of the shear modulus, G′′, through rheological experiments [26] and also in

ε′′ through dielectric measurements [269].

In a study of an oligomeric chain series of propylene glycol based dimethyl

ethers in research published by Mattsson et. al. [69] it was observed that the

spectra for the highest molecular weight sample yielded an α relaxation loss peak

and a clearly separated β loss peak. The timescales of the α and β relaxations

however approached each other as the chain-length was decreased. For the lowest
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Figure 6.4: Dielectric spectra for the styrene series with a peak frequency, fp, of
around 100Hz rescaled by a) f/fp and b) both f/fp and ε′′p.

molecular weight samples, this has the effect that the β loss peak is no longer

discernible as a separate process, and an excess wing is observed on the high

frequency flank of the α loss peak. In analogy to these results, the broadening

shown in Figure 6.4 could be indicative of the increasingly marked appearance of

a secondary relaxation process for the higher chain-length samples. This will be

discussed further in Section 6.4.

6.2.3 Fitting procedure

The dielectric spectra obtained in the α relaxation temperature regime for this

series contain three clear features (as shown for the N = 1 sample shown in

Figure 6.3a: an asymmetric loss peak relating to the α relaxation, an intermediate

contribution corresponding to a secondary γ relaxation and a high frequency

contribution manifested as a power law contribution. The fitting procedure for

this series was similar to that of the alkylbenzene series (Chapter 4). More details

about the fitted functions can be found in Chapters 2 and 4. The α relaxation

loss peaks were described in two separate fits using the Rikard Bergman (RB)

[104] and Havriliak-Negami (HN) [110] functions.

The intermediate contributions to the spectra were fitted using the Cole-Cole

(CC) [176] expression which is often used to describe secondary relaxations in

dielectric spectra [33, 61, 67, 94, 96, 116, 117]. The CC expression is obtained by
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setting the β parameter to 1 in the HN expression. The high frequency contribu-

tions were fit with a power law flank of the form ε′′ = Aωk. The full spectra were

described using an additive combination of these functions. In some cases (most

notably in the N = 1160 sample) it was also necessary to include a low frequency

power law flank due to the contribution of ionic conductivity. Conductivity of

charged species leads to a linear increase of ε′′ with decreasing frequency which

can be describe using the following relation [94]:

εcond(ω) = −i σ0

ε0ω
(6.1)

Where σ0 is the ohmic or DC conductivity of the material. This relation

implies that the exponent of the conductivity power law flank in ε′′ should be 1.

However, the observed low-frequency flank was best described using an exponent

less than 1 in most cases, which has previously been observed for similar samples

[258] and the behaviour had to be generalised. In order to fit the data, an

exponent parameter was thus included, k′ such that ε′′cond ∝ ωk
′
. In the following

sections, detailed analysis of the fitting parameters will be presented.

6.2.4 Fit parameters

The following sections will detail the development of the fitting parameters from

the two functional descriptions of the α loss peak constructed using the RB and

HN functions.

Bluntness of the Loss Peak

Firstly, the parametrisation of the bluntness of the α loss peak in ε′′ will be

addressed. The bluntness is characterised by the C parameter in the RB function.

The C parameters for the styrene series are shown in Figure 6.5a. It was observed

that this parameter did not have a significant temperature dependence and that

the spectra for each sample could be fully described with a fixed value of C

across the measured temperature range. Thus, each of the empirical response

functions (RB or HN) used to describe the α relaxation had the same number of

free parameters.
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N = 1
N = 2
N = 3
N = 4
N = 6
N = 18
N = 1160

Figure 6.5: Bluntness, C, parameters obtained from fits of the RB function to
the dielectric spectra plotted against a) T and b) T/Tg.

The N = 1, 2, 4 and 6 samples in this series show a systematic increase of

the C parameter with increasing degree of polymerisation as shown clearly in the

Tg rescaling of the parameters shown in Figure 6.5b and indicated by the dashed

guide to the eye in Figure 6.5a. However, the C parameter for the N = 3 sample

does not follow this trend. Also, the trend does not apply to the N = 18 and

1160 samples. The spectra for these samples could be fully described by setting

C = 0.

A systematic variation of the C parameter has also been observed for oligomeric

series of di-methyl ethers and glycols [18] although the physical explanation for

this trend could not be determined. It was suggested that the origin might at least

for higher molecular weights be related to an increasing breadth of the molecular

weight distribution.

The HN function does not contain a parameter relating to the bluntness of the

peak. Thus, as discussed in the following sections, particularly for the samples

where C is non-zero, some differences are observed both for the low and high

frequency exponents between the results obtained from the HN and RB functions,

respectively.
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Low frequency flank

In this section the parameters that describe the exponent of the low-frequency

power-law flank of the α relaxation loss peak will be discussed. Many of the func-

tional descriptions of the α loss peak including the CD function [109], the GGG

distribution [98], the KWW function and the circuit model [168] are all based on

the assumption that the low frequency flank of the α relaxation loss peak should

have an ω1 dependence. It is clear, in a qualitative sense from Figure 6.4, that

this behaviour cannot be universal for all glass forming systems as the gradient

of the low frequency flank is not scalable for the styrene series and appears to

decrease with increasing degree of polymerisation. This observation is also veri-

fied quantitatively by the variation of the a parameter, used to parametrise the

gradient of the low frequency flank in the RB function as shown in Figure 6.6a).

The behaviour of the low frequency flank is clearly different from the behaviour

seen in the alkylbenzene series, where the a parameter could be set to 1 for all

samples.

N = 1
N = 2
N = 3
N = 4
N = 6
N = 18
N = 1160

Figure 6.6: Low frequency power-law exponents, a, obtained from fits of the RB
function to the dielectric spectra plotted against a) T and b) T/Tg.

The a parameters for the lowest molecular weight samples (N = 1, 2, and 3)

show an increase with increasing temperature until they reach a value of 1. The

samples with a higher degree of polymerisation show a similar increase of the

a parameter with increasing temperature but the gradient of the low frequency

flank remains at a value significantly less than 1 at even the highest measured
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N = 1
N = 2
N = 3
N = 4
N = 6
N = 18
N = 1160

Figure 6.7: Low frequency power-law exponents, α, parameters obtained from
fits of the HN function to the dielectric spectra plotted against a) T and b) T/Tg.

temperatures. A rescaling of the a parameters by Tg is shown in Figure 6.6b. This

figure shows that the variation of the exponent of the low frequency power law

flank has a similar temperature dependence throughout the series. The absolute

values of the a parameter are similar for the lowest chain length samples (N = 1

to 3). The parameters decrease with increasing chain-length for the other samples

in the series with the exception of the N = 4 sample which requires a lower value

of this parameter in order to fully describe the loss peak.

The analogous parameter to a in the HN function is the α parameter which

corresponds to the exponent of the low frequency power-law flank of the loss

peak in ε′′. These parameters are shown in Figure 6.7a). The values for this

parameter show a similar trend to the a parameter, but for the N = 2, 3, 4 and 6

samples, α < a. The reason for this is likely due to the fact that the HN function

does not contain a parameter to describe the bluntness of the peak and thus the

bluntness has to be approximated using appropriate combinations of the α and β

parameters. Indeed, the parameters describing the bluntness in the RB function,

C, for the N = 2, 3, 4 and 6 samples were non-zero indicating a greater bluntness

for these samples. The α parameters rescaled by Tg are shown in Figure 6.7b)

and show similar temperature dependence to the corresponding a parameters.

A similar broadening of the low-frequency power law flank of the α loss peak in

ε′′ has been observed for polyisoprene (PI) and polyisobutylene (PIB) in dielectric

measurements by Paluch et. al. [280]. Paluch et. al. state that the reduction of
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the exponent of the low frequency power law of the α loss peak for PI and PIB was

attributed to the manifestation of so called sub-Rouse modes [281]; relaxations

which occur at a length scale less than that of the Kuhn length but consisting

of several monomeric units. These sub-Rouse modes have also been observed in

mechanical measurements and photo-correlation spectroscopy of PIB [282, 283].

Importantly, the dielectric spectra for both PI and PIB also show a so called

normal-mode relaxation process manifested as a loss peak which occurs at lower

frequencies than the α relaxation loss peak. This normal-mode peak is attributed

to the Rouse modes that relax the chain on length scales between the size of a

Rouse unit or the Kuhn length [281] and the length of the full chain; it is thus due

to fluctuations of the end-to-end distance of the polymer chain [96]. The reason

that this normal-mode peak is visible in the dielectric spectra for polymers such

as PI and PIB is that they have a component of the dipole moment parallel to the

chain direction [280]. This leads to an effective dipole moment along the backbone

chain of the polymer. This means that fluctuations of the end-to-end distance are

resolvable in the dielectric loss. However, polystyrene does not have a component

of the dipole moment in the direction of the backbone chain and so the Rouse

modes can not be resolved in ε′′. Also, the authors also show dielectric spectra for

both oligomeric (N ≈ 5) and polymeric (N ≈ 2000) PS but these samples both

show a low frequency power law exponent of∼1 for the α loss peak. This exponent

is also consistent with dielectric measurements conducted by Matsumiya et. al.

on polymeric and oligomeric PS [106]. Thus, it seems unlikely that the decrease in

the a and α parameters observed for this series is due to the manifestation of sub-

Rouse modes. Another possible explanation for the decrease in the exponent of

the low frequency flank power laws for the higher chain-length samples (N = 4,6,

18 and bulk) is that these samples show a degree of polydispersity. Indeed, the

N = 4 sample had the highest polydispersity of all the samples and also has

the lowest value of the a and α parameters. However the PS samples studied by

Paluch et. al. also have a comparable degree of polydispersity and yet show α

loss peaks with a low frequency power law exponent of 1. Therefore, it is not

clear why the a and α parameters decrease for longer chain lengths. However,

we note that the behaviour might be related to our observation of a non-ideal

conductivity contribution which had to be effectively accounted for by a use of a
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powerlaw expression with a generalised powerlaw exponent and Hintermeyer et.

al. also observe significant low frequency contributions for a range of oligomeric

styrenes from the same manufacturer as those measured here.

High frequency flank

Figure 6.8: High frequency power-law exponent, b, parameters obtained from fits
of the RB function to the dielectric spectra plotted against a) T and b) T/Tg.

In this section, the development of the high frequency flank with increasing

chain-length will be addressed. The b parameter values, which describe the power

law exponent of the high frequency flank of the α loss peak the RB function,

are shown in Figure 6.8 a). Although these parameters show a slight increase

with increasing temperature, this trend is less pronounced than it was for the

alkylbenzene series. In some cases, for example the N = 3 and 18 samples,

the trend is so slight that one could be tempted to say that the b parameter is

essentially invariant with temperature for these samples. Another key feature of

the variation of the b parameters is shown clearly in the Tg rescaling of Figure

6.8b). If we were to take the value of b at a specific value of T/Tg (a certain

relaxation time) for each sample we observe a relatively systematic decrease of the

parameter with increasing degree of polymerisation. This is another indication

that the overall breadth of the loss peak increases with increasing molecular

weight.
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Figure 6.9: High frequency power-law exponent, β, parameters obtained from fits
of the HN function to the dielectric spectra plotted against a) T and b) T/Tg.

The corresponding parameter for the exponent of the high frequency flank in

the HN equation can be obtained by multiplying the anti-symmetric and sym-

metric stretching parameters: αβ. These parameters are shown in Figure 6.9a).

In general, the overall trend of the αβ parameters is very similar to that of the

corresponding b parameters but there is a slight difference in the temperature

dependence of αβ for the N = 2, 3, 4 and 6 samples. In the HN function, the α

and β parameters are correlated. The difference in the temperature dependence is

therefore an indication of a compensation due to the bluntness. The Tg rescaled

αβ parameters are shown in Figure 6.9b) and demonstrate the same decrease

with increasing chain length as observed for the b parameter and highlight the

differences between the two descriptions of the high frequency flank.

The stretching exponent in the KWW function, describing the α relaxation

phenomena in the time-domain (see Chapter 2) has been linked to the dynamic

fragility of glass formers via the coupling model [62, 83]. It has also be shown

that the breadth of the α relaxation loss peak in the frequency domain is related

to the fragility of polymeric glass formers, whereby a broader dispersion implies

a higher fragility [11, 26, 190]. A broader dispersion will have a lower value of the

exponent of the high frequency power-law flank. Therefore based on the observed

trends in the b and αβ parameters with increasing chain length, the implication

is that fragility increases with chain length. We do indeed find some evidence for

such a trend in the dynamic fragility parameter, m, in Section 6.2.7. This result
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is also in good correspondence with fragilities determined for chain length series

of PS in the literature, in which a similar increase of the dynamic fragility with

increasing molecular weight was observed [26, 258]. However, the opposite trend

is observed for estimations of the thermodynamic fragility as will be addressed in

Sections 6.5.2 and 6.5.3.

If we make the assumption that the departure from Debye-like relaxational

behaviour in glass forming systems is a consequence of dynamic heterogeneity

[44, 284], then the decrease in the b and αβ parameters further implies that the

degree of dynamic heterogeneity might increase with increasing chain length. Dy-

namic heterogeneity in polymers can be attributed to the ability of some sections

of the polymer chain being more able to explore different structural conforma-

tions than other parts of the chain [285]. Furthermore, Ngai suggests a correlation

between the stretching parameter and cooperative motions involved in the struc-

tural relaxation [62, 83]. The general decrease in the b and αβ parameters for

the lower molecular weight samples could imply that the degree of cooperativity

increases as a function of chain-length. Given the similar absolute values of these

parameters for the longer chain-length samples, this also suggests that above a

certain chain-length, the degree of cooperativity is similar.

Cavaille et. al. note through mechanical experiments that time-temperature

superposition does not hold for polystyrene [270]. On the other hand, TTS has

been assumed for a number of polymeric systems in the past [170–173]. The

temperature dependence of the b and αβ parameters (and also the a and α pa-

rameters) for this series is, however, relatively small near the glass transition,

most notably the N = 3 and N = 18 samples and for these samples at least TTS

holds reasonably well.

Dielectric strength

We will now consider the dielectric strength, ∆ε. Firstly, values of ∆ε were de-

termined by numerical integration of the fits of the RB function to the dielectric

spectra. This integral is given in Chapter 4. The results of this numerical inte-

gration are shown in Figure 6.10a. The Onsager equation (introduced in Chapter

2) predicts a 1/T dependence of ∆ε given that the dipole density is temperature
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N = 1
N = 2
N = 3
N = 4
N = 6
N = 18
N = 1160

Figure 6.10: ∆ε parameters obtained through numerical integration of the fits
of the RB function to the dielectric spectra plotted against a) T and b) T/Tg.
The blue and black dashed lines in panel a) are examples of exponential and 1/T
behaviour respectively.

independent, which is of course not realistic. However, as a rough check on the

functional shape of the temperature dependence for the data sets we include a

simple 1/T dependence as shown by the black dashed line in Figure 6.10a. We

find that a 1/T behaviour does not describe the composite data set over the full

temperature range, but it is clear that a 1/T dependence might reasonably well

describe individual data sets. In contrast an exponential dependence gives a bet-

ter description for the data over the full temperature range, as shown in the blue

dashed line. For the N = 1 sample (Figure 6.3a) we observe that the α loss peak

decreases strongly in amplitude at higher temperatures, which is an indication

of crystallisation. The overall behaviour demonstrates that ∆ε decreases with

increasing chain length. This trend is further highlighted in the Tg rescaled plot

shown in Figure 6.10b. The trend is most pronounced for the lower chain length

samples in the series. The higher chain length samples on the other hand appear

to have similar values of ∆ε. This is consistent with previous measurements of PS

which indicate an almost identical shape (i.e. peak area) of the α loss for samples

ranging from N ≈ 6 to 36000 in mechanical [26] and dielectric measurements

[269].

Values of ∆ε were also obtained from fits of the HN function to the α loss

peaks. These parameters are shown in Figures 6.11a and b. The values are
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N = 1
N = 2
N = 3
N = 4
N = 6
N = 18
N = 1160

Figure 6.11: Dielectric strength, ∆ε, parameters obtained from fits of the HN
equation to the dielectric spectra plotted against a) T and b) T/Tg. The blue
and black dashed lines in panel a) are examples of exponential and 1/T behaviour
respectively.

very similar to those obtained through numerical integration of the fits of the RB

function suggesting that both functions provide a similar description of the overall

shape of the α loss peaks. Again, a simple 1/T and exponential dependence,

respectively, are shown in Figure 6.11a in order to highlight the decrease of ∆ε

with increasing temperature.

In order to further analyse the temperature dependence of the ∆ε values,

the Kirkwood-Frölich generalisation of the Onsager equation was parametrised

for the N = 1 sample in a similar manner to the analysis shown in Chapter

4 for the M = 2 sample. The equation is restated here to aid the following

discussion[94, 96, 100–103]:

∆ε =
εs(ε∞ + 2)2

(2εs + ε∞)

n

9kBTε0

gKµ
2. (6.2)

Where εs and ε∞ are the limits of ∆ε at low and high frequencies respectively,

ε0 is the permittivity of free space, µ is the dipole moment and n, is the number

density of dipoles within a material, where n = ρNA/Mw. The correlation factor,

gK , introduced by Kirkwood and Frölich [102, 103] is a measure of the alignment

of the dipoles due to orientational correlations between molecules [94]. Values

of gK < 1 indicate that the dipoles have anti-parallel alignment and parallel

alignment is indicated by values of gK > 1.
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It should be noted that accurate calculations of ∆ε using Equation 6.2 are

difficult for polymer melts, since it is not generally clear how to model the corre-

lations between a dipole in a repeat unit and those in neighbouring repeat units

in the same chain or in other nearby chains [96, 286]. Successful calculations have

thus only been obtained for isolated polymer chains via statistical mechanics and

the rotational isomeric state model [96, 287]. Such calculations are beyond the

scope of this thesis, however a test of Equation 6.2 was made for the N = 1

sample in the following manner:

1. In order to estimate the number density of dipoles, n, it was assumed that

the temperature dependence of the density of the N = 1 sample would be

the same as that of polystyrene. The density ρ in the measured temperature

range was determined using an empirical expression given by Höcker et. al.

[288].

2. The dipole moment of the styrene monomer unit was taken to be 0.6 D from

measurements of the dielectric constant of atactic polystyrene by Krigbaum

et. al. [289].

3. Values for εs and ε∞, the limits of the dielectric permittivity at low and high

frequencies respectively, were obtained from the real part of the dielectric

permittivity, ε′ (a figure depicting how these values can be obtained from

ε′ has been shown in Chapter 2).

4. The correlation factor, gK , was varied such that the resulting ∆ε values fell

into the same region as those obtained through integration of the fits of the

RB function to the dielectric spectra.

Figure 6.12a shows the result of this analysis with the dashed black line indi-

cating the expected behaviour of ∆ε calculated using Equation 6.2. In order to

scale these values, a value of gK = 0.38 was used. This implies anti-parallel align-

ment of the dipoles within the sample. It is clear from this figure that the values

obtained through numerical integration have a stronger temperature dependence

than those predicted by Equation 6.2. However, the predicted values were cal-

culated under the assumption that the density dependence of the N = 1 sample
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Figure 6.12: a) ∆ε parameters for the N = 1 sample obtained through integration
of the fits of the RB function to the dielectric spectra. The dashed black line
indicates an example of the expected Onsager behaviour for ∆ε. b) ∆ε values for
the series plotted on a log-scaled y-axis. The dashed black line indicates a simple
1/T behaviour and the dashed blue line indicates a guide to the eye, hinting at
an exponential dependence of ∆ε with temperature.

should be the same as that obtained for polystyrene and this is not necessarily

the case. Furthermore, it was assumed that gK is independent of temperature.

To empirically investigate the development of ∆ε across the molecular weight

range of this series, a plot of log10(∆ε) against T was constructed and this is shown

in Figure 6.12. The dashed black line indicates the simple 1/T behaviour as shown

in Figures 6.10 and 6.11. In this scaling, the values for each sample appear to have

an almost linear dependence with temperature. Furthermore, if we were to take

values of ∆ε at a certain temperature for each sample, the values would follow

this linear dependence across the temperature range, with the exception of the

N = 6 and N = 18 samples. This trend is highlighted by the dashed blue guide

to the eye in the figure. This implies that the ∆ε values relatively well follow

a exponential dependence with temperature. The implication of this behaviour

would be that the dielectric strength is solely set by the temperature and the

molecular weight only controls the temperature range that is probed and thus by

changing the molecular weight, one can access different part of the exponential

master curve. Presently, we do not know the exact origin of such a possible

exponential behaviour. It is, however, interesting that a similar behaviour has

been observed for a chain-length series of polypropylene glycol dimethyl ethers
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[18] and as will be shown in the next chapter, the same behaviour is observed for

poly(α-methylstyrenes).

Loss peak amplitude

Although one normally characterises the ‘size’ of the α loss peaks using the dielec-

tric strength, we can also consider the amplitude of the peaks, ε′′p. This is a very

direct method of quantifying the size of the peak as the parameters can be read-

off from the dielectric spectra. Values for the amplitude parameter are shown in

a log-scaling in Figure 6.13. In such a scaling, the parameters show a decrease

with increasing degree of polymerisation, in a similar manner to that observed

for the ∆ε data. Signs of crystallisation of the N = 1 sample are indicated by

the dramatic decrease of the amplitude for the highest measured temperatures.

It appears that, in general, the amplitude of the α loss peak decreases with in-

creasing temperature for the samples in this series highlighted in the Tg rescaling

shown in Figure 6.4b. However, there is no signature of a peak in these values as

observed for the alkylbenzene series.

N = 1
N = 2
N = 3
N = 4
N = 6
N = 18
N = 1160

Figure 6.13: ε′′p parameters obtained through fits of the RB function to the di-
electric spectra plotted against a) T and b) Tg/T .

6.2.5 Relaxation timescales

In this section, the characteristic timescales, τα, of the α relaxations for the

styrene series will be discussed. The data were determined from the peak fre-
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Figure 6.14: τα data for the styrene series. The black dotted line indicates τ =
100s. The solid lines are fits of the VFT equation to the data.

quencies obtained through the fitting of the α loss peak with the RB function

as τα = 1/ωp. It was shown in the previous chapter that timescales obtained

through fitting of both the RB and HN functions show no significant differences

in values of τα and the same was true for this series. The data are shown in Figure

6.14 and show the expected trend with increasing chain-length: a shift in the τα

values to higher temperatures for the longer chain-length samples [69, 146, 258].

This shift is largest between the values for the N = 1 and N = 2 samples and

becomes less pronounced as the sample chain length increases.

The relaxation time values are all well described by fits of the Vogel-Fulcher-

Tammann equation [27–29] and the fit parameters are shown in Table 6.2. The

values of T0 increase systematically with increasing molecular weight and the

values for τ0 adhere to values close to typical microscopic timescales at high

temperatures [2, 24–26] and show no systematic variation with degree of poly-

merisation. The other parameters in Table 6.2 (D, m and Tg) will be discussed

in full in the following sections.
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N log10τ0(s) D T0(K) Tg(K) m
1 -(10.4 ± 0.5) 4.4 ± 0.3 121.2 ± 0.9 139.7 93.7
2 -(-14.4 ± 0.2) 9.5 ±0.4 158 ± 1 197.9 81.2
3 -(14.3 ± 0.2) 9.0 ± 0.3 187.5 ± 0.9 232.4 84.6
4 -(15.1 ± 0.3) 11.1 ± 0.6 186 ± 2 238.3 77.8
6 -(14.7 ± 0.2) 9.4 ± 0.4 220 ± 1 273.1 85.1
18 -(13.1 ± 0.2) 5.9 ± 0.3 283 ± 2 331.6 104.1

1160 -(12.6 ± 0.2) 4.5 ± 0.2 329 ± 0.2 373.3 122.5

Table 6.2: Table showing the fitting parameters obtained through fits of the VFT
equation to the τα data. The table also includes Tg and the fragility parameter
m for each sample. The reported errors were obtained from a least mean squares
fit of the VFT function to the τα data.

6.2.6 Glass transition temperature

Values for the glass transition temperature, Tg were obtained by extrapolating

the fitted VFT descriptions of the τα data to a timescale of 100s. This timescale

is denoted by the horizontal dashed line in Figure 6.14. A plot of Tg as a function

of molecular weight is shown in Figure 6.15a including values obtained from the

onset of the characteristic step in Cp (see Section 6.5). In this linear scaling

of Mw the data for the N = 16, 18 and 28 samples are well described by the

often used Fox-Flory equation (introduced in Chapter 5) as denoted by the green

dashed line. Note that this figure does not show data for the N = 1160 sample in

order to highlight the development of Tg for the lower chain-length samples but

this data was also used in order to test the Fox-Flory equation. However, the Tg

values are not well described by such a fit for the lower molecular weight samples.

A similar plot of the Tg data is shown in Figure 6.15b, with a logarithmic

scaling of the x-axis. It is also clear from this scaling that the Fox-Flory behaviour

does not scale as well for the low molecular weight samples.

In order to further analyse the molecular weight dependence of Tg data, the

obtained values for Tg were compared with those obtained from several sources in

the literature [258–261]. The Tg data obtained in this series are clearly consistent

with those in the literature. It was shown in Chapter 5 that the behaviour

of Tg as a function of molecular weight can often be split into three distinct

regions as first introduced by Cowie [259] and these regions are denoted by the
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Figure 6.15: a) Tg data obtained through analysis of the DSC traces (taken at
10K/min) of the styrene series in comparison to those obtained through analysis
of the dielectric spectra plotted against Mw. The range of Mw has been cut to
highlight the development of Tg for the shorter chain-length samples. b) Tg versus
log10(Mw). The green dashed lines in both figures indicate fits of the Fox-Flory
equation.

vertical dashed lines in Figure 6.16. The transition molecular weights between

the different regions, M I
w and M II

w , were obtained from the paper by Hintermeyer

et. al. [258]. The data within each region are well described with a linear fit,

shown by the black solid lines through the data in Figure 6.16. However, we note

that the Tg value for the monomer is not so clearly well described by the fit of

the Region I data. This implies that there might be a change in the behaviour

between the monomer and the dimer.

In order to provide a simpler comparison between the different regions, the

data were colour designated depending on the region in which they fell as shown

in Figure 6.16b. Region I refers to low molecular weight oligomers and shows

a linear dependence of Tg with increasing Mw. Region II also shows a similar

but weaker dependence of Tg with Mw. Region III refers to the high molecular

weight polymers for which the Tg values are no longer molecular weight depen-

dent. Hintermeyer et. al. suggested that the transition point between Region I

and Region II, M I
w could be related to the molecular weight of a Rouse unit or

Kuhn unit [290] and would thereby mark the point at which more coarse grained

polymer chain dynamics come into effect [258]. The authors also state that the

transition point between Regions II and III is similar to the molecular weight
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= 1800

= 30000
= 30000

= 1800

Figure 6.16: a) Tg data obtained through analysis of the DSC traces of the styrene
series in comparison to those obtained through analysis of the dielectric spectra
and also to examples from the literature (Hintermeyer et. al. [258]: orange circles,
Cowie [259]: light blue stars , Claudy et. al. [261]: black triangles, Bartenev et.
al. [260]: green asterisks). Vertical lines indicate the separation of regimes of Tg
dependence with molecular weight and solid lines are linear fits to the data in
these regimes. b) Tg values clearly separated into three regions.

of entanglements, Me, and could thus be an indication of the onset of reptation

dynamics of the polymer chains. However, this idea has was contested in further

analysis of the data [262] as explained in Chapter 5.

The number of monomer units associated with M I
w and M II

w are 16 and 288,

respectively. One could hypothesize that the dynamic behaviour of the polymer

chain changes at M I
w from that associated with the number of monomers in a

chain to that in which the dynamics of a different coarse-grained unit, with a

size on the order of a Rouse unit, sets the value of Tg for the polymer melt.

There is no consensus as to the Kuhn length, or size of a Rouse unit, for PS.

The theoretical value has been estimated to be 20Å, corresponding to 8 - 10

monomer units but experimental determinations have yielded a value closer to

50Å, corresponding to ≈ 50 monomer units [242]. Still, it makes sense that the

transition from Region I to Region II is associated with the onset of course-

graining and the emergence of a new characteristic length-scale, which can be

estimated by the M I
w and thus corresponds 16 monomer units; we will in the

following discussion call this the Rouse unit. We can express M I
w and M II

w in

terms of the Rouse units as corresponding to 1 and ≈ 17 units respectively. The
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width of Region II (M II
w −M I

w) is then equivalent to 16 units. Thus, interestingly

the width of Regions I and II are equivalent in terms of the monomer unit and

the Rouse unit, respectively. Therefore, it could be said that the increase of the

number of ’fundamental units (monomers in Region I, Rouse units in Region II)

in a polymer chain causes a systematic increase in Tg until a certain number of

Rouse units are reached, at which the dynamics become independent of molecular

weight. It might be reasonable to hypothesize that Region III is entered as the

chains are long enough to be well described using Gaussian statistics. It should

be reiterated, however, that these arguments are based on a number of obvious

caveats. Firstly, we have assumed that the size of a Rouse unit corresponds to

16 monomer units whereas in reality, this size could be quite different. Secondly,

the statistical descriptions of very short oligomeric chains in Region I and longer

course-grained ones in Region II should show significant differences.

The point at which polymer chains are long enough to be described as a

Gaussian random walk is an interesting topic of discussion in itself [242, 291–293].

The polymer chain is in the Gaussian regime when fluctuations of its end-to-end

distance can be described with Gaussian statistics. However it is difficult to

quantify the transition between dynamic regimes purely based on experimental

data. Gainaru et. al. [291] studied the dielectric normal mode and structural

relaxation mechanisms of polypropylene glycol in order to address this issue.

Specifically they looked at the ratio between the dielectric strengths of these two

mechanisms and observed that over a certain number of monomer units (N = 30)

the ratio remained fixed with respect to further increase of monomer units. The

authors state that this ratio should be independent of molecular weight within

the Gaussian regime and therefore state that N = 30 corresponds to the onset

of this regime. This particular polymer however has hydroxyl end-groups and is

known to form larger ’effective’ chains mediated by hydrogen bonding so this exact

number would only provide a lower bound to any estimate for non-associating

systems such as PS. Unfortunately, the same type of analysis described above

can not be performed for PS. The normal mode relaxation is not resolvable in

dielectric spectra as PS does not have a component of its dipole aligned along the

backbone chain. Ding et. al. provide an analysis for PS by plotting Tg against

Mw/mR, where mR is the molecular weight of a Rouse unit [292]. They state that
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the mR for PS should be ∼ 50 monomer units. This is significantly larger than

the traditionally defined Kuhn segement size which is found to be between 8 - 10

monomer units (see Chapter 5) but the authors have previously shown that this

estimation of mR provides a better description of experimental data from small

angle neutron scattering and neutron spin-echo experiments [242]. In plots of Tg

versus Mw/mR the authors show that at a certain point Tg becomes invariant of

this ratio. They attribute this behaviour to the onset of Gaussian chain dynamics

and state that this occurs at a molecular weight of 10 - 20 Rouse units, equivalent

to a molecular weight of 50000 - 100000 g/mol, which is quite similar to where

we observe the start of Region III for PS. Furthermore, Kreer et. al.[294] found

that there were no well defined boundaries for either Rouse dynamics or reptation

dynamics in Monte-Carlo simulations of model polymers ranging from N = 16

to 512. The transitions between different dynamic regimes were much smoother

than implied by the variation of Tg shown here. Therefore it is unclear whether

the onset of Region III can be explained by the appearance of Gaussian statistics

or not. However, there is clearly a difference in the Tg dependence which occurs

at a molecular weight lower than that predicted for the size of a Rouse unit by

Ding et. al. [242].

6.2.7 Dynamic fragility

The fragility parameter, m, was obtained using the method described in Chap-

ters 1 and 4, using the τα data obtained through fits of the dielectric spectra.

These values are shown in Figure 6.17 in comparison with m values obtained by

Hintermeyer et. al [258]. The two sets of data are in reasonable agreement with

each other. It was noticed for the alkylbenzene series that the fragility param-

eter showed a systematic increase with increasing molecular weight. However,

this trend does not seem to hold for the lower molecular weight samples in this

series as the lower molecular weight samples have similar values of m. The values

for the N = 18 and 1160 samples have a much higher m value than the lower

molecular weight samples. We saw in the previous section that the temperature

dependence of Tg changes at a certain molecular weight which has previously

been attributed to the size of a Rouse unit [258]. Thus, a possible implication
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Figure 6.17: Values for the fragility parameter m for the styrene series in com-
parison with values obtained from the literature [258].

of these results is that higher dynamic fragility is introduced as the nature of

the dynamics of the polymer chain changes. The m parameters also indicate a

systematic increase with Mw beyond the molecular weight corresponding to the

Kuhn length (as defined by Hintermeyer et. al. ≈ 1800 g/mol) before a constant

m observed for the highest molecular weight samples. A further implication is

that the dynamic fragility is only variable in Region II, whereas it is relatively

fixed in Region I and III.

Strong glass-formers, have low m values and an m value of 16 corresponds

to ’strong’ Arrhenius-like behaviour [2, 11] (if τ0 is assumed to be 10−14s). The

m values presented for this series indicate a dramatic departure from Arrhenius

like behaviour of the τα values. Particularly high fragilities have been observed

for several bulk polymeric samples including polymethylmethacrylate (PMMA),

polypropelene (PP), polyvinylchloride) (PVC) and polycarbonate (PC) [11, 116,

190, 295]. This suggests that a high fragility is a common property of polymers.

6.2.8 Linearisation of relaxation timescales

In order to further analyse the temperature dependence of τα, the timescale values

were linearised by performing the analysis presented by Stickel et. al. [31] as
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Figure 6.18: Stickel analysis of the τα data. The red squares indicate the crossover
point for different regimes of Z, obtained through analysis as shown in Figure
6.19.

explained in Chapters 1 and 4. This was done as such an analysis can yield

subtle differences in the behaviour of τα which are not necessarily obvious in an

Arrhenius plot. The results of this linearisation are shown in Figure 6.18. The Z

parameters obtained for the N = 1, 18 and 1160 samples demonstrate dynamic

behaviours which are well described by the linearised VFT fits of the τα values.

The fits through the Z data for these samples have a gradient, S, formulated

from the VFT parameters:

S =

(
T0

loge1D

)− 1
2

(6.3)

The N = 2, 3, 4 and 6 samples show a ‘kink’ in the Z parameter indicating

a change in the temperature dependency of τα and therefore these samples could

not be described by the corresponding linearised VFT fits over the whole tem-

perature range. To investigate this behaviour in more detail, the crossover points

between the two different temperature dependencies of Z for these samples were

determined by fitting the low and high temperature regimes with linear fits and

calculating the point at which the two linear descriptions of the data crossed.
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Figure 6.19: Stickel parameters for the a) N = 2, b) N = 3, c) N = 4, and d) N = 6
samples showing possible changes in gradient of the Z parameter. Vertical dashed
lines indicate the crossover point T ∗ defined in this case as the crossover between
the two gradient regimes. Also shown are vertical dashed green lines indicating
the position of Tαβ determined through calculation of expected τβ values using
‘Procedure 1’ as described in Section 6.4.1
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6.2 Dielectric spectroscopy: α relaxation

This analysis is shown in Figure 6.19 and the determined crossover points

are indicated by the red squares in Figure 6.18. We observed that the crossover

occurs at a similar Z value for the N = 2, 3, 4 and 6 samples. It should be noted

that the temperature ranges used in the determination of the point at which the

temperature dependency of Z changed were chosen somewhat arbitrarily. For

instance, Figures 6.19b and d show the linearised τα data for the N = 3 and 6

samples and the difference between the two fitted regions in each case is slight.

Error analysis of this procedure has not been completed but the determined

crossover points give a reasonable indication of the temperature range of the

dynamic crossover. As a means of comparison, Tαβ values are shown as vertical

dashed green lines. These indicate the temperature at which a crossover was

observed between the τα data and expected values of τβ as will be explained in

Section 6.4.1. We observe that values of Tαβ are in the same temperature range

as determined values of T ∗ for the N = 3, 4 and 6 samples, validating the method

for determining T ∗. However there is a discrepancy between these values for the

N = 2 sample.
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Figure 6.20: Stickel parameters rescaled by both φT and φZ in order to collapse
the Stickel data for all samples.

To facilitate a comparison of the Z parameters obtained for the samples, the

data were rescaled in both T and Z by the values corresponding to the crossover
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point for the samples where a kink was observed. Since very similar values of

Z∗ were observed, see Figure 6.18, for the N = 1, 18 and 1160 samples where

a kink could not be observed we used a Z∗ taken as an average of the four

determined values. For the samples where a kink was not observed, T ∗ values

were determined that correspond to the calculated average Z∗. This rescaling

is shown in Figure 6.20. One finds that the samples, except for N=1, follow a

similar temperature dependence in high temperature range T/T ∗ > 1 although

there is a non-systematic variation of the behaviour with molecular weight in the

low temperature range T/T ∗ < 1.

6.3 Dielectric spectroscopy: γ relaxation

In this section, the analysis of the secondary relaxation mechanism manifested

as a symmetrically stretched loss peak in ε′′ observed for the N = 1,2 3, and

4 samples will be discussed. This relaxation will be termed the γ relaxation in

this chapter due to the similarities of the activation energy and timescales of the

observed relaxations with the so-called γ relaxation observed through mechanical

measurements of bulk polystyrene [204] (this similarity will be shown in Section

6.3.4).

6.3.1 Spectra

The observed γ relaxation loss peaks have relatively low dielectric strength in

comparison to the α loss peaks and were therefore more difficult to distinguish

in the dielectric spectra. In order to address the repeatability of the observed γ

relaxation, two different runs (where each ‘run’ involves a separate sample prepa-

ration) of the N = 3 sample were performed. The samples were cooled at the

maximum rate of the cooling system (∼ 20K/min) to a temperature just below the

glass transition temperature. Measurements were obtained upon further cooling

of the sample in steps of 5K. A comparison of the spectra obtained for the differ-

ent runs of the N = 3 sample at 140 K are shown in Figure 6.21. It is clear from

this figure that the γ relaxation is clearly observed in both instances, although
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6.3 Dielectric spectroscopy: γ relaxation

Figure 6.21: Dielectric spectra taken at 140K for the N = 3 sample showing two
separate runs taken using two different spectrometers.

the dielectric strength appears to be different. This was also seen in similar ‘re-

peatability’ experiments for the secondary process observed for the alkylbenzene

series. The reason for the difference in ∆ε is likely to be a consequence of the fact

that cooling a glass-forming material into the glassy state does not necessarily

yield the same amorphous structure [51, 194]. This has been fully discussed in

Chapter 4.

It is also clear from this figure that contributions to the spectra at both low

and high frequencies must be described in order to analyse the behaviour of the

γ loss peak in ε′′. The low frequency contribution is due to the high frequency

power-law flank of the α loss peak. The physical origins of the high frequency

contribution are unclear but it has similar characteristics to the high frequency

contribution observed in the α relaxation temperature regime, as discussed in

Section 6.2.

6.3.2 Rescaled spectra

In order to gain a qualitative estimate of the variation of the shape and frequency

position of the γ loss peak for the samples, the loss peaks were rescaled in both
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frequency and ε′′ in order to create master curves of the spectra. This rescaling

is shown in Figure 6.22. The spectra were scaled using the parameters φf and

φε′′ . These parameters were determined by rescaling the peaks onto the loss

peak obtained at the lowest measured temperature. This rescaling demonstrates

that the overall shape of γ loss peak appears to be preserved throughout the

measured temperature range. We note that the N = 2, 3 and 4 samples have a

significant high frequency power-law contribution to the dielectric loss. At the

highest temperatures, the γ process became significantly merged with this high

frequency contribution. This made the rescaling of the spectra difficult as the

shape of the peak became more obscured at these temperatures. At the other

end of the temperature range, the spectra for the N = 2 sample became quite

scattered at low frequencies. This again made the rescaling process difficult.

Figure 6.22: Dielectric spectra in the β relaxation regime for a) N = 1, b) N =
2, c) N = 3 and d) N = 4 samples rescaled in both frequency and ε′′.
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6.3 Dielectric spectroscopy: γ relaxation

6.3.3 Fitting procedure

The γ loss peaks could be well described with the Cole-Cole (CC) expression. The

high frequency contribution observed in Figure 6.22 was fit using a power law,

with the exponent kept reasonably fixed and allowing for small variations of the

amplitude. Figure 6.21 indicates another low frequency contribution, most likely

due to the proximity of the α relaxation. It was found that this low frequency

contribution did not have a significant effect on the shape of the γ relaxation for

the N = 1 sample. Thus, the low frequency range was restricted such that the

low frequency contributions could be neglected. For the other samples, the low

frequency contribution was described with a power-law of the form ε′′ = Aω−k.

The results of this fitting procedure are shown in Figure 6.23 and the fit lines

interpolate the spectral data well.

The parameters relating to the dielectric strength, ∆ε, and the symmetric

stretching, α, parameters from fitting of the CC function are shown in Figure

6.24. These parameters demonstrate quantitatively that there was little variation

in the strength or the shape of the γ loss peak with increasing temperature. The

values for ∆ε shown in Figure 6.24a) show a difference between the samples but

the variation is not systematic with chain-length. Likewise, the α parameters

show that the symmetric stretching of the loss peaks is independent of chain

length.

In order to confirm the behaviour of the ∆ε parameters obtained from fits of

the CC function, the values were compared to the amplitude scale factors, φε′′ ,

used to rescale the spectra as shown in Figure 6.22. The method for determining

∆ε from the rescaling parameters is fully described in Chapter 4. Firstly, the

amplitude of the γ loss peak at the lowest measured temperature was obtained.

This was subsequently multiplied by the rescaling parameters in order to deter-

mine the temperature dependence of the amplitude. Finally, the corresponding

∆ε values were calculated. The comparison between the two determinations of

the ∆ε parameters is displayed in Figure 6.25. The values from both fits of the

CC function and rescaling of the spectra show good agreement for the N = 1,

2 and 4 samples. However, for the N = 3 sample, it appears that ∆ε obtained

through fitting of the spectra have larger absolute values.
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Figure 6.23: Dielectric spectra in the β relaxation regime for a) N = 1, b) N =
2, c) N = 3 and d) N = 4 samples. These spectra were fit using an additive
combination of the Cole-Cole equation with a high frequency power law and,
where appropriate, the RB function to take account of low frequency contributions
due to the proximity of the α relaxation.
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6.3 Dielectric spectroscopy: γ relaxation

Figure 6.24: a) ∆ε and b) α parameters for the N = 1,2,3 and 4 samples obtained
through fits of the γ relaxation process. Errors for the values obtained for the
N = 1 sample are the standard deviation between different measurements.

Figure 6.25: ∆ε values for a) N = 1, b) N = 2, c) N = 3 and d) N = 4 from both
fitting and rescaling.
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6.3.4 Relaxation timescales

In this section, the characteristic timescales corresponding to the observed sec-

ondary relaxation for the N = 1, 2, 3 and 4 samples will be discussed. Timescales

corresponding to the frequency of the loss maximum for this relaxation, τγ, were

obtained directly from the fitted Cole-Cole (CC) descriptions of the dielectric

spectra as the characteristic timescale in the CC function corresponds to the

peak timescale: τCC = τp. In order to confirm the values obtained through fit-

ting of the spectra, τγ values were also obtained using the rescaling parameters,

φf required to rescale the secondary loss peaks as shown in Figure 6.22. Val-

ues of φf across the measured temperature range were multiplied by values of

τγ obtained through fitting of the CC function to the secondary loss peak at the

lowest temperature for all samples. This allowed for an estimation of the temper-

ature dependence of the timescale values obtained from the rescaling procedure.

The comparisons between τγ values from fitting and rescaling are shown in Figure

6.26. The timescales show the same behaviour in both methods of determination,

thereby confirming the results of the fitting procedure.

An Arrhenius plot showing the timescales for the α relaxation, τα, and the

observed secondary relaxation, τγ, is shown in Figure 6.27a. Also shown are

dashed grey lines indicating the behaviour of the timescales of the γ relaxation

observed through mechanical measurements of PS performed by Yano et. al. [204]

and the β relaxation observed through dielectric measurements of PS performed

by Lupaşcu et. al. [268] (these timescales have also been confirmed in mechanical

measurements by Cavaille et. al. [270]). The values of τγ obtained in this research

are very similar to those of the so-called γ relaxation as obtained in literature

and these are therefore likely to be indicative of the same relaxation mechanism.

In the Tg rescaling of this data as shown in Figure 6.27b the τγ values of the

N = 1, 2, 4 and polymer samples appear to have a similar dependence; however,

the N = 3 sample shows a slightly different temperature dependence. From

the Tg scaled plot we see that the γ relaxation in this representation appears to

become slower with increasing molecular weight. Interestingly, a similar trend

was observed for the γ relaxation observed for the alkylbenzene series. The τγ
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6.3 Dielectric spectroscopy: γ relaxation

Figure 6.26: τβ values for a) N = 1, b) N = 2, c) N = 3 and d) N = 4 from both
fitting and rescaling.

Figure 6.27: τα and τγ data for the styrene series plotted against a) 1000/T and
b) rescaled by Tg. Solid lines indicate fits of the VFT equation to the τα data
and dashed lines indicate fits of the τγ data with the Arrhenius equation.
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Sample EA kJ/mol log10τ0 (s) K EA
RTg

Reference

N = 1 19.6± 0.8 −14.2± 0.4 16.9± 0.7
N = 2 20.2± 0.9 −11.7± 0.4 12.3± 0.6
N = 3 11.3± 0.4 −8.5± 0.1 5.9± 0.2
N = 4 21.8± 0.7 −12.7± 0.3 11.0± 0.3

N ≈ 3570 (β) 77± 1 −13.5± 0.2 24.9± 0.4 [268]
N ≈ 2300 (γ) 32± 3 −13± 1 10± 1 [204]

Table 6.3: Table showing the parameters obtained through fitting of the Arrhenius
equation to the τγ data. Also shown are values obtained through fitting of the
timescale data for the observed β [268] and γ [204] relaxations. Errors in the
values were determined from least mean squares fitting of the data.

values are well described by the Arrhenius equation (as described in Chapters 1

and 4) denoted by the fitted dashed lines in Figure 6.27:

τ = τ0e
EA
kBT (6.4)

Where τ0 is the limiting timescale of the relaxation at high temperatures and

EA is the activation energy of the relaxation mechanism. The values of EA and τ0

are shown in Table 6.3. Also shown are values of the constant of proportionality,

K between EA and Tg as determined using the equation postulated by Kudlik et.

al.[15, 55, 61]

EA = KRTg (6.5)

Where R is the universal gas constant.

The values of EA shown in Table 6.3 for the N = 1,2 and 4 show reasonable

agreement with the determined activation energy of the so called γ relaxation

observed in mechanical measurements of bulk PS [204] and are clearly very dif-

ferent from the activation energy of the β process as observed in both dielectric

and mechanical data [268, 270]. This further solidifies the postulation that the

observed secondary relaxation for low molecular weight samples in this series is

similar in nature to the previously observed γ relaxation. The EA values for the

N = 3 sample is lower than the values obtained for the other samples but it

should also be noted that it also has an unusually high value of τ0 whereas the τ0
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values obtained for the other samples shown in the table agree with the expected

typical microscopic timescales of 10−12 to 10−14 [2, 24–26].

The γ relaxation has also been observed in nuclear magnetic resonance (NMR)

measurements [200–202] and in molecular dynamics (MD) simulations [203] and

the timescales obtained agree well with those obtained from dielectric and me-

chanical measurements. However, the physical nature of the mechanism itself

is not clear. Lyulin et. al. [203] attributed the observed relaxation with the

translation of the phenyl-rings and the main chain whereas Schaefer et. al. and

Kulik et. al. [200, 201] suggest that the mechanism involves 180◦ flipping of

the phenyl-ring as has been observed for other polymeric systems such as poly-

carbonate [296], polysulphone [297] and phenoxy [298] using quasielastic neutron

scattering (QENS). Another interpretation, by Zhao et. al. [272], is that the

relaxation is due to oscillations of the phenyl-rings rather than flipping. This no-

tion was confirmed to a certain degree by QENS measurements of PS performed

by Arrese-Igor et. al. [299] whose results suggest phenyl-ring oscillation with a

mean activation energy of 19.3 kJ/mol. The activation energies obtained through

fits of the τγ data correspond well to the value obtained by Arrese-Igor et. al.

suggesting that the observed γ relaxations are of a similar physical origin: an

oscillation of phenyl-rings.

6.4 Hidden β relaxation

In the linearisation of the τα data obtained for this series shown in Section 6.2.8,

it was observed that the N = 2, 3, 4 and 6 samples showed a change in the

temperature dependence of τα at a certain temperature, termed the crossover

temperature T ∗. For some glass forming systems, the crossover temperature is

also indicative of the decoupling or bifurcation of the α and β relaxations [30].

If this were true for the styrene series, one could postulate that the crossover in

temperature dependencies of τα obtained for the N = 2, 3, 4 and 6 samples are

indicative of another secondary relaxation process which could not be resolved

separately to the α relaxation loss peak in the dielectric spectra. In order to

further test this hypothesis, estimates of the location of the expected τβ relaxation

for the series were made based on the Arrhenius equation.
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Firstly, an assumption was made that the empirical equation relating the acti-

vation energy EA and Tg (Equation 6.5 [15, 61]) should hold for all samples across

the series and that the constant of proportionality, K, should remain fixed with

changes in the molecular weight. This assumption is validated to a certain ex-

tent because the K values obtained for the secondary relaxations observed in the

alkylbenzene series remain reasonably similar with increasing molecular weight.

The K value in this instance was determined through fitting of τβ data obtained

from the literature for PS (N = 3570) [268] using the Arrhenius equation in order

to determine the activation energy. It was found, through substitution of EA into

Equation 6.5 that K = 24.9± 0.4. Interestingly, this value is consistent with the

value of 24 ± 3 obtained empirically for several molecular glasses [61], through

calculations based on the coupling model [15] and also consistent with a value

of 26 ± 2 obtained for metallic glasses [9]. Through knowledge of K, Equation

6.5 could then be used in order to determine what the activation energy of the β

relaxations should have been for the other samples, had they been observed. The

expected values of τβ were then determined using two different procedures either

based on a fixed τ0 for all samples, or a variable τ0 determined so that the α

and β relaxations cross at the crossover temperature determined from the kink in

the Stickel linearisation; only the samples which showed a kink in the linearised

Stickel representation were included in this procedure.

6.4.1 Determination of τβ values with fixed τ0: Procedure

1

In the first procedure, it was assumed that τ0 is fixed for the samples in the

styrene series. This determination will be referred to as ‘Procedure 1’. Values

of τ0 were set to the fitted value obtained from analysis of the N = 3570 τβ

data obtained from the literature [268]. A fixed constant of proportionality, K,

between the activation energy, EA and Tg was assumed. Values for the ‘expected’

τβ were then determined using the Arrhenius equation. The obtained values from

this analysis are shown in Figure 6.28a. Also shown are the τα values obtained

through fits of the dielectric spectra and the τβ values obtained from the literature

[268]. Values of the obtained activation energy, Ea, and the crossover timescale,
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Figure 6.28: a) τα and theoretically determined τβ data for the styrene series,
determined using Procedure 1 as described in the text. Data were for τβ for
the bulk sample were taken from Ref. [268]. b) The same data rescaled by Tg
including τγ data for the samples in which this secondary relaxation was observed.
The inset in panel b shows values for the timescale corresponding to the crossing
of the theoretically determined τβ values and the τα data.

ταβ determined from the crossing of the τβ data and the VFT fits of the τα data

are tabulated in Table 6.4.

The expected τβ values obtained using Procedure 1 demonstrate a systematic

behaviour with a slowing down of the β relaxations as the molecular weight

increases. By definition EA shows an increase with increasing chain-length since

it is proportional to Tg. In the next chapter we find an almost identical trend

in the τβ values for the PAMS chain-length series (Chapter 7) and a similar

behaviour has already been shown for the alkylbenzenes. Similar trends have also

been observed for PMMA for which the β relaxations can be directly observed

since they are strongly dielectrically active (although we do not show the data

here since the analysis of these data are still tentative). For the PMMA series

we also find that the scaling between the β relaxation activation energy and Tg

holds, which gives further support to our present analysis. A speeding up of the

β relaxations with decreasing molecular weight are also observed in chain-length

series of mono- and dimethyl ethers [18]. This is important as it suggests that this

behaviour is highly general and not necessarily dependent on chemical structure.

Furthermore, since the trend is also observed for the alkylbenzenes, the general

behaviour does not appear to be limited to polymers.
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N log(τ0)(s) log(ταβ)(s) EA(kJ/mol) Reference
1 -13.5 ±0.1 −3.81± 0.01 28.8± 0.5
2 -13.5 ±0.1 −3.73± 0.01 41.1± 0.7
3 -13.5 ±0.1 −3.68± 0.01 48.3± 0.8
4 -13.5 ±0.1 −3.77± 0.01 49.5± 0.8
6 -13.5 ±0.1 −3.67± 0.01 56.7± 0.9
18 -13.5 ±0.1 −3.50± 0.01 69± 1

3570(PS) -13.5 ±0.1 −3.40± 0.01 77± 1 [268]

Table 6.4: Table showing values of ταβ, τ0 and the activation energy, EA, obtained
through determination of potential τβ values using Procedure 1. Errors in the
values for the N = 3570 sample reflect least-mean squares fitting of the τβ data
obtained from Ref. [268].

A Tg rescaled Arrhenius plot is shown in Figure 6.28b. In this scaling, the

expected values of τβ collapse onto the behaviour of the N = 1160 sample. This

is expected as we have assumed the same τ0 for each sample, based on the τ0

obtained through Arrhenius fits of the N = 1160 data. The τγ values are also

shown in order to highlight the point that the hidden β relaxations show different

behaviour. The inset in Figure 6.28 shows the development of the bifurcation

timescale, ταβ. We observe an increase in ταβ with increasing chain-length.

In order to confirm the nature of the expected τβ values, the bifurcation

temperature, Tαβ was determined from the crossing of the estimated τβ and the

τα data. These values were then compared with the linearised τα data shown in

Figure 6.19. The linearised τα data show a kink at a certain temperature. We

observe that for the N = 3 and 6 samples, Tαβ are very similar to the fitted

crossover temperature T ∗. The values agree less for the N = 2 and 4 samples but

are still in the same temperature region. This analysis therefore provides support

for the idea that T ∗ could be related to the bifurcation of the α and β relaxations.

6.4.2 Determination of τβ values with variable τ0: Proce-

dure 2

In this determination, it was assumed that τ0 could vary for the samples in the

styrene series. This determination will be referred to as ‘Procedure 2’. This deter-

mination uses the obtained crossover temperature T ∗ obtained through analysis
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Figure 6.29: a) τα and theoretically determined τβ data for the styrene series
using Procedure 2 as described in the text. Data were for τβ for PS (N = 3570)
were taken from Ref. [268]. b) The same data rescaled by Tg including τγ data for
the samples in which this secondary relaxation was observed. The inset in panel
b shows values for the timescale corresponding to the crossing of the theoretically
determined τβ values and the τα data.

of the linearised τα data. As such, only data relating to samples which demon-

strated crossover behaviour (N = 2-6) and the N = 1160 sample will be shown as

it is too speculative to assume the crossover temperatures for the other samples.

As we have assumed that T ∗ is the temperature at which the α and β relax-

ations merge, it makes sense to first approximation to assume that at T = T ∗, the

timescales of the two relaxation processes should be the same and can be quanti-

fied by the timescale, ταβ. Therefore, by determination of ταβ and substitution of

this value into the Arrhenius equation, the limiting high temperature timescale,

τ0, could be calculated. Finally, once τ0 and EA values had been determined, the

‘expected’ values of τβ could be produced through the Arrhenius equation. The

values obtained through this analysis are shown in Figure 6.29a, denoted by the

dashed lines. Also shown are the τα values obtained through fits of the dielectric

spectra and the τβ values for PS (N = 3570) obtained from the literature [268].

The behaviour of the expected τβ values calculated using Procedure 2 is similar

to those calculated using Procedure 1. Values of τ0, ταβ and EA obtained through

this analysis are also shown in Table 6.5.

In order to characterise the behaviour of these expected values of τβ further,

the temperature was rescaled by Tg as shown in Figure 6.29b. Again, the τγ
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N log(τ0)(s) log(ταβ)(s) EA(kJ/mol) Reference
2 −12± 1 −2.1± 0.1 41.1± 0.7
3 −14± 1 −4.1± 0.1 48.3± 0.8
4 −13± 2 −2.9± 0.1 49.5± 0.8
6 −13± 1 −3.6± 0.1 56.7± 0.9

3570(PS) -13.5 ±0.1 −3.4± 0.1 77± 1 [268]

Table 6.5: Table showing values of ταβ, τ0 and the activation energy, EA, obtained
through determination of potential τβ values. Errors in the values for the N =
3570 sample reflect least-mean squares fitting of the τβ data obtained from Ref.
[268].

values obtained for several samples are also shown here to highlight the difference

between the timescales for this observed relaxation and the timescales of the

expected β values. In this scaling the expected values of τβ do not collapse in

the manner observed from the values calculated using Procedure 1 and this is a

reflection of the variation of τ0. The inset in Figure 6.29b shows values of ταβ

plotted as a function of molecular weight. There appears to be no observed trend

in these values, contrary to what was observed for the values calculated using

Procedure 1. The τ0 values shown in Table 6.5 do not show a dependence on

chain-length and show very little variation.

6.4.3 The excess wing

The α relaxation loss peak often exhibits a change in the power law exponent

describing the high frequency flank and a so called excess-wing is observed. This

excess-wing is often thought to be the result of a secondary relaxation which

is significantly merged with the α relaxation [12]. In a study of an oligomeric

chain series of propylene glycol based dimethyl ethers in research published by

Mattsson et. al. [69] a clear β relaxation was observed for the highest molecular

weight sample and became increasingly merged with the α relaxation for the

lower molecular weight samples. For the shortest chain length samples, the β

relaxation was manifested as an excess-wing on the high frequency flank of the

α relaxation. Similar observations for a series of polyalcohols [166] and for an

oligomeric series of propylene glycol [167] have been shown. The dielectric spectra

in the α relaxation regime for this series of measurements were able to be fully
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described without the assumption of an excess-wing on the high frequency flank

of the α relaxation loss peak. However it should be noted that in a similar study

of styrene and its oligomers, Hintermeyer et. al. assumed that all the α relaxation

loss peaks showed an excess wing and the spectra were fit using an extension of

the generalised Gaussian (GGG) distribution as described in Chapter 2 in order

to take the wing into account.

In order to check for signatures of the expected β relaxation, dielectric spectra

for the N = 2, 3, 4 and 6 samples (samples which all show a clear change in the

temperature dependence of τα) were examined at temperatures just below Tg.

At these temperatures, the peak of the α loss was out of the frequency window,

but the high frequency flank of the relaxation was still resolvable. These spectra

are shown in Figures 6.30a - d. The high frequency flank of the α loss peak

in the spectrum for the N = 2 sample has a fairly constant gradient in a log-

log scaling whereas the N = 3 and 4 samples show slight deviations of this

gradient at higher frequencies indicating excess-wing like behaviour not observed

at higher temperatures. The N = 6 spectra shown in Figure 6.30d has the most

pronounced change in the exponent of the high frequency flank, varying by almost

a factor of 2. The expected peak positions of the β relaxations for these samples

are denoted by the red and blue vertical dashed lines in Figure 6.30, referring

to values obtained from Procedure 1 (Section 6.4.1) and Procedure 2 (Section

6.4.2) respectively. We observe that the expected peak positions coincide with

frequencies inside the high frequency flank of the α loss peak for the N = 3, 4 and

6 samples indicating that the observed excess wing behaviour is likely due to a

submerged β relaxation. We also observe that the wing-behaviour becomes more

pronounced with increasing molecular weight, similar to previously published

results [69, 166, 167]. Furthermore, in the N = 2 sample there are less obvious

signs of an excess-wing.

The overall conclusion is that the two tests performed using Procedure 1 and 2,

give very similar behaviour regarding the general behaviour of the β relaxations

and both are consistent with the data. Given the assumptions involved, it is

not possible to confirm the exact behaviour of more subtle trends such as the

molecular weight dependence of the crossing between the α and β relaxations.
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Figure 6.30: Dielectric spectra in ε′′ for the a) N = 2, b) N = 3, c) N = 4 and
d) N = 6 samples showing the expected peak positions of the β relaxation loss
peak based on the analysis describe in the text and the expected τβ values shown
in Figure 6.29. Here the blue and red dashed indicate values calculated using
Procedure 1 and Procedure 2 respectively.

A secondary β relaxation has been observed for PS in several techniques in-

cluding dielectric spectroscopy [268], mechanical measurements [270] and NMR

measurements [271, 272]. Figure 6.31 shows the dielectric spectrum for the

N = 1160 sample at 386K (just above Tg) including the positions of the β re-

laxation obtained from fits of these literature data to the Arrhenius equation. It

is clear from the figure that the broad nature of the α relaxation loss peak in

ε′′ could be the result of an underlying β relaxation which cannot be resolved

separately to the α loss peak.
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Figure 6.31: Dielectric spectra for bulk polystyrene showing the supposed posi-
tions of the β relaxation determined from Arrhenius fits of the τβ data obtained
from literature [268, 270–272]. The conductivity contribution has been subtracted
from the spectra for clarity.

The physical nature of the observed β relaxation for bulk PS is still not re-

solved. The observed relaxation mechanism has been attributed to 180◦ flipping

of the benzene rings about the chain axis [201], small angular rotations of the

benzene rings [202] or a combination of both of these processes [200]. In gen-

eral, it is thought that the β relaxations in polymers relate to some small-scale

motion of the repeat units within the polymer chain [51]. Secondary β relax-

ations have been observed in a huge variety of different glass formers including

molecular, polymeric, colloidal, inorganic and metallic systems [9, 51, 300]. Due

to the correlation between the activation energy of this secondary process, EA

and Tg [15, 55, 61], the β relaxation has been thought to be a precursor to the

α relaxation and could be intrinsically linked to the glass properties of materials

[15]. The energy barrier associated with this process also appears to increase

with chain-length if the relationship between EA and Tg holds, suggesting that

the process becomes more hindered as the chain-length increases in the same

manner as the α relaxation. The broadening of the frequency dispersion of the
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α relaxation has also been linked to the separation between the timescale of the

α relaxation, τα and the timescale of the β relaxation, τβ, through the coupling

model [15, 84]. In the fitting of the α loss spectra for this series we observed

a broadening of the dispersion with increasing chain-length and this indicates a

greater separation between τα and τβ giving further evidence for the suggested

behaviour of the hidden β relaxation.

6.5 Differential scanning calorimetry

In order to complement the data obtained from the dielectric measurements, the

samples were analysed using Differential Scanning Calorimetry (DSC). DSC mea-

surements were performed using the TA Instruments Q2000 calorimeter, the de-

tails of which are given in Chapter 3. The samples were run by heating/cooling

the samples in a cyclic manner around their expected Tg values at a rate of

10K/min. This rate was chosen as it can be shown to correspond to a relax-

ation timescale of 100s [138–141], thus facilitating comparison between DSC and

dielectric measurements. Due to the relatively simple sample preparation and

the small amount of material required to perform DSC, measurements were per-

formed on a slightly wider range of samples than were performed using dielectric

spectroscopy.

6.5.1 Traces of the heat capacity

The obtained DSC data for the series of styrene samples are shown in Figure

6.32. The steps in Cp, correspond to the glass transition and shift to higher

temperatures with increasing molecular weight, demonstrating the increasing Tg

values. The absolute values of the specific heat capacity seem to vary without a

consistent trend between the samples although there is a slight indication that the

absolute values of the specific heat capacity in the glassy state (in the temperature

region lower than the step in Cp) increases with increasing molecular weight,

although this clearly is not the case for the polymer sample. The DSC traces

were analysed in the manner described in Chapter 3, with Tg determined from

the onset of the characteristic step in Cp associated with the glass transition.
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Figure 6.32: DSC traces for the styrene series. The traces shown are of increasing
temperature at a rate of 10 K/min.

These values were shown in Section 6.2.6 and follow the same behaviour of the

values obtained through dielectric spectroscopy and also the selection of data

obtained from the literature.

6.5.2 The ‘step height’ of the glass transition

In order to characterise the observed glass transition steps in Cp, the difference

between Cp in the glassy and liquid states, ∆Cp was determined and these values

are shown in Figure 6.33a. The ∆Cp values decrease with increasing molecular

weight and appear to move towards a molecular weight independent value for

the highest Mw. A similar trend was also observed in DSC measurements on

PS conducted by Santangelo et. al [26] and the authors note that the molecular

weight at which ∆Cp becomes invariant is equivalent to the molecular weight at

which the glass transition temperature saturates. The same conclusions could

be drawn for the data shown here, although the study would require further

measurements of higher molecular weight samples in order to be sure.

In the previous chapter (Chapter 4) the relationship between ∆Cp and the
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Figure 6.33: a) ∆Cp for the styrene series obtained through analysis of the DSC
traces shown in Figure 6.32 and b) ∆Cp/Tg.

sensitivity of the entropy to a temperature change at Tg,

∆Cp = Tg

[(
∂Sliquid

∂T

)∣∣∣∣
Tg

−
(
∂Sglass

∂T

)∣∣∣∣
Tg

]
p

. (6.6)

In order to analyse the difference in the temperature dependence of the entropy

at Tg with increasing chain length, the ∆Cp values were rescaled by Tg. The

results of this rescaling are shown in Figure 6.33b. The observed trend in the

values still persists in this rescaling, showing a strong decrease with increasing

molecular weight suggesting that the change in ∆Cp is most dependent on the

change in the temperature dependence of the entropy at Tg.

The difference in the glassy and crystalline heat capacities has been defined to

be a measure of the so-called thermodynamic fragility [91, 122]. It can be shown

that the so-called excess heat capacity, ∆Cp can be related to the kinetic fragility

parameter, m [121] and we observed a correlation between m and ∆Cp for the

alkylbenzene series. The behaviour of this polymeric series appears to break this

correlation as it was observed that m increases with increasing molecular weight

whereas the inverse is true for the ∆Cp values. The inverse correlation between the

thermodynamic definition of fragility provided by ∆Cp and the dynamic definition

provided by the m parameter has been observed for a series of 17 polymeric

systems analysed by Roland et. al. [263]. The same conclusions were drawn

230



6.5 Differential scanning calorimetry

by Huang et. al. [122] in a study of 23 bulk polymeric glass forming systems.

This suggests that the mismatch between these two definitions is characteristic

of polymeric glass formers. Huang et. al. go one step further and suggest that

polymers can be grouped into those with strong and weak inverse proportionality

between m and ∆Cp. PS falls into the ‘middle’ of this range.

Angell provides a tentative explanation for this by considering the vibrational

anharmonicity in the glassy state [264]. One can say that Cp in the glass is largely

vibrational in nature as the majority of the configurational component of Cp is lost

through the glass transition. In pressure studies of 3-methyl pentane conducted

by Takara et. al. [301] it was observed that the heat capacity in the glassy

state increased with increasing pressure as did the glass transition temperature.

Similar observations were also made for polyvinylacetate (PVAc) by Sandberg

et. al. [302] indicating that the increase of Cp with increasing pressure in the

glassy state is applicable to polymeric glass forming systems. Angell states that

the reason for this increase of Cp in the glass is that vibrational frequencies are

increased which render the vibrational modes more harmonic [264]. This leads

to an increase in Tg as it can be shown to be related to anharmonicity [303].

He also states that an increased degree of polymerisation will have a similar

effect on the vibrational anharmonicity in the glassy state. This means that the

heat capacity of the polymeric glassy state can attain higher values before the

glass transition whilst the heat capacity in the liquid state after the transition is

relatively unaffected. This therefore leads to a decrease in ∆Cp with increasing

chain length and the glass transition is ‘postponed’ until the excitation of a higher

vibrational heat capacity [122, 264].

6.5.3 The width of the glass transition step

Further analysis of the DSC traces were performed by determining the width

of the glass transition step, where ∆T is defined as the different between the

onset and offset temperatures. Values of ∆T are shown in Figure 6.34. The

width of the step appears to increase with increasing molecular weight before

becoming relatively fixed for the highest chain length samples. The width of the

N = 4 sample appears to be particularly large. Interestingly, a similar trend was
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Figure 6.34: ∆T values obtained through analysis of the DSC traces shown in
Figure 6.32

observed in the exponent of the high frequency power law of the α relaxation

as determined through fitting of the dielectric spectra, shown in Section 6.2.4.

One can tentatively suggest that, as DSC scans were performed at 10K/min,

that the ∆T values indicate the stretching of the α relaxation with a timescale

of 100s. Furthermore, as the coupling model indicates a correlation between the

stretching parameter and the dynamic fragility parameter, m [62], this implies

an increase in the dynamic fragility with increasing chain length. Indeed, a

similar increase of the m parameter was observed for those samples studied using

dielectric spectroscopy.

6.5.4 Excess entropy

In this section the excess entropy, Sx, obtained for the styrene series will be

discussed. Values of Sx as a function of temperature could be determined using

the method described in detail in Chapter 4. The excess entropy was determined

from the difference in extrapolated glassy, Cglass
p and liquid, C liq

p , heat capacity
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behaviours and Sx was calculated as:

Sx(T ) = Sx(Tm)−
∫ Tm

T

C liq
p − Cglass

p

T
dT (6.7)

This expression requires knowledge of the excess entropy at the melting poing,

Tm, and thus in order to determine absolute values of Sx, the enthalpy of fusion,

∆Hfus, must be known in order to calculate the reference entropy of fusion,

∆Sfus, as ∆Sfus =
∆Hfus
Tm

. For the alkylbenzene series, values of Tm and ∆Hfus,

were obtained from the literature but this was not possible for the styrene series

as no such data is available due to the atactic nature of the polymer. Instead, Tm

was calculated using the Tg values obtained for this series as it can be shown in

a number of instances that Tg = 2
3
Tm (a collation of the Tg/Tm for 132 different

polymers was published by Lee et. al. [149]). Since we do not know Sx(Tm) here

we instead focus on the ∆Sx(T ) = Sx(T ) − Sx(Tm), which is representative of

the change of the excess entropy from that at the melting point. Values of ∆Sx

determined for the samples in this series are shown in Figure 6.35. The y-axis in

this case was set to 1−∆Sx and the x-axis was rescaled by the calculated values

of Tm in order to mimic the so called Kauzmann plot [16, 211] which shows the

excess entropy at each temperature normalised by the value at the melting point.

It is clear from the plot that 1−∆Sx decreases at a far faster rate for the N = 1

sample than the other samples and that this rate of decrease appears to decrease

with increasing molecular weight, indicating that the thermodynamic fragility

becomes less with increasing chain length as seen from the variation in ∆Cp. In

order to better quantify this trend a cut was made at Tg and the values obtained

from this cut are shown in the inset of Figure 6.35. These values indicate that the

the excess entropy at Tg increases with increasing molecular weight in a similar

manner to what was observed for the alkylbenzene series. However, note again

that we have here set Sx(Tm) = 0 for all samples whereas this of course in reality

has a finite value that would vary between the samples and affect the absolute

value of the determined excess entropies.
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Figure 6.35: ∆Sx values obtained through analysis of the DSC traces shown in
Figure 6.32, where ∆Sx is the difference between the extrapolated glassy and
liquid heat capacities, plotted against T/Tm.

6.6 Conclusions

In this chapter, measurements of a series involving the polymerisation of styrene

were performed using Broadband Dielectric Spectroscopy (BDS) and Differential

Scanning Calorimetry (DSC). These measurements spanned a range of samples

with three orders of magnitude difference in molecular weight. In this series, the

relaxation dynamics for the lower molecular weight samples are likely to be sig-

nificantly different to those of the polymeric samples. For example, the structural

relaxation of a glass former containing small molecules is related to cooperative

translation of the molecules, allowing the bulk sample to relax. Clearly this is

not the case for a high molecular weight polymeric sample. Instead, here it is

more likely that the structural relaxation is related to the cooperative motion of

smaller segments of the chain but it is difficult to quantify the exact size of these

relaxing regimes.

Quantification of the difference in dynamics between the short chain oligomeric

and polymeric samples in this series was obtained through analysis of values of

Tg, obtained from analysis of BDS and DSC data and from the literature. It
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was observed that the molecular weight dependence of Tg could be separated

into three distinct regions, as originally introduced by Cowie [259]. Values of

Tg for low degree of polymerisation, N , samples (Region I) increased systemat-

ically with increasing molecular weight in a similar manner to the alkylbenzene

series. For intermediate N (Region II), Tg also increased in a similar manner

but with a weaker dependence on Mw than in Region I. At a certain point Tg

values became fixed with further increases of Mw (Region III). This behaviour is

indicative of the changing nature of the dynamics as N increases. In Regions I

and II, the structural relaxation timescale is strongly dependent on N , suggesting

that the relaxation mechanism is strongly affected by the length of the chain. In

Region III, the structural relaxation timescale is clearly no longer dependent on

the length of the polymer but cooperative relaxation of sections of chains with

sections of neighbouring chains. It was also noticed that if one expresses Regions

I and II in terms of a suggested primitive unit, a monomer and a Rouse bead

respectively, the the ‘width’ of the Regions is equivalent to the same number of

units, determined to be on the order of 16. This suggests that the dynamics of

a polymeric glass former change when the ‘size’ of the polymer reaches a certain

number of primitive units.

We also saw evidence of a three region behaviour in the dynamic fragility

parameter, m. It was observed that values of m was relatively invariant for

the lowest chain-length samples in Region I. The values then show a systematic

increase with Mw beyond the molecular weight corresponding to the Kuhn length

in Region II (as defined by Hintermeyer et. al. ≈ 1800 g/mol) before a constant m

observed for the highest molecular weight samples in Region III. It was suggested

that the dynamic fragility is only variable in Region II, whereas it is relatively

fixed in Region I and III. Given the behaviour of Tg we should perhaps expect the

m parameter to behave in this manner. As stated, in Region III, the α relaxation

is likely to be unaffected by the total length of the polymer chains and therefore

we can expect the same fragility. Likewise, in Region II we should expect that

the fragility should increase with chain length as we saw an increase in Tg in the

same region. However, it is unclear why the fragility should be approximately

invariant in Region I. More measurements on a greater number of samples in this

region should be performed in order to ascertain the reason.
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We find evidence for three relaxation modes, α, β and γ in this series in a

similar manner to those found in the alkylbenzene series. The α relaxation loss

peak in ε′′ is clearly observed for all samples measured using BDS. This loss peak

appears to become increasingly stretched with increasing molecular weight. The

stretching of the α loss peak has been previously linked to the dynamic fragility

of glass-formers [11, 26, 190] suggesting that this measure of fragility increases

with increasing molecular weight for this series. Furthermore, one would expect a

longer chain to have a larger molecular weight distribution and therefore a larger

distribution of relaxation timescales. The broad nature of the response for the

higher N samples is a reflection of this.

The γ relaxation was directly observed for theN = 1-4 samples. The timescales

of this relaxation mechanism correspond well to those obtained for PS [204]. This

suggests that the relaxation mechanism is of similar origins across the series and

implies that whatever physical process is responsible is largely unaffected by chain

length. Indeed, previous studies in the literature have attributed this relaxation

process to translation [203], 180◦ flipping [200, 201] or oscillations [272] of the

phenyl-rings. It is unlikely that small motions of the phenyl-rings are strongly

affected by the length of the main chain itself and therefore the similarity of the

relaxation timescales of the γ relaxation for different samples is expected. The

activation energies obtained for this relaxation process also correspond well to

those observed for the γ relaxation in the alkylbenzene series. This suggests the

relaxation mechanisms are of a similar nature in both series. This is further

evidence that the γ relaxation involves the motion of phenyl-rings.

Data for the timescale of the β relaxation for PS was obtained from the litera-

ture [268]. These data were used to construct ‘expected’ values of τβ for the other

samples in the series through use of the relationship between activation energy,

EA, and Tg [55] and the Arrhenius equation. Two procedures were outlined based

on setting τ0 to the same value for all samples (Procedure 1) or determining τ0

explicitly for each sample (Procedure 2). The observed β relaxation mechanism

for PS has been attributed to 180◦ flipping of the phenyl rings about the chain

axis [201], small angular rotations of the phenyl rings [202] or a combination of

both of these processes [200]. However we observe that the timescale for the β

relaxations increase significantly with increasing chain length. This suggests that
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the relaxation mechanism is strongly dependent on the length of the chain and

therefore it seems unlikely that it should be simply a result of phenyl ring motion

and perhaps it is the result of correlated dynamics of larger sections of the chain

[51]. Values of τβ obtained through both of these procedures show similar trends

to those observed for the alkylbenzene series. This suggests that the physical

nature of the β relaxation is a general property of molecular glass formers and

directly related to some measure of the ‘size’ of a constituent molecule rather

than dependent on sample chemistry.
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Chapter 7

Results III: An oligomeric

chain-length series of

α-methylstyrene

7.1 Introduction

In this Chapter, results from measurements of a chain-length series based on the

polymerisation of α-methylstyrene is presented. Results from both Broadband

Dielectric Spectroscopy (BDS) and Differential Scanning Calorimetry (DSC) mea-

surements are presented. To our knowledge, the only systematic data on a chain-

length series of α-methylstyrenes was Tg data that were published by Cowie et.

al. [259, 304] using Differential Thermal Analysis (DTA). These literature data

will be specifically discussed and compared with our new results. Other exam-

ples of the use of poly(α-methylstyrene) (PAMS) include a DSC study of the

effects of mixtures of poly(α-methylstyrene) with a lower chain length oligomer

of α-methylstyrene [305]. This will be discussed in the relevant sections in the

chapter.

Technical specifications for the samples used in the PAMS series are shown

in Table 7.1. The samples will be referred to by their degree of polymerisation,

Nα, as shown in the table. Values of Nα were determined by dividing the weight

averaged molecular weight, Mw, by the Mw of the α-methylstyrene monomer

(118.18 g/mol). The lowest molecular weight samples in the series (Nα = 2 and 3)
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Nα Mw (g/mol) PDI Manufacturer
2 236.36 1 Sigma-Aldrich
3 354 1 Polymer Source
5 590.9 1.16 Polymer Source
15 1740.2 1.13 Polymer Source
19 2200 1.12 Polymer Standards Service
31 3660 1.09 Polymer Standards Service
61 7260 1.06 Polymer Standards Service
135 15900 1.12 Polymer Standards Service
239 28200 1.02 Polymer Standards Service
320 37800 1.04 Polymer Standards Service
353 41700 1.02 Polymer Standards Service
502 59300 1.02 Polymer Standards Service
603 71300 1.02 Polymer Standards Service
914 108000 1.02 Polymer Standards Service
1972 233000 1.03 Polymer Standards Service

Table 7.1: Technical specifications of the PAMS series including the degree of
polymerisation, Nα, weight averaged molecular weight, Mw, polydispersity index
(PDI) and the manufacturer.

had a stated polydispersity index (PDI) of 1, implying that the number average

and weight averaged molecular weights were equivalent. The higher molecular

weight samples have varying degrees of polydispersity as shown in the table. The

samples were all run using BDS and DSC with the exception of the Nα = 2 sample

which was only run using BDS.

The chemical structures differ slightly between samples obtained from Poly-

mer Source/Sigma Aldrich (low Nα) and those obtained from Polymer Standards

Service (PSS; high Nα). The differences in structure are shown in Figure 7.1. All

samples were produced through anionic living polymerisation in the same manner

as the samples in the styrene series. The difference in the chemical structure of the

samples results from the difference in the initiators used in this process. The low

molecular weight samples obtained from Sigma-Aldrich and Polymer Source were

produced using cumyl-potassium as an initiator and the resulting polymers are

capped on one end with a cumyl-group. This is effectively equivalent to having a

PAMS chain with each end capped with a proton as indicated in the figure. The

higher molecular weight samples obtained from PSS are manufactured with sec-
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Figure 7.1: Schematic of the chemical structure for the PAMS series.

butyllithium as an initiator and the resulting polymers have a sec-butyl initiator

group attached in a similar manner to the samples in the styrenes series.

7.2 Dielectric Spectroscopy - α relaxation

BDS measurements were performed both the University of Leeds and Chalmers

Institute of Technology, Gothenburg, using the slightly different dielectric set-

ups described in Chapter 2. The higher molecular weight samples in this series

demonstrated significant DC-conductivity contributions to the dielectric spectra

due to the presence of charged impurities. In order to attempt to remove these

contributions, the samples were ‘cleaned’ using the methanol precipitation tech-

nique described in Chapter 2. An example of the effect of this cleaning procedure

on the dielectric spectra of the Nα = 1972 sample is shown in Figure 7.2a. Af-

ter methanol precipitation the conductivity contribution is lowered by around a

decade in ε′′, thus obscuring the α loss peak less at low frequencies. However, de-

spite this cleaning procedure the conductivity contribution was still present in the

dielectric spectra. Further cleaning, involving multiple precipitation steps would

have to be performed in order to remove all the charged species from within the

samples.

The lowest chain length samples in this series (Nα = 2 and 3) had a relatively

low viscosity at room temperature and were thus run using the dielectric liquid

cell (Novocontrol, BDS 1308). The other samples in the series were run using

the two electrode set-up. Detailed descriptions of these two sample geometries

can be found in Chapter2. In both cases, the separation between the electrodes
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was 50µm, maintained through the use of silicon spacers. The longer chain-

length samples were first dissolved in toluene, solution-cast to a 40mm diameter

electrode and dried under vacuum at 473 K for 24 hours prior to measurement.

The 40mm electrodes were then heated on a hot-plate in order to decrease the

viscosity of the samples so that silicon spacers could be added. Finally, a 20mm

electrode was placed onto the sample/spacers and pressure was applied in order

to ensure a constant measurement volume.

Figure 7.2: a) Dielectric spectra for the Nα = 1972 sample before and after
methanol precipitation. b) Mass percentage as a function of temperature obtained
from Thermogravimetric Analysis (TGA) for the Nα = 239

The viscosity of these samples remains relatively high even at temperatures

∼ 50K above Tg. At a certain temperature, polymeric samples experience thermal

degradation in which the backbone bonds are broken. In order to avoid degrada-

tion of the samples during sample preparation, the degradation temperature, TD,

was determined by measurement of the samples using Thermogravimetric Analsis

(TGA), as described in Chapter 3. TGA measurements involve heating a sample

and observation of the variation of its percentage mass, where 100% percentage

mass denotes the mass of the sample at the beginning of a measurement. An

example of the mass trace obtained for the Nα = 239 sample is shown in Figure

7.2b. For the lower temperatures in the measured range, the mass percentage

remains at 100%. However, at a certain temperature, TD, the sample degrades

and the mass rapidly decreases. Analysis of this kind provided an upper-bound
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of the temperature for the sample preparation process. In the case of Nα = 239,

TD ≈ 550K.

The samples were run by first heating (or cooling, depending on the expected

value of Tg) the dielectric sample cell to a temperature such that the loss peak

corresponding to the α relaxation was just visible in the experimental frequency

window (for example, when the peak frequency, fp, was ∼ 106Hz). The samples

were then cooled in steps of 2K from this starting temperature and spectra were

obtained at each step.

7.2.1 Dielectric Spectra

The spectra obtained for a selection of the samples (Nα = 2, 3, 5, 13, 19, 31, 353

and 1972) in the PAMS series in the α relaxation temperature regime are shown

in Figures 7.3a-h. Spectral data are only shown for temperatures at which the α

relaxation loss peak could be fully resolved. The lines through the points in the

spectra correspond to fits to the data. The fitting procedure is outlined in detail

in Section 7.2.2. All samples show a clear loss peak corresponding to the α relax-

ation with the peak position moving to lower frequencies as a result of decreasing

temperature. Despite the cleaning of these samples to remove charged species, a

significant conductivity contribution, manifested as a power-law flank in ε′′, was

observed at frequencies lower than the peak frequency of the α loss peak. This

contribution has been removed (the low frequency range where this dominated

was cut in the plot) in the displayed spectra so that the α loss peaks are clearly

visible. For many of the samples, this contribution significantly obscured the α

loss peak in the low frequency range. This was particularly apparent for the sam-

ples with higher chain-length and for these samples the frequency position of the

α loss peak could not be determined across the entire frequency range. At the

highest frequencies, a power law contribution was observed as was also observed

for the alkylbenzene (Chapter 4) and styrene (Chapter 6) series. This contri-

bution has also been removed in the displayed spectra (the highest frequencies

where this affected the data was cut in the plot) so that the development of the

α loss peaks are clearly visible at all temperatures.
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Figure 7.3: Dielectric spectra in the α relaxation temperature regime for the
Nα = a) 2, b) 3, c) 5, d) 13, e) 19, f) 31, g) 353 and h) 1972 samples. The
excess-wing behaviour of the Nα = 3 sample is denoted by the blue lines in b)
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For some of the samples, other contributions to ε′′ were also visible. For exam-

ple, the spectra for the Nα = 2 sample shown in Figure 7.3a has a clear secondary

relaxation peak. This demonstrates the presence of a secondary relaxation pro-

cess the nature of which will be discussed in Section 7.7. Furthermore, the loss

peaks for the α relaxation of the Nα = 3 sample shown in Figure 7.3b show a

change in the power law exponent of the high frequency flank and thus show a

so-called ‘excess-wing’ behaviour as described in previous chapters. The change

in the exponent of the high frequency power-law is indicated by the solid blue

lines in Figure 7.3b. This again is indicative of a secondary relaxation process

but this process could not be resolved separately to the α relaxation. Note that

indications of excess wings can be observed also for several of the other samples,

as observed in Figure 7.3 indicating the presence of secondary relaxations.

7.2.2 Fitting Procedure

In Section 7.2.1 it was shown that the dielectric spectra for the samples in the

PAMS series show three contributions: a loss peak corresponding to the α re-

laxation, a low frequency contribution as a result of DC-conductivity and a high

frequency powerlaw contribution. The dielectric spectra were fit using a similar

procedure to that of the alkylbenzene and styrene series as described in Chapters

4 and 6.

The α loss peaks were fit using the Rikard Bergman (RB) function [104] (a full

explanation of the parameters in this function can be found in Chapters 2 and 4).

It was found that the parameter corresponding to the bluntness of the loss peak,

C, could be fixed for all temperatures for each sample. This parameter was set

to a value of 0 for all samples with the exception of the Nα = 3 sample for which

the spectra were best described by setting C = 0.37. The other parameters were

left ‘free’ and thus the α loss peak could be well described using a four parameter

expression. In Chapters 4 and 6 it was shown that there is a good agreement

between fits of the RB and Havriliak-Negami (HN) [110] functions to the α loss

peak and thus it was determined that a full account of the spectral shape of this

loss peak could be attained through use of the RB function. The spectra for
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the Nα = 3 sample shows a clear excess-wing and were fitted using the modified

version of the RB function as described in Chapters 4 and 2.

The DC-conductivity contribution to the dielectric loss was fit using the fol-

lowing function [94]:

εcond(ω) = −i σ0

ε0ω
(7.1)

Where σ0 is the ohmic or DC conductivity of the material. This relation

implies that the exponent of the conductivity power law flank in ε′′ should be 1.

In most cases it was required to lower the value of this exponent in order to fit

the data correctly by including an exponent parameter, k such that ε′′cond ∝ ωk.

The high frequency contribution was fit using a power-law of the form ε′′ = AωB.

The spectra for the Nα = 2 sample show the emergence of a secondary loss

peak in the high frequency flank of the α loss. Secondary relaxations are often

manifested as symmetrically stretched loss peaks [33, 61, 67, 94, 96, 116, 117]

and therefore this contribution was fitted using the Cole-Cole [176] function as

described in Chapter 2.

The spectra for some of the other samples in the series also contained a weak

contribution at frequencies between the α loss peak and the high frequency con-

tribution. In order to provide a full description of the spectra, it was assumed

that this contribution was the manifestation of a weak secondary process and was

thus fit using the CC expression.

A full description of the dielectric spectra in each case was obtained through

an additive combination of the functions used in order to fit the separate contri-

butions to ε′′.

7.2.3 Fitting parameters for the α relaxation loss peak.

The parameters corresponding to the decription of the α loss peaks obtained

through fits using the RB function (and modified RB function for the Nα = 3

sample) are shown in Figures 7.4a-d. Although time-temperature superposition

(TTS) has been shown to be applicable for some polymeric systems [170–173] it

appears that it does not hold for this series. The parameters will be addressed

individually in the following sections. The dashed lines in Figure 7.4c denote
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Figure 7.4: Parameters obtained through fits of the RB function to the dielectric
spectra. Parameters shown are a) the exponent of the low frequency power law,
a, b) the exponent of the high frequency power law, b, c) the dielectric strength,
∆ε, d) the amplitude, ε′′p

fits of the ∆ε values for the Nα = 2 sample with a simple 1/T dependence (blue

dashed line) and an exponential dependence (dashed black line). The exponential

dependence appears to provide a better description of the data of the data over

the full temperature range, which is fully consistent with the behaviour observed

for the oligo(styrenes). This will be discussed further in Section 7.2.3.

Low frequency flank

The fitted exponents, a, of the low frequency power-law flank of the α loss peak

are shown in Figure 7.4a. The values increase with increasing temperature across

the range of samples, indicating a narrowing of the low frequency portion of the

peak. For the lowest chain-length sample, Nα = 2, the values increase towards

a value of unity with increasing temperature. The a parameter values for the

Nα = 3 sample seem to have an almost temperature invariant behaviour and the

spectra could be well described with a set to values approaching unity across
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the measured temperature range. We observe that, for the higher chain-length

samples, values of a increase with increasing temperature and the temperature

dependence of the values is similar. The values for the higher chain-length samples

are lower than those of the Nα = 2 and 3 samples.

Many authors state that the low frequency power-law flank of the α loss

peak should have an ω1 dependence and many of the functional descriptions of

dielectric loss peaks assume this dependence [55, 98, 109, 168]. Although the

Nα = 3 sample conforms to this expected behaviour, the other samples in the

series clearly do not. In Chapter 6 a similar behaviour was observed for the

styrene series and a possible reasoning for this behaviour was discussed and we

refer to the previous discussion.

High frequency flank

The parameters corresponding to the exponent of the high frequency power-law

flank, b, are shown in Figure 7.4b. In general, these parameters also show an

increase with increasing temperature as observed for the styrene series. There

does not, however, appear to be an obvious trend with molecular weight. The

lowest chain-length samples (Nα = 2 and 3) show a similar temperature depen-

dence to the highest chain-length samples and it appears that, in general, the

higher chain-length samples have lower values of the b parameter. Interestingly,

the Nα = 5, 15 and 19 show a relatively temperature independent behaviour.

In general, through the exponents of the low and high frequency flanks (a and

b) we observe that the α loss peak is broader for the higher molecular weight

samples. This was also observed for the styrene series. We also observe that

the higher molecular weight samples have very similar values of these exponents

indicating that the shape of the α loss peak is effectively independent of molecular

weight for polymers in this series past a certain chain-length. Similar behaviour

has also been observed for oligomeric series of styrene (see Chapter 6 and Refs.

[26, 269]). Furthermore, the breadth of the α loss has been attributed to the

fragility, with more fragile glass-formers exhibiting a broader relaxation dispersion

[11, 26, 190] and similar conclusions have been drawn for the behaviour of the

KWW stretching parameter (which is related, in some respect, to the b parameter)
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[62, 83]. This implies that the fragility increases with increasing molecular weight

until a certain point at which the fragility no longer exhibits a molecular weight

dependence. This will be confirmed, to a certain extent, by the determined values

of the fragility parameter m in Section 7.5 and also through analysis of the width

of the DSC traces in Cp in Section 7.8.1. Furthermore, it could be said that

the breadth of the α loss peak could be related to the degree of cooperativity in

glass-formers [62, 83]. This implies that the degree of cooperativity increases as

a function of chain-length. This might be expected as systems with longer chains

are likely to have more complex intramolecular interactions [193].

Dielectric strength

Values of the dielectric strength, ∆ε of the α loss peaks for the samples were

obtained by numerical integration of the fits of the RB function to the dielectric

spectra (the integral is given in Chapters 2 and 4). These values are shown

in Figure 7.4c. To aid further discussion, the values have been plotted on a

logarithmic y-axis as shown in Figure 7.5. The dielectric strength decreases with

increasing molecular weight. This trend is indicated by the dashed grey guide to

the eye in Figure 7.5 and a similar trend is observed also for the amplitude of the

α loss peaks.

In general values of ∆ε show a 1/T dependence as predicted by the Onsager

equation [94] which has been fully discussed in Chapters 4, 6 and 2. In order to

highlight this trend, the data for the Nα = 2 sample were fit using an equation of

the form ∆ε = A
T

. This fit is denoted by the blue line in Figure 7.5. In general,

the temperature dependence of ∆ε appears to be stronger than a simple 1/T

behaviour for the lowest molecular weight samples (Nα = 2, 3 and 5) although

it could be a reasonable description of the data for the higher molecular weight

samples.

As a further test, the Nα = 2 samples data were fit with an exponential of

the form ∆ε = AeBT . This is denoted by the black dashed line and appears to

be a better description of the data. Interestingly this fit encompasses the low

temperature data for the Nα = 3 sample and almost predicts the behaviour of

∆ε across the range of samples with the obvious exception of the Nα = 15, 19, 31
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Figure 7.5: Values of ∆ε obtained through fitting of the dielectric spectra plotted
on a log axis against 1000/T . The blue dashed line corresponds to a fit of the
form ∆ε = A/T and the black dashed fit line in panel corresponds to a fit of the
form ∆ε = AeBT . Both fits were conducted on the Nα = 2 sample.

and 61 samples. This could indicate a more general behaviour of ∆ε as a function

of chain-length and is consistent with the observations for the oligo(styrenes).

7.3 Relaxation timescales

In this section, the relaxation timescales obtained through fits of the RB function

to the dielectric data will be considered. The data are shown in an Arrhenius

plot in Figure 7.6a. The figure also includes data for isopropylbenzene (IPB)

obtained from the literature [162]. IPB is chemically similar to the monomer

unit of PAMS, the only difference being that the α-methylstyrene monomer has

a double bond between a methyl group and a carbon atom and thus has 1 less

hydrogen atom than IPB. The τα data shows a shift to higher temperatures with

increasing chain-length indicating an increase in Tg, which is consistent with the

general trend observed for both the styrene and alkyl benzene series. The dashed

horizontal line indicates a timescale of 100s, at which Tg is often defined [189].

Figure 7.6b shows the τα data rescaled by Tg. The behaviour of the data

in this scaling indicates qualitatively that the longer chain-length samples in
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Figure 7.6: a) Relaxation timescales of the α relaxation, τα, for the PAMS series.
b) τα values plotted against Tg/T . The plots include data for isopropylbenzene
(IPB) obtained from Ref.[162], which is chemically similar to the α-methylstyrene
monomer.

this series are more fragile than the shorter chain-length samples [91]. In other

words, close to Tg, the longer chain-length samples exhibit a greater change in

the timescale of the α relaxation with decreasing temperature. This appears to

vary systematically for the Nα = 2, 3 and 5 samples but it it difficult to say

whether the longer chain-length samples also show a systematic dependence of

the fragility. The observed behaviour of the τα data will be quantified by further

analyis of the data in Section 7.5.

The data are well described by fits of the VFT equation (see Chapters 1, 4

and 6) [27–29] as denoted by the solid lines through the data. The fit parameters

τ0, D and T0 are shown in Table 7.2. Also shown are values of Tg (defined at

τα = 100s) and the fragility parameter, m.

In general, values of τ0 decrease with increasing chain-length. For theNα = 13,

19, 31 and 239 samples these values fall within the range expected for typical

microscopic timescales (10−12 - 10−14s) [2, 24–26]. However, the values for the

other samples do not fall within this region. Values for T0 also show an increase

with increasing molecular weight as expected, given the shift of the τα data to

higher temperatures with increasing chain-length. The other parameters in Table

7.2 will be addressed in full in the following sections.
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Nα log10(τ0)(s) D T0 (K) Tg m Reference
1 (IPB) -19.5 ± 0.8 21 ± 3 89 ± 2 127.6 72.0 [162]

2 -18.2 ± 0.1 19.8 ± 0.2 134.7 ± 0.3 192.0 67.8
3 -17.0 ± 0.2 14.9 ± 0.4 173.5 ± 0.9 232.6 74.5
5 -16.2 ± 0.5 12 ± 1 242 ± 3 309 84
13 -13.0 ± 0.1 5.2 ± 0.2 318 ± 1 367 113
19 -12.1 ± 0.1 4.1 ± 0.1 349 ± 1 393 126
31 -12.3 ± 0.1 4.0 ± 0.2 368 ± 1 413 131
61 -10.9 ± 0.2 2.6 ± 0.1 394 ± 1 429 156
135 -11.7 ± 0.2 3.2 ± 0.2 397 ± 2 437 148
239 -13.3 ± 0.4 6.1 ± 0.6 349 ± 5 409 104
320 -11.3 ± 0.1 2.8 ± 0.1 405 ± 1 442 159
353 -10.7 ± 0.1 2.3 ± 0.1 410 ± 1 442 177
502 -11.4 ± 0.1 3.0 ± 0.1 397 ± 1 435 151
603 -11.2 ± 0.1 2.8 ± 0.1 401 ± 1 438 157
914 -11.4 ± 0.3 3.6 ± 0.3 370 ± 3 414 127
1972 -10.4 ± 0.2 2.3 ± 0.1 385 ± 2 416 170

Table 7.2: Table showing the fitting parameters obtained through fits of the VFT
equation to the τα data. The table also includes Tg and the fragility parameter
m for each sample. The reported errors were obtained from a least mean squares
fit of the VFT function to the τα data.
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7.4 Glass transition temperature

In this section, the Tg values obtained through extrapolation of the VFT fits to

the τα data will be discussed. Figure 7.7a shows these data for a selection of

the lower chain-length samples plotted against molecular weight on a linear scale.

Values of Tg for the same selection of samples, obtained from analysis of the DSC

data, (see Section 7.8.1) are shown for comparison. Also shown is the Tg value

determined for IPB from VFT fits of the τα data obtained from the literature

[162]. There is reasonable agreement between Tg values obtained from analysis of

τα and those obtained from analysis of the DSC data with the exception of the

Nα = 13 and 19 samples (as marked in Figure 7.7a) for which the DSC values

appear to be lower. The dashed black line in Figure 7.7a indicates a fit of the Fox-

Flory equation to the whole data set. In this scaling, the Fox-Flory relationship

describes the variation of Tg reasonably well with the exception of the Nα = 13

and 19 samples and the value for IPB. The Tg data for all the samples in the

series is shown in Figure 7.7b, this time plotted with a logarithmic scaling of Mw.

Again we see that the Fox-Flory relationship described the high Mw data well

but this does not extend to the Tg values for IPB and the Nα = 2 sample.

It should be noted that the Tg values obtained through VFT analysis of the τα

data are lower than expected for the Nα = 239, 914 and 1972 samples, plotted as

grey circles in Figure 7.8a. The differ significantly to the DSC Tg data for the same

samples. These samples show a particularly strong conductivity contribution and

therefore timescales could not be obtained from the α loss peaks across the whole

frequency range (see for example the spectra for the Nα = 1972 sample in Figure

7.3h). This could mean that the VFT fits of the data may not be an accurate

representation of the peak timescales of the α loss peak at low frequencies (longer

timescales) and because of this the extrapolation of the VFT fits to τ = 100s may

not have given an accurate indication of Tg. In order to test this, Tg values were

also obtained at τ = 1s instead as this required no extrapolation of the VFT fits.

These values are denoted by the green circles in Figure 7.7a. However, we see

that that these values of Tg are still lower than expected for the Nα = 239, 914

and 1972 samples. The most probable origin of the lower values for the dielectric

data for these three samples is that some level of degradation occurred in these
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Figure 7.7: Values for the glass transition temperature, Tg, obtained through
analysis of τα, where Tg has been defined at 1s (green circles) and 100s (red
circles). These are plotted on a linear (panel a) and a logarithmic (panel b) x-
axis. Also shown are values obtained from analysis of the DSC traces in Cp. The
grey circles indicate the Tg values of the Nα = 239, 914 and 1972 samples. The
black dashed line indicates a fit of the Fox-Flory equation.

samples during the sample preparation. This is supported by the fact that the

DSC results for the same three samples are consistent with the behaviour of the

other samples.

We saw for the styrene series that the Tg data were well described by as-

signing three distinct molecular weight regions based on plotting the data in a

semilogarithmic plot. Indeed, Cowie [259] saw that the three-region behaviour

was also present for Tg values of a similar chain-length series of PAMS, measured

using Differential Thermal Analysis (DTA) [259, 304]. In Figure 7.8 we present

a comparison of the Tg values obtained for this series (Figure 7.8a) with those

obtained by Cowie (Figure 7.8b).

The dashed guides to the eye in Figure 7.8a indicate a suggested linear increase

of Tg for the low molecular weight samples (red line) and the value at which Tg

becomes invariant with increasing molecular weight (grey line). We have not

attempted to fit the intermediate regime (II) or determine the borders between

the three regimes. The vertical dashed lines are here the same as those used

by Cowie and shown in Figure 7.8b. Qualitatively, it appears that we observe

a similar behaviour to Cowie et al. However, for higher molecular weights, our
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= 35700

= 1830

Figure 7.8: a) Values for the glass transition temperature, Tg, obtained through
analysis of the dielectric and DSC data, including data for IPB [162]. b) Values
of Tg obtained from the literature [259, 304]. The vertical dashed lines in each
figure denote the molecular weight regions defined by Cowie [259]

data is less clear than the DTA data obtained from the literature which shows

a behaviour which is strongly suggestive of a three-region behaviour of Tg rather

than a smooth function of Mw. The values of molecular weight that separate the

three different regions (as determined by Cowie [259]), M I
w and M II

w are shown

in Figure 7.7b, corresponding to Nα ≈ 15 and Nα ≈ 300. These values are

similar to those observed for chain-length series of styrenes as shown in Chapter

6. Hintermeyer et. al. associated M I
w with the molecular weight of a Rouse unit or

Kuhn segment [258]. The Kuhn-length of poly(α-methylstyrene) has been quoted

as 1.7nm [306]. If we assume that the carbon-carbon bond to be 1.544Å [307] then

the size of a Kuhn segment is equivalent to ∼ 11 monomer units. This is smaller

than the number of monomer units associated with M I
w for chain length series of

poly(α−methyl styrene) (15 units). However, the definition of M I
w is somewhat

arbitrary so one could still imagine M I
w to be equivalent to the molecular weight

of a Kuhn segment. This again suggests, as it did for the styrenes, that the onset

of Rouse dynamics could affect the molecular weight dependence of Tg.

Our Tg values, particularly for the molecular weights in Region II, are higher

than those in the literature[259, 304]. The reason for this might be a difference

with regards to the initiator group or it might be due to a difference in tacticity.

We note that the samples in the styrene series also have an initiator group but

255



7. RESULTS III: AN OLIGOMERIC CHAIN-LENGTH SERIES OF
α-METHYLSTYRENE

the values were in very good agreement with those obtained from the literature

[258–261]. There is unfortunately no information available regarding the initiator

used in the synthesis of the samples in the literature [259, 304]. However, even

with these differences present, the overall behaviour suggesting an initial regime

(I) with a linear behaviour in a semi-logarithmic plot and a final high molecular

weight regime which lacks molecular weight dependence are the same. Our data

might also be best described within an intermediate regime (II) using the same

functional shape as in Region I, but the small range and few data points within

this regime makes it impossible to know for sure.

7.5 Dynamic Fragility

We will now consider the dynamic fragility of the samples in this series. It was

observed, through rescaling of the τα data by Tg (Figure 7.6b), that the fragility of

the samples increased as a function of molecular weight. In order to parametrise

this trend, the dynamic fragility parameters, m, were calculated (as defined in

Chapters 1 and 4 ). Values of m are shown in Figure 7.9a. Those samples which

had unexpected values of Tg are represented as grey points.

The values show a similar trend to that observed for the oligostyrene series:

an increase with increasing molecular weight for the lower chain-length samples

before reaching a limiting value for the longer chain-length samples. This occurs

at a similar molecular weight as the point at which Tg becomes invariant with

molecular weight. Similar trends in the fragility parameter have also been ob-

served for other polymeric chain length series (for example: polydimethylsiloxane

(PDMS) and polybutadiene (PB) [258]) and also for the styrene series shown in

Chapter 6.

The implication of this is that fragility is only molecular weight dependent in

a certain dynamic regime before reaching a constant value for polymers for which

descriptions of their dynamics are effectively independent of molecular weight.

A similar trend of fragility is implied by the variation of values of the strength

parameter, D, shown in Figure 7.9b as obtained from the VFT fits of the τα

data. Interestingly, the values of D appear to reach a limiting value of D at a
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Figure 7.9: Values for a) the dynamic fragility parameter, m, and b) the strength
parameter, D, obtained through fits of the VFT function to the τα data. The
values for the samples which demonstrated unexpected values of Tg (Nα = 239,
914 and 1972) are shown in grey in both cases.

lower molecular weight than the corresponding m parameters or Tg although it

is difficult to say for sure.

7.6 Linearisation of timescale data

Further analysis of the temperature dependence of the τα data was done by per-

forming a so-called Stickel analysis of the data [31]. This involved taking the

derivative of the logarithm of the τα data as described in Chapters 1 and 4. This

derivative is quantified by the Z parameter. The linearised τα values are shown

in Figure 7.10a. The lines through the data indicate the linearised VFT fits of

the τα data as shown in Figure 7.6. We observe that the temperature dependence

of Z appears to increase with increasing molecular weight. This again implies

an increase in fragility as strong Arrhenius-like behaviour would be represented

with a temperature independent Z parameter. The increase in dynamic fragility

is parametrised by the −S parameter as shown in Figure 7.10b. We observe an

increase of −S with increasing molecular weight for the shorter chain-length sam-

ples before −S becomes invariant with molecular weight for longer chain-length

samples in a similar manner to the m and D parameters.
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Figure 7.10: a) Linearised τα data for the PAMS series. Solid lines through the
data are linearised fits of the τα data with the VFT equation. b) Values of the
Stickel gradient parameter, −S.

Closer analyses of the linearised τα data for the Nα = 2, 3, 5 and 13 samples

are shown in Figures 7.11a-d. Linearising the τα data in this manner can some-

times yield subtle differences in the temperature dependence of the data that can

not be resolved in Arrhenius plots of τα versus 1/T . Also, it is often observed

that a kink in a Stickel plot indicating the change from one VFT-like behaviour to

another coincides with the merging or bifurcation of a secondary relaxation [193].

The vertical dashed black lines show the temperatures Tαβ. For the Nα = 2 sam-

ple, its value was obtained by determining the crossover between the Arrhenius

description of the τβ data and the fits of the VFT equation to the τα data. For

the other samples, values of Tαβ were obtained by calculating ‘expected’ values

of τβ. This will be fully explained in Section 7.7.2. The dashed red-lines in the

figures show linear fits to the low temperature linearised data (T < Tαβ).

We observe that, for the Nα = 2 sample (Figure 7.11a) there is no clear

indication of a change of temperature dependence of Z at Tαβ and the data are

well described across the whole temperature range by a fit of the low temperature

data. However, the other samples do appear to exhibit a slight change in the

temperature dependence of Z and this occurs in a similar temperature range

to that of Tαβ. This change is emphasised by the fits of the low temperature

data which do not provide an adequate description of the data over the whole

temperature range. This is more obvious for the Nα = 3 and 13 samples but more
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Figure 7.11: Linearised τα data for the a) Nα = 2, b) Nα = 3, c) Nα = 5 and d)
Nα = 13 samples. The vertical black dashed lines indicate the crossing point, Tαβ
of the τα and τβ values in an Arrhenius plot. For the Nα = 3, 5 and 13 samples
this was obtained from the expected timescales of the β relaxation as explained
in the text. The red dashed line indicates a linear fit to the low temperature data
(T < Tαβ)
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data would be required at high temperatures (shorter timescales) to confirm this

behaviour for the Nα = 5 sample.

7.7 Secondary Relaxation

The only sample in which a secondary, β relaxation loss peak could be fully

resolved in the dielectric spectra was the Nα = 2 sample. At higher temperatures

the peak was manifested as a ‘shoulder’ on the high frequency power-law flank of

the α loss peak as shown in Figure 7.3a.

7.7.1 Fitting procedure

In order to analyse this relaxation process, spectra were analysed at temperatures

close to Tg. A selection of loss spectra are shown in Figure 7.12a. The lines

represent fits of the data. The β relaxation is often observed as a symmetrically

stretched loss peak in the dielectric loss, ε′′ [33, 61, 67, 94, 96, 116, 117]. .

Therefore it was assumed that the secondary relaxation observed for the Nα = 2

sample had a similar shape and was fit using the Cole-Cole (CC) expression [176].

The low frequency flank of the β relaxation loss peak was, at most temperatures,

significantly obscured by the high frequency flank of the α loss peak. A power-law

of the form ε′′ = Aω−k was used in order to take account of the high frequency

flank of the α loss peak.

The spectra were fit using an additive combination of the functional descrip-

tions of the β loss peak and the high frequency flank of the α loss peak. The two

fit contributions are shown clearly in Figure 7.12b at a temperature of 193 K.

It is clear from this figure that the combination of these two functions provides

a good interpolation of the data. It should be noted that frequency range was

restricted such as to remove high frequency contributions to the spectra.

It was obviously difficult to describe the shape of the β loss peak precisely due

to the proximity of the α relaxation loss peak. It was found that the symmetric

stretching parameter, α, in the CC expression could be fixed for all tempera-

tures to a value of 0.43. The dielectric strength, ∆ε showed little variation with
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Figure 7.12: a) Dielectric spectra for the Nα = 2 sample in the β relaxation
regime. b) Dielectric spectrum at 193 K showing the different fit contributions.

temperature, and had an average value of ∼ 8 × 10−3. The temperature depen-

dence and absolute value of ∆ε are similar to those of the secondary relaxations

observed for the alkylbenzene and styrene series (Chapters 4 and 6).

7.7.2 Relaxation timescales

In this section, the timescales of the observed β relaxation will be compared to

those of the α relaxation. Again, IPB has been included for comparison as it

is chemically similar to α−methylstyrene. For the Nα = 3, 5, and 13 samples,

predictions of the expected values of τβ were calculated. A similar analysis was

performed for samples in the styrene series (Procedure 1), as shown in Chapter 6.

This involved calculating expected values of τβ using the Arrhenius equation. In

order to do this, values of the activation energy, EA, and the limiting timescale

at high temperatures, τ0, needed to be determined.

Firstly, the activation energies, EA were determined using using the relation-

ship between Tg and EA suggested by Kudlik et. al. [61](EA = KRTg) and

assuming that the constant of proportionality, K was the same across the series.

A value of K = 29 was calculated using values of τβ for the Nα = 2 sample which

is similar to typical values of K observed for molecular glass formers (24 ± 3)

[15] and metallic glasses (26 ± 2) [9]. The variation of τ0 determined through

Arrhenius fits of the τβ data for the IPB [52] and Nα = 2 samples is very small
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Nα log10(τ0)(s) log10(ταβ) EA(kJ/mol) K Tg Reference
1 (IPB) -15.2 ± 0.2 −6.2± 0.1 26.3 ± 0.4 24.8± 0.4 127.6 [52]

2 -15.1 ± 0.3 −3.8± 0.1 46 ± 1 29.0 ±0.8 192.0
3 - −3.7± 0.1 56± 1 - 232.6
5 - −3.5± 0.1 75± 2 - 309
13 - −3.2± 0.1 89± 2 - 367

Table 7.3: Table showing parameters obtained through the Arrhenius fits of the
τβ data for the IPB (obtained from Ref.[52]) and Nα = 2 samples: the limiting
timescale at high temperatures, τ0 and the activation energy, EA. Also shown
are the activation energies for the Nα = 3, 5 and 13 samples obtained using
the method described in the text. The constant of proportionality, K, between
EA and Tg is also given as well as the glass transition temperature, Tg, and the
bifurcation timescale, ταβ. Note that values of τ0 and K for the Nα = 3, 5 and
13 samples are the same as those given for the Nα = 2 sample.

as shown in Table 7.3. Therefore the assumption was made that this value of τ0

should hold for the other samples as well.

Finally, ‘expected’ values of τβ for the samples in the series were calculated

using the Arrhenius equation. Some samples in the styrenes series exhibited

an excess-wing behaviour of the α loss peak at temperatures below Tg. It was

observed, by looking at spectra at specific temperatures, that the expected values

of τβ corresponded to the frequency regime in which the high frequency power-

law exponent of the α loss peak changed, thus providing support for the method

(Procedure 1 in Chapter 6) in which expected τβ values were calculated.

Timescales for both the α and β (both expected and observed) relaxations

for the Nα = 2, 3, 5 and 13 samples are shown in Figure 7.13a. The τβ values

for IPB were obtained from dielectric measurements conducted by Johari et. al.

[52]. The τβ data for IPB and the Nα = 2 sample were well described by fits

of the Arrhenius equation as denoted by the dashed fit lines through the data.

The parameters, τ0 and EA obtained from these fits and for the expected values

of τβ are shown in Table 7.3. The τβ data show a very similar variation to

those of the styrene series and appear to increase systematically (at a certain

temperature) with increasing chain-length. This behaviour also extends to IPB.

The variation of the activation energy (which sets the gradient of the data in

an Arrhenius plot) is also evident in Figure 7.13 which increases systematically
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Figure 7.13: Values of τα and τβ plotted against a) 1000/T and b) Tg/T . The
figure also includes data from the literature for IPB (Ref.[162] for τα and Ref.[52]
for τβ.). The dashed lines through the τβ data for IPB and Nα = 2 indicate fits
of the Arrhenius equation. The dashed lines for the other samples (Nα = 3, 5
and 13) indicated expected values of τβ determined as described in the text.

with increasing temperature by necessity as EA was calculated using values of

Tg which also increase systematically with chain-length for these samples. The

implication of the data is that, as the Tg values reach a limiting value at high Mw

(see Figure 7.7) the timescales of the β relaxation for the higher molecular weight

samples should follow a similar behaviour [69, 193]. Similar observations have

been made for the samples in the styrene and alkylbenzene series and also for

a series of PMMAs (which are not discussed in this thesis). Chain-length series

of monomethyl ethers and glycols also show similar behaviour [18]. This could

indicate that the observed behaviour of the τβ could be a general phenomena of

glass-forming systems.

A Tg rescaled Arrhenius plot is shown in Figure 7.13b. In this scaling, the

expected τβ values collapse onto the behaviour of the τβ values for the Nα = 2

sample. This is expected as Ea was calculated for the Nα = 3,5, 13 samples

assuming the same constant, K, as and limiting timescale, τ0, as determined

from the Arrhenius fits of the τβ values of the observed secondary relaxation of

the Nα = 2 sample. Again, it should be reiterated that this is a valid choice as

similar values of K are observed for many different glass forming systems [9, 15].

However the τβ data for IPB do not collapse in the same way.
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A confirmation of the nature of the obtained τβ values for this series can be

obtained by referring back to the linearised τα data shown in Section 7.6. These

values show a slight kink indicating a change in the dynamic behaviour of τα for

the Nα = 2, 3, 5 and 13 samples. The temperature range at which a change

in the dynamics of τα is observed is often called the crossover regime and can

sometimes be associated with the temperature, Tαβ at which bifurcation of the

α and β relaxations occurs [30]. Values of Tαβ were obtained by determining the

point at which the expected values of τβ (dashed lines in Figure 7.13) cross the

VFT fits of the τα data (solid lines in Figure 7.13). These values are shown as

dashed black lines in the plots of the linearised τα data and correspond well to

the temperature at which the ‘kink’ is observed suggesting that the determined

values of τβ are indicative of a real, underlying β relaxation which could not be

observed in the dielectric spectra.

Values of ταβ were also calculated (see Table 7.3). Interestingly, these values

show an increase with increasing chain-length rather similar to that suggested

for the styrene series using a similar approach to estimate the β timescales, for

the, alkylbenzene series, for a chain length series of PMMA. The coupling model

suggests a connection between the fragility parameter m and the coupling pa-

rameter, n, which is another measure of the cooperativity [83]. We observe an

increase of m with increasing molecular weight implying that the cooperativity

also increases with chain-length and thus strengthens the conclusions drawn from

the τβ data.

7.8 Differential Scanning Calorimetry

The samples, with the exception of the Nα = 2 sample were also measured us-

ing Differential Scanning Calorimetry (DSC). DSC measurements were performed

using the TA Instruments Q2000 calorimeter, the details of which are given in

Chapter 3. The samples were run by heating/cooling the samples in a cyclic man-

ner around their expected Tg values at a rate of 10K/min. This rate was chosen as

it can be shown to correspond to a relaxation timescale of 100s [138–141], meaning

that DSC and dielectric measurements could be compared constructively.
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7.8.1 Traces of the heat capacity

The DSC data obtained through this series of measurements are shown in Figure

7.14. The steps in Cp, denoting the glass transition, shift to higher temperatures

with increasing molecular weight, indicating increasing Tg values. The DSC traces

were analysed in the manner described in Chapter 3, with Tg determined from

the onset of the characteristic step in Cp associated with the glass transition. It

has already been shown (Figure 7.7) that the Tg values obtained from DSC and

dielectric experiments are in good agreement. Interestingly, the absolute values

of Cp below Tg appear to fall on the same temperature dependence as denoted

by the dashed guide to the eye.

Figure 7.14: Figure showing the Cp traces obtained through DSC measurements
of the PAMS series.

Measurements of mixtures of Nα = 5 and Nα = 915 samples of performed by

Huang et. al. [305] yield similar results. The glass transition was observed to

increase with higher concentrations of the Nα = 915 polymeric sample but the

Cp traces fall onto the same glass and liquid specific heat capacity behaviour. In

Chapter 4, similarities were seen between measurements of the alkylbenzene series

and measurements of different mixtures of polystyrene and toluene. It appears

that one may be able to draw similar conclusions here, that in terms of the specific
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heat, an increasing degree of polymerisation is analogous to increasing the long-

chain polymer component in a mixture with the same but shorter chain polymer.

The glassy base-line indicated using a dashed grey line in Figure 7.14 appears

to be very similar throughout the temperature range demonstrating that the

properties of the glass are similar independent of molecular weight even though

the glass-transition temperature is strongly affected by the molecular size.

Huang et. al. [305] also compare the Cp data for IPB and the α-methylstyrene

dimer with that of Nα = 5 and Nα = 13 and conclude that the specific heat

capacities in the liquid and glass are only molecular weight dependent up to Nα =

5. The results presented here seem to suggest that this behaviour actually extends

to the Nα = 3 sample. The authors attribute the observed behaviour to the

suppression of rotational and translational contributions to the heat capacity with

increasing polymerisation beyond Nα = 5, as previously suggested by Wunderlich

[308].

7.8.2 The ‘step height’ of the glass transition

In order to characterise the observed glass transition steps in Cp, the difference

between Cp in the glassy and liquid states, ∆Cp was determined and these values

are shown in Figure 7.15a. The values of Cp show no obvious trend with increasing

degree of polymerisation but appear to be similar for most of the samples in the

series with the exception of the Nα = 3 sample which has a far greater step size.

Again the behaviour of these values could also been explained by Wunderlich’s

hypothesis [308].

In Chapters 4 and 6 it was shown that one can analyse the difference in

the temperature dependence of the entropy at the glass transition by rescaling

values of ∆Cp by Tg. This analysis is shown in Figure 7.15. In this scaling,

the values show a very systematic decrease with increasing molecular weight as

highlighted by the dashed guide to the eye. This indicates the difference in the

temperature dependence of the entropy at Tg decreases with increasing degree of

polymerisation. This difference is far larger for the Nα = 3 sample.

As stated in previous chapters, the difference in the glassy and crystalline

heat capacities has been defined to be a measure of the so-called thermodynamic
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Figure 7.15: a) Values for ∆Cp obtained through analysis of the DSC traces
shown in Figure 7.14. b) The same values rescaled by Tg

fragility [91, 122]. It can also be shown that, for simple molecular glass formers

(such as the alkylbenzene series), ∆Cp can be related to the kinetic fragility

parameter, m [121]. However, for this series of samples we can show no such

correlation. The ∆Cp values show very little variation with molecular weight

whereas measures of the dynamic fragility (the m, D and −S parameters) show

a strong molecular weight dependence.

An inverse correlation between the thermodynamic definition of fragility pro-

vided by ∆Cp and the dynamic definition provided by the m parameter was ob-

served for the styrene series and has been observed for a range polymeric systems

[122, 263]. There is no such correlation for the values obtained in the analy-

sis presented here. Huang et. al. suggest that polymers can be grouped into

those with strong and weak inverse proportionality between m and ∆Cp. PAMS

clearly falls into the ‘weak’ category. A possible explanation for the difference in

the two definitions of fragility was given in Chapter 6 with reference to an argu-

ment presented by Angell in which he attributes the difference to the increase in

vibrational anharmocity in the glassy state [264].

7.8.3 The width of the glass transition step

The difference between the onset and offset temperatures of the glass transition

step in Cp, ∆T has also been attributed to the fragility of glass formers [209–
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Figure 7.16: a) Values for ∆T obtained through analysis of the DSC traces shown
in Figure 7.14.

211]. Values of ∆T are shown in Figure 7.16 and show a systematic increase with

increasing temperature for the majority of samples as indicated by the dashed

guide to the eye. Notable exceptions to this trend are the Nα = 5 and 19 samples

which have higher values of ∆T

We have discussed previously [211] that the onset temperature of the glass

transition step is related to a relaxation timescale of around 100s and that the

offset temperature is related to a timescale of around 1s and therefore the dif-

ference in these temperatures could be related to the definition of the fragility

parameter, m. Indeed we see a similar increase in the m parameter with in-

creasing molecular weight. However, we observed that m became independent of

molecular weight for the longer chain samples whereas ∆T seems to increase at

the same rate across the molecular weight range.

7.9 Conclusions

In this chapter the measurements of another oligo-/polymeric series have been

presented. This series was characterised by the polymerisation of α-methyl styrene

and is the first example (to our knowledge) of a systematic chain-length study of
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this range of samples using dielectric spectroscopy.

This series of samples is chemically similar to the styrene series and therefore

we might expect similar glass forming behaviour. Indeed, it was observed that the

molecular weight dependence of Tg showed very similar behaviour to the styrene

series and, in the low molecular weight range, the alkylbenzene series. Values

of Tg increased with increasing chain-length up to a certain point at which they

become invariant. The data could also be said to follow the three-region behaviour

observed for a number of polymeric systems including PS [258–261]. We also note

that the molecular weight boundary between Regions I and II, M I
w is consistent

with the size of a Kuhn segment. Furthermore, the parameters describing the

dynamic fragility (m, D, and −S) of the glass formers in this series all indicate

an increase of the fragility with increasing chain-length. The data implies that

the glass forming properties of the systems presented in this thesis follow similar

behaviour independent of their specific chemistry.

Direct evidence for two different relaxation modes, α and β, were observed. In

addition, a third γ relaxation has also been observed for IPB, which is equivalent

to the monomer in this series [52]. This suggests that there may be an underlying

γ relaxation for the other samples in the PAMS series. Furthermore, the presence

of three relaxation mechanisms may be a more general feature of molecular glass

formers as similar behaviour was observed for the alkylbenzene and styrene series.

The α relaxation loss peak in ε′′ is clearly observed for all samples measured us-

ing BDS. This loss peak becomes increasingly broad with increasing chain length.

This broadening with degree of polymerisation is very similar to that observed

for the styrene series and we can make the same argument to explain it: as the

length of a polymer increases, we expect the distribution of relaxation times to

become broader and thus this is reflected in the observed loss peak.

A secondary relaxation mechanism was observed for the Nα = 2 sample in the

dielectric spectra. Analysis of the timescales of this relaxation process allowed

for the determination of ‘expected’ values of τβ for the Nα = 3, 5 and 13 samples.

Validation of the obtained values was gained through determination of values

of Tαβ, the point at which bifurcation of the α and β relaxations occurs and it

was shown that this corresponds to the ‘kink’ in the linearised τα data for these

samples. The expected τβ data (at a fixed temperature) appear to increase with
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increasing chain-length and are characterised by an increasing activation energy

which scales with the glass transition temperature. Similar observations have

been made for the alkylbenzene and styrene series as well as chain-length series

of PMMA, monomethyl ethers and glycols. This suggests that the behaviour of τβ,

and thus the nature of the β relaxation, may be a more general property of glass

formers rather than dependent on microscopic chemistries. It was also observed

that the ταβ values increased with increasing chain-length. This was argued [193]

to be indicative of the increasing cooperativity as a function of chain length.

We have observed striking similarities between the PAMS and the styrene

series in terms of their glass forming behaviour. However, one significant question

remains: why is the glass transition ∼ 40K higher for PAMS than it is for PS?

Clearly this must have something to do with the differing chemistries between

the two series. PAMS has an extra methyl group in each monomer unit and

perhaps this methyl group serves to further hinder relaxation of the polymer

chain meaning that the temperature at which dynamic arrest occurs is higher

than that of PS. Despite the differences in Tg, we have observed that different

glass forming systems have similar relaxation behaviour and thus it could be that

the difference in their chemistries simply changes the temperature regime in which

the different relaxation processes occur.
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Chapter 8

Conclusions

8.1 Overall Conclusions

Glasses are amorphous materials which exhibit solid-like properties on certain

timescales but do not contain the long range order and periodicity found in crys-

talline solids. The work presented in this thesis is aimed at understanding the

dynamics of glass-forming systems through the analysis of three systematic series

of molecular glass formers. These series were characterised by the systematic

variation of chemical structure: an alkylbenzene series (Chapter 4) involving the

systematic variation of the length of an alkyl tail attached to a phenyl-ring and

two series involving the successive oligomerisation of styrene (Chapter 6) and

α-methylstyrene (Chapter 7), respectively. The thesis systems were chosen as

they show similarities in their chemistry, facilitating a consistent investigation of

how structural modification affects relaxation behaviour in supercooled liquids

and polymers. Throughout the course of this thesis, several trends have been

observed which suggest a generality of relaxation behaviour in both polymeric

and molecular glass forming systems. This chapter serves as a summary of the

overall conclusions found. System specific conclusions are available at the end of

the relevant results chapters.

An important implication of the results is that the glass transition, Tg, is

strongly dependent on the ‘size’ of the constituent molecules in the glass forming

systems studied. For the polymeric chain-length series, the often used Fox-Flory

relation [255] provides a reasonable description of Tg over a range of molecular
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weights but fails to capture the behaviour for the shortest chain-length samples.

It was found that the Tg values are more consistent with a Tg versus log(Mw)

behaviour, separated into three distinct molecular weight regions as suggested by

Cowie [259]. This behaviour has been shown to apply for a range of polymeric

systems such as the systematic chain-length studies of polystyrene, polydimethyl-

siloxane and polybutadiene performed by Hintermeyer et. al. [258]. We are not

aware of a theoretical explanation for this behaviour and thus further research is

required in order to confirm the observed behaviour of Tg with molecular weight.

A similar log(Mw) dependence could also describe the alkylbenzene series, con-

sistent with observations of other molecular liquids [37, 150], suggesting that a

relationship between Tg and log(Mw) may be a more general property of glass

forming systems.

Values of Tg obtained for the samples in the alkylbenzene series (red squares)

and those of the lower molecular weight samples in the styrene (green triangles)

and PAMS series (black diamonds) are shown in Figure 8.1. For comparison

these are shown with those obtained for a series of molecular liquids analysed

by Larsen et. al. [150] (blue circles). The latter glass-formers are specifically

chosen as they span a wide Tg range, yet are considered rigid as they all contain

alkane chains that are shorter than three carbons. Thus, these provide a good

baseline for the detailed behaviour for rigid molecules. As shown in Figure 8.1,

the Tg values can be well described as a simple linear relationship with log(Mw).

In fact this functional dependence is the same for our three investigated series

even though the slope in this type of plot is clearly different for different types of

system. We find that the polystyrenes and the poly(alpha methyl styrenes) that

are structurally very similar show a very similar behaviour. However, the alkyl

benzenes show a singificantly lower slope. For both the two polymer series and

the alkyl benzenes, we see, however, that as the molecules becomes short or ’rigid’

they conform to the behaviour showed in the blue circles for ’rigid’ glass-formers.

Figure 8.1 raises an interesting question: can the behaviour of different sys-

tems be mapped onto a single master curve? Clearly size is important, but to

achieve this one also needs to build in the notion of shape. Thus, further studies

involving computer simulations and/or direct shape determination using neu-

tron diffraction to determine how the shape and size develops in a systematically
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Figure 8.1: a) Values for Tg obtained for the alkylbenzene, styrene and PAMS
series in comparison with those obtained for a range of molecular liquids analysed
by Larsen et. al. [150].

structurally modified chain-series might be highly revealing. Moreover, we have

found a significant degree of generality in the relaxation behaviour of three inves-

tigated systems. The alkylbenzene and oligostyrene series appear to exhibit three

relaxation modes, designated α, β and γ. We have established that the molec-

ular weight dependence of these three relaxations were very similar between the

systems when they could be observed. In work not included here (due to the

unfinished state of the analysis) for a chain-series of polymethyl methacrylates,

we have also found both β and γ relaxations. Importantly, for the methacrylates

the relaxation strengths are significant enough to directly follow both relaxations

across the series. The results for this series confirm the results presented here for

existence and development of the β relaxation, both for the styrene and PAMS

series.

We found support for the notion that the activation energy of the β relaxations

in all three systems follow a relationship with Tg, which has been previously

suggested. A further implication of the relationship between EA and Tg is that

the activation energy of the β relaxation could set the glass forming behaviour of

molecular glass formers. The fact that this relationship has also been shown to
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apply for metallic glasses with a similar value of the constant of proportionality,

K = 26± 3 [9], to that found for a range of molecular glass formers: K = 24± 3

[15, 55], further suggests that the connection between the β relaxation and Tg

could be a general property for glass formers. If this is true then perhaps one

avenue of approach to explain the trends in Tg shown in Figure 8.1 could be

to analyse the activation energy of the β relaxation and its molecular weight

dependence.

The α relaxations could be observed directly in the dielectric spectra for all

samples. The breadths of the loss peaks relating to this process were observed to

increase monotonically with temperature for most samples. It was also observed

that the breadths of the oligomeric and polymeric samples were chain-length

dependent, with longer chain-length samples exhibiting broader relaxation dis-

persions. This implied a greater fragility with increasing chain-length [62, 83],

which was observed. Moreover, it was observed that the shape of the peak be-

cames invariant at a certain chain-length, corresponding to previous observations

of polystyrene [26, 269] suggesting that the fragility also increases but becomes

invariant at a certain chain-length.

This behaviour was quantified by the metrics used to describe the dynamic

fragility. Values of the fragility parameter, m and the gradient of the linearised

τα data −S all show a molecular weight dependence. For the polymeric systems,

metrics of the dynamic fragility show a similar molecular weight dependence to Tg:

increasing with increasing chain-length for shorter chain samples before becoming

invariant at higher molecular weights. This implies a connection between Tg and

the fragility of glass forming systems. Furthermore, as a similar dependence of the

dynamic fragility was also observed for the alkylbenzene series, this implies that

the size dependence of fragility may be a general feature of glass forming systems.

We observed a correlation between dynamic and thermodynamic definitions of the

fragility for the alkylbenzene series. However, discrepancies were found between

these two definitions for the polymeric systems. These observations serve to

confirm the behaviour observed for a range of simple molecular and polymeric

glass formers [122].

Analysis of the DSC traces for the alkylbenzene and styrene samples led to a

determination of the so-called excess entropy, Sx, at Tg. For these systems, Sx was
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shown to increase with molecular weight. By assuming that Sx was equivalent

to the configurational entropy, Sc, validation of the Adam-Gibbs model [76] was

obtained for the alkylbenzene series.

8.2 Outlook

The results of the research presented in this thesis have provided several conclu-

sions as to the generality of the relaxation behaviour of glass forming systems.

In order to confirm the conclusions obtained, further research will need to be

conducted into the relationship between the size of the constituent molecules of a

glass former and its glass forming properties. For example, preliminary analysis

of a chain-length series of PMMA has been completed and this appears to be an

ideal system to further confirm the generality of the results presented here.

The impact of the fundamental work in this thesis could also have important

applications in areas such as the cryopreservation of biological matter, which is

often performed by the use of sugar based glasses. One example of such a sugar,

trehalose, has been shown to be very effective in the preservation of cells and

proteins [309, 310]. The sugar glass is here used to stabilise proteins and/or

preserve proteins for instance in biotechnology or medical applications. It has

been shown that the stability of these proteins is directly linked to the properties

of a secondary β relaxation [14]. Thus, an understanding of the behaviour of

such sugar based glass formers is key to the development of this process. We have

initiated work to study mixtures of trehalose and other glass-formers with the aim

of controlling the relaxation behaviour. This might be a highly important avenue

for more applied work in the future which links strongly to the fundamental work

of this thesis.

Finally, the importance of the idea of investigating how systematic struc-

tural modifications affect glass-formation is not unique to molecular systems.

Suspensions of colloidal particles form glasses as a function of increasing col-

loid volume fraction. In parallel to the work presented here we have synthesized

and characterised soft microgel colloids where the single particle properties can

be tuned by variation of the microgel network cross-link properties. We have

thus studied the glass-forming properties of colloidal suspensions consisting of
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poly(N-isopropylacrylamide) (pNIPAM) spheres in water. Colloids are an excel-

lent system for investigating glass- formation as their size means that light can

be used as a probe and their properties can be easily and systematically tuned.

For example, it has previously been shown that colloids with different elasticities

exhibit variable fragility [73]. There are very interesing links between the work

presented in this thesis and the work on colloids.
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